WorldWideScience

Sample records for hematopoiesis aktivace adenosinovych

  1. Periportal Extramedullary Hematopoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Dong Ho [Dong-A University, Busan (Korea, Republic of)

    2009-12-15

    In a bone marrow failure patient, a soft tissue mass lesion in the periportal area is a rare presentation. We present the sonographic and dynamic CT findings of a histologically confirmed case of hepatic periportal extramedullary hematopoiesis.

  2. Insect immunology and hematopoiesis.

    Science.gov (United States)

    Hillyer, Julián F

    2016-05-01

    Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and activate effector pathways. Among the immune signaling pathways are the Toll, Imd, Jak/Stat, JNK, and insulin pathways. Activation of these and other pathways leads to pathogen killing via phagocytosis, melanization, cellular encapsulation, nodulation, lysis, RNAi-mediated virus destruction, autophagy and apoptosis. This review details these and other aspects of immunity in insects, and discusses how the immune and circulatory systems have co-adapted to combat infection, how hemocyte replication and differentiation takes place (hematopoiesis), how an infection prepares an insect for a subsequent infection (immune priming), how environmental factors such as temperature and the age of the insect impact the immune response, and how social immunity protects entire groups. Finally, this review highlights some underexplored areas in the field of insect immunobiology.

  3. Ikaros in hematopoiesis and leukemia

    Institute of Scientific and Technical Information of China (English)

    Sinisa; Dovat

    2011-01-01

    Ikaros is a gene whose activity is essential for normal hematopoiesis.Ikaros acts as a master regulator of lymphoid and myeloid development as well as a tumor suppressor.In cells,Ikaros regulates gene expression via chromatin remodeling.During the past 15 years tremendous advances have been made in understanding the role of Ikaros in hematopoiesis and leukemogenesis.In this Topic Highlights series of reviews,several groups of international experts in this field summarize the experimental data that is shaping the emerging picture of Ikaros function at the biochemical and cellular levels.The articles provide detailed analyses of recent scientific advancements and present models that will serve as a basis for future studies aimed at developing a better understanding of normal hematopoiesis and hematological malignancies and at accelerating the application of this knowledge in clinical practice.

  4. MRI features of epidural extramedullary hematopoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Alorainy, Ibrahim A. E-mail: alorainy@ksu.edu.sa; Al-Asmi, Abdullah R.; Carpio, Raquel del

    2000-07-01

    A case of {beta}-thalassemia intermedia with spinal cord compression due to extramedullary hematopoiesis, which was successfully treated by blood transfusion, is presented. Emphasis was made on the MRI appearance of extramedullary hematopoiesis on different pulse sequences. The theories that aimed to explain the involvement of the epidural space by extramedullary hematopoiesis are discussed.

  5. Periodic Solution of the Hematopoiesis Equation

    Directory of Open Access Journals (Sweden)

    Ji-Huan He

    2013-01-01

    Full Text Available Wu and Liu (2012 presented some results for the existence and uniqueness of the periodic solutions for the hematopoiesis model. This paper gives a simple approach to find an approximate period of the model.

  6. Mass-like extramedullary hematopoiesis: imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Ginzel, Andrew W. [Synergy Radiology Associates, Houston, TX (United States); Kransdorf, Mark J.; Peterson, Jeffrey J.; Garner, Hillary W. [Mayo Clinic, Department of Radiology, Jacksonville, FL (United States); Murphey, Mark D. [American Institute for Radiologic Pathology, Silver Spring, MD (United States)

    2012-08-15

    To report the imaging appearances of mass-like extramedullary hematopoiesis (EMH), to identify those features that are sufficiently characteristic to allow a confident diagnosis, and to recognize the clinical conditions associated with EMH and the relative incidence of mass-like disease. We retrospectively identified 44 patients with EMH; 12 of which (27%) had focal mass-like lesions and formed the study group. The study group consisted of 6 male and 6 female subjects with a mean age of 58 years (range 13-80 years). All 12 patients underwent CT imaging and 3 of the 12 patients had undergone additional MR imaging. The imaging characteristics of the extramedullary hematopoiesis lesions in the study group were analyzed and recorded. The patient's clinical presentation, including any condition associated with extramedullary hematopoiesis, was also recorded. Ten of the 12 (83%) patients had one or more masses located along the axial skeleton. Of the 10 patients with axial masses, 9 (90%) had multiple masses and 7 (70%) demonstrated internal fat. Eight patients (80%) had paraspinal masses and 4 patients (40%) had presacral masses. Seven patients (70%) had splenomegaly. Eleven of the 12 patients had a clinical history available for review. A predisposing condition for extramedullary hematopoiesis was present in 10 patients and included various anemias (5 cases; 45%), myelofibrosis/myelodysplastic syndrome (4 cases; 36%), and marrow proliferative disorder (1 case; 9%). One patient had no known predisposing condition. Mass-like extramedullary hematopoiesis most commonly presents as multiple, fat-containing lesions localized to the axial skeleton. When these imaging features are identified, extramedullary hematopoiesis should be strongly considered, particularly when occurring in the setting of a predisposing medical condition. (orig.)

  7. Muscle activation in healthy subjects during single step up [Aktivace svalů u zdravých osob při nákroku na schod

    Directory of Open Access Journals (Sweden)

    Jaroslav Opavský

    2010-03-01

    muscle → right gluteus maximus muscle. Greater differences in the sequence of the muscle involvement were found on the side of the supporting leg. CONCLUSIONS: In conclusion, the findings have indicated that there exists variability in patterns of muscle activation during the step up task.[VÝCHODISKA: Nákrok na schod je součástí běžných denních motorických aktivit. Při jeho provádění musí být tělo schopno udržovat rovnováhu a stabilní vzpřímenou posturu za současného průběhu volního pohybu. K tomuto účelu vytváří centrální nervová soustava různé motorické programy, specifické pro daný úkol a obsahující předem programované sekvence zapojování svalů k zajištění provedení vlastního pohybu a k udržení postury během vykonávaného pohybu. CÍLE: Cílem práce bylo určení časové posloupnosti zapojení vybraných svalů trupu a dolních končetin při nákroku na schod. Dalším cílem bylo zjištění nejběžnějšího vzoru zapojování svalů v této modelové pohybové aktivitě u zdravých osob. METODIKA: U této práce byla snímána bilaterálně elektromyografická aktivita m. gluteus maximus, m. biceps femoris a m. erector spinae (v jeho lumbální části. Spolu s elektromyografickým signálem snímaným povrchovými elektrodami byl zaznamenáván i vizuální záznam provedení nákroku na schod. Soubor tvořilo 16 zdravých mladých probandů, všichni praváci (5 mužů, průměrný věk 23,6 let a 11 žen, průměrný věk 23,2 let, u kterých byly anamnesticky vyloučeny úrazy dolních končetin a páteře. Na povel nakročili probandi spontánní rychlostí na schod (výška schodu = 20 cm pravou dolní končetinou. Pohybový úkol končil došlápnutím levou dolní končetinou na schod. Elektromyografické záznamy jednotlivých svalů byly hodnoceny z hlediska časového nástupu aktivace svalů ve vztahu k začátku pohybu pravé dolní končetiny, který byl určen podle videozáznamu. Časy n

  8. Extramedullary paraspinal hematopoiesis in hereditary spherocytosis

    Directory of Open Access Journals (Sweden)

    Gogia P

    2008-01-01

    Full Text Available Hereditary spherocytosis (HS is a common inherited hemolytic anemia due to red cell membrane defects. Extramedullary hematopoiesis is a compensatory response to insufficient bone marrow blood cell production. The preferred sites of extramedullary hematopoietic involvement are the spleen, liver and lymph nodes; but in HS, the posterior paravertebral mediastinum is also commonly involved. We report a case of a 50-year-old male who presented to us in respiratory distress and with bilateral paravertebral posterior mediastinal masses, which on trucut biopsy were found to be extra-hematopoietic masses; and the patient was found to have hereditary spherocytosis.

  9. Stathmin 1 in normal and malignant hematopoiesis.

    Science.gov (United States)

    Machado-Neto, João Agostinho; Saad, Sara Teresinha Olalla; Traina, Fabiola

    2014-12-01

    Stathmin 1 is a microtubule destabilizer that plays an important role in cell cycle progression, segregation of chromosomes, clonogenicity, cell motility and survival. Stathmin 1 overexpression has been reported in malignant hematopoietic cells and Stathmin 1 inhibition reduces the highly proliferative potential of leukemia cell lines. However, during the differentiation of primary hematopoietic cells, Stathmin 1 expression decreases in parallel to decreases in the proliferative potential of early hematopoietic progenitors. The scope of the present review is to survey the current knowledge and highlight future perspectives for Stathmin 1 in normal and malignant hematopoiesis, with regard to the expression, function and clinical implications of this protein.

  10. Intracranial Extramedullary Hematopoiesis in Beta-Thalassemia

    Energy Technology Data Exchange (ETDEWEB)

    Karki, Bivek; Xu, Yi Kai; Wu, Yuan Kui [Nan fang Hospital, Southern Medical University, Guangzhou (China); Tamrakar, Karuna [Zhujiang Hospital, Southern Medical University, Guangzhou (China)

    2012-03-15

    Extramedullary hematopoiesis (EMH) represents tumor-like proliferation of hemopoietic tissue which complicates chronic hemoglobinopathy. Intracranial EMH is an extremely rare occurrence. Magnetic resonance imaging (MRI) offers a precise diagnosis. It is essential to distinguish EMH from other extradural central nervous system tumors, because treatment and prognosis are totally different. Herein, we report the imaging findings of beta-thalassemia in a 13-year-old boy complaining of weakness of left side of the body and gait disturbance; CT and MRI revealed an extradural mass in the right temporoparietal region.

  11. Myc Roles in Hematopoiesis and Leukemia

    Science.gov (United States)

    Delgado, M. Dolores; León, Javier

    2010-01-01

    Hematopoiesis is a process capable of generating millions of cells every second, as distributed in many cell types. The process is regulated by a number of transcription factors that regulate the differentiation along the distinct lineages and dictate the genetic program that defines each mature phenotype. Myc was first discovered as the oncogene of avian leukemogenic retroviruses; it was later found translocated in human lymphoma. From then on, evidence accumulated showing that c-Myc is one of the transcription factors playing a major role in hematopoiesis. The study of genetically modified mice with overexpression or deletion of Myc has shown that c-Myc is required for the correct balance between self-renewal and differentiation of hematopoietic stem cells (HSCs). Enforced Myc expression in mice leads to reduced HSC pools owing to loss of self-renewal activity at the expense of increased proliferation of progenitor cells and differentiation. c-Myc deficiency consistently results in the accumulation of HSCs. Other models with conditional Myc deletion have demonstrated that different lineages of hematopoietic cells differ in their requirement for c-Myc to regulate their proliferation and differentiation. When transgenic mice overexpress c-Myc or N-Myc in mature cells from the lymphoid or myeloid lineages, the result is lymphoma or leukemia. In agreement, enforced expression of c-Myc blocks the differentiation in several leukemia-derived cell lines capable of differentiating in culture. Not surprising, MYC deregulation is recurrently found in many types of human lymphoma and leukemia. Whereas MYC is deregulated by translocation in Burkitt lymphoma and, less frequently, other types of lymphoma, MYC is frequently overexpressed in acute lymphoblastic and myeloid leukemia, through mechanisms unrelated to chromosomal translocation, and is often associated with disease progression. PMID:21779460

  12. Zebrafish as a model for normal and malignant hematopoiesis

    Directory of Open Access Journals (Sweden)

    Lili Jing

    2011-07-01

    Full Text Available Zebrafish studies in the past two decades have made major contributions to our understanding of hematopoiesis and its associated disorders. The zebrafish has proven to be a powerful organism for studies in this area owing to its amenability to large-scale genetic and chemical screening. In addition, the externally fertilized and transparent embryos allow convenient genetic manipulation and in vivo imaging of normal and aberrant hematopoiesis. This review discusses available methods for studying hematopoiesis in zebrafish, summarizes key recent advances in this area, and highlights the current and potential contributions of zebrafish to the discovery and development of drugs to treat human blood disorders.

  13. Extramedullary paraspinal hematopoiesis in thalassemia: CT and MRI evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Tsitouridis, J.; Stamos, S.; Hassapopoulou, E.; Tsitouridis, K.; Nikolopoulos, P

    1999-04-01

    We present a comparative CT and MRI study of the paraspinal extramedullary hematopoiesis in 32 thalassemic patients. The patients were classified into four groups according to the MRI and CT imaging findings. Active recent extramedullary paraspinal hematopoietic masses show soft tissue behavior in both CT and MRI. Older inactive masses reveal iron deposition or fatty replacement. Combined imaging findings of paraspinal extramedullary hematopoiesis revealed the phase of its evolution and the correct diagnosis.

  14. Mapping hematopoiesis in a fully regenerative vertebrate: the axolotl.

    Science.gov (United States)

    Lopez, David; Lin, Li; Monaghan, James R; Cogle, Christopher R; Bova, Frank J; Maden, Malcolm; Scott, Edward W

    2014-08-21

    Hematopoietic stem cell (HSC)-derived cells are involved in wound healing responses throughout the body. Unfortunately for mammals, wound repair typically results in scarring and nonfunctional reparation. Among vertebrates, none display such an extensive ability for adult regeneration as urodele amphibians, including 1 of the more popular models: the axolotl. However, a lack of knowledge of axolotl hematopoiesis hinders the use of this animal for the study of hematopoietic cells in scar-free wound healing and tissue regeneration. We used white and cytomegalovirus:green fluorescent protein(+) transgenic white axolotl strains to map sites of hematopoiesis and develop hematopoietic cell transplant methodology. We also established a fluorescence-activated cell sorter enrichment technique for major blood lineages and colony-forming unit assays for hematopoietic progenitors. The liver and spleen are both active sites of hematopoiesis in adult axolotls and contain transplantable HSCs capable of long-term multilineage blood reconstitution. As in zebrafish, use of the white axolotl mutant allows direct visualization of homing, engraftment, and hematopoiesis in real time. Donor-derived hematopoiesis occurred for >2 years in recipients generating stable hematopoietic chimeras. Organ segregation, made possible by embryonic microsurgeries wherein halves of 2 differently colored embryos were joined, indicate that the spleen is the definitive site of adult hematopoiesis.

  15. In vitro human embryonic stem cell hematopoiesis mimics MYB-independent yolk sac hematopoiesis.

    Science.gov (United States)

    Vanhee, Stijn; De Mulder, Katrien; Van Caeneghem, Yasmine; Verstichel, Greet; Van Roy, Nadine; Menten, Björn; Velghe, Imke; Philippé, Jan; De Bleser, Dominique; Lambrecht, Bart N; Taghon, Tom; Leclercq, Georges; Kerre, Tessa; Vandekerckhove, Bart

    2015-02-01

    Although hematopoietic precursor activity can be generated in vitro from human embryonic stem cells, there is no solid evidence for the appearance of multipotent, self-renewing and transplantable hematopoietic stem cells. This could be due to short half-life of hematopoietic stem cells in culture or, alternatively, human embryonic stem cell-initiated hematopoiesis may be hematopoietic stem cell-independent, similar to yolk sac hematopoiesis, generating multipotent progenitors with limited expansion capacity. Since a MYB was reported to be an excellent marker for hematopoietic stem cell-dependent hematopoiesis, we generated a MYB-eGFP reporter human embryonic stem cell line to study formation of hematopoietic progenitor cells in vitro. We found CD34(+) hemogenic endothelial cells rounding up and developing into CD43(+) hematopoietic cells without expression of MYB-eGFP. MYB-eGFP(+) cells appeared relatively late in embryoid body cultures as CD34(+)CD43(+)CD45(-/lo) cells. These MYB-eGFP(+) cells were CD33 positive, proliferated in IL-3 containing media and hematopoietic differentiation was restricted to the granulocytic lineage. In agreement with data obtained on murine Myb(-/-) embryonic stem cells, bright eGFP expression was observed in a subpopulation of cells, during directed myeloid differentiation, which again belonged to the granulocytic lineage. In contrast, CD14(+) macrophage cells were consistently eGFP(-) and were derived from eGFP-precursors only. In summary, no evidence was obtained for in vitro generation of MYB(+) hematopoietic stem cells during embryoid body cultures. The observed MYB expression appeared late in culture and was confined to the granulocytic lineage.

  16. Erythropoietin couples hematopoiesis with bone formation.

    Directory of Open Access Journals (Sweden)

    Yusuke Shiozawa

    Full Text Available BACKGROUND: It is well established that bleeding activates the hematopoietic system to regenerate the loss of mature blood elements. We have shown that hematopoietic stem cells (HSCs isolated from animals challenged with an acute bleed regulate osteoblast differentiation from marrow stromal cells. This suggests that HSCs participate in bone formation where the molecular basis for this activity is the production of BMP2 and BMP6 by HSCs. Yet, what stimulates HSCs to produce BMPs is unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we demonstrate that erythropoietin (Epo activates Jak-Stat signaling pathways in HSCs which leads to the production of BMPs. Critically, Epo also directly activates mesenchymal cells to form osteoblasts in vitro, which in vivo leads to bone formation. Importantly, Epo first activates osteoclastogenesis which is later followed by osteoblastogenesis that is induced by either Epo directly or the expression of BMPs by HSCs to form bone. CONCLUSIONS/SIGNIFICANCE: These data for the first time demonstrate that Epo regulates the formation of bone by both direct and indirect pathways, and further demonstrates the exquisite coupling between hematopoiesis and osteopoiesis in the marrow.

  17. Clonal hematopoiesis in acquired aplastic anemia

    Science.gov (United States)

    2016-01-01

    Clonal hematopoiesis (CH) in aplastic anemia (AA) has been closely linked to the evolution of late clonal disorders, including paroxysmal nocturnal hemoglobinuria and myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML), which are common complications after successful immunosuppressive therapy (IST). With the advent of high-throughput sequencing of recent years, the molecular aspect of CH in AA has been clarified by comprehensive detection of somatic mutations that drive clonal evolution. Genetic abnormalities are found in ∼50% of patients with AA and, except for PIGA mutations and copy-neutral loss-of-heterozygosity, or uniparental disomy (UPD) in 6p (6pUPD), are most frequently represented by mutations involving genes commonly mutated in myeloid malignancies, including DNMT3A, ASXL1, and BCOR/BCORL1. Mutations exhibit distinct chronological profiles and clinical impacts. BCOR/BCORL1 and PIGA mutations tend to disappear or show stable clone size and predict a better response to IST and a significantly better clinical outcome compared with mutations in DNMT3A, ASXL1, and other genes, which are likely to increase their clone size, are associated with a faster progression to MDS/AML, and predict an unfavorable survival. High frequency of 6pUPD and overrepresentation of PIGA and BCOR/BCORL1 mutations are unique to AA, suggesting the role of autoimmunity in clonal selection. By contrast, DNMT3A and ASXL1 mutations, also commonly seen in CH in the general population, indicate a close link to CH in the aged bone marrow, in terms of the mechanism for selection. Detection and close monitoring of somatic mutations/evolution may help with prediction and diagnosis of clonal evolution of MDS/AML and better management of patients with AA. PMID:27121470

  18. Extramedullary Hematopoiesis: An Unusual Finding in Subdural Hematomas

    Directory of Open Access Journals (Sweden)

    Rong Li

    2011-01-01

    Full Text Available We present a case of a 59-year-old man who was found to have clusters of hyperchromatic, small, round nucleated cells within a subdural hematoma removed after a skull fracture. Immunohistochemistry study confirmed that the cells were hematopoietic components predominantly composed of normoblasts. In this paper, we describe the clinical and pathological findings. A brief review of published information on extramedullary hematopoiesis in subdural hematoma and the mechanisms of pathogenesis are also discussed. While extramedullary hematopoiesis is seen anecdotally by neuropathologists in chronic subdural hematomas, only a few cases are documented in the literature. Furthermore, extramedullary hematopoiesis in subdural hematoma can pose a diagnostic challenge for general pathologists who encounter subdural hematoma evacuations seldom in their surgical pathology practices.

  19. RapGEF2 is essential for embryonic hematopoiesis but dispensable for adult hematopoiesis.

    Science.gov (United States)

    Satyanarayana, Ande; Gudmundsson, Kristbjorn Orri; Chen, Xiu; Coppola, Vincenzo; Tessarollo, Lino; Keller, Jonathan R; Hou, Steven X

    2010-10-21

    RapGEF2 is one of many guanine nucleotide exchange factors (GEFs) that specifically activate Rap1. Here, we generated RapGEF2 conditional knockout mice and studied its role in embryogenesis and fetal as well as adult hematopoietic stem cell (HSC) regulation. RapGEF2 deficiency led to embryonic lethality at ~ E11.5 due to severe yolk sac vascular defects. However, a similar number of Flk1(+) cells were present in RapGEF2(+/+) and RapGEF2(-/-) yolk sacs indicating that the bipotential early progenitors were in fact generated in the absence of RapGEF2. Further analysis of yolk sacs and embryos revealed a significant reduction of CD41 expressing cells in RapGEF2(-/-) genotype, suggesting a defect in the maintenance of definitive hematopoiesis. RapGEF2(-/-) cells displayed defects in proliferation and migration, and the in vitro colony formation ability of hematopoietic progenitors was also impaired. At the molecular level, Rap1 activation was impaired in RapGEF2(-/-) cells that in turn lead to defective B-raf/ERK signaling. Scl/Gata transcription factor expression was significantly reduced, indicating that the defects observed in RapGEF2(-/-) cells could be mediated through Scl/Gata deregulation. Inducible deletion of RapGEF2 during late embryogenesis in RapGEF2(cko/cko)ER(cre) mice leads to defective fetal liver erythropoiesis. Conversely, inducible deletion in the adult bone marrow, or specific deletion in B cells, T cells, HSCs, and endothelial cells has no impact on hematopoiesis.

  20. Gut microbiota promote hematopoiesis to control bacterial infection.

    Science.gov (United States)

    Khosravi, Arya; Yáñez, Alberto; Price, Jeremy G; Chow, Andrew; Merad, Miriam; Goodridge, Helen S; Mazmanian, Sarkis K

    2014-03-12

    The commensal microbiota impacts specific immune cell populations and their functions at peripheral sites, such as gut mucosal tissues. However, it remains unknown whether gut microbiota control immunity through regulation of hematopoiesis at primary immune sites. We reveal that germ-free mice display reduced proportions and differentiation potential of specific myeloid cell progenitors of both yolk sac and bone marrow origin. Homeostatic innate immune defects may lead to impaired early responses to pathogens. Indeed, following systemic infection with Listeria monocytogenes, germ-free and oral-antibiotic-treated mice display increased pathogen burden and acute death. Recolonization of germ-free mice with a complex microbiota restores defects in myelopoiesis and resistance to Listeria. These findings reveal that gut bacteria direct innate immune cell development via promoting hematopoiesis, contributing to our appreciation of the deep evolutionary connection between mammals and their microbiota.

  1. Early Life Microbiota, Neonatal Immune Maturation and Hematopoiesis

    DEFF Research Database (Denmark)

    Kristensen, Matilde Bylov

    and the commensals in the gut. Hematopoietic stem cells from the fetal liver seed the fetal spleen and bone marrow in perinatal phase. Granulocytosis in neonate mice and man just after birth is a natural event of early life hematopoiesis and likely contributes to elevated counts of neutrophil-like cells...... bowl disease, later in life. The intestinal epithelium makes up a physical and biochemical barrier between the bacteria in the gut lumen and the immune cells in the submocusal tissue. This monolayer of intestinal epithelial cells (IEC) makes up an extremely large surface and is highly important...... in the peripheral blood of newborns. Granular myeloid derived suppressor cells (MDSC) have recently been described in human cord blood. MDSC are potential immunosuppressive cells often described in cancer, inflammation and during sepsis. They evolve from immature myeloid cells during hematopoiesis. Several recent...

  2. Long noncoding RNAs during normal and malignant hematopoiesis.

    Science.gov (United States)

    Alvarez-Dominguez, Juan R; Hu, Wenqian; Gromatzky, Austin A; Lodish, Harvey F

    2014-01-01

    Long noncoding RNAs (lncRNAs) are increasingly recognized to contribute to cellular development via diverse mechanisms during both health and disease. Here, we highlight recent progress on the study of lncRNAs that function in the development of blood cells. We emphasize lncRNAs that regulate blood cell fates through epigenetic control of gene expression, an emerging theme among functional lncRNAs. Many of these noncoding genes and their targets become dysregulated during malignant hematopoiesis, directly implicating lncRNAs in blood cancers such as leukemia. In a few cases, dysregulation of an lncRNA alone leads to malignant hematopoiesis in a mouse model. Thus, lncRNAs may be not only useful as markers for the diagnosis and prognosis of cancers of the blood, but also as potential targets for novel therapies.

  3. Mathematical Models of Human Hematopoiesis Following Acute Radiation Exposure

    Science.gov (United States)

    2014-05-01

    the model predicts. Radiation dose from skin contamination can result in cutaneous injury leading to systemic responses and may im- pact the observed...medical and performance consequences from radiation and combined injuries , thereby enhancing our understanding of the potential impact of a nuclear...subsequently. In addition to the insight gained from combined injury modeling, the models of hematopoiesis and radiation alone provide clini- cally

  4. Spinal Cord Compression Secondary to Extramedullary Hematopoiesis in Thalassemia

    OpenAIRE

    Mohammad Hadi Bagheri; Jalal Jalal Shokouhi; Farrokh Habibzadeh; Aliakbar Ameri

    2003-01-01

    Backgroud/Objective: Extramedullary hematopoiesis (EMH) is a physiological response to chronic anemia and may rarely cause spinal cord compression. Herein, we describe 9 thalassemic patients presenting with signs and symptoms of cord compression either due to epidural mass or spinal canal stenosis secondary to bone widening. Since this emergency condition can be readily diagnosed by MRI and has medical rather than surgical treatment, i.e., blood transfusion and/or low dose radiation therapy, ...

  5. Premature epiphyseal fusion and extramedullary hematopoiesis in thalassemia

    Energy Technology Data Exchange (ETDEWEB)

    Colavita, N.; Orazi, C.; Danza, S.M.; Falappa, P.G.; Fabbri, R.

    1987-10-01

    The main skeletal abnormalities in ..beta..-thalassemia are widening of medullary spaces, rarefaction of bone trabeculae, thinning of cortical bone, and perpendicular periosteal spiculation. Premature epiphyseal fusion (PEF) and extramedullary hematopoiesis (EH) are found, though more rarely. The incidence of PEF and EH in 64 patients affected by ..beta..-thalassemia is reported. The different incidence of such complications in thalassemia major and intermedia is reported, and a possible correlation with transfusion regimen is also considered.

  6. Integration of Shh and Wnt Signaling Pathways Regulating Hematopoiesis.

    Science.gov (United States)

    Zhou, Zhigang; Wan, Liping; Wang, Chun; Zhou, Kun

    2015-12-01

    To investigate the spatial and temporal programmed expression of Shh and Wnt members during key stages of definitive hematopoiesis and the possible mechanism of Shh and Wnt signaling pathways regulating the proliferation of hematopoietic progenitor cells (HPCs). Spatial and temporal programmed gene expression of Shh and Wnt signaling during hematopoiesis corresponded with c-kit(+)lin(-) HPCs proliferation. C-kit(+)Lin(-) populations derived from aorta-gonad-mesonephros (AGM) of Balb/c mice at E10.5 with increased expression of Shh and Wnt3a demonstrated a greater potential for proliferation. Additionally, supplementation with soluble Shh N-terminal peptide promoted the proliferation of c-kit(+)Lin(-) populations by activating the Wnt signaling pathway, an effect which was inhibited by blocking Shh signaling. A specific inhibitor of wnt signaling was capable of inhibiting Shh-induced proliferation in a similar manner to shh inhibitor. Our results provide valuable information on Shh and Wnt signaling involved in hematopoiesis and highlight the importance of interaction of Shh and Wnt signaling in regulating HPCs proliferation.

  7. GATA Factor-G-Protein-Coupled Receptor Circuit Suppresses Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Xin Gao

    2016-03-01

    Full Text Available Hematopoietic stem cells (HSCs originate from hemogenic endothelium within the aorta-gonad-mesonephros (AGM region of the mammalian embryo. The relationship between genetic circuits controlling stem cell genesis and multi-potency is not understood. A Gata2 cis element (+9.5 enhances Gata2 expression in the AGM and induces the endothelial to HSC transition. We demonstrated that GATA-2 rescued hematopoiesis in +9.5−/− AGMs. As G-protein-coupled receptors (GPCRs are the most common targets for FDA-approved drugs, we analyzed the GPCR gene ensemble to identify GATA-2-regulated GPCRs. Of the 20 GATA-2-activated GPCR genes, four were GATA-1-activated, and only Gpr65 expression resembled Gata2. Contrasting with the paradigm in which GATA-2-activated genes promote hematopoietic stem and progenitor cell genesis/function, our mouse and zebrafish studies indicated that GPR65 suppressed hematopoiesis. GPR65 established repressive chromatin at the +9.5 site, restricted occupancy by the activator Scl/TAL1, and repressed Gata2 transcription. Thus, a Gata2 cis element creates a GATA-2-GPCR circuit that limits positive regulators that promote hematopoiesis.

  8. Single cell analysis of normal and leukemic hematopoiesis.

    Science.gov (United States)

    Povinelli, Benjamin J; Rodriguez-Meira, Alba; Mead, Adam J

    2017-09-07

    The hematopoietic system is well established as a paradigm for the study of cellular hierarchies, their disruption in disease and therapeutic use in regenerative medicine. Traditional approaches to study hematopoiesis involve purification of cell populations based on a small number of surface markers. However, such population-based analysis obscures underlying heterogeneity contained within any phenotypically defined cell population. This heterogeneity can only be resolved through single cell analysis. Recent advances in single cell techniques allow analysis of the genome, transcriptome, epigenome and proteome in single cells at an unprecedented scale. The application of these new single cell methods to investigate the hematopoietic system has led to paradigm shifts in our understanding of cellular heterogeneity in hematopoiesis and how this is disrupted in disease. In this review, we summarize how single cell techniques have been applied to the analysis of hematopoietic stem/progenitor cells in normal and malignant hematopoiesis, with a particular focus on recent advances in single-cell genomics, including how these might be utilized for clinical application. Copyright © 2017. Published by Elsevier Ltd.

  9. Development of the hematopoietic system and disorders of hematopoiesis that present during infancy and early childhood.

    Science.gov (United States)

    Fernández, Karen S; de Alarcón, Pedro A

    2013-12-01

    This article reviews the ontogeny of hematopoiesis (embryonic/fetal/newborn phases) and its regulation and provides examples of the disorders of hematopoiesis that present in the newborn or infant and their pathophysiology. Many of these disorders are discussed in depth in other articles of this issue.

  10. Novel Insights into the Genetic Controls of Primitive and Definitive Hematopoiesis from Zebrafish Models

    Directory of Open Access Journals (Sweden)

    Raman Sood

    2012-01-01

    Full Text Available Hematopoiesis is a dynamic process where initiation and maintenance of hematopoietic stem cells, as well as their differentiation into erythroid, myeloid and lymphoid lineages, are tightly regulated by a network of transcription factors. Understanding the genetic controls of hematopoiesis is crucial as perturbations in hematopoiesis lead to diseases such as anemia, thrombocytopenia, or cancers, including leukemias and lymphomas. Animal models, particularly conventional and conditional knockout mice, have played major roles in our understanding of the genetic controls of hematopoiesis. However, knockout mice for most of the hematopoietic transcription factors are embryonic lethal, thus precluding the analysis of their roles during the transition from embryonic to adult hematopoiesis. Zebrafish are an ideal model organism to determine the function of a gene during embryonic-to-adult transition of hematopoiesis since bloodless zebrafish embryos can develop normally into early larval stage by obtaining oxygen through diffusion. In this review, we discuss the current status of the ontogeny and regulation of hematopoiesis in zebrafish. By providing specific examples of zebrafish morphants and mutants, we have highlighted the contributions of the zebrafish model to our overall understanding of the roles of transcription factors in regulation of primitive and definitive hematopoiesis.

  11. The role of Smad signaling in hematopoiesis and translational hematology.

    Science.gov (United States)

    Blank, U; Karlsson, S

    2011-09-01

    Hematopoietic stem cells (HSCs) reside in the bone marrow (BM) of adult individuals and function to produce and regenerate the entire blood and immune system over the course of an individual's lifetime. Historically, HSCs are among the most thoroughly characterized tissue-specific stem cells. Despite this, the regulation of fate options, such as self-renewal and differentiation, has remained elusive, partly because of the expansive plethora of factors and signaling cues that govern HSC behavior in vivo. In the BM, HSCs are housed in specialized niches that dovetail the behavior of HSCs with the need of the organism. The Smad-signaling pathway, which operates downstream of the transforming growth factor-β (TGF-β) superfamily of ligands, regulates a diverse set of biological processes, including proliferation, differentiation and apoptosis, in many different organ systems. Much of the function of Smad signaling in hematopoiesis has remained nebulous due to early embryonic lethality of most knockout mouse models. However, recently new data have been uncovered, suggesting that the Smad-signaling circuitry is intimately linked to HSC regulation. In this review, we bring the Smad-signaling pathway into focus, chronicling key concepts and recent advances with respect to TGF-β-superfamily signaling in normal and leukemic hematopoiesis.

  12. Eicosanoid regulation of hematopoiesis and hematopoietic stem and progenitor trafficking.

    Science.gov (United States)

    Hoggatt, J; Pelus, L M

    2010-12-01

    Hematopoietic stem cell (HSC) transplantation is a potentially curative treatment for numerous hematological malignancies. The transplant procedure as performed today takes advantage of HSC trafficking; either egress of HSC from the bone marrow to the peripheral blood, that is, mobilization, for acquisition of the hematopoietic graft, and/or trafficking of HSC from the peripheral blood to bone marrow niches in the recipient patient, that is HSC homing. Numerous studies, many of which are reviewed herein, have defined hematopoietic regulatory mechanisms mediated by the 20-carbon lipid family of eicosanoids, and recent evidence strongly supports a role for eicosanoids in regulation of hematopoietic trafficking, adding a new role whereby eicosanoids regulate hematopoiesis. Short-term exposure of HSC to the eicosanoid prostaglandin E(2) increases CXCR4 receptor expression, migration and in vivo homing of HSC. In contrast, cannabinoids reduce hematopoietic progenitor cell (HPC) CXCR4 expression and induce HPC mobilization when administered in vivo. Leukotrienes have been shown to alter CD34(+) cell adhesion, migration and regulate HSC proliferation, suggesting that eicosanoids have both opposing and complimentary roles in the regulation of hematopoiesis. As numerous FDA approved compounds regulate eicosanoid signaling or biosynthesis, the utility of eicosanoid-based therapeutic strategies to improve hematopoietic transplantation can be rapidly evaluated.

  13. Endothelial Jagged-1 Is Necessary for Homeostatic and Regenerative Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Michael G. Poulos

    2013-09-01

    Full Text Available The bone marrow (BM microenvironment is composed of multiple niche cells that, by producing paracrine factors, maintain and regenerate the hematopoietic stem cell (HSC pool (Morrison and Spradling, 2008. We have previously demonstrated that endothelial cells support the proper regeneration of the hematopoietic system following myeloablation (Butler et al., 2010; Hooper et al., 2009; Kobayashi et al., 2010. Here, we demonstrate that expression of the angiocrine factor Jagged-1, supplied by the BM vascular niche, regulates homeostatic and regenerative hematopoiesis through a Notch-dependent mechanism. Conditional deletion of Jagged-1 in endothelial cells (Jag1(ECKO mice results in a profound decrease in hematopoiesis and premature exhaustion of the adult HSC pool, whereas quantification and functional assays demonstrate that loss of Jagged-1 does not perturb vascular or mesenchymal compartments. Taken together, these data demonstrate that the instructive function of endothelial-specific Jagged-1 is required to support the self-renewal and regenerative capacity of HSCs in the adult BM vascular niche.

  14. The Hippo pathway regulates hematopoiesis in Drosophila melanogaster.

    Science.gov (United States)

    Milton, Claire C; Grusche, Felix A; Degoutin, Joffrey L; Yu, Eefang; Dai, Qi; Lai, Eric C; Harvey, Kieran F

    2014-11-17

    The Salvador-Warts-Hippo (Hippo) pathway is an evolutionarily conserved regulator of organ growth and cell fate. It performs these functions in epithelial and neural tissues of both insects and mammals, as well as in mammalian organs such as the liver and heart. Despite rapid advances in Hippo pathway research, a definitive role for this pathway in hematopoiesis has remained enigmatic. The hematopoietic compartments of Drosophila melanogaster and mammals possess several conserved features. D. melanogaster possess three types of hematopoietic cells that most closely resemble mammalian myeloid cells: plasmatocytes (macrophage-like cells), crystal cells (involved in wound healing), and lamellocytes (which encapsulate parasites). The proteins that control differentiation of these cells also control important blood lineage decisions in mammals. Here, we define the Hippo pathway as a key mediator of hematopoiesis by showing that it controls differentiation and proliferation of the two major types of D. melanogaster blood cells, plasmatocytes and crystal cells. In animals lacking the downstream Hippo pathway kinase Warts, lymph gland cells overproliferated, differentiated prematurely, and often adopted a mixed lineage fate. The Hippo pathway regulated crystal cell numbers by both cell-autonomous and non-cell-autonomous mechanisms. Yorkie and its partner transcription factor Scalloped were found to regulate transcription of the Runx family transcription factor Lozenge, which is a key regulator of crystal cell fate. Further, Yorkie or Scalloped hyperactivation induced ectopic crystal cells in a non-cell-autonomous and Notch-pathway-dependent fashion.

  15. The histone demethylase UTX regulates stem cell migration and hematopoiesis.

    Science.gov (United States)

    Thieme, Sebastian; Gyárfás, Tobias; Richter, Cornelia; Özhan, Günes; Fu, Jun; Alexopoulou, Dimitra; Muders, Michael H; Michalk, Irene; Jakob, Christiane; Dahl, Andreas; Klink, Barbara; Bandola, Joanna; Bachmann, Michael; Schröck, Evelin; Buchholz, Frank; Stewart, A Francis; Weidinger, Gilbert; Anastassiadis, Konstantinos; Brenner, Sebastian

    2013-03-28

    Regulated migration of hematopoietic stem cells is fundamental for hematopoiesis. The molecular mechanisms underlying stem cell trafficking are poorly defined. Based on a short hairpin RNA library and stromal cell-derived factor-1 (SDF-1) migration screening assay, we identified the histone 3 lysine 27 demethylase UTX (Kdm6a) as a novel regulator for hematopoietic cell migration. Using hematopoietic stem and progenitor cells from our conditional UTX knockout (KO) mice, we were able to confirm the regulatory function of UTX on cell migration. Moreover, adult female conditional UTX KO mice displayed myelodysplasia and splenic erythropoiesis, whereas UTX KO males showed no phenotype. During development, all UTX KO female and a portion of UTX KO male embryos developed a cardiac defect, cranioschisis, and died in utero. Therefore, UTY, the male homolog of UTX, can compensate for UTX in adults and partially during development. Additionally, we found that UTX knockdown in zebrafish significantly impairs SDF-1/CXCR4-dependent migration of primordial germ cells. Our data suggest that UTX is a critical regulator for stem cell migration and hematopoiesis.

  16. The NFKB Inducing Kinase Modulates Hematopoiesis During Stress.

    Science.gov (United States)

    González-Murillo, África; Fernández, Lucía; Baena, Sara; Melen, Gustavo J; Sánchez, Rebeca; Sánchez-Valdepeñas, Carmen; Segovia, José C; Liou, Hsiou-Chi; Schmid, Roland; Madero, Luís; Fresno, Manuel; Ramírez, Manuel

    2015-09-01

    The genetic programs that maintain hematopoiesis during steady state in physiologic conditions are different from those activated during stress. Here, we show that hematopoietic stem cells (HSCs) with deficiencies in components of the alternative NFκB pathway (the NFκB inducing kinase, NIK, and the downstream molecule NFκB2) had a defect in response to stressors such as supraphysiological doses of cytokines, chemotherapy, and hematopoietic transplantation. NIK-deficient mice had peripheral blood and bone marrow leukocyte numbers within normal ranges (except for the already reported defects in B-cell maturation); however, HSCs showed significantly slower expansion capacity in in vitro cultures compared to wild-type HSCs. This was due to a delayed cell cycle and increased apoptosis. In vivo experiments showed that NIK-deficient HSCs did not recover at the same pace as controls when challenged with myeloablative chemotherapy. Finally, NIK-deficient HSCs showed a significantly decreased competitive repopulation capacity in vivo. Using HSCs from mice deficient in one of two downstream targets of NIK, that is, either NFκB2 or c-Rel, only NFκB2 deficiency recapitulated the defects detected with NIK-deficient HSCs. Our results underscore the role of NIK and the alternative NFκB pathway for the recovery of normal levels of hematopoiesis after stress.

  17. Histone acetyltransferase activity of MOF is required for adult but not early fetal hematopoiesis in mice.

    Science.gov (United States)

    Valerio, Daria G; Xu, Haiming; Eisold, Meghan E; Woolthuis, Carolien M; Pandita, Tej K; Armstrong, Scott A

    2017-01-05

    K(lysine) acetyltransferase 8 (KAT8, also known as MOF) mediates the acetylation of histone H4 at lysine 16 (H4K16ac) and is crucial for murine embryogenesis. Lysine acetyltransferases have been shown to regulate various stages of normal hematopoiesis. However, the function of MOF in hematopoietic stem cell (HSC) development has not yet been elucidated. We set out to study the role of MOF in general hematopoiesis by using a Vav1-cre-induced conditional murine Mof knockout system and found that MOF is critical for hematopoietic cell maintenance and HSC engraftment capacity in adult hematopoiesis. Rescue experiments with a MOF histone acetyltransferase domain mutant illustrated the requirement for MOF acetyltransferase activity in the clonogenic capacity of HSCs and progenitors. In stark contrast, fetal steady-state hematopoiesis at embryonic day (E) 14.5 was not affected by homozygous Mof deletion despite dramatic loss of global H4K16ac. Hematopoietic defects start manifesting in late gestation at E17.5. The discovery that MOF and its H4K16ac activity are required for adult but not early and midgestational hematopoiesis supports the notion that multiple chromatin regulators may be crucial for hematopoiesis at varying stages of development. MOF is therefore a developmental-stage-specific chromatin regulator found to be essential for adult but not early fetal hematopoiesis.

  18. Adult somatic progenitor cells and hematopoiesis in oysters.

    Science.gov (United States)

    Jemaà, Mohamed; Morin, Nathalie; Cavelier, Patricia; Cau, Julien; Strub, Jean Marc; Delsert, Claude

    2014-09-01

    Long-lived animals show a non-observable age-related decline in immune defense, which is provided by blood cells that derive from self-renewing stem cells. The oldest living animals are bivalves. Yet, the origin of hemocytes, the cells involved in innate immunity, is unknown in bivalves and current knowledge about mollusk adult somatic stem cells is scarce. Here we identify a population of adult somatic precursor cells and show their differentiation into hemocytes. Oyster gill contains an as yet unreported irregularly folded structure (IFS) with stem-like cells bathing into the hemolymph. BrdU labeling revealed that the stem-like cells in the gill epithelium and in the nearby hemolymph replicate DNA. Proliferation of this cell population was further evidenced by phosphorylated-histone H3 mitotic staining. Finally, these small cells, most abundant in the IFS epithelium, were found to be positive for the stemness marker Sox2. We provide evidence for hematopoiesis by showing that co-expression of Sox2 and Cu/Zn superoxide dismutase, a hemocyte-specific enzyme, does not occur in the gill epithelial cells but rather in the underlying tissues and vessels. We further confirm the hematopoietic features of these cells by the detection of Filamin, a protein specific for a sub-population of hemocytes, in large BrdU-labeled cells bathing into gill vessels. Altogether, our data show that progenitor cells differentiate into hemocytes in the gill, which suggests that hematopoiesis occurs in oyster gills. © 2014. Published by The Company of Biologists Ltd.

  19. Significance of different animal species in experimental models for in vivo investigations of hematopoiesis

    Directory of Open Access Journals (Sweden)

    Kovačević-Filipović Milica

    2004-01-01

    Full Text Available Numerous discoveries in medicine are results of experiments on different animal species. The most frequently used animals in hematopoiesis investigations are laboratory mice and rats, but so-called big animals, such as pigs, sheep, cats, dogs, and monkeys, evolution-wise closer to humans have a place in experimental hematology as well. The specific problematics of a certain animal specie can lead to fundamental knowledge on certain aspects of the process of hematopoiesis end the biology of stem cells in hematopoiesis. Furthermore, comparative investigations of certain phenomena in different species help in the recognition of the general rules in the living world. In the area f preclinicalinvesti- gations, animal models are an inevitable step in studies of transplantation biology of stem cells in hematopoiesis, as well as in studies of biologically active molecules which have an effect on the hematopoietic system. Knowledge acquired on animal models is applied in both human and veterinary medicine.

