WorldWideScience

Sample records for heme iron intake

  1. A central role for heme iron in colon carcinogenesis associated with red meat intake.

    Bastide, Nadia M; Chenni, Fatima; Audebert, Marc; Santarelli, Raphaelle L; Taché, Sylviane; Naud, Nathalie; Baradat, Maryse; Jouanin, Isabelle; Surya, Reggie; Hobbs, Ditte A; Kuhnle, Gunter G; Raymond-Letron, Isabelle; Gueraud, Françoise; Corpet, Denis E; Pierre, Fabrice H F

    2015-03-01

    Epidemiology shows that red and processed meat intake is associated with an increased risk of colorectal cancer. Heme iron, heterocyclic amines, and endogenous N-nitroso compounds (NOC) are proposed to explain this effect, but their relative contribution is unknown. Our study aimed at determining, at nutritional doses, which is the main factor involved and proposing a mechanism of cancer promotion by red meat. The relative part of heme iron (1% in diet), heterocyclic amines (PhIP + MeIQx, 50 + 25 μg/kg in diet), and NOC (induced by NaNO₂+ NaNO₂; 0.17 + 0.23 g/L of drinking water) was determined by a factorial design and preneoplastic endpoints in chemically induced rats and validated on tumors in Min mice. The molecular mechanisms (genotoxicity, cytotoxicity) were analyzed in vitro in normal and Apc-deficient cell lines and confirmed on colon mucosa. Heme iron increased the number of preneoplastic lesions, but dietary heterocyclic amines and NOC had no effect on carcinogenesis in rats. Dietary hemoglobin increased tumor load in Min mice (control diet: 67 ± 39 mm²; 2.5% hemoglobin diet: 114 ± 47 mm², P = 0.004). In vitro, fecal water from rats given hemoglobin was rich in aldehydes and was cytotoxic to normal cells, but not to premalignant cells. The aldehydes 4-hydroxynonenal and 4-hydroxyhexenal were more toxic to normal versus mutated cells and were only genotoxic to normal cells. Genotoxicity was also observed in colon mucosa of mice given hemoglobin. These results highlight the role of heme iron in the promotion of colon cancer by red meat and suggest that heme iron could initiate carcinogenesis through lipid peroxidation. . ©2015 American Association for Cancer Research.

  2. Are meat and heme iron intake associated with pancreatic cancer? Results from the NIH-AARP Diet and Health Cohort

    Taunk, Pulkit; Hecht, Eric; Stolzenberg-Solomon, Rachael

    2015-01-01

    Several studies on pancreatic cancer have reported significant positive associations for intake of red meat but null associations for heme iron. We assessed total, red, white, and processed meat intake, meat cooking methods and doneness, and heme iron and mutagen intake in relation to pancreatic cancer in the NIH-AARP Diet and Health Study cohort. 322,846 participants (187,265 men; 135,581 women) successfully completed and returned the food frequency questionnaire between 1995–1996. After a mean follow-up of 9.2 years (up to 10.17 years), 1,417 individuals (895 men, 522 women) developed exocrine pancreatic cancer. Cox proportional hazard models were used to calculate hazard ratios (HR) and 95% confidence intervals (CI), and trends were calculated using the median value of each quantile. Models incorporated age as the time metric and were adjusted for smoking history, BMI, self-reported diabetes, and energy-adjusted saturated fat. Pancreatic cancer risk significantly increased with intake of total meat (Q5 vs. Q1 HR=1.20, 95% CI 1.02–1.42, p-trend=0.03), red meat (HR=1.22, 95% CI 1.01–1.48, p-trend=0.02), high-temperature cooked meat (HR=1.21, 95% CI 1.00–1.45, p-trend=0.02), grilled/barbequed meat (HR=1.24, 95% CI 1.03–1.50, p-trend=0.007), well/very well done meat (HR=1.32, 95% CI 1.10–1.58, p-trend = 0.005), and heme iron from red meat (Q4 vs. Q1 HR=1.21, 95% CI 1.01–1.45, p-trend=0.04). When stratified by sex, these associations remained significant in men but not women except for white meat intake in women (HR = 1.33, 95% CI 1.02–1.74, p-trend = 0.04). Additional studies should confirm our findings that consuming heme iron from red meat increases pancreatic cancer risk. PMID:26666579

  3. Prebiotics increase heme iron bioavailability and do not affect non-heme iron bioavailability in humans.

    Weinborn, Valerie; Valenzuela, Carolina; Olivares, Manuel; Arredondo, Miguel; Weill, Ricardo; Pizarro, Fernando

    2017-05-24

    The aim of this study was to establish the effect of a prebiotic mix on heme and non-heme iron (Fe) bioavailability in humans. To this purpose, twenty-four healthy women were randomized into one of two study groups. One group ate one yogurt per day for 12 days with a prebiotic mix (prebiotic group) and the other group received the same yogurt but without the prebiotic mix (control group). Before and after the intake period, the subjects participated in Fe absorption studies. These studies used 55 Fe and 59 Fe radioactive isotopes as markers of heme Fe and non-heme Fe, respectively, and Fe absorption was measured by the incorporation of radioactive Fe into erythrocytes. The results showed that there were no significant differences in heme and non-heme Fe bioavailability in the control group. Heme Fe bioavailability of the prebiotic group increased significantly by 56% post-prebiotic intake. There were no significant differences in non-heme Fe bioavailability in this group. We concluded that daily consumption of a prebiotic mix increases heme Fe bioavailability and does not affect non-heme iron bioavailability.

  4. Red and processed meat, nitrite, and heme iron intakes and postmenopausal breast cancer risk in the NIH-AARP Diet and Health Study

    Inoue-Choi, Maki; Sinha, Rashmi; Gierach, Gretchen L.; Ward, Mary H.

    2015-01-01

    Previous studies have shown inconsistent associations between red and processed meat intake and breast cancer risk. N-nitroso compounds and heme iron have been hypothesized as contributing factors. We followed 193,742 postmenopausal women in the NIH-AARP Diet and Health Study and identified 9,305 incident breast cancers (1995–2006). Dietary intake was assessed using a food frequency questionnaire at baseline. We adjusted daily intakes of meat, nitrite, and heme iron for energy intake using the nutrient density method. We estimated multivariable-adjusted hazard ratios (HR) and 95% confidence intervals (CI) by quintiles of dietary exposures for all breast cancer, by stage (in-situ, localized, regional/distant), and by estrogen/progesterone receptor (ER/PR) status using Cox proportional hazards regression. Total red meat intake was positively associated with risk of regional/distant cancer (p-trend=0.02). The risk was 25% higher in the highest vs. lowest intake quintile (95%CI=1.03–1.52). Higher processed red meat intake (Q5 vs. Q1) was associated with 27% higher risk of localized breast cancer (95%CI=1.01–1.27, p-trend=0.03) and a 19% higher risk of regional/distant cancer (95%CI=0.98–1.44, p-trend=0.10). In addition, higher nitrite intake from processed red meat was positively associated with localized cancer (HR for Q5 vs. Q1=1.23, 95%CI=1.09–1.39, p-trendmeat and processed meat may increase risk of postmenopausal breast cancer. Added nitrite and heme iron may partly contribute to these observed associations. PMID:26505173

  5. Mononuclear non-heme iron(III)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 2. Mononuclear non-heme iron(III) complexes of linear and tripodal tridentate ligands as functional models for catechol dioxygenases: Effect of -alkyl substitution on regioselectivity and reaction rate. Mallayan Palaniandavar Kusalendiran Visvaganesan.

  6. Heme metabolism as an integral part of iron homeostasis

    Paweł Lipiński

    2014-01-01

    Full Text Available Heme, a ferrous iron protoporphyrin IX complex, is employed as a prosthetic group in a number of diverse heme proteins that participate in important cellular and systemic physiological processes. Provision of an adequate amount of iron for heme biosynthesis is one of the elemental hallmarks of intracellular iron homeostasis. In the cell the bioavailability of iron for the two main iron biological pathways – heme synthesis and the biogenesis of iron-sulfur clusters ([Fe-S] – is mainly regulated by the IRP/IRE posttranscriptional system. The biogenesis of [Fe-S] centers is crucial for heme synthesis because these co-factors determine the activity of IRP1 and that of ferrochelatase, an enzyme responsible for the insertion of an iron into protoporphyrin IX to produce heme. On the other hand, delivery of iron for heme and hemoglobin synthesis in erythroblasts, precursors of erythrocytes in bone marrow, is an indispensable element of body iron homeostasis. This process relies on the recovery of iron from senescent red blood cells through the enzymatic degradation of heme molecules and recycling of iron to the circulation. Molecular coordination of these processes involves the activity of heme oxygenase 1, IRP1 and IRP2 as well as the functioning of the hepcidin-ferroportin regulatory axis. Recent studies show in mammals the existence of an expanded system of proteins involved in the transport of intact heme molecules at the cellular and systemic levels. The biological role of this system is of particular importance when the concentration of free heme reaches a toxic level in the body (intravascular hemolysis as well as locally in cells having intensive heme metabolism such as erythroblasts and macrophages.

  7. [Heme metabolism as an integral part of iron homeostasis].

    Lipiński, Paweł; Starzyński, Rafał R; Styś, Agnieszka; Gajowiak, Anna; Staroń, Robert

    2014-01-02

    Heme, a ferrous iron protoporphyrin IX complex, is employed as a prosthetic group in a number of diverse heme proteins that participate in important cellular and systemic physiological processes. Provision of an adequate amount of iron for heme biosynthesis is one of the elemental hallmarks of intracellular iron homeostasis. In the cell the bioavailability of iron for the two main iron biological pathways--heme synthesis and the biogenesis of iron-sulfur clusters ([Fe-S])--is mainly regulated by the IRP/IRE posttranscriptional system. The biogenesis of [Fe-S] centers is crucial for heme synthesis because these co-factors determine the activity of IRP1 and that of ferrochelatase, an enzyme responsible for the insertion of an iron into protoporphyrin IX to produce heme. On the other hand, delivery of iron for heme and hemoglobin synthesis in erythroblasts, precursors of erythrocytes in bone marrow, is an indispensable element of body iron homeostasis. This process relies on the recovery of iron from senescent red blood cells through the enzymatic degradation of heme molecules and recycling of iron to the circulation. Molecular coordination of these processes involves the activity of heme oxygenase 1, IRP1 and IRP2 as well as the functioning of the hepcidin-ferroportin regulatory axis. Recent studies show in mammals the existence of an expanded system of proteins involved in the transport of intact heme molecules at the cellular and systemic levels. The biological role of this system is of particular importance when the concentration of free heme reaches a toxic level in the body (intravascular hemolysis) as well as locally in cells having intensive heme metabolism such as erythroblasts and macrophages.

  8. Heme and non-heme iron transporters in non-polarized and polarized cells

    Yasui Yumiko

    2010-06-01

    Full Text Available Abstract Background Heme and non-heme iron from diet, and recycled iron from hemoglobin are important products of the synthesis of iron-containing molecules. In excess, iron is potentially toxic because it can produce reactive oxygen species through the Fenton reaction. Humans can absorb, transport, store, and recycle iron without an excretory system to remove excess iron. Two candidate heme transporters and two iron transporters have been reported thus far. Heme incorporated into cells is degraded by heme oxygenases (HOs, and the iron product is reutilized by the body. To specify the processes of heme uptake and degradation, and the reutilization of iron, we determined the subcellular localizations of these transporters and HOs. Results In this study, we analyzed the subcellular localizations of 2 isoenzymes of HOs, 4 isoforms of divalent metal transporter 1 (DMT1, and 2 candidate heme transporters--heme carrier protein 1 (HCP1 and heme responsive gene-1 (HRG-1--in non-polarized and polarized cells. In non-polarized cells, HCP1, HRG-1, and DMT1A-I are located in the plasma membrane. In polarized cells, they show distinct localizations: HCP1 and DMT1A-I are located in the apical membrane, whereas HRG-1 is located in the basolateral membrane and lysosome. 16Leu at DMT1A-I N-terminal cytosolic domain was found to be crucial for plasma membrane localization. HOs are located in smooth endoplasmic reticulum and colocalize with NADPH-cytochrome P450 reductase. Conclusions HCP1 and DMT1A-I are localized to the apical membrane, and HRG-1 to the basolateral membrane and lysosome. These findings suggest that HCP1 and DMT1A-I have functions in the uptake of dietary heme and non-heme iron. HRG-1 can transport endocytosed heme from the lysosome into the cytosol. These localization studies support a model in which cytosolic heme can be degraded by HOs, and the resulting iron is exported into tissue fluids via the iron transporter ferroportin 1, which is

  9. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis.

    Simcox, Judith A; Mitchell, Thomas Creighton; Gao, Yan; Just, Steven F; Cooksey, Robert; Cox, James; Ajioka, Richard; Jones, Deborah; Lee, Soh-Hyun; King, Daniel; Huang, Jingyu; McClain, Donald A

    2015-04-01

    The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. Ironing out the Details: Exploring the Role of Iron and Heme in Blood-Sucking Arthropods

    Whiten, Shavonn R.; Eggleston, Heather; Adelman, Zach N.

    2018-01-01

    Heme and iron are essential molecules for many physiological processes and yet have the ability to cause oxidative damage such as lipid peroxidation, protein degradation, and ultimately cell death if not controlled. Blood-sucking arthropods have evolved diverse methods to protect themselves against iron/heme-related damage, as the act of bloodfeeding itself is high risk, high reward process. Protective mechanisms in medically important arthropods include the midgut peritrophic matrix in mosquitoes, heme aggregation into the crystalline structure hemozoin in kissing bugs and hemosomes in ticks. Once heme and iron pass these protective mechanisms they are presumed to enter the midgut epithelial cells via membrane-bound transporters, though relatively few iron or heme transporters have been identified in bloodsucking arthropods. Upon iron entry into midgut epithelial cells, ferritin serves as the universal storage protein and transport for dietary iron in many organisms including arthropods. In addition to its role as a nutrient, heme is also an important signaling molecule in the midgut epithelial cells for many physiological processes including vitellogenesis. This review article will summarize recent advancements in heme/iron uptake, detoxification and exportation in bloodfeeding arthropods. While initial strides have been made at ironing out the role of dietary iron and heme in arthropods, much still remains to be discovered as these molecules may serve as novel targets for the control of many arthropod pests. PMID:29387018

  11. Acquisition of iron from transferrin regulates reticulocyte heme synthesis

    Ponka, P.; Schulman, H.M.

    1985-01-01

    Fe-salicylaldehyde isonicotinoylhydrazone (SIH), which can donate iron to reticulocytes without transferrin as a mediator, has been utilized to test the hypothesis that the rate of iron uptake from transferrin limits the rate of heme synthesis in erythroid cells. Reticulocytes take up 59 Fe from [ 59 Fe]SIH and incorporate it into heme to a much greater extent than from saturating concentrations of [ 59 Fe]transferrin. Also, Fe-SIH stimulates [2- 14 C]glycine into heme when compared to the incorporation observed with saturating levels of Fe-transferrin. In addition, delta-aminolevulinic acid does not stimulate 59 Fe incorporation into heme from either [ 59 Fe]transferrin or [ 59 Fe]SIH but does reverse the inhibition of 59 Fe incorporation into heme caused by isoniazid, an inhibitor of delta-aminolevulinic acid synthase. Taken together, these results suggest the hypothesis that some step(s) in the pathway of iron from extracellular transferrin to intracellular protoporphyrin limits the overall rate of heme synthesis in reticulocytes

  12. Heme oxygenase activity correlates with serum indices of iron homeostasis in healthy nonsmokers

    Heme oxygenase (HO) catalyzes the breakdown of heme to carbon monoxide, iron, and biliverdin. While the use of genetically altered animal models in investigation has established distinct associations between HO activity and systemic iron availability, studies have not yet confirm...

  13. Dietary hemoglobin rescues young piglets from severe iron deficiency anemia: Duodenal expression profile of genes involved in heme iron absorption.

    Robert Staroń

    Full Text Available Heme is an efficient source of iron in the diet, and heme preparations are used to prevent and cure iron deficiency anemia in humans and animals. However, the molecular mechanisms responsible for heme absorption remain only partially characterized. Here, we employed young iron-deficient piglets as a convenient animal model to determine the efficacy of oral heme iron supplementation and investigate the pathways of heme iron absorption. The use of bovine hemoglobin as a dietary source of heme iron was found to efficiently counteract the development of iron deficiency anemia in piglets, although it did not fully rebalance their iron status. Our results revealed a concerted increase in the expression of genes responsible for apical and basolateral heme transport in the duodenum of piglets fed a heme-enriched diet. In these animals the catalytic activity of heme oxygenase 1 contributed to the release of elemental iron from the protoporphyrin ring of heme within enterocytes, which may then be transported by the strongly expressed ferroportin across the basolateral membrane to the circulation. We hypothesize that the well-recognized high bioavailability of heme iron may depend on a split pathway mediating the transport of heme-derived elemental iron and intact heme from the interior of duodenal enterocytes to the bloodstream.

  14. Meat, Dietary Heme Iron, and Risk of Type 2 Diabetes Mellitus: The Singapore Chinese Health Study.

    Talaei, Mohammad; Wang, Ye-Li; Yuan, Jian-Min; Pan, An; Koh, Woon-Puay

    2017-10-01

    We evaluated the relationships of red meat, poultry, fish, and shellfish intakes, as well as heme iron intake, with the risk of type 2 diabetes mellitus (T2D).The Singapore Chinese Health Study is a population-based cohort study that recruited 63,257 Chinese adults aged 45-74 years from 1993 to 1998. Usual diet was evaluated using a validated 165-item semiquantitative food frequency questionnaire at recruitment. Physician-diagnosed T2D was self-reported during 2 follow-up interviews in 1999-2004 and 2006-2010. During a mean follow-up of 10.9 years, 5,207 incident cases of T2D were reported. When comparing persons in the highest intake quartiles with those in the lowest, the multivariate-adjusted hazard ratio for T2D was 1.23 (95% confidence interval (CI): 1.14, 1.33) for red meat intake (P for trend meat intake remained significantly associated with T2D risk (multivariate-adjusted hazard ratio = 1.13, 95% CI: 1.01, 1.25; P for trend = 0.02). Heme iron was associated with a higher risk of T2D even after additional adjustment for red meat intake (multivariate-adjusted hazard ratio = 1.14, 95% CI: 1.02, 1.28; P for trend = 0.03). In conclusion, red meat and poultry intakes were associated with a higher risk of T2D. These associations were mediated completely for poultry and partially for red meat by heme iron intake. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Studying disorders of vertebrate iron and heme metabolism using zebrafish.

    van der Vorm, Lisa N; Paw, Barry H

    2017-01-01

    Iron is a crucial component of heme- and iron-sulfur clusters, involved in vital cellular functions such as oxygen transport, DNA synthesis, and respiration. Both excess and insufficient levels of iron and heme-precursors cause human disease, such as iron-deficiency anemia, hemochromatosis, and porphyrias. Hence, their levels must be tightly regulated, requiring a complex network of transporters and feedback mechanisms. The use of zebrafish to study these pathways and the underlying genetics offers many advantages, among others their optical transparency, ex-vivo development and high genetic and physiological conservations. This chapter first reviews well-established methods, such as large-scale mutagenesis screens that have led to the initial identification of a series of iron and heme transporters and the generation of a variety of mutant lines. Other widely used techniques are based on injection of RNA, including complementary morpholino knockdown and gene overexpression. In addition, we highlight several recently developed approaches, most notably endonuclease-based gene knockouts such as TALENs or the CRISPR/Cas9 system that have been used to study how loss of function can induce human disease phenocopies in zebrafish. Rescue by chemical complementation with iron-based compounds or small molecules can subsequently be used to confirm causality of the genetic defect for the observed phenotype. All together, zebrafish have proven to be - and will continue to serve as an ideal model to advance our understanding of the pathogenesis of human iron and heme-related diseases and to develop novel therapies to treat these conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Sugars increase non-heme iron bioavailability in human epithelial intestinal and liver cells.

    Tatiana Christides

    Full Text Available Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55 increased Caco-2 cell iron-induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies are warranted to characterize these interactions.

  17. Irradiation of bovine meat: effect of heme-iron concentration

    Mistura, Liliana Perazzini Furtado

    2002-01-01

    The irradiation is often used, nowadays, for meat conservation and it is important to know how much this process interferes with the nutritional quality of the meat. In this study round cut meat, ground and steaks (from a local supermarket) was irradiated with doses of O; 1; 2; 3; 4; 5; 7,5 and 10 kGy (JS-7500 Nordium Inc -Canada) and the interference of irradiation and the process of food preparation on heme-iron (H Fe) content was determined. Half of the sample was kept raw and the other half was grilled in a pre-warmed oven at 250 deg C for 9 min and a controlled humidity of 70%. The chemical composition, the total iron (T Fe) (EM) and the heme iron concentration were determined (Hornsey,1956) and the sensorial quality evaluated. The average T Fe concentration of raw and ground , ground and grilled, raw steaks and grilled steak meat, on dry and degreased basis was 113 mug/g, 121 mug/g , 91 mug/g and 77 mug/g; and the H Fe concentration 105 mug/g (93% of T Fe) , 88 mug/g (73% of T Fe), 90 mug/g (99% of T Fe) and 52 mug/g (68% of T Fe) respectively. Data were evaluated by ANOVA with fixed effects and multiple comparisons. The irradiation neither altered the chemical composition nor the proportion of heme iron of meat. The preparation conditions (temperature, cooking time, environment humidity, meat presentation) of the sample interfered more with the heme iron content than the irradiation. With the sensorial analysis we verified that meats irradiated with doses of 3 kGy were better evaluated in softness and succulency attributes than the others. Meat submitted to irradiation doses up to 3 kGy were accepted by the specialists' panel. (author)

  18. The effect of proteins from animal source foods on heme iron bioavailability in humans.

    Pizarro, Fernando; Olivares, Manuel; Valenzuela, Carolina; Brito, Alex; Weinborn, Valerie; Flores, Sebastián; Arredondo, Miguel

    2016-04-01

    Forty-five women (35-45 year) were randomly assigned to three iron (Fe) absorption sub-studies, which measured the effects of dietary animal proteins on the absorption of heme Fe. Study 1 was focused on heme, red blood cell concentrate (RBCC), hemoglobin (Hb), RBCC+beef meat; study 2 on heme, heme+fish, chicken, and beef; and study 3 on heme and heme+purified animal protein (casein, collagen, albumin). Study 1: the bioavailability of heme Fe from Hb was similar to heme only (∼13.0%). RBCC (25.0%) and RBCC+beef (21.3%) were found to be increased 2- and 1.6-fold, respectively, when compared with heme alone (pProteins from animal source foods and their digestion products did not enhance heme Fe absorption. Copyright © 2015. Published by Elsevier Ltd.

  19. Covalent heme attachment to the protein in human heme oxygenase-1 with selenocysteine replacing the His25 proximal iron ligand.

    Jiang, Yongying; Trnka, Michael J; Medzihradszky, Katalin F; Ouellet, Hugues; Wang, Yongqiang; Ortiz de Montellano, Paul R

    2009-03-01

    To characterize heme oxygenase with a selenocysteine (SeCys) as the proximal iron ligand, we have expressed truncated human heme oxygenase-1 (hHO-1) His25Cys, in which Cys-25 is the only cysteine, in the Escherichia coli cysteine auxotroph strain BL21(DE3)cys. Selenocysteine incorporation into the protein was demonstrated by both intact protein mass measurement and mass spectrometric identification of the selenocysteine-containing tryptic peptide. One selenocysteine was incorporated into approximately 95% of the expressed protein. Formation of an adduct with Ellman's reagent (DTNB) indicated that the selenocysteine in the expressed protein was in the reduced state. The heme-His25SeCys hHO-1 complex could be prepared by either (a) supplementing the overexpression medium with heme, or (b) reconstituting the purified apoprotein with heme. Under reducing conditions in the presence of imidazole, a covalent bond is formed by addition of the selenocysteine residue to one of the heme vinyl groups. No covalent bond is formed when the heme is replaced by mesoheme, in which the vinyls are replaced by ethyl groups. These results, together with our earlier demonstration that external selenolate ligands can transfer an electron to the iron [Y. Jiang, P.R. Ortiz de Montellano, Inorg. Chem. 47 (2008) 3480-3482 ], indicate that a selenyl radical is formed in the hHO-1 His25SeCys mutant that adds to a heme vinyl group.

  20. Wearing red for signaling: the heme-bach axis in heme metabolism, oxidative stress response and iron immunology.

    Igarashi, Kazuhiko; Watanabe-Matsui, Miki

    2014-04-01

    The connection between gene regulation and metabolism is an old issue that warrants revisiting in order to understand both normal as well as pathogenic processes in higher eukaryotes. Metabolites affect the gene expression by either binding to transcription factors or serving as donors for post-translational modification, such as that involving acetylation and methylation. The focus of this review is heme, a prosthetic group of proteins that includes hemoglobin and cytochromes. Heme has been shown to bind to several transcription factors, including Bach1 and Bach2, in higher eukaryotes. Heme inhibits the transcriptional repressor activity of Bach1, resulting in the derepression of its target genes, such as globin in erythroid cells and heme oxygenase-1 in diverse cell types. Since Bach2 is important for class switch recombination and somatic hypermutation of immunoglobulin genes as well as regulatory and effector T cell differentiation and the macrophage function, the heme-Bach2 axis may regulate the immune response as a signaling cascade. We discuss future issues regarding the topic of the iron/heme-gene regulation network based on current understanding of the heme-Bach axis, including the concept of "iron immunology" as the synthesis of the iron metabolism and the immune response.

  1. A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin.

    Kuznets, Galit; Vigonsky, Elena; Weissman, Ziva; Lalli, Daniela; Gildor, Tsvia; Kauffman, Sarah J; Turano, Paola; Becker, Jeffrey; Lewinson, Oded; Kornitzer, Daniel

    2014-10-01

    Iron scavenging constitutes a crucial challenge for survival of pathogenic microorganisms in the iron-poor host environment. Candida albicans, like many microbial pathogens, is able to utilize iron from hemoglobin, the largest iron pool in the host's body. Rbt5 is an extracellular glycosylphosphatidylinositol (GPI)-anchored heme-binding protein of the CFEM family that facilitates heme-iron uptake by an unknown mechanism. Here, we characterize an additional C. albicans CFEM protein gene, PGA7, deletion of which elicits a more severe heme-iron utilization phenotype than deletion of RBT5. The virulence of the pga7-/- mutant is reduced in a mouse model of systemic infection, consistent with a requirement for heme-iron utilization for C. albicans pathogenicity. The Pga7 and Rbt5 proteins exhibit distinct cell wall attachment, and discrete localization within the cell envelope, with Rbt5 being more exposed than Pga7. Both proteins are shown here to efficiently extract heme from hemoglobin. Surprisingly, while Pga7 has a higher affinity for heme in vitro, we find that heme transfer can occur bi-directionally between Pga7 and Rbt5, supporting a model in which they cooperate in a heme-acquisition relay. Together, our data delineate the roles of Pga7 and Rbt5 in a cell surface protein network that transfers heme from extracellular hemoglobin to the endocytic pathway, and provide a paradigm for how receptors embedded in the cell wall matrix can mediate nutrient uptake across the fungal cell envelope.

  2. Heme Iron Concentrate and Iron Sulfate Added to Chocolate Biscuits: Effects on Hematological Indices of Mexican Schoolchildren.

    Quintero-Gutiérrez, Adrián Guillermo; González-Rosendo, Guillermina; Pozo, Javier Polo; Villanueva-Sánchez, Javier

    2016-08-01

    Food fortification is one of the most effective strategies for increasing iron intake in the population. A simple blind trial was conducted to compare the effect of 2 forms of iron fortification and assess the changes in hemoglobin and iron status indices among preschool children from rural communities. Hemoglobin was evaluated in 47 children aged 3-6 years old. For 72 days (10-week period), children ate Nito biscuits. Thirteen pupils with elevated hemoglobin levels were assigned to the biscuit control group, and pupils with hemoglobin equal to 13.5 mg/dL or less were randomly allocated to consume fortified biscuits with a heme iron concentrate (n = 15) or iron sulfate (n = 19). Changes in hemoglobin, plasma ferritin, and other hematological indices were evaluated with analysis of variance (ANOVA) for repeated measurements. Except mean corpuscular hemoglobin concentrations (+1.27 ± 2.25 g/dL), hematological indices increased significantly across the study: Mean corpuscular volume (+2.2 ± 1.0 f/dL), red blood cells (+0.30 ± 0.37 M/μL), mean corpuscular hemoglobin (+1.8 ± 1.74 pg), hemoglobin (+1.68 ± 0.91 g/dL), hematocrit (+3.43% ± 3.03%), and plasma ferritin (+18.38 ± 22.1 μg/L) were all p effect of the iron-fortified chocolate biscuits in the hemoglobin levels was higher than the control group (+1.1 ± 0.2 g/dL) but no difference was found between consumers of fortified biscuits with heme iron concentrate or iron sulfate (+1.9 ± 0.2 g/dL and +2.0 ± 0.2 g/dL, respectively). Heme iron concentrate and iron sulfate were equally effective in increasing Hb levels and hematological indices. Processed foods were shown to be an effective, valuable, and admissible intervention to prevent anemia in preschool children.

  3. TLR Stimulation Dynamically Regulates Heme and Iron Export Gene Expression in Macrophages

    Mary Philip

    2016-01-01

    Full Text Available Pathogenic bacteria have evolved multiple mechanisms to capture iron or iron-containing heme from host tissues or blood. In response, organisms have developed defense mechanisms to keep iron from pathogens. Very little of the body’s iron store is available as free heme; rather nearly all body iron is complexed with heme or other proteins. The feline leukemia virus, subgroup C (FeLV-C receptor, FLVCR, exports heme from cells. It was unknown whether FLVCR regulates heme-iron availability after infection, but given that other heme regulatory proteins are upregulated in macrophages in response to bacterial infection, we hypothesized that macrophages dynamically regulate FLVCR. We stimulated murine primary macrophages or macrophage cell lines with LPS and found that Flvcr is rapidly downregulated in a TLR4/MD2-dependent manner; TLR1/2 and TLR3 stimulation also decreased Flvcr expression. We identified several candidate TLR-activated transcription factors that can bind to the Flvcr promoter. Macrophages must balance the need to sequester iron from systemic circulating or intracellular pathogens with the macrophage requirement for heme and iron to produce reactive oxygen species. Our findings underscore the complexity of this regulation and point to a new role for FLVCR and heme export in macrophages responses to infection and inflammation.

  4. The effect of irradiation and thermal process on beef heme iron concentration and color properties

    Mistura, Liliana Perazzini Furtado; Colli, Celia

    2009-01-01

    The aim of this study was to evaluate the influence of irradiation and thermal process on the heme iron (heme-Fe) concentration and color properties of Brazilian cattle beef. Beef samples (patties and steaks) were irradiated at 0-10 kGy and cooked in a combination oven at 250 deg C for 9 minutes with 70% humidity. Total iron and heme iron (heme-Fe) concentrations were determined. The data were compared by multiple comparisons and fixed- effects ANOVA. Irradiation at doses higher than 5 kGy significantly altered the heme-Fe concentration. However, the sample preparation conditions interfered more in the heme-Fe content than did the irradiation. Depending on the animal species, meat heme iron levels between 35 and 52% of the total iron are used for dietetic calculations. In this study the percentage of heme-iron was, on average, 70% of the total iron showing that humidity is an important factor for its preservation. The samples were analyzed instrumentally for CIE L * , a * , and b * values. (author)

  5. Alteration by irradiation and storage at amount of heme iron in poultry meat

    Souza, A.R.M. de; Arthur, V.; Canniatti-Brazaca, S.G.

    2007-01-01

    Studies of irradiation and storage effects in chicken were carried out to discover the influence in iron heme, non-heme amount, color and total pigments. Chicken thighs and chicken breast were studied. These were irradiated to 0, 1 and 2 kGy stored by 14 days to 4 °C in refrigerator. Determining the heme content and non-heme of meat was done using the colorimeter method and the Ferrozine reagent. The values of iron heme were influenced both by the irradiation and the storage, reducing the amount throughout the course of time. The iron non-heme was also influenced by the doses and the storage time, however the values increased throughout the course of time, because of the conversion of iron heme in non-heme. The color did not show that it was influenced by the studied doses, except for the storage, and the total number of pigments was affected by the irradiation and the time, reducing the values with the increase of storage. Irradiation was shown to be a good method to conserve iron. (author) [pt

  6. Alteration by irradiation and storage at amount of heme iron in poultry meat

    Souza, Adriana Regia Marques de; Arthur, Valter Arthur; Canniatti-Brazaca, Solange Guidolin

    2007-01-01

    Studies of irradiation and storage effects in chicken were carried out to discover the influence in iron heme, non-heme amount, color and total pigments. Chicken thighs and chicken breast were studied. These were irradiated to 0, 1 and 2 kGy stored by 14 days to 4 deg C in refrigerator. Determining the heme content and non-heme of meat was done using the colorimeter method and the Ferrozine reagent. The values of iron heme were influenced both by the irradiation and the storage, reducing the amount throughout the course of time. The iron non-heme was also influenced by the doses and the storage time, however the values increased throughout the course of time, because of the conversion of iron heme in non-heme. The color did not show that it was influenced by the studied doses, except for the storage, and the total number of pigments was affected by the irradiation and the time, reducing the values with the increase of storage. Irradiation was shown to be a good method to conserve iron. (author)

  7. Oxidative stability of a heme iron-fortified bakery product: Effectiveness of ascorbyl palmitate and co-spray-drying of heme iron with calcium caseinate.

    Alemán, Mercedes; Bou, Ricard; Tres, Alba; Polo, Javier; Codony, Rafael; Guardiola, Francesc

    2016-04-01

    Fortification of food products with iron is a common strategy to prevent or overcome iron deficiency. However, any form of iron is a pro-oxidant and its addition will cause off-flavours and reduce a product's shelf life. A highly bioavailable heme iron ingredient was selected to fortify a chocolate cream used to fill sandwich-type cookies. Two different strategies were assessed for avoiding the heme iron catalytic effect on lipid oxidation: ascorbyl palmitate addition and co-spray-drying of heme iron with calcium caseinate. Oxidation development and sensory acceptability were monitored in the cookies over one-year of storage at room temperature in the dark. The addition of ascorbyl palmitate provided protection against oxidation and loss of tocopherols and tocotrienols during the preparation of cookies. In general, ascorbyl palmitate, either alone or in combination with the co-spray-dried heme iron, prevented primary oxidation and hexanal formation during storage. The combination of both strategies resulted in cookies that were acceptable from a sensory point of view after 1year of storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Mononuclear non-heme iron(III) complexes of linear and tripodal ...

    The rate of oxygenation depends on the solvent and the. Lewis acidity of iron(III) ... has been achieved by non-heme iron enzymes and their ..... oxygen atoms of nitrate ion (figure 3). ... enhanced covalency of iron-catecholate interaction and.

  9. Irradiation of bovine meat: effect of heme-iron concentration.; Irradiacao de carne bovina: efeito na concentracao de ferro heme

    Mistura, Liliana Perazzini Furtado

    2002-07-01

    The irradiation is often used, nowadays, for meat conservation and it is important to know how much this process interferes with the nutritional quality of the meat. In this study round cut meat, ground and steaks (from a local supermarket) was irradiated with doses of O; 1; 2; 3; 4; 5; 7,5 and 10 kGy (JS-7500 Nordium Inc -Canada) and the interference of irradiation and the process of food preparation on heme-iron (H Fe) content was determined. Half of the sample was kept raw and the other half was grilled in a pre-warmed oven at 250 deg C for 9 min and a controlled humidity of 70%. The chemical composition, the total iron (T Fe) (EM) and the heme iron concentration were determined (Hornsey,1956) and the sensorial quality evaluated. The average T Fe concentration of raw and ground , ground and grilled, raw steaks and grilled steak meat, on dry and degreased basis was 113 mug/g, 121 mug/g , 91 mug/g and 77 mug/g; and the H Fe concentration 105 mug/g (93% of T Fe) , 88 mug/g (73% of T Fe), 90 mug/g (99% of T Fe) and 52 mug/g (68% of T Fe) respectively. Data were evaluated by ANOVA with fixed effects and multiple comparisons. The irradiation neither altered the chemical composition nor the proportion of heme iron of meat. The preparation conditions (temperature, cooking time, environment humidity, meat presentation) of the sample interfered more with the heme iron content than the irradiation. With the sensorial analysis we verified that meats irradiated with doses of 3 kGy were better evaluated in softness and succulency attributes than the others. Meat submitted to irradiation doses up to 3 kGy were accepted by the specialists' panel. (author)

  10. Factors for the bioavailability of heme iron preparation in female rats

    村上, 亜由美; 岸本, 三香子; 川口, 真規子; 松浦, 寿喜; 市川, 富夫; Ayumi, Murakami; Mikako, Kishimoto; Makiko, Kawaguchi; Toshiki, Matsuura; Tomio, Ichikawa

    1998-01-01

    Factors for iron absorption in small intestine using heme iron preparation (HIP) and ferric citrate (FC) were investigated. We measured the solubility of iron of experimental diets (FC-normal, FC-overload, HIP-normal, HIP-overload) in water (adjusted pH6.8) and the diffusibility of dietary iron after digestion in vitro. The results did not show significantly differences between FC and HIP. Also, we measured microsomal heme oxygenase (HO) activity in intestinal mucosa of female rats fed experi...

  11. Alteration by irradiation and storage at amount of heme iron in poultry meat; Alteracoes provocadas pela irradiacao e armazenamento nos teores de ferro heme em carne de frango

    Souza, Adriana Regia Marques de; Arthur, Valter Arthur [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Irradiacao de Alimentos e Radioentomologia; Canniatti-Brazaca, Solange Guidolin [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Agroindustria, Alimentos e Nutricao]. E-mail: sgcbraza@esalq.usp.br

    2007-04-15

    Studies of irradiation and storage effects in chicken were carried out to discover the influence in iron heme, non-heme amount, color and total pigments. Chicken thighs and chicken breast were studied. These were irradiated to 0, 1 and 2 kGy stored by 14 days to 4 deg C in refrigerator. Determining the heme content and non-heme of meat was done using the colorimeter method and the Ferrozine reagent. The values of iron heme were influenced both by the irradiation and the storage, reducing the amount throughout the course of time. The iron non-heme was also influenced by the doses and the storage time, however the values increased throughout the course of time, because of the conversion of iron heme in non-heme. The color did not show that it was influenced by the studied doses, except for the storage, and the total number of pigments was affected by the irradiation and the time, reducing the values with the increase of storage. Irradiation was shown to be a good method to conserve iron. (author)

  12. PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis.

    Ryu, Moon-Suhn; Zhang, Deliang; Protchenko, Olga; Shakoury-Elizeh, Minoo; Philpott, Caroline C

    2017-05-01

    Developing erythrocytes take up exceptionally large amounts of iron, which must be transferred to mitochondria for incorporation into heme. This massive iron flux must be precisely controlled to permit the coordinated synthesis of heme and hemoglobin while avoiding the toxic effects of chemically reactive iron. In cultured animal cells, iron chaperones poly rC-binding protein 1 (PCBP1) and PCBP2 deliver iron to ferritin, the sole cytosolic iron storage protein, and nuclear receptor coactivator 4 (NCOA4) mediates the autophagic turnover of ferritin. The roles of PCBP, ferritin, and NCOA4 in erythroid development remain unclear. Here, we show that PCBP1, NCOA4, and ferritin are critical for murine red cell development. Using a cultured cell model of erythroid differentiation, depletion of PCBP1 or NCOA4 impaired iron trafficking through ferritin, which resulted in reduced heme synthesis, reduced hemoglobin formation, and perturbation of erythroid regulatory systems. Mice lacking Pcbp1 exhibited microcytic anemia and activation of compensatory erythropoiesis via the regulators erythropoietin and erythroferrone. Ex vivo differentiation of erythroid precursors from Pcbp1-deficient mice confirmed defects in ferritin iron flux and heme synthesis. These studies demonstrate the importance of ferritin for the vectorial transfer of imported iron to mitochondria in developing red cells and of PCBP1 and NCOA4 in mediating iron flux through ferritin.

  13. Control of heme synthesis during Friend cell differentiation: role of iron and transferrin

    Laskey, J.D.; Ponka, P.; Schulman, H.M.

    1986-01-01

    In many types of cells the synthesis of σ-aminolevulinic acid (ALA) limits the rate of heme formation. However, results from this laboratory with reticulocytes suggest that the rate of iron uptake from 125 I-transferrin (Tf), rather than ALA synthase activity, limits the rate of heme synthesis in erythroid cells. To determine whether changes occur in iron metabolism and the control of heme synthesis during erythroid cell development Friend erythroleukemia cells induced to erythroid differentiation by dimethylsulfoxide (DMSO) were studied. While added ALA stimulated heme synthesis in uninduced Friend cells (suggesting ALA synthase is limiting) it did not do so in induced cells. Therefore the possibility was investigated that, in induced cells, iron uptake from Tf limits and controls heme synthesis. Several aspects of iron metabolism were investigated using the synthetic iron chelator salicylaldehyde isonicotinoyl hydrazone (SIH). Both induced and uninduced Friend cells take up and utilize Fe for heme synthesis directly from Fe-SIH without the involvement of transferrin and transferrin receptors and to a much greater extent than from saturating levels or 59 Fe-Tf (20 μM). Furthermore, in induced Friend cells 100 μM Fe-SIH stimulated 2- 14 C-glycine incorporation into heme up to 3.6-fold as compared to the incorporation observed with saturating concentrations of Fe-Tf. These results indicate that some step(s) in the pathway of iron from extracellular Tf to protoporphyrin, rather than the activity of ALA synthase, limits and controls the overall rate of heme and possibly hemoglobin synthesis in differentiating Friend erythroleukemia cells

  14. Heme-Induced Biomarkers Associated with Red Meat Promotion of colon Cancer Are Not Modulated by the Intake of Nitrite

    Chenni, Fatima Z; Taché, Sylviane; Naud, Nathalie; Guéraud, Françoise; Hobbs, Ditte A; Kunhle, Gunter G C; Pierre, Fabrice H; Corpet, Denis E

    2013-01-01

    Red and processed meat consumption is associated with the risk of colorectal cancer. Three hypotheses are proposed to explain this association, via heme/alcenal, heterocyclic amines or N-nitroso compounds. Rats have often been used to study these hypotheses, but the lack of enterosalivary cycle of nitrate in rats casts doubt on the relevance of this animal model to predict nitroso- and heme-associated human colon carcinogenesis. The present study was thus designed to clarify whether a nitrite intake that mimics the enterosalivary cycle can modulate heme-induced nitrosation and fat peroxidation. This study shows that, in contrast with the starting hypothesis, salivary nitrite did not change the effect of hemoglobin on biochemical markers linked to colon carcinogenesis, notably lipid peroxidation and cytotoxic activity in the colon of rat. However, ingested sodium nitrite increased fecal nitroso-compounds level, but their fecal concentration and their nature (iron-nitrosyl) would not be associated with an increased risk of cancer. The rat model could thus be relevant to study the effect of red meat on colon carcinogenesis in spite of the lack of nitrite recycling in rat’s saliva. PMID:23441609

  15. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    Westre, Tami E. [Stanford Univ., CA (United States)

    1996-01-01

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s→3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been applied to the study of non-heme iron enzyme active sites.

  16. Mortality from different causes associated with meat, heme iron, nitrates, and nitrites in the NIH-AARP Diet and Health Study: population based cohort study

    Sinha, Rashmi; Ward, Mary H; Graubard, Barry I; Inoue-Choi, Maki; Dawsey, Sanford M; Abnet, Christian C

    2017-01-01

    Objective To determine the association of different types of meat intake and meat associated compounds with overall and cause specific mortality. Design Population based cohort study. Setting Baseline dietary data of the NIH-AARP Diet and Health Study (prospective cohort of the general population from six states and two metropolitan areas in the US) and 16 year follow-up data until 31 December 2011. Participants 536 969 AARP members aged 50-71 at baseline. Exposures Intake of total meat, processed and unprocessed red meat (beef, lamb, and pork) and white meat (poultry and fish), heme iron, and nitrate/nitrite from processed meat based on dietary questionnaire. Adjusted Cox proportional hazards regression models were used with the lowest fifth of calorie adjusted intakes as reference categories. Main outcome measure Mortality from any cause during follow-up. Results An increased risk of all cause mortality (hazard ratio for highest versus lowest fifth 1.26, 95% confidence interval 1.23 to 1.29) and death due to nine different causes associated with red meat intake was observed. Both processed and unprocessed red meat intakes were associated with all cause and cause specific mortality. Heme iron and processed meat nitrate/nitrite were independently associated with increased risk of all cause and cause specific mortality. Mediation models estimated that the increased mortality associated with processed red meat was influenced by nitrate intake (37.0-72.0%) and to a lesser degree by heme iron (20.9-24.1%). When the total meat intake was constant, the highest fifth of white meat intake was associated with a 25% reduction in risk of all cause mortality compared with the lowest intake level. Almost all causes of death showed an inverse association with white meat intake. Conclusions The results show increased risks of all cause mortality and death due to nine different causes associated with both processed and unprocessed red meat, accounted for, in part, by

  17. Heme Iron Content in Lamb Meat Is Differentially Altered upon Boiling, Grilling, or Frying as Assessed by Four Distinct Analytical Methods

    Pourkhalili, Azin; Mirlohi, Maryam; Rahimi, Ebrahim

    2013-01-01

    Lamb meat is regarded as an important source of highly bioavailable iron (heme iron) in the Iranians diet. The main objective of this study is to evaluate the effect of traditional cooking methods on the iron changes in lamb meat. Four published experimental methods for the determination of heme iron were assessed analytically and statistically. Samples were selected from lambs' loin. Standard methods (AOAC) were used for proximate analysis. For measuring heme iron, the results of four experi...

  18. Structures of the multicomponent Rieske non-heme iron toluene 2, 3-dioxygenase enzyme system

    Friemann, Rosmarie [Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala (Sweden); Lee, Kyoung [Department of Microbiology, Changwon National University, Changwon, Kyoungnam 641-773 (Korea, Republic of); Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242 (United States); Brown, Eric N. [Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242 (United States); Gibson, David T. [Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242 (United States); Eklund, Hans [Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala (Sweden); Ramaswamy, S., E-mail: s-ramaswamy@uiowa.edu [Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242 (United States); Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala (Sweden)

    2009-01-01

    The crystal structures of the three-component toluene 2, 3-dioxygenase system provide a model for electron transfer among bacterial Rieske non-heme iron dioxygenases. Bacterial Rieske non-heme iron oxygenases catalyze the initial hydroxylation of aromatic hydrocarbon substrates. The structures of all three components of one such system, the toluene 2, 3-dioxygenase system, have now been determined. This system consists of a reductase, a ferredoxin and a terminal dioxygenase. The dioxygenase, which was cocrystallized with toluene, is a heterohexamer containing a catalytic and a structural subunit. The catalytic subunit contains a Rieske [2Fe–2S] cluster and mononuclear iron at the active site. This iron is not strongly bound and is easily removed during enzyme purification. The structures of the enzyme with and without mononuclear iron demonstrate that part of the structure is flexible in the absence of iron. The orientation of the toluene substrate in the active site is consistent with the regiospecificity of oxygen incorporation seen in the product formed. The ferredoxin is Rieske type and contains a [2Fe–2S] cluster close to the protein surface. The reductase belongs to the glutathione reductase family of flavoenzymes and consists of three domains: an FAD-binding domain, an NADH-binding domain and a C-terminal domain. A model for electron transfer from NADH via FAD in the reductase and the ferredoxin to the terminal active-site mononuclear iron of the dioxygenase is proposed.

  19. Control of intracellular heme levels: Heme transporters and Heme oxygenases

    Khan, Anwar A.; Quigley, John G.

    2011-01-01

    Heme serves as a co-factor in proteins involved in fundamental biological processes including oxidative metabolism, oxygen storage and transport, signal transduction and drug metabolism. In addition, heme is important for systemic iron homeostasis in mammals. Heme has important regulatory roles in cell biology, yet excessive levels of intracellular heme are toxic; thus, mechanisms have evolved to control the acquisition, synthesis, catabolism and expulsion of cellular heme. Recently, a number of transporters of heme and heme synthesis intermediates have been described. Here we review aspects of heme metabolism and discuss our current understanding of heme transporters, with emphasis on the function of the cell-surface heme exporter, FLVCR. Knockdown of Flvcr in mice leads to both defective erythropoiesis and disturbed systemic iron homeostasis, underscoring the critical role of heme transporters in mammalian physiology. PMID:21238504

  20. Effects of illumination and packaging on non-heme iron and color attributes of sliced ham.

    Li, H; Li, C B; Xu, X L; Zhou, G H

    2012-08-01

    This study was designed to investigate effects of illumination and packaging on color of cooked cured sliced ham during refrigeration, and the possibility of decomposition of nitrosylheme under light and oxygen exposure. Three illumination levels and three packaging films with different oxygen transmission rates (OTRs) were used in two separate experiments during 35 days storage, and pH value, a* value, nitrosylheme, residual nitrite and non-heme iron were evaluated. Packaging OTRs had significant effects (P0.05) nitrosylheme concentration during storage. For both groups, storage time had a significant effect (P<0.01) on a* value and nitrosylheme. Negative relationships between nitrosylheme and nitrite in the illumination group, and between nitrosylheme and non-heme iron in the packaging group were observed. Therefore, illumination level and packaging OTR had limited effects on overall pigment stability, but more discoloration and loss of redness occurred on the surface of products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Heme iron content in lamb meat is differentially altered upon boiling, grilling, or frying as assessed by four distinct analytical methods.

    Pourkhalili, Azin; Mirlohi, Maryam; Rahimi, Ebrahim

    2013-01-01

    Lamb meat is regarded as an important source of highly bioavailable iron (heme iron) in the Iranians diet. The main objective of this study is to evaluate the effect of traditional cooking methods on the iron changes in lamb meat. Four published experimental methods for the determination of heme iron were assessed analytically and statistically. Samples were selected from lambs' loin. Standard methods (AOAC) were used for proximate analysis. For measuring heme iron, the results of four experimental methods were compared regarding their compliance to Ferrozine method which was used for the determination of nonheme iron. Among three cooking methods, the lowest total iron and heme iron were found in boiling method. The heme iron proportions to the total iron in raw, boiled lamb meat and grilled, were counted as 65.70%, 67.75%, and 76.01%, receptively. Measuring the heme iron, the comparison of the methods in use showed that the method in which heme extraction solution was composed of 90% acetone, 18% water, and 2% hydrochloric acid was more appropriate and more correlated with the heme iron content calculated by the difference between total iron and nonheme iron.

  2. Heme Iron Content in Lamb Meat Is Differentially Altered upon Boiling, Grilling, or Frying as Assessed by Four Distinct Analytical Methods

    Azin Pourkhalili

    2013-01-01

    Full Text Available Lamb meat is regarded as an important source of highly bioavailable iron (heme iron in the Iranians diet. The main objective of this study is to evaluate the effect of traditional cooking methods on the iron changes in lamb meat. Four published experimental methods for the determination of heme iron were assessed analytically and statistically. Samples were selected from lambs' loin. Standard methods (AOAC were used for proximate analysis. For measuring heme iron, the results of four experimental methods were compared regarding their compliance to Ferrozine method which was used for the determination of nonheme iron. Among three cooking methods, the lowest total iron and heme iron were found in boiling method. The heme iron proportions to the total iron in raw, boiled lamb meat and grilled, were counted as 65.70%, 67.75%, and 76.01%, receptively. Measuring the heme iron, the comparison of the methods in use showed that the method in which heme extraction solution was composed of 90% acetone, 18% water, and 2% hydrochloric acid was more appropriate and more correlated with the heme iron content calculated by the difference between total iron and nonheme iron.

  3. Tick iron and heme metabolism – New target for an anti-tick intervention

    Hajdušek, Ondřej; Šíma, Radek; Perner, Jan; Loosová, Gabriela; Harcubová, Adéla; Kopáček, Petr

    2016-01-01

    Roč. 7, č. 4 (2016), s. 565-572 ISSN 1877-959X R&D Projects: GA ČR GA13-11043S; GA ČR GP13-27630P; GA ČR GP13-12816P EU Projects: European Commission(XE) 316304 - MODBIOLIN Institutional support: RVO:60077344 Keywords : tick * iron * heme * RNAi * vaccine Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.230, year: 2016

  4. Rieske non-heme iron-dependent oxygenases catalyse diverse reactions in natural product biosynthesis.

    Perry, Christopher; de Los Santos, Emmanuel L C; Alkhalaf, Lona M; Challis, Gregory L

    2018-04-13

    Covering: up to the end of 2017The roles played by Rieske non-heme iron-dependent oxygenases in natural product biosynthesis are reviewed, with particular focus on experimentally characterised examples. Enzymes belonging to this class are known to catalyse a range of transformations, including oxidative carbocyclisation, N-oxygenation, C-hydroxylation and C-C desaturation. Examples of such enzymes that have yet to be experimentally investigated are also briefly described and their likely functions are discussed.

  5. Silencing of Iron and Heme-Related Genes Revealed a Paramount Role of Iron in the Physiology of the Hematophagous Vector Rhodnius prolixus

    Ana B. Walter-Nuno

    2018-02-01

    Full Text Available Iron is an essential element for most organisms However, free iron and heme, its complex with protoporphyrin IX, can be extremely cytotoxic, due to the production of reactive oxygen species, eventually leading to oxidative stress. Thus, eukaryotic cells control iron availability by regulating its transport, storage and excretion as well as the biosynthesis and degradation of heme. In the genome of Rhodnius prolixus, the vector of Chagas disease, we identified 36 genes related to iron and heme metabolism We performed a comprehensive analysis of these genes, including identification of homologous genes described in other insect genomes. We observed that blood-meal modulates the expression of ferritin, Iron Responsive protein (IRP, Heme Oxygenase (HO and the heme exporter Feline Leukemia Virus C Receptor (FLVCR, components of major pathways involved in the regulation of iron and heme metabolism, particularly in the posterior midgut (PM, where an intense release of free heme occurs during the course of digestion. Knockdown of these genes impacted the survival of nymphs and adults, as well as molting, oogenesis and embryogenesis at different rates and time-courses. The silencing of FLVCR caused the highest levels of mortality in nymphs and adults and reduced nymph molting. The oogenesis was mildly affected by the diminished expression of all of the genes whereas embryogenesis was dramatically impaired by the knockdown of ferritin expression. Furthermore, an intense production of ROS in the midgut of blood-fed insects occurs when the expression of ferritin, but not HO, was inhibited. In this manner, the degradation of dietary heme inside the enterocytes may represent an oxidative challenge that is counteracted by ferritins, conferring to this protein a major antioxidant role. Taken together these results demonstrate that the regulation of iron and heme metabolism is of paramount importance for R. prolixus physiology and imbalances in the levels of

  6. Control of intracellular heme levels: Heme transporters and heme oxygenases

    Khan, Anwar A.; Quigley, John G.

    2011-01-01

    Heme serves as a co-factor in proteins involved in fundamental biological processes including oxidative metabolism, oxygen storage and transport, signal transduction and drug metabolism. In addition, heme is important for systemic iron homeostasis in mammals. Heme has important regulatory roles in cell biology, yet excessive levels of intracellular heme are toxic; thus, mechanisms have evolved to control the acquisition, synthesis, catabolism and expulsion of cellular heme. Recently, a number...

  7. Experimental and Computational Evidence for the Mechanism of Intradiol Catechol Dioxygenation by Non-Heme Iron(III) Complexes

    Jastrzebski, Robin; Quesne, Matthew G; Weckhuysen, Bert M; de Visser, Sam P; Bruijnincx, Pieter C A

    2014-01-01

    Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and non-heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate-determining C=O bond formation step. PMID:25322920

  8. Mono- and binuclear non-heme iron chemistry from a theoretical perspective

    Rokob, T. A.; Chalupský, Jakub; Bím, Daniel; Andrikopoulos, Prokopis C.; Srnec, Martin; Rulíšek, Lubomír

    2016-01-01

    Roč. 21, 5/6 (2016), s. 619-644 ISSN 0949-8257 R&D Projects: GA ČR(CZ) GJ15-10279Y; GA ČR(CZ) GA14-31419S; GA ČR GA15-19143S Grant - others:COST(XE) CM1305 Institutional support: RVO:61388963 ; RVO:61388955 Keywords : non-heme iron * density functional theory * multireference methods * dioxygen activation * reactivity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.894, year: 2016

  9. Structural and Functional Models of Non-Heme Iron Enzymes : A Study of the 2-His-1-Carboxylate Facial Triad Structural Motif

    Bruijnincx, P.C.A.

    2007-01-01

    The structural and functional modeling of a specific group of non-heme iron enzymes by the synthesis of small synthetic analogues is the topic of this thesis. The group of non-heme iron enzymes with the 2-His-1-carboxylate facial triad has recently been established as a common platform for the

  10. Peroxide Activation for Electrophilic Reactivity by the Binuclear Non-heme Iron Enzyme AurF

    Park, Kiyoung; Li, Ning; Kwak, Yeonju; Srnec, Martin

    2017-01-01

    Binuclear non-heme iron enzymes activate O 2 for diverse chemistries that include oxygenation of organic substrates and hydrogen atom abstraction. This process often involves the formation of peroxo-bridged biferric intermediates, only some of which can perform electrophilic reactions. To elucidate the geometric and electronic structural requirements to activate peroxo reactivity, the active peroxo intermediate in 4-aminobenzoate N-oxygenase (AurF) has been characterized spectroscopically and computationally. A magnetic circular dichroism study of reduced AurF shows that its electronic and geometric structures are poised to react rapidly with O 2 . Nuclear resonance vibrational spectroscopic definition of the peroxo intermediate formed in this reaction shows that the active intermediate has a protonated peroxo bridge. Density functional theory computations on the structure established here show that the protonation activates peroxide for electrophilic/single-electron-transfer reactivity. As a result, this activation of peroxide by protonation is likely also relevant to the reactive peroxo intermediates in other binuclear non-heme iron enzymes.

  11. The effect of nutrition knowledge and dietary iron intake on iron status in young women.

    Leonard, Alecia J; Chalmers, Kerry A; Collins, Clare E; Patterson, Amanda J

    2014-10-01

    Previous research on the relationships between general nutrition knowledge and dietary intake, and dietary iron intake and iron status has produced inconsistent results. Currently, no study has focused on knowledge of dietary iron and its effect on dietary iron intake. This study aimed to determine whether nutrition knowledge of iron is related to dietary iron intake in young women, and subsequently whether greater knowledge and intake translates into better iron status. A cross-sectional assessment of nutrition knowledge of iron, dietary iron intake and iron status was conducted in women aged 18-35 years living in Newcastle, NSW, Australia. Iron status was assessed by serum ferritin, haemoglobin, soluble transferrin receptor and alpha-1-glycoprotein. One hundred and seven women (27.8 ± 4.7 years) completed the nutrition knowledge questionnaire and FFQ. Of these, 74 (70%) also had biomarkers of iron status measured. Mean iron intake was 11.2 ± 3.8 mg/day. There was no association between nutrition knowledge score and whether the women met the RDI for iron (F (1, 102) = .40, P = .53). A positive correlation was shown between nutrition knowledge score and iron intake (mg/day) (r = 0.25, P = .01). Serum ferritin was positively associated with the frequency of flesh food intake (r = .27 P = .02). Vegetarians (including partial vegetarians) had significantly lower serum ferritin levels than non-vegetarians (F (1, 71) = 7.44, P = .01). Significant positive correlations found between higher flesh food intake and biomarkers of iron status suggest that educating non-vegetarians about the benefits of increased flesh food consumption and vegetarians about dietary iron enhancers and inhibitors may have potential for addressing the high rates of iron deficiency among young women. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  12. A functional mimic of natural peroxidases : synthesis and catalytic activity of a non-heme iron peptide hydroperoxide complex

    Choma, CT; Schudde, EP; Kellogg, RM; Robillard, GT; Feringa, BL

    1998-01-01

    Site-selective attachment of unprotected peptides to a non-heme iron complex is achieved by displacing two halides on the catalyst by peptide caesium thiolates, This coupling approach should be compatible with any peptide sequence provided there is only a single reduced cysteine. The oxidation

  13. Practice guidelines for the diagnosis and management of microcytic anemias due to genetic disorders of iron metabolism or heme synthesis

    Donker, A.E.; Raymakers, R.A.P.; Vlasveld, L.T.; Barneveld, T. van; Terink, R.; Dors, N.; Brons, P.P.T.; Knoers, N.V.A.M.; Swinkels, D.W.

    2014-01-01

    During recent years, our understanding of the pathogenesis of inherited microcytic anemias has gained from the identification of several genes and proteins involved in systemic and cellular iron metabolism and heme syntheses. Numerous case reports illustrate that the implementation of these novel

  14. Peroxo-Type Intermediates in Class I Ribonucleotide Reductase and Related Binuclear Non-Heme Iron Enzymes

    Kepp, Kasper Planeta; Bell, Caleb B.; Clay, MIchael D.

    2009-01-01

    We have performed a systematic study of chemically possible peroxo-type intermediates occurring in the non-heme di-iron enzyme class la ribonucleotide reductase, using spectroscopically calibrated computational chemistry. Density functional computations of equilibrium structures, Fe-O and O-O str...

  15. Dietary iron intake in adolescent women in educational institutions

    Vila, Mabel; Quintana, Margot

    2013-01-01

    Introduction: Iron deficiency anemia is a public health problem. The low dietary intake of iron is one of its causes. Objective: To determine the dietary iron intake in adolescent women. Design: Descriptive, cross type study. Setting: Educational Institutions in the district of Ancon, Lima. Participants: Three hundred and fifty-five adolescent high school female students in Ancon chosen at random. Interventions: Previous informed consent, a semi-quantitative food and beverage frequency questi...

  16. Dinitrosyl non-heme iron complexes at the gamma radiation treatment of animals

    Aliev, D.I.; Alieva, I.N.; Abilov, Z.G.; Gurbanov, I.S.

    2003-01-01

    Full text: At the present time there are a great number investigations dedicated to revealing of mechanism formation of 2,03 complexes at the some pathologies in an organism. These complexes are represented weakly bounded form of non-heme iron, including into beside iron two nitrogen oxide molecules (NO) and two paired RS- groups of proteins or low-molecular compounds. 2,03 complexes are characterized by an axial symmetrical tensory of the g-factor with g=2,037, g=2,012 and g=2,03. In this study the data testifying 2,03 complexes formation into liver of animal treated by the fatal dose of gamma-radiation are reported. The changing of the ESR signal form was observed. It was shown that the form and intensity of the 2,03 signal in healthy and irradiated animals are differ from each other. The analysis of the 2,03 signal parameters is confirm this fact, too. The conclusion was made that 2,03 complexes ESR signal may be considered as an indicator of integrity of intracellular membranes of the gamma-irradiated animals

  17. Health effects of different dietary iron intakes: a systematic literature review for the 5th Nordic Nutrition Recommendations

    Magnus Domellöf

    2013-07-01

    ID and IDA in pregnant women can be effectively prevented by iron supplementation at a dose of 40 mg/day from week 18–20 of gestation. There is probable evidence that a high intake of heme iron, but not total dietary, non-heme or supplemental iron, is associated with increased risk of type 2 diabetes (T2D and gestational diabetes. Conclusions : Overall, the evidence does not support a change of the iron intakes recommended in the NNR 4. However, one could consider adding recommendations for infants below 6 months of age, low birth weight infants and pregnant women.

  18. Impact of dietary iron intake on anaemia in Tanzanian schoolchildren

    Enrique

    economic implication.5 In developing countries dietary iron intake ... haem iron absorption ranges from 2% to 20%. Dependence on .... scale (calibrated in kg) and a fixed-base portable .... Of the 80 schoolchildren whose Hb concentration was .... Tolerance for entry ... several traditional methods of food processing.15 These.

  19. Dietary iron intake, iron status, and gestational diabetes.

    Zhang, Cuilin; Rawal, Shristi

    2017-12-01

    Pregnant women are particularly vulnerable to iron deficiency and related adverse pregnancy outcomes and, as such, are routinely recommended for iron supplementation. Emerging evidence from both animal and population-based studies, however, has raised potential concerns because significant associations have been observed between greater iron stores and disturbances in glucose metabolism, including increased risk of type 2 diabetes among nonpregnant individuals. Yet, the evidence is uncertain regarding the role of iron in the development of gestational diabetes mellitus (GDM), a common pregnancy complication which has short-term and long-term adverse health ramifications for both women and their children. In this review, we critically and systematically evaluate available data examining the risk of GDM associated with dietary iron, iron supplementation, and iron status as measured by blood concentrations of several indicators. We also discuss major methodologic concerns regarding the available epidemiologic studies on iron and GDM. © 2017 American Society for Nutrition.

  20. Dietary iron intake and iron status of German female vegans: results of the German vegan study.

    Waldmann, Annika; Koschizke, Jochen W; Leitzmann, Claus; Hahn, Andreas

    2004-01-01

    As shown in previous studies vegetarians and especially vegans are at risk for iron deficiency. Our study evaluated the iron status of German female vegans. In this cross-sectional study, the dietary intakes of 75 vegan women were assessed by two 9-day food frequency questionnaires. The iron status was analyzed on the basis of blood parameters. Mean daily iron intake was higher than recommended by the German Nutrition Society. Still 42% of the female vegans or = 50 years (old women, OW). In all, 40% (tri-index model (TIM) 20%) of the YW and 12% (TIM 12%) of the OW were considered iron-deficient based on either serum ferritin levels of vegan diet should have their iron status monitored and should consider taking iron supplements in case of a marginal status. Copyright 2004 S. Karger AG, Basel

  1. Reversible formation of high-valent-iron-oxo-porphyrin intermediate in heme-based catalysis: revisiting the kinetic model for horseradish peroxidase.

    Haandel, van M.J.H.; Primus, J.L.; Teunis, C.; Boersma, M.G.; Osman, A.M.; Veeger, C.; Rietjens, I.M.C.M.

    1998-01-01

    Many heme-containing biocatalysts exert their catalytic action through the initial formation of so-called high-valent-iron-oxo porphyrin intermediates. For horseradish peroxidase the initial intermediate formed has been identified as a high-valent-iron-oxo porphyrin π-radical cation, called compound

  2. In vivo genotoxic effects of dietary heme iron on rat colon mucosa and ex vivo effects on colon cells monitored by an optimized alkaline comet assay.

    Océane, C Martin

    2015-04-01

    In conclusion, our results offer a suitable protocol to evaluate genotoxicity on in vivo cryopreserved colon mucosa and on in vitro murine colonic cells, with a middle throughput capacity. This protocol confirms the increase of genotoxicity in rat colon mucosa after an heme-iron diet. Moreover, this protocol enables the demonstration that aldehydes from heme-induced lipoperoxidation are responsible for this increase of genotoxicity.

  3. Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERBα/β activation in aryl hydrocarbon receptor-elicited hepatotoxicity

    Fader, Kelly A.; Nault, Rance [Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Kirby, Mathew P.; Markous, Gena [Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Matthews, Jason [Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo 0316 (Norway); Zacharewski, Timothy R., E-mail: tzachare@msu.edu [Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States)

    2017-04-15

    Persistent aryl hydrocarbon receptor (AhR) agonists elicit dose-dependent hepatic lipid accumulation, oxidative stress, inflammation, and fibrosis in mice. Iron (Fe) promotes AhR-mediated oxidative stress by catalyzing reactive oxygen species (ROS) production. To further characterize the role of Fe in AhR-mediated hepatotoxicity, male C57BL/6 mice were orally gavaged with sesame oil vehicle or 0.01–30 μg/kg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) every 4 days for 28 days. Duodenal epithelial and hepatic RNA-Seq data were integrated with hepatic AhR ChIP-Seq, capillary electrophoresis protein measurements, and clinical chemistry analyses. TCDD dose-dependently repressed hepatic expression of hepcidin (Hamp and Hamp2), the master regulator of systemic Fe homeostasis, resulting in a 2.6-fold increase in serum Fe with accumulating Fe spilling into urine. Total hepatic Fe levels were negligibly increased while transferrin saturation remained unchanged. Furthermore, TCDD elicited dose-dependent gene expression changes in heme biosynthesis including the induction of aminolevulinic acid synthase 1 (Alas1) and repression of uroporphyrinogen decarboxylase (Urod), leading to a 50% increase in hepatic hemin and a 13.2-fold increase in total urinary porphyrins. Consistent with this heme accumulation, differential gene expression suggests that heme activated BACH1 and REV-ERBα/β, causing induction of heme oxygenase 1 (Hmox1) and repression of fatty acid biosynthesis, respectively. Collectively, these results suggest that Hamp repression, Fe accumulation, and increased heme levels converge to promote oxidative stress and the progression of TCDD-elicited hepatotoxicity. - Highlights: • TCDD represses hepatic hepcidin expression, leading to systemic iron overloading. • Dysregulation of heme biosynthesis is consistent with heme and porphyrin accumulation. • Heme-activated REV-ERBα/β repress circadian-regulated hepatic lipid metabolism. • Disruption of iron

  4. Associations between Dietary Iron and Zinc Intakes, and between Biochemical Iron and Zinc Status in Women

    Karen Lim

    2015-04-01

    Full Text Available Iron and zinc are found in similar foods and absorption of both may be affected by food compounds, thus biochemical iron and zinc status may be related. This cross-sectional study aimed to: (1 describe dietary intakes and biochemical status of iron and zinc; (2 investigate associations between dietary iron and zinc intakes; and (3 investigate associations between biochemical iron and zinc status in a sample of premenopausal women aged 18–50 years who were recruited in Melbourne and Sydney, Australia. Usual dietary intakes were assessed using a 154-item food frequency questionnaire (n = 379. Iron status was assessed using serum ferritin and hemoglobin, zinc status using serum zinc (standardized to 08:00 collection, and presence of infection/inflammation using C-reactive protein (n = 326. Associations were explored using multiple regression and logistic regression. Mean (SD iron and zinc intakes were 10.5 (3.5 mg/day and 9.3 (3.8 mg/day, respectively. Median (interquartile range serum ferritin was 22 (12–38 μg/L and mean serum zinc concentrations (SD were 12.6 (1.7 μmol/L in fasting samples and 11.8 (2.0 μmol/L in nonfasting samples. For each 1 mg/day increase in dietary iron intake, zinc intake increased by 0.4 mg/day. Each 1 μmol/L increase in serum zinc corresponded to a 6% increase in serum ferritin, however women with low serum zinc concentration (AM fasting < 10.7 μmol/L; AM nonfasting < 10.1 μmol/L were not at increased risk of depleted iron stores (serum ferritin <15 μg/L; p = 0.340. Positive associations were observed between dietary iron and zinc intakes, and between iron and zinc status, however interpreting serum ferritin concentrations was not a useful proxy for estimating the likelihood of low serum zinc concentrations and women with depleted iron stores were not at increased risk of impaired zinc status in this cohort.

