WorldWideScience

Sample records for hematopoietic myeloid precursors

  1. Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia

    OpenAIRE

    Taussig, David C.; Pearce, Daniel J; Simpson, Catherine; Rohatiner, Ama Z; Lister, T. Andrew; Kelly, Gavin; Luongo, Jennifer L.; Danet-Desnoyers, Gwenn-aël H.; Bonnet, Dominique

    2005-01-01

    Human hematopoietic stem cells (HSCs) are generally regarded as being devoid of the markers expressed by differentiated blood cells, the lineage-specific antigens. However, recent work suggests that genes associated with the myeloid lineage are transcribed in mouse HSCs. Here, we explore whether myeloid genes are actually translated in human HSCs. We show that CD33, CD13, and CD123, well-established myeloid markers, are expressed on human long-term repopulating cells from cord blood and bone ...

  2. Hematopoietic reconstitution by multipotent adult progenitor cells: precursors to long-term hematopoietic stem cells

    Science.gov (United States)

    Serafini, Marta; Dylla, Scott J.; Oki, Masayuki; Heremans, Yves; Tolar, Jakub; Jiang, Yuehua; Buckley, Shannon M.; Pelacho, Beatriz; Burns, Terry C.; Frommer, Sarah; Rossi, Derrick J.; Bryder, David; Panoskaltsis-Mortari, Angela; O'Shaughnessy, Matthew J.; Nelson-Holte, Molly; Fine, Gabriel C.; Weissman, Irving L.; Blazar, Bruce R.; Verfaillie, Catherine M.

    2007-01-01

    For decades, in vitro expansion of transplantable hematopoietic stem cells (HSCs) has been an elusive goal. Here, we demonstrate that multipotent adult progenitor cells (MAPCs), isolated from green fluorescent protein (GFP)-transgenic mice and expanded in vitro for >40–80 population doublings, are capable of multilineage hematopoietic engraftment of immunodeficient mice. Among MAPC-derived GFP+CD45.2+ cells in the bone marrow of engrafted mice, HSCs were present that could radioprotect and reconstitute multilineage hematopoiesis in secondary and tertiary recipients, as well as myeloid and lymphoid hematopoietic progenitor subsets and functional GFP+ MAPC-derived lymphocytes that were functional. Although hematopoietic contribution by MAPCs was comparable to control KTLS HSCs, approximately 103-fold more MAPCs were required for efficient engraftment. Because GFP+ host-derived CD45.1+ cells were not observed, fusion is not likely to account for the generation of HSCs by MAPCs. PMID:17227908

  3. HEBAlt enhances the T-cell potential of fetal myeloid-biased precursors.

    Science.gov (United States)

    Braunstein, Marsela; Rajkumar, Paula; Claus, Carol L; Vaccarelli, Giovanna; Moore, Amanda J; Wang, Duncheng; Anderson, Michele K

    2010-12-01

    Hematopoiesis is controlled by the interplay between transcription factors and environmental signals. One of the primary determinants of the T-lineage choice is Delta-like (DL)-Notch signaling, which promotes T-cell development and inhibits B-cell development. We have found that the transcription factor HEBAlt is up-regulated in early hematopoietic precursors in response to DL-Notch signaling and that it can promote early T-cell development. Here, we identified a population of lineage-negative Sca-1⁻c-kit(+) (LK) cells in the mouse fetal liver that rapidly gave rise to myeloid cells and B cells but exhibited very little T-cell potential. However, forced expression of HEBAlt in these precursors restored their ability to develop into T cells. We also showed that Ikaros and Notch1 are up-regulated in response to HEBAlt over-expression and that activated Notch1 enhances the ability of LK cells to enter the T-cell lineage. Furthermore, the myeloid transcription factor C/EBPα is down-regulated in response to HEBAlt. We therefore propose that HEBAlt plays a role in the network that enforces the T-lineage fate and limits myeloid fate during hematopoiesis.

  4. Hematopoietic Cell Transplantation Outcomes in Monosomal Karyotype Myeloid Malignancies.

    Science.gov (United States)

    Pasquini, Marcelo C; Zhang, Mei-Jie; Medeiros, Bruno C; Armand, Philippe; Hu, Zhen-Huan; Nishihori, Taiga; Aljurf, Mahmoud D; Akpek, Görgün; Cahn, Jean-Yves; Cairo, Mitchell S; Cerny, Jan; Copelan, Edward A; Deol, Abhinav; Freytes, César O; Gale, Robert Peter; Ganguly, Siddhartha; George, Biju; Gupta, Vikas; Hale, Gregory A; Kamble, Rammurti T; Klumpp, Thomas R; Lazarus, Hillard M; Luger, Selina M; Liesveld, Jane L; Litzow, Mark R; Marks, David I; Martino, Rodrigo; Norkin, Maxim; Olsson, Richard F; Oran, Betul; Pawarode, Attaphol; Pulsipher, Michael A; Ramanathan, Muthalagu; Reshef, Ran; Saad, Ayman A; Saber, Wael; Savani, Bipin N; Schouten, Harry C; Ringdén, Olle; Tallman, Martin S; Uy, Geoffrey L; Wood, William A; Wirk, Baldeep; Pérez, Waleska S; Batiwalla, Minoo; Weisdorf, Daniel J

    2016-02-01

    The presence of monosomal karyotype (MK+) in acute myeloid leukemia (AML) is associated with dismal outcomes. We evaluated the impact of MK+ in AML (MK+AML, n = 240) and in myelodysplastic syndrome (MDS) (MK+MDS, n = 221) on hematopoietic cell transplantation outcomes compared with other cytogenetically defined groups (AML, n = 3360; MDS, n = 1373) as reported to the Center for International Blood and Marrow Transplant Research from 1998 to 2011. MK+ AML was associated with higher disease relapse (hazard ratio, 1.98; P < .01), similar transplantation-related mortality (TRM) (hazard ratio, 1.01; P = .90), and worse survival (hazard ratio, 1.67; P < .01) compared with those outcomes for other cytogenetically defined AML. Among patients with MDS, MK+ MDS was associated with higher disease relapse (hazard ratio, 2.39; P < .01), higher TRM (hazard ratio, 1.80; P < .01), and worse survival (HR, 2.02; P < .01). Subset analyses comparing chromosome 7 abnormalities (del7/7q) with or without MK+ demonstrated higher mortality for MK+ disease in for both AML (hazard ratio, 1.72; P < .01) and MDS (hazard ratio, 1.79; P < .01). The strong negative impact of MK+ in myeloid malignancies was observed in all age groups and using either myeloablative or reduced-intensity conditioning regimens. Alternative approaches to mitigate disease relapse in this population are needed. Copyright © 2016 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  5. Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and dysregulated myeloid proliferation.

    Science.gov (United States)

    Mortensen, Monika; Watson, Alexander Scarth; Simon, Anna Katharina

    2011-09-01

    The regulated lysosomal degradation pathway of autophagy prevents cellular damage and thus protects from malignant transformation. Autophagy is also required for the maturation of various hematopoietic lineages, namely the erythroid and lymphoid ones, yet its role in adult hematopoietic stem cells (HSCs) remained unexplored. While normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs or early progenitors leads to leukemia. Mechanisms protecting HSCs from cellular damage are therefore essential to prevent hematopoietic malignancies. By conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system, we found that autophagy is required for the maintenance of true HSCs and therefore also of downstream hematopoietic progenitors. Loss of autophagy in HSCs leads to the expansion of a progenitor cell population in the bone marrow, giving rise to a severe, invasive myeloproliferation, which strongly resembles human acute myeloid leukemia (AML).

  6. Effects of endotoxin on proliferation of human hematopoietic cell precursors

    OpenAIRE

    Rinehart, John J.; Keville, Lisa

    1997-01-01

    In examining the effects of corticosteroids on hematopoiesis in vitro, we observed that results were highly dependent on the lot of commercial fetal calf serum (FCS) utilized. We hypothesized that this variability correlated with the picogram (pg) level of endotoxin contaminating the FCS. Randomly obtained commercial lots of FCS contained 0.39 to 187 pg/ml of lipopolysaccharide (LPS). Standard FCS concentrations in hematopoietic precursor proliferation assays (granulocyte-marcrophage colony f...

  7. Characterization of the murine myeloid precursor cell line MuMac-E8.

    Science.gov (United States)

    Fricke, Stephan; Pfefferkorn, Cathleen; Wolf, Doris; Riemschneider, Sina; Kohlschmidt, Janine; Hilger, Nadja; Fueldner, Christiane; Knauer, Jens; Sack, Ulrich; Emmrich, Frank; Lehmann, Jörg

    2014-01-01

    Starting point for the present work was the assumption that the cell line MuMac-E8 represents a murine cell population with stem cell properties. Preliminary studies already pointed to the expression of stem-cell associated markers and a self-regenerative potential of the cells. The cell line MuMac-E8 should be examined for their differential stage within stem cell hierarchy. MuMac-E8 cells were derived from a chimeric mouse model of arthritis. It could be shown that MuMac-E8 cells express mRNA of some genes associated with pluripotent stem cells (Nanog, Nucleostemin), of genes for hematopoietic markers (EPCR, Sca-1, CD11b, CD45), for the mesenchymal marker CD105 and of genes for the neural markers Pax-6 and Ezrin. In methylcellulose and May-Grünwald-Giemsa staining, hematopoietic colonies were obtained but the hematopoietic system of lethally irradiated mice could not be rescued. Osteogenic differentiation was not detectable. Thus, it became evident that MuMac-E8 represents not a stem cell line. However, MuMac-E8 cells expressed several myeloid surface markers (i.e. CD11b, F4/80, CD14, CD64), showed phagocytosis and is capable of producing nitric oxide. Thus, this cell line seems to be arrested an advanced stage of myeloid differentiation. Adherence data measured by impedance-based real-time cell analysis together with cell morphology data suggested that MuMac-E8 represents a new macrophage precursor cell line exhibiting weak adherence. This cell line is suitable as an in-vitro model for testing of macrophage functions. Moreover, it might be also useful for differentiation or reprogramming studies.

  8. Characterization of the murine myeloid precursor cell line MuMac-E8.

    Directory of Open Access Journals (Sweden)

    Stephan Fricke

    Full Text Available Starting point for the present work was the assumption that the cell line MuMac-E8 represents a murine cell population with stem cell properties. Preliminary studies already pointed to the expression of stem-cell associated markers and a self-regenerative potential of the cells. The cell line MuMac-E8 should be examined for their differential stage within stem cell hierarchy. MuMac-E8 cells were derived from a chimeric mouse model of arthritis. It could be shown that MuMac-E8 cells express mRNA of some genes associated with pluripotent stem cells (Nanog, Nucleostemin, of genes for hematopoietic markers (EPCR, Sca-1, CD11b, CD45, for the mesenchymal marker CD105 and of genes for the neural markers Pax-6 and Ezrin. In methylcellulose and May-Grünwald-Giemsa staining, hematopoietic colonies were obtained but the hematopoietic system of lethally irradiated mice could not be rescued. Osteogenic differentiation was not detectable. Thus, it became evident that MuMac-E8 represents not a stem cell line. However, MuMac-E8 cells expressed several myeloid surface markers (i.e. CD11b, F4/80, CD14, CD64, showed phagocytosis and is capable of producing nitric oxide. Thus, this cell line seems to be arrested an advanced stage of myeloid differentiation. Adherence data measured by impedance-based real-time cell analysis together with cell morphology data suggested that MuMac-E8 represents a new macrophage precursor cell line exhibiting weak adherence. This cell line is suitable as an in-vitro model for testing of macrophage functions. Moreover, it might be also useful for differentiation or reprogramming studies.

  9. The Hematopoietic Differentiation and Production of Mature Myeloid Cells from Human Pluripotent Stem Cells

    OpenAIRE

    Choi, Kyung-Dal; Vodyanik, Maxim; Slukvin, Igor I.

    2011-01-01

    Here we describe a protocol for hematopoietic differentiation of human pluripotent stem cells (hPSCs) and generation of mature myeloid cells from hPSCs through expansion and differentiation of hPSC-derived lin-CD34+CD43+CD45+ multipotent progenitors. The protocol is comprised of three major steps: (i) induction of hematopoietic differentiation by coculture of hPSCs with OP9 bone marrow stromal cells, (ii) short-term expansion of multipotent myeloid progenitors with a high dose of GM-CSF, and ...

  10. Successful hematopoietic cell transplantation in a patient with X-linked agammaglobulinemia and acute myeloid leukemia.

    Science.gov (United States)

    Abu-Arja, Rolla F; Chernin, Leah R; Abusin, Ghada; Auletta, Jeffery; Cabral, Linda; Egler, Rachel; Ochs, Hans D; Torgerson, Troy R; Lopez-Guisa, Jesus; Hostoffer, Robert W; Tcheurekdjian, Haig; Cooke, Kenneth R

    2015-09-01

    X-linked agammaglobulinemia (XLA) is a primary immunodeficiency characterized by marked reduction in all classes of serum immunoglobulins and the near absence of mature CD19(+) B-cells. Although malignancy has been observed in patients with XLA, we present the first reported case of acute myeloid leukemia (AML) in a patient with XLA. We also demonstrate the complete correction of the XLA phenotype following allogeneic hematopoietic cell transplantation for treatment of the patient's leukemia.

  11. Brief Report: Efficient Generation of Hematopoietic Precursors and Progenitors from Human Pluripotent Stem Cell Lines

    Science.gov (United States)

    Woods, Niels-Bjarne; Parker, Aaron S.; Moraghebi, Roksana; Lutz, Margaret K.; Firth, Amy L.; Brennand, Kristen J.; Berggren, W. Travis; Raya, Angel; Izpisúa Belmonte, Juan Carlos; Gage, Fred H.; Verma, Inder M.

    2012-01-01

    By mimicking embryonic development of the hematopoietic system, we have developed an optimized in vitro differentiation protocol for the generation of precursors of hematopoietic lineages and primitive hematopoietic cells from human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSCs). Factors such as cytokines, extra cellular matrix components, and small molecules as well as the temporal association and concentration of these factors were tested on seven different human ESC and iPSC lines. We report the differentiation of up to 84% human CD45+ cells (average 41% ± 16%, from seven pluripotent lines) from the differentiation culture, including significant numbers of primitive CD45+/CD341 and CD45+/CD341/CD38− hematopoietic progenitors. Moreover, the numbers of hematopoietic progenitor cells generated, as measured by colony forming unit assays, were comparable to numbers obtained from fresh umbilical cord blood mononuclear cell isolates on a per CD45+ cell basis. Our approach demonstrates highly efficient generation of multipotent hematopoietic progenitors with among the highest efficiencies reported to date (CD45+/CD341) using a single standardized differentiation protocol on several human ESC and iPSC lines. Our data add to the cumulating evidence for the existence of an in vitro derived precursor to the hematopoietic stem cell (HSC) with limited engrafting ability in transplanted mice but with multipotent hematopoietic potential. Because this protocol efficiently expands the preblood precursors and hematopoietic progenitors, it is ideal for testing novel factors for the generation and expansion of definitive HSCs with long-term repopulating ability. PMID:21544903

  12. Brief report: efficient generation of hematopoietic precursors and progenitors from human pluripotent stem cell lines.

    Science.gov (United States)

    Woods, Niels-Bjarne; Parker, Aaron S; Moraghebi, Roksana; Lutz, Margaret K; Firth, Amy L; Brennand, Kristen J; Berggren, W Travis; Raya, Angel; Izpisúa Belmonte, Juan Carlos; Gage, Fred H; Verma, Inder M

    2011-07-01

    By mimicking embryonic development of the hematopoietic system, we have developed an optimized in vitro differentiation protocol for the generation of precursors of hematopoietic lineages and primitive hematopoietic cells from human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSCs). Factors such as cytokines, extra cellular matrix components, and small molecules as well as the temporal association and concentration of these factors were tested on seven different human ESC and iPSC lines. We report the differentiation of up to 84% human CD45+ cells (average 41% ± 16%, from seven pluripotent lines) from the differentiation culture, including significant numbers of primitive CD45+/CD34+ and CD45+/CD34+/CD38- hematopoietic progenitors. Moreover, the numbers of hematopoietic progenitor cells generated, as measured by colony forming unit assays, were comparable to numbers obtained from fresh umbilical cord blood mononuclear cell isolates on a per CD45+ cell basis. Our approach demonstrates highly efficient generation of multipotent hematopoietic progenitors with among the highest efficiencies reported to date (CD45+/CD34+) using a single standardized differentiation protocol on several human ESC and iPSC lines. Our data add to the cumulating evidence for the existence of an in vitro derived precursor to the hematopoietic stem cell (HSC) with limited engrafting ability in transplanted mice but with multipotent hematopoietic potential. Because this protocol efficiently expands the preblood precursors and hematopoietic progenitors, it is ideal for testing novel factors for the generation and expansion of definitive HSCs with long-term repopulating ability.

  13. Secondary Philadelphia chromosome and erythrophagocytosis in a relapsed acute myeloid leukemia after hematopoietic cell transplantation.

    Science.gov (United States)

    Kelemen, Katalin; Galani, Komal; Conley, Christopher R; Greipp, Patricia T

    2014-06-01

    The acquisition of the Philadelphia chromosome (Ph) as a secondary change during the course of hematopoietic malignancies is rare and is associated with poor prognosis. Few cases of secondary Ph have been reported after hematopoietic cell transplantation (HCT). A secondary Ph at relapse is of clinical importance because it provides a therapeutic target for tyrosine kinase inhibitors along with or in replacement of chemotherapy. We describe a case of relapsed acute myeloid leukemia (AML) after HCT that developed a BCR-ABL1 translocation along with erythrophagocytosis by blasts as a secondary change at the time of relapse. The progression of this patient's myeloid neoplasm from myelodysplastic syndrome to AML to relapsed AML after HCT was accompanied by a stepwise cytogenetic evolution: A deletion 20q abnormality subsequently acquired a deletion 7q and, finally, at relapse after HCT, a secondary Ph was gained. The relationship between the secondary Ph and the erythrophagocytosis by blasts is not clear. We review the possible pathogenesis and cytogenetic associations of erythrophagocytosis by blasts, a rare feature in acute leukemias.

  14. Enhanced generation of myeloid lineages in hematopoietic differentiation from embryonic stem cells by silencing transcriptional repressor Twist-2.

    Science.gov (United States)

    Sharabi, Andrew B; Lee, Sung-Hyung; Goodell, Margaret A; Huang, Xue F; Chen, Si-Yi

    2009-12-01

    The self-renewal and multilineage differentiation of embryonic stem cells (ESC) is largely governed by transcription factors or repressors. Extensive efforts have focused on elucidating critical factors that control the differentiation of specific cell lineages, for instance, myeloid lineages in hematopoietic development. In this study, we found that Twist-2, a basic helix-loop-helix (bHLH) transcription factor, plays a critical role in inhibiting the differentiation of ESC. Murine ES cells, in which Twist-2 expression is silenced by lentivirally delivered shRNA, exhibit an enhanced formation of primary embryoid bodies (EB) and enhanced differentiation into mesodermally derived hematopoietic colonies. Furthermore, Twist-2 silenced (LV-siTwist-2) ESC display significantly increased generation of myeloid lineages (Gr-1(+) and F4/80(+) cells) during in vitro hematopoietic differentiation. Treatment with the Toll-like receptor (TLR) 4 ligand synergistically stimulates the generation of primary EB formation as well as of hematopoietic progenitors differentiated from LV-siTwist-2 ES cells. Thus, this study reveals the critical role of the transcriptional repressor Twist-2 in regulating the development of myeloid lineage in hematopoietic differentiation from ESC. This study also suggests a potential strategy for directional differentiation of ESC by inhibiting a transcriptional repressor.

  15. Cardiac Relapse of Acute Myeloid Leukemia after Allogeneic Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Sánchez-Quintana, Ana; Quijada-Fumero, Alejandro; Laynez-Carnicero, Ana; Breña-Atienza, Joaquín; Poncela-Mireles, Francisco J.; Llanos-Gómez, Juan M.; Cabello-Rodríguez, Ana I.; Ramos-López, María

    2016-01-01

    Secondary or metastatic cardiac tumors are much more common than primary benign or malignant cardiac tumors. Any tumor can cause myocardial or pericardial metastasis, although isolated or combined tumor invasion of the pericardium is more common. Types of neoplasia with the highest rates of cardiac or pericardial involvement are melanoma, lung cancer, and breast and mediastinal carcinomas. Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. Initial treatment involves chemotherapy followed by consolidation treatment to reduce the risk of relapse. In high-risk patients, the treatment of choice for consolidation is hematopoietic stem cell transplantation (HSCT). Relapse of AML is the most common cause of HSCT failure. Extramedullary relapse is rare. The organs most frequently affected, called “sanctuaries,” are the testes, ovaries, and central nervous system. We present a case with extramedullary relapse in the form of a solid cardiac mass. PMID:27642531

  16. Hematopoietic cell crisis: An early stage of evolving myeloid leukemia following radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Seed, T.M.

    1990-01-01

    Under select radiological conditions, chronic radiation exposure elicits a high incidence of myeloproliferative disease, principally myeloid leukemia (ML), in beagles. Previously we demonstrated that for full ML expression, a four-stage preclinical sequence is required, namely (1) suppression, (2) recovery, (3) accommodation, and (4) preleukemic transition. Within this pathological sequence, a critical early event has been identified as the acquisition of radioresistance by hematopoietic progenitors that serves to mediate a newfound regenerative hematopoietic capacity. As such, this event sets the stage'' for preleukemic progression by initiating progression from preclinical phase 1 to 2. Due to the nature of target cell suppression, the induction of crisis, and the outgrowth of progenitors with altered phenotypes, this preleukemic event resembles the immortalization'' step of the in vitro transformation sequence following induction with either physical and chemical carcinogens. The radiological, temporal, and biological dictates governing this event have been extensively evaluated and will be discussed in light of their role in the induction and progression of chronic radiation leukemia. 35 refs., 2 tabs.

  17. Allogeneic hematopoietic cell transplant for acute myeloid leukemia: Current state in 2013 and future directions.

    Science.gov (United States)

    Kanate, Abraham S; Pasquini, Marcelo C; Hari, Parameswaran N; Hamadani, Mehdi

    2014-04-26

    Acute myeloid leukemia (AML) represents a heterogeneous group of high-grade myeloid neoplasms of the elderly with variable outcomes. Though remission-induction is an important first step in the management of AML, additional treatment strategies are essential to ensure long-term disease-free survival. Recent pivotal advances in understanding the genetics and molecular biology of AML have allowed for a risk-adapted approach in its management based on relapse-risk. Allogeneic hematopoietic cell transplantation (allo-HCT) represents an effective therapeutic strategy in AML providing the possibility of cure with potent graft-versus-leukemia reactions, with a demonstrable survival advantage in younger patients with intermediate- or poor-risk cytogenetics. Herein we review the published data regarding the role of allo-HCT in adults with AML. We searched MEDLINE/PubMed and EMBASE/Ovid. In addition, we searched reference lists of relevant articles, conference proceedings and ongoing trial databases. We discuss the role of allo-HCT in AML patients stratified by cytogenetic- and molecular-risk in first complete remission, as well as allo-HCT as an option in relapsed/refractory AML. Besides the conventional sibling and unrelated donor allografts, we review the available data and recent advances for alternative donor sources such as haploidentical grafts and umbilical cord blood. We also discuss conditioning regimens, including reduced intensity conditioning which has broadened the applicability of allo-HCT. Finally we explore recent advances and future possibilities and directions of allo-HCT in AML. Practical therapeutic recommendations have been made where possible based on available data and expert opinion.

  18. Isolated central nervous system relapse of chronic myeloid leukemia after allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Fuchs Mary

    2012-08-01

    Full Text Available Abstract Background This case report highlights the relevance of quantifying the BCR-ABL gene in cerebrospinal fluid of patients with suspected relapse of chronic myeloid leukemia in the central nervous system. Case presentation We report on a female patient with isolated central nervous system relapse of chronic myeloid leukemia (CML during peripheral remission after allogeneic hematopoietic stem cell transplantation. The patient showed a progressive cognitive decline as the main symptom. MRI revealed a hydrocephalus and an increase in cell count in the cerebrospinal fluid (CSF with around 50% immature blasts in the differential count. A highly elevated BCR-ABL/ ABL ratio was detected in the CSF, whilst the ratio for peripheral blood and bone marrow was not altered. On treatment of the malresorptive hydrocephalus with shunt surgery, the patient showed an initial cognitive improvement, followed by a secondary deterioration. At this time, the cranial MRI showed leukemic infiltration of lateral ventricles walls. Hence, intrathecal administration of cytarabine, methotrexate, and dexamethasone was initiated, which caused a significant decrease of cells in the CSF. Soon after, the patient demonstrated significant cognitive improvement with a good participation in daily activities. At a later time point, after the patient had lost the major molecular response of CML, therapy with dasatinib was initiated. In a further follow-up, the patient was neurologically and hematologically stable. Conclusions In patients with treated CML, the rare case of an isolated CNS blast crisis has to be taken into account if neurological symptoms evolve. The analysis of BCR-ABL in the CSF is a further option for the reliable detection of primary isolated relapse of CML in these patients.

  19. Therapy-related acute myeloid leukemia and myelodysplastic syndrome after hematopoietic cell transplantation for lymphoma.

    Science.gov (United States)

    Yamasaki, S; Suzuki, R; Hatano, K; Fukushima, K; Iida, H; Morishima, S; Suehiro, Y; Fukuda, T; Uchida, N; Uchiyama, H; Ikeda, H; Yokota, A; Tsukasaki, K; Yamaguchi, H; Kuroda, J; Nakamae, H; Adachi, Y; Matsuoka, K-I; Nakamura, Y; Atsuta, Y; Suzumiya, J

    2017-04-03

    Therapy-related acute myeloid leukemia and myelodysplastic syndrome (t-AML/MDS) represent severe late effects in patients receiving hematopoietic cell transplantation (HCT) for lymphoma. The choice between high-dose therapy with autologous HCT and allogeneic HCT with reduced-intensity conditioning remains controversial in patients with relapsed lymphoma. We retrospectively analyzed incidence and risk factors for the development of t-AML/MDS in lymphoma patients treated with autologous or allogeneic HCT. A total of 13 810 lymphoma patients who received autologous (n=9963) or allogeneic (n=3847) HCT between 1985 and 2012 were considered. At a median overall survival (OS) of 52 and 46 months in autologous and allogeneic HCT groups, respectively, lymphoma patients receiving autologous HCT (1.38% at 3 years after autologous HCT) had a significant risk for developing t-AML/MDS compared to allogeneic HCT (0.37% at 3 years after allogeneic HCT, Pafter autologous and allogeneic HCT were high-stage risk at HCT (P=0.04) or secondary malignancies (P<0.001) and receiving cord blood stem cell (P=0.03) or involved field radiotherapy (P=0.002), respectively. Strategies that carefully select lymphoma patients for autologous HCT, by excluding lymphoma patients with high-stage risk at HCT, may allow the identification of individual lymphoma patients at particular high risk for t-AML/MDS.Bone Marrow Transplantation advance online publication, 3 April 2017; doi:10.1038/bmt.2017.52.

  20. Up-front allogeneic hematopoietic cell transplantation in acute myeloid leukemia arising from the myelodysplastic syndrome.

    Science.gov (United States)

    Choi, Yunsuk; Kim, Sung-Doo; Park, Young-Hoon; Lee, Jae Seok; Kim, Dae-Young; Lee, Jung-Hee; Lee, Kyoo-Hyung; Seol, Miee; Lee, Young-Shin; Kang, Young-Ah; Jeon, Mijin; Jung, Ah Rang; Lee, Je-Hwan

    2015-01-01

    In patients with secondary acute myeloid leukemia (s-AML) arising from the myelodysplastic syndrome (MDS), treatment outcome is unsatisfactory. We compared up-front allogeneic hematopoietic cell transplantation (HCT) to induction chemotherapy (IC) as an initial treatment in patients with s-AML arising from MDS. This retrospective study included 85 patients who were diagnosed with s-AML arising from MDS; 11 patients proceeded to up-front HCT without IC (HCT group) and 74 received IC (IC group) as an initial treatment for s-AML, 28 of whom subsequently underwent HCT. In the IC group, 41.9% achieved complete remission (CR) compared to 81.8% in the HCT group (p = 0.013). The HCT group showed a significantly longer event-free survival (EFS) than the IC group (median 29.2 vs. 5.2 months, p = 0.042). Overall survival of the HCT group was higher than that of the IC group, but the difference was not statistically significant (median 34.6 vs. 7.6 months, p = 0.149). After adjustment for other clinical factors, outcome in the HCT group was significantly better than in the IC group in terms of CR rate (hazard ratio, HR, 11.195; p = 0.007) and EFS (HR, 0.384; p = 0.029). Up-front HCT is a viable option in s-AML arising from MDS if an appropriate donor is available.

  1. Reduced-intensity conditioning allogeneic hematopoietic-cell transplantation for older patients with acute myeloid leukemia.

    Science.gov (United States)

    Goyal, Gaurav; Gundabolu, Krishna; Vallabhajosyula, Saraschandra; Silberstein, Peter T; Bhatt, Vijaya Raj

    2016-06-01

    Elderly patients (>60 years) with acute myeloid leukemia have a poor prognosis with a chemotherapy-alone approach. Allogeneic hematopoietic-cell transplantation (HCT) can improve overall survival (OS). However, myeloablative regimens can have unacceptably high transplant-related mortality (TRM) in an unselected group of older patients. Reduced-intensity conditioning (RIC) or nonmyeloablative (NMA) conditioning regimens preserve the graft-versus-leukemia effects but reduce TRM. NMA regimens result in minimal cytopenia and may not require stem cell support for restoring hematopoiesis. RIC regimens, intermediate in intensity between NMA and myeloablative regimens, can cause prolonged myelosuppresion and usually require stem cell support. A few retrospective and prospective studies suggest a possibility of lower risk of relapse with myeloablative HCT in fit older patients with lower HCT comorbidity index; however, RIC and NMA HCTs have an important role in less-fit patients and those with significant comorbidities because of lower TRM. Whether early tapering of immunosuppression, monitoring of minimal residual disease, and post-transplant maintenance therapy can improve the outcomes of RIC and NMA HCT in elderly patients will require prospective trials.

  2. Myeloablative Versus Reduced-Intensity Hematopoietic Cell Transplantation for Acute Myeloid Leukemia and Myelodysplastic Syndromes.

    Science.gov (United States)

    Scott, Bart L; Pasquini, Marcelo C; Logan, Brent R; Wu, Juan; Devine, Steven M; Porter, David L; Maziarz, Richard T; Warlick, Erica D; Fernandez, Hugo F; Alyea, Edwin P; Hamadani, Mehdi; Bashey, Asad; Giralt, Sergio; Geller, Nancy L; Leifer, Eric; Le-Rademacher, Jennifer; Mendizabal, Adam M; Horowitz, Mary M; Deeg, H Joachim; Horwitz, Mitchell E

    2017-04-10

    Purpose The optimal regimen intensity before allogeneic hematopoietic cell transplantation (HCT) is unknown. We hypothesized that lower treatment-related mortality (TRM) with reduced-intensity conditioning (RIC) would result in improved overall survival (OS) compared with myeloablative conditioning (MAC). To test this hypothesis, we performed a phase III randomized trial comparing MAC with RIC in patients with acute myeloid leukemia or myelodysplastic syndromes. Patients and Methods Patients age 18 to 65 years with HCT comorbidity index ≤ 4 and < 5% marrow myeloblasts pre-HCT were randomly assigned to receive MAC (n = 135) or RIC (n = 137) followed by HCT from HLA-matched related or unrelated donors. The primary end point was OS 18 months post-random assignment based on an intent-to-treat analysis. Secondary end points included relapse-free survival (RFS) and TRM. Results Planned enrollment was 356 patients; accrual ceased at 272 because of high relapse incidence with RIC versus MAC (48.3%; 95% CI, 39.6% to 56.4% and 13.5%; 95% CI, 8.3% to 19.8%, respectively; P < .001). At 18 months, OS for patients in the RIC arm was 67.7% (95% CI, 59.1% to 74.9%) versus 77.5% (95% CI, 69.4% to 83.7%) for those in the MAC arm (difference, 9.8%; 95% CI, -0.8% to 20.3%; P = .07). TRM with RIC was 4.4% (95% CI, 1.8% to 8.9%) versus 15.8% (95% CI, 10.2% to 22.5%) with MAC ( P = .002). RFS with RIC was 47.3% (95% CI, 38.7% to 55.4%) versus 67.8% (95% CI, 59.1% to 75%) with MAC ( P < .01). Conclusion OS was higher with MAC, but this was not statistically significant. RIC resulted in lower TRM but higher relapse rates compared with MAC, with a statistically significant advantage in RFS with MAC. These data support the use of MAC as the standard of care for fit patients with acute myeloid leukemia or myelodysplastic syndromes.

  3. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia in older adults.

    Science.gov (United States)

    Sorror, Mohamed L; Estey, Elihu

    2014-12-01

    Acute myeloid leukemia (AML) is primarily a disease of the elderly and the numbers of these patients are increasing. Patients ≥60 years of age continue to have poor prognosis. Preliminary results suggest benefit from reduced-intensity allogeneic hematopoietic cell transplantation (HCT) in selected patients 60-80 years of age. However, although patients in this age range comprise >50% of those with AML, they currently constitute only 17% of those offered HCT. In the absence of prospective randomized studies comparing HCT and chemotherapy, the decision to recommend HCT rests on retrospective analyses of the risks of relapse and nonrelapse mortality after each approach. There is strong evidence that pre-HCT comorbidities can predict HCT-related morbidity and mortality. Age alone does not appear predictive and, particularly if the risk of relapse with chemotherapy is high, should not be the sole basis for deciding against HCT. Use of geriatric assessment tools, inflammatory biomarkers, and genetic polymorphism data may further aid in predicting nonrelapse mortality after HCT. Disease status and pretreatment cytogenetics with FLT3-TID, NPM-1, and CEBP-α status are the main factors predicting relapse and these are likely to be supplemented by incorporation of other molecular markers and the level of minimal residual disease after chemotherapy. HLA-matched related and unrelated donor grafts seem preferable to those from other donor sources. Donor age is of no clear significance. Models combining comorbidities with AML risk factors are useful in risk assessment before HCT. In this chapter, we integrated information on AML-specific, HCT-specific, and patient-specific risk factors into a risk-adapted approach to guide decisions about HCT versus no HCT.

  4. [Effect of decitabine on immune regulation in patients with acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation].

    Science.gov (United States)

    Wang, Jing; Zhou, Jin; Zheng, Hui-Fei; Fu, Zheng-Zheng

    2014-10-01

    Based on the representative articles in recent years, the different mechanisms of decitabine on immune regulation in patients with acute myeloid leukemia (AML) after allogeneic hematopoietic stem cell transplantation (HSCT) are summarized. Decitabine improves the expression of WT1 gene to stimulate specific cytotoxic T cells which can enhance graft versus leukemia effect (GVL) and improve the expression of FOXP3 gene to stimulate regulatory T cells so as to inhibit the acute graft versus host disease (GVHD). Through the above-mentimed mechanisms, decitabine can improve both therapeutic effect and quality of life in the patients with AML after allogeneic HSCT.

  5. Short Stat5-interacting peptide derived from phospholipase C-β3 inhibits hematopoietic cell proliferation and myeloid differentiation.

    Directory of Open Access Journals (Sweden)

    Hiroki Yasudo

    Full Text Available Constitutive activation of the transcription factor Stat5 in hematopoietic stem/progenitor cells leads to various hematopoietic malignancies including myeloproliferative neoplasm (MPN. Our recent study found that phospholipase C (PLC-β3 is a novel tumor suppressor involved in MPN, lymphoma and other tumors. Stat5 activity is negatively regulated by the SH2 domain-containing protein phosphatase SHP-1 in a PLC-β3-dependent manner. PLC-β3 can form the multimolecular SPS complex together with SHP-1 and Stat5. The close physical proximity of SHP-1 and Stat5 brought about by interacting with the C-terminal segment of PLC-β3 (PLC-β3-CT accelerates SHP-1-mediated dephosphorylation of Stat5. Here we identify the minimal sequences within PLC-β3-CT required for its tumor suppressor function. Two of the three Stat5-binding noncontiguous regions, one of which also binds SHP-1, substantially inhibited in vitro proliferation of Ba/F3 cells. Surprisingly, an 11-residue Stat5-binding peptide (residues 988-998 suppressed Stat5 activity in Ba/F3 cells and in vivo proliferation and myeloid differentiation of hematopoietic stem/progenitor cells. Therefore, this study further defines PLC-β3-CT as the Stat5- and SHP-1-binding domain by identifying minimal functional sequences of PLC-β3 for its tumor suppressor function and implies their potential utility in the control of hematopoietic malignancies.

  6. Impact of FLT3 internal tandem duplication on the outcome of related and unrelated hematopoietic transplantation for adult acute myeloid leukemia in first remission: A retrospective analysis

    NARCIS (Netherlands)

    S. Brunet (Salut); M. Labopin (Myriam); J. Esteve (Jordi); J.J. Cornelissen (Jan); G. Socié (Gerard); A.P. Iori (Anna); L.F. Verdonck (Leo); L. Volin (Liisa); A. Gratwohl (Alois); J. Sierra (Jorge); M. Mohty (Mohamad); V. Rocha (Vanderson)

    2012-01-01

    textabstractPurpose: Patients with acute myeloid leukemia (AML) and FLT3/internal tandem duplication (FLT3/ITD) have poor prognosis if treated with chemotherapy only. Whether this alteration also affects outcome after allogeneic hematopoietic stem-cell transplantation (HSCT) remains uncertain. Patie

  7. Acute Myeloid Leukaemia of Donor Cell Origin Developing 17 Years after Allogenic Hematopoietic Cell Transplantation for Acute Promyelocytic Leukaemia

    Science.gov (United States)

    Jiménez, Pilar; Alvarez, J. Carlos; Garrido, Pilar; Lorente, J. Antonio; Palacios, Jorge; Ruiz-Cabello, Francisco

    2012-01-01

    Donor cell leukaemia (DCL) is a rare complication of allogenic hematopoietic cell transplantation (HCT). We report the case of a female patient with acute promyelocytic leukaemia (APL), FAB type M3, who developed acute myeloid leukaemia (AML) type M5 of donor origin 17 years after allogenic bone marrow transplantation (BMT) from her HLA-matched sister. Morphology and immunophenotyping showed differences with the initial leukaemia, and short tandem repeat (STR) analysis confirmed donor-type haematopoiesis. Interphase fluorescence in situ hybridisation (FISH) showed an 11q23 deletion. Given that the latency period between transplant and development of leukaemia was the longest reported to date, we discuss the mechanisms underlying delayed leukaemia onset. PMID:23675279

  8. Retrovirus-Mediated Expression of E2A-PBX1 Blocks Lymphoid Fate but Permits Retention of Myeloid Potential in Early Hematopoietic Progenitors.

    Directory of Open Access Journals (Sweden)

    Mark W Woodcroft

    Full Text Available The oncogenic transcription factor E2A-PBX1 is expressed consequent to chromosomal translocation 1;19 and is an important oncogenic driver in cases of pre-B-cell acute lymphoblastic leukemia (ALL. Elucidating the mechanism by which E2A-PBX1 induces lymphoid leukemia would be expedited by the availability of a tractable experimental model in which enforced expression of E2A-PBX1 in hematopoietic progenitors induces pre-B-cell ALL. However, hematopoietic reconstitution of irradiated mice with bone marrow infected with E2A-PBX1-expressing retroviruses consistently gives rise to myeloid, not lymphoid, leukemia. Here, we elucidate the hematopoietic consequences of forced E2A-PBX1 expression in primary murine hematopoietic progenitors. We show that introducing E2A-PBX1 into multipotent progenitors permits the retention of myeloid potential but imposes a dense barrier to lymphoid development prior to the common lymphoid progenitor stage, thus helping to explain the eventual development of myeloid, and not lymphoid, leukemia in transplanted mice. Our findings also indicate that E2A-PBX1 enforces the aberrant, persistent expression of some genes that would normally have been down-regulated in the subsequent course of hematopoietic maturation. We show that enforced expression of one such gene, Hoxa9, a proto-oncogene associated with myeloid leukemia, partially reproduces the phenotype produced by E2A-PBX1 itself. Existing evidence suggests that the 1;19 translocation event takes place in committed B-lymphoid progenitors. However, we find that retrovirus-enforced expression of E2A-PBX1 in committed pro-B-cells results in cell cycle arrest and apoptosis. Our findings indicate that the neoplastic phenotype induced by E2A-PBX1 is determined by the developmental stage of the cell into which the oncoprotein is introduced.

  9. Daunorubicin, Cytarabine, and Cladribine Regimen Plus Radiotherapy and Donor Lymphocyte Infusion for Extramedullary Relapse of Acute Myeloid Leukemia after Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Marco Sanna

    2013-01-01

    Full Text Available Myeloid sarcoma is a rare tumor consisting of myeloid blasts that involve anatomic sites outside the bone marrow. Fatal prognosis is inevitable in patients with extramedullary relapse after hematopoietic stem cell transplantation (HSCT, and no standard treatments are available yet. We report the first case of extramedullary relapse after HSCT treated with a combination of daunorubicin, cytarabine, and cladribine (DAC regimen plus radiotherapy and donor lymphocyte infusion (DLI. This treatment induced a new and durable remission in our patient. The favorable toxicity profile and the reduced cost make this combination worthy of further investigations.

  10. Prognosis of acute myeloid leukemia harboring monosomal karyotype in patients treated with or without allogeneic hematopoietic cell transplantation after achieving complete remission

    Science.gov (United States)

    Yanada, Masamitsu; Kurosawa, Saiko; Yamaguchi, Takuhiro; Yamashita, Takuya; Moriuchi, Yukiyoshi; Ago, Hiroatsu; Takeuchi, Jin; Nakamae, Hirohisa; Taguchi, Jun; Sakura, Toru; Takamatsu, Yasushi; Waki, Fusako; Yokoyama, Hiroki; Watanabe, Masato; Emi, Nobuhiko; Fukuda, Takahiro

    2012-01-01

    To evaluate the prognostic impact of monosomal karyotype on post-remission outcome in acute myeloid leukemia, we retrospectively analyzed 2,099 patients who had achieved complete remission. Monosomal karyotype was noted in 73 patients (4%). Of these, the probability of overall survival from first complete remission was 14% at four years, which was significantly lower than that reported in patients without monosomal karyotype, primarily due to a high relapse rate (86%). Monosomal karyotype remained significantly associated with worse overall survival among patients with unfavorable cytogenetics or complex karyotype, and even in patients who underwent allogeneic hematopoietic cell transplantation during first complete remission. These findings confirm that monosomal karyotype has a significantly adverse effect on post-remission outcome in patients with acute myeloid leukemia treated with and without allogeneic hematopoietic cell transplantation in first complete remission, emphasizing the need for the development of alternative therapies for this patient population. PMID:22180431

  11. HSP10 selective preference for myeloid and megakaryocytic precursors in normal human bone marrow

    Directory of Open Access Journals (Sweden)

    F Cappello

    2009-06-01

    Full Text Available Heat shock proteins (HSPs constitute a heterogeneous family of proteins involved in cell homeostasis. During cell life they are involved in harmful insults, as well as in immune and inflammatory reactions. It is known that they regulate gene expression, and cell proliferation, differentiation and death. HSP60 is a mitochondrial chaperonin, highly preserved during evolution, responsible of protein folding. Its function is strictly dependent on HSP10 in both prokaryotic and eukaryotic elements. We investigated the presence and the expression of HSP60 and HSP10 in a series of 20 normal human bone marrow specimens (NHBM by the means of immunohistochemistry. NHBM showed no expression of HSP60, probably due to its being below the detectable threshold, as already demonstrated in other normal human tissues. By contrast, HSP10 showed a selective positivity for myeloid and megakaryocytic lineages. The positivity was restricted to precursor cells, while mature elements were constantly negative.We postulate that HSP10 plays a role in bone marrow cell differentiation other than being a mitochondrial co-chaperonin. The present data emphasize the role of HSP10 during cellular homeostasis and encourage further investigations in this field.

  12. Inflammation- and tumor-induced anorexia and weight loss require MyD88 in hematopoietic/myeloid cells but not in brain endothelial or neural cells.

    Science.gov (United States)

    Ruud, Johan; Wilhelms, Daniel Björk; Nilsson, Anna; Eskilsson, Anna; Tang, Yan-Juan; Ströhle, Peter; Caesar, Robert; Schwaninger, Markus; Wunderlich, Thomas; Bäckhed, Fredrik; Engblom, David; Blomqvist, Anders

    2013-05-01

    Loss of appetite is a hallmark of inflammatory diseases. The underlying mechanisms remain undefined, but it is known that myeloid differentiation primary response gene 88 (MyD88), an adaptor protein critical for Toll-like and IL-1 receptor family signaling, is involved. Here we addressed the question of determining in which cells the MyD88 signaling that results in anorexia development occurs by using chimeric mice and animals with cell-specific deletions. We found that MyD88-knockout mice, which are resistant to bacterial lipopolysaccharide (LPS)-induced anorexia, displayed anorexia when transplanted with wild-type bone marrow cells. Furthermore, mice with a targeted deletion of MyD88 in hematopoietic or myeloid cells were largely protected against LPS-induced anorexia and displayed attenuated weight loss, whereas mice with MyD88 deletion in hepatocytes or in neural cells or the cerebrovascular endothelium developed anorexia and weight loss of similar magnitude as wild-type mice. Furthermore, in a model for cancer-induced anorexia-cachexia, deletion of MyD88 in hematopoietic cells attenuated the anorexia and protected against body weight loss. These findings demonstrate that MyD88-dependent signaling within the brain is not required for eliciting inflammation-induced anorexia. Instead, we identify MyD88 signaling in hematopoietic/myeloid cells as a critical component for acute inflammatory-driven anorexia, as well as for chronic anorexia and weight loss associated with malignant disease.

  13. Busulfan and melphalan as conditioning regimen for allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia in first complete remission

    Directory of Open Access Journals (Sweden)

    Nadjanara Dorna Bueno

    2011-06-01

    Full Text Available BACKGROUND: Allogeneic hematopoietic stem cell transplantation with HLA-identical donors has been established for the treatment of acute myeloid leukemia patients for over 30 years with a cure rate of 50% to 60%. OBJECTIVES: To analyze the overall survival of patients and identify factors that influence the outcomes of this type of transplant in patients in 1st complete remission who received a busulfan and melphalan combination as conditioning regimen. METHODS: Twenty-five consecutive patients with acute myeloid leukemia were enrolled between 2003 and 2008. The median age was 34 years old (Range: 16 - 57 years. All patients received cyclosporine and methotrexate for prophylaxis against graft-versus-host disease. Median neutrophil engraftment time was 16 days (Range: 7 - 22 days and 17 days (Range: 7 - 46 days for platelets. Sinusoidal obstructive syndrome was observed in three patients, seven had grade II acute graft-versus-host disease and one extensive chronic graft-versus-host disease. RESULTS: The overall survival by the Kaplan-Meier method was 48% after 36 months with a plateau at 36 months after transplantation. Intensive consolidation with high-dose arabinoside resulted in an improved survival (p-value = 0.0001, as did grade II acute graft-versus-host disease (p-value = 0.0377 and mild chronic graft-versus-host disease (p-value < 0.0001. Thirteen patients died, five due to infection within 100 days of transplant, two due to hemorrhages, one to infection and graftversus-host disease and three relapses followed by renal failure (one and infection (two. The cause of death could not be determined for two patients. CONCLUSION: The busulfan and melphalan conditioning regimen is as good as other conditioning regimens providing an excellent survival rate.

  14. Prognostic Significance of Residual Acute Myeloid Leukemia in Bone Marrow Samples Taken Prior to Allogeneic Hematopoietic Cell Transplantation.

    Science.gov (United States)

    Kovach, Alexandra E; Brunner, Andrew M; Fathi, Amir T; Chen, Yi-Bin; Hasserjian, Robert P

    2017-01-01

    We sought to identify features in routine evaluation of pre-hematopoietic cell transplantation (HCT) bone marrow samples from patients with acute myeloid leukemia (AML) that influenced patient outcome. Of 140 patients, evidence of residual leukemia (RL) was identified in 38 (27%) of pre-HCT samples, as defined by 5% or more aspirate blasts, increased blood blasts, clustered or necrotic blasts on biopsy specimens, and/or leukemia-associated karyotypic abnormalities. Morphologic or karyotypic evidence of RL was significantly associated with shorter leukemia-free survival (LFS) compared with cases without identifiable RL (median, 7.1 vs 28.3 months; P  < .0001). Upon multivariable analysis, RL, prior relapse, age, high-risk karyotype, and alternate donor source were each independently associated with shorter LFS. RL in pre-HCT samples was more strongly associated with shorter LFS in patients with intermediate or favorable-risk AML karyotype ( P  = .001) than secondary or adverse karyotype-risk AML ( P  = .04). Rigorous morphologic and karyotypic evaluation of pretransplant marrows is practical and important for posttransplant prognosis.

  15. Outcome of allogeneic hematopoietic stem cell transplantation in adult patients with acute myeloid leukemia harboring trisomy 8.

    Science.gov (United States)

    Konuma, Takaaki; Kondo, Tadakazu; Yamashita, Takuya; Uchida, Naoyuki; Fukuda, Takahiro; Ozawa, Yukiyasu; Ohashi, Kazuteru; Ogawa, Hiroyasu; Kato, Chiaki; Takahashi, Satoshi; Kanamori, Heiwa; Eto, Tetsuya; Nakaseko, Chiaki; Kohno, Akio; Ichinohe, Tatsuo; Atsuta, Yoshiko; Takami, Akiyoshi; Yano, Shingo

    2017-03-01

    Trisomy 8 (+8) is one of the most common cytogenetic abnormalities in adult patients with acute myeloid leukemia (AML). However, the outcome of allogeneic hematopoietic stem cell transplantation (HSCT) in adult patients with AML harboring +8 remains unclear. To evaluate, the outcome and prognostic factors in patients with AML harboring +8 as the only chromosomal abnormality or in association with other abnormalities, we retrospectively analyzed the Japanese registration data of 631 adult patients with AML harboring +8 treated with allogeneic HSCT between 1990 and 2013. In total, 388 (61%) patients were not in remission at the time of HSCT. With a median follow-up of 38.5 months, the probability of overall survival and the cumulative incidence of relapse at 3 years were 40 and 34%, respectively. In the multivariate analysis, two or more additional cytogenetic abnormalities and not being in remission at the time of HSCT were significantly associated with a higher overall mortality and relapse. Nevertheless, no significant impact on the outcome was observed in cases with one cytogenetic abnormality in addition to +8. Although more than 60% of the patients received HSCT when not in remission, allogeneic HSCT offered a curative option for adult patients with AML harboring +8.

  16. Computerized texture analysis of atypical immature myeloid precursors in patients with myelodysplastic syndromes: an entity between blasts and promyelocytes

    Directory of Open Access Journals (Sweden)

    Lorand-Metze Irene GH

    2011-09-01

    Full Text Available Abstract Background Bone marrow (BM blast count is an essential parameter for classification and prognosis of myelodysplastic syndromes (MDS. However, a high degree of cell atypias in bone marrow hemopoietic cells may be found in this group of clonal disorders, making it difficult to quantify precisely myeloblasts, and to distinguish them from promyelocytes and atypical immature myeloid precursors. Our aim was to investigate whether computerized image analysis of routine cytology would help to characterize these cells. Methods In May-Grünwald-Giemsa stained BM smears of 30 newly diagnosed MDS patients and 19 cases of normal BM, nuclei of blasts and promyelocytes were digitalized and interactively segmented. The morphological classification of the cells was done by consensus of two observers. Immature granulocytic precursors, which could not be clearly classified either as blasts or promyelocytes, were called "atypic myeloid precursors". Nuclear morphometry and texture features derived from the co-occurrence matrix and fractal dimension (FD were calculated. Results In normal BM, when compared to myeloblasts, nuclei of promyelocytes showed significant increase in perimeter and local texture homogeneity and a decrease in form factor, chromatin gray levels, Haralick's entropy, inertia, energy, contrast, diagonal moment, cluster prominence, the fractal dimension according to Minkowski and its goodness-of-fit. Compared to normal myeloblast nuclei, the chromatin texture of MDS myeloblasts revealed higher local homogeneity and goodness-of-fit of the FD, but lower values of entropy, contrast, diagonal moment, and fractal dimension. The same differences were found between nuclei of normal promyelocytes and those of MDS. Nuclei of atypical myeloid precursors showed intermediate characteristics between those of blasts and promyelocytes according to the quantitative features (perimeter, form factor, gray level and its standard deviation, but were similar to

  17. Genotypic and functional diversity of phenotypically defined primitive hematopoietic cells in patients with chronic myeloid leukemia.

    Science.gov (United States)

    Sloma, Ivan; Beer, Philip A; Saw, Kyi Min; Chan, Matthew; Leung, Donna; Raghuram, Kamini; Brimacombe, Cedric; Johnston, Bobby; Lambie, Karen; Forrest, Donna; Jiang, Xiaoyan; Eaves, Connie J

    2013-10-01

    Much progress has been made in the management of chronic-phase chronic myeloid leukemia (CP-CML), but there is a continuing imperative to develop curative treatments, predict patient responses to specific modalities, and anticipate disease relapse or progression. These needs underlie continuing interest in methods to detect and quantify the relevant leukemic cells in clinical samples with improved reliability and specificity. We report the results of comparing three methods to enumerate primitive CP-CML cells in the same samples: genotyping CD34(+)38(-) cells directly by fluorescence in situ hybridization, and measuring BCR-ABL1 transcript-genotyped colony-forming cell outputs in either 5-week long-term cultures (LTCs) containing non-engineered mouse fibroblasts or in 6-week LTCs containing mouse fibroblasts engineered to produce human Steel factor, granulocyte colony-stimulating factor, and IL-3. The results demonstrate that the first two methods significantly overestimate the prevalence of primitive CP-CML cells by comparison to the third. In additional studies, we found that CML-CD34(+) cells can repopulate the marrow and spleen of serially transplanted adult NOD/SCID-IL-2Rγ chain-null mice for more than 1 year with an almost exclusive myeloid differentiation in primary and secondary recipients and without evidence of disease progression. These findings underscore the importance of long-term functional in vitro and in vivo endpoints to identify and characterize CP-CML stem cells. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  18. Ipilimumab and Decitabine in Treating Patients With Relapsed or Refractory Myelodysplastic Syndrome or Acute Myeloid Leukemia

    Science.gov (United States)

    2016-09-12

    Chimerism; Hematopoietic Cell Transplantation Recipient; Previously Treated Myelodysplastic Syndrome; RAEB-1; RAEB-2; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  19. Caffeine affects the biological responses of human hematopoietic cells of myeloid lineage via downregulation of the mTOR pathway and xanthine oxidase activity

    Science.gov (United States)

    Abooali, Maryam; Yasinska, Inna M.; Casely-Hayford, Maxwell A.; Berger, Steffen M.; Fasler-Kan, Elizaveta; Sumbayev, Vadim V.

    2015-01-01

    Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells. PMID:26384306

  20. Runx1 Regulates Myeloid Precursor Differentiation Into Osteoclasts Without Affecting Differentiation Into Antigen Presenting or Phagocytic Cells in Both Males and Females

    Science.gov (United States)

    Paglia, David N.; Yang, Xiaochuan; Kalinowski, Judith; Jastrzebski, Sandra

    2016-01-01

    Runt-related transcription factor 1 (Runx1), a master regulator of hematopoiesis, is expressed in preosteoclasts. Previously we evaluated the bone phenotype of CD11b-Cre Runx1fl/fl mice and demonstrated enhanced osteoclasts and decreased bone mass in males. However, an assessment of the effects of Runx1 deletion in female osteoclast precursors was impossible with this model. Moreover, the role of Runx1 in myeloid cell differentiation into other lineages is unknown. Therefore, we generated LysM-Cre Runx1fl/fl mice, which delete Runx1 equally (∼80% deletion) in myeloid precursor cells from both sexes and examined the capacity of these cells to differentiate into osteoclasts and phagocytic and antigen-presenting cells. Both female and male LysM-Cre Runx1fl/fl mice had decreased trabecular bone mass (72% decrease in bone volume fraction) and increased osteoclast number (2–3 times) (P LysM-Cre did not alter the number of myeloid precursor cells in bone marrow or their ability to differentiate into phagocytizing or antigen-presenting cells. This study demonstrates that abrogation of Runx1 in multipotential myeloid precursor cells significantly and specifically enhanced the ability of receptor activator of nuclear factor-κB ligand to stimulate osteoclast formation and fusion in female and male mice without affecting other myeloid cell fates. In turn, increased osteoclast activity in LysM-Cre Runx1fl/fl mice likely contributed to a decrease in bone mass. These dramatic effects were not due to increased osteoclast precursors in the deleted mutants and argue that inhibition of Runx1 in multipotential myeloid precursor cells is important for osteoclast formation and function. PMID:27267711

  1. The oncofusion protein FUS-ERG targets key hematopoietic regulators and modulates the all-trans retinoic acid signaling pathway in t(16;21) acute myeloid leukemia.

    Science.gov (United States)

    Sotoca, A M; Prange, K H M; Reijnders, B; Mandoli, A; Nguyen, L N; Stunnenberg, H G; Martens, J H A

    2016-04-14

    The ETS transcription factor ERG has been implicated as a major regulator of both normal and aberrant hematopoiesis. In acute myeloid leukemias harboring t(16;21), ERG function is deregulated due to a fusion with FUS/TLS resulting in the expression of a FUS-ERG oncofusion protein. How this oncofusion protein deregulates the normal ERG transcription program is unclear. Here, we show that FUS-ERG acts in the context of a heptad of proteins (ERG, FLI1, GATA2, LYL1, LMO2, RUNX1 and TAL1) central to proper expression of genes involved in maintaining a stem cell hematopoietic phenotype. Moreover, in t(16;21) FUS-ERG co-occupies genomic regions bound by the nuclear receptor heterodimer RXR:RARA inhibiting target gene expression and interfering with hematopoietic differentiation. All-trans retinoic acid treatment of t(16;21) cells as well as FUS-ERG knockdown alleviate the myeloid-differentiation block. Together, the results suggest that FUS-ERG acts as a transcriptional repressor of the retinoic acid signaling pathway.

  2. Origin and fate of hematopoietic stem precursor cells in the leech Hirudo medicinalis

    OpenAIRE

    GRIMALDI, A

    2016-01-01

    The hematopoietic process by which blood cells are formed has been intensely studied for over a century using several model systems. An increasing amount of evidence shows that hematopoiesis, angiogenesis, immune response and the regulating these processes (i.e., cytokines) are highly conserved across taxonomic groups. Over the last decade, the leech Hirudo medicinalis, given its simple anatomy and its repertoire of less varied cell types when compared to vertebrates, has been ...

  3. A retrospective comparison of autologous and unrelated donor hematopoietic cell transplantation in myelodysplastic syndrome and secondary acute myeloid leukemia: a report on behalf of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT).

    NARCIS (Netherlands)

    Al-Ali, H.K.; Brand, R.; Biezen, A. van; Finke, J.; Boogaerts, M.; Fauser, A.A.; Egeler, M.; Cahn, J.Y.; Arnold, R.; Biersack, H.; Niederwieser, D.; Witte, T.J.M. de

    2007-01-01

    Hematopoietic cell transplantation (HCT) is an effective treatment for myelodysplasia (MDS) and secondary acute myeloid leukemia (sAML). In this study, outcome of 593 patients with MDS/sAML after autologous and allogeneic HCT from a matched unrelated donor (MUD) were compared. A total of 167 (28%) p

  4. Repercussion of Megakaryocyte-Specific Gata1 Loss on Megakaryopoiesis and the Hematopoietic Precursor Compartment.

    Directory of Open Access Journals (Sweden)

    Marjolein Meinders

    Full Text Available During hematopoiesis, transcriptional programs are essential for the commitment and differentiation of progenitors into the different blood lineages. GATA1 is a transcription factor expressed in several hematopoietic lineages and essential for proper erythropoiesis and megakaryopoiesis. Megakaryocyte-specific genes, such as GP1BA, are known to be directly regulated by GATA1. Mutations in GATA1 can lead to dyserythropoietic anemia and pseudo gray-platelet syndrome. Selective loss of Gata1 expression in adult mice results in macrothrombocytopenia with platelet dysfunction, characterized by an excess of immature megakaryocytes. To specifically analyze the impact of Gata1 loss in mature committed megakaryocytes, we generated Gata1-Lox|Pf4-Cre mice (Gata1cKOMK. Consistent with previous findings, Gata1cKOMK mice are macrothrombocytopenic with platelet dysfunction. Supporting this notion we demonstrate that Gata1 regulates directly the transcription of Syk, a tyrosine kinase that functions downstream of Clec2 and GPVI receptors in megakaryocytes and platelets. Furthermore, we show that Gata1cKOMK mice display an additional aberrant megakaryocyte differentiation stage. Interestingly, these mice present a misbalance of the multipotent progenitor compartment and the erythroid lineage, which translates into compensatory stress erythropoiesis and splenomegaly. Despite the severe thrombocytopenia, Gata1cKOMK mice display a mild reduction of TPO plasma levels, and Gata1cKOMK megakaryocytes show a mild increase in Pf4 mRNA levels; such a misbalance might be behind the general hematopoietic defects observed, affecting locally normal TPO and Pf4 levels at hematopoietic stem cell niches.

  5. Origin and fate of hematopoietic stem precursor cells in the leech Hirudo medicinalis

    Directory of Open Access Journals (Sweden)

    A Grimaldi

    2016-07-01

    Full Text Available The hematopoietic process by which blood cells are formed has been intensely studied for over a century using several model systems. An increasing amount of evidence shows that hematopoiesis, angiogenesis, immune response and the regulating these processes (i.e., cytokines are highly conserved across taxonomic groups. Over the last decade, the leech Hirudo medicinalis, given its simple anatomy and its repertoire of less varied cell types when compared to vertebrates, has been proposed as a powerful model for studying basic steps of hematopoiesis and immune responses. Here, I provide a broad overview of H. medicinalis hematopoiesis and I highlight the benefits of using leech as a model.

  6. Loss of IKKβ but Not NF-κB p65 Skews Differentiation towards Myeloid over Erythroid Commitment and Increases Myeloid Progenitor Self-Renewal and Functional Long-Term Hematopoietic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    Full Text Available NF-κB is an important regulator of both differentiation and function of lineage-committed hematopoietic cells. Targeted deletion of IκB kinase (IKK β results in altered cytokine signaling and marked neutrophilia. To investigate the role of IKKβ in regulation of hematopoiesis, we employed Mx1-Cre mediated IKKβ conditional knockout mice. As previously reported, deletion of IKKβ in hematopoietic cells results in neutrophilia, and we now also noted decreased monocytes and modest anemia. Granulocyte-macrophage progenitors (GMPs accumulated markedly in bone marrow of IKKβ deleted mice whereas the proportion and number of megakaryocyte-erythrocyte progenitors (MEP decreased. Accordingly, we found a significantly reduced frequency of proerythroblasts and basophilic and polychromatic erythroblasts, and IKKβ-deficient bone marrow cells yielded a significantly decreased number of BFU-E compared to wild type. These changes are associated with elevated expression of C/EBPα, Gfi1, and PU.1 and diminished Gata1, Klf1, and SCL/Tal1 in IKKβ deficient Lineage-Sca1+c-Kit+ (LSK cells. In contrast, no effect on erythropoiesis or expression of lineage-related transcription factors was found in marrow lacking NF-κB p65. Bone marrow from IKKβ knockout mice has elevated numbers of phenotypic long and short term hematopoietic stem cells (HSC. A similar increase was observed when IKKβ was deleted after marrow transplantation into a wild type host, indicating cell autonomous expansion. Myeloid progenitors from IKKβ- but not p65-deleted mice demonstrate increased serial replating in colony-forming assays, indicating increased cell autonomous self-renewal capacity. In addition, in a competitive repopulation assay deletion of IKKβ resulted in a stable advantage of bone marrow derived from IKKβ knockout mice. In summary, loss of IKKβ resulted in significant effects on hematopoiesis not seen upon NF-κB p65 deletion. These include increased myeloid and reduced

  7. A novel role of hematopoietic CCL5 in promoting triple-negative mammary tumor progression by regulating generation of myeloid-derived suppressor cells

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Dandan Lv; Ha-Jeong Kim; Robert A Kurt; Wen Bu; Yi Li; Xiaojing Ma

    2013-01-01

    CCL5 is a member of the CC chemokine family expressed in a wide array of immune and non-immune cells in response to stress signals.CCL5 expression correlates with advanced human breast cancer.However,its functional significance and mode of action have not been established.Here,we show that CCL5-deficient mice are resistant to highly aggressive,triple-negative mammary tumor growth.Hematopoietic CCL5 is dominant in this phenotype.The absence of hematopoietic CCL5 causes aberrant generation of CD11b+/Gr-1+,myeloid-derived suppressor cells (MDSCs) in the bone marrow in response to tumor growth by accumulating Ly6Chi and Ly6G+ MDSCs with impaired capacity to suppress cytotoxicity of CD8+ T cells.These properties of CCL5 are observed in both orthotopic and spontaneous mammary tumors.Antibody-mediated systemic blockade of CCL5 inhibits tumor progression and enhances the efficacy of therapeutic vaccination against non-immunogenic tumors.CCL5 also helps maintain the immunosuppressive capacity of human MDSCs.Our study uncovers a novel,chemokine-independent activity of the hematopoietically derived CCL5 that promotes mammary tumor progression via generating MDSCs in the bone marrow in cooperation with tumor-derived colony-stimulating factors.The study sheds considerable light on the interplay between the hematopoietic compartment and tumor niche.Because of the apparent dispensable nature of this molecule in normal physiology,CCL5 may represent an excellent therapeutic target in immunotherapy for breast cancer as well as a broad range of solid tumors that have significant amounts of MDSC infiltration.

  8. In Vivo Deletion of the Cebpa +37 kb Enhancer Markedly Reduces Cebpa mRNA in Myeloid Progenitors but Not in Non-Hematopoietic Tissues to Impair Granulopoiesis.

    Directory of Open Access Journals (Sweden)

    Hong Guo

    Full Text Available The murine Cebpa gene contains a +37 kb, evolutionarily conserved 440 bp enhancer that directs high-level expression to myeloid progenitors in transgenic mice. The enhancer is bound and activated by Runx1, Scl, GATA2, C/EBPα, c-Myb, Pu.1, and additional Ets factors in myeloid cells. CRISPR/Cas9-mediated replacement of the wild-type enhancer with a variant mutant in its seven Ets sites leads to 20-fold reduction of Cebpa mRNA in the 32Dcl3 myeloid cell line. To determine the effect of deleting the enhancer in vivo, we now characterize C57BL/6 mice in which loxP sites flank a 688 bp DNA segment containing the enhancer. CMV-Cre mediated germline deletion resulted in diminution of the expected number of viable Enh(f/f;CMV-Cre offspring, with 28-fold reduction in marrow Cebpa mRNA but normal levels in liver, lung, adipose, intestine, muscle, and kidney. Cre-transduction of lineage-negative marrow cells in vitro reduced Cebpa mRNA 12-fold, with impairment of granulocytic maturation, morphologic blast accumulation, and IL-3 dependent myeloid colony replating for >12 generations. Exposure of Enh(f/f;Mx1-Cre mice to pIpC led to 14-fold reduction of Cebpa mRNA in GMP or CMP, 30-fold reduction in LSK, and <2-fold reduction in the LSK/SLAM subset. FACS analysis of marrow from these mice revealed 10-fold reduced neutrophils, 3-fold decreased GMP, and 3-fold increased LSK cells. Progenitor cell cycle progression was mildly impaired. Granulocyte and B lymphoid colony forming units were reduced while monocytic and erythroid colonies were increased, with reduced Pu.1 and Gfi1 and increased Egr1 and Klf4 in GMP. Finally, competitive transplantation indicated preservation of functional long-term hematopoietic stem cells upon enhancer deletion and confirmed marrow-intrinsic impairment of granulopoiesis and B cell generation with LSK and monocyte lineage expansion. These findings demonstrate a critical role for the +37 kb Cebpa enhancer for hematopoietic

  9. MicroRNA-150 Expression Induces Myeloid Differentiation of Human Acute Leukemia Cells and Normal Hematopoietic Progenitors

    Science.gov (United States)

    Morris, Valerie A.; Zhang, Ailin; Yang, Taimei; Stirewalt, Derek L.; Ramamurthy, Ranjani; Meshinchi, Soheil; Oehler, Vivian G.

    2013-01-01

    In acute myeloid leukemia (AML) and blast crisis (BC) chronic myeloid leukemia (CML) normal differentiation is impaired. Differentiation of immature stem/progenitor cells is critical for normal blood cell function. MicroRNAs (miRNAs or miRs) are small non-coding RNAs that interfere with gene expression by degrading messenger RNAs (mRNAs) or blocking protein translation. Aberrant miRNA expression is a feature of leukemia and miRNAs also play a significant role in normal hematopoiesis and differentiation. We have identified miRNAs differentially expressed in AML and BC CML and identified a new role for miR-150 in myeloid differentiation. Expression of miR-150 is low or absent in BC CML and AML patient samples and cell lines. We have found that expression of miR-150 in AML cell lines, CD34+ progenitor cells from healthy individuals, and primary BC CML and AML patient samples at levels similar to miR-150 expression in normal bone marrow promotes myeloid differentiation of these cells. MYB is a direct target of miR-150, and we have identified that the observed phenotype is partially mediated by MYB. In AML cell lines, differentiation of miR-150 expressing cells occurs independently of retinoic acid receptor α (RARA) signaling. High-throughput gene expression profiling (GEP) studies of the AML cell lines HL60, PL21, and THP-1 suggest that activation of CEPBA, CEBPE, and cytokines associated with myeloid differentiation in miR-150 expressing cells as compared to control cells contributes to myeloid differentiation. These data suggest that miR-150 promotes myeloid differentiation, a previously uncharacterized role for this miRNA, and that absent or low miR-150 expression contributes to blocked myeloid differentiation in acute leukemia cells. PMID:24086639

  10. MicroRNA-150 expression induces myeloid differentiation of human acute leukemia cells and normal hematopoietic progenitors.

    Directory of Open Access Journals (Sweden)

    Valerie A Morris

    Full Text Available In acute myeloid leukemia (AML and blast crisis (BC chronic myeloid leukemia (CML normal differentiation is impaired. Differentiation of immature stem/progenitor cells is critical for normal blood cell function. MicroRNAs (miRNAs or miRs are small non-coding RNAs that interfere with gene expression by degrading messenger RNAs (mRNAs or blocking protein translation. Aberrant miRNA expression is a feature of leukemia and miRNAs also play a significant role in normal hematopoiesis and differentiation. We have identified miRNAs differentially expressed in AML and BC CML and identified a new role for miR-150 in myeloid differentiation. Expression of miR-150 is low or absent in BC CML and AML patient samples and cell lines. We have found that expression of miR-150 in AML cell lines, CD34+ progenitor cells from healthy individuals, and primary BC CML and AML patient samples at levels similar to miR-150 expression in normal bone marrow promotes myeloid differentiation of these cells. MYB is a direct target of miR-150, and we have identified that the observed phenotype is partially mediated by MYB. In AML cell lines, differentiation of miR-150 expressing cells occurs independently of retinoic acid receptor α (RARA signaling. High-throughput gene expression profiling (GEP studies of the AML cell lines HL60, PL21, and THP-1 suggest that activation of CEPBA, CEBPE, and cytokines associated with myeloid differentiation in miR-150 expressing cells as compared to control cells contributes to myeloid differentiation. These data suggest that miR-150 promotes myeloid differentiation, a previously uncharacterized role for this miRNA, and that absent or low miR-150 expression contributes to blocked myeloid differentiation in acute leukemia cells.

  11. Characteristics of myeloid differentiation and maturation pathway derived from human hematopoietic stem cells exposed to different linear energy transfer radiation types.

    Directory of Open Access Journals (Sweden)

    Satoru Monzen

    Full Text Available Exposure of hematopoietic stem/progenitor cells (HSPCs to ionizing radiation causes a marked suppression of mature functional blood cell production in a linear energy transfer (LET- and/or dose-dependent manner. However, little information about LET effects on the proliferation and differentiation of HSPCs has been reported. With the aim of characterizing the effects of different types of LET radiations on human myeloid hematopoiesis, in vitro hematopoiesis in Human CD34(+ cells exposed to carbon-ion beams or X-rays was compared. Highly purified CD34(+ cells exposed to each form of radiation were plated onto semi-solid culture for a myeloid progenitor assay. The surviving fractions of total myeloid progenitors, colony-forming cells (CFC, exposed to carbon-ion beams were significantly lower than of those exposed to X-rays, indicating that CFCs are more sensitive to carbon-ion beams (D(0 = 0.65 than to X-rays (D(0 = 1.07. Similar sensitivities were observed in granulocyte-macrophage and erythroid progenitors, respectively. However, the sensitivities of mixed-type progenitors to both radiation types were similar. In liquid culture for 14 days, no significant difference in total numbers of mononuclear cells was observed between non-irradiated control culture and cells exposed to 0.5 Gy X-rays, whereas 0.5 Gy carbon-ion beams suppressed cell proliferation to 4.9% of the control, a level similar to that for cells exposed to 1.5 Gy X-rays. Cell surface antigens associated with terminal maturation, such as CD13, CD14, and CD15, on harvest from the culture of X-ray-exposed cells were almost the same as those from the non-irradiated control culture. X-rays increased the CD235a(+ erythroid-related fraction, whereas carbon-ion beams increased the CD34(+CD38(- primitive cell fraction and the CD13(+CD14(+/-CD15(- fraction. These results suggest that carbon-ion beams inflict severe damage on the clonal growth of myeloid HSPCs, although the intensity of cell

  12. Characteristics of myeloid differentiation and maturation pathway derived from human hematopoietic stem cells exposed to different linear energy transfer radiation types.

    Science.gov (United States)

    Monzen, Satoru; Yoshino, Hironori; Kasai-Eguchi, Kiyomi; Kashiwakura, Ikuo

    2013-01-01

    Exposure of hematopoietic stem/progenitor cells (HSPCs) to ionizing radiation causes a marked suppression of mature functional blood cell production in a linear energy transfer (LET)- and/or dose-dependent manner. However, little information about LET effects on the proliferation and differentiation of HSPCs has been reported. With the aim of characterizing the effects of different types of LET radiations on human myeloid hematopoiesis, in vitro hematopoiesis in Human CD34(+) cells exposed to carbon-ion beams or X-rays was compared. Highly purified CD34(+) cells exposed to each form of radiation were plated onto semi-solid culture for a myeloid progenitor assay. The surviving fractions of total myeloid progenitors, colony-forming cells (CFC), exposed to carbon-ion beams were significantly lower than of those exposed to X-rays, indicating that CFCs are more sensitive to carbon-ion beams (D(0) = 0.65) than to X-rays (D(0) = 1.07). Similar sensitivities were observed in granulocyte-macrophage and erythroid progenitors, respectively. However, the sensitivities of mixed-type progenitors to both radiation types were similar. In liquid culture for 14 days, no significant difference in total numbers of mononuclear cells was observed between non-irradiated control culture and cells exposed to 0.5 Gy X-rays, whereas 0.5 Gy carbon-ion beams suppressed cell proliferation to 4.9% of the control, a level similar to that for cells exposed to 1.5 Gy X-rays. Cell surface antigens associated with terminal maturation, such as CD13, CD14, and CD15, on harvest from the culture of X-ray-exposed cells were almost the same as those from the non-irradiated control culture. X-rays increased the CD235a(+) erythroid-related fraction, whereas carbon-ion beams increased the CD34(+)CD38(-) primitive cell fraction and the CD13(+)CD14(+/-)CD15(-) fraction. These results suggest that carbon-ion beams inflict severe damage on the clonal growth of myeloid HSPCs, although the intensity of cell surface

  13. Ezh2 Controls an Early Hematopoietic Program and Growth and Survival Signaling in Early T Cell Precursor Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Etienne Danis

    2016-03-01

    Full Text Available Early T cell precursor acute lymphoblastic leukemia (ETP-ALL is an aggressive subtype of ALL distinguished by stem-cell-associated and myeloid transcriptional programs. Inactivating alterations of Polycomb repressive complex 2 components are frequent in human ETP-ALL, but their functional role is largely undefined. We have studied the involvement of Ezh2 in a murine model of NRASQ61K-driven leukemia that recapitulates phenotypic and transcriptional features of ETP-ALL. Homozygous inactivation of Ezh2 cooperated with oncogenic NRASQ61K to accelerate leukemia onset. Inactivation of Ezh2 accentuated expression of genes highly expressed in human ETP-ALL and in normal murine early thymic progenitors. Moreover, we found that Ezh2 contributes to the silencing of stem-cell- and early-progenitor-cell-associated genes. Loss of Ezh2 also resulted in increased activation of STAT3 by tyrosine 705 phosphorylation. Our data mechanistically link Ezh2 inactivation to stem-cell-associated transcriptional programs and increased growth/survival signaling, features that convey an adverse prognosis in patients.

  14. Impact of genomic risk factors on outcome after hematopoietic stem cell transplantation for patients with chronic myeloid leukemia.

    NARCIS (Netherlands)

    Dickinson, A.M.; Pearce, K.F.; Norden, J.; O'Brien, S.G.; Holler, E.; Bickeboller, H.; Balavarca, Y.; Rocha, V.; Kolb, H.J.; Hromadnikova, I.; Sedlacek, P.; Niederwieser, D.; Brand, R.; Ruutu, T.; Apperley, J.; Szydlo, R.; Goulmy, E.; Siegert, W.; Witte, T.J.M. de; Gratwohl, A.