  20. Effects of Dosimetrically Guided I-131 Therapy on Hematopoiesis in Patients With Differentiated Thyroid Cancer.

    Science.gov (United States)

    Bikas, Athanasios; Schneider, Mark; Desale, Sameer; Atkins, Frank; Mete, Mihriye; Burman, Kenneth D; Wartofsky, Leonard; Van Nostrand, Douglas

    2016-04-01

    A retrospective analysis was performed to evaluate the effects of dosimetrically-guided I-131 treatment on hematopoiesis. Statistically significant decreases in CBC parameters following a specific time-pattern were shown.

  1. Pulmonary Extramedullary Hematopoiesis in a Patient with Chronic Asthma Resembling Lung Cancer: A Case Report

    Directory of Open Access Journals (Sweden)

    Massood Hosseinzadeh

    2012-01-01

    Full Text Available Background. Extramedullary hematopoiesis is most often seen in reticuloendothelial organs specially spleen, liver, or lymph nodes, and it is rarely seen in lung parenchyma. Almost all reported cases of pulmonary extramedullary hematopoiesis occurred following myeloproliferative disorders specially myelofibrosis. Other less common underlying causes are thalassemia syndromes and other hemoglobinopathies. There was not any reported case of pulmonary extramedullary hematopoiesis in asthmatic patients in the medical literature. Case. Here we reported a 65-year-old lady who was a known case of bronchial asthma with recent developed right lower lobe lung mass. Chest X-ray and CT studies showed an infiltrating mass resembling malignancy. Fine needle aspiration cytology of mass revealed pulmonary extramedullary hematopoiesis. The patient followed for 10 months with serial physical examination and laboratory evaluations which were unremarkable. Conclusion. Extramedullary hematopoiesis of lung parenchyma can be mistaken for lung cancer radiologically. Although previous reported cases occurred with myelofibrosis or hemoglobinopathies, we are reporting the first case of asthma-associated extramedullary hematopoiesis.

  2. FANCA safeguards interphase and mitosis during hematopoiesis in vivo.

    Science.gov (United States)

    Abdul-Sater, Zahi; Cerabona, Donna; Potchanant, Elizabeth Sierra; Sun, Zejin; Enzor, Rikki; He, Ying; Robertson, Kent; Goebel, W Scott; Nalepa, Grzegorz

    2015-12-01

    The Fanconi anemia (FA/BRCA) signaling network controls multiple genome-housekeeping checkpoints, from interphase DNA repair to mitosis. The in vivo role of abnormal cell division in FA remains unknown. Here, we quantified the origins of genomic instability in FA patients and mice in vivo and ex vivo. We found that both mitotic errors and interphase DNA damage significantly contribute to genomic instability during FA-deficient hematopoiesis and in nonhematopoietic human and murine FA primary cells. Super-resolution microscopy coupled with functional assays revealed that FANCA shuttles to the pericentriolar material to regulate spindle assembly at mitotic entry. Loss of FA signaling rendered cells hypersensitive to spindle chemotherapeutics and allowed escape from the chemotherapy-induced spindle assembly checkpoint. In support of these findings, direct comparison of DNA crosslinking and anti-mitotic chemotherapeutics in primary FANCA-/- cells revealed genomic instability originating through divergent cell cycle checkpoint aberrations. Our data indicate that FA/BRCA signaling functions as an in vivo gatekeeper of genomic integrity throughout interphase and mitosis, which may have implications for future targeted therapies in FA and FA-deficient cancers.

  3. Autosomal dominant cyclic hematopoiesis: Genetics, phenotype, and natural history

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, S.E.; Stephens, K.; Dale, D.C. [Univ. of Washington, Seattle, WA (United States)

    1994-09-01

    Autosomal dominant cyclic hematopoiesis (ADCH; cyclic neutropenia) is a rare disorder manifested by transient neutropenia that recurs every three weeks. To facilitate mapping the ADCH gene by genetic linkage analysis, we studied 9 ADCH families with 42 affected individuals. Pedigrees revealed AD inheritance with no evidence for decreased penetrance. Similar intra- and interfamilial variable expression was observed, with no evidence to support heterogeneity. At least 3 families displayed apparent new mutations. Many adults developed chronic neutropenia, while offspring always cycled during childhood. Children displayed recurrent oral ulcers, gingivitis, lymphadenopathy, fever, and skin and other infections with additional symptoms. Interestingly, there were no cases of neonatal infection. Some children required multiple hospitalizations for treatment. Four males under age 18 died of Clostridium sepsis following necrotizing enterocolitis; all had affected mothers. No other deaths due to ADCH were found; most had improvement of symptoms and infections as adults. Adults experienced increased tooth loss prior to age 30 (16 out of 27 adults, with 9 edentulous). No increase in myelodysplasia, malignancy, or congenital anomalies was observed. Recombinant G-CSF treatment resulted in dramatic improvement of symptoms and infections. The results suggest that ADCH is not a benign disorder, especially in childhood, and abdominal pain requires immediate evaluation. Diagnosis of ADCH requires serial blood counts in the proband and at least one CBC in relatives to exclude similar disorders. Genetic counseling requires specific histories as well as CBCs of each family member at risk to determine status regardless of symptom history, especially to assess apparent new mutations.

  4. CREB: A Key Regulator of Normal and Neoplastic Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Salemiz Sandoval

    2009-01-01

    Full Text Available The cAMP response element-binding protein (CREB is a nuclear transcription factor downstream of cell surface receptors and mitogens that is critical for normal and neoplastic hematopoiesis. Previous work from our laboratory demonstrated that a majority of patients with acute myeloid leukemia (AML and acute lymphoid leukemia (ALL overexpress CREB in the bone marrow. To understand the role of CREB in leukemogenesis, we examined the biological effect of CREB overexpression on primary leukemia cells, leukemia cell lines, and CREB overexpressing transgenic mice. Our results demonstrated that CREB overexpression leads to an increase in cellular proliferation and survival. Furthermore, CREB transgenic mice develop a myeloproliferative disorder with aberrant myelopoiesis in both the bone marrow and spleen. Additional research from other groups has shown that the expression of the cAMP early inducible repressor (ICER, a CREB repressor, is also deregulated in leukemias. And, miR-34b, a microRNA that negative regulates CREB expression, is expressed at lower levels in myeloid leukemia cell lines compared to that of healthy bone marrow. Taken together, these data suggest that CREB plays a role in cellular transformation. The data also suggest that CREB-specific signaling pathways could possibly serve as potential targets for therapeutic intervention.

  5. Fibrillin-1 microfibrils influence adult bone marrow hematopoiesis.

    Science.gov (United States)

    Smaldone, Silvia; Bigarella, Carolina L; Del Solar, Maria; Ghaffari, Saghi; Ramirez, Francesco

    2016-01-01

    We have recently demonstrated that fibrillin-1 assemblies regulate the fate of skeletal stem cells (aka, mesenchymal stem cells [MSCs]) by modulating TGFβ activity within the microenvironment of adult bone marrow niches. Since MSCs can also influence hematopoietic stem cell (HSC) activities, here we investigated adult hematopoiesis in mice with Cre-mediated inactivation of the fibrillin-1 (Fbn1) gene in the mesenchyme of the forming limbs (Fbn1(Prx1-/-) mice). Analyses of 3-month-old Fbn1(Prx1-/-) mice revealed a statistically significant increase of circulating red blood cells, which a differentiation assay correlated with augmented erythropoiesis. This finding, together with evidence of fibrillin-1 deposition in erythroblastic niches, supported the notion that this extracellular matrix protein normally restricts differentiation of erythroid progenitors. Whereas flow cytometry measurements identified a decreased HSC frequency in mutant relative to wild type mice, no appreciable differences were noted with regard to the relative abundance and differentiation potential of myeloid progenitor cells. Together these findings implied that fibrillin-1 normally promotes HSC expansion but does not influence cell lineage commitment. Since local TGFβ hyperactivity has been associated with abnormal osteogenesis in Fbn1(Prx1-/-) mice, 1-month-old mutant and wild type animals were systemically treated for 8weeks with either a pan-TGF-β-neutralizing antibody or an antibody of the same IgG1 isotype. The distinct outcomes of these pharmacological interventions strongly suggest that fibrillin-1 differentially modulates TGFβ activity in HSC vs. erythroid niches.

  6. Aging of the microenvironment influences clonality in hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Virag Vas

    Full Text Available The mechanisms of the age-associated exponential increase in the incidence of leukemia are not known in detail. Leukemia as well as aging are initiated and regulated in multi-factorial fashion by cell-intrinsic and extrinsic factors. The role of aging of the microenvironment for leukemia initiation/progression has not been investigated in great detail so far. Clonality in hematopoiesis is tightly linked to the initiation of leukemia. Based on a retroviral-insertion mutagenesis approach to generate primitive hematopoietic cells with an intrinsic potential for clonal expansion, we determined clonality of transduced hematopoietic progenitor cells (HPCs exposed to a young or aged microenvironment in vivo. While HPCs displayed primarily oligo-clonality within a young microenvironment, aged animals transplanted with identical pool of cells displayed reduced clonality within transduced HPCs. Our data show that an aged niche exerts a distinct selection pressure on dominant HPC-clones thus facilitating the transition to mono-clonality, which might be one underlying cause for the increased age-associated incidence of leukemia.

  7. An intracranial extramedullary hematopoiesis in a 34-year-old man with beta thalassemia: a case report

    Directory of Open Access Journals (Sweden)

    Tabesh Homayoun

    2011-12-01

    Full Text Available Abstract Introduction Extramedullary hematopoiesis occurs in approximately 15% of cases of thalassemia. Intracranial deposits of extramedullary hematopoiesis are an extremely rare compensatory process in intermediate and severe thalassemia. Case presentation We present an unusual case of an intracranial extramedullary hematopoiesis with a choroid plexus origin in a 34-year-old Caucasian man with beta thalassemia intermedia, who presented with the complaints of chronic headache and rapid progressive visual loss. Conclusion An intracranial extramedullary hematopoiesis, although extremely rare, should be considered as a potential ancillary diagnosis in any thalassemic patient and therefore appropriate studies should be performed to investigate the probable intracranial ectopic marrow before any surgical intervention.

  8. The Bright side of hematopoiesis: Regulatory roles of ARID3a/Bright in human and mouse hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Michelle L. Ratliff

    2014-03-01

    Full Text Available ARID3a/Bright is a DNA binding protein that was originally discovered for its ability to increase immunoglobulin transcription in antigen-activated B cells. It interacts with DNA as a dimer through its ARID, or A/T-rich interacting domain. In association with other proteins, ARID3a increased transcription of the immunoglobulin heavy chain and led to improved chromatin accessibility of the heavy chain enhancer. Constitutive expression of ARID3a in B lineage cells resulted in autoantibody production, suggesting its regulation is important. Abnormal ARID3a expression has also been associated with increased proliferative capacity and malignancy. Roles for ARID3a in addition to interactions with the immunoglobulin locus were suggested by transgenic and knockout mouse models. Over-expression of ARID3a resulted in skewing of mature B cell subsets and altered gene expression patterns of follicular B cells, whereas loss of function resulted in loss of B1 lineage B cells and defects in hematopoiesis. More recent studies showed that loss of ARID3a in adult somatic cells promoted developmental plasticity, alterations in gene expression patterns, and lineage fate decisions. Together, these data suggest new regulatory roles for ARID3a. The genes influenced by ARID3a are likely to play pivotal roles in lineage decisions, highlighting the importance of this understudied transcription factor.

  9. The Bright Side of Hematopoiesis: Regulatory Roles of ARID3a/Bright in Human and Mouse Hematopoiesis.

    Science.gov (United States)

    Ratliff, Michelle L; Templeton, Troy D; Ward, Julie M; Webb, Carol F

    2014-01-01

    ARID3a/Bright is a DNA-binding protein that was originally discovered for its ability to increase immunoglobulin transcription in antigen-activated B cells. It interacts with DNA as a dimer through its ARID, or A/T-rich interacting domain. In association with other proteins, ARID3a increased transcription of the immunoglobulin heavy chain and led to improved chromatin accessibility of the heavy chain enhancer. Constitutive expression of ARID3a in B lineage cells resulted in autoantibody production, suggesting its regulation is important. Abnormal ARID3a expression has also been associated with increased proliferative capacity and malignancy. Roles for ARID3a in addition to interactions with the immunoglobulin locus were suggested by transgenic and knockout mouse models. Over-expression of ARID3a resulted in skewing of mature B cell subsets and altered gene expression patterns of follicular B cells, whereas loss of function resulted in loss of B1 lineage B cells and defects in hematopoiesis. More recent studies showed that loss of ARID3a in adult somatic cells promoted developmental plasticity, alterations in gene expression patterns, and lineage fate decisions. Together, these data suggest new regulatory roles for ARID3a. The genes influenced by ARID3a are likely to play pivotal roles in lineage decisions, highlighting the importance of this understudied transcription factor.

  10. Signaling by Retinoic Acid in Embryonic and Adult Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Elena Cano

    2014-03-01

    Full Text Available Embryonic and adult hematopoiesis are both finely regulated by a number of signaling mechanisms. In the mammalian embryo, short-term and long-term hematopoietic stem cells (HSC arise from a subset of endothelial cells which constitute the hemogenic endothelium. These HSC expand and give rise to all the lineages of blood cells in the fetal liver, first, and in the bone marrow from the end of the gestation and throughout the adult life. The retinoic acid (RA signaling system, acting through the family of nuclear retinoic acid receptors (RARs and RXRs, is involved in multiple steps of the hematopoietic development, and also in the regulation of the differentiation of some myeloid lineages in adults. In humans, the importance of this RA-mediated control is dramatically illustrated by the pathogeny of acute promyelocytic leukemia, a disease produced by a chromosomal rearrangement fusing the RARa gene with other genes. The aberrant fusion protein is able to bind to RARα target gene promoters to actively suppress gene transcription. Lack of function of RARα leads to a failure in the differentiation of promyelocytic progenitors. In this review we have collected the available information about all the phases of the hematopoietic process in which RA signaling is involved, being essential for steps such as the emergence of HSC from the hemogenic endothelium, or modulating processes such as the adult granulopoiesis. A better knowledge of the RA-mediated signaling mechanisms can contribute to the knowledge of the origin of many pathologies of the hematopoietic system and can provide new clinical avenues for their treatment.

  11. Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype

    Science.gov (United States)

    Growney, Joseph D.; Shigematsu, Hirokazu; Li, Zhe; Lee, Benjamin H.; Adelsperger, Jennifer; Rowan, Rebecca; Curley, David P.; Kutok, Jeffery L.; Akashi, Koichi; Williams, Ifor R.; Speck, Nancy A.; Gilliland, D. Gary

    2005-01-01

    Homozygous loss of function of Runx1 (Runt-related transcription factor 1 gene) during murine development results in an embryonic lethal phenotype characterized by a complete lack of definitive hematopoiesis. In light of recent reports of disparate requirements for hematopoietic transcription factors during development as opposed to adult hematopoiesis, we used a conditional gene-targeting strategy to effect the loss of Runx1 function in adult mice. In contrast with the critical role of Runx1 during development, Runx1 was not essential for hematopoiesis in the adult hematopoietic compartment, though a number of significant hematopoietic abnormalities were observed. Runx1 excision had lineage-specific effects on B- and T-cell maturation and pronounced inhibition of common lymphocyte progenitor production. Runx1 excision also resulted in inefficient platelet production. Of note, Runx1-deficient mice developed a mild myeloproliferative phenotype characterized by an increase in peripheral blood neutrophils, an increase in myeloid progenitor populations, and extramedullary hematopoiesis composed of maturing myeloid and erythroid elements. These findings indicate that Runx1 deficiency has markedly different consequences during development compared with adult hematopoiesis, and they provide insight into the phenotypic manifestations of Runx1 deficiency in hematopoietic malignancies. PMID:15784726

  12. Drosophila hematopoiesis under normal conditions and in response to immune stress.

    Science.gov (United States)

    Letourneau, Manon; Lapraz, Francois; Sharma, Anurag; Vanzo, Nathalie; Waltzer, Lucas; Crozatier, Michèle

    2016-11-01

    The emergence of hematopoietic progenitors and their differentiation into various highly specialized blood cell types constitute a finely tuned process. Unveiling the genetic cascades that control blood cell progenitor fate and understanding how they are modulated in response to environmental changes are two major challenges in the field of hematopoiesis. In the last 20 years, many studies have established important functional analogies between blood cell development in vertebrates and in the fruit fly, Drosophila melanogaster. Thereby, Drosophila has emerged as a powerful genetic model for studying mechanisms that control hematopoiesis during normal development or in pathological situations. Moreover, recent advances in Drosophila have highlighted how intricate cell communication networks and microenvironmental cues regulate blood cell homeostasis. They have also revealed the striking plasticity of Drosophila mature blood cells and the presence of different sites of hematopoiesis in the larva. This review provides an overview of Drosophila hematopoiesis during development and summarizes our current knowledge on the molecular processes controlling larval hematopoiesis, both under normal conditions and in response to an immune challenge, such as wasp parasitism. © 2016 Federation of European Biochemical Societies.

  13. Kzp Regulates the Transcription of gata2 and pu.1 during Primitive Hematopoiesis in Zebrafish Embryos

    Institute of Scientific and Technical Information of China (English)

    Fang Liu; Shaohua Yao; Ting Zhang; Chun Xiao; Yanna Shang; Jin Liu; Xianming Mo

    2012-01-01

    Kaiso zinc finger-containing protein (Kzp),a maternally-derived transcription factor,controls dorsoventral patterning during zebrafish gastrulation.Here,we uncovered a new function for Kzp in zebrafish embryonic primitive hematopoiesis.The depletion of kzp led to defects in primitive hematopoiesis including the development of the erythroid and myeloid lineages.On the other hand,overexpression of kzp caused the ectopic expression of gatal,gata2,and pu.1.Chromosome immunoprecipitation assays revealed that Kzp protein directly binds to gatal,gata2,and pu.1 promoters.Interestingly,the ectopic expression of gata2 was able to rescue the erythroid,but not the myeloid lineage in kzp-depleted zebrafish embryos.gatal expression controlled by Kzp was dependent on gata2 during primitive erythropoiesis.Our results indicate that Kzp is a critical transcriptional factor for the expression of gata2 and pu.1 to modulate primitive hematopoiesis.

  14. Large-Scale Forward Genetic Screening Analysis of Development of Hematopoiesis in Zebrafish

    Institute of Scientific and Technical Information of China (English)

    Kun Wang; Ning Ma; Yiyue Zhang; Wenqing Zhang; Zhibin Huang; Lingfeng Zhao; Wei Liu; Xiaohui Chen; Ping Meng; Qing Lin; Yali Chi; Mengchang Xu

    2012-01-01

    Zebrafish is a powerful model for the investigation of hematopoiesis.In order to isolate novel mutants with hematopoietic defects,large-scale mutagenesis screening of zebrafish was performed.By scoring specific hematopoietic markers,52 mutants were identified and then classified into four types based on specific phenotypic traits.Each mutant represented a putative mutation of a gene regulating the relevant aspect of hematopoiesis,including early macrophage development,early granulopoiesis,embryonic myelopoiesis,and definitive erythropoiesis/lymphopoiesis.Our method should be applicable for other types of genetic screening in zebrafish.In addition,further study of the mutants we identified may help to unveil the molecular basis of hematopoiesis.

  15. Ectopic Runx1 expression rescues Tal-1-deficiency in the generation of primitive and definitive hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Julia Tornack

    Full Text Available The transcription factors SCL/Tal-1 and AML1/Runx1 control the generation of pluripotent hematopoietic stem cells (pHSC and, thereby, primitive and definitive hematopoiesis, during embryonic development of the mouse from mesoderm. Thus, Runx1-deficient mice generate primitive, but not definitive hematopoiesis, while Tal-1-deficient mice are completely defective. Primitive as well as definitive hematopoiesis can be developed "in vitro" from embryonic stem cells (ESC. We show that wild type, as well as Tal-1(-/- and Runx1(-/- ESCs, induced to differentiation, all expand within 5 days to comparable numbers of Flk1(+ mesodermal cells. While wild type ESCs further differentiate to primitive and definitive erythrocytes, to c-fms(+Gr1(+Mac1(+ myeloid cells, and to B220(+CD19(+ B- and CD4(+/CD8(+ T-lymphoid cells, Runx1(-/- ESCs, as expected, only develop primitive erythrocytes, and Tal-1(-/- ESCs do not generate any hematopoietic cells. Retroviral transduction with Runx1 of Runx1(-/- ESCs, differentiated for 4 days to mesoderm, rescues definitive erythropoiesis, myelopoiesis and lymphopoiesis, though only with 1-10% of the efficiencies of wild type ESC hematopoiesis. Surprisingly, Tal-1(-/- ESCs can also be rescued at comparably low efficiencies to primitive and definitive erythropoiesis, and to myelopoiesis and lymphopoiesis by retroviral transduction with Runx1. These results suggest that Tal-1 expression is needed to express Runx1 in mesoderm, and that ectopic expression of Runx1 in mesoderm is sufficient to induce primitive as well as definitive hematopoiesis in the absence of Tal-1. Retroviral transduction of "in vitro" differentiating Tal-1(-/- and Runx1(-/- ESCs should be a useful experimental tool to probe selected genes for activities in the generation of hematopoietic progenitors "in vitro", and to assess the potential transforming activities in hematopoiesis of mutant forms of Tal-1 and Runx1 from acute myeloid leukemia and related tumors.

  16. Spinal osteoblastic meningioma with hematopoiesis: radiologic-pathologic correlation and review of the literature.

    Science.gov (United States)

    Cochran, Elizabeth J; Schlauderaff, Abraham; Rand, Scott D; Eckardt, Gerald W; Kurpad, Shekar

    2016-10-01

    Spinal meningiomas associated with bone formation and hematopoiesis are rare tumors with only 3 prior case reports in the literature. We describe a case report of a woman who presented with back pain and an isolated event of urinary incontinence. A calcified spinal canal mass at T8 was identified on computed tomographic and magnetic resonance imaging. A gross total resection of the tumor was performed and pathologic examination showed a meningioma, World Health Organization grade 1, containing bone and bone marrow elements. A review of previously reported cases and a discussion of possible mechanisms of bone and hematopoiesis development in meningioma are presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Loss of the Homeodomain Transcription Factor Prep1 Perturbs Adult Hematopoiesis in the Bone Marrow.

    Directory of Open Access Journals (Sweden)

    Kentaro Yoshioka

    Full Text Available Prep1, a TALE-family homeodomain transcription factor, has been demonstrated to play a critical role in embryonic hematopoiesis, as its insufficiency caused late embryonic lethality associated with defective hematopoiesis and angiogenesis. In the present study, we generated hematopoietic- and endothelial cell-specific Prep1-deficient mice and demonstrated that expression of Prep1 in the hematopoietic cell compartment is not essential for either embryonic or adult hematopoiesis, although its absence causes significant hematopoietic abnormalities in the adult bone marrow. Loss of Prep1 promotes cell cycling of hematopoietic stem/progenitor cells (HSPC, leading to the expansion of the HSPC pool. Prep1 deficiency also results in the accumulation of lineage-committed progenitors, increased monocyte/macrophage differentiation and arrested erythroid maturation. Maturation of T cells and B cells is also perturbed in Prep-deficient mice. These findings provide novel insight into the pleiotropic roles of Prep1 in adult hematopoiesis that were unrecognized in previous studies using germline Prep1 hypomorphic mice.

  18. Case report and literature review: cardiac tamponade as a complication of pericardial extramedullary hematopoiesis.

    Science.gov (United States)

    Mahadevan, Navin R; Morgan, Elizabeth A; Mitchell, Richard N

    2016-01-01

    Pericardial effusion can cause cardiac tamponade physiology with resultant cardiogenic shock and death. Myelofibrosis, the replacement of marrow cavity by fibrous connective tissue, is a secondary complication of a group of disorders known as myeloproliferative neoplasms, which are clonal processes characterized by abnormal proliferative growth of one or more hematopoietic lineages. One consequence of myelofibrosis is the development of hematopoiesis at other anatomic sites, most commonly the spleen and liver, a phenomenon known as extramedullary hematopoiesis (EMH). Herein we report a case of a man who died from pericardial tamponade due to a subacute pericardial effusion secondary to EMH in the pericardium in the setting of myelofibrosis. This case highlights an unusual etiology for pericardial effusion and tamponade that should be considered in cases of myelofibrosis and stimulates a discussion regarding the mechanisms and anatomic distribution of EMH.

  19. Demand-adapted regulation of early hematopoiesis in infection and inflammation.

    Science.gov (United States)

    Takizawa, Hitoshi; Boettcher, Steffen; Manz, Markus G

    2012-03-29

    During systemic infection and inflammation, immune effector cells are in high demand and are rapidly consumed at sites of need. Although adaptive immune cells have high proliferative potential, innate immune cells are mostly postmitotic and need to be replenished from bone marrow (BM) hematopoietic stem and progenitor cells. We here review how early hematopoiesis has been shaped to deliver efficient responses to increased need. On the basis of most recent findings, we develop an integrated view of how cytokines, chemokines, as well as conserved pathogen structures, are sensed, leading to divisional activation, proliferation, differentiation, and migration of hematopoietic stem and progenitor cells, all aimed at efficient contribution to immune responses and rapid reestablishment of hematopoietic homeostasis. We also outline how chronic inflammatory processes might impinge on hematopoiesis, potentially fostering hematopoietic stem cell diseases, and, how clinical benefit is and could be achieved by learning from nature.

  20. The human protooncogene product p33pim is expressed during fetal hematopoiesis and in diverse leukemias.

    OpenAIRE

    Amson, R; Sigaux, F; Przedborski, S; Flandrin, G; Givol, D; Telerman, A

    1989-01-01

    We measured the human pim-1 protooncogene (PIM) expression during fetal development and in hematopoietic malignancies. Our data indicate that during human fetal hematopoiesis the 33-kDa pim product, p33pim, is highly expressed in the liver and spleen. In contrast, at the adult stage it is only slightly expressed in circulating granulocytes. Out of 70 hematopoietic malignancies analyzed, 51 patients and 19 cell lines, p33pim was overexpressed in approximately 30% of the samples, particularly i...

  1. Myelopathy due to Spinal Extramedullary Hematopoiesis in a Patient with Polycythemia Vera

    Science.gov (United States)

    Ito, Shuhei; Hosogane, Naobumi; Nagoshi, Narihito; Yagi, Mitsuru; Iwanami, Akio; Watanabe, Kota; Tsuji, Takashi; Nakamura, Masaya; Matsumoto, Morio; Ishii, Ken

    2017-01-01

    Extramedullary hematopoiesis (EMH) occasionally occurs in patients exhibiting hematological disorders with decreased hematopoietic efficacy. EMH is rarely observed in the spinal epidural space and patients are usually asymptomatic. In particular, in the patients with polycythemia vera, spinal cord compression due to EMH is extremely rare. We report a case of polycythemia vera, in which operative therapy proved to be an effective treatment for myelopathy caused by spinal EMH. PMID:28133558

  2. Cis-cotranscription of two beta globin genes during chicken primitive hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Hiroki Nagai

    Full Text Available Chicken beta globin locus contains four genes, two of which, rho and epsilon, are expressed from the earliest stage of primitive hematopoiesis. Here we show that the transcription of these two genes in the nucleus engages in "on/off" phases. During each "on" phase, cotranscription of rho and epsilon in cis is favored. We propose that these two chicken beta globin genes are transcribed not by competing for a transcription initiation complex, but in a cooperative way.

  3. Pecular Features of Hematopoiesis in the Liver of Mature and Immature Green Frogs (Pelophylax Esculentus Complex

    Directory of Open Access Journals (Sweden)

    Akulenko N. M.

    2016-12-01

    Full Text Available The article describes characteristic features of the hematopoiesis in mature and immature green frogs (Pelophylax esculentus complex. Quantitative differences in liver myelograms were insignificant. However, in a sample of mature animals numerous significant correlations between the number of pigment inclusions in the liver and indicators of erythropoiesis and myelopoiesis were observed. Those correlations were absent in the immature frogs. We concluded that aft er the frogs’ breeding a lack of plastic resources, in particular, hemosiderin remains up to the hibernation.

  4. Zinc finger protein 148 is dispensable for primitive and definitive hematopoiesis in mice.

    Directory of Open Access Journals (Sweden)

    Anna Nilton

    Full Text Available Hematopoiesis is regulated by transcription factors that induce cell fate and differentiation in hematopoietic stem cells into fully differentiated hematopoietic cell types. The transcription factor zinc finger protein 148 (Zfp148 interacts with the hematopoietic transcription factor Gata1 and has been implicated to play an important role in primitive and definitive hematopoiesis in zebra fish and mouse chimeras. We have recently created a gene-trap knockout mouse model deficient for Zfp148, opening up for analyses of hematopoiesis in a conventional loss-of-function model in vivo. Here, we show that Zfp148-deficient neonatal and adult mice have normal or slightly increased levels of hemoglobin, hematocrit, platelets and white blood cells, compared to wild type controls. Hematopoietic lineages in bone marrow, thymus and spleen from Zfp148 (gt/gt mice were further investigated by flow cytometry. There were no differences in T-cells (CD4 and CD8 single positive cells, CD4 and CD8 double negative/positive cells in either organ. However, the fraction of CD69- and B220-positive cells among lymphocytes in spleen was slightly lower at postnatal day 14 in Zfp148 (gt/gt mice compared to wild type mice. Our results demonstrate that Zfp148-deficient mice generate normal mature hematopoietic populations thus challenging earlier studies indicating that Zfp148 plays a critical role during hematopoietic development.

  5. Hepatic Stellate Cells Support Hematopoiesis and are Liver-Resident Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Claus Kordes

    2013-02-01

    Full Text Available Background/Aims: Hematopoiesis can occur in the liver, when the bone marrow fails to provide an adequate environment for hematopoietic stem cells. Hepatic stellate cells possess characteristics of stem/progenitor cells, but their contribution to hematopoiesis is not known thus far. Methods: Isolated hepatic stellate cells from rats were characterized with respect to molecular markers of bone marrow mesenchymal stem cells (MSC and treated with adipocyte or osteocyte differentiation media. Stellate cells of rats were further co-cultured with murine stem cell antigen-1+ hematopoietic stem cells selected by magnetic cell sorting. The expression of murine hematopoietic stem cell markers was analyzed by mouse specific quantitative PCR during co-culture. Hepatic stellate cells from eGFP+ rats were transplanted into lethally irradiated wild type rats. Results: Desmin-expressing stellate cells were associated with hematopoietic sites in the fetal rat liver. Hepatic stellate cells expressed MSC markers and were able to differentiate into adipocytes and osteocytes in vitro. Stellate cells supported hematopoietic stem/progenitor cells during co-culture similar to bone marrow MSC, but failed to differentiate into blood cell lineages after transplantation. Conclusion: Hepatic stellate cells are liver-resident MSC and can fulfill typical functions of bone marrow MSC such as the differentiation into adipocytes or osteocytes and support of hematopoiesis.

  6. Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis.

    Science.gov (United States)

    Koch, Ute; Wilson, Anne; Cobas, Monica; Kemler, Rolf; Macdonald, H Robson; Radtke, Freddy

    2008-01-01

    Hematopietic stem cells (HSCs) maintain life-long hematopoiesis in the bone marrow via their ability to self-renew and to differentiate into all blood lineages. Although a central role for the canonical wnt signaling pathway has been suggested in HSC self-renewal as well as in the development of B and T cells, conditional deletion of beta-catenin (which is considered to be essential for Wnt signaling) has no effect on hematopoiesis or lymphopoiesis. Here, we address whether this discrepancy can be explained by a redundant and compensatory function of gamma-catenin, a close homolog of beta-catenin. Unexpectedly, we find that combined deficiency of beta- and gamma-catenin in hematopoietic progenitors does not impair their ability to self-renew and to reconstitute all myeloid, erythroid, and lymphoid lineages, even in competitive mixed chimeras and serial transplantations. These results exclude an essential role for canonical Wnt signaling (as mediated by beta- and/or gamma-catenin) during hematopoiesis and lymphopoiesis.

  7. The Zebrafish moonshine Gene Encodes Transcriptional Intermediary Factor 1γ, an Essential Regulator of Hematopoiesis

    Science.gov (United States)

    Ransom, David G; Bahary, Nathan; Niss, Knut; Traver, David; Burns, Caroline; Trede, Nikolaus S; Paffett-Lugassy, Noelle; Saganic, Walter J; Lim, C. Anthoney; Hersey, Candace; Zhou, Yi; Barut, Bruce A; Lin, Shuo; Kingsley, Paul D; Palis, James; Orkin, Stuart H

    2004-01-01

    Hematopoiesis is precisely orchestrated by lineage-specific DNA-binding proteins that regulate transcription in concert with coactivators and corepressors. Mutations in the zebrafish moonshine (mon) gene specifically disrupt both embryonic and adult hematopoiesis, resulting in severe red blood cell aplasia. We report that mon encodes the zebrafish ortholog of mammalian transcriptional intermediary factor 1γ (TIF1γ) (or TRIM33), a member of the TIF1 family of coactivators and corepressors. During development, hematopoietic progenitor cells in mon mutants fail to express normal levels of hematopoietic transcription factors, including gata1, and undergo apoptosis. Three different mon mutant alleles each encode premature stop codons, and enforced expression of wild-type tif1γ mRNA rescues embryonic hematopoiesis in homozygous mon mutants. Surprisingly, a high level of zygotic tif1γ mRNA expression delineates ventral mesoderm during hematopoietic stem cell and progenitor formation prior to gata1 expression. Transplantation studies reveal that tif1γ functions in a cell-autonomous manner during the differentiation of erythroid precursors. Studies in murine erythroid cell lines demonstrate that Tif1γ protein is localized within novel nuclear foci, and expression decreases during erythroid cell maturation. Our results establish a major role for this transcriptional intermediary factor in the differentiation of hematopoietic cells in vertebrates. PMID:15314655

  8. The zebrafish moonshine gene encodes transcriptional intermediary factor 1gamma, an essential regulator of hematopoiesis.

    Directory of Open Access Journals (Sweden)

    David G Ransom

    2004-08-01

    Full Text Available Hematopoiesis is precisely orchestrated by lineage-specific DNA-binding proteins that regulate transcription in concert with coactivators and corepressors. Mutations in the zebrafish moonshine (mon gene specifically disrupt both embryonic and adult hematopoiesis, resulting in severe red blood cell aplasia. We report that mon encodes the zebrafish ortholog of mammalian transcriptional intermediary factor 1gamma (TIF1gamma (or TRIM33, a member of the TIF1 family of coactivators and corepressors. During development, hematopoietic progenitor cells in mon mutants fail to express normal levels of hematopoietic transcription factors, including gata1, and undergo apoptosis. Three different mon mutant alleles each encode premature stop codons, and enforced expression of wild-type tif1gamma mRNA rescues embryonic hematopoiesis in homozygous mon mutants. Surprisingly, a high level of zygotic tif1gamma mRNA expression delineates ventral mesoderm during hematopoietic stem cell and progenitor formation prior to gata1 expression. Transplantation studies reveal that tif1gamma functions in a cell-autonomous manner during the differentiation of erythroid precursors. Studies in murine erythroid cell lines demonstrate that Tif1gamma protein is localized within novel nuclear foci, and expression decreases during erythroid cell maturation. Our results establish a major role for this transcriptional intermediary factor in the differentiation of hematopoietic cells in vertebrates.

  9. The corepressor Tle4 is a novel regulator of murine hematopoiesis and bone development.

    Directory of Open Access Journals (Sweden)

    Justin C Wheat

    Full Text Available Hematopoiesis is a complex process that relies on various cell types, signaling pathways, transcription factors and a specific niche. The integration of these various components is of critical importance to normal blood development, as deregulation of these may lead to bone marrow failure or malignancy. Tle4, a transcriptional corepressor, acts as a tumor suppressor gene in a subset of acute myeloid leukemia, yet little is known about its function in normal and malignant hematopoiesis or in mammalian development. We report here that Tle4 knockout mice are runted and die at around four weeks with defects in bone development and BM aplasia. By two weeks of age, Tle4 knockout mice exhibit leukocytopenia, B cell lymphopenia, and significant reductions in hematopoietic stem and progenitor cells. Tle4 deficient hematopoietic stem cells are intrinsically defective in B lymphopoiesis and exhaust upon stress, such as serial transplantation. In the absence of Tle4 there is a profound decrease in bone mineralization. In addition, Tle4 knockout stromal cells are defective at maintaining wild-type hematopoietic stem cell function in vitro. In summary, we illustrate a novel and essential role for Tle4 in the extrinsic and intrinsic regulation of hematopoiesis and in bone development.

  10. The impact of chronic intermittent hypoxia on hematopoiesis and the bone marrow microenvironment.

    Science.gov (United States)

    Alvarez-Martins, Inês; Remédio, Leonor; Matias, Inês; Diogo, Lucília N; Monteiro, Emília C; Dias, Sérgio

    2016-05-01

    Obstructive sleep apnea (OSA) is a highly prevalent sleep-related breathing disorder which is associated with patient morbidity and an elevated risk of developing hypertension and cardiovascular diseases. There is ample evidence for the involvement of bone marrow (BM) cells in the pathophysiology of cardiovascular diseases but a connection between OSA and modulation of the BM microenvironment had not been established. Here, we studied how chronic intermittent hypoxia (CIH) affected hematopoiesis and the BM microenvironment, in a rat model of OSA. We show that CIH followed by normoxia increases the bone marrow hypoxic area, increases the number of multipotent hematopoietic progenitors (CFU assay), promotes erythropoiesis, and increases monocyte counts. In the BM microenvironment of CIH-subjected animals, the number of VE-cadherin-expressing blood vessels, particularly sinusoids, increased, accompanied by increased smooth muscle cell coverage, while vWF-positive vessels decreased. Molecularly, we investigated the expression of endothelial cell-derived genes (angiocrine factors) that could explain the cellular phenotypes. Accordingly, we observed an increase in colony-stimulating factor 1, vascular endothelium growth factor, delta-like 4, and angiopoietin-1 expression. Our data shows that CIH induces vascular remodeling in the BM microenvironment, which modulates hematopoiesis, increasing erythropoiesis, and circulating monocytes. Our study reveals for the first time the effect of CIH in hematopoiesis and suggests that hematopoietic changes may occur in OSA patients.

  11. Osseous metaplasia and mature bone formation with extramedullary hematopoiesis in follicular adenoma of thyroid gland

    Directory of Open Access Journals (Sweden)

    Harsh Mohan

    2009-07-01

    Full Text Available Follicular adenomas of the thyroid may be subjected to degenerative changes like hemorrhagic and cystic changes, fibrosis, and calcification. Mature bone formation is a rare phenomenon, but extramedullary hematopoiesis (EMH has also been rarely reported in thyroid gland. The combination of mature bone formation and EMH is rarer and has been reported, in a single case report, in a multinodular goitre. We describe a case of follicular adenoma with histologically proven osseous metaplasia and mature bone formation with EMH in a middle- aged woman, which, to our knowledge, is the first case in English language literature.

  12. RUNX1: A MicroRNA Hub in Normal and Malignant Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Nicoletta Sacchi

    2013-01-01

    Full Text Available Hematopoietic development is orchestrated by gene regulatory networks that progressively induce lineage-specific transcriptional programs. To guarantee the appropriate level of complexity, flexibility, and robustness, these networks rely on transcriptional and post-transcriptional circuits involving both transcription factors (TFs and microRNAs (miRNAs. The focus of this review is on RUNX1 (AML1, a master hematopoietic transcription factor which is at the center of miRNA circuits necessary for both embryonic and post-natal hematopoiesis. Interference with components of these circuits can perturb RUNX1-controlled coding and non-coding transcriptional programs in leukemia.

  13. PET CT imaging in extramedullary hematopoiesis and lung cancer surprise in a case with thalassemia intermedia

    Directory of Open Access Journals (Sweden)

    Semra Paydaş

    2011-03-01

    Full Text Available Extramedullary hematopoiesis (EMH is the production of hematopoietic precursors outside the bone marrow cavity, and it causes mass effects according to its localization. Magnetic resonance imaging (MRI and/or computed tomography (CT scans are used most commonly to detect EMH foci. We report herein a case with thalassemia intermedia causing paravertebral mass associated with EMH detected by CT scan. We further evaluated the case with positron emission tomography (PET CT, and lung cancer, which was not revealed in the CT scan, was detected coincidentally.

  14. Extramedullary Hematopoiesis in a Man With β-Thalassemia: An Uncommon Cause of an Adrenal Mass

    Directory of Open Access Journals (Sweden)

    Zeighami

    2015-06-01

    Full Text Available Introduction Extramedullary hematopoiesis (EMH commonly occurs in the spleen, liver and lymph nodes. Rare cases of EMH in the adrenal gland have been reported. Case Presentation We report the case of a 33-year-old man from the South of Iran suffering from major β-thalassemia, who underwent open left adrenalectomy and the histopathology revealed EMH. Conclusions In patients in which a history of hematologic disorders exists, careful imaging and hormonal assay should be done to certify a diagnosis of EMH. However, the surgical management becomes inevitable in certain cases.

  15. Bloody nipple discharge in 2 infants with interesting cytologic findings of extramedullary hematopoiesis and hemophagocytosis.

    Science.gov (United States)

    Pampal, Arzu; Gokoz, Aytac; Sipahi, Tansu; Dogan, Handan; Ergur, Ayca Torel

    2012-04-01

    Bloody nipple discharge in the infantile period is an uncommon finding. Despite its stressful course to the parents, it is generally a benign condition with a spontaneous resolution. The approach to bloody nipple discharge in the infantile period is well documented in the literature even though the number of these cases is limited. We report 2 infants with unilateral bloody nipple discharge. Their physical examination, laboratory, and ultrasound findings were normal but the cytologic examinations of the discharge revealed signs of extramedullary hematopoiesis and hemophagocytosis. These extraordinary findings made us brainstorm on the probable ongoing processes in the infantile breast tissue.

  16. Intracranial involvement in extramedullary hematopoiesis: case report and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Haidar, Salwa; Ortiz-Neira, Clara; Shroff, Manohar; Gilday, David; Blaser, Susan [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada)

    2005-06-01

    Intracranial involvement in extramedullary hematopoiesis (EMH) is rare, but it should be suspected in patients with myelofibrosis presenting with chronic severe headache. We present a 9-year-old girl with known myelofibrosis whose headaches were unresponsive to routine treatment. CT and MRI studies of the brain showed diffuse pachymeningeal thickening. CT examinations of the chest and abdomen had demonstrated bilateral thoracic paraspinal masses caused by EMH, suggesting the possibility that the intracranial involvement might also be related to EMH. The diagnosis was confirmed by sulfur colloid isotope scan. (orig.)

  17. Role of Vitamin A/Retinoic Acid in Regulation of Embryonic and Adult Hematopoiesis

    Science.gov (United States)

    Cañete, Ana; Cano, Elena; Muñoz-Chápuli, Ramón; Carmona, Rita

    2017-01-01

    Vitamin A is an essential micronutrient throughout life. Its physiologically active metabolite retinoic acid (RA), acting through nuclear retinoic acid receptors (RARs), is a potent regulator of patterning during embryonic development, as well as being necessary for adult tissue homeostasis. Vitamin A deficiency during pregnancy increases risk of maternal night blindness and anemia and may be a cause of congenital malformations. Childhood Vitamin A deficiency can cause xerophthalmia, lower resistance to infection and increased risk of mortality. RA signaling appears to be essential for expression of genes involved in developmental hematopoiesis, regulating the endothelial/blood cells balance in the yolk sac, promoting the hemogenic program in the aorta-gonad-mesonephros area and stimulating eryrthropoiesis in fetal liver by activating the expression of erythropoietin. In adults, RA signaling regulates differentiation of granulocytes and enhances erythropoiesis. Vitamin A may facilitate iron absorption and metabolism to prevent anemia and plays a key role in mucosal immune responses, modulating the function of regulatory T cells. Furthermore, defective RA/RARα signaling is involved in the pathogenesis of acute promyelocytic leukemia due to a failure in differentiation of promyelocytes. This review focuses on the different roles played by vitamin A/RA signaling in physiological and pathological mouse hematopoiesis duddurring both, embryonic and adult life, and the consequences of vitamin A deficiency for the blood system. PMID:28230720

  18. Role of Vitamin A/Retinoic Acid in Regulation of Embryonic and Adult Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Ana Cañete

    2017-02-01

    Full Text Available Vitamin A is an essential micronutrient throughout life. Its physiologically active metabolite retinoic acid (RA, acting through nuclear retinoic acid receptors (RARs, is a potent regulator of patterning during embryonic development, as well as being necessary for adult tissue homeostasis. Vitamin A deficiency during pregnancy increases risk of maternal night blindness and anemia and may be a cause of congenital malformations. Childhood Vitamin A deficiency can cause xerophthalmia, lower resistance to infection and increased risk of mortality. RA signaling appears to be essential for expression of genes involved in developmental hematopoiesis, regulating the endothelial/blood cells balance in the yolk sac, promoting the hemogenic program in the aorta-gonad-mesonephros area and stimulating eryrthropoiesis in fetal liver by activating the expression of erythropoietin. In adults, RA signaling regulates differentiation of granulocytes and enhances erythropoiesis. Vitamin A may facilitate iron absorption and metabolism to prevent anemia and plays a key role in mucosal immune responses, modulating the function of regulatory T cells. Furthermore, defective RA/RARα signaling is involved in the pathogenesis of acute promyelocytic leukemia due to a failure in differentiation of promyelocytes. This review focuses on the different roles played by vitamin A/RA signaling in physiological and pathological mouse hematopoiesis duddurring both, embryonic and adult life, and the consequences of vitamin A deficiency for the blood system.