  5. Long-term intake of iron fortified wholemeal rye bread appears to benefit iron status of young women

    Hansen, Max; Nielsen, Sussi Bæch; Thomsen, A.D.

    2005-01-01

    The efficacy of intake of iron fortified, wholemeal rye bread on iron status of young women with low iron stores was evaluated in a 5 month single-blind intervention study. Two parallel groups of women (20-38 y) were given 144 g of rye bread/d either fortified with 6 mg iron as ferrous fumarate/100...... stores of young women with poor iron status which were otherwise reduced by intake of the unfortified control bread....

  6. A non-heme iron-mediated chemical demethylation in DNA and RNA.

    Yi, Chengqi; Yang, Cai-Guang; He, Chuan

    2009-04-21

    DNA methylation is arguably one of the most important chemical signals in biology. However, aberrant DNA methylation can lead to cytotoxic or mutagenic consequences. A DNA repair protein in Escherichia coli, AlkB, corrects some of the unwanted methylations of DNA bases by a unique oxidative demethylation in which the methyl carbon is liberated as formaldehyde. The enzyme also repairs exocyclic DNA lesions--that is, derivatives in which the base is augmented with an additional heterocyclic subunit--by a similar mechanism. Two proteins in humans that are homologous to AlkB, ABH2 and ABH3, repair the same spectrum of lesions; another human homologue of AlkB, FTO, is linked to obesity. In this Account, we describe our studies of AlkB, ABH2, and ABH3, including our development of a general strategy to trap homogeneous protein-DNA complexes through active-site disulfide cross-linking. AlkB uses a non-heme mononuclear iron(II) and the cofactors 2-ketoglutarate (2KG) and dioxygen to effect oxidative demethylation of the DNA base lesions 1-methyladenine (1-meA), 3-methylcytosine (3-meC), 1-methylguanine (1-meG), and 3-methylthymine (3-meT). ABH3, like AlkB, works better on single-stranded DNA (ssDNA) and is capable of repairing damaged bases in RNA. Conversely, ABH2 primarily repairs lesions in double-stranded DNA (dsDNA); it is the main housekeeping enzyme that protects the mammalian genome from 1-meA base damage. The AlkB-family proteins have moderate affinities for their substrates and bind DNA in a non-sequence-specific manner. Knowing that these proteins flip the damaged base out from the duplex DNA and insert it into the active site for further processing, we first engineered a disulfide cross-link in the active site to stabilize the Michaelis complex. Based on the detailed structural information afforded by the active-site cross-linked structures, we can readily install a cross-link away from the active site to obtain the native-like structures of these complexes

  7. Chloroquine Interference with Hemoglobin Endocytic Trafficking Suppresses Adaptive Heme and Iron Homeostasis in Macrophages: The Paradox of an Antimalarial Agent

    Christian A. Schaer

    2013-01-01

    Full Text Available The CD163 scavenger receptor pathway for Hb:Hp complexes is an essential mechanism of protection against the toxicity of extracellular hemoglobin (Hb, which can accumulate in the vasculature and within tissues during hemolysis. Chloroquine is a lysosomotropic agent, which has been extensively used as an antimalarial drug in the past, before parasite resistance started to limit its efficacy in most parts of the world. More recent use of chloroquine is related to its immunomodulatory activity in patients with autoimmune diseases, which may also involve hemolytic disease components. In this study we examined the effects of chloroquine on the human Hb clearance pathway. For this purpose we developed a new mass-spectrometry-based method to specifically quantify intracellular Hb peptides within the endosomal-lysosomal compartment by single reaction monitoring (SRM. We found that chloroquine exposure impairs trafficking of Hb:Hp complexes through the endosomal-lysosomal compartment after internalization by CD163. Relative quantification of intracellular Hb peptides by SRM confirmed that chloroquine blocked cellular Hb:Hp catabolism. This effect suppressed the cellular heme-oxygenase-1 (HO-1 response and shifted macrophage iron homeostasis towards inappropriately high expression of the transferrin receptor with concurrent inhibition of ferroportin expression. A functional deficiency of Hb detoxification and heme-iron recycling may therefore be an adverse consequence of chloroquine treatment during hemolysis.

  8. Practice guidelines for the diagnosis and management of microcytic anemias due to genetic disorders of iron metabolism or heme synthesis.

    Donker, Albertine E; Raymakers, Reinier A P; Vlasveld, L Thom; van Barneveld, Teus; Terink, Rieneke; Dors, Natasja; Brons, Paul P T; Knoers, Nine V A M; Swinkels, Dorine W

    2014-06-19

    During recent years, our understanding of the pathogenesis of inherited microcytic anemias has gained from the identification of several genes and proteins involved in systemic and cellular iron metabolism and heme syntheses. Numerous case reports illustrate that the implementation of these novel molecular discoveries in clinical practice has increased our understanding of the presentation, diagnosis, and management of these diseases. Integration of these insights into daily clinical practice will reduce delays in establishing a proper diagnosis, invasive and/or costly diagnostic tests, and unnecessary or even detrimental treatments. To assist the clinician, we developed evidence-based multidisciplinary guidelines on the management of rare microcytic anemias due to genetic disorders of iron metabolism and heme synthesis. These genetic disorders may present at all ages, and therefore these guidelines are relevant for pediatricians as well as clinicians who treat adults. This article summarizes these clinical practice guidelines and includes background on pathogenesis, conclusions, and recommendations and a diagnostic flowchart to facilitate using these guidelines in the clinical setting. © 2014 by The American Society of Hematology.

  9. Heme Synthesis and Acquisition in Bacterial Pathogens

    Choby, Jacob E.; Skaar, Eric P.

    2016-01-01

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host source...

  10. A Non-Heme Iron Photocatalyst for Light-Driven Aerobic Oxidation of Methanol

    Chen, Juan; Stepanovic, Stepan; Draksharapu, Apparao; Gruden, Maja; Browne, Wesley R

    2018-01-01

    Non-heme (L)FeIIIand (L)FeIII-O-FeIII(L) complexes (L=1,1-di(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)ethan-1-amine) underwent reduction under irradiation to the FeIIstate with concomitant oxidation of methanol to methanal, without the need for a secondary photosensitizer. Spectroscopic and DFT

  11. Iron depletion in HCT116 cells diminishes the upregulatory effect of phenethyl isothiocyanate on heme oxygenase-1

    Bolloskis, Michael P.; Carvalho, Fabiana P.; Loo, George

    2016-01-01

    Some of the health-promoting properties of cruciferous vegetables are thought to be partly attributed to isothiocyanates. These phytochemicals can upregulate the expression of certain cytoprotective stress genes, but it is unknown if a particular nutrient is involved. Herein, the objective was to ascertain if adequate iron is needed for enabling HCT116 cells to optimally express heme oxygenase-1 (HO-1) when induced by phenethyl isothiocyanate (PEITC). PEITC increased HO-1 expression and also nuclear translocation of Nrf2, which is a transcription factor known to activate the HO-1 gene. However, in HCT116 cells that were made iron-deficient by depleting intracellular iron with deferoxamine (DFO), PEITC was less able to increase HO-1 expression and nuclear translocation of Nrf2. These suppressive effects of DFO were overcome by replenishing the iron-deficient cells with the missing iron. To elucidate these findings, it was found that PEITC-induced HO-1 upregulation can be inhibited with thiol antioxidants (glutathione and N-acetylcysteine). Furthermore, NADPH oxidase inhibitors (diphenyleneiodonium and apocynin) and a superoxide scavenger (Tiron) each inhibited PEITC-induced HO-1 upregulation. In doing so, diphenyleneiodonium was the most potent and also inhibited nuclear translocation of redox-sensitive Nrf2. Collectively, the results imply that the HO-1 upregulation by PEITC involves an iron-dependent, oxidant signaling pathway. Therefore, it is concluded that ample iron is required to enable PEITC to fully upregulate HO-1 expression in HCT116 cells. As such, it is conceivable that iron-deficient individuals may not reap the full health benefits of eating PEITC-containing cruciferous vegetables that via HO-1 may help protect against multiple chronic diseases. - Highlights: • PEITC increased HO-1 expression in HCT116 cells. • PEITC-induced HO-1 upregulation was impaired in iron-depleted HCT116 cells. • Impairment of PEITC-induced HO-1 upregulation was

  12. X-ray absorption spectroscopy of soybean lipoxygenase-1 : Influence of lipid hydroperoxide activation and lyophilization on the structure of the non-heme iron active site

    Vliegenthart, J.F.G.; Heijdt, L.M. van der; Feiters, M.C.; Navaratnam, S.; Nolting, H.-F.; Hermes, C.; Veldink, G.A.

    1992-01-01

    X-ray absorption spectra at the Fe K-edge of the non-heme iron site in Fe(II) as well as Fe(III) soybean lipoxygenase-1, in frozen solution or lyophilized, are presented; the latter spectra were obtained by incubation of the Fe(II) enzyme with its product hydroperoxide. An edge shift of about 23 eV

  13. Heme Gazing: Illuminating Eukaryotic Heme Trafficking, Dynamics, and Signaling with Fluorescent Heme Sensors.

    Hanna, David A; Martinez-Guzman, Osiris; Reddi, Amit R

    2017-04-04

    Heme (iron protoporphyrin IX) is an essential protein prosthetic group and signaling molecule required for most life on Earth. All heme-dependent processes require the dynamic and rapid mobilization of heme from sites of synthesis or uptake to hemoproteins present in virtually every subcellular compartment. The cytotoxicity and hydrophobicity of heme necessitate that heme mobilization be carefully controlled to mitigate the deleterious effects of this essential toxin. Indeed, a number of disorders, including certain cancers, cardiovascular diseases, and aging and age-related neurodegenerative diseases, are tied to defects in heme homeostasis. However, the molecules and mechanisms that mediate heme transport and trafficking, and the dynamics of these processes, are poorly understood. This is in large part due to the lack of physical tools for probing cellular heme. Herein, we discuss the recent development of fluorescent probes that can monitor and image kinetically labile heme with respect to its mobilization and role in signaling. In particular, we will highlight how heme gazing with these tools can uncover new heme trafficking factors upon being integrated with genetic screens and illuminate the concentration, subcellular distribution, and dynamics of labile heme in various physiological contexts. Altogether, the monitoring of labile heme, along with recent biochemical and cell biological studies demonstrating the reversible regulation of certain cellular processes by heme, is challenging us to reconceptualize heme from being a static cofactor buried in protein active sites to a dynamic and mobile signaling molecule.

  14. 21 CFR 862.1410 - Iron (non-heme) test system.

    2010-04-01

    ... characterized by pigmentation of the skin), and chronic renal disease. (b) Classification. Class I. ... diagnosis and treatment of diseases such as iron deficiency anemia, hemochromatosis (a disease associated...

  15. Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: recent developments in enzymology and modeling studies.

    Bruijnincx, Pieter C A; van Koten, Gerard; Klein Gebbink, Robertus J M

    2008-12-01

    Iron-containing enzymes are one of Nature's main means of effecting key biological transformations. The mononuclear non-heme iron oxygenases and oxidases have received the most attention recently, primarily because of the recent availability of crystal structures of many different enzymes and the stunningly diverse oxidative transformations that these enzymes catalyze. The wealth of available structural data has furthermore established the so-called 2-His-1-carboxylate facial triad as a new common structural motif for the activation of dioxygen. This superfamily of mononuclear iron(ii) enzymes catalyzes a wide range of oxidative transformations, ranging from the cis-dihydroxylation of arenes to the biosynthesis of antibiotics such as isopenicillin and fosfomycin. The remarkable scope of oxidative transformations seems to be even broader than that associated with oxidative heme enzymes. Not only are many of these oxidative transformations of key biological importance, many of these selective oxidations are also unprecedented in synthetic organic chemistry. In this critical review, we wish to provide a concise background on the chemistry of the mononuclear non-heme iron enzymes characterized by the 2-His-1-carboxylate facial triad and to discuss the many recent developments in the field. New examples of enzymes with unique reactivities belonging to the superfamily have been reported. Furthermore, key insights into the intricate mechanistic details and reactive intermediates have been obtained from both enzyme and modeling studies. Sections of this review are devoted to each of these subjects, i.e. the enzymes, biomimetic models, and reactive intermediates (225 references).

  16. A dual component heme biosensor that integrates heme transport and synthesis in bacteria.

    Nobles, Christopher L; Clark, Justin R; Green, Sabrina I; Maresso, Anthony W

    2015-11-01

    Bacterial pathogens acquire host iron to power cellular processes and replication. Heme, an iron-containing cofactor bound to hemoglobin, is scavenged by bacterial proteins to attain iron. Methods to measure intracellular heme are laborious, involve complex chemistry, or require radioactivity. Such drawbacks limit the study of the mechanistic steps of heme transport and breakdown. Hypothesizing heme homeostasis could be measured with fluorescent methods, we coupled the conversion of heme to biliverdin IXα (a product of heme catabolism) by heme oxygenase 1 (HO1) with the production of near-infrared light upon binding this verdin by infrared fluorescent protein (IFP1.4). The resultant heme sensor, IFP-HO1, was fluorescent in pathogenic E. coli exposed to heme but not in the absence of the heme transporter ChuA and membrane coupling protein TonB, thereby validating their long-standing proposed role in heme uptake. Fluorescence was abolished in a strain lacking hemE, the central gene in the heme biosynthetic pathway, but stimulated by iron, signifying the sensor reports on intracellular heme production. Finally, an invasive strain of E. coli harboring the sensor was fluorescent during an active infection. This work will allow researchers to expand the molecular toolbox used to study heme and iron acquisition in culture and during infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Photoenhanced Oxidative DNA Cleavage with Non-Heme Iron(II) Complexes

    Li, Qian; Browne, Wesley R.; Roelfes, Gerard

    2010-01-01

    The DNA cleavage activity of iron(II) complexes of a series of monotopic pentadentate N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine (N4Py)-derived ligands (1-5) was investigated under laser irradiation at 473, 400.8, and 355 nm in the absence of a reducing agent and compared to that under

  18. Comparison of food habits, iron intake and iron status in adolescents before and after the withdrawal of the general iron fortification in Sweden.

    Sjöberg, A; Hulthén, L

    2015-04-01

    Sifted flour was fortified with carbonyl iron for 50 years in Sweden. This study evaluates changes in food habits, intake of iron, factors affecting iron absorption and iron status after the discontinuation of the general iron fortification in adolescents with the highest requirements. A total of 2285 15- to 16-year-old students in 1994 (634 girls and 611 boys) and in 2000 (534 girls and 486 boys) in 13 schools in Gothenburg, Sweden, were included in two cross-sectional surveys assessing food habits with diet history interviews and iron deficiency defined with serum ferritin stores ⩽ 15 μg/l and no preceding infection. In girls, iron deficiency increased from 37 to 45%, while in boys, it was stable at 23%. Total iron intake decreased from 15.7 to 9.5 mg/day and 22.5 to 13.9 mg/day in girls and boys, respectively. Cereals were the main iron source. Among girls, the increase of fish and decrease of calcium intake may not counteract the effect of decreased intake of fortification iron. Among boys, more meat, less calcium and more vitamin C may have favoured the bioavailability of iron. The discontinuation of the general iron fortification resulted in a 39% decrease in total iron intake and iron deficiency increased substantially in girls. However, in boys no change in iron deficiency was observed. Whether this was a result of changed bioavailability of dietary iron or simultaneous changes of non-dietary factors remains to be explored.

  19. The detection of iron protoporphyrin (heme b) in phytoplankton and marine particulate material by electrospray ionisation mass spectrometry – comparison with diode array detection

    Gledhill, Martha, E-mail: m.gledhill@geomar.de

    2014-09-02

    Highlights: • Mass spectrometry was applied to the analysis of heme b in biological material. • Optimal conditions involved selective reactant monitoring of the heme b product ion. • The isotopic signature for this iron tetrapyrrole further improved selectivity. • Mass spectrometry and spectrophotometry were compared for heme b analysis. • Combining techniques made a powerful tool for analysis of heme in marine microbes. - Abstract: A mass spectrometric (MS) method for the identification of iron protoporphyrin (IX) (FePTP, heme b) in marine particulate material and phytoplankton is described. Electrospray ionisation of FePTP produced the molecular Fe(III)PTP{sup +} ion (m/z = 616) or the pseudomolecular [Fe(II)PTP + H]{sup +} ion (m/z = 617), depending on the oxidation state of the central iron ion. Collision induced dissociation (CID) in the ion trap mass spectrometer resulted in a single detected product ion (m/z = 557) indicative of loss of ethanoic acid from a carboxylic acid side chain. Widening the isolation width to 616 ± 3 resulted in production of a mass spectrum demonstrating the distinctive isotopic ratio of the iron containing fragment, further increasing the specificity of the analysis. Selective reactant monitoring (SRM) of the fragment ion (m/z = 557) was applied to the detection of FePTP after chromatography of ammoniacal OGP extracts of marine samples. The detection limit for FePTP analysed by SRM after chromatography was 1.2 ± 0.5 fmol. For phytoplankton samples, reasonably good agreement was achieved between results obtained with SRM and those obtained by monitoring absorbance at λ = 400 nm using a diode array detector (DAD). Use of SRM for analysis of particulate material obtained from the high latitude North Atlantic allowed for the analysis of FePTP in the presence of a co-eluting compound that interfered with detection by DAD. Simultaneous collection of mass spectra from m/z = 300 to 1500 resulted in identification of the

  20. Design and synthesis of a tetradentate '3-amine-1-carboxylate' ligand to mimic the metal binding environment at the non-heme iron(II) oxidase active site.

    Dungan, Victoria J; Ortin, Yannick; Mueller-Bunz, Helge; Rutledge, Peter J

    2010-04-07

    Non-heme iron(II) oxidases (NHIOs) catalyse a diverse array of oxidative chemistry in Nature. As part of ongoing efforts to realize biomimetic, iron-mediated C-H activation, we report the synthesis of a new 'three-amine-one-carboxylate' ligand designed to complex with iron(II) and mimic the NHIO active site. The tetradentate ligand has been prepared as a single enantiomer in nine synthetic steps from N-Cbz-L-alanine, pyridine-2,6-dimethanol and diphenylamine, using Seebach oxazolidinone chemistry to control the stereochemistry. X-Ray crystal structures are reported for two important intermediates, along with variable temperature NMR experiments to probe the hindered interconversion of conformational isomers of several key intermediates, 2,6-disubstituted pyridine derivatives. The target ligand and an N-Cbz-protected precursor were each then complexed with iron(II) and tested for their ability to promote alkene dihydroxylation, using hydrogen peroxide as the oxidant.

  1. Heme Synthesis and Acquisition in Bacterial Pathogens.

    Choby, Jacob E; Skaar, Eric P

    2016-08-28

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host sources, particularly hemoglobin, and both heme acquisition and synthesis are important for pathogenesis. Paradoxically, excess heme is toxic to bacteria and pathogens must rely on heme detoxification strategies. Heme is a key nutrient in the struggle for survival between host and pathogen, and its study has offered significant insight into the molecular mechanisms of bacterial pathogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Red meat and colon cancer : The cytotoxic and hyperproliferative effects of dietary heme

    Sesink, ALA; Termont, DSML; Kleibeuker, JH; Van der Meer, R

    1999-01-01

    The intake of a Western diet with a high amount of red meat is associated with a high risk for colon cancer. We hypothesize that heme, the iron carrier of red meat, is involved in diet-induced colonic epithelial damage, resulting in increased epithelial proliferation. Rats were fed purified control

  3. Nutrient intake and blood iron status of male collegiate soccer players.

    Noda, Yuka; Iide, Kazuhide; Masuda, Reika; Kishida, Reina; Nagata, Atsumi; Hirakawa, Fumiko; Yoshimura, Yoshitaka; Imamura, Hiroyuki

    2009-01-01

    The purpose of this study was: 1) to collect baseline data on nutrient intake in order to advise athletes about nutrition practices that might enhance performance, and 2) to evaluate the dietary iron intake and blood iron status of Japanese collegiate soccer players. The subjects were 31 soccer players and 15 controls. Dietary information was obtained with a food frequency questionnaire. The mean carbohydrate (6.9 g.kg-1 BW) and protein (1.3 g/kg) intakes of the soccer players were marginal in comparisons with recommended targets. The mean intakes of calcium, magnesium, vitamin A, B1, B2, and C were lower than the respective Japanese recommended dietary allowances (RDAs) or adequate dietary intakes in the soccer players. The mean intakes of green and other vegetables, milk and dairy products, fruits, and eggs were lower than the recommended targets. Thus, we recommended athletes to increase the intake of these foodstuffs along with slight increase in carbohydrate and lean meat. The mean intake of iron was higher than the respective RDA in the soccer players. A high prevalence of hemolysis (71%) in the soccer players was found. None of the soccer players and controls had anemia. Two soccer players had iron depletion, while none was found in the controls. In those players who had iron deficiency, the training load need to be lowered and/or iron intake may be increased.

  4. Daily dietary intake of iron, copper, zinc and manganese in a Spanish population.

    Rubio, Carmen; Gutiérrez, Angel José; Revert, Consuelo; Reguera, Juan Ignacio; Burgos, Antonio; Hardisson, Arturo

    2009-11-01

    To evaluate the daily dietary intake of essential metals in the Canary Islands, the iron, copper, zinc and manganese contents in 420 food and drink samples collected in local markets were analysed by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The estimated daily dietary intakes of iron, copper, zinc and manganese are 13.161 mg/day, 2.098 mg/day, 8.954 mg/day and 2.372 mg/day, respectively. The iron dietary intake was found to be below the recommendations fixed for adult women, while the copper and manganese dietary intakes fulfilled the Recommended Dietary Allowances. The mean daily intake of zinc was below the Recommended Dietary Allowance. Cereals were found to be the food group that contributed most to the intake of these metals. While the island of El-Hierro presented iron, copper, zinc and manganese mean intakes over the estimated intakes for the whole archipelago, Fuerteventura island showed the lowest intakes. Tenerife and Fuerteventura showed the lowest iron intakes, being below the recommendations.

  5. Enhancement of nitrite on heme-induced oxidative reactions: A potential toxicological implication.

    Lu, Naihao; Chen, Wei; Zhu, Jingjie; Peng, Yi-Yuan

    2012-02-01

    Evidence to support the role of heme as major inducers of oxidative damage is increasingly present. Nitrite (NO(2)(-)) is one of the major end products of NO metabolism. Although the biological significance of heme/NO(2)(-)-mediated protein tyrosine nitration is a subject of great interest, the important roles of NO(2)(-) on heme-dependent redox reaction have been greatly underestimated. In this study, we investigated the influence of NO(2)(-) on heme -dependent oxidative reactions. It was found that NO(2)(-) had the capacity to act as a reducing agent to remove high oxidation states of heme iron. In the reduction of ferryl heme to ferric heme, NO(2)(-) was oxidized to a nitrating agent NO(2), and subsequently, tyrosine residues in bovine serum albumin (BSA) were nitrated. However, the presence of NO(2)(-) surprisingly exerted pro-oxidant effect on heme-H(2)O(2)-induced formation of BSA carbonyls at lower concentrations and enhanced the loss of HepG2 cell viability dose-dependently, which was probably due to the ability of this inorganic compound to efficiently enhance the peroxidase activity and oxidative degradation of heme. These data provide novel evidence that the dietary intake and experimental use of NO(2)(-) in vivo and in vitro would possess the pro-oxidant activity through interfering in heme-dependent oxidative reactions. Besides the classic role in protein tyrosine nitration, the deleterious effects on heme redox reactions may provide new insights into the toxicological implications of NO(2)(-) with cellular heme proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. The Structure of the Complex between Yeast Frataxin and Ferrochelatase: CHARACTERIZATION AND PRE-STEADY STATE REACTION OF FERROUS IRON DELIVERY AND HEME SYNTHESIS.

    Söderberg, Christopher; Gillam, Mallory E; Ahlgren, Eva-Christina; Hunter, Gregory A; Gakh, Oleksandr; Isaya, Grazia; Ferreira, Gloria C; Al-Karadaghi, Salam

    2016-05-27

    Frataxin is a mitochondrial iron-binding protein involved in iron storage, detoxification, and delivery for iron sulfur-cluster assembly and heme biosynthesis. The ability of frataxin from different organisms to populate multiple oligomeric states in the presence of metal ions, e.g. Fe(2+) and Co(2+), led to the suggestion that different oligomers contribute to the functions of frataxin. Here we report on the complex between yeast frataxin and ferrochelatase, the terminal enzyme of heme biosynthesis. Protein-protein docking and cross-linking in combination with mass spectroscopic analysis and single-particle reconstruction from negatively stained electron microscopic images were used to verify the Yfh1-ferrochelatase interactions. The model of the complex indicates that at the 2:1 Fe(2+)-to-protein ratio, when Yfh1 populates a trimeric state, there are two interaction interfaces between frataxin and the ferrochelatase dimer. Each interaction site involves one ferrochelatase monomer and one frataxin trimer, with conserved polar and charged amino acids of the two proteins positioned at hydrogen-bonding distances from each other. One of the subunits of the Yfh1 trimer interacts extensively with one subunit of the ferrochelatase dimer, contributing to the stability of the complex, whereas another trimer subunit is positioned for Fe(2+) delivery. Single-turnover stopped-flow kinetics experiments demonstrate that increased rates of heme production result from monomers, dimers, and trimers, indicating that these forms are most efficient in delivering Fe(2+) to ferrochelatase and sustaining porphyrin metalation. Furthermore, they support the proposal that frataxin-mediated delivery of this potentially toxic substrate overcomes formation of reactive oxygen species. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Natural selection on HFE in Asian populations contributes to enhanced non-heme iron absorption.

    Ye, Kaixiong; Cao, Chang; Lin, Xu; O'Brien, Kimberly O; Gu, Zhenglong

    2015-06-10

    HFE, a major regulator of iron (Fe) homeostasis, has been suggested to be under positive selection in both European and Asian populations. While the genetic variant under selection in Europeans (a non-synonymous mutation, C282Y) has been relatively well-studied, the adaptive variant in Asians and its functional consequences are still unknown. Identifying the adaptive HFE variants in Asians will not only elucidate the evolutionary history and the genetic basis of population difference in Fe status, but also assist the future practice of genome-informed dietary recommendation. Using data from the International HapMap Project, we confirmed the signatures of positive selection on HFE in Asian populations and identified a candidate adaptive haplotype that is common in Asians (52.35-54.71%) but rare in Europeans (5.98%) and Africans (4.35%). The T allele at tag SNP rs9366637 (C/T) captured 95.8% of this Asian-common haplotype. A significantly reduced HFE expression was observed in individuals carrying T/T at rs9366637 compared to C/C and C/T, indicating a possible role of gene regulation in adaptation. We recruited 57 women of Asian descent and measured Fe absorption using stable isotopes in those homozygous at rs9366637. We observed a 22% higher absorption in women homozygous for the Asian-common haplotype (T/T) compared to the control genotype (C/C). Additionally, compared with a group of age-matched Caucasian women, Asian women exhibited significantly elevated Fe absorption. Our results indicate parallel adaptation of HFE gene in Europeans and Asians with different genetic variants. Moreover, natural selection on HFE may have contributed to elevated Fe absorption in Asians. This study regarding population differences in Fe homeostasis has significant medical impact as high Fe level has been linked to an increased disease risk of metabolic syndromes.

  8. Association of dietary and supplemental iron and colorectal cancer in a population-based study.

    Ashmore, Joseph H; Lesko, Samuel M; Miller, Paige E; Cross, Amanda J; Muscat, Joshua E; Zhu, Junjia; Liao, Jason; Harper, Gregory; Lazarus, Philip; Hartman, Terryl J

    2013-11-01

    We evaluated the role of dietary iron, heme iron, and supplemental iron on colorectal cancer (CRC) risk in a population-based case-control study in Pennsylvania, including 1005 incident cases and 1062 controls. Diet was assessed through a modified food frequency questionnaire that included supplement use and a meat-specific module. Cases reported intakes for the year before diagnosis, whereas controls reported intakes for the year before interview. Heme iron intake was calculated using a new heme database developed by the US National Cancer Institute. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using unconditional logistic regression. After multivariate adjustment, there were no significant associations between heme iron or total iron intake and CRC incidence. Dietary iron intake was inversely associated with CRC among women (OR Q5 vs. Q1=0.45; 95% CI=0.22-0.92), but not among men. Supplemental iron intake of more than 18 mg/day versus none was positively associated with CRC incidence (OR=2.31; 95% CI=1.48-3.59; P-trendconsumption of more than 18 mg/day of supplemental iron may increase risk for CRC.

  9. Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons.

    Singh, Neha; Bhatla, Satish C

    2016-02-29

    Nitric oxide is a significant component of iron signaling in plants. Heme is one of the iron sensors in plants. Free heme is highly toxic and can cause cell damage as it catalyzes the formation of reactive oxygen species (ROS). Its catabolism is carried out by heme oxygenase (HOs; EC 1.14.99.3) which uses heme both as a prosthetic group and as a substrate. Two significant events, which accompany adaptation to salt stress in sunflower seedlings, are accumulation of ROS and enhanced production of nitric oxide (NO) in roots and cotyledons. Present investigations on the immunolocalization of heme oxygenase distribution in sunflower seedling cotyledons by confocal laser scanning microscopic (CLSM) imaging provide new information on the differential spatial distribution of the inducible form of HO (HO-1) as a long distance in response to NaCl stress. The enzyme is abundantly distributed in the specialized cells around the secretory canals (SCs) in seedling cotyledons. Abundance of tyrosine nitrated proteins has also been observed in the specialized cells around the secretory canals in cotyledons derived from salt stressed seedlings. The spatial distribution of tyrosine nitrated proteins and HO-1 expression further correlates with the abundance of mitochondria in these cells. Present findings, thus, highlight a link among distribution of HO-1 expression, abundance of tyrosine nitrated proteins and mitochondria in specialized cells around the secretory canal as a long distance mechanism of salt stress tolerance in sunflower seedlings. Enhanced spatial distribution of HO-1 in response to NaCl stress in seedling cotyledons is in congruence with the observed increase in specific activity of HO-1 in NaCl stressed conditions. The enzyme activity is further enhanced by hemin (HO-1 inducer) both in the absence or presence of NaCl stress and inhibited by zinc protoporphyrin. Western blot analysis of cotyledon homogenates using anti-HO-1 polyclonal antibody shows one major band (29

  10. Dietary Intake of Iron Rich Food and Awareness on Iron Deficiency Anaemia among Female Students in Rawalpindi

    Siddiqui, F. R.; Usmani, A. Q.; Shahid, A.; Sadiq, T.

    2013-01-01

    Objective: To assess the awareness and intake of iron rich diet amongst college girls with a particular focus on the knowledge about the iron deficiency anaemia. Materials and Methods: A cross sectional survey was conducted in Government College for Women Rawalpindi, during September - December 2010. One hundred and thirty five students of intermediate level aged 17-19 years were selected through convenient sampling technique. The sample size was calculated by WHO-sample size calculator, keeping 95 percent Cl, p<0.05 statistically significant, anticipated population proportion of iron deficiency anaemia 35 percent and absolute precision at 0.08. Results: The awareness about iron rich diet and iron deficiency anaemia was satisfactory (86 percent), while poor intake of iron rich diet amongst adolescent college girls (52 percent) was found. About 65 percent of the participants had knowledge about the causes of iron deficiency anaemia (IDA); while 72 percent and 80 percent knew about the prevention and treatment of IDA respectively. Conclusions: Results indicate the gap between knowledge and practices about IDA; it highlights the need of an effective health promotional programme to raise awareness about the significance of iron in young female diet and to highlight the consequences when it is absent. (author)

  11. Improvement of bioavailability for iron from vegetarian meals by ascorbic acid

    Sritongkul, N.; Tuntawiroon, M.; Pleehachinda, R.; Suwanik, R.

    1996-01-01

    There are two kinds of iron in the diet with respect to the mechanism of absorption, heme-iron which is present as haemoglobin or myoglobin in meat and blood products, and, non-heme iron which is the main source of dietary iron. The bioavailability of the non-heme food iron is much lower than heme-iron. Vegetarian diets contain only non-heme iron. Iron intake from vegetarian meals are generally satisfied with the requirements, however, the bioavailabilities for non-heme iron is determined not only by iron content byt also the balance between different dietary factors enhancing and inhibiting iron absorption. The main enhancing factor in vegetarian meals is ascorbic acid in fruits and vegetables, inhibitors are phytate in cereals and grains, and tannins in some spices and vegetables. It has been reported that iron deficiency is one of the common micronutrient problems associated with unplanned vegetarian diets. In the present study the absorption of non-heme iron was measured from 2 vegetarian meals containing considerable amounts of phytate and tannin. The extrinsic tay method ( 59 Fe/ 55 Fe) was used to labelled the non-heme iron. The mean percentage absorption of non-heme iron from both meals was slightly different due to differences in their dietary contents. Their initial percentages iron absorption were apparent low (3.5% and 4.1%), however, the absorption progressively increased with increase in the level of ascorbic acid, 2-3 times with 100 mg and 4-5 times with 200 mg of ascorbic acid. The average amount of iron absorbed per 2000 kcal increased from 0.37 mg to 0.86 mg and 1.45 mg with the addition of 100 mg and 200 mg ascorbic acid respectively (p < 0.001). Considering the limited caloric intakes and the iron content in the meals, the amount of iron absorbed from vegetarian meals without ascorbic acid was not able to meet certain requirements for children, adolescents and menstruating women. The minimal requirement for dietary iron needed to be absorbed is

  12. Heme Mobilization in Animals: A Metallolipid's Journey.

    Reddi, Amit R; Hamza, Iqbal

    2016-06-21

    Heme is universally recognized as an essential and ubiquitous prosthetic group that enables proteins to carry out a diverse array of functions. All heme-dependent processes, from protein hemylation to heme signaling, require the dynamic and rapid mobilization of heme to hemoproteins present in virtually every subcellular compartment. The cytotoxicity and hydrophobicity of heme necessitates that heme mobilization is carefully controlled at the cellular and systemic level. However, the molecules and mechanisms that mediate heme homeostasis are poorly understood. In this Account, we provide a heuristic paradigm with which to conceptualize heme trafficking and highlight the most recent developments in the mechanisms underlying heme trafficking. As an iron-containing tetrapyrrole, heme exhibits properties of both transition metals and lipids. Accordingly, we propose its transport and trafficking will reflect principles gleaned from the trafficking of both metals and lipids. Using this conceptual framework, we follow the flow of heme from the final step of heme synthesis in the mitochondria to hemoproteins present in various subcellular organelles. Further, given that many cells and animals that cannot make heme can assimilate it intact from nutritional sources, we propose that intercellular heme trafficking pathways must exist. This necessitates that heme be able to be imported and exported from cells, escorted between cells and organs, and regulated at the organismal level via a coordinated systemic process. In this Account, we highlight recently discovered heme transport and trafficking factors and provide the biochemical foundation for the cell and systems biology of heme. Altogether, we seek to reconceptualize heme from an exchange inert cofactor buried in hemoprotein active sites to an exchange labile and mobile metallonutrient.

  13. Synthesis of a Non-Heme Template for Attaching Four Peptides : An Approach to Artificial Iron(II)-Containing Peroxidases

    Heuvel, Marco van den; Berg, Tieme A. van den; Kellogg, Richard M.; Choma, Christin T.; Feringa, Bernard

    2004-01-01

    We are developing all-synthetic model cofactor-protein complexes in order to define the parameters controlling non-natural cofactor activity. The long-term objective is to establish the theoretical and practical basis for designing novel enzymes. A non-heme pentadentate ligand (N4Py) is being

  14. Mechanisms of heme utilization by Francisella tularensis.

    Helena Lindgren

    Full Text Available Francisella tularensis is a highly virulent facultative intracellular pathogen causing the severe disease tularemia in mammals. As for other bacteria, iron is essential for its growth but very few mechanisms for iron acquisition have been identified. Here, we analyzed if and how F. tularensis can utilize heme, a major source of iron in vivo. This is by no means obvious since the bacterium lacks components of traditional heme-uptake systems. We show that SCHU S4, the prototypic strain of subspecies tularensis, grew in vitro with heme as the sole iron source. By screening a SCHU S4 transposon insertion library, 16 genes were identified as important to efficiently utilize heme, two of which were required to avoid heme toxicity. None of the identified genes appeared to encode components of a potential heme-uptake apparatus. Analysis of SCHU S4 deletion mutants revealed that each of the components FeoB, the siderophore system, and FupA, contributed to the heme-dependent growth. In the case of the former two systems, iron acquisition was impaired, whereas the absence of FupA did not affect iron uptake but led to abnormally high binding of iron to macromolecules. Overall, the present study demonstrates that heme supports growth of F. tularensis and that the requirements for the utilization are highly complex and to some extent novel.

  15. Formative research to develop a nutrition education intervention to improve dietary iron intake among women and adolescent girls through community kitchens in Lima, Peru.

    Creed-Kanashiro, Hilary M; Bartolini, Rosario M; Fukumoto, Mary N; Uribe, Tula G; Robert, Rebecca C; Bentley, Margaret E

    2003-11-01

    Formative research was conducted with 26 women and 16 adolescent girls to develop an education intervention through community kitchens (CK) in Lima, to increase their dietary iron intake and improve their iron status. A combination of qualitative research methods was used to explore perceptions about foods, nutrition, health, anemia and body image. The women recognized that there was a close association among eating well, "alimentarse bien", their health and prevention and treatment of anemia. They perceived that the nutritive value of a meal is determined primarily by its content of "nutritious" foods and by its being "balanced". Using this information the conceptual model of the education intervention was developed. The vulnerability of women to anemia was presented with the relationship between anemia and diet as the central focus. Feasible ways of achieving a nutritious diet were introduced to the community kitchens through promoting local heme iron sources and the consumption of beans with a vitamin C source. Animal source foods were amongst those considered to be nutritious and were "best buys" for iron content. CK searched for ways of assuring accessibility to these foods. The use of animal source foods in the community kitchen menus increased during the intervention.

  16. Determination of lanthanum and rare earth elements in bovine whole blood reference material by ICP-MS after coprecipitation preconcentration with heme-iron as coprecipitant

    Fujimori, Eiji; Hayashi, Tatsuya; Inagaki, Kazumi; Haraguchi, H.

    1999-01-01

    An analytical method for the determination of lanthanide elements in the bovine whole blood reference material (IAEA A-13) has been investigated by inductively coupled plasma mass spectrometry (ICP-MS). The bovine whole blood reference material was digested with HNO 3 and HClO 4 , and then the pH of the digested solution was adjusted to 12 with 3 M sodium hydroxide aqueous solution. In this experimental procedure, lanthanide elements in the blood sample were coprecipitated with iron mainly derived from heme-iron in blood itself. In order to minimize matrix effects due to iron, excess iron in the analysis solution was removed by solvent extraction using methyl isobutyl ketone (MIBK) prior to the determination of lanthanide elements by ICP-MS. The recoveries of all lanthanide elements were almost quantitative in the recovery test. In consequence, it has been found that all lanthanide elements in bovine whole blood reference material are at the wide concentration range of 0.90 pg/g for Tm ∝1880 pg/g for Ce. (orig.)

  17. Current understanding of iron homeostasis.

    Anderson, Gregory J; Frazer, David M

    2017-12-01

    Iron is an essential trace element, but it is also toxic in excess, and thus mammals have developed elegant mechanisms for keeping both cellular and whole-body iron concentrations within the optimal physiologic range. In the diet, iron is either sequestered within heme or in various nonheme forms. Although the absorption of heme iron is poorly understood, nonheme iron is transported across the apical membrane of the intestinal enterocyte by divalent metal-ion transporter 1 (DMT1) and is exported into the circulation via ferroportin 1 (FPN1). Newly absorbed iron binds to plasma transferrin and is distributed around the body to sites of utilization with the erythroid marrow having particularly high iron requirements. Iron-loaded transferrin binds to transferrin receptor 1 on the surface of most body cells, and after endocytosis of the complex, iron enters the cytoplasm via DMT1 in the endosomal membrane. This iron can be used for metabolic functions, stored within cytosolic ferritin, or exported from the cell via FPN1. Cellular iron concentrations are modulated by the iron regulatory proteins (IRPs) IRP1 and IRP2. At the whole-body level, dietary iron absorption and iron export from the tissues into the plasma are regulated by the liver-derived peptide hepcidin. When tissue iron demands are high, hepcidin concentrations are low and vice versa. Too little or too much iron can have important clinical consequences. Most iron deficiency reflects an inadequate supply of iron in the diet, whereas iron excess is usually associated with hereditary disorders. These disorders include various forms of hemochromatosis, which are characterized by inadequate hepcidin production and, thus, increased dietary iron intake, and iron-loading anemias whereby both increased iron absorption and transfusion therapy contribute to the iron overload. Despite major recent advances, much remains to be learned about iron physiology and pathophysiology. © 2017 American Society for Nutrition.

  18. The DFT-DVM theoretical study of the differences of quadrupole splitting and the iron electronic structure for the rough heme models for {alpha}- and {beta}-subunits in deoxyhemoglobin and for deoxymyoglobin

    Yuryeva, E. I. [Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences (Russian Federation); Oshtrakh, M. I., E-mail: oshtrakh@mail.utnet.ru [Ural State Technical University-UPI, Faculty of Physical Techniques and Devices for Quality Control (Russian Federation)

    2008-01-15

    Quantum chemical calculations of the iron electron structure and {sup 57}Fe quadrupole splitting were made by density functional theory and X{alpha} discrete variation method for the rough heme models for {alpha}- and {beta}-subunits in deoxyhemoglobin and for deoxymyoglobin accounting stereochemical differences of the active sites in native proteins. The calculations revealed differences of quadrupole splitting temperature dependences for three models indicating sensitivity of quadrupole splitting and Fe(II) electronic structure to small variations of iron stereochemistry.

  19. Visualization of the role of host heme on the virulence of the heme auxotroph Streptococcus agalactiae.

    Joubert, Laetitia; Dagieu, Jean-Baptiste; Fernandez, Annabelle; Derré-Bobillot, Aurélie; Borezée-Durant, Elise; Fleurot, Isabelle; Gruss, Alexandra; Lechardeur, Delphine

    2017-01-16

    Heme is essential for several cellular key functions but is also toxic. Whereas most bacterial pathogens utilize heme as a metabolic cofactor and iron source, the impact of host heme during bacterial infection remains elusive. The opportunist pathogen Streptococcus agalactiae does not synthesize heme but still uses it to activate a respiration metabolism. Concomitantly, heme toxicity is mainly controlled by the HrtBA efflux transporter. Here we investigate how S. agalactiae manages heme toxicity versus benefits in the living host. Using bioluminescent bacteria and heme-responsive reporters for in vivo imaging, we show that the capacity of S. agalactiae to overcome heme toxicity is required for successful infection, particularly in blood-rich organs. Host heme is simultaneously required, as visualized by a generalized infection defect of a respiration-negative mutant. In S. agalactiae, HrtBA expression responds to an intracellular heme signal via activation of the two-component system HssRS. A hssRS promoter-driven intracellular luminescent heme sensor was designed to identify host compartments that supply S. agalactiae with heme. S. agalactiae acquires heme in heart, kidneys, and liver, but not in the brain. We conclude that S. agalactiae response to heme is organ-dependent, and its efflux may be particularly relevant in late stages of infection.

  20. Synthesis of 5-hydroxyectoine from ectoine: crystal structure of the non-heme iron(II and 2-oxoglutarate-dependent dioxygenase EctD.

    Klaus Reuter

    2010-05-01

    Full Text Available As a response to high osmolality, many microorganisms synthesize various types of compatible solutes. These organic osmolytes aid in offsetting the detrimental effects of low water activity on cell physiology. One of these compatible solutes is ectoine. A sub-group of the ectoine producer's enzymatically convert this tetrahydropyrimidine into a hydroxylated derivative, 5-hydroxyectoine. This compound also functions as an effective osmostress protectant and compatible solute but it possesses properties that differ in several aspects from those of ectoine. The enzyme responsible for ectoine hydroxylation (EctD is a member of the non-heme iron(II-containing and 2-oxoglutarate-dependent dioxygenases (EC 1.14.11. These enzymes couple the decarboxylation of 2-oxoglutarate with the formation of a high-energy ferryl-oxo intermediate to catalyze the oxidation of the bound organic substrate. We report here the crystal structure of the ectoine hydroxylase EctD from the moderate halophile Virgibacillus salexigens in complex with Fe(3+ at a resolution of 1.85 A. Like other non-heme iron(II and 2-oxoglutarate dependent dioxygenases, the core of the EctD structure consists of a double-stranded beta-helix forming the main portion of the active-site of the enzyme. The positioning of the iron ligand in the active-site of EctD is mediated by an evolutionarily conserved 2-His-1-carboxylate iron-binding motif. The side chains of the three residues forming this iron-binding site protrude into a deep cavity in the EctD structure that also harbours the 2-oxoglutarate co-substrate-binding site. Database searches revealed a widespread occurrence of EctD-type proteins in members of the Bacteria but only in a single representative of the Archaea, the marine crenarchaeon Nitrosopumilus maritimus. The EctD crystal structure reported here can serve as a template to guide further biochemical and structural studies of this biotechnologically interesting enzyme family.

  1. Iron status in 358 apparently healthy 80-year-old Danish men and women: relation to food composition and dietary and supplemental iron intake

    Milman, Nils; Pedersen, Agnes Nadelmann; Ovesen, Lars

    2004-01-01

    of age from a 1914 cohort study. Blood samples included serum ferritin and hemoglobin (Hb). A dietary survey was performed in 232 subjects (120 men, 112 women) using a dietary history method. Median serum ferritin was 100 mug/l in men and 78 mug/l in women (p300 mug/l (i.e., iron overload) were found......In Denmark, the intake of dietary iron has decreased since 1987, when the mandatory iron fortification of flour (30 mg carbonyl iron/kg) was stopped. Since there have been no studies of iron status in elderly Danes after the abolishment of iron fortification, there is a need to assess actual iron...... status in the elderly population. The objective was to evaluate iron status and the relationship with food composition and dietary and supplemental iron intake in an elderly population in Copenhagen County. Participants in this health examination survey were 358 subjects (171 men, 187 women) 80 years...

  2. Influence of food tannins on certain aspects of iron metabolism : Part 3 -- Heme synthesis and haematopoiesis in normal and anemic rats

    Roy, S N [Albert Einstein Coll. of Medicine, Bronx, NY (USA); Mukherjee, S [Calcutta Univ. (India). Dept. of Applied Chemistry

    1979-06-01

    Tannin from various fruits and vegetables at a dose level of 0.5 mg/kg wt/day helps approximately 65% recovery of the blood hemoglobin concentration in hemolytic anemic rats within 7 days resulting in normal levels of haematological parameters. While in vitro tannin at low doses (5-10 ..mu..g/mg protein) stimulates iron incorporation into protoporphyrin IX by rat liver subcellular fractions, at higher doses (15-40 ..mu..g/mg protein) it inhibits the heme synthesis in liver, the inhibition being complete at 40 ..mu..g/mg protein. In vivo studies indicate that the administration of tannin (0.5 mg/kg) exhibits significant increase in incorporation of label into hemin of anemic rats compared to that of anemic control and tannin-fed normal groups. In rats receiving supplements of tannin (0.5 mg/k.o.), incorporation of the label into hemin of anemic ones is comparatively greater when /sup 59/Fe is given by intravenous route instead of oral administration of radio-iron. The total labelling of /sup 59/Fe in red blood cells is significantly greater in tannin-fed anemic rats than anemic control. These results suggest that tannin (0.5 mg/kg) from fruits and vegetables may help iron utilization more effectively for greater haematopoiesis in hemolytic anemia.

  3. Influence of food tannins on certain aspects of iron metabolism : Part 3 -- Heme synthesis and haematopoiesis in normal and anemic rats

    Roy, S.N.; Mukherjee, S.

    1979-01-01

    Tannin from various fruits and vegetables at a dose level of 0.5 mg/kg wt/day helps approximately 65% recovery of the blood hemoglobin concentration in hemolytic anemic rats within 7 days resulting in normal levels of haematological parameters. While in vitro tannin at low doses (5-10 μg/mg protein) stimulates iron incorporation into protoporphyrin IX by rat liver subcellular fractions, at higher doses (15-40 μg/mg protein) it inhibits the heme synthesis in liver, the inhibition being complete at 40 μg/mg protein. In vivo studies indicate that the administration of tannin (0.5 mg/kg) exhibits significant increase in incorporation of label into hemin of anemic rats compared to that of anemic control and tannin-fed normal groups. In rats receiving supplements of tannin (0.5 mg/k.o.), incorporation of the label into hemin of anemic ones is comparatively greater when 59 Fe is given by intravenous route instead of oral administration of radio-iron. The total labelling of 59 Fe in red blood cells is significantly greater in tannin-fed anemic rats than anemic control. These results suggest that tannin (0.5 mg/kg) from fruits and vegetables may help iron utilization more effectively for greater haematopoiesis in hemolytic anemia. (auth.)

  4. Sharply higher rates of iron deficiency in obese Mexican women and children are predicted by obesity-related inflammation rather than by differences in dietary iron intake

    Cepeda-Lopez, A.C.; Osendarp, S.J.M.; Boonstra, A.; Aeberli, I.; Gonzalez-Salazar, F.; Feskens, E.J.M.; Villalpando, S.; Zimmermann, M.B.

    2011-01-01

    Background: Obese individuals may be at increased risk of iron deficiency (ID), but it is unclear whether this is due to poor dietary iron intakes or to adiposity-related inflammation. Objective: The aim of this study was to examine the relations between body mass index (BMI), dietary iron, and

  5. MicroRNA-related genetic variants in iron regulatory genes, dietary iron intake, microRNAs and lung cancer risk.

    Zhang, L; Ye, Y; Tu, H; Hildebrandt, M A; Zhao, L; Heymach, J V; Roth, J A; Wu, X

    2017-05-01

    Genetic variations in MicroRNA (miRNA) binding sites may alter structural accessibility of miRNA binding sites to modulate risk of cancer. This large-scale integrative multistage study was aimed to evaluate the interplay of genetic variations in miRNA binding sites of iron regulatory pathway, dietary iron intake and lung cancer (LC) risk. The interplay of genetic variant, dietary iron intake and LC risk was assessed in large-scale case-control study. Functional characterization of the validated SNP and analysis of target miRNAs were performed. We found that the miRNA binding site SNP rs1062980 in 3' UTR of Iron-Responsive Element Binding protein 2 gene (IREB2) was associated with a 14% reduced LC risk (P value = 4.9×10 - 9). Comparing to AA genotype, GG genotype was associated with a 27% reduced LC risk. This association was evident in males and ever-smokers but not in females and never-smokers. Higher level of dietary iron intake was significantly associated with 39% reduced LC risk (P value = 2.0×10 - 8). This association was only present in individuals with AG + AA genotypes with a 46% reduced risk (P value = 1.0×10 - 10), but not in GG genotype. The eQTL-analysis showed that rs1062980 significantly alters IREB2 expression level. Rs1062980 is predicted to alter a miR-29 binding site on IREB2 and indeed the expression of miR-29 is inversely correlated with IREB2 expression. Further, we found that higher circulating miR-29a level was significantly associated with 78% increased LC risk. The miRNA binding site SNP rs1062980 in iron regulatory pathway, which may alter the expression of IREB2 potentially through modulating the binding of miR-29a, together with dietary iron intake may modify risk of LC both individually and jointly. These discoveries reveal novel pathway for understanding lung cancer tumorigenesis and risk stratification. © The Author 2017. Published by Oxford University Press on behalf of the European Society for

  6. A role for heme in Alzheimer's disease: Heme binds amyloid β and has altered metabolism

    Atamna, Hani; Frey, William H.

    2004-01-01

    Heme is a common factor linking several metabolic perturbations in Alzheimer's disease (AD), including iron metabolism, mitochondrial complex IV, heme oxygenase, and bilirubin. Therefore, we determined whether heme metabolism was altered in temporal lobes obtained at autopsy from AD patients and age-matched nondemented subjects. AD brain demonstrated 2.5-fold more heme-b (P < 0.01) and 26% less heme-a (P = 0.16) compared with controls, resulting in a highly significant 2.9-fold decrease in he...

  7. Assessment of intake of iron and nutrients that affect bioavailability of daily food rations of girls

    Anna Broniecka

    2014-06-01

    Full Text Available INTRODUCTION AND AIM In a human body iron occurs at a level of 3 to 5 g, 60-70 % of which are in hemoglobin, ca. 10% in myoglobin, and ca. 3% are accumulated in enzymes of cellular respiration or enzymes degrading toxic hydrogen peroxide. The other part of iron is accumulated in liver, spleen, kidneys and bone marrow. The dietary deficiency of iron appears at its insufficient level in a diet and at impaired absorption of iron ions present in food products by a body. Groups at an especially high risk of iron deficiencies include, among others, menstruating girls in the pubescence period and women with heavy and irregular menstruations, as well as vegetarians and patients with chronic enteritis. The aim of this study was to evaluate the intake of iron and nutrients that affect its bioavailability from daily food rations of girls. MATERIAL AND METHODS The study included 159 girls aged 17-18, students of high schools in the city of Wroclaw. The study was conducted between November 2010 and ay 2011. Girls were divided into 3 subgroups according to the BMI score. Girls’ diets were analyzed with the method of a direct interview of the last 24 hours before the test and the interview was repeated seven times. RESULTS The present study demonstrated that the intake of iron from food rations of almost all the girls surveyed was below the requirements defined for this age group. Statistically significant differences were noted in the intake of energy and nutrients among the three distinguished subgroups of girls. CONCLUSIONS Food rations of the surveyed girls were characterized by a low, compared to dietary allowances, calorific value, which resulted in deficiencies of nutrients increasing iron bioavailability.

  8. Experimental and Computational Evidence for the Mechanism of Intradiol Catechol Dioxygenation by Non- Heme Iron(III) Complexes

    Jastrzebski, Robin; Quesne, Matthew G.; Weckhuysen, Bert M.; de Visser, Sam P.; Bruijnincx, Pieter C. A.

    2014-01-01

    Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and nonheme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational

  9. Estimation of perimortal percent carboxy-heme in nonstandard postmortem specimens using analysis of carbon monoxide by GC/MS and iron by flame atomic absorption spectrophotometry.

    Middleberg, R A; Easterling, D E; Zelonis, S F; Rieders, F; Rieders, M F

    1993-01-01

    In decomposed, formalin-fixed, embalmed, exhumed, and some fire-dried cases in which normal blood is unavailable, the usual methods for determination of carboxyhemoglobin saturation frequently fail. To address these specimens, a method utilizing both gas chromatography/mass spectrometric (GC/MS) determination of carbon monoxide (CO) and flame atomic absorption spectrophotometry (FAAS) determination of iron (Fe), in the same specimen, was developed. The method is reported here, along with its application to seven pertinent forsensic death investigations. The CO analytical methodology involves acid liberation of the gas from the specimen aliquot in a headspace vial. After heating and equilibrating, a sample of the headspace vapor is injected into the GC/MS system with a gastight syringe. Quantitation is achieved by standard addition comparison utilizing the ideal gas law equation. Iron is quantified by FAAS analysis of the same aliquot used for the CO determination, following nitric acid digestion. The concentration is determined by comparison to a standard curve. A formula for determining the minimum percent carboxy-heme saturation was derived by using the ratio of the amount of CO to the amount of Fe in the aliquot analyzed. Tissue types analyzed include spleen, liver, muscle, dried blood, and unspecified decomposed tissue.

  10. Effects of dietary heme iron and exercise training on abdominal fat accumulation and lipid metabolism in high-fat diet-fed mice.

    Katsumura, Masanori; Takagi, Shoko; Oya, Hana; Tamura, Shohei; Saneyasu, Takaoki; Honda, Kazuhisa; Kamisoyama, Hiroshi

    2017-08-01

    Animal by-products can be recycled and used as sources of essential nutrients. Water-soluble heme iron (WSHI), a functional food additive for supplementing iron, is produced by processing animal blood. In this study, we investigated the effects of dietary supplementation of 3% WSHI and exercise training for 4 weeks on the accumulation of abdominal fat and lipid metabolism in mice fed high-fat diet. Exercise-trained mice had significantly less perirenal adipose tissue, whereas WSHI-fed mice tended to have less epididymal adipose tissue. In addition, total weight of abdominal adipose tissues was significantly decreased in the Exercise + WSHI group. Dietary WSHI significantly increased the messenger RNA (mRNA) levels of lipoprotein lipase and hormone-sensitive lipase. WSHI-fed mice also tended to show increased mRNA levels of adipose triglyceride lipase in their epididymal adipose tissue. Dietary WSHI also significantly decreased the mRNA levels of fatty acid oxidation-related enzymes in the liver, but did not influence levels in the Gastrocnemius muscle. Exercise training did not influence the mRNA levels of lipid metabolism-related enzymes in the epididymal adipose tissue, liver or the Gastrocnemius muscle. These findings suggest that the accumulation of abdominal fat can be efficiently decreased by the combination of dietary WSHI and exercise training in mice fed high-fat diet. © 2016 Japanese Society of Animal Science.

  11. Heme oxygenase activity increases after exercise in healthy volunteers

    AbstractHeme oxygenase (HO) is an essential, rate-limiting protein which participates in the catabolism of heme to iron, carbon monoxide (CO), and biliverdin. The alpha methene bridge carbon of the heme is eliminated as CO which can be measured as blood carboxyhemoglobin (COHb)....

  12. 4-Hydroxy-2(E)-nonenal metabolism differs in Apc(+/+) cells and in Apc(Min/+) cells: it may explain colon cancer promotion by heme iron.

    Baradat, Maryse; Jouanin, Isabelle; Dalleau, Sabine; Taché, Sylviane; Gieules, Mathilde; Debrauwer, Laurent; Canlet, Cécile; Huc, Laurence; Dupuy, Jacques; Pierre, Fabrice H F; Guéraud, Françoise

    2011-11-21

    Animal and epidemiological studies suggest that dietary heme iron would promote colorectal cancer. Oxidative properties of heme could lead to the formation of cytotoxic and genotoxic secondary lipid oxidation products, such as 4-hydroxy-2(E)-nonenal (HNE). This compound is more cytotoxic to mouse wild-type colon cells than to isogenic cells with a mutation on the adenomatous polyposis coli (APC) gene. The latter thus have a selective advantage, possibly leading to cancer promotion. This mutation is an early and frequent event in human colorectal cancer. To explain this difference, the HNE biotransformation capacities of the two cell types have been studied using radiolabeled and stable isotope-labeled HNE. Apc-mutated cells showed better biotransformation capacities than nonmutated cells did. Thiol compound conjugation capacities were higher for mutated cells, with an important advantage for the extracellular conjugation to cysteine. Both cells types were able to reduce HNE to 4-hydroxynonanal, a biotransformation pathway that has not been reported for other intestinal cells. Mutated cells showed higher capacities to oxidize 4-hydroxynonanal into 4-hydroxynonanoic acid. The mRNA expression of different enzymes involved in HNE metabolism such as aldehyde dehydrogenase 1A1, 2 and 3A1, glutathione transferase A4-4, or cystine transporter xCT was upregulated in mutated cells compared with wild-type cells. In conclusion, this study suggests that Apc-mutated cells are more efficient than wild-type cells in metabolizing HNE into thiol conjugates and 4-hydroxynonanoic acid due to the higher expression of key biotransformation enzymes. These differential biotransformation capacities would explain the differences of susceptibility between normal and Apc-mutated cells regarding secondary lipid oxidation products.

  13. Models for cytochrome P450 prosthetic heme alkylation. Reaction of diazoacetophenone with (tetraphenylporphyrinato)iron(II) chloride

    Komives, E.A.; Tew, D.; Olmstead, M.M.; Ortiz de Montellano, P.R.

    1988-01-01

    The reaction of diazoacetophenone with (tetraphenylporphyrinato)iron(II) yields [N-(2-phenyl-2-oxoethyl)tetraphenylporphyrinato]iron(II) chloride. The structure of this product has been established by spectroscopic methods and by x-ray crystallography. The crystal structure shows that the first carbon of the N-alkyl group is 2.94 angstrom from the iron atom and that the oxygen of the N-alkyl group points away from the iron. No evidence is seen for the Fe-C-N product expected from insertion of the diazo carbon into the metalloporphyrin iron-nitrogen bond or for intermediates in which the oxygen of the N-(2-phenyl-2-oxoethyl) group is coordinated to the iron. These results suggest it is unlikely that carbene-insertion or oxygen-coordinated intermediates will be detected during the N-alkylation of cytochrome P450 by diazo ketones. The results also rationalize the failure to detect iron-chelated enol species during N-alkylation of the prosthetic group of cytochrome P450 by catalytically activated phenylacetylene. 43 references, 5 figures, 4 tables

  14. Synthesis and characterization of an iron complex bearing a cyclic tetra-N-heterocyclic carbene ligand: An artifical heme analogue?

    Anneser, Markus R.

    2015-04-20

    An iron(II) complex with a cyclic tetradentate ligand containing four N-heterocyclic carbenes was synthesized and characterized by means of NMR and IR spectroscopies, as well as by single-crystal X-ray structure analysis. The iron center exhibits an octahedral coordination geometry with two acetonitrile ligands in axial positions, showing structural analogies with porphyrine-ligated iron complexes. The acetonitrile ligands can readily be substituted by other ligands, for instance, dimethyl sulfoxide, carbon monoxide, and nitric oxide. Cyclic voltammetry was used to examine the electronic properties of the synthesized compounds. © 2015 American Chemical Society.

  15. Red meat and colon cancer : how dietary heme initiates hyperproliferation

    IJssennagger, N.

    2012-01-01

    Colorectal cancer is a leading cause of cancer deaths in Western countries. The risk to develop colorectal cancer is associated with the intake of red meat. Red meat contains the porphyrin pigment heme. Heme is an irritant for the colonic wall and it is previously shown that the addition of heme

  16. Optimal management of iron deficiency anemia due to poor dietary intake

    García-López S

    2011-10-01

    Full Text Available Kattalin Aspuru1, Carlos Villa2, Fernando Bermejo2, Pilar Herrero3, Santiago García López1 1Digestive Department, Hospital Universitario Miguel Servet (Miguel Servet University Hospital, Zaragoza, 2Digestive Department, Hospital Universitario de Fuenlabrada (Fuenlabrada University Hospital, Madrid, 3Professional College of Nutritionists and Dietitians of Aragon, Zaragoza, Spain Abstract: Iron is necessary for the normal development of multiple vital processes. Iron deficiency (ID may be caused by several diseases, even by physiological situations that increase requirements for this mineral. One of its possible causes is a poor dietary iron intake, which is infrequent in developed countries, but quite common in developing areas. In these countries, dietary ID is highly prevalent and comprises a real public health problem and a challenge for health authorities. ID, with or without anemia, can cause important symptoms that are not only physical, but can also include a decreased intellectual performance. All this, together with a high prevalence, can even have negative implications for a community’s economic and social development. Treatment consists of iron supplements. Prevention of ID obviously lies in increasing the dietary intake of iron, which can be difficult in developing countries. In these regions, foods with greater iron content are scarce, and attempts are made to compensate this by fortifying staple foods with iron. The effectiveness of this strategy is endorsed by multiple studies. On the other hand, in developed countries, ID with or without anemia is nearly always associated with diseases that trigger a negative balance between iron absorption and loss. Its management will be based on the treatment of underlying diseases, as well as on oral iron supplements, although these latter are limited by their tolerance and low potency, which on occasions may compel a change to intravenous administration. Iron deficiency has a series of

  17. Rationale and design of the oral HEMe iron polypeptide Against Treatment with Oral Controlled Release Iron Tablets trial for the correction of anaemia in peritoneal dialysis patients (HEMATOCRIT trial

    Isbel Nicole M

    2009-07-01

    Full Text Available Abstract Background The main hypothesis of this study is that oral heme iron polypeptide (HIP; Proferrin® ES administration will more effectively augment iron stores in erythropoietic stimulatory agent (ESA-treated peritoneal dialysis (PD patients than conventional oral iron supplementation (Ferrogradumet®. Methods Inclusion criteria are peritoneal dialysis patients treated with darbepoietin alpha (DPO; Aranesp®, Amgen for ≥ 1 month. Patients will be randomized 1:1 to receive either slow-release ferrous sulphate (1 tablet twice daily; control or HIP (1 tablet twice daily for a period of 6 months. The study will follow an open-label design but outcome assessors will be blinded to study treatment. During the 6-month study period, haemoglobin levels will be measured monthly and iron studies (including transferring saturation [TSAT] measurements will be performed bi-monthly. The primary outcome measure will be the difference in TSAT levels between the 2 groups at the end of the 6 month study period, adjusted for baseline values using analysis of covariance (ANCOVA. Secondary outcome measures will include serum ferritin concentration, haemoglobin level, DPO dosage, Key's index (DPO dosage divided by haemoglobin concentration, and occurrence of adverse events (especially gastrointestinal adverse events. Discussion This investigator-initiated multicentre study has been designed to provide evidence to help nephrologists and their peritoneal dialysis patients determine whether HIP administration more effectively augments iron stores in ESP-treated PD patients than conventional oral iron supplementation. Trial Registration Australia New Zealand Clinical Trials Registry number ACTRN12609000432213.

  18. The mechanism of stereospecific C-H oxidation by Fe(Pytacn) complexes: bioinspired non-heme iron catalysts containing cis-labile exchangeable sites.

    Prat, Irene; Company, Anna; Postils, Verònica; Ribas, Xavi; Que, Lawrence; Luis, Josep M; Costas, Miquel

    2013-05-17

    A detailed mechanistic study of the hydroxylation of alkane C-H bonds using H2O2 by a family of mononuclear non heme iron catalysts with the formula [Fe(II)(CF3SO3)2(L)] is described, in which L is a tetradentate ligand containing a triazacyclononane tripod and a pyridine ring bearing different substituents at the α and γ positions, which tune the electronic or steric properties of the corresponding iron complexes. Two inequivalent cis-labile exchangeable sites, occupied by triflate ions, complete the octahedral iron coordination sphere. The C-H hydroxylation mediated by this family of complexes takes place with retention of configuration. Oxygen atoms from water are incorporated into hydroxylated products and the extent of this incorporation depends in a systematic manner on the nature of the catalyst, and the substrate. Mechanistic probes and isotopic analyses, in combination with detailed density functional theory (DFT) calculations, provide strong evidence that C-H hydroxylation is performed by highly electrophilic [Fe(V)(O)(OH)L] species through a concerted asynchronous mechanism, involving homolytic breakage of the C-H bond, followed by rebound of the hydroxyl ligand. The [Fe(V)(O)(OH)L] species can exist in two tautomeric forms, differing in the position of oxo and hydroxide ligands. Isotopic-labeling analysis shows that the relative reactivities of the two tautomeric forms are sensitively affected by the α substituent of the pyridine, and this reactivity behavior is rationalized by computational methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Heme and erythropoieis: more than a structural role

    Chiabrando, Deborah; Mercurio, Sonia; Tolosano, Emanuela

    2014-01-01

    Erythropoiesis is the biological process that consumes the highest amount of body iron for heme synthesis. Heme synthesis in erythroid cells is finely coordinated with that of alpha (α) and beta (β)-globin, resulting in the production of hemoglobin, a tetramer of 2α- and 2β-globin chains, and heme as the prosthetic group. Heme is not only the structural component of hemoglobin, but it plays multiple regulatory roles during the differentiation of erythroid precursors since it controls its own ...