    2010-01-01

    BACKGROUND: Non-HLA gene polymorphisms have been shown to influence outcome after allogeneic hematopoietic stem cell transplantation. Results were derived from heterogeneous, small populations and their value remains a matter of debate. DESIGN AND METHODS: In this study, we assessed the effect of si

  15. Impact of genomic risk factors on outcome after hematopoietic stem cell transplantation for patients with chronic myeloid leukemia

    NARCIS (Netherlands)

    Dickinson, Anne M.; Pearce, Kim F.; Norden, Jean; O'Brien, Stephen G.; Holler, Ernst; Bickeboeller, Heike; Balavarca, Yesilda; Rocha, Vanderson; Kolb, Hans-Jochem; Hromadnikova, Ilona; Sedlacek, Petr; Niederwieser, Dietger; Brand, Ronald; Ruutu, Tapatti; Apperleyy, Jane; Szydlo, Richard; Goulmy, Els; Siegert, Wolfgang; de Witte, Theo; Gratwohl, Alois

    2010-01-01

    Background Non-HLA gene polymorphisms have been shown to influence outcome after allogeneic hematopoietic stem cell transplantation. Results were derived from heterogeneous, small populations and their value remains a matter of debate. Design and Methods In this study, we assessed the effect of sing

  16. Impact of ABO incompatibility on patients’ outcome after haploidentical hematopoietic stem cell transplantation for acute myeloid leukemia - a report from the Acute Leukemia Working Party of the EBMT

    Science.gov (United States)

    Canaani, Jonathan; Savani, Bipin N; Labopin, Myriam; Huang, Xiao-jun; Ciceri, Fabio; Arcese, William; Tischer, Johanna; Koc, Yener; Bruno, Benedetto; Gülbas, Zafer; Blaise, Didier; Maertens, Johan; Ehninger, Gerhard; Mohty, Mohamad; Nagler, Arnon

    2017-01-01

    A significant proportion of hematopoietic stem cell transplants are performed with ABO-mismatched donors. The impact of ABO mismatch on outcome following transplantation remains controversial and there are no published data regarding the impact of ABO mismatch in acute myeloid leukemia patients receiving haploidentical transplants. Using the European Blood and Marrow Transplant Acute Leukemia Working Group registry we identified 837 patients who underwent haploidentical transplantation. Comparative analysis was performed between patients who received ABO-matched versus ABO-mismatched haploidentical transplants for common clinical outcome variables. Our cohort consisted of 522 ABO-matched patients and 315 ABO-mismatched patients including 150 with minor, 127 with major, and 38 with bi-directional ABO mismatching. There were no significant differences between ABO matched and mismatched patients in terms of baseline disease and clinical characteristics. Major ABO mismatching was associated with inferior day 100 engraftment rate whereas multivariate analysis showed that bi-directional mismatching was associated with increased risk of grade II–IV acute graft-versus-host disease [hazard ratio (HR) 2.387; 95% confidence interval (CI): 1.22–4.66; P=0.01). Non-relapse mortality, relapse incidence, leukemia-free survival, overall survival, and chronic graft-versus-host disease rates were comparable between ABO-matched and -mismatched patients. Focused analysis on stem cell source showed that patients with minor mismatching transplanted with bone marrow grafts experienced increased grade II–IV acute graft-versus-host disease rates (HR 2.03; 95% CI: 1.00–4.10; P=0.04). Patients with major ABO mismatching and bone marrow grafts had decreased survival (HR=1.82; CI 95%: 1.048 – 3.18; P=0.033). In conclusion, ABO incompatibility has a marginal but significant clinical effect in acute myeloid leukemia patients undergoing haploidentical transplantation. PMID:28255020

  17. Splenic irradiation before hematopoietic stem cell transplantation for chronic myeloid leukemia: long-term follow-up of a prospective randomized study.

    Science.gov (United States)

    Gratwohl, Alois; Iacobelli, Simona; Bootsman, Natalia; van Biezen, Anja; Baldomero, Helen; Arcese, William; Arnold, Renate; Bron, Dominique; Cordonnier, Catherine; Ernst, Peter; Ferrant, Augustin; Frassoni, Francesco; Gahrton, Gösta; Richard, Carlos; Kolb, Hans Jochem; Link, Hartmut; Niederwieser, Dietger; Ruutu, Tapani; Schattenberg, Anton; Schmitz, Norbert; Torres-Gomez, Antonio; Zwaan, Ferry; Apperley, Jane; Olavarria, Eduardo; Kröger, Nicolaus

    2016-05-01

    In the context of discussions on the reproducibility of clinical studies, we reanalyzed a prospective randomized study on the role of splenic irradiation as adjunct to the conditioning for hematopoietic stem cell transplantation (HSCT) for chronic myeloid leukemia (CML). Between 1986 and 1989, a total of 229 patients with CML were randomized; of these, 225 (98 %; 112 with, 113 without splenic irradiation) could be identified in the database and their survival updated. Results confirmed the early findings with no significant differences in all measured endpoints (overall survival at 25 years: 42.7 %, 32.0-52.4 % vs 52.9 %, 43.2-62.6 %; p = 0.355, log rank test). Additional splenic irradiation failed to reduce relapse incidence. It did not increase non-relapse mortality nor the risk of late secondary malignancies. Comforting are the long-term results from this predefined consecutive cohort of patients: more than 60 % were alive at plus 25 years when they were transplanted with a low European Society for Blood and Marrow Transplantation (EBMT) risk sore. This needs to be considered today when treatment options are discussed for patients who failed initial tyrosine kinase inhibitor therapy and have an available low risk HLA-identical donor.

  18. Impact of cytogenetics on outcome of matched unrelated donor hematopoietic stem cell transplantation for acute myeloid leukemia in first or second complete remission.

    Science.gov (United States)

    Tallman, Martin S; Dewald, Gordon W; Gandham, Sharavi; Logan, Brent R; Keating, Armand; Lazarus, Hillard M; Litzow, Mark R; Mehta, Jayesh; Pedersen, Tanya; Pérez, Waleska S; Rowe, Jacob M; Wetzler, Meir; Weisdorf, Daniel J

    2007-07-01

    We compared the treatment-related mortality, relapse rate, disease-free survival (DFS), and overall survival (OS) by cytogenetic risk group of 261 patients with acute myeloid leukemia in first complete remission (CR1) and 299 patients in CR2 in undergoing matched unrelated donor hematopoietic stem cell transplantation (HSCT). For patients in first CR, the DFS and OS at 5 years were similar for the favorable, intermediate, and unfavorable risk groups at 29% (95% confidence interval [CI], 8%-56%) and 30% (22%-38%); 27% (19%-39%) and 29% (8%-56%); and 30% (95% CI, 22%-38%) and 30% (95% CI, 20%-41%), respectively. For patients in second CR, the DFS and OS at 5 years were 42% (95% CI, 33%-52%) and 35% (95% CI, 28%-43%); 38% (95% CI, 23%-54%) and 45% (95% CI, 35%-55%); and 37% (95% CI, 30%-45%) and 36% (95% CI, 21%-53%), respectively. Cytogenetics had little influence on the overall outcome for patients in first CR. In second CR, outcome was modestly, but not significantly, better for patients with favorable cytogenetics. The graft-versus-leukemia effect appeared effective, even in patients with unfavorable cytogenetics. However, treatment-related mortality was high. Matched unrelated donor HSCT should be considered for all patients with unfavorable cytogenetics who lack a suitable HLA-matched sibling donor.

  19. Extracellular ATP induces apoptosis through P2X7R activation in acute myeloid leukemia cells but not in normal hematopoietic stem cells

    Science.gov (United States)

    Salvestrini, Valentina; Orecchioni, Stefania; Talarico, Giovanna; Reggiani, Francesca; Mazzetti, Cristina; Bertolini, Francesco; Orioli, Elisa; Adinolfi, Elena; Virgilio, Francesco Di; Pezzi, Annalisa; Cavo, Michele

    2017-01-01

    Recent studies have shown that high ATP levels exhibit direct cytotoxic effects on several cancer cells types. Among the receptors engaged by ATP, P2×7R is the most consistently expressed by tumors. P2×7R is an ATP-gated ion channel that could drive the opening of a non-selective pore, triggering cell-death signal. We previously demonstrated that acute myeloid leukemia (AML) cells express high level of P2×7R. Here, we show that P2×7R activation with high dose ATP induces AML blast cells apoptosis. Moreover, P2×7R is also expressed on leukemic stem/progenitor cells (LSCs) which are sensitive to ATP-mediated cytotoxicity. Conversely, this cytotoxic effect was not observed on normal hematopoietic stem/progenitor cells (HSCs). Notably, the antileukemic activity of ATP was also observed in presence of bone marrow stromal cells and its addition to the culture medium enhanced cytosine arabinoside cytotoxicity despite stroma-induced chemoresistance. Xenotransplant experiments confirmed ATP antineoplastic activity in vivo. Overall, our results demonstrate that P2×7R stimulation by ATP induced a therapeutic response in AML at the LSC level while the normal stem cell compartment was not affected. These results provide evidence that ATP would be promising for developing innovative therapy for AML. PMID:27980223

  20. Mixed T Lymphocyte Chimerism after Allogeneic Hematopoietic Transplantation Is Predictive for Relapse of Acute Myeloid Leukemia and Myelodysplastic Syndromes.

    Science.gov (United States)

    Lee, Hans C; Saliba, Rima M; Rondon, Gabriela; Chen, Julianne; Charafeddine, Yasmeen; Medeiros, L Jeffrey; Alatrash, Gheath; Andersson, Borje S; Popat, Uday; Kebriaei, Partow; Ciurea, Stefan; Oran, Betul; Shpall, Elizabeth; Champlin, Richard

    2015-11-01

    Chimerism testing after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) represents a promising tool for predicting disease relapse, although its precise role in this setting remains unclear. We investigated the predictive value of T lymphocyte chimerism analysis at 90 to 120 days after allo-HSCT in 378 patients with AML/MDS who underwent busulfan/fludarabine-based myeloablative preparative regimens. Of 265 (70%) patients with available T lymphocyte chimerism data, 43% of patients in first or second complete remission (CR1/CR2) at the time of transplantation had complete (100%) donor T lymphocytes at day +90 to +120 compared with 60% of patients in the non-CR1/CR2 cohort (P = .005). In CR1/CR2 patients, donor T lymphocyte chimerism ≤ 85% at day +90 to +120 was associated with a higher frequency of 3-year disease progression (29%; 95% confidence interval [CI], 18% to 46% versus 15%; 95% CI, 9% to 23%; hazard ratio [HR], 2.1; P = .04). However, in the more advanced, non-CR1/CR2 cohort, mixed T lymphocyte chimerism was not associated with relapse (37%; 95% CI, 20% to 66% versus 34%; 95% CI, 25% to 47%; HR, 1.3; P = .60). These findings demonstrate that early T lymphocyte chimerism testing at day +90 to +120 is a useful approach for predicting AML/MDS disease recurrence in patients in CR1/CR2 at the time of transplantation.

  1. Prognostic implication of gene mutations on overall survival in the adult acute myeloid leukemia patients receiving or not receiving allogeneic hematopoietic stem cell transplantations.

    Science.gov (United States)

    Chou, Sheng-Chieh; Tang, Jih-Luh; Hou, Hsin-An; Chou, Wen-Chien; Hu, Fu-Chang; Chen, Chien-Yuan; Yao, Ming; Ko, Bor-Sheng; Huang, Shang-Yi; Tsay, Woei; Chen, Yao-Chang; Tien, Hwei-Fang

    2014-11-01

    Several gene mutations have been shown to provide clinical implications in patients with acute myeloid leukemia (AML). However, the prognostic impact of gene mutations in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains unclear. We retrospectively evaluated the clinical implications of 8 gene mutations in 325 adult AML patients; 100 of them received allo-HSCT and 225 did not. The genetic alterations analyzed included NPM1, FLT3-ITD, FLT3-TKD, CEBPA, RUNX1, RAS, MLL-PTD, and WT1. In patients who did not receive allo-HSCT, older age, higher WBC count, higher lactate dehydrogenase level, unfavorable karyotype, and RUNX1 mutation were significantly associated with poor overall survival (OS), while CEBPA double mutation (CEBPA(double-mut)) and NPM1(mut)/FLT3-ITD(neg) were associated with good outcome. However, in patients who received allo-HSCT, only refractory disease status at the time of HSCT and unfavorable karyotype were independent poor prognostic factors. Surprisingly, RUNX1 mutation was an independent good prognostic factor for OS in multivariate analysis. The prognostic impact of FLT3-ITD or NPM1(mut)/FLT3-ITD(neg) was lost in this group of patients receiving allo-HSCT, while CEBPA(double-mut) showed a trend to be a good prognostic factor. In conclusion, allo-HSCT can ameliorate the unfavorable influence of some poor-risk gene mutations in AML patients. Unexpectedly, the RUNX1 mutation showed a favorable prognostic impact in the context of allo-HSCT. These results need to be confirmed by further studies with more AML patients.

  2. Transplante de células-tronco hematopoéticas e leucemia mieloide aguda: diretrizes brasileiras Hematopoietic stem cells transplantation and acute myeloid leukemia: Brazilian guidelines

    Directory of Open Access Journals (Sweden)

    Lucia Mariano R. Silla

    2010-05-01

    Full Text Available O objetivo deste trabalho foi definir diretrizes para a indicação do transplante de células-tronco hematopoéticas (TCTH no tratamento da leucemia mieloide aguda (LMA no Brasil. O papel do TCTH no tratamento da LMA foi discutido pelosautores e apresentado para a Sociedade Brasileira de Transplante de Medula Óssea na reunião sobre Diretrizes Brasileiras para o TCTH, que o ratificou. Este consenso foi baseado na revisão da literatura internacional e na experiência brasileira em TCTH para o tratamento da LMA. O tratamento ideal para leucemia mieloide aguda em primeira remissão completa (1RC ainda não está definido. Há consenso na indicação do TCTH alogênico, com condicionamento mieloablativo, para pacientes que apresentem alterações citogenéticas consideradas de alto risco. O TCTH alogênico não está indicado na 1RC para pacientes de baixo risco citogenético e, aparentemente, o TCTH alogênico, autólogo ou a quimioterapia de consolidação são equivalentes para os pacientes de risco intermediário.The objective of this work was to define guidelines for the indication of hematopoietic stem cells transplantation (HSCT in the treatment of acute myeloid leukemia (AML in Brazil. The role of HSCT in the treatment of AML was discussed by the authors and presented to the Brazilian Society of Bone Marrow Transplantation in a meeting to formulate and ratify the Brazilian Guidelines on HSCT. This consensus was based on a review of international publications and on the Brazilian experience in HSCT for the treatment of AML. The optimal treatment for AML in first complete remission (1CR has not been defined yet. There is consensus on the indication of allogeneic HSCT with myeloablative conditioning for patients who present high risk cytogenetic changes. Allogeneic HSCT is not indicated for low cytogenetic risk 1RC patients and, apparently, allogeneic and autologous HSCT and consolidation chemotherapy are similar for intermediate risk

  3. Differential sensitivity of T lymphocytes and hematopoietic precursor cells to photochemotherapy with 8-methoxypsoralen and ultraviolet A light.

    Science.gov (United States)

    Mabed, Mohamed; Coffe, Christian; Racadot, Evelyne; Angonin, Regis; Pavey, Jean-Jaques; Tiberghien, Pierre; Herve, Patrick

    2006-01-01

    The combination of 8-methoxypsoralen (8-MOP) and long wave ultraviolet radiation (UV-A) has immunomodulatory effects and might abolish both graft-vs-host and host-vs-graft reactions after allogeneic hematopoietic stem cell transplantation. In the present study, we have confirmed the sensitivity of T lymphocytes to 8-MOP treatment plus UV-A exposure as evidenced by the abrogation of the alloreactivity in mixed lymphocyte cultures as well as the inhibition of the response to phytohemagglutinin A. However, the clonogenic capacity of the bone marrow hematopoietic progenitors was inhibited with UV-A doses lower than the doses needed to inhibit T-lymphocytes alloreactivity. Moreover, long-term bone marrow cultures showed that 8-MOP plus UV-A treatment had detrimental effects on the more immature bone marrow stem cells. These data were confirmed when murine bone marrow graft was treated with 8-MOP, exposed to UV-A, then transplanted into semiallogeneic recipient mice. The treated cells could not maintain their clonogenic capacity in vivo resulting in death of all animals. Taken together, these data show that ex vivo 8-MOP plus UV-A treatment of the marrow graft cannot be used to prevent post-bone marrow transplantation alloreactivity.

  4. NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights.

    Science.gov (United States)

    Gough, Sheryl M; Slape, Christopher I; Aplan, Peter D

    2011-12-08

    Structural chromosomal rearrangements of the Nucleoporin 98 gene (NUP98), primarily balanced translocations and inversions, are associated with a wide array of hematopoietic malignancies. NUP98 is known to be fused to at least 28 different partner genes in patients with hematopoietic malignancies, including acute myeloid leukemia, chronic myeloid leukemia in blast crisis, myelodysplastic syndrome, acute lymphoblastic leukemia, and bilineage/biphenotypic leukemia. NUP98 gene fusions typically encode a fusion protein that retains the amino terminus of NUP98; in this context, it is important to note that several recent studies have demonstrated that the amino-terminal portion of NUP98 exhibits transcription activation potential. Approximately half of the NUP98 fusion partners encode homeodomain proteins, and at least 5 NUP98 fusions involve known histone-modifying genes. Several of the NUP98 fusions, including NUP98-homeobox (HOX)A9, NUP98-HOXD13, and NUP98-JARID1A, have been used to generate animal models of both lymphoid and myeloid malignancy; these models typically up-regulate HOXA cluster genes, including HOXA5, HOXA7, HOXA9, and HOXA10. In addition, several of the NUP98 fusion proteins have been shown to inhibit differentiation of hematopoietic precursors and to increase self-renewal of hematopoietic stem or progenitor cells, providing a potential mechanism for malignant transformation.

  5. A knock-in Npm1 mutation in mice results in myeloproliferation and implies a perturbation in hematopoietic microenvironment.

    Directory of Open Access Journals (Sweden)

    Shiu-Huey Chou

    Full Text Available Somatic Nucleophosmin (NPM1 mutation frequently occurs in acute myeloid leukemia (AML, but its role in leukemogenesis remains unclear. This study reports the first "conventional" knock-in mouse model of Npm1 mutation, which was achieved by inserting TCTG after nucleotide c.857 (c.854_857dupTCTG to mimic human mutation without any "humanized" sequence. The resultant mutant peptide differed slightly different from that in humans but exhibited cytoplasmic pulling force. Homozygous (Npm1(c+/c+ mice showed embryonic lethality before day E8.5, wheras heterozygous (Npm1(wt/c+ mice appeared healthy at birth and were fertile. Approximately 36% of Npm1(wt/c+ mice developed myeloproliferative disease (MPD with extramedullary hematopoiesis. Those Npm1(wt/c+ mice that did not develop MPD nevertheless gradually developed monocytosis and showed increased numbers of marrow myeloid precursors. This second group of Npm1(wt/c+ mice also showed compromised cobblestone area formation, suggesting pathology in the hematopoietic niche. Microarray experiments and bioinformatic analysis on mice myeloid precursor cells and 227 human samples revealed the expression of CXCR4/CXCL12-related genes was significantly suppressed in mutant cells from both mice and humans. Thus, our mouse model demonstrated that Npm1 mutation can result in MPD, but is insufficient for leukemogenesis. Perturbation of hematopoietic niche in mutant hematopoietic stem cells (implied by underrepresentation of CXCR4/CXCL12-related genes may be important in the pathogenesis of NPM1 mutations.

  6. Effect of Interferon-alpha in systemic lupus erthematosus (SLE) serum on the differentiation and maturation of dendritic cells derived from CD34+ hematopoietic precursor cells

    Institute of Scientific and Technical Information of China (English)

    Rong Zhang; Meifen Xing; Weiwen Wang; Xiaofan Yang; Xiaohui Ji

    2009-01-01

    Objective: To study the effect of interferon-alpha IFN-a in the serum of SLE patients on the differentiation and maturation of dendritic cells (DCs) derived from CD34+ hematopoietic precursor cells (HPCs). Methods: Serum samples from SLE patients and normal controls were collected and the concentration of IFN-a detected by ELISA. CD34+HPCs were purified from cord blood by a magnetic cell sorting system (MACS), and cultured to differentiate to DCs. Normal serum, normal serum with exogenous IFN-α, SLE serum with raised levels of IFN-α, or SLE serum with anti-IFN-α neutralizing antibody was added to the culture medium. The phenotype of DCs was analyzed by flow cytometry (FCM) and the capacity of DCs to stimulate allogenic T lymphocyte proliferation was evaluated in a mixed lymphocyte reaction by the Cell Counting Kit-8. Cytokine production was assessed by ELISA. Results: Serum levels of IFN-a were significantly higher in SLE patients than in normal controls and this correlated positively with disease activity. Cultured in SLE serum with raised levels of IFN-α, CD34+HPCs could differentiate into DCs that expressed higher levels of HLA-DR, CD80 and CD86, and showed an enhanced allogenic T-cell stimulatory capacity, while producing lower levels of IL-12 and higher amounts of IL-10 compared with those DCs cultured in normal serum. Conclusion: Increased levels of IFN-a in SLE serum promotes the differentiation and maturation of DCs derived from CD34+ HPCs and could contribute to the pathogenesis of SLE.

  7. Sox7-sustained expression alters the balance between proliferation and differentiation of hematopoietic progenitors at the onset of blood specification.

    Science.gov (United States)

    Gandillet, Arnaud; Serrano, Alicia G; Pearson, Stella; Lie-A-Ling, Michael; Lacaud, Georges; Kouskoff, Valerie

    2009-11-26

    The molecular mechanisms that regulate the balance between proliferation and differentiation of precursors at the onset of hematopoiesis specification are poorly understood. By using a global gene expression profiling approach during the course of embryonic stem cell differentiation, we identified Sox7 as a potential candidate gene involved in the regulation of blood lineage formation from the mesoderm germ layer. In the present study, we show that Sox7 is transiently expressed in mesodermal precursors as they undergo specification to the hematopoietic program. Sox7 knockdown in vitro significantly decreases the formation of both primitive erythroid and definitive hematopoietic progenitors as well as endothelial progenitors. In contrast, Sox7-sustained expression in the earliest committed hematopoietic precursors promotes the maintenance of their multipotent and self-renewing status. Removal of this differentiation block driven by Sox7-enforced expression leads to the efficient differentiation of hematopoietic progenitors to all erythroid and myeloid lineages. This study identifies Sox7 as a novel and important player in the molecular regulation of the first committed blood precursors. Furthermore, our data demonstrate that the mere sustained expression of Sox7 is sufficient to completely alter the balance between proliferation and differentiation at the onset of hematopoiesis.

  8. Myelodysplastic Syndrome with Myelofibrosis Transformed to a Precursor B-Cell Acute Lymphoblastic Leukemia: A Case Report with Review of the Literature

    OpenAIRE

    2012-01-01

    Myelodysplastic syndromes (MDS) comprise a group of heterogeneous clonal hematopoietic cell disorders characterized by cytopenias, bone marrow hypercellularity, and increased risk of transformation to acute leukemias. MDS usually transformed to acute myeloid leukemia, and transformation to acute lymphoblastic leukemia (ALL) is rare. Herein, we report a unique patient who presented with MDS with myelofibrosis. Two months after the initial diagnosis, she progressed to a precursor B-cell acute l...

  9. Busulfan plus fludarabine as a myeloablative conditioning regimen compared with busulfan plus cyclophosphamide for acute myeloid leukemia in first complete remission undergoing allogeneic hematopoietic stem cell transplantation: a prospective and multicenter study

    Directory of Open Access Journals (Sweden)

    Liu Hui

    2013-02-01

    Full Text Available Abstract Objective We conducted a prospective, randomized, open-label, multicenter study to compare busulfan plus fludarabine (BuFlu with busulfan plus cyclophosphamide (BuCy as the conditioning regimen in allogeneic hematopoietic stem cell transplantation (allo-HSCT for acute myeloid leukemia (AML in first complete remission (CR1. Methods Totally 108 AML-CR1 patients undergoing allo-HSCT were randomized into BuCy (busulfan 1.6 mg/kg, q12 hours, -7 ~ -4d; cyclophosphamide 60 mg/kg.d, -3 ~ -2d or BuFlu (busulfan 1.6 mg/kg, q12 hours, -5 ~ -2d; fludarabine 30 mg/m2.d, -6 ~ -2d group. Hematopoietic engraftment, regimen-related toxicity (RRT, graft-versus-host disease (GVHD, transplant related mortality (TRM, and overall survival were compared between the two groups. Results All patients achieved hematopoietic reconstitution except for two patients who died of RRT during conditioning. All patients obtained complete donor chimerism by day +30 post-transplantation. The incidence of total and III-IV RRT were 94.4% and 81.5% (P = 0.038, and 16.7% and 0.0% (P = 0.002, respectively, in BuCy and BuFlu group. With a median follow up of 609 (range, 3–2130 days after transplantation, the 5-year cumulative incidence of TRM were 18.8 ± 6.9% and 9.9 ± 6.3% (P = 0.104; the 5-year cumulative incidence of leukemia relapse were 16.5 ± 5.8% and 16.2 ± 5.3% (P = 0.943; the 5-year disease-free survival and overall survival were 67.4 ± 7.6% and 75.3 ± 7.2% (P = 0.315, and 72.3 ± 7.5% and 81.9 ± 7.0% (P = 0.177, respectively in BuCy and BuFlu group. Conclusion Compared with BuCy, BuFlu as a myeloablative condition regimen was associated with lower toxicities and comparable anti-leukemic activity in AML-CR1 patients undergoing allo-HSCT.

  10. Allogeneic hematopoietic cell transplantation after conditioning with I-131-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome.

    Energy Technology Data Exchange (ETDEWEB)

    Pagel, John M.; Gooley, T. A.; Rajendran, Joseph G.; Fisher, Darrell R.; Wilson, Wendy A.; Sandmaier, B. M.; Matthews, D. C.; Deeg, H. Joachim; Gopal, Ajay K.; Martin, P. J.; Storb, R.; Press, Oliver W.; Appelbaum, Frederick R.

    2009-12-24

    We conducted a study to estimate the maximum tolerated dose (MTD) of I-131-anti-CD45 antibody (Ab; BC8) that can be combined with a standard reduced-intensity conditioning regimen before allogeneic hematopoietic cell transplantation. Fifty-eight patients older than 50 years with advanced acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS) were treated with (131)I-BC8 Ab and fludarabine plus 2 Gy total body irradiation. Eighty-six percent of patients had AML or MDS with greater than 5% marrow blasts at the time of transplantation. Treatment produced a complete remission in all patients, and all had 100% donor-derived CD3(+) and CD33(+) cells in the blood by day 28 after the transplantation. The MTD of I-131-BC8 Ab delivered to liver was estimated to be 24 Gy. Seven patients (12%) died of nonrelapse causes by day 100. The estimated probability of recurrent malignancy at 1 year is 40%, and the 1-year survival estimate is 41%. These results show that CD45-targeted radiotherapy can be safely combined with a reduced-intensity conditioning regimen to yield encouraging overall survival for older, high-risk patients with AML or MDS. This study was registered at www.clinicaltrials.gov as #NCT00008177.

  11. Allogeneic hematopoietic cell transplantation after conditioning with 131I-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome.

    Science.gov (United States)

    Pagel, John M; Gooley, Theodore A; Rajendran, Joseph; Fisher, Darrell R; Wilson, Wendy A; Sandmaier, Brenda M; Matthews, Dana C; Deeg, H Joachim; Gopal, Ajay K; Martin, Paul J; Storb, Rainer F; Press, Oliver W; Appelbaum, Frederick R

    2009-12-24

    We conducted a study to estimate the maximum tolerated dose (MTD) of (131)I-anti-CD45 antibody (Ab; BC8) that can be combined with a standard reduced-intensity conditioning regimen before allogeneic hematopoietic cell transplantation. Fifty-eight patients older than 50 years with advanced acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS) were treated with (131)I-BC8 Ab and fludarabine plus 2 Gy total body irradiation. Eighty-six percent of patients had AML or MDS with greater than 5% marrow blasts at the time of transplantation. Treatment produced a complete remission in all patients, and all had 100% donor-derived CD3(+) and CD33(+) cells in the blood by day 28 after the transplantation. The MTD of (131)I-BC8 Ab delivered to liver was estimated to be 24 Gy. Seven patients (12%) died of nonrelapse causes by day 100. The estimated probability of recurrent malignancy at 1 year is 40%, and the 1-year survival estimate is 41%. These results show that CD45-targeted radiotherapy can be safely combined with a reduced-intensity conditioning regimen to yield encouraging overall survival for older, high-risk patients with AML or MDS. This study was registered at www.clinicaltrials.gov as #NCT00008177.

  12. A case of systemic mastocytosis associated with acute myeloid leukemia terminating as aleukemic mast cell leukemia after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Bae, Mi Hyun; Kim, Hyun-Ki; Park, Chan-Jeoung; Seo, Eul-Ju; Park, Sang Hyuk; Cho, Young-Uk; Jang, Seongsoo; Chi, Hyun-Sook; Lee, Kyu-Hyung

    2013-03-01

    In up to 40% of systemic mastocytosis (SM) cases, an associated clonal hematological non-mast cell lineage disease such as AML is diagnosed before, simultaneously with, or after the diagnosis of SM. A 40-yr-old man was diagnosed with AML with t(8;21)(q22;q22). Mast cells were not noted at diagnosis, but appeared as immature forms at relapse. After allogeneic hematopoietic stem cell transplantation (HSCT), leukemic myeloblasts were not observed; however, neoplastic metachromatic blasts strikingly proliferated during the state of bone marrow aplasia, and finally, aleukemic mast cell leukemia developed. As the disease progressed, we observed serial morphologic changes from immature mast cells with myeloblasts to only metachromatic blasts and atypical mast cells as mast cell leukemia; FISH analysis showed that the neoplastic mast cells originated from the same clone as the leukemic myeloblasts of AML.

  13. Intra-hematopoietic cell fusion as a source of somatic variation in the hematopoietic system.

    Science.gov (United States)

    Skinner, Amy M; Grompe, Markus; Kurre, Peter

    2012-06-15

    Cell fusion plays a well-recognized, physiological role during development. Bone-marrow-derived hematopoietic cells have been shown to fuse with non-hematopoietic cells in a wide variety of tissues. Some organs appear to resolve the changes in ploidy status, generating functional and mitotically-competent events. However, cell fusion exclusively involving hematopoietic cells has not been reported. Indeed, genomic copy number variation in highly replicative hematopoietic cells is widely considered a hallmark of malignant transformation. Here we show that cell fusion occurs between cells of the hematopoietic system under injury as well as non-injury conditions. Experiments reveal the acquisition of genetic markers in fusion products, their tractable maintenance during hematopoietic differentiation and long-term persistence after serial transplantation. Fusion events were identified in clonogenic progenitors as well as differentiated myeloid and lymphoid cells. These observations provide a new experimental model for the study of non-pathogenic somatic diversity in the hematopoietic system.

  14. Casiopeina III-Ea, a copper-containing small molecule, inhibits the in vitro growth of primitive hematopoietic cells from chronic myeloid leukemia.

    Science.gov (United States)

    Chavez-Gonzalez, Antonieta; Centeno-Llanos, Sandra; Moreno-Lorenzana, Dafne; Sandoval-Esquivel, Miguel Angel; Aviles-Vazquez, Socrates; Bravo-Gomez, María Elena; Ruiz-Azuara, Lena; Ayala-Sanchez, Manuel; Torres-Martinez, Hector; Mayani, Hector

    2017-01-01

    Several novel compounds have been developed for the treatment of different types of leukemia. In the present study, we have assessed the in vitro effects of Casiopeina III-Ea, a copper-containing small molecule, on cells from patients with Chronic Myeloid Leukemia (CML). We included primary CD34(+) Lineage-negative (Lin(-)) cells selected from CML bone marrow, as well as the K562 and MEG01 cell lines. Bone marrow cells obtained from normal individuals - both total mononuclear cells as well as CD34(+) Lin(-) cells- were used as controls. IC50 corresponded to 0.5μM for K562 cells, 0.63μM for MEG01 cells, 0.38μM for CML CD34(+) lin(-) cells, and 1.0μM for normal CD34(+) lin(-) cells. Proliferation and expansion were also inhibited to significantly higher extents in cultures of CML cells as compared to their normal counterparts. All these effects seemed to occur via a bcr-abl transcription-independent mechanism that involved a delay in cell division, an increase in cell death, generation of Reactive Oxygen Species and changes in cell cycle. Our results demonstrate that Casiopeina III-Ea possesses strong antileukemic activity in vitro, and warrant further preclinical (animal) studies to assess such effects in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Outcome of children with high-risk acute myeloid leukemia given autologous or allogeneic hematopoietic cell transplantation in the aieop AML-2002/01 study.

    Science.gov (United States)

    Locatelli, F; Masetti, R; Rondelli, R; Zecca, M; Fagioli, F; Rovelli, A; Messina, C; Lanino, E; Bertaina, A; Favre, C; Giorgiani, G; Ripaldi, M; Ziino, O; Palumbo, G; Pillon, M; Pession, A; Rutella, S; Prete, A

    2015-02-01

    We analyzed the outcome of 243 children with high-risk (HR) AML in first CR1 enrolled in the AIEOP-2002/01 protocol, who were given either allogeneic (ALLO; n=141) or autologous (AUTO; n=102) hematopoietic SCT (HSCT), depending on the availability of a HLA-compatible sibling. Infants, patients with AML-M7, or complex karyotype or those with FLT3-ITD, were eligible to be transplanted also from alternative donors. All patients received a myeloablative regimen combining busulfan, cyclophosphamide and melphalan; [corrected] AUTO-HSCT patients received BM cells in most cases, while in children given ALLO-HSCT stem cell source was BM in 96, peripheral blood in 19 and cord blood in 26. With a median follow-up of 57 months (range 12-130), the probability of disease-free survival (DFS) was 73% and 63% in patients given either ALLO- or AUTO-HSCT, respectively (P=NS). Although the cumulative incidence (CI) of relapse was lower in ALLO- than in AUTO-HSCT recipients (17% vs 28%, respectively; P=0.043), the CI of TRM was 7% in both groups. Patients transplanted with unrelated donor cord blood had a remarkable 92.3% 8-year DFS probability. Altogether, these data confirm that HSCT is a suitable option for preventing leukemia recurrence in HR children with CR1 AML.

  16. Targeting interleukin-2 to the bone marrow stroma for therapy of acute myeloid leukemia relapsing after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Schliemann, Christoph; Gutbrodt, Katrin L; Kerkhoff, Andrea; Pohlen, Michele; Wiebe, Stefanie; Silling, Gerda; Angenendt, Linus; Kessler, Torsten; Mesters, Rolf M; Giovannoni, Leonardo; Schäfers, Michael; Altvater, Bianca; Rossig, Claudia; Grünewald, Inga; Wardelmann, Eva; Köhler, Gabriele; Neri, Dario; Stelljes, Matthias; Berdel, Wolfgang E

    2015-05-01

    The antibody-based delivery of IL2 to extracellular targets expressed in the easily accessible tumor-associated vasculature has shown potent antileukemic activity in xenograft and immunocompetent murine models of acute myelogenous leukemia (AML), especially in combination with cytarabine. Here, we report our experience with 4 patients with relapsed AML after allogeneic hematopoietic stem cell transplantation (allo-HSCT), who were treated with the immunocytokine F16-IL2, in combination with low-dose cytarabine. One patient with disseminated extramedullary AML lesions achieved a complete metabolic response identified by PET/CT, which lasted 3 months. Two of 3 patients with bone marrow relapse achieved a blast reduction with transient molecular negativity. One of the 2 patients enjoyed a short complete remission before AML relapse occurred 2 months after the first infusion of F16-IL2. In line with a site-directed delivery of the cytokine, F16-IL2 led to an extensive infiltration of immune effector cells in the bone marrow. Grade 2 fevers were the only nonhematologic side effects in 2 patients. Grade 3 cytokine-release syndrome developed in the other 2 patients but was manageable in both cases with glucocorticoids. The concept of specifically targeting IL2 to the leukemia-associated stroma deserves further evaluation in clinical trials, especially in patients who relapse after allo-HSCT. ©2015 American Association for Cancer Research.

  17. The dynamics of RUNX1-RUNX1T1 transcript levels after allogeneic hematopoietic stem cell transplantation predict relapse in patients with t(8;21) acute myeloid leukemia.

    Science.gov (United States)

    Qin, Ya-Zhen; Wang, Yu; Xu, Lan-Ping; Zhang, Xiao-Hui; Chen, Huan; Han, Wei; Chen, Yu-Hong; Wang, Feng-Rong; Wang, Jing-Zhi; Chen, Yao; Mo, Xiao-Dong; Zhao, Xiao-Su; Chang, Ying-Jun; Liu, Kai-Yan; Huang, Xiao-Jun

    2017-02-06

    The optimal monitoring schedules and cutoff minimal residual disease (MRD) levels for the accurate prediction of relapse at all time points after allogeneic hematopoietic stem cell transplantation (allo-HSCT) remain unclear in patients with t(8;21) acute myeloid leukemia (AML). RUNX1-RUNX1T1 transcript levels were measured in bone marrow samples collected from 208 patients at scheduled time points after transplantation (1530 samples in total). A total of 92.3% of the requested samples were collected, and 74.0% of patients had complete sample collection. The 1-, 3-, and 6-month RUNX1-RUNX1T1 transcript levels could significantly discriminate between continuous complete remission and a hematologic relapse at 1.5-3, 4-6, and 7-12 months but not at >3, >6, and >12 months, respectively. Over 90% of the 175 patients who were in continuous complete remission had a ≥3-log reduction in RUNX1-RUNX1T1 transcript levels from the time of diagnosis at each time point after transplantation and a ≥4-log reduction at ≥12 months. A 1-log (0 vs. 55.0%, P = 0.015). RUNX1-RUNX1T1 transcripts with a <3-log reduction from diagnosis within 12 months and/or a <4-log reduction at ≥12 months after allo-HSCT could accurately predict relapse and may prompt a timely intervention in patients with t(8;21) AML.

  18. Effects of priming with recombinant human granulocyte colony-stimulating factor on conditioning regimen for high-risk acute myeloid leukemia patients undergoing human leukocyte antigen-haploidentical hematopoietic stem cell transplantation: a multicenter randomized controlled study in southwest China.

    Science.gov (United States)

    Gao, Lei; Wen, Qin; Chen, Xinghua; Liu, Yao; Zhang, Cheng; Gao, Li; Kong, Peiyan; Zhang, Yanqi; Li, Yunlong; Liu, Jia; Wang, Qingyu; Su, Yi; Wang, Chunsen; Wang, Sanbin; Zeng, Yun; Sun, Aihua; Du, Xin; Zeng, Dongfeng; Liu, Hong; Peng, Xiangui; Zhang, Xi

    2014-12-01

    HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is an effective and immediate treatment for high-risk acute myeloid leukemia (HR-AML) patients lacking matched donors. Relapse remains the leading cause of death for HR-AML patients after haplo-HSCT. Accordingly, the prevention of relapse remains a challenge in the treatment of HR-AML. In a multicenter randomized controlled trial in southwestern China, 178 HR-AML patients received haplo-HSCT with conditioning regimens involving recombinant human granulocyte colony-stimulating factor (rhG-CSF) or non-rhG-CSF. The cumulative incidences of relapse and graft-versus-host disease (GVHD), 2-year leukemia-free survival (LFS), and overall survival (OS) were evaluated. HR-AML patients who underwent the priming conditioning regimen with rhG-CSF had a lower relapse rate than those who were treated with non-rhG-CSF (38.2%; 95% confidence interval [CI], 28.1% to 48.3% versus 60.7%, 95% CI, 50.5% to 70.8%; P priming group and 31 patients in the non-rhG-CSF-priming group were still alive at the median follow-up time of 42 months (range, 24 to 80 months). The 2-year probabilities of LFS and OS in the rhG-CSF-priming and non-rhG-CSF-priming groups were 55.1% (95% CI, 44.7% to 65.4%) versus 32.6% (95% CI, 22.8% to 42.3%) (P priming group (67.4%; 95% CI, 53.8% to 80.9% versus 41.9%; 95% CI, 27.1% to 56.6%; P priming conditioning regimen is an acceptable choice for HR-AML patients, especially for the patients with no M4/M5/M6 subtype who achieved CR before transplantation.

  19. Cytomegalovirus Reactivation after Allogeneic Hematopoietic Stem Cell Transplantation is Associated with a Reduced Risk of Relapse in Patients with Acute Myeloid Leukemia Who Survived to Day 100 after Transplantation: The Japan Society for Hematopoietic Cell Transplantation Transplantation-related Complication Working Group.

    Science.gov (United States)

    Takenaka, Katsuto; Nishida, Tetsuya; Asano-Mori, Yuki; Oshima, Kumi; Ohashi, Kazuteru; Mori, Takehiko; Kanamori, Heiwa; Miyamura, Koichi; Kato, Chiaki; Kobayashi, Naoki; Uchida, Naoyuki; Nakamae, Hirohisa; Ichinohe, Tatsuo; Morishima, Yasuo; Suzuki, Ritsuro; Yamaguchi, Takuhiro; Fukuda, Takahiro

    2015-11-01

    Cytomegalovirus (CMV) infection is a major infectious complication after allogeneic hematopoietic cell transplantation (allo-HSCT). Recently, it was reported that CMV reactivation is associated with a decreased risk of relapse in patients with acute myeloid leukemia (AML). The aim of this study was to evaluate the impact of early CMV reactivation on the incidence of disease relapse after allo-HSCT in a large cohort of patients. The Japan Society for Hematopoietic Cell Transplantation's Transplantation-Related Complication Working Group retrospectively surveyed the database of the Transplant Registry Unified Management Program at the Japan Society for Hematopoietic Cell Transplantation. Patients with AML (n = 1836), acute lymphoblastic leukemia (ALL, n = 911), chronic myeloid leukemia (CML, n = 223), and myelodysplastic syndrome (MDS, n = 569) who underwent their first allo-HSCT from HLA-matched related or unrelated donors between 2000 and 2009 and who survived without disease relapse until day 100 after transplantation were analyzed. Patients who received umbilical cord blood transplantation were not included. Patients underwent surveillance by pp65 antigenemia from the time of engraftment, and the beginning of preemptive therapy was defined as CMV reactivation. Cox proportional hazards models were used to evaluate the risk factors of relapse, nonrelapse, and overall mortality. CMV reactivation and acute/chronic graft-versus-host disease (GVHD) were evaluated as time-dependent covariates. CMV reactivation was associated with a decreased incidence of relapse in patients with AML (20.3% versus 26.4%, P = .027), but not in patients with ALL, CML, or MDS. Among 1836 patients with AML, CMV reactivation occurred in 795 patients (43.3%) at a median of 42 days, and 436 patients (23.7%) relapsed at a median of 221 days after allo-HSCT. Acute GVHD grades II to IV developed in 630 patients (34.3%). By multivariate analysis considering competing risk factors, 3

  20. Hematopoietic cell transplantation for chronic myeloid leukemia in developing countries: perspectives from Latin America in the post-tyrosine kinase inhibitor era.

    Science.gov (United States)

    Pasquini, Marcelo C

    2012-04-01

    Tyrosine kinase inhibitors (TKIs) are currently the first line treatment for chronic myelogenous leukemia (CML) in countries with high and intermediate-high gross national income. Hematopoietic cell transplantation (HCT) in these countries is considered salvage therapy for eligible patients who failed TKI or progress to advanced disease stages. In Latin America, treatment for CML also changed with availability of TKI in the region. However, many challenges remain, as the cost of this class of medication and recommended monitoring is high. CML treatment practices in Latin America demonstrate that the majority of patients are treated with TKI at some point after diagnosis, most commonly imatinib mesylate, but still TKI can only be used after interferon failure in some countries. Other treatment practices are different from established international guidelines, outlying the importance of continuing medical education. Allogeneic HCT is a treatment option for CML in this region and could be considered a cost-effective approach in a small subset of young patients with available donors, as the overall cost of long-term non-transplant treatment may surpass the cost of transplantation. However, there are many challenges with HCT in Latin America such as access to experienced transplant centers, donor availability, and cost of essential drugs used after transplant, which further impacts expansion of this treatment approach in patients in need. In conclusion, Latin American patients with CML have access to state of the art CML treatment. Yet, drug costs have a tremendous impact on developing health systems. Optimization of CML treatment in the region with appropriate monitoring, recognizing patients who would be transplant candidates, and expanding access to transplantation for eligible patients may curtail these costs and further improve patient care.

  1. Defining incidence, risk factors, and impact on survival of central line-associated blood stream infections following hematopoietic cell transplantation in acute myeloid leukemia and myelodysplastic syndrome.

    Science.gov (United States)

    Lukenbill, Joshua; Rybicki, Lisa; Sekeres, Mikkael A; Zaman, Muhammad Omer; Copelan, Alexander; Haddad, Housam; Fraser, Thomas; DiGiorgio, Megan J; Hanna, Rabi; Duong, Hien; Hill, Brian; Kalaycio, Matt; Sobecks, Ronald; Bolwell, Brian; Copelan, Edward

    2013-05-01

    Central line-associated blood stream infections (CLABSI) commonly complicate the care of patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) after allogeneic stem cell transplantation (HCT). We developed a modified CLABSI (MCLABSI) definition that attempts to exclude pathogens usually acquired because of disruption of mucosal barriers during the vulnerable neutropenic period following HCT that are generally included under the original definition (OCLABSI). We conducted a retrospective study of all AML and MDS patients undergoing HCT between August 2009 and December 2011 at the Cleveland Clinic (N = 73), identifying both OCLABSI and MCLABSI incidence. The median age at transplantation was 52 years (range, 16 to 70); 34 had a high (≥3) HCT comorbidity index (HCT-CI); 34 received bone marrow (BM), 24 received peripheral stem cells (PSC), and 15 received umbilical cord blood cells (UCB). Among these 73 patients, 23 (31.5%) developed OCLABSI, of whom 16 (69.6%) died, and 8 (11%) developed MCLABSI, of whom 7 (87.5%) died. OCLABSI was diagnosed a median of 9 days from HCT: 5 days (range, 2 to 12) for UCB and 78 days (range, 7 to 211) for BM/PSC (P < .001). MCLABSI occurred a median of 12 days from HCT, with similar earlier UCB and later BM/PSC diagnosis (P = .030). Risk factors for OCLABSI in univariate analysis included CBC (P < .001), human leukocyte antigen (HLA)-mismatch (P = .005), low CD34(+) count (P = .007), low total nucleated cell dose (P = .016), and non-Caucasian race (P = .017). Risk factors for OCLABSI in multivariable analysis were UCB (P < .001) and high HCT-CI (P = .002). There was a significant increase in mortality for both OCLABSI (hazard ratio, 7.14; CI, 3.31 to 15.37; P < .001) and MCLABSI (hazard ratio, 6.44; CI, 2.28 to 18.18; P < .001). CLABSI is common and associated with high mortality in AML and MDS patients undergoing HCT, especially in UCB recipients and those with high HCT-CI. We propose

  2. JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNα.

    Science.gov (United States)

    Hasan, Salma; Lacout, Catherine; Marty, Caroline; Cuingnet, Marie; Solary, Eric; Vainchenker, William; Villeval, Jean-Luc

    2013-08-22

    The acquired gain-of-function V617F mutation in the Janus Kinase 2 (JAK2(V617F)) is the main mutation involved in BCR/ABL-negative myeloproliferative neoplasms (MPNs), but its effect on hematopoietic stem cells as a driver of disease emergence has been questioned. Therefore, we reinvestigated the role of endogenous expression of JAK2(V617F) on early steps of hematopoiesis as well as the effect of interferon-α (IFNα), which may target the JAK2(V617F) clone in humans by using knock-in mice with conditional expression of JAK2(V617F) in hematopoietic cells. These mice develop a MPN mimicking polycythemia vera with large amplification of myeloid mature and precursor cells, displaying erythroid endogenous growth and progressing to myelofibrosis. Interestingly, early hematopoietic compartments [Lin-, LSK, and SLAM (LSK/CD48-/CD150+)] increased with the age. Competitive repopulation assays demonstrated disease appearance and progressive overgrowth of myeloid, Lin-, LSK, and SLAM cells, but not lymphocytes, from a low number of engrafted JAK2(V617F) SLAM cells. Finally, IFNα treatment prevented disease development by specifically inhibiting JAK2(V617F) cells at an early stage of differentiation and eradicating disease-initiating cells. This study shows that JAK2(V617F) in mice amplifies not only late but also early hematopoietic cells, giving them a proliferative advantage through high cell cycling and low apoptosis that may sustain MPN emergence but is lost upon IFNα treatment.

  3. Formation of an adherent hematopoietic expansion culture using fucoidan.

    Science.gov (United States)

    Irhimeh, Mohammad R; Fitton, J Helen; Ko, Kap-Hyoun; Lowenthal, Ray M; Nordon, Robert E

    2011-09-01

    Expansion of transplantable cord blood (CB) progenitors using a stroma requires provision of an exogenous cell source because of the low frequency of stromal precursor cells in CB. A simpler approach from a clinical regulatory perspective would be to provide synthetic extracellular matrix. The aim of this study was to characterize the effect on hematopoietic cell culture of fucoidan. The modulation of cytokine-driven hematopoietic cell expansion by fucoidan was investigated using two-level fractional and full factorial experimental designs. Mobilized peripheral blood (PB) CD34(+) cells were grown over 10 days in various combinations of FL, SCF, TPO, G-CSF, and SDF-1. Cultures were analyzed by immunophenotype. The effect of fucoidan on the divisional recruitment of CD34(+) cells was studied by CFDA-SE division tracking. Fucoidan was adsorbed by polystyrene to tissue culture plates and promoted formation of an adherent hematopoietic culture. Factorial design experiments with mobilized PB-CD34(+) cells showed that fucoidan reduced the production of CD34(+) cells and CD34(+)CXCR4(+) ratio but did not affect the production of monocytic, granulocytic, or megakaryocytic cells. The inhibitory effect of fucoidan on expansion of CB-CD34(+) cells was greater than mobilized PB. Division tracking analysis showed that CD34(+) cell generation times were lengthened by fucoidan. Fucoidan binds growth factors via their heparin-binding domain. The formation of an adherent hematopoietic culture system by fucoidan is most likely mediated by the binding of L-selectin and integrin-αMβ2 on myeloids. Fucoidan deserves further investigation as glycan scaffold that is suitable for immobilization of other matrix molecules thought to comprise blood stem cell niche.

  4. Comparison of Outcomes for Pediatric Patients With Acute Myeloid Leukemia in Remission and Undergoing Allogeneic Hematopoietic Cell Transplantation With Myeloablative Conditioning Regimens Based on Either Intravenous Busulfan or Total Body Irradiation: A Report From the Japanese Society for Hematopoietic Cell Transplantation.

    Science.gov (United States)

    Ishida, Hiroyuki; Kato, Motohiro; Kudo, Kazuko; Taga, Takashi; Tomizawa, Daisuke; Miyamura, Takako; Goto, Hiroaki; Inagaki, Jiro; Koh, Katsuyoshi; Terui, Kiminori; Ogawa, Atsushi; Kawano, Yoshifumi; Inoue, Masami; Sawada, Akihisa; Kato, Koji; Atsuta, Yoshiko; Yamashita, Takuya; Adachi, Souichi

    2015-12-01

    Pediatric patients with acute myeloid leukemia (AML) mainly receive myeloablative conditioning regimens based on busulfan (BU) or total body irradiation (TBI) before allogeneic hematopoietic cell transplantation (allo-HCT); however, the optimal conditioning regimen remains unclear. To identify which of these regimens is better for pediatric patients, we performed a retrospective analysis of nationwide registration data collected in Japan between 2006 and 2011 to assess the outcomes of patients receiving these regimens before a first allo-HCT. Myeloablative conditioning regimens based on i.v. BU (i.v. BU-MAC) (n = 69) or TBI (TBI-MAC) (n = 151) were compared in pediatric AML patients in first or second complete remission (CR1/CR2). The incidences of sinusoid obstruction syndrome, acute and chronic graft-versus-host disease, and early nonrelapse mortality (NRM) before day 100 were similar for both conditioning groups; however, the incidence of bacterial infection during the acute period was higher in the TBI-MAC group (P = .008). Both groups showed a similar incidence of NRM, and there was no significant difference in the incidence of relapse between the groups. Univariate and multivariate analyses revealed no significant differences in the 2-year relapse-free survival rates for the i.v. BU-MAC and TBI-MAC groups in the CR1/CR2 setting (71% versus 67%, P = .36; hazard ratio, .73; 95% CI, .43 to 1.24, respectively). TBI-MAC was no better than i.v. BU-MAC for pediatric AML patients in remission. Although this retrospective registry-based analysis has several limitations, i.v. BU-MAC warrants further evaluation in a prospective trial.

  5. NUP98/11p15 translocations affect CD34+ cells in myeloid and T lymphoid leukemias.

    Science.gov (United States)

    Crescenzi, Barbara; Nofrini, Valeria; Barba, Gianluca; Matteucci, Caterina; Di Giacomo, Danika; Gorello, Paolo; Beverloo, Berna; Vitale, Antonella; Wlodarska, Iwona; Vandenberghe, Peter; La Starza, Roberta; Mecucci, Cristina

    2015-07-01

    We assessed lineage involvement by NUP98 translocations in myelodysplastic syndromes (MDS), acute myeloid leukaemia (AML), and T-cell acute lymphoblastic leukaemia (T-ALL). Single cell analysis by FICTION (Fluorescence Immunophenotype and Interphase Cytogenetics as a Tool for Investigation of Neoplasms) showed that, despite diverse partners, i.e. NSD1, DDX10, RAP1GDS1, and LNP1, NUP98 translocations always affected a CD34+/CD133+ hematopoietic precursor. Interestingly the abnormal clone included myelomonocytes, erythroid cells, B- and T- lymphocytes in MDS/AML and only CD7+/CD3+ cells in T-ALL. The NUP98-RAP1GDS1 affected different hematopoietic lineages in AML and T-ALL. Additional specific genomic events, were identified, namely FLT3 and CEBPA mutations in MDS/AML, and NOTCH1 mutations and MYB duplication in T-ALL.

  6. Survival Advantage and Comparable Toxicity in Reduced-Toxicity Treosulfan-Based versus Reduced-Intensity Busulfan-Based Conditioning Regimen in Myelodysplastic Syndrome and Acute Myeloid Leukemia Patients after Allogeneic Hematopoietic Cell Transplantation.

    Science.gov (United States)

    Sakellari, Ioanna; Mallouri, Despina; Gavriilaki, Eleni; Batsis, Ioannis; Kaliou, Maria; Constantinou, Varnavas; Papalexandri, Apostolia; Lalayanni, Chrysavgi; Vadikolia, Chrysanthi; Athanasiadou, Anastasia; Yannaki, Evangelia; Sotiropoulos, Damianos; Smias, Christos; Anagnostopoulos, Achilles

    2017-03-01

    Treosulfan has been incorporated in conditioning regimens for sustained remission without substantial toxicity and treatment-related mortality (TRM). We aimed to analyze the safety and efficacy of a fludarabine 150 mg/m(2) and treosulfan 42 g/m(2) (FluTreo) conditioning regimen in medically infirm patients. Outcomes were compared with those of a similar historical group treated with fludarabine 150 mg/m(2) to 180 mg/m(2), busulfan 6.4 mg/kg, and antithymocyte globulin (ATG) 5 mg/kg to 7.5 mg/kg (FluBuATG). Thirty-one consecutive patients with acute myeloid leukemia (AML; n = 21), myelodysplastic syndrome (MDS; n = 6), or treatment-related AML (n = 4) received FluTreo conditioning. The historical group consisted of 26 consecutive patients treated with FluBuATG. In the FluTreo group, engraftment was prompt in all patients and 74% achieved >99% donor chimerism by day +30. No grades III or IV organ toxicities were noted. One-year cumulative incidences (CI) of acute and chronic graft-versus-host disease (GVHD) were 19.4% and 58.4%. The groups were similar for age, disease risk, lines of treatment, hematopoietic cell transplantation-specific comorbidity index, and acute or chronic GVHD incidence, except that there were more matched unrelated donor recipients in the FluTreo group (P < .001). With 20 (range, 2 to 36) months follow-up for FluTreo and 14 (range, 2 to 136) for FluBuATG, the 1-year cumulative overall survival (OS) probability was 76% versus 57%, respectively (P = .026); 1-year disease-free survival (DFS) was 79% versus 38% (P < .001). In multivariate analysis, the only significantly favorable factor for OS and DFS was FluTreo (P = .010 and P = .012). The CI of relapse mortality was markedly decreased in FluTreo versus FluBuATG (7.4% versus 42.3%, P < .001). In conclusion, the treosulfan-based regimen resulted in favorable OS and DFS with acceptable toxicity and low relapse rates compared with busulfan-based conditioning.

  7. 异基因造血干细胞移植治疗急性髓系白血病的现状%Allogeneic hematopoietic stem cell transplantation in treatment of acute myeloid leukemia

    Institute of Scientific and Technical Information of China (English)

    符粤文; 王倩; 宋永平

    2013-01-01

    异基因造血干细胞移植(allo-HSCT)是治疗急性髓系白血病(AML)的有效方法之一.allo-HSCT的治疗作用来自于预处理中的放疗和(或)化疗,以及供者免疫系统的移植物抗白血病(GVL)效应.近十年来,随着对白血病细胞生物学特性研究的不断深入,根据细胞遗传学和分子标志对AML进行危险程度分级,使我们能够挑选出哪些AML患者可以从allo-HSCT中获益.allo-HSCT治疗AML的临床疗效已有明显提高,并且适用范围也较前扩大,但在AML中的应用还存在一定差异.现对allo-HSCT治疗AML的机制、时机、疗效、供者选择及预处理方案进行讨论.%Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective way to acute myeloid leukemia (AML).The therapy effect of allo-HSCT comes from the preconditioning of the radiation and/or chemotherapy,as well as the graft versus leukemia (GVL) effect of the donor' s immune system.In nearly a decade,with the deepening research on biological characteristics of leukemia cells,according to the cytogenetic and molecular markers to dangerous degree classification of AML,which enables us to pick out AML patients can benefit from allo-HSCT.The clinical curative effect of allo-HSCT for AML has obviously improved,and applicable scope has also extended,but there are some differences in the application of AML.The mechanism,opportunity,curative effects,donor selection and preconditioning of allo-HSCT for AML are discussed.

  8. DNMT3A R882 Mutation with FLT3-ITD Positivity Is an Extremely Poor Prognostic Factor in Patients with Normal-Karyotype Acute Myeloid Leukemia after Allogeneic Hematopoietic Cell Transplantation.

    Science.gov (United States)

    Ahn, Jae-Sook; Kim, Hyeoung-Joon; Kim, Yeo-Kyeoung; Lee, Seun-Shin; Jung, Sung-Hoon; Yang, Deok-Hwan; Lee, Je-Jung; Kim, Nan Young; Choi, Seung Hyun; Jung, Chul Won; Jang, Jun-Ho; Kim, Hee Je; Moon, Joon Ho; Sohn, Sang Kyun; Won, Jong-Ho; Kim, Sung-Hyun; Kim, Dennis Dong Hwan

    2016-01-01

    The prognostic relevance of epigenetic modifying genes (DNMT3A, TET2, and IDH1/2) in patients with acute myeloid leukemia (AML) has been investigated extensively. However, the prognostic implications of these mutations after allogeneic hematopoietic cell transplantation (HCT) have not been evaluated comprehensively in patients with normal-karyotype (NK)-AML. A total of 115 patients who received allogeneic HCT for NK-AML were retrospectively evaluated for the FLT3-ITD, NPM1, CEBPA, DNMT3A, TET2, IDH1/2, WT1, NRAS, ASXL2, FAT1, DNAH11, and GATA2 mutations in diagnostic samples and analyzed for long-term outcomes after allogeneic HCT. The prevalence rates for the mutations were as follows: FLT3-ITD positivity (FLT3-ITD(pos)) (32.2%), NPM1 mutation (43.5%), CEBPA mutation (double) (24.6%), DNMT3A mutation (DNMT3A(mut)) (31.3%), DNMT3A R882(mut) (18.3%), TET2 mutation (8.7%), and IDH1/2 mutation (16.5%). The 5-year overall survival (OS) and event-free survival (EFS) rates were 57.3% and 58.1%, respectively. A multivariate analysis revealed that FLT3-ITD(pos) (hazard ratio, [HR], 2.23; P = .006) and DNMT3A R882(mut) (HR, 2.74; P = .002) were unfavorable prognostic factors for OS. In addition, both mutations were significant risk factors for EFS and relapse. People with DNMT3A R882(mut) accompanied by FLT3-ITD(pos) had worse OS and EFS, and higher relapse rates than those with the other mutations, which were confirmed in a propensity score 1:2 matching analysis. These results suggest that DNMT3A R882(mut), particularly when accompanied by FLT3-ITD(pos), is a significant prognostic factor for inferior transplantation survival outcome by increasing relapse risk, even after allogeneic HCT.

  9. Mobilisation of hematopoietic CD34+ precursor cells in patients with acute stroke is safe--results of an open-labeled non randomized phase I/II trial.

    Directory of Open Access Journals (Sweden)

    Sandra Boy

    Full Text Available BACKGROUND: Regenerative strategies in the treatment of acute stroke may have great potential. Hematopoietic growth factors mobilize hematopoietic stem cells and may convey neuroprotective effects. We examined the safety, potential functional and structural changes, and CD34(+ cell-mobilization characteristics of G-CSF treatment in patients with acute ischemic stroke. METHODS AND RESULTS: Three cohorts of patients (8, 6, and 6 patients per cohort were treated subcutaneously with 2.5, 5, or 10 µg/kg body weight rhG-CSF for 5 consecutive days within 12 hrs of onset of acute stroke. Standard treatment included i.v. thrombolysis. Safety monitoring consisted of obtaining standardized clinical assessment scores, monitoring of CD34(+ stem cells, blood chemistry, serial neuroradiology, and neuropsychology. Voxel-guided morphometry (VGM enabled an assessment of changes in the patients' structural parenchyma. 20 patients (mean age 55 yrs were enrolled in this study, 5 of whom received routine thrombolytic therapy with r-tPA. G-CSF treatment was discontinued in 4 patients because of unrelated adverse events. Mobilization of CD34(+ cells was observed with no concomitant changes in blood chemistry, except for an increase in the leukocyte count up to 75,500/µl. Neuroradiological and neuropsychological follow-up studies did not disclose any specific G-CSF toxicity. VGM findings indicated substantial atrophy of related hemispheres, a substantial increase in the CSF space, and a localized increase in parenchyma within the ischemic area in 2 patients. CONCLUSIONS: We demonstrate a good safety profile for daily administration of G-CSF when begun within 12 hours after onset of ischemic stroke and, in part in combination with routine i.v. thrombolysis. Additional analyses using VGM and a battery of neuropsychological tests indicated a positive functional and potentially structural effect of G-CSF treatment in some of our patients. TRIAL REGISTRATION: German

  10. Uncaria tomentosa stimulates the proliferation of myeloid progenitor cells.

    Science.gov (United States)

    Farias, Iria; do Carmo Araújo, Maria; Zimmermann, Estevan Sonego; Dalmora, Sergio Luiz; Benedetti, Aloisio Luiz; Alvarez-Silva, Marcio; Asbahr, Ana Carolina Cavazzin; Bertol, Gustavo; Farias, Júlia; Schetinger, Maria Rosa Chitolina

    2011-09-01

    The Asháninkas, indigenous people of Peru, use cat's claw (Uncaria tomentosa) to restore health. Uncaria tomentosa has antioxidant activity and works as an agent to repair DNA damage. It causes different effects on cell proliferation depending on the cell type involved; specifically, it can stimulate the proliferation of myeloid progenitors and cause apoptosis of neoplastic cells. Neutropenia is the most common collateral effect of chemotherapy. For patients undergoing cancer treatment, the administration of a drug that stimulates the proliferation of healthy hematopoietic tissue cells is very desirable. It is important to assess the acute effects of Uncaria tomentosa on granulocyte-macrophage colony-forming cells (CFU-GM) and in the recovery of neutrophils after chemotherapy-induced neutropenia, by establishing the correlation with filgrastim (rhG-CSF) treatment to evaluate its possible use in clinical oncology. The in vivo assay was performed in ifosfamide-treated mice receiving oral doses of 5 and 15 mg of Uncaria tomentosa and intraperitoneal doses of 3 and 9 μg of filgrastim, respectively, for four days. Colony-forming cell (CFC) assays were performed with human hematopoietic stem/precursor cells (hHSPCs) obtained from umbilical cord blood (UCB). Bioassays showed that treatment with Uncaria tomentosa significantly increased the neutrophil count, and a potency of 85.2% was calculated in relation to filgrastim at the corresponding doses tested. An in vitro CFC assay showed an increase in CFU-GM size and mixed colonies (CFU-GEMM) size at the final concentrations of 100 and 200 μg extract/mL. At the tested doses, Uncaria tomentosa had a positive effect on myeloid progenitor number and is promising for use with chemotherapy to minimize the adverse effects of this treatment. These results support the belief of the Asháninkas, who have classified Uncaria tomentosa as a 'powerful plant'. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages.

    Science.gov (United States)

    Hoeffel, Guillaume; Chen, Jinmiao; Lavin, Yonit; Low, Donovan; Almeida, Francisca F; See, Peter; Beaudin, Anna E; Lum, Josephine; Low, Ivy; Forsberg, E Camilla; Poidinger, Michael; Zolezzi, Francesca; Larbi, Anis; Ng, Lai Guan; Chan, Jerry K Y; Greter, Melanie; Becher, Burkhard; Samokhvalov, Igor M; Merad, Miriam; Ginhoux, Florent

    2015-04-21

    Although classified as hematopoietic cells, tissue-resident macrophages (MFs) arise from embryonic precursors that seed the tissues prior to birth to generate a self-renewing population, which is maintained independently of adult hematopoiesis. Here we reveal the identity of these embryonic precursors using an in utero MF-depletion strategy and fate-mapping of yolk sac (YS) and fetal liver (FL) hematopoiesis. We show that YS MFs are the main precursors of microglia, while most other MFs derive from fetal monocytes (MOs). Both YS MFs and fetal MOs arise from erythro-myeloid progenitors (EMPs) generated in the YS. In the YS, EMPs gave rise to MFs without monocytic intermediates, while EMP seeding the FL upon the establishment of blood circulation acquired c-Myb expression and gave rise to fetal MOs that then seeded embryonic tissues and differentiated into MFs. Thus, adult tissue-resident MFs established from hematopoietic stem cell-independent embryonic precursors arise from two distinct developmental programs.

  12. Ischemic stroke activates hematopoietic bone marrow stem cells.

    Science.gov (United States)

    Courties, Gabriel; Herisson, Fanny; Sager, Hendrik B; Heidt, Timo; Ye, Yuxiang; Wei, Ying; Sun, Yuan; Severe, Nicolas; Dutta, Partha; Scharff, Jennifer; Scadden, David T; Weissleder, Ralph; Swirski, Filip K; Moskowitz, Michael A; Nahrendorf, Matthias

    2015-01-30

    The mechanisms leading to an expanded neutrophil and monocyte supply after stroke are incompletely understood. To test the hypothesis that transient middle cerebral artery occlusion (tMCAO) in mice leads to activation of hematopoietic bone marrow stem cells. Serial in vivo bioluminescence reporter gene imaging in mice with tMCAO revealed that bone marrow cell cycling peaked 4 days after stroke (Pcell cycle analysis showed activation of the entire hematopoietic tree, including myeloid progenitors. The cycling fraction of the most upstream hematopoietic stem cells increased from 3.34%±0.19% to 7.32%±0.52% after tMCAO (Pstroke. The hematopoietic system's myeloid bias was reflected by increased expression of myeloid transcription factors, including PU.1 (Pstem cell quiescence. In mice with genetic deficiency of the β3 adrenergic receptor, hematopoietic stem cells did not enter the cell cycle in increased numbers after tMCAO (naive control, 3.23±0.22; tMCAO, 3.74±0.33, P=0.51). Ischemic stroke activates hematopoietic stem cells via increased sympathetic tone, leading to a myeloid bias of hematopoiesis and higher bone marrow output of inflammatory Ly6C(high) monocytes and neutrophils. © 2014 American Heart Association, Inc.

  13. Hematopoietic System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    2011370 The efficacy and safety of second allogeneic hematopoietic stem cell transplantation for post-transplant hematologic malignancies relapse. CHEN Yuhong(陳育紅),et al.Instit Hematol,People’s Hosp,Peking Univ,Beijing 100044. Abstract:Objective To investigate the safety and efficacy of second allogeneic hematopoietic stem cell transplantation for the relapsed hematologic malignancies.Methods The data of 25 relapsed patients received the second allogeneic transplantation as a salvage therapy

  14. miR-9/9* in Myeloid Development and Acute Myeloid Leukemia

    NARCIS (Netherlands)

    K. Nowek (Katarzyna)

    2017-01-01

    markdownabstractmiR-9/9* have been shown to be deregulated in different types of human cancer including lymphoid and myeloid malignancies. Nevertheless, we still lack the more comprehensive knowledge about the impact of miR-9/9* expression on normal hematopoietic cell function and their possible

  15. Myeloid dendritic cells: Development, functions, and role in atherosclerotic inflammation.

    Science.gov (United States)

    Chistiakov, Dimitry A; Sobenin, Igor A; Orekhov, Alexander N; Bobryshev, Yuri V

    2015-06-01

    Myeloid dendritic cells (mDCs) comprise a heterogeneous population of professional antigen-presenting cells, which are responsible for capture, processing, and presentation of antigens on their surface to T cells. mDCs serve as a bridge linking adaptive and innate immune responses. To date, the development of DC lineage in bone marrow is better characterized in mice than in humans. DCs and macrophages share the common myeloid progenitor called macrophage-dendritic cell progenitor (MDP) that gives rise to monocytoid lineage and common DC progenitors (CDPs). CDP in turn gives rise to plasmacytoid DCs and predendritic cells (pre-mDCs) that are common precursor of myeloid CD11b+ and CD8α(+) DCs. The development and commitment of mDCs is regulated by several transcription and hematopoietic growth factors of which CCr7, Zbtb46, and Flt3 represent 'core' genes responsible for development and functional and phenotypic maintenance of mDCs. mDCs were shown to be involved in the pathogenesis of many autoimmune and inflammatory diseases including atherosclerosis. In atherogenesis, different subsets of mDCs could possess both proatherogenic (e.g. proinflammatory) and atheroprotective (e.g. anti-inflammatory and tolerogenic) activities. The proinflammatory role of mDCs is consisted in production of inflammatory molecules and priming proinflammatory subsets of effector T cells. In contrast, tolerogenic mDCs fight against inflammation through arrest of activity of proinflammatory T cells and macrophages and induction of immunosuppressive regulatory T cells. Microenvironmental conditions trigger differentiation of mDCs to acquire proinflammatory or regulatory properties.

  16. Nf1 Haploinsufficiency Alters Myeloid Lineage Commitment and Function, Leading to Deranged Skeletal Homeostasis.

    Science.gov (United States)

    Rhodes, Steven D; Yang, Hao; Dong, Ruizhi; Menon, Keshav; He, Yongzheng; Li, Zhaomin; Chen, Shi; Staser, Karl W; Jiang, Li; Wu, Xiaohua; Yang, Xianlin; Peng, Xianghong; Mohammad, Khalid S; Guise, Theresa A; Xu, Mingjiang; Yang, Feng-Chun

    2015-10-01

    Although nullizygous loss of NF1 leads to myeloid malignancies, haploinsufficient loss of NF1 (Nf1) has been shown to contribute to osteopenia and osteoporosis which occurs in approximately 50% of neurofibromatosis type 1 (NF1) patients. Bone marrow mononuclear cells of haploinsufficient NF1 patients and Nf1(+/-) mice exhibit increased osteoclastogenesis and accelerated bone turnover; however, the culprit hematopoietic lineages responsible for perpetuating these osteolytic manifestations have yet to be elucidated. Here we demonstrate that conditional inactivation of a single Nf1 allele within the myeloid progenitor cell population (Nf1-LysM) is necessary and sufficient to promote multiple osteoclast gains-in-function, resulting in enhanced osteoclastogenesis and accelerated osteoclast bone lytic activity in response to proresorptive challenge in vivo. Surprisingly, mice conditionally Nf1 heterozygous in mature, terminally differentiated osteoclasts (Nf1-Ctsk) do not exhibit any of these skeletal phenotypes, indicating a critical requirement for Nf1 haploinsufficiency at a more primitive/progenitor stage of myeloid development in perpetuating osteolytic activity. We further identified p21Ras-dependent hyperphosphorylation of Pu.1 within the nucleus of Nf1 haploinsufficient myelomonocytic osteoclast precursors, providing a novel therapeutic target for the potential treatment of NF1 associated osteolytic manifestations.

  17. Detection of FLT3 Oncogene Mutations in Acute Myeloid Leukemia Using Conformation Sensitive Gel Electrophoresis

    OpenAIRE

    2008-01-01

    FLT3 (fms-related tyrosine kinase 3) is a receptor tyrosine kinase class III that is expressed on by early hematopoietic progenitor cells and plays an important role in hematopoietic stem cell proliferation, differentiation and survival. FLT3 is also expressed on leukemia blasts in most cases of acute myeloid leukemia (AML). In order to determine the frequency of FLT3 oncogene mutations, we analyzed genomic DNA of adult de novo acute myeloid leukemia (AML). Polymerase chain reaction (PCR) and...

  18. Leukemia microvesicles affect healthy hematopoietic stem cells.

    Science.gov (United States)

    Razmkhah, Farnaz; Soleimani, Masoud; Mehrabani, Davood; Karimi, Mohammad Hossein; Amini Kafi-Abad, Sedigheh; Ramzi, Mani; Iravani Saadi, Mahdiyar; Kakoui, Javad

    2017-02-01

    Microvesicles are released by different cell types and shuttle mRNAs and microRNAs which have the possibility to transfer genetic information to a target cell and alter its function. Acute myeloid leukemia is a malignant disorder, and leukemic cells occupy all the bone marrow microenvironment. In this study, we investigate the effect of leukemia microvesicles on healthy umbilical cord blood hematopoietic stem cells to find evidence of cell information transferring. Leukemia microvesicles were isolated from acute myeloid leukemia patients and were co-incubated with healthy hematopoietic stem cells. After 7 days, cell count, hematopoietic stem cell-specific cluster of differentiation (CD) markers, colony-forming unit assay, and some microRNA gene expressions were assessed. Data showed a higher number of hematopoietic stem cells after being treated with leukemia microvesicles compared with control (treated with no microvesicles) and normal (treated with normal microvesicles) groups. Also, increased levels of microRNA-21 and microRNA-29a genes were observed in this group, while colony-forming ability was still maintained and high ranges of CD34(+), CD34(+)CD38(-), CD90(+), and CD117(+) phenotypes were observed as stemness signs. Our results suggest that leukemia microvesicles are able to induce some effects on healthy hematopoietic stem cells such as promoting cell survival and some microRNAs deregulation, while stemness is maintained.

  19. Myeloid neoplasms with eosinophilia.

    Science.gov (United States)

    Reiter, Andreas; Gotlib, Jason

    2017-02-09

    Molecular diagnostics has generated substantial dividends in dissecting the genetic basis of myeloid neoplasms with eosinophilia. The family of diseases generated by dysregulated fusion tyrosine kinase (TK) genes is recognized by the World Health Organization (WHO) category, "Myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRA, PDGFRB, or FGFR1, or with PCM1-JAK2" In addition to myeloproliferative neoplasms (MPN), these patients can present with myelodysplastic syndrome/MPN, as well as de novo or secondary mixed-phenotype leukemias or lymphomas. Eosinophilia is a common, but not invariable, feature of these diseases. The natural history of PDGFRA- and PDGFRB-rearranged neoplasms has been dramatically altered by imatinib. In contrast, patients with FGFR1 and JAK2 fusion TK genes exhibit a more aggressive course and variable sensitivity to current TK inhibitors, and in most cases, long-term disease-free survival may only be achievable with allogeneic hematopoietic stem cell transplantation. Similar poor prognosis outcomes may be observed with rearrangements of FLT3 or ABL1 (eg, both of which commonly partner with ETV6), and further investigation is needed to validate their inclusion in the current WHO-defined group of eosinophilia-associated TK fusion-driven neoplasms. The diagnosis chronic eosinophilic leukemia, not otherwise specified (CEL, NOS) is assigned to patients with MPN with eosinophilia and nonspecific cytogenetic/molecular abnormalities and/or increased myeloblasts. Myeloid mutation panels have identified somatic variants in patients with a provisional diagnosis of hypereosinophilia of undetermined significance, reclassifying some of these cases as eosinophilia-associated neoplasms. Looking forward, one of the many challenges will be how to use the results of molecular profiling to guide prognosis and selection of actionable therapeutic targets. © 2017 by The American Society of Hematology.

  20. Purification and characterization of fetal hematopoietic cells that express the common acute lymphoblastic leukemia antigen (CALLA)

    DEFF Research Database (Denmark)

    Hokland, P; Rosenthal, P; Griffin, J D

    1983-01-01

    Fetal hematopoietic cells that express the common acute lymphoblastic leukemia antigen (CALLA) were purified from both fetal liver and fetal bone marrow by immune rosetting with sheep erythrocytes coated with rabbit anti-mouse immunoglobulin and by fluorescence-activated cell sorting. Dual...... antigen. Furthermore, using methanol-fixed cells, it could be shown that approximately 20% contained intracytoplasmic mu chains (cyto-mu) and that approximately 15% were positive for the terminal transferase enzyme (TdT) marker. The CALLA+ fetal cells thus closely resemble the childhood acute...... that these cells are relatively immature lymphoid cells, CALLA+ cells do not appear to contain either myeloid precursor cells (CFU-G/M) or the earliest lymphoid stem cells. Udgivelsesdato: 1983-Jan-1...

  1. HEMATOPOIETIC SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    12.1 Leukocyte and leukocyte function2003360 Expression of vascular endothelial growth factor and its receptors KDR and Fltl in acute myeloid leukemia. WANG Yi(王一), et al. Instit Hematol, CAMS & PUMC, Tianjin 300020. Chin J Hematol 2003;24(5):249-252Objective: To evaluate the expression of vascular endothelial growth factor (VEGF) and its receptors KDR

  2. Regulator of myeloid differentiation and function:The secret life of Ikaros

    Institute of Scientific and Technical Information of China (English)

    Olivia; L; Francis; Jonathon; L; Payne; Kimberly; J; Payne

    2011-01-01

    Ikaros (also known as Lyf-1) was initially described as a lymphoid-specific transcription factor.Although Ikaros has been shown to regulate hematopoietic stem cell renewal,as well as the development and function of cells from multiple hematopoietic lineages,including the myeloid lineage,Ikaros has primarily been studied in context of lymphoid development and malignancy.This review focuses on the role of Ikaros in myeloid cells.We address the importance of post-transcriptional regulation of Ikaros function;the emerging role of Ikaros in myeloid malignancy;Ikaros as a regulator of myeloid differentiation and function;and the selective expression of Ikaros isoform-x in cells with myeloid potential.We highlight the challenges of dissecting Ikaros function in lineage commitment decisions among lymphoidmyeloid progenitors that have emerged as a major myeloid differentiation pathway in recent studies,which leads to reconstruction of the traditional map of murine and human hematopoiesis.