  19. DEK oncogene expression during normal hematopoiesis and in Acute Myeloid Leukemia (AML).

    Science.gov (United States)

    Logan, Gemma E; Mor-Vaknin, Nirit; Braunschweig, Till; Jost, Edgar; Schmidt, Pia Verena; Markovitz, David M; Mills, Ken I; Kappes, Ferdinand; Percy, Melanie J

    2015-01-01

    DEK is important in regulating cellular processes including proliferation, differentiation and maintenance of stem cell phenotype. The translocation t(6;9) in Acute Myeloid Leukemia (AML), which fuses DEK with NUP214, confers a poor prognosis and a higher risk of relapse. The over-expression of DEK in AML has been reported, but different studies have shown diminished levels in pediatric and promyelocytic leukemias. This study has characterized DEK expression, in silico, using a large multi-center cohort of leukemic and normal control cases. Overall, DEK was under-expressed in AML compared to normal bone marrow (NBM). Studying specific subtypes of AML confirmed either no significant change or a significant reduction in DEK expression compared to NBM. Importantly, the similarity of DEK expression between AML and NBM was confirmed using immunohistochemistry analysis of tissue mircorarrays. In addition, stratification of AML patients based on median DEK expression levels indicated that DEK showed no effect on the overall survival of patients. DEK expression during normal hematopoiesis did reveal a relationship with specific cell types implicating a distinct function during myeloid differentiation. Whilst DEK may play a potential role in hematopoiesis, it remains to be established whether it is important for leukemagenesis, except when involved in the t(6;9) translocation. Copyright © 2014. Published by Elsevier Inc.

  20. Regulation of Hematopoiesis and Methionine Homeostasis by mTORC1 Inhibitor NPRL2

    Directory of Open Access Journals (Sweden)

    Paul A. Dutchak

    2015-07-01

    Full Text Available Nitrogen permease regulator-like 2 (NPRL2 is a component of a conserved complex that inhibits mTORC1 (mammalian Target Of Rapamycin Complex 1 in response to amino acid insufficiency. Here, we show that NPRL2 is required for mouse viability and that its absence significantly compromises fetal liver hematopoiesis in developing embryos. Moreover, NPRL2 KO embryos have significantly reduced methionine levels and exhibit phenotypes reminiscent of cobalamin (vitamin B12 deficiency. Consistent with this idea, NPRL2 KO liver and mouse embryonic fibroblasts (MEFs show defective processing of the cobalamin-transport protein transcobalamin 2, along with impaired lysosomal acidification and lysosomal gene expression. NPRL2 KO MEFs exhibit a significant defect in the cobalamin-dependent synthesis of methionine from homocysteine, which can be rescued by supplementation with cyanocobalamin. Taken together, these findings demonstrate a role for NPRL2 and mTORC1 in the regulation of lysosomal-dependent cobalamin processing, methionine synthesis, and maintenance of cellular re-methylation potential, which are important during hematopoiesis.

  1. Vascular Platform to Define Hematopoietic Stem Cell Factors and Enhance Regenerative Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Michael G. Poulos

    2015-11-01

    Full Text Available Hematopoietic stem cells (HSCs inhabit distinct microenvironments within the adult bone marrow (BM, which govern the delicate balance between HSC quiescence, self-renewal, and differentiation. Previous reports have proposed that HSCs localize to the vascular niche, comprised of endothelium and tightly associated perivascular cells. Herein, we examine the capacity of BM endothelial cells (BMECs to support ex vivo and in vivo hematopoiesis. We demonstrate that AKT1-activated BMECs (BMEC-Akt1 have a unique transcription factor/cytokine profile that supports functional HSCs in lieu of complex serum and cytokine supplementation. Additionally, transplantation of BMEC-Akt1 cells enhanced regenerative hematopoiesis following myeloablative irradiation. These data demonstrate that BMEC-Akt1 cultures can be used as a platform for the discovery of pro-HSC factors and justify the utility of BMECs as a cellular therapy. This technical advance may lead to the development of therapies designed to decrease pancytopenias associated with myeloablative regimens used to treat a wide array of disease states.

  2. Serial CT Findings of Resolving Extramedullary Hematopoiesis as Unilateral Posterior Mediastinal Mass after Splenectomy in Hereditary Spherocytosis: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Mi Yeon; Lee, Ju Won; Kim, Yeo Ju; Kim, Youn Jeong; Kang, Young Hye; Lee, Kyung Hee [Dept. of Radiology, Inha University Hospital, Incheon (Korea, Republic of)

    2012-03-15

    Intrathoracic extramedullary hematopoiesis (EMH) is a rare condition of the hereditary spherocytosis. EMH usually regresses or disappears after treatment; such as splenectomy in the case of spherocytosis. We report a case of hereditary spherocytosis. It is presented with an unilateral paravertebral posterior mediastinal mass. After splenectomy, it revealed shrinkage and fatty replacement on serial CT scans.

  3. Rumba and Haus3 are essential factors for the maintenance of hematopoietic stem/progenitor cells during zebrafish hematopoiesis.

    Science.gov (United States)

    Du, Linsen; Xu, Jin; Li, Xiuling; Ma, Ning; Liu, Yanmei; Peng, Jinrong; Osato, Motomi; Zhang, Wenqing; Wen, Zilong

    2011-02-01

    The hallmark of vertebrate definitive hematopoiesis is the establishment of the hematopoietic stem/progenitor cell (HSPC) pool during embryogenesis. This process involves a defined ontogenic switching of HSPCs in successive hematopoietic compartments and is evolutionarily conserved from teleost fish to human. In zebrafish, HSPCs originate from the ventral wall of the dorsal aorta (VDA), from which they subsequently mobilize to an intermediate hematopoietic site known as the caudal hematopoietic tissue (CHT) and finally colonize the kidney for adult hematopoiesis. Despite substantial understanding of the ontogeny of HSPCs, the molecular basis governing migration, colonization and maintenance of HSPCs remains to be explored fully. Here, we report the isolation and characterization of two zebrafish mutants, rumba(hkz1) and samba(hkz2), that are defective in generating definitive hematopoiesis. We find that HSPC initiation in the VDA and subsequent homing to the CHT are not affected in these two mutants. However, the further development of HSPCs in the CHT is compromised in both mutants. Positional cloning reveals that Rumba is a novel nuclear C2H2 zinc-finger factor with unknown function and samba encodes an evolutionarily conserved protein that is homologous to human augmin complex subunit 3 (HAUS3). Furthermore, we show that these two factors independently regulate cell cycle progression of HSPCs and are cell autonomously required for HPSC development in the CHT. Our study identifies Rumba and Haus3 as two essential regulators of HSPC maintenance during zebrafish fetal hematopoiesis.

  4. Developmentally regulated promoter-switch transcriptionally controls Runx1 function during embryonic hematopoiesis

    Science.gov (United States)

    Pozner, Amir; Lotem, Joseph; Xiao, Cuiying; Goldenberg, Dalia; Brenner, Ori; Negreanu, Varda; Levanon, Ditsa; Groner, Yoram

    2007-01-01

    Background Alternative promoters usage is an important paradigm in transcriptional control of mammalian gene expression. However, despite the growing interest in alternative promoters and their role in genome diversification, very little is known about how and on what occasions those promoters are differentially regulated. Runx1 transcription factor is a key regulator of early hematopoiesis and a frequent target of chromosomal translocations in acute leukemias. Mice deficient in Runx1 lack definitive hematopoiesis and die in mid-gestation. Expression of Runx1 is regulated by two functionally distinct promoters designated P1 and P2. Differential usage of these two promoters creates diversity in distribution and protein-coding potential of the mRNA transcripts. While the alternative usage of P1 and P2 likely plays an important role in Runx1 biology, very little is known about the function of the P1/P2 switch in mediating tissue and stage specific expression of Runx1 during development. Results We employed mice bearing a hypomorphic Runx1 allele, with a largely diminished P2 activity, to investigate the biological role of alternative P1/P2 usage. Mice homozygous for the hypomorphic allele developed to term, but died within a few days after birth. During embryogenesis the P1/P2 activity is spatially and temporally modulated. P2 activity is required in early hematopoiesis and when attenuated, development of liver hematopoietic progenitor cells (HPC) was impaired. Early thymus development and thymopoiesis were also abrogated as reflected by thymic hypocellularity and loss of corticomedullary demarcation. Differentiation of CD4/CD8 thymocytes was impaired and their apoptosis was enhanced due to altered expression of T-cell receptors. Conclusion The data delineate the activity of P1 and P2 in embryogenesis and describe previously unknown functions of Runx1. The findings show unequivocally that the role of P1/P2 during development is non redundant and underscore the

  5. Developmentally regulated promoter-switch transcriptionally controls Runx1 function during embryonic hematopoiesis

    Directory of Open Access Journals (Sweden)

    Goldenberg Dalia

    2007-07-01

    Full Text Available Abstract Background Alternative promoters usage is an important paradigm in transcriptional control of mammalian gene expression. However, despite the growing interest in alternative promoters and their role in genome diversification, very little is known about how and on what occasions those promoters are differentially regulated. Runx1 transcription factor is a key regulator of early hematopoiesis and a frequent target of chromosomal translocations in acute leukemias. Mice deficient in Runx1 lack definitive hematopoiesis and die in mid-gestation. Expression of Runx1 is regulated by two functionally distinct promoters designated P1 and P2. Differential usage of these two promoters creates diversity in distribution and protein-coding potential of the mRNA transcripts. While the alternative usage of P1 and P2 likely plays an important role in Runx1 biology, very little is known about the function of the P1/P2 switch in mediating tissue and stage specific expression of Runx1 during development. Results We employed mice bearing a hypomorphic Runx1 allele, with a largely diminished P2 activity, to investigate the biological role of alternative P1/P2 usage. Mice homozygous for the hypomorphic allele developed to term, but died within a few days after birth. During embryogenesis the P1/P2 activity is spatially and temporally modulated. P2 activity is required in early hematopoiesis and when attenuated, development of liver hematopoietic progenitor cells (HPC was impaired. Early thymus development and thymopoiesis were also abrogated as reflected by thymic hypocellularity and loss of corticomedullary demarcation. Differentiation of CD4/CD8 thymocytes was impaired and their apoptosis was enhanced due to altered expression of T-cell receptors. Conclusion The data delineate the activity of P1 and P2 in embryogenesis and describe previously unknown functions of Runx1. The findings show unequivocally that the role of P1/P2 during development is non

  6. Postnatal Hematopoiesis and Gut Microbiota in NOD Mice Deviate from C57BL/6 Mice

    Directory of Open Access Journals (Sweden)

    Dina Silke Malling Damlund

    2016-01-01

    Full Text Available Neonatal studies in different mouse strains reveal that early life colonization affects the development of adaptive immunity in mice. The nonobese diabetic (NOD mouse spontaneously develops autoimmune diabetes, but neonatal studies of NOD mice are lacking. We hypothesized that NOD mice deviate from another much used mouse strain, C57BL/6, with respect to postnatal microbiota and/or hematopoiesis and compared this in newborn mice of dams housed under the same conditions. A distinct bacteria profile rich in staphylococci was found at postnatal days (PND 1–4 in NOD mice. Furthermore, a distinct splenic cell profile high in a granulocytic phenotype was evident in the neonatal NOD mice whereas neonatal C57BL/6 mice showed a profile rich in monocytes. Neonatal expression of Reg3g and Muc2 in the gut was deviating in NOD mice and coincided with fewer bacteria attaching to the Mucosal surface in NOD compared to C57BL/6 mice.

  7. Cord Compression due to Extramedullary Hematopoiesis in an Adolescent with Known Beta Thalassemia Major

    Directory of Open Access Journals (Sweden)

    Alan COHLER

    2009-01-01

    Full Text Available We describe a 16 year-old male with ß thalassemia major and gait disturbances that had not been given blood transfusions due to a severe childhood transfusion reaction. Thoracic spine MRI demonstrated hematopoietic marrow throughout the spine and epidural masses causing cord compression consistent with extramedullary hematopoiesis (EMH. After treatment with steroids, radiotherapy and monitored blood transfusions, the patient demonstrated significant improvement of his paraspinal lesions and near complete resolution of his neurological symptoms. While EMH causing cord compression in adolescents is rare in the current era of bone marrow transplantation or chronic transfusions, it should be considered when thalassemia major patients present with neurological deficits. The well defined imaging features of EMH can play a central role in its diagnosis and management, especially because surgical and / or radiotherapeutic intervention are often considered in cases of failed medical treatment.

  8. Postnatal hematopoiesis and gut microbiota in NOD mice deviate from C57BL/6 mice

    DEFF Research Database (Denmark)

    Damlund, Dina Silke Malling; Metzdorff, Stine Broeng; Hasselby, Jane Preuss

    2016-01-01

    Neonatal studies in different mouse strains reveal that early life colonization affects the development of adaptive immunity in mice. The nonobese diabetic (NOD) mouse spontaneously develops autoimmune diabetes, but neonatal studies of NOD mice are lacking. We hypothesized that NOD mice deviate...... from another much used mouse strain, C57BL/6, with respect to postnatal microbiota and/or hematopoiesis and compared this in newborn mice of dams housed under the same conditions. A distinct bacteria profile rich in staphylococci was found at postnatal days (PND) 1-4 in NOD mice. Furthermore......, a distinct splenic cell profile high in a granulocytic phenotype was evident in the neonatal NOD mice whereas neonatal C57BL/6 mice showed a profile rich in monocytes. Neonatal expression of Reg3g and Muc2 in the gut was deviating in NOD mice and coincided with fewer bacteria attaching to the Mucosal surface...

  9. Oncomir miR-125b regulates hematopoiesis by targeting the gene Lin28A.

    Science.gov (United States)

    Chaudhuri, Aadel A; So, Alex Yick-Lun; Mehta, Arnav; Minisandram, Aarathi; Sinha, Nikita; Jonsson, Vanessa D; Rao, Dinesh S; O'Connell, Ryan M; Baltimore, David

    2012-03-13

    MicroRNA-125b (miR-125b) is up-regulated in patients with leukemia. Overexpression of miR-125b alone in mice causes a very aggressive, transplantable myeloid leukemia. Before leukemia, these mice do not display elevation of white blood cells in the spleen or bone marrow; rather, the hematopoietic compartment shows lineage-skewing, with myeloid cell numbers dramatically increased and B-cell numbers severely diminished. miR-125b exerts this effect by up-regulating the number of common myeloid progenitors while inhibiting development of pre-B cells. We applied a miR-125b sponge loss of function system in vivo to show that miR-125b physiologically regulates hematopoietic development. Investigating the mechanism by which miR-125b regulates hematopoiesis, we found that, among a panel of candidate targets, the mRNA for Lin28A, an induced pluripotent stem cell gene, was most repressed by miR-125b in mouse hematopoietic stem and progenitor cells. Overexpressing Lin28A in the mouse hematopoietic system mimicked the phenotype observed on inhibiting miR-125b function, leading to a decrease in hematopoietic output. Relevant to the miR-125b overexpression phenotype, we also found that knockdown of Lin28A led to hematopoietic lineage-skewing, with increased myeloid and decreased B-cell numbers. Thus, the miR-125b target Lin28A is an important regulator of hematopoiesis and a primary target of miR-125b in the hematopoietic system.

  10. The effect of the zeolite clinoptilolite on serum chemistry and hematopoiesis in mice.

    Science.gov (United States)

    Martin-Kleiner, I; Flegar-Mestric, Z; Zadro, R; Breljak, D; Stanovic Janda, S; Stojkovic, R; Marusic, M; Radacic, M; Boranic, M

    2001-07-01

    Zeolites are natural or synthetic crystalline alumosilicates with ion exchanging properties. Supplied in fodder, they promote biomass production and animal health. Our aim was to assess the effects of the natural zeolite, clinoptilolite, on hematopoiesis, serum electrolytes and essential biochemical indicators of kidney and liver function in mice. Two preparations differing in particle size were tested: a powderized form obtained by countercurrent mechanical treatment of the clinoptilolite (MTCp) and normally ground clinoptilolite (NGCp). Young adult mice were supplied with food containing 12.5, 25 or 50% clinoptilolite powder. Control animals received the same food ration without the clinoptilolite. After 10, 20, 30 and 40 days, six animals from each group were exsanguinated to obtain blood for hematological and serum for biochemical measurements as well as to collect femoral bone marrow for determination of hematopoietic activity. Clinoptilolite ingestion was well tolerated, as judged by comparable body masses of treated and control animals. A 20% increase of the potassium level was detected in mice receiving the zeolite-rich diet, without other changes in serum chemistry. Erythrocyte, hemoglobin and platelet levels in peripheral blood were not materially affected. NGCp caused leukocytosis, with concomitant decline of the GM-CFU content in the bone marrow, which was attributed to intestinal irritation by rough zeolite particles. The mechanically treated clinoptilolite preparation caused similar, albeit less pronounced, changes. In a limited experiment, mice having transplanted mammary carcinoma in the terminal stage showed increased potassium and decreased sodium and chloride levels, severe anemia and leukocytosis, decreased bone marrow cellularity and diminished content of hematopoietic progenitor cells in the marrow. The clinoptilolite preparations ameliorated the sodium and chloride decline, whereas the effects on hematopoiesis were erratic.

  11. RUNX1B Expression Is Highly Heterogeneous and Distinguishes Megakaryocytic and Erythroid Lineage Fate in Adult Mouse Hematopoiesis

    DEFF Research Database (Denmark)

    Draper, Julia E.; Sroczynska, Patrycja; Tsoulaki, Olga

    2016-01-01

    The Core Binding Factor (CBF) protein RUNX1 is a master regulator of definitive hematopoiesis, crucial for hematopoietic stem cell (HSC) emergence during ontogeny. RUNX1 also plays vital roles in adult mice, in regulating the correct specification of numerous blood lineages. Akin to the other...... mammalian Runx genes, Runx1 has two promoters P1 (distal) and P2 (proximal) which generate distinct protein isoforms. The activities and specific relevance of these two promoters in adult hematopoiesis remain to be fully elucidated. Utilizing a dual reporter mouse model we demonstrate that the distal P1......MegE) populations, coincides with a loss of erythroid (Ery) specification. Accordingly the PreMegE population can be prospectively separated into “pro-erythroid” and “pro-megakaryocyte” populations based on Runx1 P2 activity. Comparative gene expression analyses between Runx1 P2+ and P2- populations indicated...

  12. Deferasirox treatment improved hematopoiesis and led to complete remission in a patient with pure red cell aplasia.

    Science.gov (United States)

    Kojima, Minoru; Machida, Shinichiro; Sato, Ai; Miyamoto, Mitsuki; Moriuchi, Makiko; Ohbayashi, Yoshiaki; Ando, Kiyoshi

    2013-12-01

    A 64-year-old woman developed pure red cell aplasia (PRCA) 4 years after thymectomy for thymoma. During anti-thymocyte globulin treatment, the patient developed cytomegalovirus pneumonia and was thus unable to continue immunosuppressive therapy and became transfusion dependent. Deferasirox was started for treatment with iron overload when serum ferritin increased to >1000 ng/mL. Seven months after initiation of deferasirox treatment, serum ferritin level decreased the normal range and the patient has remained transfusion independent thereafter. Deferasirox was discontinued when serum ferritin level decreased below 500 ng/mL, and she has maintained in complete remission over the last 15 months. Hypotheses have been raised regarding the improvement of hematopoiesis by deferasirox treatment, but the mechanism whereby this might be achieved remains unclear. Deferasirox treatment may be clinically beneficial both by reducing iron overload and by improving hematopoiesis in patients with PRCA.

  13. Cocaine exposure impairs multilineage hematopoiesis of human hematopoietic progenitor cells mediated by the sigma-1 receptor [corrected].

    Science.gov (United States)

    Nixon, Christopher C; Schwartz, Brandon H; Dixit, Dhaval; Zack, Jerome A; Vatakis, Dimitrios N

    2015-03-02

    Prenatal exposure to cocaine is a significant source of fetal and neonatal developmental defects. While cocaine associated neurological and cardiac pathologies are well-documented, it is apparent that cocaine use has far more diverse physiological effects. It is known that in some cell types, the sigma-1 receptor mediates many of cocaine's cellular effects. Here we present a novel and concise investigation into the mechanism that underlies cocaine associated hematopoietic pathology. Indeed, this is the first examination of the effects of cocaine on hematopoiesis. We show that cocaine impairs multilineage hematopoiesis from human progenitors from multiple donors and tissue types. We go on to present the first demonstration of the expression of the sigma-1 receptor in human CD34 + human hematopoietic stem/progenitor cells. Furthermore, we demonstrate that these cocaine-induced hematopoietic defects can be reversed through sigma-1 receptor blockade.

  14. Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Libregts, Sten F.W.M.; Nolte, Martijn A., E-mail: m.nolte@sanquin.nl

    2014-12-10

    Quiescence, self-renewal, lineage commitment and differentiation of hematopoietic stem cells (HSCs) towards fully mature blood cells are a complex process that involves both intrinsic and extrinsic signals. During steady-state conditions, most hematopoietic signals are provided by various resident cells inside the bone marrow (BM), which establish the HSC micro-environment. However, upon infection, the hematopoietic process is also affected by pathogens and activated immune cells, which illustrates an effective feedback mechanism to hematopoietic stem and progenitor cells (HSPCs) via immune-mediated signals. Here, we review the impact of pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), costimulatory molecules and pro-inflammatory cytokines on the quiescence, proliferation and differentiation of HSCs and more committed progenitors. As modulation of HSPC function via these immune-mediated signals holds an interesting parallel with the “three-signal-model” described for the activation and differentiation of naïve T-cells, we propose a novel “three-signal” concept for immune-driven hematopoiesis. In this model, the recognition of PAMPs and DAMPs will activate HSCs and induce proliferation, while costimulatory molecules and pro-inflammatory cytokines confer a second and third signal, respectively, which further regulate expansion, lineage commitment and differentiation of HSPCs. We review the impact of inflammatory stress on hematopoiesis along these three signals and we discuss whether they act independently from each other or that concurrence of these signals is important for an adequate response of HSPCs upon infection. - Highlights: • Inflammation and infection have a direct impact on hematopoiesis in the bone marrow. • We draw a striking parallel between immune-driven hematopoiesis and T cell activation. • We review how PAMPs and DAMPs, costimulation and cytokines influence HSPC function.

  15. SELENIUM EFFECT UPON THE RATS' HEMATOPOIESIS IN THE SUBACUTE BENZENE INTOXICATION

    Directory of Open Access Journals (Sweden)

    Pavle Randjelovic

    2001-03-01

    Full Text Available The antioxidants (selenium, vitamins C and E stabilize the cell membrane andprotect the cells from the action of free radicals. On the other hand, the antioxidantsreduce the effects of chemical and physical agenls. Bcsidcs, selenium has animportant role in Transporting electrons in the mitochondria and il is necessary for iheglulathione peroxidase function in the protection from apoplhosis. Benzene is auniversal solvent and has a wide application in chemical industry. Its toxicity ismanifested in the damages done to the central nervous syslem, liver, kidneys andhematopoiesis system. Tn this experiment the Wistar rats were used that wereclassified in three experimental groups regarding the quantity of the receivedselenium. Each group comprised ten animals of both sexes and after two weeks'treatment by selenium of 4,8 and 16 mcg, the animals had received benzene byinlraperiloneal administration in the dose of 1,2 ml/kg of the body weight. Thecounting of the shaped blood elements was done after the selenium pretreatment andafter the benzene intoxication. The obtained results poinl to increased number of alithe blood elements after the selenium pretreatment while after benzene adminislrationthere was a drastic drop of the number of erylhrocyles and leukocytes alongwith moderate lhrombocylopenia. After the sacrifice, Ihe hematopoiesis organs weretaken. The hislological findings of the bone marrow show the emergence ofdisturbances, especially of the red sort cells as well as an obvious fat degeneration which is particularly conspicuous in the second and third groups of animals. Therewas also some damage done to the spleen, especially of its red pulp along with thepresence of a greater number of fresh erythrocytes in the second and third groups.Only the changes were more drastic in the third group. The obtained results show thatselenium in higher concentrations increases the number of erytrocytes andleukocytes which proves that it stimulates highly

  16. The Sirt1 activator SRT3025 expands hematopoietic stem and progenitor cells and improves hematopoiesis in Fanconi anemia mice

    Directory of Open Access Journals (Sweden)

    Qing-Shuo Zhang

    2015-07-01

    Full Text Available Fanconi anemia is a genetic bone marrow failure syndrome. The current treatment options are suboptimal and do not prevent the eventual onset of aplastic anemia requiring bone marrow transplantation. We previously showed that resveratrol, an antioxidant and an activator of the protein deacetylase Sirt1, enhanced hematopoiesis in Fancd2 mutant mice and improved the impaired stem cell quiescence observed in this disease. Given that Sirt1 is important for the function of hematopoietic stem cells, we hypothesized that Sirt1 activation may improve hematopoiesis. Indeed, Fancd2−/− mice and wild-type mice treated with the selective Sirt1 activator SRT3025 had increased numbers of hematopoietic stem and progenitor cells, platelets and white blood cells. SRT3025 was also protective against acetaldehyde-induced hematopoietic damage. Unlike resveratrol, however, SRT3025 did not affect stem cell quiescence, suggesting distinct mechanisms of action. Conditional deletion of Sirt1 in hematopoietic cells did not abrogate the beneficial effects of SRT3025, indicating that the drug did not act by directly stimulating Sirt1 in stem cells, but must be acting indirectly via extra-hematopoietic effects. RNA-Seq transcriptome analysis revealed the down-regulation of Egr1–p21 expression, providing a potential mechanism for improved hematopoiesis. Overall, our data indicate that SRT3025 or related compounds may be beneficial in Fanconi anemia and other bone marrow failure syndromes.

  17. The Sirt1 activator SRT3025 expands hematopoietic stem and progenitor cells and improves hematopoiesis in Fanconi anemia mice.

    Science.gov (United States)

    Zhang, Qing-Shuo; Deater, Matthew; Schubert, Kathryn; Marquez-Loza, Laura; Pelz, Carl; Sinclair, David A; Grompe, Markus

    2015-07-01

    Fanconi anemia is a genetic bone marrow failure syndrome. The current treatment options are suboptimal and do not prevent the eventual onset of aplastic anemia requiring bone marrow transplantation. We previously showed that resveratrol, an antioxidant and an activator of the protein deacetylase Sirt1, enhanced hematopoiesis in Fancd2 mutant mice and improved the impaired stem cell quiescence observed in this disease. Given that Sirt1 is important for the function of hematopoietic stem cells, we hypothesized that Sirt1 activation may improve hematopoiesis. Indeed, Fancd2(-/-) mice and wild-type mice treated with the selective Sirt1 activator SRT3025 had increased numbers of hematopoietic stem and progenitor cells, platelets and white blood cells. SRT3025 was also protective against acetaldehyde-induced hematopoietic damage. Unlike resveratrol, however, SRT3025 did not affect stem cell quiescence, suggesting distinct mechanisms of action. Conditional deletion of Sirt1 in hematopoietic cells did not abrogate the beneficial effects of SRT3025, indicating that the drug did not act by directly stimulating Sirt1 in stem cells, but must be acting indirectly via extra-hematopoietic effects. RNA-Seq transcriptome analysis revealed the down-regulation of Egr1-p21 expression, providing a potential mechanism for improved hematopoiesis. Overall, our data indicate that SRT3025 or related compounds may be beneficial in Fanconi anemia and other bone marrow failure syndromes.

  18. Embryonic Hematopoietic Progenitor Cells Reside in Muscle before Bone Marrow Hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Yuka Tanaka

    Full Text Available In mice, hematopoietic cells home to bone marrow from fetal liver prenatally. To elucidate mechanisms underlying homing, we performed immunohistochemistry with the hematopoietic cell marker c-Kit, and observed c-Kit(+ cells localized inside muscle surrounding bone after 14.5 days post coitum. Flow cytometric analysis showed that CD45(+ c-Kit(+ hematopoietic cells were more abundant in muscle than in bone marrow between 14.5 and 17.5 days post coitum, peaking at 16.5 days post coitum. CD45(+ c-Kit(+ cells in muscle at 16.5 days post coitum exhibited higher expression of Gata2, among several hematopoietic genes, than did fetal liver or bone marrow cells. Colony formation assays revealed that muscle hematopoietic cells possess hematopoietic progenitor activity. Furthermore, exo utero transplantation revealed that fetal liver hematopoietic progenitor cells home to muscle and then to BM. Our findings demonstrate that hematopoietic progenitor cell homing occurs earlier than previously reported and that hematopoietic progenitor cells reside in muscle tissue before bone marrow hematopoiesis occurs during mouse embryogenesis.

  19. csrnp1a is necessary for the development of primitive hematopoiesis progenitors in zebrafish.

    Directory of Open Access Journals (Sweden)

    Jaime Espina

    Full Text Available The CSRNP (cystein-serine-rich nuclear protein transcription factors are conserved from Drosophila to human. Functional studies in mice, through knockout for each of their paralogs, have resulted insufficient to elucidate the function of this family of proteins in vertebrate development. Previously, we described the function of the zebrafish ortholog, Csnrp1/Axud1, showing its essential role in the survival and proliferation of cephalic progenitors. To extend our understanding of this family, we have studied the function of its paralog csrnp1a. Our results show that csrnp1a is expressed from 0 hpf, until larval stages, particularly in cephalic territories and in the intermediate cell mass (ICM. Using morpholinos in wild type and transgenic lines we observed that Csrnp1a knockdown generates a mild reduction in head size and a depletion of blood cells in circulation. This was combined with in situ hybridizations to analyze the expression of different mesodermal and primitive hematopoiesis markers. Morphant embryos have impaired blood formation without disruption of mesoderm specification, angiogenesis or heart development. The reduction of circulating blood cells occurs at the hematopoietic progenitor level, affecting both the erythroid and myeloid lineages. In addition, cell proliferation was also altered in hematopoietic anterior sites, specifically in spi1 expression domain. These and previous observations suggest an important role of Csnrps transcription factors in progenitor biology, both in the neural and hematopoietic linages.

  20. Platelet-derived growth factors and their receptors in normal and malignant hematopoiesis

    Science.gov (United States)

    Demoulin, Jean-Baptiste; Montano-Almendras, Carmen P.

    2012-01-01

    Platelet-derived growth factors (PDGF) bind to two closely related receptor tyrosine kinases, PDGF receptor α and β, which are encoded by the PDGFRA and PDGFRB genes. Aberrant activation of PDGF receptors occurs in myeloid malignancies associated with hypereosinophilia, due to chromosomal alterations that produce fusion genes, such as ETV6-PDGFRB or FIP1L1-PDGFRA. Most patients are males and respond to low dose imatinib, which is particularly effective against PDGF receptor kinase activity. Recently, activating point mutations in PDGFRA were also described in hypereosinophilia. In addition, autocrine loops have been identified in large granular lymphocyte leukemia and HTLV-transformed lymphocytes, suggesting new possible indications for tyrosine kinase inhibitor therapy. Although PDGF was initially purified from platelets more than 30 years ago, its physiological role in the hematopoietic system remains unclear. Hematopoietic defects in PDGF-deficient mice have been reported but appear to be secondary to cardiovascular and placental abnormalities. Nevertheless, PDGF acts directly on several hematopoietic cell types in vitro, such as megakaryocytes, platelets, activated macrophages and, possibly, certain lymphocyte subsets and eosinophils. The relevance of these observations for normal human hematopoiesis remains to be established. PMID:22432087

  1. An engineered multicomponent bone marrow niche for the recapitulation of hematopoiesis at ectopic transplantation sites

    Directory of Open Access Journals (Sweden)

    Mónica S. Ventura Ferreira

    2016-01-01

    Full Text Available Abstract Background Bone marrow (BM niches are often inaccessible for controlled experimentation due to their difficult accessibility, biological complexity, and three-dimensional (3D geometry. Methods Here, we report the development and characterization of a BM model comprising of cellular and structural components with increased potential for hematopoietic recapitulation at ectopic transplantation sites. Cellular components included mesenchymal stromal cells (MSCs and hematopoietic stem and progenitor cells (HSPCs. Structural components included 3D β-tricalcium phosphate (β-TCP scaffolds complemented with Matrigel or collagen I/III gels for the recreation of the osteogenic/extracellular character of native BM. Results In vitro, β-TCP/Matrigel combinations robustly maintained proliferation, osteogenic differentiation, and matrix remodeling capacities of MSCs and maintenance of HSPCs function over time. In vivo, scaffolds promoted strong and robust recruitment of hematopoietic cells to sites of ectopic transplantation, vascularization, and soft tissue formation. Conclusions Our tissue-engineered BM system is a powerful tool to explore the regulatory mechanisms of hematopoietic stem and progenitor cells for a better understanding of hematopoiesis in health and disease.

  2. Single-Cell Network Analysis Identifies DDIT3 as a Nodal Lineage Regulator in Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Cristina Pina

    2015-06-01

    Full Text Available We explore cell heterogeneity during spontaneous and transcription-factor-driven commitment for network inference in hematopoiesis. Since individual genes display discrete OFF states or a distribution of ON levels, we compute and combine pairwise gene associations from binary and continuous components of gene expression in single cells. Ddit3 emerges as a regulatory node with positive linkage to erythroid regulators and negative association with myeloid determinants. Ddit3 loss impairs erythroid colony output from multipotent cells, while forcing Ddit3 in granulo-monocytic progenitors (GMPs enhances self-renewal and impedes differentiation. Network analysis of Ddit3-transduced GMPs reveals uncoupling of myeloid networks and strengthening of erythroid linkages. RNA sequencing suggests that Ddit3 acts through development or stabilization of a precursor upstream of GMPs with inherent Meg-E potential. The enrichment of Gata2 target genes in Ddit3-dependent transcriptional responses suggests that Ddit3 functions in an erythroid transcriptional network nucleated by Gata2.

  3. Leptin in chronic kidney disease: a link between hematopoiesis, bone metabolism, and nutrition.

    Science.gov (United States)

    Zhang, Jingjing; Wang, Ningning

    2014-06-01

    Anemia, dyslipidemia, malnutrition, together with mineral and bone disorders are common complications in patients with chronic kidney disease (CKD). All are associated with increased risk of mortality. Leptin is a small peptide hormone that is mainly but not exclusively produced in adipose tissue. It is also secreted by normal human osteoblasts, subchondral osteoblasts, placental syncytiotrophoblasts, and the gastric epithelium. Leptin binds to its receptors in the hypothalamus to regulate bone metabolism and food intake. Leptin also has several other important metabolic effects on peripheral tissues, including the liver, skeletal muscle, and bone marrow. Leptin is cleared principally by the kidney. Not surprisingly, serum leptin appears to increase concurrently with declines in the glomerular filtration rate in patients with CKD. A growing body of evidence suggests that leptin might be closely related to hematopoiesis, nutrition, and bone metabolism in CKD patients. Results are conflicting regarding leptin in patients with CKD, in whom both beneficial and detrimental effects on uremia outcome are found. This review elucidates the discovery of leptin and its receptors, changes in serum or plasma leptin levels, the functions of leptin, relationships between leptin and the complications mentioned above, and pharmaceutical interventions in serum leptin levels in patients with CKD.

  4. The Dtk receptor tyrosine kinase, which binds protein S, is expressed during hematopoiesis.

    Science.gov (United States)

    Crosier, P S; Freeman, S A; Orlic, D; Bodine, D M; Crosier, K E

    1996-02-01

    Dtk (Tyro 3/Sky/Rse/Brt/Tif) belongs to a recently recognized subfamily of receptor tyrosine kinases that also includes Ufo (Axl/Ark) and Mer (Eyk). Ligands for Dtk and Ufo have been identified as protein S and the related molecule Gas6, respectively. This study examined expression of Dtk during ontogeny of the hematopoietic system and compared the pattern of expression with that of Ufo. Both receptors were abundantly expressed in differentiating embryonic stem cells, yolk sac blood islands, para-aortic splanchnopleural mesoderm, fractionated AA4+ fetal liver cells, and fetal thymus from day 14 until birth. Although Ufo was expressed at moderate levels in adult bone marrow, expression of Dtk in this tissue was barely detectable. In adult bone marrow subpopulations fractionated using counterflow centrifugal elutriation, immunomagnetic bead selection for lineage-depletion and FACS sorting for c-kit expression, very low levels of Dtk and/or Ufo were detected in some cell fractions. These results suggest that Dtk and Ufo are likely to be involved in the regulation of hematopoiesis, particularly during the embryonic stages of blood cell development.

  5. The role of variant histone H2AV in Drosophila melanogaster larval hematopoiesis.

    Science.gov (United States)

    Grigorian, Melina; DeBruhl, Heather; Lipsick, Joseph S

    2017-04-15

    Replication-independent histone variants can replace the canonical replication-dependent histones. Vertebrates have multiple H2A variant histones, including H2AZ and H2AX that are present in most eukaryotes. H2AZ regulates transcriptional activation as well as the maintenance of gene silencing, while H2AX is important in DNA damage repair. The fruit fly Drosophila melanogaster has only one histone H2A variant (H2AV), which is a chimera of H2AZ and H2AX. In this study we found that lack of H2AV led to the formation of black melanotic masses in Drosophila third instar larvae. The formation of these masses was found in conjunction with a loss of the majority of the primary lymph gland lobes. Interestingly, the cells of the posterior signaling center were preserved in these mutants. Reduction of H2AV levels by RNAi knockdown caused a milder phenotype that preserved the lymph gland structure but that included precocious differentiation of the prohemocytes located within the medullary zone and the secondary lobes of the lymph gland. Mutant rescue experiments suggest that the H2AZ-like rather than the H2AX-like function of H2AV is primarily required for normal hematopoiesis. © 2017. Published by The Company of Biologists Ltd.

  6. PDGF/VEGF-Related Receptor Affects Transglutaminase Activity to Control Cell Migration During Crustacean Hematopoiesis.

    Science.gov (United States)

    Junkunlo, Kingkamon; Söderhäll, Kenneth; Noonin, Chadanat; Söderhäll, Irene

    2017-09-14

    The platelet-derived growth factor (PDGF) receptor, a tyrosine kinase (TK) receptor whose ligand is PDGF, is crucial in the transduction of extracellular signals into cells and mediates numerous processes, such as cell proliferation, differentiation, survival, and migration. We demonstrate the important roles of a receptor TK related to the PDGF/VEGF family protein (PVR) in controlling hematopoietic progenitor cell migration by affecting extracellular transglutaminase (TGase) activity. Pl_PVR1, GenBank accession No. KY444650, is highly expressed in hemocytes and the hematopoietic tissue (HPT). Sunitinib malate was used to block the PVF/PVR downstream pathway in HPT cell culture. The addition of Sunitinib also caused the HPT cells to increase in size and begin spreading. An increase in extracellular TGase activity on the HPT cell membrane was observed in a dose-dependent manner after treatment with Sunitinib malate. The presence of crude Ast1 provided a combinatorial beneficial effect that enhanced the number of spreading cells after inhibition of the Pl_PVR downstream signaling cascade. In addition, an increased immunoreactivity for β-tubulin and elongation of β-tubulin filaments were found in Pl_PVR signaling-inhibited cells. The potential roles of PVF/PVR signaling in controlling progenitor cell activity during hematopoiesis in crayfish were investigated and discussed.

  7. Itga2b regulation at the onset of definitive hematopoiesis and commitment to differentiation.

    Directory of Open Access Journals (Sweden)

    Stephanie Dumon

    Full Text Available Product of the Itga2b gene, CD41 contributes to hematopoietic stem cell (HSC and megakaryocyte/platelet functions. CD41 expression marks the onset of definitive hematopoiesis in the embryo where it participates in regulating the numbers of multipotential progenitors. Key to platelet aggregation, CD41 expression also characterises their precursor, the megakaryocyte, and is specifically up regulated during megakaryopoiesis. Though phenotypically unique, megakaryocytes and HSC share numerous features, including key transcription factors, which could indicate common sub-regulatory networks. In these respects, Itga2b can serve as a paradigm to study features of both developmental-stage and HSC- versus megakaryocyte-specific regulations. By comparing different cellular contexts, we highlight a mechanism by which internal promoters participate in Itga2b regulation. A developmental process connects epigenetic regulation and promoter switching leading to CD41 expression in HSC. Interestingly, a similar process can be observed at the Mpl locus, which codes for another receptor that defines both HSC and megakaryocyte identities. Our study shows that Itga2b expression is controlled by lineage-specific networks and associates with H4K8ac in megakaryocyte or H3K27me3 in the multipotential hematopoietic cell line HPC7. Correlating with the decrease in H3K27me3 at the Itga2b Iocus, we find that following commitment to megakaryocyte differentiation, the H3K27 demethylase Jmjd3 up-regulation influences both Itga2b and Mpl expression.

  8. K-ras/PI3K-Akt signaling is essential for zebrafish hematopoiesis and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Lihui Liu

    Full Text Available The RAS small GTPases orchestrate multiple cellular processes. Studies on knock-out mice showed the essential and sufficient role of K-RAS, but not N-RAS and H-RAS in embryonic development. However, many physiological functions of K-RAS in vivo remain unclear. Using wild-type and fli1:GFP transgenic zebrafish, we showed that K-ras-knockdown resulted in specific hematopoietic and angiogenic defects, including the impaired expression of erythroid-specific gene gata1 and sse3-hemoglobin, reduced blood circulation and disorganized blood vessels. Expression of either K-rasC40 that links to phosphoinositide 3-kinase (PI3K activation, or Akt2 that acts downstream of PI3K, could rescue both hematopoietic and angiogenic defects in the K-ras knockdown. Consistently, the functional rescue by k-ras mRNA was significantly suppressed by wortmannin, a PI3K-specific inhibitor. Our results provide direct evidence that PI3K-Akt plays a crucial role in mediating K-ras signaling during hematopoiesis and angiogenesis in vivo, thus offering new targets and alternative vertebrate model for studying these processes and their related diseases.

  9. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice

    Science.gov (United States)

    Fuster, José J.; MacLauchlan, Susan; Zuriaga, María A.; Polackal, Maya N.; Ostriker, Allison C.; Chakraborty, Raja; Wu, Chia-Ling; Sano, Soichi; Muralidharan, Sujatha; Rius, Cristina; Vuong, Jacqueline; Jacob, Sophia; Muralidhar, Varsha; Robertson, Avril A. B.; Cooper, Matthew A.; Andrés, Vicente; Hirschi, Karen K.; Martin, Kathleen A.; Walsh, Kenneth

    2017-01-01

    Human aging is associated with an increased frequency of somatic mutations in hematopoietic cells. Several of these recurrent mutations, including those in the gene encoding the epigenetic modifier enzyme TET2, promote expansion of the mutant blood cells. This clonal hematopoiesis correlates with an increased risk of atherosclerotic cardiovascular disease. We studied the effects of the expansion of Tet2-mutant cells in atherosclerosis-prone, low-density lipoprotein receptor–deficient (Ldlr−/−) mice. We found that partial bone marrow reconstitution with TET2-deficient cells was sufficient for their clonal expansion and led to a marked increase in atherosclerotic plaque size. TET2-deficient macrophages exhibited an increase in NLRP3 inflammasome–mediated interleukin-1β secretion. An NLRP3 inhibitor showed greater atheroprotective activity in chimeric mice reconstituted with TET2-deficient cells than in nonchimeric mice. These results support the hypothesis that somatic TET2 mutations in blood cells play a causal role in atherosclerosis. PMID:28104796

  10. Engineered Murine HSCs Reconstitute Multi-lineage Hematopoiesis and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Yi-Fen Lu

    2016-12-01

    Full Text Available Hematopoietic stem cell (HSC transplantation is curative for malignant and genetic blood disorders, but is limited by donor availability and immune-mismatch. Deriving HSCs from patient-matched embryonic/induced-pluripotent stem cells (ESCs/iPSCs could address these limitations. Prior efforts in murine models exploited ectopic HoxB4 expression to drive self-renewal and enable multi-lineage reconstitution, yet fell short in delivering robust lymphoid engraftment. Here, by titrating exposure of HoxB4-ESC-HSC to Notch ligands, we report derivation of engineered HSCs that self-renew, repopulate multi-lineage hematopoiesis in primary and secondary engrafted mice, and endow adaptive immunity in immune-deficient recipients. Single-cell analysis shows that following engraftment in the bone marrow niche, these engineered HSCs further specify to a hybrid cell type, in which distinct gene regulatory networks of hematopoietic stem/progenitors and differentiated hematopoietic lineages are co-expressed. Our work demonstrates engineering of fully functional HSCs via modulation of genetic programs that govern self-renewal and lineage priming.