  20. ron Intake in Adults from Medellin According to Demographics, 2012

    Carmen Yulieth Mantilla Gutiérrez

    2014-05-01

    Full Text Available Objectives: To analyze the iron intake in healthy adults of Medellín according to demographics, and to determine the association between the consumption of iron and hemoglobin in this popula¬tion. Materials and methods: Cross-sectional study in 109 subjects. We applied a semiquantitative survey of food consumption frequency source of iron given the frequency of consumption and portion. Summary measures, frequencies, Mann Whitney, Kruskal Wallis ANOVA and Spearman correlation were calculated. We used SPSS version 20.0, considering a significance level of 0.05. Results: The mean age subjects was 32, 64.2 % were female, 81.6 % with technical or university studies, 29.3 % students and 43.9 % of low socioeconomic status. We found a daily intake of 12.3 mg/day on average, 61 % from non-heme iron. The total iron consumed was statistically higher in unemployed subjects than in workers, students and housewives. The heme iron intake was statistically higher in individuals with graduate. No statistically significant differences were observed when comparing iron consumption by sex, age group and hemoglobin. Conclusions: The low intake of iron is not influenced by sex or age group, but by occupation and education, and is a factor that cannot reduce the prevalence of iron and other micronutrients deficiencies. It requires to implement more and better strategies for nutrition education and increased avail¬ability, production and consumption of safe food

  1. Influence of Ligand Architecture in Tuning Reaction Bifurcation Pathways for Chlorite Oxidation by Non-Heme Iron Complexes

    Barman, Prasenjit; Faponle, Abayomi S; Vardhaman, Anil Kumar; Angelone, Davide; Löhr, Anna-Maria; Browne, Wesley R; Comba, Peter; Sastri, Chivukula V; de Visser, Sam P

    2016-01-01

    Reaction bifurcation processes are often encountered in the oxidation of substrates by enzymes and generally lead to a mixture of products. One particular bifurcation process that is common in biology relates to electron transfer versus oxygen atom transfer by high-valent iron(IV)-oxo complexes,

  2. Dietary iron intake in the first 4 months of infancy and the development of type 1 diabetes: a pilot study

    Ashraf Ambika P

    2010-09-01

    Full Text Available Abstract Aims To investigate the impact of iron intake on the development of type 1 diabetes (T1DM. Methods Case-control study with self-administered questionnaire among families of children with T1DM who were less than 10 years old at the time of the survey and developed diabetes between age 1 and 6 years. Data on the types of infant feeding in the first 4 months of life was collected from parents of children with T1DM (n = 128 and controls (n = 67 Results The median (min, max total iron intake in the first 4 months of life was 1159 (50, 2399 mg in T1DM cases and 466 (50, 1224 mg among controls (P Conclusion In this pilot study, high iron intake in the first 4 months of infancy is associated with T1DM. Whether iron intake is causal or a marker of another risk factor warrants further investigation.

  3. Nutrient intake, serum lipids and iron status of colligiate rugby players.

    Imamura, Hiroyuki; Iide, Kazuhide; Yoshimura, Yoshitaka; Kumagai, Kenya; Oshikata, Reika; Miyahara, Keiko; Oda, Kazuto; Miyamoto, Noriko; Nakazawa, Anthony

    2013-02-13

    There are two main playing positions in rugby (backs and forwards), which demonstrate different exercise patterns, roles, and physical characteristics. The purpose of this study was: 1) to collect baseline data on nutrient intake in order to advise the athletes about nutrition practices that might enhance performance, and 2) to compare serum lipids, lipoproteins, apolipoproteins (apo), lecithin:cholesterol acyltransferase (LCAT) activity, and iron status of forwards and backs. The sporting group was divided into 18 forwards and 16 backs and were compared with 26 sedentary controls. Dietary information was obtained with a food frequency questionnaire. There were significant differences among the three groups. The forwards had the highest body weight, body mass index, percentage of body fat (calculated by sum of four skinfold thicknesses), as well as the highest lean body mass, followed by the backs and the control group. The mean carbohydrate intake was marginal and protein intake was lower than the respective recommended targets in all three groups. The mean intakes of calcium, magnesium, and vitamins A, B1, B2, and C were lower than the respective Japanese recommended dietary allowances or adequate dietary intakes for the rugby players. The forwards had significantly lower high-density lipoprotein cholesterol (HDL-C) and HDL2-C than the backs and had significantly higher apo B and LCAT activity than the controls. The backs showed significantly higher HDL-C, HDL3-C, low-density lipoprotein cholesterol, and apo A-I, and LCAT activity than the controls. Four forwards (22%), five backs (31%), and three controls (12%) had hemolysis. None of the rugby players had anemia or iron depletion. The findings of our study indicate that as the athletes increased their carbohydrate and protein intake, their performance and lean body mass increased. Further, to increase mineral and vitamin intakes, we recommended athletes increase their consumption of green and other vegetables

  4. Heme transport and erythropoiesis

    Yuan, Xiaojing; Fleming, Mark D.; Hamza, Iqbal

    2013-01-01

    In humans, systemic heme homeostasis is achieved via coordinated regulation of heme synthesis, transport and degradation. Although the heme biosynthesis and degradation pathways have been well characterized, the pathways for heme trafficking and incorporation into hemoproteins remains poorly understood. In the past few years, researchers have exploited genetic, cellular and biochemical tools, to identify heme transporters and, in the process, reveal unexpected functions for this elusive group of proteins. However, given the complexity of heme trafficking pathways, current knowledge of heme transporters is fragmented and sometimes contradictory. This review seeks to focus on recent studies on heme transporters with specific emphasis on their functions during erythropoiesis. PMID:23415705

  5. Single or functionalized fullerenes interacting with heme group

    Costa, Wallison Chaves; Diniz, Eduardo Moraes, E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, Avenida dos Portugueses, 1966, CEP 65080-805, São Luís - MA (Brazil)

    2014-09-15

    The heme group is responsible for iron transportation through the bloodstream, where iron participates in redox reactions, electron transfer, gases detection etc. The efficiency of such processes can be reduced if the whole heme molecule or even the iron is somehow altered from its original oxidation state, which can be caused by interactions with nanoparticles as fullerenes. To verify how such particles alter the geometry and electronic structure of heme molecule, here we report first principles calculations based on density functional theory of heme group interacting with single C{sub 60} fullerene or with C{sub 60} functionalized with small functional groups (−CH{sub 3}, −COOH, −NH{sub 2}, −OH). The calculations shown that the system heme + nanoparticle has a different spin state in comparison with heme group if the fullerene is functionalized. Also a functional group can provide a stronger binding between nanoparticle and heme molecule or inhibit the chemical bonding in comparison with single fullerene results. In addition heme molecule loses electrons to the nanoparticles and some systems exhibited a geometry distortion in heme group, depending on the binding energy. Furthermore, one find that such nanoparticles induce a formation of spin up states in heme group. Moreover, there exist modifications in density of states near the Fermi energy. Although of such changes in heme electronic structure and geometry, the iron atom remains in the heme group with the same oxidation state, so that processes that involve the iron might not be affected, only those that depend on the whole heme molecule.

  6. Heme Recognition By a Staphylococcus Aureus IsdE

    Grigg, J.C.; Vermeiren, C.L.; Heinrichs, D.E.; Murphy, M.E.P.

    2009-06-03

    Staphylococcus aureus is a Gram-positive bacterial pathogen and a leading cause of hospital acquired infections. Because the free iron concentration in the human body is too low to support growth, S. aureus must acquire iron from host sources. Heme iron is the most prevalent iron reservoir in the human body and a predominant source of iron for S. aureus. The iron-regulated surface determinant (Isd) system removes heme from host heme proteins and transfers it to IsdE, the cognate substrate-binding lipoprotein of an ATP-binding cassette transporter, for import and subsequent degradation. Herein, we report the crystal structure of the soluble portion of the IsdE lipoprotein in complex with heme. The structure reveals a bi-lobed topology formed by an N- and C-terminal domain bridged by a single {alpha}-helix. The structure places IsdE as a member of the helical backbone metal receptor superfamily. A six-coordinate heme molecule is bound in the groove established at the domain interface, and the heme iron is coordinated in a novel fashion for heme transporters by Met{sup 78} and His{sup 229}. Both heme propionate groups are secured by H-bonds to IsdE main chain and side chain groups. Of these residues, His{sup 299} is essential for IsdE-mediated heme uptake by S. aureus when growth on heme as a sole iron source is measured. Multiple sequence alignments of homologues from several other Gram-positive bacteria, including the human pathogens pyogenes, Bacillus anthracis, and Listeria monocytogenes, suggest that these other systems function equivalently to S. aureus IsdE with respect to heme binding and transport.

  7. The effect of soy products in the diet on retention of non-heme iron from radiolabeled test meals fed to marginally iron-deficient young rats

    Thompson, D.B.

    1984-01-01

    Diets based either on casein or soy products and containing about 25 ppm iron were fed to weanling rats for 13 days. Rats were fasted overnight and fed a 59 Fe-radiolabeled casein test meal the morning of day 14. On day 21 less 59 Fe was retained by rats fed various diets based on selected soy products than by rats fed the casein-based diet. A similar adverse effect of diet components on 59 Fe retention from a casein test meal was observed for lactalbumin and for psyllium husk. No adverse effect of diet on 59 Fe retention was observed for the fiber of soy cotyledons or for rapeseed protein concentrate. For a commercial soy protein isolated (SPI) fed throughout the 21-day experiment, the adverse effect of diet on 59 Fe retention was observed to the sum of the effect of dietary SPI previous to the 59 Fe-radiolabeled casein test meal fed on day 14 and the effect of dietary SPI subsequent to the casein test meal. An effect of dietary soy products on 59 Fe retention from a casein test meal was not observed with diets containing higher iron levels (83 ppm) or when diets were fed for a longer period prior to the test meal (56 days). The present work shows that in some circumstances the concept of iron bioavailability must be expanded to include not only the influence of meal composition, but also the influence of diet previous to and subsequent to a meal

  8. Heme synthesis in normal mouse liver and mouse liver tumors

    Stout, D.L.; Becker, F.F.

    1990-01-01

    Hepatic cancers from mice and rats demonstrate decreased levels of delta-aminolevulinic acid synthase, the rate-limiting enzyme in the heme synthetic pathway, and increased heme oxygenase, the heme-catabolizing enzyme. These findings suggest that diminution of P-450, b5, and catalase in these lesions may result from a heme supply that is limited by decreased heme synthesis and increased heme catabolism. Heme synthesis was measured in mouse liver tumors (MLT) and adjacent tumor-free lobes (BKG) by administering the radiolabeled heme precursors 55 FeCl3 and [2- 14 C]glycine and subsequently extracting the heme for determination of specific activity. Despite reduced delta-aminolevulinic acid synthase activity in MLT, both tissues incorporated [2-14C]glycine into heme at similar rates. At early time points, heme extracted from MLT contained less 55Fe than that from BKG. This was attributed to the findings that MLT took up 55Fe at a slower rate than BKG and had larger iron stores than BKG. The amount of heme per milligram of protein was also similar in both tissues. These findings militate against the hypothesis that diminished hemoprotein levels in MLT result from limited availability of heme. It is probable, therefore, that decreased hemoprotein levels in hepatic tumors are linked to a general program of dedifferentiation associated with the cancer phenotype. Diminution of hemoprotein in MLT may result in a relatively increased intracellular heme pool. delta-Aminolevulinic acid synthase and heme oxygenase are, respectively, negatively and positively regulated by heme. Thus, their alteration in MLT may be due to the regulatory influences of the heme pool

  9. Iron intakes and status of 2-year-old children in the Cork BASELINE Birth Cohort Study.

    McCarthy, Elaine K; Ní Chaoimh, Carol; Hourihane, Jonathan O'B; Kenny, Louise C; Irvine, Alan D; Murray, Deirdre M; Kiely, Mairead

    2017-07-01

    Young children are at risk of iron deficiency and subsequent anaemia, resulting in long-term consequences for cognitive, motor and behavioural development. This study aimed to describe the iron intakes, status and determinants of status in 2-year-old children. Data were collected prospectively in the mother-child Cork BASELINE Birth Cohort Study from 15 weeks' gestation throughout early childhood. At the 24-month assessment, serum ferritin, haemoglobin and mean corpuscular volume were measured, and food/nutrient intake data were collected using a 2-day weighed food diary. Iron status was assessed in 729 children (median [IQR] age: 2.1 [2.1, 2.2] years) and 468 completed a food diary. From the food diary, mean (SD) iron intakes were 6.8 (2.6) mg/day and 30% had intakes < UK Estimated Average Requirement (5.3 mg/day). Using WHO definitions, iron deficiency was observed in 4.6% (n = 31) and iron deficiency anaemia in five children (1.0%). Following an iron series workup, five more children were diagnosed with iron deficiency anaemia. Twenty-one per cent had ferritin concentrations <15 µg/L. Inadequate iron intakes (OR [95% CI]: 1.94 [1.09, 3.48]) and unmodified cows' milk intakes ≥ 400 mL/day (1.95 [1.07, 3.56]) increased the risk of low iron status. Iron-fortified formula consumption was associated with decreased risk (0.21 [0.11, 0.41] P < 0.05). In this, the largest study in toddlers in Europe, a lower prevalence of low iron status was observed than in previous reports. Compliance with dietary recommendations to limit cows' milk intakes in young children and consumption of iron-fortified products appears to have contributed to improved iron status at two years. © 2016 John Wiley & Sons Ltd.

  10. Heme and erythropoieis: more than a structural role.

    Chiabrando, Deborah; Mercurio, Sonia; Tolosano, Emanuela

    2014-06-01

    Erythropoiesis is the biological process that consumes the highest amount of body iron for heme synthesis. Heme synthesis in erythroid cells is finely coordinated with that of alpha (α) and beta (β)-globin, resulting in the production of hemoglobin, a tetramer of 2α- and 2β-globin chains, and heme as the prosthetic group. Heme is not only the structural component of hemoglobin, but it plays multiple regulatory roles during the differentiation of erythroid precursors since it controls its own synthesis and regulates the expression of several erythroid-specific genes. Heme is synthesized in developing erythroid progenitors by the stage of proerythroblast, through a series of eight enzymatic reactions divided between mitochondria and cytosol. Defects of heme synthesis in the erythroid lineage result in sideroblastic anemias, characterized by microcytic anemia associated to mitochondrial iron overload, or in erythropoietic porphyrias, characterized by porphyrin deposition in erythroid cells. Here, we focus on the heme biosynthetic pathway and on human erythroid disorders due to defective heme synthesis. The regulatory role of heme during erythroid differentiation is discussed as well as the heme-mediated regulatory mechanisms that allow the orchestration of the adaptive cell response to heme deficiency. Copyright© Ferrata Storti Foundation.

  11. Heme oxygenase-1: a metabolic nike.

    Wegiel, Barbara; Nemeth, Zsuzsanna; Correa-Costa, Matheus; Bulmer, Andrew C; Otterbein, Leo E

    2014-04-10

    Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year. The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell. CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics. In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer.

  12. Identification of the Mitochondrial Heme Metabolism Complex.

    Medlock, Amy E; Shiferaw, Mesafint T; Marcero, Jason R; Vashisht, Ajay A; Wohlschlegel, James A; Phillips, John D; Dailey, Harry A

    2015-01-01

    Heme is an essential cofactor for most organisms and all metazoans. While the individual enzymes involved in synthesis and utilization of heme are fairly well known, less is known about the intracellular trafficking of porphyrins and heme, or regulation of heme biosynthesis via protein complexes. To better understand this process we have undertaken a study of macromolecular assemblies associated with heme synthesis. Herein we have utilized mass spectrometry with coimmunoprecipitation of tagged enzymes of the heme biosynthetic pathway in a developing erythroid cell culture model to identify putative protein partners. The validity of these data obtained in the tagged protein system is confirmed by normal porphyrin/heme production by the engineered cells. Data obtained are consistent with the presence of a mitochondrial heme metabolism complex which minimally consists of ferrochelatase, protoporphyrinogen oxidase and aminolevulinic acid synthase-2. Additional proteins involved in iron and intermediary metabolism as well as mitochondrial transporters were identified as potential partners in this complex. The data are consistent with the known location of protein components and support a model of transient protein-protein interactions within a dynamic protein complex.

  13. Biosynthesis of heme in immature erythroid cells. The regulatory step for heme formation in the human erythron

    Gardner, L.C.; Cox, T.M.

    1988-01-01

    Heme formation in reticulocytes from rabbits and rodents is subject to end product negative feedback regulation: intracellular free heme has been shown to control acquisition of transferrin iron for heme synthesis. To identify the site of control of heme biosynthesis in the human erythron, immature erythroid cells were obtained from peripheral blood and aspirated bone marrow. After incubation with human 59Fe transferrin, 2-[14C]glycine, or 4-[14C]delta-aminolevulinate, isotopic incorporation into extracted heme was determined. Addition of cycloheximide to increase endogenous free heme, reduced incorporation of labeled glycine and iron but not delta-aminolevulinate into cell heme. Incorporation of glycine and iron was also sensitive to inhibition by exogenous hematin (Ki, 30 and 45 microM, respectively) i.e. at concentrations in the range which affect cell-free protein synthesis in reticulocyte lysates. Hematin treatment rapidly diminished incorporation of intracellular 59Fe into heme by human erythroid cells but assimilation of 4-[14C]delta-aminolevulinate into heme was insensitive to inhibition by hematin (Ki greater than 100 microM). In human reticulocytes (unlike those from rabbits), addition of ferric salicylaldehyde isonicotinoylhydrazone, to increase the pre-heme iron pool independently of the transferrin cycle, failed to promote heme synthesis or modify feedback inhibition induced by hematin. In human erythroid cells (but not rabbit reticulocytes) pre-incubation with unlabeled delta-aminolevulinate or protoporphyrin IX greatly stimulated utilization of cell 59Fe for heme synthesis and also attenuated end product inhibition. In human erythroid cells heme biosynthesis is thus primarily regulated by feedback inhibition at one or more steps which lead to delta-aminolevulinate formation

  14. Mechanism governing heme synthesis reveals a GATA factor/heme circuit that controls differentiation.

    Tanimura, Nobuyuki; Miller, Eli; Igarashi, Kazuhiko; Yang, David; Burstyn, Judith N; Dewey, Colin N; Bresnick, Emery H

    2016-02-01

    Metal ion-containing macromolecules have fundamental roles in essentially all biological processes throughout the evolutionary tree. For example, iron-containing heme is a cofactor in enzyme catalysis and electron transfer and an essential hemoglobin constituent. To meet the intense demand for hemoglobin assembly in red blood cells, the cell type-specific factor GATA-1 activates transcription of Alas2, encoding the rate-limiting enzyme in heme biosynthesis, 5-aminolevulinic acid synthase-2 (ALAS-2). Using genetic editing to unravel mechanisms governing heme biosynthesis, we discovered a GATA factor- and heme-dependent circuit that establishes the erythroid cell transcriptome. CRISPR/Cas9-mediated ablation of two Alas2 intronic cis elements strongly reduces GATA-1-induced Alas2 transcription, heme biosynthesis, and surprisingly, GATA-1 regulation of other vital constituents of the erythroid cell transcriptome. Bypassing ALAS-2 function in Alas2 cis element-mutant cells by providing its catalytic product 5-aminolevulinic acid rescues heme biosynthesis and the GATA-1-dependent genetic network. Heme amplifies GATA-1 function by downregulating the heme-sensing transcriptional repressor Bach1 and via a Bach1-insensitive mechanism. Through this dual mechanism, heme and a master regulator collaborate to orchestrate a cell type-specific transcriptional program that promotes cellular differentiation. © 2015 The Authors.

  15. High Prevalence of Inadequate Calcium and Iron Intakes by Mexican Population Groups as Assessed by 24-Hour Recalls.

    Sánchez-Pimienta, Tania G; López-Olmedo, Nancy; Rodríguez-Ramírez, Sonia; García-Guerra, Armando; Rivera, Juan A; Carriquiry, Alicia L; Villalpando, Salvador

    2016-09-01

    A National Health and Nutrition Survey (ENSANUT) conducted in Mexico in 1999 identified a high prevalence of inadequate mineral intakes in the population by using 24-h recall questionnaires. However, the 1999 survey did not adjust for within-person variance. The 2012 ENSANUT implemented a more up-to-date 24-h recall methodology to estimate usual intake distributions and prevalence of inadequate intakes. We examined the distribution of usual intakes and prevalences of inadequate intakes of calcium, iron, magnesium, and zinc in the Mexican population in groups defined according to sex, rural or urban area, geographic region of residence, and socioeconomic status (SES). We used dietary intake data obtained through the 24-h recall automated multiple-pass method for 10,886 subjects as part of ENSANUT 2012. A second measurement on a nonconsecutive day was obtained for 9% of the sample. Distributions of usual intakes of the 4 minerals were obtained by using the Iowa State University method, and the prevalence of inadequacy was estimated by using the Institute of Medicine's Estimated Average Requirement cutoff. Calcium inadequacy was 25.6% in children aged 1-4 y and 54.5-88.1% in subjects >5 y old. More than 45% of subjects >5 y old had an inadequate intake of iron. Less than 5% of children aged 12 y had inadequate intakes of magnesium, whereas zinc inadequacy ranged from <10% in children aged <12 y to 21.6% in men aged ≥20 y. Few differences were found between rural and urban areas, regions, and tertiles of SES. Intakes of calcium, iron, magnesium, and zinc are inadequate in the Mexican population, especially among adolescents and adults. These results suggest a public health concern that must be addressed. © 2016 American Society for Nutrition.

  16. Comparative analysis of the heme iron electronic structure and stereochemistry in tetrameric rabbit hemoglobin and monomeric soybean leghemoglobin a using Mössbauer spectroscopy with a high velocity resolution

    Alenkina, I. V.; Kumar, A.; Berkovsky, A. L.; Oshtrakh, M. I.

    2018-02-01

    A comparative study of tetrameric rabbit hemoglobin and monomeric soybean leghemoglobin a in the oxy- and deoxy-forms was carried out using 57Fe Mössbauer spectroscopy with a high velocity resolution in order to analyze the heme iron electronic structure and stereochemistry in relation to the Mössbauer hyperfine parameters. The Mössbauer spectra of tetrameric rabbit hemoglobin in both forms were fitted using two quadrupole doublets related to the 57Fe in ɑ- and β-subunits. In contrast, the Mössbauer spectra of monomeric soybean leghemoglobin a were fitted using: (i) two quadrupole doublets for the oxy-form related to two conformational states of the distal His E7 imidazole ring and different hydrogen bonding of oxygen molecule in the oxy-form and (ii) using three quadrupole doublets for deoxy-form related to three conformational states of the proximal His F8 imidazole ring. Small variations of Mössbauer hyperfine parameters related to small differences in the heme iron electronic structure and stereochemistry in tetrameric rabbit hemoglobin and monomeric soybean leghemoglobin a are discussed.

  17. Heme Sensor Proteins*

    Girvan, Hazel M.; Munro, Andrew W.

    2013-01-01

    Heme is a prosthetic group best known for roles in oxygen transport, oxidative catalysis, and respiratory electron transport. Recent years have seen the roles of heme extended to sensors of gases such as O2 and NO and cell redox state, and as mediators of cellular responses to changes in intracellular levels of these gases. The importance of heme is further evident from identification of proteins that bind heme reversibly, using it as a signal, e.g. to regulate gene expression in circadian rhythm pathways and control heme synthesis itself. In this minireview, we explore the current knowledge of the diverse roles of heme sensor proteins. PMID:23539616

  18. Overexpression of the yeast frataxin homolog (Yfh1): contrasting effects on iron-sulfur cluster assembly, heme synthesis and resistance to oxidative stress

    Seguin, Alexandra; Bayot, Aurélien; Dancis, Andrew

    2009-01-01

    of 2muYFH1 cells compared to wild-type cells. To our knowledge, this work is the first description where major frataxin-related phenotypes ([Fe-S] cluster assembly and heme synthesis) can be split in vivo, suggesting that frataxin has independent roles in both processes, and that the optimal conditions......Friedreich's ataxia is generally associated with defects in [Fe-S] cluster assembly/stability and heme synthesis and strong susceptibility to oxidative stress. We used the yeast (Saccharomyces cerevisiae) model of Friedreich's ataxia to study the physiological consequences of modulating...... for these independent roles are different....

  19. Iron, Oxidative Stress and Gestational Diabetes

    Taifeng Zhuang

    2014-09-01

    Full Text Available Both iron deficiency and hyperglycemia are highly prevalent globally for pregnant women. Iron supplementation is recommended during pregnancy to control iron deficiency. The purposes of the review are to assess the oxidative effects of iron supplementation and the potential relationship between iron nutrition and gestational diabetes. High doses of iron (~relative to 60 mg or more daily for adult humans can induce lipid peroxidation in vitro and in animal studies. Pharmaceutical doses of iron supplements (e.g., 10× RDA or more for oral supplements or direct iron supplementation via injection or addition to the cell culture medium for a short or long duration will induce DNA damage. Higher heme-iron intake or iron status measured by various biomarkers, especially serum ferritin, might contribute to greater risk of gestational diabetes, which may be mediated by iron oxidative stress though lipid oxidation and/or DNA damage. However, information is lacking about the effect of low dose iron supplementation (≤60 mg daily on lipid peroxidation, DNA damage and gestational diabetes. Randomized trials of low-dose iron supplementation (≤60 mg daily for pregnant women are warranted to test the relationship between iron oxidative stress and insulin resistance/gestational diabetes, especially for iron-replete women.

  20. Improvement of bioavailability for iron from vegetarian meals by ascorbic acid

    Sritongkul, N; Tuntawiroon, M; Pleehachinda, R; Suwanik, R [Siriraj Hospital Medical School, Bangkok (Thailand). Section of Nuclear Medicine

    1996-12-01

    There are two kinds of iron in the diet with respect to the mechanism of absorption, heme-iron which is present as haemoglobin or myoglobin in meat and blood products, and, non-heme iron which is the main source of dietary iron. The bioavailability of the non-heme food iron is much lower than heme-iron. Vegetarian diets contain only non-heme iron. Iron intake from vegetarian meals are generally satisfied with the requirements, however, the bioavailabilities for non-heme iron is determined not only by iron content byt also the balance between different dietary factors enhancing and inhibiting iron absorption. The main enhancing factor in vegetarian meals is ascorbic acid in fruits and vegetables, inhibitors are phytate in cereals and grains, and tannins in some spices and vegetables. It has been reported that iron deficiency is one of the common micronutrient problems associated with unplanned vegetarian diets. In the present study the absorption of non-heme iron was measured from 2 vegetarian meals containing considerable amounts of phytate and tannin. The extrinsic tay method ({sup 59}Fe/ {sup 55}Fe) was used to labelled the non-heme iron. The mean percentage absorption of non-heme iron from both meals was slightly different due to differences in their dietary contents. Their initial percentages iron absorption were apparent low (3.5% and 4.1%), however, the absorption progressively increased with increase in the level of ascorbic acid, 2-3 times with 100 mg and 4-5 times with 200 mg of ascorbic acid. The average amount of iron absorbed per 2000 kcal increased from 0.37 mg to 0.86 mg and 1.45 mg with the addition of 100 mg and 200 mg ascorbic acid respectively (p < 0.001). Considering the limited caloric intakes and the iron content in the meals, the amount of iron absorbed from vegetarian meals without ascorbic acid was not able to meet certain requirements for children, adolescents and menstruating women. The minimal requirement for dietary iron needed to be

  1. Moessbauer spectroscopic study of polymer-bound heme complexes

    Tsuchida, Eishun; Nishide, Hiroyuki; Yokoyama, Hiroyuki; Inoue, Hidenari; Shirai, Tsuneo.

    1984-01-01

    Moessbauer spectra were measured on the heme complexes of poly(1-vinyl- and 1-vinyl-2-methylimidazole)(PVI and PMI) and heme derivatives with covalently bound imidazoleligand (IH) and 2-methylimidazole-ligand (MIH) embedded in poly(1-vinyl-2-pyrrolidone) film. Quadrupole splitting (ΔE sub(Q)) for the carbon monoxide adduct of PMI-heme indicated large electronic field gradient at the iron nucleus, probably due to steric hindrance of the polymer chain, and this behavior agreed with its low affinity with carbon monoxide. PMI-heme formed an oxygen adduct and its isomer shift and ΔE sub(Q) values were obtained. (author)

  2. Breastfeeding and Red Meat Intake Are Associated with Iron Status in Healthy Korean Weaning-age Infants.

    Hong, Jeana; Chang, Ju Young; Shin, Sue; Oh, Sohee

    2017-06-01

    The present study investigated risk factors for iron deficiency (ID) and iron deficiency anemia (IDA) during late infancy, including feeding type and complementary feeding (CF) practice. Healthy term Korean infants (8-15 months) were weighed, and questionnaires regarding delivery, feeding, and weaning were completed by their caregivers. We also examined levels of hemoglobin, serum iron/total iron-binding capacity, serum ferritin, and mean corpuscular volume (MCV). Among 619 infants, ID and IDA were present in 174 infants (28.1%) and 87 infants (14.0%), respectively. The 288 infants with exclusively/mostly breastfeeding until late infancy (BFL) were most likely to exhibit ID (53.1%) and IDA (28.1%). The risk of ID was independently associated with BFL (adjusted odds ratio [aOR], 47.5; 95% confidence interval [CI], 18.3-122.9), male sex (aOR, 1.9; 95% CI, 1.2-2.9), fold weight gain (aOR, 2.6; 95% CI, 1.5-4.6), and perceived inadequacy of red meat intake (aOR, 1.7; 95% CI, 1.0-2.7). In addition to the risk factors for ID, Cesarean section delivery (aOR, 1.9; 95% CI, 1.1-3.2) and low parental CF-related knowledge (aOR, 2.8; 95% CI, 1.5-5.2) were risk factors for IDA. In conclusion, prolonged breastfeeding and perceived inadequacy of red meat intake may be among the important feeding-related risk factors of ID and IDA. Therefore, more meticulous education and monitoring of iron-rich food intake, such as red meat, with iron supplementation or iron status testing during late infancy if necessary, should be considered for breastfed Korean infants, especially for those with additional risk factors for ID or IDA. © 2017 The Korean Academy of Medical Sciences.

  3. Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes

    Chiabrando, Deborah; Vinchi, Francesca; Fiorito, Veronica; Mercurio, Sonia; Tolosano, Emanuela

    2014-01-01

    Heme (iron-protoporphyrin IX) is an essential co-factor involved in multiple biological processes: oxygen transport and storage, electron transfer, drug and steroid metabolism, signal transduction, and micro RNA processing. However, excess free-heme is highly toxic due to its ability to promote oxidative stress and lipid peroxidation, thus leading to membrane injury and, ultimately, apoptosis. Thus, heme metabolism needs to be finely regulated. Intracellular heme amount is controlled at multi...

  4. Staphylococcus aureus HemX Modulates Glutamyl-tRNA Reductase Abundance To Regulate Heme Biosynthesis

    Jacob E. Choby; Caroline M. Grunenwald; Arianna I. Celis; Svetlana Y. Gerdes; Jennifer L. DuBois; Eric P. Skaar; Kimberly A. Kline

    2018-01-01

    Staphylococcus aureus is responsible for a significant amount of devastating disease. Its ability to colonize the host and cause infection is supported by a variety of proteins that are dependent on the cofactor heme. Heme is a porphyrin used broadly across kingdoms and is synthesized de novo from common cellular precursors and iron. While heme is critical to bacterial physiology, it is also toxic in high concentrations, requiring that organisms encode regulatory processes to control heme hom...

  5. Heme exporter FLVCR1a regulates heme synthesis and degradation and controls activity of cytochromes P450.

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-05-01

    The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1a(fl/fl);alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Flvcr1a(fl/fl);alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1a(fl/fl);alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. Heme Exporter FLVCR1a Regulates Heme Synthesis and Degradation and Controls Activity of Cytochromes P450

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-01-01

    Background & Aims The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. Methods We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1afl/fl;alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Results Flvcr1afl/fl;alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1afl/fl;alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. Conclusions In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. PMID:24486949

  7. Assessing the Validity and Reproducibility of an Iron Dietary Intake Questionnaire Conducted in a Group of Young Polish Women

    Głąbska, Dominika; Guzek, Dominika; Ślązak, Joanna; Włodarek, Dariusz

    2017-01-01

    The aim of the study was to analyse a designed brief iron dietary intake questionnaire based on a food frequency assessment (IRONIC-FFQ—IRON Intake Calculation-Food Frequency Questionnaire), including the assessment of validity and reproducibility in a group of 75 Polish women aged 20–30 years. Participants conducted 3-day dietary records and filled in the IRONIC-FFQ twice (FFQ1—directly after the dietary record and FFQ2—6 weeks later). The analysis included an assessment of validity (comparison with the results of the 3-day dietary record) and of reproducibility (comparison of the results obtained twice—FFQ1 and FFQ2). In the analysis of validity, the share of individuals correctly classified into tertiles was over 50% (weighted κ of 0.36), while analysis of correlation revealed correlation coefficients of almost 0.5. In the assessment of reproducibility, almost 80% of individuals were correctly classified and less than 3% were misclassified (weighted κ of 0.73), while a correlation coefficient higher than 0.85 was obtained. Both in the assessment of validity and of reproducibility, a Bland–Altman index of 6.7% was recorded (93.3% of compared pairs of results were in the acceptable range, attributed to differences within ± 2SD limit). Validation of the IRONIC-FFQ revealed a satisfactory level of validity and positively validated reproducibility. PMID:28264423

  8. Hal Is a Bacillus anthracis Heme Acquisition Protein

    Balderas, Miriam A.; Nobles, Christopher L.; Honsa, Erin S.; Alicki, Embriette R.

    2012-01-01

    The metal iron is a limiting nutrient for bacteria during infection. Bacillus anthracis, the causative agent of anthrax and a potential weapon of bioterrorism, grows rapidly in mammalian hosts, which suggests that it efficiently attains iron during infection. Recent studies have uncovered both heme (isd) and siderophore-mediated (asb) iron transport pathways in this pathogen. Whereas deletion of the asb genes results in reduced virulence, the loss of three surface components from isd had no effect, thereby leaving open the question of what additional factors in B. anthracis are responsible for iron uptake from the most abundant iron source for mammals, heme. Here, we describe the first functional characterization of bas0520, a gene recently implicated in anthrax disease progression. bas0520 encodes a single near-iron transporter (NEAT) domain and several leucine-rich repeats. The NEAT domain binds heme, despite lacking a stabilizing tyrosine common to the NEAT superfamily of hemoproteins. The NEAT domain also binds hemoglobin and can acquire heme from hemoglobin in solution. Finally, deletion of bas0520 resulted in bacilli unable to grow efficiently on heme or hemoglobin as an iron source and yielded the most significant phenotype relative to that for other putative heme uptake systems, a result that suggests that this protein plays a prominent role in the replication of B. anthracis in hematogenous environments. Thus, we have assigned the name of Hal (heme-acquisition leucine-rich repeat protein) to BAS0520. These studies advance our understanding of heme acquisition by this dangerous pathogen and justify efforts to determine the mechanistic function of this novel protein for vaccine or inhibitor development. PMID:22865843

  9. Heme degrading protein HemS is involved in oxidative stress response of Bartonella henselae.

    MaFeng Liu

    Full Text Available Bartonellae are hemotropic bacteria, agents of emerging zoonoses. These bacteria are heme auxotroph Alphaproteobacteria which must import heme for supporting their growth, as they cannot synthesize it. Therefore, Bartonella genome encodes for a complete heme uptake system allowing the transportation of this compound across the outer membrane, the periplasm and the inner membranes. Heme has been proposed to be used as an iron source for Bartonella since these bacteria do not synthesize a complete system required for iron Fe³⁺ uptake. Similarly to other bacteria which use heme as an iron source, Bartonellae must transport this compound into the cytoplasm and degrade it to allow the release of iron from the tetrapyrrole ring. For Bartonella, the gene cluster devoted to the synthesis of the complete heme uptake system also contains a gene encoding for a polypeptide that shares homologies with heme trafficking or degrading enzymes. Using complementation of an E. coli mutant strain impaired in heme degradation, we demonstrated that HemS from Bartonella henselae expressed in E. coli allows the release of iron from heme. Purified HemS from B. henselae binds heme and can degrade it in the presence of a suitable electron donor, ascorbate or NADPH-cytochrome P450 reductase. Knocking down the expression of HemS in B. henselae reduces its ability to face H₂O₂ induced oxidative stress.

  10. Iron accumulation with age, oxidative stress and functional decline.

    Jinze Xu

    2008-08-01

    Full Text Available Identification of biological mediators in sarcopenia is pertinent to the development of targeted interventions to alleviate this condition. Iron is recognized as a potent pro-oxidant and a catalyst for the formation of reactive oxygen species in biological systems. It is well accepted that iron accumulates with senescence in several organs, but little is known about iron accumulation in muscle and how it may affect muscle function. In addition, it is unclear if interventions which reduced age-related loss of muscle quality, such as calorie restriction, impact iron accumulation. We investigated non-heme iron concentration, oxidative stress to nucleic acids in gastrocnemius muscle and key indices of sarcopenia (muscle mass and grip strength in male Fischer 344 X Brown Norway rats fed ad libitum (AL or a calorie restricted diet (60% of ad libitum food intake starting at 4 months of age at 8, 18, 29 and 37 months of age. Total non-heme iron levels in the gastrocnemius muscle of AL rats increased progressively with age. Between 29 and 37 months of age, the non-heme iron concentration increased by approximately 200% in AL-fed rats. Most importantly, the levels of oxidized RNA in gastrocnemius muscle of AL rats were significantly increased as well. The striking age-associated increase in non-heme iron and oxidized RNA levels and decrease in sarcopenia indices were all attenuated in the calorie restriction (CR rats. These findings strongly suggest that the age-related iron accumulation in muscle contributes to increased oxidative damage and sarcopenia, and that CR effectively attenuates these negative effects.

  11. Diet and iron status of nonpregnant women in rural Central Mexico.

    Backstrand, Jeffrey R; Allen, Lindsay H; Black, Anne K; de Mata, Margarita; Pelto, Gretel H

    2002-07-01

    Few studies have examined the relation of iron status to diet in populations from developing countries with high levels of iron deficiency and diets of poor quality. The objective was to identify nutrients, dietary constituents, and foods that are associated with better iron status in a rural Mexican population. A prospective cohort study was conducted in rural central Mexico. The subjects were 125 nonpregnant women aged 16-44 y. During the 12 mo before blood collection, food intakes were assessed repeatedly by a combination of dietary recalls, food weighing, and food diaries [mean (+/-SD) days of food intake data: 18.8 +/- 5.9 d]. Hemoglobin, hematocrit, and plasma ferritin were measured at the end of the study. Higher plasma ferritin concentrations were associated with greater intakes of nonheme iron and ascorbic acid after control for age, BMI, breast-feeding, season, and the time since the birth of the last child. Higher ascorbic acid intakes, but not higher intakes of heme and nonheme iron, predicted a lower risk of low hemoglobin and hematocrit values after control for the background variables. Consumption of the alcoholic beverage pulque predicted a lower risk of low ferritin and low hemoglobin values. Seasonal variation in ferritin, hemoglobin, and hematocrit values was observed. Better iron status was associated with greater intakes of foods containing nonheme iron and ascorbic acid. PULQUE:a beverage containing iron, ascorbic acid, and alcohol-may influence the iron status of women in rural central Mexico.

  12. Associations of maternal iron intake and hemoglobin in pregnancy with offspring vascular phenotypes and adiposity at age 10: findings from the Avon Longitudinal Study of Parents and Children.

    Nisreen A Alwan

    Full Text Available Iron deficiency is common during pregnancy. Experimental animal studies suggest that it increases cardiovascular risk in the offspring.To examine the relationship between maternal pregnancy dietary and supplement iron intake and hemoglobin, with offspring's arterial stiffness (measured by carotid-radial pulse wave velocity, endothelial function (measured by brachial artery flow mediated dilatation, blood pressure, and adiposity (measured by body mass index, test for mediation by cord ferritin, birth weight, gestational age, and child dietary iron intake, and for effect modification by maternal vitamin C intake and offspring sex.Prospective data from 2958 mothers and children pairs at 10 years of age enrolled in an English birth cohort, the Avon Longitudinal Study for Parents and Children (ALSPAC, was analysed.2639 (89.2% mothers reported dietary iron intake in pregnancy below the UK reference nutrient intake of 14.8 mg/day. 1328 (44.9% reported taking iron supplements, and 129 (4.4% were anemic by 18 weeks gestation. No associations were observed apart from maternal iron intake from supplements with offspring systolic blood pressure (-0.8 mmHg, 99% CI -1.7 to 0, P = 0.01 in the sample with all relevant data observed, and -0.7 mmHg, 99% CI -1.3 to 0, P = 0.008 in the sample with missing data imputed.There was no evidence of association between maternal pregnancy dietary iron intake, or maternal hemoglobin concentration (which is less likely to be biased by subjective reporting with offspring outcomes. There was a modest inverse association between maternal iron supplement intake during pregnancy with offspring systolic blood pressure at 10 years.

  13. Kidney injury and heme oxygenase-1

    Hai-xing MAI

    2012-02-01

    Full Text Available     Heme oxygenase-1 (HO-1 is one of the main pathways to degrade heme in mammals, and the main degradation products are free iron (Fe2+, carbon monoxide (CO, and bilirubin. Heme plays an important role in promoting cell survival, circulation of intracellular substrates, and immune regulation. Previous studies suggest that HO-1 pathway is an important internal factor in determining the susceptibility and severity of acute kidney injury (AKI. The induction of HO-1 expression can attenuate the severity of renal ischemia-reperfusion injury (IRI, and the inhibition of HO-1 expression will aggravate IRI. The present article summarizes the latest advances in research abroad and at home on protective mechanism by which HO-1 prevents AKI to further deepen our understanding of the role of HO-1 in the treatment of AKI.   

  14. Evaluation of the daily iron intake by non-breastfed Egyptian infants ...

    Iron deficiency is frequently associated with anaemia. The prevalence of anaemia among Egyptian infants and young children is 25%. Fortification of infant and followup milk-based formulae remains a valuable method for delivering iron to reduce the incidence of iron deficiency anaemia. Percentage of Egyptian ...

  15. Iron deficiency is uncommon among lactating women in urban Nepal, despite a high risk of inadequate dietary iron intake.

    Henjum, Sigrun; Manger, Mari; Skeie, Eli; Ulak, Manjeswori; Thorne-Lyman, Andrew L; Chandyo, Ram; Shrestha, Prakash S; Locks, Lindsey; Ulvik, Rune J; Fawzi, Wafaie W; Strand, Tor A

    2014-07-14

    The main objective of the present study was to examine the association between dietary Fe intake and dietary predictors of Fe status and Hb concentration among lactating women in Bhaktapur, Nepal. We included 500 randomly selected lactating women in a cross-sectional survey. Dietary information was obtained through three interactive 24 h recall interviews including personal recipes. Concentrations of Hb and plasma ferritin and soluble transferrin receptors were measured. The daily median Fe intake from food was 17·5 mg, and 70% of the women were found to be at the risk of inadequate dietary Fe intake. Approximately 90% of the women had taken Fe supplements in pregnancy. The prevalence of anaemia was 20% (Hb levels < 123 g/l) and that of Fe deficiency was 5% (plasma ferritin levels < 15 μg/l). In multiple regression analyses, there was a weak positive association between dietary Fe intake and body Fe (β 0·03, 95% CI 0·014, 0·045). Among the women with children aged < 6 months, but not those with older infants, intake of Fe supplements in pregnancy for at least 6 months was positively associated with body Fe (P for interaction < 0·01). Due to a relatively high dietary intake of non-haem Fe combined with low bioavailability, a high proportion of the women in the present study were at the risk of inadequate intake of Fe. The low prevalence of anaemia and Fe deficiency may be explained by the majority of the women consuming Fe supplements in pregnancy.

  16. Effect of Iron Enriched Bread Intake on the Oxidative Stress Indices in Male Wistar Rats

    Sharareh Heidari

    2016-08-01

    Full Text Available Background Contrary to the proven benefits of iron, few concerns in producing the oxidative stress is remained problematic. Objectives The aim of the study was to evaluate the oxidative stress in the male Wistar rats fed bread supplemented with iron in different doses i.e., 35 (basic, 70 (two fold, 140 (four fold, and 210 mg/kg (six fold with or without NaHCO3 (250 mg/kg. Methods In this experimental study Iron, ceruloplasmin, ferritin, total iron binding capacity (TIBC, albumin, total protein, uric acid and plasma superoxide dismutase (SOD, glutathione peroxidase (GPX, catalase (CAT, malondialdehyde (MDA, and total antioxidant capacity (TAC, were evaluated in 30 rats at the first and last day of the experiment (day 30. In addition, phytic acid levels were detected in all baked breads. The data were analyzed by ANOVA and t test procedure though SPSS statistical software version 20. Results Serum iron level in rats that received basic level of iron plus NaHCO3 decreased significantly in the last day of the trial. Higher level of serum iron was seen in rats that received iron twofold, fourfold and sixfold and rats that received iron fourfold plus NaHCO3. Serum ceruloplasmin and ferritin in groups of rats that received fourfold level of iron plus NaHCO3 and rats that received iron sixfold showed a significant increase (P ≤ 0.05. Serum total protein and uric acid in rats that received basic level of iron plus NaHCO3 and rats that received twofold level of iron showed a significant decrease. Serum total protein levels in rats that received fourfold level of iron showed a significant decrease. Bread with NaHCO3 showed higher phytic acid levels than other groups. Conclusions These results indicate that oxidative stress was not induced, whereas some antioxidant activities were significantly changed in rats that received iron-enriched bread.

  17. Post-translational transformation of methionine to aspartate is catalyzed by heme iron and driven by peroxide: a novel subunit-specific mechanism in hemoglobin.

    Strader, Michael Brad; Hicks, Wayne A; Kassa, Tigist; Singleton, Eileen; Soman, Jayashree; Olson, John S; Weiss, Mitchell J; Mollan, Todd L; Wilson, Michael T; Alayash, Abdu I

    2014-08-08

    A pathogenic V67M mutation occurs at the E11 helical position within the heme pockets of variant human fetal and adult hemoglobins (Hb). Subsequent post-translational modification of Met to Asp was reported in γ subunits of human fetal Hb Toms River (γ67(E11)Val → Met) and β subunits of adult Hb (HbA) Bristol-Alesha (β67(E11)Val → Met) that were associated with hemolytic anemia. Using kinetic, proteomic, and crystal structural analysis, we were able to show that the Met → Asp transformation involves heme cycling through its oxoferryl state in the recombinant versions of both proteins. The conversion to Met and Asp enhanced the spontaneous autoxidation of the mutants relative to wild-type HbA and human fetal Hb, and the levels of Asp were elevated with increasing levels of hydrogen peroxide (H2O2). Using H2(18)O2, we verified incorporation of (18)O into the Asp carboxyl side chain confirming the role of H2O2 in the oxidation of the Met side chain. Under similar experimental conditions, there was no conversion to Asp at the αMet(E11) position in the corresponding HbA Evans (α62(E11)Val → Met). The crystal structures of the three recombinant Met(E11) mutants revealed similar thioether side chain orientations. However, as in the solution experiments, autoxidation of the Hb mutant crystals leads to electron density maps indicative of Asp(E11) formation in β subunits but not in α subunits. This novel post-translational modification highlights the nonequivalence of human Hb α, β, and γ subunits with respect to redox reactivity and may have direct implications to α/β hemoglobinopathies and design of oxidatively stable Hb-based oxygen therapeutics. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Relation between dietary cadmium intake and biomarkers of cadmium exposure in premenopausal women accounting for body iron stores

    Julin Bettina

    2011-12-01

    Full Text Available Abstract Background Cadmium is a widespread environmental pollutant with adverse effects on kidneys and bone, but with insufficiently elucidated public health consequences such as risk of end-stage renal diseases, fractures and cancer. Urinary cadmium is considered a valid biomarker of lifetime kidney accumulation from overall cadmium exposure and thus used in the assessment of cadmium-induced health effects. We aimed to assess the relationship between dietary cadmium intake assessed by analyses of duplicate food portions and cadmium concentrations in urine and blood, taking the toxicokinetics of cadmium into consideration. Methods In a sample of 57 non-smoking Swedish women aged 20-50 years, we assessed Pearson's correlation coefficients between: 1 Dietary intake of cadmium assessed by analyses of cadmium in duplicate food portions collected during four consecutive days and cadmium concentrations in urine, 2 Partial correlations between the duplicate food portions and urinary and blood cadmium concentrations, respectively, and 3 Model-predicted urinary cadmium concentration predicted from the dietary intake using a one-compartment toxicokinetic model (with individual data on age, weight and gastrointestinal cadmium absorption and urinary cadmium concentration. Results The mean concentration of cadmium in urine was 0.18 (+/- s.d.0.12 μg/g creatinine and the model-predicted urinary cadmium concentration was 0.19 (+/- s.d.0.15 μg/g creatinine. The partial Pearson correlations between analyzed dietary cadmium intake and urinary cadmium or blood concentrations were r = 0.43 and 0.42, respectively. The correlation between diet and urinary cadmium increased to r = 0.54 when using a one-compartment model with individual gastrointestinal cadmium absorption coefficients based on the women's iron status. Conclusions Our results indicate that measured dietary cadmium intake can reasonably well predict biomarkers of both long-term kidney accumulation

  19. Dietary meat intake in relation to colorectal adenoma in asymptomatic women.

    Ferrucci, Leah M; Sinha, Rashmi; Graubard, Barry I; Mayne, Susan T; Ma, Xiaomei; Schatzkin, Arthur; Schoenfeld, Philip S; Cash, Brooks D; Flood, Andrew; Cross, Amanda J

    2009-05-01

    No previous study has concurrently assessed the associations between meat intake, meat-cooking methods and doneness levels, meat mutagens (heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons), heme iron, and nitrite from meat and colorectal adenoma in asymptomatic women undergoing colonoscopy. Of the 807 eligible women in a cross-sectional multicenter colonoscopy screening study, 158 prevalent colorectal adenoma cases and 649 controls satisfactorily completed the validated food frequency and meat questionnaires. Using an established meat mutagen database and new heme iron and nitrite databases, we comprehensively investigated the components of meat that may be involved in carcinogenesis. Using logistic regression, we estimated odds ratios (ORs) and 95% confidence intervals (CIs) within quartiles of meat-related variables. Red meat was associated positively with colorectal adenoma (OR fourth vs. first quartile = 2.02; 95% CI = 1.06-3.83; P trend = 0.38). Intake of pan-fried meat (OR = 1.72; 95% CI = 0.96-3.07; P trend = 0.01) and the HCA: 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) (OR = 1.90; 95% CI = 1.05-3.42; P trend = 0.07) were also associated with an increased risk of colorectal adenoma. The new databases yielded lower estimates of heme iron and nitrite than previous assessment methods, although the two methods were highly correlated for both exposures. Although not statistically significant, there were positive associations between iron and heme iron from meat and colorectal adenoma. In asymptomatic women undergoing colonoscopy, colorectal adenomas were associated with high intake of red meat, pan-fried meat, and the HCA MeIQx. Other meat-related exposures require further investigation.

  20. Iron

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  1. Dietary Intake, Anthropometric Characteristics, and Iron and Vitamin D Status of Female Adolescent Ballet Dancers Living in New Zealand.

    Beck, Kathryn L; Mitchell, Sarah; Foskett, Andrew; Conlon, Cathryn A; von Hurst, Pamela R

    2015-08-01

    Ballet dancing is a multifaceted activity requiring muscular power, strength, endurance, flexibility, and agility; necessitating demanding training schedules. Furthermore dancers may be under aesthetic pressure to maintain a lean physique, and adolescent dancers require extra nutrients for growth and development. This cross-sectional study investigated the nutritional status of 47 female adolescent ballet dancers (13-18 years) living in Auckland, New Zealand. Participants who danced at least 1 hr per day 5 days per week completed a 4-day estimated food record, anthropometric measurements (Dual-energy X-ray Absorptiometry) and hematological analysis (iron and vitamin D). Mean BMI was 19.7 ± 2.4 kg/m2 and percentage body fat, 23.5 ± 4.1%. The majority (89.4%) of dancers had a healthy weight (5th-85th percentile) using BMI-for-age growth charts. Food records showed a mean energy intake of 8097.3 ± 2155.6 kJ/day (48.9% carbohydrate, 16.9% protein, 33.8% fat, 14.0% saturated fat). Mean carbohydrate and protein intakes were 4.8 ± 1.4 and 1.6 ± 0.5 g/kg/day respectively. Over half (54.8%) of dancers consumed less than 5 g carbohydrate/kg/day, and 10 (23.8%) less than 1.2 g protein/kg/day. Over 60% consumed less than the estimated average requirement for calcium, folate, magnesium and selenium. Thirteen (28.3%) dancers had suboptimal iron status (serum ferritin (SF) ballet dancers are at risk for iron deficiency, and possibly inadequate nutrient intakes.

  2. Heme acquisition mechanisms of Porphyromonas gingivalis - strategies used in a polymicrobial community in a heme-limited host environment.

    Smalley, J W; Olczak, T

    2017-02-01

    Porphyromonas gingivalis, a main etiologic agent and key pathogen responsible for initiation and progression of chronic periodontitis requires heme as a source of iron and protoporphyrin IX for its survival and the ability to establish an infection. Porphyromonas gingivalis is able to accumulate a defensive cell-surface heme-containing pigment in the form of μ-oxo bisheme. The main sources of heme for P. gingivalis in vivo are hemoproteins present in saliva, gingival crevicular fluid, and erythrocytes. To acquire heme, P. gingivalis uses several mechanisms. Among them, the best characterized are those employing hemagglutinins, hemolysins, and gingipains (Kgp, RgpA, RgpB), TonB-dependent outer-membrane receptors (HmuR, HusB, IhtA), and hemophore-like proteins (HmuY, HusA). Proteins involved in intracellular heme transport, storage, and processing are less well characterized (e.g. PgDps). Importantly, P. gingivalis may also use the heme acquisition systems of other bacteria to fulfill its own heme requirements. Porphyromonas gingivalis displays a novel paradigm for heme acquisition from hemoglobin, whereby the Fe(II)-containing oxyhemoglobin molecule must first be oxidized to methemoglobin to facilitate heme release. This process not only involves P. gingivalis arginine- and lysine-specific gingipains, but other proteases (e.g. interpain A from Prevotella intermedia) or pyocyanin produced by Pseudomonas aeruginosa. Porphyromonas gingivalis is then able to fully proteolyze the more susceptible methemoglobin substrate to release free heme or to wrest heme from it directly through the use of the HmuY hemophore. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Excess iron intake as a factor in growth, infections, and development of infants and young children.

    Lönnerdal, Bo

    2017-12-01

    The provision of iron via supplementation or the fortification of foods has been shown to be effective in preventing and treating iron deficiency and iron deficiency anemia in infants and young children. However, iron is a pro-oxidative element and can have negative effects on biological systems even at moderate amounts. An increasing number of studies have reported adverse effects of iron that was given to infants and young-children populations who initially were iron replete. These effects include decreased growth (both linear growth and weight), increased illness (usually diarrhea), interactions with other trace elements such as copper and zinc, altered gut microbiota to more pathogenic bacteria, increased inflammatory markers, and impaired cognitive and motor development. If these results can be confirmed by larger and well-controlled studies, it may have considerable programmatic implications (e.g., the necessity to screen for iron status before interventions to exclude iron-replete individuals). A lack of understanding of the mechanisms underlying these adverse outcomes limits our ability to modify present supplementation and fortification strategies. This review summarizes studies on the adverse effects of iron on various outcomes; suggests possible mechanisms that may explain these observations, which are usually made in clinical studies and intervention trials; and gives examples from animal models and in vitro studies. With a better understanding of these mechanisms, it may be possible to find novel ways of providing iron in a form that causes fewer or no adverse effects even when subjects are iron replete. However, it is apparent that our understanding is limited, and research in this area is urgently needed. © 2017 American Society for Nutrition.

  4. Iron intake by rats using peroral administration of /sup 55/Fe-salts of phosphatidic acids

    Rauch, P.; Kas, J. (Inst. of Chemical Technology, Prague (Czechoslovakia)); Tykva, R. (Ceskoslovenska Akademie Ved, Prague. Ustav Organicke Chemie a Biochemie)

    1984-03-15

    The utilization of /sup 55/Fe and its incorporation into rat organs was investigated after peroral administration of various salts of phosphatidic acids (PA). Iron of PA salts is utilized up to 58-94% comparing to /sup 55/Fe/sup 2 +/. The degree of iron utilization depends on the type of PA salts administered. 16 refs.

  5. Mini Heme-Proteins: Designability of Structure and Diversity of Functions.

    Rai, Jagdish

    2017-08-30

    Natural heme proteins may have heme bound to poly-peptide chain as a cofactor via noncovalent forces or heme as a prosthetic group may be covalently bound to the proteins. Nature has used porphyrins in diverse functions like electron transfer, oxidation, reduction, ligand binding, photosynthesis, signaling, etc. by modulating its properties through diverse protein matrices. Synthetic chemists have tried to utilize these molecules in equally diverse industrial and medical applications due to their versatile electro-chemical and optical properties. The heme iron has catalytic activity which can be modulated and enhanced for specific applications by protein matrix around it. Heme proteins can be designed into novel enzymes for sterio specific catalysis ranging from oxidation to reduction. These designed heme-proteins can have applications in industrial catalysis and biosensing. A peptide folds around heme easily due to hydrophobic effect of the large aromatic ring of heme. The directional property of co-ordinate bonding between peptide and metal ion in heme further specifies the structure. Therefore heme proteins can be easily designed for targeted structure and catalytic activity. The central aromatic chemical entity in heme viz. porphyrin is a very ancient molecule. Its presence in the prebiotic soup and in all forms of life suggests that it has played a vital role in the origin and progressive evolution of living organisms. Porphyrin macrocycles are highly conjugated systems composed of four modified pyrrole subunits interconnected at their α -carbon atoms via methine (=CH-) bridges. Initial minimalist models of hemoproteins focused on effect of heme-ligand co-ordinate bonding on chemical reactivity, spectroscopy, electrochemistry and magnetic properties of heme. The great sensitivity of these spectroscopic features of heme to its surrounding makes them extremely useful in structural elucidation of designed heme-peptide complexes. Therefore heme proteins are

  6. Non-Heme Iron Catalysts with a Rigid Bis-Isoindoline Backbone and Their Use in Selective Aliphatic C−H Oxidation

    Chen, Jianming; Lutz, Martin; Milan, Michela; Costas, Miquel; Otte, Matthias; Klein Gebbink, Bert

    2017-01-01

    Iron complexes derived from a bis-isoindoline-bis-pyridine ligand platform based on the BPBP ligand (BPBP=N,N′-bis(2-picolyl)-2,2′-bis-pyrrolidine) have been synthesized and applied in selective aliphatic C−H oxidation with hydrogen peroxide under mild conditions. The introduction of benzene

  7. In vivo heme scavenging by Staphylococcus aureus IsdC and IsdE proteins

    Mack, John; Vermeiren, Christie; Heinrichs, David E.; Stillman, Martin J.

    2004-01-01

    We report the first characterization of the in vivo porphyrin scavenging abilities of two components of a newly discovered heme scavenging system involving iron-regulated surface determinant (Isd) proteins. These proteins are present within the cell envelope of the Gram-positive human pathogen Staphylococcus aureus. IsdC and IsdE, when expressed heterologously in Escherichia coli, efficiently scavenged intracellular heme and resulted in de novo heme synthesis in excess of 100-fold above background. Magnetic circular dichroism analyses showed that the heme-binding properties of the two proteins differ significantly from one another. IsdC bound almost exclusively free-base protoporphyrin IX, whereas the IsdE protein was associated with low spin Fe(III) and Fe(II) heme. These properties provide important insight into the possible mechanisms of iron scavenging from bound heme by Isd proteins

  8. Genome-based analysis of heme biosynthesis and uptake in prokaryotic systems.

    Cavallaro, Gabriele; Decaria, Leonardo; Rosato, Antonio

    2008-11-01

    Heme is the prosthetic group of many proteins that carry out a variety of key biological functions. In addition, for many pathogenic organisms, heme (acquired from the host) may constitute a very important source of iron. Organisms can meet their heme demands by taking it up from external sources, by producing the cofactor through a dedicated biosynthetic pathway, or both. Here we analyzed the distribution of proteins specifically involved in the processes of heme biosynthesis and heme uptake in 474 prokaryotic organisms. These data allowed us to identify which organisms are capable of performing none, one, or both processes, based on the similarity to known systems. Some specific instances where one or more proteins along the pathways had unusual modifications were singled out. For two key protein domains involved in heme uptake, we could build a series of structural models, which suggested possible alternative modes of heme binding. Future directions for experimental work are given.

  9. Iron-Deficiency Anemia

    Full Text Available ... because your body’s intake of iron is too low. Low intake of iron can happen because of blood ... delivery or giving birth to a baby with low birth weight In people with chronic conditions, iron- ...

  10. Mimicking heme enzymes in the solid state: metal-organic materials with selectively encapsulated heme.

    Larsen, Randy W; Wojtas, Lukasz; Perman, Jason; Musselman, Ronald L; Zaworotko, Michael J; Vetromile, Carissa M

    2011-07-13

    To carry out essential life processes, nature has had to evolve heme enzymes capable of synthesizing and manipulating complex molecules. These proteins perform a plethora of chemical reactions utilizing a single iron porphyrin active site embedded within an evolutionarily designed protein pocket. We herein report the first class of metal-organic materials (MOMs) that mimic heme enzymes in terms of both structure and reactivity. The MOMzyme-1 class is based upon a prototypal MOM, HKUST-1, into which catalytically active metalloporphyrins are selectively encapsulated in a "ship-in-a-bottle" fashion within one of the three nanoscale cages that exist in HKUST-1. MOMs offer unparalleled levels of permanent porosity and their modular nature affords enormous diversity of structures and properties. The MOMzyme-1 class could therefore represent a new paradigm for heme biomimetic catalysis since it combines the activity of a homogeneous catalyst with the stability and recyclability of heterogeneous catalytic systems within a single material.

  11. The Staphylococcus aureus Protein IsdH Inhibits Host Hemoglobin Scavenging to Promote Heme Acquisition by the Pathogen

    Saederup, Kirstine Lindhardt; Stødkilde-Jørgensen, Kristian; Graversen, Jonas Heilskov

    2016-01-01

    Hemolysis is a complication in septic infections with Staphylococcus aureus, which utilizes the released Hb as an iron source. S. aureus can acquire heme in vitro from hemoglobin (Hb) by a heme-sequestering mechanism that involves proteins from the S. aureus iron-regulated surface determinant (Isd...

  12. Introduction of a covalent histidine-heme linkage in a hemoglobin: a promising tool for heme protein engineering.

    Rice, Selena L; Preimesberger, Matthew R; Johnson, Eric A; Lecomte, Juliette T J

    2014-12-01

    The hemoglobins of the cyanobacteria Synechococcus and Synechocystis (GlbNs) are capable of spontaneous and irreversible attachment of the b heme to the protein matrix. The reaction, which saturates the heme 2-vinyl by addition of a histidine residue, is reproduced in vitro by preparing the recombinant apoprotein, adding ferric heme, and reducing the iron to the ferrous state. Spontaneous covalent attachment of the heme is potentially useful for protein engineering purposes. Thus, to explore whether the histidine-heme linkage can serve in such applications, we attempted to introduce it in a test protein. We selected as our target the heme domain of Chlamydomonas eugametos LI637 (CtrHb), a eukaryotic globin that exhibits less than 50% sequence identity with the cyanobacterial GlbNs. We chose two positions, 75 in the FG corner and 111 in the H helix, to situate a histidine near a vinyl group. We characterized the proteins with gel electrophoresis, absorbance spectroscopy, and NMR analysis. Both T111H and L75H CtrHbs reacted upon reduction of the ferric starting material containing cyanide as the distal ligand to the iron. With L75H CtrHb, nearly complete (>90%) crosslinking was observed to the 4-vinyl as expected from the X-ray structure of wild-type CtrHb. Reaction of T111H CtrHb also occurred at the 4-vinyl, in a 60% yield indicating a preference for the flipped heme orientation in the starting material. The work suggests that the His-heme modification will be applicable to the design of proteins with a non-dissociable heme group. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans.

    Hamza, Iqbal; Dailey, Harry A

    2012-09-01

    The appearance of heme, an organic ring surrounding an iron atom, in evolution forever changed the efficiency with which organisms were able to generate energy, utilize gasses and catalyze numerous reactions. Because of this, heme has become a near ubiquitous compound among living organisms. In this review we have attempted to assess the current state of heme synthesis and trafficking with a goal of identifying crucial missing information, and propose hypotheses related to trafficking that may generate discussion and research. The possibilities of spatially organized supramolecular enzyme complexes and organelle structures that facilitate efficient heme synthesis and subsequent trafficking are discussed and evaluated. Recently identified players in heme transport and trafficking are reviewed and placed in an organismal context. Additionally, older, well established data are reexamined in light of more recent studies on cellular organization and data available from newer model organisms. This article is part of a Special Issue entitled: Cell Biology of Metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Increase on the initial soluble heme levels in acidic conditions is an important mechanism for spontaneous heme crystallization in vitro.

    Renata Stiebler

    Full Text Available BACKGROUND: Hemozoin (Hz is a heme crystal that represents a vital pathway for heme disposal in several blood-feeding organisms. Recent evidence demonstrated that β-hematin (βH (the synthetic counterpart of Hz formation occurs under physiological conditions near synthetic or biological hydrophilic-hydrophobic interfaces. This seems to require a heme dimer acting as a precursor of Hz crystals that would be formed spontaneously in the absence of the competing water molecules bound to the heme iron. Here, we aimed to investigate the role of medium polarity on spontaneous βH formation in vitro. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the effect of water content on spontaneous βH formation by using the aprotic solvent dimethylsulfoxide (DMSO and a series of polyethyleneglycols (PEGs. We observed that both DMSO and PEGs (3.350, 6.000, 8.000, and 22.000 increased the levels of soluble heme under acidic conditions. These compounds were able to stimulate the production of βH crystals in the absence of any biological sample. Interestingly, the effects of DMSO and PEGs on βH formation were positively correlated with their capacity to promote previous heme solubilization in acidic conditions. Curiously, a short chain polyethyleneglycol (PEG 300 caused a significant reduction in both soluble heme levels and βH formation. Finally, both heme solubilization and βH formation strongly correlated with reduced medium water activity provided by increased DMSO concentrations. CONCLUSIONS: The data presented here support the notion that reduction of the water activity is an important mechanism to support spontaneous heme crystallization, which depends on the previous increase of soluble heme levels.

  15. Electron Transport in a Dioxygenase-Ferredoxin Complex: Long Range Charge Coupling between the Rieske and Non-Heme Iron Center.

    Wayne K Dawson

    Full Text Available Dioxygenase (dOx utilizes stereospecific oxidation on aromatic molecules; consequently, dOx has potential applications in bioremediation and stereospecific oxidation synthesis. The reactive components of dOx comprise a Rieske structure Cys2[2Fe-2S]His2 and a non-heme reactive oxygen center (ROC. Between the Rieske structure and the ROC, a universally conserved Asp residue appears to bridge the two structures forming a Rieske-Asp-ROC triad, where the Asp is known to be essential for electron transfer processes. The Rieske and ROC share hydrogen bonds with Asp through their His ligands; suggesting an ideal network for electron transfer via the carboxyl side chain of Asp. Associated with the dOx is an itinerant charge carrying protein Ferredoxin (Fdx. Depending on the specific cognate, Fdx may also possess either the Rieske structure or a related structure known as 4-Cys-[2Fe-2S] (4-Cys. In this study, we extensively explore, at different levels of theory, the behavior of the individual components (Rieske and ROC and their interaction together via the Asp using a variety of density function methods, basis sets, and a method known as Generalized Ionic Fragment Approach (GIFA that permits setting up spin configurations manually. We also report results on the 4-Cys structure for comparison. The individual optimized structures are compared with observed spectroscopic data from the Rieske, 4-Cys and ROC structures (where information is available. The separate pieces are then combined together into a large Rieske-Asp-ROC (donor/bridge/acceptor complex to estimate the overall coupling between individual components, based on changes to the partial charges. The results suggest that the partial charges are significantly altered when Asp bridges the Rieske and the ROC; hence, long range coupling through hydrogen bonding effects via the intercalated Asp bridge can drastically affect the partial charge distributions compared to the individual isolated

  16. Comparison between the availability of iron in the presence of vitamin a and β-carotene in foods and medications

    Fabiana Cristina Camargo Martini

    2011-06-01

    Full Text Available The objective of this work was to verify the availability of iron in the presence of vitamin A as components of foods and in combinations with medicines. The iron available was measured in the presence of vitamin A in foods - common bean (B, beef liver (Li and carrot (C - and medicines - Fer-In-Sol® (Fer (Mead Johnson, Arovit® (A (Roche and Neutrofer® (N (Sigma Pharma - as well as in combinations of both. β-carotene, vitamin A, total iron, heme and non heme iron, percentage of dialyzable iron and amount of dialyzable iron was determined. Vitamin A and β-carotene had a positive effect on the percentage of iron dialysis. Carrot and liver had a better percentage of dialyzable iron than their respective medicine at similar concentrations. Therefore, we can conclude that there has been an influence of vitamin A over the dialysis of iron, being the mixtures containing liver the ones which achieved the highest concentrations of dialyzable iron, and also that, according to the amounts needed to obtain the daily recommended intake of iron, they are good for consumption.