  3. CBFB-MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia

    NARCIS (Netherlands)

    Mandoli, A; Singh, A A; Jansen, P W T C; Wierenga, A T J; Riahi, H; Franci, G; Prange, K; Saeed, S; Vellenga, E; Vermeulen, M; Stunnenberg, H G; Martens, J H A

    Different mechanisms for CBF beta-MYH11 function in acute myeloid leukemia with inv(16) have been proposed such as tethering of RUNX1 outside the nucleus, interference with transcription factor complex assembly and recruitment of histone deacetylases, all resulting in transcriptional repression of

  4. Absence of mutations in the RET gene in acute myeloid leukemia

    NARCIS (Netherlands)

    Visser, M; Hofstra, RMW; Stulp, RP; Wu, Y; Buys, CHCM; Willemze, R; Landegent, JE

    1997-01-01

    Expression of the tyrosine kinase receptor RET has previously been detected in normal hematopoietic cells, and especially in cells of the myeloid lineage. Furthermore, RET was shown to be differentially expressed in acute myeloid leukemia (AML), a disease characterized by excessive cell growth and a

  5. Proteomic cornerstones of hematopoietic stem cell differentiation

    DEFF Research Database (Denmark)

    Klimmeck, Daniel; Hansson, Jenny; Raffel, Simon

    2012-01-01

    Regenerative tissues such as the skin epidermis, the intestinal mucosa or the hematopoietic system are organized in a hierarchical manner with stem cells building the top of this hierarchy. Somatic stem cells harbor the highest self-renewal activity and generate a series of multipotent progenitors...... related to immune defence mechanisms, centering around the RIG-I and type-1 interferon response systems, which are installed in multipotent progenitors but not evident in myeloid committed cells. This suggests that specific, and so far unrecognized, mechanisms protect these immature cells before...... they mature. In conclusion, this study indicates that the transition of hematopoietic stem/progenitors towards myeloid commitment is accompanied by a profound change in processing of cellular resources, adding novel insights into the molecular mechanisms at the interface between multipotency and lineage...

  6. 成功治疗儿童罕见髓系/自然杀伤细胞祖细胞急性白血病1例%An Unusual Child Case of Myeloid/Natural Killer Cell Precursor Acute Leukemia Treated Successfully with Acute Myeloid Leukemia-Oriented Chemotherapy

    Institute of Scientific and Technical Information of China (English)

    陈玉梅; 刘芳; 邹尧; 阮敏; 刘晓明; 刘天峰; 竺晓凡

    2012-01-01

    This study was aimed to identify the characteristics of childhood myeloid/'natural killer cell precursor acute leukemia (M/NKPAL), and to summarize the therapeutical experiences of this rare hematologic malignancy. A child case of M/NKPAL accompanied by CNS leukemia was enrolled in this study, the therapeutic regiments and the results of long time following up were analysed and evaluated. The results showed that the unusual child case of M/NKPAL with CNS infiltration was diagnosed, showing immunophenotype of CD7+, CD33+, CD3myeloid leukemia-oriented chemotherapy were given as consolidation chemotherapy, all of the 5 courses contained high dose cytarabine. This child case was given 9 times of lumbar puncture and intrathecal injection, besides these, this case was also given cranial radiotherapy with a dose of 36 Gy. After treated with these methods, the child case achieved long-term complete remission. It is concluded that the M/NKPAL is a rare disease with distinctive immunophenotypic characteristics, acute myeloid leukemia-oriented chemotherapy regimen with high dose of cytarabine may be able to induce long-term remission.%本文总结儿童髓系/自然杀伤细胞祖细胞急性白血病(M/NKPAL)的治疗经验以提高对该病的认识.对1例罕见的3岁8个月女童M/NKPAL合并中枢神经系统白血病进行了确诊分析,并对其治疗经过及长期随访结果进行了总结.结果表明,女童M/NKPAL合并中枢神经系统浸润得到了确诊,其免疫表型特征为CD7,CD33,CD34,CD56和HLA-DR共表达,MPO阴性,其他NK细胞和T、B细胞分化抗原阴性,染色体核型有+8和12p -.采用柔红霉素+阿糖胞苷化疗后达完全缓解,随后应用急

  7. The role of hematopoietic stem cell transplantation in the elderly patient with acute myeloid leukaemia O papel do transplante de célula-tronco hematopoiética em pacientes idosos com leucemia mielóide aguda

    OpenAIRE

    2008-01-01

    Older adults with Acute Myeloid Leukaemia (AML), when compared to younger patients with the same disease, have a poor prognosis and represent a discrete population in terms of disease biology, treatment-related complications, and overall outcome. As a result, older patients require distinctive management approaches. For 85%-95% of older AML patients, any therapy ultimately will be purely palliative. No randomized trial has ever demonstrated that any amount of post-remission therapy in older A...

  8. Interleukin-1 regulates hematopoietic progenitor and stem cells in the midgestation mouse fetal liver

    Science.gov (United States)

    Orelio, Claudia; Peeters, Marian; Haak, Esther; van der Horn, Karin; Dzierzak, Elaine

    2009-01-01

    Background Hematopoietic progenitors are generated in the yolk sac and aorta-gonad-mesonephros region during early mouse development. At embryonic day 10.5 the first hematopoietic stem cells emerge in the aorta-gonad-mesonephros. Subsequently, hematopoietic stem cells and progenitors are found in the fetal liver. The fetal liver is a potent hematopoietic site, playing an important role in the expansion and differentiation of hematopoietic progenitors and hematopoietic stem cells. However, little is known concerning the regulation of fetal liver hematopoietic stem cells. In particular, the role of cytokines such as interleukin-1 in the regulation of hematopoietic stem cells in the embryo has been largely unexplored. Recently, we observed that the adult pro-inflammatory cytokine interleukin-1 is involved in regulating aorta-gonad-mesonephros hematopoietic progenitor and hematopoietic stem cell activity. Therefore, we set out to investigate whether interleukin-1 also plays a role in regulating fetal liver progenitor cells and hematopoietic stem cells. Design and Methods We examined the interleukin-1 ligand and receptor expression pattern in the fetal liver. The effects of interleukin-1 on hematopoietic progenitor cells and hematopoietic stem cells were studied by FACS and transplantation analyses of fetal liver explants, and in vivo effects on hematopoietic stem cell and progenitors were studied in Il1r1−/− embryos. Results We show that fetal liver hematopoietic progenitor cells express the IL-1RI and that interleukin-1 increases fetal liver hematopoiesis, progenitor cell activity and promotes hematopoietic cell survival. Moreover, we show that in Il1r1−/− embryos, hematopoietic stem cell activity is impaired and myeloid progenitor activity is increased. Conclusions The IL-1 ligand and receptor are expressed in the midgestation liver and act in the physiological regulation of fetal liver hematopoietic progenitor cells and hematopoietic stem cells. PMID

  9. Myeloid Cells in Infantile Hemangioma

    Science.gov (United States)

    Ritter, Matthew R.; Reinisch, John; Friedlander, Sheila Fallon; Friedlander, Martin

    2006-01-01

    Little is known about the pathogenesis of infantile hemangiomas despite the fact that they are relatively common tumors. These benign neoplasms occur in as many as 1 in 10 births, and although rarely life threatening, hemangiomas can pose serious concerns to the cosmetic and psychosocial development of the afflicted child. Ulceration, scarring, and disfigurement are significant problems as are encroachment of the ear and eye, which can threaten hearing and vision. The precise mechanisms controlling the rapid growth observed in the first months of life and the spontaneous involution that follows throughout the course of years remain unknown. In this report we demonstrate the presence of large numbers of hematopoietic cells of the myeloid lineage in proliferating hemangiomas and propose a mechanism for the observed evolution of these lesions that is triggered by hypoxia and involves the participation of myeloid cells. We report the results of experiments using myeloid markers (CD83, CD32, CD14, CD15) that unexpectedly co-labeled hemangioma endothelial cells, providing new evidence that these cells are distinct from normal endothelium. PMID:16436675

  10. Bone marrow mesenchymal stromal cells induce nitric oxide synthase-dependent differentiation of CD11b+ cells that expedite hematopoietic recovery.

    Science.gov (United States)

    Trento, Cristina; Marigo, Ilaria; Pievani, Alice; Galleu, Antonio; Dolcetti, Luigi; Wang, Chun-Yin; Serafini, Marta; Bronte, Vincenzo; Dazzi, Francesco

    2017-02-09

    Bone marrow microenvironment is fundamental for hematopoietic homeostasis. Numerous efforts have been made to reproduce or manipulate its activity to facilitate engraftment after hematopoietic stem cell transplantation but clinical results remain unconvincing. This probably reflects the complexity of the hematopoietic niche. Recent data have demonstrated the fundamental role of stromal and myeloid cells in regulating hematopoietic stem cell self-renewal and mobilization in the bone marrow. In this study we unveil a novel interaction by which bone marrow mesenchymal stromal cells induce the rapid differentiation of CD11b+ myeloid cells from bone marrow progenitors. Such an activity requires the expression of nitric oxide synthase-2. Importantly, the administration of these mesenchymal stromal cells-educated CD11b+ cells accelerates hematopoietic reconstitution in bone marrow transplant recipients. We conclude that the liaison between mesenchymal stromal cells and myeloid cells is fundamental in hematopoietic homeostasis and suggests that it can be harnessed in clinical transplantation.

  11. Hematopoietic System

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    13.1 Leukocyte and leukocyte function2007252 Expression of AML1/ETO9a isoform in acute myeloid leukemia-M2 subtype. MIAO Yuqing(苗雨青),et al. The 1st Affili Hosp, Soochow Univ, Jiangsu Hematol Instit, Suzhou 215006. Chin J Hematol 2007;28(1):27-29. Objective To investigate the expression of AML1/ETO9a isoform in the acute myeloid leukemia (AML)-M2 patients. Methods Expressions of AML1/ETO fusion gene and AML1/ETO9a isoform were detected by using reverse transcriptase-polymerase chain reaction (RT-PCR) in leukemia patients, MDS patients, leukemia cell lines and healthy subjects. Karyotype was studied by R-banding technique. Result In 30 newly diagnosed AML-M2 patients, 15 were found to express AML1/ETO9a isoform, while the rest including 20 AML-M2CR, 18 other subtypes of AML, 5 chronic myelogenous leukemia(CML), 3 myelodys-plastic syndromes (MDS), 3 leukemia cell lines (NB4, KG-1, K562) and 5 healthy subjects were AML1/ETO9a negative. Among the 15 AML/ETO9a isoform expressing cases, 13 were demonstrated t(8;21) translocation and AML1/ETO expression. Conclusion lsoform AML1/ETO9a related with AML/M2, may promote the development of leukemia in combination with the AML1/ETO fusion gene.

  12. MHC Class I Chain-Related Gene A (MICA) Donor-Recipient Mismatches and MICA-129 Polymorphism in Unrelated Donor Hematopoietic Cell Transplantations Has No Impact on Outcomes in Acute Lymphoblastic Leukemia, Acute Myeloid Leukemia, or Myelodysplastic Syndrome: A Center for International Blood and Marrow Transplant Research Study.

    Science.gov (United States)

    Askar, Medhat; Sobecks, Ronald; Wang, Tao; Haagenson, Mike; Majhail, Navneet; Madbouly, Abeer; Thomas, Dawn; Zhang, Aiwen; Fleischhauer, Katharina; Hsu, Katharine; Verneris, Michael; Lee, Stephanie J; Spellman, Stephen R; Fernández-Viña, Marcelo

    2017-03-01

    Single-center studies have previously reported associations of MHC Class I Chain-Related Gene A (MICA) polymorphisms and donor-recipient MICA mismatching with graft-versus-host disease (GVHD) after unrelated donor hematopoietic cell transplantation (HCT). In this study, we investigated the association of MICA polymorphism (MICA-129, MM versus MV versus VV) and MICA mismatches after HCT with 10/10 HLA-matched (n = 552) or 9/10 (n = 161) unrelated donors. Included were adult patients with a first unrelated bone marrow or peripheral blood HCT for acute lymphoblastic leukemia, acute myeloid leukemia, or myelodysplastic syndrome that were reported to the Center for International Blood and Marrow Transplant Research between 1999 and 2011. Our results showed that neither MICA mismatch nor MICA-129 polymorphism were associated with any transplantation outcome (P acute GVHD grades II to IV (HR, 1.4; P = .013) There were no significant interactions between MICA mismatches and HLA matching (9/10 versus 10/10). In conclusion, the findings in this cohort did not confirm prior studies reporting that MICA polymorphism and MICA mismatches were associated with HCT outcomes.

  13. Return to the hematopoietic stem cell origin

    Directory of Open Access Journals (Sweden)

    Igor M Samokhvalov

    2012-01-01

    Full Text Available Studying embryonic hematopoiesis is complicated by diversity of its locations in the constantly changing anatomy and by the mobility of blood cell precursors. Embryonic hematopoietic progenitors are identified in traditional in vivo and in vitro cell potential assays. Profound epigenetic plasticity of mammalian embryonic cells combined with significant inductive capacity of the potential assays suggest that our understanding of hematopoietic ontogenesis is substantially distorted. Non-invasive in vivo cell tracing methodology offers a better insight into complex processes of blood cell specification. In contrast to the widely accepted view based on the cell potential assays, the genetic tracing approach identified the yolk sac as the source of adult hematopoietic stem cell lineage. Realistic knowledge of the blood origin is critical for safe and efficient recapitulation of hematopoietic development in culture.

  14. Hematopoietic System

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    2009107 Comparison of the clinical application of different methods for detection of NPM1 gene mutations in leukemia. ZOU Jiyan(邹积艳),et al.Dept Hematol, 1st Hosp, Peking Univ, Beijing 100034. Chin J Lab Med 2009;32(1):35-39. Objective To analyze nucleophosmin (NPM1) gene mutations in exon 12 in patients with acute myeloid leukemia (AML) and evaluate the clinical appliance of three methods which are frequently used for detecting gene mutation. Methods Genomic DNA from bone marrow of 54 AML patients was detected by PCR for NPM1 exon 12 and screened by PCR-capillary electrophoresis, denature high performance liquid chromatography (DHPLC) and direct sequencing separately. FLT3-ITD (FMS-like tyrosine kinease internal tandem duplication) was detected by agarose gel electrophoresis and PCR-capillary electrophoresis. Results Seven AML sample harbored NPM1 gene mutations.

  15. Novel transforming genes in murine myeloid leukemia

    NARCIS (Netherlands)

    A.M.S. Joosten (Marieke)

    2002-01-01

    textabstractLeukemia is characterised by an accumulation in the bone marrow of non-functional blood cells arrested at a particular stage of differentiation. In the process of normal hematopoiesis, errors may occur as the result of mutations in the DNA of hematopoietic precursor cells. These genetic

  16. Hematopoietic Processes in Eosinophilic Asthma.

    Science.gov (United States)

    Salter, Brittany M; Sehmi, Roma

    2017-01-24

    Airway eosinophilia is a hallmark of allergic asthma and understanding mechanisms that promote increases in lung eosinophil numbers is important for effective pharmaco-therapeutic development. It has become evident that expansion of hemopoietic compartments in the bone marrow promotes differentiation and trafficking of mature eosinophils to the airways. Hematopoietic progenitor cells egress the bone marrow and home to the lungs, where in-situ differentiative processes within the tissue provide an ongoing source of pro-inflammatory cells. In addition, hematopoietic progenitor cells in the airways can respond to locally-derived alarmins, to produce a panoply of cytokines thereby themselves acting as effector pro-inflammatory cells that potentiate type 2 responses in eosinophilic asthma. In this review, we will provide evidence for these findings and discuss novel targets for modulating eosinophilopoietic processes, migration and effector function of precursor cells.

  17. Comparison of hematopoietic supportive capacity between human fetal and adult bone marrow mesenchymal stem cells in vitro.

    Science.gov (United States)

    Liu, Meng; Yang, Shao-Guang; Xing, Wen; Lu, Shi-Hong; Zhao, Qin-Jun; Ren, Hong-Ying; Chi, Ying; Ma, Feng-Xia; Han, Zhong-Chao

    2011-08-01

    Hematopoietic stem cells (HSC) shift from fetal liver and spleen to bone marrow at neonatal stages and this movement may be due to inductive signals from different microenvironments. Mesenchymal stem cells (MSC) are the precursors of stromal cells in bone marrow microenvironments such as osteoblasts and endothelial cells. Some researchers speculated that fetal bone marrow before birth might be not perfectly suit HSC growth. However, it is still lack of direct evidence to prove this hypothesis. This study was aimed to compare the hematopoietic supportive capacity between human fetal and adult bone marrow MSC in vitro. Adult bone marrow MSC (ABM-MSC) were isolated from three healthy donors and fetal bone marrow MSC (FBM-MSC) were isolated from three fetuses between gestations of 19 to 20 weeks. After irradiation, MSC were co-cultured with CD34(+) cells isolated from umbilical cord blood in long-term culture-initiating cell (LTC-IC) assay. The colony number of colony forming cells (CFC) was counted and the phenotypic changes of co-cultured CD34(+) cells were analyzed by flow cytometry. Cytokine expressions in both kinds of MSC were detected by reverse transcription polymerase chain reaction (RT-PCR). The results showed that ABM-MSC had a stronger hematopoietic supportive capacity than FBM-MSC. Both of them enhanced the differentiation of CD34(+) cells into myeloid lineages. Cytokines were expressed differently in ABM-MSC and FBM-MSC. It is concluded that ABM-MSC possess more potential application in some treatments than FBM-MSC, especially in hematopoietic reconstitution.

  18. Bussulfano e melfalano como regime de condicionamento para o transplante autogênico de células-tronco hematopoéticas na leucemia mielóide aguda em primeira remissão completa Busulfan and melphalan as conditioning regimen for autologous hematopoietic stem cell transplantation in acute myeloid leukemia in first complete remission

    Directory of Open Access Journals (Sweden)

    Nadjanara D. Bueno

    2008-10-01

    Full Text Available Vinte e dois pacientes consecutivos portadores de leucemia mielóide aguda (LMA em primeira remissão completa (1ªRC submetidos a transplante de células-tronco hematopoéticas autogênico (TCTH Auto condicionados com bussulfano e melfalano (Bu/Mel foram selecionados entre 1993 e 2006. A probabilidade de sobrevida global (SG pelo método de Kaplan-Meier foi de 57,5% após 36 meses, com "plateau" aos 20 meses após o transplante. Fatores como sexo, classificação Franco-Americana-Britânica (FAB da LMA, tratamento de indução, consolidação intensiva, remissão após o primeiro ciclo de indução e fonte de células não tiveram impacto na sobrevida. Pela análise citogenética, um paciente de mau prognóstico submetido ao procedimento, foi a óbito um ano após o transplante. Nove pacientes foram a óbito, oito por recidiva e um por hemorragia. Morte antes dos 100 dias ocorreu em dois pacientes, um por recidiva e outro por hemorragia decorrente da plaquetopenia refratária, relacionada ao procedimento. Concluímos que o regime de condicionamento Bu/Mel é opção válida ao uso de outros regimes de condicionamento, apresentando excelente taxa da sobrevida.Twenty-two consecutive patients with acute myeloid leukemia in first complete remission submitted to autologous hematopoietic stem cells transplantation conditioned with busulfan and melphalan were evaluated between 1993 and 2006. The overall survival, according to the Kaplan-Meier curve, was 57.5% at 36 months, with a "plateau" at 20 months after transplant. Factors such as gender, French-American-British (FAB classification of acute myeloid leukemia, induction therapy, intensive consolidation, remission after the first cycle of induction and source of cells had no impact on survival. One patient with poor prognosis before the procedure died a year after transplantation. Nine patients died, eight by relapse and one because of bleeding. Death before 100 days occurred for two patients, one

  19. Reduced-Intensity Conditioning Combined with (188)Rhenium Radioimmunotherapy before Allogeneic Hematopoietic Stem Cell Transplantation in Elderly Patients with Acute Myeloid Leukemia: The Role of In Vivo T Cell Depletion.

    Science.gov (United States)

    Schneider, Sebastian; Strumpf, Annette; Schetelig, Johannes; Wunderlich, Gerd; Ehninger, Gerhard; Kotzerke, Jörg; Bornhäuser, Martin

    2015-10-01

    The combination of reduced-intensity conditioning, (188)rhenium anti-CD66 radioimmunotherapy, and in vivo T cell depletion was successfully applied in elderly patients with acute myeloid leukemia or myelodysplastic syndrome. Within a prospective phase II protocol, we investigated whether a dose reduction of alemtuzumab (from 75 mg to 50 mg MabCampath) would improve leukemia-free survival by reducing the incidence of relapse. Fifty-eight patients (median age, 67 years; range, 54 to 76) received radioimmunotherapy followed by fludarabine 150 mg/m(2) and busulfan 8 mg/kg combined with either 75 mg (n = 26) or 50 mg (n = 32) alemtuzumab. Although we observed a trend towards a shorter duration of neutropenia in the 50 mg group (median, 19 versus 21 days; P = .07), the time from transplantation to neutrophil and platelet engraftment as well as the overall incidence of engraftment did not differ. The incidence of severe acute graft-versus-host disease tended to be higher after the lower alemtuzumab dose (17% versus 4%; P = .15). No significant differences in the cumulative incidences of relapse (38% versus 35%; P = .81) or nonrelapse mortality (46% versus 27%; P = .31) were observed. Accordingly, disease-free and overall survival were not significantly different between groups. Although the feasibility of radioimmunotherapy plus reduced-intensity conditioning could be demonstrated in elderly patients, the dose reduction of alemtuzumab had no positive impact on overall outcome.

  20. Emerging uses for pediatric hematopoietic stem cells.

    Science.gov (United States)

    Domen, Jos; Gandy, Kimberly; Dalal, Jignesh

    2012-04-01

    Many new therapies are emerging that use hematopoietic stem and progenitor cells. In this review, we focus on five promising emerging trends that are altering stem cell usage in pediatrics: (i) The use of hematopoietic stem cell (HSC) transplantation, autologous or allogeneic, in the treatment of autoimmune disorders is one. (ii) The use of cord blood transplantation in patients with inherited metabolic disorders such as Hurler syndrome shows great benefit, even more so than replacement enzyme therapy. (iii) Experience with the delivery of gene therapy through stem cells is increasing, redefining the potential and limitations of this therapy. (iv) It has recently been shown that human immunodeficiency virus (HIV) infection can be cured by the use of selected stem cells. (v) Finally, it has long been postulated that HSC-transplantation can be used to induce tolerance in solid-organ transplant recipients. A new approach to tolerance induction using myeloid progenitor cells will be described.

  1. Donor Killer Immunoglobulin-Like Receptor Profile Bx1 Imparts a Negative Effect and Centromeric B-Specific Gene Motifs Render a Positive Effect on Standard-Risk Acute Myeloid Leukemia/Myelodysplastic Syndrome Patient Survival after Unrelated Donor Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Bao, Xiaojing; Wang, Miao; Zhou, Huifen; Zhang, Huanhuan; Wu, Xiaojin; Yuan, Xiaoni; Li, Yang; Wu, Depei; He, Jun

    2016-02-01

    Donor killer immunoglobulin-like receptor (KIR) group B profiles (Bx) and homozygous of centromeric motif B (Cen-B/B) are the most preferable KIR gene content motifs for hematopoietic stem cell transplantation (HSCT). The risk of transplant from Bx1 donors and the benefit of the presence of Cen-B (regardless of number) were observed for standard-risk acute myeloid leukemia/myelodysplastic syndrome (AML/MDS) patients in this 4-year retrospective study. A total of 210 Chinese patients who underwent unrelated donor HSCT were investigated. Donor KIR profile Bx was associated with significantly improved overall survival (OS; P = .026) and relapse-free survival (RFS; P = .021) and reduced nonrelapse mortality (NRM; P = .017) in AML/MDS patients. A significantly lower survival rate was observed for transplants from Bx1 donors compared with Bx2, Bx3, and Bx4 donors for patients in first complete remission (n = 82; OS: P = .024; RFS: P = .021). Transplant from donors with Cen-B resulted in improved OS (HR = .256; 95% CI, .084 to .774; P = .016) and RFS (HR = .252; 95% CI, .084 to .758; P = .014) in AML/MDS patients at standard risk. However, this particular effect did not increase with a higher number of Cen-B motifs (cB/B versus cA/B; OS: P = .755; RFS: P = .768). No effect was observed on high-risk AML/MDS, acute lymphoblastic leukemia/non-Hodgkin lymphoma, and chronic myelogenous leukemia patients. Avoiding the selection of HSCT donors of KIR profile Bx1 is strongly advisable for standard-risk AML/MDS patients. The presence of the Cen-B motif rather than its number was more important in donor selection for the Chinese population.

  2. Rho GTPase expression in human myeloid cells.

    Directory of Open Access Journals (Sweden)

    Suzanne F G van Helden

    Full Text Available Myeloid cells are critical for innate immunity and the initiation of adaptive immunity. Strict regulation of the adhesive and migratory behavior is essential for proper functioning of these cells. Rho GTPases are important regulators of adhesion and migration; however, it is unknown which Rho GTPases are expressed in different myeloid cells. Here, we use a qPCR-based approach to investigate Rho GTPase expression in myeloid cells.We found that the mRNAs encoding Cdc42, RhoQ, Rac1, Rac2, RhoA and RhoC are the most abundant. In addition, RhoG, RhoB, RhoF and RhoV are expressed at low levels or only in specific cell types. More differentiated cells along the monocyte-lineage display lower levels of Cdc42 and RhoV, while RhoC mRNA is more abundant. In addition, the Rho GTPase expression profile changes during dendritic cell maturation with Rac1 being upregulated and Rac2 downregulated. Finally, GM-CSF stimulation, during macrophage and osteoclast differentiation, leads to high expression of Rac2, while M-CSF induces high levels of RhoA, showing that these cytokines induce a distinct pattern. Our data uncover cell type specific modulation of the Rho GTPase expression profile in hematopoietic stem cells and in more differentiated cells of the myeloid lineage.

  3. Pubertal development and fertility in survivors of childhood acute myeloid leukemia treated with chemotherapy only

    DEFF Research Database (Denmark)

    Molgaard-Hansen, Lene; Skou, Anne-Sofie; Juul, Anders

    2013-01-01

    More than 60% of children with acute myeloid leukemia (AML) become long-term survivors. Most are cured using chemotherapy without hematopoietic stem cell transplantation (HSCT). We report on pubertal development and compare self-reported parenthood among AML survivors and their siblings.......More than 60% of children with acute myeloid leukemia (AML) become long-term survivors. Most are cured using chemotherapy without hematopoietic stem cell transplantation (HSCT). We report on pubertal development and compare self-reported parenthood among AML survivors and their siblings....

  4. α-Hemoglobin-stabilizing Protein: An Effective Marker for Erythroid Precursors in Bone Marrow Biopsy Specimens.

    Science.gov (United States)

    Yu, Hongbo; Pinkus, Jack L; Pinkus, Geraldine S

    2016-01-01

    Accurate analysis of the erythroid lineage is essential in evaluating bone marrow biopsies and can be particularly challenging in settings of dyserythropoiesis. α-Hemoglobin-stabilizing protein (AHSP) is an erythroid-specific chaperone protein and represents a potential specific marker for erythroid elements. This study defines the immunohistochemical profile of AHSP, as compared with an established erythroid marker CD71, in 101 bone marrow biopsies including normal marrows and cases of acute pure erythroid leukemia, acute erythroid/myeloid leukemia, other types of acute myeloid leukemia, myelodysplastic syndrome, chronic myelogenous leukemia, other types of myeloproliferative neoplasm, chronic myelomonocytic leukemia, acute lymphoblastic leukemia, plasma cell neoplasm, and metastatic carcinoma. In acute pure erythroid leukemia, blasts in 7 of 11 cases showed similar reactivity for CD71 and AHSP, whereas less extensive reactivity was observed for AHSP as compared with CD71 in the remaining 4 cases. In normal marrows and other various disorders, reactivity for AHSP was similar to CD71 and was restricted to the erythroid lineage. Mature erythrocytes were negative for AHSP as were myeloblasts, lymphoblasts, nonerythroid hematopoietic marrow elements, plasma cells, and carcinoma cells. AHSP is an effective marker for detection of normal or abnormal erythroid precursors in bone marrow biopsies and is a useful addition to an immunohistochemical panel for assessment of neoplastic cells of possible erythroid derivation.

  5. The histone demethylase Jarid1b is required for hematopoietic stem cell self-renewal

    DEFF Research Database (Denmark)

    Stewart, Morag H; Albert, Mareike; Sroczynska, Patrycja;

    2015-01-01

    Jarid1b/KDM5b is a histone demethylase that regulates self-renewal and differentiation in stem cells and cancer, however its function in hematopoiesis is unclear. Here, we find that Jarid1b is highly expressed in primitive hematopoietic compartments and is overexpressed in acute myeloid leukemias...... compromises hematopoietic stem cell (HSC) self-renewal capacity and suggest that Jarid1b is a positive regulator of HSC potential....

  6. Elevated frequencies of leukemic myeloid and plasmacytoid dendritic cells in acute myeloid leukemia with the FLT3 internal tandem duplication

    OpenAIRE

    Rickmann, Mareike; Krauter, Juergen; Stamer, Kathrin; Heuser, Michael; Salguero, Gustavo; Mischak-Weissinger, Eva; Ganser, Arnold; Stripecke, Renata

    2011-01-01

    Abstract Some 30% of acute myeloid leukemia (AML) patients display an internal tandem duplication (ITD) mutation in the FMS-like tyrosine kinase 3 (FLT3) gene. FLT3-ITDs are known to drive hematopoietic stem cells towards FLT3 ligand independent growth, but the effects on dendritic cell (DC) differentiation during leukemogenesis are not clear. We compared the frequency of cells with immunophenotype of myeloid DC (mDC: Lin?, HLA-DR+, CD11c+, CD86+) and plasmacytoid DC (pDC: Lin?, HL...

  7. Induction in myeloid leukemic cells of genes that are expressed in different normal tissues

    OpenAIRE

    2005-01-01

    Using DNA microarray and cluster analysis of expressed genes in a cloned line (M1-t-p53) of myeloid leukemic cells, we have analyzed the expression of genes that are preferentially expressed in different normal tissues. Clustering of 547 highly expressed genes in these leukemic cells showed 38 genes preferentially expressed in normal hematopoietic tissues and 122 other genes preferentially expressed in different normal non-hematopoietic tissues including neuronal tissues, muscle, liver and te...

  8. Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia

    OpenAIRE

    1995-01-01

    textabstractBACKGROUND. In severe congenital neutropenia the maturation of myeloid progenitor cells is arrested. The myelodysplastic syndrome and acute myeloid leukemia develop in some patients with severe congenital neutropenia. Abnormalities in the signal-transduction pathways for granulocyte colony-stimulating factor (G-CSF) may play a part in the progression to acute myeloid leukemia. METHODS. We isolated genomic DNA and RNA from hematopoietic cells obtained from two patients with acute m...

  9. Leukemia in donor cells after allogeneic hematopoietic stem cell transplant

    OpenAIRE

    2002-01-01

    The development of leukemia in donor cells after allogeneic hematopoietic stem cell transplant is an extremely rare event. We report here the case of a patient who developed myelodysplastic syndrome/acute myeloid leukemia, in cells of donor origin 3.5 years after related donor HSCT for refractory chronic lymphocytic leukemia and therapy-induced myelodysplastic syndrome. The origin of the leukemia was determined by analysis of minisatillite polymorphism tested on CD34(+) cells.

  10. The role of hematopoietic stem cell transplantation in the elderly patient with acute myeloid leukaemia O papel do transplante de célula-tronco hematopoiética em pacientes idosos com leucemia mielóide aguda

    Directory of Open Access Journals (Sweden)

    Attilio Olivieri

    2008-06-01

    Full Text Available Older adults with Acute Myeloid Leukaemia (AML, when compared to younger patients with the same disease, have a poor prognosis and represent a discrete population in terms of disease biology, treatment-related complications, and overall outcome. As a result, older patients require distinctive management approaches. For 85%-95% of older AML patients, any therapy ultimately will be purely palliative. No randomized trial has ever demonstrated that any amount of post-remission therapy in older AML patients provides better outcomes than no post-remission therapy. The only studies demonstrating that long-term Disease Free Survival (DFS is possible in older AML patients have included remission induction and post-remission therapy. For these reasons alternative post-remission strategies, including autologous or allogeneic transplantation have been explored also in people over sixty considered fit for aggressive therapy. Up to now the data available from clinical trials suggest that the stem cell transplant procedure is promising, and can lead to long-term survival, but it is feasible only in a minority of fit elderly patients. The main limits of Autologous Stem Cell Transplantation (ASCT are represented by the low percentage of patients able to mobilize a sufficient amount of stem cells and by the still high relapse incidence after ASCT, especially in those with poor prognostic factors; for these patients the allogeneic transplant procedure, by using non myeloablative conditioning regimens, could offer a better chance of cure, thanks to the Graft versus Leukemia (GVL effect, but there are no prospective trials showing the superiority of any transplant approach over conventional treatment in this subset of patients.Pacientes idosos com leucemia mielóide aguda (LMA, quando comparados com pacientes jovens com a mesma doença, apresentam prognóstico pobre e representam uma população particular em termos biológicos, complicações relacionadas ao

  11. Differentiation Therapy of Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Elzbieta Gocek

    2011-05-01

    Full Text Available Acute Myeloid Leukemia (AML is a predominant acute leukemia among adults, characterized by accumulation of malignantly transformed immature myeloid precursors. A very attractive way to treat myeloid leukemia, which is now called ‘differentiation therapy’, was proposed as in vitro studies have shown that a variety of agents stimulate differentiation of the cell lines isolated from leukemic patients. One of the differentiation-inducing agents, all-trans retinoic acid (ATRA, which can induce granulocytic differentiation in myeloid leukemic cell lines, has been introduced into clinics to treat patients with acute promyelocytic leukemia (APL in which a PML-RARA fusion protein is generated by a t(15;17(q22;q12 chromosomal translocation. Because differentiation therapy using ATRA has significantly improved prognosis for patients with APL, many efforts have been made to find alternative differentiating agents. Since 1,25-dihydroxyvitamin D3 (1,25D is capable of inducing in vitro monocyte/macrophage differentiation of myeloid leukemic cells, clinical trials have been performed to estimate its potential to treat patients with AML or myelodysplastic syndrome (MDS. Unfortunately therapeutic concentrations of 1,25D can induce potentially fatal systemic hypercalcemia, thus limiting clinical utility of that compound. Attempts to overcome this problem have focused on the synthesis of 1,25D analogs (VDAs which retain differentiation inducing potential, but lack its hypercalcemic effects. This review aims to discuss current problems and potential solutions in differentiation therapy of AML.

  12. Differentiation Therapy of Acute Myeloid Leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Gocek, Elzbieta; Marcinkowska, Ewa, E-mail: ema@cs.uni.wroc.pl [Department of Biotechnology, University of Wroclaw, ul Tamka 2, Wroclaw 50-137 (Poland)

    2011-05-16

    Acute Myeloid Leukemia (AML) is a predominant acute leukemia among adults, characterized by accumulation of malignantly transformed immature myeloid precursors. A very attractive way to treat myeloid leukemia, which is now called ‘differentiation therapy’, was proposed as in vitro studies have shown that a variety of agents stimulate differentiation of the cell lines isolated from leukemic patients. One of the differentiation-inducing agents, all-trans retinoic acid (ATRA), which can induce granulocytic differentiation in myeloid leukemic cell lines, has been introduced into clinics to treat patients with acute promyelocytic leukemia (APL) in which a PML-RARA fusion protein is generated by a t(15;17)(q22;q12) chromosomal translocation. Because differentiation therapy using ATRA has significantly improved prognosis for patients with APL, many efforts have been made to find alternative differentiating agents. Since 1,25-dihydroxyvitamin D{sub 3} (1,25D) is capable of inducing in vitro monocyte/macrophage differentiation of myeloid leukemic cells, clinical trials have been performed to estimate its potential to treat patients with AML or myelodysplastic syndrome (MDS). Unfortunately therapeutic concentrations of 1,25D can induce potentially fatal systemic hypercalcemia, thus limiting clinical utility of that compound. Attempts to overcome this problem have focused on the synthesis of 1,25D analogs (VDAs) which retain differentiation inducing potential, but lack its hypercalcemic effects. This review aims to discuss current problems and potential solutions in differentiation therapy of AML.

  13. Karyotypic findings in chronic myeloid leukemia cases undergoing treatment

    OpenAIRE

    Anupam Kaur; Simran Preet Kaur; Amarjit Singh; Jai Rup Singh

    2012-01-01

    Background: Chronic myeloid leukemia (CML) is a clonal myeloproliferative expansion of primitive hematopoietic progenitor cells. Materials and Methods: In the present study, CML samples were collected from various hospitals in Amritsar, Jalandhar and Ludhiana. Results: Chromosomal alterations seen in peripheral blood lymphocytes of these treated and untreated cases of CML were satellite associations, double minutes, random loss, gain of C group chromosomes and presence of marker chr...

  14. FHL2 regulates hematopoietic stem cell functions under stress conditions

    Science.gov (United States)

    Hou, Yu; Wang, Xiaoqin; Li, LiPing; Fan, Rong; Chen, Ju; Zhu, Tongyu; Li, Wen; Jiang, Yanwen; Mittal, Nupur; Wu, Wenshu; Peace, David; Qian, Zhijian

    2014-01-01

    FHL2, a member of the four and one half LIM domain protein family, is a critical transcriptional modulator. Here, we identify FHL2 as a critical regulator of hematopoietic stem cells (HSCs) that is essential for maintaining HSC self-renewal under regenerative stress. We find that Fhl2 loss has limited effects on hematopoiesis under homeostatic conditions. In contrast, Fhl2-null chimeric mice reconstituted with Fhl2-null bone marrow cells developed abnormal hematopoiesis with significantly reduced numbers of HSCs, hematopoietic progenitor cells (HPCs), red blood cells and platelets as well as hemoglobin levels. In addition, HSCs displayed a significantly reduced self-renewal capacity and were skewed toward myeloid lineage differentiation. We find that Fhl2 loss reduces both HSC quiescence and survival in response to regenerative stress, probably as a consequence of Fhl2-loss-mediated down-regulation of cyclin dependent kinase (CDK)-inhibitors, including p21(Cip) and p27(Kip1). Interestingly, FHL2 is regulated under control of a tissue specific promoter in hematopoietic cells and it is down-regulated by DNA hypermethylation in the leukemia cell line and primary leukemia cells. Furthermore, we find that down-regulation of FHL2 frequently occurs in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) patients, raising a possibility that FHL2 down-regulation plays a role in the pathogenesis of myeloid malignancies. PMID:25179730

  15. Diagnostic confusion resulting from CD56 expression by cutaneous myeloid sarcoma

    Directory of Open Access Journals (Sweden)

    Sheeja T. Pullarkat

    2009-12-01

    Full Text Available Myeloid sarcomas are tumor masses composed of aggregates of malignant myeloid precursors in extramedullary sites including the skin. We report a case of myeloid sarcoma in a patient who presented with an ear lobe mass and facial nerve paralysis. Expression of CD56 by the malignant cells led to an initial misdiagnosis as Merkel cell tumor. Comprehensive pathological evaluation confirmed the diagnosis of myeloid sarcoma with aberrant expression of CD56 and carrying the translocation t(8;21 (q22;q22. Aberrant antigen expression by cutaneous myeloid sarcomas can cause diagnostic confusion with other cutaneous neoplasms. This is especially relevant when myeloid sarcoma is the sole manifestation of acute myeloid leukemia.

  16. What Is Chronic Myeloid Leukemia?

    Science.gov (United States)

    ... Chronic Myeloid Leukemia (CML) About Chronic Myeloid Leukemia What Is Chronic Myeloid Leukemia? Cancer starts when cells ... their treatment is the same as for adults. What is leukemia? Leukemia is a cancer that starts ...

  17. Lis1 regulates asymmetric division in hematopoietic stem cells and in leukemia

    Science.gov (United States)

    Zimdahl, Bryan; Ito, Takahiro; Blevins, Allen; Bajaj, Jeevisha; Konuma, Takaaki; Weeks, Joi; Koechlein, Claire S.; Kwon, Hyog Young; Arami, Omead; Rizzieri, David; Broome, H. Elizabeth; Chuah, Charles; Oehler, Vivian G.; Sasik, Roman; Hardiman, Gary; Reya, Tannishtha

    2014-01-01

    Cell fate can be controlled through asymmetric division and segregation of protein determinants. But the regulation of this process in the hematopoietic system is poorly understood. Here we show that the dynein binding protein Lis1 (Pafah1b1) is critically required for blood formation and hematopoietic stem cell function. Conditional deletion of Lis1 in the hematopoietic system led to a severe bloodless phenotype, depletion of the stem cell pool and embryonic lethality. Further, the loss of Lis1 accelerated cell differentiation, in part through defects in spindle positioning and inheritance of cell fate determinants. Finally, deletion of Lis1 blocked propagation of myeloid leukemia and led to a marked improvement in animal survival, suggesting that Lis1 is also required for oncogenic growth. These data identify a key role for Lis1 in hematopoietic stem cells, and mark the directed control of asymmetric division as a critical regulator of normal and malignant hematopoietic development. PMID:24487275

  18. Myelodysplastic Syndrome with Myelofibrosis Transformed to a Precursor B-Cell Acute Lymphoblastic Leukemia: A Case Report with Review of the Literature

    Directory of Open Access Journals (Sweden)

    Ayed A. Algarni

    2012-01-01

    Full Text Available Myelodysplastic syndromes (MDS comprise a group of heterogeneous clonal hematopoietic cell disorders characterized by cytopenias, bone marrow hypercellularity, and increased risk of transformation to acute leukemias. MDS usually transformed to acute myeloid leukemia, and transformation to acute lymphoblastic leukemia (ALL is rare. Herein, we report a unique patient who presented with MDS with myelofibrosis. Two months after the initial diagnosis, she progressed to a precursor B-cell acute lymphoblastic leukemia. She was treated with induction therapy followed by allogenic stem cell transplantation. She was alive and doing well upon last followup. We have also reviewed the literature and discussed the clinicopathologic features of 36 MDS patients who progressed to ALL reported in the literature.

  19. Hematopoietic stem cell involvement in BCR-ABL1-positive ALL as potential mechanism of resistance to blinatumomab therapy.

    Science.gov (United States)

    Nagel, Inga; Bartels, Marius; Duell, Johannes; Oberg, Hans-Heinrich; Ussat, Sandra; Bruckmueller, Henrike; Ottmann, Oliver; Pfeifer, Heike; Trautmann, Heiko; Gökbuget, Nicola; Caliebe, Almuth; Kabelitz, Dieter; Kneba, Michael; Horst, Heinz-August; Hoelzer, Dieter; Topp, Max S; Cascorbi, Ingolf; Siebert, Reiner; Brüggemann, Monika

    2017-08-21

    The bispecific T-cell engager blinatumomab targeting CD19 can induce complete remission in relapsed or refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, some patients ultimately relapse with loss of CD19-antigen on leukemic cells which has been established as a novel escape mechanism to CD19-specific immunotherapies. Here, we provide evidence that CD19-negative relapse after CD19-directed therapy in BCP-ALL may be due to selection of preexisting CD19-negative malignant progenitor cells. We present two BCR-ABL1-fusion-positive BCP-ALL patients with CD19-negative myeloid lineage relapse after blinatumomab therapy and show BCR-ABL1-positivity in their hematopoietic stem cell (HSC)/progenitor/myeloid compartments at initial diagnosis by fluorescence in situ hybridization after cell sorting. Using the same approach in 25 additional diagnostic samples of patients with BCR-ABL1-positive BCP-ALL, HSC involvement was identified in 40% of the patients. Patients with major-BCR-ABL1 transcript encoding P210(BCR-ABL1) mainly showed HSC involvement (6/8), whereas in most of the patients with minor-BCR-ABL1 transcript encoding P190(BCR-ABL1) only the CD19-positive leukemia compartments were BCR-ABL1-positive (9/12) (p=0.02). Our data are of clinical importance, because they indicate that not only CD19-positive cells, but also CD19-negative precursors should be targeted to avoid CD19-negative relapses in patients with BCR-ABL1-positive ALL. Copyright © 2017 American Society of Hematology.

  20. Cutaneous infection caused by Macrophomina phaseolina in a child with acute myeloid leukemia.

    Science.gov (United States)

    Srinivasan, Ashok; Wickes, Brian L; Romanelli, Anna M; Debelenko, Larisa; Rubnitz, Jeffrey E; Sutton, Deanna A; Thompson, Elizabeth H; Fothergill, Annette W; Rinaldi, Michael G; Hayden, Randall T; Shenep, Jerry L

    2009-06-01

    We report a case of Macrophomina phaseolina skin infection in an immunocompromised child with acute myeloid leukemia, which was treated successfully with posaconazole without recurrence after a hematopoietic stem cell transplant. The fungus was identified by DNA sequencing using both the internal transcribed spacer and D1/D2 region of the 28S ribosomal DNA gene.

  1. Cutaneous Infection Caused by Macrophomina phaseolina in a Child with Acute Myeloid Leukemia▿

    OpenAIRE

    Srinivasan, Ashok; Wickes, Brian L.; Romanelli, Anna M.; Debelenko, Larisa; Rubnitz, Jeffrey E.; Sutton, Deanna A.; Thompson, Elizabeth H.; Fothergill, Annette W.; Rinaldi, Michael G.; Hayden, Randall T.; Shenep, Jerry L.

    2009-01-01

    We report a case of Macrophomina phaseolina skin infection in an immunocompromised child with acute myeloid leukemia, which was treated successfully with posaconazole without recurrence after a hematopoietic stem cell transplant. The fungus was identified by DNA sequencing using both the internal transcribed spacer and D1/D2 region of the 28S ribosomal DNA gene.

  2. Cutaneous Infection Caused by Macrophomina phaseolina in a Child with Acute Myeloid Leukemia▿

    Science.gov (United States)

    Srinivasan, Ashok; Wickes, Brian L.; Romanelli, Anna M.; Debelenko, Larisa; Rubnitz, Jeffrey E.; Sutton, Deanna A.; Thompson, Elizabeth H.; Fothergill, Annette W.; Rinaldi, Michael G.; Hayden, Randall T.; Shenep, Jerry L.

    2009-01-01

    We report a case of Macrophomina phaseolina skin infection in an immunocompromised child with acute myeloid leukemia, which was treated successfully with posaconazole without recurrence after a hematopoietic stem cell transplant. The fungus was identified by DNA sequencing using both the internal transcribed spacer and D1/D2 region of the 28S ribosomal DNA gene. PMID:19386841

  3. Underground Adaptation to a Hostile Environment: Acute Myeloid Leukemia vs. Natural Killer Cells

    Science.gov (United States)

    Dulphy, Nicolas; Chrétien, Anne-Sophie; Khaznadar, Zena; Fauriat, Cyril; Nanbakhsh, Arash; Caignard, Anne; Chouaib, Salem; Olive, Daniel; Toubert, Antoine

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous group of malignancies which incidence increases with age. The disease affects the differentiation of hematopoietic stem or precursor cells in the bone marrow and can be related to abnormal cytogenetic and/or specific mutational patterns. AML blasts can be sensitive to natural killer (NK) cell antitumor response. However, NK cells are frequently defective in AML patients leading to tumor escape. NK cell defects affect not only the expression of the activating NK receptors, including the natural cytotoxicity receptors, the NK group 2, member D, and the DNAX accessory molecule-1, but also cytotoxicity and IFN-γ release. Such perturbations in NK cell physiology could be related to the adaptation of the AML to the immune pressure and more generally to patient’s clinical features. Various mechanisms are potentially involved in the inhibition of NK-cell functions in AML, including defects in the normal lymphopoiesis, reduced expression of activating receptors through cell-to-cell contacts, and production of immunosuppressive soluble agents by leukemic blasts. Therefore, the continuous cross-talk between AML and NK cells participates to the leukemia immune escape and eventually to patient’s relapse. Methods to restore or stimulate NK cells seem to be attractive strategies to treat patients once the complete remission is achieved. Moreover, our capacity in stimulating the NK cell functions could lead to the development of preemptive strategies to eliminate leukemia-initiating cells before the emergence of the disease in elderly individuals presenting preleukemic mutations in hematopoietic stem cells. PMID:27014273

  4. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block

    DEFF Research Database (Denmark)

    Kirstetter, Peggy; Anderson, Kristina; Porse, Bo T;

    2006-01-01

    of hematopoietic stem cell function was associated with decreased expression of Cdkn1a (encoding the cell cycle inhibitor p21(cdk)), Sfpi1, Hoxb4 and Bmi1 (encoding the transcription factors PU.1, HoxB4 and Bmi-1, respectively) and altered integrin expression in Lin(-)Sca-1(+)c-Kit(+) cells, whereas PU.1......Wnt signaling increases hematopoietic stem cell self-renewal and is activated in both myeloid and lymphoid malignancies, indicating involvement in both normal and malignant hematopoiesis. We report here activated canonical Wnt signaling in the hematopoietic system through conditional expression...... of a stable form of beta-catenin. This enforced expression led to hematopoietic failure associated with loss of myeloid lineage commitment at the granulocyte-macrophage progenitor stage; blocked erythrocyte differentiation; disruption of lymphoid development; and loss of repopulating stem cell activity. Loss...

  5. Cartography of hematopoietic stem cell commitment dependent upon a reporter for transcription factor activation.

    Science.gov (United States)

    Akashi, Koichi

    2007-06-01

    A hierarchical hematopoietic developmental tree has been proposed based on the result of prospective purification of lineage-restricted progenitors. For more detailed mapping for hematopoietic stem cell (HSC) commitment, we tracked the expression of PU.1, a major granulocyte/monocyte (GM)- and lymphoid-related transcription factor, from the HSC to the myelolymphoid progenitor stages by using a mouse line harboring a knockin reporter for PU.1. This approach enabled us to find a new progenitor population committed to GM and lymphoid lineages within the HSC fraction. This result suggests that there should be another developmental pathway independent of the conventional one with myeloid versus lymphoid bifurcation, represented by common myeloid progenitors and common lymphoid progenitors, respectively. The utilization of the transcription factor expression as a functional marker might be useful to obtain cartography of the hematopoietic development at a higher resolution.

  6. IGK with conserved IGΚV/IGΚJ repertoire is expressed in acute myeloid leukemia and promotes leukemic cell migration.

    Science.gov (United States)

    Wang, Chong; Xia, Miaoran; Sun, Xiaoping; He, Zhiqiao; Hu, Fanlei; Chen, Lei; Bueso-Ramos, Carlos E; Qiu, Xiaoyan; Yin, C Cameron

    2015-11-17

    We have previously reported that immunoglobulin heavy chain genes were expressed in myeloblasts and mature myeloid cells. In this study, we further demonstrated that rearranged Ig κ light chain was also frequently expressed in acute myeloid leukemia cell lines (6/6), primary myeloblasts from patients with acute myeloid leukemia (17/18), and mature monocytes (11/12) and neutrophils (3/12) from patients with non-hematopoietic neoplasms, but not or only rarely expressed in mature neutrophils (0/8) or monocytes (1/8) from healthy individuals. Interestingly, myeloblasts and mature monocytes/neutrophils shared several restricted IGKV and IGKJ gene usages but with different expression frequency. Surprisingly, almost all of the acute myeloid leukemia-derived IGKV showed somatic hypermutation; in contrast, mature myeloid cells-derived IGKV rarely had somatic hypermutation. More importantly, although IGK expression appeared not to affect cell proliferation, reduced IGK expression led to a decrease in cell migration in acute myeloid leukemia cell lines HL-60 and NB4, whereas increased IGK expression promoted their motility. In summary, IGK is expressed in myeloblasts and mature myeloid cells from patients with non-hematopoietic neoplasms, and is involved in cell migration. These results suggest that myeloid cells-derived IgK may have a role in leukemogenesis and may serve as a novel tumor marker for monitoring minimal residual disease and developing target therapy.

  7. Epo and other hematopoietic factors

    OpenAIRE

    2007-01-01

    The growth factors erythropoietin and granulocyte-colony stimulating factor have hematopoietic and non-hematopoietic functions. Both are used clinically in their recombinant forms. Both also have interesting tissue-protective effects in other organs, which are unrelated to their hematopoietic functions. They have clinical hematopoietic uses in neonatal populations and in experimental non-hematopoietic research, and clinical potential as neuroprotective or tissue-protective agents.

  8. Hematopoietic tissue repair under chronic low daily dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Seed, T.M.

    1994-12-01

    The capacity of the hematopoietic system to repair constantly accruing cellular damage under chronic, low daily dose gamma irradiation is essential for the maintenance of a functional hematopoietic system, and, in turn, long term survival. In certain individuals, however, such continuous cycles of damage and repair provide an essential inductive environment for selected types of hematopathologies, e.g., myeloid leukemia (ML). We have been studying temporal and causal relationships between hematopoietic capacity, associated repair functions, and propensities for hematologic disease in canines under variable levels of chronic radiation stress (0.3{minus}26.3 cGy d{sup {minus}1}). Results indicate that the maximum exposure rate tolerated by the hematopoietic system is highly individual-specific and is based largely on the degree to which repair capacity, and, in turn, hematopoietic restoration, is augmented under chronic exposure. In low-tolerance individuals (prone to aplastic anemia, subgroup (1), the failure to augment basic m-pair functions seemingly results in a progressive accumulation of genetic and cellular damage within vital progenitorial marrow compartments particularly marked within erythroid compartments. that results in loss of reproductive capacity and ultimately in collapse of the hematopoietic system. The high-tolerance individuals (radioaccomodated and either prone- or not prone to ML, subgroup 2 & 3 appear to minimize the accumulating damage effect of daily exposures by extending repair functions, which preserves reproductive integrity and fosters regenerative hematopoietic responses. As the strength of the regenerative response manifests the extent of repair augmentation, the relatively strong response of high- tolerance individuals progressing to patent ML suggests an insufficiency of repair quality rather than repair quantity.

  9. Preliminary Analysis of Therapeutic Efficacy and Prognosis of Allogeneic Hematopoietic Stem Cell Transplantation in Patients with Advanced Chronic Myeloid Leukemia%异基因造血干细胞移植治疗进展期慢性髓系白血病疗效及预后的初步分析

    Institute of Scientific and Technical Information of China (English)

    宋阿霞; 翟卫华; 张荣莉; 冯四洲; 韩明哲; 杨栋林; 魏嘉鳞; 闫嶂松; 王玫; 姜尔烈; 黄勇; 马巧玲; 何袆

    2011-01-01

    加速期和急变期慢性髓系白血病(CML)患者预后较差,异基因造血干细胞移植(allo-HSCT)是这一类患者唯一具有治愈可能的治疗方法.本研究探讨allo-HSCT治疗进展期CML的疗效及预后.对1998年9月至2008年1月28例接受allo-HSCT的患者从疗效、移植前基础特点与预后、移植前治疗策略与预后、移植后事件与预后等方面进行了回顾性分析.结果表明:28例患者中10例活存并持续缓解,3年总活存率和无病活存率分别34.9%和35.7%;18例死亡.单因素分析发现,克隆演进和原始细胞比例是预后不良的基线危险因素,二者结合可以预测预后.移植前应用伊马替尼并取得完全血液学缓解并不能改善预后.对移植后事件的预后分析发现,并发重度移植物抗宿主病是预后不良的危险因素.结论:对于接受allo-HSCT治疗的进展期CML病例,克隆演进和原始细胞比例是具有预后意义,移植前应用伊马替尼并不能改善预后.%Chronic myeloid leukemia (CML) at advanced and blastic phase is a disease with poor prognosis, for which allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only treatment choice with curative potential. This study was purposed to investigate the therapeutic efficacy of allo-HSCT and prognosis of advanced CML patients. The 28 cases of CML in accelerated phase or blast crisis received allo-HSCT were analysed retrospectively in terms curative efficacy, basic characteristics before transplant and prognosis, therapeutic strategy before transplant and prognosis, events after transplant and prognosis. The results indicated that 10 out of 28 patients were in complete remission, showing a 3-year overall survival and disease-free survaval rate of 34.9% and 35.7% respectively; 18 patients died. Univariate analysis revealed that the clonal evolution and blast amount are baseline risk factor of poor prognosis, and combination of them can be used to predict the outcome

  10. Hyperthyroidism after Hematopoietic Stem Cell Transplantation in Chronic Myeloid Leukaemia: A Case Report and Literature Review%慢性髓性白血病患者非血缘供者骨髓移植术后并发甲状腺功能亢进1例并文献复习

    Institute of Scientific and Technical Information of China (English)

    臧学峰; 李渤涛; 庞一琳; 刘婷婷; 楼晓; 李倩; 江岷; 王雷; 陈虎

    2013-01-01

    目的:分析骨髓移植后引起甲状腺功能亢进的病因、临床特点、治疗及预后.方法:报道l例慢性髓性白血病患者非血缘供者骨髓移植术后并发甲状腺功能亢进随访9年的结果,并复习相关文献.结果:患者男性,21岁,确诊慢性髓性白血病后行非血缘供者骨髓移植,术后+44天,出现持续低热,抗细菌、抗病毒及抗真菌治疗均无效,排除疾病复发,查甲状腺功能提示患者从亚临床甲状腺功能亢进进展为甲状腺功能亢进,给予口服甲巯咪唑治疗2周,患者体温降至正常,血T4、fT4恢复正常,随访9年,慢性髓性白血病无复发,甲状腺功能持续正常.检索文献发现类似报道5例,对其进行归纳分析.结论:骨髓移植术后早期并发甲状腺功能亢进,可能与放化疗预处理及免疫损伤引起的破坏性甲状腺炎相关,有其独特的临床表现,极易被忽视,治疗方面可以尝试应用糖皮质激素及抗甲状腺药物.对于非血缘供者骨髓移植后不明原因发热者,应考虑到甲亢可能.%Objective: To analyze the pathogenesis of hyperthyroidism after hematopoietic stem cell transplantation (HSCT), and study the clinical characteristics, therapy and prognosis of early onset hyperthyroidism. Methods: One case of chronic myeloid leukemia (CML) after matched unrelated bone marrow transplantation (MUD-BMT) complicated with hyperthyroidism was reported, and its related literature was reviewed. Results: A 21-year-old male with a definitive diagnosis of CML came for a treatment of MUD-BMT. 44 days after transplantation, the patient presented with sustained low fever which was not response to antibiotic, antiviral or antifungal therapy. Excluded from disease recurrence, he was found to have a progress from subclinical hyperthyroidism to clinical hyperthyroidism. After two weeks therapy of methimazole, his temperature become normal, as well as T4, fT4. With a follow up of 9 years, he had no recurrence of

  11. Evaluation of CCAAT/Enhancer Binding Protein (C/EBP) Alpha (CEBPA) and Runt-Related Transcription Factor 1 (RUNX1) Expression in Patients with De Novo Acute Myeloid Leukemia.

    Science.gov (United States)

    Salarpour, Fatemeh; Goudarzipour, Kourosh; Mohammadi, Mohammad Hossein; Ahmadzadeh, Ahmad; Faraahi, Sara; Farsani, Mehdi Allahbakhshian

    2017-09-11

    The CCAAT/enhancer binding protein (C/EBP) alpha (CEBPA) and Runt-related transcription factor 1 (RUNX1) genes have been traditionally regarded as two essential genes involved in normal myeloid maturation. Although the link between mutations in these genes and the development of acute myeloid leukemia (AML) has been extensively documented, the ramifications of gene expression dysregulations of CEBPA and RUNX1 has drawn less attention. The present study investigated CEBPA and RUNX1 gene expression levels in 96 primary AML specimens against a normal control group by way of real-time RT-PCR. Our results reveal that CEBPA and RUNX1 gene expression levels were unexpectedly and significantly higher in patients with AML when compared to the levels detected in the normal control group (P < 0.0001). Furthermore, the correlation between CEBPA and RUNX1 was significant and positive (P-value: 0.011, r: 0.257). Our data contradicts the widely established role of CEBPA and RUNX1 in myeloid differentiation, as we saw lower levels of CEBPA and RUNX1 expression to be exhibited in patients with AML. Likely, our data demonstrates that higher levels of CEBPA and RUNX1 expression were closely correlated with reduced myeloid maturation, but this idea needs to approved. It suggests that despite the current established functions of genes involved in cell differentiation, the leukemogenesis process has the capability to transform normal hematopoietic precursors in a manner that may employ the differentiation related gene at the service of malignancy. © 2017 John Wiley & Sons Ltd/University College London.

  12. Importance of genetics in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    R. Pippa

    2014-12-01

    Full Text Available Acute myeloid leukemia (AML comprises a biologically and clinically heterogeneous group of aggressive disorders that occur as a consequence of a wide variety of genetic and epigenetic abnormalities in hematopoietic progenitors. Despite significant advances in the understanding of the biology of AML, most patients will die from relapsed disease. Whole-genome studies have identified novel recurrent gene mutations with prognostic impact in AML; furthermore, it is likely that in the near future genome-wide sequencing will become a routine for newly diagnosed patients with AML. Therefore, future clinical trials should aim to identify genetically defined high-risk patients, and further research is necessary to identify effective agents and develop new individualized therapeutic strategies for the treatment of this deadly disease.

  13. A monoclonal antibody reactive with normal and leukemic human myeloid progenitor cells.

    Science.gov (United States)

    Griffin, J D; Linch, D; Sabbath, K; Larcom, P; Schlossman, S F

    1984-01-01

    Anti-MY9 is an IgG2b murine monoclonal antibody selected for reactivity with immature normal human myeloid cells. The MY9 antigen is expressed by blasts, promyelocytes and myelocytes in the bone marrow, and by monocytes in the peripheral blood. Erythrocytes, lymphocytes and platelets are MY9 negative. All myeloid colony-forming cells (CFU-GM), a fraction of erythroid burst-forming cells (BFU-E) and multipotent progenitors (CFU-GEMM) are MY9 positive. This antigen is further expressed by the leukemic cells of a majority of patients with AML and myeloid CML-BC. Leukemic stem cells (leukemic colony-forming cells, L-CFC) from most patients tested were also MY9 positive. In contrast, MY9 was not detected on lymphocytic leukemias. Anti-MY9 may be a valuable reagent for the purification of hematopoietic colony-forming cells and for the diagnosis of myeloid-lineage leukemias.

  14. [Clinical and genetic background of familial myelodysplasia and acute myeloid leukemia].

    Science.gov (United States)

    Király, Péter Attila; Kállay, Krisztián; Marosvári, Dóra; Benyó, Gábor; Szőke, Anita; Csomor, Judit; Bödör, Csaba

    2016-02-21

    Myelodysplastic syndrome and acute myeloid leukaemia are mainly sporadic diseases, however, rare familial cases exist. These disorders are considered rare, but are likely to be more common than currently appreciated, and are characterized by the autosomal dominant mutations of hematopoietic transcription factors. These syndromes have typical phenotypic features and are associated with an increased risk for developing overt malignancy. Currently, four recognized syndromes could be separated: familial acute myeloid leukemia with mutated CEBPA, familial myelodysplastic syndrome/acute myeloid leukemia with mutated GATA2, familial platelet disorder with propensity to myeloid malignancy with RUNX1 mutations, and telomere biology disorders due to mutations of TERC or TERT. Furthermore, there are new, emerging syndromes associated with germline mutations in novel genes including ANKRD26, ETV6, SRP72 or DDX41. This review will discuss the current understanding of the genetic basis and clinical presentation of familial leukemia and myelodysplasia.

  15. Effect of intermediate-dose cytarabine on mobilization of peripheral blood hematopoietic stem cell in acute myeloid leukemia%中剂量阿糖胞苷对急性髓系白血病外周血干细胞动员效果的影响

    Institute of Scientific and Technical Information of China (English)

    谢沐尘; 张钰; 戴敏; 韦祁; 李小芳; 魏永强; 黄芬; 范志平; 江千里

    2014-01-01

    Objective To explore the impact of courses of intermediate-dose cytarabine (ID-Ara-C) chemotherapy on the efficiency of hematopoietic stem cell mobilization in acute myeloid leukemia (AML) patients with autologous hematopoietic stem cell transplantation (auto-HSCT).Methods 90 patients with de novo AML undergoing auto-HSCT between August 1999 and November 2012 were enrolled.All patients received the mobilization regimen of cytarabine and etoposide chemotherapy in combination with recombinant human granulocyte-colony stimulating factor (rhG-CSF).Stem cell apheresis was scheduled when blood leukocyte count recovered greater than 4.0 × 109/L or the proportion of CD34+ cells greater than 1% in peripheral blood.The impact of ID-Ara-C courses on the mobilization efficiency was analyzed retrospectively.Results According to the ID-Ara-C courses,patients were divided into group A (< 2 courses),B (2 courses),and C (> 2 courses).The median doses of CD34+ cells (× 106/kg) in three groups were 4.7,2.7,2.3,respectively (P=0.003).Of the available 87 patients who could be evaluated,61 (70.1%) cases had CD34+ cells greater than 2.0 × 106/kg,and 26 (29.9%) cases less than 2.0 × 106/kg.Of the 26 patients without satisfactory mobilization efficiency,7 (15.2%) were in group A,10(47.6%) in group B,and 9(45.0%) in group C (x2=10.05,P=0.007).In addition,patients with satisfactory mobilization efficiency (CD34+ cells ≥2.0× 106/kg) in groups C needed more times of collection,more volume of blood processed,and even high-dose and longer course of rhG-CSF (P<0.05).In univariate analysis.The ID-Ara-C courses and the cumulative dose were significant correlate with mobilization efficiency.In multivariate analysis,the ID-Ara-C courses was an independent correlation factor for mobilization efficiency (odd ratio=0.623,95% confidence interval=0.418-0.926,P=0.019).The sex,age,cytogenetic risk,the standard chemotherapy courses did not correlate with mobilization efficiency

  16. Human and murine amniotic fluid c-Kit+Lin- cells display hematopoietic activity.

    Science.gov (United States)

    Ditadi, Andrea; de Coppi, Paolo; Picone, Olivier; Gautreau, Laetitia; Smati, Rim; Six, Emmanuelle; Bonhomme, Delphine; Ezine, Sophie; Frydman, René; Cavazzana-Calvo, Marina; André-Schmutz, Isabelle

    2009-04-23

    We have isolated c-Kit(+)Lin(-) cells from both human and murine amniotic fluid (AF) and investigated their hematopoietic potential. In vitro, the c-Kit(+)Lin(-) population in both species displayed a multilineage hematopoietic potential, as demonstrated by the generation of erythroid, myeloid, and lymphoid cells. In vivo, cells belonging to all 3 hematopoietic lineages were found after primary and secondary transplantation of murine c-Kit(+)Lin(-) cells into immunocompromised hosts, thus demonstrating the ability of these cells to self-renew. Gene expression analysis of c-Kit(+) cells isolated from murine AF confirmed these results. The presence of cells with similar characteristics in the surrounding amnion indicates the possible origin of AF c-Kit(+)Lin(-) cells. This is the first report showing that cells isolated from the AF do have hematopoietic potential; our results support the idea that AF may be a new source of stem cells for therapeutic applications.

  17. Functions of TET Proteins in Hematopoietic Transformation.

    Science.gov (United States)

    Han, Jae-A; An, Jungeun; Ko, Myunggon

    2015-11-01

    DNA methylation is a well-characterized epigenetic modification that plays central roles in mammalian development, genomic imprinting, X-chromosome inactivation and silencing of retrotransposon elements. Aberrant DNA methylation pattern is a characteristic feature of cancers and associated with abnormal expression of oncogenes, tumor suppressor genes or repair genes. Ten-eleven-translocation (TET) proteins are recently characterized dioxygenases that catalyze progressive oxidation of 5-methylcytosine to produce 5-hydroxymethylcytosine and further oxidized derivatives. These oxidized methylcytosines not only potentiate DNA demethylation but also behave as independent epigenetic modifications per se. The expression or activity of TET proteins and DNA hydroxymethylation are highly dysregulated in a wide range of cancers including hematologic and non-hematologic malignancies, and accumulating evidence points TET proteins as a novel tumor suppressor in cancers. Here we review DNA demethylation-dependent and -independent functions of TET proteins. We also describe diverse TET loss-of-function mutations that are recurrently found in myeloid and lymphoid malignancies and their potential roles in hematopoietic transformation. We discuss consequences of the deficiency of individual Tet genes and potential compensation between different Tet members in mice. Possible mechanisms underlying facilitated oncogenic transformation of TET-deficient hematopoietic cells are also described. Lastly, we address non-mutational mechanisms that lead to suppression or inactivation of TET proteins in cancers. Strategies to restore normal 5mC oxidation status in cancers by targeting TET proteins may provide new avenues to expedite the development of promising anti-cancer agents.

  18. Fbxl10 overexpression in murine hematopoietic stem cells induces leukemia involving metabolic activation and upregulation of Nsg2

    DEFF Research Database (Denmark)

    Ueda, Takeshi; Nagamachi, Akiko; Takubo, Keiyo;

    2015-01-01

    investigate the role of Fbxl10 in leukemogenesis, we generated transgenic (Tg) mice that overexpress Fbxl10 in hematopoietic stem cells (HSCs). Interestingly, Fbxl10 Tg mice developed myeloid or B-lymphoid leukemia with complete penetrance. HSCs from the Tg mice exhibited an accelerated G0/G1 to S transition...

  19. Acute myeloid leukemia (AML) - children

    Science.gov (United States)

    Acute myeloid leukemia is a cancer of the blood and bone marrow. Bone marrow is the soft tissue inside ... develops quickly. Both adults and children can get acute myeloid leukemia ( AML ). This article is about AML in children.

  20. Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes

    Science.gov (United States)

    Pang, Wendy W.; Pluvinage, John V.; Price, Elizabeth A.; Sridhar, Kunju; Arber, Daniel A.; Greenberg, Peter L.; Schrier, Stanley L.; Park, Christopher Y.; Weissman, Irving L.

    2013-01-01

    Myelodysplastic syndromes (MDS) are a group of disorders characterized by variable cytopenias and ineffective hematopoiesis. Hematopoietic stem cells (HSCs) and myeloid progenitors in MDS have not been extensively characterized. We transplanted purified human HSCs from MDS samples into immunodeficient mice and show that HSCs are the disease-initiating cells in MDS. We identify a recurrent loss of granulocyte-macrophage progenitors (GMPs) in the bone marrow of low risk MDS patients that can distinguish low risk MDS from clinical mimics, thus providing a simple diagnostic tool. The loss of GMPs is likely due to increased apoptosis and increased phagocytosis, the latter due to the up-regulation of cell surface calreticulin, a prophagocytic marker. Blocking calreticulin on low risk MDS myeloid progenitors rescues them from phagocytosis in vitro. However, in the high-risk refractory anemia with excess blasts (RAEB) stages of MDS, the GMP population is increased in frequency compared with normal, and myeloid progenitors evade phagocytosis due to up-regulation of CD47, an antiphagocytic marker. Blocking CD47 leads to the selective phagocytosis of this population. We propose that MDS HSCs compete with normal HSCs in the patients by increasing their frequency at the expense of normal hematopoiesis, that the loss of MDS myeloid progenitors by programmed cell death and programmed cell removal are, in part, responsible for the cytopenias, and that up-regulation of the “don’t eat me” signal CD47 on MDS myeloid progenitors is an important transition step leading from low risk MDS to high risk MDS and, possibly, to acute myeloid leukemia. PMID:23388639

  1. Myeloid cells contribute to tumor lymphangiogenesis.

    Science.gov (United States)

    Zumsteg, Adrian; Baeriswyl, Vanessa; Imaizumi, Natsuko; Schwendener, Reto; Rüegg, Curzio; Christofori, Gerhard

    2009-09-17

    The formation of new blood vessels (angiogenesis) and lymphatic vessels (lymphangiogenesis) promotes tumor outgrowth and metastasis. Previously, it has been demonstrated that bone marrow-derived cells (BMDC) can contribute to tumor angiogenesis. However, the role of BMDC in lymphangiogenesis has largely remained elusive. Here, we demonstrate by bone marrow transplantation/reconstitution and genetic lineage-tracing experiments that BMDC integrate into tumor-associated lymphatic vessels in the Rip1Tag2 mouse model of insulinoma and in the TRAMP-C1 prostate cancer transplantation model, and that the integrated BMDC originate from the myelomonocytic lineage. Conversely, pharmacological depletion of tumor-associated macrophages reduces lymphangiogenesis. No cell fusion events are detected by genetic tracing experiments. Rather, the phenotypical conversion of myeloid cells into lymphatic endothelial cells and their integration into lymphatic structures is recapitulated in two in vitro tube formation assays and is dependent on fibroblast growth factor-mediated signaling. Together, the results reveal that myeloid cells can contribute to tumor-associated lymphatic vessels, thus extending the findings on the previously reported role of hematopoietic cells in lymphatic vessel formation.

  2. Myeloid cells contribute to tumor lymphangiogenesis.

    Directory of Open Access Journals (Sweden)

    Adrian Zumsteg

    Full Text Available The formation of new blood vessels (angiogenesis and lymphatic vessels (lymphangiogenesis promotes tumor outgrowth and metastasis. Previously, it has been demonstrated that bone marrow-derived cells (BMDC can contribute to tumor angiogenesis. However, the role of BMDC in lymphangiogenesis has largely remained elusive. Here, we demonstrate by bone marrow transplantation/reconstitution and genetic lineage-tracing experiments that BMDC integrate into tumor-associated lymphatic vessels in the Rip1Tag2 mouse model of insulinoma and in the TRAMP-C1 prostate cancer transplantation model, and that the integrated BMDC originate from the myelomonocytic lineage. Conversely, pharmacological depletion of tumor-associated macrophages reduces lymphangiogenesis. No cell fusion events are detected by genetic tracing experiments. Rather, the phenotypical conversion of myeloid cells into lymphatic endothelial cells and their integration into lymphatic structures is recapitulated in two in vitro tube formation assays and is dependent on fibroblast growth factor-mediated signaling. Together, the results reveal that myeloid cells can contribute to tumor-associated lymphatic vessels, thus extending the findings on the previously reported role of hematopoietic cells in lymphatic vessel formation.

  3. Clinical observation of feasibility and efficacy of decitabine bridge therapy followed by allogeneic hematopoietic stem cell transplantation in patients with myelodysplastic syndrome and acute myeloid leukemia%地西他滨桥接异基因造血干细胞移植治疗骨髓增生异常综合征和急性髓样白血病的临床可行性和疗效研究

    Institute of Scientific and Technical Information of China (English)

    吴倩; 何广胜; 吴德沛; 孙爱宁; 仇惠英; 金正明; 苗瞄; 唐晓文; 韩悦

    2013-01-01

    Objective: To investigate the feasibility and efficacy of DAC (decitabine) bridge therapy followed by allo-HSCT (allogeneic hematopoietic stem cell transplantation) in patients with MDS (myelodysplastic syndrome) and AML (acute myeloid leukemia). Methods: Seven patients with MDS and 12 patients with AML received DAC bridge therapy followed by allo-HSCT. Results: With DAC bridge therapy, 4 MDS patients achieved complete remission/marrow complete remission and 3 remained stable disease before allo-HSCT. After successful engraftment attained in all the seven MDS patients, six survived without disease, one received donor lymphocyte infusion and obtained complete remission after relapse and eventually died of pneumonia. Of 12 AML patients, 6 achieved complete remission after DAC bridge therapy; 5 survived without disease, one still survived but having disease, and 6 had died. The rates of acute and chronic CVHD were 31.6% and 21.1%, respectively. The two-year overall survival rate and the two-year cumulative recurrence rate were 57.9% and 36.2% after allo-HSCT, respectively. The two-year cumulative recurrence-free rate was 23.6% after allo-HSCT. Conclusion: DAC regimen can be safely and efficiently administrated to bridge time to allo-HSCT in patients with MDS/AML.%目的:探讨地西他滨(decitabine,DAC)作为骨髓增生异常综合征(myelodysplastic syndrome,MDS)和急性髓样白血病(acute myeloid leukemia,AML)患者行异基因造血干细胞移植(allogeneic hematopoietic stem cell transplantation,allo-HSCT)之前的桥接治疗的可行性和疗效.方法:对7例MDS患者和12例AML患者以DAC作为allo-HSCT之前的桥接治疗.结果:DAC桥接治疗后,7例MDS患者中,4例获得完全缓解(complete remission,CR) /mCR (marrow CR),3例为疾病稳定(stable disease,SD),之后行allo-HSCT成功,目前6例为无病生存,1例在复发后接受供者淋巴细胞输注(donor lymphocyte infusion,DLI)后达CR,后死于肺部感染;12例AML患者中,6例在DAC

  4. Effect of priming with granulocyte colony-stimulating factor on the outcome of chemotherapy for acute myeloid leukemia

    NARCIS (Netherlands)

    Lowenberg, B; van Putten, W; Theobald, M; Gmur, J; Verdonck, L; Sonneveld, P; Fey, M; de Greef, G; Ferrant, A; Kovacsovics, T; Gratwohl, A; Daenen, S; Huijgens, P; Boogaerts, M

    2003-01-01

    BACKGROUND Sensitization of leukemic cells with hematopoietic growth factors may enhance the cytotoxicity of chemotherapy in acute myeloid leukemia (AML). METHODS In a multicenter randomized trial, we assigned patients (age range, 18 to 60 years) with newly diagnosed AML to receive cytarabine plus i

  5. Tet2 facilitates the derepression of myeloid target genes during CEBPα-induced transdifferentiation of pre-B cells

    DEFF Research Database (Denmark)

    Kallin, Eric M; Rodríguez-Ubreva, Javier; Christensen, Jesper Aagaard

    2012-01-01

    The methylcytosine hydroxylase Tet2 has been implicated in hematopoietic differentiation and the formation of myeloid malignancies when mutated. An ideal system to study the role of Tet2 in myelopoeisis is CEBPα-induced transdifferentiation of pre-B cells into macrophages. Here we found that CEBP...

  6. [Endothelial origin for hematopoietic stem cells: a visual proof].

    Science.gov (United States)

    Boisset, Jean-Charles; Robin, Catherine

    2011-10-01

    Hematopoietic stem cells (HSC) are the source of all blood cell types produced during the entire life of an organism. They appear during embryonic development, where they will transit through different successive hematopoietic organs, before to finally colonize the bone marrow. Nowadays, the precise origin of HSC remains a matter of controversy. Different HSC precursor candidates, located in different anatomical sites, have been proposed. Here, we summarize and discuss the different theories in light of the recent articles, especially those using in vivo confocal microscopy technology.

  7. The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease.

    Science.gov (United States)

    Singbrant, Sofie; Wall, Meaghan; Moody, Jennifer; Karlsson, Göran; Chalk, Alistair M; Liddicoat, Brian; Russell, Megan R; Walkley, Carl R; Karlsson, Stefan

    2014-04-01

    The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced a gene signature associated with hematopoietic stem cells and myeloid differentiation, as well as hepatocyte growth factor signaling. Here we demonstrate that, in contrast to what has generally been assumed, the significant impact of SKI on hematopoiesis is independent of its ability to inhibit TGF-beta signaling. Instead, myeloid progenitors expressing SKI are partially dependent on functional hepatocyte growth factor signaling. Collectively our results demonstrate that SKI is an important regulator of hematopoietic stem cell activity and its overexpression leads to myeloproliferative disease.

  8. Aging, Clonality, and Rejuvenation of Hematopoietic Stem Cells.

    Science.gov (United States)

    Akunuru, Shailaja; Geiger, Hartmut

    2016-08-01

    Aging is associated with reduced organ function and increased disease incidence. Hematopoietic stem cell (HSC) aging driven by both cell intrinsic and extrinsic factors is linked to impaired HSC self-renewal and regeneration, aging-associated immune remodeling, and increased leukemia incidence. Compromised DNA damage responses and the increased production of reactive oxygen species (ROS) have been previously causatively attributed to HSC aging. However, recent paradigm-shifting concepts, such as global epigenetic and cytoskeletal polarity shifts, cellular senescence, as well as the clonal selection of HSCs upon aging, provide new insights into HSC aging mechanisms. Rejuvenating agents that can reprogram the epigenetic status of aged HSCs or senolytic drugs that selectively deplete senescent cells provide promising translational avenues for attenuating hematopoietic aging and, potentially, alleviating aging-associated immune remodeling and myeloid malignancies.