  11. Dexamethasone-Induced Oxidative Stress Enhances Myeloma Cell Radiosensitization While Sparing Normal Bone Marrow Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Soumen Bera

    2010-12-01

    Full Text Available Dexamethasone (Dex and radiation therapy are established modalities in multiple myeloma. In this study, we propose a novel combination of Dex plus radiation that shows superior clonogenic cell killing and apoptosis of myeloma cells and selectively eliminates myeloma cells when cocultured with bone marrow stromal cells (BMSCs. Dex was found to inhibit the release of interleukin-6 from irradiated BMSCs, which is an established myeloma cell proproliferative cytokine. In 5TGM1 model, the combination of Dex with skeletal targeted radiotherapy (153-Sm-EDTMP prolonged median survival time and inhibited radiation-induced myelosuppression. A two-cycle treatment of Dex plus 153-Sm-EDTMP was well tolerated and further improved median survival time. Mechanistically, Dex increased superoxide and hydrogen peroxide production and augmented radiation-induced oxidative stress and cell death of myeloma cells. In contrast, Dex inhibited radiation-induced increase in pro-oxidant levels and enhanced the clonogenic survival in normal hematopoietic stem and progenitor cells. Treatment with either N-acetylcysteine or the combination of polyethylene glycol (PEG-conjugated copper, zinc-superoxide dismutase, and PEG-catalase significantly protected myeloma cells from Dex-induced clonogenic death. Overall, these results demonstrate that Dex in combination with radiotherapy enhances the killing of myeloma cells while protecting normal bone marrow hematopoiesis through a mechanism that involves selective increases in oxidative stress.

  12. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis.

    Science.gov (United States)

    Trompette, Aurélien; Gollwitzer, Eva S; Yadava, Koshika; Sichelstiel, Anke K; Sprenger, Norbert; Ngom-Bru, Catherine; Blanchard, Carine; Junt, Tobias; Nicod, Laurent P; Harris, Nicola L; Marsland, Benjamin J

    2014-02-01

    Metabolites from intestinal microbiota are key determinants of host-microbe mutualism and, consequently, the health or disease of the intestinal tract. However, whether such host-microbe crosstalk influences inflammation in peripheral tissues, such as the lung, is poorly understood. We found that dietary fermentable fiber content changed the composition of the gut and lung microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes. The gut microbiota metabolized the fiber, consequently increasing the concentration of circulating short-chain fatty acids (SCFAs). Mice fed a high-fiber diet had increased circulating levels of SCFAs and were protected against allergic inflammation in the lung, whereas a low-fiber diet decreased levels of SCFAs and increased allergic airway disease. Treatment of mice with the SCFA propionate led to alterations in bone marrow hematopoiesis that were characterized by enhanced generation of macrophage and dendritic cell (DC) precursors and subsequent seeding of the lungs by DCs with high phagocytic capacity but an impaired ability to promote T helper type 2 (TH2) cell effector function. The effects of propionate on allergic inflammation were dependent on G protein-coupled receptor 41 (GPR41, also called free fatty acid receptor 3 or FFAR3), but not GPR43 (also called free fatty acid receptor 2 or FFAR2). Our results show that dietary fermentable fiber and SCFAs can shape the immunological environment in the lung and influence the severity of allergic inflammation.

  13. The epigenetic regulator CXXC finger protein 1 is essential for murine hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Kristin T Chun

    Full Text Available CXXC finger protein 1 (Cfp1, encoded by the Cxxc1 gene, binds to DNA sequences containing an unmethylated CpG dinucleotide and is an epigenetic regulator of both cytosine and histone methylation. Cxxc1-null mouse embryos fail to gastrulate, and Cxxc1-null embryonic stem cells are viable but cannot differentiate, suggesting that Cfp1 is required for chromatin remodeling associated with stem cell differentiation and embryogenesis. Mice homozygous for a conditional Cxxc1 deletion allele and carrying the inducible Mx1-Cre transgene were generated to assess Cfp1 function in adult animals. Induction of Cre expression in adult animals led to Cfp1 depletion in hematopoietic cells, a failure of hematopoiesis with a nearly complete loss of lineage-committed progenitors and mature cells, elevated levels of apoptosis, and death within two weeks. A similar pathology resulted following transplantation of conditional Cxxc1 bone marrow cells into wild type recipients, demonstrating this phenotype is intrinsic to Cfp1 function within bone marrow cells. Remarkably, the Lin- Sca-1+ c-Kit+ population of cells in the bone marrow, which is enriched for hematopoietic stem cells and multi-potential progenitor cells, persists and expands in the absence of Cfp1 during this time frame. Thus, Cfp1 is necessary for hematopoietic stem and multi-potential progenitor cell function and for the developmental potential of differentiating hematopoietic cells.

  14. Conserved hemopoietic transcription factor Cg-SCL delineates hematopoiesis of Pacific oyster Crassostrea gigas.

    Science.gov (United States)

    Song, Xiaorui; Wang, Hao; Chen, Hao; Sun, Mingzhe; Liang, Zhongxiu; Wang, Lingling; Song, Linsheng

    2016-04-01

    Hemocytes are the effective immunocytes in bivalves, which have been reported to be derived from stem-like cells in gill epithelium of oyster. In the present work, a conserved haematopoietic transcription factor Tal-1/Scl (Stem Cell Leukemia) was identified in Pacific oyster (Cg-SCL), and it was evolutionarily close to the orthologs in deuterostomes. Cg-SCL was highly distributed in the hemocytes as well as gill and mantle. The hemocyte specific genes Integrin, EcSOD and haematopoietic transcription factors GATA3, C-Myb, c-kit, were down-regulated when Cg-SCL was interfered by dsRNA. During the larval developmental stages, the mRNA transcripts of Cg-SCL gradually increased after fertilization and peaked at early trochophore larvae stage (10 hpf, hours post fertilization), then sharply decreased in late trochophore larvae stage (15 hpf) before resuming in umbo larvae (120 hpf). Whole-mount immunofluorescence assay further revealed that the immunoreactivity of Cg-SCL appeared in blastula larvae with two approximate symmetric spots, and this expression pattern lasted in gastrula larvae. By trochophore, the immunoreactivity formed a ring around the dorsal region and then separated into two remarkable spots at the dorsal side in D-veliger larvae. After bacterial challenge, the mRNA expression levels of Cg-SCL were significantly up-regulated in the D-veliger and umbo larvae, indicating the available hematopoietic regulation in oyster larvae. These results demonstrated that Cg-SCL could be used as haematopoietic specific marker to trace potential developmental events of hematopoiesis during ontogenesis of oyster, which occurred early in blastula stage and maintained until D-veliger larvae.

  15. Extramedullary hematopoiesis is associated with lower cardiac iron loading in chronically transfused thalassemia patients.

    Science.gov (United States)

    Ricchi, Paolo; Meloni, Antonella; Spasiano, Anna; Neri, Maria Giovanna; Gamberini, Maria Rita; Cuccia, Liana; Caruso, Vincenzo; Gerardi, Calogera; D'Ascola, Domenico Giuseppe; Rosso, Rosamaria; Campisi, Saveria; Rizzo, Michele; Terrazzino, Fabrizia; Vangosa, Alessandra Briatico; Chiodi, Elisabetta; Missere, Massimiliano; Mangione, Maurizio; Positano, Vincenzo; Pepe, Alessia

    2015-11-01

    The aim of this study was to evaluate, in a large cohort of chronically transfused patients, whether the presence of extramedullary hematopoiesis (EMH) accounts for the typical patterns of cardiac iron distribution and/or cardiac function parameters. We retrospectively selected 1,266 thalassemia major patients who had undergone regular transfusions (611 men and 655 women; mean age: 31.3 ± 8.9 years, range: 4.2-66.6 years) and were consecutively enrolled within the Myocardial Iron Overload in Thalassemia network. The presence of EMH was evaluated based on steady-state free precession sequences; cardiac and liver iron overloads were quantified using a multiecho T2* approach; cardiac function parameters and pulmonary diameter were quantified using the steady-state free precession sequences; and myocardial fibrosis was evaluated using the late gadolinium enhancement technique. EMH was detected in 167 (13.2%) patients. The EMH+ patients had significantly lower cardiac iron overload than that of the EMH- patients (P = 0.003). The patterns of cardiac iron distribution were significantly different in the EMH+ and EMH- patients (P < 0.0001), with a higher prevalence of patients with no myocardial iron overload and heterogeneous myocardial iron overload and no significant global heart iron in the EMH+ group EMH+ patients had a significantly higher left ventricle mass index (P = 0.001) and a significantly higher pulmonary artery diameter (P = 0.002). In conclusion, in regularly transfused thalassemia patients, EMH was common and was associated with a thalassemia intermedia-like pattern of cardiac iron deposition despite regular transfusion therapy.

  16. Screening of herbal extracts influencing hematopoiesis and their chemical genetic effects in embryonic zebrafish

    Institute of Scientific and Technical Information of China (English)

    Rajaretinam Rajesh Kannan; Samuel Gnana Prakash Vincent

    2012-01-01

    Objective: To screen the herbal extracts influencing the hematopoietic stem cells (HSC) in zebrafish embryos and their chemical genetic effects. Methods: The herbals used in this study had been widely applicable in Siddha medicines in South India. Herbal extracts were treated in zebrafish embryos at 4 d post fertilization and the extracts inducing the HSC were enumerated in hemocytometer. The biocompatibility and the organogenesis of the screened extracts were assessed in the zebrafish embryos for their chemical genetic effects. The LC50 values were calculated with their parallel control. The blood cells were enumerated. Results: The level of RBC was found increased in the Bergera koenigii (B. koenigii) at 15 μg/mL (P<0.05), Mimosa pudica (M. pudica) at 20 μg/mL (P<0.05) and Solanum trilobatum (S. trilobatum) at 25 μg/mL (P<0.05) and decreased RBC level was found in Phyllanthus niruri (P. niruri) at 30 μg/mL (P<0.05). The WBC count was found increased in S. trilobatum at 20 μg/mL (P<0.05) and Annona muricata (Annona muricata) at 15 μg/mL (P<0.05) and the Vitis quadrangularis (V. quadrangularis) at 20 μg/mL (P<0.05) decreased the WBC level. There were no notable effects in heart beats and the chemical genetic effects were observed at higher concentration of the extract resulting in Pericardial bulging, trunk tail flexure with heart edema, fin fold deformities etc. Conclusions: This in vivo based screening of Hematopoiesis is an inexpensive assay to screen herbal compounds and found that S. trilobatum extract influenced embryonic HSC in zebrafish, which could be a therapeutic for blood related disorders.

  17. MYCN transgenic zebrafish model with the characterization of acute myeloid leukemia and altered hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Li-Jing Shen

    Full Text Available BACKGROUND: Amplification of MYCN (N-Myc oncogene has been reported as a frequent event and a poor prognostic marker in human acute myeloid leukemia (AML. The molecular mechanisms and transcriptional networks by which MYCN exerts its influence in AML are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We introduced murine MYCN gene into embryonic zebrafish through a heat-shock promoter and established the stable germline Tg(MYCN:HSE:EGFP zebrafish. N-Myc downstream regulated gene 1 (NDRG1, negatively controlled by MYCN in human and functionally involved in neutrophil maturation, was significantly under-expressed in this model. Using peripheral blood smear detection, histological section and flow cytometric analysis of single cell suspension from kidney and spleen, we found that MYCN overexpression promoted cell proliferation, enhanced the repopulating activity of myeloid cells and the accumulation of immature hematopoietic blast cells. MYCN enhanced primitive hematopoiesis by upregulating scl and lmo2 expression and promoted myelopoiesis by inhibiting gata1 expression and inducing pu.1, mpo expression. Microarray analysis identified that cell cycle, glycolysis/gluconeogenesis, MAPK/Ras, and p53-mediated apoptosis pathways were upregulated. In addition, mismatch repair, transforming and growth factor β (TGFβ were downregulated in MYCN-overexpressing blood cells (p<0.01. All of these signaling pathways are critical in the proliferation and malignant transformation of blood cells. CONCLUSION/SIGNIFICANCE: The above results induced by overexpression of MYCN closely resemble the main aspects of human AML, suggesting that MYCN plays a role in the etiology of AML. MYCN reprograms hematopoietic cell fate by regulating NDRG1 and several lineage-specific hematopoietic transcription factors. Therefore, this MYCN transgenic zebrafish model facilitates dissection of MYCN-mediated signaling in vivo, and enables high-throughput scale screens to identify the

  18. Artesunate and artelinic acid: association of embryotoxicity, reticulocytopenia, and delayed stimulation of hematopoiesis in pregnant rats.

    Science.gov (United States)

    Clark, Robert L; Brannen, Kimberly C; Sanders, James E; Hoberman, Alan M

    2011-02-01

    The artemisinin antimalarials cause embryo death and malformations in animals by killing embryonic erythroblasts. Groups of pregnant rats (N = 4) were administered 35 and 48 µmol/kg artesunate and 17.2, 28.7, 48, 96, and 191 µmol/kg artelinic acid as a single oral dose on gestational day (GD) 12. Litters were examined on GD21. The ED(50) for embryo death with artelinic acid (23.4 µmol/kg) was just slightly lower than that for decreased reticulocyte count at 24 hr postdose (33.5 µmol/kg) and both had similarly steep dose responses (maximal effects of total litter loss and ∼60% decreases in reticulocyte count at 48 µmol/kg). Results with artesunate were similar. The correlation coefficient between embryo death and decreased reticulocyte count was 0.82 (pembryotoxicity and reticulocytopenia is suggestive of a common mechanism-artemisinin-induced mitochondrial damage leading to cell death. At 9 days postdose, treatment with artesunate and artelinic acid also caused increases in counts of reticulocytes, lymphocytes, basophils, and monocytes (up to 3.7 ×, 1.7 ×, 4.7 ×, and 1.7 × control, respectively). This stimulation of hematopoiesis may have been mediated by the direct oxidative conversion of artesunate or artelinic acid to the artemisininyl hydroperoxide within the bone marrow cells or by an indirect increase in reactive oxygen species. The high correlation between embryotoxicity and reticulocytopenia further supports the assertion that therapeutic dosage regimens of artemisinins that cause decreases in reticulocyte count in pregnant women during the putative critical period (approximately postconception wk 3 to 9) are at risk of also causing adverse effects on the embryo.

  19. Histological analyses demonstrate the temporary contribution of yolk sac, liver, and bone marrow to hematopoiesis during chicken development.

    Directory of Open Access Journals (Sweden)

    Priscila Tavares Guedes

    Full Text Available The use of avian animal models has contributed to the understanding of many aspects of the ontogeny of the hematopoietic system in vertebrates. However, specific events that occur in the model itself are still unclear. There is a lack of consensus, among previous studies, about which is the intermediate site responsible for expansion and differentiation of hematopoietic cells, and the liver's contribution to the development of this system. Here we aimed to evaluate the presence of hematopoiesis in the yolk sac and liver in chickens, from the stages of intra-aortic clusters in the aorta-genital ridges-mesonephros (AGM region until hatching, and how it relates to the establishment of the bone marrow. Gallus gallus domesticus L. embryos and their respective yolk sacs at embryonic day 3 (E3 and up to E21 were collected and processed according to standard histological techniques for paraffin embedding. The slides were stained with hematoxylin-eosin, Lennert's Giemsa, and Sirius Red at pH 10.2, and investigated by light microscopy. This study demonstrated that the yolk sac was a unique hematopoietic site between E4 and E12. Hematopoiesis occurred in the yolk sac and bone marrow between E13 and E20. The liver showed granulocytic differentiation in the connective tissue of portal spaces at E15 and onwards. The yolk sac showed expansion of erythrocytic and granulocytic lineages from E6 to E19, and E7 to E20, respectively. The results suggest that the yolk sac is the major intermediate erythropoietic and granulopoietic site where expansion and differentiation occur during chicken development. The hepatic hematopoiesis is restricted to the portal spaces and represented by the granulocytic lineage.

  20. Extramedullary hematopoiesis presenting as a compressive cord and cerebral lesion in a patient without a significant hematologic disorder: a case report

    Directory of Open Access Journals (Sweden)

    Seddighi Amir

    2010-10-01

    Full Text Available Abstract Introduction Intracranial or spinal compressive lesions due to extramedullary hematopoiesis have been reported in the medical literature. Most of the reported cases are extradural lesions or, on rare occasions, foci within another neoplasm such as hemangioblastoma, meningioma or pilocytic astrocytoma. Often these cases occur in patients with an underlying hematological disorder such as acute myelogenic leukemia, myelofibrosis, or other myelodysplastic syndromes. Such lesions have also been reported in thalassemia major. Case presentation We report the case of a 43-year-old Iranian woman in whom extramedullary hematopoiesis presented as a compressive cord lesion and then later as an intracranial lesion. Conclusions To the best of our knowledge, we document the first reported case of sacral, lumbar, thoracic and cranial involvement in the same patient with extramedullary hematopoiesis, which seems both rare and remarkable.

  1. Normal hematopoiesis and lack of β-catenin activation in osteoblasts of patients and mice harboring Lrp5 gain-of-function mutations

    DEFF Research Database (Denmark)

    Galán-Díez, Marta; Isa, Adiba; Ponzetti, Marco;

    2016-01-01

    of hematopoiesis and leukemogenic properties of β-catenin activation in osteoblasts, that lead to development of acute myeloid leukemia (AML). Using mice with gain-of-function (GOF) Lrp5 alleles (Lrp5(A214V)) that recapitulate the human high bone mass (HBM) phenotype, as well as patients with the T253I HBM Lrp5...... patients showed normal hematopoiesis, normal percentage of myeloid cells, and lack of anemia. We conclude that Lrp5 GOF mutations do not activate β-catenin signaling in osteoblasts. As a result, myeloid lineage differentiation is normal in HBM patients and mice. This article is part of a Special Issue...

  2. ZIP8 zinc transporter: indispensable role for both multiple-organ organogenesis and hematopoiesis in utero.

    Directory of Open Access Journals (Sweden)

    Marina Gálvez-Peralta

    Full Text Available Previously this laboratory characterized Slc39a8-encoded ZIP8 as a Zn(2+/(HCO(3(-(2 symporter; yet, the overall physiological importance of ZIP8 at the whole-organism level remains unclear. Herein we describe the phenotype of the hypomorphic Slc39a8(neo/neo mouse which has retained the neomycin-resistance gene in intron 3, hence causing significantly decreased ZIP8 mRNA and protein levels in embryo, fetus, placenta, yolk sac, and several tissues of neonates. The Slc39a8(neo allele is associated with diminished zinc and iron uptake in mouse fetal fibroblast and liver-derived cultures; consequently, Slc39a8(neo/neo newborns exhibit diminished zinc and iron levels in several tissues. Slc39a8(neo/neo homozygotes from gestational day(GD-11.5 onward are pale, growth-stunted, and die between GD18.5 and 48 h postnatally. Defects include: severely hypoplastic spleen; hypoplasia of liver, kidney, lung, and lower limbs. Histologically, Slc39a8(neo/neo neonates show decreased numbers of hematopoietic islands in yolk sac and liver. Low hemoglobin, hematocrit, red cell count, serum iron, and total iron-binding capacity confirmed severe anemia. Flow cytometry of fetal liver cells revealed the erythroid series strikingly affected in the hypomorph. Zinc-dependent 5-aminolevulinic acid dehydratase, required for heme synthesis, was not different between Slc39a8(+/+ and Slc39a8(neo/neo offspring. To demonstrate further that the mouse phenotype is due to ZIP8 deficiency, we bred Slc39a8(+/neo with BAC-transgenic BTZIP8-3 line (carrying three extra copies of the Slc39a8 allele; this cross generated viable Slc39a8(neo/neo_BTZIP8-3(+/+ pups showing none of the above-mentioned congenital defects-proving Slc39a8(neo/neo causes the described phenotype. Our study demonstrates that ZIP8-mediated zinc transport plays an unappreciated critical role during in utero and neonatal growth, organ morphogenesis, and hematopoiesis.

  3. Functional consequences of perturbed CXCL12 signal processing: analyses of immature hematopoiesis in GRK6-deficient mice.

    Science.gov (United States)

    Chudziak, Doreen; Spohn, Gabriele; Karpova, Darja; Dauber, Katrin; Wiercinska, Eliza; Miettinen, Johanna A; Papayannopoulou, Thalia; Bönig, Halvard

    2015-03-15

    Hematopoietic stem and progenitor cells (HSPCs) reside in bone marrow (BM) in an environment rich in CXCL12, the ligand for CXCR4, which is constitutively expressed on all immature hematopoietic cells in BM. This ligand-receptor pair critically controls HSPC retention and (relative) quiescence in BM. Interestingly, in a chemokine-abundant environment, CXCR4 surface expression and CXCL12 sensitivity of BM-residing HSPCs are continuously maintained. The mechanisms underlying this peculiar pattern of G-protein signal integration by BM-HSPCs are unknown. G-protein receptor kinases (GRKs) control receptor function by phosphorylating the intracellular domains upon ligand-induced activation, which results in receptor internalization and transient refractoriness. Using, therefore, a GRK6-deficient (GRK6(-/-)) mouse, we sought to address how perturbed ligand-induced CXCR4 (in)activation affects HSPC behavior in vitro and in vivo. In vitro, GRK6(-/-) HSPCs were characterized by hyper-responsiveness to CXCL12, as expected. In vivo, GRK6(-/-) immature hematopoiesis was characterized by a marked expansion of immature hematopoiesis in spleens and a modest repopulation defect in serial competitive transplantation. Enforced mobilization with granulocyte colony-stimulating factor (G-CSF) and AMD3100 was normal, as was hematopoietic regeneration after noncompetitive transplantation or pharmacological myelosuppression. These observations illustrate that GRK-mediated restriction of CXCR4 signal input after ligand engagement is largely dispensable for BM-resident HSPCs, which may explain how continuous CXCL12 responsiveness of BM-HSPCs can be maintained.

  4. Zebrafish hoxd4a acts upstream of meis1.1 to direct vasculogenesis, angiogenesis and hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Aseervatham Anusha Amali

    Full Text Available Mice lacking the 4th-group paralog Hoxd4 display malformations of the anterior vertebral column, but are viable and fertile. Here, we report that zebrafish embryos having decreased function of the orthologous hoxd4a gene manifest striking perturbations in vasculogenesis, angiogenesis and primitive and definitive hematopoiesis. These defects are preceded by reduced expression of the hemangioblast markers scl1, lmo2 and fli1 within the posterior lateral plate mesoderm (PLM at 13 hours post fertilization (hpf. Epistasis analysis revealed that hoxd4a acts upstream of meis1.1 but downstream of cdx4 as early as the shield stage in ventral-most mesoderm fated to give rise to hemangioblasts, leading us to propose that loss of hoxd4a function disrupts hemangioblast specification. These findings place hoxd4a high in a genetic hierarchy directing hemangioblast formation downstream of cdx1/cdx4 and upstream of meis1.1. An additional consequence of impaired hoxd4a and meis1.1 expression is the deregulation of multiple Hox genes implicated in vasculogenesis and hematopoiesis which may further contribute to the defects described here. Our results add to evidence implicating key roles for Hox genes in their initial phase of expression early in gastrulation.

  5. Very Small Embryonic-Like Stem Cells: A Potential Developmental Link Between Germinal Lineage and Hematopoiesis in Humans.

    Science.gov (United States)

    Virant-Klun, Irma

    2016-01-15

    It has been suggested that hematopoietic stem/progenitor cells (HSPCs) could become specified from a population of migrating primordial germ cells (PGCs), precursors of gametes, during embryogenesis. Some recent experimental data demonstrated that the cell population that is usually considered to be PGCs, moving toward the gonadal ridges of an embryo, contains a subset of cells coexpressing several germ cell and hematopoietic markers and possessing hematopoietic activity. Experimental data showed that bone morphogenetic protein 4 (BMP4) generates PGCs from mouse bone marrow-derived pluripotent stem cells. Interestingly, functional reproductive hormone receptors have been identified in HSPCs, thus indicating their potential role in reproductive function. Several reports have demonstrated fertility restoration and germ cell generation after bone marrow transplantation in both animal models and humans. A potential link between HSPCs and germinal lineage might be represented by very small embryonic-like stem cells (VSELs), which have been found in adult human bone marrow, peripheral blood, and umbilical cord blood, express a specific pattern of pluripotency, germinal lineage, and hematopoiesis, and are proposed to persist in adult tissues and organs from the embryonic period of life. Stem cell populations, similar to VSELs, expressing several genes related to pluripotency and germinal lineage, especially to PGCs, have been discovered in adult human reproductive organs, ovaries and testicles, and were related to primitive germ cell-like cell development in vitro, thus supporting the idea of VSELs as a potential link between germinal lineage and hematopoiesis.

  6. Deficiency of MIWI2 (Piwil4 induces mouse erythroleukemia cell differentiation, but has no effect on hematopoiesis in vivo.

    Directory of Open Access Journals (Sweden)

    James E Jacobs

    Full Text Available Piwi proteins and their small non-coding RNA partners are involved in the maintenance of stem cell character and genome integrity in the male germ cells of mammals. MIWI2, one of the mouse Piwi-like proteins, is expressed in the prepachytene phase of spermatogenesis during the period of de novo methylation. Absence of this protein leads to meiotic defects and a progressive loss of germ cells. There is an accumulation of evidence that Piwi proteins may be active in hematopoietic tissues. Thus, MIWI2 may have a role in hematopoietic stem and/or progenitor cell self-renewal and differentiation, and defects in MIWI2 may lead to abnormal hematopoiesis. MIWI2 mRNA can be detected in a mouse erythroblast cell line by RNA-seq, and shRNA-mediated knockdown of this mRNA causes the cells to take on characteristics of differentiated erythroid precursors. However, there are no detectable hematopoietic abnormalities in a MIWI2-deficient mouse model. While subtle, non-statistically significant changes were noted in the hematopoietic function of mice without a functional MIWI2 gene when compared to wild type mice, our results show that MIWI2 is not solely necessary for hematopoiesis within the normal life span of a mouse.

  7. Active enhancers are delineated de novo during hematopoiesis, with limited lineage fidelity among specified primary blood cells.

    Science.gov (United States)

    Luyten, Annouck; Zang, Chongzhi; Liu, X Shirley; Shivdasani, Ramesh A

    2014-08-15

    Tissues may adopt diverse strategies to establish specific transcriptional programs in daughter lineages. In intestinal crypts, enhancers for genes expressed in both major cell types appear broadly permissive in stem and specified progenitor cells. In blood, another self-renewing tissue, it is unclear when chromatin becomes permissive for transcription of genes expressed in distinct terminal lineages. Using chromatin immunoprecipitation (ChIP) combined with deep sequencing (ChIP-seq) to profile activating histone marks, we studied enhancer dynamics in primary mouse blood stem, progenitor, and specified cells. Stem and multipotent progenitor cells show scant H3K4me2 marking at enhancers bound by specific transcription factors in their committed progeny. Rather, enhancers are modulated dynamically and serially, with substantial loss and gain of H3K4me2, at each cellular transition. Quantitative analysis of these dynamics accurately modeled hematopoiesis according to Waddington's notion of epigenotypes. Delineation of enhancers in terminal blood lineages coincides with cell specification, and enhancers active in single lineages show well-positioned H3K4me2- and H3K27ac-marked nucleosomes and DNaseI hypersensitivity in other cell types, revealing limited lineage fidelity. These findings demonstrate that enhancer chronology in blood cells differs markedly from that in intestinal crypts. Chromatin dynamics in hematopoiesis provide a useful foundation to consider classical observations such as cellular reprogramming and multilineage locus priming.

  8. The role of Ikaros transcriptional factor in normal hematopoiesis and leukemogenesis: biological and clinical aspects

    Directory of Open Access Journals (Sweden)

    V. S. Vshivkoo

    2015-01-01

    Full Text Available Investigation of the pathogenesis and factors effecting recurrence, progression and drug resistance in acute leukemia (AL remains a major challenge for hematology and other related areas. The role of more than 50 genes and proteins in the AL pathogenesis has been shown, including the well-studied tumor suppressor (CDKN2A/CDKN2B, RB1, PTEN, p53, and classical fusion genes (BCR/ABL1, TEL/AML1, E2A/PBX, MLL translocations. In addition, high frequency of aberrations in genes responsible for lymphoid differentiation have been identified such as transcription factors (PAX5, IKZF1 and EBF1, transcriptional regulation of the genes (ETV6, ERG, and signaling pathways of antigen receptors (BTLA, CD200, TOX, BLNK, VPREB1, as well as genes involved in chemoresistance of leukemia cells (NR3C1. In recent studies, Ikaros abnormalities have been reported to be frequently associated with AL. Ikaros is a member of a Kruppel-like family of zinc finger transcription factors that also includes IKZF2 (Helios, IKZF3 (Aiolos, Eos and Pegasus, and encoded by the IKZF1 gene. In hematopoietic cells Ikaros functions as a transcription factor, a key protein controlling T-, B-, NK-, and dendritic cells early differentiation. At the early hematopoiesis stages, it represses the myeloid and erythroid lineages, and stimulates the lymphoid differentiation. Ikaros also normally modulates immune response and plays role of a tumor suppressor in lymphoid malignances. Data from numerous clinical studies confirmed an association between the presence of IKZF1 aberrations and B-cell and, to a lesser extent, T-cell acute lymphoblastic leukemia (ALL development. Besides, loss of Ikaros function was associated with progression of myeloproliferative diseases to acute myeloid leukemia (AML in children. From clinical point of view, particular intragenic IKZF1 deletions and a short (non-functional protein Ikaros isoforms, which may occur as a result of intragenic deletions or aberrant splicing

  9. Focal extra-axial hemorrahagic mass with subdural hemorrhage secondare to extramedullary hematopoiesis in idiopathic myelodysplastic sindrome.

    Science.gov (United States)

    Di Ieva, A; Di Lieva, A; Aimar, E; Tancioni, F; Levi, D; Debernardi, A; Pisano, P; Rahal, D; Nozza, A; Magagnoli, M; Gaetani, P

    2007-03-01

    Idiopathic myelodysplastic syndrome is a disease characterized by a clonal stem cell disorder in which megacaryocitic and granulocytic lineages are mainly involved; extramedullary myeloid metaplasia is due to abnormal location of myeloid tissue in other organs than bone marrow. Rarely the central nervous system is involved. When it happens, it is typical to find masses around the brain and pachymeningeal thickening, but it is very rare to find it associated with subdural haemorrhage, as in the case we describe in the present article. Considering our case and the literature we can suggest that radiological images associated with the clinical history of the patient suggestive for extramedullary hematopoiesis can be sufficient for a correct diagnosis and for a radiotherapy treatment, demanding surgery in the case of diagnostic doubts, massive hemorrahages or neurological decifits caused by the focal lesions.

  10. Potential Pitfalls of the Mx1-Cre System: Implications for Experimental Modeling of Normal and Malignant Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Talia Velasco-Hernandez

    2016-07-01

    Full Text Available Conditional knockout mice are commonly used to study the function of specific genes in hematopoiesis. Different promoters that drive Cre expression have been utilized, with the interferon-inducible Mx1-Cre still being the most commonly used “deleter strain” in experimental hematology. However, different pitfalls associated with this system could lead to misinterpretation in functional studies. We present here two of these issues related to the use of Mx1-Cre: first, a high spontaneous recombination rate when applying commonly used techniques in experimental hematology, and second, undesired short-term consequences of the use of polyinosinic:polycytidylic acid, including changes in cellular phenotypes that, however, resolve within days. Our studies emphasize therefore that proper controls are crucial when modeling gene deletion using the Mx1-Cre transgene.

  11. Potential Pitfalls of the Mx1-Cre System: Implications for Experimental Modeling of Normal and Malignant Hematopoiesis.

    Science.gov (United States)

    Velasco-Hernandez, Talia; Säwén, Petter; Bryder, David; Cammenga, Jörg

    2016-07-12

    Conditional knockout mice are commonly used to study the function of specific genes in hematopoiesis. Different promoters that drive Cre expression have been utilized, with the interferon-inducible Mx1-Cre still being the most commonly used "deleter strain" in experimental hematology. However, different pitfalls associated with this system could lead to misinterpretation in functional studies. We present here two of these issues related to the use of Mx1-Cre: first, a high spontaneous recombination rate when applying commonly used techniques in experimental hematology, and second, undesired short-term consequences of the use of polyinosinic:polycytidylic acid, including changes in cellular phenotypes that, however, resolve within days. Our studies emphasize therefore that proper controls are crucial when modeling gene deletion using the Mx1-Cre transgene.

  12. Eltrombopag, a thrombopoietin receptor agonist, enhances human umbilical cord blood hematopoietic stem/primitive progenitor cell expansion and promotes multi-lineage hematopoiesis

    OpenAIRE

    2012-01-01

    Umbilical cord blood (UCB) transplantation has emerged as promising therapy, but is challenged by scarcity of stem cells. Eltrombopag is a non-peptide, thrombopoietin (TPO) receptor agonist, which selectively activates c-Mpl in humans and chimpanzees. We investigated eltrombopag’s effects on human UCB hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) expansion, and its effects on hematopoiesis in vivo. Eltrombopag selectively augmented the expansion of human CD45+, CD34+, ...

  13. Quantitative trait mapping reveals a regulatory axis involving peroxisome proliferator-activated receptors, PRDM16, transforming growth factor-β2 and FLT3 in hematopoiesis.

    Science.gov (United States)

    Avagyan, Serine; Aguilo, Francesca; Kamezaki, Kenjiro; Snoeck, Hans-Willem

    2011-12-01

    Hematopoiesis is the process whereby BM HSCs renew to maintain their number or to differentiate into committed progenitors to generate all blood cells. One approach to gain mechanistic insight into this complex process is the investigation of quantitative genetic variation in hematopoietic function among inbred mouse strains. We previously showed that TGF-β2 is a genetically determined positive regulator of hematopoiesis. In the presence of unknown nonprotein serum factors TGF-β2, but not TGF-β1 or -β3, enhances progenitor proliferation in vitro, an effect that is subject to mouse strain-dependent variation mapping to a locus on chr.4, Tb2r1. TGF-β2-deficient mice show hematopoietic defects, demonstrating the physiologic role of this cytokine. Here, we show that TGF-β2 specifically and predominantly cell autonomously enhances signaling by FLT3 in vitro and in vivo. A coding polymorphism in Prdm16 (PR-domain-containing 16) underlies Tb2r1 and differentially regulates transcriptional activity of peroxisome proliferator-activated receptor-γ (PPARγ), identifying lipid PPAR ligands as the serum factors required for regulation of FLT3 signaling by TGF-β2. We furthermore show that PPARγ agonists play a FLT3-dependent role in stress responses of progenitor cells. These observations identify a novel regulatory axis that includes PPARs, Prdm16, and TGF-β2 in hematopoiesis.

  14. Gene expression profiling to define the cell intrinsic role of the SKI proto-oncogene in hematopoiesis and myeloid neoplasms.

    Science.gov (United States)

    Chalk, Alistair M; Liddicoat, Brian J J; Walkley, Carl R; Singbrant, Sofie

    2014-12-01

    The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced gene signatures associated with hematopoietic stem cells and myeloid differentiation. Here we provide detailed experimental methods and analysis for the gene expression profiling described in our recently published study of Singbrant et al. (2014) in Haematologica. Our data sets (available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39457) provide a resource for exploring the underlying molecular mechanisms of the involvement of the proto-oncogene SKI in hematopoietic stem cell function and development of myeloid neoplasms.

  15. Expression of G alpha 16, a G-protein alpha subunit specific for hematopoiesis in acute leukemia.

    Science.gov (United States)

    Pfeilstöcker, M; Karlic, H; Salamon, J; Krömer, E; Mühlberger, H; Pavlova, B; Selim, U; Tüchler, H; Fritsch, G; Kneissl, S; Heinz, R; Pitterman, E; Paukovits, M R

    1996-07-01

    G-proteins are essential in signal transduction pathways. A G-protein alpha subunit termed G alpha 16 was found to be exclusively expressed in hematopoietic cell lines. In cells derived from patients, G alpha 16 expression has been detected in progenitor- and pre-B ALL cells and also in peripheral blood stem cells (PBSC). In this study, we analyzed G alpha 16 expression using a RT-PCR technique by testing elutriated blood cells from normal donors, PBSC from breast cancer patients and bone marrow or peripheral blood cells from acute leukemia patients. Both of two ALL patients and 15/16 AML patients expressed G alpha 16. In elutriation experiments, G alpha 16 expression was found in fractions containing the highest number of precursor cells but was absent in mature T and B cell fractions. In addition, CD34-enriched PBSC were positive for G alpha 16 expression. Further in vitro experiments using the cell line KG1 showed that G alpha 16 expression was not affected by the growth inhibiting hemoregulatory peptide pEEDCK which has a sequence homology present within G alpha 16. Taken together, these data demonstrate that G alpha 16 is expressed in various normal and malignant hematopietic progenitors but not in their differentiated counterparts. G alpha 16 could play a vital role in signal transduction pathways controlling proliferation in early normal and malignant hematopoiesis.

  16. Retroviral vector integration in post-transplant hematopoiesis in mice conditioned with either submyeloablative or ablative irradiation.

    Science.gov (United States)

    Sadat, M A; Dirscherl, S; Sastry, L; Dantzer, J; Pech, N; Griffin, S; Hawkins, T; Zhao, Y; Barese, C N; Cross, S; Orazi, A; An, C; Goebel, W S; Yoder, M C; Li, X; Grez, M; Cornetta, K; Mooney, S D; Dinauer, M C

    2009-12-01

    X-linked chronic granulomatous disease (X-CGD) is an inherited immunodeficiency with absent phagocyte NADPH-oxidase activity caused by defects in the gene-encoding gp91(phox). Here, we evaluated strategies for less intensive conditioning for gene therapy of genetic blood disorders without selective advantage for gene correction, such as might be used in a human X-CGD protocol. We compared submyeloablative with ablative irradiation as conditioning in murine X-CGD, examining engraftment, oxidase activity and vector integration in mice transplanted with marrow transduced with a gamma-retroviral vector for gp91(phox) expression. The frequency of oxidase-positive neutrophils in the donor population was unexpectedly higher in many 300 cGy-conditioned mice compared with lethally irradiated recipients, as was the fraction of vector-marked donor secondary CFU-S12. Vector integration sites in marrow, spleen and secondary CFU-S12 DNA from primary recipients were enriched for cancer-associated genes, including Evi1, and integrations in or near cancer-associated genes were more frequent in marrow and secondary CFU-S12 from 300 cGy-conditioned mice compared with fully ablated mice. These findings support the concept that vector integration can confer a selection bias, and suggest that the intensity of the conditioning regimen may further influence the effects of vector integration on clonal selection in post-transplant engraftment and hematopoiesis.

  17. Gene expression profiling to define the cell intrinsic role of the SKI proto-oncogene in hematopoiesis and myeloid neoplasms

    Directory of Open Access Journals (Sweden)

    Alistair M. Chalk

    2014-12-01

    Full Text Available The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced gene signatures associated with hematopoietic stem cells and myeloid differentiation. Here we provide detailed experimental methods and analysis for the gene expression profiling described in our recently published study of Singbrant et al. (2014 in Haematologica. Our data sets (available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39457 provide a resource for exploring the underlying molecular mechanisms of the involvement of the proto-oncogene SKI in hematopoietic stem cell function and development of myeloid neoplasms.

  18. Primary Myelofibrosis Presenting as Extramedullary Hematopoiesis in a Transplanted Liver Graft: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Ghulam Rehman Mohyuddin

    2016-01-01

    Full Text Available Primary myelofibrosis (PMF commonly results in extramedullary hematopoiesis (EMH in the spleen and liver as well as a variety of other organs. We present a first report of a unique presentation of PMF in a liver transplant recipient patient as EMH in the transplanted liver graft. A 76-year-old man with history of cryptogenic cirrhosis received cadaveric liver transplantation in 1996. He maintained a normal graft function and stable hematologic parameters until 2013 when he presented with anemia and progressive fatigue. Extensive work-up did not identify the etiology of the recent decline in his hemoglobin; thus a liver biopsy was done which showed findings of EMH within the sinusoids with increased megakaryocytes, some with atypical morphology. A BM biopsy revealed a hypercellular marrow, moderately increased reticulin fibrosis, and features consistent with primary myelofibrosis. Abdominal imaging showed a normal-size spleen and did not identify any sites of EMH outside of the liver. The diagnosis of myelofibrosis was thus made, and this case demonstrated predominant tropism to a transplanted liver graft with absence of EMH elsewhere. We would thus like to emphasize that findings of EMH in subjects with no preexisting hematologic neoplasm should warrant close follow-up and assessment.

  19. Analysis of hematopoiesis in mice irradiated with 500 mGy of X rays at different stages of development

    Energy Technology Data Exchange (ETDEWEB)

    Grande, T.; Bueren, J.A. [U. de Biologia Molecular y Celular, Madrid (Spain)

    1995-09-01

    We have investigated whether a relatively low dose of 500 mGy of X rays given as a single acute irradiation at different stages of pre-and postnatal development induces significant changes in the content of femoral hematopoietic progenitores during a 1-year period after irradiation. Data obtained show that, in the case of 4-day-old embryos as well as in 2-day, 8-day and 12-week-old mice, this dose is below the threshold capable of inducing a long-term impairment of hematopoiesis in the mouse. Nevertheless, in mice irradiated at the 13th or the 17th day postconception, a hematopoietic dysfunction consisting of a significant reduction in the proportion of femoral granulocyte-macrophage colony-forming units (CFU-GM) was manifested 1 year after irradiation. Our study confirms that, for most stages of development in the mouse, a single acute X irradiation of 500 mGy is below the threshold dose capable of inducing deterministic effects in the mouse hematopoietic system, although it reveals the induction of a significant impairment in the CFU-GM population when irradiation is given at the late stages of embryonic development. 24 refs., 4 figs.

  20. Effects of adenovirus mediated vascular endothelial growth factor gene transfer on reconstitution of hematopoiesis in post-bone marrow transplantation mice

    Institute of Scientific and Technical Information of China (English)

    ZHONG Zhao-dong; ZOU Ping; HU Xian-shi; YOU Yong; CHEN Zhi-chao; HUANG Shi-ang

    2005-01-01

    Background Bone marrow transplantation (BMT) conditioning procedure is considered as the cause of damage to bone marrow microvasculature and the delay of hematopoiesis recovery. However, hematopoiesis regulation post BMT by vascular endothelial growth factor (VEGF) has not yet been studied. In this study, adenovirus were used to investigate the effects of VEGF gene transfer on preventing damages to bone marrow microenvironment and its promotion of hematopoiesis in post-BMT mice.Methods Recombinant adenovirus (Ad)-enhanced green fluorescent protein (EGFP)/hVEGF165 was injected via tail vein into BALB/c mice undergoing syngeneic BMT. During the different phases post BMT, the distribution of adenovirus and the plasma levels of hVEGF were measured as well as the numbers of white blood cells (WBC), platelet (PLT) and red blood cells (RBC) in peripheral blood. At the same time, the mice were injected with Chinese ink via tail vein, following which the tibias were separated and were used for analysis of bone marrow microvasculature surface area and cellularity.Results Significant expression of EGFP and hVEGF was observed in multiple organs at different phases post BMT, and the plasma level of hVEGF was up to (866.67±97.13) pg/ml. The recovery of WBC, PLT and RBC of the group treated with recombinant adenovirus Ad-EGFP/hVEGF165 were significantly more rapid than those of other BMT groups (P0.05]. The restoration of hematopoiesis was retarded more than that of microvasculature. The cellularity of bone marrow in each group was still lower than that of normal control [(62.3±4.0)%, P<0.05] at the 30th day post BMT, but the percentage in group treated with VEGF at the 20th and 30th days post BMT [(46.5±5.0)% and (55.1±4.5)%] exceeded those of other BMT groups (P<0.05, respectively).Conclusion VEGF gene transfer mediated by adenovirus may protect the hematopoietic microenvironment to promote the restoration of hematopoiesis in post-BMT mice.