  17. Coordinate expression of heme and globin is essential for effective erythropoiesis.

    Doty, Raymond T; Phelps, Susan R; Shadle, Christina; Sanchez-Bonilla, Marilyn; Keel, Siobán B; Abkowitz, Janis L

    2015-12-01

    Erythropoiesis requires rapid and extensive hemoglobin production. Heme activates globin transcription and translation; therefore, heme synthesis must precede globin synthesis. As free heme is a potent inducer of oxidative damage, its levels within cellular compartments require stringent regulation. Mice lacking the heme exporter FLVCR1 have a severe macrocytic anemia; however, the mechanisms that underlie erythropoiesis dysfunction in these animals are unclear. Here, we determined that erythropoiesis failure occurs in these animals at the CFU-E/proerythroblast stage, a point at which the transferrin receptor (CD71) is upregulated, iron is imported, and heme is synthesized--before ample globin is produced. From the CFU-E/proerythroblast (CD71(+) Ter119(-) cells) stage onward, erythroid progenitors exhibited excess heme content, increased cytoplasmic ROS, and increased apoptosis. Reducing heme synthesis in FLVCR1-defient animals via genetic and biochemical approaches improved the anemia, implying that heme excess causes, and is not just associated with, the erythroid marrow failure. Expression of the cell surface FLVCR1 isoform, but not the mitochondrial FLVCR1 isoform, restored normal rbc production, demonstrating that cellular heme export is essential. Together, these studies provide insight into how heme is regulated to allow effective erythropoiesis, show that erythropoiesis fails when heme is excessive, and emphasize the importance of evaluating Ter119(-) erythroid cells when studying erythroid marrow failure in murine models.

  18. Isocyanides inhibit human heme oxygenases at the verdoheme stage.

    Evans, John P; Kandel, Sylvie; Ortiz de Montellano, Paul R

    2009-09-22

    Heme oxygenases (HO) catalyze the oxidative cleavage of heme to generate biliverdin, CO, and free iron. In humans, heme oxygenase-1 (hHO-1) is overexpressed in tumor tissues, where it helps to protect cancer cells from anticancer agents, while HOs in fungal pathogens, such as Candida albicans, function as the primary means of iron acquisition. Thus, HO can be considered a potential therapeutic target for certain diseases. In this study, we have examined the equilibrium binding of three isocyanides, isopropyl, n-butyl, and benzyl, to the two major human HO isoforms (hHO-1 and hHO-2), Candida albicans HO (CaHmx1), and human cytochrome P450 CYP3A4 using electronic absorption spectroscopy. Isocyanides coordinate to both ferric and ferrous HO-bound heme, with tighter binding by the more hydrophobic isocyanides and 200-300-fold tighter binding to the ferrous form. Benzyl isocyanide was the strongest ligand to ferrous heme in all the enzymes. Because the dissociation constants (KD) of the ligands for ferrous heme-hHO-1 were below the limit of accuracy for equilibrium titrations, stopped-flow kinetic experiments were used to measure the binding parameters of the isocyanides to ferrous hHO-1. Steady-state activity assays showed that benzyl isocyanide was the most potent uncompetitive inhibitor with respect to heme with a KI = 0.15 microM for hHO-1. Importantly, single turnover assays revealed that the reaction was completely stopped by coordination of the isocyanide to the verdoheme intermediate rather than to the ferric heme complex. Much tighter binding of the inhibitor to the verdoheme intermediate differentiates it from inhibition of, for example, CYP3A4 and offers a possible route to more selective inhibitor design.

  19. Isocyanides Inhibit Human Heme Oxygenases at the Verdoheme Stage†

    Evans, John P.; Kandel, Sylvie; Ortiz de Montellano, Paul R.

    2010-01-01

    Heme oxygenases (HO) catalyze the oxidative cleavage of heme to generate biliverdin, CO, and free iron. In humans, heme oxygenase-1 (hHO-1) is overexpressed in tumor tissues, where it helps to protect cancer cells from anticancer agents, while HOs in fungal pathogens, such as Candida albicans, function as the primary means of iron acquisition. Thus, HO can be considered a potential therapeutic target for certain diseases. In this study, we have examined the equilibrium binding of three isocyanides; isopropyl, n-butyl, and benzyl, to the two major human HO isoforms (hHO-1 and hHO-2), Candida albicans HO (CaHmx1), and human cytochrome P450 CYP3A4 using electronic absorption spectroscopy. Isocyanides coordinate to both ferric and ferrous HO-bound heme, with tighter binding by the more hydrophobic isocyanides, and 200-300-fold tighter binding to the ferrous form. Benzyl isocyanide was the strongest ligand to ferrous heme in all the enzymes. Because the dissociation constants (KD) of the ligands for ferrous heme-hHO-1 were below the limit of accuracy for equilibrium titrations, stopped-flow kinetic experiments were used to measure the binding parameters of the isocyanides to ferrous hHO-1. Steady-state activity assays showed that benzyl isocyanide was the most potent uncompetitive inhibitor with respect to heme with a KI = 0.15 μM for hHO-1. Importantly, single turnover assays revealed that the reaction was completely stopped by coordination of the isocyanide to the verdoheme intermediate rather than to the ferric heme complex. Much tighter binding of the inhibitor to the verdoheme intermediate differentiates it from inhibition of, for example, CYP3A4 and offers a possible route to more selective inhibitor design. PMID:19694439

  20. Isotope aided studies of the bioavailability of iron from human diets consumed in Peru

    Zavaleta, N.; Penny, M.; Berlanga, R.; Diaz, A.; Montoya, E.; Lonnerdal, B.

    1994-01-01

    Iron deficiency anaemia is an important health problem in Peru, which affects approximately 25% of the population. The most vulnerable groups are children below 5 years of age and pregnant women, of whom 64% and 53% respectively are anemic. The main reason for this deficiency is inadequate iron intake. Heme iron consumption is very low, and non-heme iron is virtually the only source of iron in the diet. Despite regional differences in food consumption, wheat, salt and sugar are widely consumed in all areas. Wheat is likely to be the most suitable food vehicle for iron fortification due to the processing required. Based on the recent food consumption surveys conducted in Lima by the IIN, we selected examples of typical main meals and measured iron bioavailability in the diet using an extrinsic tag method with 1.5 μCi of 59 Fe and 5 μCi of 55 Fe as markers. Coffee with bread and butter for breakfast, noodle soup with vegetables, rice with seasoned tripe (cow), bread and lemonade for lunch; and noodle soup with vegetables and bread for dinner were used to measure iron absorption. Thirteen adults in apparent good health, 5 male and 8 female, with normal hemoglobin levels participated in the study. The mean iron absorption from breakfast was 4.2% ± 4.1; from lunch 14.65% ± 10/95, and from dinner 5.1% ± 2.84. The presence of heme iron from tripe and ascorbic acid from lemonade improved iron absorption. (author). 17 refs, 3 tabs

  1. Binding analysis of ferritin with heme using α-casein and biotinylated-hemin: detection of heme-binding capacity of Dpr derived from heme synthesis-deficient Streptococcus mutans.

    Mieno, Ayako; Yamamoto, Yuji; Yoshikawa, Yasunaga; Watanabe, Kiyotaka; Mukai, Takao; Orino, Koichi

    2013-01-01

    Bacterial and mammalian ferritins are known to bind heme. The use of α-casein and biotinylated hemin could be applicable to detection of protein-bound heme and of proteins with heme-binding capacity, respectively. Although commercial horse spleen ferritin and purified horse spleen ferritin (L:H subunit ratio=4) bound to an α-casein-coated plate, and this binding could be inhibited by hemin, recombinant iron-binding protein (rDpr), derived from heme-deficient Streptococcus mutans and expressed in Escherichia coli, did not bind to an α-casein-coated plate. Both horse spleen ferritins bound to α-casein-immobilized beads. Commercial horse spleen ferritin and rDpr showed direct binding to hemin-agarose beads. After preincubation of commercial horse spleen ferritin or rDpr with biotinylated hemin, they showed indirect binding to avidin-immobilized beads through biotinylated hemin. These results demonstrate that α-casein is useful for detection of heme-binding ferritin and that both hemin-agarose and the combination of biotinylated hemin and avidin-beads are useful for detection of the heme-binding capacity of ferritin. In addition, this study also revealed that Dpr, a decameric iron-binding protein, from heme-deficient cells binds heme.

  2. Bacterial Nitric Oxide Synthase Is Required for the Staphylococcus aureus Response to Heme Stress.

    Surdel, Matthew C; Dutter, Brendan F; Sulikowski, Gary A; Skaar, Eric P

    2016-08-12

    Staphylococcus aureus is a pathogen that causes significant morbidity and mortality worldwide. Within the vertebrate host, S. aureus requires heme as a nutrient iron source and as a cofactor for multiple cellular processes. Although required for pathogenesis, excess heme is toxic. S. aureus employs a two-component system, the heme sensor system (HssRS), to sense and protect against heme toxicity. Upon activation, HssRS induces the expression of the heme-regulated transporter (HrtAB), an efflux pump that alleviates heme toxicity. The ability to sense and respond to heme is critical for the pathogenesis of numerous Gram-positive organisms, yet the mechanism of heme sensing remains unknown. Compound '3981 was identified in a high-throughput screen as an activator of staphylococcal HssRS that triggers HssRS independently of heme accumulation. '3981 is toxic to S. aureus; however, derivatives of '3981 were synthesized that lack toxicity while retaining HssRS activation, enabling the interrogation of the heme stress response without confounding toxic effects of the parent molecule. Using '3981 derivatives as probes of the heme stress response, numerous genes required for '3981-induced activation of HssRS were uncovered. Specifically, multiple genes involved in the production of nitric oxide were identified, including the gene encoding bacterial nitric oxide synthase (bNOS). bNOS protects S. aureus from oxidative stress imposed by heme. Taken together, this work identifies bNOS as crucial for the S. aureus heme stress response, providing evidence that nitric oxide synthesis and heme sensing are intertwined.

  3. Salivary proline-rich protein may reduce tannin-iron chelation: a systematic narrative review

    Delimont, Nicole M.; Rosenkranz, Sara K.; Haub, Mark D.; Lindshield, Brian L.

    2017-01-01

    Background Tannins are often cited for antinutritional effects, including chelation of non-heme iron. Despite this, studies exploring non-heme iron bioavailability inhibition with long-term consumption have reported mixed results. Salivary proline-rich proteins (PRPs) may mediate tannin-antinutritional effects on non-heme iron bioavailability. Aim To review evidence regarding biochemical binding mechanisms and affinity states between PRPs and tannins, as well as effects of PRPs on non-heme ir...

  4. DFT studies of the substituent effects of dimethylamino on non-heme active oxidizing species: iron(V)-oxo species or iron(IV)-oxo acetate aminopyridine cation radical species?

    Wang, Fang; Sun, Wei; Xia, Chungu; Wang, Yong

    2017-10-01

    Through the introduction of dimethylamino (Me 2 N) substituent at the pyridine ring of 2-((R)-2-[(R)-1-(pyridine-2-ylmethyl)pyrrolidin-2-yl]pyrrolidin-1-ylmethyl)pyridine (PDP) ligand, the non-heme Fe II ( Me2N PDP)/H 2 O 2 /AcOH catalyst system was found to exhibit significant higher catalytic activity and enantioselectivity than the non-substituent one in the asymmetric epoxidation experiments. The mechanistic origin of the remarkable substituent effects in these oxidation reactions has not been well established. To ascertain the potent oxidant and the related reaction mechanism, a detailed DFT calculation was performed. Interestingly, a novel Fe(IV)-oxo Me2N PDP cation radical species, [( Me2N PDP) + · Fe IV (O)(OAc)] 2+ ( Me2N 5), with about one spin spreading over the non-heme Me2N PDP ligand was formed via a carboxylic-acid-assisted O-O bond heterolysis, which is reminiscent of Compound I (an Fe(IV)(O)(porphyrin cation radical) species) in cytochrome P450 chemistry. Me2N 5 is energetically comparable with the cyclic ferric peracetate species Me2N 6, while in the pristine Fe(PDP) catalyst system, H 6 is more stable than H 5. Comparison of the activation energy for the ethylene epoxidation promoted by Me2N 5 and Me2N 6, Me2N 5 is supposed as the true oxidant triggering the epoxidation of olefins. In addition, a systematic research on the substituent effects varied from the electron-donating substituent (dMM, the substituents at sites 3, 4, and 5 of the pyridine ring: methyl, methoxyl, and methyl) to the electron-withdrawing one (CF 3 , 2,6-bis(trifluoromethyl)phenyl) on the electronic structure of the reaction intermediates has also been investigated. An alternative cyclic ferric peracetate complex is obtained, indicating that the substituents at the pyridine ring of PDP ligands have significant impacts on the electronic structure of the oxidants.

  5. Stanniocalcin 1 binds hemin through a partially conserved heme regulatory motif

    Westberg, Johan A.; Jiang, Ji; Andersson, Leif C.

    2011-01-01

    Highlights: → Stanniocalcin 1 (STC1) binds heme through novel heme binding motif. → Central iron atom of heme and cysteine-114 of STC1 are essential for binding. → STC1 binds Fe 2+ and Fe 3+ heme. → STC1 peptide prevents oxidative decay of heme. -- Abstract: Hemin (iron protoporphyrin IX) is a necessary component of many proteins, functioning either as a cofactor or an intracellular messenger. Hemoproteins have diverse functions, such as transportation of gases, gas detection, chemical catalysis and electron transfer. Stanniocalcin 1 (STC1) is a protein involved in respiratory responses of the cell but whose mechanism of action is still undetermined. We examined the ability of STC1 to bind hemin in both its reduced and oxidized states and located Cys 114 as the axial ligand of the central iron atom of hemin. The amino acid sequence differs from the established (Cys-Pro) heme regulatory motif (HRM) and therefore presents a novel heme binding motif (Cys-Ser). A STC1 peptide containing the heme binding sequence was able to inhibit both spontaneous and H 2 O 2 induced decay of hemin. Binding of hemin does not affect the mitochondrial localization of STC1.

  6. Stanniocalcin 1 binds hemin through a partially conserved heme regulatory motif

    Westberg, Johan A., E-mail: johan.westberg@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland); Jiang, Ji, E-mail: ji.jiang@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland); Andersson, Leif C., E-mail: leif.andersson@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland)

    2011-06-03

    Highlights: {yields} Stanniocalcin 1 (STC1) binds heme through novel heme binding motif. {yields} Central iron atom of heme and cysteine-114 of STC1 are essential for binding. {yields} STC1 binds Fe{sup 2+} and Fe{sup 3+} heme. {yields} STC1 peptide prevents oxidative decay of heme. -- Abstract: Hemin (iron protoporphyrin IX) is a necessary component of many proteins, functioning either as a cofactor or an intracellular messenger. Hemoproteins have diverse functions, such as transportation of gases, gas detection, chemical catalysis and electron transfer. Stanniocalcin 1 (STC1) is a protein involved in respiratory responses of the cell but whose mechanism of action is still undetermined. We examined the ability of STC1 to bind hemin in both its reduced and oxidized states and located Cys{sup 114} as the axial ligand of the central iron atom of hemin. The amino acid sequence differs from the established (Cys-Pro) heme regulatory motif (HRM) and therefore presents a novel heme binding motif (Cys-Ser). A STC1 peptide containing the heme binding sequence was able to inhibit both spontaneous and H{sub 2}O{sub 2} induced decay of hemin. Binding of hemin does not affect the mitochondrial localization of STC1.

  7. Alteration of the Regiospecificity of Human Heme Oxygenase-1 by Unseating of the Heme but not Disruption of the Distal Hydrogen Bonding Network†

    Wang, Jinling; Evans, John P.; Ogura, Hiroshi; La Mar, Gerd N.; Ortiz de Montellano, Paul R.

    2008-01-01

    Heme oxygenase regiospecifically oxidizes heme at the α-meso position to give biliverdin IXα, CO, and iron. The heme orientation within the active site, which is thought to determine the oxidation regiospecificity, is shown here for the human enzyme (hHO1) to be largely determined by interactions between the heme carboxylic acid groups and residues Arg183 and Lys18 but not Tyr134. Mutation of either Arg183 or Lys18 individually does not significantly alter the NADPH-cytochrome P450 reductase-dependent reaction regiochemistry, but partially shifts the oxidation to the β/δ-meso positions in the reaction supported by ascorbic acid. Mutation of Glu29 to a lysine, which places a positive charge where it can interact with a heme carboxyl if the heme rotates by ~90°, causes a slight loss of regiospecificity, but combined with the R183E and K18E mutations results primarily in β/δ-meso oxidation of the heme under all conditions. NMR analysis of heme binding to the triple K18E/E29K/R183E mutant confirms rotation of the heme in the active site. Kinetic studies demonstrate that mutations of Arg183 greatly impair the rate of the P450 reductase-dependent reaction, in accord with the earlier finding that Arg183 is involved in binding of the reductase to hHO1, but have little effect on the ascorbate reaction. Mutations of Asp140 and Tyr58 that disrupt the active site hydrogen bonding network, impair catalytic rates but do not influence the oxidation regiochemistry. The results indicate both that the oxidation regiochemistry is largely controlled by ionic interactions of the heme propionic acid groups with the protein and that shifts in regiospecificity involve rotation of the heme about an axis perpendicular to the heme plane. PMID:16388581

  8. Increased Heme Levels in the Heart Lead to Exacerbated Ischemic Injury.

    Sawicki, Konrad Teodor; Shang, Meng; Wu, Rongxue; Chang, Hsiang-Chun; Khechaduri, Arineh; Sato, Tatsuya; Kamide, Christine; Liu, Ting; Naga Prasad, Sathyamangla V; Ardehali, Hossein

    2015-07-31

    Heme is an essential iron-containing molecule for cardiovascular physiology, but in excess it may increase oxidative stress. Failing human hearts have increased heme levels, with upregulation of the rate-limiting enzyme in heme synthesis, δ-aminolevulinic acid synthase 2 (ALAS2), which is normally not expressed in cardiomyocytes. We hypothesized that increased heme accumulation (through cardiac overexpression of ALAS2) leads to increased oxidative stress and cell death in the heart. We first showed that ALAS2 and heme levels are increased in the hearts of mice subjected to coronary ligation. To determine the causative role of increased heme in the development of heart failure, we generated transgenic mice with cardiac-specific overexpression of ALAS2. While ALAS2 transgenic mice have normal cardiac function at baseline, their hearts display increased heme content, higher oxidative stress, exacerbated cell death, and worsened cardiac function after coronary ligation compared to nontransgenic littermates. We confirmed in cultured cardiomyoblasts that the increased oxidative stress and cell death observed with ALAS2 overexpression is mediated by increased heme accumulation. Furthermore, knockdown of ALAS2 in cultured cardiomyoblasts exposed to hypoxia reversed the increases in heme content and cell death. Administration of the mitochondrial antioxidant MitoTempo to ALAS2-overexpressing cardiomyoblasts normalized the elevated oxidative stress and cell death levels to baseline, indicating that the effects of increased ALAS2 and heme are through elevated mitochondrial oxidative stress. The clinical relevance of these findings was supported by the finding of increased ALAS2 induction and heme accumulation in failing human hearts from patients with ischemic cardiomyopathy compared to nonischemic cardiomyopathy. Heme accumulation is detrimental to cardiac function under ischemic conditions, and reducing heme in the heart may be a novel approach for protection against the

  9. Iron

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...... of transcription factors, activation of the mitochondrial apoptotic machinery or of other cell death mechanisms. The pro-inflammatory cytokine IL-1β facilitates divalent metal transporter 1 (DMT1)-induced β-cell iron uptake and consequently ROS formation and apoptosis, and we propose that this mechanism provides...

  10. Iron

    ... Share: Search the ODS website Submit Search NIH Office of Dietary Supplements Consumer Datos en español Health ... eating a variety of foods, including the following: Lean meat, seafood, and poultry. Iron-fortified breakfast cereals ...

  11. Effect of lead on heme synthesis

    Neuberger, A.

    1975-01-01

    Recently, a fair amount of work has been done on the effect of lead on porphobilinogen dehydratase, which has been used as a sensitive indicator of lead poisoning. How far this is in itself harmful depends on the Michaelis constants of both the aminolaevulinic synthetase and of the dehydratase, and in addition on the relative activities of the two enzymes in a cell and also on the tissue concentration of glycine. Information on some of these points is still fragmentary, and a reliable judgement is at the present not very easy. Another step in the heme synthesis, which is sensitive to low concentrations of lead, is the incorporation of iron into protoporphyrin. Inhibition of this step may be important in accounting to a large extent for the anaemia found in individuals with lead poisoning. Reduction in the tissue concentration of heme or of heme-like compounds may also explain, through the mechanism of de-repression, the excretion of increased amounts of aminolaevulinic acid in the urine observed in cases of lead poisoning. A third step in heme synthesis, which might be sensitive to lead, is the oxidative decarboxylation of coproporphyrin to protoporphyrin, and this may explain why the former derivative is excreted in the urine. Recent work of the Harvard Medical School has indicated that greatly reduced levels of ALA dehydratase may be found in most cases of severe liver damage due to alcoholism. In most of these cases the level of lead in the blood is within normal limits, and there is no history of exposure to toxic amounts of lead. We therefore have to assume that a reduction in the blood level of this enzyme is not necessarily an indication of lead poisoning.

  12. Antibiotic suppression of intestinal microbiota reduces heme-induced lipoperoxidation associated with colon carcinogenesis in rats.

    Martin, O C B; Lin, C; Naud, N; Tache, S; Raymond-Letron, I; Corpet, D E; Pierre, F H

    2015-01-01

    Epidemiological studies show that heme iron from red meat is associated with increased colorectal cancer risk. In carcinogen-induced-rats, a heme iron-rich diet increases the number of precancerous lesions and raises associated fecal biomarkers. Heme-induced lipoperoxidation measured by fecal thiobarbituric acid reagents (TBARs) could explain the promotion of colon carcinogenesis by heme. Using a factorial design we studied if microbiota could be involved in heme-induced carcinogenesis, by modulating peroxidation. Rats treated or not with an antibiotic cocktail were given a control or a hemoglobin-diet. Fecal bacteria were counted on agar and TBARs concentration assayed in fecal water. The suppression of microbiota by antibiotics was associated with a reduction of crypt height and proliferation and with a cecum enlargement, which are characteristics of germ-free rats. Rats given hemoglobin diets had increased fecal TBARs, which were suppressed by the antibiotic treatment. A duplicate experiment in rats given dietary hemin yielded similar results. These data show that the intestinal microbiota is involved in enhancement of lipoperoxidation by heme iron. We thus suggest that microbiota could play a role in the heme-induced promotion of colorectal carcinogenesis.

  13. Heme isomers substantially affect heme's electronic structure and function

    Kepp, Kasper Planeta

    2017-01-01

    Inspection of heme protein structures in the protein data bank reveals four isomers of heme characterized by different relative orientations of the vinyl side chains; remarkably, all these have been reported in multiple protein structures. Density functional theory computations explain this as du...

  14. Dietary Heme Induces Gut Dysbiosis, Aggravates Colitis, and Potentiates the Development of Adenomas in Mice

    Marco Constante

    2017-09-01

    Full Text Available Dietary heme can be used by colonic bacteria equipped with heme-uptake systems as a growth factor and thereby impact on the microbial community structure. The impact of heme on the gut microbiota composition may be particularly pertinent in chronic inflammation such as in inflammatory bowel disease (IBD, where a strong association with gut dysbiosis has been consistently reported. In this study we investigated the influence of dietary heme on the gut microbiota and inferred metagenomic composition, and on chemically induced colitis and colitis-associated adenoma development in mice. Using 16S rRNA gene sequencing, we found that mice fed a diet supplemented with heme significantly altered their microbiota composition, characterized by a decrease in α-diversity, a reduction of Firmicutes and an increase of Proteobacteria, particularly Enterobacteriaceae. These changes were similar to shifts seen in dextran sodium sulfate (DSS-treated mice to induce colitis. In addition, dietary heme, but not systemically delivered heme, contributed to the exacerbation of DSS-induced colitis and facilitated adenoma formation in the azoxymethane/DSS colorectal cancer (CRC mouse model. Using inferred metagenomics, we found that the microbiota alterations elicited by dietary heme resulted in non-beneficial functional shifts, which were also characteristic of DSS-induced colitis. Furthermore, a reduction in fecal butyrate levels was found in mice fed the heme supplemented diet compared to mice fed the control diet. Iron metabolism genes known to contribute to heme release from red blood cells, heme uptake, and heme exporter proteins, were significantly enriched, indicating a shift toward favoring the growth of bacteria able to uptake heme and protect against its toxicity. In conclusion, our data suggest that luminal heme, originating from dietary components or gastrointestinal bleeding in IBD and, to lesser extent in CRC, directly contributes to microbiota dysbiosis

  15. Conserved residues of the human mitochondrial holocytochrome c synthase mediate interactions with heme.

    Babbitt, Shalon E; San Francisco, Brian; Bretsnyder, Eric C; Kranz, Robert G

    2014-08-19

    C-type cytochromes are distinguished by the covalent attachment of a heme cofactor, a modification that is typically required for its subsequent folding, stability, and function. Heme attachment takes place in the mitochondrial intermembrane space and, in most eukaryotes, is mediated by holocytochrome c synthase (HCCS). HCCS is the primary component of the eukaryotic cytochrome c biogenesis pathway, known as System III. The catalytic function of HCCS depends on its ability to coordinate interactions between its substrates: heme and cytochrome c. Recent advancements in the recombinant expression and purification of HCCS have facilitated comprehensive analyses of the roles of conserved residues in HCCS, as demonstrated in this study. Previously, we proposed a four-step model describing HCCS-mediated cytochrome c assembly, identifying a conserved histidine residue (His154) as an axial ligand to the heme iron. In this study, we performed a systematic mutational analysis of 17 conserved residues in HCCS, and we provide evidence that the enzyme contains two heme-binding domains. Our data indicate that heme contacts mediated by residues within these domains modulate the dynamics of heme binding and contribute to the stability of the HCCS-heme-cytochrome c steady state ternary complex. While some residues are essential for initial heme binding (step 1), others impact the subsequent release of the holocytochrome c product (step 4). Certain HCCS mutants that were defective in heme binding were corrected for function by exogenous aminolevulinic acid (ALA, the precursor to heme). This chemical "correction" supports the proposed role of heme binding for the corresponding residues.

  16. Dietary heme injures surface epithelium resulting in hyperproliferation, inhibition of apoptosis and crypt hyperplasia in rat colon

    de Vogel, Johan; van-Eck, Wytske Boersma; Sesink, Aloys L. A.; Jonker-Termont, Denise S. M. L.; Kleibeuker, Jan; van der Meer, Roelof

    Epidemiological and animal model studies suggest that a high intake of heme, present in red meat, is associated with an increased risk of colon cancer. The aim of this study was to elucidate the effects of dietary heme on colonic cell homeostasis in rats. Rats were fed a purified, humanized, control

  17. Iron-Deficiency Anemia

    Full Text Available ... breastfeeding. Recommended daily iron intake for children and adults. The table lists the recommended amounts of iron, ... increased need for iron during growth spurts. Older adults, especially those over age 65. Unhealthy environments Children ...

  18. Iron-Deficiency Anemia

    Full Text Available ... bleeding. If undiagnosed or untreated, iron-deficiency anemia can cause serious complications, including heart failure and development ... iron is too low. Low intake of iron can happen because of blood loss, consuming less than ...

  19. Introduction of water into the heme distal side by Leu65 mutations of an oxygen sensor, YddV, generates verdoheme and carbon monoxide, exerting the heme oxygenase reaction.

    Stranava, Martin; Martínková, Markéta; Stiborová, Marie; Man, Petr; Kitanishi, Kenichi; Muchová, Lucie; Vítek, Libor; Martínek, Václav; Shimizu, Toru

    2014-11-01

    The globin-coupled oxygen sensor, YddV, is a heme-based oxygen sensor diguanylate cyclase. Oxygen binding to the heme Fe(II) complex in the N-terminal sensor domain of this enzyme substantially enhances its diguanylate cyclase activity which is conducted in the C-terminal functional domain. Leu65 is located on the heme distal side and is important for keeping the stability of the heme Fe(II)-O2 complex by preventing the entry of the water molecule to the heme complex. In the present study, it was found that (i) Escherichia coli-overexpressed and purified L65N mutant of the isolated heme-bound domain of YddV (YddV-heme) contained the verdoheme iron complex and other modified heme complexes as determined by optical absorption spectroscopy and mass spectrometry; (ii) CO was generated in the reconstituted system composed of heme-bound L65N and NADPH:cytochrome P450 reductase as confirmed by gas chromatography; (iii) CO generation of heme-bound L65N in the reconstituted system was inhibited by superoxide dismutase and catalase. In a concordance with the result, the reactive oxygen species increased the CO generation; (iv) the E. coli cells overexpressing the L65N protein of YddV-heme also formed significant amounts of CO compared to the cells overexpressing the wild type protein; (v) generation of verdoheme and CO was also observed for other mutants at Leu65 as well, but to a lesser extent. Since Leu65 mutations are assumed to introduce the water molecule into the heme distal side of YddV-heme, it is suggested that the water molecule would significantly contribute to facilitating heme oxygenase reactions for the Leu65 mutants. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Dietary Iron Intake and Serum Ferritin Concentration in 213 Patients Homozygous for the HFEC282Y Hemochromatosis Mutation

    Victor R Gordeuk

    2012-01-01

    Full Text Available BACKGROUND: HFEC282Y homozygotes have an increased risk for developing increased iron stores and related disorders. It is controversial whether dietary iron restrictions should be recommended to such individuals.

  1. The heme-heme oxygenase system: a molecular switch in wound healing.

    Wagener, F.A.D.T.G.; Beurden, H.E. van; Hoff, J.W. Von den; Adema, G.J.; Figdor, C.G.

    2003-01-01

    When cells are injured they release their contents, resulting in a local accumulation of free heme proteins and heme. Here, we investigated the involvement of heme and its degrading enzyme heme oxygenase (HO) in the inflammatory process during wound healing. We observed that heme directly

  2. Heme oxygenase-1, oxidation, inflammation and atherosclerosis

    Jesus A Araujo

    2012-07-01

    Full Text Available Atherosclerosis is an inflammatory process of the vascular wall characterized by the infiltration of lipids and inflammatory cells. Oxidative modifications of infiltrating low density lipoproteins and induction of oxidative stress play a major role in lipid retention in the vascular wall, uptake by macrophages and generation of foam cells, a hallmark of this disorder. The vasculature has a plethora of protective resources against oxidation and inflammation, many of them regulated by the Nrf2 transcription factor. Heme oxygenase-1 (HO-1 is a Nrf2-regulated gene that plays a critical role in the prevention of vascular inflammation. It is the inducible isoform of heme oxygenase, responsible for the oxidative cleavage of heme groups leading to the generation of biliverdin, carbon monoxide and release of ferrous iron. HO-1 has important antioxidant, antiinflammatory, antiapoptotic, antiproliferative and immunomodulatory effects in vascular cells, most of which play a significant role in the protection against atherogenesis. HO-1 may also be an important feature in macrophage differentiation and polarization to certain subtypes. The biological effects of HO-1 are largely attributable to its enzymatic activity, which can be conceived as a system with three arms of action, corresponding to its three enzymatic byproducts. HO-1 mediated vascular protection may be due to a combination of systemic and vascular local effects. It is usually expressed at low levels but can be highly upregulated in the presence of several proatherogenic stimuli. The HO-1 system is amenable for use in the development of new therapies, some of them currently under experimental and clinical trials. Interestingly, in contrast to the HO-1 antiatherogenic actions, the expression of its transcriptional regulator Nrf2 leads to proatherogenic effects instead. This article reviews the evidence that supports the antiatherogenic role of HO-1, potential pathways and mechanisms mediating

  3. Human heme oxygenase oxidation of 5- and 15-phenylhemes.

    Wang, Jinling; Niemevz, Fernando; Lad, Latesh; Huang, Liusheng; Alvarez, Diego E; Buldain, Graciela; Poulos, Thomas L; de Montellano, Paul R Ortiz

    2004-10-08

    Human heme oxygenase-1 (hHO-1) catalyzes the O2-dependent oxidation of heme to biliverdin, CO, and free iron. Previous work indicated that electrophilic addition of the terminal oxygen of the ferric hydroperoxo complex to the alpha-meso-carbon gives 5-hydroxyheme. Earlier efforts to block this reaction with a 5-methyl substituent failed, as the reaction still gave biliverdin IXalpha. Surprisingly, a 15-methyl substituent caused exclusive cleavage at the gamma-meso-rather than at the normal, unsubstituted alpha-meso-carbon. No CO was formed in these reactions, but the fragment cleaved from the porphyrin eluded identification. We report here that hHO-1 cleaves 5-phenylheme to biliverdin IXalpha and oxidizes 15-phenylheme at the alpha-meso position to give 10-phenylbiliverdin IXalpha. The fragment extruded in the oxidation of 5-phenylheme is benzoic acid, one oxygen of which comes from O2 and the other from water. The 2.29- and 2.11-A crystal structures of the hHO-1 complexes with 1- and 15-phenylheme, respectively, show clear electron density for both the 5- and 15-phenyl rings in both molecules of the asymmetric unit. The overall structure of 15-phenylheme-hHO-1 is similar to that of heme-hHO-1 except for small changes in distal residues 141-150 and in the proximal Lys18 and Lys22. In the 5-phenylheme-hHO-1 structure, the phenyl-substituted heme occupies the same position as heme in the heme-HO-1 complex but the 5-phenyl substituent disrupts the rigid hydrophobic wall of residues Met34, Phe214, and residues 26-42 near the alpha-meso carbon. The results provide independent support for an electrophilic oxidation mechanism and support a role for stereochemical control of the reaction regiospecificity.

  4. Synthesis, delivery and regulation of eukaryotic heme and Fe-S cluster cofactors.

    Barupala, Dulmini P; Dzul, Stephen P; Riggs-Gelasco, Pamela Jo; Stemmler, Timothy L

    2016-02-15

    In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Explaining the variability in recommended intakes of folate, vitamin B12, iron and zinc for adults and elderly people

    Doets, E.L.; Cavelaars, A.J.E.M.; Dhonukshe-Rutten, R.A.M.; Veer, van 't P.; Groot, de C.P.G.M.

    2012-01-01

    Objective To signal key issues for harmonising approaches for establishing micronutrient recommendations by explaining observed variation in recommended intakes of folate, vitamin B12, Fe and Zn for adults and elderly people. Design We explored differences in recommended intakes of folate, vitamin

  6. Structural Characterization of Heme Environmental Mutants of CgHmuT that Shuttles Heme Molecules to Heme Transporters

    Norifumi Muraki

    2016-05-01

    Full Text Available Corynebacteria contain a heme uptake system encoded in hmuTUV genes, in which HmuT protein acts as a heme binding protein to transport heme to the cognate transporter HmuUV. The crystal structure of HmuT from Corynebacterium glutamicum (CgHmuT reveals that heme is accommodated in the central cleft with His141 and Tyr240 as the axial ligands and that Tyr240 forms a hydrogen bond with Arg242. In this work, the crystal structures of H141A, Y240A, and R242A mutants were determined to understand the role of these residues for the heme binding of CgHmuT. Overall and heme environmental structures of these mutants were similar to those of the wild type, suggesting that there is little conformational change in the heme-binding cleft during heme transport reaction with binding and the dissociation of heme. A loss of one axial ligand or the hydrogen bonding interaction with Tyr240 resulted in an increase in the redox potential of the heme for CgHmuT to be reduced by dithionite, though the wild type was not reduced under physiological conditions. These results suggest that the heme environmental structure stabilizes the ferric heme binding in CgHmuT, which will be responsible for efficient heme uptake under aerobic conditions where Corynebacteria grow.

  7. Heme-coordinated histidine residues form non-specific functional "ferritin-heme" peroxidase system: Possible and partial mechanistic relevance to oxidative stress-mediated pathology in neurodegenerative diseases.

    Esmaeili, Sajjad; Kooshk, Mohammad Reza Ashrafi; Asghari, Seyyed Mohsen; Khodarahmi, Reza

    2016-10-01

    Ferritin is a giant protein composed of 24 subunits which is able to sequester up to 4500 atoms of iron. We proposed two kinds of heme binding sites in mammalian ferritins and provided direct evidence for peroxidase activity of heme-ferritin, since there is the possibility that "ferritin-heme" systems display unexpected catalytic behavior like heme-containing enzymes. In the current study, peroxidase activity of heme-bound ferritin was studied using TMB(1), l-DOPA, serotonin, and dopamine, in the presence of H2O2, as oxidant substrate. The catalytic oxidation of TMB was consistent with first-order kinetics with respect to ferritin concentration. Perturbation of the binding affinity and catalytic behavior of heme-bound His-modified ferritin were also documented. We also discuss the importance of the peroxidase-/nitrative-mediated oxidation of vital molecules as well as ferritin-induced catalase inhibition using in vitro experimental system. Uncontrollable "heme-ferritin"-based enzyme activity as well as up-regulation of heme and ferritin may inspire that some oxidative stress-mediated cytotoxic effects in AD-affected cells could be correlated to ferritin-heme interaction and/or ferritin-induced catalase inhibition and describe its contribution as an important causative pathogenesis mechanism in some neurodegenerative disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Iron-Deficiency Anemia

    Full Text Available ... because your body’s intake of iron is too low. Low intake of iron can happen because of blood ... a lot of cow’s milk. Cow’s milk is low in iron. Teens, who have increased need for ...

  9. Identification of residues in the heme domain of soluble guanylyl cyclase that are important for basal and stimulated catalytic activity.

    Padmamalini Baskaran

    Full Text Available Nitric oxide signals through activation of soluble guanylyl cyclase (sGC, a heme-containing heterodimer. NO binds to the heme domain located in the N-terminal part of the β subunit of sGC resulting in increased production of cGMP in the catalytic domain located at the C-terminal part of sGC. Little is known about the mechanism by which the NO signaling is propagated from the receptor domain (heme domain to the effector domain (catalytic domain, in particular events subsequent to the breakage of the bond between the heme iron and Histidine 105 (H105 of the β subunit. Our modeling of the heme-binding domain as well as previous homologous heme domain structures in different states point to two regions that could be critical for propagation of the NO activation signal. Structure-based mutational analysis of these regions revealed that residues T110 and R116 in the αF helix-β1 strand, and residues I41 and R40 in the αB-αC loop mediate propagation of activation between the heme domain and the catalytic domain. Biochemical analysis of these heme mutants allows refinement of the map of the residues that are critical for heme stability and propagation of the NO/YC-1 activation signal in sGC.

  10. Using porphyrin-amino acid pairs to model the electrochemistry of heme proteins: experimental and theoretical investigations.

    Samajdar, Rudra N; Manogaran, Dhivya; Yashonath, S; Bhattacharyya, Aninda J

    2018-04-18

    Quasi reversibility in electrochemical cycling between different oxidation states of iron is an often seen characteristic of iron containing heme proteins that bind dioxygen. Surprisingly, the system becomes fully reversible in the bare iron-porphyrin complex: hemin. This leads to the speculation that the polypeptide bulk (globin) around the iron-porphyrin active site in these heme proteins is probably responsible for the electrochemical quasi reversibility. To understand the effect of such polypeptide bulk on iron-porphyrin, we study the interaction of specific amino acids with the hemin center in solution. We choose three representative amino acids-histidine (a well-known iron coordinator in bio-inorganic systems), tryptophan (a well-known fluoroprobe for proteins), and cysteine (a redox-active organic molecule). The interactions of these amino acids with hemin are studied using electrochemistry, spectroscopy, and density functional theory. The results indicate that among these three, the interaction of histidine with the iron center is strongest. Further, histidine maintains the electrochemical reversibility of iron. On the other hand, tryptophan and cysteine interact weakly with the iron center but disturb the electrochemical reversibility by contributing their own redox active processes to the system. Put together, this study attempts to understand the molecular interactions that can control electrochemical reversibility in heme proteins. The results obtained here from the three representative amino acids can be scaled up to build a heme-amino acid interaction database that may predict the electrochemical properties of any protein with a defined polypeptide sequence.

  11. A Heme-responsive Regulator Controls Synthesis of Staphyloferrin B in Staphylococcus aureus.

    Laakso, Holly A; Marolda, Cristina L; Pinter, Tyler B; Stillman, Martin J; Heinrichs, David E

    2016-01-01

    Staphylococcus aureus possesses a multitude of mechanisms by which it can obtain iron during growth under iron starvation conditions. It expresses an effective heme acquisition system (the iron-regulated surface determinant system), it produces two carboxylate-type siderophores staphyloferrin A and staphyloferrin B (SB), and it expresses transporters for many other siderophores that it does not synthesize. The ferric uptake regulator protein regulates expression of genes encoding all of these systems. Mechanisms of fine-tuning expression of iron-regulated genes, beyond simple iron regulation via ferric uptake regulator, have not been uncovered in this organism. Here, we identify the ninth gene of the sbn operon, sbnI, as encoding a ParB/Spo0J-like protein that is required for expression of genes in the sbn operon from sbnD onward. Expression of sbnD-I is drastically decreased in an sbnI mutant, and the mutant does not synthesize detectable SB during early phases of growth. Thus, SB-mediated iron acquisition is impaired in an sbnI mutant strain. We show that the protein forms dimers and tetramers in solution and binds to DNA within the sbnC coding region. Moreover, we show that SbnI binds heme and that heme-bound SbnI does not bind DNA. Finally, we show that providing exogenous heme to S. aureus growing in an iron-free medium results in delayed synthesis of SB. This is the first study in S. aureus that identifies a DNA-binding regulatory protein that senses heme to control gene expression for siderophore synthesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. A Heme-responsive Regulator Controls Synthesis of Staphyloferrin B in Staphylococcus aureus*♦

    Laakso, Holly A.; Marolda, Cristina L.; Pinter, Tyler B.; Stillman, Martin J.; Heinrichs, David E.

    2016-01-01

    Staphylococcus aureus possesses a multitude of mechanisms by which it can obtain iron during growth under iron starvation conditions. It expresses an effective heme acquisition system (the iron-regulated surface determinant system), it produces two carboxylate-type siderophores staphyloferrin A and staphyloferrin B (SB), and it expresses transporters for many other siderophores that it does not synthesize. The ferric uptake regulator protein regulates expression of genes encoding all of these systems. Mechanisms of fine-tuning expression of iron-regulated genes, beyond simple iron regulation via ferric uptake regulator, have not been uncovered in this organism. Here, we identify the ninth gene of the sbn operon, sbnI, as encoding a ParB/Spo0J-like protein that is required for expression of genes in the sbn operon from sbnD onward. Expression of sbnD–I is drastically decreased in an sbnI mutant, and the mutant does not synthesize detectable SB during early phases of growth. Thus, SB-mediated iron acquisition is impaired in an sbnI mutant strain. We show that the protein forms dimers and tetramers in solution and binds to DNA within the sbnC coding region. Moreover, we show that SbnI binds heme and that heme-bound SbnI does not bind DNA. Finally, we show that providing exogenous heme to S. aureus growing in an iron-free medium results in delayed synthesis of SB. This is the first study in S. aureus that identifies a DNA-binding regulatory protein that senses heme to control gene expression for siderophore synthesis. PMID:26534960

  13. Genetic Variability of the Heme Uptake System among Different Strains of the Fish Pathogen Vibrio anguillarum: Identification of a New Heme Receptor

    Mouriño, Susana; Rodríguez-Ares, Isabel; Osorio, Carlos R.; Lemos, Manuel L.

    2005-01-01

    The ability to utilize heme compounds as iron sources was investigated in Vibrio anguillarum strains belonging to serotypes O1 to O10. All strains, regardless of their serotype or isolation origin could utilize hemin and hemoglobin as sole iron sources. Similarly, all of the isolates could bind hemin and Congo red, and this binding was mediated by cell envelope proteins. PCR and Southern hybridization were used to assay the occurrence of heme transport genes huvABCD, which have been previously described in serotype O1. Of 23 strains studied, two serotype O3 isolates proved negative for all huvABCD genes, whereas nine strains included in serotypes O2, O3, O4, O6, O7, and O10 tested negative for the outer membrane heme receptor gene huvA. A gene coding for a novel outer membrane heme receptor was cloned and characterized in a V. anguillarum serotype O3 strain lacking huvA. The new heme receptor, named HuvS, showed significant similarity to other outer membrane heme receptors described in Vibrionaceae, but little homology (39%) to HuvA. This heme receptor was present in 9 out of 11 of the V. anguillarum strains that tested negative for HuvA. Furthermore, complementation experiments demonstrated that HuvS could substitute for the HuvA function in Escherichia coli and V. anguillarum mutants. The huvS and huvA sequences alignment, as well as the analysis of their respective upstream and downstream DNA sequences, suggest that horizontal transfer and recombination might be responsible for generating this genetic diversity. PMID:16332832

  14. Phenol degradation catalyzed by a peroxidase mimic constructed through the grafting of heme onto metal-organic frameworks.

    Jiang, Wei; Yang, Jiebing; Wang, Xinghuo; Han, Haobo; Yang, Yan; Tang, Jun; Li, Quanshun

    2018-01-01

    The aim of this work was to construct a peroxidase mimic for achieving the phenol degradation through Fenton reaction. The enzyme mimic was synthesized through the conjugation of heme with the amino group of 2-amino-1,4-benzene dicarboxylate in UiO-66-NH 2 (ZrMOF), namely Heme-ZrMOF. Compared to free heme, the composite Heme-ZrMOF exhibited an obviously enhanced ability for phenol degradation with up to 97.3% of phenol removal after 2h. Meanwhile, it could achieve the easy separation of catalyst from the system and the elimination of iron residues in the process of phenol degradation. Finally, the catalyst Heme-ZrMOF was observed to possess good recyclability in the phenol degradation with still 76.2% of phenol removal after 4 cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Hemoglobin and heme scavenger receptors

    Nielsen, Marianne Jensby; Møller, Holger Jon; Moestrup, Søren Kragh

    2010-01-01

    Heme, the functional group of hemoglobin, myoglobin, and other hemoproteins, is a highly toxic substance when it appears in the extracellular milieu. To circumvent potential harmful effects of heme from hemoproteins released during physiological or pathological cell damage (such as hemolysis...... and rhabdomyolysis), specific high capacity scavenging systems have evolved in the mammalian organism. Two major systems, which essentially function in a similar way by means of a circulating latent plasma carrier protein that upon ligand binding is recognized by a receptor, are represented by a) the hemoglobin...

  16. Unique structure and stability of HmuY, a novel heme-binding protein of Porphyromonas gingivalis.

    Halina Wójtowicz

    2009-05-01

    Full Text Available Infection, survival, and proliferation of pathogenic bacteria in humans depend on their capacity to impair host responses and acquire nutrients in a hostile environment. Among such nutrients is heme, a co-factor for oxygen storage, electron transport, photosynthesis, and redox biochemistry, which is indispensable for life. Porphyromonas gingivalis is the major human bacterial pathogen responsible for severe periodontitis. It recruits heme through HmuY, which sequesters heme from host carriers and delivers it to its cognate outer-membrane transporter, the TonB-dependent receptor HmuR. Here we report that heme binding does not significantly affect the secondary structure of HmuY. The crystal structure of heme-bound HmuY reveals a new all-beta fold mimicking a right hand. The thumb and fingers pinch heme iron through two apical histidine residues, giving rise to highly symmetric octahedral iron co-ordination. The tetrameric quaternary arrangement of the protein found in the crystal structure is consistent with experiments in solution. It shows that thumbs and fingertips, and, by extension, the bound heme groups, are shielded from competing heme-binding proteins from the host. This may also facilitate heme transport to HmuR for internalization. HmuY, both in its apo- and in its heme-bound forms, is resistant to proteolytic digestion by trypsin and the major secreted proteases of P. gingivalis, gingipains K and R. It is also stable against thermal and chemical denaturation. In conclusion, these studies reveal novel molecular properties of HmuY that are consistent with its role as a putative virulence factor during bacterial infection.

  17. Iron-Deficiency Anemia

    Full Text Available ... complications, including heart failure and development delays in children. Explore this Health ... red blood cells. Iron-deficiency anemia usually develops over time because your body’s intake of iron ...

  18. Iron-Deficiency Anemia

    Full Text Available ... and Strategic Vision Leadership Scientific Divisions Operations and Administration Advisory Committees Budget and Legislative Information Jobs and ... blood cells. Iron-deficiency anemia usually develops over time because your body’s intake of iron is too ...

  19. Transmutation of a heme protein.

    Barker, P D; Ferrer, J C; Mylrajan, M; Loehr, T M; Feng, R; Konishi, Y; Funk, W D; MacGillivray, R T; Mauk, A G

    1993-01-01

    Residue Asn57 of bovine liver cytochrome b5 has been replaced with a cysteine residue, and the resulting variant has been isolated from recombinant Escherichia coli as a mixture of four major species: A, BI, BII, and C. A combination of electronic spectroscopy, 1H NMR spectroscopy, resonance Raman spectroscopy, electrospray mass spectrometry, and direct electrochemistry has been used to characterize these four major cytochrome derivatives. The red form A (E(m) = -19 mV) is found to possess a heme group bound covalently through a thioether linkage involving Cys57 and the alpha carbon of the heme 4-vinyl group. Form BI has a covalently bound heme group coupled through a thioether linkage involving the beta carbon of the heme 4-vinyl group. Form BII is similar to BI except that the sulfur involved in the thioether linkage is oxidized to a sulfoxide. The green form C (E(m) = 175 mV) possesses a noncovalently bound prosthetic group with spectroscopic properties characteristic of a chlorin. A mechanism is proposed for the generation of these derivatives, and the implications of these observations for the biosynthesis of cytochrome c and naturally occurring chlorin prosthetic groups are discussed. PMID:8341666

  20. Tyrosine B10 triggers a heme propionate hydrogen bonding network loop with glutamine E7 moiety

    Ramos-Santana, Brenda J.; López-Garriga, Juan

    2012-01-01

    Highlights: ► H-bonding network loop by PheB10Tyr mutation is proposed. ► The propionate group H-bonding network restricted the flexibility of the heme. ► The hydrogen bonding interaction modulates the electron density of the iron. ► Propionate H-bonding network loop explains the heme-ligand stabilization. -- Abstract: Propionates, as peripheral groups of the heme active center in hemeproteins have been described to contribute in the modulation of heme reactivity and ligand selection. These electronic characteristics prompted the question of whether the presence of hydrogen bonding networks between propionates and distal amino acids present in the heme ligand moiety can modulate physiological relevant events, like ligand binding association and dissociation activities. Here, the role of these networks was evaluated by NMR spectroscopy using the hemoglobin I PheB10Tyr mutant from Lucina pectinata as model for TyrB10 and GlnE7 hemeproteins. 1 H-NMR results for the rHbICN PheB10Tyr derivative showed chemical shifts of TyrB10 OHη at 31.00 ppm, GlnE7 N ε1 H/N ε2 H at 10.66 ppm/−3.27 ppm, and PheE11 C δ H at 11.75 ppm, indicating the presence of a crowded, collapsed, and constrained distal pocket. Strong dipolar contacts and inter-residues crosspeaks between GlnE7/6-propionate group, GlnE7/TyrB10 and TyrB10/CN suggest that this hydrogen bonding network loop between GlnE7, TyrB10, 6-propionate group, and the heme ligand contribute significantly to the modulation of the heme iron electron density as well as the ligand stabilization mechanism. Therefore, the network loop presented here support the fact that the electron withdrawing character of the hydrogen bonding is controlled by the interaction of the propionates and the nearby electronic environments contributing to the modulation of the heme electron density state. Thus, we hypothesize that in hemeproteins with similar electrostatic environment the flexibility of the heme-6-propionate promotes a hydrogen

  1. Consumption of cow's milk as a cause of iron deficiency in infants and toddlers.

    Ziegler, Ekhard E

    2011-11-01

    Consumption of cow's milk (CM) by infants and toddlers has adverse effects on their iron stores, a finding that has been well documented in many localities. Several mechanisms have been identified that may contribute to iron deficiency in this young population group. The most important of these is probably the low iron content of CM, which makes it difficult for infants to obtain the amounts of iron needed for growth. A second mechanism is the occult intestinal blood loss associated with CM consumption during infancy, a condition that affects about 40% of otherwise healthy infants. Loss of iron in the form of blood diminishes with age and ceases after the age of 1 year. A third mechanism is the inhibition of non-heme iron absorption by calcium and casein, both of which are present in high amounts in CM. Fortification of CM with iron, as practiced in some countries, can protect infants and toddlers against CM's negative effects on iron status. Consumption of CM produces a high renal solute load, which leads to a higher urine solute concentration than consumption of breast milk or formula, thereby narrowing the margin of safety during dehydrating events, such as diarrhea. The high protein intake from CM may also place infants at increased risk of obesity in later childhood. It is thus recommended that unmodified, unfortified CM not be fed to infants and that it be fed to toddlers in modest amounts only. © 2011 International Life Sciences Institute.

  2. Isoporphyrin Intermediate in Heme Oxygenase Catalysis

    Evans, John P.; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz

    2008-01-01

    Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the α-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin π-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of α-meso-phenylheme-IX, α-meso-(p-methylphenyl)-mesoheme-III, and α-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593–42604), only the α-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced α-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation. PMID:18487208

  3. No changes in heme synthesis in human Friedreich´s ataxia erythroid progenitor cells.

    Steinkellner, Hannes; Singh, Himanshu Narayan; Muckenthaler, Martina U; Goldenberg, Hans; Moganty, Rajeswari R; Scheiber-Mojdehkar, Barbara; Sturm, Brigitte

    2017-07-20

    Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by reduced expression of the protein frataxin. Frataxin is thought to play a role in iron-sulfur cluster biogenesis and heme synthesis. In this study, we used erythroid progenitor stem cells obtained from FRDA patients and healthy donors to investigate the putative role, if any, of frataxin deficiency in heme synthesis. We used electrochemiluminescence and qRT-PCR for frataxin protein and mRNA quantification. We used atomic absorption spectrophotometry for iron levels and a photometric assay for hemoglobin levels. Protoporphyrin IX and Ferrochelatase were analyzed using auto-fluorescence. An "IronChip" microarray analysis followed by a protein-protein interaction analysis was performed. FRDA patient cells showed no significant changes in iron levels, hemoglobin synthesis, protoporphyrin IX levels, and ferrochelatase activity. Microarray analysis presented 11 genes that were significantly changed in all patients compared to controls. The genes are especially involved in oxidative stress, iron homeostasis and angiogenesis. The mystery about the involvement of frataxin on iron metabolism raises the question why frataxin deficiency in primary FRDA cells did not lead to changes in biochemical parameters of heme synthesis. It seems that alternative pathways can circumvent the impact of frataxin deficiency on heme synthesis. We show for the first time in primary FRDA patient cells that reduced frataxin levels are still sufficient for heme synthesis and possibly other mechanisms can overcome reduced frataxin levels in this process. Our data strongly support the fact that so far no anemia in FRDA patients was reported. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Identification of the heme acquisition system in Vibrio vulnificus M2799.

    Kawano, Hiroaki; Miyamoto, Katsushiro; Yasunobe, Megumi; Murata, Masahiro; Yamahata, Eri; Yamaguchi, Ryo; Miyaki, Yuta; Tsuchiya, Takahiro; Tanabe, Tomotaka; Funahashi, Tatsuya; Tsujibo, Hiroshi

    2018-04-01

    Vibrio vulnificus, the causative agent of serious, often fatal, infections in humans, requires iron for its pathogenesis. As such, it obtains iron via both vulnibactin and heme-mediated iron-uptake systems. In this study, we identified the heme acquisition system in V. vulnificus M2799. The nucleotide sequences of the genes encoding heme receptors HupA and HvtA and the ATP-binding cassette (ABC) transport system proteins HupB, HupC, and HupD were determined, and then used in the construction of deletion mutants developed from a Δics strain, which could not synthesize vulnibactin. Growth experiments using these mutants indicated that HupA and HvtA are major and minor heme receptors, respectively. The expressions of two proteins were analyzed by the quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Furthermore, complementation analyses confirmed that the HupBCD proteins are the only ABC transport system shared by both the HupA and HvtA receptors. This is the first genetic evidence that the HupBCD proteins are essential for heme acquisition by V. vulnificus. Further investigation showed that hupA, hvtA, and hupBCD are regulated by Fur. The qRT-PCR analysis of the heme receptor genes revealed that HupR, a LysR-family positive transcriptional activator, upregulates the expression of hupA, but not hvtA. In addition, ptrB was co-transcribed with hvtA, and PtrB had no influence on growth in low-iron CM9 medium supplemented with hemin, hemoglobin, or cytochrome C. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Analysis of ambient pH stress response mediated by iron and copper intake in Schizosaccharomyces pombe.

    Higuchi, Yujiro; Mori, Hikari; Kubota, Takeo; Takegawa, Kaoru

    2018-01-01

    The molecular mechanism of tolerance to alkaline pH is well studied in model fungi Aspergillus nidulans and Saccharomyces cerevisiae. However, how fission yeast Schizosaccharomyces pombe survives under alkaline stress remains largely unknown, as the genes involved in the alkaline stress response pathways of A. nidulans and S. cerevisiae were not found in the genome of this organism. Since uptake of iron and copper into cells is important for alkaline tolerance in S. cerevisiae, here we examined whether iron and copper uptake processes were involved in conferring tolerance to alkaline stress in S. pombe. We first revealed that S. pombe wild-type strain could not grow at a pH higher than 6.7. We further found that the growths of mutants harboring disruption in the iron uptake-related gene frp1 + , fio1 + or fip1 + were severely inhibited under ambient pH stress condition. In contrast, derepression of these genes, by deletion of their repressor gene fep1 + , caused cells to acquire resistance to pH stress. Together, these results suggested that uptake of iron is essential for ambient pH tolerance in S. pombe. We also found that copper is required for the pH stress response because disruptants of ctr4 + , ctr5 + , ccc2 + and cuf1 + genes, all of which are needed for regulating intracellular Cu + , displayed ambient pH sensitivity. Furthermore, supplementing Fe 2+ and Cu 2+ ions to the culture media improved growth under ambient pH stress. Taken together, our results suggested that uptake of iron and copper is the crucial factor needed for the adaptation of S. pombe to ambient pH stress. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Heme oxygenase-1 deletion affects stress erythropoiesis.

    Yu-An Cao

    Full Text Available Homeostatic erythropoiesis leads to the formation of mature red blood cells under non-stress conditions, and the production of new erythrocytes occurs as the need arises. In response to environmental stimuli, such as bone marrow transplantation, myelosuppression, or anemia, erythroid progenitors proliferate rapidly in a process referred to as stress erythropoiesis. We have previously demonstrated that heme oxygenase-1 (HO-1 deficiency leads to disrupted stress hematopoiesis. Here, we describe the specific effects of HO-1 deficiency on stress erythropoiesis.We used a transplant model to induce stress conditions. In irradiated recipients that received hmox(+/- or hmox(+/+ bone marrow cells, we evaluated (i the erythrocyte parameters in the peripheral blood; (ii the staining intensity of CD71-, Ter119-, and CD49d-specific surface markers during erythroblast differentiation; (iii the patterns of histological iron staining; and (iv the number of Mac-1(+-cells expressing TNF-α. In the spleens of mice that received hmox(+/- cells, we show (i decreases in the proerythroblast, basophilic, and polychromatophilic erythroblast populations; (ii increases in the insoluble iron levels and decreases in the soluble iron levels; (iii increased numbers of Mac-1(+-cells expressing TNF-α; and (iv decreased levels of CD49d expression in the basophilic and polychromatophilic erythroblast populations.As reflected by effects on secreted and cell surface proteins, HO-1 deletion likely affects stress erythropoiesis through the retention of erythroblasts in the erythroblastic islands of the spleen. Thus, HO-1 may serve as a therapeutic target for controlling erythropoiesis, and the dysregulation of HO-1 may be a predisposing condition for hematologic diseases.

  7. Contribution of meat to vitamin B₁₂, iron and zinc intakes in five ethnic groups in the USA: implications for developing food-based dietary guidelines.

    Sharma, S; Sheehy, T; Kolonel, L N

    2013-04-01

    To describe the sources of meat and their contributions to vitamin B₁₂, iron and zinc in five ethnic groups in the USA. Dietary data for the Multiethnic Cohort, established in Hawaii and Los Angeles, were collected using a quantitative food frequency questionnaire from more than 215,000 subjects, aged 45-75 years at baseline (1993-1996). Participants included African American, Latino, Japanese American, Native Hawaiian and Caucasian men and women. Servings of meat items were calculated based on the US Department of Agriculture recommendations and their contributions to intakes of total meat, red meat, vitamin B₁₂, iron and zinc were determined. Of all types of meat, poultry contributed the most to meat consumption, followed by red meat and fish among all ethnicities, except for Latino (born in Mexico and Central/South America) men who consumed more beef. Lean beef was the most commonly consumed red meat for all ethnic-sex groups (9.3-14.3%), except for Native Hawaiian and Japanese American men, and Japanese American women whose top contributor was stew/curry with beef/lamb and stir-fried beef/pork with vegetables, respectively. The contribution of meat was most substantial for zinc (11.1-29.3%) and vitamin B₁₂ (19.7-40%) and, to a lesser extent, for iron (4.3-14.2%). This is the first large multiethnic cohort study to describe meat sources and their contributions to selected nutrients among ethnic minorities in the USA. These findings may be used to develop ethnic-specific recommendations for meat consumption aiming to improve dietary quality among these groups. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  8. Contribution of meat to vitamin B-12, iron, and zinc intakes in five ethnic groups in the U.S.: Implications for developing food-based dietary guidelines

    Sharma, Sangita; Sheehy, Tony; Kolonel, Laurence N

    2016-01-01

    Background To describe the sources of meat and their contributions to vitamin B-12, iron, and zinc in five ethnic groups in the USA. Methods Dietary data for the Multiethnic Cohort, established in Hawaii and Los Angeles, were collected using a quantitative food frequency questionnaire from more than 215,000 subjects aged 45–75 years at baseline (1993–1996). Participants included African American, Latino, Japanese American (JpAm), Native Hawaiian (NH) and Caucasian men and women. Servings of meat items were calculated based on the USDA recommendations and their contributions to intakes of total meat, red meat, vitamin B-12, iron, and zinc were determined. Results Of all types of meat, poultry contributed the most to meat consumption, followed by red meat and fish among all ethnicities, except for Latino (born in Mexico and Central/South America) men who consumed more beef. Lean beef was the most commonly consumed red meat for all ethnic-sex groups (9.3–14.3%), except for NH and JpAm men, and JpAm women whose top contributor was stew/curry with beef/lamb and stir-fried beef/pork with vegetables respectively. The contribution of meat was most substantial for zinc (11.1–29.3%) and vitamin B-12 (19.7–40%), and to a lesser extent for iron (4.3–14.2%). Conclusions This is the first large multiethnic cohort study to describe meat sources and their contributions to selected nutrients among ethnic minorities in the U.S. These findings may be used to develop ethnic-specific recommendations for meat consumption to improve dietary quality among these groups. PMID:23398393

  9. Regiospecificity determinants of human heme oxygenase: differential NADPH- and ascorbate-dependent heme cleavage by the R183E mutant.

    Wang, Jinling; Lad, Latesh; Poulos, Thomas L; Ortiz de Montellano, Paul R

    2005-01-28

    The ability of the human heme oxygenase-1 (hHO-1) R183E mutant to oxidize heme in reactions supported by either NADPH-cytochrome P450 reductase or ascorbic acid has been compared. The NADPH-dependent reaction, like that of wild-type hHO-1, yields exclusively biliverdin IXalpha. In contrast, the R183E mutant with ascorbic acid as the reductant produces biliverdin IXalpha (79 +/- 4%), IXdelta (19 +/- 3%), and a trace of IXbeta. In the presence of superoxide dismutase and catalase, the yield of biliverdin IXdelta is decreased to 8 +/- 1% with a corresponding increase in biliverdin IXalpha. Spectroscopic analysis of the NADPH-dependent reaction shows that the R183E ferric biliverdin complex accumulates, because reduction of the iron, which is required for sequential iron and biliverdin release, is impaired. Reversal of the charge at position 183 makes reduction of the iron more difficult. The crystal structure of the R183E mutant, determined in the ferric and ferrous-NO bound forms, shows that the heme primarily adopts the same orientation as in wild-type hHO-1. The structure of the Fe(II).NO complex suggests that an altered active site hydrogen bonding network supports catalysis in the R183E mutant. Furthermore, Arg-183 contributes to the regiospecificity of the wild-type enzyme, but its contribution is not critical. The results indicate that the ascorbate-dependent reaction is subject to a lower degree of regiochemical control than the NADPH-dependent reaction. Ascorbate may be able to reduce the R183E ferric and ferrous dioxygen complexes in active site conformations that cannot be reduced by NADPH-cytochrome P450 reductase.

  10. Nitric oxide heme interactions in nitrophorin from Cimex lectularius

    Christmann, R.; Auerbach, H., E-mail: auerbach@physik.uni-kl.de [University of Kaiserslautern, Department of Physics (Germany); Berry, R. E.; Walker, F. A. [The University of Arizona, Department of Chemistry and Biochemistry (United States); Schünemann, V. [University of Kaiserslautern, Department of Physics (Germany)

    2016-12-15

    The nitrophorin from the bedbug Cimex lectularius (cNP) is a nitric oxide (NO) carrying protein. Like the nitrophorins (rNPs) from the kissing bug Rhodnius prolixus, cNP forms a stable heme Fe(III)-NO complex, where the NO can be stored reversibly for a long period of time. In both cases, the NPs are found in the salivary glands of blood-sucking bugs. The insects use the nitrophorins to transport the NO to the victim’s tissues, resulting in vasodilation and reduced blood coagulation. However, the structure of cNP is significantly different to those of the rNPs from Rhodnius prolixus. Furthermore, the cNP can bind a second NO molecule to the proximal heme cysteine when present at higher concentrations. High field Mössbauer spectroscopy on {sup 57}Fe enriched cNP complexed with NO shows reduction of the heme iron and formation of a ferrous nitric oxide (Fe(II)-NO) complex. Density functional theory calculations reproduce the experimental Mössbauer parameters and confirm this observation.

  11. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product.

    Dailey, Harry A; Dailey, Tamara A; Gerdes, Svetlana; Jahn, Dieter; Jahn, Martina; O'Brian, Mark R; Warren, Martin J

    2017-03-01

    The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized. Copyright © 2017 American Society for Microbiology.

  12. Interaction of nitric oxide with human heme oxygenase-1.

    Wang, Jinling; Lu, Shen; Moënne-Loccoz, Pierre; Ortiz de Montellano, Paul R

    2003-01-24

    NO and CO may complement each other as signaling molecules in some physiological situations. We have examined the binding of NO to human heme oxygenase-1 (hHO-1), an enzyme that oxidizes heme to biliverdin, CO, and free iron, to determine whether inhibition of hHO-1 by NO can contribute to the signaling interplay of NO and CO. An Fe(3+)-NO hHO-1-heme complex is formed with NO or the NO donors NOC9 or 2-(N,N-diethylamino)-diazenolate-2-oxide.sodium salt. Resonance Raman spectroscopy shows that ferric hHO-1-heme forms a 6-coordinated, low spin complex with NO. The nu(N-O) vibration of this complex detected by Fourier transform IR is only 4 cm(-1) lower than that of the corresponding metmyoglobin (met-Mb) complex but is broader, suggesting a greater degree of ligand conformational freedom. The Fe(3+)-NO complex of hHO-1 is much more stable than that of met-Mb. Stopped-flow studies indicate that k(on) for formation of the hHO-1-heme Fe(3+)-NO complex is approximately 50-times faster, and k(off) 10 times slower, than for met-Mb, resulting in K(d) = 1.4 microm for NO. NO thus binds 500-fold more tightly to ferric hHO-1-heme than to met-Mb. The hHO-1 mutations E29A, G139A, D140A, S142A, G143A, G143F, and K179A/R183A do not significantly diminish the tight binding of NO, indicating that NO binding is not highly sensitive to mutations of residues that normally stabilize the distal water ligand. As expected from the K(d) value, the enzyme is reversibly inhibited upon exposure to pathologically, and possibly physiologically, relevant concentrations of NO. Inhibition of hHO-1 by NO may contribute to the pleiotropic responses to NO and CO.

  13. Formation of nitrosyl non-heme iron-sulphur complexes of a mitrochondria electron-transport chain in a liver and kidneys under prolonged permanent action of radiation contamination in the Chernobyl region

    Sidorik, E.P.; Burlaka, A.P.; Druzhina, N.A.

    1995-01-01

    No-complexes with iron-sulfur protein of the N-type (EPR signal g=2.03 at 77 K) have been revealed in a mitochondria electron transport chain in a liver and kidneys of animals which were hold for 1.5 years in the Chernobyl area under action of low intensity ionizing radiation as a result of incorporated radionuclides. These alterations in protein give evidence of changes in oxidation and phosphorylation in tissues

  14. Heme Oxygenase-1 and breast cancer resistance protein protect against heme-induced toxicity

    Wagener, Frank A D T G; Dankers, Anita C A; van Summeren, Frank; Scharstuhl, Alwin; van den Heuvel, Jeroen J M W; Koenderink, Jan B; Pennings, Sebastiaan W C; Russel, Frans G M; Masereeuw, R.