  9. Immature hematopoietic stem cells undergo maturation in the fetal liver.

    Science.gov (United States)

    Kieusseian, Aurelie; Brunet de la Grange, Philippe; Burlen-Defranoux, Odile; Godin, Isabelle; Cumano, Ana

    2012-10-01

    Hematopoietic stem cells (HSCs), which are defined by their capacity to reconstitute adult conventional mice, are first found in the dorsal aorta after 10.5 days post coitus (dpc) and in the fetal liver at 11 dpc. However, lympho-myeloid hematopoietic progenitors are detected in the dorsal aorta from 9 dpc, raising the issue of their role in establishing adult hematopoiesis. Here, we show that these progenitors are endowed with long-term reconstitution capacity, but only engraft natural killer (NK)-deficient Rag2γc(-/-) mice. This novel population, called here immature HSCs, evolves in culture with thrombopoietin and stromal cells, into HSCs, defined by acquisition of CD45 and MHC-1 expression and by the capacity to reconstitute NK-competent mice. This evolution occurs during ontogeny, as early colonization of fetal liver by immature HSCs precedes that of HSCs. Moreover, organ culture experiments show that immature HSCs acquire, in this environment, the features of HSCs.

  10. Characterizing human herpes virus 6 following hematopoietic stem cell transplantation.

    Science.gov (United States)

    Perissinotti, Anthony J; Gulbis, Alison; Shpall, Elizabeth J; Howell, Joshua

    2015-04-01

    Human herpes virus 6 reactivation occurs in approximately 50% of patients following hematopoietic stem cell transplant, however, the significance of human herpes virus 6 reactivation remains uncertain. A retrospective study was conducted analyzing clinical data of patients testing positive for human herpes virus 6 by quantitative polymerase chain reaction following hematopoietic stem cell transplant from 1 January 1998 to 1 October 2011. Data retrieved were used to describe the clinical course and outcome of human herpes virus 6 positive hematopoietic stem cell transplant patients. Sixty patients were identified who tested positive for human herpes virus 6 by polymerase chain reaction following hematopoietic stem cell transplant. A high proportion of patients were identified in this cohort with acute myeloid leukemia (28.3%), active disease (65%), transplanted with a matched unrelated donor (30%), ≥ 1 antigen mismatched (28.3%) matched unrelated donor, or an umbilical cord graft (25%), and those who received antithymocyte globulin (42.4%). Thirty-eight (63.3%) patients were treated for human herpes virus 6 with foscarnet alone or in combination with intravenous immunoglobulin, whereas 18 (30%) did not require treatment survival at Day 100 was 73.3%. This study suggests human herpes virus 6 reactivation occurs shortly after hematopoietic stem cell transplant (median of 25 days (interquartile range, 20-31.75) after hematopoietic stem cell transplant). Many potential risk factors are described in this report. Treatment of human herpes virus 6 predominately consisted of foscarnet with or without intravenous immunoglobulin; however, treatment of human herpes virus 6 was not always warranted. Furthermore, the effect of treatment on patient outcomes is uncertain. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  11. [Cytogenetic abnormalities and gene mutations in myeloid leukemia].

    Science.gov (United States)

    Kato, Naoko; Kitamura, Toshio

    2009-10-01

    Myeloid leukemia is a clinically and genetically heterogeneous disease. Cytogenetic studies have revealed specific chromosomal abnormalities, such as translocations, and inversions. Fusion proteins derived from these abnormalities were identified in various subtypes of leukemia. Because most of these fusion proteins were not sufficient to induce leukemia by themselves in mouse models, additional oncogenic events have been thought to be necessary for leukemogenesis. Recently, a hypothesis called "two-hit model" for leukemia has been proposed. Two broad classes of mutations that proliferative or survival advantage of hematopoietic progenitors and impaired differentiation are required for inducing leukemia. In this article, we summarize some typical chromosomal abnormalities or gene mutations associated with myeloid leukemia on the basis of this hypothesis.

  12. Gene expression profiling to define the cell intrinsic role of the SKI proto-oncogene in hematopoiesis and myeloid neoplasms.

    Science.gov (United States)

    Chalk, Alistair M; Liddicoat, Brian J J; Walkley, Carl R; Singbrant, Sofie

    2014-12-01

    The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced gene signatures associated with hematopoietic stem cells and myeloid differentiation. Here we provide detailed experimental methods and analysis for the gene expression profiling described in our recently published study of Singbrant et al. (2014) in Haematologica. Our data sets (available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39457) provide a resource for exploring the underlying molecular mechanisms of the involvement of the proto-oncogene SKI in hematopoietic stem cell function and development of myeloid neoplasms.

  13. Gene expression profiling to define the cell intrinsic role of the SKI proto-oncogene in hematopoiesis and myeloid neoplasms

    Directory of Open Access Journals (Sweden)

    Alistair M. Chalk

    2014-12-01

    Full Text Available The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced gene signatures associated with hematopoietic stem cells and myeloid differentiation. Here we provide detailed experimental methods and analysis for the gene expression profiling described in our recently published study of Singbrant et al. (2014 in Haematologica. Our data sets (available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39457 provide a resource for exploring the underlying molecular mechanisms of the involvement of the proto-oncogene SKI in hematopoietic stem cell function and development of myeloid neoplasms.

  14. Neutrophil biology and the next generation of myeloid growth factors.

    Science.gov (United States)

    Dale, David C

    2009-01-01

    Neutrophils are the body's critical phagocytic cells for defense against bacterial and fungal infections; bone marrow must produce approximately 10 x 10(9) neutrophils/kg/d to maintain normal blood neutrophil counts. Production of neutrophils depends on myeloid growth factors, particularly granulocyte colony-stimulating factor (G-CSF). After the original phase of development, researchers modified these growth factors to increase their size and delay renal clearance, increase their biologic potency, and create unique molecules for business purposes. Pegylated G-CSF is a successful product of these efforts. Researchers have also tried to identify small molecules to serve as oral agents that mimic the parent molecules, but these programs have been less successful. In 2006, the European Medicines Agency established guidelines for the introduction of new biologic medicinal products claimed to be similar to reference products that had previously been granted marketing authorization in the European community, called bio-similars. Globally, new and copied versions of G-CSF and other myeloid growth factors are now appearing. Some properties of the myeloid growth factors are similar to other agents, offering opportunities for the development of alternative drugs and treatments. For example, recent research shows that hematopoietic progenitor cells can be mobilized with a chemokine receptor antagonist, chemotherapy, G-CSF, and granulocyte macrophage colony-stimulating factor. Advances in neutrophil biology coupled with better understanding and development of myeloid growth factors offer great promise for improving the care of patients with cancer and many other disorders.

  15. Karyotypic findings in chronic myeloid leukemia cases undergoing treatment

    Directory of Open Access Journals (Sweden)

    Anupam Kaur

    2012-01-01

    Full Text Available Background: Chronic myeloid leukemia (CML is a clonal myeloproliferative expansion of primitive hematopoietic progenitor cells. Materials and Methods: In the present study, CML samples were collected from various hospitals in Amritsar, Jalandhar and Ludhiana. Results: Chromosomal alterations seen in peripheral blood lymphocytes of these treated and untreated cases of CML were satellite associations, double minutes, random loss, gain of C group chromosomes and presence of marker chromosome. No aberrations were observed in control samples. Karyotypic abnormalities have also been noted in the Ph-negative cells of some patients in disease remission. Conclusion: This is a novel phenomenon whose prognostic implications require thorough and systematic evaluation.

  16. Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia.

    Science.gov (United States)

    Geyh, S; Rodríguez-Paredes, M; Jäger, P; Khandanpour, C; Cadeddu, R-P; Gutekunst, J; Wilk, C M; Fenk, R; Zilkens, C; Hermsen, D; Germing, U; Kobbe, G; Lyko, F; Haas, R; Schroeder, T

    2016-03-01

    Hematopoietic insufficiency is the hallmark of acute myeloid leukemia (AML) and predisposes patients to life-threatening complications such as bleeding and infections. Addressing the contribution of mesenchymal stromal cells (MSC) to AML-induced hematopoietic failure we show that MSC from AML patients (n=64) exhibit significant growth deficiency and impaired osteogenic differentiation capacity. This was molecularly reflected by a specific methylation signature affecting pathways involved in cell differentiation, proliferation and skeletal development. In addition, we found distinct alterations of hematopoiesis-regulating factors such as Kit-ligand and Jagged1 accompanied by a significantly diminished ability to support CD34+ hematopoietic stem and progenitor cells in long-term culture-initiating cells (LTC-ICs) assays. This deficient osteogenic differentiation and insufficient stromal support was reversible and correlated with disease status as indicated by Osteocalcin serum levels and LTC-IC frequencies returning to normal values at remission. In line with this, cultivation of healthy MSC in conditioned medium from four AML cell lines resulted in decreased proliferation and osteogenic differentiation. Taken together, AML-derived MSC are molecularly and functionally altered and contribute to hematopoietic insufficiency. Inverse correlation with disease status and adoption of an AML-like phenotype after exposure to leukemic conditions suggests an instructive role of leukemic cells on bone marrow microenvironment.

  17. Human embryonic stem cell-derived hematopoietic cells maintain core epigenetic machinery of the polycomb group/Trithorax Group complexes distinctly from functional adult hematopoietic stem cells.

    Science.gov (United States)

    Schnerch, Angelique; Lee, Jung Bok; Graham, Monica; Guezguez, Borhane; Bhatia, Mickie

    2013-01-01

    Hematopoietic cells derived from human embryonic stem cells (hESCs) have a number of potential utilities, including the modeling of hematological disorders in vitro, whereas the use for cell replacement therapies has proved to be a loftier goal. This is due to the failure of differentiated hematopoietic cells, derived from human pluripotent stem cells (hPSCs), to functionally recapitulate the in vivo properties of bona fide adult hematopoietic stem/progenitor cells (HSPCs). To better understand the limitations of differentiation programming at the molecular level, we have utilized differential gene expression analysis of highly purified cells that are enriched for hematopoietic repopulating activity across embryonic, fetal, and adult human samples, including in vivo explants of human HSPCs 8-weeks post-transplantation. We reveal that hESC-derived hematopoietic progenitor cells (eHPCs) fail to express critical transcription factors which are known to govern self-renewal and myeloid/lymphoid development and instead retain the expression of Polycomb Group (PcG) and Trithorax Group (TrxG) factors which are more prevalent in embryonic cell types that include EZH1 and ASH1L, respectively. These molecular profiles indicate that the differential expression of the core epigenetic machinery comprising PcGs/TrxGs in eHPCs may serve as previously unexplored molecular targets that direct hematopoietic differentiation of PSCs toward functional HSPCs in humans.

  18. Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors

    Science.gov (United States)

    Zuurbier, Linda; Gutierrez, Alejandro; Mullighan, Charles G.; Canté-Barrett, Kirsten; Gevaert, A. Olivier; de Rooi, Johan; Li, Yunlei; Smits, Willem K.; Buijs-Gladdines, Jessica G.C.A.M.; Sonneveld, Edwin; Look, A. Thomas; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2014-01-01

    Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients. PMID:23975177

  19. Loss of Dnmt3a and endogenous KrasG12D/+ cooperate to regulate hematopoietic stem and progenitor cell functions in leukemogenesis

    Science.gov (United States)

    Chang, Yuan-I; You, Xiaona; Kong, Guangyao; Ranheim, Erik A.; Wang, Jinyong; Du, Juan; Liu, Yangang; Zhou, Yun; Ryu, Myung-Jeom; Zhang, Jing

    2015-01-01

    Oncogenic NRAS and KRAS mutations are prevalent in human juvenile and chronic myelomonocytic leukemia (JMML/CMML). However, additional genetic mutations cooperating with oncogenic RAS in JMML/CMML progression and/or their transformation to acute myeloid leukemia (AML) remain largely unknown. Here, we tested the potential genetic interaction of DNMT3A mutations and oncogenic RAS mutations in leukemogenesis. We found that Dnmt3a−/− induces multiple hematopoietic phenotypes after a prolonged latency, including T cell expansion in peripheral blood, stress erythropoiesis in spleen, and myeloid malignancies in liver. Dnmt3a−/− significantly promoted JMML/CMML progression and shortened the survival of KrasG12D/+ mice in a cell-autonomous manner. Similarly, downregulating Dnmt3a also promoted myeloid malignancies in NrasG12D/+ mice. Further studies show that Dnmt3a deficiency rescues KrasG12D/+-mediated depletion of hematopoietic stem cells and increases self-renewal of KrasG12D/+ myeloid progenitors. Moreover, ~33% of animals developed an AML-like disease, which is driven by KrasG12D/+; Dnmt3a−/− myeloid progenitors. Consistent with our result, COSMIC database mining demonstrates that the combination of oncogenic RAS and DNMT3A mutations exclusively occurred in patients with JMML, CMML, or AML. Our results suggest that DNMT3A mutations and oncogenic RAS cooperate to regulate hematopoietic stem and progenitor cells and promote myeloid malignancies. PMID:25801914

  20. Therapeutic efficacies of decitabine application prior to hematopoietic cell transplantation in patients with myelodysplastic syndrome and acute myeloid leukemia%含地西他滨方案桥接异基因造血干细胞移植治疗MDS/AML的效果评估

    Institute of Scientific and Technical Information of China (English)

    周进; 王婧; 刘辉; 郑慧菲; 马玲; 王攀峰; 颜霜; 吴德沛; 傅琤琤

    2015-01-01

    Objective To explore the therapeutic efficacies of decitabine application prior to hematopoietic cell transplantation (HSCY) in patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML).Methods Retrospective reviews were conducted for 46 patients with MDS (n =14) and AML (n =32) on a therapy of decitabine prior to allo-HSCT between September 2009 and February 2013.Results In MDS patients,complete remission (CR,n =10),partial remission (PR,n =2) and stable disease (SD,n =1) were achieved prior to HSCT.And the remission rate of one course was 10/14.After decitabine dosing,17/32 patients achieved CR in 32 with AML and the remission rate of one course was 53.1% (17/32) and effective rate of one course (CR + PR) achieves 78.1% (25/32).Successful engraftment was attained in all MDS patients and 12/14 patients survived disease-free and one died of pneumonia after relapse.And 28 patients with AML attained successful engraftment after using decitabine prior to allo-HSCT and there were 20 disease-free survivors.Ten patients died and another lived with tumor.The incidences of acute and chronic graft-versus-host disease (GVHD) among evaluable patients were 4.3% (2/26) and 23.9% (11/46) respectively.After a median follow-up of 8 months for survivors,the treatment-related mortality was 23.9% (11/46).The 30-month disease-free survival (DFS) rate was 53.1% and 30-month overall survival rate after decitabine dosing 61.9%.Conclusion Thus decitabine is an effective therapy during bridge time to HSCT in patients with MDS and AML.%目的 观察骨髓增生异常综合征(MDS)及复发难治性急性髓系白血病(AML)患者造血干细胞移植前选择含地西他滨方案诱导或巩固作为过渡治疗的临床疗效,以期降低肿瘤负荷,控制疾病并为寻找供体赢取时间.方法 回顾性分析苏州大学附属第一医院2009年9月至2013年2月期间在异基因造血干细胞移植前采用地西他滨单药

  1. Combination therapy of imatinib and donor lymphocyte infusion for chronic myeloid leukemia relapse after allogeneic hematopoietic stem cell transplantation%伊马替尼联合供者淋巴细胞输注治疗造血干细胞移植后慢性粒细胞白血病复发

    Institute of Scientific and Technical Information of China (English)

    钱思轩; 李建勇; 吴汉新; 张晓艳; 张苏江; 洪鸣; 张闰; 孙雪梅

    2008-01-01

    Objective To evaluate the efficiency of combination therapy of imatinib and donor lymphocyte infusion (DLI) for chronic myeloid leukemia (CML) relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Methods Patient 1 received peripheral blood stem cell transplantation from her HLA-identical sister, patient 2 received bone marrow transplantation from her HLA-identical brother and patient 3 received the transplantation of bone marrow in combined with peripheral blood stem cells following a conditioning regimen. For the prophylaxis of graft-versus-host disease (GVHD), patient 1 was treated with cyclosporine A (CsA) and mycophenolate mofetil (MMF), patient 2 with CsA, short course methotrexate (MTX), anti-thymocyte globulin and anti-CD25 monoclonal antibody,and patient 3 with CsA, MTX and MMF. They were treated with imatinib and DLI in hematologic relapse after HSCT. Results Patient 1 was treated with DLI on day + 30,+ 50 and + 70 after allo-HSCT,with CD3+ T lymphocyte cells of 0. 5 × 107 /kg,1.0×107 /kg and 2. 0 × 107 /kg respectively. She obtained a full donor ehimerism on short tandem repeats polymerase chain reaction (STR-PCR). She was treated with imatinib 400 nag daily and DLI with CD3+ T lymphocyte cells of 2. 5×107 /kg on day + 120 days for progression of disease. The bone marrow on day + 180 showed a full donor chimerism on STR-PCR. She died of extramedullary relapse 17 months after alloHSCT. For patient 2,cytogenetic analysis of bone marrow showed a male karyotype of 46,XY without any cytogenetic abnormalities, 100% cells on interphase nuclei revealed the XY genotype in the sex chromosome fluorescence in site hybridization(FISH) analysis and BCR-ABL fusion gene was negative on day + 35 after alIo-HSCT. Patient 2 relapsed on day + 100 after allo-HSCT,CsA was withdrawn and DLI with CD3+ T lymphocyte cells of 3. 9 × 107 /kg in combination with imatinib 500 mg was given daily. After treatment with DLI and imatinib for 30 days

  2. Redefining Langerhans Cell Histiocytosis as a Myeloid Dysplasia and Identifying B | Division of Cancer Prevention

    Science.gov (United States)

    DESCRIPTION (provided by applicant): Redefining Langerhans Cell Histiocytosis as a Myeloid Dysplasia and Identifying Biomarkers for Early Detection and Risk Assessment. This application addresses Program Announcement PA-09-197: Biomarkers for Early Detection of Hematopoietic Malignancies (R01). The overall aim of this project is to identify novel biomarkers that may be used to diagnose and treat patients with Langerhans Cell Histiocytosis (LCH). LCH occurs with similar frequency as other rare malignancies including Hodgkin's lymphoma and AML. |

  3. Particulate cytoplasmic structures with high concentration of ubiquitin-proteasome accumulate in myeloid neoplasms

    OpenAIRE

    2015-01-01

    Background Increased plasma levels of proteasome have been associated with various neoplasms, especially myeloid malignancies. Little is known of the cellular origin and release mechanisms of such proteasome. We recently identified and characterized a novel particulate cytoplasmic structure (PaCS) showing selective accumulation of ubiquitin-proteasome system (UPS) components. PaCSs have been reported in some epithelial neoplasms and in two genetic disorders characterized by hematopoietic cell...

  4. [Key molecular mechanisms associated with cell malignant transformation in acute myeloid leukemia].

    Science.gov (United States)

    Orlova, N N; Lebedev, T D; Spirin, P V; Prassolov, V S

    2016-01-01

    Cancer, along with cardiovascular disorders, is one of the most important problems of healthcare. Pathologies of the hematopoietic system are the most prevalent in patients under 30 years of age, including acute myeloid leukemia (AML), which is widespread and difficult to treat. The review considers the mechanisms that play a significant role in AML cell malignant transformation and shows the contributions of certain genes to both remission and resistance of AML cells to various treatments.

  5. Novel strategies for improving hematopoietic reconstruction after allogeneic hematopoietic stem cell transplantation or intensive chemotherapy.

    Science.gov (United States)

    Baron, Frédéric; Nagler, Arnon

    2017-02-01

    High-dose conditioning regimens for allogeneic hematopoietic cell transplantation (allo-HCT) as well as intensive poly-chemotherapy for acute myeloid leukemia (AML) induce prolonged periods of neutropenia. The duration of the neutropenia is particularly long following umbilical cord blood transplantation (UCBT). Areas covered: After briefly reviewing the impact of hematopoietic growth factors administration to hasten hematologic reconstitution after allo-HCT or intensive AML chemotherapy, this article summarizes recent approaches that have been investigated to prompt hematologic reconstruction after UCBT or intensive AML chemotherapy. Expert opinion: In the allo-HCT setting, administration of G-CSF or GM-CSF shortened the duration of the neutropenia but failed to decrease infection-related mortality or to improve survival. Novel approaches to hasten hematological reconstruction after UCBT such as double UCBT with expansion of one of the 2 UCB units with Notch ligand, mesenchymal stromal cells, nicotinamide, or StemRegenin 1, co-transplanting a single UCB unit with HLA-haploidentical CD34+ cells, or increasing UCB HSC homing to marrow niches via direct intra bone UCB administration, pulse treatment with dmPGE2 or enforced fucosylation are promising and deserve further investigations in prospective phase III studies. In the AML setting, G-CSF or GM-CSF administration after intensive chemotherapy decreased the duration of the neutropenia without improving survival.

  6. Pre-malignant lymphoid cells arise from hematopoietic stem/progenitor cells in chronic lymphocytic leukemia.

    Science.gov (United States)

    Kikushige, Yoshikane; Miyamoto, Toshihiro

    2015-11-01

    Human malignancies progress through a multistep process that includes the development of critical somatic mutations over the clinical course. Recent novel findings have indicated that hematopoietic stem cells (HSCs), which have the potential to self-renew and differentiate into multilineage hematopoietic cells, are an important cellular target for the accumulation of critical somatic mutations in hematological malignancies and play a central role in myeloid malignancy development. In contrast to myeloid malignancies, mature lymphoid malignancies, such as chronic lymphocytic leukemia (CLL), are thought to originate directly from differentiated mature lymphocytes; however, recent compelling data have shown that primitive HSCs and hematopoietic progenitor cells contribute to the pathogenesis of mature lymphoid malignancies. Several representative mutations of hematological malignancies have been identified within the HSCs of CLL and lymphoma patients, indicating that the self-renewing long-lived fraction of HSCs can serve as a reservoir for the development of oncogenic events. Novel mice models have been established as human mature lymphoma models, in which specific oncogenic events target the HSCs and immature progenitor cells. These data collectively suggest that HSCs can be the cellular target involved in the accumulation of oncogenic events in the pathogenesis of mature lymphoid and myeloid malignancies.

  7. Dendritic cell-based immunotherapy for myeloid leukemias.

    Science.gov (United States)

    Schürch, Christian M; Riether, Carsten; Ochsenbein, Adrian F

    2013-12-31

    Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to "malignant" DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias.

  8. Dendritic cell-based immunotherapy for myeloid leukemias

    Directory of Open Access Journals (Sweden)

    Christian Martijn Schürch

    2013-12-01

    Full Text Available Acute and chronic myeloid leukemia (AML, CML are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs. LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD, reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs, may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed and presented by mature dendritic cells (DCs. Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to malignant DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid

  9. MBA-induced differentiation of myeloid leukemic cell lines is associated with altered G1 cell cycle regulators and related genes

    Institute of Scientific and Technical Information of China (English)

    王钦红; 谢毅; 范华骅

    2004-01-01

    @@The proliferation and differentiation of hematopoietic cells can be regulated by a number of physiological agents including hexamethylene bisacetamide (HMBA). Clinically, HMBA has been used for the treatment of acute myeloid leukemia and myelodysplastic syndrome.1 However, the mechanism of the effect of HMBA on the differentiation of myeloid leukemic cells is largely unkown. Up to now, related reports have not been found. We used HL-60 and U937 cell lines to study the effect of HMBA on the differentiation of myeloid leukemic cells and to explore the possible mechanism.

  10. Treating Chronic Myeloid Leukemia by Phase

    Science.gov (United States)

    ... Myeloid Leukemia (CML) Treating Chronic Myeloid Leukemia Treating Chronic Myeloid Leukemia by Phase Treatment options for people ... a stem cell donor with matching tissue type. Chronic phase The standard treatment for chronic phase CML ...

  11. Analysis of Normal Hematopoietic Stem and Progenitor Cell Contents in Childhood Acute Leukemia Bone Marrow.

    Science.gov (United States)

    Balandrán, Juan Carlos; Vadillo, Eduardo; Dozal, David; Reyes-López, Alfonso; Sandoval-Cabrera, Antonio; Laffont-Ortiz, Merle Denisse; Prieto-Chávez, Jessica L; Vilchis-Ordoñez, Armando; Quintela-Nuñez Del Prado, Henry; Mayani, Héctor; Núñez-Enríquez, Juan Carlos; Mejía-Aranguré, Juan Manuel; López-Martínez, Briceida; Jiménez-Hernández, Elva; Pelayo, Rosana

    2016-11-01

    Childhood acute leukemias (AL) are characterized by the excessive production of malignant precursor cells at the expense of effective blood cell development. The dominance of leukemic cells over normal progenitors may result in either direct suppression of functional hematopoiesis or remodeling of microenvironmental niches, contributing to BM failure and AL-associated mortality. We undertook this study to investigate the contents and functional activity of hematopoietic stem/progenitor cells (HSPC) and their relationship to immune cell production and risk status in AL pediatric patients. Multiparametric flow cytometry of BM aspirates was performed to classify AL on the basis of lineage and differentiation stages and to analyze HSPC and immune cell frequencies. Controlled co-culture systems were conducted to evaluate functional lineage potentials of primitive cells. Statistical correlations and inter-group significant differences were established. Among 113 AL BM aspirates, 26.5% corresponded to ProB, 19.5% to PreB and 32% contain ProB and PreB differentiation stages, whereas nearly 9% of the cases were T- and 13% myeloid-lineage leukemias. We identified ProB-ALL as the subtype endowed with the highest relative contents of HSPC, whereas T-ALL and PreB-ALL showed a critically reduced size of both HSC and MLP compartments. Notably, lower cell frequencies of HSPC in ProB-ALL correlated to high-risk prognosis at disease debut. HSPC abundance at initial diagnosis may aid to predict the clinical course of ALL and to identify high-risk patients. A clearer understanding of their population dynamics and functional properties in the leukemia setting will potentially pave the way for targeted therapies. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  12. Other hematopoietic disorders

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008475 The significance of dynamic detection of WT1 expression on patients of hematologic malignancy following allogeneic hematopoietic stem cell transplantation. JIN Song(金松), et al. Instit Hematol, People’s Hosp, Peking Univ, Beijing 100044, Chin J Intern Med 2008;47(7):578-581. Objective To evaluate preliminarily the significance of dynamic detection of Wilms’ tumor gene (WT1) expression level on monitoring minimal

  13. Other hematopoietic disorders

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    2010371 The incidence and risk factors of late-onset non-infectious pulmonary complications after allogeneic hematopoietic stem cell transplantation. WU Tao(吴涛),et al.Dept Hematol,Nanfang Hosp,Nanfang Med Univ,Guangzhou 510515.Chin J Hematol 2010;31(4):249-252. Objective To analyze the incidence and the risk factors of late-onset non-infectious

  14. Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network.

    Science.gov (United States)

    Krumsiek, Jan; Marr, Carsten; Schroeder, Timm; Theis, Fabian J

    2011-01-01

    Hematopoiesis is an ideal model system for stem cell biology with advanced experimental access. A systems view on the interactions of core transcription factors is important for understanding differentiation mechanisms and dynamics. In this manuscript, we construct a Boolean network to model myeloid differentiation, specifically from common myeloid progenitors to megakaryocytes, erythrocytes, granulocytes and monocytes. By interpreting the hematopoietic literature and translating experimental evidence into Boolean rules, we implement binary dynamics on the resulting 11-factor regulatory network. Our network contains interesting functional modules and a concatenation of mutual antagonistic pairs. The state space of our model is a hierarchical, acyclic graph, typifying the principles of myeloid differentiation. We observe excellent agreement between the steady states of our model and microarray expression profiles of two different studies. Moreover, perturbations of the network topology correctly reproduce reported knockout phenotypes in silico. We predict previously uncharacterized regulatory interactions and alterations of the differentiation process, and line out reprogramming strategies.

  15. [Research Advances of IDH2 Gene Mutation in Acute Myeloid Leukemia].

    Science.gov (United States)

    Zhao, Yan-Xia; Shen, Xu-Liang

    2016-04-01

    Acute myeloid leukemia (AML) is a malignant clonal hematologic disease from hematopoietic stem and progenitor cells. The isocitrate dehychogenase 2 (IDH2) gene mutation has been recently found, which may be associated with the course of AML. The incidence of IDH2 gene mutation in the patients with acute myeloid leukemia is high, especially in the AML patients with normal karyotype. Different subtypes of IDH2 mutation, or companing other molecular biology, will make different influence on clinical features and progress of patients with AML. IDH2 mutation is stable, which can be used as the test sign of AML and minimal residual disease (MRD), and for guiding the clinical treatment and predicting the progress. In this article, the research progress of IDH2 mutation in acute myeloid leukemia is reviewed.

  16. Misfolded N-CoR is linked to the ectopic reactivation of CD34/Flt3-based stem-cell phenotype in promyelocytic and monocytic acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Dawn Sijin Nin

    2015-10-01

    Full Text Available Nuclear receptor co-repressor (N-CoR is the key component of generic co-repressor complex essential for the transcriptional control of genes involved in cellular hemostasis. We have recently reported that N-CoR actively represses Flt3, a key factor of hematopoietic stem cells (HSC self-renewal and growth; and that de-repression of Flt3 by the misfolded N-CoR plays important role in the pathogenesis of promyelocytic and monocytic acute myeloid leukemia (AML. The leukemic cells derived from the promyelocytic and monocytic AML are distinctly characterized by the ectopic reactivation of stem cell phenotypes in relatively committed myeloid compartment. However, the molecular mechanism underlying this phenomenon is not known. Here, we report that N-CoR function is essential for the commitment of primitive hematopoietic cells to the cells of myeloid lineage, and that loss of N-CoR function due to misfolding is linked to the ectopic reactivation of generic stem cell phenotypes in promyelocytic and monocytic AML. Analysis of N-CoR and Flt3 transcripts in mouse hematopoietic cells revealed a positive correlation between N-CoR level and the commitment of myeloid cells and an inverse correlation between N-CoR and Flt3 levels in primitive as well as committed myeloid cells. Enforced N-CoR expression in mouse HSCs inhibited their growth and self-renewal potentials and promoted maturation towards cells of myeloid lineage, suggesting a role of N-CoR in the commitment of cells of myeloid lineage. In contrast to AML cells with natively folded N-CoR, primary and secondary promyelocytic and monocytic AML cells harboring the misfolded N-CoR were highly positive for Flt3 and myeloid antigen based HSC marker CD34. Genetic and therapeutic restoration of N-CoR conformation significantly down-regulated the CD34 levels in monocytic AML cells, suggesting an important role of N-CoR in the suppression of CD34 based hematopoietic stem cell phenotypes. These finding

  17. Lysophosphatidic acid mediates myeloid differentiation within the human bone marrow microenvironment.

    Directory of Open Access Journals (Sweden)

    Denis Evseenko

    Full Text Available Lysophosphatidic acid (LPA is a pleiotropic phospholipid present in the blood and certain tissues at high concentrations; its diverse effects are mediated through differential, tissue specific expression of LPA receptors. Our goal was to determine if LPA exerts lineage-specific effects during normal human hematopoiesis. In vitro stimulation of CD34+ human hematopoietic progenitors by LPA induced myeloid differentiation but had no effect on lymphoid differentiation. LPA receptors were expressed at significantly higher levels on Common Myeloid Progenitors (CMP than either multipotent Hematopoietic Stem/Progenitor Cells (HSPC or Common Lymphoid Progenitors (CLP suggesting that LPA acts on committed myeloid progenitors. Functional studies demonstrated that LPA enhanced migration, induced cell proliferation and reduced apoptosis of isolated CMP, but had no effect on either HSPC or CLP. Analysis of adult and fetal human bone marrow sections showed that PPAP2A, (the enzyme which degrades LPA was highly expressed in the osteoblastic niche but not in the perivascular regions, whereas Autotaxin (the enzyme that synthesizes LPA was expressed in perivascular regions of the marrow. We propose that a gradient of LPA with the highest levels in peri-sinusoidal regions and lowest near the endosteal zone, regulates the localization, proliferation and differentiation of myeloid progenitors within the bone marrow marrow.

  18. IL12B expression is sustained by a heterogenous population of myeloid lineages during tuberculosis.

    Science.gov (United States)

    Reeme, Allison E; Miller, Halli E; Robinson, Richard T

    2013-05-01

    IL12B is required for resistance to Mycobacterium tuberculosis (Mtb) infection, promoting the initiation and maintenance of Mtb-specific effector responses. While this makes the IL12-pathway an attractive target for experimental tuberculosis (TB) therapies, data regarding what lineages express IL12B after infection is established are limited. This is not obvious in the lung, an organ in which both hematopoietic and non-hematopoietic lineages produce IL12p40 upon pathogen encounter. Here, we use radiation bone marrow chimeras and Yet40 reporter mice to determine what lineages produce IL12p40 during experimental TB. We observed that hematopoietic IL12p40-production was sufficient to control Mtb, with no contribution by non-hematopoietic lineages. Furthermore, rather than being produced by a single subset, IL12p40 was produced by cells that were heterogenous in their size, granularity, autofluorescence and expression of CD11c, CD11b and CD8α. While depending on the timepoint and tissue examined, the surface phenotype of IL12p40-producers most closely resembled macrophages based on previous surveys of lung myeloid lineages. Importantly, depletion of CD11c(hi) cells during infection had no affect on lung IL12p40-concentrations. Collectively, our data demonstrate that IL12p40 production is sustained by a heterogenous population of myeloid lineages during experimental TB, and that redundant mechanisms of IL12p40-production exist when CD11c(hi) lineages are absent.

  19. Hematopoietic malignancies associated with viral and alcoholic hepatitis

    Science.gov (United States)

    Anderson, Lesley A; Pfeiffer, Ruth; Warren, Joan L; Landgren, Ola; Gadalla, Shahinaz; Berndt, Sonja I; Ricker, Winnie; Parsons, Ruth; Wheeler, William; Engels, Eric A

    2008-01-01

    Hepatitis C virus (HCV) and hepatitis B virus (HBV) have been associated with hematopoietic malignancies, but data for many subtypes are limited. From the U.S. SEER-Medicare database, we selected 61,464 cases (≥67 years) with hematopoietic malignancies and 122,531 population-based controls, frequency-matched by gender, age and year (1993–2002). Logistic regression was used to compare the prevalence of HCV, HBV and alcoholic hepatitis in cases and controls, adjusted for matching factors, race, duration of Medicare coverage, and number of physician claims. HCV, HBV, and alcoholic hepatitis were reported in 195 (0.3%), 111 (0.2%) and 404 (0.7%) cases and 264 (0.2%), 242 (0.2%) and 798 (0.7%) controls, respectively. HCV was associated with increased risk of diffuse large B-cell (OR 1.52, 95%CI 1.05–2.18), Burkitt (OR 5.21, 95%CI 1.62–16.8), follicular (OR 1.88, 95%CI 1.17–3.02), and marginal zone lymphomas (OR 2.20, 95%CI 1.22–3.95), and acute myeloid leukemia (OR 1.54, 95%CI 1.00–2.37). In contrast, HBV was unrelated to any hematopoietic malignancies. Alcoholic hepatitis was associated with decreased risk of non-Hodgkin lymphoma, but increased risk of Burkitt lymphoma. In summary, HCV, but not other causes of hepatitis, was associated with elevated risk of non-Hodgkin lymphoma and acute myeloid leukemia. HCV may induce lymphoproliferative malignancies through chronic immune stimulation. PMID:18957521

  20. The Hematopoietic Transcription Factors RUNX1 and ERG Prevent AML1-ETO Oncogene Overexpression and Onset of the Apoptosis Program in t(8;21) AMLs

    NARCIS (Netherlands)

    Mandoli, Amit; Singh, Abhishek A.; Prange, Koen H. M.; Tijchon, Esther; Oerlemans, Marjolein; Dirks, Rene; Ter Huurne, Menno; Wierenga, Albertus T. J.; Janssen-Megens, Eva M.; Berentsen, Kim; Sharifi, Nilofar; Kim, Bowon; Matarese, Filomena; Nguyen, Luan N.; Hubner, Nina C.; Rao, Nagesha A.; van den Akker, Emile; Altucci, Lucia; Vellenga, Edo; Stunnenberg, Hendrik G.; Martens, Joost H. A.

    2016-01-01

    The t(8;21) acute myeloid leukemia (AML)-associated oncoprotein AML1-ETO disrupts normal hematopoietic differentiation. Here, we have investigated its effects on the transcriptome and epigenome in t(8,21) patient cells. AML1-ETO binding was found at promoter regions of active genes with high levels

  1. An integrated approach of gene expression and DNA-methylation profiles of WNT signaling genes uncovers novel prognostic markers in Acute Myeloid Leukemia

    NARCIS (Netherlands)

    Taskesen, E.; Staal, F.J.T.; Reinders, M.J.T.

    2015-01-01

    Background The wingless-Int (WNT) pathway has an essential role in cell regulation of hematopoietic stem cells (HSC). For Acute Myeloid Leukemia (AML), the malignant counterpart of HSC, currently only a selective number of genes of the WNT pathway are analyzed by using either gene expression or DNA-

  2. Large-Scale Hematopoietic Differentiation of Human Induced Pluripotent Stem Cells Provides Granulocytes or Macrophages for Cell Replacement Therapies

    Directory of Open Access Journals (Sweden)

    Nico Lachmann

    2015-02-01

    Full Text Available Interleukin-3 (IL-3 is capable of supporting the proliferation of a broad range of hematopoietic cell types, whereas granulocyte colony-stimulating factor (G-CSF and macrophage CSF (M-CSF represent critical cytokines in myeloid differentiation. When this was investigated in a pluripotent-stem-cell-based hematopoietic differentiation model, IL-3/G-CSF or IL-3/M-CSF exposure resulted in the continuous generation of myeloid cells from an intermediate myeloid-cell-forming complex containing CD34+ clonogenic progenitor cells for more than 2 months. Whereas IL-3/G-CSF directed differentiation toward CD45+CD11b+CD15+CD16+CD66b+ granulocytic cells of various differentiation stages up to a segmented morphology displaying the capacity of cytokine-directed migration, respiratory burst response, and neutrophil-extracellular-trap formation, exposure to IL-3/M-CSF resulted in CD45+CD11b+CD14+CD163+CD68+ monocyte/macrophage-type cells capable of phagocytosis and cytokine secretion. Hence, we show here that myeloid specification of human pluripotent stem cells by IL-3/G-CSF or IL-3/M-CSF allows for prolonged and large-scale production of myeloid cells, and thus is suited for cell-fate and disease-modeling studies as well as gene- and cell-therapy applications.

  3. Differential requirements for hematopoietic commitment between human and rhesus embryonic stem cells.

    Science.gov (United States)

    Rajesh, Deepika; Chinnasamy, Nachimuthu; Mitalipov, Shoukhrat M; Wolf, Don P; Slukvin, Igor; Thomson, James A; Shaaban, Aimen F

    2007-02-01

    Progress toward clinical application of ESC-derived hematopoietic cellular transplantation will require rigorous evaluation in a large animal allogeneic model. However, in contrast to human ESCs (hESCs), efforts to induce conclusive hematopoietic differentiation from rhesus macaque ESCs (rESCs) have been unsuccessful. Characterizing these poorly understood functional differences will facilitate progress in this area and likely clarify the critical steps involved in the hematopoietic differentiation of ESCs. To accomplish this goal, we compared the hematopoietic differentiation of hESCs with that of rESCs in both EB culture and stroma coculture. Initially, undifferentiated rESCs and hESCs were adapted to growth on Matrigel without a change in their phenotype or karyotype. Subsequent differentiation of rESCs in OP9 stroma led to the development of CD34(+)CD45(-) cells that gave rise to endothelial cell networks in methylcellulose culture. In the same conditions, hESCs exhibited convincing hematopoietic differentiation. In cytokine-supplemented EB culture, rESCs demonstrated improved hematopoietic differentiation with higher levels of CD34(+) and detectable levels of CD45(+) cells. However, these levels remained dramatically lower than those for hESCs in identical culture conditions. Subsequent plating of cytokine-supplemented rhesus EBs in methylcellulose culture led to the formation of mixed colonies of erythroid, myeloid, and endothelial cells, confirming the existence of bipotential hematoendothelial progenitors in the cytokine-supplemented EB cultures. Evaluation of four different rESC lines confirmed the validity of these disparities. Although rESCs have the potential for hematopoietic differentiation, they exhibit a pause at the hemangioblast stage of hematopoietic development in culture conditions developed for hESCs.

  4. Dipeptidyl peptidase IV (CD26 activity in the hematopoietic system: differences between the membrane-anchored and the released enzyme activity

    Directory of Open Access Journals (Sweden)

    D.A. Pereira

    2003-05-01

    Full Text Available Dipeptidyl peptidase IV (DPP-IV; CD26 (EC 3.4.14.5 is a membrane-anchored ectoenzyme with N-terminal exopeptidase activity that preferentially cleaves X-Pro-dipeptides. It can also be spontaneously released to act in the extracellular environment or associated with the extracellular matrix. Many hematopoietic cytokines and chemokines contain DPP-IV-susceptible N-terminal sequences. We monitored DPP-IV expression and activity in murine bone marrow and liver stroma cells which sustain hematopoiesis, myeloid precursors, skin fibroblasts, and myoblasts. RT-PCR analysis showed that all these cells produced mRNA for DPP-IV. Partially purified protein reacted with a commercial antibody to CD26. The K M values for Gly-Pro-p-nitroanilide ranged from 0.43 to 0.98 mM for the membrane-associated enzyme of connective tissue stromas, and from 6.76 to 8.86 mM for the enzyme released from the membrane, corresponding to a ten-fold difference, but only a two-fold difference in K M was found in myoblasts. K M of the released soluble enzyme decreased in the presence of glycosaminoglycans, nonsulfated polysaccharide polymers (0.8-10 µg/ml or simple sugars (320-350 µg/ml. Purified membrane lipid rafts contained nearly 3/4 of the total cell enzyme activity, whose K M was three-fold decreased as compared to the total cell membrane pool, indicating that, in the hematopoietic environment, DPP-IV activity is essentially located in the lipid rafts. This is compatible with membrane-associated events and direct cell-cell interactions, whilst the long-range activity depending upon soluble enzyme is less probable in view of the low affinity of this form.

  5. Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia.

    Science.gov (United States)

    Boutzen, Héléna; Saland, Estelle; Larrue, Clément; de Toni, Fabienne; Gales, Lara; Castelli, Florence A; Cathebas, Mathilde; Zaghdoudi, Sonia; Stuani, Lucille; Kaoma, Tony; Riscal, Romain; Yang, Guangli; Hirsch, Pierre; David, Marion; De Mas-Mansat, Véronique; Delabesse, Eric; Vallar, Laurent; Delhommeau, François; Jouanin, Isabelle; Ouerfelli, Ouathek; Le Cam, Laurent; Linares, Laetitia K; Junot, Christophe; Portais, Jean-Charles; Vergez, François; Récher, Christian; Sarry, Jean-Emmanuel

    2016-04-04

    Acute myeloid leukemia (AML) is characterized by the accumulation of malignant blasts with impaired differentiation programs caused by recurrent mutations, such as the isocitrate dehydrogenase (IDH) mutations found in 15% of AML patients. These mutations result in the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG), leading to a hypermethylation phenotype that dysregulates hematopoietic differentiation. In this study, we identified mutant R132H IDH1-specific gene signatures regulated by key transcription factors, particularly CEBPα, involved in myeloid differentiation and retinoid responsiveness. We show that treatment with all-trans retinoic acid (ATRA) at clinically achievable doses markedly enhanced terminal granulocytic differentiation in AML cell lines, primary patient samples, and a xenograft mouse model carrying mutant IDH1. Moreover, treatment with a cell-permeable form of 2-HG sensitized wild-type IDH1 AML cells to ATRA-induced myeloid differentiation, whereas inhibition of 2-HG production significantly reduced ATRA effects in mutant IDH1 cells. ATRA treatment specifically decreased cell viability and induced apoptosis of mutant IDH1 blasts in vitro. ATRA also reduced tumor burden of mutant IDH1 AML cells xenografted in NOD-Scid-IL2rγ(null)mice and markedly increased overall survival, revealing a potent antileukemic effect of ATRA in the presence of IDH1 mutation. This therapeutic strategy holds promise for this AML patient subgroup in future clinical studies.

  6. Omega 3 fatty acids reduce myeloid progenitor cell frequency in the bone marrow of mice and promote progenitor cell differentiation

    Directory of Open Access Journals (Sweden)

    Sollars Vincent E

    2009-03-01

    Full Text Available Abstract Background Omega 3 fatty acids have been found to inhibit proliferation, induce apoptosis, and promote differentiation in various cell types. The processes of cell survival, expansion, and differentiation are of key importance in the regulation of hematopoiesis. We investigated the role of omega 3 fatty acids in controlling the frequency of various myeloid progenitor cells in the bone marrow of mice. Increased progenitor cell frequency and blocked differentiation are characteristics of hematopoietic disorders of the myeloid lineage, such as myeloproliferative diseases and myeloid leukemias. Results We found that increasing the proportion of omega 3 fatty acids relative to the proportion of omega 6 fatty acids in the diet caused increased differentiation and reduced the frequency of myeloid progenitor cells in the bone marrow of mice. Furthermore, this had no adverse effect on peripheral white blood cell counts. Conclusion Our results indicate that omega 3 fatty acids impact hematopoietic differentiation by reducing myeloid progenitor cell frequency in the bone marrow and promoting progenitor cell differentiation. Further exploration of this discovery could lead to the use of omega 3 fatty acids as a therapeutic option for patients that have various disorders of hematopoiesis.

  7. Myeloid Sarcoma in the Orbit.

    Science.gov (United States)

    Qian, Xiaoxiao; Gigantelli, James W; Abromowitch, Minnie; Morgan, Linda A; Suh, Donny W

    2016-12-08

    The authors describe a case of myeloid sarcoma of the orbit in a pediatric patient. An 8-month-old male infant presented to the ophthalmology clinic with a left orbital mass, which had been increasing in size over the previous 2 months. The mass was initially diagnosed at another clinic as an infantile hemangioma, and had been treated with a topical formulation of timolol. In the ophthalmology clinic, orbital magnetic resonance imaging showed a solid enhancing mass. A biopsy was performed, and histopathology revealed myeloid sarcoma. The disease responded well to a standard chemotherapy regimen. Myeloid sarcoma is a rare, extra-medullary presentation that can occur as an isolated tumor, concurrently with or at relapse of acute myeloid leukemia. Because few cases of myeloid sarcoma in the orbit have been reported, this case report aids in the management of myeloid sarcoma in pediatric patients. The report describes an 8-month-old male infant, the youngest patient to develop myeloid sarcoma without preexisting acute myeloid leukemia. [J Pediatr Ophthalmol Strabismus. 2016;53:e64-e68.].

  8. KEGG PATHWAY / Acute myeloid leukemia [KEGG

    Lifescience Database Archive (English)

    Full Text Available PATHWAY: map05221 Entry map05221Pathway Name Acute myeloid leukemia Description Acute...Class Human Diseases; Cancers Pathwaymap map05221Acute myeloid leukemia Disease H00003Acute myeloid leukemia...inkDB DBGET integrated database retrieval system KEGG PATHWAY / Acute myeloid leukemia ...

  9. In vivo inhibition of c-MYC in myeloid cells impairs tumor-associated macrophage maturation and pro-tumoral activities.

    Directory of Open Access Journals (Sweden)

    Oscar M Pello

    Full Text Available Although tumor-associated macrophages (TAMs are involved in tumor growth and metastasis, the mechanisms controlling their pro-tumoral activities remain largely unknown. The transcription factor c-MYC has been recently shown to regulate in vitro human macrophage polarization and be expressed in macrophages infiltrating human tumors. In this study, we exploited the predominant expression of LysM in myeloid cells to generate c-Myc(fl/fl LysM(cre/+ mice, which lack c-Myc in macrophages, to investigate the role of macrophage c-MYC expression in cancer. Under steady-state conditions, immune system parameters in c-Myc(fl/fl LysM(cre/+ mice appeared normal, including the abundance of different subsets of bone marrow hematopoietic stem cells, precursors and circulating cells, macrophage density, and immune organ structure. In a model of melanoma, however, TAMs lacking c-Myc displayed a delay in maturation and showed an attenuation of pro-tumoral functions (e.g., reduced expression of VEGF, MMP9, and HIF1α that was associated with impaired tissue remodeling and angiogenesis and limited tumor growth in c-Myc(fl/fl LysM(cre/+ mice. Macrophage c-Myc deletion also diminished fibrosarcoma growth. These data identify c-Myc as a positive regulator of the pro-tumoral program of TAMs and suggest c-Myc inactivation as an attractive target for anti-cancer therapy.

  10. [Precursors of acute leukemia: myelodysplastic syndromes and myeloproliferative neoplasms].

    Science.gov (United States)

    Kreipe, H H

    2011-11-01

    Myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN) represent neoplastic proliferations of hematopoietic stem cells, which may progress to loss of differentiation and acute myeloid leukemia (AML). Transitions between MDSs and MPNs as well as combinations between both disorders occur and MPNs may acquire dysplastic features combined with cytopenia. Myelodysplastic/myeloproliferative neoplasms show dysplastic and myeloproliferative properties and have in common genetic aberrations at the stem cell level (TET2, ASXL 1, CBL, IDH 1, IDH 2, EZH2, p53, Runx1), which may be found in one cell or may affect different hematopoietic stem cells, expanding in parallel. Progress to AML follows a linear clonal evolution only in a subset of cases. Alternatively AML derives from secondary clones, devoid of any marker mutation or originates from a common aberrant progenitor cell which shares other but not the JAK2 ( V617F ) mutation.

  11. Novel therapeutic options in Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Michael Medinger

    2016-01-01

    Full Text Available Acute myeloid leukemia (AML is a biologically complex and molecularly and clinically heterogeneous disease, and its incidence is increasing as the population ages. Cytogenetic anomalies and mutation testing remain important prognostic tools for tailoring treatment after induction therapy. Despite major advances in understanding the genetic landscape of AML and its impact on the pathophysiology and biology of the disease, as well as the rapid development of new drugs, standard treatment options have not experienced major changes during the past three decades. Especially for patients with intermediate or high-risk AML, which often show relapse. Allogeneic hematopoietic stem cell transplantation (HSCT remains the best chance for cure. Here we review the state of the art therapy of AML, with special focus on new developments in immunotherapies and cellular therapies including HSCT and particularly discuss the impact of new conditioning and haplo-identical donor regimens for HSCT, post-transplant strategies for preventing and treating relapse, and emerging novel therapeutic options.

  12. Imaging findings of isolated myeloid sarcoma of the stomach in a nonleukemic child: A case report and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Kyun; Kim, Jung Hyun; Baek, Hee Jo; Heo, Suk Hee [Dept. of Radiology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju (Korea, Republic of); Kim, Jin Woong; Shin, Sang Soo [Dept. of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun (Korea, Republic of)

    2017-01-15

    Myeloid sarcoma is an extramedullary solid neoplasm composed of myeloid precursor cells. This tumor usually occurs simultaneously with or following the onset of acute leukemia. Rarely, it can be the first manifestation of acute myeloid leukemia. The tumor can occur anywhere in the body. However, primary involvement of the stomach without evidence of leukemia is exceedingly rare, and to the best of our knowledge, imaging features of isolated myeloid sarcoma of the stomach have not been reported in children. This case illustrates the imaging appearances of isolated myeloid sarcoma that initially manifested as gastric submucosal wall thickening and discusses the differential diagnosis, in a 15-year-old girl without evidence of hematologic malignancy.

  13. In utero depletion of fetal hematopoietic stem cells improves engraftment after neonatal transplantation in mice.

    Science.gov (United States)

    Derderian, S Christopher; Togarrati, P Priya; King, Charmin; Moradi, Patriss W; Reynaud, Damien; Czechowicz, Agnieszka; Weissman, Irving L; MacKenzie, Tippi C

    2014-08-07

    Although in utero hematopoietic cell transplantation is a promising strategy to treat congenital hematopoietic disorders, levels of engraftment have not been therapeutic for diseases in which donor cells have no survival advantage. We used an antibody against the murine c-Kit receptor (ACK2) to deplete fetal host hematopoietic stem cells (HSCs) and increase space within the hematopoietic niche for donor cell engraftment. Fetal mice were injected with ACK2 on embryonic days 13.5 to 14.5 and surviving pups were transplanted with congenic hematopoietic cells on day of life 1. Low-dose ACK2 treatment effectively depleted HSCs within the bone marrow with minimal toxicity and the antibody was cleared from the serum before the neonatal transplantation. Chimerism levels were significantly higher in treated pups than in controls; both myeloid and lymphoid cell chimerism increased because of higher engraftment of HSCs in the bone marrow. To test the strategy of repeated HSC depletion and transplantation, some mice were treated with ACK2 postnatally, but the increase in engraftment was lower than that seen with prenatal treatment. We demonstrate a successful fetal conditioning strategy associated with minimal toxicity. Such strategies could be used to achieve clinically relevant levels of engraftment to treat congenital stem cell disorders.

  14. The effects of proliferation and DNA damage on hematopoietic stem cell function determine aging.

    Science.gov (United States)

    Khurana, Satish

    2016-07-01

    In most of the mammalian tissues, homeostasis as well as injury repair depend upon a small number of resident adult stem cells. The decline in tissue/organ function in aged organisms has been directly linked with poorly functioning stem cells. Altered function of hematopoietic stem cells (HSCs) is at the center of an aging hematopoietic system, a tissue with high cellular turnover. Poorly engrafting, myeloid-biased HSCs with higher levels of DNA damage accumulation are the hallmark features of an aged hematopoietic system. These cells show a higher proliferation rate than their younger counterparts. It was proposed that quiescence of these cells over long period of time leads to accumulation of DNA damage, eventually resulting in poor function/pathological conditions in hematopoietic system. However, various mouse models with premature aging phenotype also show highly proliferative HSCs. This review examines the evidence that links proliferation of HSCs with aging, which leads to functional changes in the hematopoietic system. Developmental Dynamics 245:739-750, 2016. © 2016 Wiley Periodicals, Inc.

  15. Bid protects the mouse hematopoietic system following hydroxyurea-induced replicative stress.

    Science.gov (United States)

    Liu, Y; Aiello, A; Zinkel, S S

    2012-10-01

    Hematopoietic stem cells (HSCs) possess long-term self-renewal capacity and multipotent differentiative capacity, to maintain the hematopoietic system. Long-term hematopoietic homeostasis requires effective control of genotoxic damage to maintain HSC function and prevent propagation of deleterious mutations. Here we investigate the role of the BH3-only Bcl-2 family member Bid in the response of murine hematopoietic cells to long-term replicative stress induced by hydroxyurea (HU). The PI3-like serine/threonine kinase, ATR, initiates the DNA damage response (DDR) to replicative stress. The pro-apoptotic Bcl-2 family member, Bid, facilitates this response to replicative stress in hematopoietic cells, but the in vivo role of this DDR function of Bid has not been defined. Surprisingly, we demonstrate that long-term HU treatment expands wild-type myeloid progenitor cells (MPCs) and HSC-enriched Lin(-)Sca1(+)Kit(+) (LSK) cells to maintain bone marrow function as measured by long-term competitive repopulating ability. Bid-/- MPCs demonstrate increased sensitivity to HU and are depleted. Bid-/- LSK cells demonstrate increased mobilization manifest by increased Bromodeoxyuridine (BrdU) incorporation. Bid-/- MPCs and LSK cells are relatively depleted, however, and bone marrow from Bid-/- mice demonstrates decreased long-term competitive repopulating ability in both primary and secondary transplants. We thus describe a survival function of Bid in hematopoiesis in the setting of chronic replicative stress.

  16. A variant allele of Growth Factor Independence 1 (GFI1) is associated with acute myeloid leukemia.

    NARCIS (Netherlands)

    Khandanpour, C.; Thiede, C.; Valk, P.J.; Sharif-Askari, E.; Nuckel, H.; Lohmann, D.; Horsthemke, B.; Siffert, W.; Neubauer, A.; Grzeschik, K.H.; Bloomfield, C.D.; Marcucci, G.; Maharry, K.; Slovak, M.L.; Reijden, B.A. van der; Jansen, J.H.; Schackert, H.K.; Afshar, K.; Schnittger, S.; Peeters, J.K.; Kroschinsky, F.; Ehninger, G.; Lowenberg, B.; Duhrsen, U.; Moroy, T.

    2010-01-01

    The GFI1 gene encodes a transcriptional repressor, which regulates myeloid differentiation. In the mouse, Gfi1 deficiency causes neutropenia and an accumulation of granulomonocytic precursor cells that is reminiscent of a myelodysplastic syndrome. We report here that a variant allele of GFI1 (GFI1(3

  17. Generation of mature hematopoietic cells from human pluripotent stem cells.

    Science.gov (United States)

    Togarrati, Padma Priya; Suknuntha, Kran

    2012-06-01

    A number of malignant and non-malignant hematological disorders are associated with the abnormal production of mature blood cells or primitive hematopoietic precursors. Their capacity for continuous self-renewal without loss of pluripotency and the ability to differentiate into adult cell types from all three primitive germ layers make human embryonic stem cells and induced pluripotent stem cells (hiPSCs) attractive complementary cell sources for large-scale production of transfusable mature blood cell components in cell replacement therapies. The generation of patient-specific hematopoietic stem/precursor cells from iPSCs by the regulated manipulation of various factors involved in reprograming to ensure complete pluripotency, and developing innovative differentiation strategies for generating unlimited supply of clinically safe, transplantable, HLA-matched cells from hiPSCs to outnumber the inadequate source of hematopoietic stem cells obtained from cord blood, bone marrow and peripheral blood, would have a major impact on the field of regenerative and personalized medicine leading to translation of these results from bench to bedside.

  18. Hematopoietic stem cells and the aging hematopoietic system.

    Science.gov (United States)

    Gazit, Roi; Weissman, Irving L; Rossi, Derrick J

    2008-10-01

    The etiology of the age-associated pathophysiological changes of the hematopoietic system including the onset of anemia, diminished adaptive immune competence, and myelogenous disease development are underwritten by the loss of normal homeostatic control. As tissue and organ homeostasis in adults is primarily mediated by the activity of stem and progenitor cells, it has been suggested that the imbalances accompanying aging of the hematopoietic system may stem from alterations in the prevalence and/or functional capacity of hematopoietic stem cells (HSCs) and progenitors. In this review, we examine evidence implicating a role for stem cells in the aging of the hematopoietic system, and focus on the mechanisms suggested to contribute to stem cell aging.

  19. Detection of FLT3 Oncogene Mutations in Acute Myeloid Leukemia Using Conformation Sensitive Gel Electrophoresis

    Directory of Open Access Journals (Sweden)

    Mamdooh Gari

    2008-11-01

    Full Text Available FLT3 (fms-related tyrosine kinase 3 is a receptor tyrosine kinase class III that is expressed on by early hematopoietic progenitor cells and plays an important role in hematopoietic stem cell proliferation, differentiation and survival. FLT3 is also expressed on leukemia blasts in most cases of acute myeloid leukemia (AML. In order to determine the frequency of FLT3 oncogene mutations, we analyzed genomic DNA of adult de novo acute myeloid leukemia (AML. Polymerase chain reaction (PCR and conformation-sensitive gel electrophoresis (CSGE were used for FLT3 exons 11, 14, and 15, followed by direct DNA sequencing. Two different types of functionally important FLT 3 mutations have been identified. Those mutations were unique to patients with inv(16, t(15:17 or t(8;21 and comprised fifteen cases with internal tandem duplication (ITD mutation in the juxtamembrane domain and eleven cases with point mutation (exon 20, Asp835Tyr. The high frequency of the flt3 proto-oncogene mutations in acute myeloid leukemia AML suggests a key role for the receptor function. The association of FLT3 mutations with chromosomal abnormalities invites speculation as to the link between these two changes in the pathogenesis of acute myeloid leukemiaAML. Furthermore, CSGE method has shown to be a rapid and sensitive screening method for detection of nucleotide alteration in FLT3 gene. Finally, this study reports, for the first time in Saudi Arabia, mutations in the human FLT3 gene in acute myeloid leukemia AML patients.

  20. Canonical Wnt signaling promotes early hematopoietic progenitor formation and erythroid specification during embryonic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Anuradha Tarafdar

    Full Text Available The generation of hematopoietic stem cells (HSCs during development is a complex process linked to morphogenic signals. Understanding this process is important for regenerative medicine applications that require in vitro production of HSC. In this study we investigated the effects of canonical Wnt/β-catenin signaling during early embryonic differentiation and hematopoietic specification using an embryonic stem cell system. Our data clearly demonstrates that following early differentiation induction, canonical Wnt signaling induces a strong mesodermal program whilst maintaining a degree of stemness potential. This involved a complex interplay between β-catenin/TCF/LEF/Brachyury/Nanog. β-catenin mediated up-regulation of TCF/LEF resulted in enhanced brachyury levels, which in-turn lead to Nanog up-regulation. During differentiation, active canonical Wnt signaling also up-regulated key transcription factors and cell specific markers essential for hematopoietic specification, in particular genes involved in establishing primitive erythropoiesis. This led to a significant increase in primitive erythroid colony formation. β-catenin signaling also augmented early hematopoietic and multipotent progenitor (MPP formation. Following culture in a MPP specific cytokine cocktail, activation of β-catenin suppressed differentiation of the early hematopoietic progenitor population, with cells displaying a higher replating capacity and a propensity to form megakaryocytic erythroid progenitors. This bias towards erythroid lineage commitment was also observed when hematopoietic progenitors were directed to undergo myeloid colony formation. Overall this study underscores the importance of canonical Wnt/β-catenin signaling in mesodermal specification, primitive erythropoiesis and early hematopietic progenitor formation during hematopoietic induction.

  1. Canonical Wnt signaling promotes early hematopoietic progenitor formation and erythroid specification during embryonic stem cell differentiation.

    Science.gov (United States)

    Tarafdar, Anuradha; Dobbin, Edwina; Corrigan, Pamela; Freeburn, Robin; Wheadon, Helen

    2013-01-01

    The generation of hematopoietic stem cells (HSCs) during development is a complex process linked to morphogenic signals. Understanding this process is important for regenerative medicine applications that require in vitro production of HSC. In this study we investigated the effects of canonical Wnt/β-catenin signaling during early embryonic differentiation and hematopoietic specification using an embryonic stem cell system. Our data clearly demonstrates that following early differentiation induction, canonical Wnt signaling induces a strong mesodermal program whilst maintaining a degree of stemness potential. This involved a complex interplay between β-catenin/TCF/LEF/Brachyury/Nanog. β-catenin mediated up-regulation of TCF/LEF resulted in enhanced brachyury levels, which in-turn lead to Nanog up-regulation. During differentiation, active canonical Wnt signaling also up-regulated key transcription factors and cell specific markers essential for hematopoietic specification, in particular genes involved in establishing primitive erythropoiesis. This led to a significant increase in primitive erythroid colony formation. β-catenin signaling also augmented early hematopoietic and multipotent progenitor (MPP) formation. Following culture in a MPP specific cytokine cocktail, activation of β-catenin suppressed differentiation of the early hematopoietic progenitor population, with cells displaying a higher replating capacity and a propensity to form megakaryocytic erythroid progenitors. This bias towards erythroid lineage commitment was also observed when hematopoietic progenitors were directed to undergo myeloid colony formation. Overall this study underscores the importance of canonical Wnt/β-catenin signaling in mesodermal specification, primitive erythropoiesis and early hematopietic progenitor formation during hematopoietic induction.

  2. 缺乏HLA相合同胞供者时急性髓系白血病患者异基因造血干细胞移植治疗的选择%Allogeneic hematopoietic cell transplantation for acute myeloid leukemia when a matched related donor is not available

    Institute of Scientific and Technical Information of China (English)

    傅华睿; 黄依

    2009-01-01

    @@ 大量前瞻性研究提示,急性髓系白血病(acute myeloid leukemia, AML)患者接受同胞供者造血干细胞移植的指征为:AML诊断明确;处于第1次完全缓解期;拥有小于60岁适合供者的年轻患者;拥有预后不良的基因亚型或拥有除 NPM+/ FLT-IDT3-以外的中等预后亚型或拥有c-kit突变的良好预后亚型.与骨

  3. Low-dose decitabine combined with fractional allogeneic hematopoietic stem cell transfusion for treatment of elderly patients with acute myeloid leukemia transformed from myelodysplastic syndrome:a report of 2 cases%小剂量地西他滨联合异基因造血干细胞分次输注治疗老年骨髓增生异常综合征转急性髓性白血病2例报告

    Institute of Scientific and Technical Information of China (English)

    李云双; 陈永升; 聂伟业; 黄琴; 孔祥敬; 尹晓林

    2015-01-01

    Objective To explore the efficay of low-dose decitabine combined with fractional allogeneic hematopoietic stem cell transfusion( micro transplantation) for treatment of elderly patients with acute myeloid leukemia transformed from myelodysplastic syndrome ( MDS-AML) .Methods Two patients diagnosed as MDS-AML were treated with chemotherapy regimen of low-dose decitabine or decitabine combined with CAG(cytosine arabinoside+aclacinomycin) and micro transplantation.The donors were children of patients with human leukocyte antigen semi-matched.Peripheral blood stem cells from the donors were mobilized with granulocyte colony-stimulating factor and then collected. Patients transfused PBSC about 36 hours after the chemotherapy finished.The disease status,platelet levels,survival timeand side effects were observed.Re sults Two cases did not achieve complete response.The survival times of Case 1 and Case 2 were 2 months and 4 months respectively. The platelet level in Case 1 increased remarkably after treatment,and reached to the maximal level of 59 ×109/L.No platelet transfusion was observed in Case 1.In Case 2,the interval of platelet transfusion was prolonged,and the patient was gradually independent on platelet transfusions. No graft-versus-host disease occurred in the two patients.Conclusion For elderly patients with MDS-AML,low-dose decitabine combined with micro transplantation can not cure the disease,but can prolong the survival time,increase the level of platelet and improve the quality of life.%目的 观察小剂量地西他滨联合异基因造血干细胞分次输注(微移植)治疗老年骨髓增生异常综合征转急性髓性白血病( MDS-AML)的疗效. 方法 对2例确诊为MDS-AML患者分别予小剂量地西他滨或地西他滨联合CAG方案(阿糖胞苷+阿克拉霉素)化疗加微移植治疗,供者为人类白细胞抗原半相合的患者子女,采集重组人粒细胞集落刺激因子动员后的供者外周血

  4. Comprehensive population-based genome sequencing provides insight into hematopoietic regulatory mechanisms

    Science.gov (United States)

    Guo, Michael H.; Nandakumar, Satish K.; Ulirsch, Jacob C.; Zekavat, Seyedeh M.; Buenrostro, Jason D.; Natarajan, Pradeep; Salem, Rany M.; Chiarle, Roberto; Mitt, Mario; Kals, Mart; Pärn, Kalle; Fischer, Krista; Milani, Lili; Mägi, Reedik; Palta, Priit; Gabriel, Stacey B.; Metspalu, Andres; Lander, Eric S.; Kathiresan, Sekar; Hirschhorn, Joel N.; Esko, Tõnu; Sankaran, Vijay G.

    2017-01-01

    Genetic variants affecting hematopoiesis can influence commonly measured blood cell traits. To identify factors that affect hematopoiesis, we performed association studies for blood cell traits in the population-based Estonian Biobank using high-coverage whole-genome sequencing (WGS) in 2,284 samples and SNP genotyping in an additional 14,904 samples. Using up to 7,134 samples with available phenotype data, our analyses identified 17 associations across 14 blood cell traits. Integration of WGS-based fine-mapping and complementary epigenomic datasets provided evidence for causal mechanisms at several loci, including at a previously undiscovered basophil count-associated locus near the master hematopoietic transcription factor CEBPA. The fine-mapped variant at this basophil count association near CEBPA overlapped an enhancer active in common myeloid progenitors and influenced its activity. In situ perturbation of this enhancer by CRISPR/Cas9 mutagenesis in hematopoietic stem and progenitor cells demonstrated that it is necessary for and specifically regulates CEBPA expression during basophil differentiation. We additionally identified basophil count-associated variation at another more pleiotropic myeloid enhancer near GATA2, highlighting regulatory mechanisms for ordered expression of master hematopoietic regulators during lineage specification. Our study illustrates how population-based genetic studies can provide key insights into poorly understood cell differentiation processes of considerable physiologic relevance. PMID:28031487

  5. Reticular dysgenesis–associated AK2 protects hematopoietic stem and progenitor cell development from oxidative stress

    Science.gov (United States)

    Rissone, Alberto; Weinacht, Katja Gabriele; la Marca, Giancarlo; Bishop, Kevin; Giocaliere, Elisa; Jagadeesh, Jayashree; Felgentreff, Kerstin; Dobbs, Kerry; Al-Herz, Waleed; Jones, Marypat; Chandrasekharappa, Settara; Kirby, Martha; Wincovitch, Stephen; Simon, Karen Lyn; Itan, Yuval; DeVine, Alex; Schlaeger, Thorsten; Schambach, Axel; Sood, Raman

    2015-01-01

    Adenylate kinases (AKs) are phosphotransferases that regulate the cellular adenine nucleotide composition and play a critical role in the energy homeostasis of all tissues. The AK2 isoenzyme is expressed in the mitochondrial intermembrane space and is mutated in reticular dysgenesis (RD), a rare form of severe combined immunodeficiency (SCID) in humans. RD is characterized by a maturation arrest in the myeloid and lymphoid lineages, leading to early onset, recurrent, and overwhelming infections. To gain insight into the pathophysiology of RD, we studied the effects of AK2 deficiency using the zebrafish model and induced pluripotent stem cells (iPSCs) derived from fibroblasts of an RD patient. In zebrafish, Ak2 deficiency affected hematopoietic stem and progenitor cell (HSPC) development with increased oxidative stress and apoptosis. AK2-deficient iPSCs recapitulated the characteristic myeloid maturation arrest at the promyelocyte stage and demonstrated an increased AMP/ADP ratio, indicative of an energy-depleted adenine nucleotide profile. Antioxidant treatment rescued the hematopoietic phenotypes in vivo in ak2 mutant zebrafish and restored differentiation of AK2-deficient iPSCs into mature granulocytes. Our results link hematopoietic cell fate in AK2 deficiency to cellular energy depletion and increased oxidative stress. This points to the potential use of antioxidants as a supportive therapeutic modality for patients with RD. PMID:26150473

  6. [Fusarium solani infection in a patient after allogeneic hematopoietic stem cell transplantation: case report and literature review].

    Science.gov (United States)

    Hu, Jiang-Wei; Shu, Xiang-Rong; Ren, Jing; Yin, Xiu-Yun; Jiang, Min; Hu, Liang-Ding; Zhang, Bo; Chen, Hu

    2010-10-01

    To study Fusarium solani infection as a complication in patients after allogeneic hematopoietic stem cell transplantation and to discuss the diagnosis and appropriate therapy. Symptoms, physical examination, laboratory tests, computed tomographic (CT) scans, treatments and outcomes of Fusarium solani infection in a patient with acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation were retrospectively analyzed, and related literatures reviewed. The patient developed pulmonary infiltration and systemic multiple subcutaneous masses after allogeneic hematopoietic stem cell transplantation. Tissue biopsy smear showed a large number of hyphae and spores, and fungal culture grew Fusarium solani. The subcutaneous masses were incised and drained, while amphotericin B and voriconazole were administered, with granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) for hematopoietic recovery. The patient was discharge after full recovery. Fusarium solani infection is a rare but fatal complication after allogeneic hematopoietic stem cell transplantation. Once the skin lesions or subcutaneous masses developed, tissue smear and culture should be done as soon as possible. Early diagnosis and effective treatment to recovery of the patient after allogeneic hematopoietic stem cell transplant. Moreover, the recovery of adequate neutrophil levels is the most important factor in the resolution of fusarial infection.

  7. GENETIC PATHWAYS LEADING TO THERAPY-RELATED MYELOID NEOPLASMS

    Directory of Open Access Journals (Sweden)

    Angela Stoddart

    2011-05-01

    Full Text Available Therapy-related myeloid neoplasm (t-MN is a distinctive clinical syndrome occurring after exposure to chemotherapy or radiotherapy.  t-MN arises in most cases from a multipotential hematopoietic stem cell or, less commonly, in a lineage committed progenitor cell.  The prognosis for patients with t-MN is poor, as current forms of therapy are largely ineffective.  Cytogenetic analysis, molecular analysis and gene expression profiling analysis of t-MN has revealed that there are distinct subtypes of the disease; however, our understanding of the genetic basis of t-MN is incomplete.  Elucidating the genetic pathways and molecular networks that are perturbed in t-MNs, may facilitate the identification of therapeutic targets that can be exploited for the development of urgently-needed targeted therapies.

  8. Angiogenesis in Acute Myeloid Leukemia and Opportunities for Novel Therapies

    Directory of Open Access Journals (Sweden)

    Angelica Trujillo

    2012-01-01

    Full Text Available Acute myeloid leukemia (AML arises from neoplastic transformation of hematopoietic stem and progenitor cells, and relapsed disease remains one of the greater challenges in treating this hematologic malignancy. This paper focuses on angiogenic aspects of AML including the significance and prognostic value of bone marrow microvessel density and circulating cytokine levels. We show three general mechanisms whereby AML exploits angiogenic pathways, including direct induction of angiogenesis, paracrine regulation, and autocrine stimulation. We also present early evidence that leukemia cells contribute directly to vascular endothelia. Novel treatment strategies are proposed, and a review of relevant antiangiogenic clinical trials is presented. By understanding how blood vessels can serve as a reservoir for refractory and relapsed AML, new diagnostics and promising treatment strategies can be developed.

  9. [Molecular biology in myelodysplastic syndromes and acute myeloid leukemias "smoldering"].

    Science.gov (United States)

    Martinelli, Giovanni; Sartor, Chiara; Papayannidis, Cristina; Iacobucci, Ilaria; Paolini, Stefania; Clissa, Cristina; Ottaviani, Emanuela; Finelli, Carlo

    2014-03-01

    Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic disorders of the myeloid lineage characterized by peripheral cytopenias and frequent leukemic evolution. MDS differ for clinical presentation, disease behavior and progression and this is the reflection of remarkable variability at molecular level. To this moment disease diagnosis is still dependent on bone marrow morphology that, although high concordance rates among experts are reported, remains subjective. Karyotype analysis is mandatory but diagnosis may be difficult in presence of normal karyotype or non-informative cytogenetics. Standardized molecular markers are needed to better define diagnosis, prediction of disease progression and prognosis. Furthermore, a molecular biology analysis could provide an important therapeutic tool towards tailored therapy and new insights in the disease's biology.

  10. Tyrosine kinase inhibitors induced immune thrombocytopenia in chronic myeloid leukemia?

    Directory of Open Access Journals (Sweden)

    Avital F. Barak

    2011-12-01

    Full Text Available The outcome and quality of life of chronic myeloid leukemia (CML patients has remarkably changed with the treatment of tyrosine kinase inhibitors (TKIs. Currently, hematopoietic stem cell transplantation (HSCT is considered mainly as a third line salvage therapy in cases of TKIs resistance or intolerance. Here we describe a patient with chronic phase CML who developed both resistance and late occurrence of s severe thrombocytopenia on first and second generation TKIs and eventually underwent HSCT. Although the mechanism of the myelosuppression is not fully understood, we showed for the first time the development of dose dependent platelet antibodies in the presence of TKIs, suggesting the possibility of TKIs induced thrombocytopenia. Our case emphasizes that late development of severe myelosuppression during imatinib treatment is probably an important indication for consideration of early HSCT.

  11. Decitabine and Bortezomib in Treating Patients With Acute Myeloid Leukemia

    Science.gov (United States)

    2014-11-06

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  12. RESULTS OF HEMATOPOIETIC CELL TRANSPLANTATION IN PEDIATRIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    A. Mousavi

    2008-05-01

    Full Text Available Hematopoietic cell transplantation (HCT is an accepted treatment for acute myeloid leukemia (AML in first remission, the treatment of choice for chronic myeloid leukemia (CML and high risk groups of ALL who relapse with conventional chemotherapy. We assessed results of HCT for pediatric leukemia in our center. A total of 92 children, 63 with diagnose of AML, 23 with ALL and 6 with CML received allogeneic transplantation from HLA full matched siblings (57.6% and autologous transplantation (42.4%. Source of hematopoietic cells were peripheral blood 83.7%, bone marrow 15.2% and cord blood 1.6%. The median transplanted nucleated cells were 6.4 ± 4.7 ×108 /Kg (body weight of patients and mononuclear cells were 5.5 ± 2.9×108/Kg. The most common conditioning regimens were cyclophosphamide + busulfan. Prophylaxis regimen for GVHD was cyclosporin ± methotrexate. GVHD occurred in 50 (54.3% patients. Eighty five of children had engraftment, 26 (28.6% relapsed and 57 (62% are alive. The most common cause of death was relapse (68.6%. Five years overall survival of patients with AML and ALL were 49% and 44% respectively and disease free survival of them were 52% and 49%. One year overall survival and disease free survival of CML was 57%. Overall survival increased with increasing age of patients at transplantation time (P = 0.06. Longer survival significantly related to earlier WBC and platelet recovery (P < 0.0001 and P = 0.006 respectively. Considering acceptable overall and disease free survival of patients after HCT, we concluded that is a good modality in treatment of leukemia of children.

  13. miR-382-5p Controls Hematopoietic Stem Cell Differentiation Through the Downregulation of MXD1.

    Science.gov (United States)

    Zini, Roberta; Rossi, Chiara; Norfo, Ruggiero; Pennucci, Valentina; Barbieri, Greta; Ruberti, Samantha; Rontauroli, Sebastiano; Salati, Simona; Bianchi, Elisa; Manfredini, Rossella

    2016-10-01

    microRNAs are key regulators of gene expression that control stem cell fate by posttranscriptional downregulation of hundreds of target genes through seed pairing in their 3' untranslated region. In fact, miRNAs tightly regulate fundamental stem cell processes, like self-renewal, proliferation, and differentiation; therefore, miRNA deregulation may contribute to the development of solid tumors and hematological malignancies. miR-382-5p has been found to be upregulated in patients with myeloid neoplasms, but its role in normal hematopoiesis is still unknown. In this study, we demonstrated that miR-382-5p overexpression in CD34(+) hematopoietic stem/progenitor cells (HSPCs) leads to a significant decrease of megakaryocyte precursors coupled to increase of granulocyte ones. Furthermore, by means of a computational analysis using different prediction algorithms, we identified several putative mRNA targets of miR-382-5p that are downregulated upon miRNA overexpression (ie, FLI1, GATA2, MAF, MXD1, RUNX1, and SGK1). Among these, we validated MXD1 as real target of miR-382-5p by luciferase reporter assay. Finally, we showed that MXD1 knockdown mimics the effects of miR-382-5p overexpression on granulocyte and megakaryocyte differentiation of CD34(+) cells. Overall, our results demonstrated that miR-382-5p expression favors the expansion of granulocyte lineage and impairs megakaryocyte commitment through MXD1 downregulation. Therefore, our data showed for the first time that the miR-382-5p/MXD1 axis plays a critical role in myelopoiesis by affecting the lineage choice of CD34(+) HSPCs.