  1. The midregion, nuclear localization sequence, and C terminus of PTHrP regulate skeletal development, hematopoiesis, and survival in mice

    Science.gov (United States)

    Toribio, Ramiro E.; Brown, Holly A.; Novince, Chad M.; Marlow, Brandlyn; Hernon, Krista; Lanigan, Lisa G.; Hildreth, Blake E.; Werbeck, Jillian L.; Shu, Sherry T.; Lorch, Gwendolen; Carlton, Michelle; Foley, John; Boyaka, Prosper; McCauley, Laurie K.; Rosol, Thomas J.

    2010-01-01

    The functions of parathyroid hormone-related protein (PTHrP) on morphogenesis, cell proliferation, apoptosis, and calcium homeostasis have been attributed to its N terminus. Evidence suggests that many of these effects are not mediated by the N terminus but by the midregion, a nuclear localization sequence (NLS), and C terminus of the protein. A knock-in mouse lacking the midregion, NLS, and C terminus of PTHrP (PthrpΔ/Δ) was developed. PthrpΔ/Δ mice had craniofacial dysplasia, chondrodysplasia, and kyphosis, with most mice dying by d 5 of age. In bone, there were fewer chondrocytes and osteoblasts per area, bone mass was decreased, and the marrow was less cellular, with erythroid hypoplasia. Cellular proliferation was impaired, and apoptosis was increased. Runx2, Ocn, Sox9, Crtl1, β-catenin, Runx1, ephrin B2, cyclin D1, and Gata1 were underexpressed while P16/Ink4a, P21, GSK-3β, Il-6, Ffg3, and Ihh were overexpressed. Mammary gland development was aberrant, and energy metabolism was deregulated. These results establish that the midregion, NLS, and C terminus of PTHrP are crucial for the commitment of osteogenic and hematopoietic precursors to their lineages, and for survival, and many of the effects of PTHrP on development are not mediated by its N terminus. The down-regulation of Runx1, Runx2, and Sox9 indicates that PTHrP is a modulator of transcriptional activation during stem cell commitment. Toribio, R. E., Brown, H. A., Novince, C. M., Marlow, B. Hernon, K., Lanigan, L. G., Hildreth III, B. E., Werbeck, J. L., Shu, S. T., Lorch, G., Carlton, M., Foley, J., Boyaka, P., McCauley, L. K., Rosol, T. J. The midregion, nuclear localization sequence, and C terminus of PTHrP regulate skeletal development, hematopoiesis, and survival in mice. PMID:20145205

  2. SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse

    Science.gov (United States)

    Ou, Xuan; Chae, Hee-Don; Wang, Rui-Hong; Shelley, William C.; Cooper, Scott; Taylor, Tammi; Kim, Young-June; Deng, Chu-Xia; Yoder, Mervin C.

    2011-01-01

    SIRT1 is a founding member of a sirtuin family of 7 proteins and histone deacetylases. It is involved in cellular resistance to stress, metabolism, differentiation, aging, and tumor suppression. SIRT1−/− mice demonstrate embryonic and postnatal development defects. We examined hematopoietic and endothelial cell differentiation of SIRT1−/− mouse embryonic stem cells (ESCs) in vitro, and hematopoietic progenitors in SIRT1+/++/−, and −/− mice. SIRT1−/− ESCs formed fewer mature blast cell colonies. Replated SIRT1−/− blast colony-forming cells demonstrated defective hematopoietic potential. Endothelial cell production was unaltered, but there were defects in formation of a primitive vascular network from SIRT1−/−-derived embryoid bodies. Development of primitive and definitive progenitors derived from SIRT1−/− ESCs were also delayed and/or defective. Differentiation delay/defects were associated with delayed capacity to switch off Oct4, Nanog and Fgf5 expression, decreased β-H1 globin, β-major globin, and Scl gene expression, and reduced activation of Erk1/2. Ectopic expression of SIRT1 rescued SIRT1−/− ESC differentiation deficiencies. SIRT1−/− yolk sacs manifested fewer primitive erythroid precursors. SIRT1−/− and SIRT1+/− adult marrow had decreased numbers and cycling of hematopoietic progenitors, effects more apparent at 5%, than at 20%, oxygen tension, and these progenitors survived less well in vitro under conditions of delayed growth factor addition. This suggests a role for SIRT1 in ESC differentiation and mouse hematopoiesis. PMID:20966168

  3. Conditional deletion of Jak2 reveals an essential role in hematopoiesis throughout mouse ontogeny: implications for Jak2 inhibition in humans.

    Directory of Open Access Journals (Sweden)

    Sung O Park

    Full Text Available Germline deletion of Jak2 in mice results in embryonic lethality at E12.5 due to impaired hematopoiesis. However, the role that Jak2 might play in late gestation and postnatal life is unknown. To understand this, we utilized a conditional knockout approach that allowed for the deletion of Jak2 at various stages of prenatal and postnatal life. Specifically, Jak2 was deleted beginning at either mid/late gestation (E12.5, at postnatal day 4 (PN4, or at ∼2 months of age. Deletion of Jak2 beginning at E12.5 resulted in embryonic death characterized by a lack of hematopoiesis. Deletion beginning at PN4 was also lethal due to a lack of erythropoiesis. Deletion of Jak2 in young adults was characterized by blood cytopenias, abnormal erythrocyte morphology, decreased marrow hematopoietic potential, and splenic atrophy. However, death was observed in only 20% of the mutants. Further analysis of these mice suggested that the increased survivability was due to an incomplete deletion of Jak2 and subsequent re-population of Jak2 expressing cells, as conditional deletion in mice having one floxed Jak2 allele and one null allele resulted in a more severe phenotype and subsequent death of all animals. We found that the deletion of Jak2 in the young adults had a differential effect on hematopoietic lineages; specifically, conditional Jak2 deletion in young adults severely impaired erythropoiesis and thrombopoiesis, modestly affected granulopoiesis and monocytopoiesis, and had no effect on lymphopoiesis. Interestingly, while the hematopoietic organs of these mutant animals were severely affected by the deletion of Jak2, we found that the hearts, kidneys, lungs, and brains of these same mice were histologically normal. From this, we conclude that Jak2 plays an essential and non-redundant role in hematopoiesis during both prenatal and postnatal life and this has direct implications regarding the inhibition of Jak2 in humans.

  4. Extramedullary pulmonary hematopoiesis causing pulmonary hypertension and severe tricuspid regurgitation detected by {sup 99m} technetium sulfur colloid bone marrow scan and single-photon emission computed tomography/CT

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Syed Zama; Clarke, Michael John; Kannivelu, Anbalagan; Chinchure, Dinesh; Srinivasan, Sivasubramanian [Dept. of Diagnostic Radiology, Khoo Teck Puat Hospital, Singapore (Singapore)

    2014-06-15

    Extramedullary pulmonary hematopoiesis is a rare entity with a limited number of case reports in the available literature only. We report the case of a 66-year-old man with known primary myelofibrosis, in whom a {sup 99m}technetium sulfur colloid bone marrow scan with single-photon emission computed tomography (SPECT)/CT revealed a pulmonary hematopoiesis as the cause of pulmonary hypertension and severe tricuspid regurgitation. To the best of our knowledge, this is the first description of {sup 99m} technetium sulfur colloid SPECT/CT imaging in this rare condition.

  5. Eltrombopag, a thrombopoietin receptor agonist, enhances human umbilical cord blood hematopoietic stem/primitive progenitor cell expansion and promotes multi-lineage hematopoiesis.

    Science.gov (United States)

    Sun, Hongliang; Tsai, Ying; Nowak, Irena; Liesveld, Jane; Chen, Yuhchyau

    2012-09-01

    Umbilical cord blood (UCB) transplantation has emerged as a promising therapy, but it is challenged by scarcity of stem cells. Eltrombopag is a non-peptide, thrombopoietin (TPO) receptor agonist, which selectively activates c-Mpl in humans and chimpanzees. We investigated eltrombopag's effects on human UCB hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) expansion, and its effects on hematopoiesis in vivo. Eltrombopag selectively augmented the expansion of human CD45+, CD34+, and CD41+ cells in bone marrow compartment without effects on mouse bone marrow cells in the NOD/SCID mice xenotransplant model. Consequently, eltrombopag increased peripheral human platelets and white blood cells. We further examined effects in the STAT and AKT signaling pathways in serum-free cultures. Eltrombopag expanded human CD34+ CD38-, CD34+, and CD41+ cells. Both eltrombopag and recombinant human TPO (rhTPO) induced phosphorylation of STAT5 of CD34+ CD41-, CD34- CD41+, and CD34- CD41- cells. rhTPO preferentially induced pSTAT3, pAKT, and more pSTAT5 in CD34- C41+ cells, while eltrombopag had no effects on pSTAT3. In conclusion, eltrombopag enhanced expansion of HSCs/HPCs of human UCB in vivo and in vitro, and promoted multi-lineage hematopoiesis through the expansion of bone marrow HSCs/HPCs of human UCB in vivo. Eltrombopag differed somewhat from rhTPO in the signal transduction pathways by favoring earlier HSC/HPC populations.

  6. The hematopoiesis in gill and its role in the immune response of Pacific oyster Crassostrea gigas against secondary challenge with Vibrio splendidus.

    Science.gov (United States)

    Li, Yiqun; Song, Xiaorui; Wang, Weilin; Wang, Lingling; Yi, Qilin; Jiang, Shuai; Jia, Zhihao; Du, Xinyu; Qiu, Limei; Song, Linsheng

    2017-06-01

    Increasing evidences have demonstrated that the invertebrate gill is a predominant tissue participating in the immune response during pathogen challenge. In the present study, the hematopoiesis and immune activities in gill of Pacific oyster Crassostrea gigas were investigated. Stem-like cells with big nuclei and thin cytoplasm were found in the tubules of gill filaments, where DNA synthesis is active and hemocytes production are exuberant. The oysters primarily stimulated by formaldehyde-killed Vibrio splendidus exhibited stronger immune responses and enhanced cell regeneration in gill when they encountered the secondary challenge of live V. splendidus. After the secondary stimulation with V. splendidus, the expression levels of CgClec-4 and CgIFN in the gill of oysters pre-stimulated with formaldehyde-killed V. splendidus were significantly higher (p challenge with V. splendidus. ROS production was also enhanced (p challenge. The phagocytic rate in gill of oysters pre-stimulated with formaldehyde-killed V. splendidus was significantly increased (p challenge with live V. splendidus, showing faster response than that pre-stimulated with filter-sterilized sea water. These results collectively showed that the immune parameters in gill were apparently enhanced after secondary challenge with live V. splendidus, indicating that hematopoiesis might participate in immune priming in Pacific oyster C. gigas.

  7. [Cytokines and hematopoiesis].

    Science.gov (United States)

    Mannoni, P

    1993-03-01

    The identification and purification of haemopoietic growth regulators have resulted in a better understanding of control mechanisms. Cloning and expression of the corresponding genes have shown that most of the activities observed correspond to specific glycoproteins produced by cells from numerous tissues, including those of bone marrow stroma and immune system. These cytokines activate the responsive cells through specific receptors expressed on their membranes. They exert an accurate control of haematopoiesis in a network of synergistic and antagonistic factors. The exact identification of their biological activities, together with the possibility of producing them in large amounts by genetic recombination, have already resulted in their therapeutic use with, in certain cases, a remarkable efficiency.

  8. Mesenchymal stromal cells (MSC) from JAK2+ myeloproliferative neoplasms differ from normal MSC and contribute to the maintenance of neoplastic hematopoiesis

    Science.gov (United States)

    Sánchez-Abarca, Luis Ignacio; Rosón-Burgo, Beatriz; Redondo, Alba; Rico, Ana; Preciado, Silvia; Ortega, Rebeca; Rodríguez, Concepción; Muntión, Sandra; Hernández-Hernández, Ángel; De Las Rivas, Javier; González, Marcos; González Porras, José Ramón; del Cañizo, Consuelo; Sánchez-Guijo, Fermín

    2017-01-01

    There is evidence of continuous bidirectional cross-talk between malignant cells and bone marrow-derived mesenchymal stromal cells (BM-MSC), which favors the emergence and progression of myeloproliferative neoplastic (MPN) diseases. In the current work we have compared the function and gene expression profile of BM-MSC from healthy donors (HD-MSC) and patients with MPN (JAK2V617F), showing no differences in the morphology, proliferation and differentiation capacity between both groups. However, BM-MSC from MPN expressed higher mean fluorescence intensity (MIF) of CD73, CD44 and CD90, whereas CD105 was lower when compared to controls. Gene expression profile of BM-MSC showed a total of 169 genes that were differentially expressed in BM-MSC from MPN patients compared to HD-MSC. In addition, we studied the ability of BM-MSC to support the growth and survival of hematopoietic stem/progenitor cells (HSPC), showing a significant increase in the number of CFU-GM colonies when MPN-HSPC were co-cultured with MPN-MSC. Furthermore, MPN-MSC showed alteration in the expression of genes associated to the maintenance of hematopoiesis, with an overexpression of SPP1 and NF-kB, and a downregulation of ANGPT1 and THPO. Our results suggest that BM-MSC from JAK2+ patients differ from their normal counterparts and favor the maintenance of malignant clonal hematopoietic cells. PMID:28796790

  9. Expression of p21(Cip1/Waf1/Sdi1) and p27(Kip1) cyclin-dependent kinase inhibitors during human hematopoiesis.

    Science.gov (United States)

    Taniguchi, T; Endo, H; Chikatsu, N; Uchimaru, K; Asano, S; Fujita, T; Nakahata, T; Motokura, T

    1999-06-15

    Expression of p21 and p27 cyclin-dependent kinase inhibitors is associated with induced differentiation and cell-cycle arrest in some hematopoietic cell lines. However, it is not clear how these inhibitors are expressed during normal hematopoiesis. We examined various human hematopoietic colonies derived from cord blood CD34(+) cells, bone marrow, and peripheral blood cells using a quantitative reverse transcription-polymerase chain reaction assay, immunochemistry, and/or Western blot analysis. p21 mRNA was expressed increasingly over time in all of the colonies examined (granulocytes, macrophages, megakaryocytes, and erythroblasts), whereas p27 mRNA levels remained low, except for erythroid bursts. Erythroid bursts expressed both p21 and p27 mRNAs with differentiation but expressed neither protein, whereas both proteins were expressed in megakaryocytes and peripheral blood monocytes. In bone marrow, p21 was immunostained almost exclusively in a subset of megakaryocytes and p27 protein was present in megakaryocytes, plasma cells, and endothelial cells. In megakaryocytes, reciprocal expression of p27 to Ki-67 was evident and an inverse relationship between p21 and Ki-67 positivities was also present, albeit less obvious. These observations suggest that a complex lineage-specific regulation is involved in p21 and p27 expression and that these inhibitors are involved in cell-cycle exit in megakaryocytes.

  10. Third party cord blood transplant boosts autologous hematopoiesis in a case of persistent bone marrow aplasia after double transplant failure for β-thalassemia major

    Directory of Open Access Journals (Sweden)

    Giuseppe Visani

    2013-04-01

    Full Text Available A 9-year-old female received a double allogeneic stem cell transplant (SCT from an ABO-incompatible HLA-matched sibling for β-thalassemia major, without achieving a complete donor chimerism. Subsequently, the patient received autologous SCT and five donor lymphocyte infusion, without increasing donor chimerism. After the double transplant failure, we performed an unrelated transplant from a full-matched umbilical cord blood (UCBT. Due to the severe immunosuppression of the patient, we did not administer any conditioning regimen nor GVHD prophylaxis. On day +40 after UCBT, trilinear engraftment was documented. Surprisingly, the hematopoietic reconstitution was related to the re-expansion of the autologous (β-thalassemic hematopoietic stem cell, as documented by chimerism studies on both peripheral blood and bone marrow. At present, 30 months after UCBT, there is stable hematopoietic autologous reconstitution. This is the first description of the restoration of autologous hematopoiesis obtained with cord blood infusion in a thalassemia-major patient after a double transplant failure.

  11. Hematopoietic Stem/Progenitor Cells Express Several Functional Sex Hormone Receptors—Novel Evidence for a Potential Developmental Link Between Hematopoiesis and Primordial Germ Cells

    Science.gov (United States)

    Mierzejewska, Katarzyna; Borkowska, Sylwia; Suszynska, Ewa; Suszynska, Malwina; Poniewierska-Baran, Agata; Maj, Magda; Pedziwiatr, Daniel; Adamiak, Mateusz; Abdel-Latif, Ahmed; Kakar, Sham S.; Ratajczak, Janina; Kucia, Magda

    2015-01-01

    Evidence has accumulated that hematopoietic stem progenitor cells (HSPCs) share several markers with the germline, a connection supported by reports that prolactin, androgens, and estrogens stimulate hematopoiesis. To address this issue more directly, we tested the expression of receptors for pituitary-derived hormones, such as follicle-stimulating hormone (FSH) and luteinizing hormone (LH), on purified murine bone marrow (BM) cells enriched for HSPCs and tested the functionality of these receptors in ex vivo signal transduction studies and in vitro clonogenic assays. We also tested whether administration of pituitary- and gonad-derived sex hormones (SexHs) increases incorporation of bromodeoxyuridine (BrdU) into HSPCs and expansion of hematopoietic clonogenic progenitors in mice and promotes recovery of blood counts in sublethally irradiated animals. We report for the first time that HSPCs express functional FSH and LH receptors and that both proliferate in vivo and in vitro in response to stimulation by pituitary SexHs. Furthermore, based on our observations that at least some of CD45− very small embryonic-like stem cells (VSELs) may become specified into CD45+ HSPCs, we also evaluated the expression of pituitary and gonadal SexHs receptors on these cells and tested whether these quiescent cells may expand in vivo in response to SexHs administration. We found that VSELs express SexHs receptors and respond in vivo to SexHs stimulation, as evidenced by BrdU accumulation. Since at least some VSELs share several markers characteristic of migrating primordial germ cells and can be specified into HSPCs, this observation sheds new light on the BM stem cell hierarchy. PMID:25607657

  12. Thrombopoietin mobilizes CD34+ cell subsets into peripheral blood and expands multilineage progenitors in bone marrow of cancer patients with normal hematopoiesis.

    Science.gov (United States)

    Murray, L J; Luens, K M; Estrada, M F; Bruno, E; Hoffman, R; Cohen, R L; Ashby, M A; Vadhan-Raj, S

    1998-03-01

    Thrombopoietin (TPO), the primary regulator of megakaryocytopoiesis, also mediates biologic effects in vitro on hematopoietic cells more primitive than those committed to the megakaryocyte (MK) lineage. To assess the spectrum of hematopoietic effects of recombinant human (rh)TPO in vivo, we evaluated its proliferative effect on bone marrow (BM) progenitor cells, its maturation effect on BM MKs, and its mobilizing effect on peripheral blood (PB) progenitor cells during a phase I clinical laboratory investigation in which rhTPO was administered to cancer patients with normal hematopoiesis. Twelve patients received a single dose of rhTPO (0.3, 0.6, 1.2, or 2.4 microg/kg of body weight) prior to chemotherapy. BM and PB samples from these patients were analyzed 1 to 2 days before (baseline) and 7 days after rhTPO administration. At higher doses (1.2-2.4 microg/kg), rhTPO produced increased concentrations of primitive CD34+Thy-1+Lin-cells (mean 2.1-fold), CD34+mpl+ cells (mean 5.2-fold), CD34+CD41+CD14- promegakaryoblasts (mean 2.9-fold), and myeloerythroid colony-forming cells (mean threefold) in BM. No significant increases in the frequency of BM colony-forming unit (CFU)-MK were observed. Elevated numbers of both immature (2N-8N) and more mature (64N and 128N) CD41+ MKs were detected in BM, with modal ploidy remaining at 16N. Higher doses of rhTPO (1.2-2.4 microg/kg) also induced increased concentrations of CD34+ cell subsets in PB, including both primitive CD34+Thy-1+Lin- (mean 8.8-fold) and MK lineage-committed CD34+CD41+CD14- cells (mean 14.6-fold) as well as various myeloerythroid colony-forming cells (mean 3.6- to 5.5-fold). These results demonstrate that rhTPO given as a single dose not only promotes proliferation and maturation of cells of the MK lineage, but also expands the pool of BM primitive hematopoietic cells. In addition, rhTPO induces mobilization of hematopoietic progenitors into peripheral circulation. The extent to which such multilineage effects on

  13. Hemorrhage Exacerbates Radiation Effects on Survival, Leukocytopenia, Thrombopenia, Erythropenia, Bone Marrow Cell Depletion and Hematopoiesis, and Inflammation-Associated microRNAs Expression in Kidney.

    Directory of Open Access Journals (Sweden)

    Juliann G Kiang

    Full Text Available Exposure to high-dose radiation results in detrimental effects on survival. The effects of combined trauma, such as radiation in combination with hemorrhage, the typical injury of victims exposed to a radiation blast, on survival and hematopoietic effects have yet to be understood. The purpose of this study was to evaluate the effects of radiation injury (RI combined with hemorrhage (i.e., combined injury, CI on survival and hematopoietic effects, and to investigate whether hemorrhage (Hemo enhanced RI-induced mortality and hematopoietic syndrome. Male CD2F1 mice (10 weeks old were given one single exposure of γ- radiation (60Co at various doses (0.6 Gy/min. Within 2 hr after RI, animals under anesthesia were bled 0% (Sham or 20% (Hemo of total blood volume via the submandibular vein. In these mice, Hemo reduced the LD50/30 for 30-day survival from 9.1 Gy (RI to 8.75 Gy (CI with a DMF of 1.046. RI resulted in leukocytopenia, thrombopenia, erythropenia, and bone marrow cell depletion, but decreased the caspase-3 activation response. RI increased IL-1β, IL-6, IL-17A, and TNF-α concentrations in serum, bone marrow, ileum, spleen, and kidney. Some of these adverse alterations were magnified by CI. Erythropoietin production was increased in kidney and blood more after CI than RI. Furthermore, CI altered the global miRNAs expression in kidney and the ingenuity pathway analysis showed that miRNAs viz., let-7e, miR-30e and miR-29b that were associated with hematopoiesis and inflammation. This study provides preliminary evidence that non-lethal Hemo exacerbates RI-induced mortality and cell losses associated with high-dose γ-radiation. We identified some of the initial changes occurring due to CI which may have facilitated in worsening the injury and hampering the recovery of animals ultimately resulting in higher mortality.

  14. Hematopoiesis Primer Modeling Combined Injury

    Science.gov (United States)

    2012-05-01

    2010 Feb; 125( Suppl 2):S3-23. Dainiak N, J.K. Waselenko. Biology and clinical features of radiation injury in adults [Internet]. UpToDate ® 2004...Available from: http://www.sassit.co.za/Journals/General%20complications/ UpToDate %C2%AE%20%27Biolog y%20and%20clinical%20features%20of%20radiation

  15. Matriz extracelular e enzimas degradatórias na hematopoese e doenças onco-hematológicas Extracellular matrix in hematopoiesis and hematologic malignancies

    Directory of Open Access Journals (Sweden)

    Juliana L. Dreyfuss

    2008-10-01

    Full Text Available A matriz extracelular (MEC é uma rede complexa composta por quatro grandes classes de macromoléculas: colágenos, proteoglicanos (PGs, glicosaminoglicanos (GAGs e glicoproteínas adesivas. As interações entre as células e a MEC são cruciais para determinar os padrões de comportamento celular, tais como crescimento, morte, diferenciação e motilidade. A hematopoese é o sistema responsável pela produção das células sangüíneas. O controle da proliferação e diferenciação destas células é feito através da interação das células com o microambiente da medula óssea (matriz extracelular. A adesão de progenitores hematopoéticos a moléculas da MEC e a ativação das integrinas são modulados por uma variedade de citocinas e fatores de crescimento, e esta modulação parece ser o mecanismo de regulação que influencia a proliferação de células-tronco e progenitores hematopoéticos, migração transendotelial ou transestromal e homing. Tanto no processo de migração, homing e invasão tumoral, as células seguem os seguintes passos: 1 - Degradação da MEC por enzimas secretadas pelas células: metaloproteinases, colagenases, plasmina, catepsinas, glicosidases e heparanases; 2 - Locomoção das células na região da MEC previamente degradada pelas enzimas; 3 - Adesão das células via receptores específicos da superfície celular, que geralmente interagem com componentes da MEC. Nas doenças onco-hematológicas, a interação das células neoplásicas com a matriz extracelular também influencia na agressividade e prognóstico da doença.The extracellular matrix (ECM is a complex structure composed of collagens, proteoglycans, glycosaminoglycans and adhesive glycoproteins. Interactions between the cells and the ECM are crucial to determine cell behavior, such as growth, death, differentiation and motility. Hematopoiesis is the system responsible for the production of blood cells. The control of proliferation and

  16. Regression of extramedullary hematopoiesis with hydroxyurea therapy in ß-thalassemia intermedia Regressão da hematopoese extramedular na talassemia intermédia após terapia com hidroxiuréia

    Directory of Open Access Journals (Sweden)

    Perla Vicari

    2006-03-01

    Full Text Available Excessive ineffective erythropoiesis in thalassemia intermedia may cause extramedullary hematopoiesis (EMH, resulting in spleen and liver enlargement or masses in several tissues, mainly paravertebrally. Other less frequent locations of diffuse compensatory EMH are kidneys, adrenal glands, breasts, spinal cord, pleura, pericardium, duramater, adipose tissue and skin, although intrathoracic extramedullary hematopoiesis is a rare condition. Management strategies have included radiation and transfusion therapy. Hydroxyurea with transfusion therapy has been associated with clinical regression of EMH in thalassemia. We report an uncommon case of intrathoracic EMH in a patient with beta-thalassemia intermedia, that showed significant recovery with HU therapy.A excessiva eritropoese ineficaz na talassemia pode causar hemato-poese extramedular (HEM, resultando em hepatomegalia, esplenomegalia e massas de tecido hematopoético em diversos tecidos. Localizações de HEM compensatória menos freqüentes são rins, glândulas adrenais, canal medular, pleura, pericárdio, duramáter, tecido adiposo e pele. Entretanto, HEM intratorácica é condição rara. Estratégias terapêuticas incluem radiação e transfusões sanguíneas. O uso de hidroxiuréia concomitante a terapêutica transfusional foi associado à regressão clínica da HEM na talassemia. Nós descrevemos um caso de HEM intratorácica em paciente portadora de talassemia intermédia, com significante regressão do quadro após terapêutica isolada com hidroxiuréia.

  17. Transplante de células-tronco hematopoéticas e a regeneração da hematopoese Hematopoietic stem cell transplant and recovery of hematopoiesis

    Directory of Open Access Journals (Sweden)

    Afonso C. Vigorito

    2009-08-01

    reconstitution after using mobilized peripheral blood is faster compared to bone marrow. Umbilical cord blood has emerged as another rich source of hematopoietic stem cells for transplantation. The minimal risk to the donor and the rapid availability are among the great advantages of this stem cell source. The slow recovery of neutrophil and platelet counts is the major clinical concern. Bone marrow biopsy is an important tool for obtaining information regarding the hematopoietic recovery after hematopoietic stem cell transplantation. The histopathological hematopoietic reconstitution of the bone marrow after umbilical cord blood transplantation is delayed compared to bone marrow transplantation. However, gradual hematopoietic recovery is seen, and afterwards no other differences comparing bone marrow and umbilical cord transplants are observed. Bone marrow histology does not elucidate the genotypic origin of post-transplant hematopoiesis. Hence, chimerism analysis has become an important instrument for engraftment surveillance, and is the basis for treatment intervention to avoid graft rejection, to maintain engraftment, and to treat clinical imminent relapse by immunotherapy. This review focuses on the hematopoietic recovery after hematopoietic stem cell transplantation.

  18. Role of SDF-1 (CXCL12) in regulating hematopoietic stem and progenitor cells traffic into the liver during extramedullary hematopoiesis induced by G-CSF, AMD3100 and PHZ.

    Science.gov (United States)

    Mendt, Mayela; Cardier, Jose E

    2015-12-01

    The stromal cell derived factor 1 (SDF-1/CXCL12) plays an essential role in the homing of hematopoietic stem and progenitor cells (HSPCs) to bone marrow (BM). It is not known whether SDF-1 may also regulate the homing of HSPCs to the liver during extramedullary hematopoiesis (EMH). Here, we investigated the possible role of SDF-1 in attracting HSPCs to the liver during experimental EMH induced by the hematopoietic mobilizers G-CSF, AMD3100 and phenylhydrazine (PHZ). Mice treated with G-CSF, AMD3100 and PHZ showed a significant increase in the expression of SDF-1 in the liver sinusoidal endothelial cells (LSECs) microenvironments. Liver from mice treated with the hematopoietic mobilizers showed HSPCs located adjacent to the LSEC microenvironments, expressing high levels of SDF-1. An inverse relationship was found between the hepatic SDF-1 levels and those in the BM. In vitro, LSEC monolayers induced the migration of HSPCs, and this effect was significantly reduced by AMD3100. In conclusion, our results provide the first evidence showing that SDF-1 expressed by LSEC can be a major player in the recruitment of HSPCs to the liver during EMH induced by hematopoietic mobilizers.

  19. Screening and Analysis of Janelia FlyLight Project Enhancer-Gal4 Strains Identifies Multiple Gene Enhancers Active During Hematopoiesis in Normal and Wasp-Challenged Drosophila Larvae.

    Science.gov (United States)

    Tokusumi, Tsuyoshi; Tokusumi, Yumiko; Brahier, Mark S; Lam, Victoria; Stoller-Conrad, Jessica R; Kroeger, Paul T; Schulz, Robert A

    2017-02-09

    A GFP expression screen has been conducted on >1000 Janelia FlyLight Project enhancer-Gal4 lines to identify transcriptional enhancers active in the larval hematopoietic system. A total of 190 enhancers associated with 87 distinct genes showed activity in cells of the third instar larval lymph gland and hemolymph. That is, gene enhancers were active in cells of the lymph gland posterior signaling center (PSC), medullary zone (MZ), and/or cortical zone (CZ), while certain of the transcriptional control regions were active in circulating hemocytes. Phenotypic analyses were undertaken on 81 of these hematopoietic-expressed genes, with nine genes characterized in detail as to gain- and loss-of-function phenotypes in larval hematopoietic tissues and blood cells. These studies demonstrated the functional requirement of the cut gene for proper PSC niche formation, the hairy, Btk29A, and E2F1 genes for blood cell progenitor production in the MZ domain, and the longitudinals lacking, dFOXO, kayak, cap-n-collar, and delilah genes for lamellocyte induction and/or differentiation in response to parasitic wasp challenge and infestation of larvae. Together, these findings contribute substantial information to our knowledge of genes expressed during the larval stage of Drosophila hematopoiesis and newly identify multiple genes required for this developmental process.

  20. Screening and Analysis of Janelia FlyLight Project Enhancer-Gal4 Strains Identifies Multiple Gene Enhancers Active During Hematopoiesis in Normal and Wasp-Challenged Drosophila Larvae

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Tokusumi

    2017-02-01

    Full Text Available A GFP expression screen has been conducted on >1000 Janelia FlyLight Project enhancer-Gal4 lines to identify transcriptional enhancers active in the larval hematopoietic system. A total of 190 enhancers associated with 87 distinct genes showed activity in cells of the third instar larval lymph gland and hemolymph. That is, gene enhancers were active in cells of the lymph gland posterior signaling center (PSC, medullary zone (MZ, and/or cortical zone (CZ, while certain of the transcriptional control regions were active in circulating hemocytes. Phenotypic analyses were undertaken on 81 of these hematopoietic-expressed genes, with nine genes characterized in detail as to gain- and loss-of-function phenotypes in larval hematopoietic tissues and blood cells. These studies demonstrated the functional requirement of the cut gene for proper PSC niche formation, the hairy, Btk29A, and E2F1 genes for blood cell progenitor production in the MZ domain, and the longitudinals lacking, dFOXO, kayak, cap-n-collar, and delilah genes for lamellocyte induction and/or differentiation in response to parasitic wasp challenge and infestation of larvae. Together, these findings contribute substantial information to our knowledge of genes expressed during the larval stage of Drosophila hematopoiesis and newly identify multiple genes required for this developmental process.

  1. The Gottingen Minipig Is a Model of the Hematopoietic Acute Radiation Syndrome: G-Colony Stimulating Factor Stimulates Hematopoiesis and Enhances Survival From Lethal Total-Body γ-Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moroni, Maria, E-mail: maria.moroni@usuhs.edu [Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Ngudiankama, Barbara F. [Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland (United States); Christensen, Christine [Division of Comparative Pathology, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Olsen, Cara H. [Biostatistics Consulting Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Owens, Rossitsa [Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Lombardini, Eric D. [Veterinary Medicine Department, Armed Forces Research Institute of Medical Sciences, Bangkok (Thailand); Holt, Rebecca K. [Veterinary Science Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Whitnall, Mark H. [Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States)

    2013-08-01

    Purpose: We are characterizing the Gottingen minipig as an additional large animal model for advanced drug testing for the acute radiation syndrome (ARS) to enhance the discovery and development of novel radiation countermeasures. Among the advantages provided by this model, the similarities to human hematologic parameters and dynamics of cell loss/recovery after irradiation provide a convenient means to compare the efficacy of drugs known to affect bone marrow cellularity and hematopoiesis. Methods and Materials: Male Gottingen minipigs, 4 to 5 months old and weighing 9 to 11 kg, were used for this study. We tested the standard off-label treatment for ARS, rhG-CSF (Neupogen, 10 μg/kg/day for 17 days), at the estimated LD70/30 total-body γ-irradiation (TBI) radiation dose for the hematopoietic syndrome, starting 24 hours after irradiation. Results: The results indicated that granulocyte colony stimulating factor (G-CSF) enhanced survival, stimulated recovery from neutropenia, and induced mobilization of hematopoietic progenitor cells. In addition, the administration of G-CSF resulted in maturation of monocytes/macrophages. Conclusions: These results support continuing efforts toward validation of the minipig as a large animal model for advanced testing of radiation countermeasures and characterization of the pathophysiology of ARS, and they suggest that the efficacy of G-CSF in improving survival after total body irradiation may involve mechanisms other than increasing the numbers of circulating granulocytes.

  2. The changes of CD34+ cells in C57 mouse bone marrow after irradiation and their roles in dysfunction of hematopoiesis%辐射小鼠骨髓CD34+细胞的变化及其意义

    Institute of Scientific and Technical Information of China (English)

    马增春; 高月; 刘永学; 谭洪玲; 张立; 陶来宝; 陈鹏

    2001-01-01

    Objective To observe the changes of CD34+ cells in C57 mouse bone marrow after irradiation and investigate the role of apoptosis in radiation-induced dysfunction of hematopoiesis. MethodsFlow cytometric enumeration of CD34+ hematopietic stem and progenitor cells by double fluorescent labeling apoptosis detection by Annexin V-FITC kit,and cell cycle detection by PI labeling were carried out. Results  ①Compared with the normal group,the percentage of CD34+ cells in bone marrow nucleated cells decreased at least for 14 days after irradiation,and the changes were related with irradiation doses.②At 6 h after irradiation,the largest amount of apoptopic cells could be detected.③Bone marrow cell cycle was perturbed after 5.5 Gy irradiation. Conclusion The percentage of CD34+ hematopietic stem and progenitor cells in C57 mouse bone marrow decreased after irradiation,and apoptosis might be responsible for the changes of the bone marrow cells.%目的 研究γ射线照射后C57小鼠骨髓中CD34+细胞的数量变化规律及其意义。方法 流式细胞仪测定CD34+细胞在骨髓有核细胞中的比例;Annexin V-FITC试剂盒检测骨髓细胞的凋亡;细胞固定后PI染色测定细胞周期。结果 ①CD34+细胞在骨髓有核细胞中的比例随照射剂量的加大而降低,在5.5 Gy照射后14 d内小鼠CD34+细胞的减少表现为持续性;②小鼠照射后6 h骨髓细胞凋亡率最高,以5.5 Gy照射组最为明显;③5.5 Gy照射后小鼠骨髓细胞周期紊乱。结论 γ射线损伤骨髓中的干祖细胞,造成骨髓中干祖细胞的数量减少,其途径之一是诱导骨髓细胞凋亡。

  3. 铁过载对骨髓损伤小鼠造血功能的作用及机制研究%Effects and mechanism of iron overload on hematopoiesis in mice with bone marrow injury

    Institute of Scientific and Technical Information of China (English)

    柴笑; 赵明峰; 李德冠; 张宇辰; 卢文艺; 曹小立; 孟娟霞; 游权; 孟爱民

    2014-01-01

    Objective To explore effects of iron overload on hematopoiesis in mice with bone marrow injury and its possible mechanism(s).Methods C57BL/6 mice were divided into control,iron,irradiation,irradiation+iron groups.The iron-overloaded model of bone marrow injury was set up after mice were exposed to the dose of 4 Gy total body irradiation and (or) were injected iron dextran intraperitoneally.Iron overload was confirmed by observing iron deposits in mice and bone marrow labile iron pool.Additionally,the number of peripheral blood and bone marrow mononuclear cells and the frequency of erythroid cells and myeloid cells were counted and hematopoietic function was assessed.Results ①Iron overload occurred by bone marrow biopsy and flow cytometry analysis.②Compared with control group,the number ofplatelets [(801.9±81.2) × 109/L vs (926.0±28.2) × 109/L] and BMMNC and the frequency of erythroid cells and myeloid cells decreased.Moreover,hematopoietic colony forming units and single-cell cloning counts decreased significantly in irradiation group (P < 0.05).③Compared with irradiation group,the number of platelets [(619.0±60.9) × 109/L vs (801.9±81.2) × 109/L] and the frequency of erythroid cells and myeloid cells decreased; moreover,hematopoietic colony forming units and singlecell cloning counts decreased significantly in irradiation + iron group (P<0.05).④Compared with irradiation group,ROS level increased by 1.94 fold in BMMNC,1.93 fold in erythroid cells and 2.70 fold in myeloid cells,respectively (P < 0.05).Conclusions The dose of 4 Gy total body irradiation caused bone marrow damage and iron overload based on this injury model,which could damage bone marrow hematopoietic function aggravatingly.And further study found that iron overload was closely related to increased ROS level in BMMNC.The findings would be helpful to further study the injury mechanism of iron overload on the hematopoiesis of bone marrow.%目的 探讨铁过载对骨髓损伤小

  4. Establishment of Iron Overloaded Bone Marrow Model In Vitro and Its Impact on Hematopoiesis%铁过载骨髓造血细胞体外模型的建立及其对造血的影响

    Institute of Scientific and Technical Information of China (English)

    谢芳; 赵明峰; 朱海波; 肖霞; 徐新女; 穆娟; 李玉明

    2011-01-01

    This study was to establish an iron overload bone marrow (BM) model by co-culturing the mononuclear cells from BM with iron, and investigate its hematopoiesis changes. The iron overload model was set up by adding different concentration of ferric citrate (FAC) into the mononuclear cells from BM and culturing for different time, and the model was confirmed by detecting labile iron pool (LLP). Then the apoptosis of hematopoietic cells, ability of hematopoietic colony forming (CFU-E, BFU-E, CFU-GM and CFU-mix) and percentage of the CD34 + cells of the BM cells all were determined. The changes of these indexes were tested after the iron-overloaded BM was treated with deferasirox (DFO). The results showed that after BM cells were cultured with FAC at different concentrations for different time, the LLP increased in time-and concentration-dependent manners. The intracellular LIP reached maximum level when cultured at 400 μmol/L of FAC for 24 hours. The detection of BM cell hematopoietic function found that the apoptotic rate of the FAC-treated cells (24.8 ± 2.99% ) increased significantly, as compared with normal control ( 8.9 ±0.96%) (p <0.01 ). The ability of hematopoietic colony forming in FAC-treated cells decreased markedly, as compared with normal control (p < 0.05 ). The percentage of CD34 + cells of FAC-treated cells (0.39 ± 0.07 % ) also decreased significantly, as compared with normal control (0.91 ±0. 12% ) (p <0.01 ). And these changes could be alleviated by adding DFO. It is concluded that the iron-overloaded model has been set by adding iron into the mononuclear cells from BM in vitro, and the hematopoietic funtion of iron-overloaded BM is deficient. These changes can be alleviated by removing the excess iron from the BM cells through treating with DFO. These findings would be helpful to further study the mechanism of iron-overload on the hematopoiesis of BM and also useful to fmd the way to treat iron-overload patients with hematopoietic

  5. Hematopoiesis during development, aging, and disease

    NARCIS (Netherlands)

    Jung, Johannes; Buisman, Sonja; de Haan, Gerald

    2016-01-01

    Hematopoietic stem cells were once considered identical. However, in the mid-1990s, it became apparent that stem cells from a person's early developmental phases are superior to those from adults, and aged stem cells are defective compared with young stem cells. It has since become clear that polyco

  6. Epigenetic regulation of normal and malignant hematopoiesis

    NARCIS (Netherlands)

    Klauke, Karin

    2013-01-01

    Stamcellen zijn nodig voor de vorming van alle cellen in ons lichaam gedurende ons hele leven. In bijna ieder orgaan zijn stamcellen ontdekt. Stamcellen hebben de unieke eigenschap om, relatief ongelimiteerd, zichzelf te vernieuwen, waardoor vanuit één stamcel twee stamcellen ontstaan. Hierdoor blij

  7. Dlk1 in normal and abnormal hematopoiesis

    DEFF Research Database (Denmark)

    Sakajiri, S; O'kelly, J; Yin, D

    2005-01-01

    megakaryocytic differentiation of both CMK megakaryoblasts as well as normal CD34(+) hematopoietic stem cells. High serum levels of Dlk1 occurred in RA (4/10) and essential thrombocythemia (2/10) patients. Functional studies showed that forced expression of Dlk1 enhanced proliferation of K562 cells growing in 1...