    2013-01-01

    Heme is the functional group of diverse hemoproteins and crucial for many cellular processes. However, heme is increasingly recognized as a culprit for a wide variety of pathologies, including sepsis, malaria, and kidney failure. Excess of free heme can be detrimental to tissues by mediating

  15. Red meat consumption and risk of cardiovascular diseases-is increased iron load a possible link?

    Quintana Pacheco, Daniel A; Sookthai, Disorn; Wittenbecher, Clemens; Graf, Mirja E; Schübel, Ruth; Johnson, Theron; Katzke, Verena; Jakszyn, Paula; Kaaks, Rudolf; Kühn, Tilman

    2018-01-01

    High iron load and red meat consumption could increase the risk of cardiovascular diseases (CVDs). As red meat is the main source of heme iron, which is in turn a major determinant of increased iron load, adverse cardiometabolic effects of meat consumption could be mediated by increased iron load. The object of the study was to assess whether associations between red meat consumption and CVD risk are mediated by iron load in a population-based human study. We evaluated relations between red meat consumption, iron load (plasma ferritin), and risk of CVD in the prospective EPIC-Heidelberg Study using a case-cohort sample including a random subcohort (n = 2738) and incident cases of myocardial infarction (MI, n = 555), stroke (n = 513), and CVD mortality (n = 381). Following a 4-step mediation analysis, associations between red meat consumption and iron load, red meat consumption and CVD risk, and iron load and CVD risk were assessed by multivariable regression models before finally testing to which degree associations between red meat consumption and CVD risk were attenuated by adjustment for iron status. Red meat consumption was significantly positively associated with ferritin concentrations and MI risk [HR per 50 g daily intake: 1.18 (95% CI: 1.05, 1.33)], but no significant associations with stroke risk and CVD mortality were observed. While direct associations between ferritin concentrations and MI risk as well as CVD mortality were significant in age- and sex-adjusted Cox regression models, these associations were substantially attenuated and no longer significant after multivariable adjustment for classical CVD risk factors. Strikingly, ferritin concentrations were positively associated with a majority of classical CVD risk factors (age, male sex, alcohol intake, obesity, inflammation, and lower education). Increased ferritin concentrations may be a marker of an overall unfavorable risk factor profile rather than a mediator of greater CVD risk due to meat

  16. Micronutrient Status and Dietary Intake of Iron, Vitamin A, Iodine, Folate and Zinc in Women of Reproductive Age and Pregnant Women in Ethiopia, Kenya, Nigeria and South Africa: A Systematic Review of Data from 2005 to 2015

    Rajwinder Harika

    2017-10-01

    Full Text Available A systematic review was conducted to evaluate the status and intake of iron, vitamin A, iodine, folate and zinc in women of reproductive age (WRA (≥15–49 years and pregnant women (PW in Ethiopia, Kenya, Nigeria and South Africa. National and subnational data published between 2005 and 2015 were searched via Medline, Scopus and national public health websites. Per micronutrient, relevant data were pooled into an average prevalence of deficiency, weighted by sample size (WAVG. Inadequate intakes were estimated from mean (SD intakes. This review included 65 surveys and studies from Ethiopia (21, Kenya (11, Nigeria (21 and South Africa (12. In WRA, WAVG prevalence of anaemia ranged from 18–51%, iron deficiency 9–18%, and iron deficiency anaemia at 10%. In PW, the prevalence was higher, and ranged from 32–62%, 19–61%, and 9–47%, respectively. In WRA, prevalence of vitamin A, iodine, zinc and folate deficiencies ranged from 4–22%, 22–55%, 34% and 46%, while in PW these ranged from 21–48%, 87%, 46–76% and 3–12% respectively. Inadequate intakes of these micronutrients are high and corresponded with the prevalence figures. Our findings indicate that nationally representative data are needed to guide the development of nutrition interventions and public health programs, such as dietary diversification, micronutrient fortification and supplementation.

  17. A Heme Oxygenase-1 Transducer Model of Degenerative and Developmental Brain Disorders

    Hyman M. Schipper

    2015-03-01

    Full Text Available Heme oxygenase-1 (HO-1 is a 32 kDa protein which catalyzes the breakdown of heme to free iron, carbon monoxide and biliverdin. The Hmox1 promoter contains numerous consensus sequences that render the gene exquisitely sensitive to induction by diverse pro-oxidant and inflammatory stimuli. In “stressed” astroglia, HO-1 hyperactivity promotes mitochondrial iron sequestration and macroautophagy and may thereby contribute to the pathological iron deposition and bioenergetic failure documented in Alzheimer disease, Parkinson disease and certain neurodevelopmental conditions. Glial HO-1 expression may also impact neuroplasticity and cell survival by modulating brain sterol metabolism and the proteasomal degradation of neurotoxic proteins. The glial HO-1 response may represent a pivotal transducer of noxious environmental and endogenous stressors into patterns of neural damage and repair characteristic of many human degenerative and developmental CNS disorders.

  18. Prevalence of daily breakfast intake, iron deficiency anaemia and awareness of being anaemic among Saudi school students.

    Abalkhail, Bahaa; Shawky, Sherine

    2002-11-01

    Iron deficiency anaemia is one of most prevalent nutritional disorders worldwide. It is known to affect the health and cognitive ability of children and adolescents. Studies in Saudi Arabia concentrate only on the population of young children and pregnant females or girls. Studies on the whole school student population is lacking. The objectives of this study were to identify the nutritional habits and the prevalence of anaemia among school students in Jeddah, as well as to recognize the students' awareness of their anaemic nutritional status. Data were collected from a sample of Saudi school children in Jeddah City from 42 boys' and 42 girls' schools during the month of April 2000. Data collection was done by an in-person interview to collect socio-demographic factors, nutritional habits, weight and height. Haemoglobin was measured in a sample of 800 students selected at random from both genders and different age groups. Anaemia was defined according to the new WHO cut-off levels for haemoglobin as: blood haemoglobin breakfast was reported by 14.9% of students and this habit did not differ by age, sex, body mass index or social class. Skipping breakfast was more marked among students with poor school performance as compared to those with very good or excellent results. Only 34.1% of anaemic school students were aware of being anaemic. Awareness was nearly equal in all age groups and social classes but girls were more aware of their anaemic status than boys. Iron deficiency anaemia appears to be prevalent among school students. At age 12 years and over, low social class and menstruating girls constitute the high-risk groups. Screening is recommended for high-risk groups and school health programs are crucial to improve students' nutritional habits, knowledge and awareness.

  19. Host heme oxygenase-1: Friend or foe in tackling pathogens?

    Singh, Nisha; Ahmad, Zeeshan; Baid, Navin; Kumar, Ashwani

    2018-05-14

    Infectious diseases are a major challenge in management of human health worldwide. Recent literature suggests that host immune system could be modulated to ameliorate the pathogenesis of infectious disease. Heme oxygenase (HMOX1) is a key regulator of cellular signaling and it could be modulated using pharmacological reagents. HMOX1 is a cytoprotective enzyme that degrades heme to generate carbon monoxide (CO), biliverdin, and molecular iron. CO and biliverdin (or bilirubin derived from it) can restrict the growth of a few pathogens. Both of these also induce antioxidant pathways and anti-inflammatory pathways. On the other hand, molecular iron can induce proinflammatory pathway besides making the cellular environment oxidative in nature. Since microbial infections often induce oxidative stress in host cells/tissues, role of HMOX1 has been analyzed in the pathogenesis of number of infections. In this review, we have described the role of HMOX1 in pathogenesis of bacterial infections caused by Mycobacterium species, Salmonella and in microbial sepsis. We have also provided a succinct overview of the role of HMOX1 in parasitic infections such as malaria and leishmaniasis. In the end, we have also elaborated the role of HMOX1 in viral infections such as AIDS, hepatitis, dengue, and influenza. © 2018 IUBMB Life, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  20. Iron-Deficiency Anemia

    Full Text Available ... blood cells. Iron-deficiency anemia usually develops over time because your body’s intake of iron is too ... clamping of your newborn’s umbilical cord at the time of delivery. This may help prevent iron-deficiency ...

  1. Iron-Deficiency Anemia

    Full Text Available ... severity of the condition. Your doctor may recommend healthy eating changes, iron supplements, intravenous iron therapy for mild ... you: Adopt healthy lifestyle changes such as heart-healthy eating patterns. Increase your daily intake of iron-rich ...

  2. Iron-Deficiency Anemia

    Full Text Available ... normally stores but has used up. Increase your intake of vitamin C to help your body absorb iron. Avoid drinking black tea, which reduces iron absorption. Other treatments If you have chronic kidney disease and iron-deficiency anemia, your doctor may recommend ...

  3. The Effect of Low Dose Iron and Zinc Intake on Child Micronutrient Status and Development during the First 1000 Days of Life: A Systematic Review and Meta-Analysis

    Nicolai Petry

    2016-11-01

    Full Text Available Adequate supply of micronutrients during the first 1000 days is essential for normal development and healthy life. We aimed to investigate if interventions administering dietary doses up to the recommended nutrient intake (RNI of iron and zinc within the window from conception to age 2 years have the potential to influence nutritional status and development of children. To address this objective, a systematic review and meta-analysis of randomized and quasi-randomized fortification, biofortification, and supplementation trials in women (pregnant and lactating and children (6–23 months delivering iron or zinc in doses up to the recommended nutrient intake (RNI levels was conducted. Supplying iron or zinc during pregnancy had no effects on birth outcomes. There were limited or no data on the effects of iron/zinc during pregnancy and lactation on child iron/zinc status, growth, morbidity, and psychomotor and mental development. Delivering up to 15 mg iron/day during infancy increased mean hemoglobin by 4 g/L (p < 0.001 and mean serum ferritin concentration by 17.6 µg/L (p < 0.001 and reduced the risk for anemia by 41% (p < 0.001, iron deficiency by 78% (ID; p < 0.001 and iron deficiency anemia by 80% (IDA; p < 0.001, but had no effect on growth or psychomotor development. Providing up to 10 mg of additional zinc during infancy increased plasma zinc concentration by 2.03 µmol/L (p < 0.001 and reduced the risk of zinc deficiency by 47% (p < 0.001. Further, we observed positive effects on child weight for age z-score (WAZ (p < 0.05, weight for height z-score (WHZ (p < 0.05, but not on height for age z-score (HAZ or the risk for stunting, wasting, and underweight. There are no studies covering the full 1000 days window and the effects of iron and zinc delivered during pregnancy and lactation on child outcomes are ambiguous, but low dose daily iron and zinc use during 6–23 months of age has a positive effect on child iron and zinc status.

  4. Characterization of Heme Proteins Involved in Microbial Exoelectric Activity and Small Molecule-Sensing

    Vogler, Malvina M.

    2018-01-01

    Heme proteins, also termed cytochromes, are a widespread class of metalloproteins containing an Fe-protoporphyrin IX cofactor. They perform numerous functions in nature such as oxygen-transport by hemoglobin, monooxygenation reactions catalyzed by Cytochrome P-450, and electron transfer reactions during photosynthesis. The differences between proteincofactor binding characteristics and the cofactor environment greatly influence the extensive range of functions. In this dissertation, proteins from the Mtr pathway of Shewanella oneidensis are characterized. These c-type cytochromes contain multiple heme cofactors per protein molecule that covalently attach to the protein amino acid sequence and are involved in electron transfer to extracellular metal oxides during anaerobic conditions. Successful recombinant expression of pathway components MtrC and MtrA is achieved in Escherichia coli. Heme-dependent gel staining and UV/Vis spectroscopy show characteristic c-type cytochrome characteristics. Mass spectrometry confirms that the correct extensive post-translational modifications were performed and the ten heme groups were incorporated per protein of MtrC and MtrA and the correct lipid-anchor was attached to extracellular MtrC. Raman spectroscopy measurements of MtrA provide intriguing structural information and highlight the strong influence of the heme cofactors within the protein structure. Next, an Arabidopsis thaliana protein is analyzed. It was previously identified via a motif search of the plant genome, based on conserved residues in the H4 NOX pocket. Here, the incorporation of a heme b cofactor is confirmed. UV/Vis spectroscopy under anaerobic conditions demonstrates reversible binding of nitric oxide to the heme iron and depicts the previously published characteristic absorption maxima for other H-NOX proteins.

  5. Histidine at Position 195 is Essential for Association of Heme- b in Lcp1VH2

    Oetermann, Sylvia; Vivod, Robin; Hiessl, Sebastian; Hogeback, Jens; Holtkamp, Michael; Karst, Uwe; Steinbüchel, Alexander

    2018-05-01

    The latex clearing protein (Lcp) is the key enzyme of polyisoprene degradation in actinomycetes (Yikmis and Steinbüchel in Appl Environ Microbiol 78:4543-4551, https://doi.org/10.1128/AEM.00001-12 , 2012). In this study it was shown that Lcp from Gordonia polyisoprenivorans VH2 (Lcp1VH2) harbors a non-covalently bound heme b as cofactor, which was identified by pyridine hemochrome spectra and confirmed by LC/ESI-ToF-MS. It contains iron, most likely in the Fe3+ state. We focused on the characterization of the heme-cofactor, its accessibility with respect to the conformation of Lcp1VH2, and the identification of putative histidine residues involved in the coordination of heme. A change was detectable in UV/Vis-spectra of reduced Lcp1VH2 when imidazole was added, showing that Lcp1VH2 "as isolated" occurs in an open state, directly being accessible for external ligands. In addition, three highly conserved histidines (H195, H200 and H228), presumably acting as ligands coordinating the heme within the heme pocket, were replaced with alanines by site-directed mutagenesis. The effect of these changes on in vivo rubber-mineralization was investigated. The lcp- deletion mutant complemented with the H195A variant of lcp1 VH2 was unable to mineralize poly( cis-1,4-isoprene). In vitro analyses of purified, recombinant Lcp1VH2H195A confirmed the loss of enzyme activity, which could be ascribed to the loss of heme. Hence, H195 is essential for the association of heme- b in the central region of Lcp1VH2.

  6. Clinically Important Features of Porphyrin and Heme Metabolism and the Porphyrias

    Siddesh Besur

    2014-11-01

    Full Text Available Heme, like chlorophyll, is a primordial molecule and is one of the fundamental pigments of life. Disorders of normal heme synthesis may cause human diseases, including certain anemias (X-linked sideroblastic anemias and porphyrias. Porphyrias are classified as hepatic and erythropoietic porphyrias based on the organ system in which heme precursors (5-aminolevulinic acid (ALA, porphobilinogen and porphyrins are chiefly overproduced. The hepatic porphyrias are further subdivided into acute porphyrias and chronic hepatic porphyrias. The acute porphyrias include acute intermittent, hereditary copro-, variegate and ALA dehydratase deficiency porphyria. Chronic hepatic porphyrias include porphyria cutanea tarda and hepatoerythropoietic porphyria. The erythropoietic porphyrias include congenital erythropoietic porphyria (Gűnther’s disease and erythropoietic protoporphyria. In this review, we summarize the key features of normal heme synthesis and its differing regulation in liver versus bone marrow. In both organs, principal regulation is exerted at the level of the first and rate-controlling enzyme, but by different molecules (heme in the liver and iron in the bone marrow. We also describe salient clinical, laboratory and genetic features of the eight types of porphyria.

  7. IRON BIOAVAILABILITY IN CAMEROON WEANING FOODS AND ...

    Dialyzable iron value were enhanced with lime juice and significantly reduced by legumes (beans, soy bean, and groundnut), egg and egg yolk. Irish potatoes based diets were the best sources of dialyzable iron. Iron intakes were sufficient for most balanced diets to cover the recommended daily intakes of iron for children ...

  8. Radioisotope investigation of iron absorption in humans. Part of a WHO/IAEA coordinated programme on iron nutrition

    Bothwell, T.H.

    1975-08-01

    The gastrointestinal absorption of iron was investigated in a number of multiparous women living under low socio-economic conditions which are known to lead commonly to iron deficiency. The percentage absorption was deduced by comparing the concentration of 55 Fe and/or 59 Fe in blood with the activity of the corresponding isotope(s) administered orally about two weeks earlier. It was confirmed or established that: (1) food or supplemental iron, if available at all, tends to be absorbed from the intestines as if present there in one of two alternative pools: heme and non-heme, (2) vitamin C substantially increases absorption of food or supplemental non-heme iron, (3) it is technically possible to use common salt or sugar as a carrier for supplemental iron and vitamin C, but practical difficulties of using such systems in a public health prophylactic programme are severe, and (4) tea, presumably because of its tannin content, inhibits absorption of accompanying iron

  9. The induction of two biosynthetic enzymes helps Escherichia coli sustain heme synthesis and activate catalase during hydrogen peroxide stress.

    Mancini, Stefano; Imlay, James A

    2015-05-01

    Hydrogen peroxide pervades many natural environments, including the phagosomes that mediate cell-based immunity. Transcriptomic analysis showed that during protracted low-grade H(2)O(2) stress, Escherichia coli responds by activating both the OxyR defensive regulon and the Fur iron-starvation response. OxyR induced synthesis of two members of the nine-step heme biosynthetic pathway: ferrochelatase (HemH) and an isozyme of coproporphyrinogen III oxidase (HemF). Mutations that blocked either adaptation caused the accumulation of porphyrin intermediates, inadequate activation of heme enzymes, low catalase activity, defective clearance of H(2)O(2) and a failure to grow. Genetic analysis indicated that HemH induction is needed to compensate for iron sequestration by the mini-ferritin Dps. Dps activity protects DNA and proteins by limiting Fenton chemistry, but it interferes with the ability of HemH to acquire the iron that it needs to complete heme synthesis. HemF is a manganoprotein that displaces HemN, an iron-sulfur enzyme whose synthesis and/or stability is apparently problematic during H(2)O(2) stress. Thus, the primary responses to H(2)O(2), including the sequestration of iron, require compensatory adjustments in the mechanisms of iron-cofactor synthesis. The results support the growing evidence that oxidative stress is primarily an iron pathology. © 2015 John Wiley & Sons Ltd.

  10. Lack of Plasma Protein Hemopexin Results in Increased Duodenal Iron Uptake.

    Fiorito, Veronica; Geninatti Crich, Simonetta; Silengo, Lorenzo; Aime, Silvio; Altruda, Fiorella; Tolosano, Emanuela

    2013-01-01

    The body concentration of iron is regulated by a fine equilibrium between absorption and losses of iron. Iron can be absorbed from diet as inorganic iron or as heme. Hemopexin is an acute phase protein that limits iron access to microorganisms. Moreover, it is the plasma protein with the highest binding affinity for heme and thus it mediates heme-iron recycling. Considering its involvement in iron homeostasis, it was postulated that hemopexin may play a role in the physiological absorption of inorganic iron. Hemopexin-null mice showed elevated iron deposits in enterocytes, associated with higher duodenal H-Ferritin levels and a significant increase in duodenal expression and activity of heme oxygenase. The expression of heme-iron and inorganic iron transporters was normal. The rate of iron absorption was assessed by measuring the amount of (57)Fe retained in tissues from hemopexin-null and wild-type animals after administration of an oral dose of (57)FeSO4 or of (57)Fe-labelled heme. Higher iron retention in the duodenum of hemopexin-null mice was observed as compared with normal mice. Conversely, iron transfer from enterocytes to liver and bone marrow was unaffected in hemopexin-null mice. The increased iron level in hemopexin-null duodenum can be accounted for by an increased iron uptake by enterocytes and storage in ferritins. These data indicate that the lack of hemopexin under physiological conditions leads to an enhanced duodenal iron uptake thus providing new insights to our understanding of body iron homeostasis.

  11. A rapid, simple method for obtaining radiochemically pure hepatic heme

    Bonkowski, H.L.; Bement, W.J.; Erny, R.

    1978-01-01

    Radioactively-labelled heme has usually been isolated from liver to which unlabelled carrier has been added by long, laborious techniques involving organic solvent extraction followed by crystallization. A simpler, rapid method is devised for obtaining radiochemically-pure heme synthesized in vivo in rat liver from delta-amino[4- 14 C]levulinate. This method, in which the heme is extracted into ethyl acetate/glacial acetic acid and in which porphyrins are removed from the heme-containing organic phase with HCl washes, does not require addition of carrier heme. The new method gives better heme recoveries than and heme specific activities identical to, those obtained using the crystallization method. In this new method heme must be synthesized from delta-amino[4- 14 C]levulinate; it is not satisfactory to use [2- 14 C]glycine substrate because non-heme counts are isolated in the heme fraction. (Auth.)

  12. Plasma protein haptoglobin modulates renal iron loading

    Fagoonee, Sharmila; Gburek, Jakub; Hirsch, Emilio

    2005-01-01

    Haptoglobin is the plasma protein with the highest binding affinity for hemoglobin. The strength of hemoglobin binding and the existence of a specific receptor for the haptoglobin-hemoglobin complex in the monocyte/macrophage system clearly suggest that haptoglobin may have a crucial role in heme...... distribution of hemoglobin in haptoglobin-deficient mice resulted in abnormal iron deposits in proximal tubules during aging. Moreover, iron also accumulated in proximal tubules after renal ischemia-reperfusion injury or after an acute plasma heme-protein overload caused by muscle injury, without affecting...... morphological and functional parameters of renal damage. These data demonstrate that haptoglobin crucially prevents glomerular filtration of hemoglobin and, consequently, renal iron loading during aging and following acute plasma heme-protein overload....

  13. Heme environment in HmuY, the heme-binding protein of Porphyromonas gingivalis

    Wojtowicz, Halina; Wojaczynski, Jacek; Olczak, Mariusz; Kroliczewski, Jaroslaw; Latos-Grazynski, Lechoslaw; Olczak, Teresa

    2009-01-01

    Porphyromonas gingivalis, a Gram-negative anaerobic bacterium implicated in the development and progression of chronic periodontitis, acquires heme for growth by a novel mechanism composed of HmuY and HmuR proteins. The aim of this study was to characterize the nature of heme binding to HmuY. The protein was expressed, purified and detailed investigations using UV-vis absorption, CD, MCD, and 1 H NMR spectroscopy were carried out. Ferric heme bound to HmuY may be reduced by sodium dithionite and re-oxidized by potassium ferricyanide. Heme complexed to HmuY, with a midpoint potential of 136 mV, is in a low-spin Fe(III) hexa-coordinate environment. Analysis of heme binding to several single and double HmuY mutants with the methionine, histidine, cysteine, or tyrosine residues replaced by an alanine residue identified histidines 134 and 166 as potential heme ligands.

  14. Heme environment in HmuY, the heme-binding protein of Porphyromonas gingivalis

    Wojtowicz, Halina [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland); Wojaczynski, Jacek [Department of Chemistry, University of Wroclaw, 50-383 Wroclaw (Poland); Olczak, Mariusz [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland); Kroliczewski, Jaroslaw [Laboratory of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-148 Wroclaw (Poland); Latos-Grazynski, Lechoslaw [Department of Chemistry, University of Wroclaw, 50-383 Wroclaw (Poland); Olczak, Teresa [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland)

    2009-05-29

    Porphyromonas gingivalis, a Gram-negative anaerobic bacterium implicated in the development and progression of chronic periodontitis, acquires heme for growth by a novel mechanism composed of HmuY and HmuR proteins. The aim of this study was to characterize the nature of heme binding to HmuY. The protein was expressed, purified and detailed investigations using UV-vis absorption, CD, MCD, and {sup 1}H NMR spectroscopy were carried out. Ferric heme bound to HmuY may be reduced by sodium dithionite and re-oxidized by potassium ferricyanide. Heme complexed to HmuY, with a midpoint potential of 136 mV, is in a low-spin Fe(III) hexa-coordinate environment. Analysis of heme binding to several single and double HmuY mutants with the methionine, histidine, cysteine, or tyrosine residues replaced by an alanine residue identified histidines 134 and 166 as potential heme ligands.

  15. A Neisseria meningitidis fbpABC mutant is incapable of using nonheme iron for growth.

    Khun, H H; Kirby, S D; Lee, B C

    1998-05-01

    The neisserial fbpABC locus has been proposed to act as an iron-specific ABC transporter system. To confirm this assigned function, we constructed an fbpABC mutant in Neisseria meningitidis by insertional inactivation of fbpABC with a selectable antibiotic marker. The mutant was unable to use iron supplied from human transferrin, human lactoferrin, or iron chelates. However, the use of iron from heme and human hemoglobin was unimpaired. These results support the obligatory participation of fbpABC in neisserial periplasmic iron transport and do not indicate a role for this genetic locus in the heme iron pathway.

  16. Insights on Heme Synthesis in the Malaria Parasite.

    Nagaraj, Viswanathan A; Padmanaban, Govindarajan

    2017-08-01

    The malaria parasite has a functional heme-biosynthetic pathway, although it can access host hemoglobin-heme. The heme pathway is dispensable for blood stages, but essential in the mosquito stages which do not acquire hemoglobin-heme. We propose that the blood stage parasites maintain a dynamic heme pool through multiple back-up mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Selenolate complexes of CYP101 and the heme-bound hHO-1/H25A proximal cavity mutant.

    Jiang, Yongying; Ortiz de Montellano, Paul R

    2008-05-05

    Thiolate and selenolate complexes of CYP101 (P450cam) and the H25A proximal cavity mutant of heme-bound human heme oxygenase-1 (hHO-1) have been examined by UV-vis spectroscopy. Both thiolate and selenolate ligands bound to the heme distal side in CYP101 and gave rise to characteristic hyperporphyrin spectra. Thiolate ligands also bound to the proximal side of the heme in the cavity created by the H25A mutation in hHO-1, giving a Soret absorption similar to that of the H25C hHO-1 mutant. Selenolate ligands also bound to this cavity mutant under anaerobic conditions but reduced the heme iron to the ferrous state, as shown by the formation of a ferrous CO complex. Under aerobic conditions, the selenolate ligand but not the thiolate ligand was rapidly oxidized. These results indicate that selenocysteine-coordinated heme proteins will not be stable species in the absence of a redox potential stabilizing effect.

  18. Mitochondrial Iron Transport and Homeostasis in Plants

    Anshika eJain

    2013-09-01

    Full Text Available Iron (Fe is an essential nutrient for plants and although the mechanisms controlling iron uptake from the soil are relatively well understood, comparatively little is known about subcellular trafficking of iron in plant cells. Mitochondria represent a significant iron sink within cells, as iron is required for the proper functioning of respiratory chain protein complexes. Mitochondria are a site of Fe-S cluster synthesis, and possibly heme synthesis as well. Here we review recent insights into the molecular mechanisms controlling mitochondrial iron transport and homeostasis. We focus on the recent identification of a mitochondrial iron uptake transporter in rice and a possible role for metalloreductases in iron uptake by mitochondria. In addition, we highlight recent advances in mitochondrial iron homeostasis with an emphasis on the roles of frataxin and ferritin in iron trafficking and storage within mitochondria.

  19. Iron deficiency and overload in relation to nutrition

    Spanjersberg MQI; Jansen EHJM; LEO

    2000-01-01

    Nutritional iron intake in the Netherlands has been reviewed with respect to both iron deficiency and iron overload. In general, iron intake and iron status in the Netherlands are adequate and therefore no change in nutrition policy is required. The following aspects and developments, however, need

  20. Heme-containing enzymes and inhibitors for tryptophan metabolism.

    Yan, Daojing; Lin, Ying-Wu; Tan, Xiangshi

    2017-09-20

    Iron-containing enzymes such as heme enzymes play crucial roles in biological systems. Three distinct heme-containing dioxygenase enzymes, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 1 (IDO1) and indoleamine 2,3-dioxygenase 2 (IDO2) catalyze the initial and rate-limiting step of l-tryptophan catabolism through the kynurenine pathway in mammals. Overexpression of these enzymes causes depletion of tryptophan and the accumulation of metabolic products, which contributes to tumor immune tolerance and immune dysregulation in a variety of disease pathologies. In the past few decades, IDO1 has garnered the most attention as a therapeutic target with great potential in cancer immunotherapy. Many potential inhibitors of IDO1 have been designed, synthesized and evaluated, among which indoximod (d-1-MT), INCB024360, GDC-0919 (formerly NLG-919), and an IDO1 peptide-based vaccine have advanced to the clinical trial stage. However, recently, the roles of TDO and IDO2 have been elucidated in immune suppression. In this review, the current drug discovery landscape for targeting TDO, IDO1 and IDO2 is highlighted, with particular attention to the recent use of drugs in clinical trials. Moreover, the crystal structures of these enzymes, in complex with inhibitors, and the mechanisms of Trp catabolism in the first step, are summarized to provide information for facilitating the discovery of new enzyme inhibitors.

  1. Heme oxygenase and carbon monoxide protect from muscle dystrophy.

    Chan, Mun Chun; Ziegler, Olivia; Liu, Laura; Rowe, Glenn C; Das, Saumya; Otterbein, Leo E; Arany, Zoltan

    2016-11-28

    Duchenne muscle dystrophy (DMD) is one of the most common lethal genetic diseases of children worldwide and is 100% fatal. Steroids, the only therapy currently available, are marred by poor efficacy and a high side-effect profile. New therapeutic approaches are urgently needed. Here, we leverage PGC-1α, a powerful transcriptional coactivator known to protect against dystrophy in the mdx murine model of DMD, to search for novel mechanisms of protection against dystrophy. We identify heme oxygenase-1 (HO-1) as a potential novel target for the treatment of DMD. Expression of HO-1 is blunted in the muscles from the mdx murine model of DMD, and further reduction of HO-1 by genetic haploinsufficiency worsens muscle damage in mdx mice. Conversely, induction of HO-1 pharmacologically protects against muscle damage. Mechanistically, HO-1 degrades heme into biliverdin, releasing in the process ferrous iron and carbon monoxide (CO). We show that exposure to a safe low dose of CO protects against muscle damage in mdx mice, as does pharmacological treatment with CO-releasing molecules. These data identify HO-1 and CO as novel therapeutic agents for the treatment of DMD. Safety profiles and clinical testing of inhaled CO already exist, underscoring the translational potential of these observations.

  2. Measurement of Heme Synthesis Levels in Mammalian Cells.

    Hooda, Jagmohan; Alam, Maksudul; Zhang, Li

    2015-07-09

    Heme serves as the prosthetic group for a wide variety of proteins known as hemoproteins, such as hemoglobin, myoglobin and cytochromes. It is involved in various molecular and cellular processes such as gene transcription, translation, cell differentiation and cell proliferation. The biosynthesis levels of heme vary across different tissues and cell types and is altered in diseased conditions such as anemia, neuropathy and cancer. This technique uses [4-(14)C] 5-aminolevulinic acid ([(14)C] 5-ALA), one of the early precursors in the heme biosynthesis pathway to measure the levels of heme synthesis in mammalian cells. This assay involves incubation of cells with [(14)C] 5-ALA followed by extraction of heme and measurement of the radioactivity incorporated into heme. This procedure is accurate and quick. This method measures the relative levels of heme biosynthesis rather than the total heme content. To demonstrate the use of this technique the levels of heme biosynthesis were measured in several mammalian cell lines.

  3. Subpicosecond oxygen trapping in the heme pocket of the oxygen sensor FixL observed by time-resolved resonance Raman spectroscopy.

    Kruglik, Sergei G; Jasaitis, Audrius; Hola, Klara; Yamashita, Taku; Liebl, Ursula; Martin, Jean-Louis; Vos, Marten H

    2007-05-01

    Dissociation of oxygen from the heme domain of the bacterial oxygen sensor protein FixL constitutes the first step in hypoxia-induced signaling. In the present study, the photodissociation of the heme-O2 bond was used to synchronize this event, and time-resolved resonance Raman (TR(3)) spectroscopy with subpicosecond time resolution was implemented to characterize the heme configuration of the primary photoproduct. TR(3) measurements on heme-oxycomplexes are highly challenging and have not yet been reported. Whereas in all other known six-coordinated heme protein complexes with diatomic ligands, including the oxymyoglobin reported here, heme iron out-of-plane motion (doming) occurs faster than 1 ps after iron-ligand bond breaking; surprisingly, no sizeable doming is observed in the oxycomplex of the Bradyrhizobium japonicum FixL sensor domain (FixLH). This assessment is deduced from the absence of the iron-histidine band around 217 cm(-1) as early as 0.5 ps. We suggest that efficient ultrafast oxygen rebinding to the heme occurs on the femtosecond time scale, thus hindering heme doming. Comparing WT oxy-FixLH, mutant proteins FixLH-R220H and FixLH-R220Q, the respective carbonmonoxy-complexes, and oxymyoglobin, we show that a hydrogen bond of the terminal oxygen atom with the residue in position 220 is responsible for the observed behavior; in WT FixL this residue is arginine, crucially implicated in signal transmission. We propose that the rigid O2 configuration imposed by this residue, in combination with the hydrophobic and constrained properties of the distal cavity, keep dissociated oxygen in place. These results uncover the origin of the "oxygen cage" properties of this oxygen sensor protein.

  4. Iron-Deficiency Anemia

    Full Text Available ... and dark green leafy vegetables. Foods rich in vitamin C, such as oranges, strawberries, and tomatoes, may help ... but has used up. Increase your intake of vitamin C to help your body absorb iron. Avoid drinking ...

  5. Iron-Deficiency Anemia

    Full Text Available ... age, sex, and whether you are pregnant or breastfeeding. Recommended daily iron intake for children and adults. ... need 8 mg. Pregnant women need 27 mg. Breastfeeding girls under age 18 need 10 mg while ...

  6. Iron-Deficiency Anemia

    Full Text Available ... order blood tests or other diagnostic tests. Physical exam Your doctor may ask about your medical history ... has used up. Increase your intake of vitamin C to help your body absorb iron. Avoid drinking ...

  7. Iron-Deficiency Anemia

    Full Text Available ... on your age, sex, and whether you are pregnant or breastfeeding. Recommended daily iron intake for children ... 51, both men and women need 8 mg. Pregnant women need 27 mg. Breastfeeding girls under age ...

  8. Iron-Deficiency Anemia

    Full Text Available ... dark green leafy vegetables. Foods rich in vitamin C, such as oranges, strawberries, and tomatoes, may help ... has used up. Increase your intake of vitamin C to help your body absorb iron. Avoid drinking ...

  9. Heme biosynthesis and its regulation : Toward understanding and improvement of heme biosynthesis in filamentous fungi.

    S. de Weert; P.J. Punt; Christien Lokman; C.A. van den Hondel; A.C. Franken; A.F. Ram

    2011-01-01

    Heme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally

  10. Heme biosynthesis and its regulation: Towards understanding and improvement of heme biosynthesis in filamentous fungi

    Franken, A.C.W.; Lokman, B.C.; Ram, A.F.J.; Punt, P.J.; Hondel, C.A.M.J.J. van den; Weert, S. de

    2011-01-01

    Heme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally

  11. Characterization of a gene family encoding SEA (sea-urchin sperm protein, enterokinase and agrin-domain proteins with lectin-like and heme-binding properties from Schistosoma japonicum.

    Evaristus Chibunna Mbanefo

    Full Text Available BACKGROUND: We previously identified a novel gene family dispersed in the genome of Schistosoma japonicum by retrotransposon-mediated gene duplication mechanism. Although many transcripts were identified, no homolog was readily identifiable from sequence information. METHODOLOGY/PRINCIPAL FINDINGS: Here, we utilized structural homology modeling and biochemical methods to identify remote homologs, and characterized the gene products as SEA (sea-urchin sperm protein, enterokinase and agrin-domain containing proteins. A common extracellular domain in this family was structurally similar to SEA-domain. SEA-domain is primarily a structural domain, known to assist or regulate binding to glycans. Recombinant proteins from three members of this gene family specifically interacted with glycosaminoglycans with high affinity, with potential implication in ligand acquisition and immune evasion. Similar approach was used to identify a heme-binding site on the SEA-domain. The heme-binding mode showed heme molecule inserted into a hydrophobic pocket, with heme iron putatively coordinated to two histidine axial ligands. Heme-binding properties were confirmed using biochemical assays and UV-visible absorption spectroscopy, which showed high affinity heme-binding (K D = 1.605×10(-6 M and cognate spectroscopic attributes of hexa-coordinated heme iron. The native proteins were oligomers, antigenic, and are localized on adult worm teguments and gastrodermis; major host-parasite interfaces and site for heme detoxification and acquisition. CONCLUSIONS: The results suggest potential role, at least in the nucleation step of heme crystallization (hemozoin formation, and as receptors for heme uptake. Survival strategies exploited by parasites, including heme homeostasis mechanism in hemoparasites, are paramount for successful parasitism. Thus, assessing prospects for application in disease intervention is warranted.

  12. Characterization of a Gene Family Encoding SEA (Sea-urchin Sperm Protein, Enterokinase and Agrin)-Domain Proteins with Lectin-Like and Heme-Binding Properties from Schistosoma japonicum

    Mbanefo, Evaristus Chibunna; Kikuchi, Mihoko; Huy, Nguyen Tien; Shuaibu, Mohammed Nasir; Cherif, Mahamoud Sama; Yu, Chuanxin; Wakao, Masahiro; Suda, Yasuo; Hirayama, Kenji

    2014-01-01

    Background We previously identified a novel gene family dispersed in the genome of Schistosoma japonicum by retrotransposon-mediated gene duplication mechanism. Although many transcripts were identified, no homolog was readily identifiable from sequence information. Methodology/Principal Findings Here, we utilized structural homology modeling and biochemical methods to identify remote homologs, and characterized the gene products as SEA (sea-urchin sperm protein, enterokinase and agrin)-domain containing proteins. A common extracellular domain in this family was structurally similar to SEA-domain. SEA-domain is primarily a structural domain, known to assist or regulate binding to glycans. Recombinant proteins from three members of this gene family specifically interacted with glycosaminoglycans with high affinity, with potential implication in ligand acquisition and immune evasion. Similar approach was used to identify a heme-binding site on the SEA-domain. The heme-binding mode showed heme molecule inserted into a hydrophobic pocket, with heme iron putatively coordinated to two histidine axial ligands. Heme-binding properties were confirmed using biochemical assays and UV-visible absorption spectroscopy, which showed high affinity heme-binding (K D = 1.605×10−6 M) and cognate spectroscopic attributes of hexa-coordinated heme iron. The native proteins were oligomers, antigenic, and are localized on adult worm teguments and gastrodermis; major host-parasite interfaces and site for heme detoxification and acquisition. Conclusions The results suggest potential role, at least in the nucleation step of heme crystallization (hemozoin formation), and as receptors for heme uptake. Survival strategies exploited by parasites, including heme homeostasis mechanism in hemoparasites, are paramount for successful parasitism. Thus, assessing prospects for application in disease intervention is warranted. PMID:24416467

  13. Effect of irradiation and storage in the iron availability in lamb meat treated with different diets

    Souza, Adriana Regia Marques de; Arthur, Valter

    2008-01-01

    Irradiation is an efficient method to increase the microbiological safety and to maintain the nutrients such as iron in the meat. The best absorption form, heme iron, should be preserved in order to increase the nutritional quality of stored meat. The diet can alter the nutrients contents and form in the meat. The iron is provided from the diet and it is an essential element for the metabolic processes such as oxygen transport, oxidative metabolism, and cellular growth. Meat lamb samples treated with different diets (it controls, TAC1, TAC2 and sorghum) were wrapped to vacuous, and irradiated in the doses 0, 2 and 4 kGy and stored at 4 deg C during 15 days. The values of total iron and heme iron were measured at 0 and 15 days of storage. The storage reduced the content of total iron (18.36 for 14.28 mg.100 g -1 ) and heme iron (13.78 for 10.52 mg.100 g -1 ). The diets affected the levels of total and heme iron of the meat, and the sorghum diet was the one that presented the larger content. The dose of 2 kGy was the one that affected the iron the most independently of the storage time. It was verified that the amounts of total and heme iron varied according to the storage time, irradiation doses, and lamb diets. (author)

  14. Shigella Iron Acquisition Systems and their Regulation.

    Wei, Yahan; Murphy, Erin R

    2016-01-01

    Survival of Shigella within the host is strictly dependent on the ability of the pathogen to acquire essential nutrients, such as iron. As an innate immune defense against invading pathogens, the level of bio-available iron within the human host is maintained at exceeding low levels, by sequestration of the element within heme and other host iron-binding compounds. In response to sequestration mediated iron limitation, Shigella produce multiple iron-uptake systems that each function to facilitate the utilization of a specific host-associated source of nutrient iron. As a mechanism to balance the essential need for iron and the toxicity of the element when in excess, the production of bacterial iron acquisition systems is tightly regulated by a variety of molecular mechanisms. This review summarizes the current state of knowledge on the iron-uptake systems produced by Shigella species, their distribution within the genus, and the molecular mechanisms that regulate their production.

  15. Iron intakes of Australian infants and toddlers: findings from the Melbourne Infant Feeding, Activity and Nutrition Trial (InFANT) Program.

    Atkins, Linda A; McNaughton, Sarah A; Campbell, Karen J; Szymlek-Gay, Ewa A

    2016-01-28

    Fe deficiency remains the most common nutritional deficiency worldwide and young children are at particular risk. Preventative food-based strategies require knowledge of current intakes, sources of Fe, and factors associated with low Fe intakes; yet few data are available for Australian children under 2 years. This study's objectives were to determine intakes and food sources of Fe for Australian infants and toddlers and identify non-dietary factors associated with Fe intake. Dietary, anthropometric and socio-demographic data from the Melbourne Infant Feeding, Activity and Nutrition Trial Program were analysed for 485 infants (mean age: 9·1 (sd 1·2) months) and 423 toddlers (mean age: 19·6 (sd 2·6) months) and their mothers. Dietary intakes were assessed via 24-h recalls over 3 non-consecutive days. Prevalence of inadequate Fe intake was estimated using the full probability approach. Associations between potential non-dietary predictors (sex, breast-feeding status, age when introduced to solid foods, maternal age, maternal education, maternal employment status and mother's country of birth) and Fe intakes were assessed using linear regression. Mean Fe intakes were 9·1 (sd 4·3) mg/d for infants and 6·6 (sd 2·4) mg/d for toddlers. Our results showed that 32·6 % of infants and 18·6 % of toddlers had inadequate Fe intake. Main food sources of Fe were Fe-fortified infant formula and cereals for infants and toddlers, respectively. Female sex and current breast-feeding were negatively associated with infant Fe intakes. Introduction to solid foods at or later than 6 months was negatively associated with Fe intake in toddlers. These data may facilitate food-based interventions to improve Australian children's Fe intake levels.

  16. Interaction between Mitochondrial Reactive Oxygen Species, Heme Oxygenase, and Nitric Oxide Synthase Stimulates Phagocytosis in Macrophages

    Andrea Müllebner

    2018-01-01

    Full Text Available BackgroundMacrophages are cells of the innate immune system that populate every organ. They are required not only for defense against invading pathogens and tissue repair but also for maintenance of tissue homeostasis and iron homeostasis.AimThe aim of this study is to understand whether heme oxygenase (HO and nitric oxide synthase (NOS contribute to the regulation of nicotinamide adenine dinucleotide phosphate oxidase (NOX activity and phagocytosis, two key components of macrophage function.MethodsThis study was carried out using resting J774A.1 macrophages treated with hemin or vehicle. Activity of NOS, HO, or NOX was inhibited using specific inhibitors. Reactive oxygen species (ROS formation was determined by Amplex® red assay, and phagocytosis was measured using fluorescein isothiocyanate-labeled bacteria. In addition, we analyzed the fate of the intracellular heme by using electron spin resonance.ResultsWe show that both enzymes NOS and HO are essential for phagocytic activity of macrophages. NOS does not directly affect phagocytosis, but stimulates NOX activity via nitric oxide-triggered ROS production of mitochondria. Treatment of macrophages with hemin results in intracellular accumulation of ferrous heme and an inhibition of phagocytosis. In contrast to NOS, HO products, including carbon monoxide, neither clearly affect NOX activity nor clearly affect phagocytosis, but phagocytosis is accelerated by HO-mediated degradation of heme.ConclusionBoth enzymes contribute to the bactericidal activity of macrophages independently, by controlling different pathways.

  17. The Haptoglobin-CD163-Heme Oxygenase-1 Pathway for Hemoglobin Scavenging

    Jens Haugbølle Thomsen

    2013-01-01

    Full Text Available The haptoglobin- (Hp- CD163-heme oxygenase-1 (HO-1 pathway is an efficient captor-receptor-enzyme system to circumvent the hemoglobin (Hb/heme-induced toxicity during physiological and pathological hemolyses. In this pathway, Hb tightly binds to Hp leading to CD163-mediated uptake of the complex in macrophages followed by lysosomal Hp-Hb breakdown and HO-1-catalyzed conversion of heme into the metabolites carbon monoxide (CO, biliverdin, and iron. The plasma concentration of Hp is a limiting factor as evident during accelerated hemolysis, where the Hp depletion may cause serious Hb-induced toxicity and put pressure on backup protecting systems such as the hemopexin-CD91-HO pathway. The Hp-CD163-HO-1 pathway proteins are regulated by the acute phase mediator interleukin-6 (IL-6, but other regulatory factors indicate that this upregulation is a counteracting anti-inflammatory response during inflammation. The heme metabolites including bilirubin converted from biliverdin have overall an anti-inflammatory effect and thus reinforce the anti-inflammatory efficacy of the Hp-CD163-HO-1 pathway. Future studies of animal models of inflammation should further define the importance of the pathway in the anti-inflammatory response.

  18. Structural characterization of human heme oxygenase-1 in complex with azole-based inhibitors.

    Rahman, Mona N; Vlahakis, Jason Z; Roman, Gheorghe; Vukomanovic, Dragic; Szarek, Walter A; Nakatsu, Kanji; Jia, Zongchao

    2010-03-01

    The development of inhibitors specific for heme oxygenases (HO) aims to provide powerful tools in understanding the HO system. Based on the lead structure (2S, 4S)-2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-4-[((4-aminophenyl)thio)methyl]-1,3-dioxolane (azalanstat, QC-1) we have synthesized structural modifications to develop novel and selective HO inhibitors. The structural study of human HO-1 (hHO-1) in complex with a select group of the inhibitors was initiated using X-ray crystallographic techniques. Comparison of the structures of four such compounds each in complex with hHO-1 revealed a common binding mode, despite having different structural fragments. The compounds bind to the distal side of heme through an azole "anchor" which coordinates with the heme iron. An expansion of the distal pocket, mainly due to distal helix flexibility, allows accommodation of the compounds without displacing heme or the critical Asp140 residue. Rather, binding displaces a catalytically critical water molecule and disrupts an ordered hydrogen-bond network involving Asp140. The presence of a triazole "anchor" may provide further stability via a hydrogen bond with the protein. A hydrophobic pocket acts to stabilize the region occupied by the phenyl or adamantanyl moieties of these compounds. Further, a secondary hydrophobic pocket is formed via "induced fit" to accommodate bulky substituents at the 4-position of the dioxolane ring. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Duodenal Cytochrome b (DCYTB in Iron Metabolism: An Update on Function and Regulation

    Darius J. R. Lane

    2015-03-01

    Full Text Available Iron and ascorbate are vital cellular constituents in mammalian systems. The bulk-requirement for iron is during erythropoiesis leading to the generation of hemoglobin-containing erythrocytes. Additionally; both iron and ascorbate are required as co-factors in numerous metabolic reactions. Iron homeostasis is controlled at the level of uptake; rather than excretion. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance non-heme iron absorption in the gut; ascorbate regulates iron homeostasis. The involvement of ascorbate in dietary iron absorption extends beyond the direct chemical reduction of non-heme iron by dietary ascorbate. Among other activities; intra-enterocyte ascorbate appears to be involved in the provision of electrons to a family of trans-membrane redox enzymes; namely those of the cytochrome b561 class. These hemoproteins oxidize a pool of ascorbate on one side of the membrane in order to reduce an electron acceptor (e.g., non-heme iron on the opposite side of the membrane. One member of this family; duodenal cytochrome b (DCYTB; may play an important role in ascorbate-dependent reduction of non-heme iron in the gut prior to uptake by ferrous-iron transporters. This review discusses the emerging relationship between cellular iron homeostasis; the emergent “IRP1-HIF2α axis”; DCYTB and ascorbate in relation to iron metabolism.

  20. Iron deficiency in children

    cell and excess iron is stored as ferritin to protect the cell from oxidative ... iron deficiency has negative effects during pregnancy and in the postpartum period, which affects maternal health ... use of undiluted cow's milk and a predominant cow's milk intake in .... on bone marrow smear or biopsy for the definitive diagnosis of.

  1. Iron-Deficiency Anemia

    Full Text Available ... age, sex, and whether you are pregnant or breastfeeding. Recommended daily iron intake for children and adults. The table lists the recommended amounts of iron, in milligrams (mg) at different ages and stages of life. Until the teen years, the recommended amount of ...

  2. Moessbauer spectroscopic evidence on the heme binding to the proximal histidine in unfolded carbonmonoxy myoglobin by guanidine hydrochloride

    Harami, Taikan, E-mail: harami.taikan@jaea.go.jp [Japan Atomic Energy Agency (Japan); Kitao, Shinji; Kobayashi, Yasuhiro [Kyoto University, Research Reactor Institute (Japan); Mitsui, Takaya [Japan Atomic Energy Agency (Japan)

    2008-01-15

    The unfolded heme structure in myoglobin is controversial because of no chance of direct X-ray structure analyses. The unfolding of carbonmonoxy myoglobin (MbCO) by guanidine hydrochloride (GdnHCl) was studied by the Moessbauer spectroscopy. The spectra show the presence of a sort of spectrum in the unfolded MbCO, independent on the concentration of GdnHCl from 1 to 6 M and the increase of the fraction of unfolded MbCO, depending on the GdnHCl concentration. The isomer shift of the iron of heme in the unfolded MbCO was identified to be different from that of the native MbCO as the globin structure in Mb collapses under the unfolded conditions. This result and the existing related Moessbauer data proved that the heme in the unfolded MbCO may remain coordinated to the proximal histidine.

  3. Conversion of a heme-based oxygen sensor to a heme oxygenase by hydrogen sulfide: effects of mutations in the heme distal side of a heme-based oxygen sensor phosphodiesterase (Ec DOS)

    Du, Y.; Liu, G.; Yan, Y.; Huang, D.; Luo, W.; Martínková, M.; Man, Petr; Shimizu, T.

    2013-01-01

    Roč. 26, č. 5 (2013), s. 839-852 ISSN 0966-0844 Institutional support: RVO:61388971 Keywords : Heme oxygenase * Heme protein * Hydrogen sulfide Subject RIV: CE - Biochemistry Impact factor: 2.689, year: 2013

  4. Molecular hijacking of siroheme for the synthesis of heme and d1 heme.

    Bali, Shilpa; Lawrence, Andrew D; Lobo, Susana A; Saraiva, Lígia M; Golding, Bernard T; Palmer, David J; Howard, Mark J; Ferguson, Stuart J; Warren, Martin J

    2011-11-08

    Modified tetrapyrroles such as chlorophyll, heme, siroheme, vitamin B(12), coenzyme F(430), and heme d(1) underpin a wide range of essential biological functions in all domains of life, and it is therefore surprising that the syntheses of many of these life pigments remain poorly understood. It is known that the construction of the central molecular framework of modified tetrapyrroles is mediated via a common, core pathway. Herein a further branch of the modified tetrapyrrole biosynthesis pathway is described in denitrifying and sulfate-reducing bacteria as well as the Archaea. This process entails the hijacking of siroheme, the prosthetic group of sulfite and nitrite reductase, and its processing into heme and d(1) heme. The initial step in these transformations involves the decarboxylation of siroheme to give didecarboxysiroheme. For d(1) heme synthesis this intermediate has to undergo the replacement of two propionate side chains with oxygen functionalities and the introduction of a double bond into a further peripheral side chain. For heme synthesis didecarboxysiroheme is converted into Fe-coproporphyrin by oxidative loss of two acetic acid side chains. Fe-coproporphyrin is then transformed into heme by the oxidative decarboxylation of two propionate side chains. The mechanisms of these reactions are discussed and the evolutionary significance of another role for siroheme is examined.

  5. Identification of two genes potentially associated in iron-heme ...

    2013-03-15

    Mar 15, 2013 ... include the degree of vessel stenosis, ulceration, inflamma- tory cell infiltration and ... ness, ulceration, hemorrhage, necrosis, calcification, in- flammation ... treatment. Clinical .... An alternative would be to use only tissue from ...

  6. Models for non-heme iron containing oxidation enzymes

    Roelfes, Johannes Gerhardus

    2000-01-01

    IJzer is een van de essentiël elementen voor alle levende wezens. Heel veel belangrijke functies in organismen worden vervuld door ijzer bevattende eiwitten. De bekendste voorbeelden hiervan zijn ongetwijfeld hemoglobine en myoglobine, die het transport van zuurstof van de longen naar de rest van

  7. Histidine at Position 195 is Essential for Association of Heme-b in Lcp1VH2

    Oetermann, Sylvia; Vivod, Robin; Hiessl, Sebastian; Hogeback, Jens; Holtkamp, Michael; Karst, Uwe; Steinbüchel, Alexander

    2018-03-01

    The latex clearing protein (Lcp) is the key enzyme of polyisoprene degradation in actinomycetes (Yikmis and Steinbüchel in Appl Environ Microbiol 78:4543-4551, https://doi.org/10.1128/AEM.00001-12, 2012). In this study it was shown that Lcp from Gordonia polyisoprenivorans VH2 (Lcp1VH2) harbors a non-covalently bound heme b as cofactor, which was identified by pyridine hemochrome spectra and confirmed by LC/ESI-ToF-MS. It contains iron, most likely in the Fe3+ state. We focused on the characterization of the heme-cofactor, its accessibility with respect to the conformation of Lcp1VH2, and the identification of putative histidine residues involved in the coordination of heme. A change was detectable in UV/Vis-spectra of reduced Lcp1VH2 when imidazole was added, showing that Lcp1VH2 "as isolated" occurs in an open state, directly being accessible for external ligands. In addition, three highly conserved histidines (H195, H200 and H228), presumably acting as ligands coordinating the heme within the heme pocket, were replaced with alanines by site-directed mutagenesis. The effect of these changes on in vivo rubber-mineralization was investigated. The lcp- deletion mutant complemented with the H195A variant of lcp1 VH2 was unable to mineralize poly(cis-1,4-isoprene). In vitro analyses of purified, recombinant Lcp1VH2H195A confirmed the loss of enzyme activity, which could be ascribed to the loss of heme. Hence, H195 is essential for the association of heme-b in the central region of Lcp1VH2.

  8. Cellular Studies with UVA Radiation: A Role for Iron (invited paper)

    Tyrrell, R.M.; Pourzand, C.A.; Brown, J.; Hejmadi, V.; Kvam, V.; Ryter, S.; Watkin, R.D.

    2000-01-01

    The UVA (320-380 nm) component of sunlight or sunbeds acts as an oxidising carcinogen and has been clearly implicated in skin cancer. Since UVA radiation interacts with cells by generating active oxygen species, the damaging effects of this radiation will be exacerbated by the presence of catalytically reactive iron in cells. It has now been shown by two independent techniques (dequenching of metal-quenched calcein fluorescence in cells and changes in the binding activity of the iron responsive protein IRPI) that UVA radiation causes an immediate release of 'free' iron in human skin fibroblasts via the proteolysis of ferritin (Ft). Within minutes of exposure to a range of doses of UVA at natural exposure levels, the binding activity of IRP-1, as well as Ft levels, decrease in a dose-dependent manner. It is proposed that the oxidative damage to lysosomes that leads to Ft degradation and the consequent release of potentially harmful 'free' iron to the cytosol might be a major factor in UVA-induced damage to the skin. UVA radiation also breaks down heme-containing proteins in the microsomal membrane to release free heme as an additional photosensitising component. This will provide another source of enhanced free iron in skin cells since constitutive heme oxygenase 2 (in keratinocytes) and UVA-inducible heme oxygenase-1 (in fibroblasts) are likely to break down any free heme to biliverdin and release iron and carbon monoxide in the process. It is postulated that, in skin fibroblasts, this free heme release and the enhanced free iron pools will lead to an adaptive response involving heme oxygenase (with a maximum about 10 h) and ferritin (in 24-48 h) that will scavenge the heme and iron released by subsequent oxidising (UVA) treatments. (author)

  9. Iron and zinc absorption from weaning foods prepared from germinated cereals and legumes using isotope tracers

    Valdez, D H; Kuizon, M D; Marero, L M; Mallillin, A C; Cruz, E M; Madriaga, J R [Department of Science and Technology, Manila (Philippines). Food and Nutrition Research Inst.

    1994-12-31

    Iron bioavailability from weaning foods prepared from 70:30 combination of germinated rice:mungbean (GRM); germinated rice: cowpea (GRC) and germinated corn:mungbean (GCM) was determined by radioisotopic measurements of iron absorption in human subjects. The gruels were prepared as plain with sugar and flavoring labeled by the extrinsic tag method, and served as hot porridge. It was estimated that iron-deficient infants would absorb 3.5% from GRM, 4.9% from GRC and 5.6% from GCM. Differences between absorption among the weaning foods were not statistically significant. Planning of diets for these age group should include other sources of iron especially heme. Zinc absorption from the weaning food formulations will be studied by the in vitro and in vivo methods. For the in vivo method on human subjects, the absorption of zinc will be determined from the measurement of the whole body retention of the isotope 14 days after intake of the labeled mean. Serum zinc level will be determined to assess the zinc status of the subjects. (author). 23 refs, 1 fig., 4 tabs.

  10. Iron and zinc absorption from weaning foods prepared from germinated cereals and legumes using isotope tracers

    Valdez, D.H.; Kuizon, M.D.; Marero, L.M.; Mallillin, A.C.; Cruz, E.M.; Madriaga, J.R.

    1994-01-01

    Iron bioavailability from weaning foods prepared from 70:30 combination of germinated rice:mungbean (GRM); germinated rice: cowpea (GRC) and germinated corn:mungbean (GCM) was determined by radioisotopic measurements of iron absorption in human subjects. The gruels were prepared as plain with sugar and flavoring labeled by the extrinsic tag method, and served as hot porridge. It was estimated that iron-deficient infants would absorb 3.5% from GRM, 4.9% from GRC and 5.6% from GCM. Differences between absorption among the weaning foods were not statistically significant. Planning of diets for these age group should include other sources of iron especially heme. Zinc absorption from the weaning food formulations will be studied by the in vitro and in vivo methods. For the in vivo method on human subjects, the absorption of zinc will be determined from the measurement of the whole body retention of the isotope 14 days after intake of the labeled mean. Serum zinc level will be determined to assess the zinc status of the subjects. (author). 23 refs, 1 fig., 4 tabs

  11. Dibromine radical anion reactions with heme enzymes

    Gebicka, L.; Gebicki, J.L.

    1996-01-01

    Reactions of Br 2 radical anion with heme enzymes, catalase horseradish peroxidase, have been studied by pulse radiolysis. It has been found that Br 2 - does not react with the heme centre of investigated enzymes. Dibromine radical anion reacts with tryptophan residues of catalase without any influence on the activity of catalase. It is suggested that in pulse radiolysis studies, where horseradish peroxidase is at about tenfold excess toward Br 2 - , the enzyme is modified rather by Br 2 , than by Br 2 - . (author). 26 refs., 3 figs

  12. Heme Oxygenase Induction Suppresses Hepatic Hepcidin and Rescues Ferroportin and Ferritin Expression in Obese Mice

    Nitin Puri

    2017-01-01

    Full Text Available Hepcidin, a phase II reactant secreted by hepatocytes, regulates cellular iron levels by increasing internalization of ferroportin-a transmembrane protein facilitating egress of cellular iron. Chronic low-grade inflammatory states, such as obesity, have been shown to increase oxidative stress and enhance hepcidin secretion from hepatocytes and macrophages. Heme-heme oxygenase (HO is a stress response system which reduces oxidative stress. We investigated the effects of HO-1 induction on hepatic hepcidin levels and on iron homeostasis in hepatic tissues from lean and obese mice. Obese mice exhibited hyperglycemia (p<0.05; increased levels of proinflammatory cytokines (MCP-1, IL-6, p<0.05; oxidative stress (p<0.05; and increased hepatic hepcidin levels (p<0.05. Enhancement of hepcidin was reflected in the reduced expression of ferroportin in obese mice (p<0.05. However, this effect is accompanied by a significant decline in ferritin expression. Additionally, there are reduced insulin receptor phosphorylation and attenuation of metabolic regulators pAMPK, pAKT, and pLKB1. Cobalt protoporphyrin- (CoPP- induced HO-1 upregulation in obese mice reversed these alterations (p<0.05, while attenuating hepatic hepcidin levels. These effects of CoPP were prevented in obese mice concurrently exposed to an inhibitor of HO (SnMP (p<0.05. Our results highlight a modulatory effect of HO on iron homeostasis mediated through the suppression of hepatic hepcidin.

  13. Heme Exporter FLVCR1a Regulates Heme Synthesis and Degradation and Controls Activity of Cytochromes P450

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-01-01

    Background & Aims The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We inv...

  14. Food intake and dietary diversity of farming households in Morogoro ...

    The intake of fat was also low by 53% compared to the recommended intake for adults. The intake of iron, zinc, and calcium was 40, 53 and 64%, respectively, which was not sufficient to meet daily requirements. Low intake of nutrients was generally attributed to inadequate food intake due to low feeding frequency, poorly ...

  15. Proton Pump Inhibitors Intake and Iron and Vitamin B12 Status: A Prospective Comparative Study with a Follow up of 12 Months

    Qorraj-Bytyqi, Hasime; Hoxha, Rexhep; Sadiku, Shemsedin; Bajraktari, Ismet H.; Sopjani, Mentor; Thaçi, Kujtim; Thaçi, Shpetim; Bahtiri, Elton

    2018-01-01

    BACKGROUND: Proton pump inhibitors (PPIs) represent the most widely prescribed antisecretory agents, but their prolonged use, may influence iron and vitamin B12 status, which could have important implications for clinical practice. AIM: We undertook this study aiming to investigate the association between PPIs use for 12 months and potential changes in iron and vitamin B12 status, as well as whether this potential association varies among four specific PPI drugs used in the study. MET...

  16. Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis.

    Chang, Ling-Chu; Chiang, Shih-Kai; Chen, Shuen-Ei; Yu, Yung-Luen; Chou, Ruey-Hwang; Chang, Wei-Chao

    2018-03-01

    Ferroptosis is a form of oxidative cell death and has become a chemotherapeutic target for cancer treatment. BAY 11-7085 (BAY), which is a well-known IκBα inhibitor, suppressed viability in cancer cells via induction of ferroptotic death in an NF-κB-independent manner. Reactive oxygen species scavenging, relief of lipid peroxidation, replenishment of glutathione and thiol-containing agents, as well as iron chelation, rescued BAY-induced cell death. BAY upregulated a variety of Nrf2 target genes related to redox regulation, particularly heme oxygenase-1 (HO-1). Studies with specific inhibitors and shRNA interventions suggested that the hierarchy of induction is Nrf2-SLC7A11-HO-1. SLC7A11 inhibition by erastin, sulfasalazine, or shRNA interference sensitizes BAY-induced cell death. Overexperession of SLC7A11 attenuated BAY-inhibited cell viability. The ferroptotic process induced by hHO-1 overexpression further indicated that HO-1 is a key mediator of BAY-induced ferroptosis that operates through cellular redox regulation and iron accumulation. BAY causes compartmentalization of HO-1 into the nucleus and mitochondrion, and followed mitochondrial dysfunctions, leading to lysosome targeting for mitophagy. In this study, we first discovered that BAY induced ferroptosis via Nrf2-SLC7A11-HO-1 pathway and HO-1 is a key mediator by responding to the cellular redox status. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Impairment of heme synthesis in myelin as potential trigger of multiple sclerosis.

    Morelli, Alessandro; Ravera, Silvia; Calzia, Daniela; Panfoli, Isabella

    2012-06-01

    The pathogenesis of multiple sclerosis (MS), a disease characterized by demyelination and subsequent axonal degeneration, is as yet unknown. Also, the nature of the disease is as yet not established, since doubts have been cast on its autoimmune origin. Genetic and environmental factors have been implied in MS, leading to the idea of an overall multifactorial origin. An unexpected role in energizing the axon has been reported for myelin, supposed to be the site of consumption of most of oxygen in brain. Myelin would be able to perform oxidative phosphorylation to supply the axons with ATP, thanks to the expression therein of mitochondrial F(o)F(1)-ATP synthase, and respiratory chains. Interestingly, myelin expresses the pathway of heme synthesis, hence of cytochromes, that rely on heme group, in turn depending on Fe availability. Poisoning by these pollutants shares the common characteristic to bring about demyelination both in animal models and in man. Carbon monoxide (CO) and lead poisoning which cause functional imbalance of the heme group, as well as of heme synthesis, cause myelin damage. On the other hand, a lack of essential metals such as iron and copper, produces dramatic myelin decrease. Myelin is a primary target, of iron shortage, indicating that in myelin Fe-dependent processes are more active than in other tissues. The predominant spread of MS in industrialized countries where pollution by heavy metals, and CO poisoning is widespread, suggests a relationship among toxic action of metal pollutants and MS. According to the present hypothesis, MS can be primarily triggered by environmental factors acting on a genetic susceptibility, while the immune response may be a consequence of a primary oxidative damage due to reactive oxygen species produced consequently to an imbalance of cytochromes and respiratory chains in the sheath. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Staphylococcus aureus redirects central metabolism to increase iron availability.

    David B Friedman

    2006-08-01

    Full Text Available Staphylococcus aureus pathogenesis is significantly influenced by the iron status of the host. However, the regulatory impact of host iron sources on S. aureus gene expression remains unknown. In this study, we combine multivariable difference gel electrophoresis and mass spectrometry with multivariate statistical analyses to systematically cluster cellular protein response across distinct iron-exposure conditions. Quadruplicate samples were simultaneously analyzed for alterations in protein abundance and/or post-translational modification state in response to environmental (iron chelation, hemin treatment or genetic (Deltafur alterations in bacterial iron exposure. We identified 120 proteins representing several coordinated biochemical pathways that are affected by changes in iron-exposure status. Highlighted in these experiments is the identification of the heme-regulated transport system (HrtAB, a novel transport system which plays a critical role in staphylococcal heme metabolism. Further, we show that regulated overproduction of acidic end-products brought on by iron starvation decreases local pH resulting in the release of iron from the host iron-sequestering protein transferrin. These findings reveal novel strategies used by S. aureus to acquire scarce nutrients in the hostile host environment and begin to define the iron and heme-dependent regulons of S. aureus.

  19. Heme pathway evolution in kinetoplastid protists

    Cenci, U.; Moog, D.; Curtis, B.A.; Tanifuji, G.; Eme, L.; Lukeš, Julius; Archibald, J.M.

    2016-01-01

    Roč. 16, MAY 18 (2016), č. článku 109. ISSN 1471-2148 Institutional support: RVO:60077344 Keywords : heme * kinetoplastea * Paramoeba pemaquidensis * Perkinsela * evolution * endosymbiosis * Prokinetoplastina * lateral gene transfer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.221, year: 2016

  20. An ethane-bridged porphyrin dimer as a model of di-heme proteins: inorganic and bioinorganic perspectives and consequences of heme-heme interactions.

    Sil, Debangsu; Rath, Sankar Prasad

    2015-10-07

    Interaction between heme centers has been cleverly implemented by Nature in order to regulate different properties of multiheme cytochromes, thereby allowing them to perform a wide variety of functions. Our broad interest lies in unmasking the roles played by heme-heme interactions in modulating different properties viz., metal spin state, redox potential etc., of the individual heme centers using an ethane-bridged porphyrin dimer as a synthetic model of dihemes. The large differences in the structure and properties of the diheme complexes, as compared to the monoheme analogs, provide unequivocal evidence of the role played by heme-heme interactions in the dihemes. This Perspective provides a brief account of our recent efforts to explore these interesting aspects and the subsequent outcomes.

  1. The Chemistry and Biochemistry of Heme c: Functional Bases for Covalent Attachment

    Bowman, Sarah E. J.; Bren, Kara L.

    2008-01-01

    A discussion of the literature concerning the synthesis, function, and activity of heme c-containing proteins is presented. Comparison of the properties of heme c, which is covalently bound to protein, is made to heme b, which is bound noncovalently. A question of interest is why nature uses biochemically expensive heme c in many proteins when its properties are expected to be similar to heme b. Considering the effects of covalent heme attachment on heme conformation and on the proximal histi...

  2. Double enzymatic hydrolysis preparation of heme from goose blood and microencapsulation to promote its stability and absorption.

    Wang, Baowei; Cheng, Fansheng; Gao, Shun; Ge, Wenhua; Zhang, Mingai

    2017-02-15

    Iron deficiency anemia (IDA) is the most common nutritional deficiency worldwide. This deficiency could be solved by preparing stable, edible, and absorbable iron food ingredients using environmentally friendly methods. This study investigated enzymatic hydrolysis and microencapsulation process of goose blood. The physicochemical properties, stabilities of the microencapsulated goose blood hydrolysate (MGBH) and a supplement for rats with IDA were also evaluated. The results showed that the synergetic hydrolytic action of neutrase and alkaline protease significantly increased the heme-releasing efficiency. The heme was then microencapsulated using sodium caseinate, maltodextrin and carboxymethyl cellulose (CMC) as the edible wall material, and the encapsulation efficiency of the product reached 98.64%. Meanwhile, favorable thermal, storage and light stabilities were observed for the microencapsulation. It was found that MGBH can significantly improve the body weight and hematological parameters of IDA Wistar rat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Correlates of anaemia in pregnant urban South Indian women: a possible role of dietary intake of nutrients that inhibit iron absorption.