  14. Myeloid sarcoma presenting as a colon polyp and harbinger of chronic myelogenous leukemia

    Institute of Scientific and Technical Information of China (English)

    Robert Rogers; Mark Ettel; Margaret Cho; Alexander Chan; Xiao-Jun Wu; Antonio G Neto

    2016-01-01

    Myeloid sarcoma, also known as granulocytic sarcoma or chloroma is an unusual accumulation of malignant myeloid precursor cells in an extramedullary site, which disrupts the normal architecture of the involved tissue. It is known to occur more commonly in patients with acute myelogenous leukemia and less commonly in those with myelodysplastic syndrome and myeloproliferative neoplasm, such as chronic myelogenous leukemia. The most common sites of involvement include bone, skin and lymph nodes. However, rare cases have been reported in the gastrointestinal tract, genitourinary tract, or breast. Most commonly, a neoplastic extramedullary proliferation of myeloid precursors in a patient would have systemic involvement of a myeloid neoplasm, including in the bone marrow and peripheral blood. Infrequently, extramedullary disease may be the only site of involvement. It may also occur as a localized antecedent to more generalized disease or as a site of recurrence. Herein, we present the first case in the English literature of a patient presenting with an isolated site of myeloid sarcoma arising in the form of a colonic polyp which, after subsequent bone marrow biopsy, was found to be a harbinger of chronic myelogenous leukemia.

  15. Assessment of Drug Sensitivity in Hematopoietic Stem and Progenitor Cells From Acute Myelogenous Leukemia and Myelodysplastic Syndrome Ex Vivo.

    Science.gov (United States)

    Knorr, Katherine L B; Finn, Laura E; Smith, B Douglas; Hess, Allan D; Foran, James M; Karp, Judith E; Kaufmann, Scott H

    2016-11-07

    : Current understanding suggests that malignant stem and progenitor cells must be reduced or eliminated for prolonged remissions in myeloid neoplasms such as acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS). Multicolor flow cytometry has been widely used to distinguish stem and myeloid progenitor cells from other populations in normal and malignant bone marrow. In this study, we present a method for assessing drug sensitivity in MDS and AML patient hematopoietic stem and myeloid progenitor cell populations ex vivo using the investigational Nedd8-activating enzyme inhibitor MLN4924 and standard-of-care agent cytarabine as examples. Utilizing a multicolor flow cytometry antibody panel for identification of hematopoietic stem cells, multipotent progenitors, common myeloid progenitors, granulocyte-monocyte progenitors, and megakaryocyte-erythroid progenitors present in mononuclear cell fractions isolated from bone marrow aspirates, we compare stem and progenitor cell counts after treatment for 24 hours with drug versus diluent. We demonstrate that MLN4924 exerts a cytotoxic effect on MDS and AML stem and progenitor cell populations, whereas cytarabine has more limited effects. Further application of this method for evaluating drug effects on these populations ex vivo and in vivo may inform rational design and selection of therapies in the clinical setting.

  16. The Polycomb Group Protein L3MBTL1 Represses a SMAD5-Mediated Hematopoietic Transcriptional Program in Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Fabiana Perna

    2015-04-01

    Full Text Available Epigenetic regulation of key transcriptional programs is a critical mechanism that controls hematopoietic development, and, thus, aberrant expression patterns or mutations in epigenetic regulators occur frequently in hematologic malignancies. We demonstrate that the Polycomb protein L3MBTL1, which is monoallelically deleted in 20q- myeloid malignancies, represses the ability of stem cells to drive hematopoietic-specific transcriptional programs by regulating the expression of SMAD5 and impairing its recruitment to target regulatory regions. Indeed, knockdown of L3MBTL1 promotes the development of hematopoiesis and impairs neural cell fate in human pluripotent stem cells. We also found a role for L3MBTL1 in regulating SMAD5 target gene expression in mature hematopoietic cell populations, thereby affecting erythroid differentiation. Taken together, we have identified epigenetic priming of hematopoietic-specific transcriptional networks, which may assist in the development of therapeutic approaches for patients with anemia.

  17. Mathematical modeling of genesis and treatment of chronic myeloid leukemia.

    Science.gov (United States)

    Horn, Matthias; Loeffler, Markus; Roeder, Ingo

    2008-01-01

    Chronic myeloid leukemia (CML) is a clonal hematopoietic disorder induced by translocation of chromosomes 9 and 22, resulting in an overproduction of myeloid blood cells. CML-specific characteristics include a latency time of several years, a period of coexistence of malignant and normal cells and an eventual dominance of the malignant clone. Different drug therapies are available, most notably imatinib, which inhibits the oncogenic BCR-ABL1 tyrosine kinase. Although the chromosomal aberration causing CML is well known, the resulting dynamic effects on the system behavior are not sufficiently understood yet. Here, we apply an already established mathematical model of hematopoietic stem cell organization. Based on parameter estimates for normal hematopoiesis, we systematically explore the changes in these parameters necessary to reproduce CML-specific characteristics regarding emergence and course of disease as well as a variety of qualitative and quantitative clinical data on CML treatment. Our results indicate that 1 or more of the following mechanisms are compatible with the induction of a dominant clone in the proposed model: a retarded differentiation process, a reduced turnover time or a defective cell-microenvironment interaction of the neoplastic cells. However, in order to explain the massive overproduction of malignant cells, an unregulated and abnormal activation of leukemia stem cells into cycle has to be assumed additionally. Based on our simulation results we conclude that CML dynamics can most appropriately be explained by a modulation of the cell-microenvironment interactions of leukemia stem cells, including both the process of stem cell silencing and activation into cycle.

  18. High-affinity FRβ-specific CAR T cells eradicate AML and normal myeloid lineage without HSC toxicity.

    Science.gov (United States)

    Lynn, R C; Feng, Y; Schutsky, K; Poussin, M; Kalota, A; Dimitrov, D S; Powell, D J

    2016-06-01

    Acute myeloid leukemia (AML) is an aggressive malignancy, and development of new treatments to prolong remissions is warranted. Chimeric antigen receptor (CAR) T-cell therapies appear promising but on-target, off-tumor recognition of antigen in healthy tissues remains a concern. Here we isolated a high-affinity (HA) folate receptor beta (FRβ)-specific single-chain variable fragment (2.48 nm KD) for optimization of FRβ-redirected CAR T-cell therapy for AML. T cells stably expressing the HA-FRβ CAR exhibited greatly enhanced antitumor activity against FRβ(+) AML in vitro and in vivo compared with a low-affinity FRβ CAR (54.3 nm KD). Using the HA-FRβ immunoglobulin G, FRβ expression was detectable in myeloid-lineage hematopoietic cells; however, expression in CD34(+) hematopoietic stem cells (HSCs) was nearly undetectable. Accordingly, HA-FRβ CAR T cells lysed mature CD14(+) monocytes, while HSC colony formation was unaffected. Because of the potential for elimination of mature myeloid lineage, mRNA CAR electroporation for transient CAR expression was evaluated. mRNA-electroporated HA-FRβ CAR T cells retained effective antitumor activity in vitro and in vivo. Together, our results highlight the importance of antibody affinity in target protein detection and CAR development and suggest that transient delivery of potent HA-FRβ CAR T cells is highly effective against AML and reduces the risk for long-term myeloid toxicity.

  19. Activated myeloid dendritic cells accumulate and co-localize with CD3+ T cells in coronary artery lesions in patients with Kawasaki disease.

    Science.gov (United States)

    Yilmaz, Atilla; Rowley, Anne; Schulte, Danica J; Doherty, Terence M; Schröder, Nicolas W J; Fishbein, Michael C; Kalelkar, Mitra; Cicha, Iwona; Schubert, Katja; Daniel, Werner G; Garlichs, Christoph D; Arditi, Moshe

    2007-08-01

    Emerging evidence implicating the participation of dendritic cells (DCs) and T cells in various vascular inflammatory diseases such as giant cell arteritis, Takayasu's arteritis, and atherosclerosis led us to hypothesize that they might also participate in the pathogenesis of coronary arteritis in Kawasaki disease (KD). Coronary artery specimens from 4 patients with KD and 6 control patients were obtained. Immunohistochemical and computer-assisted histomorphometric analyses were performed to detect all myeloid DCs (S-100(+), fascin(+)), all plasmacytoid DCs (CD123(+)) as well as specific DC subsets (mature myeloid DCs [CD83(+)], myeloid [BDCA-1(+)] and plasmacytoid DC precursors [BDCA-2(+)]), T cells (CD3(+)), and all antigen-presenting cells (HLA-DR(+)). Co-localization of DCs with T cells was assessed using double immunostaining. Significantly more myeloid DCs at a precursor, immature or mature stage were found in coronary lesions of KD patients than in controls. Myeloid DC precursors were distributed equally in the intima and adventitia. Mature myeloid DCs were particularly abundant in the adventitia. There was a significant correlation between mature DCs and HLA-DR expression. Double immunostaining demonstrated frequent contacts between myeloid DCs and T cells in the outer media and adventitia. Plasmacytoid DC precursors were rarely found in the adventitia. In conclusion, coronary artery lesions of KD patients contain increased numbers of mature myeloid DCs with high HLA-DR expression and frequent T cell contacts detected immunohistochemically. This suggests that mature arterial myeloid DCs might be activating T cells in situ and may be a significant factor in the pathogenesis of coronary arteritis in KD.

  20. Dasatinib in chronic myeloid leukemia: a review

    Directory of Open Access Journals (Sweden)

    Dolly G Aguilera

    2009-03-01

    INNO 406. New molecules, such as the inhibitor of Aurora family serine-threonine kinases, MK0457, which has antileukemic activity in CML associated with a T315I mutation, are being investigated. Allogeneic hematopoietic stem cell transplantation remains an option for selected patients.Keywords: dasatininb, chronic myeloid leukemia, BCR-ABL, tyrosine kinase inhibitor

  1. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells.

    Science.gov (United States)

    Guidi, Novella; Sacma, Mehmet; Ständker, Ludger; Soller, Karin; Marka, Gina; Eiwen, Karina; Weiss, Johannes M; Kirchhoff, Frank; Weil, Tanja; Cancelas, Jose A; Florian, Maria Carolina; Geiger, Hartmut

    2017-04-03

    Upon aging, hematopoietic stem cells (HSCs) undergo changes in function and structure, including skewing to myeloid lineages, lower reconstitution potential and loss of protein polarity. While stem cell intrinsic mechanisms are known to contribute to HSC aging, little is known on whether age-related changes in the bone marrow niche regulate HSC aging. Upon aging, the expression of osteopontin (OPN) in the murine bone marrow stroma is reduced. Exposure of young HSCs to an OPN knockout niche results in a decrease in engraftment, an increase in long-term HSC frequency and loss of stem cell polarity. Exposure of aged HSCs to thrombin-cleaved OPN attenuates aging of old HSCs, resulting in increased engraftment, decreased HSC frequency, increased stem cell polarity and a restored balance of lymphoid and myeloid cells in peripheral blood. Thus, our data suggest a critical role for reduced stroma-derived OPN for HSC aging and identify thrombin-cleaved OPN as a novel niche informed therapeutic approach for ameliorating HSC phenotypes associated with aging. © 2017 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  2. Growth factor-activated stem cell circuits and stromal signals cooperatively accelerate non-integrated iPSC reprogramming of human myeloid progenitors.

    Directory of Open Access Journals (Sweden)

    Tea Soon Park

    Full Text Available Nonviral conversion of skin or blood cells into clinically useful human induced pluripotent stem cells (hiPSC occurs in only rare fractions (~0.001%-0.5% of donor cells transfected with non-integrating reprogramming factors. Pluripotency induction of developmentally immature stem-progenitors is generally more efficient than differentiated somatic cell targets. However, the nature of augmented progenitor reprogramming remains obscure, and its potential has not been fully explored for improving the extremely slow pace of non-integrated reprogramming. Here, we report highly optimized four-factor reprogramming of lineage-committed cord blood (CB myeloid progenitors with bulk efficiencies of ~50% in purified episome-expressing cells. Lineage-committed CD33(+CD45(+CD34(- myeloid cells and not primitive hematopoietic stem-progenitors were the main targets of a rapid and nearly complete non-integrated reprogramming. The efficient conversion of mature myeloid populations into NANOG(+TRA-1-81(+ hiPSC was mediated by synergies between hematopoietic growth factor (GF, stromal activation signals, and episomal Yamanaka factor expression. Using a modular bioinformatics approach, we demonstrated that efficient myeloid reprogramming correlated not to increased proliferation or endogenous Core factor expressions, but to poised expression of GF-activated transcriptional circuits that commonly regulate plasticity in both hematopoietic progenitors and embryonic stem cells (ESC. Factor-driven conversion of myeloid progenitors to a high-fidelity pluripotent state was further accelerated by soluble and contact-dependent stromal signals that included an implied and unexpected role for Toll receptor-NFκB signaling. These data provide a paradigm for understanding the augmented reprogramming capacity of somatic progenitors, and reveal that efficient induced pluripotency in other cell types may also require extrinsic activation of a molecular framework that commonly

  3. Knockdown of miR-128a induces Lin28a expression and reverts myeloid differentiation blockage in acute myeloid leukemia.

    Science.gov (United States)

    De Luca, Luciana; Trino, Stefania; Laurenzana, Ilaria; Tagliaferri, Daniela; Falco, Geppino; Grieco, Vitina; Bianchino, Gabriella; Nozza, Filomena; Campia, Valentina; D'Alessio, Francesca; La Rocca, Francesco; Caivano, Antonella; Villani, Oreste; Cilloni, Daniela; Musto, Pellegrino; Del Vecchio, Luigi

    2017-06-01

    Lin28A is a highly conserved RNA-binding protein that concurs to control the balance between stemness and differentiation in several tissue lineages. Here, we report the role of miR-128a/Lin28A axis in blocking cell differentiation in acute myeloid leukemia (AML), a genetically heterogeneous disease characterized by abnormally controlled proliferation of myeloid progenitor cells accompanied by partial or total inability to undergo terminal differentiation. First, we found Lin28A underexpressed in blast cells from AML patients and AML cell lines as compared with CD34+ normal precursors. In vitro transfection of Lin28A in NPM1-mutated OCI-AML3 cell line significantly triggered cell-cycle arrest and myeloid differentiation, with increased expression of macrophage associate genes (EGR2, ZFP36 and ANXA1). Furthermore, miR-128a, a negative regulator of Lin28A, was found overexpressed in AML cells compared with normal precursors, especially in acute promyelocytic leukemia (APL) and in 'AML with maturation' (according to 2016 WHO classification of myeloid neoplasms and acute leukemia). Its forced overexpression by lentiviral infection in OCI-AML3 downregulated Lin28A with ensuing repression of macrophage-oriented differentiation. Finally, knockdown of miR-128a in OCI-AML3 and in APL/AML leukemic cells (by transfection and lentiviral infection, respectively) induced myeloid cell differentiation and increased expression of Lin28A, EGR2, ZFP36 and ANXA1, reverting myeloid differentiation blockage. In conclusion, our findings revealed a new mechanism for AML differentiation blockage, suggesting new strategies for AML therapy based upon miR-128a inhibition.

  4. Oncogenic Kras initiates leukemia in hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Amit J Sabnis

    2009-03-01

    Full Text Available How oncogenes modulate the self-renewal properties of cancer-initiating cells is incompletely understood. Activating KRAS and NRAS mutations are among the most common oncogenic lesions detected in human cancer, and occur in myeloproliferative disorders (MPDs and leukemias. We investigated the effects of expressing oncogenic Kras(G12D from its endogenous locus on the proliferation and tumor-initiating properties of murine hematopoietic stem and progenitor cells. MPD could be initiated by Kras(G12D expression in a highly restricted population enriched for hematopoietic stem cells (HSCs, but not in common myeloid progenitors. Kras(G12D HSCs demonstrated a marked in vivo competitive advantage over wild-type cells. Kras(G12D expression also increased the fraction of proliferating HSCs and reduced the overall size of this compartment. Transplanted Kras(G12D HSCs efficiently initiated acute T-lineage leukemia/lymphoma, which was associated with secondary Notch1 mutations in thymocytes. We conclude that MPD-initiating activity is restricted to the HSC compartment in Kras(G12D mice, and that distinct self-renewing populations with cooperating mutations emerge during cancer progression.

  5. Hypoxia and HIFs in regulating the development of the hematopoietic system.

    Science.gov (United States)

    Imanirad, Parisa; Dzierzak, Elaine

    2013-12-01

    Many physiologic processes during the early stages of mammalian ontogeny, particularly placental and vascular development, take place in the low oxygen environment of the uterus. Organogenesis is affected by hypoxia inducible factor (HIF) transcription factors that are sensors of hypoxia. In response to hypoxia, HIFs activate downstream target genes - growth and metabolism factors. During hematopoietic system ontogeny, blood cells and hematopoietic progenitor/stem cells are respectively generated from mesodermal precursors, hemangioblasts, and from a specialized subset of endothelial cells that are hemogenic. Since HIFs are known to play a central role in vascular development, and hematopoietic system development occurs in parallel to that of the vascular system, several studies have examined the role of HIFs in hematopoietic development. The response to hypoxia has been examined in early and mid-gestation mouse embryos through genetic deletion of HIF subunits. We review here the data showing that hematopoietic tissues of the embryo are hypoxic and express HIFs and HIF downstream targets, and that HIFs regulate the development and function of hematopoietic progenitor/stem cells.

  6. General Information about Adult Acute Myeloid Leukemia

    Science.gov (United States)

    ... Adult Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to ... acute granulocytic leukemia, and acute nonlymphocytic leukemia. Enlarge Anatomy of the bone. The bone is made up ...

  7. Alantolactone selectively ablates acute myeloid leukemia stem and progenitor cells

    Directory of Open Access Journals (Sweden)

    Yahui Ding

    2016-09-01

    Full Text Available Abstract Background The poor outcomes for patients diagnosed with acute myeloid leukemia (AML are largely attributed to leukemia stem cells (LSCs which are difficult to eliminate with conventional therapy and responsible for relapse. Thus, new therapeutic strategies which could selectively target LSCs in clinical leukemia treatment and avoid drug resistance are urgently needed. However, only a few small molecules have been reported to show anti-LSCs activity. Methods The aim of the present study was to identify alantolactone as novel agent that can ablate acute myeloid leukemia stem and progenitor cells from AML patient specimens and evaluate the anticancer activity of alantolactone in vitro and in vivo. Results The present study is the first to demonstrate that alantolactone, a prominent eudesmane-type sesquiterpene lactone, could specifically ablate LSCs from AML patient specimens. Furthermore, in comparison to the conventional chemotherapy drug, cytosine arabinoside (Ara-C, alantolactone showed superior effects of leukemia cytotoxicity while sparing normal hematopoietic cells. Alantolactone induced apoptosis with a dose-dependent manner by suppression of NF-kB and its downstream target proteins. DMA-alantolactone, a water-soluble prodrug of alantolactone, could suppress tumor growth in vivo. Conclusions Based on these results, we propose that alantolactone may represent a novel LSCs-targeted therapy and eudesmane-type sesquiterpene lactones offer a new scaffold for drug discovery towards anti-LSCs agents.

  8. Treatment and prognostic assessment of acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Bannur Ramanna Nandeesh

    2016-06-01

    Full Text Available Acute myeloid leukemia (AML is a heterogeneous group of clonal malignant myeloid neoplasms. Malignant transformation of hematopoietic progenitor cell leads to clonal expansion and replacement of normal bone marrow cells with malignant cells leading to suppression of normal haematopoiesis. Advancements in our understanding of disease biology have allowed AML to be classified based on its gene expression profile, which includes previously identified cytogenetic subgroups, and distinct novel subgroups which have prognostic significance. Identification of mutations in DNMT3A and IDH 1 genes in cytogenetically normal AML (by gene sequencing helps to identify patients with poor prognosis. Redesigning the treatment regimen consisting of cytarabine and daunorubicin has improved the treatment outcomes without increase in the treatment-related mortality. Increasing the dose of daunorubicin to 90 mg/m2 improves complete remission rates without increasing treatment-related complications both in young and elderly patients. Cytarabine (200 mg/m2 in cycle I and 2 g/m2 in cycle 2 is shown to be as effective as high dose cytarabine (1000 mg/m2 twice daily in cycle 1and 2 g/m2 twice daily in cycle 2 and is associated with less treatment-related toxicities. [Int J Basic Clin Pharmacol 2016; 5(3.000: 579-586

  9. Functional integration of acute myeloid leukemia into the vascular niche.

    Science.gov (United States)

    Cogle, Christopher R; Goldman, Devorah C; Madlambayan, Gerard J; Leon, Ronald P; Masri, Azzah Al; Clark, Hilary A; Asbaghi, Steven A; Tyner, Jeffrey W; Dunlap, Jennifer; Fan, Guang; Kovacsovics, Tibor; Liu, Qiuying; Meacham, Amy; Hamlin, Kimberly L; Hromas, Robert A; Scott, Edward W; Fleming, William H

    2014-10-01

    Vascular endothelial cells are a critical component of the hematopoietic microenvironment that regulates blood cell production. Recent studies suggest the existence of functional cross-talk between hematologic malignancies and vascular endothelium. Here we show that human acute myeloid leukemia (AML) localizes to the vasculature in both patients and in a xenograft model. A significant number of vascular tissue-associated AML cells (V-AML) integrate into vasculature in vivo and can fuse with endothelial cells. V-AML cells acquire several endothelial cell-like characteristics, including the upregulation of CD105, a receptor associated with activated endothelium. Remarkably, endothelial-integrated V-AML shows an almost fourfold reduction in proliferative activity compared with non-vascular-associated AML. Primary AML cells can be induced to downregulate the expression of their hematopoietic markers in vitro and differentiate into phenotypically and functionally defined endothelial-like cells. After transplantation, these leukemia-derived endothelial cells are capable of giving rise to AML. These novel functional interactions between AML cells and normal endothelium along with the reversible endothelial cell potential of AML suggest that vascular endothelium may serve as a previously unrecognized reservoir for AML.

  10. Myeloid leukemia after hematotoxins

    Energy Technology Data Exchange (ETDEWEB)

    Larson, R.A.; LeBeau, M.M.; Vardiman, J.W.; Rowley, J.D. [Univ. of Chicago, IL (United States)

    1996-12-01

    One of the most serious consequences of cancer therapy is the development of a second cancer, especially leukemia. Several distinct subsets of therapy-related leukemia can now be distinguished. Classic therapy-related myeloid leukemia typically occurs 5 to 7 years after exposure to alkylating agents and/or irradiation, has a myelodysplastic phase with trilineage involvement, and is characterized by abnormalities of the long arms of chromosomes 5 and/or 7. Response to treatment is poor, and allogeneic bone marrow transplantation is recommended. Leukemia following treatment with agents that inhibit topoisomerase 11, however, has a shorter latency, no preleukemic phase, a monoblastic, myelomonocytic, or myeloblastic phenotype, and balanced translocations, most commonly involving chromosome bands 11 q23 or 21 q22. The MLL gene at 11 q23 or the AML1 gene at 21 q22 are almost uniformly rearranged. MLL is involved with many fusion gene partners. Therapy-related acute lymphoblastic leukemia also occurs with 1 1 q23 rearrangements. Therapy-related leukemias with 11 q23 or 21 q22 rearrangements, inv(16) or t(15;17), have a more favorable response to treatment and a clinical course similar to their de novo counterparts. 32 refs., 4 tabs.

  11. SBDS expression and localization at the mitotic spindle in human myeloid progenitors.

    Directory of Open Access Journals (Sweden)

    Claudia Orelio

    Full Text Available BACKGROUND: Shwachman-Diamond Syndrome (SDS is a hereditary disease caused by mutations in the SBDS gene. SDS is clinically characterized by pancreatic insufficiency, skeletal abnormalities and bone marrow dysfunction. The hematologic abnormalities include neutropenia, neutrophil chemotaxis defects, and an increased risk of developing Acute Myeloid Leukemia (AML. Although several studies have suggested that SBDS as a protein plays a role in ribosome processing/maturation, its impact on human neutrophil development and function remains to be clarified. METHODOLOGY/PRINCIPAL FINDINGS: We observed that SBDS RNA and protein are expressed in the human myeloid leukemia PLB-985 cell line and in human hematopoietic progenitor cells by quantitative RT-PCR and Western blot analysis. SBDS expression is downregulated during neutrophil differentiation. Additionally, we observed that the differentiation and proliferation capacity of SDS-patient bone marrow hematopoietic progenitor cells in a liquid differentiation system was reduced as compared to control cultures. Immunofluorescence analysis showed that SBDS co-localizes with the mitotic spindle and in vitro binding studies reveal a direct interaction of SBDS with microtubules. In interphase cells a perinuclear enrichment of SBDS protein which co-localized with the microtubule organizing center (MTOC was observed. Also, we observed that transiently expressed SDS patient-derived SBDS-K62 or SBDS-C84 mutant proteins could co-localize with the MTOC and mitotic spindle. CONCLUSIONS/SIGNIFICANCE: SBDS co-localizes with the mitotic spindle, suggesting a role for SBDS in the cell division process, which corresponds to the decreased proliferation capacity of SDS-patient bone marrow CD34(+ hematopoietic progenitor cells in our culture system and also to the neutropenia in SDS patients. A role in chromosome missegregation has not been clarified, since similar spatial and time-dependent localization is observed when

  12. Donor-Derived Smoldering Multiple Myeloma following a Hematopoietic Cell Transplantation for AML

    Science.gov (United States)

    Fiala, Mark; Slade, Michael; Westervelt, Peter

    2017-01-01

    Posttransplant Lymphoproliferative Disorder (PTLD) is one of the most common malignancies complicating solid organ transplantation. In contrast, PTLD accounts for a minority of secondary cancers following allogeneic hematopoietic cell transplantation (HCT). Here we report on a 61-year-old woman who received an ABO-mismatched, HLA-matched unrelated donor hematopoietic cell transplantation from a presumably healthy donor for a diagnosis of acute myeloid leukemia (AML). Eighteen months following her transplant, she developed a monoclonal gammopathy. Bone marrow studies revealed 10% plasma cells, but the patient lacked clinical defining features of multiple myeloma (MM); thus a diagnosis of smoldering multiple myeloma (SMM) was established. Cytogenetic and molecular studies of the bone marrow confirmed the plasma cells were donor-derived. The donor lacks a diagnosis of monoclonal gammopathy of undetermined significance, SMM, or MM. PMID:28316846

  13. Donor-Derived Smoldering Multiple Myeloma following a Hematopoietic Cell Transplantation for AML

    Directory of Open Access Journals (Sweden)

    Bita Fakhri

    2017-01-01

    Full Text Available Posttransplant Lymphoproliferative Disorder (PTLD is one of the most common malignancies complicating solid organ transplantation. In contrast, PTLD accounts for a minority of secondary cancers following allogeneic hematopoietic cell transplantation (HCT. Here we report on a 61-year-old woman who received an ABO-mismatched, HLA-matched unrelated donor hematopoietic cell transplantation from a presumably healthy donor for a diagnosis of acute myeloid leukemia (AML. Eighteen months following her transplant, she developed a monoclonal gammopathy. Bone marrow studies revealed 10% plasma cells, but the patient lacked clinical defining features of multiple myeloma (MM; thus a diagnosis of smoldering multiple myeloma (SMM was established. Cytogenetic and molecular studies of the bone marrow confirmed the plasma cells were donor-derived. The donor lacks a diagnosis of monoclonal gammopathy of undetermined significance, SMM, or MM.

  14. Enhanced hematopoietic protection from radiation by the combination of genistein and captopril.

    Science.gov (United States)

    Day, R M; Davis, T A; Barshishat-Kupper, M; McCart, E A; Tipton, A J; Landauer, M R

    2013-02-01

    The hematopoietic system is sensitive to radiation injury, and mortality can occur due to blood cell deficiency and stem cell loss. Genistein and the angiotensin converting enzyme (ACE) inhibitor captopril are two agents shown to protect the hematopoietic system from radiation injury. In this study we examined the combination of genistein with captopril for reduction of radiation-induced mortality from hematopoietic damage and the mechanisms of radiation protection. C57BL/6J mice were exposed to 8.25Gy (60)Co total body irradiation (TBI) to evaluate the effects of genistein and captopril alone and in combination on survival, blood cell recovery, hematopoietic progenitor cell recovery, DNA damage, and erythropoietin production. 8.25Gy TBI resulted in 0% survival after 30days in untreated mice. A single subcutaneous injection of genistein administered 24h before TBI resulted in 72% survival. Administration of captopril in the drinking water, from 1h through 30days postirradiation, increased survival to 55%. Genistein plus captopril increased survival to 95%. Enhanced survival was reflected in a reduction of radiation-induced anemia, improved recovery of nucleated bone marrow cells, splenocytes and circulating red blood cells. The drug combination enhanced early recovery of marrow progenitors: erythroid (CFU-E and BFU-E), and myeloid (CFU-GEMM, CFU-GM and CFU-M). Genistein alone and genistein plus captopril protected hematopoietic progenitor cells from radiation-induced micronuclei, while captopril had no effect. Captopril alone and genistein plus captopril, but not genistein alone, suppressed radiation-induced erythropoietin production. These data suggest that genistein and captopril protect the hematopoietic system from radiation injury via independent mechanisms. Published by Elsevier B.V.

  15. In vivo RNAi screening for the identification of oncogenes and tumor suppressors in acute myeloid leukemia

    DEFF Research Database (Denmark)

    Ge, Ying

    Acute myeloid leukemia (AML) is an aggressive malignancy characterized by uncontrolled expansion of immature myeloid cells in the hematopoietic tissues. Alternative splicing and epigenetic regulation are two mechanisms implicated in the pathogenesis of AML. In order to identify the essential...... splicing factors or epigenetic regulators for AML maintenance, we used a pool-based shRNA in vivo screens in a mouse model of human CEBPA mutated AML. Through these approaches, we found the splicing factor RBM25, and the histone methyltransferase SUV39H1 are of functional importance in AML progression....... Characterization of RBM25 indicates that low expression of RBM25 promotes expansion of both murine and human leukemic cells. Mechanistic studies show that RBM25 regulate splicing dysregulation of several crucial genes in AML. In particular, we demonstrate that RBM25 knockdown leads to the accumulation of the anti...

  16. Histone deacetylases: a common molecular target for differentiation treatment of acute myeloid leukemias?

    Science.gov (United States)

    Minucci, S; Nervi, C; Lo Coco, F; Pelicci, P G

    2001-05-28

    Recent discoveries have identified key molecular events in the pathogenesis of acute promyelocytic leukemia (APL), caused by chromosomal rearrangements of the transcription factor RAR (resulting in a fusion protein with the product of other cellular genes, such as PML). Oligomerization of RAR, through a self-association domain present in PML, imposes an altered interaction with transcriptional co-regulators (NCoR/SMRT). NCoR/SMRT are responsible for recruitment of histone deacetylases (HDACs), which is required for transcriptional repression of PML-RAR target genes, and for the transforming potential of the fusion protein. Oligomerization and altered recruitment of HDACs are also responsible for transformation by the fusion protein AML1-ETO, extending these mechanisms to other forms of acute myeloid leukemias (AMLs) and suggesting that HDAC is a common target for myeloid leukemias. Strikingly, AML1-ETO expression blocks retinoic acid (RA) signaling in hematopoietic cells, suggesting that interference with the RA pathway (genetically altered in APL) by HDAC recruitment may be a common theme in AMLs. Treatment of APLs with RA, and of other AMLs with RA plus HDAC inhibitors (HDACi), results in myeloid differentiation. Thus, activation of the RA signaling pathway and inhibition of HDAC activity might represent a general strategy for the differentiation treatment of myeloid leukemias.

  17. Genetic deletion of JAM-C reveals a role in myeloid progenitor generation.

    Science.gov (United States)

    Praetor, Asja; McBride, Jacqueline M; Chiu, Henry; Rangell, Linda; Cabote, Lorena; Lee, Wyne P; Cupp, James; Danilenko, Dimitry M; Fong, Sherman

    2009-02-26

    Hematopoietic stem cells (HSCs) have the capacity to self-renew and continuously differentiate into all blood cell lineages throughout life. At each branching point during differentiation, interactions with the environment are key in the generation of daughter cells with distinct fates. Here, we examined the role of the cell adhesion molecule JAM-C, a protein known to mediate cellular polarity during spermatogenesis, in hematopoiesis. We show that murine JAM-C is highly expressed on HSCs in the bone marrow (BM). Expression correlates with self-renewal, the highest being on long-term repopulating HSCs, and decreases with differentiation, which is maintained longest among myeloid committed progenitors. Inclusion of JAM-C as a sole marker on lineage-negative BM cells yields HSC enrichments and long-term multilineage reconstitution when transferred to lethally irradiated mice. Analysis of Jam-C-deficient mice showed that two-thirds die within 48 hours after birth. In the surviving animals, loss of Jam-C leads to an increase in myeloid progenitors and granulocytes in the BM. Stem cells and myeloid cells from fetal liver are normal in number and homing to the BM. These results provide evidence that JAM-C defines HSCs in the BM and that JAM-C plays a role in controlling myeloid progenitor generation in the BM.

  18. Flotillins are involved in the polarization of primitive and mature hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Lawrence Rajendran

    Full Text Available BACKGROUND: Migration of mature and immature leukocytes in response to chemokines is not only essential during inflammation and host defense, but also during development of the hematopoietic system. Many molecules implicated in migratory polarity show uniform cellular distribution under non-activated conditions, but acquire a polarized localization upon exposure to migratory cues. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present evidence that raft-associated endocytic proteins (flotillins are pre-assembled in lymphoid, myeloid and primitive hematopoietic cells and accumulate in the uropod during migration. Furthermore, flotillins display a polarized distribution during immunological synapse formation. Employing the membrane lipid-order sensitive probe Laurdan, we show that flotillin accumulation in the immunological synapse is concomittant with membrane ordering in these regions. CONCLUSIONS: Together with the observation that flotillin polarization does not occur in other polarized cell types such as polarized epithelial cells, our results suggest a specific role for flotillins in hematopoietic cell polarization. Based on our results, we propose that in hematopoietic cells, flotillins provide intrinsic cues that govern segregation of certain microdomain-associated molecules during immune cell polarization.

  19. A 54-Year-Old Woman with Donor Cell Origin of Multiple Myeloma after Allogeneic Hematopoietic Stem Cell Transplantation for the Treatment of CML

    Directory of Open Access Journals (Sweden)

    Erika Maestas

    2016-01-01

    Full Text Available Chronic myeloid leukemia is a myeloproliferative disorder that may be treated with hematopoietic stem cell transplantation (HSCT. While posttransplantation relapse of disease resulting from a failure to eradicate the patient’s original leukemia could occur, patients may also rarely develop a secondary malignancy or myelodysplastic syndrome (MDS of donor origin termed donor cell leukemia (DCL. Cases of donor-derived acute myeloid leukemia (AML or MDS after HSCT or solid tumor transplantation have been published. However, very few cases of donor-derived multiple myeloma (MM exist. We describe a patient who developed a donor-derived MM following allogeneic HSCT from a sibling donor.

  20. Novel targeted therapy for acute myeloid leukemia with a dual FLT3 and JAK2 inhibitor

    Institute of Scientific and Technical Information of China (English)

    Yin-jun LOU

    2012-01-01

    Acute myeloid leukemia (AML) is a highly malignant hematopoietic tumor.The use of all-trans retinoic acid (ATRA) and arsenic trioxide,which began from China,has resulted in revolution of the acute promyelocytic leukemia (APL) that appears curable in more than 70% of patients[1].However,the treatment regimen for nonAPL AML particularly in older patients has progressed little in the past two decades.Intensive efforts have been made toward the development of novel target agents,which are based on newfound pathophysiological events crucial for cancers.

  1. MicroRNAs in Acute Myeloid Leukemia and Other Blood Disorders

    Directory of Open Access Journals (Sweden)

    Yao Yuan

    2012-01-01

    Full Text Available Common blood disorders include hematopoietic cell malignancies or leukemias and plasma cell dyscrasia, all of which have associated microRNA abnormalities. In this paper, we discuss several leukemias including acute myeloid leukemia (AML and chronic lymphocytic leukemia (CLL and identify altered microRNAs and their targets. Immune disorders with altered blood levels of antibodies include autoimmune disorders, such as systemic lupus erythematosus (SLE with associated anti-self-autoantibodies and immunoglobulin A nephropathy (IgAN also have related microRNA abnormalities. The alterations in microRNAs may serve as therapeutic targets in these blood disorders.

  2. CXC chemokine receptor 3 expression on CD34(+) hematopoietic progenitors from human cord blood induced by granulocyte-macrophage colony-stimulating factor

    DEFF Research Database (Denmark)

    Jinquan, T; Quan, S; Jacobi, H H

    2000-01-01

    for the physiologic and pathophysiologic events of differentiation of CD34(+) hematopoietic progenitors into lymphoid and myeloid stem cells, subsequently immune and inflammatory cells. These processes include transmigration, relocation, differentiation, and maturation of CD34(+) hematopoietic progenitors. (Blood......Ab blocked these functions of gammaIP-10 and Mig but not of chemokine stromal cell-derived factor 1 alpha. gamma IP-10-induced and Mig-induced up-regulation of integrins (CD49a and CD49b) was found to play a crucial role in adhesion of GM-CSF-stimulated CD34(+) progenitors. Moreover, gamma IP-10 and Mig...

  3. Targeting myeloid cells to the brain using non-myeloablative conditioning.

    Directory of Open Access Journals (Sweden)

    Chotima Böttcher

    Full Text Available Bone marrow-derived cells (BMDCs are able to colonize the central nervous system (CNS at sites of damage. This ability makes BMDCs an ideal cellular vehicle for transferring therapeutic genes/molecules to the CNS. However, conditioning is required for bone marrow-derived myeloid cells to engraft in the brain, which so far has been achieved by total body irradiation (TBI and by chemotherapy (e.g. busulfan treatment. Unfortunately, both regimens massively disturb the host's hematopoietic compartment. Here, we established a conditioning protocol to target myeloid cells to sites of brain damage in mice using non-myeloablative focal head irradiation (HI. This treatment was associated with comparatively low inflammatory responses in the CNS despite cranial radiation doses which are identical to TBI, as revealed by gene expression analysis of cytokines/chemokines such as CCL2, CXCL10, TNF-α and CCL5. HI prior to bone marrow transplantation resulted in much lower levels of blood chimerism defined as the percentage of donor-derived cells in peripheral blood ( 95% or busulfan treatment (> 50%. Nevertheless, HI effectively recruited myeloid cells to the area of motoneuron degeneration in the brainstem within 7 days after facial nerve axotomy. In contrast, no donor-derived cells were detected in the lesioned facial nucleus of busulfan-treated animals up to 2 weeks after transplantation. Our findings suggest that myeloid cells can be targeted to sites of brain damage even in the presence of very low levels of peripheral blood chimerism. We established a novel non-myeloablative conditioning protocol with minimal disturbance of the host's hematopoietic system for targeting BMDCs specifically to areas of pathology in the brain.

  4. The normal flora may contribute to the quantitative preponderance of myeloid cells under physiological conditions.

    Science.gov (United States)

    Liang, Shi; LiHua, Hu

    2011-01-01

    Under physiological conditions, the innate immune cells derived from myeloid lineage absolutely outnumber the lymphoid cells. At present, two theories are attributed to the maintenance of haemopoiesis: the asymmetric cell division and the bone marrow hematopoietic microenvironment or "niche". However, the former only explains the self-renewal of haemopoietic stem cell (HSC) and the start of haemopoietic differentiation but fails to address the inducers of cell fate decisions; the latter has to admit that the hematopoietic cytokines, despite their significance in the maintenance of haemopoiesis, have no specific effect on lineage commitment. Given these flaws, the advantageous mechanism of myeloid haemopoiesis has not yet been uncovered in the current theories. The discoveries that bacterial components (lipopolysaccharide, LPS) and intestinal decontamination affect the mobilization of HSC trigger the interest in normal flora, which together with their components may have an effect on haemopoiesis. In the experiments in dogs and mice, researchers documented that the generation of myeloid cells has undergone changes in the bone marrow and periphery when antibiotics are used to regulate the normal intestinal flora and the concentration of its components. However, the same changes are not involved in lymphoid cells. Therefore, we hypothesize that in human body normal flora and its components are a driving force to maintain myeloid haemopoiesis under physiological conditions. To account for the selectiveness in haemopoiesis, these facts should be taken into consideration, such as HSC and mesenchymal stem cells (MSC) functionally expressed pattern recognition receptors (PRR), and both of them can self-migrate or be recruited by normal flora or its components into periphery. Dynamically monitoring the myeloid haemopoiesis may provide an important complementary program that precludes the abuse of antibiotics, which prevents diseases triggered by the imbalance of normal

  5. Gemtuzumab Ozogamicin in Treating Patients With Acute Myeloid Leukemia

    Science.gov (United States)

    2013-09-23

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  6. Coordinated regulation of myeloid cells by tumours.

    Science.gov (United States)

    Gabrilovich, Dmitry I; Ostrand-Rosenberg, Suzanne; Bronte, Vincenzo

    2012-03-22

    Myeloid cells are the most abundant nucleated haematopoietic cells in the human body and are a collection of distinct cell populations with many diverse functions. The three groups of terminally differentiated myeloid cells - macrophages, dendritic cells and granulocytes - are essential for the normal function of both the innate and adaptive immune systems. Mounting evidence indicates that the tumour microenvironment alters myeloid cells and can convert them into potent immunosuppressive cells. Here, we consider myeloid cells as an intricately connected, complex, single system and we focus on how tumours manipulate the myeloid system to evade the host immune response.

  7. Stem cells and the aging hematopoietic system.

    Science.gov (United States)

    Beerman, Isabel; Maloney, William J; Weissmann, Irving L; Rossi, Derrick J

    2010-08-01

    Advancing age is accompanied by a number of clinically significant conditions arising in the hematopoietic system that include: diminution and decreased competence of the adaptive immune system, elevated incidence of certain autoimmune diseases, increased hematological malignancies, and elevated incidence of age-associated anemia. As with most tissues, the aged hematopoietic system also exhibits a reduced capacity to regenerate and return to normal homeostasis after injury or stress. Evidence suggests age-dependent functional alterations within the hematopoietic stem cell compartment significantly contribute to many of these pathophysiologies. Recent developments have shed light on how aging of the hematopoietic stem cell compartment contributes to hematopoietic decline through diverse mechanisms.

  8. Adult neurogenesis in the decapod crustacean brain: A hematopoietic connection?

    Science.gov (United States)

    Beltz, Barbara S.; Zhang, Yi; Benton, Jeanne L.; Sandeman, David C.

    2011-01-01

    New neurons are produced and integrated into circuits in the adult brains of many organisms, including crustaceans. In some crustacean species, the 1st- generation neuronal precursors reside in a niche exhibiting characteristics analogous to mammalian neurogenic niches. However, unlike mammalian niches where several generations of neuronal precursors coexist, the lineage of precursor cells in crayfish is spatially separated allowing the influence of environmental and endogenous regulators on specific generations in the neuronal precursor lineage to be defined. Experiments also demonstrate that the 1st-generation neuronal precursors in the crayfish Procambarus clarkii are not self-renewing. A source external to the neurogenic niche must therefore provide cells that replenish the 1st-generation precursor pool, because although these cells divide and produce a continuous efflux of 2nd-generation cells from the niche, the population of 1st-generation niche precursors is not diminished with growth and aging. In vitro studies show that cells extracted from the hemolymph, but not other tissues, are attracted to and incorporated into the neurogenic niche, a phenomenon that appears to involve serotonergic mechanisms. We propose that in crayfish, the hematopoietic system may be a source of cells that replenish the niche cell pool. These and other studies reviewed here establish decapod crustaceans as model systems in which the processes underlying adult neurogenesis, such as stem cell origins and transformation, can be readily explored. Studies in diverse species where adult neurogenesis occurs will result in a broader understanding of fundamental mechanisms and how evolutionary processes may have shaped the vertebrate/mammalian condition. PMID:21929622

  9. Characterizing the human hematopoietic CDome

    DEFF Research Database (Denmark)

    Barnkob, Mike Stein; Simon, Christian; Olsen, Lars Rønn

    2014-01-01

    , we seek to give a preliminary characterization of the "human hematopoietic CDome." We encountered severe gaps in the knowledge of CD protein expression, mostly resulting from incomplete and unstructured data generation, which we argue inhibit both basic research as well as therapies seeking to target...

  10. Assessment of human multi-potent hematopoietic stem/progenitor cell potential using a single in vitro screening system.

    Directory of Open Access Journals (Sweden)

    Julien Calvo

    Full Text Available Hematopoietic stem cells are responsible for the generation of the entire blood system through life. This characteristic relies on their ability to self renew and on their multi-potentiality. Thus quantification of the number of hematopoietic stem cells in a given cell population requires to show both properties in the studied cell populations. Although xenografts models that support human hematopoietic stem cells have been described, such in vivo experimental systems remain restrictive for high throughput screening purposes for example. In this work we developed a conditional tetracycline inducible system controlling the expression of the human NOTCH ligand Delta-like 1 in the murine stromal MS5 cells. We cultured hematopoietic immature cells enriched in progenitor/stem cells in contact with MS5 cells that conditionally express Delta-like 1, in conditions designed to generate multipotential lineage differentiation. We show that upon induction or repression of DL1 expression during co-culture, human immature CD34(+CD38(-/low(CD45RA(-CD90(+ cells can express their B, T, NK, granulo/monocytic and erythroid potentials in a single well, and at the single cell level. We also document the interference of low NOTCH activation with human B and myelo/erythroid lymphoid differentiation. This system represents a novel tool to precisely quantify human hematopoietic immature cells with both lymphoid and myeloid potentials.

  11. Origin of the hematopoietic system in the human embryo.

    Science.gov (United States)

    Julien, Emmanuelle; El Omar, Reine; Tavian, Manuela

    2016-11-01

    The continuous generation of blood cells throughout life relies on the existence of hematopoietic stem cells (HSC) generated during embryogenesis. Given the importance of HSC transplantation in cell-based therapeutic approaches, considerable efforts have been made toward understanding the developmental origins of embryonic HSC. Adult-type HSC are first generated in the aorta-gonad-mesonephros (AGM) region between days 27 and 40 of human embryonic development, but an elusive blood-forming potential is present earlier in the underlying splanchnopleura. It is relatively well accepted that the HSC emerge in the AGM through a hemogenic endothelium, but the direct precursor of this cell type remains to be clearly identified. This review is intended to summarize the recent advances made to understand the origins of hematopoietic stem cells in the early human embryo. In addition, we discuss in detail the discovery of the angiotensin-converting enzyme (ACE) as a novel marker of human HSC and of prehematopoietic precursors inside the embryo. © 2016 Federation of European Biochemical Societies.

  12. Monitoring AML1-ETO mRNA levels by real-time quantitative RT-PCR in t (8; 21) acute myeloid leukemia patients after hematopoietic stem cell transplantation%实时定量RT-PCR方法监测急性髓系白血病患者造血干细胞移植后AML1-ETO融合基因mRNA水平的临床意义

    Institute of Scientific and Technical Information of China (English)

    王志东; 秦亚溱; 刘艳荣; 许兰平; 刘代红; 刘开彦; 黄晓军

    2008-01-01

    目的 评价实时定量RT-PCR(Q-PCR)方法监测AML1-ETO(+)急性髓系白血病(AML)患者异基因造血干细胞移植(allo-HSCT)后AML1-ETO mRNA水平的表达及其临床意义.方法 采用基于TagMan探针的Q-PCR技术检测17例AML1-ETO(+)AML患者allo-HSCT后不同时间骨髓标本AML1-ETO mRNA的表达.AML1-ETO mRNA水平以内参基因abl进行归一化.采用荧光原位杂交(FISH)法评估HSCT后是否达到细胞遗传学完全缓解(CCyR).结果 Q-PCR实验可重复敏感度为5个拷贝.在16例CCyR患者中,1例死于移植物抗宿主病(GVHD),1例死于感染,其余14例中位随访时间为268(70~811)d,HSCT后1个月(+1月)AML1-ETO中位水平0(0~0.740),+2月为0.026(0~2.900),+3月为0.039(0~3.300).移植时间超过12个月的5例患者中,中位随访685(385~811)d,4例仍呈AML1-ETO阳性,中位值0.078(0.003~0.120).1例复发患者+1月为0,+2月为9.800,+3月为5.600,+110 d血液学复发,AML1-ETO mRNA为390.000,+382 d死亡.结论 1年内AML1-ETO持续低水平阳性不一定预示复发;对AML1-ETO(+)AML患者HSCT后定期动态监测AML1-ETO水平十分必要.%Objective To evaluate the value of real time quantitative RT-PCR(Q-PCR) for monitoring AML1-ETO mRNA levels in AMLI-ETO(+) acute myeloid leukemia (AML) patients following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Methods Quantification of AMLI-ETO (+) mRNA was performed serially on bone marrow samples from 17 patients with AML1-ETO (+) AML after HSCT. Q-PCR used the TagMan probe system. The AML1-ETO mRNA level was normalized by control gene abl. Cytogenetic response was evaluated by fluorescent in situ hybridization (FISH). Results The reproducible sensitivity of Q-PCR was 5 copies. Out of 16 patients who achieved sustained complete cytogenetic response (CCyR), one each died of graft-versus-host disease and infection. The median AML1-ETO mRNA levels in the rest of 14 CCyR patients were 0 (0 - 0.740), 0. 026 (0 - 2.900), 0.039 (0 - 3.300) at

  13. Hematopoietic Origin of Murine Lung Fibroblasts

    Directory of Open Access Journals (Sweden)

    Lindsay T. McDonald

    2015-01-01

    Full Text Available Multiple origins, including the bone marrow, have been suggested to contribute to fibroblast populations in the lung. Using bone marrow reconstitution strategies, the present study tested the hypothesis that the bone marrow hematopoietic stem cell (HSC gives rise to lung tissue fibroblasts in vivo. Data demonstrate that the nonadherent bone marrow fraction is enriched for CD45+ HSC-derived cells and was able to reconstitute hematopoiesis in lethally irradiated animals. Analysis of peripheral blood and lung tissues from engrafted mice demonstrated the ability of this population to give rise to CD45+/Discoidin-Domain Receptor-2+ (DDR2 circulating fibroblast precursors (CFPs in blood and fibroblast populations in lung. An HSC origin for lung fibroblasts was confirmed using a novel clonal cell transplantation method in which the bone marrow is reconstituted by a clonal population derived from a single HSC. Together, these findings provide evidence for an HSC contribution to lung fibroblasts and demonstrate a circulating intermediate through the CD45+/DDR2+ HSC-derived CFP.

  14. Transformation of myelodysplastic syndromes into acute myeloid leukemias

    Institute of Scientific and Technical Information of China (English)

    施均; 邵宗鸿; 刘鸿; 白洁; 曹燕然; 何广胜; 凃梅峰; 王秀丽; 郝玉书; 杨天楹; 杨崇礼

    2004-01-01

    Background Myelodysplastic syndromes (MDSs), also called preleukemias, are a group of myeloid hematopoietic malignant disorders. We studied the transformation of MDS into acute myeloid leukemia (AML).Methods Leukemic transformation in 151 patients with MDS was dynamically followed up. The clinical manifestation, peripheral blood and bone marrow condition, karyotypes, immunophenotypes, response to treatment, and prognosis of AML evolution from MDS (MDS-AML) were also observed.Results During the course of this study, over the past eight years and seven months, 21 (13.91%) of 151 MDS patients progressed to overt leukemia, with a median interval of 5 (1-23) months. There were no significant differences between rates of leukemic transformation in comparison with the refractory anemia (RA), RA with excess of blasts (RAEB), and RAEB in transformation (RAEB-t) patient groups. Transformation occurred either gradually or rapidly. There were five parameters positively correlated to leukemic transformation: under 40 years of age, pancytopenia of 3 lineages, more than 15% blasts in the bone marrow, at least two abnormal karyotypes, and treatment with combined chemotherapy. All of the 21 patients with leukemia suffered from MDS-AML, and most of them were M2, M4, or M5. Two (9.52%) MDS-AML patients developed extramedullary infiltration. Leukopenia was found in 47.62% of these patients. Two thirds of these patients, whose bone marrows were generally hypercellular, suffered from neutropenia. After developing AML, 8 (47.06%) patients developed abnormal karyotypes. High expression of immature myeloid antigens, including CD33 [(49.83±24.50)%], CD13 [(36.38±33.84)%], monocytic antigen CD14 [(38.50±24.60)%], and stem cell marker CD34 [(34.67±30.59)%], were found on bone marrow mononuclear cells from MDS-AML patients after leukemic transformation. In some cases, lymphoid antigens, such as CD5, CD7, CD9, and CD19, coexisted with myeloid antigens. A low complete remission rate (31

  15. Primary Vaginal Myeloid Sarcoma: A Rare Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Gaurang Modi

    2015-01-01

    Full Text Available Myeloid sarcoma (chloroma, granulocytic sarcoma, or extramedullary myeloid tumour is an extramedullary mass forming neoplasm composed of myeloid precursor cells. It is usually associated with myeloproliferative disorders but very rarely may precede the onset of leukemia. Here, we are presenting a rare case of primary vaginal myeloid sarcoma in a geriatric female patient without initial presentation of acute myeloid leukemia (AML. A 68-year-old female patient with ECOG Performance Score of 1 presented with pervaginal bleeding for 20 days. On colposcopic examination, she was found to have mass in the anterior fornix of vagina. A punch biopsy specimen revealed chloromatous infiltration of the vagina. LCA (leukocyte common antigen, MPO (myeloperoxidase, and c-kit were strongly positive on IHC (immunohistochemistry. The patient’s routine blood investigations were normal including peripheral smear, lactose dehydrogenase, uric acid, 2D echocardiography, conventional cytogenetics, bone marrow aspiration, and biopsy. The patient was given 4 cycles of decitabine (Decitex, manufactured by Sun Pharmaceutical Industries Limited, India, 20 mg/m2 for 5 days at an interval of 28 days. There was a partial response to decitabine according to RECIST criteria. As decitabine therapy was well tolerated, we are continuing in the same way until disease progression without any complications. The patient is undergoing regular follow-up at our centre.

  16. Distinct Sources of Hematopoietic Progenitors Emerge before HSCs and Provide Functional Blood Cells in the Mammalian Embryo

    Directory of Open Access Journals (Sweden)

    Kathleen E. McGrath

    2015-06-01

    Full Text Available Hematopoietic potential arises in mammalian embryos before adult-repopulating hematopoietic stem cells (HSCs. At embryonic day 9.5 (E9.5, we show the first murine definitive erythro-myeloid progenitors (EMPs have an immunophenotype distinct from primitive hematopoietic progenitors, maturing megakaryocytes and macrophages, and rare B cell potential. EMPs emerge in the yolk sac with erythroid and broad myeloid, but not lymphoid, potential. EMPs migrate to the fetal liver and rapidly differentiate, including production of circulating neutrophils by E11.5. Although the surface markers, transcription factors, and lineage potential associated with EMPs overlap with those found in adult definitive hematopoiesis, they are present in unique combinations or proportions that result in a specialized definitive embryonic progenitor. Furthermore, we find that embryonic stem cell (ESC-derived hematopoiesis recapitulates early yolk sac hematopoiesis, including primitive, EMP, and rare B cell potential. EMPs do not have long-term potential when transplanted in immunocompromised adults, but they can provide transient adult-like RBC reconstitution.

  17. Functional analysis of human hematopoietic stem cell gene expression using zebrafish.

    Directory of Open Access Journals (Sweden)

    Craig E Eckfeldt

    2005-08-01

    Full Text Available Although several reports have characterized the hematopoietic stem cell (HSC transcriptome, the roles of HSC-specific genes in hematopoiesis remain elusive. To identify candidate regulators of HSC fate decisions, we compared the transcriptome of human umbilical cord blood and bone marrow (CD34+(CD33-(CD38-Rho(lo(c-kit+ cells, enriched for hematopoietic stem/progenitor cells with (CD34+(CD33-(CD38-Rho(hi cells, enriched in committed progenitors. We identified 277 differentially expressed transcripts conserved in these ontogenically distinct cell sources. We next performed a morpholino antisense oligonucleotide (MO-based functional screen in zebrafish to determine the hematopoietic function of 61 genes that had no previously known function in HSC biology and for which a likely zebrafish ortholog could be identified. MO knock down of 14/61 (23% of the differentially expressed transcripts resulted in hematopoietic defects in developing zebrafish embryos, as demonstrated by altered levels of circulating blood cells at 30 and 48 h postfertilization and subsequently confirmed by quantitative RT-PCR for erythroid-specific hbae1 and myeloid-specific lcp1 transcripts. Recapitulating the knockdown phenotype using a second MO of independent sequence, absence of the phenotype using a mismatched MO sequence, and rescue of the phenotype by cDNA-based overexpression of the targeted transcript for zebrafish spry4 confirmed the specificity of MO targeting in this system. Further characterization of the spry4-deficient zebrafish embryos demonstrated that hematopoietic defects were not due to more widespread defects in the mesodermal development, and therefore represented primary defects in HSC specification, proliferation, and/or differentiation. Overall, this high-throughput screen for the functional validation of differentially expressed genes using a zebrafish model of hematopoiesis represents a major step toward obtaining meaningful information from global

  18. Stage-Specific Human Induced Pluripotent Stem Cells Map the Progression of Myeloid Transformation to Transplantable Leukemia.

    Science.gov (United States)

    Kotini, Andriana G; Chang, Chan-Jung; Chow, Arthur; Yuan, Han; Ho, Tzu-Chieh; Wang, Tiansu; Vora, Shailee; Solovyov, Alexander; Husser, Chrystel; Olszewska, Malgorzata; Teruya-Feldstein, Julie; Perumal, Deepak; Klimek, Virginia M; Spyridonidis, Alexandros; Rampal, Raajit K; Silverman, Lewis; Reddy, E Premkumar; Papaemmanuil, Elli; Parekh, Samir; Greenbaum, Benjamin D; Leslie, Christina S; Kharas, Michael G; Papapetrou, Eirini P

    2017-03-02

    Myeloid malignancy is increasingly viewed as a disease spectrum, comprising hematopoietic disorders that extend across a phenotypic continuum ranging from clonal hematopoiesis to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). In this study, we derived a collection of induced pluripotent stem cell (iPSC) lines capturing a range of disease stages encompassing preleukemia, low-risk MDS, high-risk MDS, and secondary AML. Upon their differentiation, we found hematopoietic phenotypes of graded severity and/or stage specificity that together delineate a phenotypic roadmap of disease progression culminating in serially transplantable leukemia. We also show that disease stage transitions, both reversal and progression, can be modeled in this system using genetic correction or introduction of mutations via CRISPR/Cas9 and that this iPSC-based approach can be used to uncover disease-stage-specific responses to drugs. Our study therefore provides insight into the cellular events demarcating the initiation and progression of myeloid transformation and a new platform for testing genetic and pharmacological interventions.

  19. RUNX1 deficiency (familial platelet disorder with predisposition to myeloid leukemia, FPDMM).

    Science.gov (United States)

    Schlegelberger, Brigitte; Heller, Paula G

    2017-04-01

    In this review, we discuss disease-causing alterations of RUNT-related transcription factor 1 (RUNX1), a master regulator of hematopoietic differentiation. Familial platelet disorder with predisposition to myeloid leukemia (FPDMM) typically presents with (1) mild to moderate thrombocytopenia with normal-sized platelets; (2) functional platelets defects leading to prolonged bleeding; and (3) an increased risk to develop myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), or T-cell acute lymphoblastic leukemia (T-ALL). Hematological neoplasms in carriers of a germline RUNX1 mutation need additional secondary mutations or chromosome aberrations to develop. If a disease-causing mutation is known in the family, it is important to prevent hematopoietic stem cell transplantation from a sibling or other relative carrying the familial mutation. First experiments introducing a wild-type copy of RUNX1 into induce pluripotent stem cells (iPSC) lines from patients with FPDMM appear to demonstrate that by gene correction reversal of the phenotype may be possible. Copyright © 2017. Published by Elsevier Inc.

  20. Small-Molecule Disruption of the Myb/p300 Cooperation Targets Acute Myeloid Leukemia Cells.

    Science.gov (United States)

    Uttarkar, Sagar; Piontek, Therese; Dukare, Sandeep; Schomburg, Caroline; Schlenke, Peter; Berdel, Wolfgang E; Müller-Tidow, Carsten; Schmidt, Thomas J; Klempnauer, Karl-Heinz

    2016-12-01

    The transcription factor c-Myb is essential for the proliferation of hematopoietic cells and has been implicated in the development of leukemia and other human cancers. Pharmacologic inhibition of Myb is therefore emerging as a potential therapeutic strategy for these diseases. By using a Myb reporter cell line, we have identified plumbagin and several naphthoquinones as potent low-molecular weight Myb inhibitors. We demonstrate that these compounds inhibit c-Myb by binding to the c-Myb transactivation domain and disrupting the cooperation of c-Myb with the coactivator p300, a major driver of Myb activity. Naphthoquinone-induced inhibition of c-Myb suppresses Myb target gene expression and induces the differentiation of the myeloid leukemia cell line HL60. We demonstrate that murine and human primary acute myeloid leukemia cells are more sensitive to naphthoquinone-induced inhibition of clonogenic proliferation than normal hematopoietic progenitor cells. Overall, our work demonstrates for the first time the potential of naphthoquinones as small-molecule Myb inhibitors that may have therapeutic potential for the treatment of leukemia and other tumors driven by deregulated Myb. Mol Cancer Ther; 15(12); 2905-15. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. The role of Lin28b in myeloid and mast cell differentiation and mast cell malignancy.

    Science.gov (United States)

    Wang, L D; Rao, T N; Rowe, R G; Nguyen, P T; Sullivan, J L; Pearson, D S; Doulatov, S; Wu, L; Lindsley, R C; Zhu, H; DeAngelo, D J; Daley, G Q; Wagers, A J

    2015-06-01

    Mast cells (MCs) are critical components of the innate immune system and important for host defense, allergy, autoimmunity, tissue regeneration and tumor progression. Dysregulated MC development leads to systemic mastocytosis (SM), a clinically variable but often devastating family of hematologic disorders. Here we report that induced expression of Lin28, a heterochronic gene and pluripotency factor implicated in driving a fetal hematopoietic program, caused MC accumulation in adult mice in target organs such as the skin and peritoneal cavity. In vitro assays revealed a skewing of myeloid commitment in LIN28B-expressing hematopoietic progenitors, with increased levels of LIN28B in common myeloid and basophil-MC progenitors altering gene expression patterns to favor cell fate choices that enhanced MC specification. In addition, LIN28B-induced MCs appeared phenotypically and functionally immature, and in vitro assays suggested a slowing of MC terminal differentiation in the context of LIN28B upregulation. Finally, interrogation of human MC leukemia samples revealed upregulation of LIN28B in abnormal MCs from patients with SM. This work identifies Lin28 as a novel regulator of innate immune function and a new protein of interest in MC disease.

  2. CXC chemokine receptor 3 expression on CD34(+) hematopoietic progenitors from human cord blood induced by granulocyte-macrophage colony-stimulating factor

    DEFF Research Database (Denmark)

    Jinquan, T; Quan, S; Jacobi, H H

    2000-01-01

    CXC chemokine receptor 3 (CXCR3), which is known to be expressed predominately on memory and activated T lymphocytes, is a receptor for both interferon gamma (IFN-gamma)-inducible protein 10 (gamma IP-10) and monokine induced by IFN-gamma (Mig). We report the novel finding that CXCR3 is also...... expressed on CD34(+) hematopoietic progenitors from human cord blood stimulated with granulocyte-macrophage colony-stimulating factor (GM-CSF) but not on freshly isolated CD34(+) progenitors. Freshly isolated CD34(+) progenitors expressed low levels of CXCR3 messenger RNA, but this expression was highly up...... for the physiologic and pathophysiologic events of differentiation of CD34(+) hematopoietic progenitors into lymphoid and myeloid stem cells, subsequently immune and inflammatory cells. These processes include transmigration, relocation, differentiation, and maturation of CD34(+) hematopoietic progenitors. (Blood...

  3. Postsplenectomy sclerosing extramedullary hematopoietic tumor with unexpected good clinical evolution: morphologic, immunohistochemical, and molecular analysis of one case and review of the literature.

    Science.gov (United States)

    Gualco, Gabriela; Ojopi, Elida B P; Chioato, Lucimara; Cordeiro, Danielle Leão; Negretti, Fabio; Bacchi, Carlos E

    2010-05-01

    Sclerosing extramedullary hematopoietic tumor has been described as a rare manifestation of chronic myeloproliferative neoplasm. The lack of knowledge about this entity has caused it to be mistaken for many types of nonhematopoietic and hematopoietic tumors. We present the case of a 71-year-old lady with a long history of primary myelofibrosis, which developed multiple abdominal sclerosing extramedullary hematopoietic tumors with good clinical evolution. Nonchronic myeloid leukemia myeloproliferative neoplasm included a JAK2 mutation as part of the diagnosis algorithm. Particularly, idiopathic myelofibrosis is related with a JAK2 mutation in 50% of the cases with a pejorative prognosis. The absence of JAK2 demonstrated in the paraffin samples of the tumors may be related to the unusual evolution in this particular case. Morphologically differential diagnoses considered in the evaluation of this entity and in our case included sarcomas mainly liposarcoma, anaplastic carcinoma, and Hodgkin lymphoma.

  4. The role of Smad signaling in vascular and hematopoietic development revealed by studies using genetic mouse models

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Smads are intracellular mediators of transforming growth factor β (TGF-β) superfamily signaling. In this review, we focus on the genetic mouse models for Smad pathways, which have provided functional evidence regarding the complex circuitry in angiogenesis and hematopoiesis during development. In the early stages of vascular development, TGF-β signaling is a contri buting factor in angiogenesis and vascular maturation. Whereas in the later embryogenesis, selected molecules of Smad pathways, such as TGF-β type II receptor (TbRII), ALK5, and Smad5, seem to be dispensable for vessel morphogenesis and integrity. TGF-β signaling is not required in the induction of hematopoietic precursors from mesoderm, but inhibits the subsequent expansion of committed hematopoietic precursors. By contrast, bone morphogenetic protein 4 (BMP4) has long been acknowledged pivotal in mesoderm induction and hematopoietic commitment during development. However, recent genetic evidence shows the BMP4-ALK3 axis is not crucial for the formation of hematopoietic cells from FLK1+ mesoderm. Because of the highly redundant mechanisms within the Smad pathways, the precise role of the Smad signaling involved in vascular and hematopoietic development remains nebulous. The generation of novel cell lineage restricted Cre transgenes would shed new light on the future relevant investigations.

  5. Lineage-Specific Genes Are Prominent DNA Damage Hotspots during Leukemic Transformation of B Cell Precursors

    Directory of Open Access Journals (Sweden)

    Bryant Boulianne

    2017-02-01

    Full Text Available In human leukemia, lineage-specific genes represent predominant targets of deletion, with lymphoid-specific genes frequently affected in lymphoid leukemia and myeloid-specific genes in myeloid leukemia. To investigate the basis of lineage-specific alterations, we analyzed global DNA damage in primary B cell precursors expressing leukemia-inducing oncogenes by ChIP-seq. We identified more than 1,000 sensitive regions, of which B lineage-specific genes constitute the most prominent targets. Identified hotspots at B lineage genes relate to DNA-DSBs, affect genes that harbor genomic lesions in human leukemia, and associate with ectopic deletion in successfully transformed cells. Furthermore, we show that most identified regions overlap with gene bodies of highly expressed genes and that induction of a myeloid lineage phenotype in transformed B cell precursors promotes de novo DNA damage at myeloid loci. Hence, we demonstrate that lineage-specific transcription predisposes lineage-specific genes in transformed B cell precursors to DNA damage, which is likely to promote the frequent alteration of lineage-specific genes in human leukemia.

  6. Constitutive MAP kinase activation in hematopoietic stem cells induces a myeloproliferative disorder.

    Directory of Open Access Journals (Sweden)

    Eva Chung

    Full Text Available Myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPNs are a group of myeloid neoplasms in which abnormal activation of the Ras signaling pathway is commonly observed. The PI3K/Akt pathway is a known target of Ras; however, activation of the PI3K/Akt pathway has been shown to lead to neoplastic transformation of not only myeloid but also lymphoid cells, suggesting that pathways other than the PI3K/Akt pathway should play a central role in pathogenesis of Ras-mediated MDS/MPN. The MEK/ERK pathway is another downstream target of Ras, which is involved in regulation of cell survival and proliferation. However, the role of the MEK/ERK pathway in the pathogenesis of MDS/MPN remains unclear. Here, we show that introduction of a constitutively activated form of MEK into hematopoietic stem cells (HSCs causes hematopoietic neoplasms that are limited to MDS/MPNs, despite the multipotent differentiation potential of HSCs. Active MEK-mediated MDS/MPNs are lethal, but are not considered a frank leukemia because it cannot be transplanted into naïve animals. However, transplantation of MDS/MPNs co-expressing active MEK and an anti-apoptotic molecule, Bcl-2, results in T-cell acute lymphocytic leukemia (T-ALL, suggesting that longevity of cells may impact transplantability and alter disease phenotype. Our results clearly demonstrate the proto-oncogenic property of the MEK/ERK pathway in hematopoietic cells, which manifest in MDS/MPN development.

  7. Hematopoietic lineage skewing and intestinal epithelia degeneration in aged mice with telomerase RNA component deletion.

    Science.gov (United States)

    Chen, Jichun; Bryant, Mark A; Dent, James J; Sun, Yu; Desierto, Marie J; Young, Neal S

    2015-12-01

    A deletion of a telomerase RNA component (Terc(-/-)) in C57BL/6 (B6) mice resulted in hematopoietic lineage skewing with increased neutrophils and CD11b(+) myeloid cells and decreased red blood cells and CD45R(+) B lymphocytes when animals reach ages older than 12 months. There was no decline in bone marrow (BM) c-Kit(+)Sca-1(+)Lin(-) (KSL) cells in old Terc(-/-) mice, and the lineage skewing phenomenon was not transferred when BM cells from old Terc(-/-) donors were transplanted into young B6 recipients. Necropsy and histological examinations found minimal to no change in the lung, spleen and liver but detected severe epithelia degeneration, ulceration and infection in small and large intestines, leading to enteritis, typhlitis and colitis in old Terc(-/-) mice. In a mouse model of dextran-sulfate-sodium-induced typhlitis and colitis, development of intestinal pathology was associated with increases in neutrophils and CD11b(+) myeloid cells and a decrease in CD45R(+) B cells, similar to those observed in old Terc(-/-) mice. Treatment of 11-13 month old Terc(-/-) mice with antibiotic trimethoprim-sulfa water reduced neutrophils and myeloid cells and increased B lymphocytes in the blood, indicating that mitigation of intestinal infection and inflammation could alleviate hematological abnormalities in old Terc(-/-) animals.

  8. Hematopoietic Stem-Cell Transplantation in the Developing World: Experience from a Center in Western India

    Directory of Open Access Journals (Sweden)

    Chirag A. Shah

    2015-01-01

    Full Text Available We describe our experience of first 50 consecutive hematopoietic stem-cell transplants (HSCT done between 2007 and 2012 at the Apollo Hospital, Gandhinagar, 35 autologous HSCT and 15 allogeneic HSCT. Indications for autologous transplant were multiple myeloma, non-Hodgkin lymphoma, Hodgkin lymphoma, and acute myeloid leukemia, and indications for allogeneic transplants were thalassemia major, aplastic anaemia, chronic myeloid leukemia, and acute lymphoblastic and myeloid leukaemia. The median age of autologous and allogeneic patient’s cohort was 50 years and 21 years, respectively. Median follow-up period for all patients was 39 months. Major early complications were infections, mucositis, acute graft versus host disease, and venoocclusive disease. All of our allogeneic and autologous transplant patients survived during the first month of transplant. Transplant related mortality (TRM was 20% (N = 3 in our allogeneic and 3% (N = 1 in autologous patients. Causes of these deaths were disease relapse, sepsis, hemorrhagic complications, and GVHD. 46% of our autologous and 47% of our allogeneic patients are in complete remission phase after a median follow-up of 39 months. 34% of our autologous patients and 13% of our allogeneic patients had disease relapse. Overall survival rate in our autologous and allogeneic patients is 65.7% and 57.1%, respectively. Our results are comparable to many national and international published reports.

  9. Relapse risk in patients with malignant diseases given allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning.

    Science.gov (United States)

    Kahl, Christoph; Storer, Barry E; Sandmaier, Brenda M; Mielcarek, Marco; Maris, Michael B; Blume, Karl G; Niederwieser, Dietger; Chauncey, Thomas R; Forman, Stephen J; Agura, Edward; Leis, Jose F; Bruno, Benedetto; Langston, Amelia; Pulsipher, Michael A; McSweeney, Peter A; Wade, James C; Epner, Elliot; Bo Petersen, Finn; Bethge, Wolfgang A; Maloney, David G; Storb, Rainer

    2007-10-01

    Allogeneic hematopoietic cell transplantation (HCT) after nonmyeloablative conditioning for hematologic malignancies depends on graft-versus-tumor effects for eradication of cancer. Here, we estimated relapse risks according to disease characteristics. Between 1997 and 2006, 834 consecutive patients (median age, 55 years; range, 5-74 years) received related (n = 498) or unrelated (n = 336) HCT after 2 Gy total body irradiation alone (n = 171) or combined with fludarabine (90 mg/m(2); n = 663). Relapse rates per patient year (PY) at risk, corrected for follow-up and competing nonrelapse mortality, were calculated for 29 different diseases and stages. The overall relapse rate per PY was 0.36. Patients with chronic lymphocytic leukemia (CLL) and multiple myeloma (MM) in remission (CR), low-grade or mantle cell non-Hodgkin lymphoma (NHL) (CR + partial remission [PR]), and high-grade NHL-CR had the lowest rates (0.00-0.24; low risk). In contrast, patients with advanced myeloid and lymphoid malignancies had rates of more than 0.52 (high risk). Patients with lymphoproliferative diseases not in CR (except Hodgkin lymphoma and high-grade NHL) and myeloid malignancies in CR had rates of 0.26-0.37 (standard risk). In conclusion, patients with low-grade lymphoproliferative disorders experienced the lowest relapse rates, whereas patients with advanced myeloid and lymphoid malignancies had high relapse rates after nonmyeloablative HCT. The latter might benefit from cytoreductive treatment before HCT.

  10. Association of acute myeloid leukemia’s most immature phenotype with risk groups and outcomes

    Science.gov (United States)

    Gerber, Jonathan M.; Zeidner, Joshua F.; Morse, Sarah; Blackford, Amanda L.; Perkins, Brandy; Yanagisawa, Breann; Zhang, Hao; Morsberger, Laura; Karp, Judith; Ning, Yi; Gocke, Christopher D.; Rosner, Gary L.; Smith, B. Douglas; Jones, Richard J.

    2016-01-01

    The precise phenotype and biology of acute myeloid leukemia stem cells remain controversial, in part because the “gold standard” immunodeficient mouse engraftment assay fails in a significant fraction of patients and identifies multiple cell-types in others. We sought to analyze the clinical utility of a novel assay for putative leukemia stem cells in a large prospective cohort. The leukemic clone’s most primitive hematopoietic cellular phenotype was prospectively identified in 109 newly-diagnosed acute myeloid leukemia patients, and analyzed against clinical risk groups and outcomes. Most (80/109) patients harbored CD34+CD38− leukemia cells. The CD34+CD38− leukemia cells in 47 of the 80 patients displayed intermediate aldehyde dehydrogenase expression, while normal CD34+CD38− hematopoietic stem cells expressed high levels of aldehyde dehydrogenase. In the other 33/80 patients, the CD34+CD38− leukemia cells exhibited high aldehyde dehydrogenase activity, and most (28/33, 85%) harbored poor-risk cytogenetics or FMS-like tyrosine kinase 3 internal tandem translocations. No CD34+ leukemia cells could be detected in 28/109 patients, including 14/21 patients with nucleophosmin-1 mutations and 6/7 acute promyelocytic leukemia patients. The patients with CD34+CD38− leukemia cells with high aldehyde dehydrogenase activity manifested a significantly lower complete remission rate, as well as poorer event-free and overall survivals. The leukemic clone’s most immature phenotype was heterogeneous with respect to CD34, CD38, and ALDH expression, but correlated with acute myeloid leukemia risk groups and outcomes. The strong clinical correlations suggest that the most immature phenotype detectable in the leukemia might serve as a biomarker for “clinically-relevant” leukemia stem cells. ClinicalTrials.gov: NCT01349972. PMID:26819054

  11. Association of acute myeloid leukemia's most immature phenotype with risk groups and outcomes.

    Science.gov (United States)

    Gerber, Jonathan M; Zeidner, Joshua F; Morse, Sarah; Blackford, Amanda L; Perkins, Brandy; Yanagisawa, Breann; Zhang, Hao; Morsberger, Laura; Karp, Judith; Ning, Yi; Gocke, Christopher D; Rosner, Gary L; Smith, B Douglas; Jones, Richard J

    2016-05-01

    The precise phenotype and biology of acute myeloid leukemia stem cells remain controversial, in part because the "gold standard" immunodeficient mouse engraftment assay fails in a significant fraction of patients and identifies multiple cell-types in others. We sought to analyze the clinical utility of a novel assay for putative leukemia stem cells in a large prospective cohort. The leukemic clone's most primitive hematopoietic cellular phenotype was prospectively identified in 109 newly-diagnosed acute myeloid leukemia patients, and analyzed against clinical risk groups and outcomes. Most (80/109) patients harbored CD34(+)CD38(-) leukemia cells. The CD34(+)CD38(-) leukemia cells in 47 of the 80 patients displayed intermediate aldehyde dehydrogenase expression, while normal CD34(+)CD38(-) hematopoietic stem cells expressed high levels of aldehyde dehydrogenase. In the other 33/80 patients, the CD34(+)CD38(-) leukemia cells exhibited high aldehyde dehydrogenase activity, and most (28/33, 85%) harbored poor-risk cytogenetics or FMS-like tyrosine kinase 3 internal tandem translocations. No CD34(+) leukemia cells could be detected in 28/109 patients, including 14/21 patients with nucleophosmin-1 mutations and 6/7 acute promyelocytic leukemia patients. The patients with CD34(+)CD38(-) leukemia cells with high aldehyde dehydrogenase activity manifested a significantly lower complete remission rate, as well as poorer event-free and overall survivals. The leukemic clone's most immature phenotype was heterogeneous with respect to CD34, CD38, and ALDH expression, but correlated with acute myeloid leukemia risk groups and outcomes. The strong clinical correlations suggest that the most immature phenotype detectable in the leukemia might serve as a biomarker for "clinically-relevant" leukemia stem cells. ClinicalTrials.gov: NCT01349972. Copyright© Ferrata Storti Foundation.