  8. Epigenetic regulation of normal and malignant hematopoiesis

    NARCIS (Netherlands)

    Klauke, Karin

    2013-01-01

    Stamcellen zijn nodig voor de vorming van alle cellen in ons lichaam gedurende ons hele leven. In bijna ieder orgaan zijn stamcellen ontdekt. Stamcellen hebben de unieke eigenschap om, relatief ongelimiteerd, zichzelf te vernieuwen, waardoor vanuit één stamcel twee stamcellen ontstaan. Hierdoor

  9. Long noncoding RNA in hematopoiesis and immunity.

    Science.gov (United States)

    Satpathy, Ansuman T; Chang, Howard Y

    2015-05-19

    Dynamic gene expression during cellular differentiation is tightly coordinated by transcriptional and post-transcriptional mechanisms. An emerging theme is the central role of long noncoding RNAs (lncRNAs) in the regulation of this specificity. Recent advances demonstrate that lncRNAs are expressed in a lineage-specific manner and control the development of several cell types in the hematopoietic system. Moreover, specific lncRNAs are induced to modulate innate and adaptive immune responses. lncRNAs can function via RNA-DNA, RNA-RNA, and RNA-protein target interactions. As a result, they affect several stages of gene regulation, including chromatin modification, mRNA biogenesis, and protein signaling. We discuss recent advances, future prospects, and challenges in understanding the roles of lncRNAs in immunity and immune-mediated diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. 地中海贫血胸部髓外造血影像表现(附6例分析)%Imaging findings of intrathoracic extramedullary hematopoiesis in thalassemia:sixe cases report

    Institute of Scientific and Technical Information of China (English)

    杨军克; 黄筠洋; 俞雷; 岑炳奎; 黄晓

    2012-01-01

    目的 探讨地中海贫血胸部髓外造血组织增生的影像表现,提高影像诊断和鉴别诊断.方法 回顾性分析经临床证实的6例地中海贫血继发髓外造血(EMH)的胸部影像学资料,β-地中海贫血5例,α-地中海贫血1例.胸部X线平片6例,CT平扫4例,MRI平扫及增强2例.结果 影像表现为两侧脊柱旁瘤样软组织肿块影,4例合并胸壁肋骨下EMH,1例合并胸壁肋骨下、肺部及胸段椎管内多部位EMH;2例β-地中海贫血EMH见纤细骨针样钙化,MRI上呈等T1等T2信号,轻-中度强化;1例α-地中海贫血EMH巨大,密度不均,T1、T2呈等、高信号,轻-中度不均匀强化,2年后X线平片观察EMH大小有变化.CT引导下穿刺活检,镜下大部分为脂肪组织,并见片状坏死灶.结论 地中海贫血继发EMH,依据影像表现特点,结合临床及实验室检查可做出正确诊断.%Objective To investigate the imaging findings of intrathoracic extramedullary hematopoiesis(EMH) in thalassemia,so that to improve its diagnosis and differential diagnosis.Methods Clinical and imaging findings of 6 cases with EMH in thalassemia were retrospectively analyzed.There were Beta-thalassemia in 5 cases and Alpha-thalassemia in 1 case; 6 cases were examined by chest X-ray,CT plain scans in A cases, MRI plain scan and contrast-enhanced scan in 2 cases were performed.Results The imaging features of EMH were tumor-like masses at the posterior mediastinum of bilateral paravertebral, and accompanied with chest wall EMH in 4 cases,chest wall,lung and spinal canal EMH in 1 case.The calcific shadows of bony trabecula-like inside the masses were seen in 2 cases with Beta-thalassemia, and on MRI, EMH were of same signal intensity as compared to adjacent muscles on T1WI and T2WI,and slight to mild homogeneous enhancement after intravenous contrast administration.1 case with Alpha-thalassemia, the signal intensity or density of the lesions was inhomogeneous,and isointense and high signal

  11. Stop the dicing in hematopoiesis: What have we learned?

    NARCIS (Netherlands)

    M.F. Alemdehy (Mir Farshid); S.J. Erkeland (Stefan)

    2012-01-01

    textabstractMicroRNAs (miRNAs) belong to an abundant class of highly conserved small (22nt) non-coding RNAs. MiRNA profiling studies indicate that their expression is highly cell type-dependent. DICER1 is an essential RNase III endoribonuclease for miRNA processing. Hematopoietic cell type- and

  12. Concise Review: Stem Cell Population Biology: Insights from Hematopoiesis.

    Science.gov (United States)

    MacLean, Adam L; Lo Celso, Cristina; Stumpf, Michael P H

    2017-01-01

    Stem cells are fundamental to human life and offer great therapeutic potential, yet their biology remains incompletely-or in cases even poorly-understood. The field of stem cell biology has grown substantially in recent years due to a combination of experimental and theoretical contributions: the experimental branch of this work provides data in an ever-increasing number of dimensions, while the theoretical branch seeks to determine suitable models of the fundamental stem cell processes that these data describe. The application of population dynamics to biology is amongst the oldest applications of mathematics to biology, and the population dynamics perspective continues to offer much today. Here we describe the impact that such a perspective has made in the field of stem cell biology. Using hematopoietic stem cells as our model system, we discuss the approaches that have been used to study their key properties, such as capacity for self-renewal, differentiation, and cell fate lineage choice. We will also discuss the relevance of population dynamics in models of stem cells and cancer, where competition naturally emerges as an influential factor on the temporal evolution of cell populations. Stem Cells 2017;35:80-88. © 2016 AlphaMed Press.

  13. Modulation of hematopoiesis by lymphocyte membrane-derived components.

    Science.gov (United States)

    Guha, A; Mason, R P; Chen, L; Tuck, D P; Dainiak, N

    1994-04-01

    Membrane bound erythroid burst-promoting activity (mBPA) is an integral membrane protein that is present on normal B-cells and some activated T-cells, that induces burst-forming units-erythroid (BFU-E) when cultured with human erythropoietin (rHuEpo). Plasma membranes and vesicles shed from the leukemic A-1 cell line express mBPA. This activity derived from both A-1 cells and normal B-cells can be immunoadsorbed by the D3A4 antibody raised against mBPA. In this study, we demonstrate that interferon-gamma (IFN-gamma) suppresses BFU-E proliferation when added directly to culture of normal human bone marrow cells and in the absence and presence of A-1 cells. However, FACS analysis reveals that IFN-gamma enhances the surface expression of mBPA on A-1 cells. The role of IFN-gamma in modulating erythropoiesis in vitro is discussed with respect to the role of shedding membrane-derived vesicles from the B-cell surface.

  14. Adrenal extramedullary hematopoiesis associated with β-thalassemia major

    Directory of Open Access Journals (Sweden)

    Bijan Keikhaei

    2012-01-01

    Full Text Available The presence of apparently normal hematopoietic tissue outside of bone marrow cavity is defined as extramedullary hema - topoiesis (EMH. EMH is a rare complication in thalassemia major (TM and adrenal gland as well. This report describes a case of adrenal EMH in a 26-year-old man with β-TM. He has been transfused with regular blood transfusion since 9 months. During the routine physical examination he was incidentally found to have a hypoechoic mass at his abdominal ultrasonography. Abdominal computed tomography scan revealed a right well-defined suprarenal mass 7.7¥7.3¥5.8 cm in size. The diagnosis of EMH was confirmed with ultrasonographic-guided fine needle biopsy. Treatment options which include intensified regular blood transfusion and hydroxyurea have been started.

  15. Hematopoiesis research in aplastic anaemia induced by accidental protracted radiation

    Energy Technology Data Exchange (ETDEWEB)

    Socie, G.; Carosella, E.D.; Hervatin, F.; Gluckman, E. [Hopital Saint-Louis, 75 - Paris (France); Sohrabi, K.M.; Sheibani, K.M. [National Radiation Protection Department, Atomic Energy Organization (Iran, Islamic Republic of); Cosset, J.M. [Institut Curie, 75 - Paris (France); Cremoux, P. de [Hopital Saint-Louis, 75 - Paris (France); Dutrillaux, B. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Direction des Sciences du Vivant; Rabian, C. [Hopital Saint-Louis, 75 - Paris (France); Gourmelon, P. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Parmentier, C. [Centre de Lutte Contre le Cancer Gustave-Roussy, 94 - Villejuif (France)

    1996-08-01

    Over the past few years there have been 2 radiation-related accidents involving a large number of individuals: the April 1986 accident in Chernobyl nuclear power station in the Ukraine and the September 1987 accident in Goiania, Brazil. These 2 radiation-related accidents highlight the major question raised by radiation-induced injury to the haematopoietic system, that is: does a given patient suffer from a reversible or an irreversible haematopoietic stem cell damage ? Although about 350 radiation accidents involving several thousand people are known from the literature, in-depth haematopoiesis analyses of individuals after a radiation-related accident have rarely been reported. In this paper we present the case of a young man with radiation-induced aplasia and compare some biological data to those of 16 normal individuals and of 17 patients with acquired aplastic anaemia. Our patient was clinically and biologically (as assessed by long-term bone marrow culture) indistinguishable from patients with idiopathic acquired aplastic anaemia. Furthermore, therapeutic attitudes in this patient are discussed. In-depth study of such radiation-induced aplastic anaemia cases can shed some light in the understanding of this disease and may help in therapeutic decisions. (author). 21 refs.

  16. 重型再生障碍性贫血免疫抑制治疗后恶性克隆造血临床分析%Clinical analysis on malignant clonal hematopoiesis in severe aplastic anemia patients with immunosuppressive therapy

    Institute of Scientific and Technical Information of China (English)

    崔宁博; 付蓉; 瞿文; 阮二宝; 王晓明; 王国锦; 吴玉红; 刘鸿; 关晶

    2015-01-01

    that they had no response to IST after 6 months,high monocyte percentage in one month after IST combined with recombinant human granulocyte colony stimulating factor (rHu-GCSF) and agranulocytosis in 3 months after IST.Conclusion Poor myeloid response to IST suggests malignant clonal hematopoiesis and poor prognosis in SAA patients.

  17. X射线和γ射线预处理对小鼠异基因骨髓移植后造血免疫重建的影响%Effects of X-rays and γ-rays on reconstitution of hematopoiesis and immunity after allogeneic bone marrow transplantation

    Institute of Scientific and Technical Information of China (English)

    潘彬; 曾令宇; 程海; 宋国梁; 贾路; 闫志凌; 陈翀; 徐开林

    2011-01-01

    -ray + transplantation group (t = 3.624,6.695 ,P < 0.05).The chimeric rats of the peripheral lymphocytes 10 and 20 days after transplantation of the γ-ray + transplantation group were both significantly higher than those of the X-ray + transplantation group (t = 12.317,8.295,P < 0.05).The homogeneity rate of transplantation of the γ-ray +transplantation group was better than that of the X-ray + transplantation group.Conclusions As a conditioning regimen in allogeneic hematopoietic stem cell transplantation γ-ray irradiation causes milder injury and accelerated reconstitution of hematopoiesis and immunity,in comparison with X-ray irradiation.%目的 研究X射线和γ射线两种预处理方式造成的损伤程度的差别,以及对造血、免疫重建的影响,确定适用于异基因造血干细胞移植的预处理照射方式.方法 对受鼠分别使用直线加速器X射线或60Coγ射线进行致死剂量(总剂量为7.0 Gy)全身照射后,给予相同数量供鼠骨髓细胞移植.观察受鼠移植后的生存时间、重要脏器(肝、小肠和肺)病理变化、嵌合率(H-2Kb+细胞比例)和造血免疫重建状况.结果 移植后早期,γ射线移植组生存率高于X射线移植组,小肠和肺损伤程度亦较轻.嵌合率γ射线移植组5和10 d均高于X射线移植组(t=15.263、3.256,P<0.05).γ射线移植组10和20 d外周血白细胞计数和淋巴细胞植入率均高于X射线移植组(t=3.624、6.695,P<0.05).结论 与X射线相比,γ射线照射产生的预处理损伤较轻,可获得较好的造血、免疫重建效果,可提高移植模型的质量和实验的均一性.

  18. Marrow Stromal Cell Infusion Rescues Hematopoiesis in Lethally Irradiated Mice despite Rapid Clearance after Infusion

    Directory of Open Access Journals (Sweden)

    Xiaodong Yang

    2012-01-01

    Full Text Available Marrow stromal cells (MSCs, also termed mesenchymal stem cells have been proposed as a promising cellular therapy for tissue injury including radiation-induced marrow failure, but evidence for a direct effect is lacking. To assess the effects of MSCs on survival after lethal irradiation, we infused syngeneic MSCs (either as immortalized MSCs clones or primary MSCs intravenously into wild-type C57/Bl6 mice within 24 hours of lethal total body irradiation (TBI. Mice receiving either of the MSC preparations had significantly improved survival when compared to controls. In vivo imaging, immune histochemistry, and RT-PCR employed to detect MSCs indicated that the infused MSCs were predominantly localized to the lungs and rapidly cleared following infusion. Our results suggest that a single infusion of MSCs can improve survival after otherwise lethal TBI but the effect is not due to a direct interaction with, or contribution to, the damaged marrow by MSCs.

  19. Protein Tyrosine Phosphatase SHP-2 (PTPN11 in Hematopoiesis and Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2011-01-01

    Full Text Available SHP-2 (PTPN11, a ubiquitously expressed protein tyrosine phosphatase, is critical for hematopoietic cell development and function owing to its essential role in growth factor/cytokine signaling. More importantly, germline and somatic mutations in this phosphatase are associated with Noonan syndrome, Leopard syndrome, and childhood hematologic malignancies. The molecular mechanisms by which SHP-2 mutations induce these diseases are not fully understood, as the biochemical bases of SHP-2 functions still remain elusive. Further understanding SHP-2 signaling activities and identification of its interacting proteins/substrates will shed light on the pathogenesis of PTPN11-associated hematologic malignancies, which, in turn, may lead to novel therapeutics for these diseases.

  20. The p53 pathway in hematopoiesis: lessons from mouse models, implications for humans

    OpenAIRE

    Pant, Vinod; Quintás-Cardama, Alfonso; Lozano, Guillermina

    2012-01-01

    Aberrations in the p53 tumor suppressor pathway are associated with hematologic malignancies. p53-dependent cell cycle control, senescence, and apoptosis functions are actively involved in maintaining hematopoietic homeostasis under normal and stress conditions. Whereas loss of p53 function promotes leukemia and lymphoma development in humans and mice, increased p53 activity inhibits hematopoietic stem cell function and results in myelodysplasia. Thus, exquisite regulation of p53 activity is ...

  1. Roles of the RUNX1 Enhancer in Normal Hematopoiesis and Leukemogenesis.

    Science.gov (United States)

    Liau, Wei-Siang; Ngoc, Phuong Cao Thi; Sanda, Takaomi

    2017-01-01

    Enhancers are regulatory elements in genomic DNA that contain specific sequence motifs that are bound by DNA-binding transcription factors. The activity of enhancers is tightly regulated in an integrated and combinatorial manner, thus yielding complex patterns of transcription in different tissues. Identifying enhancers is crucial to understanding the physiological and pathogenic roles of their target genes. The RUNX1 intronic enhancer, eR1, acts in cis to regulate RUNX1 gene expression in hematopoietic stem cells (HSCs) and hemogenic endothelial cells. RUNX1 and other hematopoietic transcription factors TAL1/SCL, GATA2, PU.1, LMO2 and LDB1 bind at this region. Interestingly, recent studies have revealed that this region is involved in a large cluster of enhancers termed a super-enhancer. The RUNX1 super-enhancer is observed in normal HSCs and T-cell acute lymphoblastic leukemia cells. In this review, we describe the discovery of eR1 and its roles in normal development and leukemogenesis, as well as its potential applications in stem cell research.

  2. RNAi-mediated Therapy & Preliminary Data on the Role of TGIF in Hematopoiesis

    DEFF Research Database (Denmark)

    Willer, Anton

    CCAAT Enhancer Binding Protein alpha (C/EBP?). The generation of fusion proteins by aberrant genetic events such as chromosomal translocations is a major pathway leading to hematological malignancies including leukemias and lymphomas. A frequently found oncogenic fusion protein is the fusion between...... the Mixed lineage leukaemia gene (MLL) and AF9. Oncogenic fusion proteins provide an obvious target for RNAi-mediated intervention, i.e. the fusion point. Ideally, shRNAs (small hairpin RNAs) should be able to target the fusion point of the messenger RNA encoding the fusion protein in a highly specific...... manner without interfering with the remaining normal alleles of the two fusion partners. To test the potential of this kind of therapeutic, MLL-AF9 immortalised cells were transduced with a retroviral vector expressing a hairpin targeting the fusion point. This resulted in repression of proliferation...

  3. Radioprotective effects of ginsan through the stimulation hematopoiesis and antioxidant enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jie Young; Son, Soo Jung; Ahn, Ji Yeon; Shim, Ji Young; Han, Young Soo; Yun, Yeon Sook [Korea Institute of Radiological and Medical Sciences, Taejon (Korea, Republic of)

    2003-07-01

    An immunomodulator ginsan which was isolated from Panax ginseng showed the mitogenic activity, generation of LAK cells, and secretion of several cytokines. In the extended effort to search other immunostimulatory effects, we evaluated protective effects of in vivo injected Ginsan against irradiation, by measuring the recovery of CFU-S, and the functioning of bone marrow (BM) and spleen cells. Ginsan was found to significantly increase the number of BM cells, spleen cells, granulocytes macrophage-colony forming cells (GM-CFC), and the number of circulating neutrophils, lymphocytes and platelets in irradiated mice. In addition, it induced endogenous production of cytokines such as IL-1, IL-6, IFN-g and IL-12, which are required for hematopoietic recovery, and was able to enhance Th1 function while interfering with the Th2 response in irradiated mice. We demonstrated that the pretreatment with Ginsan protected mice from lethal effects of ionizing radiation more effectively than given immediately or after the irradiation. A significant increase of the survival of Ginsan-treated group (100mg/kg) from LD50/30 7.54 Gy of PBS-injection to 10.93 Gy was observed. Moreover, the levels of the antioxidant enzymes such as SODs, catalase and gluthathion peroxidase were increased 1.5-2 fold in ginsan treated mice compared to the irradiated mice. These findings indicate that ginsan may be a promising agent to be used in reducing the time needed for reconstituting of hematopoietic cells after irradiation treatment.

  4. Recombinant Human Thrombopoietin Treatment Promotes Hematopoiesis Recovery in Patients with Severe Aplastic Anemia Receiving Immunosuppressive Therapy

    Directory of Open Access Journals (Sweden)

    Huaquan Wang

    2015-01-01

    Full Text Available Objective. To assess the effectiveness of recombinant human thrombopoietin (rhTPO in severe aplastic anemia (SAA patients receiving immunosuppressive therapy (IST. Methods. Eighty-eight SAA patients receiving IST from January 2007 to December 2012 were included in this retrospective analysis. Of these, 40 subjects received rhTPO treatment (15000 U, subcutaneously, three times a week. rhTPO treatment was discontinued when the platelet count returned to normal range. Hematologic response, bone marrow megakaryocyte recovery, and time to transfusion independence were compared. Results. Hematologic response was achieved in 42.5%, 62.5%, and 67.5% of patients receiving rhTPO and 22.9%, 41.6%, and 47.9% of patients not receiving rhTPO at 3, 6, and 9 months after treatment, respectively (P = 0.0665, P = 0.0579, and P = 0.0847, resp.. Subjects receiving rhTPO presented an elevated number of megakaryocytes at 3, 6, and 9 months when compared with those without treatment (P = 0.025, P = 0.021, and P = 0.011, resp.. The time to platelet and red blood cell transfusion independence was shorter in patients who received rhTPO than in those without rhTPO treatment. Overall survival rate presented no differences between the two groups. Conclusion. rhTPO could improve hematologic response and promote bone marrow recovery in SAA patients receiving IST.

  5. Recombinant Human Thrombopoietin Treatment Promotes Hematopoiesis Recovery in Patients with Severe Aplastic Anemia Receiving Immunosuppressive Therapy

    OpenAIRE

    2015-01-01

    Objective. To assess the effectiveness of recombinant human thrombopoietin (rhTPO) in severe aplastic anemia (SAA) patients receiving immunosuppressive therapy (IST). Methods. Eighty-eight SAA patients receiving IST from January 2007 to December 2012 were included in this retrospective analysis. Of these, 40 subjects received rhTPO treatment (15000 U, subcutaneously, three times a week). rhTPO treatment was discontinued when the platelet count returned to normal range. Hematologic response, b...

  6. Search for the active components and studies on the mechanism of the hematopoiesis improvement foods

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Sung Tae; Ha, Mee Hye; Jeong, Young Ran [Sunchon National University, Chonan (Korea)

    1999-04-01

    In this experiments, we established long-termed culture methods of bone marrow stromal cells for proliferation and differentiation of stem cells. And we selected some extracts which support maximal proliferation of stromal cells with this method. We conformed the synergic effects of herval mixture extracts for stromal cell growth. The proliferation of stromal cells was increased rather by the addition of mixture extracts than by addition of single strain extract. In the previous and cooperative experiments, we selected complex extracts which increased the number of nonadherent mononuclear cells. Different cytokine expression patterns were observed stromal cells cultured in the presence or absence of mixture extracts which support differentiation of nonadherent cells. Stimulation of macrophage cell line with herval extracts with the treatments of recombinant interferon-{gamma} resulted in increased nitric oxide synthesis in a dose-dependent manners. In addition, these extracts induced the same effects on the peritoneal macrophages. Altered patterns of cytokine mRNA expression - IL-1{beta}, IL-6, LT and iNOS-were observed in the stromals cells cultured with extracts of herbal plant. In regarding of the results, isolation and development of new and effective systems to screen for active hematopoietic component needs to be proceeded. Such studies on the hematopoietic modulation and mechanism of herbal plants would further lead to new avenues for the development of functional foods which effect such as radiation damages or leukemia. (author). 20 refs., 13 figs., 1 tab.

  7. Immune activation modulates hematopoiesis through interactions between CD27 and CD70

    NARCIS (Netherlands)

    Nolte, MA; Arens, R; van Os, R; van Oosterwijk, M; Hooibrink, B; van Lier, RAW; van Oers, MHJ

    2005-01-01

    The differentiation of hematopoietic stem cells into mature blood cell lineages is tightly regulated. Here we report that CD27, which is expressed on stem and early progenitor cells in bone marrow, can be important in this process. Deletion of CD27 increased the myeloid colony - forming potential of

  8. Regulation of hematopoiesis in rats exposed to antiorthostatic hypokinetic/hypodynamia. II - Mechanisms of the 'anemia'

    Science.gov (United States)

    Dunn, C. D. R.; Johnson, P. C.; Lange, R. D.

    1986-01-01

    The cause of the red cell mass (RCM) deficit, which occurs in rats during suspenion, is investigated. The experimental conditions and procedures, in which male Sprague-Dawley rats are subjected to antiorthostatic hyypokinetic/hypodynamia and changes in RCM are monitored, are described. The influences of stress, reduced food and water consumption, and antiorhostatic posture on RCM are analyzed. Changes in body weight, RCM, radioiron incorporation, red blood cells (RBC), and reticulocytes, for the rats after head-down suspension are graphically presented; only the changes in RBC are related to the antiorthostatic posture. The data reveal that anemia is primarily caused by reduced food and water consumption and secondly by restricted movements.

  9. Id1 represses osteoclast-dependent transcription and affects bone formation and hematopoiesis.

    Directory of Open Access Journals (Sweden)

    April S Chan

    Full Text Available BACKGROUND: The bone-bone marrow interface is an area of the bone marrow microenvironment in which both bone remodeling cells, osteoblasts and osteoclasts, and hematopoietic cells are anatomically juxtaposed. The close proximity of these cells naturally suggests that they interact with one another, but these interactions are just beginning to be characterized. METHODOLOGY/PRINCIPAL FINDINGS: An Id1(-/- mouse model was used to assess the role of Id1 in the bone marrow microenvironment. Micro-computed tomography and fracture tests showed that Id1(-/- mice have reduced bone mass and increased bone fragility, consistent with an osteoporotic phenotype. Osteoclastogenesis and pit formation assays revealed that loss of Id1 increased osteoclast differentiation and resorption activity, both in vivo and in vitro, suggesting a cell autonomous role for Id1 as a negative regulator of osteoclast differentiation. Examination by flow cytometry of the hematopoietic compartment of Id1(-/- mice showed an increase in myeloid differentiation. Additionally, we found increased expression of osteoclast genes, TRAP, Oscar, and CTSK in the Id1(-/- bone marrow microenvironment. Lastly, transplantation of wild-type bone marrow into Id1(-/- mice repressed TRAP, Oscar, and CTSK expression and activity and rescued the hematopoietic and bone phenotype in these mice. CONCLUSIONS/SIGNIFICANCE: In conclusion, we demonstrate an osteoporotic phenotype in Id1(-/- mice and a mechanism for Id1 transcriptional control of osteoclast-associated genes. Our results identify Id1 as a principal player responsible for the dynamic cross-talk between bone and bone marrow hematopoietic cells.

  10. Differences in proportion and dynamics of recipient hematopoiesis following hematopoietic cell transplantation in CML and IMF.

    Science.gov (United States)

    Siebolts, Udo; Thiele, Jürgen; Zander, Thomas; Ditschkowski, Markus; Beelen, Dietrich W; Kröger, Nicolaus; Fehse, Boris; Wickenhauser, Claudia

    2008-01-01

    Since decades myeloablation followed by allogeneic stem cell transplantation offered the only opportunity to cure leukemia patients and only recently the development of STI571 created a further alternative in chronic myeloid leukemia (CML). While among all leukemias this transplantation regimen had the best outcome in CML, trials with reduced intensity conditioning regimens (RIC) were rather humbling and recurrence of the neoplastic clone occurred frequently. However, the same therapy in patients with idiopathic myelofibrosis (IMF) resulted in a more favorable outcome. Therefore, long-term mixed chimerism (mCh) was determined on bone marrow (BM) biopsies derived from five IMF patients and from eight CML patients of the pre STI era following sex-mismatched transplantation. All patients presented lasting hematologic remission and were matched concerning age, sex and appearance of GvHD. Analysis of late transplant period (day +100) revealed a concentration of host cells within the CD34+ precursor cell compartment in both diseases. However, in IMF BM biopsies only up to 8% recipient CD34+ precursors but in CML biopsies up to 26% recipient CD34+ precursors were detected. Taken into account that in CML up to 10% of the host BM CD34+ precursors bear the BCR-ABL translocation our data suggest that the neoplastic CD34+ progenitor cell population might dispose of better strategies to escape immune surveillance in CML than in IMF.

  11. The Histone Methyltransferase Activity of MLL1 Is Dispensable for Hematopoiesis and Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Bibhu P. Mishra

    2014-05-01

    Full Text Available Despite correlations between histone methyltransferase (HMT activity and gene regulation, direct evidence that HMT activity is responsible for gene activation is sparse. We address the role of the HMT activity for MLL1, a histone H3 lysine 4 (H3K4 methyltransferase critical for maintaining hematopoietic stem cells (HSCs. Here, we show that the SET domain, and thus HMT activity of MLL1, is dispensable for maintaining HSCs and supporting leukemogenesis driven by the MLL-AF9 fusion oncoprotein. Upon Mll1 deletion, histone H4 lysine 16 (H4K16 acetylation is selectively depleted at MLL1 target genes in conjunction with reduced transcription. Surprisingly, inhibition of SIRT1 is sufficient to prevent the loss of H4K16 acetylation and the reduction in MLL1 target gene expression. Thus, recruited MOF activity, and not the intrinsic HMT activity of MLL1, is central for the maintenance of HSC target genes. In addition, this work reveals a role for SIRT1 in opposing MLL1 function.

  12. Effects of Ligustrazine on Hematopoiesis in the Early Phase of Bone Marrow Transplantation Mice

    Institute of Scientific and Technical Information of China (English)

    周银莉; 刘文励; 孙汉英; 徐惠珍; 路武; 孙岚; 孟凡凯

    2002-01-01

    Summary: To investigate the effects of Ligustrazine on histogenesis of bone marrow in the early phase of hematopoietic reconstruction in bone marrow transplantation (BMT) mice. The syngeneic BMT mice model was established. The syngeneic BMT mice were orally given 2 mg Ligustrazine twice a day. 1, 3, 5, 7, 10, 15 and 21 day(s) after BMT, peripheral blood granulocytes and bone marrow nucleated cells (BMNC) were counted and the diameter of central vein and the area of micro-vessel in femur were measured. The effect of Ligustrazine on hematopoietic stem cells was observed by colony forming unit of spleen (CFU-S). The effect of Ligustrazine on hemopoietic progenitors was studied by observing the number of progenitors of Granulocytes/Macrophage on day 10 and day 20 after BMT. In Ligustrazine-treated group, the diameter of center veins and the area of micro-vessel of femur were all significantly less than the control group 7, 10, 15, 21 days after BMT (P<0. 01). In addition, Ligustrazine significantly increased the number of CFU-S on day 10and the number of CFU-GM on day 10, 20 after BMT. These results indicate that Ligustrazine can accelerate the histogenesis of hemopoietic bone marrow, which may be one mechanism by which Ligustrazine promotes hematopoietic reconstitution after BMT.

  13. Effects of Designer Hyper-Interleukin 11 (H11 on Hematopoiesis in Myelosuppressed Mice.

    Directory of Open Access Journals (Sweden)

    Hanna Dams-Kozlowska

    Full Text Available The incidence of cancer is constantly increasing. Chemo/radiotherapy is one of major methods of treating cancer. Although adverse chemo/radiotherapy events, such as anemia and neutropenia, can be successfully cured, thrombocytopenia is still problematic. We constructed the Hyper-IL11 (H11 cytokine by linking soluble interleukin 11 receptor alpha (sIL-11Ralpha with IL-11. In vivo H11 activity was examined in myelosuppressed mice. Myelosuppression was induced by either i sublethal irradiation and carboplatin administration or ii sublethal irradiation. A dose of 100 μg/kg of H11 or IL-11 was administered subcutaneously for 7 days. IL-11 and H11 accelerated leukocyte, hematocrit and platelet recovery. The effect on the attenuation of thrombocytopenia was significant. Moreover, both cytokines increased the cellularity and numbers of megakaryocyte, erythroid, and granulocyte/macrophage progenitors in the bone morrow and spleen compared with the control. Although H11 was administered at a molar concentration that was three times lower, its effects were comparable with or better than those of IL-11; thus, the activity of H11 was superior to that of IL-11. Because no toxicity was observed after the intravenous administration of H11, this hyper-cytokine may be potentially useful for treatment of thrombocytopenia and other IL-11-dependent disorders.

  14. Clotting protein - An extracellular matrix (ECM) protein involved in crustacean hematopoiesis.

    Science.gov (United States)

    Junkunlo, Kingkamon; Söderhäll, Kenneth; Söderhäll, Irene

    2017-09-21

    Hematopoietic progenitor cells in crustaceans are organized in lobule-like structures surrounded by different types of cells and extracellular matrix (ECM) protein in a Hematopoietic tissue (HPT). Here we show that the clotting protein (CP) is part of the ECM in HPT and is secreted during HPT cell culture. The formation of a filamentous network of CP was observed in HPT cell culture. A high amount of CP protein was detected at the surfaces of undifferentiated cells (round-shaped) compared with migrating cells (spindle shaped). Co-localization of the CP protein and TGase activity was observed on the cell surface and filamentous network between cells. A role for CP together with collagen was revealed in a 3D culture in which a collagen-I matrix was immobilized with CP or supplemented with CP. The results showed possible functions of CP, collagen, TGase and cytokine Ast1 in the regulation of HPT progenitor cell behavior. This is the first study to provide insight into the role of CP, which probably not only participates in clot formation but also functions as an ECM component protein controlling hematopoietic stem cell behavior. Copyright © 2017. Published by Elsevier Ltd.

  15. Models of Hemodynamics and Hematopoiesis Following Hemorrhage for Use in Combined Injury Simulations

    Science.gov (United States)

    2016-06-01

    resulting from a nuclear detonation and will assist in medical planning . Hemorrhage, Combined Injury, Ordinary Differential Equation Model, Fluid...Computer models can help predict the resource requirements for attending to casualties and assist in medical planning . Model extensions described in this...first phase, involves the restitution of plasma proteins to support plasma oncotic pressure and continued blood volume expansion. While this increase

  16. Fine-tuning Hematopoiesis: Microenvironmental factors regulating self-renewal and differentiation of hematopoietic stem cells

    NARCIS (Netherlands)

    T.C. Luis (Tiago)

    2010-01-01

    markdownabstract__Abstract__ Hematopoietic stem cells (HSCs) have the ability to self renew and generate all lineages of blood cells. Although it is currently well established that hematopoietic stem cells (HSCs) regenerate the blood compartment, it was only in the 1960s that was introduced the not

  17. Antigenic Analysis of Hematopoiesis. 2. Expression of Human Neutrophil Antigens on Normal and Leukemic Marrow Cell

    Science.gov (United States)

    1984-01-01

    Saems me dei e dy and 441 by m lmvhlg. 442 ’ Poema loeme" aneannan (manS. poemm/nael COeIn 443 de11ne a 20% flutareacam comes Io uotpe-neIdd canto 441 bmedAWn flumenm 47 ZYXWVU I 449 16230 4591 22016 189:BL00203J12.97 51H 0

  18. Regulation of hematopoiesis and the hematopoietic stem cell niche by Wnt signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Michael J Nemeth; David M Bodine

    2007-01-01

    Hematopoietic stem cells (HSCs) are a rare population of cells that are responsible for life-long generation of blood cells of all lineages. In order to maintain their numbers, HSCs must establish a balance between the opposing cell fates of self-renewal (in which the ability to function as HSCs is retained) and initiation of hematopoietic differentiation. Multiple signaling pathways have been implicated in the regulation of HSC cell fate. One such set of pathways are those activated by the Wnt family of ligands. Wnt signaling pathways play a crucial role during embryogenesis and deregulation of these pathways has been implicated in the formation of solid tumors. Wnt signaling also plays a role in the regulation of stem cells from multiple tissues, such as embryonic, epidermal, and intestinal stem cells. However, the function of Wnt signaling in HSC biology is still controversial. In this review, we will discuss the basic characteristics of the adult HSC and its regulatory microenvironment, the "niche", focusing on the regulation of the HSC and its niche by the Wnt signaling pathways.

  19. Aging-associated changes in hematopoiesis and leukemogenesis: what's the connection?

    Science.gov (United States)

    Henry, Curtis J; Marusyk, Andriy; DeGregori, James

    2011-06-01

    Aging is associated with a marked increase in a number of diseases, including many types of cancer. Due to the complex and multi-factorial nature of both aging and cancer, accurate deciphering of causative links between aging and cancer remains a major challenge. It is generally accepted that initiation and progression of cancers are driven by a process of clonal evolution. In principle, this somatic evolution should follow the same Darwinian logic as evolutionary processes in populations in nature: diverse heritable types arising as a result of mutations are subjected to selection, resulting in expansion of the fittest clones. However, prevalent paradigms focus primarily on mutational aspects in linking aging and cancer. In this review, we will argue that age-related changes in selective pressures are likely to be equally important. We will focus on aging-related changes in the hematopoietic system, where age-associated alterations are relatively well studied, and discuss the impact of these changes on the development of leukemias and other malignancies.

  20. Essential role of DOT1L in maintaining normal adult hematopoiesis

    Institute of Scientific and Technical Information of China (English)

    Anh T Nguyen; Jin He; Olena Taranova; Yi Zhang

    2011-01-01

    Dear Editor,Histone methylation plays important roles in regulating gene expression and diverse biological processes [ 1 ].Methylation of a unique residue,lysine 79 of histone H3 (H3K79),is evolutionarily conserved from yeast to human and is catalyzed by yeast Dotl (disruptor of telomeric silencing) and its mammalian homolog DOT1L (Dotl-Like),respectively [2].

  1. Tissue engineered humanized bone supports human hematopoiesis in vivo.

    Science.gov (United States)

    Holzapfel, Boris M; Hutmacher, Dietmar W; Nowlan, Bianca; Barbier, Valerie; Thibaudeau, Laure; Theodoropoulos, Christina; Hooper, John D; Loessner, Daniela; Clements, Judith A; Russell, Pamela J; Pettit, Allison R; Winkler, Ingrid G; Levesque, Jean-Pierre

    2015-08-01

    Advances in tissue-engineering have resulted in a versatile tool-box to specifically design a tailored microenvironment for hematopoietic stem cells (HSCs) in order to study diseases that develop within this setting. However, most current in vivo models fail to recapitulate the biological processes seen in humans. Here we describe a highly reproducible method to engineer humanized bone constructs that are able to recapitulate the morphological features and biological functions of the HSC niches. Ectopic implantation of biodegradable composite scaffolds cultured for 4 weeks with human mesenchymal progenitor cells and loaded with rhBMP-7 resulted in the development of a chimeric bone organ including a large number of human mesenchymal cells which were shown to be metabolically active and capable of establishing a humanized microenvironment supportive of the homing and maintenance of human HSCs. A syngeneic mouse-to-mouse transplantation assay was used to prove the functionality of the tissue-engineered ossicles. We predict that the ability to tissue engineer a morphologically intact and functional large-volume bone organ with a humanized bone marrow compartment will help to further elucidate physiological or pathological interactions between human HSCs and their native niches. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. Identification of the Common Origins of Osteoclasts, Macrophages, and Dendritic Cells in Human Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Yanling Xiao

    2015-06-01

    Full Text Available Osteoclasts (OCs originate from the myeloid cell lineage, but the successive steps in their lineage commitment are ill-defined, especially in humans. To clarify OC origin, we sorted cell populations from pediatric bone marrow (BM by flow cytometry and assessed their differentiation potential in vitro. Within the CD11b−CD34+c-KIT+ BM cell population, OC-differentiation potential was restricted to FLT3+ cells and enriched in an IL3 receptor (Rαhigh subset that constituted less than 0.5% of total BM. These IL3Rαhigh cells also generated macrophages (MΦs and dendritic cells (DCs but lacked granulocyte (GR-differentiation potential, as demonstrated at the clonal level. The IL3Rαlow subset was re-defined as common progenitor of GR, MΦ, OC, and DC (GMODP and gave rise to the IL3Rαhigh subset that was identified as common progenitor of MΦ, OC, and DC (MODP. Unbiased transcriptome analysis of CD11b−CD34+c-KIT+FLT3+ IL3Rαlow and IL3Rαhigh subsets corroborated our definitions of the GMODP and MODP and their developmental relationship.

  3. The role of microRNAs in normal hematopoiesis and hematopoietic malignancies

    NARCIS (Netherlands)

    Kluiver, J.; Kroesen, B. -J.; Poppema, S.; van den Berg, Anke

    2006-01-01

    Over the past few years, it has become evident that microRNAs ( miRNAs) play an important regulatory role in various biological processes. Much effort has been put into the elucidation of their biogenesis, and this has led to the general concept that a number of key regulators are shared with the pr

  4. Identification of the Common Origins of Osteoclasts, Macrophages, and Dendritic Cells in Human Hematopoiesis.

    Science.gov (United States)

    Xiao, Yanling; Zijl, Sebastiaan; Wang, Liqin; de Groot, Daniel C; van Tol, Maarten J; Lankester, Arjan C; Borst, Jannie

    2015-06-01

    Osteoclasts (OCs) originate from the myeloid cell lineage, but the successive steps in their lineage commitment are ill-defined, especially in humans. To clarify OC origin, we sorted cell populations from pediatric bone marrow (BM) by flow cytometry and assessed their differentiation potential in vitro. Within the CD11b(-)CD34(+)c-KIT(+) BM cell population, OC-differentiation potential was restricted to FLT3(+) cells and enriched in an IL3 receptor (R)α(high) subset that constituted less than 0.5% of total BM. These IL3Rα(high) cells also generated macrophages (MΦs) and dendritic cells (DCs) but lacked granulocyte (GR)-differentiation potential, as demonstrated at the clonal level. The IL3Rα(low) subset was re-defined as common progenitor of GR, MΦ, OC, and DC (GMODP) and gave rise to the IL3Rα(high) subset that was identified as common progenitor of MΦ, OC, and DC (MODP). Unbiased transcriptome analysis of CD11b(-)CD34(+)c-KIT(+)FLT3(+) IL3Rα(low) and IL3Rα(high) subsets corroborated our definitions of the GMODP and MODP and their developmental relationship.

  5. Transcriptional Regulation of Hhex in Hematopoiesis and Hematopoietic Stem Cell Ontogeny

    DEFF Research Database (Denmark)

    Portero Migueles, Rosa; Shaw, Louise; Rodrigues, Neil P

    2017-01-01

    in endothelium of the dorsal aorta (DA) and in clusters of putative HSCs as they are specified during murine development. We exploited this observation, using the Hhex locus to define cis regulatory elements, enhancers and interacting transcription factors that are both necessary and sufficient to support gene...

  6. Physiological functions of TNF family receptor/ligand interactions in hematopoiesis and transplantation.

    Science.gov (United States)

    Mizrahi, Keren; Askenasy, Nadir

    2014-07-10

    Secretion of ligands of the tumor necrosis factor (TNF) superfamily is a conserved response of parenchymal tissues to injury and inflammation that commonly perpetuates elimination of dysfunctional cellular components by apoptosis. The same signals of tissue injury that induce apoptosis in somatic cells activate stem cells and initiate the process of tissue regeneration as a coupling mechanism of injury and recovery. Hematopoietic stem and progenitor cells upregulate the TNF family receptors under stress conditions and are transduced with trophic signals. The progeny gradually acquires sensitivity to receptor-mediated apoptosis along the differentiation process, which becomes the major mechanism of negative regulation of mature proliferating hematopoietic lineages and immune homeostasis. Receptor/ligand interactions of the TNF family are physiological mechanisms transducing the need for repair, which may be harnessed in pathological conditions and transplantation. Because these interactions are physiological mechanisms of injury, neutralization of these pathways has to be carefully considered in disorders that do not involve intrinsic aberrations of excessive susceptibility to apoptosis.

  7. The Lnk adaptor protein: a key regulator of normal and pathological hematopoiesis.

    Science.gov (United States)

    Velazquez, Laura

    2012-12-01

    The development and function of blood cells are regulated by specific growth factors/cytokines and their receptors' signaling pathways. In this way, these factors influence cell survival, proliferation and differentiation of hematopoietic cells. Central to this positive and/or negative control are the adaptor proteins. Since their identification 10 years ago, members of the Lnk adaptor protein family have proved to be important activators and/or inhibitors in the hematopoietic, immune and vascular system. In particular, the generation of animal and cellular models for the Lnk and APS proteins has helped establish the physiological role of these molecules through the identification of their specific signaling pathways and the characterization of their binding partners. Moreover, the recent identification of mutations in the LNK gene in myeloproliferative disorders, as well as the correlation of a single nucleotide polymorphism on LNK with hematological, immune and vascular diseases have suggested its involvement in the pathophysiology of these malignancies. The latter findings have thus raised the possibility of addressing Lnk signaling for the treatment of certain human diseases. This review therefore describes the pathophysiological role of this adaptor protein in hematological malignancies and the potential benefits of Lnk therapeutic targeting.

  8. The role of EVI-1 in normal hematopoiesis and myeloid malignancies (Review).

    Science.gov (United States)

    Yuan, Xiaofen; Wang, Xidi; Bi, Kehong; Jiang, Guosheng

    2015-12-01

    Ecotropic virus integration site-1 (EVI-1) gene, locus on chromosome 3 (3q26.2) in the human genome, was first found in the AKXD strain of mice, in a model of retrovirus-induced acute myeloid leukemia (AML) established twenty years ago. Since then, EVI-1 was regarded as one of the most invasive proto-oncogenes in human leukemia. EVI-1 can encode a unique zinc-finger protein of 145 kDa that can bind with DNA, and its overexpression was closely related to human hemopoietic diseases. Furthermore, accumulating research indicates that EVI-1 is involved in the differentiation, apoptosis and proliferation of leukemia cells. The present review focuses on the biochemical properties of EVI-1 which plays a role in myeloid malignancies.

  9. Amelioration of radiation-induced hematopoietic syndrome by an antioxidant chlorophyllin through increased stem cell activity and modulation of hematopoiesis.

    Science.gov (United States)

    Suryavanshi, Shweta; Sharma, Deepak; Checker, Rahul; Thoh, Maikho; Gota, Vikram; Sandur, Santosh K; Sainis, Krishna B

    2015-08-01

    Hematopoietic stem cells and progenitor cells (HSPC) are low in abundance and exhibit high radiosensitivity and their ability to divide dramatically decreases following exposure to ionizing radiation. Our earlier studies have shown antiapoptotic, immune-stimulatory, and antioxidant effects of chlorophyllin, a constituent of the over the counter drug derifil. Here we describe the beneficial effects of chlorophyllin against radiation-induced hematopoietic syndrome. Chlorophyllin administration significantly enhanced the abundance of HSPC in vivo. It induced a transient cell cycle arrest in lineage-negative cells in the bone marrow. However, the chlorophyllin-treated mice exposed to whole body irradiation (WBI) had a significantly higher proportion of actively dividing HSPC in the bone marrow as compared to only WBI-exposed mice. It significantly increased the number of colony forming units (CFUs) by bone marrow cells in vitro and spleen CFUs in irradiated mice in vivo. Pharmacokinetic study showed that chlorophyllin had a serum half-life of 141.8 min in mice. Chlorophyllin upregulated antiapoptotic genes and antioxidant machinery via activation of prosurvival transcription factors Nrf-2 and NF-κB and increased the survival and recovery of bone marrow cells in mice exposed to WBI. Chlorophyllin stimulated granulocyte production in bone marrow and increased the abundance of peripheral blood neutrophils by enhancing serum levels of granulocyte-colony stimulation factor (GCSF). Most importantly, prophylactic treatment of mice with chlorophyllin significantly abrogated radiation-induced mortality. Chlorophyllin mitigates radiation-induced hematopoietic syndrome by increasing the abundance of hematopoietic stem cells, enhancing granulopoiesis, and stimulating prosurvival pathways in bone marrow cells and lymphocytes.

  10. The Microtubule Plus-End Tracking Protein CLASP2 Is Required for Hematopoiesis and Hematopoietic Stem Cell Maintenance

    Directory of Open Access Journals (Sweden)

    Ksenija Drabek

    2012-10-01

    Full Text Available Mammalian CLASPs are microtubule plus-end tracking proteins whose essential function as regulators of microtubule behavior has been studied mainly in cultured cells. We show here that absence of murine CLASP2 in vivo results in thrombocytopenia, progressive anemia, and pancytopenia, due to defects in megakaryopoiesis, in erythropoiesis, and in the maintenance of hematopoietic stem cell activity. Furthermore, microtubule stability and organization are affected upon attachment of Clasp2 knockout hematopoietic stem-cell-enriched populations, and these cells do not home efficiently toward their bone marrow niche. Strikingly, CLASP2-deficient hematopoietic stem cells contain severely reduced mRNA levels of c-Mpl, which encodes the thrombopoietin receptor, an essential factor for megakaryopoiesis and hematopoietic stem cell maintenance. Our data suggest that thrombopoietin signaling is impaired in Clasp2 knockout mice. We propose that the CLASP2-mediated stabilization of microtubules is required for proper attachment, homing, and maintenance of hematopoietic stem cells and that this is necessary to sustain c-Mpl transcription.