    Samuel, Tinu Mary; Thomas, Tinku; Finkelstein, Julia; Bosch, Ronald; Rajendran, Ramya; Virtanen, Suvi M; Srinivasan, Krishnamachari; Kurpad, Anura V; Duggan, Christopher

    2013-02-01

    To identify correlates of anaemia during the first trimester of pregnancy among 366 urban South Indian pregnant women. Cross-sectional study evaluating demographic, socio-economic, anthropometric and dietary intake data on haematological outcomes. A government maternity health-care centre catering predominantly to the needs of pregnant women from the lower socio-economic strata of urban Bangalore. Pregnant women (n 366) aged ≥18 and ≤40 years, who registered for antenatal screening at ≤14 weeks of gestation. Mean age was 22·6 (sd 3·4) years, mean BMI was 20·4 (sd 3·3) kg/m2 and 236 (64·5 %) of the pregnant women were primiparous. The prevalence of anaemia (Hb poultry (1·94; 1·29, 2·91). Low dietary intake of multiple micronutrients, but higher intakes of nutrients that inhibit Fe absorption such as Ca and P, may help explain high rates of maternal anaemia in India.

  4. ABSORBABLE IRON IN BREAD: PROCEDURES OF ITS AUGMENTATION

    M SABZEVARY

    2001-12-01

    Full Text Available Introduction: As many as 35 percent of the world population suffer from some degree of iron deficiency anemia. According to recent reports published by WHO and ICN (International Congress of Nutrition 20-40 percent of women are suffering from iron deficiency. Iron deficiency anemia is caused by lack of intake of the necessary doses of Fe+2 called Heme. The recommended intake dose is 10-17 mg Fe + 2/day. In Iran, bread is the main source of daily iron intake. However, the iron content of bread is Fe+3 which is not absorbable. The objectives of this study is to determine the levels of absorbable iron (Fe + 2 in two common types of Iranian bread and identify the means of raising these to an adequate levels.
    Methods: Random sampling method together with the normal distribution curve was employed in testing 120 samples of flour and bread. Quantification was carried out on each sample in duplicate using spectrophotometer at 510 mu, micrometer wave length. The effect of three organic acids (lactic ascorbic and acetic acid converting of Fe+3 to Fe + 2 was investigated. Two groups of bread was tested. One group was baked in tratitional oven (Noon-e-Tanoori and the second group through the common Iranian hot rotating iron plate baking machine (Noon-e-Machini.
    Results: Our results showed that the amount of absorbable Fe+2 in breads baked in rotatory oven (Noon-e-Tanoori is 0.8 ± 0.32 mg and the amount of unabsorbable Fe+3 in dried bread is 2.34 ± 0.25 mg/100 gm while the amount of absorbable Fe + 2 baked in traditional ovens is only 0.3±0.11 mg versus of unabsorbable Fe  + 3 1.9±0.13 mg/100 gm of dried bread. Meanwhile it was found that lactic and ascorbic acids can convert Fe+3 to Fe+2. Therefore, addition of one of these two acids to bread can catalyze conversion of unabsorbable Fe+3 to absorbable Fe + 2.
    Discussion: On the average an Iranian consumes 370 gm of

  5. Impact of heme oxygenase-1 on cholesterol synthesis, cholesterol efflux and oxysterol formation in cultured astroglia.

    Hascalovici, Jacob R; Song, Wei; Vaya, Jacob; Khatib, Soliman; Fuhrman, Bianca; Aviram, Michael; Schipper, Hyman M

    2009-01-01

    Up-regulation of heme oxygenase-1 (HO-1) and altered cholesterol (CH) metabolism are characteristic of Alzheimer-diseased neural tissues. The liver X receptor (LXR) is a molecular sensor of CH homeostasis. In the current study, we determined the effects of HO-1 over-expression and its byproducts iron (Fe(2+)), carbon monoxide (CO) and bilirubin on CH biosynthesis, CH efflux and oxysterol formation in cultured astroglia. HO-1/LXR interactions were also investigated in the context of CH efflux. hHO-1 over-expression for 3 days ( approximately 2-3-fold increase) resulted in a 30% increase in CH biosynthesis and a two-fold rise in CH efflux. Both effects were abrogated by the competitive HO inhibitor, tin mesoporphyrin. CO, released from administered CORM-3, significantly enhanced CH biosynthesis; a combination of CO and iron stimulated CH efflux. Free iron increased oxysterol formation three-fold. Co-treatment with LXR antagonists implicated LXR activation in the modulation of CH homeostasis by heme degradation products. In Alzheimer's disease and other neuropathological states, glial HO-1 induction may transduce ambient noxious stimuli (e.g. beta-amyloid) into altered patterns of glial CH homeostasis. As the latter may impact synaptic plasticity and neuronal repair, modulation of glial HO-1 expression (by pharmacological or other means) may confer neuroprotection in patients with degenerative brain disorders.

  6. Replacement of meat and dairy by plant-derived foods: estimated effects on land use, iron and SFA intakes in young Dutch adult females

    Temme, E.H.M.; Voet, van der H.; Thissen, J.T.N.M.; Verkaik-Kloosterman, J.; Donkersgoed, van G.; Nonhebel, S.

    2013-01-01

    Objective: Reduction in the current high levels of meat and dairy consumption may contribute to environmental as well as human health. Since meat is a major source of Fe, effects on Fe intake need to be evaluated, especially in groups vulnerable to negative Fe status. In the present study we

  7. Replacement of meat and dairy by plant-derived foods : estimated effects on land use, iron and SFA intakes in young Dutch adult females

    Temme, Elisabeth H. M.; van der Voet, Hilko; Thissen, Jac T. N. M.; Verkaik-Kloosterman, Janneke; van Donkersgoed, Gerda; Nonhebel, Sanderine

    2013-01-01

    Objective: Reduction in the current high levels of meat and dairy consumption may contribute to environmental as well as human health. Since meat is a major source of Fe, effects on Fe intake need to be evaluated, especially in groups vulnerable to negative Fe status. In the present study we

  8. Large prospective investigation of meat intake, related mutagens, and risk of renal cell carcinoma.

    Daniel, Carrie R; Cross, Amanda J; Graubard, Barry I; Park, Yikyung; Ward, Mary H; Rothman, Nathaniel; Hollenbeck, Albert R; Chow, Wong-Ho; Sinha, Rashmi

    2012-01-01

    The evidence for meat intake and renal cell carcinoma (RCC) risk is inconsistent. Mutagens related to meat cooking and processing, and variation by RCC subtype may be important to consider. In a large US cohort, we prospectively investigated intake of meat and meat-related compounds in relation to risk of RCC, as well as clear cell and papillary RCC histologic subtypes. Study participants (492,186) completed a detailed dietary assessment linked to a database of heme iron, heterocyclic amines (HCA), polycyclic aromatic hydrocarbons (PAHs), nitrate, and nitrite concentrations in cooked and processed meats. Over 9 (mean) y of follow-up, we identified 1814 cases of RCC (498 clear cell and 115 papillary adenocarcinomas). HRs and 95% CIs were estimated within quintiles by using multivariable Cox proportional hazards regression. Red meat intake [62.7 g (quintile 5) compared with 9.8 g (quintile 1) per 1000 kcal (median)] was associated with a tendency toward an increased risk of RCC [HR: 1.19; 95% CI: 1.01, 1.40; P-trend = 0.06] and a 2-fold increased risk of papillary RCC [P-trend = 0.002]. Intakes of benzo(a)pyrene (BaP), a marker of PAHs, and 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP), an HCA, were associated with a significant 20-30% elevated risk of RCC and a 2-fold increased risk of papillary RCC. No associations were observed for the clear cell subtype. Red meat intake may increase the risk of RCC through mechanisms related to the cooking compounds BaP and PhIP. Our findings for RCC appeared to be driven by strong associations with the rarer papillary histologic variant. This study is registered at clinicaltrials.gov as NCT00340015.

  9. Molecular characterization of a heme-binding protein of Bacteroides fragilis BE1.

    Otto, B R; Kusters, J G; Luirink, J; de Graaf, F K; Oudega, B

    1996-01-01

    An iron-repressible 44-kDa outer membrane protein plays a crucial role in the acquisition of heme by the anaerobic bacterium Bacteroides fragilis. The DNA sequence of the gene encoding the 44-kDa protein (hupA) was determined. The hupA gene encodes a protein of 431 amino acid residues with a calculated molecular mass of 48,189 Da. The hupA gene is preceded by an open reading frame of 480 bp that probably encodes a protein with a calculated molecular mass of 18,073 Da. hupA and this open readi...

  10. Human heme oxygenase-1 gene transfer lowers blood pressure and promotes growth in spontaneously hypertensive rats.

    Sabaawy, H E; Zhang, F; Nguyen, X; ElHosseiny, A; Nasjletti, A; Schwartzman, M; Dennery, P; Kappas, A; Abraham, N G

    2001-08-01

    Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin, with release of free iron and carbon monoxide. Both heme and carbon monoxide have been implicated in the regulation of vascular tone. A retroviral vector containing human HO-1 cDNA (LSN-HHO-1) was constructed and subjected to purification and concentration of the viral particles to achieve 5x10(9) to 1x10(10) colony-forming units per milliliter. The ability of concentrated infectious viral particles to express human HO-1 (HHO-1) in vivo was tested. A single intracardiac injection of the concentrated infectious viral particles (expressing HHO-1) to 5-day-old spontaneously hypertensive rats resulted in functional expression of the HHO-1 gene and attenuation of the development of hypertension. Rats expressing HHO-1 showed a significant decrease in urinary excretion of a vasoconstrictor arachidonic acid metabolite and a reduction in myogenic responses to increased intraluminal pressure in isolated arterioles. Unexpectedly, HHO-1 chimeric rats showed a simultaneous significant proportionate increase in somatic growth. Thus, delivery of HHO-1 gene by retroviral vector attenuates the development of hypertension and promotes body growth in spontaneously hypertensive rats.

  11. Binding of Pseudomonas aeruginosa Apo-Bacterioferritin Associated Ferredoxin to Bacterioferritin B Promotes Heme Mediation of Electron Delivery and Mobilization of Core Mineral Iron†

    Weeratunga, Saroja K.; Gee, Casey E.; Lovell, Scott; Zeng, Yuhong; Woodin, Carrie L.; Rivera, Mario

    2009-01-01

    The bfrB gene from Pseudomonas aeruginosa was cloned and expressed in E. coli. The resultant protein (BfrB), which assembles into a 445.3 kDa complex0020from 24 identical subunits, binds 12 molecules of heme axially coordinated by two Met residues. BfrB, isolated with 5–10 iron atoms per protein molecule, was reconstituted with ferrous ions to prepare samples with a core mineral containing 600 ± 40 ferric ions per BfrB molecule and approximately one phosphate molecule per iron atom. In the presence of sodium dithionite or in the presence of P. aeruginosa ferredoxin NADP reductase (FPR) and NADPH the heme in BfrB remains oxidized and the core iron mineral is mobilized sluggishly. In stark contrast, addition of NADPH to a solution containing BfrB, FPR and the apo-form of P. aeruginosa bacterioferritin associated ferredoxin (apo-Bfd) results in rapid reduction of the heme in BfrB and in the efficient mobilization of the core iron mineral. Results from additional experimentation indicate that Bfd must bind to BfrB to promote heme mediation of electrons from the surface to the core to support the efficient mobilization of ferrous ions from BfrB. In this context, the thus far mysterious role of heme in bacterioferritins has been brought to the front by reconstituting BfrB with its physiological partner, apo-Bfd. These findings are discussed in the context of a model for the utilization of stored iron in which the significant upregulation of the bfd gene under low-iron conditions [Ochsner, U.A., Wilderman, P.J., Vasil, A.I., and Vasil, M.L. (2002) Mol. Microbiol. 45, 1277–1287] ensures sufficient concentrations of apo-Bfd to bind BfrB and unlock the iron stored in its core. Although these findings are in contrast to previous speculations suggesting redox mediation of electron transfer by holo-Bfd, the ability of apo-Bfd to promote iron mobilization is an economical strategy used by the cell because it obviates the need to further deplete cellular iron levels to

  12. Cloning and Characterization of an Outer Membrane Protein of Vibrio vulnificus Required for Heme Utilization: Regulation of Expression and Determination of the Gene Sequence

    Litwin, Christine M.; Byrne, Burke L.

    1998-01-01

    Vibrio vulnificus is a halophilic, marine pathogen that has been associated with septicemia and serious wound infections in patients with iron overload and preexisting liver disease. For V. vulnificus, the ability to acquire iron from the host has been shown to correlate with virulence. V. vulnificus is able to use host iron sources such as hemoglobin and heme. We previously constructed a fur mutant of V. vulnificus which constitutively expresses at least two iron-regulated outer membrane proteins, of 72 and 77 kDa. The N-terminal amino acid sequence of the 77-kDa protein purified from the V. vulnificus fur mutant had 67% homology with the first 15 amino acids of the mature protein of the Vibrio cholerae heme receptor, HutA. In this report, we describe the cloning, DNA sequence, mutagenesis, and analysis of transcriptional regulation of the structural gene for HupA, the heme receptor of V. vulnificus. DNA sequencing of hupA demonstrated a single open reading frame of 712 amino acids that was 50% identical and 66% similar to the sequence of V. cholerae HutA and similar to those of other TonB-dependent outer membrane receptors. Primer extension analysis localized one promoter for the V. vulnificus hupA gene. Analysis of the promoter region of V. vulnificus hupA showed a sequence homologous to the consensus Fur box. Northern blot analysis showed that the transcript was strongly regulated by iron. An internal deletion in the V. vulnificus hupA gene, done by using marker exchange, resulted in the loss of expression of the 77-kDa protein and the loss of the ability to use hemin or hemoglobin as a source of iron. The hupA deletion mutant of V. vulnificus will be helpful in future studies of the role of heme iron in V. vulnificus pathogenesis. PMID:9632577

  13. Heme-based sensors in biological systems.

    Rodgers, K R

    1999-04-01

    The past several years have been witness to a staggering rate of advancement in the understanding of how organisms respond to changes in the availability of diatomic molecules that are toxic and/or crucial to survival. Heme-based sensors presently constitute the majority of the proteins known to sense NO, O2 and CO and to initiate the chemistry required to adapt to changes in their availabilities. Knowledge of the three characterized members of this class, soluble guanylate cyclase, FixL and CooA, has grown substantially during the past year. The major advances have resulted from a broad range of approaches to elucidation of both function and mechanism. They include growth in the understanding of the interplay between the heme and protein in soluble guanylate cyclase, as well as alternate means for its stimulation. Insight into the O2-induced structural changes in FixL has been supplied by the single crystal structure of the heme domain of Bradyrhizobium japonicum. Finally, the ligation environment and ligand interchange that facilitates CO sensing by CooA has been established by spectroscopic and mutagenesis techniques.

  14. Role of Heme and Heme-Proteins in Trypanosomatid Essential Metabolic Pathways

    Karina E. J. Tripodi

    2011-01-01

    Full Text Available Around the world, trypanosomatids are known for being etiological agents of several highly disabling and often fatal diseases like Chagas disease (Trypanosoma cruzi, leishmaniasis (Leishmania spp., and African trypanosomiasis (Trypanosoma brucei. Throughout their life cycle, they must cope with diverse environmental conditions, and the mechanisms involved in these processes are crucial for their survival. In this review, we describe the role of heme in several essential metabolic pathways of these protozoans. Notwithstanding trypanosomatids lack of the complete heme biosynthetic pathway, we focus our discussion in the metabolic role played for important heme-proteins, like cytochromes. Although several genes for different types of cytochromes, involved in mitochondrial respiration, polyunsaturated fatty acid metabolism, and sterol biosynthesis, are annotated at the Tritryp Genome Project, the encoded proteins have not yet been deeply studied. We pointed our attention into relevant aspects of these protein functions that are amenable to be considered for rational design of trypanocidal agents.

  15. Astroglia overexpressing heme oxygenase-1 predispose co-cultured PC12 cells to oxidative injury.

    Song, Linyang; Song, Wei; Schipper, Hyman M

    2007-08-01

    The mechanisms responsible for the progressive degeneration of dopaminergic neurons and pathologic iron deposition in the substantia nigra pars compacta of patients with Parkinson's disease (PD) remain unclear. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in the oxidative degradation of heme to ferrous iron, carbon monoxide, and biliverdin, is upregulated in affected PD astroglia and may contribute to abnormal mitochondrial iron sequestration in these cells. To determine whether glial HO-1 hyper-expression is toxic to neuronal compartments, we co-cultured dopaminergic PC12 cells atop monolayers of human (h) HO-1 transfected, sham-transfected, or non-transfected primary rat astroglia. We observed that PC12 cells grown atop hHO-1 transfected astrocytes, but not the astroglia themselves, were significantly more susceptible to dopamine (1 microM) + H(2)O(2) (1 microM)-induced death (assessed by nuclear ethidium monoazide bromide staining and anti-tyrosine hydroxylase immunofluorescence microscopy) relative to control preparations. In the experimental group, PC12 cell death was attenuated significantly by the administration of the HO inhibitor, SnMP (1.5 microM), the antioxidant, ascorbate (200 microM), or the iron chelators, deferoxamine (400 microM), and phenanthroline (100 microM). Exposure to conditioned media derived from HO-1 transfected astrocytes also augmented PC12 cell killing in response to dopamine (1 microM) + H(2)O(2) (1 microM) relative to control media. In PD brain, overexpression of HO-1 in nigral astroglia and accompanying iron liberation may facilitate the bioactivation of dopamine to neurotoxic free radical intermediates and predispose nearby neuronal constituents to oxidative damage. (c) 2007 Wiley-Liss, Inc.

  16. Intake port

    Mendler, Edward Charles

    2005-02-01

    The volumetric efficiency and power of internal combustion engines is improved with an intake port having an intake nozzle, a venturi, and a surge chamber. The venturi is located almost halfway upstream the intake port between the intake valves and the intake plenum enabling the venturi throat diameter to be exceptionally small for providing an exceptionally high ram velocity and an exceptionally long and in turn high efficiency diffuser flowing into the surge chamber. The intake port includes an exceptionally large surge chamber volume for blow down of the intake air into the working cylinder of the engine.

  17. Tuning of Hemes b Equilibrium Redox Potential Is Not Required for Cross-Membrane Electron Transfer.

    Pintscher, Sebastian; Kuleta, Patryk; Cieluch, Ewelina; Borek, Arkadiusz; Sarewicz, Marcin; Osyczka, Artur

    2016-03-25

    In biological energy conversion, cross-membrane electron transfer often involves an assembly of two hemesb The hemes display a large difference in redox midpoint potentials (ΔEm_b), which in several proteins is assumed to facilitate cross-membrane electron transfer and overcome a barrier of membrane potential. Here we challenge this assumption reporting on hemebligand mutants of cytochromebc1in which, for the first time in transmembrane cytochrome, one natural histidine has been replaced by lysine without loss of the native low spin type of heme iron. With these mutants we show that ΔEm_b can be markedly increased, and the redox potential of one of the hemes can stay above the level of quinone pool, or ΔEm_b can be markedly decreased to the point that two hemes are almost isopotential, yet the enzyme retains catalytically competent electron transfer between quinone binding sites and remains functionalin vivo This reveals that cytochromebc1can accommodate large changes in ΔEm_b without hampering catalysis, as long as these changes do not impose overly endergonic steps on downhill electron transfer from substrate to product. We propose that hemesbin this cytochrome and in other membranous cytochromesbact as electronic connectors for the catalytic sites with no fine tuning in ΔEm_b required for efficient cross-membrane electron transfer. We link this concept with a natural flexibility in occurrence of several thermodynamic configurations of the direction of electron flow and the direction of the gradient of potential in relation to the vector of the electric membrane potential. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Characterisation of Anopheles gambiae heme oxygenase and metalloporphyrin feeding suggests a potential role in reproduction.

    Spencer, Christopher S; Yunta, Cristina; de Lima, Glauber Pacelli Gomes; Hemmings, Kay; Lian, Lu-Yun; Lycett, Gareth; Paine, Mark J I

    2018-05-03

    The mosquito Anopheles gambiae is the principal vector for malaria in sub-Saharan Africa. The ability of A. gambiae to transmit malaria is strictly related to blood feeding and digestion, which releases nutrients for oogenesis, as well as substantial amounts of highly toxic free heme. Heme degradation by heme oxygenase (HO) is a common protective mechanism, and a gene for HO exists in the An. gambiae genome HO (AgHO), although it has yet to be functionally examined. Here, we have cloned and expressed An. gambiae HO (AgHO) in E. coli. Purified recombinant AgHO bound hemin stoichiometrically to form a hemin-enzyme complex similar to other HOs, with a K D of 3.9 ± 0.6 μM; comparable to mammalian and bacterial HOs, but 7-fold lower than that of Drosophila melanogaster HO. AgHO also degraded hemin to biliverdin and released CO and iron in the presence of NADPH cytochrome P450 oxidoreductase (CPR). Optimal AgHO activity was observed at 27.5 °C and pH 7.5. To investigate effects of AgHO inhibition, adult female A. gambiae were fed heme analogues Sn- and Zn-protoporphyrins (SnPP and ZnPP), known to inhibit HO. These led to a dose dependent decrease in oviposition. Cu-protoporphyrin (CuPP), which does not inhibit HO had no effect. These results demonstrate that AgHO is a catalytically active HO and that it may play a key role in egg production in mosquitoes. It also presents a potential target for the development of compounds aimed at sterilising mosquitoes for vector control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Gas-phase spectroscopy of ferric heme-NO complexes

    Wyer, J.A.; Jørgensen, Anders; Pedersen, Bjarke

    2013-01-01

    and significantly blue-shifted compared to ferric heme nitrosyl proteins (maxima between 408 and 422 nm). This is in stark contrast to the Q-band absorption where the protein microenvironment is nearly innocent in perturbing the electronic structure of the porphyrin macrocycle. Photodissociation is primarily...... maxima of heme and its complexes with amino acids and NO. Not so innocent: Weakly bound complexes between ferric heme and NO were synthesised in the gas phase, and their absorption measured from photodissociation yields. Opposite absorption trends in the Soret-band are seen upon NO addition to heme ions...

  20. Cytosolic iron chaperones: Proteins delivering iron cofactors in the cytosol of mammalian cells.

    Philpott, Caroline C; Ryu, Moon-Suhn; Frey, Avery; Patel, Sarju

    2017-08-04

    Eukaryotic cells contain hundreds of metalloproteins that are supported by intracellular systems coordinating the uptake and distribution of metal cofactors. Iron cofactors include heme, iron-sulfur clusters, and simple iron ions. Poly(rC)-binding proteins are multifunctional adaptors that serve as iron ion chaperones in the cytosolic/nuclear compartment, binding iron at import and delivering it to enzymes, for storage (ferritin) and export (ferroportin). Ferritin iron is mobilized by autophagy through the cargo receptor, nuclear co-activator 4. The monothiol glutaredoxin Glrx3 and BolA2 function as a [2Fe-2S] chaperone complex. These proteins form a core system of cytosolic iron cofactor chaperones in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. The relationship between dental status, food selection, nutrient intake, nutritional status, and body mass index in older people

    Wagner Marcenes

    2003-05-01

    Full Text Available This paper reviewed the findings from a national survey in Great Britain which assessed whether dental status affected older people's food selection, nutrient intake, and nutritional status. The survey analyzed national random samples of free-living and institution subjects for dental examination, interview, and four-day food diary as well as blood and urine tests In the free-living sample, intakes of non-starch polysaccharides, protein, calcium, non-heme iron, niacin, and vitamin C were significantly lower in edentulous as compared to dentate subjects. People with 21 or more teeth consumed more of most nutrients, particularly non-starch polysaccharides. This relationship in intake was not apparent in the hematological analysis. Plasma ascorbate and retinol were the only analytes significantly associated with dental status. Having 21 or more teeth increased the likelihood of having an acceptable body mass index (BMI. Thus, maintaining a natural and functional dentition defined as having more than twenty teeth into old age plays an important role in having a healthy diet rich in fruits and vegetables, a satisfactory nutritional status, and an acceptable BMI.

  2. Theory favors a stepwise mechanism of porphyrin degradation by a ferric hydroperoxide model of the active species of heme oxygenase.

    Kumar, Devesh; de Visser, Samuël P; Shaik, Sason

    2005-06-08

    The report uses density functional theory to address the mechanism of heme degradation by the enzyme heme oxygenase (HO) using a model ferric hydroperoxide complex. HO is known to trap heme molecules and degrade them to maintain iron homeostasis in the biosystem. The degradation is initiated by complexation of the heme, then formation of the iron-hydroperoxo species, which subsequently oxidizes the meso position of the porphyrin by hydroxylation, thereby enabling eventually the cleavage of the porphyrin ring. Kinetic isotope effect studies indicate that the mechanism is assisted by general acid catalysis, via a chain of water molecules, and that all the events occur in concert. However, previous theoretical treatments indicated that the concerted mechanism has a high barrier, much higher than an alternative mechanism that is initiated by O-O bond homolysis of iron-hydroperoxide. The present contribution studies the stepwise and concerted acid-catalyzed mechanisms using H(3)O(+)(H(2)O)(n)(), n = 0-2. The effect of the acid strength is tested using the H(4)N(+)(H(2)O)(2) cluster and a fully protonated ferric hydroperoxide. All the calculations show that a stepwise mechanism that involves proton relay and O-O homolysis, in the rate-determining step, has a much lower barrier (>10 kcal/mol) than the corresponding fully concerted mechanism. The best fit of the calculated solvent kinetic isotope effect, to the experimental data, is obtained for the H(3)O(+)(H(2)O)(2) cluster. The calculated alpha-deuterium secondary kinetic isotope effect is inverse (0.95-0.98), but much less so than the experimental value (0.7). Possible reasons for this quantitative difference are discussed. Some probes are suggested that may enable experiment to distinguish the stepwise from the concerted mechanism.

  3. Synthetic heme/copper assemblies: toward an understanding of cytochrome c oxidase interactions with dioxygen and nitrogen oxides.

    Hematian, Shabnam; Garcia-Bosch, Isaac; Karlin, Kenneth D

    2015-08-18

    Our long-time niche in synthetic biological inorganic chemistry has been to design ligands and generate coordination complexes of copper or iron ions or both, those reacting with dioxygen (O2) or nitrogen oxides (e.g., nitric oxide (NO(g)) and nitrite (NO2(-))) or both. As inspiration for this work, we turn to mitochondrial cytochrome c oxidase, which is responsible for dioxygen consumption and is also the predominant target for NO(g) and nitrite within mitochondria. In this Account, we highlight recent advances in studying synthetic heme/Cu complexes in two respects. First, there is the design, synthesis, and characterization of new O2 adducts whose further study will add insights into O2 reductive cleavage chemistry. Second, we describe how related heme/Cu constructs reduce nitrite ion to NO(g) or the reverse, oxidize NO(g) to nitrite. The reactions of nitrogen oxides occur as part of CcO's function, which is intimately tied to cellular O2 balance. We had first discovered that reduced heme/Cu compounds react with O2 giving μ-oxo heme-Fe(III)-O-Cu(II)(L) products; their properties are discussed. The O-atom is derived from dioxygen, and interrogations of these systems led to the construction and characterization of three distinctive classes of heme-peroxo complexes, two high-spin and one low-spin species. Recent investigations include a new approach to the synthesis of low-spin heme-peroxo-Cu complexes, employing a "naked" synthon, where the copper ligand denticity and geometric types can be varied. The result is a collection of such complexes; spectroscopic and structural features (by DFT calculations) are described. Some of these compounds are reactive toward reductants/protons effecting subsequent O-O cleavage. This points to how subtle improvements in ligand environment lead to a desired local structure and resulting optimized reactivity, as known to occur at enzyme active sites. The other sector of research is focused on heme/Cu assemblies mediating the redox

  4. Relationship between natural and heme-mediated antibody polyreactivity

    Hadzhieva, Maya; Vassilev, Tchavdar [Stephan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113 (Bulgaria); Bayry, Jagadeesh; Kaveri, Srinivas; Lacroix-Desmazes, Sébastien [Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1138, Centre de Recherche des Cordeliers, F-75006 Paris (France); INSERM, UMR-S 1138, F-75006 Paris (France); Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1138, F-75006 Paris (France); Dimitrov, Jordan D., E-mail: jordan.dimitrov@crc.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1138, Centre de Recherche des Cordeliers, F-75006 Paris (France); INSERM, UMR-S 1138, F-75006 Paris (France); Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1138, F-75006 Paris (France)

    2016-03-25

    Polyreactive antibodies represent a considerable fraction of the immune repertoires. Some antibodies acquire polyreactivity post-translationally after interaction with various redox-active substances, including heme. Recently we have demonstrated that heme binding to a naturally polyreactive antibody (SPE7) results in a considerable broadening of the repertoire of recognized antigens. A question remains whether the presence of certain level of natural polyreactivity of antibodies is a prerequisite for heme-induced further extension of antigen binding potential. Here we used a second monoclonal antibody (Hg32) with unknown specificity and absence of intrinsic polyreactivity as a model to study the potential of heme to induce polyreactivity of antibodies. We demonstrated that exposure to heme greatly extends the antigen binding potential of Hg32, suggesting that the intrinsic binding promiscuity is not a prerequisite for the induction of polyreactivity by heme. In addition we compared the kinetics and thermodynamics of the interaction of heme-exposed antibodies with a panel of unrelated antigens. These analyses revealed that the two heme-sensitive antibodies adopt different mechanisms of binding to the same set of antigens. This study contributes to understanding the phenomenon of induced antibody polyreactivity. The data may also be of importance for understanding of physiological and pathological roles of polyreactive antibodies. - Highlights: • Exposure of certain monoclonal IgE antibodies to heme results in gain of antigen binding polyreactivity. • Natural polyreactivity of antibodies is dispensable for acquisition of polyreactivity through interaction with heme. • Heme-induced monoclonal IgE antibodies differ in their thermodynamic mechanisms of antigen recognition.

  5. Molecular evolution of multiple-level control of heme biosynthesis pathway in animal kingdom.

    Tzou, Wen-Shyong; Chu, Ying; Lin, Tzung-Yi; Hu, Chin-Hwa; Pai, Tun-Wen; Liu, Hsin-Fu; Lin, Han-Jia; Cases, Ildeofonso; Rojas, Ana; Sanchez, Mayka; You, Zong-Ye; Hsu, Ming-Wei

    2014-01-01

    Adaptation of enzymes in a metabolic pathway can occur not only through changes in amino acid sequences but also through variations in transcriptional activation, mRNA splicing and mRNA translation. The heme biosynthesis pathway, a linear pathway comprised of eight consecutive enzymes in animals, provides researchers with ample information for multiple types of evolutionary analyses performed with respect to the position of each enzyme in the pathway. Through bioinformatics analysis, we found that the protein-coding sequences of all enzymes in this pathway are under strong purifying selection, from cnidarians to mammals. However, loose evolutionary constraints are observed for enzymes in which self-catalysis occurs. Through comparative genomics, we found that in animals, the first intron of the enzyme-encoding genes has been co-opted for transcriptional activation of the genes in this pathway. Organisms sense the cellular content of iron, and through iron-responsive elements in the 5' untranslated regions of mRNAs and the intron-exon boundary regions of pathway genes, translational inhibition and exon choice in enzymes may be enabled, respectively. Pathway product (heme)-mediated negative feedback control can affect the transport of pathway enzymes into the mitochondria as well as the ubiquitin-mediated stability of enzymes. Remarkably, the positions of these controls on pathway activity are not ubiquitous but are biased towards the enzymes in the upstream portion of the pathway. We revealed that multiple-level controls on the activity of the heme biosynthesis pathway depend on the linear depth of the enzymes in the pathway, indicating a new strategy for discovering the molecular constraints that shape the evolution of a metabolic pathway.

  6. Iron requirements of infants and toddlers

    Domellöf, Magnus; Braegger, Christian; Campoy, Cristina

    2014-01-01

    Iron deficiency (ID) is the most common micronutrient deficiency worldwide and young children are a special risk group since their rapid growth leads to high iron requirements. Risk factors associated with a higher prevalence of iron deficiency anemia (IDA) include low birth weight, high cow's milk.......There is no evidence that iron supplementation of pregnant women improves iron status in their offspring in a European setting. Delayed cord clamping reduces the risk of iron deficiency. There is insufficient evidence to support general iron supplementation of healthy, European infants and toddlers of normal birth...... intake, low intake of iron-rich complementary foods, low socioeconomic status and immigrant status.The aim of this position paper is to review the field and provide recommendations regarding iron requirements in infants and toddlers, including those of moderately or marginally low birth weight...

  7. Over-expression of heme oxygenase-1 promotes oxidative mitochondrial damage in rat astroglia.

    Song, Wei; Su, Haixiang; Song, Sisi; Paudel, Hemant K; Schipper, Hyman M

    2006-03-01

    Glial heme oxygenase-1 is over-expressed in the CNS of subjects with Alzheimer disease (AD), Parkinson disease (PD) and multiple sclerosis (MS). Up-regulation of HO-1 in rat astroglia has been shown to facilitate iron sequestration by the mitochondrial compartment. To determine whether HO-1 induction promotes mitochondrial oxidative stress, assays for 8-epiPGF(2alpha) (ELISA), protein carbonyls (ELISA) and 8-OHdG (HPLC-EC) were used to quantify oxidative damage to lipids, proteins, and nucleic acids, respectively, in mitochondrial fractions and whole-cell compartments derived from cultured rat astroglia engineered to over-express human (h) HO-1 by transient transfection. Cell viability was assessed by trypan blue exclusion and the MTT assay, and cell proliferation was determined by [3H] thymidine incorporation and total cell counts. In rat astrocytes, hHO-1 over-expression (x 3 days) resulted in significant oxidative damage to mitochondrial lipids, proteins, and nucleic acids, partial growth arrest, and increased cell death. These effects were attenuated by incubation with 1 microM tin mesoporphyrin, a competitive HO inhibitor, or the iron chelator, deferoxamine. Up-regulation of HO-1 engenders oxidative mitochondrial injury in cultured rat astroglia. Heme-derived ferrous iron and carbon monoxide (CO) may mediate the oxidative modification of mitochondrial lipids, proteins and nucleic acids in these cells. Glial HO-1 hyperactivity may contribute to cellular oxidative stress, pathological iron deposition, and bioenergetic failure characteristic of degenerating and inflamed neural tissues and may constitute a rational target for therapeutic intervention in these conditions. Copyright 2005 Wiley-Liss, Inc.

  8. Dietary heme-mediated PPARα activation does not affect the heme-induced epithelial hyperproliferation and hyperplasia in mouse colon.

    Noortje Ijssennagger

    Full Text Available Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by luminal cytotoxicity and reactive oxygen species. This surface injury is overcompensated by hyperproliferation and hyperplasia of crypt cells. Transcriptome analysis of mucosa of heme-fed mice showed, besides stress- and proliferation-related genes, many upregulated lipid metabolism-related PPARα target genes. The aim of this study was to investigate the role of PPARα in heme-induced hyperproliferation and hyperplasia. Male PPARα KO and WT mice received a purified diet with or without heme. As PPARα is proposed to protect against oxidative stress and lipid peroxidation, we hypothesized that the absence of PPARα leads to more surface injury and crypt hyperproliferation in the colon upon heme-feeding. Heme induced luminal cytotoxicity and lipid peroxidation and colonic hyperproliferation and hyperplasia to the same extent in WT and KO mice. Transcriptome analysis of colonic mucosa confirmed similar heme-induced hyperproliferation in WT and KO mice. Stainings for alkaline phosphatase activity and expression levels of Vanin-1 and Nrf2-targets indicated a compromised antioxidant defense in heme-fed KO mice. Our results suggest that the protective role of PPARα in antioxidant defense involves the Nrf2-inhibitor Fosl1, which is upregulated by heme in PPARα KO mice. We conclude that PPARα plays a protective role in colon against oxidative stress, but PPARα does not mediate heme-induced hyperproliferation. This implies that oxidative stress of surface cells is not the main determinant of heme-induced hyperproliferation and hyperplasia.

  9. Role of heme in bromine-induced lung injury

    Lam, Adam; Vetal, Nilam; Matalon, Sadis; Aggarwal, Saurabh

    2016-01-01

    Bromine (Br2) gas inhalation poses an environmental and occupational hazard resulting in high morbidity and mortality. In this review, we underline the acute lung pathology (within 24 hours of exposure) and potential therapeutic interventions that may be utilized to mitigate Br2-induced human toxicity. We will discuss our latest published data, which suggests that an increase in heme-dependent tissue injury underlies the pathogenesis of Br2 toxicity. Our study was based on previous findings that demonstrated that Br2 upregulates the heme-degrading enzyme heme oxygenase-1 (HO-1), which converts toxic heme into billiverdin. Interestingly, following Br2 inhalation, heme levels were indeed elevated in bronchoalveolar lavage fluid, plasma, and whole lung tissue in C57BL/6 mice. High heme levels correlated with increased lung oxidative stress, lung inflammation, respiratory acidosis, lung edema, higher airway resistance, and mortality. However, therapeutic reduction of heme levels, by either scavenging with hemopexin or degradation by HO-1, improved lung function and survival. Therefore, heme attenuation may prove a useful adjuvant therapy to treat patients after Br2 exposure. PMID:27244263

  10. Heme: From quantum spin crossover to oxygen manager of life

    Kepp, Kasper Planeta

    2016-01-01

    The review discusses how the electronic structure of heme explains its central importance to oxygen-based life on Earth. Emphasis is on the chemical bonding of heme, its spin crossover, reversible O2 binding, and O-O bond activation, put in relation to its physiological functions. The review disc...

  11. Mechanisms of Mitochondrial Holocytochrome c Synthase and the Key Roles Played by Cysteines and Histidine of the Heme Attachment Site, Cys-XX-Cys-His*

    Babbitt, Shalon E.; San Francisco, Brian; Mendez, Deanna L.; Lukat-Rodgers, Gudrun S.; Rodgers, Kenton R.; Bretsnyder, Eric C.; Kranz, Robert G.

    2014-01-01

    Mitochondrial cytochrome c assembly requires the covalent attachment of heme by thioether bonds between heme vinyl groups and a conserved CXXCH motif of cytochrome c/c1. The enzyme holocytochrome c synthase (HCCS) binds heme and apocytochrome c substrate to catalyze this attachment, subsequently releasing holocytochrome c for proper folding to its native structure. We address mechanisms of assembly using a functional Escherichia coli recombinant system expressing human HCCS. Human cytochrome c variants with individual cysteine, histidine, double cysteine, and triple cysteine/histidine substitutions (of CXXCH) were co-purified with HCCS. Single and double mutants form a complex with HCCS but not the triple mutant. Resonance Raman and UV-visible spectroscopy support the proposal that heme puckering induced by both thioether bonds facilitate release of holocytochrome c from the complex. His-19 (of CXXCH) supplies the second axial ligand to heme in the complex, the first axial ligand was previously shown to be from HCCS residue His-154. Substitutions of His-19 in cytochrome c to seven other residues (Gly, Ala, Met, Arg, Lys, Cys, and Tyr) were used with various approaches to establish other roles played by His-19. Three roles for His-19 in HCCS-mediated assembly are suggested: (i) to provide the second axial ligand to the heme iron in preparation for covalent attachment; (ii) to spatially position the two cysteinyl sulfurs adjacent to the two heme vinyl groups for thioether formation; and (iii) to aid in release of the holocytochrome c from the HCCS active site. Only H19M is able to carry out these three roles, albeit at lower efficiencies than the natural His-19. PMID:25170082

  12. Mechanisms of mitochondrial holocytochrome c synthase and the key roles played by cysteines and histidine of the heme attachment site, Cys-XX-Cys-His.

    Babbitt, Shalon E; San Francisco, Brian; Mendez, Deanna L; Lukat-Rodgers, Gudrun S; Rodgers, Kenton R; Bretsnyder, Eric C; Kranz, Robert G

    2014-10-17

    Mitochondrial cytochrome c assembly requires the covalent attachment of heme by thioether bonds between heme vinyl groups and a conserved CXXCH motif of cytochrome c/c1. The enzyme holocytochrome c synthase (HCCS) binds heme and apocytochrome c substrate to catalyze this attachment, subsequently releasing holocytochrome c for proper folding to its native structure. We address mechanisms of assembly using a functional Escherichia coli recombinant system expressing human HCCS. Human cytochrome c variants with individual cysteine, histidine, double cysteine, and triple cysteine/histidine substitutions (of CXXCH) were co-purified with HCCS. Single and double mutants form a complex with HCCS but not the triple mutant. Resonance Raman and UV-visible spectroscopy support the proposal that heme puckering induced by both thioether bonds facilitate release of holocytochrome c from the complex. His-19 (of CXXCH) supplies the second axial ligand to heme in the complex, the first axial ligand was previously shown to be from HCCS residue His-154. Substitutions of His-19 in cytochrome c to seven other residues (Gly, Ala, Met, Arg, Lys, Cys, and Tyr) were used with various approaches to establish other roles played by His-19. Three roles for His-19 in HCCS-mediated assembly are suggested: (i) to provide the second axial ligand to the heme iron in preparation for covalent attachment; (ii) to spatially position the two cysteinyl sulfurs adjacent to the two heme vinyl groups for thioether formation; and (iii) to aid in release of the holocytochrome c from the HCCS active site. Only H19M is able to carry out these three roles, albeit at lower efficiencies than the natural His-19. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Benzylic oxidation of gemfibrozil-1-O-beta-glucuronide by P450 2C8 leads to heme alkylation and irreversible inhibition.

    Baer, Brian R; DeLisle, Robert Kirk; Allen, Andrew

    2009-07-01

    Gemfibrozil-1-O-beta-glucuronide (GEM-1-O-gluc), a major metabolite of the antihyperlipidemic drug gemfibrozil, is a mechanism-based inhibitor of P450 2C8 in vitro, and this irreversible inactivation may lead to clinical drug-drug interactions between gemfibrozil and other P450 2C8 substrates. In light of this in vitro finding and the observation that the glucuronide conjugate does not contain any obvious structural alerts, the current study was conducted to determine the potential site of GEM-1-O-gluc bioactivation and the subsequent mechanism of P450 2C8 inhibition (i.e., modification of apoprotein or heme). LC/MS analysis of a reaction mixture containing recombinant P450 2C8 and GEM-1-O-gluc revealed that the substrate was covalently linked to the heme prosthetic heme group during catalysis. A combination of mass spectrometry and deuterium isotope effects revealed that a benzylic carbon on the 2',5'-dimethylphenoxy group of GEM-1-O-gluc was covalently bound to the heme of P450 2C8. The regiospecificity of substrate addition to the heme group was not confirmed experimentally, but computational modeling experiments indicated that the gamma-meso position was the most likely site of modification. The metabolite profile, which consisted of two benzyl alcohol metabolites and a 4'-hydroxy-GEM-1-O-gluc metabolite, indicated that oxidation of GEM-1-O-gluc was limited to the 2',5'-dimethylphenoxy group. These results are consistent with an inactivation mechanism wherein GEM-1-O-gluc is oxidized to a benzyl radical intermediate, which evades oxygen rebound, and adds to the gamma-meso position of heme. Mechanism-based inhibition of P450 2C8 can be rationalized by the formation of the GEM-1-O-gluc-heme adduct and the consequential restriction of additional substrate access to the catalytic iron center.

  14. Heterogeneous electron transfer of a two-centered heme protein: redox and electrocatalytic properties of surface-immobilized cytochrome C(4).

    Monari, Stefano; Battistuzzi, Gianantonio; Borsari, Marco; Di Rocco, Giulia; Martini, Laura; Ranieri, Antonio; Sola, Marco

    2009-10-15

    The recombinant diheme cytochrome c(4) from the psycrophilic bacterium Pseudoalteromonas haloplanktis TAC 125 and its Met64Ala and Met164Ala variants, which feature a hydroxide ion axially bound to the heme iron at the N- and C-terminal domains, respectively, were found to exchange electrons efficiently with a gold electrode coated with a SAM of 11-mercapto-1-undecanoic acid. The mutation-induced removal of the redox equivalence of the two heme groups and changes in the net charge of the protein lobes yield two-centered protein systems with unprecedented properties in the electrode-immobilized state. The heterogeneous and intraheme electron transfer processes were characterized for these species in which the high- and low-potential heme groups are swapped over in the bilobal protein framework and experience a constrained (M64A) and unconstrained (M164A) orientation toward the electrode. The reduction thermodynamics for the native and mutated hemes were measured for the first time for a diheme cytochrome c. In the diffusing regime, they reproduce closely those for the corresponding centers in single-heme class-I cytochromes c, despite the low sequence identity. Larger differences are observed in the thermodynamics of the immobilized species and in the heterogeneous electron transfer rate constants. T-dependent kinetic measurements show that the proteins are positioned approximately 7 A from the HOOC-terminated SAM-coated electrode. Protein-electrode orientation and efficient intraheme ET enable the His,OH(-)-ligated heme A of the immobilized Met64Ala variant to carry out the reductive electrocatalysis of molecular oxygen. This system therefore constitutes a novel two-centered heme-based biocatalytic interface to be exploited for "third-generation" amperometric biosensing.

  15. Identification of the receptor scavenging hemopexin-heme complexes

    Hvidberg, Vibeke; Maniecki, Maciej B; Jacobsen, Christian

    2005-01-01

    and is suggested to facilitate cellular heme metabolism. Using a ligand-affinity approach, we purified the human hemopexin-heme receptor and identified it as the low-density lipoprotein receptor-related protein (LRP)/CD91, a receptor expressed in several cell types including macrophages, hepatocytes, neurons......, and syncytiotrophoblasts. Binding experiments, including Biacore analysis, showed that hemopexin-heme complex formation elicits the high receptor affinity. Uptake studies of radio-labeled hemopexin-heme complex in LRP/CD91-expressing COS cells and confocal microscopy of the cellular processing of fluorescent hemopexin......-heme complexes are removed by a receptor-mediated pathway showing striking similarities to the CD163-mediated haptoglobin-hemoglobin clearance in macrophages. Furthermore, the data indicate a hitherto unknown role of LRP/CD91 in inflammation....

  16. Iron(III) complexes of certain tetradentate phenolate ligands as ...

    non-heme iron enzymes, which catalyse the oxidative cleavage of catechols to cis, cis-muconic acids with the incorporation of ... nature of heterocyclic rings of the ligands and the methyl substituents on them regulate the electronic spectral features .... and simple substitution reactions.19,21 The complexes of [H2(L5)] and ...

  17. Differences and Comparisons of the Properties and Reactivities of Iron(III)–hydroperoxo Complexes with Saturated Coordination Sphere

    Faponle, Abayomi S; Quesne, Matthew G; Sastri, Chivukula V; Banse, Frédéric; de Visser, Sam P

    2015-01-01

    Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)–oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)–hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)–hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)–hydroperoxo reacted directly with substrates or that an initial O–O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)–hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)–hydroperoxo complex with pentadentate ligand system (L52). Direct C–O bond formation by an iron(III)–hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L52)FeIII(OOH)]2+ should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)–hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O–O bond, whereas a heterolytic O–O bond breaking in heme iron(III)–hydroperoxo is found. PMID:25399782

  18. Isotope aided studies of the bioavailability of iron from common diets from Peru

    Zavaleta, N.; Diaz, A.; Bedregal, P.; Montoya R, E.

    1993-01-01

    The nutritional iron absorption from a typical peruvian diet was studied by the Eakins and Brown method. the food were breakfast: coffee and bread with butter; lunch: vegetable soup rice with cow tripe stew and lemonade; dinner: vegetable soup and bread. The results show that despite low iron content in the meals, which is not enough to meet daily iron requirements absorption was good in lunch possibly by the action of the promoters ascorbic acid (lemonade) and heme iron (cow tripe). Iron absorption in lunch was good and different from dinner and breakfast. We cannot conclude if the low iron absorption from bread is affected by coffee. (authors). 11 refs., 3 tabs

  19. Monomeric Yeast Frataxin is an Iron-Binding Protein

    Cook, J.; Bencze, K.; Jankovic, A.; Crater, A.; Busch, C.; Bradley, P.; Stemmler, A.; Spaller, M.; Stemmler, T.

    2006-01-01

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50 000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) share requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron

  20. Hemolytic anemia repressed hepcidin level without hepatocyte iron overload: lesson from Günther disease model.

    Millot, Sarah; Delaby, Constance; Moulouel, Boualem; Lefebvre, Thibaud; Pilard, Nathalie; Ducrot, Nicolas; Ged, Cécile; Lettéron, Philippe; de Franceschi, Lucia; Deybach, Jean Charles; Beaumont, Carole; Gouya, Laurent; De Verneuil, Hubert; Lyoumi, Saïd; Puy, Hervé; Karim, Zoubida

    2017-02-01

    Hemolysis occurring in hematologic diseases is often associated with an iron loading anemia. This iron overload is the result of a massive outflow of hemoglobin into the bloodstream, but the mechanism of hemoglobin handling has not been fully elucidated. Here, in a congenital erythropoietic porphyria mouse model, we evaluate the impact of hemolysis and regenerative anemia on hepcidin synthesis and iron metabolism. Hemolysis was confirmed by a complete drop in haptoglobin, hemopexin and increased plasma lactate dehydrogenase, an increased red blood cell distribution width and osmotic fragility, a reduced half-life of red blood cells, and increased expression of heme oxygenase 1. The erythropoiesis-induced Fam132b was increased, hepcidin mRNA repressed, and transepithelial iron transport in isolated duodenal loops increased. Iron was mostly accumulated in liver and spleen macrophages but transferrin saturation remained within the normal range. The expression levels of hemoglobin-haptoglobin receptor CD163 and hemopexin receptor CD91 were drastically reduced in both liver and spleen, resulting in heme- and hemoglobin-derived iron elimination in urine. In the kidney, the megalin/cubilin endocytic complex, heme oxygenase 1 and the iron exporter ferroportin were induced, which is reminiscent of significant renal handling of hemoglobin-derived iron. Our results highlight ironbound hemoglobin urinary clearance mechanism and strongly suggest that, in addition to the sequestration of iron in macrophages, kidney may play a major role in protecting hepatocytes from iron overload in chronic hemolysis. Copyright© Ferrata Storti Foundation.

  1. Iron deficiency anemia from diagnosis to treatment in children

    Özdemir, Nihal

    2015-01-01

    Iron deficiency is the most common nutritional deficiency worldwide and an important public health problem especially in developing countries. Since the most important indicator of iron deficieny is anemia, the terms “iron deficiency” and “iron deficiency anemia” are often used interchangeably. However, iron deficiency may develop in the absence of anemia and the tissues may be affected from this condition. The most common causes of iron deficiency in children include insufficient intake toge...

  2. [Update on the biology of heme synthesis in erythroid cells].

    Fujiwara, Tohru; Harigae, Hideo

    2015-02-01

    Heme is a prosthetic group of hemoproteins playing important roles in oxygen transport, detoxification, circadian rhythm, microRNA processing, regulation of transcription, and translation. The majority of heme (-85%) is synthesized in red blood cells mainly for hemoglobin production, whereas hepatocytes account for most of the rest, functioning primarily in the synthesis of cytochrome P450 enzymes and mitochondrial respiratory enzymes. Thus, failure of heme biosynthesis causes severe inherited or acquired disorders in humans, including porphyria and sideroblastic anemia. The heme biosynthetic pathway is composed of eight enzymes that work in either mitochondria or the cytoplasm, which have been extensively researched and frequently reviewed. On the other hand, the mechanisms governing transport and intracellular trafficking of heme intermediates, as well as their potential links to human diseases, are poorly understood. Herein, we focus on recent understanding of the heme biosynthetic pathway and on human disorders due to defective heme synthesis in erythroid cells, such as X-linked sideroblastic anemia and erythropoietic protoporphyria.

  3. Heme requirement and intracellular trafficking in Trypanosoma cruzi epimastigotes

    Lara, F.A.; Sant'Anna, C.; Lemos, D.; Laranja, G.A.T.; Coelho, M.G.P.; Reis Salles, I.; Michel, A.; Oliveira, P.L.; Cunha-e-Silva, N.; Salmon, D.; Paes, M.C.

    2007-01-01

    Epimastigotes multiplies in the insect midgut by taking up nutrients present in the blood meal including heme bound to hemoglobin of red blood cell. During blood meal digestion by vector proteases in the posterior midgut, hemoglobin is clipped off into amino acids, peptides, and free heme. In this paper, we compared the heme and hemoglobin uptake kinetics and followed their intracellular trafficking. Addition of heme to culture medium increased epimastigote proliferation in a dose-dependent manner, while medium supplemented with hemoglobin enhanced growth after 3-day lag phase. Medium supplemented with globin-derived peptides stimulated cell proliferation in a dose-independent way. Using Palladium mesoporphyrin IX (Pd-mP) as a fluorescent heme-analog, we observed that heme internalization proceeded much faster than that observed by hemoglobin-rhodamine. Binding experiments showed that parasites accumulated the Pd-mP into the posterior region of the cell whereas hemoglobin-rhodamine stained the anterior region. Finally, using different specific inhibitors of ABC transporters we conclude that a P-glycoprotein homologue transporter is probably involved in heme transport through the plasma membrane

  4. Iron Acquisition in Bacillus cereus: The Roles of IlsA and Bacillibactin in Exogenous Ferritin Iron Mobilization

    Buisson, Christophe; Daou, Nadine; Kallassy, Mireille; Lereclus, Didier; Arosio, Paolo; Bou-Abdallah, Fadi; Nielsen Le Roux, Christina

    2014-01-01

    In host-pathogen interactions, the struggle for iron may have major consequences on the outcome of the disease. To overcome the low solubility and bio-availability of iron, bacteria have evolved multiple systems to acquire iron from various sources such as heme, hemoglobin and ferritin. The molecular basis of iron acquisition from heme and hemoglobin have been extensively studied; however, very little is known about iron acquisition from host ferritin, a 24-mer nanocage protein able to store thousands of iron atoms within its cavity. In the human opportunistic pathogen Bacillus cereus, a surface protein named IlsA (Iron-regulated leucine rich surface protein type A) binds heme, hemoglobin and ferritin in vitro and is involved in virulence. Here, we demonstrate that IlsA acts as a ferritin receptor causing ferritin aggregation on the bacterial surface. Isothermal titration calorimetry data indicate that IlsA binds several types of ferritins through direct interaction with the shell subunits. UV-vis kinetic data show a significant enhancement of iron release from ferritin in the presence of IlsA indicating for the first time that a bacterial protein might alter the stability of the ferritin iron core. Disruption of the siderophore bacillibactin production drastically reduces the ability of B. cereus to utilize ferritin for growth and results in attenuated bacterial virulence in insects. We propose a new model of iron acquisition in B. cereus that involves the binding of IlsA to host ferritin followed by siderophore assisted iron uptake. Our results highlight a possible interplay between a surface protein and a siderophore and provide new insights into host adaptation of B. cereus and general bacterial pathogenesis. PMID:24550730

  5. Iron acquisition in Bacillus cereus: the roles of IlsA and bacillibactin in exogenous ferritin iron mobilization.

    Diego Segond

    2014-02-01

    Full Text Available In host-pathogen interactions, the struggle for iron may have major consequences on the outcome of the disease. To overcome the low solubility and bio-availability of iron, bacteria have evolved multiple systems to acquire iron from various sources such as heme, hemoglobin and ferritin. The molecular basis of iron acquisition from heme and hemoglobin have been extensively studied; however, very little is known about iron acquisition from host ferritin, a 24-mer nanocage protein able to store thousands of iron atoms within its cavity. In the human opportunistic pathogen Bacillus cereus, a surface protein named IlsA (Iron-regulated leucine rich surface protein type A binds heme, hemoglobin and ferritin in vitro and is involved in virulence. Here, we demonstrate that IlsA acts as a ferritin receptor causing ferritin aggregation on the bacterial surface. Isothermal titration calorimetry data indicate that IlsA binds several types of ferritins through direct interaction with the shell subunits. UV-vis kinetic data show a significant enhancement of iron release from ferritin in the presence of IlsA indicating for the first time that a bacterial protein might alter the stability of the ferritin iron core. Disruption of the siderophore bacillibactin production drastically reduces the ability of B. cereus to utilize ferritin for growth and results in attenuated bacterial virulence in insects. We propose a new model of iron acquisition in B. cereus that involves the binding of IlsA to host ferritin followed by siderophore assisted iron uptake. Our results highlight a possible interplay between a surface protein and a siderophore and provide new insights into host adaptation of B. cereus and general bacterial pathogenesis.

  6. Total diet study in Sao Paulo State: estimation of dietary intakes of toxic (arsenic and cadmium) and essential elements (calcium, chromium, iron, selenium, sodium, potassium and zinc)

    Avegliano, Roseane Pagliaro

    2009-01-01

    Total Diet Study (TDS) is based on the evaluation of food samples representing a market basket, which shows dietary habits of a given population. The World Health Organization (WHO) has encouraged countries to conduct their own TDS, which is already being done in several countries, but not yet in Brazil. This study involved essential steps to establish a TDS in Sao Paulo State: a) information about food consumption (a recent national household food budget survey 'POF 2002-2003' by the Brazilian Institute for Geography and Statistics (IBGE), including 5,440 foods); b) development of a Market Basket (sampling of 71 foods consumed more than 2g/day/person, grouped into 30 food groups: cereals; leguminous; leafy, fruity and tuberous vegetables; tropical fruits; other fruits; flours; pasta; breads; biscuits; prime and standard grade beef; pork meat; sausages; poultry; milk/cream; other dairy products; sugars; sweet dishes; salts, sauces; oils, fats, alcoholic beverages; non-alcoholic beverages; coffee; ready-made dishes; seawater and freshwater fishes); c) collection and kitchen preparation in restaurants of the Food service Department of the Coordination of Social Assistance of the University of Sao Paulo (preparing ready-to- consume foods, individually and mixing foods of the same food group); d) chemical analysis (food groups were homogenized, pulverized and analyzed by Instrumental Neutron Activation and GF Atomic Absorption Spectroscopy). Element contents were determined in the 30 food groups. Average element range concentrations and daily dietary intakes were determined. The results of daily dietary intakes in this study (275±31mg Ca; 20.7±1.9μg Cr; 5.7±0.4mg Fe; 861±46mg K; 9.44±0.48μg Se; 1928±278mg Na; 4.25±0.24mg Zn; 1.53±0.43μg As and 1.31±0.16μg Cd) were lower than or similar the results of other Brazilian studies and lower than results of TDS of other countries. This is probably due to the fact that the Market Basket of this study represented

  7. Effect of irradiation and storage in the iron availability in lamb meat treated with different diets; Efeito da irradiacao e do armazenamento na disponibilidade de ferro em carne de cordeiro tratado com diferentes dietas

    Souza, Adriana Regia Marques de; Arthur, Valter [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Irradiacao de Alimentos e Radioentomologia]. E-mail: acornel@cena.usp.br; arthur@cena.usp.br; Canniatti-Brazaca, Solange Guidolin [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Agroindustria, Alimentos e Nutricao]. E-mail: sgcbraza@esalq.usp.br; Couto, Meylene Aparecida Luzia [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil)]. E-mail: malcouto@esalq.usp.br

    2008-10-15

    Irradiation is an efficient method to increase the microbiological safety and to maintain the nutrients such as iron in the meat. The best absorption form, heme iron, should be preserved in order to increase the nutritional quality of stored meat. The diet can alter the nutrients contents and form in the meat. The iron is provided from the diet and it is an essential element for the metabolic processes such as oxygen transport, oxidative metabolism, and cellular growth. Meat lamb samples treated with different diets (it controls, TAC1, TAC2 and sorghum) were wrapped to vacuous, and irradiated in the doses 0, 2 and 4 kGy and stored at 4 deg C during 15 days. The values of total iron and heme iron were measured at 0 and 15 days of storage. The storage reduced the content of total iron (18.36 for 14.28 mg.100 g{sup -1}) and heme iron (13.78 for 10.52 mg.100 g{sup -1}). The diets affected the levels of total and heme iron of the meat, and the sorghum diet was the one that presented the larger content. The dose of 2 kGy was the one that affected the iron the most independently of the storage time. It was verified that the amounts of total and heme iron varied according to the storage time, irradiation doses, and lamb diets. (author)

  8. Evaluation of iron transport from ferrous glycinate liposomes using ...

    2017-09-03

    Sep 3, 2017 ... Insufficient dietary intake and low iron bio- availability in foods ... pared with common iron supplements, iron liposomes can obviously ... to inhibit iron absorption in humans and in cell culture models11. ..... ical nutrition issues. The effects of .... of approximately 2-100 nm could play an active role in mediating ...

  9. [Iron absorption of the habitual diet in a population of low socioeconomic level].

    Morón, C; Kremenchuzky, S; Passamai, M I; D'Andrea de Rivero, S; Pérez de Galíndez, G; Gerschcovich, C

    1985-06-01

    Iron absorption using the extrinsic double-tag method was determined in the habitual diet consumed by a group of 32 volunteers of both sexes, pertaining to the low socioeconomic strata. The diet was made up of bread, spaghetti, vegetables and meat, totalling 2,022 kcal, 65.0 g protein, 17.57 mg iron, and 28.75 mg ascorbic acid. According to our findings, men were found to be neither anemic nor iron-deficient. Among the women, however, 4.8% had anemia and 57.1% suffered from iron deficiency. The non-heme iron absorption was very low: 1.35% at breakfast, 3.29% at lunch, and 3.82% at dinner. Among those subjects found to be normal, the absorption was half the above figures, whereas among those with iron deficiency it was threefold, the differences being highly significant. The absorption of heme-iron for lunch and dinner was 17.53%. The iron deficient group had an absorption value four times greater than the normal group, the differences also being highly significant. The daily availability of non-heme, heme and total iron was 0.44, 1.13 and 1.57 mg, respectively. In the subjects who formed the normal group, total iron available was 1.14 mg, barely covering a man's daily requirements, but not those of a woman. In the iron-deficient group, it was 4.31 mg, that is, four times greater than in the normal group; while this value improves the balance, it does not prevent deficiency in women, with great blood losses. Bearing these results in mind, it is suggested that measures tending to improve dietary iron content and bio-availability, be enforced.

  10. Heme orientational disorder in human adult hemoglobin reconstituted with a ring fluorinated heme and its functional consequences

    Nagao, Satoshi; Hirai, Yueki; Kawano, Shin; Imai, Kiyohiro; Suzuki, Akihiro; Yamamoto, Yasuhiko

    2007-01-01

    A ring fluorinated heme, 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2-fluoro-7,12, 18-trimethyl-porphyrin-atoiron(III), has been incorporated into human adult hemoglobin (Hb A). The heme orientational disorder in the individual subunits of the protein has been readily characterized using 19 F NMR and the O 2 binding properties of the protein have been evaluated through the oxygen equilibrium analysis. The equilibrated orientations of hemes in α- and β- subunits of the reconstituted protein were found to be almost completely opposite to each other, and hence were largely different from those of the native and the previously reported reconstituted proteins [T. Jue, G.N. La Mar, Heme orientational heterogeneity in deuterohemin-reconstituted horse and human hemoglobin characterized by proton nuclear magnetic resonance spectroscopy, Biochem. Biophys. Res. Commun. 119 (1984) 640-645]. Despite the large difference in the degree of the heme orientational disorder in the subunits of the proteins, the O 2 affinity and the cooperativity of the protein reconstituted with 2-MF were similar to those of the proteins reconstituted with a series of hemes chemically modified at the heme 3- and 8-positions [K. Kawabe, K. Imaizumi, Z. Yoshida, K. Imai, I. Tyuma, Studies on reconstituted myoglobins and hemoglobins II. Role of the heme side chains in the oxygenation of hemoglobin, J. Biochem. 92 (1982) 1713-1722], whose O 2 affinity and cooperativity were higher and lower, respectively, relative to those of native protein. These results indicated that the heme orientational disorder could exert little effect, if any, on the O 2 affinity properties of Hb A. This finding provides new insights into structure-function relationship of Hb A

  11. Cloning and characterization of a heme oxygenase-2 gene from alfalfa (Medicago sativa L.).

    Fu, Guang-Qing; Jin, Qi-Jiang; Lin, Yu-Ting; Feng, Jian-Fei; Nie, Li; Shen, Wen-Biao; Zheng, Tian-Qing

    2011-11-01

    Heme oxygenase (HO, EC 1.14.99.3) catalyzes the oxidation of heme and performs vital roles in plant development and stress responses. Two HO isozymes exist in plants. Between these, HO-1 is an oxidative stress-response protein, and HO-2 usually exhibited constitutive expression. Although alfalfa HO-1 gene (MsHO1) has been investigated previously, HO2 is still poorly understood. In this study, we report the cloning and characterization of HO2 gene, MsHO2, from alfalfa (Medica sativa L.). The full-length cDNA of MsHO2 contains an ORF of 870 bp and encodes for 290 amino acid residues with a predicted molecular mass of 33.3 kDa. Similar to MsHO1, MsHO2 also appears to have an N-terminal transit peptide sequence for chloroplast import. Many conserved residues in plant HO were also conserved in MsHO2. However, unlike HO-1, the conserved histidine (His) required for heme-iron binding and HO activity was replaced by tyrosine (Tyr) in MsHO2. Further biochemical activity analysis of purified mature MsHO2 showed no HO activity, suggesting that MsHO2 may not be a true HO in nature. Semi-quantitative RT-PCR confirmed its maximum expression in the germinating seeds. Importantly, the expression levels of MsHO2 were up-regulated under sodium nitroprusside (SNP) and H(2)O(2) (especially) treatment, respectively.

  12. Heme oxygenase-1: A new druggable target in the management of chronic and acute myeloid leukemia.

    Salerno, Loredana; Romeo, Giuseppe; Modica, Maria N; Amata, Emanuele; Sorrenti, Valeria; Barbagallo, Ignazio; Pittalà, Valeria

    2017-12-15

    Heme oxygenase-1 (HO-1) is the enzyme catalyzing the rate-limiting oxidative degradation of cellular heme into free iron, carbon monoxide (CO), and biliverdin, which is then rapidly converted into bilirubin. By means of these catabolic end-products and by removal of pro-oxidant heme, HO-1 exerts antioxidant, antiapoptotic, and immune-modulating effects, leading to overall cytoprotective and beneficial functions in mammalian cells. Therefore, HO-1 is considered a survival molecule in various stress-related conditions. By contrast, growing evidence suggests that HO-1 is a survival-enhancing molecule also in various solid and blood cancers, such as various types of leukemia, promoting carcinogenesis, tumor progression, and chemo-resistance. Among leukemias, chronic myeloid leukemia (CML) is currently therapeutically well treated with tyrosine kinase inhibitors (TKIs) such as Imatinib (IM) and its congeners; nevertheless, resistance to all kinds of current drugs persist in a number of patients. Moreover, treatment outcomes for acute myeloid leukemia (AML) remain unsatisfactory, despite progress in chemotherapy and hematopoietic stem cell transplantation. Therefore, identification of new eligible targets that may improve leukemias therapy is of general interest. Several recent papers prove that inhibition of HO-1 through HO-1 inhibitors as well as modulation of other pathways involving HO-1 by a number of different new or known molecules, are critical for leukemia treatment. This review summarizes the current understanding of the pro-tumorigenic role of HO-1 and its potential as a molecular target for the treatment of leukemias. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. A study of the mechanism of action of pyridoxal isonicotinoyl hydrazone at the cellular level using reticulocytes loaded with non-heme 59Fe

    Huang, A.R.; Ponka, P.; McGill Univ., Montreal, Quebec; Jewish General Hospital, Montreal, Quebec

    1983-01-01

    Pyridoxal isonicotinoyl hydrazone (PIH) has recently been identified as a new iron chelating agent with a high degree of iron mobilizing activity in vitro and in vivo which makes this compound a candidate drug in the treatment of iron overload. This study was undertaken to elucidate the mechanism of action of the iron mobilizing activity of PIH at the cellular level. An in vitro system of rabbit reticulocytes with a high level of non-heme 59 Fe was used as a model of iron overload. The effects of various biochemical and physiological manoeuvers on the mobilization of 59 Fe by PIH from the cells were studied. The fate of [ 14 C]-PIH in the in vitro system was also studied. Studies were also carried out using a crude mitochondrial fraction. (orig./AJ)

  14. Implication for using heme methyl hyperfine shifts as indicators of heme seating as related to stereoselectivity in the catabolism of heme by heme oxygenase: in-plane heme versus axial his rotation.

    Ogura, Hiroshi; Evans, John P; de Montellano, Paul R Ortiz; La Mar, Gerd N

    2008-01-08

    The triple mutant of the solubilized, 265-residue construct of human heme oxygenase, K18E/E29K/R183E-hHO, has been shown to redirect the exclusive alpha-regioselectivity of wild-type hHO to primarily beta,delta-selectivity in the cleavage of heme (Wang, J., Evans, J. P., Ogura, H., La Mar, G. N., and Ortiz de Montellano, P. R. (2006) Biochemistry 45, 61-73). The 1H NMR hyperfine shift pattern for the substrate and axial His CbetaH's and the substrate-protein contacts of the cyanide-inhibited protohemin and 2,4-dimethyldeuterohemin complexes of the triple mutant have been analyzed in detail and compared to data for the WT complex. It is shown that protein contacts for the major solution isomers for both substrates in the mutant dictate approximately 90 degrees in-plane clockwise rotation relative to that in the WT. The conventional interpretation of the pattern of substrate methyl hyperfine shifts, however, indicates substrate rotations of only approximately 50 degrees . This paradox is resolved by demonstrating that the axial His25 imidazole ring also rotates counterclockwise with respect to the protein matrix in the mutant relative to that in the WT. The axial His25 CbetaH hyperfine shifts are shown to serve as independent probes of the imidazole plane orientation relative to the protein matrix. The analysis indicates that the pattern of heme methyl hyperfine shifts cannot be used alone to determine the in-plane orientation of the substrate as it relates to the stereospecificity of heme cleavage, without explicit consideration of the orientation of the axial His imidazole plane relative to the protein matrix.