  12. MYCN transgenic zebrafish model with the characterization of acute myeloid leukemia and altered hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Li-Jing Shen

    Full Text Available BACKGROUND: Amplification of MYCN (N-Myc oncogene has been reported as a frequent event and a poor prognostic marker in human acute myeloid leukemia (AML. The molecular mechanisms and transcriptional networks by which MYCN exerts its influence in AML are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We introduced murine MYCN gene into embryonic zebrafish through a heat-shock promoter and established the stable germline Tg(MYCN:HSE:EGFP zebrafish. N-Myc downstream regulated gene 1 (NDRG1, negatively controlled by MYCN in human and functionally involved in neutrophil maturation, was significantly under-expressed in this model. Using peripheral blood smear detection, histological section and flow cytometric analysis of single cell suspension from kidney and spleen, we found that MYCN overexpression promoted cell proliferation, enhanced the repopulating activity of myeloid cells and the accumulation of immature hematopoietic blast cells. MYCN enhanced primitive hematopoiesis by upregulating scl and lmo2 expression and promoted myelopoiesis by inhibiting gata1 expression and inducing pu.1, mpo expression. Microarray analysis identified that cell cycle, glycolysis/gluconeogenesis, MAPK/Ras, and p53-mediated apoptosis pathways were upregulated. In addition, mismatch repair, transforming and growth factor β (TGFβ were downregulated in MYCN-overexpressing blood cells (p<0.01. All of these signaling pathways are critical in the proliferation and malignant transformation of blood cells. CONCLUSION/SIGNIFICANCE: The above results induced by overexpression of MYCN closely resemble the main aspects of human AML, suggesting that MYCN plays a role in the etiology of AML. MYCN reprograms hematopoietic cell fate by regulating NDRG1 and several lineage-specific hematopoietic transcription factors. Therefore, this MYCN transgenic zebrafish model facilitates dissection of MYCN-mediated signaling in vivo, and enables high-throughput scale screens to identify the

  13. Multiple apoptotic defects in hematopoietic cells from mice lacking lipocalin 24p3.

    Science.gov (United States)

    Liu, Zhuoming; Yang, Amy; Wang, Zhengqi; Bunting, Kevin D; Davuluri, Gangarao; Green, Michael R; Devireddy, Laxminarayana R

    2011-06-10

    The lipocalin mouse 24p3 has been implicated in diverse physiological processes, including apoptosis, iron trafficking, development and innate immunity. Studies from our laboratory as well as others demonstrated the proapoptotic activity of 24p3 in a variety of cultured models. However, a general role for the lipocalin 24p3 in the hematopoietic system has not been tested in vivo. To study the role of 24p3, we derived 24p3 null mice and back-crossed them onto C57BL/6 and 129/SVE backgrounds. Homozygous 24p3(-/-) mice developed a progressive accumulation of lymphoid, myeloid, and erythroid cells, which was not due to enhanced hematopoiesis because competitive repopulation and recovery from myelosuppression were the same as for wild type. Instead, apoptotic defects were unique to many mature hematopoietic cell types, including neutrophils, cytokine-dependent mast cells, thymocytes, and erythroid cells. Thymocytes isolated from 24p3 null mice also displayed resistance to apoptosis-induced by dexamethasone. Bim response to various apoptotic stimuli was attenuated in 24p3(-/-) cells, thus explaining their resistance to the ensuing cell death. The results of these studies, in conjunction with those of previous studies, reveal 24p3 as a regulator of the hematopoietic compartment with important roles in normal physiology and disease progression. Interestingly, these functions are limited to relatively mature blood cell compartments.

  14. Neurofibromin Deficient Myeloid Cells are Critical Mediators of Aneurysm Formation In Vivo

    Science.gov (United States)

    Li, Fang; Downing, Brandon D.; Smiley, Lucy C.; Mund, Julie A.; DiStasi, Matthew R.; Bessler, Waylan K.; Sarchet, Kara N.; Hinds, Daniel M.; Kamendulis, Lisa M.; Hingtgen, Cynthia M.; Case, Jamie; Clapp, D. Wade; Conway, Simon J.; Stansfield, Brian K.; Ingram, David A.

    2014-01-01

    Background Neurofibromatosis Type 1 (NF1) is a genetic disorder resulting from mutations in the NF1 tumor suppressor gene. Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity in circulating hematopoietic and vascular wall cells, which are critical for maintaining vessel wall homeostasis. NF1 patients have evidence of chronic inflammation resulting in development of premature cardiovascular disease, including arterial aneurysms, which may manifest as sudden death. However, the molecular pathogenesis of NF1 aneurysm formation is unknown. Method and Results Utilizing an angiotensin II-induced aneurysm model, we demonstrate that heterozygous inactivation of Nf1 (Nf1+/−) enhanced aneurysm formation with myeloid cell infiltration and increased oxidative stress in the vessel wall. Using lineage-restricted transgenic mice, we show loss of a single Nf1 allele in myeloid cells is sufficient to recapitulate the Nf1+/− aneurysm phenotype in vivo. Finally, oral administration of simvastatin or the antioxidant apocynin, reduced aneurysm formation in Nf1+/− mice. Conclusion These data provide genetic and pharmacologic evidence that Nf1+/− myeloid cells are the cellular triggers for aneurysm formation in a novel model of NF1 vasculopathy and provide a potential therapeutic target. PMID:24370551

  15. HIF1α is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo

    Directory of Open Access Journals (Sweden)

    Parisa Imanirad

    2014-01-01

    Full Text Available Hypoxia affects many physiologic processes during early stages of mammalian ontogeny, particularly placental and vascular development. In the adult, the hypoxic bone marrow microenvironment plays a role in regulating hematopoietic stem cell (HSC function. HSCs are generated from the major vasculature of the embryo, but whether the hypoxic response affects the generation of these HSCs is as yet unknown. Here we examined whether Hypoxia Inducible Factor1-alpha (HIF1α, a key modulator of the response to hypoxia, is essential for HSC development. We found hypoxic cells in embryonic tissues that generate and expand hematopoietic cells (aorta, placenta and fetal liver, and specifically aortic endothelial and hematopoietic cluster cells. A Cre/loxP conditional knockout (cKO approach was taken to delete HIF1α in Vascular Endothelial-Cadherin expressing endothelial cells, the precursors to definitive hematopoietic cells. Functional assays show that HSC and hematopoietic progenitor cells (HPCs are significantly reduced in cKO aorta and placenta. Moreover, decreases in phenotypic aortic hematopoietic cluster cells in cKO embryos indicate that HIF1α is necessary for generation and/or expansion of HPCs and HSCs. cKO adult BM HSCs are also affected under transplantation conditions. Thus, HIF1α is a regulator of HSC generation and function beginning at the earliest embryonic stages.

  16. Aging-like Phenotype and Defective Lineage Specification in SIRT1-Deleted Hematopoietic Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Pauline Rimmelé

    2014-07-01

    Full Text Available Aging hematopoietic stem cells (HSCs exhibit defective lineage specification that is thought to be central to increased incidence of myeloid malignancies and compromised immune competence in the elderly. Mechanisms underlying these age-related defects remain largely unknown. We show that the deacetylase Sirtuin (SIRT1 is required for homeostatic HSC maintenance. Differentiation of young SIRT1-deleted HSCs is skewed toward myeloid lineage associated with a significant decline in the lymphoid compartment, anemia, and altered expression of associated genes. Combined with HSC accumulation of damaged DNA and expression patterns of age-linked molecules, these have striking overlaps with aged HSCs. We further show that SIRT1 controls HSC homeostasis via the longevity transcription factor FOXO3. These findings suggest that SIRT1 is essential for HSC homeostasis and lineage specification. They also indicate that SIRT1 might contribute to delaying HSC aging.

  17. Acute myeloid leukemia in the era of precision medicine:recent advances in diagnostic classification and risk stratification

    Institute of Scientific and Technical Information of China (English)

    Rina Kansal

    2016-01-01

    Acute myeloid leukemia (AML) is a genetically heterogeneous myeloid malignancy that occurs more commonly in adults, and has an increasing incidence, most likely due to increasing age. Precise diagnostic classification of AML requires clinical and pathologic information, the latter including morphologic, immunophenotypic, cytogenetic and molecular genetic analysis. Risk stratification in AML requires cytogenetics evaluation as the most important predictor, with genetic mutations providing additional necessary information. AML with normal cytogenetics comprises about 40%-50% of all AML, and has been intensively investigated. The currently used 2008 World Health Organization classification of hematopoietic neoplasms has been proposed to be updated in 2016, also to include an update on the classification of AML, due to the continuously increasing application of genomic techniques that have led to major advances in our knowledge of the pathogenesis of AML. The purpose of this review is to describe some of these recent major advances in the diagnostic classification and risk stratification of AML.

  18. Myeloid leukemias and virally induced lymphomas in miniature inbred swine; development of a large animal tumor model

    Directory of Open Access Journals (Sweden)

    RAIMON eDURAN-STRUUCK

    2015-11-01

    Full Text Available The lack of a large animal transplantable tumor model has limited the study of novel therapeutic strategies for the treatment of liquid cancers. Swine as a species provide a natural option based on their similarities with humans and their already extensive use in biomedical research. Specifically, the MGH miniature swine herd retains unique genetic characteristics that facilitate the study of hematopoietic cell and solid organ transplantation. Spontaneously arising liquid cancers in these swine, specifically myeloid leukemias and B cell lymphomas, closely resemble human malignancies. The ability to establish aggressive tumor cell lines in vitro from these naturally occurring malignancies makes a transplantable tumor model a close reality. Here, we discuss our experience with myeloid and lymphoid tumors in MHC characterized miniature swine and future approaches regarding the development of a large animal transplantable tumor model.

  19. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing.

    Science.gov (United States)

    Heckl, Dirk; Kowalczyk, Monika S; Yudovich, David; Belizaire, Roger; Puram, Rishi V; McConkey, Marie E; Thielke, Anne; Aster, Jon C; Regev, Aviv; Ebert, Benjamin L

    2014-09-01

    Genome sequencing studies have shown that human malignancies often bear mutations in four or more driver genes, but it is difficult to recapitulate this degree of genetic complexity in mouse models using conventional breeding. Here we use the CRISPR-Cas9 system of genome editing to overcome this limitation. By delivering combinations of small guide RNAs (sgRNAs) and Cas9 with a lentiviral vector, we modified up to five genes in a single mouse hematopoietic stem cell (HSC), leading to clonal outgrowth and myeloid malignancy. We thereby generated models of acute myeloid leukemia (AML) with cooperating mutations in genes encoding epigenetic modifiers, transcription factors and mediators of cytokine signaling, recapitulating the combinations of mutations observed in patients. Our results suggest that lentivirus-delivered sgRNA:Cas9 genome editing should be useful to engineer a broad array of in vivo cancer models that better reflect the complexity of human disease.

  20. Earthquakes: hydrogeochemical precursors

    Science.gov (United States)

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  1. Loss of Ercc1 Results in a Time- and Dose-Dependent Reduction of Proliferating Early Hematopoietic Progenitors

    Directory of Open Access Journals (Sweden)

    Judith H. E. Verhagen-Oldenampsen

    2012-01-01

    Full Text Available The endonuclease complex Ercc1/Xpf is involved in interstrand crosslink repair and functions downstream of the Fanconi pathway. Loss of Ercc1 causes hematopoietic defects similar to those seen in Fanconi Anemia. Ercc1−/− mice die 3-4 weeks after birth, which prevents long-term follow up of the hematopoietic compartment. We used alternative Ercc1 mouse models to examine the effect of low or absent Ercc1 activity on hematopoiesis. Tie2-Cre-driven deletion of a floxed Ercc1 allele was efficient (>80% in fetal liver hematopoietic cells. Hematopoietic stem and progenitor cells (HSPCs with a deleted allele were maintained in mice up to 1 year of age when harboring a wt allele, but were progressively outcompeted when the deleted allele was combined with a knockout allele. Mice with a minimal Ercc1 activity expressed by 1 or 2 hypomorphic Ercc1 alleles have an extended life expectancy, which allows analysis of HSPCs at 10 and 20 weeks of age. The HSPC compartment was affected in all Ercc1-deficient models. Actively proliferating multipotent progenitors were most affected as were myeloid and erythroid clonogenic progenitors. In conclusion, lack of Ercc1 results in a severe competitive disadvantage of HSPCs and is most deleterious in proliferating progenitor cells.

  2. Retrospective Study of Incidence and Prognostic Significance of Eosinophilia after Allogeneic Hematopoietic Stem Cell Transplantation: Influence of Corticosteroid Therapy

    Directory of Open Access Journals (Sweden)

    Wataru Yamamoto

    2016-08-01

    Full Text Available Objective: The clinical significance of eosinophilia after allogeneic hematopoietic stem cell transplantation is controversial. This study aimed to retrospectively study the impact of eosinophilia on the outcome of allogeneic hematopoietic stem cell transplantation by taking into account the influence of corticosteroid therapy. Materials and Methods: We retrospectively studied 204 patients with acute myeloid leukemia, acute lymphoblastic leukemia, and myelodysplastic syndrome who underwent allogeneic hematopoietic stem cell transplantation from January 2001 to December 2010. Results: The median age was 43 years (minimum-maximum: 17- 65 years. Myeloablative conditioning was used in 153 patients and reduced intensity conditioning was employed in 51 patients. Donor cells were from bone marrow in 132 patients, peripheral blood in 34, and cord blood in 38. Eosinophilia was detected in 71 patients and there was no significant predictor of eosinophilia by multivariate analysis. There was no relationship between occurrence of eosinophilia and the incidence or grade of acute graft-versus-host disease when the patients were stratified according to corticosteroid treatment. Although eosinophilia was a prognostic factor for 5-year overall survival by univariate analysis, it was not a significant indicator by multivariate analysis. Conclusion: These results suggest that the clinical significance of eosinophilia in patients receiving allogeneic hematopoietic stem cell transplantation should be assessed with consideration of systemic corticosteroid administration.

  3. Retrospective Study of Incidence and Prognostic Significance of Eosinophilia after Allogeneic Hematopoietic Stem Cell Transplantation: Influence of Corticosteroid Therapy.

    Science.gov (United States)

    Yamamoto, Wataru; Ogusa, Eriko; Matsumoto, Kenji; Maruta, Atsuo; Ishigatsubo, Yoshiaki; Kanamori, Heiwa

    2016-09-05

    The clinical significance of eosinophilia after allogeneic hematopoietic stem cell transplantation is controversial. This study aimed to retrospectively study the impact of eosinophilia on the outcome of allogeneic hematopoietic stem cell transplantation by taking into account the influence of corticosteroid therapy. We retrospectively studied 204 patients with acute myeloid leukemia, acute lymphoblastic leukemia, and myelodysplastic syndrome who underwent allogeneic hematopoietic stem cell transplantation from January 2001 to December 2010. The median age was 43 years (minimum-maximum: 17-65 years). Myeloablative conditioning was used in 153 patients and reduced intensity conditioning was employed in 51 patients. Donor cells were from bone marrow in 132 patients, peripheral blood in 34, and cord blood in 38. Eosinophilia was detected in 71 patients and there was no significant predictor of eosinophilia by multivariate analysis. There was no relationship between occurrence of eosinophilia and the incidence or grade of acute graft-versus-host disease when the patients were stratified according to corticosteroid treatment. Although eosinophilia was a prognostic factor for 5-year overall survival by univariate analysis, it was not a significant indicator by multivariate analysis. These results suggest that the clinical significance of eosinophilia in patients receiving allogeneic hematopoietic stem cell transplantation should be assessed with consideration of systemic corticosteroid administration.

  4. Myeloid dendritic cells are potential players in human neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Paola eBossù

    2015-12-01

    Full Text Available Alzheimer’s (AD and Parkinson’s (PD diseases are devastating neurodegenerative disturbances wherein neuroinflammation is a chronic pathogenic process with high therapeutic potential. Major mediators of AD/PD neuroimmune processes are resident immune cells, but immune cells derived from periphery may also participate and to some extent modify neuroinflammation. Specifically, blood borne myeloid cells emerge as crucial components of AD/PD progression and susceptibility. Among these, dendritic cells (DCs are key immune orchestrators and players of brain immune surveillance: we candidate them as potential mediators of both AD and PD and as relevant cell model for unraveling myeloid cell role in neurodegeneration. Hence, we recapitulate and discuss emerging data suggesting that blood-derived DCs play a role in experimental and human neurodegenerative diseases. In humans, in particular, DCs are modified by in vitro culture with neurodegeneration-associated pathogenic factors and dysregulated in AD patients, while the levels of DC precursors are decreased in AD and PD patients’ blood, possibly as an index of their recruitment to the brain. Overall, we emphasize the need to explore the impact of DCs on neurodegeneration to uncover peripheral immune mechanisms of pathogenic importance, recognize potential biomarkers and improve therapeutic approaches for neurodegenerative diseases.

  5. IDH mutations in acute myeloid leukemia.

    Science.gov (United States)

    Rakheja, Dinesh; Konoplev, Sergej; Medeiros, L Jeffrey; Chen, Weina

    2012-10-01

    Acute myeloid leukemia is a heterogeneous group of diseases. Mutations of the isocitrate dehydrogenase (IDH) genes represent a novel class of point mutations in acute myeloid leukemia. These mutations prevent oxidative decarboxylation of isocitrate to α-ketoglutarate and confer novel enzymatic activity, facilitating the reduction of α-ketoglutarate to d-2-hydroxyglutarate, a putative oncometabolite. IDH1/IDH2 mutations are heterozygous, and their combined frequency is approximately 17% in unselected acute myeloid leukemia cases, 27% in cytogenetically normal acute myeloid leukemia cases, and up to 67% in acute myeloid leukemia cases with cuplike nuclei. These mutations are largely mutually exclusive. Despite many similarities of IDH1 and IDH2 mutations, it is possible that they represent distinct molecular or clinical subgroups of acute myeloid leukemia. All known mutations involve arginine (R), in codon 132 of IDH1 or codon 140 or 172 of IDH2. IDH1(R132) and IDH2(R140) mutations are frequently accompanied by normal cytogenetics and NPM1 mutation, whereas IDH2(R172) is frequently the only mutation detected in acute myeloid leukemia. There is increasing evidence that the prognostic impact of IDH1/2 mutations varies according to the specific mutation and also depends on the context of concurrent mutations of other genes. IDH1(R132) mutation may predict poor outcome in a subset of patients with molecular low-risk acute myeloid leukemia, whereas IDH2(R172) mutations confer a poor prognosis in patients with acute myeloid leukemia. Expression of IDH1/2 mutants induces an increase in global DNA hypermethylation and inhibits TET2-induced cytosine 5-hydroxymethylation, DNA demethylation. These data suggest that IDH1/2 mutations constitute a distinct mutational class in acute myeloid leukemia, which affects the epigenetic state, an important consideration for the development of therapeutic agents.

  6. Pharm GKB: Leukemia, Myeloid, Acute [PharmGKB

    Lifescience Database Archive (English)

    Full Text Available Amino Acid Translations are all sourced from dbSNP 144 Overview Alternate Names: Synonym AML - Acute... myeloblastic leukaemia; Acute Myeloblastic Leukemia; Acute Myeloblastic Leukemias; Acute... Myelocytic Leukemia; Acute Myelocytic Leukemias; Acute Myelogenous Leukemia; Acute Myelogenous Leukemias; Acute... granulocytic leukaemia; Acute myeloblastic leukemia; Acute myeloid leukaemia; Acute myeloid leukaemia - category; Acute... myeloid leukaemia, disease; Acute myeloid leukemia; Acute myelo

  7. Acute Myeloid Leukemia - Genetics Home Reference [Genetics Home Reference (Conditions)

    Lifescience Database Archive (English)

    Full Text Available Conditions Genes Chromosomes Handbook Glossary Resources Conditions > Acute Myeloid...te myeloid leukemia with mutated CEBPA Fanconi anemia You may also search Genetics Home Reference for Acut...e Myeloid Leukemia for additional information. Published : October 27, 2014 Acute Myeloid Leukemia - Genetics Home Reference ...

  8. The role of the embryonic microenvironment in hematopoietic cell development

    NARCIS (Netherlands)

    E. Haak (Esther)

    2007-01-01

    textabstractThe adult hematopoietic system is comprised of a hierarchy of cells with the hematopoietic stem cell (HSC) at its foundation. HSCs give rise to progenitors that differentiate into mature hematopoietic cells, which perform the physiological functions of the hematopoietic system. The

  9. Hematopoietic effects of benzene inhalation assessed by long-term bone marrow culture.

    Science.gov (United States)

    Abraham, N G

    1996-12-01

    The strong and long-lasting hematotoxic effect after benzene exposure in vivo (300 ppm, 6 hr/day, 5 days/week for 2 weeks) was assessed in mice with bone marrow cells grown in long-term bone marrow culture (LTBMC). Bone marrow cultures initiated 1 day after the last benzene exposure did not produce adequate numbers of hematopoietic cells over 3 weeks, and, in most cases, no erythroid or myeloid clonogenic cells could be recovered. The adherent cell layer of these cultures had a lowered capacity for supporting in vitro hematopoiesis after the second seeding with normal bone marrow cells compared with control cultures. Two weeks after the last benzene exposure, body weight, hematocrit, bone marrow cellularity, and committed hematopoietic progenitor content (BFU-E and CFU-GM) were regenerated to normal or subnormal values, whereas hematopoiesis in LTBMC was very poor. Over 8 weeks, little or no significant committed progenitor production was observed. Treatment of mice exposed to benzene with hemin (three doses of 3 micrograms/g bw i.v. over 2 weeks for a total dose of 9 micrograms/g) partially overcame the toxic effect of benzene on the hematopoietic system as measured by the LTBMC method. Cultures from mice treated with hemin had a modest recovery of BFU-E and CFU-GM clonogenic potential after 5 to 6 weeks in LTBMC. In contrast, little or no recovery was obtained for the adherent cell layer clonogenic capacity, even after hemin treatment. These results clearly indicate a strong, long-lasting toxic effect on the bone marrow stroma and a limited recovery of hematopoietic potential by clonogenic cells of the nonadherent population after in vivo hemin treatment.

  10. Acute myeloid leukemia with DNMT3A mutations.

    Science.gov (United States)

    Li, Yunlong; Zhu, Baosheng

    2014-09-01

    Acute myeloid leukemia (AML), a type of blood cancer, is characterized by an increase in the number of abnormal white blood cells in the bone marrow, frequently causing hematopoietic insufficiency. It is a heterogeneous disease featuring cytogenetic aberrations, recurrent somatic mutations and alterations in gene expression. DNA (cytosine-5-)-methyltransferase 3 alpha (DNMT3A) is closely associated with epigenetic modifications in mammalian development and disease. More recent studies have identified recurrent somatic mutations in DNMT3A in AML, most of which are heterozygous. The DNMT3A R882 codon is a mutational hotspot. The frequency of DNMT3A mutations varies among different countries, but mutations have been found to be associated with cytogenetics, age, white blood cell (WBC) count, prognosis and response of patients to chemotherapy. The normal function of DNMT3A can be disrupted by these mutations, which subsequently results in an abnormality of epigenetic modification. These data suggest that mutations in the DNMT3A gene represent a novel class of mutations in AML with distinct biological and clinical features. Further studies are needed to elucidate the exact molecular mechanism and function of DNMT3A mutations in leukemogenesis.

  11. FLT3 inhibitors: clinical potential in acute myeloid leukemia

    Science.gov (United States)

    Hospital, Marie-Anne; Green, Alexa S; Maciel, Thiago T; Moura, Ivan C; Leung, Anskar Y; Bouscary, Didier; Tamburini, Jerome

    2017-01-01

    Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy that is cured in as few as 15%–40% of cases. Tremendous improvements in AML prognostication arose from a comprehensive analysis of leukemia cell genomes. Among normal karyotype AML cases, mutations in the FLT3 gene are the ones most commonly detected as having a deleterious prognostic impact. FLT3 is a transmembrane tyrosine kinase receptor, and alterations of the FLT3 gene such as internal tandem duplications (FLT3-ITD) deregulate FLT3 downstream signaling pathways in favor of increased cell proliferation and survival. FLT3 tyrosine kinase inhibitors (TKI) emerged as a new therapeutic option in FLT3-ITD AML, and clinical trials are ongoing with a variety of TKI either alone, combined with chemotherapy, or even as maintenance after allogenic stem cell transplantation. However, a wide range of molecular resistance mechanisms are activated upon TKI therapy, thus limiting their clinical impact. Massive research efforts are now ongoing to develop more efficient FLT3 TKI and/or new therapies targeting these resistance mechanisms to improve the prognosis of FLT3-ITD AML patients in the future. PMID:28223820

  12. Cytokine receptors and hematopoietic differentiation.

    Science.gov (United States)

    Robb, L

    2007-10-15

    Colony-stimulating factors and other cytokines signal via their cognate receptors to regulate hematopoiesis. In many developmental systems, inductive signalling determines cell fate and, by analogy with this, it has been postulated that cytokines, signalling via their cognate receptors, may play an instructive role in lineage specification in hematopoiesis. An alternative to this instructive hypothesis is the stochastic or permissive hypothesis. The latter proposes that commitment to a particular hematopoietic lineage is an event that occurs independently of extrinsic signals. It predicts that the role of cytokines is to provide nonspecific survival and proliferation signals. In this review, we look at the role of cytokine receptor signalling in hematopoiesis and consider the evidence for both hypotheses. Data from experiments that genetically manipulate receptor gene expression in vitro or in vivo are reviewed. Experiments in which cytokine receptors were installed in multipotential cells showed that, in some cases, stimulation with the cognate ligand could lead to alterations in lineage output. The creation of genetically manipulated mouse strains demonstrated that cytokine receptors are required for expansion and survival of single lineages but did not reveal a role in lineage commitment. We conclude that hematopoietic differentiation involves mainly stochastic events, but that cytokine receptors also have some instructive role.

  13. Acute Myeloid Leukemia with Isolated Trisomy 19 Associated with Diffuse Myelofibrosis and Osteosclerosis

    Directory of Open Access Journals (Sweden)

    Adam Stelling

    2015-12-01

    Full Text Available Primary myelofibrosis (PMF, per WHO criteria, is a clonal myeloproliferative neoplasm that usually presents with a proliferation of granulocytic and megakaryocytic lineages with an associated fibrous deposition and extramedullary hematopoiesis. The bone marrow histologic findings of this disorder are typically characterized by the presence of myeloid metaplasia with an associated reactive fibrosis, angiogenesis, and osteosclerosis. However, marked myelofibrosis is not solely confined to PMF and may also be associated with other conditions including but not limited to acute megakaryoblastic leukemias (FAB AML-M7. Here, we describe a rare case of a non-megakaryoblastic acute myeloid leukemia with marked myelofibrosis with osteosclerosis and an isolated trisomy 19. A 19-year-old male presented with severe bone pain of one week duration with a complete blood cell count and peripheral smear showing a mild anemia and occasional circulating blasts. A follow up computed tomography (CT scan showed diffuse osteosclerosis with no evidence of hepatosplenomegaly or lymphadenopathy. Subsequently, the bone marrow biopsy showed markedly sclerotic bony trabeculae and a hypercellular marrow with marked fibrosis and intervening sheets of immature myeloid cells consistent with myeloblasts with monocytic differentiation. Importantly, these myeloblasts were negative for megakaryocytic markers (CD61 and vWF, erythroid markers (hemoglobin and E-cadherin, and lymphoid markers (CD3, CD19, and TdT. Metaphase cytogenetics showed an isolated triosomy 19 with no JAK2 V617F mutation. The patient was treated with induction chemotherapy followed by allogenic hematopoietic stem cell transplantation which subsequently resulted in a rapid resolution of bone marrow fibrosis, suggesting graft-anti-fibrosis effect. This is a rare case of a non-megakaryoblastic acute myeloid leukemia with myelofibrosis and osteosclerosis with trisomy 19 that may provide insights into the prognosis and

  14. Precursor T-cell acute lymphoblastic leukemia presenting with bone marrow necrosis: a case report

    Directory of Open Access Journals (Sweden)

    Khoshnaw Najmaddin SH

    2012-10-01

    Full Text Available Abstract Introduction Bone marrow necrosis is a clinicopathological condition diagnosed most often at postmortem examination, but it is also seen during the course of malignancy and is not always associated with a poor prognosis. The morphological features of bone marrow necrosis are disruption of the normal marrow architecture and necrosis of myeloid tissue and medullary stroma. Non-malignant conditions associated with bone marrow necrosis are sickle cell anemia, infections, drugs (sulfasalazine, interferon α, all-trans retinoic acid, granulocyte colony-stimulating factor and fludarabine, disseminated intravascular coagulation, antiphospholipid antibody syndrome and acute graft versus host diseases. The malignant causes are leukemia, lymphoma and metastatic carcinomas. Herein we report the case of a patient with precursor T-cell acute lymphoblastic leukemia and bone marrow necrosis at initial presentation. Case presentation A 10-year-old Kurdish boy was presented with generalized bone pain and fever of 1 month’s duration which was associated with sweating, easy fatigability, nose bleeding, breathlessness and severe weight loss. On examination, we observed pallor, tachypnea, tachycardia, low blood pressure, fever, petechial hemorrhage, ecchymoses, tortuous dilated veins over the chest and upper part of abdomen, multiple small cervical lymph node enlargements, mildly enlarged spleen, palpable liver and gross abdominal distention. Blood analysis revealed pancytopenia and elevated lactate dehydrogenase and erythrocyte sedimentation rate. Imaging results showed mediastinal widening on a planar chest X-ray and diffuse focal infiltration of the axial bone marrow on magnetic resonance imaging of the lumbosacral vertebrae. Bone marrow aspiration and biopsy examination showed extensive bone marrow necrosis. Immunophenotyping analysis of the bone marrow biopsy confirmed T-cell acute lymphoblastic leukemia, as CD3 and terminal deoxynucleotidyl

  15. Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells

    Science.gov (United States)

    Joshi, Anagha; Pooley, Christopher; Freeman, Tom C.; Lennartsson, Andreas; Babina, Magda; Schmidl, Christian; Geijtenbeek, Teunis; Michoel, Tom; Severin, Jessica; Itoh, Masayoshi; Lassmann, Timo; Kawaji, Hideya; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.; Rehli, Michael; Hume, David A.

    2015-01-01

    The generation of myeloid cells from their progenitors is regulated at the level of transcription by combinatorial control of key transcription factors influencing cell-fate choice. To unravel the global dynamics of this process at the transcript level, we generated transcription profiles for 91 human cell types of myeloid origin by use of CAGE profiling. The CAGE sequencing of these samples has allowed us to investigate diverse aspects of transcription control during myelopoiesis, such as identification of novel transcription factors, miRNAs, and noncoding RNAs specific to the myeloid lineage. We further reconstructed a transcription regulatory network by clustering coexpressed transcripts and associating them with enriched cis-regulatory motifs. With the use of the bidirectional expression as a proxy for enhancers, we predicted over 2000 novel enhancers, including an enhancer 38 kb downstream of IRF8 and an intronic enhancer in the KIT gene locus. Finally, we highlighted relevance of these data to dissect transcription dynamics during progressive maturation of granulocyte precursors. A multifaceted analysis of the myeloid transcriptome is made available (www.myeloidome.roslin.ed.ac.uk). This high-quality dataset provides a powerful resource to study transcriptional regulation during myelopoiesis and to infer the likely functions of unannotated genes in human innate immunity. PMID:25717144

  16. Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells.

    Science.gov (United States)

    Joshi, Anagha; Pooley, Christopher; Freeman, Tom C; Lennartsson, Andreas; Babina, Magda; Schmidl, Christian; Geijtenbeek, Teunis; Michoel, Tom; Severin, Jessica; Itoh, Masayoshi; Lassmann, Timo; Kawaji, Hideya; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Rehli, Michael; Hume, David A

    2015-05-01

    The generation of myeloid cells from their progenitors is regulated at the level of transcription by combinatorial control of key transcription factors influencing cell-fate choice. To unravel the global dynamics of this process at the transcript level, we generated transcription profiles for 91 human cell types of myeloid origin by use of CAGE profiling. The CAGE sequencing of these samples has allowed us to investigate diverse aspects of transcription control during myelopoiesis, such as identification of novel transcription factors, miRNAs, and noncoding RNAs specific to the myeloid lineage. We further reconstructed a transcription regulatory network by clustering coexpressed transcripts and associating them with enriched cis-regulatory motifs. With the use of the bidirectional expression as a proxy for enhancers, we predicted over 2000 novel enhancers, including an enhancer 38 kb downstream of IRF8 and an intronic enhancer in the KIT gene locus. Finally, we highlighted relevance of these data to dissect transcription dynamics during progressive maturation of granulocyte precursors. A multifaceted analysis of the myeloid transcriptome is made available (www.myeloidome.roslin.ed.ac.uk). This high-quality dataset provides a powerful resource to study transcriptional regulation during myelopoiesis and to infer the likely functions of unannotated genes in human innate immunity.

  17. Identification of Desirable Precursor Properties for Solution Precursor Plasma Spray

    Science.gov (United States)

    Muoto, Chigozie K.; Jordan, Eric H.; Gell, Maurice; Aindow, Mark

    2011-06-01

    In solution precursor plasma spray chemical precursor solutions are injected into a standard plasma torch and the final material is formed and deposited in a single step. This process has several attractive features, including the ability to rapidly explore new compositions and to form amorphous and metastable phases from molecularly mixed precursors. Challenges include: (a) moderate deposition rates due to the need to evaporate the precursor solvent, (b) dealing on a case by case basis with precursor characteristics that influence the spray process (viscosity, endothermic and exothermic reactions, the sequence of physical states through which the precursor passes before attaining the final state, etc.). Desirable precursor properties were identified by comparing an effective precursor for yttria-stabilized zirconia with four less effective candidate precursors for MgO:Y2O3. The critical parameters identified were a lack of major endothermic events during precursor decomposition and highly dense resultant particles.

  18. Case report of isochromosome 17q in acute myeloid leukemia with myelodysplasia-related changes after treatment with a hypomethylating agent.

    Science.gov (United States)

    Sousa, J C; Germano, R T; Castro, C C M; Magalhaes, S M M; Pinheiro, R F

    2012-08-06

    Isochromosome 17q is a relatively common karyotypic abnormality in medulloblastoma, gastric, bladder, and breast cancers. In myeloid disorders, it is observed during disease progression and evolution to acute myeloid leukemia in Philadelphia-positive chronic myeloid leukemia. It has been reported in rare cases of myelodysplastic syndrome, with an incidence of 0.4-1.57%. Two new agents have been approved for treatment of myelodysplastic syndrome/chronic myelomonocytic leukemia. These are the hypomethylating agents, 5-azacytidine and decitabine, recommended by consensus guidelines for high-risk myelodysplastic syndrome patients not eligible for hematopoietic stem cell transplantation. We present a case of chronic myelomonocytic leukemia with normal cytogenetics at diagnosis treated with decitabine (with good response); however, the patient evolved to acute myeloid leukemia with i(17q) shortly after suspending treatment. To the best of our knowledge, this is the first report of acute myeloid leukemia with myelodysplasia-related changes with i(17q) after the use of a hypomethylating agent.

  19. Serum concentrations of nitrite and malondialdehyde as markers of oxidative stress in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors

    Directory of Open Access Journals (Sweden)

    Maria Juracy Petrola

    2012-01-01

    Full Text Available BACKGROUND: Chronic myeloid leukemia is a neoplasm characterized by clonal expansion of hematopoietic progenitor cells resulting from the (9:22(q34,11 translocation. The tyrosine kinase abl fusion protein,the initial leukemogenic event in chronic myeloid leukemia, is constitutively activated thus inducing the production of reactive oxygen species. Of particular relevance is the fact that an increase in reactive oxygen species can facilitate genomic instability and may contribute to disease progression. OBJETIVE: To evaluate oxidative stress by determining the levels of malondialdehyde and nitrite in chronic myeloid leukemia patients under treatment with 1st and 2nd generation tyrosine kinase inhibitors monitored at a referral hospital in Fortaleza, Ceará. METHODS: A cross-sectional study was performed of 64 male and female adults. Patients were stratified according to treatment. The levels of malondialdehyde and nitrite were determined by spectrophotometry. Statistical differences between groups were observed using the Student t-test and Fisher's exact test. The results are expressed as mean ± standard error of mean. The significance level was set for a p-value < 0.05 in all analyses. RESULTS: The results show significantly higher mean concentrations of nitrite and malondialdehyde in chronic myeloid leukemia patients using second-generation tyrosine kinase inhibitors compared to patients on imatinib. Conclusion: It follows that chronic myeloid leukemia patients present higher oxidative activity and that the increases in oxidative damage markers can indicate resistance to 1st generation tyrosine kinase inhibitors.

  20. Cytomegalovirus immune evasion of myeloid lineage cells.

    Science.gov (United States)

    Brinkmann, Melanie M; Dağ, Franziska; Hengel, Hartmut; Messerle, Martin; Kalinke, Ulrich; Čičin-Šain, Luka

    2015-06-01

    Cytomegalovirus (CMV) evades the immune system in many different ways, allowing the virus to grow and its progeny to spread in the face of an adverse environment. Mounting evidence about the antiviral role of myeloid immune cells has prompted the research of CMV immune evasion mechanisms targeting these cells. Several cells of the myeloid lineage, such as monocytes, dendritic cells and macrophages, play a role in viral control, but are also permissive for CMV and are naturally infected by it. Therefore, CMV evasion of myeloid cells involves mechanisms that qualitatively differ from the evasion of non-CMV-permissive immune cells of the lymphoid lineage. The evasion of myeloid cells includes effects in cis, where the virus modulates the immune signaling pathways within the infected myeloid cell, and those in trans, where the virus affects somatic cells targeted by cytokines released from myeloid cells. This review presents an overview of CMV strategies to modulate and evade the antiviral activity of myeloid cells in cis and in trans.

  1. The role of osteoblasts in regulating hematopoietic stem cell activity and tumor metastasis

    Directory of Open Access Journals (Sweden)

    Neiva K.

    2005-01-01

    Full Text Available Bone marrow stromal cells are critical regulators of hematopoiesis. Osteoblasts are part of the stromal cell support system in bone marrow and may be derived from a common precursor. Several studies suggested that osteoblasts regulate hematopoiesis, yet the entire mechanism is not understood. It is clear, however, that both hematopoietic precursors and osteoblasts interact for the production of osteoclasts and the activation of resorption. We observed that hematopoietic stem cells (HSCs regulate osteoblastic secretion of various growth factors, and that osteoblasts express some soluble factors exclusively in the presence of HSCs. Osteoblasts and hematopoietic cells are closely associated with each other in the bone marrow, suggesting a reciprocal relationship between them to develop the HSC niche. One critical component regulating the niche is stromal-derived factor-1 (SDF-1 and its receptor CXCR4 which regulates stem cell homing and, as we have recently demonstrated, plays a crucial role in facilitating those tumors which metastasize to bone. Osteoblasts produce abundant amounts of SDF-1 and therefore osteoblasts play an important role in metastasis. These findings are discussed in the context of the role of osteoblasts in marrow function in health and disease.

  2. Current status and development of hematopoietic stem cell transplantation in China: a report from Chinese Hematopoietic Stem Cell Transplantation Register Group

    Institute of Scientific and Technical Information of China (English)

    XU Lan-ping; HUANG Xiao-jun

    2011-01-01

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has three decades history in China. During these periods,the number of HSCT has been increasing, donor and stem cell sources were expanded, indication of diseases and patients for HSCT extended. Forty-two HSCT units offered their data 1-6 times from July 2007 to June 2010. The annual increase rates were 8.8% to 10.8%. Matched sibling donor is 41%, mismatched related/haploidentical donor is 24%,unrelated volunteer donor is 16%, and umbilical cord blood is 2%. The indications of major disease entities are acute myeloid leukemia (AML, 35%), acute lymphobastic leukemia (ALL, 25%), chronic myeloid leukemia (CML, 21%), and myelodysplastic syndrome (MDS, 8%). The different opinions on the indication of HSCT were supported by some trials,matched/haploidentical HSCT fit for middle or high risk ALL and AML in first complete remission (CR1), the international prognosis score system (IPSS) - middle-Ⅱ/high risk MDS, CML in advanced stage and so on, when patients have no matched sibling donor. In the Peking University Institute of Hematology, Peking University People's Hospital,haploidentical HSCT has received a comparable result to matched simbling donor HSCT and unrelated matched donor HSCT; we suggest haploidentical donor might be a routine alternative donor for high-risk patents who need an urgent HSCT without matched related donor in special center.

  3. PARASITIC INFECTIONS IN HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    Isidro Jarque

    2016-07-01

    Full Text Available Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However, they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients.

  4. Metalloproteinases: a Functional Pathway for Myeloid Cells.

    Science.gov (United States)

    Chou, Jonathan; Chan, Matilda F; Werb, Zena

    2016-04-01

    Myeloid cells have diverse roles in regulating immunity, inflammation, and extracellular matrix turnover. To accomplish these tasks, myeloid cells carry an arsenal of metalloproteinases, which include the matrix metalloproteinases and the adamalysins. These enzymes have diverse substrate repertoires, and are thus involved in mediating proteolytic cascades, cell migration, and cell signaling. Dysregulation of metalloproteinases contributes to pathogenic processes, including inflammation, fibrosis, and cancer. Metalloproteinases also have important nonproteolytic functions in controlling cytoskeletal dynamics during macrophage fusion and enhancing transcription to promote antiviral immunity. This review highlights the diverse contributions of metalloproteinases to myeloid cell functions.

  5. Allogeneic hematopoietic stem-cell transplantation for acute myeloid leukemia in remission

    DEFF Research Database (Denmark)

    Nagler, Arnon; Rocha, Vanderson; Labopin, Myriam

    2013-01-01

    Cyclophosphamide (Cy) combined with total-body irradiation (TBI) or with busulfan (Bu) are currently the most common myeloablative regimens used in allogeneic stem-cell transplantation (alloSCT) in adults with acute myelogenous leukemia (AML). Intravenous (IV) Bu has more predictable bioavailabil......Cyclophosphamide (Cy) combined with total-body irradiation (TBI) or with busulfan (Bu) are currently the most common myeloablative regimens used in allogeneic stem-cell transplantation (alloSCT) in adults with acute myelogenous leukemia (AML). Intravenous (IV) Bu has more predictable...

  6. Generation of axolotl hematopoietic chimeras

    Directory of Open Access Journals (Sweden)

    David Lopez

    2015-02-01

    Full Text Available Wound repair is an extremely complex process that requires precise coordination between various cell types including immune cells.  Unfortunately, in mammals this usually results in scar formation instead of restoration of the original fully functional tissue, otherwise known as regeneration.  Various animal models like frogs and salamanders are currently being studied to determine the intracellular and intercellular pathways, controlled by gene expression, that elicit cell proliferation, differentiation, and migration of cells during regenerative healing.  Now, the necessary genetic tools to map regenerative pathways are becoming available for the axolotl salamander, thus allowing comparative studies between scarring and regeneration.  Here, we describe in detail three methods to produce axolotl hematopoietic cell-tagged chimeras for the study of hematopoiesis and regeneration.

  7. A retrospective cohort study of cause-specific mortality and incidence of hematopoietic malignancies in Chinese benzene-exposed workers.

    Science.gov (United States)

    Linet, Martha S; Yin, Song-Nian; Gilbert, Ethel S; Dores, Graça M; Hayes, Richard B; Vermeulen, Roel; Tian, Hao-Yuan; Lan, Qing; Portengen, Lutzen; Ji, Bu-Tian; Li, Gui-Lan; Rothman, Nathaniel

    2015-11-01

    Benzene exposure has been causally linked with acute myeloid leukemia (AML), but inconsistently associated with other hematopoietic, lymphoproliferative and related disorders (HLD) or solid tumors in humans. Many neoplasms have been described in experimental animals exposed to benzene. We used Poisson regression to estimate adjusted relative risks (RR) and the likelihood ratio statistic to derive confidence intervals for cause-specific mortality and HLD incidence in 73,789 benzene-exposed compared with 34,504 unexposed workers in a retrospective cohort study in 12 cities in China. Follow-up and outcome assessment was based on factory, medical and other records. Benzene-exposed workers experienced increased risks for all-cause mortality (RR = 1.1, 95% CI = 1.1, 1.2) due to excesses of all neoplasms (RR = 1.3, 95% CI = 1.2, 1.4), respiratory diseases (RR = 1.7, 95% CI = 1.2, 2.3) and diseases of blood forming organs (RR = ∞, 95% CI = 3.4, ∞). Lung cancer mortality was significantly elevated (RR = 1.5, 95% CI = 1.2, 1.9) with similar RRs for males and females, based on three-fold more cases than in our previous follow-up. Significantly elevated incidence of all myeloid disorders reflected excesses of myelodysplastic syndrome/acute myeloid leukemia (RR = 2.7, 95% CI = 1.2, 6.6) and chronic myeloid leukemia (RR = 2.5, 95% CI = 0.8, 11), and increases of all lymphoid disorders included excesses of non-Hodgkin lymphoma (RR = 3.9, 95%CI = 1.5, 13) and all lymphoid leukemia (RR = 5.4, 95%CI = 1.0, 99). The 28-year follow-up of Chinese benzene-exposed workers demonstrated increased risks of a broad range of myeloid and lymphoid neoplasms, lung cancer, and respiratory diseases and suggested possible associations with other malignant and non-malignant disorders.

  8. Exploring the acute myeloid leukaemias

    Directory of Open Access Journals (Sweden)

    TB Thapa

    2013-10-01

    Full Text Available The acute myeloid leukemias are genetically a diverse group of neoplasm with varied clinical behavior and response to treatment. Advances in immunophenotyping, cytogenetics and molecular genetics have resulted in better understanding of their genesis. Risk stratification of different variants is now emerging. Therapy strategies are now increasingly being developed considering the inherent biological behavior of the different subtypes. It is anticipated that in the future, deeper secrets of these once fatal diseases will be unraveled by advances in newer genomic techniques. It is hoped that future use of gene specific tailored therapy and strategies will result in longer survival in cases showing poorer prognosis at present. DOI: http://dx.doi.org/10.3126/jpn.v3i6.9001 Journal of Pathology of Nepal (2013 Vol. 3, 497-501

  9. Treatment Option Overview (Adult Acute Myeloid Leukemia)

    Science.gov (United States)

    ... Childhood AML Treatment Research Adult Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute ... bleeding and forming blood clots. Smoking, previous chemotherapy treatment, and exposure to radiation may affect the risk ...

  10. Gene expression profiling in acute myeloid leukaemia

    NARCIS (Netherlands)

    de Jonge, H. J. M.; Huls, G.; de Bont, E. S. J. M.

    Acute myeloid leukaemia (AML) is a heterogeneous disease characterised by clonal malignant haematopoiesis with a differentiation arrest and excessive proliferation of leukaemic blasts. Over the past decades, the heterogeneity of AML has been illustrated by evolving classifications based on

  11. Myeloid sarcoma of submandibular salivary gland

    Directory of Open Access Journals (Sweden)

    Federico Dagna

    2016-01-01

    Full Text Available Objective: To report a rare case of a myeloid sarcoma of submandibular salivary gland. Methods: A 65-year-old woman with a history of successfully treated myelodysplastic syndrome, presenting with periodic painful swelling of her right submandibular area. Results: Physical evaluation, ultrasound and CT scan revealed the presence of a 3-cm mass contiguous to the submandibular salivary gland. A core needle biopsy confirmed the diagnosis of myeloid sarcoma. Bone marrow biopsy was still showing complete remission and the submandibular gland was the only extramedullary site involved. The patient was submitted to chemotherapy. Conclusion: Myeloid sarcoma is a rare extramedullary neoplasm. It can virtually involve any anatomic site, but it usually involves lymph nodes, paranasal sinuses, skin, soft tissue and periostium. Myeloid sarcomas of salivary glands are very rare and ENTs should be aware of this disease in order to include it in the differential diagnosis of a solitary neck mass.

  12. Treatment Options for Adult Acute Myeloid Leukemia

    Science.gov (United States)

    ... Childhood AML Treatment Research Adult Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute ... bleeding and forming blood clots. Smoking, previous chemotherapy treatment, and exposure to radiation may affect the risk ...

  13. Acute myeloid leukemia presenting as galactorrhea

    Science.gov (United States)

    Nambiar, K. Rakul; Devi, R. Nandini

    2016-01-01

    Acute myeloid leukemia (AML) presents with symptoms related to pancytopenia (weakness, infections, bleeding diathesis) and organ infiltration with leukemic cells. Galactorrhea is an uncommon manifestation of AML. We report a case of AML presenting with galactorrhea. PMID:27695173

  14. Acute myeloid leukemia presenting as galactorrhea

    OpenAIRE

    Nambiar, K. Rakul; Nair, Sreejith G.; Devi, R. Nandini

    2016-01-01

    Acute myeloid leukemia (AML) presents with symptoms related to pancytopenia (weakness, infections, bleeding diathesis) and organ infiltration with leukemic cells. Galactorrhea is an uncommon manifestation of AML. We report a case of AML presenting with galactorrhea.

  15. Vorinostat in Treating Patients With Acute Myeloid Leukemia

    Science.gov (United States)

    2014-04-30

    Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia; Refractory Cytopenia With Multilineage Dysplasia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. E2F4 modulates differentiation and gene expression in hematopoietic progenitor cells during commitment to the lymphoid lineage.

    Science.gov (United States)

    Enos, Megan E; Bancos, Simona A; Bushnell, Timothy; Crispe, Ian N

    2008-03-15

    The E2F4 protein is involved in gene repression and cell cycle exit, and also has poorly understood effects in differentiation. We analyzed the impact of E2F4 deficiency on early steps in mouse hematopoietic development, and found defects in early hematopoietic progenitor cells that were propagated through common lymphoid precursors to the B and T lineages. In contrast, the defects in erythromyeloid precursor cells were self-correcting over time. This suggests that E2F4 is important in early stages of commitment to the lymphoid lineage. The E2F4-deficient progenitor cells showed reduced expression of several key lymphoid-lineage genes, and overexpression of two erythromyeloid lineage genes. However, we did not detect effects on cell proliferation. These findings emphasize the significance of E2F4 in controlling gene expression and cell fate.

  17. Hematopoietic Stem Cells Expansionin Rotating Wall Vessel

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionClinical trials have demonstrated that ex vivo expanded hematopoietic stem cells (HSCs) and progenitors offer great promise in reconstituting in vivo hematopoiesis in patients who have undergone intensive chemotherapy. It is therefore necessary to develop a clinical-scale culture system to provide the expanded HSCs and progenitors. Static culture systems such as T-flasks and gas-permeable blood bags are the most widely used culture devices for expanding hematopoietic cells. But they reveal sev...

  18. Hematopoietic progenitor migration to the adult thymus

    OpenAIRE

    Zlotoff, Daniel A.; Bhandoola, Avinash

    2011-01-01

    While most hematopoietic lineages develop in the bone marrow (BM), T cells uniquely complete their development in the specialized environment of the thymus. Hematopoietic stem cells with long-term self-renewal capacity are not present in the thymus. As a result, continuous T cell development requires that BM-derived progenitors be imported into the thymus throughout adult life. The process of thymic homing begins with the mobilization of progenitors out of the bone marrow, continues with thei...

  19. Cell-intrinsic in vivo requirement for the E47-p21 pathway in long-term hematopoietic stem cells.

    Science.gov (United States)

    Santos, Patricia M; Ding, Ying; Borghesi, Lisa

    2014-01-01

    Major regulators of long-term hematopoietic stem cell (LT-HSC) self-renewal and proliferation have been identified, but knowledge of their in vivo interaction in a linear pathway is lacking. In this study, we show a direct genetic link between the transcription factor E47 and the major cell cycle regulator p21 in controlling LT-HSC integrity in vivo under repopulation stress. Numerous studies have shown that E47 activates p21 transcription in hematopoietic subsets in vitro, and we now reveal the in vivo relevance of the E47-p21 pathway by reducing the gene dose of each factor individually (E47(het) or p21(het)) versus in tandem (E47(het)p21(het)). E47(het)p21(het) LT-HSCs and downstream short-term hematopoietic stem cells exhibit hyperproliferation and preferential susceptibility to mitotoxin compared to wild-type or single haploinsufficient controls. In serial adoptive transfers that rigorously challenge self-renewal, E47(het)p21(het) LT-HSCs dramatically and progressively decline, indicating the importance of cell-intrinsic E47-p21 in preserving LT-HSCs under stress. Transient numeric recovery of downstream short-term hematopoietic stem cells enabled the production of functionally competent myeloid but not lymphoid cells, as common lymphoid progenitors were decreased, and peripheral lymphocytes were virtually ablated. Thus, we demonstrate a developmental compartment-specific and lineage-specific requirement for the E47-p21 pathway in maintaining LT-HSCs, B cells, and T cells under hematopoietic repopulation stress in vivo.

  20. Allogeneic hematopoietic stem cell transplantation for inherited bone marrow failure syndromes.

    Science.gov (United States)

    Dalle, Jean-Hugues; Peffault de Latour, Régis

    2016-04-01

    Inherited bone marrow failure (IBMF) syndromes are a heterogeneous group of rare hematological disorders characterized by the impairment of hematopoiesis, which harbor specific clinical presentations and pathogenic mechanisms. Some of these syndromes may progress through clonal evolution, myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Most prominent are failures of DNA repair such as Fanconi Anemia and much rarer failure of ribosomal apparatus, e.g., Diamond Blackfan Anemia or of telomere elongation such as dyskeratosis congenita. In these congenital disorders, hematopoietic stem cell transplantation (HSCT) is often a consideration. However, HSCT will not correct the underlying disease and possible co-existing extra-medullary (multi)-organ defects, but will improve BMF. Indications as well as transplantation characteristics are most of the time controversial in this setting because of the rarity of reported cases. The present paper proposes a short overview of current practices.

  1. Purification and characterization of fetal hematopoietic cells that express the common acute lymphoblastic leukemia antigen (CALLA)

    DEFF Research Database (Denmark)

    Hokland, P; Rosenthal, P; Griffin, J D

    1983-01-01

    Fetal hematopoietic cells that express the common acute lymphoblastic leukemia antigen (CALLA) were purified from both fetal liver and fetal bone marrow by immune rosetting with sheep erythrocytes coated with rabbit anti-mouse immunoglobulin and by fluorescence-activated cell sorting. Dual...... lymphoblastic leukemia cell with respect to surface marker phenotype. A population of CALLA- cells devoid of mature erythroid and myeloid surface markers was found to contain higher numbers of TdT+ cells but lower numbers of cyto-mu, B1, and Ia+ cells than the CALLA+ subset. In vitro analysis of normal...... antigen. Furthermore, using methanol-fixed cells, it could be shown that approximately 20% contained intracytoplasmic mu chains (cyto-mu) and that approximately 15% were positive for the terminal transferase enzyme (TdT) marker. The CALLA+ fetal cells thus closely resemble the childhood acute...

  2. Measurement of myeloid cell immune suppressive activity.

    Science.gov (United States)

    Dolcetti, Luigi; Peranzoni, Elisa; Bronte, Vincenzo

    2010-11-01

    This unit presents simple methods to assess the immunosuppressive properties of immunoregulatory cells of myeloid origin, such as myeloid-derived suppressor cells (MDSCs), both in vitro and in vivo. These methods are general and could be adapted to test the impact of different suppressive populations on T cell activation, proliferation, and cytotoxic activity; moreover they could be useful to assess the influence exerted on immune suppressive pathways by genetic modifications, chemical inhibitors, and drugs.

  3. Control of Both Myeloid Cell Infiltration and Angiogenesis by CCR1 Promotes Liver Cancer Metastasis Development in Mice

    Directory of Open Access Journals (Sweden)

    Mathieu Paul Rodero

    2013-06-01

    Full Text Available Expression of the CC chemokine receptor 1 (CCR1 by tumor cells has been associated with protumoral activity; however, its role in nontumoral cells during tumor development remains elusive. Here, we investigated the role of CCR1 deletion on stromal and hematopoietic cells in a liver metastasis tumor model. Metastasis development was strongly impaired in CCR1-deficient mice compared to control mice and was associated with reduced liver monocyte infiltration. To decipher the role of myeloid cells, sublethally irradiated mice were reconstituted with CCR1-deficient bone marrow (BM and showed better survival rates than the control reconstituted mice. These results point toward the involvement of CCR1 myeloid cell infiltration in the promotion of tumor burden. In addition, survival rates were extended in CCR1-deficient mice receiving either control or CCR1-deficient BM, indicating that host CCR1 expression on nonhematopoietic cells also supports tumor growth. Finally, we found defective tumor-induced neoangiogenesis (in vitro and in vivo in CCR1-deficient mice. Overall, our results indicate that CCR1 expression by both hematopoietic and nonhematopoietic cells favors tumor aggressiveness. We propose CCR1 as a potential therapeutical target for liver metastasis therapy.

  4. Reconstitution of the myeloid and lymphoid compartments after the transplantation of autologous and genetically modified CD34(+) bone marrow cells, following gamma irradiation in cynomolgus macaques

    Energy Technology Data Exchange (ETDEWEB)

    Derdouch, S.; Gay, W.; Prost, S.; Le Dantec, M.; Delache, B.; Auregan, G.; Andrieu, T.; Le Grand, R. [CEA, DSV, Serv Immunovirol, Inst Maladies Emergentes et Therapies Innovantes, Fontenay Aux Roses (France); Derdouch, S.; Gay, W.; Prost, S.; Le Dantec, M.; Delache, B.; Auregan, G.; Andrieu, T.; Le Grand, R. [Univ Paris 11, UMR E01, Orsay (France); Negre, D.; Cosset, F. [Univ Lyon, UCB Lyon 1, IFR 128, F-69007 Lyon (France); Negre, D.; Cosset, F. [INSERM, U758, F-69007 Lyon (France); Negre, D.; Cosset, F.L. [Ecole NormaleSuper Lyon, F-69007 Lyon (France); Leplat, J.J. [CEA, DSV, IRCM, SREIT, Lab Radiobiol, F-78352 Jouy En Josas (France); Leplat, J.J. [CEA, DSV, IRCM, SREIT, Etude Genome, F-78352 Jouy En Josas (France); Leplat, J.J. [INRA, DGA, Radiobiol Lab, F-78352 Jouy En Josas (France); Leplat, J.J. [INRA, DGA, Etude Genome, F-78352 Jouy En Josas (France)

    2008-07-01

    Prolonged, altered hematopoietic reconstitution is commonly observed in patients undergoing myelo-ablative conditioning and bone marrow and/or mobilized peripheral blood-derived stem cell transplantation. We studied the reconstitution of myeloid and lymphoid compartments after the transplantation of autologous CD34{sup +} bone marrow cells following gamma irradiation in cynomolgus macaques. The bone marrow cells were first transduced ex vivo with a lentiviral vector encoding eGFP, with a mean efficiency of 72% {+-} 4%. The vector used was derived from the simian immunodeficiency lentivirus SIVmac251, VSV-g pseudo-typed and encoded eGFP under the control of the phosphoglycerate kinase promoter. After myeloid differentiation, GFP was detected in colony-forming cells (37% {+-} 10%). A previous study showed that transduction rates did not differ significantly between colony-forming cells and immature cells capable of initiating long-term cultures, indicating that progenitor cells and highly immature hematopoietic cells were transduced with similar efficiency. Blood cells producing eGFP were detected as early as three days after transplantation,and eGFP-producing granulocyte and mononuclear cells persisted for more than one year in the periphery. Conclusion: The transplantation of CD34{sup +} bone marrow cells had beneficial effects for the ex vivo proliferation and differentiation of hematopoietic progenitors, favoring reconstitution of the T-and B-lymphocyte, thrombocyte and red blood cell compartments. (authors)

  5. SNP Array in Hematopoietic Neoplasms: A Review

    Directory of Open Access Journals (Sweden)

    Jinming Song

    2015-12-01

    Full Text Available Cytogenetic analysis is essential for the diagnosis and prognosis of hematopoietic neoplasms in current clinical practice. Many hematopoietic malignancies are characterized by structural chromosomal abnormalities such as specific translocations, inversions, deletions and/or numerical abnormalities that can be identified by karyotype analysis or fluorescence in situ hybridization (FISH studies. Single nucleotide polymorphism (SNP arrays offer high-resolution identification of copy number variants (CNVs and acquired copy-neutral loss of heterozygosity (LOH/uniparental disomy (UPD that are usually not identifiable by conventional cytogenetic analysis and FISH studies. As a result, SNP arrays have been increasingly applied to hematopoietic neoplasms to search for clinically-significant genetic abnormalities. A large numbers of CNVs and UPDs have been identified in a variety of hematopoietic neoplasms. CNVs detected by SNP array in some hematopoietic neoplasms are of prognostic significance. A few specific genes in the affected regions have been implicated in the pathogenesis and may be the targets for specific therapeutic agents in the future. In this review, we summarize the current findings of application of SNP arrays in a variety of hematopoietic malignancies with an emphasis on the clinically significant genetic variants.

  6. Hematopoietic Acute Radiation Syndrome (Bone marrow syndrome, Aplastic Anemia): Molecular Mechanisms of Radiation Toxicity.

    Science.gov (United States)

    Popov, Dmitri

    Key Words: Aplastic Anemia (AA), Pluripotential Stem Cells (PSC) Introduction: Aplastic Anemia (AA) is a disorder of the pluripotential stem cells involve a decrease in the number of cells of myeloid, erythroid and megakaryotic lineage [Segel et al. 2000 ]. The etiology of AA include idiopathic cases and secondary aplastic anemia after exposure to drugs, toxins, chemicals, viral infections, lympho-proliferative diseases, radiation, genetic causes, myelodisplastic syndromes and hypoplastic anemias, thymomas, lymphomas. [Brodskyet al. 2005.,Modan et al. 1975., Szklo et al. 1975]. Hematopoietic Acute Radiation Syndrome (or Bone marrow syndrome, or Radiation-Acquired Aplastic Anemia) is the acute toxic syndrome which usually occurs with a dose of irradiation between 0.7 and 10 Gy (70- 1000 rads), depending on the species irradiated. [Waselenko et al., 2004]. The etiology of bone morrow damage from high-level radiation exposure results depends on the radiosensitivity of certain bone marrow cell lines. [Waselenko et al. 2004] Aplastic anemia after radiation exposure is a clinical syndrome that results from a marked disorder of bone marrow blood cell production. [Waselenko et al. 2004] Radiation hematotoxicity is mediated via genotoxic and other specific toxic mechanisms, leading to aplasia, cell apoptosis or necrosis, initiation via genetic mechanisms of clonal disorders, in cases such as the acute radiation-acquired form of AA. AA results from radiation injury to pluripotential and multipotential stem cells in the bone marrow. The clinical signs displayed in reticulocytopenia, anemia, granulocytopenia, monocytopenia, and thrombocytopenia. The number of marrow CD34+ cells (multipotential hematopoietic progenitors) and their derivative colony-forming unit{granulocyte-macrophage (CFU-GM) and burst forming unit {erythroid (BFU{E) are reduced markedly in patients with AA. [Guinan 2011, Brodski et al. 2005, Beutler et al.,2000] Cells expressing CD34 (CD34+ cell) are normally

  7. Retinoic acid induction of CD38 antigen expression on normal and leukemic human myeloid cells: relationship with cell differentiation.

    Science.gov (United States)

    Prus, Eugenia; Fibach, Eitan

    2003-04-01

    Differentiation in the hematopoietic system involves, among other changes, altered expression of antigens, including the CD34 and CD38 surface antigens. In normal hematopoiesis, the most immature stem cells have the CD34 + CD34 - phenotype. In acute myeloid leukemia (AML), although blasts from most patients are CD38 +, some are CD38 - . AML blasts are blocked at early stages of differentiation; in some leukemic cells this block can be overcome by a variety of agents, including retinoids, that induce maturation into macrophages and granulocytes both in vitro and in vivo. Retinoids can also induce CD38 expression. In the present study, we investigated the relationship between induction of CD38 expression and induction of myeloid differentiation by retinoic acid (RA) in normal and leukemic human hematopoietic cells. In the promyelocytic (PML) CD34 - cell lines, HL60 and CB-1, as well as in normal CD34 + CD34 - hematopietic progenitor cells RA induced both CD38 expression as well as morphological and functional myeloid differentiation that resulted in loss of self-renewal. In contrast, in the myeloblastic CD34 + leukemic cell lines, ML-1 and KG-1a, as well as in primary cultures of cells derived from CD34 + -AML (M0 and M1) patients, RA caused an increase in CD38 + that was not associated with significant differentiation. Yet, long exposure of ML-1, but not KG-1, cells to RA resulted in loss of self-renewal. The results suggest that while in normal hematopoietic cells and in PML CD34 - cells induction of CD38 antigen expression by RA results in terminal differentiation along the myeloid lineage, in early myeloblastic leukemic CD34 + cells, induction of CD38 and differentiation are not functionally related. Since, several lines of evidence suggest that the CD38 - cells are the targets of leukemic transformation, transition of these cellsinto CD38 + phenotype by RA or other drugs may have therapeutic effect, either alone or in conjunction with cytotoxic drugs, regardless

  8. Cutaneous myeloid sarcoma: natural history and biology of an uncommon manifestation of acute myeloid leukemia.

    Science.gov (United States)

    Hurley, M Yadira; Ghahramani, Grant K; Frisch, Stephanie; Armbrecht, Eric S; Lind, Anne C; Nguyen, Tudung T; Hassan, Anjum; Kreisel, Friederike H; Frater, John L

    2013-05-01

    We conducted a retrospective study of patients with cutaneous myeloid sarcoma, from 2 tertiary care institutions. Eighty-three patients presented, with a mean age of 52 years. Diagnosis of myeloid sarcoma in the skin was difficult due to the low frequency of myeloperoxidase and/or CD34+ cases (56% and 19% of tested cases, respectively). Seventy-one of the 83 patients (86%) had ≥ 1 bone marrow biopsy. Twenty-eight (39%) had acute myeloid leukemia with monocytic differentiation. Twenty-three had other de novo acute myeloid leukemia subtypes. Thirteen patients had other myeloid neoplasms, of which 4 ultimately progressed to an acute myeloid leukemia. Seven had no bone marrow malignancy. Ninety-eight percent of the patients received chemotherapy, and approximately 89% died of causes related to their disease. Cutaneous myeloid sarcoma in most cases represents an aggressive manifestation of acute myeloid leukemia. Diagnosis can be challenging due to lack of myeloblast-associated antigen expression in many cases, and difficulty in distinguishing monocyte-lineage blasts from neoplastic and non-neoplastic mature monocytes.

  9. Effect of endothelial progenitor cell on hematopoietic reconstitution in allogeneic hematopoietic stem cell transplantation mouse model

    Institute of Scientific and Technical Information of China (English)

    化静

    2013-01-01

    Objective To examine the effects of endothelial progenitor cell (EPC) on hematopoietic reconsititution in allogeneic hematopoietic stem cell transplantation (alloHSCT) mouse model.Methods Allo-HSCT mouse model was established with condition of BU/CY,in which C57BL/6 (H-2b) and BABL/c (H-2d) mice were used

  10. Hematopoietic reconstitution on the prognosis of hematological malignancies after allogenceic hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    张燕

    2012-01-01

    Objective To analyze the impact of the time to hematopoietic reconstitution on the prognosis of hematological malignancies after allogeneic hematopoietic stem cell transplantation(allo-HSCT) . Methods 173 patients with hematological malignancies treated with allo-HSCT (excluding umbilical cord blood transplantation)

  11. Decitabine, Cytarabine, and Daunorubicin Hydrochloride in Treating Patients With Acute Myeloid Leukemia

    Science.gov (United States)

    2016-07-20

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  12. Nitric oxide-induced murine hematopoietic stem cell fate involves multiple signaling proteins, gene expression, and redox modulation.

    Science.gov (United States)

    Nogueira-Pedro, Amanda; Dias, Carolina C; Regina, Helena; Segreto, C; Addios, Priscilla C; Lungato, Lisandro; D'Almeida, Vania; Barros, Carlos C; Higa, Elisa M S; Buri, Marcus V; Ferreira, Alice T; Paredes-Gamero, Edgar Julian

    2014-11-01

    There are a growing number of reports showing the influence of redox modulation in cellular signaling. Although the regulation of hematopoiesis by reactive oxygen species (ROS) and reactive nitrogen species (RNS) has been described, their direct participation in the differentiation of hematopoietic stem cells (HSCs) remains unclear. In this work, the direct role of nitric oxide (NO(•)), a RNS, in the modulation of hematopoiesis was investigated using two sources of NO(•) , one produced by endothelial cells stimulated with carbachol in vitro and another using the NO(•)-donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) in vivo. Two main NO(•) effects were observed: proliferation of HSCs-especially of the short-term HSCs-and its commitment and terminal differentiation to the myeloid lineage. NO(•)-induced proliferation was characterized by the increase in the number of cycling HSCs and hematopoietic progenitor cells positive to BrdU and Ki-67, upregulation of Notch-1, Cx43, PECAM-1, CaR, ERK1/2, Akt, p38, PKC, and c-Myc. NO(•)-induced HSCs differentiation was characterized by the increase in granulocytic-macrophage progenitors, granulocyte-macrophage colony forming units, mature myeloid cells, upregulation of PU.1, and C/EBPα genes concomitantly to the downregulation of GATA-3 and Ikz-3 genes, activation of Stat5 and downregulation of the other analyzed proteins mentioned above. Also, redox status modulation differed between proliferation and differentiation responses, which is likely associated with the transition of the proliferative to differentiation status. Our findings provide evidence of the role of NO(•) in inducing HSCs proliferation and myeloid differentiation involving multiple signaling. © 2014 AlphaMed Press.

  13. Pre-transplantation minimal residual disease with cytogenetic and molecular diagnostic features improves risk stratification in acute myeloid leukemia

    Science.gov (United States)

    Oran, Betül; Jorgensen, Jeff L.; Marin, David; Wang, Sa; Ahmed, Sairah; Alousi, Amin M.; Andersson, Borje S.; Bashir, Qaiser; Bassett, Roland; Lyons, Genevieve; Chen, Julianne; Rezvani, Katy; Popat, Uday; Kebriaei, Partow; Patel, Keyur; Rondon, Gabriela; Shpall, Elizabeth J.; Champlin, Richard E.

    2017-01-01

    Our aim was to improve outcome prediction after allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia by combining cytogenetic and molecular data at diagnosis with minimal residual disease assessment by multicolor flow-cytometry at transplantation. Patients with acute myeloid leukemia in first complete remission in whom minimal residual disease was assessed at transplantation were included and categorized according to the European LeukemiaNet classification. The primary outcome was 1-year relapse incidence after transplantation. Of 152 patients eligible, 48 had minimal residual disease at the time of their transplant. Minimal residual disease-positive patients were older, required more therapy to achieve first remission, were more likely to have incomplete recovery of blood counts and had more adverse risk features by cytogenetics. Relapse incidence at 1 year was higher in patients with minimal residual disease (32.6% versus 14.4%, P=0.002). Leukemia-free survival (43.6% versus 64%, P=0.007) and overall survival (48.8% versus 66.9%, P=0.008) rates were also inferior in patients with minimal residual disease. In multivariable analysis, minimal residual disease status at transplantation independently predicted 1-year relapse incidence, identifying a subgroup of intermediate-risk patients, according to the European LeukemiaNet classification, with a particularly poor outcome. Assessment of minimal residual disease at transplantation in combination with cytogenetic and molecular findings provides powerful independent prognostic information in acute myeloid leukemia, lending support to the incorporation of minimal residual disease detection to refine risk stratification and develop a more individualized approach during hematopoietic stem cell transplantation. PMID:27540139

  14. Acellular bone marrow extracts significantly enhance engraftment levels of human hematopoietic stem cells in mouse xeno-transplantation models.

    Directory of Open Access Journals (Sweden)

    Kazem Zibara

    Full Text Available Hematopoietic stem cells (HSC derived from cord blood (CB, bone marrow (BM, or mobilized peripheral blood (PBSC can differentiate into multiple lineages such as lymphoid, myeloid, erythroid cells and platelets. The local microenvironment is critical to the differentiation of HSCs and to the preservation of their phenotype in vivo. This microenvironment comprises a physical support supplied by the organ matrix as well as tissue specific cytokines, chemokines and growth factors. We investigated the effects of acellular bovine bone marrow extracts (BME on HSC in vitro and in vivo. We observed a significant increase in the number of myeloid and erythroid colonies in CB mononuclear cells (MNC or CB CD34+ cells cultured in methylcellulose media supplemented with BME. Similarly, in xeno-transplantation experiments, pretreatment with BME during ex-vivo culture of HSCs induced a significant increase in HSC engraftment in vivo. Indeed, we observed both an increase in the number of differentiated myeloid, lymphoid and erythroid cells and an acceleration of engraftment. These results were obtained using CB MNCs, BM MNCs or CD34(+ cells, transplanted in immuno-compromised mice (NOD/SCID or NSG. These findings establish the basis for exploring the use of BME in the expansion of CB HSC prior to HSC Transplantation. This study stresses the importance of the mechanical structure and soluble mediators present in the surrounding niche for the proper activity and differentiation of stem cells.

  15. FAM20: an evolutionarily conserved family of secreted proteins expressed in hematopoietic cells

    Directory of Open Access Journals (Sweden)

    Cobos Everardo

    2005-01-01

    Full Text Available Abstract Background Hematopoiesis is a complex developmental process controlled by a large number of factors that regulate stem cell renewal, lineage commitment and differentiation. Secreted proteins, including the hematopoietic growth factors, play critical roles in these processes and have important biological and clinical significance. We have employed representational difference analysis to identify genes that are differentially expressed during experimentally induced myeloid differentiation in the murine EML hematopoietic stem cell line. Results One identified clone encoded a previously unidentified protein of 541 amino acids that contains an amino terminal signal sequence but no other characterized domains. This protein is a member of family of related proteins that has been named family with sequence similarity 20 (FAM20 with three members (FAM20A, FAM20B and FAM20C in mammals. Evolutionary comparisons revealed the existence of a single FAM20 gene in the simple vertebrate Ciona intestinalis and the invertebrate worm Caenorhabditis elegans and two genes in two insect species, Drosophila melanogaster and Anopheles gambiae. Six FAM20 family members were identified in the genome of the pufferfish, Fugu rubripes and five members in the zebrafish, Danio rerio. The mouse Fam20a protein was ectopically expressed in a mammalian cell line and found to be a bona fide secreted protein and efficient secretion was dependent on the integrity of the signal sequence. Expression analysis revealed that the Fam20a gene was indeed differentially expressed during hematopoietic differentiation and that the other two family members (Fam20b and Fam20c were also expressed during hematcpoiesis but that their mRNA levels did not vary significantly. Likewise FAM20A was expressed in more limited set of human tissues than the other two family members. Conclusions The FAM20 family represents a new family of secreted proteins with potential functions in regulating

  16. Discovery and characterization of novel vascular and hematopoietic genes downstream of etsrp in zebrafish.

    Directory of Open Access Journals (Sweden)

    Gustavo A Gomez

    Full Text Available The transcription factor Etsrp is required for vasculogenesis and primitive myelopoiesis in zebrafish. When ectopically expressed, etsrp is sufficient to induce the expression of many vascular and myeloid genes in zebrafish. The mammalian homolog of etsrp, ER71/Etv2, is also essential for vascular and hematopoietic development. To identify genes downstream of etsrp, gain-of-function experiments were performed for etsrp in zebrafish embryos followed by transcription profile analysis by microarray. Subsequent in vivo expression studies resulted in the identification of fourteen genes with blood and/or vascular expression, six of these being completely novel. Regulation of these genes by etsrp was confirmed by ectopic induction in etsrp overexpressing embryos and decreased expression in etsrp deficient embryos. Additional functional analysis of two newly discovered genes, hapln1b and sh3gl3, demonstrates their importance in embryonic vascular development. The results described here identify a group of genes downstream of etsrp likely to be critical for vascular and/or myeloid development.

  17. Isolated trisomy 2 in bone marrows of patients with suspected hematopoietic malignancies.

    Science.gov (United States)

    Aypar, Umut; Reichard, Kaaren K; Waltman, Lindsey A; Van Dyke, Daniel L

    2014-04-01

    Isolated trisomy 2 in hematopoietic malignancies is rare, having been reported in only eight cases. Of these cases, the majority are older males. The underlying hematologic malignancies range from myelodysplastic syndrome (MDS) to acute myeloid leukemia (AML). The molecular pathogenesis and prognostic significance of isolated trisomy 2 remains unknown. Herein, we report 11 cases of isolated trisomy 2 in hematologic disorders seen in the Mayo Clinic Cytogenetics laboratory from 1996-2012. The majority were older males between the ages of 63-93 years. The underlying bone marrow pathologic diagnoses ranged from no diagnostic features of malignancy to AML. Our data suggest that isolated trisomy 2 could represent an age-related phenomenon since all 11 cases were age 63 and over. It appears that isolated trisomy 2 harbors little prognostic significance and that, instead, the prognostic significance is driven by the underlying pathologic diagnosis. For example, whereas 3 of the cases with AML survived only 7-10 weeks post-bone marrow biopsy, 1 of the cases without diagnostic features of malignancy survived 10 additional years. Therefore, trisomy 2 as a sole abnormality should not be considered as definitive evidence for a myeloid neoplasm in the absence of diagnostic morphologic criteria.

  18. Continuation of a Levonorgestrel Intrauterine Device During Hematopoietic Stem Cell Transplant: A Case Report.

    Science.gov (United States)

    Brady, Paula C; Soiffer, Robert J; Ginsburg, Elizabeth S

    2017-04-01

    During treatment of hematologic malignancies in premenopausal women, both menstrual suppression and contraception are crucial. Continuation of hormonal intrauterine devices (IUDs) - widely used and highly effective contraceptives that also decrease menstrual flow - is controversial during hematopoietic stem cell transplants (SCTs) due to infectious and vaginal bleeding concerns. A 23-year-old nulligravid female was diagnosed with acute myeloid leukemia (AML, positive for FLT3-ITD, DNMT3A and RUNX1, with normal cytogenetics). She elected to retain her existing levonorgestrel-containing IUD during chemotherapy and SCT. During and following treatment, she remained amenorrheic without infection, despite severe neutropenia and thrombocytopenia. Eight months later, she remains in remission without IUD-related complications. This is the first report of levonorgestrel IUD retention during hematopoietic SCT. Despite severe neutropenia and thrombocytopenia, the patient developed neither pelvic infection by retaining her IUD nor significant vaginal bleeding. Future studies are needed to confirm the safety of levonorgestrel IUDs in women undergoing SCT. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Mitochondria defects are involved in lead-acetate-induced adult hematopoietic stem cell decline.