  11. The effect of long-term treatment with granulocyte colony-stimulating factor on hematopoiesis in HIV-infected individuals

    DEFF Research Database (Denmark)

    Nielsen, S D; Sørensen, T U; Aladdin, H;

    2000-01-01

    This randomized, placebo-controlled trial examine the long-term effect of granulocyte colony-stimulating factor (G-CSF) on absolute numbers of CD34+ progenitor cells and progenitor cell function in human immunodeficiency virus (HIV)-infected patients. G-CSF (300 microg filgrastim) or placebo...... was given three times weekly for 12 weeks to 30 HIV-infected patients that had been treated with HAART for at least 24 weeks and not yet achieved CD4 counts above 350 CD4+ cells/microl. Blood samples were collected at weeks 0, 2, 4, 8, and 12, and again 12 weeks after termination of the G-CSF treatment...... of G-CSF on in vivo function of progenitors the white-blood count was determined. Significant increase in white-blood count was found (P platelet count decreased (P = 0.001 and P = 0.013, respectively). Significant increase in the CD4 count occurred, but correlation...

  12. Racial Contrasts in Hemoglobin Levels and Dietary Patterns Related to Hematopoiesis in Children: The Bogalusa Heart Study.

    Science.gov (United States)

    Nicklas, Theresa A.; And Others

    1987-01-01

    Racial differences in hemoglobin were explored in pre-adolescent and adolescent children. After controlling for variations in dietary patterns, race accounted for a notable proportion of hemoglobin variance in both age groups. These differences exist independently of nutrient intake and maturational changes. (Author/VM)

  13. Molecular Signature and In Vivo Behavior of Bone Marrow Endosteal and Subendosteal Stromal Cell Populations and their Relevance to Hematopoiesis

    OpenAIRE

    Balduino, Alex; Coelho, Valeria Mello; Wang, Zhou; Taichman, Russell S; Krebsbach, Paul H; Weeraratna, Ashani T.; Becker, Kevin G.; de Mello, Wallace; Taub, Dennis D.; Borojevic, Radovan

    2012-01-01

    In the bone marrow cavity, hematopoietic stem cells (HSC) have been shown to reside in the endosteal and subendosteal perivascular niches, which play specific roles on HSC maintenance. Although cells with long-term ability to reconstitute full hematopoietic system can be isolated from both niches, several data support a heterogenous distribution regarding the cycling behavior of HSC. Whether this distinct behavior depends upon the role played by the stromal populations which distinctly create...

  14. Molecular Signature and In Vivo Behavior of Bone Marrow Endosteal and Subendosteal Stromal Cell Populations and their Relevance to Hematopoiesis

    Science.gov (United States)

    Balduino, Alex; Coelho, Valeria Mello; Wang, Zhou; Taichman, Russell S.; Krebsbach, Paul H.; Weeraratna, Ashani T.; Becker, Kevin G.; de Mello, Wallace; Taub, Dennis D.; Borojevic, Radovan

    2012-01-01

    In the bone marrow cavity, hematopoietic stem cells (HSC) have been shown to reside in the endosteal and subendosteal perivascular niches, which play specific roles on HSC maintenance. Although cells with long-term ability to reconstitute full hematopoietic system can be isolated from both niches, several data support a heterogenous distribution regarding the cycling behavior of HSC. Whether this distinct behavior depends upon the role played by the stromal populations which distinctly create these two niches is a question that remains open. In the present report, we used our previously described in vivo assay to demonstrate that endosteal and subendosteal stromal populations are very distinct regarding skeletal lineage differentiation potential. This was further supported by a microarray-based analysis, which also demonstrated that these two stromal populations play distinct, albeit complementary, roles in HSC niche. Both stromal populations were preferentially isolated from the trabecular region and behave distinctly in vitro, as previously reported. Even though these two niches are organized in a very close range, in vivo assays and molecular analyses allowed us to identify endosteal stroma (F-OST) cells as fully committed osteoblasts and subendosteal stroma (F-RET) cells as uncommitted mesenchymal cells mainly represented by perivascular reticular cells expressing high levels of chemokine ligand, CXCL12. Interestingly, a number of cytokines and growth factors including interleukin-6 (IL-6), IL-7, IL-15, Hepatocyte growth factor (HGF) and stem cell factor (SCF) matrix metalloproteases (MMPs) were also found to be differentially expressed by F-OST and F-RET cells. Further microarray analyses indicated important mechanisms used by the two stromal compartments in order to create and coordinate the “quiescent” and “proliferative” niches in which hematopoietic stem cells and progenitors reside. PMID:22841688

  15. Levels of Hematopoiesis inhibitor N-acetyl-seryl-aspartyl-lysyl-proline partially explain the occurrence of anemia in heart failure

    NARCIS (Netherlands)

    van der Meer, P; Lipsic, E; Westenbrink, BD; van de Wal, RMA; Schoemaker, RG; Vellenga, E; van Veldhuisen, DJ; Voors, AA; van Gilst, WH

    2005-01-01

    Background - Anemia is common in patients with chronic heart failure (CHF) and is associated with a poor prognosis. However, only a minority of patients with CHF have impaired renal function or underlying hematinic deficiencies. It has been shown that inhibition of the renin-angiotensin system is

  16. Cell fate decisions in malignant hematopoiesis: leukemia phenotype is determined by distinct functional domains of the MN1 oncogene.

    Directory of Open Access Journals (Sweden)

    Courteney K Lai

    Full Text Available Extensive molecular profiling of leukemias and preleukemic diseases has revealed that distinct clinical entities, like acute myeloid (AML and T-lymphoblastic leukemia (T-ALL, share similar pathogenetic mutations. It is not well understood how the cell of origin, accompanying mutations, extracellular signals or structural differences in a mutated gene determine the phenotypic identity of leukemias. We dissected the functional aspects of different protein regions of the MN1 oncogene and their effect on the leukemic phenotype, building on the ability of MN1 to induce leukemia without accompanying mutations. We found that the most C-terminal region of MN1 was required to block myeloid differentiation at an early stage, and deletion of an extended C-terminal region resulted in loss of myeloid identity and cell differentiation along the T-cell lineage in vivo. Megakaryocytic/erythroid lineage differentiation was blocked by the N-terminal region. In addition, the N-terminus was required for proliferation and leukemogenesis in vitro and in vivo through upregulation of HoxA9, HoxA10 and Meis2. Our results provide evidence that a single oncogene can modulate cellular identity of leukemic cells based on its active gene regions. It is therefore likely that different mutations in the same oncogene may impact cell fate decisions and phenotypic appearance of malignant diseases.

  17. GSK3β Inhibition Promotes Efficient Myeloid and Lymphoid Hematopoiesis from Non-human Primate-Induced Pluripotent Stem Cells.

    Science.gov (United States)

    D'Souza, Saritha S; Maufort, John; Kumar, Akhilesh; Zhang, Jiuchun; Smuga-Otto, Kimberley; Thomson, James A; Slukvin, Igor I

    2016-02-09

    Advances in the scalable production of blood cells from induced pluripotent stem cells (iPSCs) open prospects for the clinical translation of de novo generated blood products, and evoke the need for preclinical evaluation of their efficacy, safety, and immunogenicity in large animal models. Due to substantial similarities with humans, the outcomes of cellular therapies in non-human primate (NHP) models can be readily extrapolated to a clinical setting. However, the use of this model is hampered by relatively low efficiency of blood generation and lack of lymphoid potential in NHP-iPSC differentiation cultures. Here, we generated transgene-free iPSCs from different NHP species and showed the efficient induction of mesoderm, myeloid, and lymphoid cells from these iPSCs using a GSK3β inhibitor. Overall, our studies enable scalable production of hematopoietic progenitors from NHP-iPSCs, and lay the foundation for preclinical testing of iPSC-based therapies for blood and immune system diseases in an NHP model.

  18. GSK3β Inhibition Promotes Efficient Myeloid and Lymphoid Hematopoiesis from Non-human Primate-Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Saritha S. D'Souza

    2016-02-01

    Full Text Available Advances in the scalable production of blood cells from induced pluripotent stem cells (iPSCs open prospects for the clinical translation of de novo generated blood products, and evoke the need for preclinical evaluation of their efficacy, safety, and immunogenicity in large animal models. Due to substantial similarities with humans, the outcomes of cellular therapies in non-human primate (NHP models can be readily extrapolated to a clinical setting. However, the use of this model is hampered by relatively low efficiency of blood generation and lack of lymphoid potential in NHP-iPSC differentiation cultures. Here, we generated transgene-free iPSCs from different NHP species and showed the efficient induction of mesoderm, myeloid, and lymphoid cells from these iPSCs using a GSK3β inhibitor. Overall, our studies enable scalable production of hematopoietic progenitors from NHP-iPSCs, and lay the foundation for preclinical testing of iPSC-based therapies for blood and immune system diseases in an NHP model.

  19. Definitive Hematopoiesis in the Yolk Sac Emerges from Wnt-Responsive Hemogenic Endothelium Independently of Circulation and Arterial Identity.

    Science.gov (United States)

    Frame, Jenna M; Fegan, Katherine H; Conway, Simon J; McGrath, Kathleen E; Palis, James

    2016-02-01

    Adult-repopulating hematopoietic stem cells (HSCs) emerge in low numbers in the midgestation mouse embryo from a subset of arterial endothelium, through an endothelial-to-hematopoietic transition. HSC-producing arterial hemogenic endothelium relies on the establishment of embryonic blood flow and arterial identity, and requires β-catenin signaling. Specified prior to and during the formation of these initial HSCs are thousands of yolk sac-derived erythro-myeloid progenitors (EMPs). EMPs ensure embryonic survival prior to the establishment of a permanent hematopoietic system, and provide subsets of long-lived tissue macrophages. While an endothelial origin for these HSC-independent definitive progenitors is also accepted, the spatial location and temporal output of yolk sac hemogenic endothelium over developmental time remain undefined. We performed a spatiotemporal analysis of EMP emergence, and document the morphological steps of the endothelial-to-hematopoietic transition. Emergence of rounded EMPs from polygonal clusters of Kit(+) cells initiates prior to the establishment of arborized arterial and venous vasculature in the yolk sac. Interestingly, Kit(+) polygonal clusters are detected in both arterial and venous vessels after remodeling. To determine whether there are similar mechanisms regulating the specification of EMPs with other angiogenic signals regulating adult-repopulating HSCs, we investigated the role of embryonic blood flow and Wnt/β-catenin signaling during EMP emergence. In embryos lacking a functional circulation, rounded Kit(+) EMPs still fully emerge from unremodeled yolk sac vasculature. In contrast, canonical Wnt signaling appears to be a common mechanism regulating hematopoietic emergence from hemogenic endothelium. These data illustrate the heterogeneity in hematopoietic output and spatiotemporal regulation of primary embryonic hemogenic endothelium.

  20. Molecular signature and in vivo behavior of bone marrow endosteal and subendosteal stromal cell populations and their relevance to hematopoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Balduino, Alex, E-mail: balduino@uva.edu.br [School of Dentistry, Veiga de Almeida University, Rio de Janeiro, RJ (Brazil); Mello-Coelho, Valeria [Biomedical Science Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ (Brazil); National Institute on Aging, National Institute of Health, Baltimore, MD (United States); Wang, Zhou; Taichman, Russell S.; Krebsbach, Paul H. [Department of Periodontics, Prevention and Geriatrics, University of Michigan School of Dentistry, Ann Arbor, MI (United States); Weeraratna, Ashani T.; Becker, Kevin G. [National Institute on Aging, National Institute of Health, Baltimore, MD (United States); Mello, Wallace de [Instituto Oswaldo Cruz, Rio de Janeiro, RJ (Brazil); Taub, Dennis D. [National Institute on Aging, National Institute of Health, Baltimore, MD (United States); Borojevic, Radovan [Biomedical Science Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2012-11-15

    In the bone marrow cavity, hematopoietic stem cells (HSC) have been shown to reside in the endosteal and subendosteal perivascular niches, which play specific roles on HSC maintenance. Although cells with long-term ability to reconstitute full hematopoietic system can be isolated from both niches, several data support a heterogenous distribution regarding the cycling behavior of HSC. Whether this distinct behavior depends upon the role played by the stromal populations which distinctly create these two niches is a question that remains open. In the present report, we used our previously described in vivo assay to demonstrate that endosteal and subendosteal stromal populations are very distinct regarding skeletal lineage differentiation potential. This was further supported by a microarray-based analysis, which also demonstrated that these two stromal populations play distinct, albeit complementary, roles in HSC niche. Both stromal populations were preferentially isolated from the trabecular region and behave distinctly in vitro, as previously reported. Even though these two niches are organized in a very close range, in vivo assays and molecular analyses allowed us to identify endosteal stroma (F-OST) cells as fully committed osteoblasts and subendosteal stroma (F-RET) cells as uncommitted mesenchymal cells mainly represented by perivascular reticular cells expressing high levels of chemokine ligand, CXCL12. Interestingly, a number of cytokines and growth factors including interleukin-6 (IL-6), IL-7, IL-15, Hepatocyte growth factor (HGF) and stem cell factor (SCF) matrix metalloproteases (MMPs) were also found to be differentially expressed by F-OST and F-RET cells. Further microarray analyses indicated important mechanisms used by the two stromal compartments in order to create and coordinate the 'quiescent' and 'proliferative' niches in which hematopoietic stem cells and progenitors reside.

  1. Somatic mutations found in the healthy blood compartment of a 115-yr-old woman demonstrate oligoclonal hematopoiesis

    Science.gov (United States)

    Holstege, Henne; Pfeiffer, Wayne; Sie, Daoud; Hulsman, Marc; Nicholas, Thomas J.; Lee, Clarence C.; Ross, Tristen; Lin, Jue; Miller, Mark A.; Ylstra, Bauke; Meijers-Heijboer, Hanne; Brugman, Martijn H.; Staal, Frank J.T.; Holstege, Gert; Reinders, Marcel J.T.; Harkins, Timothy T.; Levy, Samuel; Sistermans, Erik A.

    2014-01-01

    The somatic mutation burden in healthy white blood cells (WBCs) is not well known. Based on deep whole-genome sequencing, we estimate that approximately 450 somatic mutations accumulated in the nonrepetitive genome within the healthy blood compartment of a 115-yr-old woman. The detected mutations appear to have been harmless passenger mutations: They were enriched in noncoding, AT-rich regions that are not evolutionarily conserved, and they were depleted for genomic elements where mutations might have favorable or adverse effects on cellular fitness, such as regions with actively transcribed genes. The distribution of variant allele frequencies of these mutations suggests that the majority of the peripheral white blood cells were offspring of two related hematopoietic stem cell (HSC) clones. Moreover, telomere lengths of the WBCs were significantly shorter than telomere lengths from other tissues. Together, this suggests that the finite lifespan of HSCs, rather than somatic mutation effects, may lead to hematopoietic clonal evolution at extreme ages. PMID:24760347

  2. Use Massive Parallel Sequencing and Exome Capture Technology to Sequence the Exome of Fanconi Anemia Children and Their Patents

    Science.gov (United States)

    2013-11-21

    Fanconi Anemia; Autosomal or Sex Linked Recessive Genetic Disease; Bone Marrow Hematopoiesis Failure, Multiple Congenital Abnormalities, and Susceptibility to Neoplastic Diseases.; Hematopoiesis Maintainance.

  3. Corrigendum to "About the discrete-continuous nature of a hematopoiesis model for Chronic Myeloid Leukemia" Mathematical Biosciences 282 (2016) 174-180.

    Science.gov (United States)

    Gaudiano, Marcos E

    2017-02-27

    The author regrets that the printed version of the above article contained some errors. The corrected final version follows @ http://www.sciencedirect.com/science/article/pii/S002555641630284X. The author would like to apologize for any inconvenience caused.

  4. Development of functional foods for radiation workers - Search for the active components and studies on the mechanism of the hematopoiesis improvement foods

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Sung Tae; Ha, Mee Hye; Jeong, Young Ran [Sunchon National University, Sunchon (Korea)

    2000-04-01

    In this experiments, we established long-termed culture methods of bone marrow stromal cells for proliferation and differentiation of stem cells. And we selected some extracts which support maximal proliferation of stromal cells with this method. We conformed the synergic effects of herbal mixture extracts for stromal cell growth. The proliferation of stromal cells was increased rather by the addition of mixture extracts than by addition of single strain extract. In the previous and cooperative experiments, we selected complex extracts (Him-I, Him-II) which increased the number of nonadherent mononuclear cells. Different cytokine expression patterns were observed stromal cells cultured in the presence or absence of mixture extracts which support differentiation of nonadherent cells. Some fractions of Him-I and Him-II increased the proliferation of bone marrow cells irradiated {gamma}-ray(4Gray). Stimulation of macrophage cell line with herval extracts with the treatments of recombinant interferon-{gamma} resulted in increased nitric oxide synthesis in a dose-dependent manners. Altered patterns of cytokine mRNA expression were observed in the stromals cells cultured with extracts of herbal plant. In regarding of the results, isolation and development of new and effective systems to screen for active hematopoietic component needs to be proceeded. Such studies on the hematopoietic modulation and mechanism of herbal plants would further lead to new avenues for the development of functional foods which effect such as radiation damages or leukemia. 20 refs., 23 figs. (Author)

  5. In Vivo Tracking of Human Hematopoiesis Reveals Patterns of Clonal Dynamics during Early and Steady-State Reconstitution Phases

    NARCIS (Netherlands)

    Biasco, Luca; Pellin, Danilo; Scala, Serena; Dionisio, Francesca; Basso-Ricci, Luca; Leonardelli, Lorena; Scaramuzza, Samantha; Baricordi, Cristina; Ferrua, Francesca; Cicalese, Maria Pia; Giannelli, Stefania; Neduva, Victor; Dow, David J; Schmidt, Manfred; Von Kalle, Christof; Roncarolo, Maria Grazia; Ciceri, Fabio; Vicard, Paola; Wit, Ernst; Di Serio, Clelia; Naldini, Luigi; Aiuti, Alessandro

    2016-01-01

    Hematopoietic stem/progenitor cells (HSPCs) are capable of supporting the lifelong production of blood cells exerting a wide spectrum of functions. Lentiviral vector HSPC gene therapy generates a human hematopoietic system stably marked at the clonal level by vector integration sites (ISs). Using IS

  6. Long-term effects of growth hormone (GH) replacement therapy on hematopoiesis in a large cohort of children with GH deficiency.

    Science.gov (United States)

    Esposito, Andrea; Capalbo, Donatella; De Martino, Lucia; Rezzuto, Martina; Di Mase, Raffaella; Pignata, Claudio; Salerno, Mariacarolina

    2016-07-01

    The aim of our prospective case-control study was to evaluate long-term effects of GH replacement therapy on erythrocytes parameters, leukocytes, and platelets numbers in a large cohort of children with isolated GH deficiency (GHD). Hemoglobin (Hb) concentration, hematocrit (Hct), mean corpuscular volume, mean corpuscular hemoglobin, red cell distribution width, number of erythrocytes, leukocytes, neutrophils, lymphocytes, monocytes and platelets, ferritin, and C-reactive protein were evaluated in 85 children with isolated GHD (10.20 ± 3.50 years) before and annually during the first 5 years of GH replacement therapy and in 85 healthy children age and sex comparable to patients during 5 years of follow-up. Compared with controls, GHD children at study entry showed lower Hb (-1.18 ± 0.87 vs. -0.40 ± 0.90 SDS, p GH therapy was associated with a significant increase in Hb, Hct, and red cells number which became all comparable to controls within the first 2 years of treatment. Moreover, hemoglobin levels normalized in all anemic GHD patients after 5 years of therapy. No difference between patients and controls was found in leukocytes and platelets numbers neither at baseline nor during the study. GHD in childhood is associated with an impairment of erythropoiesis which causes a normocytic anemia in a considerable percentage of patients. GH replacement therapy exerts a beneficial effect leading to a significant increase of erythrocytes parameters and recovery from anemia. Neither GHD nor GH replacement treatment exerts effects on leukocytes or platelets numbers.

  7. EFFECTS OF CONTINUOUS STEM-CELL FACTOR ADMINISTRATION ON NORMAL AND ERYTHROPOIETIN-STIMULATED MURINE HEMATOPOIESIS - EXPERIMENTAL RESULTS AND MODEL ANALYSIS

    NARCIS (Netherlands)

    DEHAAN, G; DONTJE, B; NIJHOF, W; LOEFFLER, M

    1995-01-01

    The aim of this study was to determine how stem cell factor (SCF) modifies hemopoietic cell production. First we determined the effects of a prolonged SCP administration on murine hemopoiesis and analyzed the results by a mathematical simulation model of hemopoiesis in order to explain the data. Sub

  8. Effect of radiation on normal hematopoiesis and on viral induced cancers of the hematopoietic system. Technical progress report, August 1, 1974--May 1, 1975. [Mice, x radiation

    Energy Technology Data Exchange (ETDEWEB)

    Okunewick, J.P.

    1975-01-01

    Studies carried out during the above period on viral leukemia have conclusively shown that the pluripotent hematopoietic colony forming stem cell (CFU-S) is a target cell for the leukemia virus. Treatment of this cell population with antiserum prepared in syngeneic mice against the disease resulted in inactivation of up to 50 percent of the CFU-S obtained from the spleens of viral leukemic mice. At the same time, normal serum had no effect on these cells, nor did the antiserum have any effect on normal CFU-S. Data indicated that a considerable time delay, on the order of a week, preceded the expression of the viral antigen in the leukemic CFU-S, but that it could be seen at all times after that up to the terminal point of the disease. We examined the effect of the virus on DNA synthesis (S-phase cells) in the CFU-S immediately after virus injection. The results showed that a doubling of the number of cells in S could be seen as early as four hours after introduction of the virus into the animal. Studies with ethidium bromide, an inhibitor of viral reverse transcriptase, were found to be in agreement with this observation. When given to viral leukemic animals in combination with fractionated exposure to x-ray, the data suggested that ethidium bromide did act to extend survival somewhat, but not much over that seen through the use of x-ray alone.

  9. Striking hematological abnormalities in patients with microcephalic osteodysplastic primordial dwarfism type II (MOPD II): a potential role of pericentrin in hematopoiesis.

    Science.gov (United States)

    Unal, Sule; Alanay, Yasemin; Cetin, Mualla; Boduroglu, Koray; Utine, Eda; Cormier-Daire, Valerie; Huber, Celine; Ozsurekci, Yasemin; Kilic, Esra; Simsek Kiper, Ozlem Pelin; Gumruk, Fatma

    2014-02-01

    Microcephalic osteodysplastic primordial dwarfism type II (MOPD II) is a rare primordial dwarfism that is similar to Seckel syndrome. Seckel syndrome is known to be associated with various hematological abnormalities; however, hematological findings in MOPD II patients have not been previously reported. The present study aimed to describe the hematological findings in a series of eight patients with MOPD II from a single center. The study included eight patients with MOPD II that were analyzed via molecular testing, and physical and laboratory examinations. Molecular testing showed that seven of the eight patients had pericentrin (PCNT) gene mutations. Hematological evaluation showed that 7 (87.5%) patients had thrombocytosis, 6 (75%) had leukocytosis, 5 (62.5%) had both leukocytosis and thrombocytosis, and 2 (25%) had anemia. We report leukocytosis and thrombocytosis as a common hematologic abnormality in patients with MOPD II. The present findings may improve our understanding of the potential function of the PCNT gene in hematopoietic cell proliferation and differentiation. © 2013 Wiley Periodicals, Inc.

  10. Whole-Exome Sequencing Identifies Loci Associated with Blood Cell Traits and Reveals a Role for Alternative GFI1B Splice Variants in Human Hematopoiesis

    NARCIS (Netherlands)

    Polfus, L.M. (Linda M.); Khajuria, R.K. (Rajiv K.); U.M. Schick (Ursula); V.S. Pankratz (Shane); Pazoki, R. (Raha); J. Brody (Jennifer); M.-H. Chen (Ming-Huei); P. Auer (Paul); J. Floyd (James); J. Huang (Jian); L.A. Lange (Leslie); F.J.A. van Rooij (Frank); R.A. Gibbs (Richard); G.A. Metcalf (Ginger A.); D. Muzny (Donna); N. Veeraraghavan (Narayanan); K. Walter (Klaudia); L. Chen (Lu); L.R. Yanek (Lisa); L.C. Becker (Lewis); G.M. Peloso (Gina); Wakabayashi, A. (Aoi); M. Kals (Mart); A. Metspalu (Andres); T. Esko (Tõnu); K. Fox (Keolu); Wallace, R. (Robert); Franceshini, N. (Nora); N. Aleksic (Nena); K.M. Rice (Kenneth); T.M. Bartz (Traci M.); L.-P. Lyytikäinen (Leo-Pekka); M. Kähönen (Mika); T. Lehtimäki (Terho); O.T. Raitakari (Olli T.); R. Li-Gao (Ruifang); D.O. Mook-Kanamori (Dennis); G. Lettre (Guillaume); C.M. van Duijn (Cock); O.H. Franco (Oscar); S.S. Rich (Stephen); F. Rivadeneira Ramirez (Fernando); A. Hofman (Albert); A.G. Uitterlinden (André); J.F. Wilson (James); B.M. Psaty (Bruce); N. Soranzo (Nicole); A. Dehghan (Abbas); E.A. Boerwinkle (Eric); Zhang, X. (Xiaoling); A.D. Johnson (Andrew); C.J. O'Donnell (Christopher); Johnsen, J.M. (Jill M.); A. Reiner (Alexander); S.K. Ganesh (Santhi); Sankaran, V.G. (Vijay G.)

    2016-01-01

    textabstractCirculating blood cell counts and indices are important indicators of hematopoietic function and a number of clinical parameters, such as blood oxygen-carrying capacity, inflammation, and hemostasis. By performing whole-exome sequence association analyses of hematologic quantitative

  11. Whole-Exome Sequencing Identifies Loci Associated with Blood Cell Traits and Reveals a Role for Alternative GFI1B Splice Variants in Human Hematopoiesis

    NARCIS (Netherlands)

    Polfus, L.M. (Linda M.); Khajuria, R.K. (Rajiv K.); U.M. Schick (Ursula); V.S. Pankratz (Shane); Pazoki, R. (Raha); J. Brody (Jennifer); M.-H. Chen (Ming-Huei); P. Auer (Paul); J. Floyd (James); J. Huang (Jian); L.A. Lange (Leslie); F.J.A. van Rooij (Frank); R.A. Gibbs (Richard); G.A. Metcalf (Ginger A.); D. Muzny (Donna); N. Veeraraghavan (Narayanan); K. Walter (Klaudia); L. Chen (Lu); L.R. Yanek (Lisa); L.C. Becker (Lewis); G.M. Peloso (Gina); Wakabayashi, A. (Aoi); M. Kals (Mart); A. Metspalu (Andres); T. Esko (Tõnu); K. Fox (Keolu); Wallace, R. (Robert); Franceshini, N. (Nora); N. Aleksic (Nena); K.M. Rice (Kenneth); T.M. Bartz (Traci M.); L.-P. Lyytikäinen (Leo-Pekka); M. Kähönen (Mika); T. Lehtimäki (Terho); O.T. Raitakari (Olli T.); R. Li-Gao (Ruifang); D.O. Mook-Kanamori (Dennis); G. Lettre (Guillaume); C.M. van Duijn (Cock); O.H. Franco (Oscar); S.S. Rich (Stephen); F. Rivadeneira Ramirez (Fernando); A. Hofman (Albert); A.G. Uitterlinden (André); J.F. Wilson (James); B.M. Psaty (Bruce); N. Soranzo (Nicole); A. Dehghan (Abbas); E.A. Boerwinkle (Eric); Zhang, X. (Xiaoling); A.D. Johnson (Andrew); C.J. O'Donnell (Christopher); Johnsen, J.M. (Jill M.); A. Reiner (Alexander); S.K. Ganesh (Santhi); Sankaran, V.G. (Vijay G.)

    2016-01-01

    textabstractCirculating blood cell counts and indices are important indicators of hematopoietic function and a number of clinical parameters, such as blood oxygen-carrying capacity, inflammation, and hemostasis. By performing whole-exome sequence association analyses of hematologic quantitative trai

  12. Three-dimensional co-culture of mesenchymal stromal cells and differentiated osteoblasts on human bio-derived bone scaffolds supports active multi-lineage hematopoiesis in vitro: Functional implication of the biomimetic HSC niche

    Science.gov (United States)

    Huang, Xiaobing; Zhu, Biao; Wang, Xiaodong; Xiao, Rong; Wang, Chunsen

    2016-01-01

    Recent studies have indicated that the hematopoietic stem/progenitor cell (HSPC) niche, consisting of two major crucial components, namely osteoblasts (OBs) and mesenchymal stromal cells (MSCs), is responsible for the fate of HSPCs. Thus, closely mimicking the HSPC niche ex vivo may be an efficient strategy with which to develop new culture strategies to specifically regulate the balance between HSPC self-renewal and proliferation. The aim of this study was to establish a novel HSPC three-dimensional culture system by co-culturing bone marrow-derived MSCs and OBs differentiated from MSCs without any cytokines as feeder cells and applying bio-derived bone from human femoral metaphyseal portion as the scaffold. Scanning electron microscopy revealed the excellent biocompatibility of bio-derived bone with bone marrow-derived MSCs and OBs differentiated from MSCs. Western blot analysis revealed that many cytokines, which play key roles in HSPC regulation, were comprehensively secreted, while ELISA revealed that extracellular matrix molecules were also highly expressed. Hoechst 33342/propidium iodide fluorescence staining proved that our system could be used to supply a long-term culture of HSPCs. Flow cytometric analysis and qPCR of p21 expression demonstrated that our system significantly promoted the self-renewal and ex vivo expansion of HSPCs. Colony-forming unit (CFU) and long-term culture-initiating cell (LTC-IC) assays confirmed that our system has the ability for both the expansion of CD34+ hematopoietic stem cells (HPCs) and the maintenance of a primitive cell subpopulation of HSCs. The severe-combined immunodeficient mouse repopulating cell assay revealed the promoting effects of our system on the expansion of long-term primitive transplantable HSCs. In conclusion, our system may be a more comprehensive and balanced system which not only promotes the self-renewal and ex vivo expansion of HSPCs, but also maintains primitive HPCs with superior phenotypic and functional attributes. PMID:27571775

  13. 遗传性球形红细胞增多症并发纵隔脊柱旁髓外造血1例%Paravertebral extramedullary hematopoiesis in a case of hereditary spherocytosis

    Institute of Scientific and Technical Information of China (English)

    于亚平; 刘海宁; 翟勇平; 史平; 宋萍; 李峰; 周晓刚; 唐玉梅

    2011-01-01

    @@ 髓外造血(EMH)是指在骨髓以外的部位出现造血组织,是骨髓功能异常的代偿机制.本文报道1例遗传性球形红细胞增多症(HS)并发胸椎旁EMH患者,并结合文献报道进行分析.

  14. 造血相关因子在高原红细胞增多症中的作用%The Effects of Hematopoiesis Related Factors in High Altitude Polycythemia

    Institute of Scientific and Technical Information of China (English)

    杜亚利; 郭馨云; 俞平(综述); 魏虎来(审校)

    2015-01-01

    高原红细胞增多症(HAPC)是高海拔地区或长期居住高海拔地区人群的常见病,严重影响患者的健康。缺氧是引起HAPC的根本原因,但其病理机制还不清楚。在高原低氧环境下,低氧诱导因子1通过与促红细胞生成素( EPO)的启动子结合,提高 EPO-mRNA活性,致 EPO的分泌增加。增加的EPO对缺氧性红细胞增生具有重要作用。但在HAPC患者中EPO水平不总是和红细胞增生的数量相一致。其他可能性因素包括遗传适应性、对EPO的反应性、造血生长因子、转录因子及造血系统微环境的调控等。%High altitude polycythemia ( HAPC ) is a common disease for people residing in or visiting high altitude.It has a badly effect on the health of patients.High altitude hypobaric hypoxia is the primary cause of HAPC,but the pathogenesis is not clear yet.Under exposure to high altitude,hypoxia inducible fac-tor 1 increases erythropoietin(EPO) mRNA levels by binding the EPO promoter,resulting in increased EPO secretion.The prominent role of hypoxia-induced EPO increase in hypoxic erythrocytosis has been estab-lished.But erythropoietin level does not always correlate well with the amount of RBC production at high alti-tude,and other possible factors related to HAPC include genetic adaptartion,reactivity to EPO,regulation of hematopoietic factors,transcription factors and hematopoietic microenviroment etc.

  15. Three-dimensional co-culture of mesenchymal stromal cells and differentiated osteoblasts on human bio-derived bone scaffolds supports active multi-lineage hematopoiesis in vitro: Functional implication of the biomimetic HSC niche.

    Science.gov (United States)

    Huang, Xiaobing; Zhu, Biao; Wang, Xiaodong; Xiao, Rong; Wang, Chunsen

    2016-10-01

    Recent studies have indicated that the hematopoietic stem/progenitor cell (HSPC) niche, consisting of two major crucial components, namely osteoblasts (OBs) and mesenchymal stromal cells (MSCs), is responsible for the fate of HSPCs. Thus, closely mimicking the HSPC niche ex vivo may be an efficient strategy with which to develop new culture strategies to specifically regulate the balance between HSPC self-renewal and proliferation. The aim of this study was to establish a novel HSPC three-dimensional culture system by co-culturing bone marrow-derived MSCs and OBs differentiated from MSCs without any cytokines as feeder cells and applying bio-derived bone from human femoral metaphyseal portion as the scaffold. Scanning electron microscopy revealed the excellent biocompatibility of bio-derived bone with bone marrow-derived MSCs and OBs differentiated from MSCs. Western blot analysis revealed that many cytokines, which play key roles in HSPC regulation, were comprehensively secreted, while ELISA revealed that extracellular matrix molecules were also highly expressed. Hoechst 33342/propidium iodide fluorescence staining proved that our system could be used to supply a long-term culture of HSPCs. Flow cytometric analysis and qPCR of p21 expression demonstrated that our system significantly promoted the self-renewal and ex vivo expansion of HSPCs. Colony-forming unit (CFU) and long-term culture-initiating cell (LTC-IC) assays confirmed that our system has the ability for both the expansion of CD34+ hematopoietic stem cells (HPCs) and the maintenance of a primitive cell subpopulation of HSCs. The severe-combined immunodeficient mouse repopulating cell assay revealed the promoting effects of our system on the expansion of long-term primitive transplantable HSCs. In conclusion, our system may be a more comprehensive and balanced system which not only promotes the self-renewal and ex vivo expansion of HSPCs, but also maintains primitive HPCs with superior phenotypic and functional attributes.

  16. Effect of radiation on normal hematopoiesis and on viral induced cancers of the hematopoietic system. Three-year technical progress report, August 1, 1973--April 30, 1976. [X radiation, mice

    Energy Technology Data Exchange (ETDEWEB)

    OKunewick, J.P.

    1976-01-01

    In studies conducted during the first three-year segment of this contract, it was observed that in the process of viral leukemogenesis the affected animals became more radioresistant than normal. Initial studies into the reason for the enhanced radioresistance implicated an increase in the number of pluripotent stem cells as one possible cause. During the current period, studies were carried out to further define the effect of the virus on stem cells and their kinetics using exposure to tritiated thymidine (/sup 3/HTdR) in vivo and in vitro. In addition, separate studies were initiated in an attempt to determine if the immune system played a part in the radioresistance, as well as what the effects might be of immune manipulations on the disease during the oncogenic period. Finally, studies were also undertaken to assess the sensitivity of the virus itself to radiation in vitro and in vivo to radiation and treatment with cells transplanted from viral resistant mice.

  17. Human embryonic stem cell-derived mesenchymal stroma cells (hES-MSCs engraft in vivo and support hematopoiesis without suppressing immune function: implications for off-the shelf ES-MSC therapies.

    Directory of Open Access Journals (Sweden)

    Ou Li

    Full Text Available Mesenchymal stroma cells (MSCs have a high potential for novel cell therapy approaches in clinical transplantation. Commonly used bone marrow-derived MSCs (BM-MSCs, however, have a restricted proliferative capacity and cultures are difficult to standardize. Recently developed human embryonic stem cell-derived mesenchymal stroma cells (hES-MSCs might represent an alternative and unlimited source of hMSCs. We therefore compared human ES-cell-derived MSCs (hES-MP002.5 cells to normal human bone marrow-derived MSCs (BM-MSCs. hES-MP002.5 cells had lower yet reasonable CFU-F capacity compared with BM-MSC (8±3 versus 29±13 CFU-F per 100 cells. Both cell types showed similar immunophenotypic properties, i.e. cells were positive for CD105, CD73, CD166, HLA-ABC, CD44, CD146, CD90, and negative for CD45, CD34, CD14, CD31, CD117, CD19, CD 271, SSEA-4 and HLA-DR. hES-MP002.5 cells, like BM-MSCs, could be differentiated into adipocytes, osteoblasts and chondrocytes in vitro. Neither hES-MP002.5 cells nor BM-MSCs homed to the bone marrow of immune-deficient NSG mice following intravenous transplantation, whereas intra-femoral transplantation into NSG mice resulted in engraftment for both cell types. In vitro long-term culture-initiating cell assays and in vivo co-transplantation experiments with cord blood CD34+ hematopoietic cells demonstrated furthermore that hES-MP002.5 cells, like BM-MSCs, possess potent stroma support function. In contrast to BM-MSCs, however, hES-MP002.5 cells showed no or only little activity in mixed lymphocyte cultures and phytohemagglutinin (PHA lymphocyte stimulation assays. In summary, ES-cell derived MSCs might be an attractive unlimited source for stroma transplantation approaches without suppressing immune function.

  18. Paravertebral Mass in a Patient with Hemolytic Anemia: Computed Tomographic Findings

    Directory of Open Access Journals (Sweden)

    Juliana França Carvalho

    2010-01-01

    Full Text Available Extramedullary hematopoiesis is characterized by the presence of hematopoietic tissue outside of the bone marrow and is typically associated with chronic hemolytic anemias. Intrathoracic extramedullary hematopoiesis is a rare and usually asymptomatic condition. The authors report a case of a 57-year-old man with intrathoracic extramedullary hematopoiesis and hereditary spherocytosis. Clinical and laboratory evaluation, together with radiological findings, are described. The diagnosis of the disease was confirmed by tissue biopsy.

  19. Ex vivo Expansion of Hematopoietic Stem Cells

    NARCIS (Netherlands)

    E. Farahbakhshian (Elnaz)

    2013-01-01

    textabstractHematopoiesis is a complex cellular differentiation process resulting in the formation of all blood cell types. In this process, hematopoietic stem cells (HSCs) reside at the top of the hematopoiesis hierarchy and have the capacity to differentiate into all blood cell lineages (multipote

  20. Kruppel-like factor 7 overexpression suppresses hematopoietic stem and progenitor cell function

    NARCIS (Netherlands)

    Schuettpelz, Laura G.; Gopalan, Priya K.; Giuste, Felipe O.; Romine, Molly P.; van Os, Ronald; Link, Daniel C.

    2012-01-01

    Increased expression of Kruppel-like factor 7 (KLF7) is an independent predictor of poor outcome in pediatric acute lymphoblastic leukemia. The contribution of KLF7 to hematopoiesis has not been previously described. Herein, we characterized the effect on murine hematopoiesis of the loss of KLF7 and

  1. Kruppel-like factor 7 overexpression suppresses hematopoietic stem and progenitor cell function

    NARCIS (Netherlands)

    Schuettpelz, Laura G.; Gopalan, Priya K.; Giuste, Felipe O.; Romine, Molly P.; van Os, Ronald; Link, Daniel C.

    2012-01-01

    Increased expression of Kruppel-like factor 7 (KLF7) is an independent predictor of poor outcome in pediatric acute lymphoblastic leukemia. The contribution of KLF7 to hematopoiesis has not been previously described. Herein, we characterized the effect on murine hematopoiesis of the loss of KLF7 and

  2. Hematopoiesis stimulation test by interleukin 1{alpha} gene transfer in the Cynomolgus macaque: application to secondary medullary aplasia from an accidental irradiation; Essais de stimulation de l'hematopoiese par le transfert de gene de l'interleukine-1{alpha} chez le macaque cynomolgus: application a l'aplasie medullaire secondaire a une irradiation accidentelle

    Energy Technology Data Exchange (ETDEWEB)

    De Revel, Th.

    2002-12-15

    After a description of the context of medullary aplasia (haematological radiobiology, radiation acute syndrome, therapeutic care), and an overview of knowledge about the interleukin-1 and medullary stroma cells, this research thesis aims at investigating therapeutic alternatives for radio-accidental aplasia. More precisely, it aims at defining means to get cytokines which are efficient for haematopoiesis. Interleukin-1 is chosen for its properties and tests are performed on a macaque with two approaches for gene transfer: an ex vivo transfer by retroviral vector enabling an integration in the target cell genome, and an in situ transfer by adeno-viral vector directly applied in the animal osseous medulla

  3. Effects of Tonifying Heart Formulas on Medullary Hematopoiesis Function on Mouse Model of Peripheral Blood Stem Cell Transplantation%补心方剂对小鼠外周血造血干细胞移植模型骨髓造血的影响

    Institute of Scientific and Technical Information of China (English)

    刘渊; 谢晓红; 白蓝郦; 黄秀深

    2011-01-01

    Objective: To investigate the effects of tonifying heart formulas on the mouse model of peripheral blood stem cell transplantation. Methods: BALB/C mice were randomly divided into seven groups of 25 animals each ; normal control group, model group, stem cell transplantation group, the group of stem cell transplantation and Zhigancao soup, the group of stem cell transplantation and Tian wang bu xin Dan, the group of stem cell transplantation and Dang gui bu xue soup, the group of stem cell transplantation and Shenfu soup. In each group 10 rats were used for observing the mortality only, the rest of each group were examined on its hemo-gram and nucleated cells in bone marrow. Results: The group of stem cell transplantation and Shenfu soup had the lowest death rates within five day. The number of WBC、 PLT、 Hb and monocyte nucleated cells increased significantly in all the medicine groups . Conclusion: Tonifying heart formulas has certain effect on the earlier stage of marrow reconstruction on the mouse model of peripheral blood stem cell transplantation and mortality decreasing.%目的:观察补心方剂对外周血造血干细胞移植小鼠的影响.方法:将BALB/e小鼠随机分为正常对照组、模型组、单纯干细胞移植组、干细胞移植+炙甘草汤组、干细胞移植+天王补心丹组、干细胞移植+当归补血汤组、干细胞移植+参附汤组,每组25只.每组有10只用于观察死亡率,另15只用于检测血象及有核细胞数.结果:5天后观察小鼠死亡情况,以"干细胞移植+参附汤组"死亡率最低.给药各组对WBC、PLT、Hb、骨髓有核细胞数均有显著升高作用.结论:补心方剂对小鼠外周血造血干细胞移植模型早期骨髓重建及减少死亡有一定作用.

  4. 沙棘油在体外对肾虚型再生障碍性贫血作用的实验研究%Experimental research on effect of sea buckthorn oil on marrow hematopoiesis in patients with aplastic anemia of kidney deficiency type in vitro GE

    Institute of Scientific and Technical Information of China (English)

    葛志红; 王栋范; 宾冬梅; 李宜真

    2008-01-01

    目的 观察沙棘油在体外对肾阳虚、肾阴虚不同证型再生障碍性贫血(AA)患者红系集落形成单位(CFU-E)、粒巨噬细胞系集落形成单位(CFU-GM)的影响.方法 20例AA患者(肾阴虚型组及肾阳虚型组各10例),正常对照组10例,取其骨髓分离单个核细胞,以琼脂半固体培养联合沙棘油的方法,培养3、7 d后分别对比各组CFU-E、CFU-GM集落形成情况.结果 不同证型AA患者的CFU-E、CFU-GM较正常对照组明显减低(P<0.01);沙棘油能明显促进不同证型AA患者CFU-E、CFU-GM的集落生成,这种促进作用随沙棘油体积分数增加而增加;在体积分数不低于20%时,沙棘油对肾阳虚患者CFU-E、CFU-GM的疗效明显好于对肾阴虚患者的疗效(P<0.05).结论 沙棘油在体外对AA患者CFU-E、CFU-GM有一定的促增殖作用,且高剂量时对肾阳虚证型患者的作用优于肾阴虚证型患者.