  15. Rearrangement of the distal pocket accompanying E7 His → Gln substitution in elephant carbonmonoxy- and oxymyoglobin: 1H NMR identification of a new aromatic residue in the heme pocket

    Yu, L.P.; La Mar, G.N.; Mizukami, H.

    1990-01-01

    Two-dimensional 1 H NMR methods have been used to assign side-chain resonances for the residues in the distal heme pocket of elephant carbonmonoxymyoglobin (MbCO) and oxymyoglobin (MbO 2 ). It is shown that, while the other residues in the heme pocket are minimally perturbed, the Phe CD4 residue in elephant MbCO and MbO 2 resonates considerably upfield compared to the corresponding residue in sperm whale MbCO. The new NOE connectivities to Val E11 and heme-induced ring current calculations indicate that Phe CD4 has been inserted into the distal heme pocket by reorienting the aromatic side chain and moving the CD corner closer to the heme. The CζH proton of the Phe CD4 was found to move toward the iron of the heme by ∼4 angstrom relative to the position in sperm whale MbCO, requiring minimally a 3-angstrom movement of the CD helical backbone. The significantly altered distal conformation in elephant myoglobin, rather than the single distal E7 substitution, forms a plausible basis for its altered functional properties of lower autoxidation rate, higher redox potential, and increased affinity for CO ligand. These results demonstrate that one-to-one interpretation of amino acid residue substitution (E7 His → Gln) is oversimplified and that conformational changes of substituted proteins which are not readily predicted have to be considered for interpretation of their functional properties

  16. Effects of Dietary Iron and Gamma Radiation on the Rat Retina

    Morgan, Jennifer; Marshall, Grace; Theriot, Corey A.; Chacon, Natalia; Zwart, Sara; Zanello, Susana B.

    2012-01-01

    A health risk of concern for NASA relates to radiation exposure and its synergistic effects with other space environmental factors, includi ng nutritional status of the crew. Astronauts consume almost three times the recommended daily allowance of iron due to the use of fortifie d foods aboard the International Space Station, with iron intake occa sionally exceeding six times the recommended values. Recently, NASA has become concerned with visual changes associated with spaceflight, a nd research is being conducted to elucidate the etiology of eye structure alterations in the spaceflight environment. Terrestrially, iron o verload is also associated with certain optic neuropathies. In additi on, due to its role in Fenton reactions, iron can potentiate oxidative stress, which is a recognized cause of cataract formation. As part o f a study investigating the combined effects of radiation exposure an d iron overload on multiple physiological systems, we focused on defining the effects of both treatments on eye biology. In this study, 12- week-old Sprague-Dawley rats were assigned to one of four experimental groups: normal iron/no radiation (Control/Sham), high iron/no radiat ion (Fe/Sham), normal iron/gamma radiation (3 Gy cumulative dose, fra ctionated at 0.375 Gy/d every other day for 16 d) (Control/Rad), and high iron/gamma radiation (Fe/Rad). Oxidative stress-induced DNA damag e, measured as concentration of the marker 8-hydroxy-2'-deoxyguanosine (8OHdG) in eye retinal tissue by enzyme-immunoanalysis did not show significant changes among treatments. However, there was an overall i ncrease in 8OHdG immunostaining density in retina sections due to radiation exposure (P = 0.05). Increased dietary iron and radiation expos ure had an interactive effect (P = 0.02) on 8OHdG immunostaining of t he retinal ganglion cell layer with iron diet increasing the signal in the group not exposed to radiation (P = 0.05). qPCR gene expression profiling of relevant target genes

  17. Iron and Zinc Complexes of Bulky Bis-Imidazole Ligands : Enzyme Mimicry and Ligand-Centered Redox Activity

    Folkertsma, E.

    2016-01-01

    The research described in this thesis is directed to the development of cheap and non-toxic iron-based homogeneous catalysts, using enzyme models and redox non-innocent ligands. Inspired by nature, the first approach focuses on the synthesis of structural models of the active site of non-heme iron

  18. Heme synthesis in the lead-intoxicated mouse embryo

    Gerber, G B; Maes, J

    1978-02-01

    Incorporation of /sup 55/Fe and of (/sup 14/C) glycine was studied in control embryos and mothers and in those which had received lead in the diet from day 7 of pregnancy. Incorporation of Fe into heme of embryonic liver which increases markedly for controls on day 17 of pregnancy was depressed greatly and showed no such increase in lead-intoxicated embryos. These embryos were retarded in growth but had normal heme concentrations in body and liver. Incorporation of glycine into embryonic heme and proteins was not affected. Data on incorporation in the mothers are also presented. It is thought that the impaired synthesis of heme in lead-intoxicated embryos limits their body growth during the late phase of pregnancy.

  19. Effect of a heme oxygenase-1 inducer on NADPH oxidase ...

    Effect of a heme oxygenase-1 inducer on NADPH oxidase expression in ... and immunohistochemistry of hepatic NOX1 and NOX4 were investigated in week 4. ... (HO-1 inhibitor) administration caused upregulation of NOX gene expression ...

  20. Heme and blood-feeding parasites: friends or foes?

    Glanfield Amber

    2010-11-01

    Full Text Available Abstract Hemoparasites, like malaria and schistosomes, are constantly faced with the challenges of storing and detoxifying large quantities of heme, released from their catabolism of host erythrocytes. Heme is an essential prosthetic group that forms the reactive core of numerous hemoproteins with diverse biological functions. However, due to its reactive nature, it is also a potentially toxic molecule. Thus, the acquisition and detoxification of heme is likely to be paramount for the survival and establishment of parasitism. Understanding the underlying mechanism involved in this interaction could possibly provide potential novel targets for drug and vaccine development, and disease treatment. However, there remains a wide gap in our understanding of these mechanisms. This review summarizes the biological importance of heme for hemoparasite, and the adaptations utilized in its sequestration and detoxification.

  1. Heme and blood-feeding parasites: friends or foes?

    2010-01-01

    Hemoparasites, like malaria and schistosomes, are constantly faced with the challenges of storing and detoxifying large quantities of heme, released from their catabolism of host erythrocytes. Heme is an essential prosthetic group that forms the reactive core of numerous hemoproteins with diverse biological functions. However, due to its reactive nature, it is also a potentially toxic molecule. Thus, the acquisition and detoxification of heme is likely to be paramount for the survival and establishment of parasitism. Understanding the underlying mechanism involved in this interaction could possibly provide potential novel targets for drug and vaccine development, and disease treatment. However, there remains a wide gap in our understanding of these mechanisms. This review summarizes the biological importance of heme for hemoparasite, and the adaptations utilized in its sequestration and detoxification. PMID:21087517

  2. Wiring of heme enzymes by methylene-blue labeled dendrimers

    Álvarez-Martos, Isabel; Shahdost-fard, Faezeh; Ferapontova, Elena

    2017-01-01

    Redox-modified branched 3D dendrimeric nanostructures may be considered as perspective wires for electrical connection between redox enzymes and electrodes. Here, we studied electron transfer (ET) reactions and bioelectrocatalysis of heme-containing horseradish peroxidase (HRP) and heme- and moli......Redox-modified branched 3D dendrimeric nanostructures may be considered as perspective wires for electrical connection between redox enzymes and electrodes. Here, we studied electron transfer (ET) reactions and bioelectrocatalysis of heme-containing horseradish peroxidase (HRP) and heme......- and molibdopterin-containing sulfite oxidase (SOx), wired to gold by the methylene blue (MB)-labeled polyamidoamine (PAMAM) dendrimers. The enzymes’ electrochemical transformation and bioelectrocatalytic function could be followed at both unlabeled and MB-labeled dendrimer-modified electrodes with the formal redox......, optimization of bioelectrocatalysis of complex intermembrane and, possibly, membrane enzymes....

  3. Immunolocalization of heme oxygenase-1 in periodontal diseases

    G Gayathri

    2014-01-01

    Conclusion: The results of our study is an increasing evidence of involvement of antioxidant enzymes like heme oxygenase-1 in periodontal inflammation and their implication for treatment of chronic periodontitis.

  4. Meat processing and colon carcinogenesis: cooked, nitrite-treated, and oxidized high-heme cured meat promotes mucin-depleted foci in rats

    Santarelli, Raphaëlle L; Vendeuvre, Jean-Luc; Naud, Nathalie; Taché, Sylviane; Guéraud, Françoise; Viau, Michelle; Genot, Claude; Corpet, Denis E; Pierre, Fabrice H F

    2010-01-01

    International audience; Processed meat intake is associated with colorectal cancer risk, but no experimental study supports the epidemiologic evidence. To study the effect of meat processing on carcinogenesis promotion, we first did a 14-day study with 16 models of cured meat. Studied factors, in a 2 x 2 x 2 x 2 design, were muscle color (a proxy for heme level), processing temperature, added nitrite, and packaging. Fischer 344 rats were fed these 16 diets, and we evaluated fecal and urinary ...

  5. Unprecedented access of phenolic substrates to the heme active site of a catalase: substrate binding and peroxidase-like reactivity of Bacillus pumilus catalase monitored by X-ray crystallography and EPR spectroscopy.

    Loewen, Peter C; Villanueva, Jacylyn; Switala, Jacek; Donald, Lynda J; Ivancich, Anabella

    2015-05-01

    Heme-containing catalases and catalase-peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase-peroxidase led us to investigate the enzyme for comparison with other catalase-peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat  = 339,000 s(-1) ). In addition, the enzyme supported a much slower (kcat  = 20 s(-1) ) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2-chlorophenol were identified in crystal structures at 1.65-1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low-spin conversion of the Fe(III) high-spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase. © 2015 Wiley Periodicals, Inc.

  6. Bioavailability & absorption of Iron and Anemia

    Radhika Kapil

    2018-01-01

    Full Text Available Humans derive iron from their everyday diet, predominantly from plant foods and the rest from foods of animal origin. Iron is found in food as either haem or non-haem iron.  Haem iron, which is about up to 40 per cent of the iron in meat, poultry, and fish, is well absorbed.  All the iron in plants (fruits, vegetables, grains, nuts is in the form of non-haem iron and is relatively poorly absorbed. Non-haem iron contributes about 90-95 per cent of total daily iron in vegan diets. In western countries,the intake of haem iron from meat and meat products accounts for bulk of the dietary iron. The haem iron consumption is minimal in developing countries with majority obtaining non-haem iron from cereals, pulses, vegetables and fruits'. The diets is plagued by low iron content and poor absorption. Major sources of non-haem iron are plant foods. The iron is chemically diverse, ranging from simple iron oxides and salts to more complex organic chelates such as hydroxyphosphates in phytoferritin(1.

  7. Bioavailability & absorption of Iron and Anemia

    Radhika Kapil

    2017-12-01

    Full Text Available Humans derive iron from their everyday diet, predominantly from plant foods and the rest from foods of animal origin. Iron is found in food as either haem or non-haem iron.  Haem iron, which is about up to 40 per cent of the iron in meat, poultry, and fish, is well absorbed.  All the iron in plants (fruits, vegetables, grains, nuts is in the form of non-haem iron and is relatively poorly absorbed. Non-haem iron contributes about 90-95 per cent of total daily iron in vegan diets. In western countries,the intake of haem iron from meat and meat products accounts for bulk of the dietary iron. The haem iron consumption is minimal in developing countries with majority obtaining non-haem iron from cereals, pulses, vegetables and fruits'. The diets is plagued by low iron content and poor absorption. Major sources of non-haem iron are plant foods. The iron is chemically diverse, ranging from simple iron oxides and salts to more complex organic chelates such as hydroxyphosphates in phytoferritin(1.

  8. Heme and menaquinone induced electron transport in lactic acid bacteria

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-01-01

    Abstract Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacill...

  9. Rethinking Iron Regulation and Assessment in Iron Deficiency, Anemia of Chronic Disease, and Obesity: Introducing Hepcidin

    Tussing-Humphreys, Lisa; Pustacioglu, Cenk; Nemeth, Elizabeta; Braunschweig, Carol

    2012-01-01

    Adequate iron availability is essential to human development and overall health. Iron is a key component of oxygen-carrying proteins, has a pivotal role in cellular metabolism, and is essential to cell growth and differentiation. Inadequate dietary iron intake, chronic and acute inflammatory conditions, and obesity are each associated with alterations in iron homeostasis. Tight regulation of iron is necessary because iron is highly toxic and human beings can only excrete small amounts through sweat, skin and enterocyte sloughing, and fecal and menstrual blood loss. Hepcidin, a small peptide hormone produced mainly by the liver, acts as the key regulator of systemic iron homeostasis. Hepcidin controls movement of iron into plasma by regulating the activity of the sole known iron exporter ferroportin-1. Downregulation of the ferroportin-1 exporter results in sequestration of iron within intestinal enterocytes, hepatocytes, and iron-storing macrophages reducing iron bioavailability. Hepcidin expression is increased by higher body iron levels and inflammation and decreased by anemia and hypoxia. Importantly, existing data illustrate that hepcidin may play a significant role in the development of several iron-related disorders, including the anemia of chronic disease and the iron dysregulation observed in obesity. Therefore, the purpose of this article is to discuss iron regulation, with specific emphasis on systemic regulation by hepcidin, and examine the role of hepcidin within several disease states, including iron deficiency, anemia of chronic disease, and obesity. The relationship between obesity and iron depletion and the clinical assessment of iron status will also be reviewed. PMID:22717199

  10. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  11. Syntheses of carbon-13 labeled protoporphyrin-IX for spectroscopic studies of heme proteins

    Fujinari, E.M.

    1985-01-01

    The development of various methodologies for synthesis of selectively tailored protoporphyrin-IX dimethyl ester are presented. The iron(II) complex of protoporphyrin-IX is the heme, the prosthetic group for Hb, Mb, cytochromes and peroxidases. The significance of this research is to provide direct means to establish definitive carbon-13 NMR assignments of heme proteins in order to study not only the structure-function relationships, but also protein dynamics of these vital systems. Carbon-13 labeling at the beta-vinyl position was first achieved by ozonolysis of protoporphyrin-IX dimethyl ester. Column LC method were used to first isolate 2,4-diformyldeuteroporphyrin-IX dimethyl ester. Concomitantly, monofomyl-monovinyl porphyrins were obtained as a mixture of two isomers. This mixture was separated by MPLC or prep HPLC to afford the isomerically pure products, Spirographis porphyrin dimethyl ester and Iso-Spirographis porphyrin dimethyl ester. A Wittig reaction to each of these porphyrins with 13 C-methyltriphenylphosphonium iodide gave 2,4-bis[ 13 C 2 ]-vinyl protoporphyrin-IX dimethyl ester, 2-[ 13 C 2 ]-vinyl protoporphyrin-IX dimethyl ester, and the 4-[ 13 C 2 ]-vinyl protoporphyrin-IX dimethyl ester, respectively

  12. TMEM14C is required for erythroid mitochondrial heme metabolism.

    Yien, Yvette Y; Robledo, Raymond F; Schultz, Iman J; Takahashi-Makise, Naoko; Gwynn, Babette; Bauer, Daniel E; Dass, Abhishek; Yi, Gloria; Li, Liangtao; Hildick-Smith, Gordon J; Cooney, Jeffrey D; Pierce, Eric L; Mohler, Kyla; Dailey, Tamara A; Miyata, Non; Kingsley, Paul D; Garone, Caterina; Hattangadi, Shilpa M; Huang, Hui; Chen, Wen; Keenan, Ellen M; Shah, Dhvanit I; Schlaeger, Thorsten M; DiMauro, Salvatore; Orkin, Stuart H; Cantor, Alan B; Palis, James; Koehler, Carla M; Lodish, Harvey F; Kaplan, Jerry; Ward, Diane M; Dailey, Harry A; Phillips, John D; Peters, Luanne L; Paw, Barry H

    2014-10-01

    The transport and intracellular trafficking of heme biosynthesis intermediates are crucial for hemoglobin production, which is a critical process in developing red cells. Here, we profiled gene expression in terminally differentiating murine fetal liver-derived erythroid cells to identify regulators of heme metabolism. We determined that TMEM14C, an inner mitochondrial membrane protein that is enriched in vertebrate hematopoietic tissues, is essential for erythropoiesis and heme synthesis in vivo and in cultured erythroid cells. In mice, TMEM14C deficiency resulted in porphyrin accumulation in the fetal liver, erythroid maturation arrest, and embryonic lethality due to profound anemia. Protoporphyrin IX synthesis in TMEM14C-deficient erythroid cells was blocked, leading to an accumulation of porphyrin precursors. The heme synthesis defect in TMEM14C-deficient cells was ameliorated with a protoporphyrin IX analog, indicating that TMEM14C primarily functions in the terminal steps of the heme synthesis pathway. Together, our data demonstrate that TMEM14C facilitates the import of protoporphyrinogen IX into the mitochondrial matrix for heme synthesis and subsequent hemoglobin production. Furthermore, the identification of TMEM14C as a protoporphyrinogen IX importer provides a genetic tool for further exploring erythropoiesis and congenital anemias.

  13. Inflammation and ER Stress Downregulate BDH2 Expression and Dysregulate Intracellular Iron in Macrophages

    Susu M. Zughaier

    2014-01-01

    Full Text Available Macrophages play a very important role in host defense and in iron homeostasis by engulfing senescent red blood cells and recycling iron. Hepcidin is the master iron regulating hormone that limits dietary iron absorption from the gut and limits iron egress from macrophages. Upon infection macrophages retain iron to limit its bioavailability which limits bacterial growth. Recently, a short chain butyrate dehydrogenase type 2 (BDH2 protein was reported to contain an iron responsive element and to mediate cellular iron trafficking by catalyzing the synthesis of the mammalian siderophore that binds labile iron; therefore, BDH2 plays a crucial role in intracellular iron homeostasis. However, BDH2 expression and regulation in macrophages have not yet been described. Here we show that LPS-induced inflammation combined with ER stress led to massive BDH2 downregulation, increased the expression of ER stress markers, upregulated hepcidin expression, downregulated ferroportin expression, caused iron retention in macrophages, and dysregulated cytokine release from macrophages. We also show that ER stress combined with inflammation synergistically upregulated the expression of the iron carrier protein NGAL and the stress-inducible heme degrading enzyme heme oxygenase-1 (HO-1 leading to iron liberation. This is the first report to show that inflammation and ER stress downregulate the expression of BDH2 in human THP-1 macrophages.

  14. Comparison of the crystal structure and function to wild-type and His25Ala mutant human heme oxygenase-1.

    Zhou, Wen-Pu; Zhong, Wen-Wei; Zhang, Xue-Hong; Ding, Jian-Ping; Zhang, Zi-Li; Xia, Zhen-Wei

    2009-03-01

    Human heme oxygenase-1 (hHO-1) is a rate-limiting enzyme in heme metabolism. It regulates serum bilirubin level. Site-directed mutagenesis studies indicate that the proximal residue histidine 25 (His25) plays a key role in hHO-1 activity. A highly purified hHO-1 His25Ala mutant was generated and crystallized with a new expression system. The crystal structure of the mutant was determined by X-ray diffraction technology and molecular replacement at the resolution of 2.8 A, and the model of hHO-1 His25Ala mutant was refined. The final crystallographic and free R factors were 0.245 and 0.283, respectively. The standard bond length deviation was 0.007 A, and the standard bond angle deviation was 1.3 degrees . The mutation of His25 to Ala led to an empty pocket underneath the ferric ion in the heme, leading to loss of binding iron ligand. Although this did not cause an overall structural change, the enzymatic activity of the mutant hHO-1 was reduced by 90%. By supplementing imidazole, the HO-1 activity was restored approximately 90% to its normal level. These data suggest that Ala25 remains unchanged in the structure compared to His25, but the important catalytic function of hHO-1 is lost. Thus, it appears that His25 is a crucial residue for proper hHO-1 catalysis.

  15. Modelling Systemic Iron Regulation during Dietary Iron Overload and Acute Inflammation: Role of Hepcidin-Independent Mechanisms.

    Enculescu, Mihaela; Metzendorf, Christoph; Sparla, Richard; Hahnel, Maximilian; Bode, Johannes; Muckenthaler, Martina U; Legewie, Stefan

    2017-01-01

    Systemic iron levels must be maintained in physiological concentrations to prevent diseases associated with iron deficiency or iron overload. A key role in this process plays ferroportin, the only known mammalian transmembrane iron exporter, which releases iron from duodenal enterocytes, hepatocytes, or iron-recycling macrophages into the blood stream. Ferroportin expression is tightly controlled by transcriptional and post-transcriptional mechanisms in response to hypoxia, iron deficiency, heme iron and inflammatory cues by cell-autonomous and systemic mechanisms. At the systemic level, the iron-regulatory hormone hepcidin is released from the liver in response to these cues, binds to ferroportin and triggers its degradation. The relative importance of individual ferroportin control mechanisms and their interplay at the systemic level is incompletely understood. Here, we built a mathematical model of systemic iron regulation. It incorporates the dynamics of organ iron pools as well as regulation by the hepcidin/ferroportin system. We calibrated and validated the model with time-resolved measurements of iron responses in mice challenged with dietary iron overload and/or inflammation. The model demonstrates that inflammation mainly reduces the amount of iron in the blood stream by reducing intracellular ferroportin transcription, and not by hepcidin-dependent ferroportin protein destabilization. In contrast, ferroportin regulation by hepcidin is the predominant mechanism of iron homeostasis in response to changing iron diets for a big range of dietary iron contents. The model further reveals that additional homeostasis mechanisms must be taken into account at very high dietary iron levels, including the saturation of intestinal uptake of nutritional iron and the uptake of circulating, non-transferrin-bound iron, into liver. Taken together, our model quantitatively describes systemic iron metabolism and generated experimentally testable predictions for additional

  16. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information

    Hu Jianjun

    2011-05-01

    Full Text Available Abstract Background Accurate prediction of binding residues involved in the interactions between proteins and small ligands is one of the major challenges in structural bioinformatics. Heme is an essential and commonly used ligand that plays critical roles in electron transfer, catalysis, signal transduction and gene expression. Although much effort has been devoted to the development of various generic algorithms for ligand binding site prediction over the last decade, no algorithm has been specifically designed to complement experimental techniques for identification of heme binding residues. Consequently, an urgent need is to develop a computational method for recognizing these important residues. Results Here we introduced an efficient algorithm HemeBIND for predicting heme binding residues by integrating structural and sequence information. We systematically investigated the characteristics of binding interfaces based on a non-redundant dataset of heme-protein complexes. It was found that several sequence and structural attributes such as evolutionary conservation, solvent accessibility, depth and protrusion clearly illustrate the differences between heme binding and non-binding residues. These features can then be separately used or combined to build the structure-based classifiers using support vector machine (SVM. The results showed that the information contained in these features is largely complementary and their combination achieved the best performance. To further improve the performance, an attempt has been made to develop a post-processing procedure to reduce the number of false positives. In addition, we built a sequence-based classifier based on SVM and sequence profile as an alternative when only sequence information can be used. Finally, we employed a voting method to combine the outputs of structure-based and sequence-based classifiers, which demonstrated remarkably better performance than the individual classifier alone

  17. Characterization of SiaA, a streptococcal heme-binding protein associated with a heme ABC transport system.

    Sook, Brian R; Block, Darci R; Sumithran, Suganya; Montañez, Griselle E; Rodgers, Kenton R; Dawson, John H; Eichenbaum, Zehava; Dixon, Dabney W

    2008-02-26

    Many pathogenic bacteria require heme and obtain it from their environment. Heme transverses the cytoplasmic membrane via an ATP binding cassette (ABC) pathway. Although a number of heme ABC transport systems have been described in pathogenic bacteria, there is as yet little biophysical characterization of the proteins in these systems. The sia (hts) gene cluster encodes a heme ABC transporter in the Gram positive Streptococcus pyogenes. The lipoprotein-anchored heme binding protein (HBP) of this transporter is SiaA (HtsA). In the current study, resonance Raman (rR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopies were used to determine the coordination state and spin state of both the ferric and ferrous forms of this protein. Identifiers from these techniques suggest that the heme is six-coordinate and low-spin in both oxidation states of the protein, with methionine and histidine as axial ligands. SiaA has a pKa of 9.7 +/- 0.1, attributed to deprotonation of the axial histidine. Guanidinium titration studies show that the ferric state is less stable than the ferrous state, with DeltaG(H2O) values for the oxidized and reduced proteins of 7.3 +/- 0.8 and 16.0 +/- 3.6 kcal mol-1, respectively. The reductive and oxidative midpoint potentials determined via spectroelectrochemistry are 83 +/- 3 and 64 +/- 3 mV, respectively; the irreversibility of heme reduction suggests that redox cycling of the heme is coupled to a kinetically sluggish change in structure or conformation. The biophysical characterization described herein will significantly advance our understanding of structure-function relationships in HBP.

  18. Heme oxygenase-2 gene deletion attenuates oxidative stress in neurons exposed to extracellular hemin

    Benvenisti-Zarom Luna

    2004-09-01

    Full Text Available Abstract Background Hemin, the oxidized form of heme, accumulates in intracranial hematomas and is a potent oxidant. Growing evidence suggests that it contributes to delayed injury to surrounding tissue, and that this process is affected by the heme oxygenase enzymes. In a prior study, heme oxygenase-2 gene deletion increased the vulnerability of cultured cortical astrocytes to hemin. The present study tested the effect of HO-2 gene deletion on protein oxidation, reactive oxygen species formation, and cell viability after mixed cortical neuron/astrocyte cultures were incubated with neurotoxic concentrations of hemin. Results Continuous exposure of wild-type cultures to 1–10 μM hemin for 14 h produced concentration-dependent neuronal death, as detected by both LDH release and fluorescence intensity after propidium iodide staining, with an EC50 of 1–2 μM; astrocytes were not injured by these low hemin concentrations. Cell death was consistently reduced by at least 60% in knockout cultures. Exposure to hemin for 4 hours, a time point that preceded cell lysis, increased protein oxidation in wild-type cultures, as detected by staining of immunoblots for protein carbonyl groups. At 10 μM hemin, carbonylation was increased 2.3-fold compared with control sister cultures subjected to medium exchanges only; this effect was reduced by about two-thirds in knockout cultures. Cellular reactive oxygen species, detected by fluorescence intensity after dihydrorhodamine 123 (DHR staining, was markedly increased by hemin in wild-type cultures and was localized to neuronal cell bodies and processes. In contrast, DHR fluorescence intensity in knockout cultures did not differ from that of sham-washed controls. Neuronal death in wild-type cultures was almost completely prevented by the lipid-soluble iron chelator phenanthroline; deferoxamine had a weaker but significant effect. Conclusions These results suggest that HO-2 gene deletion protects neurons in mixed

  19. Heme-binding plasma membrane proteins of K562 erythroleukemia cells: Adsorption to heme-microbeads, isolation with affinity chromatography

    Majuri, R.

    1989-01-01

    Heme-microbeads attached themselves to the surface of viable K562 cells in a manner inhibitable by free hemin, indicating heme-recptor interaction. The microbeads were at first evenly distributed, but after prolonged incubation at 37 deg. C they formed a cap on one pole of the cells indicating clustering of the membrane heme receptors. Membrane proteins were labeled by culturing the cells in the presence of 35 S-methionine and were then solubilized with Triton X-114. The hydrophobic proteins contained about 20% of the total bound label. The solubilized membrane proteins were subsequently adsorbed to a heme-Sepharose affinity gel. According to SDS-electrophorsis and subsequent autoradiography, the immobilized heme captures two proteins or a protein with two polypeptides of 20 000 and 32 000 daltons. The larger of these was only wekly labeled with 35 S. The same two bands were observed if the cell surface proteins were labeled with 125 I by the lactoperoxidase method and the subsequently solubilized membrane proteins were isolated with heme-Sepharose. (author)

  20. Meat intake is not associated with risk of non-Hodgkin lymphoma in a large prospective cohort of U.S. men and women.

    Daniel, Carrie R; Sinha, Rashmi; Park, Yikyung; Graubard, Barry I; Hollenbeck, Albert R; Morton, Lindsay M; Cross, Amanda J

    2012-06-01

    Meat intake has been inconsistently associated with risk of non-Hodgkin lymphoma (NHL), a heterogeneous group of malignancies of the lymphoid tissue etiologically linked to immunomodulatory factors. In a large U.S. cohort, we prospectively investigated several biologically plausible mechanisms related to meat intake, including meat-cooking and meat-processing compounds, in relation to NHL risk by histologic subtype. At baseline (1995-1996), participants of the NIH-AARP Diet and Health Study completed a diet and lifestyle questionnaire (n = 492,186), and a subcohort (n = 302,162) also completed a questionnaire on meat-cooking methods and doneness levels. Over a mean of 9 y of follow-up, we identified 3611 incident cases of NHL. In multivariable Cox proportional hazards regression models, we found no association between intake of red meat, processed meat, fish, poultry, heme iron, nitrite, nitrate, animal fat, or protein and NHL risk. MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline) and DiMeIQx (2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline), heterocyclic amines formed in meats cooked to well done at high temperatures, were inversely associated with chronic lymphocytic leukemia/small lymphocytic lymphoma [n = 979; HR (95% CI) for the highest vs. lowest quintile of intake: 0.73 (0.55, 0.96) and 0.77 (0.61, 0.98), respectively]. In this large U.S. cohort, meat intake was not associated with NHL or any histologic subtypes of NHL. Contrary to findings in animal models and other cancer sites, meat-cooking and -processing compounds did not increase NHL risk.

  1. Genetic/metabolic effect of iron metabolism and rare anemias

    Clara Camaschella

    2013-03-01

    Full Text Available Advances in iron metabolism have allowed a novel classification of iron disorders and to identify previously unknown diseases. These disorders include genetic iron overload (hemochromatosis and inherited iron-related anemias, in some cases accompanied by iron overload. Rare inherited anemias may affect the hepcidin pathway, iron absorption, transport, utilization and recycling. Among the genetic iron-related anemias the most common form is likely the iron-refractory iron-deficiency anemia (IRIDA, due to mutations of the hepcidin inhibitor TMPRSS6 encoding the serine protease matriptase-2. IRIDA is characterized by hepcidin up-regulation, decrease iron absorption and macrophage recycling and by microcytic- hypochromic anemia, unresponsive to oral iron. High serum hepcidin levels may suggest the diagnosis, which requires demonstrating the causal TMPRSS6 mutations by gene sequencing. Other rare microcytic hypochromic anemias associated with defects of iron transport-uptake are the rare hypotransferrinemia, and DMT1 and STEAP3 mutations. The degree of anemia is variable and accompanied by secondary iron overload even in the absence of blood transfusions. This is due to the iron-deficient or expanded erythropoiesis that inhibits hepcidin transcription, increases iron absorption, through the erythroid regulator, as in untransfused beta-thalassemia. Sideroblastic anemias are due to decreased mitochondrial iron utilization for heme or sulfur cluster synthesis. Their diagnosis requires demonstrating ringed sideroblasts by Perl’s staining of the bone marrow smears. The commonest X-linked form is due to deltaamino- levulinic-synthase-2-acid (ALAS2 mutations. The recessive, more severe form, affects SLC25A38, which encodes a potential mitochondrial importer of glycine, an amino acid essential for ALA synthesis and thus results in heme deficiency. Two disorders affect iron/sulfur cluster biogenesis: deficiency of the ATP-binding cassette B7 (ABCB7 causes X

  2. Iron Absorption from Two Milk Formulas Fortified with Iron Sulfate Stabilized with Maltodextrin and Citric Acid

    Fernando Pizarro

    2015-10-01

    Full Text Available Background: Fortification of milk formulas with iron is a strategy widely used, but the absorption of non-heme iron is low. The purpose of this study was to measure the bioavailability of two iron fortified milk formulas designed to cover toddlers´ nutritional needs. These milks were fortified with iron sulfate stabilized with maltodextrin and citric acid. Methods: 15 women (33–47 years old participated in study. They received on different days, after an overnight fast, 200 mL of Formula A; 200 mL of Formula B; 30 mL of a solution of iron and ascorbic acid as reference dose and 200 mL of full fat cow’s milk fortified with iron as ferrous sulfate. Milk formulas and reference dose were labeled with radioisotopes 59Fe or 55Fe, and the absorption of iron measured by erythrocyte incorporation of radioactive Fe. Results: The geometric mean iron absorption corrected to 40% of the reference dose was 20.6% for Formula A and 20.7% for Formula B, versus 7.5% of iron fortified cow’s milk (p < 0.001. The post hoc Sheffé indeed differences between the milk formulas and the cow’s milk (p < 0.001. Conclusion: Formulas A and B contain highly bioavailable iron, which contributes to covering toddlers´ requirements of this micronutrient.

  3. Pharmacological Induction of Heme Oxygenase-1 Impairs Nuclear Accumulation of Herpes Simplex Virus Capsids upon Infection

    Francisco J. Ibáñez

    2017-10-01

    Full Text Available Heme oxygenase-1 (HO-1 is an inducible enzyme that is expressed in response to physical and chemical stresses, such as ultraviolet radiation, hyperthermia, hypoxia, reactive oxygen species (ROS, as well as cytokines, among others. Its activity can be positively modulated by cobalt protoporphyrin (CoPP and negatively by tin protoporphirin (SnPP. Once induced, HO-1 degrades iron-containing heme into ferrous iron (Fe2+, carbon monoxide (CO and biliverdin. Importantly, numerous products of HO-1 are cytoprotective with anti-apoptotic, anti-oxidant, anti-inflammatory, and anti-cancer effects. The products of HO-1 also display antiviral properties against several viruses, such as the human immunodeficiency virus (HIV, influenza, hepatitis B, hepatitis C, and Ebola virus. Here, we sought to assess the effect of modulating HO-1 activity over herpes simplex virus type 2 (HSV-2 infection in epithelial cells and neurons. There are no vaccines against HSV-2 and treatment options are scarce in the immunosuppressed, in which drug-resistant variants emerge. By using HSV strains that encode structural and non-structural forms of the green fluorescent protein (GFP, we found that pharmacological induction of HO-1 activity with CoPP significantly decreases virus plaque formation and the expression of virus-encoded genes in epithelial cells as determined by flow cytometry and western blot assays. CoPP treatment did not affect virus binding to the cell surface or entry into the cytoplasm, but rather downstream events in the virus infection cycle. Furthermore, we observed that treating cells with a CO-releasing molecule (CORM-2 recapitulated some of the anti-HSV effects elicited by CoPP. Taken together, these findings indicate that HO-1 activity interferes with the replication cycle of HSV and that its antiviral effects can be recapitulated by CO.

  4. Considerations on the mechanism of action of artemisinin antimalarials: part 1--the 'carbon radical' and 'heme' hypotheses.

    Haynes, Richard K; Cheu, Kwan-Wing; N'Da, David; Coghi, Paolo; Monti, Diego

    2013-08-01

    The isolation of artemisinin from the traditional medicinal herb qīng hāo (Artemisia annua), its characterization as a peroxide and preparation of the derivatives dihydroartemisinin, artemether and artesunate in the 1970s and 1980s by Chinese scientists under the umbrella of Project 523 collectively represents one of the great events in medicine in the latter third of the 20(th) Century. Artemisinins have become the most important component of chemotherapy of malaria: although used initially in monotherapy, they are now used in combination therapies or ACTs with longer half-life quinolines or arylmethanols. Nevertheless, the recent emergence of artemisinin-tolerant strains of the malaria parasite as reflected in increased clearance times of parasitaemia in patients treated with ACTs represents the greatest threat to control of malaria since resistance to chloroquine was first reported over 55 years ago. Importantly, the event brings into sharp focus the realization that relatively little is precisely understood, as opposed to widely assumed, for the mechanism of drug action of artemisinins and their synthetic peroxide analogues. Thus, we review here their antimalarial activities, the use of artemisinins in combination therapies, drug-drug interactions with the quinolines and arylmethanols, and metabolism of the artemisinins and synthetic peroxides. The mechanism of action of quinolines and arylmethanols, in particular their ability to induce redistribution of heme into the parasite cytosol, is also highlighted. This collective information is then used as a counterpoint to screen the validity of two of the prevailing hypotheses of drug action of artemisinins and synthetic peroxides, namely i. 'the C-radical hypothesis' wherein the peroxide undergoes 'bioactivation' by ferrous iron to generate C-radicals that are held to be the cytotoxic agents and ii. the 'heme hypothesis' wherein ferrous heme may generate either the same type of 'cytotoxic' C-radical, or the

  5. Phthalate Intakes

    U.S. Environmental Protection Agency — Compilation of literature-reported intake values of phthalates; specifically dibutyl phthalate (DBP), bis(2-ethylhexyl) phthalate, and diisononyl phthalate (DiNP)....

  6. The influence of high iron diet on rat lung manganese absorption

    Thompson, Khristy; Molina, Ramon; Donaghey, Thomas; Brain, Joseph D.; Wessling-Resnick, Marianne

    2006-01-01

    Individuals chronically exposed to manganese are at high risk for neurotoxic effects of this metal. A primary route of exposure is through respiration, although little is known about pulmonary uptake of metals or factors that modify this process. High dietary iron levels inversely affect intestinal uptake of manganese, and a major goal of this study was to determine if dietary iron loading could increase lung non-heme iron levels and alter manganese absorption. Rats were fed a high iron (1% carbonyl iron) or control diet for 4 weeks. Lung non-heme iron levels increased ∼2-fold in rats fed the high iron diet. To determine if iron-loading affected manganese uptake, 54 Mn was administered by intratracheal (it) instillation or intravenous (iv) injection for pharmacokinetic studies. 54 Mn absorption from the lungs to the blood was lower in it-instilled rats fed the 1% carbonyl iron diet. Pharmacokinetics of iv-injected 54 Mn revealed that the isotope was cleared more rapidly from the blood of iron-loaded rats. In situ analysis of divalent metal transporter-1 (DMT1) expression in lung detected mRNA in airway epithelium and bronchus-associated lymphatic tissue (BALT). Staining of the latter was significantly reduced in rats fed the high iron diet. In situ analysis of transferrin receptor (TfR) mRNA showed staining in BALT alone. These data demonstrate that manganese absorption from the lungs to the blood can be modified by iron status and the route of administration

  7. Gene expression profiling in Entamoeba histolytica identifies key components in iron uptake and metabolism.

    Nora Adriana Hernández-Cuevas

    Full Text Available Entamoeba histolytica is an ameboid parasite that causes colonic dysentery and liver abscesses in humans. The parasite encounters dramatic changes in iron concentration during its invasion of the host, with relatively low levels in the intestinal lumen and then relatively high levels in the blood and liver. The liver notably contains sources of iron; therefore, the parasite's ability to use these sources might be relevant to its survival in the liver and thus the pathogenesis of liver abscesses. The objective of the present study was to identify factors involved in iron uptake, use and storage in E. histolytica. We compared the respective transcriptomes of E. histolytica trophozoites grown in normal medium (containing around 169 µM iron, low-iron medium (around 123 µM iron, iron-deficient medium (around 91 µM iron, and iron-deficient medium replenished with hemoglobin. The differentially expressed genes included those coding for the ATP-binding cassette transporters and major facilitator transporters (which share homology with bacterial siderophores and heme transporters and genes involved in heme biosynthesis and degradation. Iron deficiency was associated with increased transcription of genes encoding a subset of cell signaling molecules, some of which have previously been linked to adaptation to the intestinal environment and virulence. The present study is the first to have assessed the transcriptome of E. histolytica grown under various iron concentrations. Our results provide insights into the pathways involved in iron uptake and metabolism in this parasite.

  8. Gene expression profiling in Entamoeba histolytica identifies key components in iron uptake and metabolism.

    Hernández-Cuevas, Nora Adriana; Weber, Christian; Hon, Chung-Chau; Guillen, Nancy

    2014-01-01

    Entamoeba histolytica is an ameboid parasite that causes colonic dysentery and liver abscesses in humans. The parasite encounters dramatic changes in iron concentration during its invasion of the host, with relatively low levels in the intestinal lumen and then relatively high levels in the blood and liver. The liver notably contains sources of iron; therefore, the parasite's ability to use these sources might be relevant to its survival in the liver and thus the pathogenesis of liver abscesses. The objective of the present study was to identify factors involved in iron uptake, use and storage in E. histolytica. We compared the respective transcriptomes of E. histolytica trophozoites grown in normal medium (containing around 169 µM iron), low-iron medium (around 123 µM iron), iron-deficient medium (around 91 µM iron), and iron-deficient medium replenished with hemoglobin. The differentially expressed genes included those coding for the ATP-binding cassette transporters and major facilitator transporters (which share homology with bacterial siderophores and heme transporters) and genes involved in heme biosynthesis and degradation. Iron deficiency was associated with increased transcription of genes encoding a subset of cell signaling molecules, some of which have previously been linked to adaptation to the intestinal environment and virulence. The present study is the first to have assessed the transcriptome of E. histolytica grown under various iron concentrations. Our results provide insights into the pathways involved in iron uptake and metabolism in this parasite.

  9. The Extracellular Heme-binding Protein HbpS from the Soil Bacterium Streptomyces reticuli Is an Aquo-cobalamin Binder*

    Ortiz de Orué Lucana, Darío; Fedosov, Sergey N.; Wedderhoff, Ina; Che, Edith N.; Torda, Andrew E.

    2014-01-01

    The extracellular protein HbpS from Streptomyces reticuli interacts with iron ions and heme. It also acts in concert with the two-component sensing system SenS-SenR in response to oxidative stress. Sequence comparisons suggested that the protein may bind a cobalamin. UV-visible spectroscopy confirmed binding (Kd = 34 μm) to aquo-cobalamin (H2OCbl+) but not to other cobalamins. Competition experiments with the H2OCbl+-coordinating ligand CN− and comparison of mutants identified a histidine residue (His-156) that coordinates the cobalt ion of H2OCbl+ and substitutes for water. HbpS·Cobalamin lacks the Asp-X-His-X-X-Gly motif seen in some cobalamin binding enzymes. Preliminary tests showed that a related HbpS protein from a different species also binds H2OCbl+. Furthermore, analyses of HbpS-heme binding kinetics are consistent with the role of HbpS as a heme-sensor and suggested a role in heme transport. Given the high occurrence of HbpS-like sequences among Gram-positive and Gram-negative bacteria, our findings suggest a great functional versatility among these proteins. PMID:25342754

  10. The Role of Heme Chirality in the Circular Dichroism of Heme Proteins

    Woody, Robert W.; Pescitelli, Gennaro

    2014-07-01

    The rotational strength (R) of the Soret transition in sperm-whale myoglobin (SW Mb), the hemoglobin from Chironomus thummi thummi (CTT Hb), and human hemoglobin (hHb) has been calculated using 20 high-resolution ( Raro > Rpep. For CTT Hb and hHB, the orders were, respectively, Rint > Rpep > Raro and Rint > Raro ≈ Rpep. Human Hb ɑ chains showed the same trend as CTT Hb. Only in the hHb β chains did Raro predominate, with the order Raro > Rint > Rpep. The total predicted Rtot for SW Mb, CTT Hb, and hHb averaged +0.77±0.10 (0.56 - 0.80), -0.37±0.12 (-0.5), and +0.31±0.17 DBM (0.23 - 0.50), respectively. (Values in parentheses are experimental values.) Thus, contrary to the currently accepted view, coupling with aromatic side-chain or peptide transitions is not the dominant factor in the Soret circular dichroism (CD) of these proteins. The Soret CD is dominated by intrinsic CD of the heme chromophore, of which vinyl torsion is the major determinant. This result suggests an explanation for the large effect of heme isomerism on the Soret CD of Mb and Hb. Rotation about the ɑ-γ axis may be associated with large changes in vinyl torsion and thus substantially alter the intrinsic CD, even reversing its sign.

  11. Higher iron bioavailability of a human-like collagen iron complex.

    Zhu, Chenhui; Yang, Fan; Fan, Daidi; Wang, Ya; Yu, Yuanyuan

    2017-07-01

    Iron deficiency remains a public health problem around the world due to low iron intake and/or bioavailability. FeSO 4 , ferrous succinate, and ferrous glycinate chelate are rich in iron but have poor bioavailability. To solve the problem of iron deficiency, following previous research studies, a thiolated human-like collagen-ironcomplex supplement with a high iron content was prepared in an anaerobic workstation. In addition, cell viability tests were evaluated after conducting an MTT assay, and a quantitative analysis of the thiolated human-like collagen-iron digesta samples was performed using the SDS-PAGE method coupled with gel filtration chromatography. The iron bioavailability was assessed using Caco-2 cell monolayers and iron-deficiency anemia mice models. The results showed that (1) one mole of thiolated human-like collagen-iron possessed approximately 35.34 moles of iron; (2) thiolated human-like collagen-iron did not exhibit cytotoxity and (3) thiolated human-like collagen- iron digesta samples had higher bioavailability than other iron supplements, including FeSO 4 , ferrous succinate, ferrous glycine chelate and thiolated human-like collagen-Fe iron. Finally, the iron bioavailability was significantly enhanced by vitamin C. These results indicated that thiolated human-like collagen-iron is a promising iron supplement for use in the future.

  12. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism.

    Lill, Roland; Hoffmann, Bastian; Molik, Sabine; Pierik, Antonio J; Rietzschel, Nicole; Stehling, Oliver; Uzarska, Marta A; Webert, Holger; Wilbrecht, Claudia; Mühlenhoff, Ulrich

    2012-09-01

    Mitochondria play a key role in iron metabolism in that they synthesize heme, assemble iron-sulfur (Fe/S) proteins, and participate in cellular iron regulation. Here, we review the latter two topics and their intimate connection. The mitochondrial Fe/S cluster (ISC) assembly machinery consists of 17 proteins that operate in three major steps of the maturation process. First, the cysteine desulfurase complex Nfs1-Isd11 as the sulfur donor cooperates with ferredoxin-ferredoxin reductase acting as an electron transfer chain, and frataxin to synthesize an [2Fe-2S] cluster on the scaffold protein Isu1. Second, the cluster is released from Isu1 and transferred toward apoproteins with the help of a dedicated Hsp70 chaperone system and the glutaredoxin Grx5. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Functional defects of the core ISC assembly machinery are signaled to cytosolic or nuclear iron regulatory systems resulting in increased cellular iron acquisition and mitochondrial iron accumulation. In fungi, regulation is achieved by iron-responsive transcription factors controlling the expression of genes involved in iron uptake and intracellular distribution. They are assisted by cytosolic multidomain glutaredoxins which use a bound Fe/S cluster as iron sensor and additionally perform an essential role in intracellular iron delivery to target metalloproteins. In mammalian cells, the iron regulatory proteins IRP1, an Fe/S protein, and IRP2 act in a post-transcriptional fashion to adjust the cellular needs for iron. Thus, Fe/S protein biogenesis and cellular iron metabolism are tightly linked to coordinate iron supply and utilization. This article is part of a Special Issue entitled: Cell Biology of Metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Novel Insights in Mammalian Catalase Heme Maturation: Effect of NO and Thioredoxin-1

    Chakravarti, Ritu; Gupta, Karishma; Majors, Alana; Ruple, Lisa; Aronica, Mark; Stuehr, Dennis J.

    2015-01-01

    Catalase is a tetrameric heme-containing enzyme with essential antioxidant functions in biology. Multiple factors including nitric oxide (NO) have been shown to attenuate its activity. However, the possible impact of NO in relation to the maturation of active catalase, including its heme acquisition and tetramer formation, has not been investigated. We found that NO attenuates heme insertion into catalase in both short-term and long-term incubations. The NO inhibition in catalase heme incorpo...

  14. Iron status of young children in Europe.

    van der Merwe, Liandré F; Eussen, Simone R

    2017-12-01

    Iron deficiency (ID) is common in young children aged 6-36 mo. Although the hazards associated with iron deficiency anemia (IDA) are well known, concerns about risks associated with excess iron intake in young children are emerging. To characterize iron status in Europe, we describe the prevalence of ID, IDA, iron repletion, and excess stores with the use of published data from a systematic review on iron intake and deficiency rates, combined with other selected iron status data in young European children. Various definitions for ID and IDA were applied across studies. ID prevalence varied depending on socioeconomic status and type of milk fed (i.e., human or cow milk or formula). Without regard to these factors, ID was reported in 3-48% of children aged ≥12 mo across the countries. For 6- to 12-mo-old infants, based on studies that did not differentiate these factors, ID prevalence was 4-18%. IDA was iron status data from a sample of healthy Western European children aged 12-36 mo, 69% were iron replete, and the 97.5th percentile for serum ferritin (SF) was 64.3 μg/L. In another sample, 79% of 24-mo-old children were iron replete, and the 97.5th percentile for SF was 57.3 μg/L. Average iron intake in most countries studied was close to or below the UK's Recommended Dietary Allowance. In conclusion, even in healthy European children aged 6-36 mo, ID is still common. In Western European populations for whom data were available, approximately three-quarters of children were found to be iron replete, and excess iron stores (SF >100 μg/L) did not appear to be a concern. Consensus on the definitions of iron repletion and excess stores, as well as on ID and IDA, is needed. © 2017 American Society for Nutrition.

  15. Iron absorption from adequate Filipino meals

    Trinidad, T.P.; Madriaga, J.R.; Valdez, D.H.; Cruz, E.M.; Mallillin, A.C.; Sison, C.C.; Kuizon, M.D.

    1991-01-01

    Iron absorption from adequate Filipino meals representing the three major island groups of the Philippines (Luzon, Visayas and Mindanao) was studied using double isotope extrinsic tag method. Mean iron absorption of the one-day meal for Metro Manila was 6.6 ± 1.26%, Central Visayas, 6.3 ± 1.15% and Southern Mindanao, 6.4 ± 1.19%. Comparison between meals (breakfast, lunch, dinner) for each region as well as one-day meal for the three regions showed no significant differences (P > .01). Correlation tests done between iron absorption and the following iron enhancers: ascorbic acid, amount of fish, meat or poultry and inhibitors: phytic acid and tannic acid did not give significant results. The overall bar x of 6.4 ± 1.20% may be used as the non-heme iron absorption level from an adequate Filipino meal. This value can be considered as one of the bases for arriving at recommended dietary allowances for iron among Filipinos instead of the 10% iron absorption assumed in 1976

  16. Iron deficiency among children of asylum seekers in the Netherlands

    Stellinga-Boelen, A. A. M.; Storm, H.; Wiegersma, P. A.; Bijleveld, C. M. A.; Verkade, H. J.

    2007-01-01

    Objectives: To investigate, in asylum seekers' children in the Netherlands, biochemical iron status and the prevalence of iron deficiency (ID) and anemia in relation to age, region of origin, length of stay in the Netherlands, body mass index (BMI), and dietary iron intake. Patients and Methods:

  17. Iron deficiency among children of asylum seekers in the Netherlands

    Stellinga-Boelen, A. A. M.; Storm, H.; Wiegersma, P. A.; Bijleveld, C. M. A.; Verkade, H. J.

    Objectives: To investigate, in asylum seekers' children in the Netherlands, biochemical iron status and the prevalence of iron deficiency (ID) and anemia in relation to age, region of origin, length of stay in the Netherlands, body mass index (BMI), and dietary iron intake. Patients and Methods:

  18. NO2-induced synthesis of nitrato-iron(III) porphyrin with diverse ...

    found serendipitously in the reaction of [Fe(4-Me-TPP)Cl] with nitrous acid, which ... Nitric oxide and its derivatives nitrite and nitrate ion ... oxide.2 Nitrate is produced in heme proteins from oxi- ... and nitrogen assimilation.4 Iron nitrate(III) porphyrins ... one-pot method.15 ... of the compound was determined based on the lack.

  19. Urinary Hepcidin Levels in Iron-Deficient and Iron-Supplemented Piglets Correlate with Hepcidin Hepatic mRNA and Serum Levels and with Body Iron Status.

    Robert Staroń

    Full Text Available Among livestock, domestic pig (Sus scrofa is a species, in which iron metabolism has been most intensively examined during last decade. The obvious reason for studying the regulation of iron homeostasis especially in young pigs is neonatal iron deficiency anemia commonly occurring in these animals. Moreover, supplementation of essentially all commercially reared piglets with iron entails a need for monitoring the efficacy of this routine practice followed in the swine industry for several decades. Since the discovery of hepcidin many studies confirmed its role as key regulator of iron metabolism and pointed out the assessment of its concentrations in biological fluids as diagnostic tool for iron-related disorder. Here we demonstrate that urine hepcidin-25 levels measured by a combination of weak cation exchange chromatography and time-of-flight mass spectrometry (WCX-TOF MS are highly correlated with mRNA hepcidin expression in the liver and plasma hepcidin-25 concentrations in anemic and iron-supplemented 28-day old piglets. We also found a high correlation between urine hepcidin level and hepatic non-heme iron content. Our results show that similarly to previously described transgenic mouse models of iron disorders, young pigs constitute a convenient animal model to explore accuracy and relationship between indicators for assessing systemic iron status.

  20. Cyanide binding to hexacoordinate cyanobacterial hemoglobins: hydrogen-bonding network and heme pocket rearrangement in ferric H117A Synechocystis hemoglobin.

    Vu, B Christie; Nothnagel, Henry J; Vuletich, David A; Falzone, Christopher J; Lecomte, Juliette T J

    2004-10-05

    The truncated hemoglobin (Hb) from the cyanobacterium Synechocystis sp. PCC 6803 is a bis-histidyl hexacoordinate complex in the absence of exogenous ligands. This protein can form a covalent cross-link between His117 in the H-helix and the heme 2-vinyl group. Cross-linking, the physiological importance of which has not been established, is avoided with the His117Ala substitution. In the present work, H117A Hb was used to explore exogenous ligand binding to the heme group. NMR and thermal denaturation data showed that the replacement was of little consequence to the structural and thermodynamic properties of ferric Synechocystis Hb. It did, however, decelerate the association of cyanide ions with the heme iron. Full complexation required hours, instead of minutes, of incubation at optical and NMR concentrations. At neutral pH and in the presence of excess cyanide, binding occurred with a first-order dependence on cyanide concentration, eliminating distal histidine decoordination as the rate-limiting step. The cyanide complex of the H117A variant was characterized for the conformational changes occurring as the histidine on the distal side, His46 (E10), was displaced. Extensive rearrangement allowed Tyr22 (B10) to insert in the heme pocket and Gln43 (E7) and Gln47 (E11) to come in contact with it. H-bond formation to the bound cyanide was identified in solution with the use of (1)H(2)O/(2)H(2)O mixtures. Cyanide binding also resulted in a change in the ratio of heme orientational isomers, in a likely manifestation of heme environment reshaping. Similar observations were made with the related Synechococcus sp. PCC 7002 H117A Hb, except that cyanide binding was rapid in this protein. In both cases, the (15)N chemical shift of bound cyanide was reminiscent of that in peroxidases and the orientation of the proximal histidine was as in other truncated Hbs. The ensemble of the data provided insight into the structural cooperativity of the heme pocket scaffold and pointed

  1. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection.

    Viswanathan Arun Nagaraj

    Full Text Available Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, δ-aminolevulinate synthase (ALAS, and the last enzyme, ferrochelatase (FC, in the heme-biosynthetic pathway of Plasmodium berghei (Pb. The wild-type and knockout (KO parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using [4-(14C] aminolevulinic acid (ALA. We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages.

  2. Fructose during pregnancy provokes fetal oxidative stress: The key role of the placental heme oxygenase-1.

    Rodrigo, Silvia; Rodríguez, Lourdes; Otero, Paola; Panadero, María I; García, Antonia; Barbas, Coral; Roglans, Núria; Ramos, Sonia; Goya, Luis; Laguna, Juan C; Álvarez-Millán, Juan J; Bocos, Carlos

    2016-12-01

    One of the features of metabolic syndrome caused by liquid fructose intake is an impairment of redox status. We have investigated whether maternal fructose ingestion modifies the redox status in pregnant rats and their fetuses. Fructose (10% wt/vol) in the drinking water of rats throughout gestation, leads to maternal hepatic oxidative stress. However, this change was also observed in glucose-fed rats and, in fact, both carbohydrates produced a decrease in antioxidant enzyme activity. Surprisingly, mothers fed carbohydrates displayed low plasma lipid oxidation. In contrast, fetuses from fructose-fed mothers showed elevated levels of plasma lipoperoxides versus fetuses from control or glucose-fed mothers. Interestingly, a clearly augmented oxidative stress was observed in placenta of fructose-fed mothers, accompanied by a lower expression of the transcription factor Nuclear factor-erythroid 2-related factor-2 (Nrf2) and its target gene, heme oxygenase-1 (HO-1), a potent antioxidant molecule. Moreover, histone deacetylase 3 (HDAC3) that has been proposed to upregulate HO-1 expression by stabilizing Nrf2, exhibited a diminished expression in placenta of fructose-supplemented mothers. Maternal fructose intake provoked an imbalanced redox status in placenta and a clear diminution of HO-1 expression, which could be responsible for the augmented oxidative stress found in their fetuses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Iron and genome stability: An update

    Prá, Daniel; Franke, Silvia Isabel Rech; Henriques, João Antonio Pêgas; Fenech, Michael

    2012-01-01

    Iron is an essential micronutrient which is required in a relatively narrow range for maintaining metabolic homeostasis and genome stability. Iron participates in oxygen transport and mitochondrial respiration as well as in antioxidant and nucleic acid metabolism. Iron deficiency impairs these biological pathways, leading to oxidative stress and possibly carcinogenesis. Iron overload has been linked to genome instability as well as to cancer risk increase, as seen in hereditary hemochromatosis. Iron is an extremely reactive transition metal that can interact with hydrogen peroxide to generate hydroxyl radicals that form the 8-hydroxy-guanine adduct, cause point mutations as well as DNA single and double strand breaks. Iron overload also induces DNA hypermethylation and can reduce telomere length. The current Recommended Dietary Allowances (RDA) for iron, according with Institute of Medicine Dietary Reference Intake (DRI), is based in the concept of preventing anemia, and ranges from 7 mg/day to 18 mg/day depending on life stage and gender. Pregnant women need 27 mg/day. The maximum safety level for iron intake, the Upper Level (UL), is 40–45 mg/day, based on the prevention of gastrointestinal distress associated to high iron intakes. Preliminary evidence indicates that 20 mg/day iron, an intake slightly higher than the RDA, may reduce the risk of gastrointestinal cancer in the elderly as well as increasing genome stability in lymphocytes of children and adolescents. Current dietary recommendations do not consider the concept of genome stability which is of concern because damage to the genome has been linked to the origin and progression of many diseases and is the most fundamental pathology. Given the importance of iron for homeostasis and its potential influence over genome stability and cancer it is recommended to conduct further studies that conclusively define these relationships.

  4. Iron and genome stability: An update

    Pra, Daniel, E-mail: daniel_pra@yahoo.com [PPG em Promocao da Saude, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS (Brazil); PPG em Saude e Comportamento, Universidade Catolica de Pelotas, Pelotas, RS (Brazil); Franke, Silvia Isabel Rech [PPG em Promocao da Saude, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS (Brazil); Henriques, Joao Antonio Pegas [Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil); Fenech, Michael [CSIRO Food and Nutritional Sciences, Adelaide, SA (Australia)

    2012-05-01

    Iron is an essential micronutrient which is required in a relatively narrow range for maintaining metabolic homeostasis and genome stability. Iron participates in oxygen transport and mitochondrial respiration as well as in antioxidant and nucleic acid metabolism. Iron deficiency impairs these biological pathways, leading to oxidative stress and possibly carcinogenesis. Iron overload has been linked to genome instability as well as to cancer risk increase, as seen in hereditary hemochromatosis. Iron is an extremely reactive transition metal that can interact with hydrogen peroxide to generate hydroxyl radicals that form the 8-hydroxy-guanine adduct, cause point mutations as well as DNA single and double strand breaks. Iron overload also induces DNA hypermethylation and can reduce telomere length. The current Recommended Dietary Allowances (RDA) for iron, according with Institute of Medicine Dietary Reference Intake (DRI), is based in the concept of preventing anemia, and ranges from 7 mg/day to 18 mg/day depending on life stage and gender. Pregnant women need 27 mg/day. The maximum safety level for iron intake, the Upper Level (UL), is 40-45 mg/day, based on the prevention of gastrointestinal distress associated to high iron intakes. Preliminary evidence indicates that 20 mg/day iron, an intake slightly higher than the RDA, may reduce the risk of gastrointestinal cancer in the elderly as well as increasing genome stability in lymphocytes of children and adolescents. Current dietary recommendations do not consider the concept of genome stability which is of concern because damage to the genome has been linked to the origin and progression of many diseases and is the most fundamental pathology. Given the importance of iron for homeostasis and its potential influence over genome stability and cancer it is recommended to conduct further studies that conclusively define these relationships.

  5. Heme and menaquinone induced electron transport in lactic acid bacteria

    Brooijmans, R.J.W.; Smit, B.; Santos, dos F.; Riel, van J.; Vos, de W.M.; Hugenholtz, J.

    2009-01-01

    ABSTRACT: BACKGROUND: For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait.

  6. Cysteine-independent activation/inhibition of heme oxygenase-2

    Dragic Vukomanovic

    2016-01-01

    Full Text Available Reactive thiols of cysteine (cys residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2 isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2 and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  7. Heme and HO-1 inhibition of HCV, HBV, and HIV

    Warren N Schmidt

    2012-10-01

    Full Text Available Hepatitis C virus, human immunodeficiency virus, and hepatitis B virus are chronic viral infections that cause considerable morbidity and mortality throughout the world. In the decades following the identification and sequencing of these viruses, in vitro experiments demonstrated that heme oxygenase-1, its oxidative products, and related compounds of the heme oxygenase system are virucidal for all three viruses. The purpose of this review is to critically evaluate and summarize the seminal studies that described and characterized this remarkable behavior. It will also discuss more recent work that discovered the antiviral mechanisms and target sites of these unique antiviral agents. In spite of the fact that these viruses are diverse pathogens with quite profound differences in structure and life cycle, it is significant that heme and related compounds show striking similarity for viral target sites across all three species. Collectively, these findings strongly indicate that we should move forward and develop heme and related tetrapyrroles into versatile antiviral agents that could be used therapeutically in patients with single or multiple viral infections.

  8. Cysteine-independent activation/inhibition of heme oxygenase-2.

    Vukomanovic, Dragic; Rahman, Mona N; Maines, Mahin D; Ozolinš, Terence Rs; Szarek, Walter A; Jia, Zongchao; Nakatsu, Kanji

    2016-03-01

    Reactive thiols of cysteine (cys) residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2) isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2) and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD) and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  9. AN ELISA ASSAY FOR HEME OXYGENASE (HO-1)

    An ELISA assay for heme oxygenase (HO-l ) Abstract A double antibody capture ELISA for the HO-l protein has been developed to separately quantitate HO-I protein. The use of 2.5% NP40 detergent greatly assists in freeing HO-l protein from membranes and/or other cel...

  10. Isoporphyrin intermediate in heme oxygenase catalysis. Oxidation of alpha-meso-phenylheme.

    Evans, John P; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz

    2008-07-11

    Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the alpha-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin pi-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of alpha-meso-phenylheme-IX, alpha-meso-(p-methylphenyl)-mesoheme-III, and alpha-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593-42604), only the alpha-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced alpha-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation.

  11. Improved Method for the Incorporation of Heme Cofactors into Recombinant Proteins Using Escherichia coli Nissle 1917.

    Fiege, Kerstin; Querebillo, Christine Joy; Hildebrandt, Peter; Frankenberg-Dinkel, Nicole

    2018-05-15

    Recombinant production of heme proteins in Escherichia coli is often limited by the availability of heme in the host. Therefore, several methods, including the reconstitution of heme proteins after production but prior to purification or the HPEX system, conferring the ability to take up external heme have been developed and used in the past. Here we describe the use of the apathogenic E. coli strain Nissle 1917 (EcN) as a suitable host for the recombinant production of heme proteins. EcN has an advantage over commonly used lab strains in that it is able to take up heme from the environment through the heme receptor ChuA. Expression of several heme proteins from different prokaryotic sources led to high yield and quantitative incorporation of the cofactor when heme was supplied in the growth medium. Comparative UV-vis and resonance Raman measurements revealed that the method employed has significant influence on heme coordination with the EcN system representing the most native situation. Therefore, the use of EcN as a host for recombinant heme protein production represents an inexpensive and straightforward method to facilitate further investigations of structure and function.

  12. ATP-binding cassette B10 regulates early steps of heme synthesis.

    Bayeva, Marina; Khechaduri, Arineh; Wu, Rongxue; Burke, Michael A; Wasserstrom, J Andrew; Singh, Neha; Liesa, Marc; Shirihai, Orian S; Langer, Nathaniel B; Paw, Barry H; Ardehali, Hossein

    2013-07-19

    Heme plays a critical role in gas exchange, mitochondrial energy production, and antioxidant defense in cardiovascular system. The mitochondrial transporter ATP-binding cassette (ABC) B10 has been suggested to export heme out of the mitochondria and is required for normal hemoglobinization of erythropoietic cells and protection against ischemia-reperfusion injury in the heart; however, its primary function has not been established. The aim of this study was to identify the function of ABCB10 in heme synthesis in cardiac cells. Knockdown of ABCB10 in cardiac myoblasts significantly reduced heme levels and the activities of heme-containing proteins, whereas supplementation with δ-aminolevulinic acid reversed these defects. Overexpression of mitochondrial δ-aminolevulinic acid synthase 2, the rate-limiting enzyme upstream of δ-aminolevulinic acid export, failed to restore heme levels in cells with ABCB10 downregulation. ABCB10 and heme levels were increased by hypoxia, and reversal of ABCB10 upregulation caused oxidative stress and cell death. Furthermore, ABCB10 knockdown in neonatal rat cardiomyocytes resulted in a significant delay of calcium removal from the cytoplasm, suggesting a relaxation defect. Finally, ABCB10 expression and heme levels were altered in failing human hearts and mice with ischemic cardiomyopathy. ABCB10 plays a critical role in heme synthesis pathway by facilitating δ-aminolevulinic acid production or export from the mitochondria. In contrast to previous reports, we show that ABCB10 is not a heme exporter and instead is required for the early mitochondrial steps of heme biosynthesis.

  13. Iron-associated biology of Trypanosoma brucei.

    Basu, Somsuvro; Horáková, Eva; Lukeš, Julius

    2016-01-01

    Roč. 1860, č. 2 (2016), s. 363-370 ISSN 0304-4165 R&D Projects: GA ČR(CZ) GA14-23986S; GA ČR GAP305/12/2261; GA MŠk(CZ) EE2.3.30.0032 EU Projects: European Commission(XE) COST Action CM1307; European Commission(XE) 316304 - MODBIOLIN Grant - others:AV ČR(CZ) M200961204 Institutional support: RVO:60077344 Keywords : iron * Fe/S cluster * heme * Trypanosoma * TAO Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.702, year: 2016

  14. Cytochrome c and c1 heme lyases are essential in Plasmodium berghei.

    Posayapisit, Navaporn; Songsungthong, Warangkhana; Koonyosying, Pongpisid; Falade, Mofolusho O; Uthaipibull, Chairat; Yuthavong, Yongyuth; Shaw, Philip J; Kamchonwongpaisan, Sumalee

    Malaria parasites possess a de novo heme synthetic pathway. Interestingly, this pathway is dispensable during the blood stages of development in mammalian hosts. The assembly of the two most important hemeproteins, cytochromes c and c1, is mediated by cytochrome heme lyase enzymes. Plasmodium spp. possess two cytochrome heme lyases encoded by separate genes. Given the redundancy of heme synthesis, we sought to determine if heme lyase function also exhibits redundancy. To answer this question, we performed gene knockout experiments. We found that the PBANKA_143950 and PBANKA_0602600 Plasmodium berghei genes encoding cytochrome c (Pbcchl) and cytochrome c1 (Pbcc 1 hl) heme lyases, respectively, can only be disrupted when a complementary gene is present. In contrast, four genes in the de novo heme synthesis pathway can be disrupted without complementation. This work provides evidence that Pbcchl and Pbcc 1 hl are both essential and thus may be antimalarial targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Computational modeling and analysis of iron release from macrophages.