    Science.gov (United States)

    Liu, Jun; Jia, Dao-Yong; Cai, Shi-Zhong; Li, Cheng-Peng; Zhang, Meng-Si; Zhang, Yan-Yan; Yan, Chong-Huai; Wang, Ya-Ping

    2015-05-19

    Occupational high-grade lead exposure has been reduced in recent decades as a result of increased regulation. However, environmental lead exposure remains widespread, and is associated with severe toxicity implicated in human diseases. We performed oral intragastric administration of various dose lead acetate to adult Sprague Dawley rats to define the role of lead exposure in hematopoietic stem cells (HSCs) function, and to clarify its underlying mechanism. Lead acetate-exposed rats exhibited developmental abnormalities in myeloid and lymphoid lineages, and a significant decline in immune functions. It also showed HSCs functional decline associated with senescent phenotype with low grade lead acetate exposure or apoptotic phenotype with relative higher grade dose exposure. Mechanistic exploration showed a significant increase in reactive oxygen species (ROS) in the lead acetate-exposed CD90(+)CD45(-) compartment, which correlated with functional defects in cellular mitochondria. Furthermore, in vivo treatment with the antioxidant vitamin C led to reversion of the CD90(+)CD45(-) compartment functional decline. These results indicate that lead acetate perturbs the hematopoietic balance of adult HSCs, associated with cellular mitochondria defects, increased intracellular ROS generation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Gfi1.1 regulates hematopoietic lineage differentiation during zebrafish embryogenesis

    Institute of Scientific and Technical Information of China (English)

    Wei Wei; Shuo Lin; Lu Wen; Peng Huang; Zheng Zhang; Yuanyuan Chen; An Xiao; Haigen Huang; Zuoyan Zhu; Bo Zhang

    2008-01-01

    Growth factor independence 1 (GFI1) is important for maturation of mammalian lymphocytes and neutrophils and maintenance of adult hematopoietic stem cells (HSCs).The role of GFl1 in embryonic hematopoiesis is less well characterized.Through an enhancer trap screen and bioinformatics analysis,we identified a zebrafish homolog of Gfi1 (named gfi1.1) and analyzed its function during embryonic development.Expression of both an endogenous gfi1.1 gene and a GFP reporter gene inserted near its genomic locus was detected in hematopoietic cells of zebrafish embryos.Morpholino (MO) knockdown of gfi1.1 reduced expression of scl,lmo2,c-myb,mpo,rag1,gata1 and hemoglobin alpha embryonic-1 (hbael),as well as the total amount of embryonic hemoglobin,but increased expression of pu.1 and l-plastin.Under the same conditions,MO injection did not affect the markers involved in vascular and pronephric development.Conversely,overexpression of gfi1.1 via mRNA injection enhanced expression of gatal but inhibited expression ofpu.1.These findings suggest that Gfi1.1 plays a critical role in regulating the balance of embryonic erythroid and myeloid lineage determination,and is also required for the differentiation of lymphocytes and granulocytes during zebrafish embryogenesis.

  1. Necroptosis in spontaneously-mutated hematopoietic cells induces autoimmune bone marrow failure in mice

    Science.gov (United States)

    Xin, Junping; Breslin, Peter; Wei, Wei; Li, Jing; Gutierrez, Rafael; Cannova, Joseph; Ni, Allen; Ng, Grace; Schmidt, Rachel; Chen, Haiyan; Parini, Vamsi; Kuo, Paul C.; Kini, Ameet R.; Stiff, Patrick; Zhu, Jiang; Zhang, Jiwang

    2017-01-01

    Acquired aplastic anemia is an autoimmune-mediated bone marrow failure syndrome. The mechanism by which such an autoimmune reaction is initiated is unknown. Whether and how the genetic lesions detected in patients cause autoimmune bone marrow failure have not yet been determined. We found that mice with spontaneous deletion of the TGFβ-activated kinase-1 gene in a small subset of hematopoietic cells developed bone marrow failure which resembled the clinical manifestations of acquired aplastic anemia patients. Bone marrow failure in such mice could be reversed by depletion of CD4+ T lymphocytes or blocked by knockout of interferon-γ, suggesting a Th1-cell-mediated autoimmune mechanism. The onset and progression of bone marrow failure in such mice were significantly accelerated by the inactivation of tumor necrosis factor-α signaling. Tumor necrosis factor-α restricts autoimmune bone marrow failure by inhibiting type-1 T-cell responses and maintaining the function of myeloid-derived suppressor cells. Furthermore, we determined that necroptosis among a small subset of mutant hematopoietic cells is the cause of autoimmune bone marrow failure because such bone marrow failure can be prevented by deletion of receptor interacting protein kinase-3. Our study suggests a novel mechanism to explain the pathogenesis of autoimmune bone marrow failure. PMID:27634200

  2. Validation of the Hematopoietic Cell Transplantation-Specific Comorbidity Index: a prospective, multicenter GITMO study.

    Science.gov (United States)

    Raimondi, Roberto; Tosetto, Alberto; Oneto, Rosi; Cavazzina, Riccardo; Rodeghiero, Francesco; Bacigalupo, Andrea; Fanin, Renato; Rambaldi, Alessandro; Bosi, Alberto

    2012-08-09

    The development of tools for the prediction of nonrelapse mortality (NRM) after allogeneic hematopoietic stem cell transplantation (HSCT) would offer a major guidance in the therapeutic decision. Recently, the Hematopoietic Cell Transplantation-Specific Comorbidity Index (HCT-CI) has been associated with increased NRM risk in several retrospective studies, but its clinical utility has never been demonstrated prospectively in an adequately sized cohort. To this aim, we prospectively evaluated a consecutive cohort of 1937 patients receiving HSCT in Italy over 2 years. HCT-CI was strongly correlated with both 2-year NRM (14.7%, 21.3%, and 27.3% in patients having an HCT-CI score of 0, 1-2, and ≥ 3, respectively) and overall survival (56.4%, 54.5%, and 41.3%, respectively). There was an excellent calibration between the predicted and observed 2-year NRM in patients having an HCT-CI score of 0 and 1-2, whereas in the ≥ 3 group the predicted NRM overestimated the observed NRM (41% vs 27.3%). HCT-CI alone was the strongest predictor of NRM in patients with lymphoma, myelodysplastic syndrome, and acute myeloid leukemia in first remission (c-statistics 0.66, 064, and 0.59, respectively). We confirm the clinical utility of the HCT-CI score that could also identify patients at low NRM risk possibly benefiting from an HSCT-based treatment strategy.

  3. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors.

    Science.gov (United States)

    Oguro, Hideyuki; Ding, Lei; Morrison, Sean J

    2013-07-03

    Hematopoietic stem cells (HSCs) and multipotent hematopoietic progenitors (MPPs) are routinely isolated using various markers but remain heterogeneous. Here we show that four SLAM family markers, CD150, CD48, CD229, and CD244, can distinguish HSCs and MPPs from restricted progenitors and subdivide them into a hierarchy of functionally distinct subpopulations with stepwise changes in cell-cycle status, self-renewal, and reconstituting potential. CD229 expression largely distinguished lymphoid-biased HSCs from rarely dividing myeloid-biased HSCs, enabling prospective enrichment of these HSC subsets. Differences in CD229 and CD244 expression resolved CD150(-)CD48(-/low)Lineage(-/low)Sca-1(+)c-Kit(+) cells into a hierarchy of highly purified MPPs that retained erythroid and platelet potential but exhibited progressive changes in mitotic activity and reconstituting potential. Use of these markers, and reconstitution assays, showed that conditional deletion of Scf from endothelial cells and perivascular stromal cells eliminated the vast majority of bone marrow HSCs, including nearly all CD229(-/low) HSCs, demonstrating that quiescent HSCs are maintained by a perivascular niche. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells.

    Science.gov (United States)

    Amabile, Giovanni; Welner, Robert S; Nombela-Arrieta, Cesar; D'Alise, Anna Morena; Di Ruscio, Annalisa; Ebralidze, Alexander K; Kraytsberg, Yevgenya; Ye, Min; Kocher, Olivier; Neuberg, Donna S; Khrapko, Konstantin; Silberstein, Leslie E; Tenen, Daniel G

    2013-02-21

    Lineage-restricted cells can be reprogrammed to a pluripotent state known as induced pluripotent stem (iPS) cells through overexpression of 4 transcription factors. iPS cells are similar to human embryonic stem (hES) cells and have the same ability to generate all the cells of the human body, including blood cells. However, this process is extremely inefficient and to date has been unsuccessful at differentiating iPS into hematopoietic stem cells (HSCs). We hypothesized that iPS cells, injected into NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ immunocompromised (NSG) mice could give rise to hematopoietic stem/progenitor cells (HSPCs) during teratoma formation. Here, we report a novel in vivo system in which human iPS cells differentiate within teratomas to derive functional myeloid and lymphoid cells. Similarly, HSPCs can be isolated from teratoma parenchyma and reconstitute a human immune system when transplanted into immunodeficient mice. Our data provide evidence that in vivo generation of patient customized cells is feasible, providing materials that could be useful for transplantation, human antibody generation, and drug screening applications.

  5. The Tao of Hematopoietic Stem Cells: Toward a Unified Theory of Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Kevin D. Bunting

    2002-01-01

    Full Text Available Hematopoietic stem cells (HSCs are the best studied of the tissue-specific stem cells. By definition, HSCs have long been regarded as restricted to formation of blood cells of both the lymphoid and myeloid lineages. HSCs residing in the bone marrow microenvironment have self-renewal capacity and can repopulate the hematopoietic system of irradiated transplant recipients for the lifetime of the individual. Therefore, HSCs are extremely important targets for gene therapy applications aimed toward the treatment of inherited and acquired blood disorders. However, recent studies have suggested that a subpopulation of HSCs may have the ability to contribute to diverse cell types such as hepatocytes, myocytes, and neuronal cells, especially following induced tissue damage. Preclinical amelioration of liver disease and myocardial infarcts by HSC-enriched bone marrow cell populations raises the possibility that HSC transplants have the potential to provide therapeutic benefit for a wide variety of diseases. These surprising findings contradict the dogma that adult stem cells are developmentally restricted. Extrapolation of these findings to the clinic will be facilitated by prospective identification of the stem cells that possess this developmental plasticity. Furthermore, characterization of the signaling pathways and molecular determinants regulating the remarkable transdifferentiation capacity of these stem cells may provide insight into novel approaches for modulating frequency of differentiative potential.

  6. Regulatory functions of TRAIL in hematopoietic progenitors: human umbilical cord blood and murine bone marrow transplantation.

    Science.gov (United States)

    Mizrahi, K; Stein, J; Pearl-Yafe, M; Kaplan, O; Yaniv, I; Askenasy, N

    2010-07-01

    The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway has selective toxicity to malignant cells. The TRAIL receptors DR4 and DR5 are expressed at low levels in human umbilical cord blood cells (3-15%) and are upregulated by incubation with the cognate ligand, triggering apoptosis in 70-80% of receptor-positive cells (P<0.001). Apoptosis is not induced in hematopoietic progenitors, as determined from sustained severe combined immunodeficiency reconstituting potential and clonogenic activity. Furthermore, elimination of dead cells after incubation with TRAIL for 72 h results in a threefold enrichment in myeloid progenitors. Exposure to TRAIL in semisolid cultures showed synergistic activity of DR4 and granulocyte/macrophage colony-stimulating factor in recruiting lineage-negative (lin(-)) and CD34(+) progenitors and in promoting the formation of large colonies. In murine bone marrow, approximately 30% of lin(-) cells express TRAIL-R2 (the only murine receptor), and the receptor is upregulated after transplantation in cycling and differentiating donor cells that home to the host marrow. However, this receptor is almost ubiquitously expressed in the most primitive (lin(-)SCA-1(+)c-kit(+)) progenitors, and stimulates the clonogenic activity of lin(-) cells (P<0.001), suggesting a tropic function after transplantation. It is concluded that TRAIL does not trigger apoptosis in hematopoietic progenitors, and upregulation of its cognate receptors under stress conditions mediates tropic signaling that supports recovery from hypoplasia.

  7. Ubiquitous expression of MAKORIN-2 in normal and malignant hematopoietic cells and its growth promoting activity.

    Directory of Open Access Journals (Sweden)

    King Yiu Lee

    Full Text Available Makorin-2 (MKRN2 is a highly conserved protein and yet its functions are largely unknown. We investigated the expression levels of MKRN2 and RAF1 in normal and malignant hematopoietic cells, and leukemia cell lines. We also attempted to delineate the role of MKRN2 in umbilical cord blood CD34+ stem/progenitor cells and K562 cell line by over-expression and inhibition of MKRN2 through lentivirus transduction and shRNA nucleofection, respectively. Our results provided the first evidence on the ubiquitous expression of MKRN2 in normal hematopoietic cells, embryonic stem cell lines, primary leukemia and leukemic cell lines of myeloid, lymphoid, erythroid and megakaryocytic lineages. The expression levels of MKRN2 were generally higher in primary leukemia samples compared with those in age-matched normal BM cells. In all leukemia subtypes, there was no significant correlation between expression levels of MKRN2 and RAF1. sh-MKRN2-silenced CD34+ cells had a significantly lower proliferation capacity and decreased levels of the early stem/progenitor subpopulation (CFU-GEMM compared with control cultures. Over-expression of MKRN2 in K562 cells increased cell proliferation. Our results indicated possible roles of MKRN2 in normal and malignant hematopoiesis.

  8. Quantitative and qualitative in vitro analysis of the stem cell potential of hematopoietic cells purified from murine skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    Celine Haond; Fran(c)oise Farace; Martine Guillier; Yann Lécluse; Frederic Mazurier; William Vainchenker; Ali G Turhan

    2007-01-01

    The murine skeletal muscle contains hematopoietic stem cells, but this potential has so far not been studied quantitatively or qualitatively in vitro. To quantity the hematopoietic stem cell potential, we have used highly purified SP/CD45+ cells in long-term culture initiating cell (LTC-IC) assays. The SP/CD45+ cell population purified from murine muscle was found to have significant stem cell activity with an LTC-IC frequency of 1/640. Single-cell-sorted SP/CD45+ cells from muscle exhibited robust proliferative activity in vitro at day 16 (380-fold amplification), especially after culture with OP-9 layers that also support embryonic stem cells. Amplified cell populations originating from single cells exhibited multilineage differentiation ability with evidence of myeloid, lymphoid and NK cell markers. Thus, our results demonstrate that hematopoietic stem cells that can be quantified by LTC-IC assays exist in the murine skeletal muscle and show also for the first time, at the single-cell level, that these cells exhibit multilineage differentiation ability and major proliferative potential.

  9. T-cell/myeloid mixed-phenotype acute leukemia with monocytic differentiation and isolated 17p deletion

    Directory of Open Access Journals (Sweden)

    Germison Silva Lopes

    2014-07-01

    Full Text Available Mixed phenotype acute leukemia is a rare subtype of leukemia that probably arises from a hematopoietic pluripotent stem cell. The co-expression of two of myeloid, B- or T-lymphoid antigens is the hallmark of this disease. Herein, the case of a 28-year-old female patient is reported who presented with hemoglobin of 5.8 g/dL, white blood cell count of 138 × 109/L and platelet count of 12 × 109/L. The differential count of peripheral blood revealed 96% of blasts. Moreover, the patient presented with lymphadenopathy, splenomegaly and bone marrow infiltration by monocytoid blasts characterized as 7% positivity by Sudan Black cytochemical staining. Immunophenotyping revealed the involvement of blasts of both T- and monocytic lineages. The cytogenetic analysis showed an isolated 17p deletion. Thus, the diagnosis of T-cell/myeloid mixed phenotype acute leukemia was made with two particular rare features, that is, the monocytic differentiation and the 17p deletion as unique cytogenetic abnormalities. The possibility of concomitant expressions of T-cell and monocytic differentiation antigens in the same blast population is hard to explain using the classical model of hematopoiesis. However, recent studies have suggested that myeloid potential persists even when the lineage branches segregate toward B- and T-cells. The role of an isolated 17p deletion in the pathogenesis of this condition is unclear. At present, the patient is in complete remission after an allogeneic stem cell transplantation procedure.

  10. Chemotherapy Plus Sargramostim in Treating Patients With Refractory Myeloid Cancer

    Science.gov (United States)

    2013-01-08

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Paroxysmal Nocturnal Hemoglobinuria; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia; Refractory Anemia With Ringed Sideroblasts; Relapsing Chronic Myelogenous Leukemia; Thrombocytopenia; Untreated Adult Acute Myeloid Leukemia

  11. CMV reactivation after allogeneic HCT and relapse risk: evidence for early protection in acute myeloid leukemia.

    Science.gov (United States)

    Green, Margaret L; Leisenring, Wendy M; Xie, Hu; Walter, Roland B; Mielcarek, Marco; Sandmaier, Brenda M; Riddell, Stanley R; Boeckh, Michael

    2013-08-15

    The association between cytomegalovirus (CMV) reactivation and relapse was evaluated in a large cohort of patients with acute myeloid leukemia (AML) (n = 761), acute lymphoblastic leukemia (ALL) (n = 322), chronic myeloid leukemia (CML) (n = 646), lymphoma (n = 254), and myelodysplastic syndrome (MDS) (n = 371) who underwent allogeneic hematopoietic cell transplantation (HCT) between 1995 and 2005. In multivariable models, CMV pp65 antigenemia was associated with a decreased risk of relapse by day 100 among patients with AML (hazard ratio [HR] = 0.56; 95% confidence interval [CI], 0.3-0.9) but not in patients with ALL, lymphoma, CML, or MDS. The effect appeared to be independent of CMV viral load, acute graft-versus-host disease, or ganciclovir-associated neutropenia. At 1 year after HCT, early CMV reactivation was associated with reduced risk of relapse in all patients, but this did not reach significance for any disease subgroup. Furthermore, CMV reactivation was associated with increased nonrelapse mortality (HR = 1.31; 95% CI, 1.1-1.6) and no difference in overall mortality (HR = 1.05; 95% CI, 0.9-1.3). This report demonstrates a modest reduction in early relapse risk after HCT associated with CMV reactivation in a large cohort of patients without a benefit in overall survival.

  12. DNA methylation profiles and their relationship with cytogenetic status in adult acute myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Sara Alvarez

    Full Text Available BACKGROUND: Aberrant promoter DNA methylation has been shown to play a role in acute myeloid leukemia (AML pathophysiology. However, further studies to discuss the prognostic value and the relationship of the epigenetic signatures with defined genomic rearrangements in acute myeloid leukemia are required. METHODOLOGY/PRINCIPAL FINDINGS: We carried out high-throughput methylation profiling on 116 de novo AML cases and we validated the significant biomarkers in an independent cohort of 244 AML cases. Methylation signatures were associated with the presence of a specific cytogenetic status. In normal karyotype cases, aberrant methylation of the promoter of DBC1 was validated as a predictor of the disease-free and overall survival. Furthermore, DBC1 expression was significantly silenced in the aberrantly methylated samples. Patients with chromosome rearrangements showed distinct methylation signatures. To establish the role of fusion proteins in the epigenetic profiles, 20 additional samples of human hematopoietic stem/progenitor cells (HSPC transduced with common fusion genes were studied and compared with patient samples carrying the same rearrangements. The presence of MLL rearrangements in HSPC induced the methylation profile observed in the MLL-positive primary samples. In contrast, fusion genes such as AML1/ETO or CBFB/MYH11 failed to reproduce the epigenetic signature observed in the patients. CONCLUSIONS/SIGNIFICANCE: Our study provides a comprehensive epigenetic profiling of AML, identifies new clinical markers for cases with a normal karyotype, and reveals relevant biological information related to the role of fusion proteins on the methylation signature.

  13. ZFX Controls Propagation and Prevents Differentiation of Acute T-Lymphoblastic and Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Stuart P. Weisberg

    2014-02-01

    Full Text Available Tumor-propagating cells in acute leukemia maintain a stem/progenitor-like immature phenotype and proliferative capacity. Acute myeloid leukemia (AML and acute T-lymphoblastic leukemia (T-ALL originate from different lineages through distinct oncogenic events such as MLL fusions and Notch signaling, respectively. We found that Zfx, a transcription factor that controls hematopoietic stem cell self-renewal, controls the initiation and maintenance of AML caused by MLL-AF9 fusion and of T-ALL caused by Notch1 activation. In both leukemia types, Zfx prevents differentiation and activates gene sets characteristic of immature cells of the respective lineages. In addition, endogenous Zfx contributes to gene induction and transformation by Myc overexpression in myeloid progenitors. Key Zfx target genes include the mitochondrial enzymes Ptpmt1 and Idh2, whose overexpression partially rescues the propagation of Zfx-deficient AML. These results show that distinct leukemia types maintain their undifferentiated phenotype and self-renewal by exploiting a common stem-cell-related genetic regulator.

  14. ZFX controls propagation and prevents differentiation of acute T-lymphoblastic and myeloid leukemia.

    Science.gov (United States)

    Weisberg, Stuart P; Smith-Raska, Matthew R; Esquilin, Jose M; Zhang, Ji; Arenzana, Teresita L; Lau, Colleen M; Churchill, Michael; Pan, Haiyan; Klinakis, Apostolos; Dixon, Jack E; Mirny, Leonid A; Mukherjee, Siddhartha; Reizis, Boris

    2014-02-13

    Tumor-propagating cells in acute leukemia maintain a stem/progenitor-like immature phenotype and proliferative capacity. Acute myeloid leukemia (AML) and acute T-lymphoblastic leukemia (T-ALL) originate from different lineages through distinct oncogenic events such as MLL fusions and Notch signaling, respectively. We found that Zfx, a transcription factor that controls hematopoietic stem cell self-renewal, controls the initiation and maintenance of AML caused by MLL-AF9 fusion and of T-ALL caused by Notch1 activation. In both leukemia types, Zfx prevents differentiation and activates gene sets characteristic of immature cells of the respective lineages. In addition, endogenous Zfx contributes to gene induction and transformation by Myc overexpression in myeloid progenitors. Key Zfx target genes include the mitochondrial enzymes Ptpmt1 and Idh2, whose overexpression partially rescues the propagation of Zfx-deficient AML. These results show that distinct leukemia types maintain their undifferentiated phenotype and self-renewal by exploiting a common stem-cell-related genetic regulator. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. The role of TLR8 signaling in acute myeloid leukemia differentiation.

    Science.gov (United States)

    Ignatz-Hoover, J J; Wang, H; Moreton, S A; Chakrabarti, A; Agarwal, M K; Sun, K; Gupta, K; Wald, D N

    2015-04-01

    Acute myeloid leukemia (AML) is an aggressive disease with a poor 5-year survival of 21% that is characterized by the differentiation arrest of immature myeloid cells. For a rare subtype of AML (acute promyeloctyic leukemia, 5-10% of cases), all-trans retinoic acid therapy removes the differentiation block, yielding over a 90% cure rate. However, this treatment is not effective for the other 90-95% of AML patients, suggesting that new differentiation strategies are needed. Interestingly, differentiation is induced in normal hematopoietic cells through Toll-like receptor (TLR) stimulation and TLRs are expressed on AML cells. We present evidence that the TLR8 activation promotes AML differentiation and growth inhibition in a TLR8/MyD88/p38-dependent manner. We also show that that TLR7/TLR8 agonist, R848, considerably impairs the growth of human AML cells in immunodeficient mice. Our data suggests TLR8 activation has direct anti-leukemic effects independent of its immunomodulating properties that are currently under investigation for cancer therapy. Taken together, our results suggest that treatment with TLR8 agonists may be a promising new therapeutic strategy for AML.

  16. Expression of ETV6 rearrangement in a subject with acute myeloid leukemia-M4Eo

    Institute of Scientific and Technical Information of China (English)

    GAO Na; LI Zhi-hong; DING Bu-tong; CHEN Yun; WANG Yun-shan; QIAO Ying; GUO Nong-jian

    2008-01-01

    @@ Acute myeloid leukemia (AML) M4Eo type is a hematological malignancy with abnormal eosinophilia,which is often accompanied by inv(16).The Ets variant gene 6 (ETV6),mapped to 12p13,is an ETS family transcription factor that is essential for hematopoietic processes,1 The ETV6 gene-involved chromosomal translocations have been found in many hematological malignancies characterized by fusing to a number of different partner genes;mainly coding for tyrosine kinases or transcription factors which are important for the initiation,progress and prognosis of disease.2 In particular,the ETV6 gene has been reported to be fused to ABL in acute lymphocytic leukemias (ALL),3 and chronic myeloid leukemia (CML).4 However,there have been few domestic reports of ETV6 fusion genes,especially in cases of acute leukemia.We investigated 3 cases of AML-M4Eo patients using Split-signal Fluorescence in situ hybridization (FISH) and found one case with a translocation between 12p13 and 1q25 co-occurring with an inv(16).The ETV6/ARG (ABL-related gene) fusion transcript was confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR).This is the report of ARG involvement in a translocation in a human malignancy.

  17. Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia.

    Science.gov (United States)

    Will, Britta; Vogler, Thomas O; Narayanagari, Swathi; Bartholdy, Boris; Todorova, Tihomira I; da Silva Ferreira, Mariana; Chen, Jiahao; Yu, Yiting; Mayer, Jillian; Barreyro, Laura; Carvajal, Luis; Neriah, Daniela Ben; Roth, Michael; van Oers, Johanna; Schaetzlein, Sonja; McMahon, Christine; Edelmann, Winfried; Verma, Amit; Steidl, Ulrich

    2015-10-01

    Modest transcriptional changes caused by genetic or epigenetic mechanisms are frequent in human cancer. Although loss or near-complete loss of the hematopoietic transcription factor PU.1 induces acute myeloid leukemia (AML) in mice, a similar degree of PU.1 impairment is exceedingly rare in human AML; yet, moderate PU.1 inhibition is common in AML patients. We assessed functional consequences of modest reductions in PU.1 expression on leukemia development in mice harboring DNA lesions resembling those acquired during human stem cell aging. Heterozygous deletion of an enhancer of PU.1, which resulted in a 35% reduction of PU.1 expression, was sufficient to induce myeloid-biased preleukemic stem cells and their subsequent transformation to AML in a DNA mismatch repair-deficient background. AML progression was mediated by inhibition of expression of a PU.1-cooperating transcription factor, Irf8. Notably, we found marked molecular similarities between the disease in these mice and human myelodysplastic syndrome and AML. This study demonstrates that minimal reduction of a key lineage-specific transcription factor, which commonly occurs in human disease, is sufficient to initiate cancer development, and it provides mechanistic insight into the formation and progression of preleukemic stem cells in AML.

  18. Impact of MLL5 expression on decitabine efficacy and DNA methylation in acute myeloid leukemia.

    Science.gov (United States)

    Yun, Haiyang; Damm, Frederik; Yap, Damian; Schwarzer, Adrian; Chaturvedi, Anuhar; Jyotsana, Nidhi; Lübbert, Michael; Bullinger, Lars; Döhner, Konstanze; Geffers, Robert; Aparicio, Samuel; Humphries, R Keith; Ganser, Arnold; Heuser, Michael

    2014-09-01

    Hypomethylating agents are widely used in patients with myelodysplastic syndromes and unfit patients with acute myeloid leukemia. However, it is not well understood why only some patients respond to hypomethylating agents. We found previously that the effect of decitabine on hematopoietic stem cell viability differed between Mll5 wild-type and null cells. We, therefore, investigated the role of MLL5 expression levels on outcome of acute myeloid leukemia patients who were treated with decitabine. MLL5 above the median expression level predicted longer overall survival independent of DNMT3A mutation status in bivariate analysis (median overall survival for high vs. low MLL5 expression 292 vs. 167 days; P=0.026). In patients who received three or more courses decitabine, high MLL5 expression and wild-type DNMT3A independently predicted improved overall survival (median overall survival for high vs. low MLL5 expression 468 vs. 243 days; P=0.012). In transformed murine cells, loss of Mll5 was associated with resistance to low-dose decitabine, less global DNA methylation in promoter regions, and reduced DNA demethylation upon decitabine treatment. Together, these data support our clinical observation of improved outcome in decitabine-treated patients who express MLL5 at high levels, and suggest a mechanistic role of MLL5 in the regulation of DNA methylation.

  19. Replication stress caused by low MCM expression limits fetal erythropoiesis and hematopoietic stem cell functionality

    DEFF Research Database (Denmark)

    Alvarez, Silvia; Díaz, Marcos; Flach, Johanna

    2015-01-01

    -chromosome maintenance (MCM)3 that limiting origin licensing in vivo affects the functionality of hematopoietic stem cells and the differentiation of rapidly-dividing erythrocyte precursors. Mcm3-deficient erythroblasts display aberrant DNA replication patterns and fail to complete maturation, causing lethal anemia. Our......' origins provide a backup in the presence of stalled forks and may confer flexibility to the replication program in specific cell types during differentiation, a role that has remained unexplored. Here we show, using a mouse strain with hypomorphic expression of the origin licensing factor mini...

  20. Hematopoietic differentiation: a coordinated dynamical process towards attractor stable states

    Directory of Open Access Journals (Sweden)

    Rossi Simona

    2010-06-01

    Full Text Available Abstract Background The differentiation process, proceeding from stem cells towards the different committed cell types, can be considered as a trajectory towards an attractor of a dynamical process. This view, taking into consideration the transcriptome and miRNome dynamics considered as a whole, instead of looking at few 'master genes' driving the system, offers a novel perspective on this phenomenon. We investigated the 'differentiation trajectories' of the hematopoietic system considering a genome-wide scenario. Results We developed serum-free liquid suspension unilineage cultures of cord blood (CB CD34+ hematopoietic progenitor cells through erythroid (E, megakaryocytic (MK, granulocytic (G and monocytic (Mo pathways. These cultures recapitulate physiological hematopoiesis, allowing the analysis of almost pure unilineage precursors starting from initial differentiation of HPCs until terminal maturation. By analyzing the expression profile of protein coding genes and microRNAs in unilineage CB E, MK, G and Mo cultures, at sequential stages of differentiation and maturation, we observed a coordinated, fully interconnected and scalable character of cell population behaviour in both transcriptome and miRNome spaces reminiscent of an attractor-like dynamics. MiRNome and transcriptome space differed for a still not terminally committed behaviour of microRNAs. Conclusions Consistent with their roles, the transcriptome system can be considered as the state space of a cell population, while the continuously evolving miRNA space corresponds to the tuning system necessary to reach the attractor. The behaviour of miRNA machinery could be of great relevance not only for the promise of reversing the differentiated state but even for tumor biology.

  1. ETV6-PDGFRB and FIP1L1-PDGFRA stimulate human hematopoietic progenitor cell proliferation and differentiation into eosinophils: the role of nuclear factor-κB

    Science.gov (United States)

    Montano-Almendras, Carmen P.; Essaghir, Ahmed; Schoemans, Hélène; Varis, Inci; Noël, Laura A.; Velghe, Amélie I.; Latinne, Dominique; Knoops, Laurent; Demoulin, Jean-Baptiste

    2012-01-01

    Background ETV6-PDGFRB (also called TEL-PDGFRB) and FIP1L1-PDGFRA are receptor-tyrosine kinase fusion genes that cause chronic myeloid malignancies associated with hypereosinophilia. The aim of this work was to gain insight into the mechanisms whereby fusion genes affect human hematopoietic cells and in particular the eosinophil lineage. Design and Methods We introduced ETV6-PDGFRB and FIP1L1-PDGFRA into human CD34+ hematopoietic progenitor and stem cells isolated from umbilical cord blood. Results Cells transduced with these oncogenes formed hematopoietic colonies even in the absence of cytokines. Both oncogenes also stimulated the proliferation of cells in liquid culture and their differentiation into eosinophils. This model thus recapitulated key features of the myeloid neoplasms induced by ETV6-PDGFRB and FIP1L1-PDGFRA. We next showed that both fusion genes activated the transcription factors STAT1, STAT3, STAT5 and nuclear factor-κB. Phosphatidylinositol-3 kinase inhibition blocked nuclear factor-κB activation in transduced progenitor cells and patients’ cells. Nuclear factor-κB was also activated in the human FIP1L1-PDGFRA-positive leukemia cell line EOL1, the proliferation of which was blocked by borte-zomib and the IκB kinase inhibitor BMS-345541. A mutant IκB that prevents nuclear translocation of nuclear factor-κB inhibited cell growth and the expression of eosinophil markers, such as the interleukin-5 receptor and eosinophil peroxidase, in progenitors transduced with ETV6-PDGFRB. In addition, several potential regulators of this process, including HES6, MYC and FOXO3 were identified using expression microarrays. Conclusions We show that human CD34+ cells expressing PDGFR fusion oncogenes proliferate autonomously and differentiate towards the eosinophil lineage in a process that requires nuclear factor-κB. These results suggest new treatment possibilities for imatinib-resistant myeloid neoplasms associated with PDGFR mutations. PMID:22271894

  2. Distinct mechanisms of regulation of the ITGA6 and ITGB4 genes by RUNX1 in myeloid cells.

    Science.gov (United States)

    Phillips, Jessica L; Taberlay, Phillippa C; Woodworth, Alexandra M; Hardy, Kristine; Brettingham-Moore, Kate H; Dickinson, Joanne L; Holloway, Adele F

    2017-09-19

    Integrins are transmembrane adhesion receptors that play an important role in hematopoiesis by facilitating interactions between hematopoietic cells and extracellular matrix components of the bone marrow and hematopoietic tissues. These interactions are important in regulating the function, proliferation and differentiation of hematopoietic cells, as well as their homing and mobilization in the bone marrow. Not surprisingly altered expression and function of integrins plays a key role in the development and progression of cancer including leukemias. However, the regulation of integrin gene expression is not well characterized and the mechanisms by which integrin genes are disrupted in cancer remain unclear. Here we demonstrate for the first time that a key regulator of hematopoiesis, RUNX1, binds to and regulates the promoters of both the ITGA6 and ITGB4 genes in myeloid cells. The ITGA6 and ITGB4 integrin genes form the α6β4 integrin receptor. However our data indicates that RUNX1 functions differently at these two promoters. RUNX1 regulates ITGA6 through a consensus RUNX1 binding motif in its promoter. In contrast, although the ITGB4 promoter is also activated by RUNX1, it does so in the absence of a recognized consensus RUNX1 binding motif. Further, our data suggest that regulation of ITGB4 may involve interactions between the promoter and upstream regulatory elements. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Advance in hematopoietic stem cells transplantation for leukemia

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiao-jun

    2008-01-01

    @@ During the past 50 years, intensive studies into the characteristics of hematopoietic stem cell transplantation immunology and the emergence of new immunosuppressant and anti-infective drugs have significantly improved the clinical result of hematopoietic stem cell transplantation (HSCT).

  4. Evaluation of readmissions in hematopoietic stem cell transplant recipients.

    Science.gov (United States)

    Moya, R; Espigado, I; Parody, R; Carmona, M; Márquez, F; De Blas, J M

    2006-10-01

    There is a lack of information on health expenses caused by readmissions among hematopoietic stem cell transplant (HSCT) recipients. We analyzed the rate, causes, and evolution of hospitalization after HSCT. We retrospectively studied 140 consecutive patients who received an autologous HSCT (n = 107; 76.4%) or an allogeneic HSCT (n = 33; 23.6%) in our institution from May 2001 through September 2004. There were 45 readmissions in 28 patients (20%): three (10%) in the autologous and 25 (90%), in the allogeneic HSCT cohorts. The overall median age was 35.3 +/- 13.5 years and 54% were women. Hematologic diseases were: multiple myeloma (n = 1, 4%), myelodysplastic syndrome (n = 2, 7%), acute lymphoblastic leukemia (n = 2, 7%), aplastic anemia (n = 2, 7%), chronic myeloid leukemia (n = 3, 11%), non-Hodgkin's lymphoma (n = 4, 14%), Hodgkin's disease (n = 4, 14%) and acute nonlymphoblastic leukemia (n = 10, 38%). The length of stay for each readmission was 25 +/- 21 days. The median day of readmission was +62.5 (range = +19 to +987); however, 75% occurred between days +30 and +70. The causes of hospitalization were: infections (n = 24, 54%), due to the graft (n = 14, 31%), graft failure (n = 4, 9%), coagulation disorders (n = 2, 4%), and second neoplasm (n = 1, 2%). Mortality due to the transplant was 10 patients (14%) including: graft-versus-host disease (n = 3), sepsis (n = 3), thrombotic thrombocytopenic purpura (n = 1), and relapse (n = 3). Although there was a frequent use of hospital resources (20%) after HSCT with patients hospitalized for a median of 25 days, it was beneficial since there were 86% survivors at 36 months follow-up.

  5. THERAPY-RELATED MYELOID MALIGNANCIES IN MYELOMA

    Directory of Open Access Journals (Sweden)

    Bart Barlogie

    2011-01-01

    Full Text Available

    Therapy related myeloid malignancies are an increasingly recognized treatment complication in patients undergoing therapy for multiple myeloma. The main predisposing factors are the alkylating agents, topoisomerase II inhibitors and radiotherapy, but recently questions have been raised regarding the immunomodulatory agent lenalidomide. Little is known about the new antimyeloma agents in the context of therapy related myeloid malignanices. The duration of treatment and the time from diagnosis are the main contributing factors in alkylating induced myeloid malignancies which occur 5-10 years after treatment, chromosome 5 and 7 abnormalities being the characteristic finding. High dose therapy (HDT does not seem to be a major contributing factor per se in multiple myeloma. In a number of large published series, all the factors related with therapy-induced myelodysplasia were defined prior to HDT. Topoisomerase II inhibitors induce mainly acute leukemias which invariably correlate with dysregulation of the MLL gene. Radiotherapy causes therapy related myelodysplasia if applied in bone marrow producing areas, especially if combined with chemotherapy. Therapy related myeloid malignancies generally herald a poor prognosis. Karyotypic abnormalities seem to be the main prognostic factor. In all cases the risk for therapy related myeloid malignancies drops sharply by 10 years after the treatment.

  6. THERAPY-RELATED MYELOID MALIGNANCIES IN MYELOMA

    Directory of Open Access Journals (Sweden)

    Xenofon Papanikolaou

    2011-10-01

    Full Text Available Therapy related myeloid malignancies are an increasingly recognized treatment complication in patients undergoing therapy for multiple myeloma. The main predisposing factors are the alkylating agents, topoisomerase II inhibitors and radiotherapy, but recently questions have been raised regarding the immunomodulatory agent lenalidomide. Little is known about the new antimyeloma agents in the context of therapy related myeloid malignanices. The duration of treatment and the time from diagnosis are the main contributing factors in alkylating induced myeloid malignancies which occur 5-10 years after treatment, chromosome 5 and 7 abnormalities being the characteristic finding. High dose therapy (HDT does not seem to be a major contributing factor per se in multiple myeloma. In a number of large published series, all the factors related with therapy-induced myelodysplasia were defined prior to HDT. Topoisomerase II inhibitors induce mainly acute leukemias which invariably correlate with dysregulation of the MLL gene. Radiotherapy causes therapy related myelodysplasia if applied in bone marrow producing areas, especially if combined with chemotherapy. Therapy related myeloid malignancies generally herald a poor prognosis. Karyotypic abnormalities seem to be the main prognostic factor. In all cases the risk for therapy related myeloid malignancies drops sharply by 10 years after the treatment.

  7. t(6;9)(p22;q34)/DEK-NUP214-rearranged pediatric myeloid leukemia: an international study of 62 patients.

    Science.gov (United States)

    Sandahl, Julie Damgaard; Coenen, Eva A; Forestier, Erik; Harbott, Jochen; Johansson, Bertil; Kerndrup, Gitte; Adachi, Souichi; Auvrignon, Anne; Beverloo, H Berna; Cayuela, Jean-Michel; Chilton, Lucy; Fornerod, Maarten; de Haas, Valérie; Harrison, Christine J; Inaba, Hiroto; Kaspers, Gertjan J L; Liang, Der-Cherng; Locatelli, Franco; Masetti, Riccardo; Perot, Christine; Raimondi, Susana C; Reinhardt, Katarina; Tomizawa, Daisuke; von Neuhoff, Nils; Zecca, Marco; Zwaan, C Michel; van den Heuvel-Eibrink, Marry M; Hasle, Henrik

    2014-05-01

    Acute myeloid leukemia with t(6;9)(p22;q34) is listed as a distinct entity in the 2008 World Health Organization classification, but little is known about the clinical implications of t(6;9)-positive myeloid leukemia in children. This international multicenter study presents the clinical and genetic characteristics of 62 pediatric patients with t(6;9)/DEK-NUP214-rearranged myeloid leukemia; 54 diagnosed as having acute myeloid leukemia, representing <1% of all childhood acute myeloid leukemia, and eight as having myelodysplastic syndrome. The t(6;9)/DEK-NUP214 was associated with relatively late onset (median age 10.4 years), male predominance (sex ratio 1.7), French-American-British M2 classification (54%), myelodysplasia (100%), and FLT3-ITD (42%). Outcome was substantially better than previously reported with a 5-year event-free survival of 32%, 5-year overall survival of 53%, and a 5-year cumulative incidence of relapse of 57%. Hematopoietic stem cell transplantation in first complete remission improved the 5-year event-free survival compared with chemotherapy alone (68% versus 18%; P<0.01) but not the overall survival (68% versus 54%; P=0.48). The presence of FLT3-ITD had a non-significant negative effect on 5-year overall survival compared with non-mutated cases (22% versus 62%; P=0.13). Gene expression profiling showed a unique signature characterized by significantly higher expression of EYA3, SESN1, PRDM2/RIZ, and HIST2H4 genes. In conclusion, t(6;9)/DEK-NUP214 represents a unique subtype of acute myeloid leukemia with a high risk of relapse, high frequency of FLT3-ITD, and a specific gene expression signature.

  8. AR-42 and Decitabine in Treating Patients With Acute Myeloid Leukemia

    Science.gov (United States)

    2016-04-21

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  9. Lack of the p42 form of C/EBPα leads to spontaneous immortalization and lineage infidelity of committed myeloid progenitors

    DEFF Research Database (Denmark)

    Schuster, Mikkel B; Frank, Anne-Katrine; Bagger, Frederik O

    2013-01-01

    Acute myeloid leukemia (AML) develops via a multistep process involving several genetic and epigenetic events, which ultimately leads to the formation of a heterogeneous population of malignant cells, of which only a small subpopulation termed the leukemia initiating cell (LIC) is able to sustain...... the leukemia. The identity of the LIC is highly diverse and ranges from populations resembling hematopoietic stem cells or multipotent progenitors (MPPs) to more committed myeloid progenitors, and the question still remains whether this is a direct consequence of which cells are targets of the final...... transforming events. In this study, we use premalignant cells from a Cebpa mutant AML model, in which the LIC population resembles granulocyte-macrophage progenitors (GMPs), to show that premalignant GMPs undergo spontaneous immortalization with a high clonal frequency when cultured in vitro, suggesting...

  10. Monoclonal antibodies against human granulocytes and myeloid differentiation antigens.

    Science.gov (United States)

    Mannoni, P; Janowska-Wieczorek, A; Turner, A R; McGann, L; Turc, J M

    1982-12-01

    Monoclonal antibodies (MCA) were obtained by immunizing BALB/c mice with 99% pure granulocytes from normal donors or with a whole leukocyte suspension obtained from a chronic myelogenous leukemia (CML) patient, and then fusing the mouse spleen cells with a 315-43 myeloma cell clone. Four MCA were selected and studied using ELISA, immunofluorescence, cytotoxicity assays, and FACS analysis. Antibodies 80H.1, 80H.3, and 80H.5 (from normals) and 81H.1 (from CML) detected antigens expressed on neutrophils. Antibodies 80H.1 and 80H.3 (IgG) also reacted with monocytes but not with other blood cell subsets. Antibodies 80H.5 and 81H.1 (IgM) were cytotoxic and reacted strongly with most of the cells of the neutrophil maturation sequence, i.e., myeloblasts, promyelocytes, myelocytes, and mature granulocytes. Antibodies 80H.5 and 81H.1 also inhibited CFU-GM growth stimulated by leukocyte feeder layers or placental conditioned media, but did not inhibit BFU-E and CFU-E. Antigens recognized by 80H.3, 80H.5, and 81H.1 were expressed both on a proportion of cells from HL.60, KG.1, ML.1, and K562 myeloid cell lines, and on a proportion of blast cells isolated from patients with acute myelogenous leukemia. They were not found on lymphoid cell lines or lymphoid leukemia cells. These MCA recognize either late differentiation antigens expressed on mature neutrophils and monocytes (80H.1 and 80H.3) or early differentiation antigens (80H.5 and 81H.1) specific to the granulocytic lineage. They may be useful for a better definition of those antigens specific to hematopoietic stem cells and their relationship with normal or neoplastic hematopoiesis.

  11. Myeloid sarcomas: a histologic, immunohistochemical, and cytogenetic study

    Directory of Open Access Journals (Sweden)

    Rodgers William H

    2007-10-01

    Full Text Available Abstract Context. - Myeloid sarcoma (MS is a neoplasm of immature granulocytes, monocytes, or both involving any extramedullary site. The correct diagnosis of MS is important for adequate therapy, which is often delayed because of a high misdiagnosis rate. Objective. - To evaluate the lineage differentiation of neoplastic cells in MS by immunohistochemistry, and to correlate the results with clinicopathologic findings and cytogenetic studies. Design. - Histologic and immunohistochemical examinations were performed on formalin-fixed paraffin-embedded tissue samples from 13 cases of MS. They were classified according to the World Health Organization criteria. Chromosomal analysis data were available in 11 cases. Clinical, pathological, and cytogenetic findings were analyzed. Results. - The study included six male and seven female patients with an age range of 25 to 72 years (mean, 49.3 years and a male to female ratio of 1:1.2. MS de novo occurred in 4/13 (31% of cases examined. The most sensitive immunohistochemical markers were CD43 and lysozyme present in all cases with MS (13/13, 100%. All de novo MS showed a normal karyotype, monoblastic differentiation, and lack of CD34. The most common chromosomal abnormalities in MS associated with a hematopoietic disorder were trisomy 8 and inv(16 (2/11, 18%. Conclusion. - An immunohistochemical panel including CD43, lysozyme, myeloperoxidase (MPO, CD68 (or CD163, CD117, CD3 and CD20 can successfully identify the vast majority of MS variants in formalin-fixed paraffin-embedded tissue sections. The present report expands the spectrum of our knowledge showing that de novo MS has frequent monoblastic differentiation and frequently carries a normal karyotype.

  12. Oral squamous cell carcinoma arising in a patient after hematopoietic stem cell transplantation with bisphosphonate-related osteonecrosis of the jaws.

    Science.gov (United States)

    Arduino, Paolo G; Scully, Crispian; Chiusa, Luigi; Broccoletti, Roberto

    2015-01-01

    A 55-year-old man with a history of acute myeloid leukaemia treated with hematopoietic stem cell transplantation and with a 5-year history of bisphosphonate-related osteonecrosis of the jaws, following 12 cycles of intravenous zoledronic acid therapy, presented in December 2009 with a history of increasingly severe unilateral lower jaw pain. Oral examination revealed, as previously, exposed bone in the left mandible, but also a new exophytic mass on the lower-left buccal mucosa. Biopsy confirmed a diagnosis of oral squamous cell carcinoma. To the best of our knowledge, this is the first report of an oral squamous cell carcinoma that appeared adjacent to an area of osteochemonecrosis.

  13. The Danish National Chronic Myeloid Neoplasia Registry

    DEFF Research Database (Denmark)

    Bak, Marie; Ibfelt, Else Helene; Stauffer Larsen, Thomas;

    2016-01-01

    AIM: The Danish National Chronic Myeloid Neoplasia Registry (DCMR) is a population-based clinical quality database, introduced to evaluate diagnosis and treatment of patients with chronic myeloid malignancies. The aim is to monitor the clinical quality at the national, regional, and hospital...... of follow-up. The forms include variables that describe clinical/paraclinical assessments, treatment, disease progression, and survival - disease-specific variables - as well as variables that are identical for all chronic myeloid malignancies. DESCRIPTIVE DATA: By the end of 2014, the DCMR contained data...... on 2,690 patients with an inclusion rate of ∼500 patients each year. Since the registry was established, annual reports have shown consistently high national coverage and data completeness, ≥90% and ≥88%, respectively. CONCLUSION: The DCMR is a national database used for monitoring the quality...

  14. MicroRNA-126-mediated control of cell fate in B-cell myeloid progenitors as a potential alternative to transcriptional factors.

    Science.gov (United States)

    Okuyama, Kazuki; Ikawa, Tomokatsu; Gentner, Bernhard; Hozumi, Katsuto; Harnprasopwat, Ratanakanit; Lu, Jun; Yamashita, Riu; Ha, Daon; Toyoshima, Takae; Chanda, Bidisha; Kawamata, Toyotaka; Yokoyama, Kazuaki; Wang, Shusheng; Ando, Kiyoshi; Lodish, Harvey F; Tojo, Arinobu; Kawamoto, Hiroshi; Kotani, Ai

    2013-08-13

    Lineage specification is thought to be largely regulated at the level of transcription, where lineage-specific transcription factors drive specific cell fates. MicroRNAs (miR), vital to many cell functions, act posttranscriptionally to decrease the expression of target mRNAs. MLL-AF4 acute lymphocytic leukemia exhibits both myeloid and B-cell surface markers, suggesting that the transformed cells are B-cell myeloid progenitor cells. Through gain- and loss-of-function experiments, we demonstrated that microRNA 126 (miR-126) drives B-cell myeloid biphenotypic leukemia differentiation toward B cells without changing expression of E2A immunoglobulin enhancer-binding factor E12/E47 (E2A), early B-cell factor 1 (EBF1), or paired box protein 5, which are critical transcription factors in B-lymphopoiesis. Similar induction of B-cell differentiation by miR-126 was observed in normal hematopoietic cells in vitro and in vivo in uncommitted murine c-Kit(+)Sca1(+)Lineage(-) cells, with insulin regulatory subunit-1 acting as a target of miR-126. Importantly, in EBF1-deficient hematopoietic progenitor cells, which fail to differentiate into B cells, miR-126 significantly up-regulated B220, and induced the expression of B-cell genes, including recombination activating genes-1/2 and CD79a/b. These data suggest that miR-126 can at least partly rescue B-cell development independently of EBF1. These experiments show that miR-126 regulates myeloid vs. B-cell fate through an alternative machinery, establishing the critical role of miRNAs in the lineage specification of multipotent mammalian cells.

  15. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1.

    Science.gov (United States)

    Rosenbauer, Frank; Wagner, Katharina; Kutok, Jeffery L; Iwasaki, Hiromi; Le Beau, Michelle M; Okuno, Yutaka; Akashi, Koichi; Fiering, Steven; Tenen, Daniel G

    2004-06-01

    Transcription factors are believed to have a dominant role in acute myeloid leukemia (AML). This idea is supported by analysis of gene-knockout mice, which uncovered crucial roles of several transcription factors in normal hematopoiesis, and of individuals with leukemia, in whom transcription factors are frequently downregulated or mutated. However, analysis of knockout animals has not shown a direct link between abrogated transcription factors and the pathogenesis of AML. Sfpi1, encoding the lineage-specific transcription factor PU.1, is indispensable for normal myeloid and lymphoid development. We found that mice carrying hypomorphic Sfpi1 alleles that reduce PU.1 expression to 20% of normal levels, unlike mice carrying homo- or heterozygous deletions of Sfpi1, developed AML. Unlike complete or 50% loss, 80% loss of PU.1 induced a precancerous state characterized by accumulation of an abnormal precursor pool retaining responsiveness to G-CSF with disruption of M- and GM-CSF pathways. Malignant transformation was associated with a high frequency of clonal chromosomal changes. Retroviral restoration of PU.1 expression rescued myeloid differentiation of mutant progenitors and AML blasts. These results suggest that tightly graded reduction, rather than complete loss, of a lineage-indispensable transcription factor can induce AML.

  16. Case Report: Myelodysplastic syndrome- associated myeloid sarcoma: an unusual clinical presentation of a rare disease.

    Science.gov (United States)

    Horvath, Emoke; Demian, Smaranda; Nagy, Elod

    2016-01-01

    Myeloid sarcoma results from the extramedullary homing and proliferation of immature myeloid precursors. We present the timeline, events and diagnostic pitfalls related to a 66 year-old male patient's case, admitted to the Hematology Clinic for pancytopenia, fever, weight loss and fatigue. The severe cytopenia and the few blasts observed in his blood smear indicated a bone marrow biopsy. The bone marrow showed hypercellularity and multilineage dysplasia with the presence of 15% myeloblasts. After the biopsy, he promptly developed paraplegia and nuclear magnetic resonance revealed an epidural tumour which was then resected.In the epidural tumour mass blast-like, round cells were observed with a complex immunophenotype, characterized by myeloperoxidase, CD117, CD15, CD99, leucocyte common antigen positivity and a high Ki-67 proliferation index. Considering the main differential diagnostic issues, the final diagnosis was stated as myelodysplastic syndrome-associated myeloid sarcoma. The prognosis was unfavourable, the bone marrow was quickly invaded by proliferating blast cells, and despite chemotherapy attempts, the patient died.

  17. Myeloid suppressor cells in cancer and autoimmunity.

    Science.gov (United States)

    Sica, Antonio; Massarotti, Marco

    2017-07-17

    A bottleneck for immunotherapy of cancer is the immunosuppressive microenvironment in which the tumor cells proliferate. Cancers harness the immune regulatory mechanism that prevents autoimmunity from evading immunosurveillance and promoting immune destruction. Regulatory T cells, myeloid suppressor cells, inhibitory cytokines and immune checkpoint receptors are the major components of the immune system acting in concert with cancer cells and causing the subversion of anti-tumor immunity. This redundant immunosuppressive network poses an impediment to efficacious immunotherapy by facilitating tumor progression. Tumor-associated myeloid cells comprise heterogeneous populations acting systemically (myeloid-derived suppressor cells/MDSCs) and/or locally in the tumor microenvironment (MDSCs and tumor-associated macrophages/TAMs). Both populations promote cancer cell proliferation and survival, angiogenesis and lymphangiogenesis and elicit immunosuppression through different pathways, including the expression of immunosuppressive cytokines and checkpoint inhibitors. Several evidences have demonstrated that myeloid cells can express different functional programs in response to different microenvironmental signals, a property defined as functional plasticity. The opposed extremes of this functional flexibility are generally represented by the classical macrophage activation, which identifies inflammatory and cytotoxic M1 polarized macrophages, and the alternative state of macrophage activation, which identifies M2 polarized anti-inflammatory and immunosuppressive macrophages. Functional skewing of myeloid cells occurs in vivo under physiological and pathological conditions, including cancer and autoimmunity. Here we discuss how myeloid suppressor cells can on one hand support tumor growth and, on the other, limit autoimmune responses, indicating that their therapeutic reprogramming can generate opportunities in relieving immunosuppression in the tumor microenvironment or

  18. Frozen cord blood hematopoietic stem cells differentiate into higher numbers of functional natural killer cells in vitro than mobilized hematopoietic stem cells or freshly isolated cord blood hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Martha Luevano

    Full Text Available Adoptive natural killer (NK cell therapy relies on the acquisition of large numbers of NK cells that are cytotoxic but not exhausted. NK cell differentiation from hematopoietic stem cells (HSC has become an alluring option for NK cell therapy, with umbilical cord blood (UCB and mobilized peripheral blood (PBCD34(+ being the most accessible HSC sources as collection procedures are less invasive. In this study we compared the capacity of frozen or freshly isolated UCB hematopoietic stem cells (CBCD34(+ and frozen PBCD34(+ to generate NK cells in vitro. By modifying a previously published protocol, we showed that frozen CBCD34(+ cultures generated higher NK cell numbers without loss of function compared to fresh CBCD34(+ cultures. NK cells generated from CBCD34(+ and PBCD34(+ expressed low levels of killer-cell immunoglobulin-like receptors but high levels of activating receptors and of the myeloid marker CD33. However, blocking studies showed that CD33 expression did not impact on the functions of the generated cells. CBCD34(+-NK cells exhibited increased capacity to secrete IFN-γ and kill K562 in vitro and in vivo as compared to PBCD34(+-NK cells. Moreover, K562 killing by the generated NK cells could be further enhanced by IL-12 stimulation. Our data indicate that the use of frozen CBCD34(+ for the production of NK cells in vitro results in higher cell numbers than PBCD34(+, without jeopardizing their functionality, rendering them suitable for NK cell immunotherapy. The results presented here provide an optimal strategy to generate NK cells in vitro for immunotherapy that exhibit enhanced effector function when compared to alternate sources of HSC.

  19. Frozen cord blood hematopoietic stem cells differentiate into higher numbers of functional natural killer cells in vitro than mobilized hematopoietic stem cells or freshly isolated cord blood hematopoietic stem cells.

    Science.gov (United States)

    Luevano, Martha; Domogala, Anna; Blundell, Michael; Jackson, Nicola; Pedroza-Pacheco, Isabela; Derniame, Sophie; Escobedo-Cousin, Michelle; Querol, Sergio; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2014-01-01

    Adoptive natural killer (NK) cell therapy relies on the acquisition of large numbers of NK cells that are cytotoxic but not exhausted. NK cell differentiation from hematopoietic stem cells (HSC) has become an alluring option for NK cell therapy, with umbilical cord blood (UCB) and mobilized peripheral blood (PBCD34(+)) being the most accessible HSC sources as collection procedures are less invasive. In this study we compared the capacity of frozen or freshly isolated UCB hematopoietic stem cells (CBCD34(+)) and frozen PBCD34(+) to generate NK cells in vitro. By modifying a previously published protocol, we showed that frozen CBCD34(+) cultures generated higher NK cell numbers without loss of function compared to fresh CBCD34(+) cultures. NK cells generated from CBCD34(+) and PBCD34(+) expressed low levels of killer-cell immunoglobulin-like receptors but high levels of activating receptors and of the myeloid marker CD33. However, blocking studies showed that CD33 expression did not impact on the functions of the generated cells. CBCD34(+)-NK cells exhibited increased capacity to secrete IFN-γ and kill K562 in vitro and in vivo as compared to PBCD34(+)-NK cells. Moreover, K562 killing by the generated NK cells could be further enhanced by IL-12 stimulation. Our data indicate that the use of frozen CBCD34(+) for the production of NK cells in vitro results in higher cell numbers than PBCD34(+), without jeopardizing their functionality, rendering them suitable for NK cell immunotherapy. The results presented here provide an optimal strategy to generate NK cells in vitro for immunotherapy that exhibit enhanced effector function when compared to alternate sources of HSC.

  20. Clofarabine, Cytarabine, and G-CSF in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    Science.gov (United States)

    2015-05-05

    Acute Myeloid Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  1. Romidepsin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    Science.gov (United States)

    2015-12-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  2. Decitabine With or Without Bortezomib in Treating Older Patients With Acute Myeloid Leukemia

    Science.gov (United States)

    2016-03-14

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  3. Down-regulation of the oncogene PTTG1 via the KLF6 tumor suppressor during induction of myeloid differentiation.

    Directory of Open Access Journals (Sweden)

    Pei-Yi Chen

    Full Text Available The aberrant expression of proto-oncogenes is involved in processes that are responsible for cellular proliferation and the inhibition of myeloid differentiation in acute myeloid leukemia (AML. Pituitary Tumor-Transforming gene 1 (PTTG1, an oncogenic transcription factor, is abundantly expressed in various human cancers and hematopoietic malignancies. However, its expression in normal leukocytes and most normal tissues is very low or undetectable. The mechanism by which PTTG1 overexpression modifies myeloid cell development and promotes leukemogenesis remain unclear. To investigate the mechanistic links between PTTG1 overexpression and leukemia cell differentiation, we utilized phorbol 12-myristate 13-acetate (PMA, a well-known agent that triggers monocyte/macrophage differentiation, to analyze the expression patterns of PTTG1 in PMA-induced myeloid differentiation. We found that PTTG1 is down-regulated at the transcriptional level in PMA-treated HL-60 and THP1 cells. In addition, we identified a binding site for a tumor suppressor protein, Kruppel-like factor 6 (KLF6, in the PTTG1 promoter. We found that KLF6 could directly bind and repress PTTG1 expression. In HL-60 and THP1 cells, KLF6 mRNA and protein levels are up-regulated with a concordant reduction of PTTG1 expression upon treatment with PMA. Furthermore, KLF6 knockdown by shRNA abolished the suppression of PTTG1 and reduced the activation of the differentiation marker CD11b in PMA-primed cells. The protein kinase C (PKC inhibitor and the MAPK/ERK kinase (MEK inhibitor significantly blocked the potentiation of PMA-mediated KLF6 induction and the down-regulation of PTTG1, indicating that PTTG1 is suppressed via the activation of PKC/ERK/KLF6 pathway. Our findings suggest that drugs that increase the KLF6 inhibition of PTTG1 may have a therapeutic application in AML treatment strategies.

  4. Precursors of extreme increments

    CERN Document Server

    Hallerberg, S; Holstein, D; Kantz, H; Hallerberg, Sarah; Altmann, Eduardo G.; Holstein, Detlef; Kantz, Holger

    2006-01-01

    We investigate precursors and predictability of extreme events in time series, which consist in large increments within successive time steps. In order to understand the predictability of this class of extreme events, we study analytically the prediction of extreme increments in AR(1)-processes. The resulting strategies are then applied to predict sudden increases in wind speed recordings. In both cases we evaluate the success of predictions via creating receiver operator characteristics (ROC-plots). Surprisingly, we obtain better ROC-plots for completely uncorrelated Gaussian random numbers than for AR(1)-correlated data. Furthermore, we observe an increase of predictability with increasing event size. Both effects can be understood by using the likelihood ratio as a summary index for smooth ROC-curves.

  5. Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells

    Science.gov (United States)

    2013-01-01

    Pluripotent stem cells, both embryonic stem cells and induced pluripotent stem cells, are undifferentiated cells that can self-renew and potentially differentiate into all hematopoietic lineages, such as hematopoietic stem cells (HSCs), hematopoietic progenitor cells and mature hematopoietic cells in the presence of a suitable culture system. Establishment of pluripotent stem cells provides a comprehensive model to study early hematopoietic development and has emerged as a powerful research tool to explore regenerative medicine. Nowadays, HSC transplantation and hematopoietic cell transfusion have successfully cured some patients, especially in malignant hematological diseases. Owing to a shortage of donors and a limited number of the cells, hematopoietic cell induction from pluripotent stem cells has been regarded as an alternative source of HSCs and mature hematopoietic cells for intended therapeutic purposes. Pluripotent stem cells are therefore extensively utilized to facilitate better understanding in hematopoietic development by recapitulating embryonic development in vivo, in which efficient strategies can be easily designed and deployed for the generation of hematopoietic lineages in vitro. We hereby review the current progress of hematopoietic cell induction from embryonic stem/induced pluripotent stem cells. PMID:23796405

  6. Hematopoietic differentiation from human ESCs as a model for developmental studies and future clinical translations. Invited review following the FEBS Anniversary Prize received on 5 July 2009 at the 34th FEBS Congress in Prague.

    Science.gov (United States)

    Moreno-Gimeno, Inmaculada; Ledran, Maria H; Lako, Majlinda

    2010-12-01

    Human embryonic stem cells (hESCs) and induced pluripotent stem cells are excellent models for the study of embryonic hematopoiesis in vitro, aiding the design of new differentiation models that may be applicable to cell-replacement therapies. Adult and fetal hematopoietic stem cells are currently being used in biomedical applications; however, the latest advances in regenerative medicine and stem cell biology suggest that hESC-derived hematopoietic stem cells are an outstanding tool for enhancing immunotherapy and treatments for blood disorders and cancer, for example. In this review, we compare various methods used for inducing in vitro hematopoietic differentiation from hESCs, based on co-culture with stromal cells or formation of embryoid bodies, and analyse their ability to give rise to hematopoietic precursors, with emphasis on their engraftment potential as a measure of their functionality in vivo.

  7. Precursor flares in OJ 287

    OpenAIRE

    Pihajoki, P.; Valtonen, M.; Zola, S.; Liakos, A.; Drozdz, M.; Winiarski, M.; Ogloza, W.; Koziel-Wierzbowska, D.; Provencal, J.; Nilsson, K.; Berdyugin, A.; Lindfors, E.; Reinthal, R.; Sillanpää, A.; Takalo, L.

    2012-01-01

    We have studied three most recent precursor flares in the light curve of the blazar OJ 287 while invoking the presence of a precessing binary black hole in the system to explain the nature of these flares. Precursor flare timings from the historical light curves are compared with theoretical predictions from our model that incorporate effects of an accretion disk and post-Newtonian description for the binary black hole orbit. We find that the precursor flares coincide with the secondary black...

  8. Generation of nonlinear vortex precursors

    CERN Document Server

    Chen, Yue-Yue; Liu, Chengpu

    2016-01-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex har- monics are generated in the transmitted field due to ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provide a straightforward way of measuring precursors. By the virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical informa- tion and communication fields where controllable loss, large information-carrying capacity and high speed communication are required.

  9. Hematopoietic stem cell transplantation for infantile osteopetrosis

    NARCIS (Netherlands)

    Orchard, Paul J.; Fasth, Anders L.; Le Rademacher, Jennifer L.; He, Wensheng; Boelens, Jaap Jan; Horwitz, Edwin M.; Al-Seraihy, Amal; Ayas, Mouhab; Bonfim, Carmem M.; Boulad, Farid; Lund, Troy; Buchbinder, David K.; Kapoor, Neena; OBrien, Tracey A.; Perez, Miguel A Diaz; Veys, Paul A.; Eapen, Mary

    2015-01-01

    We report the international experience in outcomes after related and unrelated hematopoietic transplantation for infantile osteopetrosis in 193 patients. Thirty-four percent of transplants used grafts from HLA-matched siblings, 13% from HLA-mismatched relatives, 12% from HLA-matched, and 41% from HL

  10. Cellular memory and, hematopoietic stem cell aging

    NARCIS (Netherlands)

    Kamminga, Leonie M.; de Haan, Gerald

    Hematopoietic stem cells (HSCs) balance self-renewal and differentiation in order to sustain lifelong blood production and simultaneously maintain the HSC pool. However, there is clear evidence that HSCs are subject to quantitative and qualitative exhaustion. In this review, we briefly discuss

  11. Autonomous behavior of hematopoietic stem cells

    NARCIS (Netherlands)

    Kamminga, LM; Akkerman, [No Value; Weersing, E; Ausema, A; Dontje, B; Van Zant, G; de Haan, G

    2000-01-01

    Objective. Mechanisms that affect the function of primitive hematopoietic stem cells with long-term proliferative potential remain largely unknown. Here we assessed whether properties of stem cells are cell-extrinsically or cell-autonomously regulated. Materials and Methods. We developed a model in

  12. Ex vivo Expansion of Hematopoietic Stem Cells

    NARCIS (Netherlands)

    E. Farahbakhshian (Elnaz)

    2013-01-01

    textabstractHematopoiesis is a complex cellular differentiation process resulting in the formation of all blood cell types. In this process, hematopoietic stem cells (HSCs) reside at the top of the hematopoiesis hierarchy and have the capacity to differentiate into all blood cell lineages (multipote

  13. Autonomous behavior of hematopoietic stem cells

    NARCIS (Netherlands)

    Kamminga, LM; Akkerman, [No Value; Weersing, E; Ausema, A; Dontje, B; Van Zant, G; de Haan, G

    2000-01-01

    Objective. Mechanisms that affect the function of primitive hematopoietic stem cells with long-term proliferative potential remain largely unknown. Here we assessed whether properties of stem cells are cell-extrinsically or cell-autonomously regulated. Materials and Methods. We developed a model in

  14. Human hematopoietic cell culture, transduction, and analyses

    DEFF Research Database (Denmark)

    Bonde, Jesper; Wirthlin, Louisa; Kohn, Donald B;

    2008-01-01

    This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long...

  15. Treatment strategies in acute myeloid leukemia

    NARCIS (Netherlands)

    Han Li-na, [No Value; Zhou Jin, [No Value; Schuringa, Jan Jacob; Vellenga, Edo

    2011-01-01

    Objective To summarize the risk stratification and current treatment strategies for acute myeloid leukemia (AML) and discuss the role of emerging novel agents that might be applied in future clinical trials. Data sources The data in this article were collected from PubMed database with relevant Engl

  16. Treatment strategies in acute myeloid leukemia

    NARCIS (Netherlands)

    Han Li-na, [No Value; Zhou Jin, [No Value; Schuringa, Jan Jacob; Vellenga, Edo

    2011-01-01

    Objective To summarize the risk stratification and current treatment strategies for acute myeloid leukemia (AML) and discuss the role of emerging novel agents that might be applied in future clinical trials. Data sources The data in this article were collected from PubMed database with relevant

  17. Calcineurin/NFAT signalling inhibits myeloid haematopoiesis.

    Science.gov (United States)

    Fric, Jan; Lim, Clarice X F; Koh, Esther G L; Hofmann, Benjamin; Chen, Jinmiao; Tay, Hock Soon; Mohammad Isa, Siti Aminah Bte; Mortellaro, Alessandra; Ruedl, Christiane; Ricciardi-Castagnoli, Paola

    2012-04-01

    Nuclear factor of activated T cells (NFAT) comprises a family of transcription factors that regulate T cell development, activation and differentiation. NFAT signalling can also mediate granulocyte and dendritic cell (DC) activation, but it is unknown whether NFAT influences their development from progenitors. Here, we report a novel role for calcineurin/NFAT signalling as a negative regulator of myeloid haematopoiesis. Reconstituting lethally irradiated mice with haematopoietic stem cells expressing an NFAT-inhibitory peptide resulted in enhanced development of the myeloid compartment. Culturing bone marrow cells in media supplemented with Flt3-L in the presence of the calcineurin/NFAT inhibitor Cyclosporin A increased numbers of differentiated DC. Global gene expression analysis of untreated DC and NFAT-inhibited DC revealed differential expression of transcripts that regulate cell cycle and apoptosis. In conclusion, these results provide evidence that calcineurin/NFAT signalling negatively regulates myeloid lineage development. The finding that inhibition of NFAT enhances myeloid development provides a novel insight into understanding how the treatment with drugs targeting calcineurin/NFAT signalling influence the homeostasis of the innate immune system.

  18. Cytarabine dose for acute myeloid leukemia

    NARCIS (Netherlands)

    B. Löwenberg (Bob); T. Pabst (Thomas); E. Vellenga (Edo); W. van Putten; H.C. Schouten (Harry); C. Graux (Carlos); A. Ferrant (Augustin); P. Sonneveld (Pieter); B.J. Biemond (Bart); A. Gratwohl (Alois); G.E. de Greef (Georgine); L.F. Verdonck (Leo); M.R. Schaafsma (Martijn); M. Gregor (Michael); M. Theobald; U. Schanz (Urs); J. Maertens (Johan); G.J. Ossenkoppele (Gert)

    2011-01-01

    textabstractBACKGROUND: Cytarabine (ara-C) is an important drug in the treatment of acute myeloid leukemia (AML). High-dose cytarabine (2000 to 3000 mg per square meter of body-surface area) is toxic but results in higher rates of relapse-free survival than does the conventional dose of 100 to 400 m

  19. Cytarabine Dose for Acute Myeloid Leukemia

    NARCIS (Netherlands)

    Lowenberg, Bob; Pabst, Thomas; Vellenga, Edo; van Putten, Wim; Schouten, Harry C.; Graux, Carlos; Ferrant, Augustin; Sonneveld, Pieter; Biemond, Bart J.; Gratwohl, Alois; de Greef, Georgine E.; Verdonck, Leo F.; Schaafsma, Martijn R.; Gregor, Michael; Theobald, Matthias; Schanz, Urs; Maertens, Johan; Ossenkoppele, Gert J.

    2011-01-01

    BACKGROUND Cytarabine (ara-C) is an important drug in the treatment of acute myeloid leukemia (AML). High-dose cytarabine (2000 to 3000 mg per square meter of body-surface area) is toxic but results in higher rates of relapse-free survival than does the conventional dose of 100 to 400 mg per square

  20. A human ESC model for MLL-AF4 leukemic fusion gene reveals an impaired early hematopoietic-endothelial specification

    Institute of Scientific and Technical Information of China (English)

    Clara Bueno; Agustin F Femández; Mario F Fraga; Inmaculada Moreno-Gimeno; Deborah Burks; Maria del Carmen Plaza-Calonge; Juan C Rodríguez-Manzaneque; Pablo Menendez; Rosa Montes; Gustavo J Melen; Verónica Ramos-Mejia; Pedro J Real; Verónica Ayllón; Laura Sanchez; Gertrudis Ligero; Iván Gutierrez-Aranda

    2012-01-01

    The MLL-AF4 fusion gene is a hallmark genomic aberration in high-risk acute lymphoblastic leukemia in inants.Although it is well established that MLL-AF4 arises prenatally during human development,its effects on hematopoieric development in utero remain unexplored.We have created a human-specific cellular system to study early hemato-endothelial development in MLL-AF4-expressing human embryonic stem cells (hESCs).Functional studies,clonal analysis and gene expression profiling reveal that expression of MLL-AF4 in hESCs has a phenotypic,functional and gene expression impact.MLL-AF4 acts as a global transcriptional activator and a positive regulator of homeobox gene expression in hESCs.Functionally,MLL-AF4 enhances the specification of hemogenic precursors from hESCs but strongly impairs further hematopoietic commitment in favor of an endothelial cell fate.MLL-AF4 hESCs are transcriptionally primed to differentiate towards hemogenic precursors prone to endothelial maturation,as reflected by the marked upregulation of master genes associated to vascular-endothelial functions and early hematopoiesis.Furthermore,we report that MLL-AF4 expression is not sufficient to transform hESC-derived hematopoietic cells.This work illustrates how hESCs may provide unique insights into human development and further our understanding of how leukemic fusion genes,known to arise prenatally,regulate human embryonic hematopoietic specification.

  1. Decitabine in Treating Patients With Myelodysplastic Syndromes or Acute Myeloid Leukemia

    Science.gov (United States)

    2013-09-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; de Novo Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  2. Inhibition of protein kinase CK2 with the clinical-grade small ATP-competitive compound CX-4945 or by RNA interference unveils its role in acute myeloid leukemia cell survival, p53-dependent apoptosis and daunorubicin-induced cytotoxicity.

    Science.gov (United States)

    Quotti Tubi, Laura; Gurrieri, Carmela; Brancalion, Alessandra; Bonaldi, Laura; Bertorelle, Roberta; Manni, Sabrina; Pavan, Laura; Lessi, Federica; Zambello, Renato; Trentin, Livio; Adami, Fausto; Ruzzene, Maria; Pinna, Lorenzo A; Semenzato, Gianpietro; Piazza, Francesco

    2013-10-12

    The involvement of protein kinase CK2 in sustaining cancer cell survival could have implications also in the resistance to conventional and unconventional therapies. Moreover, CK2 role in blood tumors is rapidly emerging and this kinase has been recognized as a potential therapeutic target. Phase I clinical trials with the oral small ATP-competitive CK2 inhibitor CX-4945 are currently ongoing in solid tumors and multiple myeloma. We have analyzed the expression of CK2 in acute myeloid leukemia and its function in cell growth and in the response to the chemotherapeutic agent daunorubicin We employed acute myeloid leukemia cell lines and primary blasts from patients grouped according to the European LeukemiaNet risk classification. Cell survival, apoptosis and sensitivity to daunorubicin were assessed by different means. p53-dependent CK2-inhibition-induced apoptosis was investigated in p53 wild-type and mutant cells. CK2a was found highly expressed in the majority of samples across the different acute myeloid leukemia prognostic subgroups as compared to normal CD34+ hematopoietic and bone marrow cells. Inhibition of CK2 with CX-4945, K27 or siRNAs caused a p53-dependent acute myeloid leukemia cell apoptosis. CK2 inhibition was associated with a synergistic increase of the cytotoxic effects of daunorubicin. Baseline and daunorubicin-induced STAT3 activation was hampered upon CK2 blockade. These results suggest that CK2 is over expressed across the different acute myeloid leukemia subsets and acts as an important regulator of acute myeloid leukemia cell survival. CK2 negative regulation of the protein levels of tumor suppressor p53 and activation of the STAT3 anti-apoptotic pathway might antagonize apoptosis and could be involved in acute myeloid leukemia cell resistance to daunorubicin.

  3. Effects of Hematopoietic Lineage and Precursor Age on CML Disease Progression

    Science.gov (United States)

    2007-03-01

    the doctoral thesis work of Robert Signer, a graduate student enro in the Cellular and Molecular Pathology Graduate Program at UCLA. C T...old mice. R 8 1. Enright , H. and P. McGlave. Chronic myelogenous leukemia. In Hematology: Basic Principles and Practice, 3rd edition. R...Abstract: Keystone Symposium SUPPORTING DATA None FINAL REPORT LIST OF PERSONNEL RECEIVING PAY FROM RESEARCH EFFORT Robert A.J. Signer

  4. Differences in proportion and dynamics of recipient hematopoiesis following hematopoietic cell transplantation in CML and IMF.

    Science.gov (United States)

    Siebolts, Udo; Thiele, Jürgen; Zander, Thomas; Ditschkowski, Markus; Beelen, Dietrich W; Kröger, Nicolaus; Fehse, Boris; Wickenhauser, Claudia

    2008-01-01

    Since decades myeloablation followed by allogeneic stem cell transplantation offered the only opportunity to cure leukemia patients and only recently the development of STI571 created a further alternative in chronic myeloid leukemia (CML). While among all leukemias this transplantation regimen had the best outcome in CML, trials with reduced intensity conditioning regimens (RIC) were rather humbling and recurrence of the neoplastic clone occurred frequently. However, the same therapy in patients with idiopathic myelofibrosis (IMF) resulted in a more favorable outcome. Therefore, long-term mixed chimerism (mCh) was determined on bone marrow (BM) biopsies derived from five IMF patients and from eight CML patients of the pre STI era following sex-mismatched transplantation. All patients presented lasting hematologic remission and were matched concerning age, sex and appearance of GvHD. Analysis of late transplant period (day +100) revealed a concentration of host cells within the CD34+ precursor cell compartment in both diseases. However, in IMF BM biopsies only up to 8% recipient CD34+ precursors but in CML biopsies up to 26% recipient CD34+ precursors were detected. Taken into account that in CML up to 10% of the host BM CD34+ precursors bear the BCR-ABL translocation our data suggest that the neoplastic CD34+ progenitor cell population might dispose of better strategies to escape immune surveillance in CML than in IMF.

  5. MicroRNAs in Pediatric Acute Lymphoblastic Leukemia: Small players with huge potential

    OpenAIRE

    Schotte, Diana

    2011-01-01

    textabstractHematopoiesis is a dynamic balance of cellular proliferation, survival, apoptosis and differentiation in which the pluripotent hematopoietic stem cell gives rise to lymphoid and myeloid precursors of blood cells. The B-lymphoid precursor sequentially differentiates from proB-cells into common/preB-cells and fi nally yields mature B-lymphocytes. The T-lymphoid precursor generates thymocytes or proT-cells that further differentiate into T-lymphocytes. The myeloid precursor gives ris...