    Alka A Potdar

    2014-07-01

    Full Text Available A major process of iron homeostasis in whole-body iron metabolism is the release of iron from the macrophages of the reticuloendothelial system. Macrophages recognize and phagocytose senescent or damaged erythrocytes. Then, they process the heme iron, which is returned to the circulation for reutilization by red blood cell precursors during erythropoiesis. The amount of iron released, compared to the amount shunted for storage as ferritin, is greater during iron deficiency. A currently accepted model of iron release assumes a passive-gradient with free diffusion of intracellular labile iron (Fe2+ through ferroportin (FPN, the transporter on the plasma membrane. Outside the cell, a multi-copper ferroxidase, ceruloplasmin (Cp, oxidizes ferrous to ferric ion. Apo-transferrin (Tf, the primary carrier of soluble iron in the plasma, binds ferric ion to form mono-ferric and di-ferric transferrin. According to the passive-gradient model, the removal of ferrous ion from the site of release sustains the gradient that maintains the iron release. Subcellular localization of FPN, however, indicates that the role of FPN may be more complex. By experiments and mathematical modeling, we have investigated the detailed mechanism of iron release from macrophages focusing on the roles of the Cp, FPN and apo-Tf. The passive-gradient model is quantitatively analyzed using a mathematical model for the first time. A comparison of experimental data with model simulations shows that the passive-gradient model cannot explain macrophage iron release. However, a facilitated-transport model associated with FPN can explain the iron release mechanism. According to the facilitated-transport model, intracellular FPN carries labile iron to the macrophage membrane. Extracellular Cp accelerates the oxidation of ferrous ion bound to FPN. Apo-Tf in the extracellular environment binds to the oxidized ferrous ion, completing the release process. Facilitated-transport model can

  16. CYTOCHROME P450 REGULATION: THE INTERPLAY BETWEEN ITS HEME AND APOPROTEIN MOIETIES IN SYNTHESIS, ASSEMBLY, REPAIR AND DISPOSAL123

    Correia, Maria Almira; Sinclair, Peter R.; De Matteis, Francesco

    2010-01-01

    Heme is vital to our aerobic universe. Heme cellular content is finely tuned through an exquisite control of synthesis and degradation. Heme deficiency is deleterious to cells, whereas excess heme is toxic. Most of the cellular heme serves as the prosthetic moiety of functionally diverse hemoproteins, including cytochromes P450 (P450s). In the liver, P450s are its major consumers with >50% of hepatic heme committed to their synthesis. Prosthetic heme is the sine qua non of P450 catalytic biot...

  17. Dietary heme mediated PPARα activation does not affect the heme-induced epithelial hyperproliferation and hyperplasia in mouse colon

    IJssennagger, Noortje; Wit, de Nicole; Muller, Michael; Meer, van der Roelof

    2012-01-01

    Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by luminal cytotoxicity and reactive oxygen species. This surface injury is overcompensated by hyperproliferation and hyperplasia of crypt cells. Transcriptome

  18. Dietary heme-mediated PPARa activation does not affect the heme-induced epithelial hyperproliferation and hyperplasia in mouse colon

    IJssenagger, N.; Wit, de N.J.W.; Muller, M.R.; Meer, van der R.

    2012-01-01

    Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by luminal cytotoxicity and reactive oxygen species. This surface injury is overcompensated by hyperproliferation and hyperplasia of crypt cells. Transcriptome

  19. Transfection of the Human Heme Oxygenase Gene Into Rabbit Coronary Microvessel Endothelial Cells: Protective Effect Against Heme and Hemoglobin Toxicity

    Abraham, N. G.; Lavrovsky, Y.; Schwartzman, M. L.; Stoltz, R. A.; Levere, R. D.; Gerritsen, M. E.

    1995-07-01

    Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an ≈3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with >85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.

  20. Iron economy in Naegleria gruberi reflects its metabolic flexibility.

    Mach, Jan; Bíla, Jarmila; Ženíšková, Kateřina; Arbon, Dominik; Malych, Ronald; Glavanakovová, Marie; Nývltová, Eva; Sutak, Robert

    2018-05-05

    Naegleria gruberi is a free-living amoeba, closely related to the human pathogen Naegleria fowleri, the causative agent of the deadly human disease primary amoebic meningoencephalitis. Herein, we investigated the effect of iron limitation on different aspects of N. gruberi metabolism. Iron metabolism is among the most conserved pathways found in all eukaryotes. It includes the delivery, storage and utilisation of iron in many cell processes. Nevertheless, most of the iron metabolism pathways of N. gruberi are still not characterised, even though iron balance within the cell is crucial. We found a single homolog of ferritin in the N. gruberi genome and showed its localisation in the mitochondrion. Using comparative mass spectrometry, we identified 229 upregulated and 184 down-regulated proteins under iron-limited conditions. The most down-regulated protein under iron-limited conditions was hemerythrin, and a similar effect on the expression of hemerythrin was found in N. fowleri. Among the other down-regulated proteins were [FeFe]-hydrogenase and its maturase HydG and several heme-containing proteins. The activities of [FeFe]-hydrogenase, as well as alcohol dehydrogenase, were also decreased by iron deficiency. Our results indicate that N. gruberi is able to rearrange its metabolism according to iron availability, prioritising mitochondrial pathways. We hypothesise that the mitochondrion is the center for iron homeostasis in N. gruberi, with mitochondrially localised ferritin as a potential key component of this process. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  1. Diagnosis and treatment of sideroblastic anemias: from defective heme synthesis to abnormal RNA splicing.

    Cazzola, Mario; Malcovati, Luca

    2015-01-01

    The sideroblastic anemias are a heterogeneous group of inherited and acquired disorders characterized by the presence of ring sideroblasts in the bone marrow. X-linked sideroblastic anemia (XLSA) is caused by germline mutations in ALAS2. Hemizygous males have a hypochromic microcytic anemia, which is generally mild to moderate and is caused by defective heme synthesis and ineffective erythropoiesis. XLSA is a typical iron-loading anemia; although most patients are responsive to pyridoxine, treatment of iron overload is also important in the management of these patients. Autosomal recessive sideroblastic anemia attributable to mutations in SLC25A38, a member of the mitochondrial carrier family, is a severe disease: patients present in infancy with microcytic anemia, which soon becomes transfusion dependent. Conservative therapy includes regular red cell transfusion and iron chelation, whereas allogenic stem cell transplantation represents the only curative treatment. Refractory anemia with ring sideroblasts (RARS) is a myelodysplastic syndrome characterized mainly by anemia attributable to ineffective erythropoiesis. The clinical course of RARS is generally indolent, but there is a tendency to worsening of anemia over time, so that most patients become transfusion dependent in the long run. More than 90% of these patients carry somatic mutations in SF3B1, a gene encoding a core component of the RNA splicing machinery. These mutations cause misrecognition of 3' splice sites in downstream genes, resulting in truncated gene products and/or decreased expression attributable to nonsense-mediated RNA decay; this explains the multifactorial pathogenesis of RARS. Variants of RARS include refractory cytopenia with multilineage dysplasia and ring sideroblasts, and RARS associated with marked thrombocytosis; these variants involve additional genetic lesions. Inhibitors of molecules of the transforming growth factor-β superfamily have been shown recently to target ineffective

  2. Distinct Prominent Roles for Enzymes of Plasmodium berghei Heme Biosynthesis in Sporozoite and Liver Stage Maturation

    Matuschewski, Kai; Haussig, Joana M.

    2016-01-01

    Malarial parasites have evolved complex regulation of heme supply and disposal to adjust to heme-rich and -deprived host environments. In addition to its own pathway for heme biosynthesis, Plasmodium likely harbors mechanisms for heme scavenging from host erythrocytes. Elaborate compartmentalization of de novo heme synthesis into three subcellular locations, including the vestigial plastid organelle, indicates critical roles in life cycle progression. In this study, we systematically profile the essentiality of heme biosynthesis by targeted gene deletion of enzymes in early steps of this pathway. We show that disruption of endogenous heme biosynthesis leads to a first detectable defect in oocyst maturation and sporogony in the Anopheles vector, whereas blood stage propagation, colonization of mosquito midguts, or initiation of oocyst development occurs indistinguishably from that of wild-type parasites. Although sporozoites are produced by parasites lacking an intact pathway for heme biosynthesis, they are absent from mosquito salivary glands, indicative of a vital role for heme biosynthesis only in sporozoite maturation. Rescue of the first defect in sporogony permitted analysis of potential roles in liver stages. We show that liver stage parasites benefit from but do not strictly depend upon their own aminolevulinic acid synthase and that they can scavenge aminolevulinic acid from the host environment. Together, our experimental genetics analysis of Plasmodium enzymes for heme biosynthesis exemplifies remarkable shifts between the use of endogenous and host resources during life cycle progression. PMID:27600503

  3. The Trypanosoma cruzi Protein TcHTE Is Critical for Heme Uptake.

    Marcelo L Merli

    2016-01-01

    Full Text Available Trypanosoma cruzi, the etiological agent of Chagas' disease, presents nutritional requirements for several metabolites. It requires heme for the biosynthesis of several heme-proteins involved in essential metabolic pathways like mitochondrial cytochromes and respiratory complexes, as well as enzymes involved in the biosynthesis of sterols and unsaturated fatty acids. However, this parasite lacks a complete route for its synthesis. In view of these facts, T. cruzi has to incorporate heme from the environment during its life cycle. In other words, their hosts must supply the heme for heme-protein synthesis. Although the acquisition of heme is a fundamental issue for the parasite's replication and survival, how this cofactor is imported and distributed is poorly understood. In this work, we used different fluorescent heme analogs to explore heme uptake along the different life-cycle stages of T. cruzi, showing that this parasite imports it during its replicative stages: the epimastigote in the insect vector and the intracellular amastigote in the mammalian host. Also, we identified and characterized a T. cruzi protein (TcHTE with 55% of sequence similarity to LHR1 (protein involved in L. amazonensis heme transport, which is located in the flagellar pocket, where the transport of nutrients proceeds in trypanosomatids. We postulate TcHTE as a protein involved in improving the efficiency of the heme uptake or trafficking in T. cruzi.

  4. Heme A synthase in bacteria depends on one pair of cysteinyls for activity.

    Lewin, Anna; Hederstedt, Lars

    2016-02-01

    Heme A is a prosthetic group unique for cytochrome a-type respiratory oxidases in mammals, plants and many microorganisms. The poorly understood integral membrane protein heme A synthase catalyzes the synthesis of heme A from heme O. In bacteria, but not in mitochondria, this enzyme contains one or two pairs of cysteine residues that are present in predicted hydrophilic polypeptide loops on the extracytoplasmic side of the membrane. We used heme A synthase from the eubacterium Bacillus subtilis and the hyperthermophilic archeon Aeropyrum pernix to investigate the functional role of these cysteine residues. Results with B. subtilis amino acid substituted proteins indicated the pair of cysteine residues in the loop connecting transmembrane segments I and II as being essential for catalysis but not required for binding of the enzyme substrate, heme O. Experiments with isolated A. pernix and B. subtilis heme A synthase demonstrated that a disulfide bond can form between the cysteine residues in the same loop and also between loops showing close proximity of the two loops in the folded enzyme protein. Based on the findings, we propose a classification scheme for the four discrete types of heme A synthase found so far in different organisms and propose that essential cysteinyls mediate transfer of reducing equivalents required for the oxygen-dependent catalysis of heme A synthesis from heme O. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Studies on the mechanism of pyrophosphate-mediated uptake of iron from transferrin by isolated rat-liver mitochondria

    Konopka, K.; Romslo, I.; Bergen Univ.

    1981-01-01

    1. Respiring rat liver mitochondria accumulate iron released from transferrin by pyrophosphate. The amount of iron accumulated is 1-1.5 nmol mg protein -1 h -1 , or approximately 60% of the amount of iron mobilized from transferrin. 2. The uptake declines if respiration is inhibited, substrate is depleted, or the experiments are run under anaerobic conditions. Substrate, depletion and respiratory inhibitors are less inhibitory under anaerobic conditions. 3. More than 80% of the amount of iron accumulated by aerobic, actively respiring mitochondria can be chelated by bathophenanthroline sulphonate, and with deuteroporphyrin included, up to 30% of the amount of iron accumulated is recovered as deuteroheme. Iron accumulated by respiration-inhibited mitochondria under aerobic conditions is not available for heme synthesis. 4. With time the uptake of iron increases eightfold relative to the uptake of pyrophosphate. 5. The results are compatible with a model in which ferric iron is mobilized from transferrin by pyrophosphate, ferric iron pyrophosphate is bound to the mitochondria, iron is reduced, dissociates from pyrophosphate and is taken up by the mitochondria. Ferrous irons thus formed is available for heme synthesis. (orig.) [de

  6. The FTO (fat mass and obesity associated gene codes for a novel member of the non-heme dioxygenase superfamily

    Andrade-Navarro Miguel A

    2007-11-01

    Full Text Available Abstract Background Genetic variants in the FTO (fat mass and obesity associated gene have been associated with an increased risk of obesity. However, the function of its protein product has not been experimentally studied and previously reported sequence similarity analyses suggested the absence of homologs in existing protein databases. Here, we present the first detailed computational analysis of the sequence and predicted structure of the protein encoded by FTO. Results We performed a sequence similarity search using the human FTO protein as query and then generated a profile using the multiple sequence alignment of the homologous sequences. Profile-to-sequence and profile-to-profile based comparisons identified remote homologs of the non-heme dioxygenase family. Conclusion Our analysis suggests that human FTO is a member of the non-heme dioxygenase (Fe(II- and 2-oxoglutarate-dependent dioxygenases superfamily. Amino acid conservation patterns support this hypothesis and indicate that both 2-oxoglutarate and iron should be important for FTO function. This computational prediction of the function of FTO should suggest further steps for its experimental characterization and help to formulate hypothesis about the mechanisms by which it relates to obesity in humans.

  7. The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition.

    Si, Meiru; Wang, Yao; Zhang, Bing; Zhao, Chao; Kang, Yiwen; Bai, Haonan; Wei, Dawei; Zhu, Lingfang; Zhang, Lei; Dong, Tao G; Shen, Xihui

    2017-07-25

    The type VI secretion system was recently reported to be involved in zinc acquisition, but the underlying mechanism remains unclear. Here, we report that Burkholderia thailandensis T6SS4 is involved in zinc acquisition via secretion of a zinc-scavenging protein, TseZ, that interacts with the outer membrane heme transporter HmuR. We find that HmuR is a redox-regulated dual-functional transporter that transports heme iron under normal conditions but zinc upon sensing extracellular oxidative stress, triggered by formation of an intramolecular disulfide bond. Acting as the first line of defense against oxidative stress, HmuR not only guarantees an immediate response to the changing environment but also provides a fine-tuned mechanism that allows a gradual response to perceived stress. The T6SS/HmuR-mediated active zinc transport system is also involved in bacterial virulence and contact-independent bacterial competition. We describe a sophisticated bacterial zinc acquisition mechanism affording insights into the role of metal ion transport systems. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. The orbital ground state of the azide-substrate complex of human heme oxygenase is an indicator of distal H-bonding: Implications for the enzyme mechanism‡

    Ogura, Hiroshi; Evans, John P.; Peng, Dungeng; Satterlee, James D.; de Montellano, Paul R. Ortiz; Mar, Gerd N. La

    2009-01-01

    The active site electronic structure of the azide complex of substrate-bound human heme oxygenase-1, (hHO) has been investigated by 1H NMR spectroscopy to shed light on the orbital/spin ground state as an indicator of the unique distal pocket environment of the enzyme. 2D 1H NMR assignments of the substrate and substrate-contact residue signals reveal a pattern of substrate methyl contact shifts, that places the lone iron π-spin in the dxz orbital, rather than the dyz orbital found in the cya...

  9. Challenging Density Functional Theory Calculations with Hemes and Porphyrins

    de Visser, Sam P.; Stillman, Martin J.

    2016-01-01

    In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol−1). This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties. PMID:27070578

  10. Challenging Density Functional Theory Calculations with Hemes and Porphyrins

    Sam P. de Visser

    2016-04-01

    Full Text Available In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol−1. This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties.

  11. Cyanide binding to human plasma heme-hemopexin: A comparative study

    Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it [Laboratorio Interdipartimentale di Microscopia Elettronica, Universita Roma Tre, Roma (Italy); Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Leboffe, Loris [Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Polticelli, Fabio [Dipartimento di Biologia, Universita Roma Tre, Roma (Italy)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Cyanide binding to ferric HHPX-heme-Fe. Black-Right-Pointing-Pointer Cyanide binding to ferrous HHPX-heme-Fe. Black-Right-Pointing-Pointer Dithionite-mediated reduction of ferric HHPX-heme-Fe-cyanide. Black-Right-Pointing-Pointer Cyanide binding to HHPX-heme-Fe is limited by ligand deprotonation. Black-Right-Pointing-Pointer Cyanide dissociation from HHPX-heme-Fe-cyanide is limited by ligand protonation. -- Abstract: Hemopexin (HPX) displays a pivotal role in heme scavenging and delivery to the liver. In turn, heme-Fe-hemopexin (HPX-heme-Fe) displays heme-based spectroscopic and reactivity properties. Here, kinetics and thermodynamics of cyanide binding to ferric and ferrous hexa-coordinate human plasma HPX-heme-Fe (HHPX-heme-Fe(III) and HHPX-heme-Fe(II), respectively), and for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex, at pH 7.4 and 20.0 Degree-Sign C, are reported. Values of thermodynamic and kinetic parameters for cyanide binding to HHPX-heme-Fe(III) and HHPX-heme-Fe(II) are K = (4.1 {+-} 0.4) Multiplication-Sign 10{sup -6} M, k{sub on} = (6.9 {+-} 0.5) Multiplication-Sign 10{sup 1} M{sup -1} s{sup -1}, and k{sub off} = 2.8 Multiplication-Sign 10{sup -4} s{sup -1}; and H = (6 {+-} 1) Multiplication-Sign 10{sup -1} M, h{sub on} = 1.2 Multiplication-Sign 10{sup -1} M{sup -1} s{sup -1}, and h{sub off} = (7.1 {+-} 0.8) Multiplication-Sign 10{sup -2} s{sup -1}, respectively. The value of the rate constant for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex is l = 8.9 {+-} 0.8 M{sup -1/2} s{sup -1}. HHPX-heme-Fe reactivity is modulated by proton acceptor/donor amino acid residue(s) (e.g., His236) assisting the deprotonation and protonation of the incoming and outgoing ligand, respectively.

  12. Energy and nutrient intake in Mexican adolescents: analysis of the Mexican National Health and Nutrition Survey 2006 Ingesta de energía y nutrimentos en adolescentes mexicanos: análisis de la Encuesta Nacional de Salud y Nutrición 2006

    Sonia Rodríguez-Ramírez

    2009-01-01

    Full Text Available OBJECTIVE: To describe energy and nutrient intake and adequacy percentages in Mexican adolescents included in the Mexican National Health and Nutrition Survey 2006 (ENSANUT 2006 as well as the proportion of population at risk of dietary inadequacy. MATERIAL AND METHODS: Data were analyzed from 7-day food-frequency questionnaires for 8442 male and female adolescents 12-19 years old. Energy and nutrient adequacies as percentage of the Estimated Average Requirement were calculated and comparisons were done by region, residence area, and socioeconomic status (SES. RESULTS: Energy intake was 1903 kcal [adequacy percentage (AP=75%] in boys, and 1 571 kcal (AP=79.2% in girls. Intake of most nutrients (zinc, iron, vitamin C and A was lower in subjects of low SES, living in the southern region and in rural areas. CONCLUSIONS: The rural area, the southern region, and the lower socioeconomic status show the lowest intakes and percentages of nutrient adequacy for both male and female adolescents, in particular vitamin A, folates, heme iron, zinc, and calcium.OBJETIVO: Describir la ingestión y porcentajes de adecuación de energía y nutrimentos en adolescentes mexicanos que participaron en la Encuesta Nacional de Salud y Nutrición 2006 (ENSANUT 2006. MATERIAL Y MÉTODOS: Se analizó la información de frecuencia de consumo de alimentos de 7 días de 8 442 adolescentes de uno u otro sexo, de entre 12 a 19 años de edad. Se calculó la adecuación de energía y nutrimentos utilizando el requerimiento promedio estimado y se hicieron comparaciones por región, área de residencia y estrato socioeconómico. RESULTADOS: La ingestión energética fue de 1 903 kcal [porcentaje de adecuación (PA=75%] en adolescentes del sexo masculino y de 1 571 kcal (PA=79.2% en las de sexo femenino. La ingestión de varios nutrimentos (zinc, hierro, vitaminas C y A fue más baja en los adolescentes de estrato socioeconómico bajo, en la región sur y en áreas rurales

  13. Functional imaging: monitoring heme oxygenase-1 gene expression in vivo

    Zhang, Weisheng; Reilly-Contag, Pamela; Stevenson, David K.; Contag, Christopher H.

    1999-07-01

    The regulation of genetic elements can be monitored in living animals using photoproteins as reporters. Heme oxygenase (HO) is the key catabolic enzyme in the heme degradation pathway. Here, HO expression serves as a model for in vivo functional imaging of transcriptional regulation of a clinically relevant gene. HO enzymatic activity is inhibited by heme analogs, metalloporphyrins, but many members of this family of compounds also activate transcription of the HO-1 promoter. The degree of transcriptional activation by twelve metalloporphyrins, differing at the central metal and porphyrin ring substituents, was evaluated in both NIH 3T3 stable lines and transgenic animals containing HO-1 promoter-luciferase gene fusions. In the correlative cell culture assays, the metalloporphyrins increased transcription form the full length HO promoter fusion to varying degrees, but none increased transcription from a truncated HO-1 promoter. These results suggested that one or both of the two distal enhancer elements located at -4 and -10 Kb upstream from transcriptional start are required for HO-1 induction by heme and its analogs. The full-length HO-1-luc fusion was then evaluated as a transgene in mice. It was possible to monitor the effects of the metalloporphyrins, SnMP and ZnPP, in living animals over time. This spatiotemporal analyses of gene expression in vivo implied that alterations in porphyrin ring substituents and the central metal may affect the extent of gene activation. These data further indicate that using photoprotein reporters, subtle differences in gene expression can be monitored in living animals.

  14. Nutrient intakes and iron and vitamin D status differ depending on main milk consumed by UK children aged 12-18 months - secondary analysis from the Diet and Nutrition Survey of Infants and Young Children.

    Sidnell, Anne; Pigat, Sandrine; Gibson, Sigrid; O'Connor, Rosalyn; Connolly, Aileen; Sterecka, Sylwia; Stephen, Alison M

    2016-01-01

    Nutrition in the second year is important as this is a period of rapid growth and development. Milk is a major food for young children and this analysis evaluated the impact of the type of milk consumed on nutrient intakes and nutritional status. Data from the Diet and Nutrition Survey of Infants and Young Children were used to investigate the intakes of key nutrients, and Fe and vitamin D status, of children aged 12-18 months, not breastfed, and consuming >400 g/d fortified milk (n 139) or >400 g/d of whole cows' milk (n 404). Blood samples from eligible children for measurement of Hb (n 113), serum ferritin and plasma 25-hydroxyvitamin D (25(OH)D) concentrations (n 105) were available for approximately 20 % of children. Unpaired Mann-Whitney tests were used to compare nutrient intakes and status between consumers of fortified and cows' milk. Mean daily total dietary intakes of Fe, Zn, vitamin A and vitamin D were significantly higher in the fortified milk group. Mean daily total dietary intakes of energy, protein, Ca, iodine, Na and saturated fat were significantly higher in the cows' milk group. Hb was not different between groups. The fortified milk group had significantly higher serum ferritin (P = 0·049) and plasma 25(OH)D (P = 0·014). This analysis demonstrates significantly different nutrient intakes and status between infants consuming >400 g/d fortified milk v. those consuming >400 g/d whole cows' milk. These results indicate that fortified milks can play a significant role in improving the quality of young children's diets in their second year of life.

  15. Stability enhancement of cytochrome c through heme deprotonation and mutations.

    Sonoyama, Takafumi; Hasegawa, Jun; Uchiyama, Susumu; Nakamura, Shota; Kobayashi, Yuji; Sambongi, Yoshihiro

    2009-01-01

    The chemical denaturation of Pseudomonas aeruginosa cytochrome c(551) variants was examined at pH 5.0 and 3.6. All variants were stabilized at both pHs compared with the wild-type. Remarkably, the variants carrying the F34Y and/or E43Y mutations were more stabilized than those having the F7A/V13M or V78I ones at pH 5.0 compared with at pH 3.6 by ~3.0-4.6 kJ/mol. Structural analyses predicted that the side chains of introduced Tyr-34 and Tyr-43 become hydrogen donors for the hydrogen bond formation with heme 17-propionate at pH 5.0, but less efficiently at pH 3.6, because the propionate is deprotonated at the higher pH. Our results provide an insight into a stabilization strategy for heme proteins involving variation of the heme electronic state and introduction of appropriate mutations.

  16. Coffee intake.

    Cornelis, Marilyn C

    2012-01-01

    Coffee is one of the most widely consumed beverages in the world. Its widespread popularity and availability has fostered public health concerns of the potential health consequences of regular coffee consumption. Epidemiological studies of coffee intake and certain health outcomes have been inconsistent. The precise component of coffee potentially contributing to development of these conditions also remains unclear. One step toward addressing the challenges in studying the impact coffee has on health is a better understanding of the factors contributing to its consumption and physiological effects. This chapter focuses on those factors that are genetically determined and briefly summarizes progress in applying this knowledge to epidemiological studies of coffee and disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Effects of Metalloporphyrins on Heme Oxygenase-1 Transcription: Correlative Cell Culture Assays Guide in Vivo Imaging

    Monica Hajdena-Dawson; Weisheng Zhang; Pamela R. Contag; Ronald J. Wong; Hendrik J. Vreman; David K. Stevenson; Christopher H. Contag

    2003-01-01

    Heme oxygenase (HO) is the rate-limiting step in the heme degradation pathway and is a potential target for the control, or prevention, of pathologic jaundice in neonates. Metalloporphyrins (Mps), a diverse set of synthetic derivatives of heme, can competitively inhibit the HO enzymes. However, certain Mps are phototoxic and some increase transcription of HO-1, the inducible HO isozyme. Therefore, effective development of this class of compounds as therapeutics for treating pathologic jaundic...

  18. Nitrite to nitric oxide interconversion by heme FeII complex assisted by [CuI(tmpa)]+

    Turias, Francesc; Solà , Miquel; Falivene, Laura; Cavallo, Luigi; Poater, Albert

    2015-01-01

    The present computational study complements the recent experimental efforts by Karlin and coworkers to describe the interconversion of nitrite to nitric oxide by means of an iron porphyrin complex together with a Cu chemical system, i.e., the iron(II) complex (F8TPP)FeII [F8TPP = tetrakis(2,6-difluorophenyl)porphyrinate(2−)] and a preformed copper(II)–nitrito complex [(tmpa)CuII(NO2)][B(C6F5)4] [tmpa = tris(2-pyridylmethyl)amine], being the latter an oxidized species of [(tmpa)CuI(MeCN)]+. By DFT calculations, we unravel how the reduction of nitrite to nitric oxide takes place through a μ-oxo heme-FeIII–O–CuII complex, following a mimetic path as in the cytochrome c oxidase. Mayer bond order (MBO) and energy decomposition analyses are used to analyze the bonding strength of such nitro derivatives to either copper or iron. © 2015 Springer Science+Business Media New York

  19. Nitrite to nitric oxide interconversion by heme FeII complex assisted by [CuI(tmpa)]+

    Turias, Francesc

    2015-09-09

    The present computational study complements the recent experimental efforts by Karlin and coworkers to describe the interconversion of nitrite to nitric oxide by means of an iron porphyrin complex together with a Cu chemical system, i.e., the iron(II) complex (F8TPP)FeII [F8TPP = tetrakis(2,6-difluorophenyl)porphyrinate(2−)] and a preformed copper(II)–nitrito complex [(tmpa)CuII(NO2)][B(C6F5)4] [tmpa = tris(2-pyridylmethyl)amine], being the latter an oxidized species of [(tmpa)CuI(MeCN)]+. By DFT calculations, we unravel how the reduction of nitrite to nitric oxide takes place through a μ-oxo heme-FeIII–O–CuII complex, following a mimetic path as in the cytochrome c oxidase. Mayer bond order (MBO) and energy decomposition analyses are used to analyze the bonding strength of such nitro derivatives to either copper or iron. © 2015 Springer Science+Business Media New York

  20. Cast irons

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  1. Adenoviral transfer of the heme oxygenase-1 gene protects striatal astrocytes from heme-mediated oxidative injury.

    Teng, Zhi-Ping; Chen, Jing; Chau, Lee-Young; Galunic, Nicholas; Regan, Raymond F

    2004-11-01

    Heme oxygenase-1 (HO-1) is induced in the CNS after hemorrhage, and may have an effect on injury to surrounding tissue. Hemin, the preferred substrate of HO, is a neurotoxin that is present in intracranial hematomas. In a prior study, we observed that HO inhibitors increased the vulnerability of cultured cortical astrocytes to heme-mediated oxidative injury. To investigate the effect of HO more specifically, we used an adenoviral vector encoding the human HO-1 gene to specifically increase HO-1 expression. Incubation with 100 MOI of the HO-1 adenovirus (Adv-HHO-1) for 24 h increased both HO-1 protein and HO activity; a control adenovirus lacking the HO-1 gene had no effect. Using a DNA probe that was specific for human HO-1, 80.5 +/- 7.2% of astrocytes were observed to be infected by in situ hybridization. The cell death produced by 30-60 microM hemin was significantly reduced by pretreatment with 100 MOI Adv-HHO-1, as assessed by LDH release, propidium iodide exclusion, and MTT reduction assay. The threefold increase in cell protein oxidation produced by hemin was also attenuated in cultures pretreated with Adv-HHO-1. These results support the hypothesis that HO-1 protects astrocytes from heme-mediated oxidative injury. Specifically increasing astrocytic HO-1 by gene transfer may have a beneficial effect on hemorrhagic CNS injury.

  2. Out of plane distortions of the heme b of Escherichia coli succinate dehydrogenase.

    Quang M Tran

    Full Text Available The role of the heme b in Escherichia coli succinate dehydrogenase is highly ambiguous and its role in catalysis is questionable. To examine whether heme reduction is an essential step of the catalytic mechanism, we generated a series of site-directed mutations around the heme binding pocket, creating a library of variants with a stepwise decrease in the midpoint potential of the heme from the wild-type value of +20 mV down to -80 mV. This difference in midpoint potential is enough to alter the reactivity of the heme towards succinate and thus its redox state under turnover conditions. Our results show both the steady state succinate oxidase and fumarate reductase catalytic activity of the enzyme are not a function of the redox potential of the heme. As well, lower heme potential did not cause an increase in the rate of superoxide production both in vitro and in vivo. The electron paramagnetic resonance (EPR spectrum of the heme in the wild-type enzyme is a combination of two distinct signals. We link EPR spectra to structure, showing that one of the signals likely arises from an out-of-plane distortion of the heme, a saddled conformation, while the second signal originates from a more planar orientation of the porphyrin ring.

  3. In vivo and in vitro olefin cyclopropanation catalyzed by heme enzymes

    Coelho, Pedro S; Brustad, Eric M; Arnold, Frances H; Wang, Zhan; Lewis, Jared C

    2015-03-31

    The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cells expressing the heme enzymes are also provided by the present invention.

  4. [Dinitrosyl iron complexes are endogenous signaling agents in animal and human cells and tissues (a hypothesis)].

    Vanin, A F

    2004-01-01

    The hypothesis was advanced that dinitrosyl iron complexes generated in animal and human cells and tissues producing nitric oxide can function as endogenous universal regulators of biochemical and physiological processes. This function is realized by the ability of dinitrosyl iron complexes to act as donors of free nitric oxide molecules interacting with the heme groups of proteins, nitrosonium ions, or Fe+(NO+)2 interacting with the thiol groups of proteins. The effect of dinitrosyl iron complexes on the activity of some enzymes and the expression of the genome at the translation and transcription levels was considered.

  5. Iron-Deficiency Anemia

    Full Text Available ... risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, ... iron-fortified foods that have iron added. Vegetarian diets can provide enough iron if you choose nonmeat ...

  6. Nutrient intakes of US infants, toddlers, and preschoolers meet or exceed dietary reference intakes.

    Butte, Nancy F; Fox, Mary Kay; Briefel, Ronette R; Siega-Riz, Anna Maria; Dwyer, Johanna T; Deming, Denise M; Reidy, Kathleen C

    2010-12-01

    To assess the usual nutrient intakes of 3,273 US infants, toddlers, and preschoolers, aged 0 to 47 months, surveyed in the Feeding Infants and Toddlers Study (FITS) 2008; and to compare data on the usual nutrient intakes for the two waves of FITS conducted in 2002 and 2008. The FITS 2008 is a cross-sectional survey of a national random sample of US children from birth through age 47 months. Usual nutrient intakes derived from foods, beverages, and supplements were ascertained using a telephone-administered, multiple-pass 24-hour dietary recall. Infants aged birth to 5 months (n=382) and 6 to 11 months (n=505), toddlers aged 12 to 23 months (n=925), and preschoolers aged 24 to 47 months (n=1,461) were surveyed. All primary caregivers completed one 24-hour dietary recall and a random subsample (n=701) completed a second 24-hour dietary recall. The personal computer version of the Software for Intake Distribution Estimation was used to estimate the 10th, 25th, 50th, 75th, and 90th percentiles, as well as the proportions below and above cutoff values defined by the Dietary Reference Intakes or the 2005 Dietary Guidelines for Americans. Usual nutrient intakes met or exceeded energy and protein requirements with minimal risk of vitamin and mineral deficiencies. The usual intakes of antioxidants, B vitamins, bone-related nutrients, and other micronutrients were adequate relative to the Adequate Intakes or Estimated Average Requirements, except for iron and zinc in a small subset of older infants, and vitamin E and potassium in toddlers and preschoolers. Intakes of synthetic folate, preformed vitamin A, zinc, and sodium exceeded Tolerable Upper Intake Level in a significant proportion of toddlers and preschoolers. Macronutrient distributions were within acceptable macronutrient distribution ranges, except for dietary fat, in some toddlers and preschoolers. Dietary fiber was low in the vast majority of toddlers and preschoolers, and saturated fat intakes exceeded

  7. PfsR is a key regulator of iron homeostasis in Synechocystis PCC 6803.

    Dan Cheng

    Full Text Available Iron is an essential cofactor in numerous cellular processes. The iron deficiency in the oceans affects the primary productivity of phytoplankton including cyanobacteria. In this study, we examined the function of PfsR, a TetR family transcriptional regulator, in iron homeostasis of the cyanobacterium Synechocystis PCC 6803. Compared with the wild type, the pfsR deletion mutant displayed stronger tolerance to iron limitation and accumulated significantly more chlorophyll a, carotenoid, and phycocyanin under iron-limiting conditions. The mutant also maintained more photosystem I and photosystem II complexes than the wild type after iron deprivation. In addition, the activities of photosystem I and photosystem II were much higher in pfsR deletion mutant than in wild-type cells under iron-limiting conditions. The transcripts of pfsR were enhanced by iron limitation and inactivation of the gene affected pronouncedly expression of fut genes (encoding a ferric iron transporter, feoB (encoding a ferrous iron transporter, bfr genes (encoding bacterioferritins, ho genes (encoding heme oxygenases, isiA (encoding a chlorophyll-binding protein, and furA (encoding a ferric uptake regulator. The iron quota in pfsR deletion mutant cells was higher than in wild-type cells both before and after exposure to iron limitation. Electrophoretic mobility shift assays showed that PfsR bound to its own promoter and thereby auto-regulated its own expression. These data suggest that PfsR is a critical regulator of iron homeostasis.

  8. Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes.

    Neritza Campo Beltrán

    Full Text Available Iron plays a crucial role in metabolism as a key component of catalytic and redox cofactors, such as heme or iron-sulfur clusters in enzymes and electron-transporting or regulatory proteins. Limitation of iron availability by the host is also one of the mechanisms involved in immunity. Pathogens must regulate their protein expression according to the iron concentration in their environment and optimize their metabolic pathways in cases of limitation through the availability of respective cofactors. Trichomonas vaginalis, a sexually transmitted pathogen of humans, requires high iron levels for optimal growth. It is an anaerobe that possesses hydrogenosomes, mitochondrion-related organelles that harbor pathways of energy metabolism and iron-sulfur cluster assembly. We analyzed the proteomes of hydrogenosomes obtained from cells cultivated under iron-rich and iron-deficient conditions employing two-dimensional peptide separation combining IEF and nano-HPLC with quantitative MALDI-MS/MS. We identified 179 proteins, of which 58 were differentially expressed. Iron deficiency led to the upregulation of proteins involved in iron-sulfur cluster assembly and the downregulation of enzymes involved in carbohydrate metabolism. Interestingly, iron affected the expression of only some of multiple protein paralogues, whereas the expression of others was iron independent. This finding indicates a stringent regulation of differentially expressed multiple gene copies in response to changes in the availability of exogenous iron.

  9. Situation of Iron Deficiency and Its Management Prioritizing Dietary Intervention in Nepal

    Adhikari, BK; Koirala, U; Lama, STA

    2012-01-01

    the extent of iron deficiency anemia and intake of dietary iron among the general population in Nepal. Materials and methods Published research articles, books, bulletins, and online materials regarding iron deficiency were studied in both national and international scenarios. Results Nearly 46 percent...... of children (6–59 months) and 35 percent of women (15–49 years) were still suffering from anemia though the trend has been decreasing for the last 15 years. Mostly, young children (6–23 months) and pregnant women were the victims due to their high iron requirements and lower intake of dietary iron. The most...... common risk factors related to iron deficiency anemia (IDA) found in different studies were low intake of dietary iron, vitamin A deficiency, hookworm infection, malaria, heavy menstrual blood loss, and multiparity. Iron deficiency situation in the Nepalese population is triggered by Illiteracy, lack...

  10. Photochemical organic oxidations and dechlorinations with a mu-oxo bridged heme/non-heme diiron complex.

    Wasser, Ian M; Fry, H Christopher; Hoertz, Paul G; Meyer, Gerald J; Karlin, Kenneth D

    2004-12-27

    Steady state and laser flash photolysis studies of the heme/non-heme mu-oxo diiron complex [((6)L)Fe(III)-O-Fe(III)-Cl](+) (1) have been undertaken. The anaerobic photolysis of benzene solutions of 1 did not result in the buildup of any photoproduct. However, the addition of excess triphenylphosphine resulted in the quantitative photoreduction of 1 to [((6)L)Fe(II)...Fe(II)-Cl](+) (2), with concomitant production by oxo-transfer of 1 equiv of triphenylphosphine oxide. Under aerobic conditions and excess triphenylphosphine, the reaction produces multiple turnovers (approximately 28) before the diiron complex is degraded. The anaerobic photolysis of tetrahydrofuran (THF) or toluene solutions of 1 likewise results in the buildup of 2. The oxidation products from these reactions included gamma-butyrolactone (approximately 15%) for the reaction in THF and benzaldehyde (approximately 23%) from the reaction in toluene. In either case, the O-atom which is incorporated into the carbonyl product is derived from dioxygen present under workup or under aerobic photolysis conditions. Transient absorption measurements of low-temperature THF solutions of 1 revealed the presence of an (P)Fe(II)-like [P = tetraaryl porphyrinate dianion] species suggesting that the reactive species is a formal (heme)Fe(II)/Fe(IV)=O(non-heme) pair. The non-heme Fe(IV)=O is thus most likely responsible for C-H bond cleavage and subsequent radical chemistry. The photolysis of 1 in chlorobenzene or 1,2-dichlorobenzene resulted in C-Cl cleavage reactions and the formation of [[((6)L)Fe(III)-Cl...Fe(III)-Cl](2)O](2+) (3), with chloride ligands that are derived from solvent dehalogenation chemistry. The resulting organic products are biphenyl trichlorides or biphenyl monochlorides, derived from dichlorobenzene and chlorobenzene, respectively. Similarly, product 3 is obtained by the photolysis of benzene-benzyl chloride solutions of 1; the organic product is benzaldehyde (approximately 70%). A brief

  11. O2-mediated oxidation of ferrous nitrosylated human serum heme-albumin is limited by nitrogen monoxide dissociation

    Ascenzi, Paolo; Gullotta, Francesca; Gioia, Magda; Coletta, Massimo; Fasano, Mauro

    2011-01-01

    Research highlights: → Human serum heme-albumin displays globin-like properties. → O 2 -mediated oxidation of ferrous nitrosylated human serum heme-albumin. → Allosteric modulation of human serum heme-albumin reactivity. → Rifampicin is an allosteric effector of human serum heme-albumin. → Human serum heme-albumin is a ROS and NOS scavenger. -- Abstract: Human serum heme-albumin (HSA-heme-Fe) displays globin-like properties. Here, kinetics of O 2 -mediated oxidation of ferrous nitrosylated HSA-heme-Fe (HSA-heme-Fe(II)-NO) is reported. Values of the first-order rate constants for O 2 -mediated oxidation of HSA-heme-Fe(II)-NO (i.e., for ferric HSA-heme-Fe formation) and for NO dissociation from HSA-heme-Fe(II)-NO (i.e., for NO replacement by CO) are k = 9.8 x 10 -5 and 8.3 x 10 -4 s -1 , and h = 1.3 x 10 -4 and 8.5 x 10 -4 s -1 , in the absence and presence of rifampicin, respectively, at pH = 7.0 and T = 20.0 o C. The coincidence of values of k and h indicates that NO dissociation represents the rate limiting step of O 2 -mediated oxidation of HSA-heme-Fe(II)-NO. Mixing HSA-heme-Fe(II)-NO with O 2 does not lead to the formation of the transient adduct(s), but leads to the final ferric HSA-heme-Fe derivative. These results reflect the fast O 2 -mediated oxidation of ferrous HSA-heme-Fe and highlight the role of drugs in modulating allosterically the heme-Fe-atom reactivity.

  12. Tea fungus fermentation on a substrate with iron(ii-ions

    Malbaša Radomir V.

    2002-01-01

    Full Text Available Iron is essential element for human metabolism and it is a constituent of both heme- containing and nonheme proteins. Its deficiency can cause serious diseases, i.e. iron-deficiency anemia, with some fatal consequences. Tea fungus beverage has high nutritional value and some pharmaceutical effects. It is widely consumed allover the world and its benefits were proved a number of times. The aim of this paper was to investigate tea fungus fermentation on a substrate containing iron(II-ions and the possibility of obtaining a beverage enriched with iron. We monitored pH, iron content and also the production of L-ascorbic acid, which is very important for iron absorption in humans.

  13. Effect of dietary iron loading on recognition memory in growing rats.

    Murui Han

    Full Text Available While nutritional and neurobehavioral problems are associated with both iron deficiency during growth and overload in the elderly, the effect of iron loading in growing ages on neurobehavioral performance has not been fully explored. To characterize the role of dietary iron loading in memory function in the young, weanling rats were fed iron-loading diet (10,000 mg iron/kg diet or iron-adequate control diet (50 mg/kg for one month, during which a battery of behavioral tests were conducted. Iron-loaded rats displayed elevated non-heme iron levels in serum and liver, indicating a condition of systemic iron overload. In the brain, non-heme iron was elevated in the prefrontal cortex of iron-loaded rats compared with controls, whereas there was no difference in iron content in other brain regions between the two diet groups. While iron loading did not alter motor coordination or anxiety-like behavior, iron-loaded rats exhibited a better recognition memory, as represented by an increased novel object recognition index (22% increase from the reference value than control rats (12% increase; P=0.047. Western blot analysis showed an up-regulation of dopamine receptor 1 in the prefrontal cortex from iron-loaded rats (142% increase; P=0.002. Furthermore, levels of glutamate receptors (both NMDA and AMPA and nicotinic acetylcholine receptor (nAChR were significantly elevated in the prefrontal cortex of iron-loaded rats (62% increase in NR1; 70% increase in Glu1A; 115% increase in nAChR. Dietary iron loading also increased the expression of NMDA receptors and nAChR in the hippocampus. These results support the idea that iron is essential for learning and memory and further reveal that iron supplementation during developmental and rapidly growing periods of life improves memory performance. Our investigation also demonstrates that both cholinergic and glutamatergic neurotransmission pathways are regulated by dietary iron and provides a molecular basis for the

  14. Potent heme-degrading action of antimony and antimony-containing parasiticidal agents.

    Drummond, G S; Kappas, A

    1981-02-01

    The ability of antimony and antimony-containing parasiticidal agents to enhance the rate of heme degradation in liver and kidney was investigated. Trivalent antimony was shown to be an extremely potent inducer of heme oxygenase, the initial and rate-limiting enzyme in heme degradation, in both organs, whereas the pentavalent form was a weak inducer of this enzyme. The ability of antimony to induce heme oxygenase was dose-dependent, independent of the salt used, and not a result of a direct activation of the enzyme in vitro. Concomitant with heme oxygenase induction by antimony, microsomal heme and cytochrome P-450 contents decreased, the cyto-chrome P-450-dependent mixed function oxidase system was impaired, and delta-ami-nolevulinate synthase (ALAS), the rate-limiting enzyme of heme synthesis, underwent the sequential changes-initial inhibition followed by rebound induction-usually associated with the administration of transition elements such as cobalt. Antimony induction of heme oxygenase however, unlike the enzyme induction elicited by cobalt, was not prevented either by cysteine administered orally or as a cysteine metal complex, or by simultaneous zinc administration. Desferoxamine also did not block heme oxygenase induction by antimony, but this chelator did prevent the rebound increase in ALAS activity associated with antimony or cobalt treatment. Antimony-containing parasiticidal drugs were also potent inducers of heme oxygenase in liver and kidney. The heme degradative action of these drugs may be related in part to the jaundice commonly associated with the prolonged therapeutic use of these agents. The heme-oxygenase-inducing action of antimony-containing parasiticidal drugs is a newly defined biological property of these compounds. The relation between the parasiticidal and the heme-oxygenase-inducing actions of such drugs is unknown. However, certain parasites contain hemoproteins or require heme compounds during their life cycle. It may therefore be

  15. Food intake in patients on hemodialysis

    Inaiana Marques Filizola Vaz

    2014-12-01

    Full Text Available Objective: To evaluate the intake of energy and nutrients by individuals on hemodialysis, following especific recommendations for this population and according to Food Guide for the Brazilian Population. Methods: A cross-sectional study, 118 adult patients, considered stable from, ten dialysis centers in Goiânia, Goiás. Dietary intake was estimated by six 24-hour recalls, and classified as adequate or inadequate, according to specific recommendations for individuals undergoing dialysis and that recommended for a healthy diet. A descriptive analysis was performed. Results: Average dietary intake of 2022.40 ± 283.70 kcal/day; 31.18 kcal/kg/day; 55.03 ± 4.20% carbohydrate; 30.23 ± 3.71% lipid, 1.18 ± 0.23 g protein/kg/day. Important prevalences of inadequacy were observed for the intake of calories (39.0%, protein (39.0% and other nutrients such as retinol (94.9%, saturated fat (87.3%, cholesterol (61,9%, iron (61.0%, potassium (60.2% and zinc (45.0%. Patients had a low intake of fruit food group (1.22 ± 0.89 servings and vegetables (1.76 ± 1.01 servings, dairy products (0.57 ± 0.43 servings and high intake of food group of oils and fats (3.45 ± 0.95 servings, sugars and sweets (1.55 ± 0.77 servings. Conclusion: Observed food consumption imbalance, characterized by excess of oils and fats, especially saturated oils and cholesterol, sugars and sweets, parallel to low intake of fruits and vegetables and dairy products. A considerable percentage of patients did not intake the minimum recommended of calories, protein, retinol, iron, zinc and potassium.

  16. Chemical proteomics approach reveals the direct targets and the heme-dependent activation mechanism of artemisinin in Plasmodium falciparum using an activity-based artemisinin probe

    Jigang Wang

    2016-04-01

    Full Text Available Artemisinin and its analogues are currently the most effective anti-malarial drugs. The activation of artemisinin requires the cleavage of the endoperoxide bridge in the presence of iron sources. Once activated, artemisinins attack macromolecules through alkylation and propagate a series of damages, leading to parasite death. Even though several parasite proteins have been reported as artemisinin targets, the exact mechanism of action (MOA of artemisinin is still controversial and its high potency and specificity against the malaria parasite could not be fully accounted for. Recently, we have developed an unbiased chemical proteomics approach to directly probe the MOA of artemisinin in P. falciparum. We synthesized an activity-based artemisinin probe with an alkyne tag, which can be coupled with biotin through click chemistry. This enabled selective purification and identification of 124 protein targets of artemisinin. Many of these targets are critical for the parasite survival. In vitro assays confirmed the specific artemisinin binding and inhibition of selected targets. We thus postulated that artemisinin kills the parasite through disrupting its biochemical landscape. In addition, we showed that artemisinin activation requires heme, rather than free ferrous iron, by monitoring the extent of protein binding using a fluorescent dye coupled with the alkyne-tagged artemisinin. The extremely high level of heme released from the hemoglobin digestion by the parasite makes artemisinin exceptionally potent against late-stage parasites (trophozoite and schizont stages compared to parasites at early ring stage, which have low level of heme, possibly derived from endogenous synthesis. Such a unique activation mechanism also confers artemisinin with extremely high specificity against the parasites, while the healthy red blood cells are unaffected. Our results provide a sound explanation of the MOA of artemisinin and its specificity against malaria

  17. Cytochrome P450 regulation: the interplay between its heme and apoprotein moieties in synthesis, assembly, repair, and disposal.

    Correia, Maria Almira; Sinclair, Peter R; De Matteis, Francesco

    2011-02-01

    Heme is vital to our aerobic universe. Heme cellular content is finely tuned through an exquisite control of synthesis and degradation. Heme deficiency is deleterious to cells, whereas excess heme is toxic. Most of the cellular heme serves as the prosthetic moiety of functionally diverse hemoproteins, including cytochromes P450 (P450s). In the liver, P450s are its major consumers, with >50% of hepatic heme committed to their synthesis. Prosthetic heme is the sine qua non of P450 catalytic biotransformation of both endo- and xenobiotics. This well-recognized functional role notwithstanding, heme also regulates P450 protein synthesis, assembly, repair, and disposal. These less well-appreciated aspects are reviewed herein.

  18. IRON DOME

    6 Israeli Navy 'First Arm of the Sea: The Successful Interception of the Iron Dome Rocket .... sky to destroy them whilst in flight to minimise civilian casualties. ..... Including The Moon and Celestial Bodies.53 Demeyere further emphasises the.

  19. Iron overdose

    ... tracing) X-ray to detect and track iron tablets through the stomach and intestines Treatment may include: ... BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016: ...

  20. Pilot-scale tests of HEME and HEPA dissolution process

    Qureshi, Z.H.; Strege, D.K.

    1994-06-01

    A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME`s) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsed with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump.

  1. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.

    Sunamura, Makoto; Duda, Dan G; Ghattas, Maivel H; Lozonschi, Lucian; Motoi, Fuyuhiko; Yamauchi, Jun-Ichiro; Matsuno, Seiki; Shibahara, Shigeki; Abraham, Nader G

    2003-01-01

    Angiogenesis is necessary for the continued growth of solid tumors, invasion and metastasis. Several studies clearly showed that heme oxygenase-1 (HO-1) plays an important role in angiogenesis. In this study, we used the vital microscope system, transparent skinfold model, lung colonization model and transduced pancreatic cancer cell line (Panc-1)/human heme oxygenase-1 (hHO-1) cells, to precisely analyze, for the first time, the effect of hHO-1 gene on tumor growth, angiogenesis and metastasis. Our results revealed that HO-1 stimulates angiogenesis of pancreatic carcinoma in severe combined immune deficient mice. Overexpression of human hHO-1 after its retroviral transfer into Panc-1 cells did not interfere with tumor growth in vitro. While in vivo the development of tumors was accelerated upon transfection with hHO-1. On the other hand, inhibition of heme oxygenase (HO) activity by stannous mesoporphyrin was able transiently to delay tumor growth in a dose dependent manner. Tumor angiogenesis was markedly increased in Panc-1/hHO-1 compared to mock transfected and wild type. Lectin staining and Ki-67 proliferation index confirmed these results. In addition hHO-1 stimulated in vitro tumor angiogenesis and increased endothelial cell survival. In a lung colonization model, overexpression of hHO-1 increased the occurrence of metastasis, while inhibition of HO activity by stannous mesoporphyrin completely inhibited the occurrence of metastasis. In conclusion, overexpression of HO-1 genes potentiates pancreatic cancer aggressiveness, by increasing tumor growth, angiogenesis and metastasis and that the inhibition of the HO system may be of useful benefit for the future treatment of the disease.

  2. Heme metabolism in stress regulation and protein production: from Cinderella to a key player

    Martinez Ruiz, José Luis; Petranovic, D.; Nielsen, Jens

    2016-01-01

    Heme biosynthesis is a highly conserved pathway which is present in all kingdoms, from Archaea to higher organisms such as plants and mammals. The heme molecule acts as a prosthetic group for different proteins and enzymes involved in energy metabolism and reactions involved in electron transfer....

  3. Electrochemical and spectroscopic investigations of immobilized de novo designed heme proteins on metal electrodes

    Albrecht, Tim; Li, WW; Ulstrup, Jens

    2005-01-01

    On the basis of rational design principles, template-assisted four-helix-bundle proteins that include two histidines for coordinative binding of a heme were synthesized. Spectroscopic and thermodynamic characterization of the proteins in solution reveals the expected bis-histidine coordinated heme...

  4. Unsaturated Glycerophospholipids Mediate Heme Crystallization: Biological Implications for Hemozoin Formation in the Kissing Bug Rhodnius prolixus

    Stiebler, R.; Majerowicz, David; Knudsen, Jens

    2014-01-01

    Hemozoin (Hz) is a heme crystal produced by some blood-feeding organisms, as an efficient way to detoxify heme derived from hemoglobin digestion. In the triatomine insect Rhodnius prolixus, Hz is essentially produced by midgut extracellular phospholipid membranes known as perimicrovillar membrane...

  5. The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging

    Thomsen, Jens Haugbølle; Etzerodt, Anders; Svendsen, Pia

    2013-01-01

    The haptoglobin- (Hp-) CD163-heme oxygenase-1 (HO-1) pathway is an efficient captor-receptor-enzyme system to circumvent the hemoglobin (Hb)/heme-induced toxicity during physiological and pathological hemolyses. In this pathway, Hb tightly binds to Hp leading to CD163-mediated uptake of the complex...

  6. Directing a Non-Heme Iron(III)-Hydroperoxide Species on a Trifurcated Reactivity Pathway

    Wegeberg, Christina; Lauritsen, Frants R.; Frandsen, Cathrine

    2018-01-01

    The reactivity of [FeIII(tpena)]2+ (tpena=N,N,N'-tris(2-pyridylmethyl)ethylenediamine-N'-acetate) as a catalyst for oxidation reactions depends on its ratio to the terminal oxidant H2O2 and presence or absence of sacrificial substrates. The outcome can be switched between: 1)catalysed H2O2...

  7. Spray nozzle pattern test for the DWPF HEME Task QA Plan

    Lee, L.

    1991-01-01

    The DWPF melter off-gas systems have two High Efficiency Mist Eliminators (HEME) upstream of the High-Efficiency Particulates Air filters (HEPA) to remove fine mists and particulates from the off-gas. To have an acceptable filter life and an efficient operation, an air atomized water is spray on the HEME. The water spray keeps the HEME wet and dissolves the soluble particulates and enhances and HEME efficiency. DWPF Technical asked SRL to determine the conditions which will give satisfactory atomization and distribution of water so that the HEME will operate efficiently. The purpose of this document is to identify, QA controls to be applied in the pursuit of this task (WSRC-RP-91-1151)

  8. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    Parashar, Abhinav [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Venkatachalam, Avanthika [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India); Gideon, Daniel Andrew [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Manoj, Kelath Murali, E-mail: satyamjayatu@yahoo.com [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India)

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  9. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species

    Goodarzi, M.; Moosavi-Movahedi, A. A.; Habibi-Rezaei, M.; Shourian, M.; Ghourchian, H.; Ahmad, F.; Farhadi, M.; Saboury, A. A.; Sheibani, N.

    2014-09-01

    Protein glycation is a cascade of nonenzymatic reactions between reducing sugars and amino groups of proteins. It is referred to as fructation when the reducing monosaccharide is fructose. Some potential mechanisms have been suggested for the generation of reactive oxygen species (ROS) by protein glycation reactions in the presence of glucose. In this state, glucose autoxidation, ketoamine, and oxidative advance glycation end products (AGEs) formation are considered as major sources of ROS and perhaps heme degradation during hemoglobin glycation. However, whether fructose mediated glycation produces ROS and heme degradation is unknown. Here we report that ROS (H2O2) production occurred during hemoglobin fructation in vitro using chemiluminescence methods. The enhanced heme exposure and degradation were determined using UV-Vis and fluorescence spectrophotometry. Following accumulation of ROS, heme degradation products were accumulated reaching a plateau along with the detected ROS. Thus, fructose may make a significant contribution to the production of ROS, glycation of proteins, and heme degradation during diabetes.

  10. Effects of iron and multimicronutrient supplementation on geophagy

    Nchito, Mbiko; Geissler, P Wenzel; Mubila, Likezo

    2004-01-01

    Geophagy has been associated with iron deficiency and anaemia, but no causal relationship has been established. To clarify this, we conducted a two-by-two factorial randomised, controlled trial on the effect of iron and multimicronutrient supplementation on geophagy in Zambian schoolchildren...... was prevalent and associated with iron deficiency, but iron supplementation had no effects on geophageous behaviour. Geophagy could be a copied behaviour and the association between geophagy and iron deficiency due to impaired iron absorption following earth eating....... followed-up. In bivariate analysis, non-iron supplementation reduced the prevalence of geophagy more than iron supplementation did, but this was not confirmed in the multiple logistic regression analysis. Multimicronutrients had no effect on either geophagy prevalence or earth intake. Geophagy...

  11. Heme Attenuation Ameliorates Irritant Gas Inhalation-Induced Acute Lung Injury

    Aggarwal, Saurabh; Lam, Adam; Bolisetty, Subhashini; Carlisle, Matthew A.; Traylor, Amie; Agarwal, Anupam

    2016-01-01

    Abstract Aims: Exposure to irritant gases, such as bromine (Br2), poses an environmental and occupational hazard that results in severe lung and systemic injury. However, the mechanism(s) of Br2 toxicity and the therapeutic responses required to mitigate lung damage are not known. Previously, it was demonstrated that Br2 upregulates the heme degrading enzyme, heme oxygenase-1 (HO-1). Since heme is a major inducer of HO-1, we determined whether an increase in heme and heme-dependent oxidative injury underlies the pathogenesis of Br2 toxicity. Results: C57BL/6 mice were exposed to Br2 gas (600 ppm, 30 min) and returned to room air. Thirty minutes postexposure, mice were injected intraperitoneally with a single dose of the heme scavenging protein, hemopexin (Hx) (3 μg/gm body weight), or saline. Twenty-four hours postexposure, saline-treated mice had elevated total heme in bronchoalveolar lavage fluid (BALF) and plasma and acute lung injury (ALI) culminating in 80% mortality after 10 days. Hx treatment significantly lowered heme, decreased evidence of ALI (lower protein and inflammatory cells in BALF, lower lung wet-to-dry weight ratios, and decreased airway hyperreactivity to methacholine), and reduced mortality. In addition, Br2 caused more severe ALI and mortality in mice with HO-1 gene deletion (HO-1−/−) compared to wild-type controls, while transgenic mice overexpressing the human HO-1 gene (hHO-1) showed significant protection. Innovation: This is the first study delineating the role of heme in ALI caused by Br2. Conclusion: The data suggest that attenuating heme may prove to be a useful adjuvant therapy to treat patients with ALI. Antioxid. Redox Signal. 24, 99–112. PMID:26376667

  12. Heme Attenuation Ameliorates Irritant Gas Inhalation-Induced Acute Lung Injury.

    Aggarwal, Saurabh; Lam, Adam; Bolisetty, Subhashini; Carlisle, Matthew A; Traylor, Amie; Agarwal, Anupam; Matalon, Sadis

    2016-01-10

    Exposure to irritant gases, such as bromine (Br2), poses an environmental and occupational hazard that results in severe lung and systemic injury. However, the mechanism(s) of Br2 toxicity and the therapeutic responses required to mitigate lung damage are not known. Previously, it was demonstrated that Br2 upregulates the heme degrading enzyme, heme oxygenase-1 (HO-1). Since heme is a major inducer of HO-1, we determined whether an increase in heme and heme-dependent oxidative injury underlies the pathogenesis of Br2 toxicity. C57BL/6 mice were exposed to Br2 gas (600 ppm, 30 min) and returned to room air. Thirty minutes postexposure, mice were injected intraperitoneally with a single dose of the heme scavenging protein, hemopexin (Hx) (3 μg/gm body weight), or saline. Twenty-four hours postexposure, saline-treated mice had elevated total heme in bronchoalveolar lavage fluid (BALF) and plasma and acute lung injury (ALI) culminating in 80% mortality after 10 days. Hx treatment significantly lowered heme, decreased evidence of ALI (lower protein and inflammatory cells in BALF, lower lung wet-to-dry weight ratios, and decreased airway hyperreactivity to methacholine), and reduced mortality. In addition, Br2 caused more severe ALI and mortality in mice with HO-1 gene deletion (HO-1-/-) compared to wild-type controls, while transgenic mice overexpressing the human HO-1 gene (hHO-1) showed significant protection. This is the first study delineating the role of heme in ALI caused by Br2. The data suggest that attenuating heme may prove to be a useful adjuvant therapy to treat patients with ALI.

  13. Enhanced Heme Function and Mitochondrial Respiration Promote the Progression of Lung Cancer Cells

    Alam, Md Maksudul; Shah, Ajit; Cao, Thai M.; Sullivan, Laura A.; Brekken, Rolf; Zhang, Li

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer

  14. Heme and menaquinone induced electron transport in lactic acid bacteria

    Santos Filipe

    2009-05-01

    Full Text Available Abstract Background For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Results Heme- (and menaquinone stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. Conclusion We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  15. The cytoprotective enzyme heme oxygenase-1 suppresses Ebola virus replication.

    Hill-Batorski, Lindsay; Halfmann, Peter; Neumann, Gabriele; Kawaoka, Yoshihiro

    2013-12-01

    Ebola virus (EBOV) is the causative agent of a severe hemorrhagic fever in humans with reported case fatality rates as high as 90%. There are currently no licensed vaccines or antiviral therapeutics to combat EBOV infections. Heme oxygenase-1 (HO-1), an enzyme that catalyzes the rate-limiting step in heme degradation, has antioxidative properties and protects cells from various stresses. Activated HO-1 was recently shown to have antiviral activity, potently inhibiting the replication of viruses such as hepatitis C virus and human immunodeficiency virus. However, the effect of HO-1 activation on EBOV replication remains unknown. To determine whether the upregulation of HO-1 attenuates EBOV replication, we treated cells with cobalt protoporphyrin (CoPP), a selective HO-1 inducer, and assessed its effects on EBOV replication. We found that CoPP treatment, pre- and postinfection, significantly suppressed EBOV replication in a manner dependent upon HO-1 upregulation and activity. In addition, stable overexpression of HO-1 significantly attenuated EBOV growth. Although the exact mechanism behind the antiviral properties of HO-1 remains to be elucidated, our data show that HO-1 upregulation does not attenuate EBOV entry or budding but specifically targets EBOV transcription/replication. Therefore, modulation of the cellular enzyme HO-1 may represent a novel therapeutic strategy against EBOV infection.

  16. Heme and menaquinone induced electron transport in lactic acid bacteria.

    Brooijmans, Rob; Smit, Bart; Santos, Filipe; van Riel, Jan; de Vos, Willem M; Hugenholtz, Jeroen

    2009-05-29

    For some lactic acid bacteria higher biomass production as a result of aerobic respiration has been reported upon supplementation with heme and menaquinone. In this report, we have studied a large number of species among lactic acid bacteria for the existence of this trait. Heme- (and menaquinone) stimulated aerobic growth was observed for several species and genera of lactic acid bacteria. These include Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacilllus brevis, Lactobacillus paralimentarius, Streptococcus entericus and Lactococcus garviae. The increased biomass production without further acidification, which are respiration associated traits, are suitable for high-throughput screening as demonstrated by the screening of 8000 Lactococcus lactis insertion mutants. Respiration-negative insertion-mutants were found with noxA, bd-type cytochrome and menaquinol biosynthesis gene-disruptions. Phenotypic screening and in silico genome analysis suggest that respiration can be considered characteristic for certain species. We propose that the cyd-genes were present in the common ancestor of lactic acid bacteria, and that multiple gene-loss events best explains the observed distribution of these genes among the species.

  17. Energy transfer at the active sites of heme proteins

    Dlott, D.D.; Hill, J.R.

    1995-01-01

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes

  18. Heme oxygenase-1 comes back to endoplasmic reticulum

    Kim, Hong Pyo [School of Biological Sciences, Ulsan University (Korea, Republic of); Pae, Hyun-Ock [Department of Immunology, Wonkwang University School of Medicine (Korea, Republic of); Back, Sung Hun; Chung, Su Wol [School of Biological Sciences, Ulsan University (Korea, Republic of); Woo, Je Moon [Department of Opthalmology, Ulasn University Hospital (Korea, Republic of); Son, Yong [Department of Anesthesiology and Pain Medicine, Wonkwang University School of Medicine (Korea, Republic of); Chung, Hun-Taeg, E-mail: chung@ulsan.ac.kr [School of Biological Sciences, Ulsan University (Korea, Republic of)

    2011-01-07

    Research highlights: {yields} Although multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. {yields} HO-1 expression at ER is induced by a diverse set of conditions that cause ER stressors. {yields} CO may induce HO-1 expression in human ECs by activating Nrf2 through PERK phosphorylation in a positive-feedback manner. {yields} ER-residing HO-1 and its cytoprotective activity against ER stress is discussed. -- Abstract: Originally identified as a rate-limiting enzyme for heme catabolism, heme oxygenase-1 (HO-1) has expanded its roles in anti-inflammation, anti-apoptosis and anti-proliferation for the last decade. Regulation of protein activity by location is well appreciated. Even though multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. In this review we discuss the endoplasmic reticulum (ER)-residing HO-1 and its cytoprotective activity against ER stress.

  19. Iron status as a covariate in methylmercury-associated neurotoxicity risk

    Fonseca, Márlon de Freitas; De Souza Hacon, Sandra; Grandjean, Philippe

    2014-01-01

    Intrauterine methylmercury exposure and prenatal iron deficiency negatively affect offspring's brain development. Since fish is a major source of both methylmercury and iron, occurrence of negative confounding may affect the interpretation of studies concerning cognition. We assessed relationship...... between methylmercury exposure and iron-status in childbearing females from a population naturally exposed to methylmercury through fish intake (Amazon). We concluded a census (refuse...

  20. Iron Status of Deployed Military Members

    2017-01-04

    ready force Deploy with and care for the warrior Care for all entrusted to our care Nursing Competencies and Practice: Patient outcomes...duties, physical activities, iron intake through diet ). This additional information would improve the ability to determine factors associated with

  1. Iron deficiency anemia in patients with inflammatory bowel disease

    Goldberg ND

    2013-06-01

    Full Text Available Neil D Goldberg Emeritus Chief of Gastroenterology, University of Maryland St. Joseph Medical Center, Towson, MD, USA Abstract: Iron deficiency anemia is the most common form of anemia worldwide, caused by poor iron intake, chronic blood loss, or impaired absorption. Patients with inflammatory bowel disease (IBD are increasingly likely to have iron deficiency anemia, with an estimated prevalence of 36%–76%. Detection of iron deficiency is problematic as outward signs and symptoms are not always present. Iron deficiency can have a significant impact on a patient's quality of life, necessitating prompt management and treatment. Effective treatment includes identifying and treating the underlying cause and initiating iron replacement therapy with either oral or intravenous iron. Numerous formulations for oral iron are available, with ferrous fumarate, sulfate, and gluconate being the most commonly prescribed. Available intravenous formulations include iron dextran, iron sucrose, ferric gluconate, and ferumoxytol. Low-molecular weight iron dextran and iron sucrose have been shown to be safe, efficacious, and effective in a host of gastrointestinal disorders. Ferumoxytol is the newest US Food and Drug Administration-approved intravenous iron therapy, indicated for iron deficiency anemia in adults with chronic kidney disease. Ferumoxytol is also being investigated in Phase 3 studies for the treatment of iron deficiency anemia in patients without chronic kidney disease, including subgroups with IBD. A review of the efficacy and safety of iron replacement in IBD, therapeutic considerations, and recommendations for the practicing gastroenterologist are presented. Keywords: anemia, inflammatory bowel disease, intravenous iron, iron deficiency, oral iron, therapy

  2. Iron-Deficiency Anemia

    Full Text Available ... iron-rich foods, especially during certain stages of life when more iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...

  3. Iron-Deficiency Anemia

    Full Text Available ... that are good sources of iron include dried beans, dried fruits, eggs, lean red meat, salmon, iron- ... of iron, including iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other dark ...

  4. Iron in diet

    ... Reasonable amounts of iron are also found in lamb, pork, and shellfish. Iron from vegetables, fruits, grains, ... strawberries, tomatoes, and potatoes) also increase iron absorption. Cooking foods in a cast-iron skillet can also ...

  5. Iron-Deficiency Anemia

    Full Text Available ... from developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, ... iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and ...

  6. Iron-Deficiency Anemia

    Full Text Available ... you are diagnosed with iron-deficiency anemia. Risk Factors You may have an increased risk for iron- ... iron-deficiency anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your ...

  7. Iron-Deficiency Anemia

    Full Text Available ... for your body to absorb iron from the gastrointestinal tract (GI tract). Blood loss When you lose blood, ... iron deficiency. Endurance athletes lose iron through their gastrointestinal tracts. They also lose iron through the breakdown of ...

  8. Iron-Deficiency Anemia

    Full Text Available ... iron in your body is low. For this reason, other iron tests are also done. Ferritin measure ... iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and ...

  9. Iron-Deficiency Anemia

    Full Text Available ... develop new therapies for conditions that affect the balance of iron in the body and lead to ... Disease Control and Prevention) Iron - Health Professional Fact Sheet (NIH)