  6. PRECURSOR FLARES IN OJ 287

    Energy Technology Data Exchange (ETDEWEB)

    Pihajoki, P.; Berdyugin, A.; Lindfors, E.; Reinthal, R.; Sillanpaeae, A.; Takalo, L. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, FI-21500 Piikkioe (Finland); Valtonen, M.; Nilsson, K. [Finnish Centre for Astronomy with ESO, University of Turku, FI-21500 Piikkioe (Finland); Zola, S.; Koziel-Wierzbowska, D. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, PL-30-244 Krakow (Poland); Liakos, A. [Department of Astrophysics, Astronomy and Mechanics, University of Athens, GR 157 84 Zografos, Athens, Hellas (Greece); Drozdz, M.; Winiarski, M.; Ogloza, W. [Mount Suhora Observatory, Pedagogical University, ul. Podchorazych 2, PL-30-084 Krakow (Poland); Provencal, J. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Santangelo, M. M. M. [O.A.C. Osservatorio Astronomico di Capannori, Via di Valle, I-55060 Vorno, Capannori (Italy); Salo, H. [Department of Physical Sciences, University of Oulu, P.O. Box 3000, FI-90014 University of Oulu (Finland); Chandra, S.; Ganesh, S.; Baliyan, K. S., E-mail: popiha@utu.fi [Astronomy and Astrophysics Division, Physical Research Laboratory, Ahmedabad 380009 (India); and others

    2013-02-10

    We have studied three most recent precursor flares in the light curve of the blazar OJ 287 while invoking the presence of a precessing binary black hole in the system to explain the nature of these flares. Precursor flare timings from the historical light curves are compared with theoretical predictions from our model that incorporate effects of an accretion disk and post-Newtonian description for the binary black hole orbit. We find that the precursor flares coincide with the secondary black hole descending toward the accretion disk of the primary black hole from the observed side, with a mean z-component of approximately z{sub c} = 4000 AU. We use this model of precursor flares to predict that precursor flare of similar nature should happen around 2020.96 before the next major outburst in 2022.

  7. Distinct roles for hematopoietic and extra-hematopoietic sphingosine kinase-1 in inflammatory bowel disease.

    Science.gov (United States)

    Snider, Ashley J; Ali, Wahida H; Sticca, Jonathan A; Coant, Nicolas; Ghaleb, Amr M; Kawamori, Toshihiko; Yang, Vincent W; Hannun, Yusuf A; Obeid, Lina M

    2014-01-01

    Sphingosine kinase 1 (SK1), one of two SK enzymes, is highly regulated and has been shown to act as a focal point for the action of many growth factors and cytokines. SK1 leads to generation of sphingosine-1-phosphate (S1P) and potentially the activation of S1P receptors to mediate biologic effects. Our previous studies implicated SK1/S1P in the regulation of inflammatory processes, specifically in inflammatory bowel disease (IBD). These studies were conducted using a total body knockout mouse for SK1 and were unable to determine the source of SK1/S1P (hematopoietic or extra-hematopoietic) involved in the inflammatory responses. Therefore, bone marrow transplants were performed with wild-type (WT) and SK1-/- mice and colitis induced with dextran sulfate sodium (DSS). Irrespective of the source of SK1/S1P, bone marrow or tissue, DSS induced colitis in all mice; however, mice lacking SK1 in both hematopoietic and extra-hematopoietic compartments exhibited decreased crypt damage. Systemic inflammation was assessed, and mice with WT bone marrow demonstrated significant neutrophilia in response to DSS. In the local inflammatory response, mice lacking SK1/S1P in either bone marrow or tissue exhibited decreased induction of cytokines and less activation of STAT3 (signal transducer and activator of transcription 3). Interestingly, we determined that extra-hematopoietic SK1 is necessary for the induction of cyclooxygenase 2 (COX2) in colon epithelium in response to DSS-induced colitis. Taken together our data suggest that hematopoietic-derived SK1/S1P regulates specific aspects of the systemic inflammatory response, while extra-hematopoietic SK1 in the colon epithelium is necessary for the autocrine induction of COX2 in DSS-induced colitis.

  8. ICL-induced miR139-3p and miR199a-3p have opposite roles in hematopoietic cell expansion and leukemic transformation.

    Science.gov (United States)

    Alemdehy, Mir Farshid; Haanstra, Jurgen R; de Looper, Hans W J; van Strien, Paulina M H; Verhagen-Oldenampsen, Judith; Caljouw, Yvette; Sanders, Mathijs A; Hoogenboezem, Remco; de Ru, Arnoud H; Janssen, George M C; Smetsers, Stephanie E; Bierings, Marc B; van Veelen, Peter A; von Lindern, Marieke; Touw, Ivo P; Erkeland, Stefan J

    2015-06-18

    Interstrand crosslinks (ICLs) are toxic DNA lesions that cause severe genomic damage during replication, especially in Fanconi anemia pathway-deficient cells. This results in progressive bone marrow failure and predisposes to acute myeloid leukemia (AML). The molecular mechanisms responsible for these defects are largely unknown. Using Ercc1-deficient mice, we show that Trp53 is responsible for ICL-induced bone marrow failure and that loss of Trp53 is leukemogenic in this model. In addition, Ercc1-deficient myeloid progenitors gain elevated levels of miR-139-3p and miR-199a-3p with age. These microRNAs exert opposite effects on hematopoiesis. Ectopic expression of miR-139-3p strongly inhibited proliferation of myeloid progenitors, whereas inhibition of miR-139-3p activity restored defective proliferation of Ercc1-deficient progenitors. Conversely, the inhibition of miR-199a-3p functions aggravated the myeloid proliferation defect in the Ercc1-deficient model, whereas its enforced expression enhanced proliferation of progenitors. Importantly, miR-199a-3p caused AML in a pre-leukemic mouse model, supporting its role as an onco-microRNA. Target genes include HuR for miR-139-3p and Prdx6, Runx1, and Suz12 for miR-199a-3p. The latter genes have previously been implicated as tumor suppressors in de novo and secondary AML. These findings show that, in addition to TRP53-controlled mechanisms, miR-139-3p and miR-199a-3p are involved in the defective hematopoietic function of ICL-repair deficient myeloid progenitors.

  9. Midostaurin and Decitabine in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia and FLT3 Mutation

    Science.gov (United States)

    2016-10-10

    Acute Myeloid Leukemia With FLT3/ITD Mutation; Acute Myeloid Leukemia With Gene Mutations; FLT3 Tyrosine Kinase Domain Point Mutation; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  10. Early Natural Killer Cell Reconstitution Predicts Overall Survival in T Cell-Replete Allogeneic Hematopoietic Stem Cell Transplantation

    DEFF Research Database (Denmark)

    Minculescu, Lia; Marquart, Hanne Vibeke; Friis, Lone Smidstrup

    2016-01-01

    Early immune reconstitution plays a critical role in clinical outcome after allogeneic hematopoietic stem cell transplantation (HSCT). Natural killer (NK) cells are the first lymphocytes to recover after transplantation and are considered powerful effector cells in HSCT. We aimed to evaluate...... the clinical impact of early NK cell recovery in T cell-replete transplant recipients. Immune reconstitution was studied in 298 adult patients undergoing HSCT for acute myeloid leukemia, acute lymphoblastic leukemia, and myelodysplastic syndrome from 2005 to 2013. In multivariate analysis NK cell numbers...... on day 30 (NK30) > 150 cells/µL were independently associated with superior overall survival (hazard ratio, .79; 95% confidence interval, .66 to .95; P = .01). Cumulative incidence analyses showed that patients with NK30 > 150 cells/µL had significantly less transplant-related mortality (TRM), P = .01...

  11. JAK2 V617F in myeloid disorders: molecular diagnostic techniques and their clinical utility: a paper from the 2005 William Beaumont Hospital Symposium on Molecular Pathology.

    Science.gov (United States)

    Steensma, David P

    2006-09-01

    In early 2005, several groups of investigators studying myeloid malignancies described a novel somatic point mutation (V617F) in the conserved autoinhibitory pseudokinase domain of the Janus kinase 2 (JAK2) protein, which plays an important role in normal hematopoietic growth factor signaling. The V617F mutation is present in blood and marrow from a large proportion of patients with classic BCR/ABL-negative chronic myeloproliferative disorders and of a few patients with other clonal hematological diseases such as myelodysplastic syndrome, atypical myeloproliferative disorders, and acute myeloid leukemia. The JAK2 V617F mutation causes constitutive activation of the kinase, with deregulated intracellular signaling that mimics continuous hematopoietic growth factor stimulation. Within 7 months of the first electronic publication describing this new mutation, clinical molecular diagnostic laboratories in the United States and Europe began offering JAK2 mutation testing on a fee-for-service basis. Here, I review the various techniques used by research groups and clinical laboratories to detect the genetic mutation underlying JAK2 V617F, including fluorescent dye chemistry sequencing, allele-specific polymerase chain reaction (PCR), real-time PCR, DNA-melting curve analysis, pyrosequencing, and others. I also discuss diagnostic sensitivity, performance, and other practical concerns relevant to the clinical laboratorian in addition to the potential diagnostic utility of JAK2 mutation tests.

  12. Selumetinib in Treating Patients With Recurrent or Refractory Acute Myeloid Leukemia

    Science.gov (United States)

    2015-07-06

    Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Promyelocytic Leukemia (M3); Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  13. File list: Pol.Bld.20.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.Leukemia,_Myeloid mm9 RNA polymerase Blood Leukemia, Myeloid http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.20.AllAg.Leukemia,_Myeloid.bed ...

  14. File list: Pol.Bld.10.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.AllAg.Leukemia,_Myeloid hg19 RNA polymerase Blood Leukemia, Myeloid http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.10.AllAg.Leukemia,_Myeloid.bed ...

  15. File list: Pol.Bld.10.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.AllAg.Leukemia,_Myeloid mm9 RNA polymerase Blood Leukemia, Myeloid http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.10.AllAg.Leukemia,_Myeloid.bed ...

  16. File list: Pol.Bld.50.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.AllAg.Leukemia,_Myeloid mm9 RNA polymerase Blood Leukemia, Myeloid http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.50.AllAg.Leukemia,_Myeloid.bed ...

  17. File list: Pol.Bld.20.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.Leukemia,_Myeloid hg19 RNA polymerase Blood Leukemia, Myeloid http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.20.AllAg.Leukemia,_Myeloid.bed ...

  18. File list: Pol.Bld.50.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.AllAg.Leukemia,_Myeloid hg19 RNA polymerase Blood Leukemia, Myeloid http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.50.AllAg.Leukemia,_Myeloid.bed ...

  19. File list: Pol.Bld.05.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.05.AllAg.Leukemia,_Myeloid hg19 RNA polymerase Blood Leukemia, Myeloid http...://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.05.AllAg.Leukemia,_Myeloid.bed ...

  20. File list: Pol.Bld.05.AllAg.Leukemia,_Myeloid [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.05.AllAg.Leukemia,_Myeloid mm9 RNA polymerase Blood Leukemia, Myeloid http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.05.AllAg.Leukemia,_Myeloid.bed ...

  1. Azacitidine and Sonidegib or Decitabine in Treating Patients With Myeloid Malignancies

    Science.gov (United States)

    2016-05-25

    Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Essential Thrombocythemia; Myelodysplastic Syndrome; Myelodysplastic/Myeloproliferative Neoplasm; Polycythemia Vera; Previously Treated Myelodysplastic Syndrome; Primary Myelofibrosis; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  2. Complex Variant of Philadelphia Translocation Involving Chromosomes 9, 12, and 22 in a Case with Chronic Myeloid Leukaemia

    Science.gov (United States)

    Malvestiti, F.; Agrati, C.; Chinetti, S.; Di Meco, A.; Cirrincione, S.; Oggionni, M.; Grimi, B.; Maggi, F.; Simoni, G.; Grati, F. R.

    2014-01-01

    Chronic myeloid leukemia (CML) is a hematopoietic stem cell disorder included in the broader diagnostic category of myeloproliferative neoplasms, associated with fusion by BCR gene at chromosome 22q11 to ABL1 gene at chromosome 9q34 with the formation of the Philadelphia (Ph) chromosome. In 2–10% of CML cases, the fusion gene arises in connection with a variant translocation, involving chromosomes 9, 22, and one or more different chromosomes; consequently, the Ph chromosome could be masked within a complex chromosome rearrangement. In cases with variant Ph translocation a deletion on der(9) may be more frequently observed than in cases with the classical one. Herein we describe a novel case of CML with complex variant Ph translocation involving chromosomes 9, 12, and 22. We present the hematologic response and cytogenetic response after Imatinib treatment. We also speculated the mechanism which had originated the chromosome rearrangement. PMID:25045550

  3. Complex Variant of Philadelphia Translocation Involving Chromosomes 9, 12, and 22 in a Case with Chronic Myeloid Leukaemia

    Directory of Open Access Journals (Sweden)

    F. Malvestiti

    2014-01-01

    Full Text Available Chronic myeloid leukemia (CML is a hematopoietic stem cell disorder included in the broader diagnostic category of myeloproliferative neoplasms, associated with fusion by BCR gene at chromosome 22q11 to ABL1 gene at chromosome 9q34 with the formation of the Philadelphia (Ph chromosome. In 2–10% of CML cases, the fusion gene arises in connection with a variant translocation, involving chromosomes 9, 22, and one or more different chromosomes; consequently, the Ph chromosome could be masked within a complex chromosome rearrangement. In cases with variant Ph translocation a deletion on der(9 may be more frequently observed than in cases with the classical one. Herein we describe a novel case of CML with complex variant Ph translocation involving chromosomes 9, 12, and 22. We present the hematologic response and cytogenetic response after Imatinib treatment. We also speculated the mechanism which had originated the chromosome rearrangement.

  4. Immunotherapy with natural killer cells: a possible approach for the treatment of Acute Myeloid Leukemia also in Brazil

    Directory of Open Access Journals (Sweden)

    Lúcia Silla

    Full Text Available SUMMARY The allogeneic hematopoietic stem cell transplantation (HSCT can cure intermediate and high-risk acute myeloid leukemia. Even with the development of strategies to reduce HSCT toxicity, this is still a complex treatment with high morbidity and mortality. Knowledge of the graft versus leukemia effect of HSCT has prepared the way for the development of Adoptive Immunotherapy or in vitro expansion of activated lymphocytes without alloreactivity, with subsequent intravenous infusion. The infusion of genetically modified T lymphocytes and haploidentical natural killer cells has been tested as an alternative to HSCT with very interesting results worldwide and in Brazil, as we not only have the technology of in vitro expansion of clinical grade lymphocytes available, but also do it according to the Good Manufacturing Practices that have been determined internationally.

  5. [Role of Bone Marrow Mesenchymal Stem Cells in Resistance of Chronic Myeloid Leukemia to Tyrosine Kinase Inhibitors -Review].

    Science.gov (United States)

    Zhang, Xiao-Yan; Wan, Qian; Fang, Li-Jun; Li, Jian

    2016-12-01

    Chronic myeloid leukemia (CML) is a disease originated from malignant hematopoietic stem cell disorder. In CML, mesenchymal stem cells(MSC) have been changed in the bone marrow microenvironment, which can protect the leukemia cells from apoptosis induced by tyrosine kinase inhibitors (TKI) and lead to the resistance to TKI by the secretion of soluble factors, involvement in cell-cell adhesion, and so on. This review mainly focuses on the changes of the bone marrow mesenchymal stem cells in CML, as well as the role and mechanism of MSC in the CML resistance of TKI. The concrete probrems dicussing in this review are role of MSC in bone marrow microenviroment, characteristics of MSC in CML, the related mechanisms of MSC in drug resistance and so on.

  6. Clostridium difficile infection in Chilean patients submitted to hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Javier Pilcante

    2015-12-01

    Full Text Available ABSTRACT Introduction: Patients submitted to hematopoietic stem cell transplantation have an increased risk of Clostridium difficile infection and multiple risk factors have been identi- fied. Published reports have indicated an incidence from 9% to 30% of transplant patients however to date there is no information about infection in these patients in Chile. Methods: A retrospective analysis was performed of patients who developed C. difficile infection after hematopoietic stem cell transplantations from 2000 to 2013. Statistical analysis used the Statistical Package for the Social Sciences software. Results: Two hundred and fifty patients were studied (mean age: 39 years; range: 17-69, with 147 (59% receiving allogeneic transplants and 103 (41% receiving autologous trans- plants. One hundred and ninety-two (77% patients had diarrhea, with 25 (10% cases of C. difficile infection being confirmed. Twenty infected patients had undergone allogeneic trans- plants, of which ten had acute lymphoblastic leukemia, three had acute myeloid leukemia and seven had other diseases (myelodysplastic syndrome, chronic myeloid leukemia, severe aplastic anemia. In the autologous transplant group, five patients had C. difficile infection; two had multiple myeloma, one had amyloidosis, one had acute myeloid leukemia and one had germinal carcinoma. The overall incidence of C. difficile infection was 4% within the first week, 6.4% in the first month and 10% in one year, with no difference in overall survival between infected and non-infected groups (72.0% vs. 67.6%, respectively; p-value = 0.56. Patients infected after allogeneic transplants had a slower time to neutrophil engraftment compared to non-infected patients (17.5 vs. 14.9 days, respectively; p-value = 0.008. In the autologous transplant group there was no significant difference in the neutrophil engraftment time between infected and non-infected patients (12.5 days vs. 11.8 days, respectively; p

  7. Decitabine, Donor Natural Killer Cells, and Aldesleukin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    Science.gov (United States)

    2016-01-07

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  8. A Genetic Screen Reveals an Unexpected Role for Yorkie Signaling in JAK/STAT-Dependent Hematopoietic Malignancies in Drosophila melanogaster

    Science.gov (United States)

    Anderson, Abigail M.; Bailetti, Alessandro A.; Rodkin, Elizabeth; De, Atish; Bach, Erika A.

    2017-01-01

    A gain-of-function mutation in the tyrosine kinase JAK2 (JAK2V617F) causes human myeloproliferative neoplasms (MPNs). These patients present with high numbers of myeloid lineage cells and have numerous complications. Since current MPN therapies are not curative, there is a need to find new regulators and targets of Janus kinase/Signal transducer and activator of transcription (JAK/STAT) signaling that may represent additional clinical interventions . Drosophila melanogaster offers a low complexity model to study MPNs as JAK/STAT signaling is simplified with only one JAK [Hopscotch (Hop)] and one STAT (Stat92E). hopTumorous-lethal (Tum-l) is a gain-of-function mutation that causes dramatic expansion of myeloid cells, which then form lethal melanotic tumors. Through an F1 deficiency (Df) screen, we identified 11 suppressors and 35 enhancers of melanotic tumors in hopTum-l animals. Dfs that uncover the Hippo (Hpo) pathway genes expanded (ex) and warts (wts) strongly enhanced the hopTum-l tumor burden, as did mutations in ex, wts, and other Hpo pathway genes. Target genes of the Hpo pathway effector Yorkie (Yki) were significantly upregulated in hopTum-l blood cells, indicating that Yki signaling was increased. Ectopic hematopoietic activation of Yki in otherwise wild-type animals increased hemocyte proliferation but did not induce melanotic tumors. However, hematopoietic depletion of Yki significantly reduced the hopTum-l tumor burden, demonstrating that Yki is required for melanotic tumors in this background. These results support a model in which elevated Yki signaling increases the number of hemocytes, which become melanotic tumors as a result of elevated JAK/STAT signaling. PMID:28620086

  9. Exogenous endothelial cells as accelerators of hematopoietic reconstitution

    Directory of Open Access Journals (Sweden)

    Mizer J

    2012-11-01

    Full Text Available Abstract Despite the successes of recombinant hematopoietic-stimulatory factors at accelerating bone marrow reconstitution and shortening the neutropenic period post-transplantation, significant challenges remain such as cost, inability to reconstitute thrombocytic lineages, and lack of efficacy in conditions such as aplastic anemia. A possible means of accelerating hematopoietic reconstitution would be administration of cells capable of secreting hematopoietic growth factors. Advantages of this approach would include: a ability to regulate secretion of cytokines based on biological need; b long term, localized production of growth factors, alleviating need for systemic administration of factors that possess unintended adverse effects; and c potential to actively repair the hematopoietic stem cell niche. Here we overview the field of hematopoietic growth factors, discuss previous experiences with mesenchymal stem cells (MSC in accelerating hematopoiesis, and conclude by putting forth the rationale of utilizing exogenous endothelial cells as a novel cellular therapy for acceleration of hematopoietic recovery.

  10. Hematopoietic stem cell origin of connective tissues.

    Science.gov (United States)

    Ogawa, Makio; Larue, Amanda C; Watson, Patricia M; Watson, Dennis K

    2010-07-01

    Connective tissue consists of "connective tissue proper," which is further divided into loose and dense (fibrous) connective tissues and "specialized connective tissues." Specialized connective tissues consist of blood, adipose tissue, cartilage, and bone. In both loose and dense connective tissues, the principal cellular element is fibroblasts. It has been generally believed that all cellular elements of connective tissue, including fibroblasts, adipocytes, chondrocytes, and bone cells, are generated solely by mesenchymal stem cells. Recently, a number of studies, including those from our laboratory based on transplantation of single hematopoietic stem cells, strongly suggested a hematopoietic stem cell origin of these adult mesenchymal tissues. This review summarizes the experimental evidence for this new paradigm and discusses its translational implications.

  11. Recent advances in hematopoietic stem cell biology

    DEFF Research Database (Denmark)

    Bonde, Jesper; Hess, David A; Nolta, Jan A

    2004-01-01

    PURPOSE OF REVIEW: Exciting advances have been made in the field of hematopoietic stem cell biology during the past year. This review summarizes recent progress in the identification, culture, and in vivo tracking of hematopoietic stem cells. RECENT FINDINGS: The roles of Wnt and Notch proteins...... in regulating stem cell renewal in the microenvironment, and how these molecules can be exploited in ex vivo stem cell culture, are reviewed. The importance of identification of stem cells using functional as well as phenotypic markers is discussed. The novel field of nanotechnology is then discussed...... in the context of stem cell tracking in vivo. This review concludes with a section on the unexpected potential of bone marrow-derived stem cells to contribute to the repair of damaged tissues. The contribution of cell fusion to explain the latter phenomenon is discussed. SUMMARY: Because of exciting discoveries...

  12. DNA methylation profiling of hematopoietic stem cells.

    Science.gov (United States)

    Begtrup, Amber Hogart

    2014-01-01

    DNA methylation is a key epigenetic mark that is essential for properly functioning hematopoietic stem cells. Determining where functionally relevant DNA methylation marks exist in the genome is crucial to understanding the role that methylation plays in hematopoiesis. This chapter describes a method to profile DNA methylation by selectively enriching methylated DNA sequences that are bound in vitro by methyl-binding domain (MBD) proteins. The MBD-pulldown approach selects for DNA sequences that have the potential to be "read" by the endogenous machinery involved in epigenetic regulation. Furthermore, this approach is feasible with very small quantities of DNA, and is compatible with the use of any downstream high-throughput sequencing approach. This technique offers a reliable, simple, and powerful tool for exploration of the role of DNA methylation in hematopoietic stem cells.

  13. Bone marrow myeloid cells in regulation of multiple myeloma progression.

    Science.gov (United States)

    Herlihy, Sarah E; Lin, Cindy; Nefedova, Yulia

    2017-08-01

    Survival, growth, and response to chemotherapy of cancer cells depends strongly on the interaction of cancer cells with the tumor microenvironment. In multiple myeloma, a cancer of plasma cells that localizes preferentially in the bone marrow, the microenvironment is highly enriched with myeloid cells. The majority of myeloid cells are represented by mature and immature neutrophils. The contribution of the different myeloid cell populations to tumor progression and chemoresistance in multiple myeloma is discussed.

  14. Epo and non-hematopoietic cells: what do we know?

    Science.gov (United States)

    Ogunshola, Omolara O; Bogdanova, Anna Yu

    2013-01-01

    The hematopoietic growth factor erythropoietin (Epo) circulates in plasma and controls the oxygen carrying capacity of the blood (Fisher. Exp Biol Med (Maywood) 228:1-14, 2003). Epo is produced primarily in the adult kidney and fetal liver and was originally believed to play a role restricted to stimulation of early erythroid precursor proliferation, inhibition of apoptosis, and differentiation of the erythroid lineage. Early studies showed that mice with targeted deletion of Epo or the Epo receptor (EpoR) show impaired erythropoiesis, lack mature erythrocytes, and die in utero around embryonic day 13.5 (Wu et al. Cell 83:59-67, 1995; Lin et al. Genes Dev. 10:154-164, 1996). These animals also exhibited heart defects, abnormal vascular development as well as increased apoptosis in the brain suggesting additional functions for Epo signaling in normal development of the central nervous system and heart. Now, in addition to its well-known role in erythropoiesis, a diverse array of cells have been identified that produce Epo and/or express the Epo-R including endothelial cells, smooth muscle cells, and cells of the central nervous system (Masuda et al. J Biol Chem. 269:19488-19493, 1994; Marti et al. Eur J Neurosci. 8:666-676, 1996; Bernaudin et al. J Cereb Blood Flow Metab. 19:643-651, 1999; Li et al. Neurochem Res. 32:2132-2141, 2007). Endogenously produced Epo and/or expression of the EpoR gives rise to autocrine and paracrine signaling in different organs particularly during hypoxia, toxicity, and injury conditions. Epo has been shown to regulate a variety of cell functions such as calcium flux (Korbel et al. J Comp Physiol B. 174:121-128, 2004) neurotransmitter synthesis and cell survival (Velly et al. Pharmacol Ther. 128:445-459, 2010; Vogel et al. Blood. 102:2278-2284, 2003). Furthermore Epo has neurotrophic effects (Grimm et al. Nat Med. 8:718-724, 2002; Junk et al. Proc Natl Acad Sci U S A. 99:10659-10664, 2002), can induce an angiogenic phenotype in cultured

  15. File list: His.Bld.05.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.Hematopoietic_Stem_Cells mm9 Histone Blood Hematopoietic Stem Cell...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.05.AllAg.Hematopoietic_Stem_Cells.bed ...

  16. File list: His.Bld.10.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.AllAg.Hematopoietic_Stem_Cells mm9 Histone Blood Hematopoietic Stem Cell...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.10.AllAg.Hematopoietic_Stem_Cells.bed ...

  17. File list: His.Bld.50.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.Hematopoietic_Stem_Cells mm9 Histone Blood Hematopoietic Stem Cell...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.50.AllAg.Hematopoietic_Stem_Cells.bed ...

  18. File list: His.Bld.20.AllAg.Hematopoietic_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.Hematopoietic_Stem_Cells mm9 Histone Blood Hematopoietic Stem Cell...://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.20.AllAg.Hematopoietic_Stem_Cells.bed ...

  19. Precision Medicine for Acute Myeloid Leukemia

    Science.gov (United States)

    Lai, Catherine; Karp, Judith E.; Hourigan, Christopher S.

    2016-01-01

    The goal of precision medicine is to personalize therapy based on individual patient variation, to correctly select the right treatment, for the right patient, at the right time. Acute myeloid leukemia (AML) is a heterogeneous collection of myeloid malignancies with diverse genetic etiology and the potential for intra-patient clonal evolution over time. We discuss here how the precision medicine paradigm might be applied to the care of AML patients by focusing on the potential roles of targeting therapy by patient-specific somatic mutations and aberrant pathways, ex-vivo drug sensitivity and resistance testing, high sensitivity measurements of residual disease burden and biology along with potential clinical trial and regulatory constraints. PMID:26514194

  20. Prolonged remission maintenance in acute myeloid leukaemia.

    Science.gov (United States)

    Spiers, A S; Goldman, J M; Catovsky, D; Costello, C; Galton, D A; Pitcher, C S

    1977-08-27

    Twenty-five patients with acute myeloid leukaemia were treated with three quadruple drug combinations in predetermined rotation: TRAP (thioguanine, daunorubicin, cytarabine, prednisolone); COAP (cyclophosphamide, vincristine, cytarabine, prednisolone); and POMP (prednisolone, vincristine, methotrexate, mercaptopurine). Fifteen patients (60%) achieved complete remission and five (20%) partial remission. For maintenance, five-day courses of drugs were administered every 14 to 21 days and doses were increased to tolerance. The median length of complete remission was 66 weeks. In eight patients remission maintenance treatment was discontinued and some remained in complete remission for over two years. In this series the remission induction rate was comparable with that reported for other regimens and complete remission lasted longer with this intensive maintenance regimen than with others. Nevertheless, the TRAP programme must still be regarded as only palliative treatment for acute myeloid leukaemia.

  1. Acute myeloid leukemia in the pregnant patient.

    Science.gov (United States)

    Thomas, Xavier

    2015-08-01

    Although acute myeloid leukemia (AML) mostly occurs in older patients, it could be seen in women of childbearing age. It is therefore not surprising that in some patients, the management of AML will be complicated by a coexistent pregnancy. However, the association of leukemia and pregnancy is uncommon. Its incidence is estimated to be 1 in 75,000-100,000 pregnancies. During pregnancy, most leukemias are acute: two-thirds are myeloid and one-third are lymphoblastic. There is no standard approach for this clinical dilemma, in part because of variables such as the type of AML, the seriousness of the symptoms, and the patient's personal beliefs. In many cases, the diagnostic workup has to be altered because of the pregnancy, and often available treatments have varying risks to the fetus. While chemotherapy is reported to have some risks during the first trimester, it is admitted that it can be administered safely during the second and the third trimesters.

  2. A Novel Function for P2Y2 in Myeloid Recipient-Derived Cells during Graft-versus-Host Disease.

    Science.gov (United States)

    Klämbt, Verena; Wohlfeil, Sebastian A; Schwab, Lukas; Hülsdünker, Jan; Ayata, Korcan; Apostolova, Petya; Schmitt-Graeff, Annette; Dierbach, Heide; Prinz, Gabriele; Follo, Marie; Prinz, Marco; Idzko, Marco; Zeiser, Robert

    2015-12-15

    Acute graft-versus-host disease (GvHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation. During the initiation phase of acute GvHD, endogenous danger signals such as ATP are released and inform the innate immune system via activation of the purinergic receptor P2X7 that a noninfectious damage has occurred. A second ATP-activated purinergic receptor involved in inflammatory diseases is P2Y2. In this study, we used P2y2(-/-) mice to test the role of this receptor in GvHD. P2y2(-/-) recipients experienced reduced GvHD-related mortality, IL-6 levels, enterocyte apoptosis, and histopathology scores. Chimeric mice with P2y2 deficiency restricted to hematopoietic tissues survived longer after GvHD induction than did wild-type mice. P2y2 deficiency of the recipient was connected to lower levels of myeloperoxidase in the intestinal tract of mice developing GvHD and a reduced myeloid cell signature. Selective deficiency of P2Y2 in inflammatory monocytes decreased GvHD severity. Mechanistically, P2y2(-/-) inflammatory monocytes displayed defective ERK activation and reactive oxygen species production. Compatible with a role of P2Y2 in human GvHD, the frequency of P2Y2(+) cells in inflamed GvHD lesions correlated with histopathological GvHD severity. Our findings indicate a novel function for P2Y2 in ATP-activated recipient myeloid cells during GvHD, which could be exploited when targeting danger signals to prevent GvHD.

  3. Placenta as a source of hematopoietic stem cells

    OpenAIRE

    Dzierzak, Elaine; Robin, Catherine

    2010-01-01

    The placenta is a large, highly vascularised hematopoietic tissue that functions during the embryonic and foetal development of eutherian mammals. Although recognised as the interface tissue important in the exchange of oxygen, nutrients and waste products between the foetus and mother, the placenta has increasingly become a focus of research concerning the ontogeny of the blood system. Here, we describe recent data showing the intrinsic hematopoietic potential and appearance of hematopoietic...

  4. BURDEN OF ABNORMAL HEMATOPOIETIC CLONE IN PATIENTS WITH MYELODYSPLASTIC SYNDROMES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To investigate the role of the burden of abnormal hematopoietic clone in the development of myelodys plastic syndromes (MDS).Methods The ratio of the bone marrow cells with abnormal chromosomes to the total counted bone marrow cells was regarded as the index of MDS clone burden. The disease severity related parameters including white blood cell count, hemoglobin, platelet count, lactate dehydrogenase level, bone marrow blast, myeloid differentiation index, micromegakaryocyte, transfusion, interleukin-2, tumor necrosis factor ( TNF), CD4 + and CD8 + T cells of MDS patients were assayed, and the correlations between those parameters and MDS clone burden were also analyzed.Results The clone burden of MDS patients was 67.4% ± 36. 2%. MDS clone burden positively correlated with bone marrow blasts (r=0.483, P<0.05), negatively with hemoglobin level (r=-0.445, P<0.05). The number of blasts, hemoglobin, and erythrocytes in high clone burden (>50%) and low clone burden (≤50%) groups were 7.78%±5.51% and 3.45%±3.34%, 56.06±14. 28 g/L and 76.40±24.44 g/L, (1.82±0.48)×1012/L and (2. 32±0.66)×1012/L, respectively (all P <0.05). CD4 + T lymphocytes of MDS patients and normal controls were (0. 274±0.719)×109/L and (0.455±0.206)×109/L, respectively (P<0.05). CD8 ± T lymphocytes of MDS patients and normal controls were (0.240±0.150)×109/L and (0.305 ±0.145)×109/L, respectively. The serum level of interleukin-2 of MDS patients (6.29±3.58 ng/mL) was significantly higher than normal control (3.11±1.40ng/mL, P<0.05). The serum level of TNF of MDS patients and normal control group were 2.42±1.79 ng/mL and 1.68 ±0.69 ng/mL, respectively. The ratio of CD4 to CD8 was higher in high clone burden MDS patients (1.90 ±0.52) than that in low clone burden patients (0.97±0.44, P<0.05).Conclusion The quantitive clonal karyotype abnormalities and deficient T cell immunity are important parameters for evaluating MDS severity and predicting its

  5. Renal lymphangiectasia associated with chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Rastogi Rajul

    2010-01-01

    Full Text Available Renal lymphangiectasia is a rare disorder characterized by dilatation of peripelvic, renal and perirenal lymphatic ducts. The exact etiology is not known. Congenital forms and ac-quired forms have been described. The latter has been attributed to obstruction of draining retro-peritoneal lymphatic ducts caused by either infection, inflammation or any other cause. We des-cribe the rare association of renal lymphangiectasia with chronic myeloid leukemia, which is probably not yet reported in the medical literature.

  6. KEGG DISEASE / Acute myeloid leukemia (AML) [KEGG DISEASE

    Lifescience Database Archive (English)

    Full Text Available DISEASE: H00003 Entry H00003Disease Name Acute myeloid leukemia (AML) Description Acute.... Category Cancer Brite Human diseases [BR:br08402] Cancers Cancers of haematopoietic and lymphoid tissues H00003Acute...atopoietic and related tissue C92Myeloid leukaemia H00003Acute myeloid leukemia (AML) Cancer-accociated carb...ohydrates [br08441.html] H00003 Pathway hsa05221Acute myeloid leukemiahsa05202Transcriptional misregulation ... or t(16; 16)(p13, q22), (CBF-beta/MYH11) ICD-O: 9866/3, Tumor type: Acute promyelocytic leukaemia (AML with

  7. Decitabine in Treating Children With Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphoblastic Leukemia

    Science.gov (United States)

    2013-01-22

    Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  8. Bortezomib in Treating Patients With High-Risk Acute Myeloid Leukemia in Remission

    Science.gov (United States)

    2014-10-30

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia

  9. Gemtuzumab Ozogamicin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Acute Promyelocytic Leukemia

    Science.gov (United States)

    2016-07-26

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia

  10. Interleukin-1 regulates hematopoietic progenitor and stem cells in the midgestation mouse fetal liver

    OpenAIRE

    Orelio, Claudia; Peeters, Marian; Haak, Esther; van der Horn, Karin; Dzierzak, Elaine

    2009-01-01

    Hematopoietic progenitors are generated in the yolk sac and aorta-gonad-mesonephros region during early mouse development. At embryonic day 10.5 the first hematopoietic stem cells emerge in the aorta-gonad-mesonephros. Subsequently, hematopoietic stem cells and progenitors are found in the fetal liver. The fetal liver is a potent hematopoietic site, playing an important role in the expansion and differentiation of hematopoietic progenitors and hematopoietic stem cells. However, little is know...

  11. Brillouin precursors in Debye media

    CERN Document Server

    Macke, Bruno

    2015-01-01

    We theoretically study the formation of Brillouin precursors in Debye media. We point out that the precursors are only visible at propagation distances such that the impulse response of the medium is essentially determined by the frequency-dependence of its absorption and is practically Gaussian. By simple convolution, we then obtain explicit analytical expressions of the transmitted waves generated by reference incident waves, distinguishing precursor and main signal by physical arguments. These expressions are in good agreement with the signals obtained in numerical or real experiments performed on water and explain some features of these signals that remained mysterious or unnoticed. In addition, we show quite generally that the shape of the Brillouin precursor appearing alone at large enough propagation distance and the law giving its amplitude as a function of this distance do not depend on the precise form of the incident wave but only on its integral properties. The incidence of a static conductivity o...

  12. Knockdown of HSPA9 induces TP53-dependent apoptosis in human hematopoietic progenitor cells.

    Science.gov (United States)

    Liu, Tuoen; Krysiak, Kilannin; Shirai, Cara Lunn; Kim, Sanghyun; Shao, Jin; Ndonwi, Matthew; Walter, Matthew J

    2017-01-01

    Myelodysplastic syndromes (MDS) are the most common adult myeloid blood cancers in the US. Patients have increased apoptosis in their bone marrow cells leading to low peripheral blood counts. The full complement of gene mutations that contribute to increased apoptosis in MDS remains unknown. Up to 25% of MDS patients harbor and acquired interstitial deletion on the long arm of chromosome 5 [del(5q)], creating haploinsufficiency for a large set of genes including HSPA9. Knockdown of HSPA9 in primary human CD34+ hematopoietic progenitor cells significantly inhibits growth and increases apoptosis. We show here that HSPA9 knockdown is associated with increased TP53 expression and activity, resulting in increased expression of target genes BAX and p21. HSPA9 protein interacts with TP53 in CD34+ cells and knockdown of HSPA9 increases nuclear TP53 levels, providing a possible mechanism for regulation of TP53 by HSPA9 haploinsufficiency in hematopoietic cells. Concurrent knockdown of TP53 and HSPA9 rescued the increased apoptosis observed in CD34+ cells following knockdown of HSPA9. Reduction of HSPA9 below 50% results in severe inhibition of cell growth, suggesting that del(5q) cells may be preferentially sensitive to further reductions of HSPA9 below 50%, thus providing a genetic vulnerability to del(5q) cells. Treatment of bone marrow cells with MKT-077, an HSPA9 inhibitor, induced apoptosis in a higher percentage of cells from MDS patients with del(5q) compared to non-del(5q) MDS patients and normal donor cells. Collectively, these findings indicate that reduced levels of HSPA9 may contribute to TP53 activation and increased apoptosis observed in del(5q)-associated MDS.

  13. RNA-binding protein IGF2BP3 targeting of oncogenic transcripts promotes hematopoietic progenitor proliferation.

    Science.gov (United States)

    Palanichamy, Jayanth Kumar; Tran, Tiffany M; Howard, Jonathan M; Contreras, Jorge R; Fernando, Thilini R; Sterne-Weiler, Timothy; Katzman, Sol; Toloue, Masoud; Yan, Weihong; Basso, Giuseppe; Pigazzi, Martina; Sanford, Jeremy R; Rao, Dinesh S

    2016-04-01

    Posttranscriptional control of gene expression is important for defining both normal and pathological cellular phenotypes. In vitro, RNA-binding proteins (RBPs) have recently been shown to play important roles in posttranscriptional regulation; however, the contribution of RBPs to cell specification is not well understood. Here, we determined that the RBP insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is specifically overexpressed in mixed lineage leukemia-rearranged (MLL-rearranged) B-acute lymphoblastic leukemia (B-ALL), which constitutes a subtype of this malignancy associated with poor prognosis and high risk of relapse. IGF2BP3 was required for the survival of B-ALL cell lines, as knockdown led to decreased proliferation and increased apoptosis. Enforced expression of IGF2BP3 provided murine BM cells with a strong survival advantage, led to proliferation of hematopoietic stem and progenitor cells, and skewed hematopoietic development to the B cell/myeloid lineage. Cross-link immunoprecipitation and high throughput sequencing uncovered the IGF2BP3-regulated transcriptome, which includes oncogenes MYC and CDK6 as direct targets. IGF2BP3 regulated transcripts via targeting elements within 3' untranslated regions (3'UTR), and enforced IGF2BP3 expression in mice resulted in enhanced expression of Myc and Cdk6 in BM. Together, our data suggest that IGF2BP3-mediated targeting of oncogenic transcripts may represent a critical pathogenetic mechanism in MLL-rearranged B-ALL and support IGF2BP3 and its cognate RNA-binding partners as potential therapeutic targets in this disease.

  14. In vitro inhibitory effects of imatinib mesylate on stromal cells and hematopoietic progenitors from bone marrow

    Directory of Open Access Journals (Sweden)

    P.B. Soares

    2013-01-01

    Full Text Available Imatinib mesylate (IM is used to treat chronic myeloid leukemia (CML because it selectively inhibits tyrosine kinase, which is a hallmark of CML oncogenesis. Recent studies have shown that IM inhibits the growth of several non-malignant hematopoietic and fibroblast cells from bone marrow (BM. The aim of the present study was to evaluate the effects of IM on stromal and hematopoietic progenitor cells, specifically in the colony-forming units of granulocyte/macrophage (CFU-GM, using BM cultures from 108 1.5- to 2-month-old healthy Swiss mice. The results showed that low concentrations of IM (1.25 µM reduced the growth of CFU-GM in clonogenic assays. In culture assays with stromal cells, fibroblast proliferation and α-SMA expression by immunocytochemistry analysis were also reduced in a concentration-dependent manner, with a survival rate of approximately 50% with a dose of 2.5 µM. Cell viability and morphology were analyzed using MTT and staining with acrydine orange/ethidium bromide. Most cells were found to be viable after treatment with 5 µM IM, although there was gradual growth inhibition of fibroblastic cells while the number of round cells (macrophage-like cells increased. At higher concentrations (15 µM, the majority of cells were apoptotic and cell growth ceased completely. Oil red staining revealed the presence of adipocytes only in untreated cells (control. Cell cycle analysis of stromal cells by flow cytometry showed a blockade at the G0/G1 phases in groups treated with 5-15 µM. These results suggest that IM differentially inhibits the survival of different types of BM cells since toxic effects were achieved.

  15. Tumefactive intracranial presentation of precursor B-cell acute lymphoblastic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Forester, Craig M. [University of Utah, Salt Lake City, UT (United States); Braunreiter, Chi L. [University of Utah, Division of Pediatric Hematology Oncology, Primary Children' s Medical Center, Salt Lake City, UT (United States); Helen DeVos Children' s Hospital, Department of Pediatric Hematology Oncology, Grand Rapids, MI (United States); Yaish, Hasan; Afify, Zeinab [University of Utah, Division of Pediatric Hematology Oncology, Primary Children' s Medical Center, Salt Lake City, UT (United States); Hedlund, Gary L. [Primary Children' s Medical Center, Department of Pediatric Radiology, Salt Lake City, UT (United States)

    2009-11-15

    In children, leukemia is the most common malignancy, and approximately 75% of leukemias are acute lymphoblastic leukemia (ALL). Central nervous system leukemia is found at diagnosis in fewer than 5% of children with ALL. Leukemic intracranial masses have been described with acute myeloid leukemia, but ALL presenting as a mass lesion is rare. We describe a unique case of an intracranial confirmed precursor B cell (pre-B) ALL mass in a 13-year-old girl that was diagnosed by brain CT, MRI and cerebral angiography, and confirmed by biopsy. This report details pertinent history and distinguishing imaging features of an intracranial ALL tumefaction. (orig.)

  16. MN1–Fli1 oncofusion transforms murine hematopoietic progenitor cells into acute megakaryoblastic leukemia cells

    Science.gov (United States)

    Wenge, D V; Felipe-Fumero, E; Angenendt, L; Schliemann, C; Schmidt, E; Schmidt, L H; Thiede, C; Ehninger, G; Berdel, W E; Arteaga, M-F; Mikesch, J-H

    2015-01-01

    Long-term outcome of acute megakaryoblastic leukemia (AMKL) patients without Down's syndrome remains poor. Founding mutations and chimeric oncogenes characterize various AMKL subtypes. However, for around one third of all cases the underlying mechanisms of AMKL leukemogenesis are still largely unknown. Recently, an in-frame fusion of meningeoma 1–friend leukemia virus integration 1 (MN1–Fli1) gene was detected in a child with AMKL. We intended to investigate the potential role of this oncofusion in leukemogenesis of acute myeloid leukemia. Strikingly, expression of MN1–Fli1 in murine hematopoietic progenitor cells was sufficient to induce leukemic transformation generating immature myeloid cells with cytomorphology and expression of surface markers typical for AMKL. Systematic structure function analyses revealed FLS and 3′ETS domains of Fli1 as decisive domains for the AMKL phenotype. Our data highlight an important role of MN1–Fli1 in AMKL leukemogenesis and provide a basis for research assessing the value of this oncofusion as a future diagnostic marker and/or therapeutic target in AMKL patients. PMID:26690545

  17. Brief Report: Single-Cell Analysis Reveals Cell Division-Independent Emergence of Megakaryocytes From Phenotypic Hematopoietic Stem Cells.

    Science.gov (United States)

    Roch, Aline; Trachsel, Vincent; Lutolf, Matthias P

    2015-10-01

    Despite increasingly stringent methods to isolate hematopoietic stem cells (HSCs), considerable heterogeneity remains in terms of their long-term self-renewal and differentiation potential. Recently, the existence of long-lived, self-renewing, myeloid-restricted progenitors in the phenotypically defined HSC compartment has been revealed, but these cells remain poorly characterized. Here, we used an in vitro single-cell analysis approach to track the fate of 330 long-term HSCs (LT-HSC; Lin- cKit+ Sca-1+ CD150+ CD48- CD34-) cultured for 5 days under serum-free basal conditions. Our analysis revealed a highly heterogeneous behavior with approximately 15% of all phenotypic LT-HSCs giving rise to megakaryocytes (Mk). Surprisingly, in 65% of these cases, Mk development occurred in the absence of cell division. This observation suggests that myeloid-restricted progenitors may not derive directly from LT-HSCs but instead could share an identical cell surface marker repertoire. © 2015 AlphaMed Press.

  18. HOXA4 induces expansion of hematopoietic stem cells in vitro and confers enhancement of pro-B-cells in vivo.

    Science.gov (United States)

    Fournier, Marilaine; Lebert-Ghali, Charles-Étienne; Krosl, Gorazd; Bijl, Janet J

    2012-01-01

    Members of the homeobox (Hox) gene family are known to mediate expansion of hematopoietic stem cells (HSCs) and progenitors. The absence of oncogenic properties promoted HOXB4 as prime candidate in the quest to expand HSCs for clinical purposes. Despite its potential to expand HSCs, studies with mutant mice showed that Hoxb4 is not essential for HSC generation and function under physiological conditions. Expression studies and the existence of functional redundancy in particular between paralog Hox genes suggest that HOXA4 might have potent properties to expand HSCs. Here we measured the ability of HOXA4 to promote ex vivo expansion of HSCs and progenitors using retrovirus-mediated overexpression. Our results provide evidence that HOXA4-transduced HSCs and primitive progenitors expand in culture conditions and demonstrate that the potential of expanded HOXA4 HSCs to give rise to mature myeloid and lymphoid progeny in normal proportions remained intact. Interestingly, constitutive overexpression of HOXA4 resulted in an unbalanced expansion of lymphoid/myeloid progenitors in bone marrow chimeras favorable to B-cell progenitors responsive to interleukin-7. This expansion was specific for these progenitors and not for the more primitive Whitlock-Witte-initiating cells. These data indicate that early stages of B-cell development associated with proliferation are in particular sensitive to HOXA4. Thus, this study supports the potential use of HOXA4 to expand both HSCs and B-cell progenitor populations for therapeutic strategies.

  19. [Transformation of secondary myelodysplastic syndrome to atypical chronic myeloid leukemia in a female patient with acute myeloid leukemia].

    Science.gov (United States)

    Gritsaev, S V; Kostroma, I I; Zapreeva, I M; Shmidt, A V; Tiranova, S A; Balashova, V A; Martynkevich, I S; Chubukina, Zh V; Semenova, N Yu; Chechetkin, A V

    Secondary myeloid neoplasia may be a complication of intensive cytostatic therapy. The most common types of secondary neoplasias are acute myeloid leukemia and myelodysplastic syndrome. The development of secondary atypical chronic myeloid leukemia (aCML) is an extremely rare phenomenon. The paper describes transformation of secondary myelodysplastic syndrome to aCML 6 months after its diagnosis. The development of aCML was accompanied by additional chromosomal aberration as monosomy of chromosome 17. No mutations in the JAK2, MPL, and CalR genes were detected. It is concluded that the clinical course of secondary myeloid neoplasias is variable.

  20. Modulatory Effects and Action Mechanisms of Tryptanthrin on Murine Myeloid Leukemia Cells

    Institute of Scientific and Technical Information of China (English)

    Hoi-Ling Chan; Hon-Yan Yip; Nai-Ki Mak; Kwok-Nam Leung

    2009-01-01

    Leukemia is the disorder of hematopoietic cell development and is characterized by an uncoupling of cell proliferation and differentiation. There is a pressing need for the development of novel tactics for leukemia therapy as conventional treatments often have severe adverse side effects. Tryptanthrin (6,12-dihydro-6,12-dioxoindolo-(2,1-b)-quinazoline) is a naturally-occurring, weakly basic alkaloid isolated from the dried roots of medicinal indigo plants (Ban-Lan-Gen). It has been reported to have various biological and pharmacological activities, including anti-microbial, anti-inflammatory, immunomodulatory and anti-tumor effects. However, its modulatory effects and action mechanisms on myeloid cells remain poorly understood. In this study, tryptanthrin was shown to suppress the proliferation of the murine myeloid leukemia WEHI-3B JCS cells in a dose- and time-dependent manner. It also significantly reduced the growth of WEHI-3B JCS cells in vivo in syngeneic BALB/c mice. However, it exhibited no significant direct cytotoxicity on normal murine peritoneal macrophages. Flow cytometric analysis showed an obvious cell cycle arrest of the tryptanthrin-treated WEHI-3B JCS cells at the G0/G1 phase. The expression of cyclin D2,D3, Cdk 2, 4 and 6 genes in WEHI-3B JCS cells was found to be down-regulated at 24 h as measured by RT-PCR. Morphological and functional studies revealed that tryptanthrin could induce differentiation in WEHI-3B JCS cells, as shown by the increases in vacuolation, cellular granularity and NBT-reducing activity in tryptanthrin-treated cells. Collectively, our findings suggest that tryptanthrin might exert its anti-tumor effect on the murine myelomonocytic leukemia WEHI-3B JCS cells by causing cell cycle arrest and by triggering cell differentiation. Cellular & Molecular Immunology. 2009;6(5):335-342.

  1. Lymphoid and Myeloid Recovery in Rhesus Macaques Following Total Body X-Irradiation.

    Science.gov (United States)

    Farese, Ann M; Hankey, Kim G; Cohen, Melanie Veirs; MacVittie, Thomas J

    2015-11-01

    Recovery from severe immunosuppression requires hematopoietic stem cell reconstitution and effective thymopoiesis to restore a functional immune cell repertoire. Herein, a model of immune cell reconstitution consequent to potentially lethal doses of irradiation is described, which may be valuable in evaluating potential medical countermeasures. Male rhesus macaques were total body irradiated by exposure to 6.00 Gy 250 kVp x-radiation (midline tissue dose, 0.13 Gy min), resulting in an approximate LD10/60 (n = 5/59). Animals received medical management, and hematopoietic and immune cell recovery was assessed (n ≤ 14) through 370 d post exposure. A subset of animals (n ≤ 8) was examined through 700 d. Myeloid recovery was assessed by neutrophil and platelet-related parameters. Lymphoid recovery was assessed by the absolute lymphocyte count and FACS-based phenotyping of B- and T-cell subsets. Recent thymic emigrants were identified by T cell receptor excision circle quantification. Severe neutropenia, lymphopenia, and thrombocytopenia resolved within 30 d. Total CD3+ cells μL required 60 d to reach values 60% of normal, followed by subsequent slow recovery to approximately normal by 180 d post irradiation. Recovery of CD3+4+ and CD3+8+ cell memory and naïve subsets were markedly different. Memory populations were ≥ 100% of normal by day 60, whereas naïve populations were only 57% normal at 180 d and never fully recovered to baseline post irradiation. Total (CD20+) B cells μL were within normal levels by 77 d post exposure. This animal model elucidates the variable T- and B-cell subset recovery kinetics after a potentially lethal dose of total-body irradiation that are dependent on marrow-derived stem and progenitor cell recovery, peripheral homeostatic expansion, and thymopoiesis.

  2. Variable behavior of iPSCs derived from CML patients for response to TKI and hematopoietic differentiation.

    Directory of Open Access Journals (Sweden)

    Aurélie Bedel

    Full Text Available Chronic myeloid leukemia disease (CML found effective therapy by treating patients with tyrosine kinase inhibitors (TKI, which suppress the BCR-ABL1 oncogene activity. However, the majority of patients achieving remission with TKI still have molecular evidences of disease persistence. Various mechanisms have been proposed to explain the disease persistence and recurrence. One of the hypotheses is that the primitive leukemic stem cells (LSCs can survive in the presence of TKI. Understanding the mechanisms leading to TKI resistance of the LSCs in CML is a critical issue but is limited by availability of cells from patients. We generated induced pluripotent stem cells (iPSCs derived from CD34⁺ blood cells isolated from CML patients (CML-iPSCs as a model for studying LSCs survival in the presence of TKI and the mechanisms supporting TKI resistance. Interestingly, CML-iPSCs resisted to TKI treatment and their survival did not depend on BCR-ABL1, as for primitive LSCs. Induction of hematopoietic differentiation of CML-iPSC clones was reduced compared to normal clones. Hematopoietic progenitors obtained from iPSCs partially recovered TKI sensitivity. Notably, different CML-iPSCs obtained from the same CML patients were heterogeneous, in terms of BCR-ABL1 level and proliferation. Thus, several clones of CML-iPSCs are a powerful model to decipher all the mechanisms leading to LSC survival following TKI therapy and are a promising tool for testing new therapeutic agents.

  3. Reduced-intensity stem cell transplantation from an HLA-identical sibling donor in patients with myeloid malignancies.

    Science.gov (United States)

    Hamaki, T; Kami, M; Kim, S-W; Onishi, Y; Kishi, Y; Murashige, N; Hori, A; Kojima, R; Sakiyama, M; Imataki, O; Heike, Y; Tanosaki, R; Masuo, S; Miyakoshi, S; Taniguchi, S; Tobinai, K; Takaue, Y

    2004-05-01

    The purpose of this study was to evaluate the feasibility and efficacy of allogeneic hematopoietic stem cell transplantation with a reduced-intensity regimen (RIST) in patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). In all, 36 patients (median age 55 years) underwent RIST from an HLA-matched related donor between September 1999 and December 2002. The diagnoses included AML (n=14), leukemia evolving from MDS (n=10), and MDS (refractory anemia with excess blasts n=6, refractory anemia n=6). The RIST regimen consisted of purine analog (cladribine or fludarabine)/busulfan, with or without antithymocyte globulin. The regimen was well tolerated, and 34 patients achieved durable engraftment and most achieved remission after RIST. A total of 17 patients developed grade II-IV acute GVHD, and 27 developed chronic GVHD. Eight patients relapsed, and five of them received antithymocyte globulin (ATG) as part of the preparative regimen. A total of 12 patients died (four disease progression, six transplantation-related complications, and two others). Estimated 1-year disease-free survival (DFS) in low- and high-risk groups was 85 and 64%, respectively. We conclude that RIST can be performed safely in elderly patients with myeloid malignancies, and has therapeutic potential for those who fail conventional chemotherapy. In view of the significant association between GVHD or ATG and DFS, defined management of GVHD following RIST should become a major target of clinical research.

  4. Clinical outcome and efficacy of current anti-leukemic therapy for leptomeningeal involvement in acute myeloid leukemia.

    Science.gov (United States)

    Kwon, Ji Hyun; Koh, Young-Il; Yoon, Sung-Soo; Park, Seonyang; Kim, Inho

    2016-11-01

    We investigated risk factors and outcome in acute myeloid leukemia (AML) patients with leptomeningeal involvement. Medical records of patients with non-promyelocytic AML at Seoul National University Hospital from January of 2000 to November of 2013 were reviewed. Leptomeningeal involvement was defined as the presence of atypical or malignant hematopoietic cells in the cerebrospinal fluid. Among 775 patients with AML, 141 patients (18.2 %) underwent cerebrospinal fluid examination. Leptomeningeal involvement of AML, confirmed in 38 patients (4.9 %), was associated with high white blood cell count and high level of lactic. There were seven patients in the favorable risk group (19.4 %), 21 in the intermediate risk group (58.3 %), and eight in the adverse risk group (22.2 %). Twenty-eight patients (85.7 %) developed leptomeningeal involvement during relapse status or refractory status. Thirty-one patients (81.6 %) received intrathecal chemotherapy, and whole-brain and/or craniospinal radiotherapy was conducted in 10 patients (27.0 %). The rate of complete remission after induction chemotherapy was 63.2 %. Median overall survival was 9.9 months. Radiotherapy and complete remission after the first induction chemotherapy were associated with longer overall survival. Leptomeningeal involvement in acute myeloid leukemia is rare, but relatively common in relapsed status or refractory status. Craniospinal radiotherapy and complete remission after induction chemotherapy were found to favorable prognostic factors.

  5. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia.

    Science.gov (United States)

    Kenderian, S S; Ruella, M; Shestova, O; Klichinsky, M; Aikawa, V; Morrissette, J J D; Scholler, J; Song, D; Porter, D L; Carroll, M; June, C H; Gill, S

    2015-08-01

    Patients with chemo-refractory acute myeloid leukemia (AML) have a dismal prognosis. Chimeric antigen receptor T (CART) cell therapy has produced exciting results in CD19+ malignancies and may overcome many of the limitations of conventional leukemia therapies. We developed CART cells to target CD33 (CART33) using the anti-CD33 single chain variable fragment used in gemtuzumab ozogamicin (clone My96) and tested the activity and toxicity of these cells. CART33 exhibited significant effector functions in vitro and resulted in eradication of leukemia and prolonged survival in AML xenografts. CART33 also resulted in human lineage cytopenias and reduction of myeloid progenitors in xenograft models of hematopoietic toxicity, suggesting that permanently expressed CD33-specific CART cells would have unacceptable toxicity. To enhance the viability of CART33 as an option for AML, we designed a transiently expressed mRNA anti-CD33 CAR. Gene transfer was carried out by electroporation into T cells and resulted in high-level expression with potent but self-limited activity against AML. Thus our preclinical studies show potent activity of CART33 and indicate that transient expression of anti-CD33 CAR by RNA modification could be used in patients to avoid long-term myelosuppression. CART33 therapy could be used alone or as part of a preparative regimen prior to allogeneic transplantation in refractory AML.

  6. Deletion of TAK1 in the myeloid lineage results in the spontaneous development of myelomonocytic leukemia in mice.

    Directory of Open Access Journals (Sweden)

    Betty Lamothe

    Full Text Available Previous studies of the conditional ablation of TGF-β activated kinase 1 (TAK1 in mice indicate that TAK1 has an obligatory role in the survival and/or development of hematopoietic stem cells, B cells, T cells, hepatocytes, intestinal epithelial cells, keratinocytes, and various tissues, primarily because of these cells' increased apoptotic sensitivity, and have implicated TAK1 as a critical regulator of the NF-κB and stress kinase pathways and thus a key intermediary in cellular survival. Contrary to this understanding of TAK1's role, we report a mouse model in which TAK1 deletion in the myeloid compartment that evoked a clonal myelomonocytic cell expansion, splenomegaly, multi-organ infiltration, genomic instability, and aggressive, fatal myelomonocytic leukemia. Unlike in previous reports, simultaneous deletion of TNF receptor 1 (TNFR1 failed to rescue this severe phenotype. We found that the features of the disease in our mouse model resemble those of human chronic myelomonocytic leukemia (CMML in its transformation to acute myeloid leukemia (AML. Consequently, we found TAK1 deletion in 13 of 30 AML patients (43%, thus providing direct genetic evidence of TAK1's role in leukemogenesis.

  7. Myeloid Dysregulation in a Human Induced Pluripotent Stem Cell Model of PTPN11-Associated Juvenile Myelomonocytic Leukemia

    Directory of Open Access Journals (Sweden)

    Sonia Mulero-Navarro

    2015-10-01

    Full Text Available Somatic PTPN11 mutations cause juvenile myelomonocytic leukemia (JMML. Germline PTPN11 defects cause Noonan syndrome (NS, and specific inherited mutations cause NS/JMML. Here, we report that hematopoietic cells differentiated from human induced pluripotent stem cells (hiPSCs harboring NS/JMML-causing PTPN11 mutations recapitulated JMML features. hiPSC-derived NS/JMML myeloid cells exhibited increased signaling through STAT5 and upregulation of miR-223 and miR-15a. Similarly, miR-223 and miR-15a were upregulated in 11/19 JMML bone marrow mononuclear cells harboring PTPN11 mutations, but not those without PTPN11 defects. Reducing miR-223’s function in NS/JMML hiPSCs normalized myelogenesis. MicroRNA target gene expression levels were reduced in hiPSC-derived myeloid cells as well as in JMML cells with PTPN11 mutations. Thus, studying an inherited human cancer syndrome with hiPSCs illuminated early oncogenesis prior to the accumulation of secondary genomic alterations, enabling us to discover microRNA dysregulation, establishing a genotype-phenotype association for JMML and providing therapeutic targets.

  8. The potassium channel Ether à go-go is a novel prognostic factor with functional relevance in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Stühmer Walter

    2010-01-01

    Full Text Available Abstract Background The voltage-gated potassium channel hEag1 (KV10.1 has been related to cancer biology. The physiological expression of the human channel is restricted to the brain but it is frequently and abundantly expressed in many solid tumors, thereby making it a promising target for a specific diagnosis and therapy. Because chronic lymphatic leukemia has been described not to express hEag1, it has been assumed that the channel is not expressed in hematopoietic neoplasms in general. Results Here we show that this assumption is not correct, because the channel is up-regulated in myelodysplastic syndromes, chronic myeloid leukemia and almost half of the tested acute myeloid leukemias in a subtype-dependent fashion. Most interestingly, channel expression strongly correlated with increasing age, higher relapse rates and a significantly shorter overall survival. Multivariate Cox regression analysis revealed hEag1 expression levels in AML as an independent predictive factor for reduced disease-free and overall survival; such an association had not been reported before. As a functional correlate, specific hEag1 blockade inhibited the proliferation and migration of several AML cell lines and primary cultured AML cells in vitro. Conclusion Our observations implicate hEag1 as novel target for diagnostic, prognostic and/or therapeutic approaches in AML.

  9. Small molecule inhibition of cAMP response element binding protein in human acute myeloid leukemia cells.

    Science.gov (United States)

    Mitton, B; Chae, H-D; Hsu, K; Dutta, R; Aldana-Masangkay, G; Ferrari, R; Davis, K; Tiu, B C; Kaul, A; Lacayo, N; Dahl, G; Xie, F; Li, B X; Breese, M R; Landaw, E M; Nolan, G; Pellegrini, M; Romanov, S; Xiao, X; Sakamoto, K M

    2016-12-01

    The transcription factor CREB (cAMP Response-Element Binding Protein) is overexpressed in the majority of acute myeloid leukemia (AML) patients, and this is associated with a worse prognosis. Previous work revealed that CREB overexpression augmented AML cell growth, while CREB knockdown disrupted key AML cell functions in vitro. In contrast, CREB knockdown had no effect on long-term hematopoietic stem cell activity in mouse transduction/transplantation assays. Together, these studies position CREB as a promising drug target for AML. To test this concept, a small molecule inhibitor of CREB, XX-650-23, was developed. This molecule blocks a critical interaction between CREB and its required co-activator CBP (CREB Binding Protein), leading to disruption of CREB-driven gene expression. Inhibition of CBP-CREB interaction induced apoptosis and cell-cycle arrest in AML cells, and prolonged survival in vivo in mice injected with human AML cells. XX-650-23 had little toxicity on normal human hematopoietic cells and tissues in mice. To understand the mechanism of XX-650-23, we performed RNA-seq, ChIP-seq and Cytometry Time of Flight with human AML cells. Our results demonstrate that small molecule inhibition of CBP-CREB interaction mostly affects apoptotic, cell-cycle and survival pathways, which may represent a novel approach for AML therapy.

  10. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: biology and treatment

    Directory of Open Access Journals (Sweden)

    Tiziana Grafone

    2012-04-01

    Full Text Available Hematopoiesis, the process by which the hematopoietic stem cells and progenitors differentiate into blood cells of various lineages, involves complex interactions of transcription factors that modulate the expression of downstream genes and mediate proliferation and differentiation signals. Despite the many controls that regulate hematopoiesis, mutations in the regulatory genes capable of promoting leukemogenesis may occur. The FLT3 gene encodes a tyrosine kinase receptor that plays a key role in controlling survival, proliferation and differentiation of hematopoietic cells. Mutations in this gene are critical in causing a deregulation of the delicate balance between cell proliferation and differentiation. In this review, we provide an update on the structure, synthesis and activation of the FLT3 receptor and the subsequent activation of multiple downstream signaling pathways. We also review activating FLT3 mutations that are frequently identified in acute myeloid leukemia, cause activation of more complex downstream signaling pathways and promote leukemogenesis. Finally, FLT3 has emerged as an important target for molecular therapy. We, therefore, report on some recent therapies directed against it.

  11. Matrix metalloproteinase-9 was involved in the immuno-modulatory defect of mesenchymal stem cell from chronic myeloid leukemia patients

    Institute of Scientific and Technical Information of China (English)

    ZHU Xi-shan; SHI Wei; AN Guang-yu; ZHANG Hong-mei; SONG Yu-guang; LI You-bin

    2011-01-01

    Background Overwhelming evidences on chronic myeloid leukemia (CML) indicate that patients harbor quiescent CML stem cells that are responsible for blast crisis. While the hematopoietic stem cell (HSC) origin of CML was first suggested over 30 years ago, recently CML-initiating cells beyond HSCs are also being investigated.Methods We have previously isolated fetal liver kinase-1-positive (Flk1+) cells carrying the BCR/ABL fusion gene from the bone marrow of Ph+ patients with hemangioblast property. In this study, we isolated CML patient-derived regulation using fluorescence in situ hybridization (FISH) analysis, fluorescence activated cell sorting (FACS),enzyme-linked immunoadsorbent assay, mixed lymphocyte reaction assays; then we compared these characters with those of the healthy donors.lymphocyte activation and proliferation was impaired in vitro.Conclusions CML patient-derived MSCs have impaired immuno-modulatory functions, suggesting that the dysregulation of hematopoiesis and immune response may originate from MSCs rather than hematopoietic stem cells (HSCs). MSCs might be a potential target for developing efficacious treatment for CML.

  12. Zebrafish embryonic stromal trunk (ZEST) cells support hematopoietic stem and progenitor cell (HSPC) proliferation, survival, and differentiation.

    Science.gov (United States)

    Campbell, Clyde; Su, Tammy; Lau, Ryan P; Shah, Arpit; Laurie, Payton C; Avalos, Brenda; Aggio, Julian; Harris, Elena; Traver, David; Stachura, David L

    2015-12-01

    Forward genetic screens in zebrafish have been used to identify genes essential for the generation of primitive blood and the emergence of hematopoietic stem cells (HSCs), but have not elucidated the genes essential for hematopoietic stem and progenitor cell (HSPC) proliferation and differentiation because of the lack of methodologies to functionally assess these processes. We previously described techniques used to test the developmental potential of HSPCs by culturing them on zebrafish kidney stromal (ZKS) cells, derived from the main site of hematopoiesis in the adult teleost. Here we describe an additional primary stromal cell line we refer to as zebrafish embryonic stromal trunk (ZEST) cells, derived from tissue surrounding the embryonic dorsal aorta, the site of HSC emergence in developing fish. ZEST cells encouraged HSPC differentiation toward the myeloid, lymphoid, and erythroid pathways when assessed by morphologic and quantitative reverse transcription polymerase chain reaction analyses. Additionally, ZEST cells significantly expanded the number of cultured HSPCs in vitro, indicating that these stromal cells are supportive of both HSPC proliferation and multilineage differentiation. Examination of ZEST cells indicates that they express numerous cytokines and Notch ligands and possess endothelial characteristics. Further characterization of ZEST cells should prove to be invaluable in understanding the complex signaling cascades instigated by the embryonic hematopoietic niche required to expand and differentiate HSPCs. Elucidating these processes and identifying possibilities for the modulation of these molecular pathways should allow the in vitro expansion of HSPCs for a multitude of therapeutic uses. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  13. Using Proteomics to 1) Identify the Bone Marrow Homing Receptors Expressed on Human Hematopoietic Stem Cells and 2) Elucidate Critical Signaling Pathways Responsible for the Blockage of Hematopoietic Differentiation in Leukemia

    KAUST Repository

    Chin, Chee J.

    2011-05-22

    Successful hematopoiesis requires the trafficking of hematopoietic stem/progenitor cells (HSPCs) to their bone marrow (BM) niche, where they can differentiate to produce all blood lineages. Leukemia arises when there is a blockage of differentiation and uncontrolled proliferation in the hematopoietic cells during their development. To refine therapies for leukemia, this study sought to improve the homing of healthy donor HSPCs for better transplantation and to find new candidates for differentiating and blocking proliferation in leukemic cells. Characterizing the molecular effectors mediating cell migration forms the basis for improving clinical transplantation of HSPCs. E-selectin/ligand interactions play a critical role in the homing of HSPCs to the BM, however, the identity of E-selectin ligands remains elusive. We aimed to use mass spectrometry (MS) to fully analyze the E-selectin ligands expressed on HSPCs. Immunoprecipitation studies coupled with MS confirmed the expression of three known E-selectin ligands, the hematopoietic cell E-/L-selectin ligand (HCELL), P-selectin glycoprotein ligand-1 (PSGL-1) and CD43, and revealed the presence of many interesting candidates on HSPCs-like cell line and on primary human BM CD34+ cells. The MS dataset represents a rich resource for further characterization of E-selectin ligands, which will lead to improvement of HSPCs transplantation. 4 Understanding the critical pathways underlying the initiation and maintenance of leukemia plays a key role in treating acute myeloid leukemia (AML). Ligation of the glycoprotein, CD44, using monoclonal antibodies or its natural ligand, hyaluronic acid, drives the differentiation of immature leukemic cells towards mature terminally differentiated cells, inhibits their proliferation and in some case induces their apoptosis. The aim of this study is to characterize the phosphoproteome of AML cells in response to CD44-induced differentiation. This will afford novel insights into the

  14. Regeneration-associated WNT Signaling Is Activated in Long-term Reconstituting AC133bright Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Alessandro Beghini

    2012-12-01

    Full Text Available Acute myeloid leukemia (AML is a genetically heterogeneous clonal disorder characterized by two molecularly distinct self-renewing leukemic stem cell (LSC populations most closely related to normal progenitors and organized as a hierarchy. A requirement for WNT/β-catenin signaling in the pathogenesis of AML has recently been suggested by a mouse model. However, its relationship to a specific molecular function promoting retention of self-renewing leukemia-initiating cells (LICs in human remains elusive. To identify transcriptional programs involved in the maintenance of a self-renewing state in LICs, we performed the expression profiling in normal (n = 10 and leukemic (n = 33 human long-term reconstituting AC133+ cells, which represent an expanded cell population in most AML patients. This study reveals the ligand-dependent WNT pathway activation in AC133bright AML cells and shows a diffuse expression and release of WNT10B, a hematopoietic stem cell regenerative-associated molecule. The establishment of a primary AC133+ AML cell culture (A46 demonstrated that leukemia cells synthesize and secrete WNT ligands, increasing the levels of dephosphorylated β-catenin in vivo. We tested the LSC functional activity in AC133+ cells and found significant levels of engraftment upon transplantation of A46 cells into irradiated Rag2-/-γc-/- mice. Owing to the link between hematopoietic regeneration and developmental signaling, we transplanted A46 cells into developing zebrafish. This system revealed the formation of ectopic structures by activating dorsal organizer markers that act downstream of the WNT pathway. In conclusion, our findings suggest that AC133bright LSCs are promoted by misappropriating homeostatic WNT programs that control hematopoietic regeneration.

  15. Human Placenta Is a Potent Hematopoietic Niche Containing Hematopoietic Stem and Progenitor Cells throughout Development

    NARCIS (Netherlands)

    C. Robin (Catherine); K. Bollerot (Karine); S.C. Mendes (Sandra); E. Haak (Esther); M. Crisan (Mihaela); F. Cerisoli (Francesco); I. Lauw (Ivoune); P. Kaimakis (Polynikis); R.J.J. Jorna (Ruud); M. Vermeulen (Mark); M.H. Kayser (Manfred); R. van der Linden (Reinier); P. Imanirad (Parisa); M.M.A. Verstegen (Monique); H. Nawaz-Yousaf (Humaira); N. Papazian (Natalie); E.A.P. Steegers (Eric); T. Cupedo (Tom); E.A. Dzierzak (Elaine)

    2009-01-01

    textabstractHematopoietic stem cells (HSCs) are responsible for the life-long production of the blood system and are pivotal cells in hematologic transplantation therapies. During mouse and human development, the first HSCs are produced in the aorta-gonad-mesonephros region. Subsequent to this emerg

  16. Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms

    NARCIS (Netherlands)

    Radulovic, V.; de Haan, G.; Klauke, K.

    2013-01-01

    The equilibrium between self-renewal and differentiation of hematopoietic stem cells is regulated by epigenetic mechanisms. In particular, Polycomb-group (PcG) proteins have been shown to be involved in this process by repressing genes involved in cell-cycle regulation and differentiation. PcGs are

  17. Nicotinic receptor alpha7 expression identifies a novel hematopoietic progenitor lineage.

    Directory of Open Access Journals (Sweden)

    Lorise C Gahring

    Full Text Available How inflammatory responses are mechanistically modulated by nicotinic acetylcholine receptors (nAChR, especially by receptors composed of alpha7 (α7 subunits, is poorly defined. This includes a precise definition of cells that express α7 and how these impact on innate inflammatory responses. To this aim we used mice generated through homologous recombination that express an Ires-Cre-recombinase bi-cistronic extension of the endogenous α7 gene that when crossed with a reporter mouse expressing Rosa26-LoxP (yellow fluorescent protein (YFP marks in the offspring those cells of the α7 cell lineage (α7(lin+. In the adult, on average 20-25 percent of the total CD45(+ myeloid and lymphoid cells of the bone marrow (BM, blood, spleen, lymph nodes, and Peyers patches are α7(lin+, although variability between litter mates in this value is observed. This hematopoietic α7(lin+ subpopulation is also found in Sca1(+cKit(+ BM cells suggesting the α7 lineage is established early during hematopoiesis and the ratio remains stable in the individual thereafter as measured for at least 18 months. Both α7(lin+ and α7(lin- BM cells can reconstitute the immune system of naïve irradiated recipient mice and the α7(lin+:α7(lin- beginning ratio is stable in the recipient after reconstitution. Functionally the α7(lin+:α7(lin- lineages differ in response to LPS challenge. Most notable is the response to LPS as demonstrated by an enhanced production of IL-12/23(p40 by the α7(lin+ cells. These studies demonstrate that α7(lin+ identifies a novel subpopulation of bone marrow cells that include hematopoietic progenitor cells that can re-populate an animal's inflammatory/immune system. These findings suggest that α7 exhibits a pleiotropic role in the hematopoietic system that includes both the direct modulation of pro-inflammatory cell composition and later in the adult the role of modulating pro-inflammatory responses that would impact upon an individual

  18. Development of hematopoietic stem cell activity in the mouse embryo.

    NARCIS (Netherlands)

    A.M. Müller (Albrecht); A. Medvinsky; J. Strouboulis (John); F.G. Grosveld (Frank); E.A. Dzierzak (Elaine)

    1994-01-01

    textabstractThe precise time of appearance of the first hematopoietic stem cell activity in the developing mouse embryo is unknown. Recently the aorta-gonad-mesonephros region of the developing mouse embryo has been shown to possess hematopoietic colony-forming activity (CFU-S) in irradiated recipie

  19. Hematopoietic Stem Cell Transplantation in Patients with Beta Thalassemia Major

    Directory of Open Access Journals (Sweden)

    M. Akif Yesilipek

    2014-02-01

    Full Text Available Hemoglobinopathies include an enormous patient population in south part of Turkey. Allogeneic hematopoietic stem cell transplantation is only curative treatment in thalassemia. Optimal medical therapy is very important in the years before transplant to achieve a successful transplantation. In this study, the indications, risk factors, results and the situation related with hematopoietic stem cell transplantation in thalassemia in Turkey was reviewed.

  20. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia.

    Science.gov (United States)

    Zhang, Jinghui; Ding, Li; Holmfeldt, Linda; Wu, Gang; Heatley, Sue L; Payne-Turner, Debbie; Easton, John; Chen, Xiang; Wang, Jianmin; Rusch, Michael; Lu, Charles; Chen, Shann-Ching; Wei, Lei; Collins-Underwood, J Racquel; Ma, Jing; Roberts, Kathryn G; Pounds, Stanley B; Ulyanov, Anatoly; Becksfort, Jared; Gupta, Pankaj; Huether, Robert; Kriwacki, Richard W; Parker, Matthew; McGoldrick, Daniel J; Zhao, David; Alford, Daniel; Espy, Stephen; Bobba, Kiran Chand; Song, Guangchun; Pei, Deqing; Cheng, Cheng; Roberts, Stefan; Barbato, Michael I; Campana, Dario; Coustan-Smith, Elaine; Shurtleff, Sheila A; Raimondi, Susana C; Kleppe, Maria; Cools, Jan; Shimano, Kristin A; Hermiston, Michelle L; Doulatov, Sergei; Eppert, Kolja; Laurenti, Elisa; Notta, Faiyaz; Dick, John E; Basso, Giuseppe; Hunger, Stephen P; Loh, Mignon L; Devidas, Meenakshi; Wood, Brent; Winter, Stuart; Dunsmore, Kimberley P; Fulton, Robert S; Fulton, Lucinda L; Hong, Xin; Harris, Christopher C; Dooling, David J; Ochoa, Kerri; Johnson, Kimberly J; Obenauer, John C; Evans, William E; Pui, Ching-Hon; Naeve, Clayton W; Ley, Timothy J; Mardis, Elaine R; Wilson, Richard K; Downing, James R; Mullighan, Charles G

    2012-01-11

    Early T-cell precursor acute lymphoblastic leukaemia (ETP ALL) is an aggressive malignancy of unknown genetic basis. We performed whole-genome sequencing of 12 ETP ALL cases and assessed the frequency of the identified somatic mutations in 94 T-cell acute lymphoblastic leukaemia cases. ETP ALL was characterized by activating mutations in genes regulating cytokine receptor and RAS signalling (67% of cases; NRAS, KRAS, FLT3, IL7R, JAK3, JAK1, SH2B3 and BRAF), inactivating lesions disrupting haematopoietic development (58%; GATA3, ETV6, RUNX1, IKZF1 and EP300) and histone-modifying genes (48%; EZH2, EED, SUZ12, SETD2 and EP300). We also identified new targets of recurrent mutation includi