  5. Hematopoietic development at high altitude: blood stem cells put to the test.

    Science.gov (United States)

    Zovein, Ann C; Forsberg, E Camilla

    2015-05-15

    In February 2015, over 200 scientists gathered for the Keystone Hematopoiesis meeting, which was held at the scenic Keystone Resort in Keystone, Colorado, USA. The meeting organizers, Patricia Ernst, Hanna Mikkola and Timm Schroeder, put together an exciting program, during which field leaders and new investigators presented discoveries that spanned developmental and adult hematopoiesis within both physiologic and pathologic contexts. Collectively, the program highlighted the increasing pace of new discoveries and the substantial progress made in the hematopoiesis field since the last Keystone meeting two years ago. In this Meeting Review, we highlight the main concepts discussed at the conference, with an emphasis on topics relevant to developmental biology.

  6. Hematopoietic potential cells in skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    Atsushi Asakura

    2007-01-01

    @@ During mouse embryogenesis,the formation of primi-tive hematopoiesis begins in the yolk sac on embryonic day 7.5(E7.5).Thereafter,definitive hematopoietic stem cell(HSC)activity is first detectable in the aorta-gonad-mesonephros(AGM)region on E10,followed by fetal liver and yolk sac.Subsequently,the fetal liver by E12 becomes the main tissue for definitive hematopoiesis.At a later time,HSC population in the fetal liver migrates to the bone marrow,which becomes the maior site of he-matopoiesis throughout normal adult life[1].

  7. Hematopoietic-supportive effect of (2S, 3R)-ent-catechin on marrow-depressed mice

    Institute of Scientific and Technical Information of China (English)

    CHEN Yi-hong; WANG Dong-xiao; LIU Ping; CHEN Ruo-yun; CHEN Meng-li; CHENG Liu-fang; YIN Jian-fen; CHEN Gui-yun

    2005-01-01

    @@ Hematopoiesis is an active process of cell proliferation, differentiation and release. It is the process during which hematopoietic stem cells (HSCs) proliferate and differentiate to mature blood cells under the effect of hemetopoietic growth factors (HGFs) in certain hematopoietic microenvironment. HSCs are sources of hematopoiesis of a body that can self-renew, differentiate to blood cells of every lineage and maintain the constancy of them. As the major tissue of hematopoiesis bone marrow is filled with all kinds of blood cells in various developmental stages. Under the normal conditions, the ordered proliferation and differentiation of hematopoietic stem cells/hematopoietic progenitor cells (HSC/HPC) depend on the regulation of cytokine network.

  8. Origin and fate of hematopoietic stem precursor cells in the leech Hirudo medicinalis

    Directory of Open Access Journals (Sweden)

    A Grimaldi

    2016-07-01

    Full Text Available The hematopoietic process by which blood cells are formed has been intensely studied for over a century using several model systems. An increasing amount of evidence shows that hematopoiesis, angiogenesis, immune response and the regulating these processes (i.e., cytokines are highly conserved across taxonomic groups. Over the last decade, the leech Hirudo medicinalis, given its simple anatomy and its repertoire of less varied cell types when compared to vertebrates, has been proposed as a powerful model for studying basic steps of hematopoiesis and immune responses. Here, I provide a broad overview of H. medicinalis hematopoiesis and I highlight the benefits of using leech as a model.

  9. Haemopedia: An Expression Atlas of Murine Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    Carolyn A. de Graaf

    2016-09-01

    Full Text Available Hematopoiesis is a multistage process involving the differentiation of stem and progenitor cells into distinct mature cell lineages. Here we present Haemopedia, an atlas of murine gene-expression data containing 54 hematopoietic cell types, covering all the mature lineages in hematopoiesis. We include rare cell populations such as eosinophils, mast cells, basophils, and megakaryocytes, and a broad collection of progenitor and stem cells. We show that lineage branching and maturation during hematopoiesis can be reconstructed using the expression patterns of small sets of genes. We also have identified genes with enriched expression in each of the mature blood cell lineages, many of which show conserved lineage-enriched expression in human hematopoiesis. We have created an online web portal called Haemosphere to make analyses of Haemopedia and other blood cell transcriptional datasets easier. This resource provides simple tools to interrogate gene-expression-based relationships between hematopoietic cell types and genes of interest.

  10. Human Hematopoietic Stem Cells Can Survive In Vitro for Several Months

    Directory of Open Access Journals (Sweden)

    Taro Ishigaki

    2009-01-01

    Full Text Available We previously reported that long-lasting in vitro hematopoiesis could be achieved using the cells differentiated from primate embryonic stem (ES cells. Thus, we speculated that hematopoietic stem cells differentiated from ES cells could sustain long-lasting in vitro hematopoiesis. To test this hypothesis, we investigated whether human hematopoietic stem cells could similarly sustain long-lasting in vitro hematopoiesis in the same culture system. Although the results varied between experiments, presumably due to differences in the quality of each hematopoietic stem cell sample, long-lasting in vitro hematopoiesis was observed to last up to nine months. Furthermore, an in vivo analysis in which cultured cells were transplanted into immunodeficient mice indicated that even after several months of culture, hematopoietic stem cells were still present in the cultured cells. To the best of our knowledge, this is the first report to show that human hematopoietic stem cells can survive in vitro for several months.

  11. Experimental hematology: theoretical and practical course, Madrid 31th may to 4th june 1993. Hematologia experimental: curso tecnico practico, Madrid, 31 de mayo a 4 de junio 1993

    Energy Technology Data Exchange (ETDEWEB)

    Bueren, J.A.; Tejero Ortega, C. (eds.)

    1993-01-01

    This book contains the lectures of hematology course held in Madrid. The main scope of conferences are: 1.- Hematopoiesis: regulation, growing ionizing radiations, damage and radiation effects. 2.- Radioprotection: stem cells of mouse 3.- Genetic: hematopoietic pathology 4.- Stem cells

  12. Tetraspanin CD9 participates in dysmegakaryopoiesis and stromal interactions in primary myelofibrosis

    DEFF Research Database (Denmark)

    Desterke, Christophe; Martinaud, Christophe; Guerton, Bernadette

    2015-01-01

    Primary myelofibrosis is characterized by clonal myeloproliferation, dysmegakaryopoiesis, extramedullary hematopoiesis associated with myelofibrosis and altered stroma in the bone marrow and spleen. The expression of CD9, a tetraspanin known to participate in megakaryopoiesis, platelet formation,...

  13. Characterization of signal transduction pathways regulating myelopoiesis

    NARCIS (Netherlands)

    Geest, C.R.

    2009-01-01

    Studies have demonstrated that hematopoiesis requires coordinated expression of many genes that may directly or indirectly govern HSC and progenitor cell maintenance, lineage commitment, differentiation and mature blood cell function. Although it is evident that correct regulation of proliferation,

  14. Modulating the bone marrow microenvironment:the role of DLL4:Notch signaling and hypoxia

    OpenAIRE

    Remédio, Leonor

    2013-01-01

    Tese de doutoramento, Biologia (Biologia Celular), Universidade de Lisboa, Faculdade de Ciências, 2013 Both cell-intrinsic and environmental cues drive hematopoiesis, which in adult mammals occurs mainly in the bone marrow (BM). BM endothelial cells that line the blood vessels contribute towards the regulation of hematopoiesis. In this Thesis, we used two strategies previously shown to increase vessel numbers, to assess the modulation of the BM “vascular niche” and its effects in hematopoi...

  15. Normal development of fetal hepatic haematopoiesis during the second trimester of gestation is upregulated by fibronectin expression in the stromal cells of the portal triads El desarrollo normal de la hematopoyesis hepática fetal durante el segundo trimestre de embarazo está regulado al alza por la expresión de fibronectina en las células del estroma de las tríadas portales

    OpenAIRE

    Tamiolakis, D.; I. Venizelos; S. Nikolaidou; T. Jivanakis

    2007-01-01

    Objective: in midtrimester fetuses the principal site of hematopoiesis is the liver. In hematopoietic organs, stromal cells such as fibroblasts, epithelial cells, and macrophage-like cells develop networks to maintain hematopoiesis, i.e. hematopoietic stem cell self-renewal, proliferation, and growth, by interaction with hematopoietic progenitor cells. ECM glycoproteins produced by the stromal cells are known to play a critical role in the regulation of cell growth and differentiation. Numero...

  16. Réponse au parasitisme par des guêpes chez la drosophile : rôle de la voie de signalisation Toll/NFkB

    OpenAIRE

    Louradour, Isabelle

    2015-01-01

    In all organisms, the immune response is divided into two parts: the humoral response, which consists of producing a large number of molecules to combat the pathogen, and the cellular response, which relies on immune cells produced during hematopoiesis. In adult mammals, hematopoiesis occurs in the bone marrow, where a particular microenvironment called the "hematopoietic niche" controls self-renewal, proliferation and differentiation of Hematopoietic Stem Cells (HSCs), which give rise to all...

  17. Early osteoinductive human bone marrow mesenchymal stromal/stem cells support an enhanced hematopoietic cell expansion with altered chemotaxis- and adhesion-related gene expression profiles

    Energy Technology Data Exchange (ETDEWEB)

    Sugino, Noriko [Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Miura, Yasuo, E-mail: ym58f5@kuhp.kyoto-u.ac.jp [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Yao, Hisayuki [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Iwasa, Masaki; Fujishiro, Aya [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Division of Gastroenterology and Hematology, Shiga University of Medical Science, Shiga 520-2192 (Japan); Fujii, Sumie [Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Hirai, Hideyo [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan); Takaori-Kondo, Akifumi [Department of Hematology/Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Ichinohe, Tatsuo [Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553 (Japan); Maekawa, Taira [Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507 (Japan)

    2016-01-22

    Bone marrow (BM) microenvironment has a crucial role in supporting hematopoiesis. Here, by using a microarray analysis, we demonstrate that human BM mesenchymal stromal/stem cells (MSCs) in an early osteoinductive stage (e-MSCs) are characterized by unique hematopoiesis-associated gene expression with an enhanced hematopoiesis-supportive ability. In comparison to BM-MSCs without osteoinductive treatment, gene expression in e-MSCs was significantly altered in terms of their cell adhesion- and chemotaxis-related profiles, as identified with Gene Ontology and Gene Set Enrichment Analysis. Noteworthy, expression of the hematopoiesis-associated molecules CXCL12 and vascular cell adhesion molecule 1 was remarkably decreased in e-MSCs. e-MSCs supported an enhanced expansion of CD34{sup +} hematopoietic stem and progenitor cells, and generation of myeloid lineage cells in vitro. In addition, short-term osteoinductive treatment favored in vivo hematopoietic recovery in lethally irradiated mice that underwent BM transplantation. e-MSCs exhibited the absence of decreased stemness-associated gene expression, increased osteogenesis-associated gene expression, and apparent mineralization, thus maintaining the ability to differentiate into adipogenic cells. Our findings demonstrate the unique biological characteristics of e-MSCs as hematopoiesis-regulatory stromal cells at differentiation stage between MSCs and osteoprogenitor cells and have significant implications in developing new strategy for using pharmacological osteoinductive treatment to support hematopoiesis in hematopoietic stem and progenitor cell transplantation. - Highlights: • Human BM-MSCs in an early osteoinductive stage (e-MSCs) support hematopoiesis. • Adhesion- and chemotaxis-associated gene signatures are altered in e-MSCs. • Expression of CXCL12 and VCAM1 is remarkably decreased in e-MSCs. • e-MSCs are at differentiation stage between MSCs and osteoprogenitor cells. • Osteoinductive treatment

  18. Identification of Multipotent Progenitors that Emerge Prior to Hematopoietic Stem Cells in Embryonic Development

    Directory of Open Access Journals (Sweden)

    Matthew A. Inlay

    2014-04-01

    Full Text Available Hematopoiesis in the embryo proceeds in a series of waves, with primitive erythroid-biased waves succeeded by definitive waves, within which the properties of hematopoietic stem cells (multilineage potential, self-renewal, and engraftability gradually arise. Whereas self-renewal and engraftability have previously been examined in the embryo, multipotency has not been thoroughly addressed, especially at the single-cell level or within well-defined populations. To identify when and where clonal multilineage potential arises during embryogenesis, we developed a single-cell multipotency assay. We find that, during the initiation of definitive hematopoiesis in the embryo, a defined population of multipotent, engraftable progenitors emerges that is much more abundant within the yolk sac (YS than the aorta-gonad-mesonephros (AGM or fetal liver. These experiments indicate that multipotent cells appear in concert within both the YS and AGM and strongly implicate YS-derived progenitors as contributors to definitive hematopoiesis.

  19. Bone Marrow Vascular Niche: Home for Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Ningning He

    2014-01-01

    Full Text Available Though discovered later than osteoblastic niche, vascular niche has been regarded as an alternative indispensable niche operating regulation on hematopoietic stem cells (HSCs. As significant progresses gained on this type niche, it is gradually clear that the main work of vascular niche is undertaking to support hematopoiesis. However, compared to what have been defined in the mechanisms through which the osteoblastic niche regulates hematopoiesis, we know less in vascular niche. In this review, based on research data hitherto we will focus on component foundation and various functions of vascular niche that guarantee the normal hematopoiesis process within bone marrow microenvironments. And the possible pathways raised by various research results through which this environment undergoes its function will be discussed as well.

  20. Stem-cell dynamics and lineage topology from in vivo fate mapping in the hematopoietic system.

    Science.gov (United States)

    Höfer, Thomas; Barile, Melania; Flossdorf, Michael

    2016-06-01

    In recent years, sophisticated fate-mapping tools have been developed to study the behavior of stem cells in the intact organism. These experimental approaches are beginning to yield a quantitative picture of how cell numbers are regulated during steady state and in response to challenges. Focusing on hematopoiesis and immune responses, we discuss how novel mathematical approaches driven by these fate-mapping data have provided insights into the dynamics and topology of cellular differentiation pathways in vivo. The combination of experiment and theory has allowed to quantify the degree of self-renewal in stem and progenitor cells, shown how native hematopoiesis differs fundamentally from post-transplantation hematopoiesis, and uncovered that the diversification of T lymphocytes during immune responses resembles tissue renewal driven by stem cells.

  1. Interferon and tumor necrosis factor as humoral mechanisms coupling hematopoietic activity to inflammation and injury.

    Science.gov (United States)

    Askenasy, Nadir

    2015-01-01

    Enhanced hematopoiesis accompanies systemic responses to injury and infection. Tumor necrosis factor (TNF) produced by injured cells and interferons (IFNs) secreted by inflammatory cells is a co-product of the process of clearance of debris and removal of still viable but dysfunctional cells. Concomitantly, these cytokines induce hematopoietic stem and progenitor cell (HSPC) activity as an intrinsic component of the systemic response. The proposed scenario includes induction of HSPC activity by type I (IFNα/β) and II (IFNγ) receptors within the quiescent bone marrow niches rendering progenitors responsive to additional signals. TNFα converges as a non-selective stimulant of HSPC activity and both cytokines synergize with other growth factors in promoting differentiation. These physiological signaling pathways of stress hematopoiesis occur quite frequent and do not cause HSPC extinction. The proposed role of IFNs and TNFs in stress hematopoiesis commends revision of their alleged involvement in bone marrow failure syndromes.

  2. Fatal hepatic failure associated with graft rejection following reduced-intensity stem-cell transplantation for chronic idiopathic myelofibrosis (CIMF).

    Science.gov (United States)

    Miyakoshi, Shigesaburo; Kami, Masahiro; Kishi, Yukiko; Murashige, Naoko; Yuji, Koichiro; Kusumi, Eiji; Matsumura, Tomoko; Onishi, Yasushi; Kobayashi, Kazuhiko; Kim, Sung-Won; Hamaki, Tamae; Takaue, Yoichi; Taniguchi, Shuichi

    2004-12-01

    A 54-year-old man with chronic idiopathic myelofibrosis (CIMF) underwent RIST. His clinical course had been uneventful until day 60, when splenomegaly reappeared. Hepatic dysfunction developed on day 75. Recipient-type hematopoiesis increased to 51% on day 90. After rapid tapering of cyclosporin, serum levels of AST and ALP normalized in parallel with recovery of complete chimerism on day 134. Yet, jaundice progressed. He died of liver failure on day 176. Postmortem examination revealed neither GVHD nor VOD. Graft rejection following RIST for CIMF may lead to fatal hepatic damage through extramedullary hematopoiesis in the liver or cytokine-mediated immune dysregulations.

  3. Spinal cord compression in {beta}-thalassemia: follow-up after radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Silvana Fahel da; Figueiredo, Maria Stella; Cancado, Rodolfo Delfini; Nakadakare, Fernando; Segreto, Roberto; Kerbauy, Jose [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Escola Paulista de Medicina

    1998-12-01

    Spinal cord compression due to extramedullary hematopoiesis is a well-described bu rare syndrome encountered in several hematologic disorders, including {beta}-thalassemia. We report a case of a patient with intermediate {beta}-thalassemia and crural paraparesis due to spinal cord compression by a paravertebral extramedullary mass. She was successfully treated with low-dose radiotherapy and transfusions. After splenectomy, she was regularly followed up for over four years without transfusion or recurrence of spinal cord compression. Extramedullary hematopoiesis should be investigated in patients with hematologic disorders and spinal cord symptoms. The rapid recognition and treatment with radiotherapy can dramatically alleviate symptoms. (author)

  4. Spinal cord compression in b-thalassemia: follow-up after radiotherapy

    Directory of Open Access Journals (Sweden)

    Silvana Fahel da Fonseca

    Full Text Available CONTEXT: Spinal cord compression due to extramedullary hematopoiesis is a well-described but rare syndrome encountered in several clinical hematologic disorders, including b-thalassemia. CASE REPORT: We report the case of a patient with intermediate b-thalassemia and crural paraparesis due to spinal cord compression by a paravertebral extramedullary mass. She was successfully treated with low-dose radiotherapy and transfusions. After splenectomy, she was regularly followed up for over four years without transfusion or recurrence of spinal cord compression. DISCUSSION: Extramedullary hematopoiesis should be investigated in patients with hematologic disorders and spinal cord symptoms. The rapid recognition and treatment with radiotherapy can dramatically alleviate symptoms.

  5. Surface electromyography assessment of muscle activation patterns while sitting down in young healthy women and patients with ankylosing spondylitis [Povrchové elektromyografické hodnocení svalové aktivity ve zkoušce posazení u zdravých mladých žen a u pacientů s ankylozující spondylitidou

    Directory of Open Access Journals (Sweden)

    Petr Uhlíř

    2011-03-01

    Full Text Available BACKGROUND: Muscle activation patterns depend on many factors. Surface electromyography (SEMG can reveal these patterns in subjects of different ages and health states. We studied patterns of muscle activation in two groups of subjects - healthy young women (as a control group and patients with ankylosing spondylitis. OBJECTIVE: The aim of this study was to register and compare muscle activation patterns while sitting down in these two groups in four situations with different positions of the lower and upper limbs. METHODS: Muscle activity was registered with the use of 8 channel surface polyelectromyography (Noraxon-Myosystem 1400A. We tested the following muscles bilaterally while the subjects were sitting down (tibialis anterior muscle, medial head of the gastrocnemius muscle, gluteus maximus muscle, erectores spinae muscles. The onset of each individual muscle's activity was determined by calculating the sum of the mean value of the SEMG baseline plus 10% of the maximum value of amplitude (peak. RESULTS: It was registered that the medial head of the gastrocnemius muscle and/or erectores spinae muscles were activated as the first ones in both groups of the subjects under study in most of the studied postural situations. We registered differences in timing (sequence of muscle activation among various studied body and limb positions (P–, P+, PD–, and PN–. A great degree of variability in the sequence of muscle activation was revealed, depending on the positions of the upper and lower limbs. CONCLUSIONS: We did not find any unique patterns of muscle activation in either of the two groups under study.[VÝCHODISKA: Časové zapojování (aktivace svalů je závislé na mnoha faktorech. Povrchová polyelektromyografie zachycuje vzorce zapojování svalů u probandů rozdílného věku a zdravotního stavu v různých podmínkách. CÍLE: Cílem studie byla registrace a hodnocení pořadí zapojování svalů v průběhu sedání u t

  6. Neutropenia Due to Very Long Time Propylthiouracil Usage in Toxic Multinodular Goiter

    Directory of Open Access Journals (Sweden)

    Ahmet Kaya

    2016-03-01

    Full Text Available Thyrotoxicosis affects hematopoiesis in several ways and thioamides may cause myelosuppression. We report a case of febrile neutropenia in a patient with hyperthyroidism who was using propylthiouracil for nearly 20 years for the treatment of toxic multinodular goitre. After surgery, the patient was euthyroid and neutropenia resolved. Postoperative pathology was evaluated as micropapillary thyroid carcinoma.

  7. Four Week Oral Toxicity Study of WR242511 in Dogs. Volume 1

    Science.gov (United States)

    1994-06-03

    Fisher, D. and Garner, M.Q. Anal. Chem, 28, 1065, 1956. Calcium Modified alizarin procedure Ciba-Corning 550 Express Clinical Chemistry System...Alkaline phosphatase Aspartate aminotransferase (AST) Calcium Chloride Cholesterol Creatinine Creatine kinase (CK) Gamma glutamyl transferase Page...RBCs in high dose animals. The anemia was also accompanied by secondary histologic changes including splenic extramedullary hematopoiesis (supported

  8. Neonatal hematology.

    Science.gov (United States)

    Diaz-Miron, Jose; Miller, Jacob; Vogel, Adam M

    2013-11-01

    Neonatal hematology is a complex and dynamic process in the pediatric population. Surgeons frequently encounter hematologic issues regarding hemostasis, inflammation, and wound healing. This publication provides a surgeon-directed review of hematopoiesis in the newborn, as well as an overview of the current understanding of their hemostatic profile under normal and pathologic conditions. © 2013 Published by Elsevier Inc.

  9. MicroRNAs in Pediatric Acute Lymphoblastic Leukemia: Small players with huge potential

    NARCIS (Netherlands)

    D. Schotte (Diana)

    2011-01-01

    textabstractHematopoiesis is a dynamic balance of cellular proliferation, survival, apoptosis and differentiation in which the pluripotent hematopoietic stem cell gives rise to lymphoid and myeloid precursors of blood cells. The B-lymphoid precursor sequentially differentiates from proB-cells into

  10. Multidrug Resistance Studies in Patients with Acute Myeloid Leukemia

    NARCIS (Netherlands)

    M.M. van den Heuvel-Eibrink (Marry)

    2001-01-01

    textabstractIn the bone marrow, a continuous, strictly organized process of blood cell production or hematopoiesis takes place. The human hematopoietic system is capable of replacing the normal daily turnover of blood cells and is capable of maintaining a balance between the blood cell formation and

  11. Clonality studies in myelodysplasia and acute myeloid leukemia

    NARCIS (Netherlands)

    K. van Lom (Kirsten)

    2000-01-01

    textabstractIn adult humans, the production of blood cells or hematopoiesis is mainly restricted to the bone marrow. A small number of pluripotent stem cells, which are capable of selfrenewal, can generate committed progenitor cells. The latter are ineversibly committed to the granulocytic,

  12. Bone marrow failure syndromes and refractory cytopenia of childhood

    NARCIS (Netherlands)

    A.M. Aalbers (Anna Maartje)

    2014-01-01

    markdownabstract__Abstract__ Hematopoiesis, or blood cell production, is sustained through hematopoietic stem cells, which are self-renewing cells that reside in the bone marrow, and that are capable of producing daughter cells that proliferate and mature to provide all adult blood effector cells,

  13. Genome-Wide Analysis of Severe Congenital Neutropenia and Leukemia Implications for leukemogenesis

    NARCIS (Netherlands)

    R. Beekman (Renée)

    2013-01-01

    textabstractThe process of blood cell formation is known as hematopoiesis. During this process mature blood cells are formed in the bone marrow, followed by their release in the peripheral blood. Once in the periphery, mature blood cells exert their functions; erythrocytes play a crucial role in gas

  14. Janus Kinase 2: An Epigenetic 'Writer' that Activates Leukemogenic Genes

    Institute of Scientific and Technical Information of China (English)

    Jin He; Yi Zhang

    2010-01-01

    @@ Activation of Janus kinase 2 (JAK2) plays a critical role in normal hematopoiesis and leukemogenesis. Dawson et al. (2009; JAK2 phosphorylates histone H3Y41 and excludes Hplalpha from chromatin. Nature 461, 819-822) report that JAK2 performs this function by displacing the heterochromatin protein HP1α from chromatin through phosphorylation of histone H3.

  15. MicroRNAs in Pediatric Acute Lymphoblastic Leukemia: Small players with huge potential

    NARCIS (Netherlands)

    D. Schotte (Diana)

    2011-01-01

    textabstractHematopoiesis is a dynamic balance of cellular proliferation, survival, apoptosis and differentiation in which the pluripotent hematopoietic stem cell gives rise to lymphoid and myeloid precursors of blood cells. The B-lymphoid precursor sequentially differentiates from proB-cells into c

  16. Dicer is selectively important for the earliest stages of erythroid development

    DEFF Research Database (Denmark)

    Buza-Vidas, Natalija; Cismasiu, Valeriu B; Moore, Susan

    2012-01-01

    MicroRNAs (miRs) are involved in many aspects of normal and malignant hematopoiesis, including hematopoietic stem cell (HSC) self-renewal, proliferation, and terminal differentiation. However, a role for miRs in the generation of the earliest stages of lineage committed progenitors from HSCs has ...

  17. Diagnosis of heterotopic bone marrow in the mediastinum using /sup 52/Fe and positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Borgies, P. (Cliniques Universitaires Saint-Luc, Brussels (Belgium). Dept. of Hematology; Cliniques Universitaires Saint-Luc, Brussels (Belgium). Dept. of Nuclear Medicine); Ferrant, A. (Louvain Univ., Louvain-la-Neuve (Belgium). Lab. of Positron Emission Tomography); Leners, N.; Michaux, J.L.; Bol, A.; Michel, C.; Cogneau, M.; Sokal, G.

    1989-11-01

    A patient with hereditary spherocytosis was admitted with mediastinal masses on the chest X-ray. /sup 52/Fe and positron emission tomography (PET) showed uptake of /sup 52/Fe in the masses and established the diagnosis of thoracic extra medullary hematopoiesis. (orig.).

  18. Altered Gene & MiRNA Regulation in Pediatric Acute Myeloid Leukemia

    NARCIS (Netherlands)

    J.E. Katsman-Kuipers (Jenny)

    2015-01-01

    markdownabstract__Abstract__ The life-span of blood cells differs from very long – a maximum of 120 days for erythrocytes- to very short -8 hours for granulocytes-. Hence, to preserve the cell numbers required for normal function, hematopoiesis is a continuous process of blood cell maturation and p

  19. AFRRI Reports, Third Quarter 1994

    Science.gov (United States)

    1994-10-01

    provided indirect evidence that reconstitution of medullary and extramedullary hematopoiesis after sublethal irradia- tion is mediated by...hemopoietic aplasia . Exp. Hematol. 21:338. 10. Schuening. F. G., F. R. Appelbaum, H. J. Deeg, M. Sullivan-Pepe, T. C Graham, R. Hackman, K. M. Zsebo

  20. Gene Expression of Hematoregulatory Cytokines is Elevated Endogenously After Sublethal Gamma Irradiation and is Differentially Enhanced by Therapeutic Administration of Biologic Response Modifiers

    Science.gov (United States)

    1994-01-01

    reconstitution of medullary Days After Irradiation and extramedullary hematopoiesis after sublethal irradia- FIGURE 7. Comparative elects of BRMs on 30-day...stimulating factor on recovery from radiation-induced hcmopoi,:tic Other studies have documented the absence of myeloid aplasia . EAp. henatoL 21:33W

  1. MODULATION OF THE INTESTINAL MICROFLORA BY THE NONABSORBABLE ANTIBIOTIC VANCOMYCIN LEADS TO A REDUCTION OF THE TUMOR LOAD IN LIVER AND SPLEEN IN A LEUKEMIC RAT MODEL

    NARCIS (Netherlands)

    DAENEN, S; HUIGES, W; VEENEMA, B; VANDERWAAIJ, D; HALIE, RM

    1993-01-01

    Based on previous studies where it was shown that non-absorbable antibiotics can influence the normal hematopoiesis via changes in factors related to the intestinal microflora, the influence of vancomycin on the progression of acute myeloid leukemia was investigated in the BNML rat model. Oral vanco

  2. Haemopedia: An Expression Atlas of Murine Hematopoietic Cells.

    Science.gov (United States)

    de Graaf, Carolyn A; Choi, Jarny; Baldwin, Tracey M; Bolden, Jessica E; Fairfax, Kirsten A; Robinson, Aaron J; Biben, Christine; Morgan, Clare; Ramsay, Kerry; Ng, Ashley P; Kauppi, Maria; Kruse, Elizabeth A; Sargeant, Tobias J; Seidenman, Nick; D'Amico, Angela; D'Ombrain, Marthe C; Lucas, Erin C; Koernig, Sandra; Baz Morelli, Adriana; Wilson, Michael J; Dower, Steven K; Williams, Brenda; Heazlewood, Shen Y; Hu, Yifang; Nilsson, Susan K; Wu, Li; Smyth, Gordon K; Alexander, Warren S; Hilton, Douglas J

    2016-09-13

    Hematopoiesis is a multistage process involving the differentiation of stem and progenitor cells into distinct mature cell lineages. Here we present Haemopedia, an atlas of murine gene-expression data containing 54 hematopoietic cell types, covering all the mature lineages in hematopoiesis. We include rare cell populations such as eosinophils, mast cells, basophils, and megakaryocytes, and a broad collection of progenitor and stem cells. We show that lineage branching and maturation during hematopoiesis can be reconstructed using the expression patterns of small sets of genes. We also have identified genes with enriched expression in each of the mature blood cell lineages, many of which show conserved lineage-enriched expression in human hematopoiesis. We have created an online web portal called Haemosphere to make analyses of Haemopedia and other blood cell transcriptional datasets easier. This resource provides simple tools to interrogate gene-expression-based relationships between hematopoietic cell types and genes of interest. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Enhanced microglial pro-inflammatory response to lipopolysaccharide correlates with brain infiltration and blood-brain barrier dysregulation in a mouse model of telomere shortening

    NARCIS (Netherlands)

    Raj, Divya D.A.; Moser, Jill; van der Pol, Susanne M. A.; van Os, Ronald P.; Holtman, Inge R.; Brouwer, Nieske; Oeseburg, Hisko; Schaafsma, Wandert; Wesseling, Evelyn M.; Dunnen, den Wilfred; Biber, Knut P. H.; de Vries, Helga E.; Eggen, Bart J. L.; Boddeke, Hendrikus W. G. M.

    2015-01-01

    Microglia are a proliferative population of resident brain macrophages that under physiological conditions self-renew independent of hematopoiesis. Microglia are innate immune cells actively surveying the brain and are the earliest responders to injury. During aging, microglia elicit an enhanced inn

  4. A phase I/II trial of beta-(1,3/(1,6 D-glucan in the treatment of patients with advanced malignancies receiving chemotherapy

    Directory of Open Access Journals (Sweden)

    Weitberg Alan B

    2008-09-01

    Full Text Available Abstract β-(1,3/(1,6 D-glucan, a component of the fungal cell wall, has been shown to stimulate the immune system, enhance hematopoiesis, amplify killing of opsonized tumor cells and increase neutrophil chemotaxis and adhesion. In view of these attributes, the β-glucans should be studied for both their therapeutic efficacy in patients with cancer as well as an adjunctive therapy in patients receiving chemotherapy as a maneuver to limit suppression of hematopoiesis. In this study, twenty patients with advanced malignancies receiving chemotherapy were given a β-(1,3/(1,6 D-glucan preparation (MacroForce plus IP6, ImmuDyne, Inc. and monitored for tolerability and effect on hematopoiesis. Our results lead us to conclude that β-glucan is well-tolerated in cancer patients receiving chemotherapy, may have a beneficial effect on hematopoiesis in these patients and should be studied further, especially in patients with chronic lymphocytic leukemia and lymphoma.

  5. Myeloid leukemic progenitor cells can be specifically targeted by minor histocompatibility antigen LRH-1-reactive cytotoxic T cells.

    NARCIS (Netherlands)

    Norde, W.J.; Overes, I.M.; Maas, F.M.H.M.; Fredrix, J.M.; Vos, A.; Kester, M.G.; Voort, R. van der; Jedema, I.; Falkenburg, J.H.F.; Schattenberg, A.V.M.B.; Witte, T.J.M. de; Dolstra, H.

    2009-01-01

    CD8(+) T cells recognizing minor histocompatibility antigens (MiHAs) on leukemic stem and progenitor cells play a pivotal role in effective graft-versus-leukemia reactivity after allogeneic stem cell transplantation (SCT). Previously, we identified a hematopoiesis-restricted MiHA, designated LRH-1,

  6. Protein kinase B (c-akt) regulates hematopoietic lineage choice decisions during myelopoiesis

    NARCIS (Netherlands)

    Buitenhuis, Miranda; Verhagen, Liesbeth P.; van Deutekom, Hanneke W. M.; Castor, Anders; Verploegen, Sandra; Koenderman, Leo; Jacobsen, Sten-Eirik W.; Coffer, Paul J.

    2008-01-01

    Hematopoiesis is a highly regulated process resulting in the formation of all blood lineages. Aberrant regulation of phosphatidylinositol-3-kinase (PI3K) signaling has been observed in hematopoietic malignancies, suggesting that regulated PI3K signaling is critical for regulation of blood cell produ

  7. Embryonic vasculogenesis and hematopoietic specification

    Science.gov (United States)

    Vasculogenesis is the process by which blood vessels are formed de novo. In mammals, vasculogenesis occurs in parallel with hematopoiesis, the formation of blood cells. Thus, it is debated whether vascular endothelial cells and blood cells are derived from a common progenitor. Whether or not this is...

  8. Routing dynamics of the colony-stimulating factor 3 receptor and implications for intracellular signaling

    NARCIS (Netherlands)

    J.C.M. Meenhuis (Annemarie)

    2011-01-01

    textabstractHematopoiesis is the tightly regulated formation of all blood cell types from hematopoietic stem cells, which in adults takes place in the bone marrow. The bone marrow of an average healthy adult produces approximately 10(11)-10(12) peripheral blood cells a day. This process largely depe

  9. The Effect of Bone Marrow Mesenchymal Stem Cells on Vitamin D3 Induced Monocytic Differentiation of U937 Cells

    OpenAIRE

    Molaeipour, Zahra; Shamsasanjan, karim; Movassaghpour, Ali Akbari; Akbarzadehlaleh, Parvin; Sabaghi, Fatemeh; Saleh, Mahshid

    2016-01-01

    Purpose: Mesenchymal stem cells (MSCs) are key components of the hematopoietic stem cells (HSCs) niche. They control the process of hematopoiesis by secreting regulatory cytokines, growth factors and expression of important cell adhesion molecules for cell-tocell interactions. In this research, we have investigated the effect of bone marrow derived MSCs on monocytic differentiation of U937 cells line.

  10. MEDIASTINAL GERM-CELL TUMOR WITH SECONDARY NONGERM CELL MALIGNANCY, AND EXTENSIVE HEMATOPOIETIC ACTIVITY - PATHOLOGY, DNA-PLOIDY, AND KARYOTYPING

    NARCIS (Netherlands)

    OOSTERHUIS, JW; VANDENBERG, E; DEJONG, B; TIMENS, W; CASTEDO, SMMJ; RAMMELOO, RHU; SLEIJFER, DT

    1991-01-01

    We report on a malignant germ cell tumor located in the anterior mediastinum. After chemotherapy the tumor was classified as residual teratoma with sarcomatous components. There was extensive hematopoiesis in the tumor tissue. The tumor cells had a modal chromosome number of 76; the only structural

  11. Short and long-term repopulating hematopoietic stem cells in the mouse

    NARCIS (Netherlands)

    J.C.M. van der Loo

    1995-01-01

    textabstractThe formation and development of blood cells, or hematopoiesis, normally takes place in the bone marrow, which serves as the major hematopoietic organ during adult life. A small population of bone marrow cells (BMC), designated as hematopoietic stem cells, underlies the process of blood

  12. Clinical management of gastrointestinal disturbances in patients with myelodysplastic syndromes receiving iron chelation treatment with deferasirox

    NARCIS (Netherlands)

    Nolte, F.; Angelucci, E.; Beris, P.; Macwhannell, A.; Selleslag, D.; Schumann, C.; Xicoy, B.; Almeida, A.; Guerci-Bresler, A.; Sliwa, T.; Muus, P.; Porter, J.; Hofmann, W.K.

    2011-01-01

    Myelodysplastic syndromes are characterized by ineffective hematopoiesis resulting in peripheral cytopenias. The majority of patients is dependent on regular transfusions of packed red blood cells leading to a secondary iron overload which might result in organ damage. Therefore, sufficient iron che

  13. New experimental approach to treatment of radiation-induced bone marrow aplasia: ex vivo expansion of hematopoietic cells; Nouvelle approche experimentale du traitement de l`aplasie medullaire radio-induite

    Energy Technology Data Exchange (ETDEWEB)

    Herodin, F.; Mathieu, J.; Drouet, M.; Grenier, N.; Grange, L.; Bourin, P.; Vetillard, J.; Thierry, D.; Mestries, J.C.

    1995-12-31

    The management of bone marrow aplasia secondary to accidental exposure to high doses of ionizing radiations requires new therapeutic protocols in addition to cytokine therapy. The in vitro incubation of hematopoietic stem and progenitor cells from irradiated nonhuman primates with negative and positive regulators of hematopoiesis may lead to helpful products of transfusion. (author).

  14. Genome-Wide Analysis of Severe Congenital Neutropenia and Leukemia Implications for leukemogenesis

    NARCIS (Netherlands)

    R. Beekman (Renée)

    2013-01-01

    textabstractThe process of blood cell formation is known as hematopoiesis. During this process mature blood cells are formed in the bone marrow, followed by their release in the peripheral blood. Once in the periphery, mature blood cells exert their functions; erythrocytes play a crucial role in gas

  15. Allogeneic fetal stem cell transplantation to child with psychomotor retardation: A case report

    OpenAIRE

    2016-01-01

    Introduction. The consequences of autologous and allogeneic stem cell transplantation (stem cells of hematopoiesis), applied in adults and children suffering from leukemia or some other malignant disease, are well-known and sufficiently recognizable in pediatric clinical practice regardless of the indication for the treatment. However, the efficacy of fetal stem cell transplantation is unrecognizable when the indications are psychomotor retardation and epil...

  16. Protective effects of erythropoietin in cardiac ischemia - From bench to bedside

    NARCIS (Netherlands)

    Lipsic, Erik; Schoemaker, Regien G.; van der Meer, Peter; Voors, Adriaan A.; van Veldhuisen, Dirk J.; van Gilst, Wiek H.

    2006-01-01

    Erythropoietin (EPO) is a hypoxia-induced hormone produced in the kidneys that stimulates hematopoiesis in the bone marrow. However, recent studies have also shown important nonhematopoietic effects of EPO. A functional EPO receptor is found in the cardiovascular system, including endothelial cells

  17. Erythropoietin Receptor in Human Tumor Cells: Expression and Aspects Regarding Functionality

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); G. Westphal; E. Niederberger; C. Blum; Y. Wollman; W. Rebel; J. Debus; E. Friedrich

    2001-01-01

    textabstractRecombinant human erythropoietin (Epo)and granu l o cy t e - c o l o ny - s t i mulating factor (G-CSF) are used to stimulate hematopoiesis in patients with malignant dise a s e s . These cytokines transduce their biological signal via the Epo receptor (EpoR) and G-CSF receptor (G-CSF-R)

  18. [Epigenetic dysregulation in myelodysplastic syndrome].

    Science.gov (United States)

    Sashida, Goro; Iwama, Atsushi

    2015-02-01

    Myelodysplastic syndrome (MDS) is a clonal hematopoietic stem cell disease characterized by impaired hematopoiesis and an increased risk of transformation to acute myeloid leukemia. Various epigenetic regulators are mutated in MDS patients, indicating that accumulation of epigenetic alterations together with genetic alterations plays a crucial role in the development of MDS.

  19. Formation of transcription factor complexes during embryonic erythroid development

    NARCIS (Netherlands)

    X. Yu (Xiao)

    2013-01-01

    textabstractHematopoiesis is a classic model for the study of embryonic and adult stem cell differentiation. Erythropoiesis is the process of generating erythrocytes from hematopoietic stem cells (HSC). In Chapter1, we introduce the process of erythropoiesis and discuss proteins and protein complexe

  20. Chromatin accessibility, p300, and histone acetylation define PML-RARalpha and AML1-ETO binding sites in acute myeloid leukemia.

    NARCIS (Netherlands)

    Saeed, S.; Logie, C.; Francoijs, K.J.; Frige, G.; Romanenghi, M.; Nielsen, F.G.G.; Raats, L.; Shahhoseini, M.; Huynen, M.A.; Altucci, L.; Minucci, S.; Martens, J.H.; Stunnenberg, H.G.

    2012-01-01

    Chromatin accessibility plays a key role in regulating cell type specific gene expression during hematopoiesis but has also been suggested to be aberrantly regulated during leukemogenesis. To understand the leukemogenic chromatin signature, we analyzed acute promyelocytic leukemia, a subtype of leuk

  1. The molecular heterogenity of MLL-rearranged pediatric AML

    NARCIS (Netherlands)

    E.A. Coenen (Eva)

    2013-01-01

    textabstractContinuous renewal of blood cells, so called hematopoiesis, is essential for human life. Starting from several months after birth the majority of blood cell production occurs in the bone marrow. Circulating blood cells are of diverse morphology and function and can be divided in red bloo

  2. Protein kinase B (c-akt) regulates hematopoietic lineage choice decisions during myelopoiesis

    NARCIS (Netherlands)

    Buitenhuis, Miranda; Verhagen, Liesbeth P.; van Deutekom, Hanneke W. M.; Castor, Anders; Verploegen, Sandra; Koenderman, Leo; Jacobsen, Sten-Eirik W.; Coffer, Paul J.

    2008-01-01

    Hematopoiesis is a highly regulated process resulting in the formation of all blood lineages. Aberrant regulation of phosphatidylinositol-3-kinase (PI3K) signaling has been observed in hematopoietic malignancies, suggesting that regulated PI3K signaling is critical for regulation of blood cell

  3. Neonatal microbial colonization in mice promotes prolonged dominance of CD11b+Gr-1+cells and accelerated establishment of the CD4+T cell population in the spleen

    DEFF Research Database (Denmark)

    Kristensen, Matilde Bylov; Metzdorff, Stine Broeng; Bergström, Anders;

    2015-01-01

    To assess the microbial influence on postnatal hematopoiesis, we examined the role of early life microbial colonization on the composition of leukocyte subsets in the neonatal spleen. A high number of CD11b+Gr-1+ splenocytes present perinatally was sustained for a longer period in conventionally...

  4. Clonality studies in myelodysplasia and acute myeloid leukemia

    NARCIS (Netherlands)

    K. van Lom (Kirsten)

    2000-01-01

    textabstractIn adult humans, the production of blood cells or hematopoiesis is mainly restricted to the bone marrow. A small number of pluripotent stem cells, which are capable of selfrenewal, can generate committed progenitor cells. The latter are ineversibly committed to the granulocytic, monocyti

  5. Putting crystals in place - the regulation of biomineralization in zebrafish

    NARCIS (Netherlands)

    Apschner, A.

    2014-01-01

    In humans the skeleton has a number of crucial functions: It provides protection and mechanical support to the body, is an important metabolic organ and represents the place of adult hematopoiesis. There are a number of human diseases related to the muscoskeletal system; prominent examples are osteo

  6. miRNA profiling of B-cell subsets : specific miRNA profile for germinal center B cells with variation between centroblasts and centrocytes

    NARCIS (Netherlands)

    Tan, Lu Ping; Wang, Miao; Robertus, Jan-Lukas; Schakel, Rikst Nynke; Gibcus, Johan H.; Diepstra, Arjan; Harms, Geert; Peh, Suat-Cheng; Reijmers, Rogier M.; Pals, Steven T.; Kroesen, Bart-Jan; Kluin, Philip M.; Poppema, Sibrand; van den Berg, Anke

    2009-01-01

    MicroRNAs ( miRNAs) are an important class of small RNAs that regulate gene expression at the post-transcriptional level. It has become evident that miRNAs are involved in hematopoiesis, and that deregulation of miRNAs may give rise to hematopoietic malignancies. The aim of our study was to establis

  7. Novel transforming genes in murine myeloid leukemia

    NARCIS (Netherlands)

    A.M.S. Joosten (Marieke)

    2002-01-01

    textabstractLeukemia is characterised by an accumulation in the bone marrow of non-functional blood cells arrested at a particular stage of differentiation. In the process of normal hematopoiesis, errors may occur as the result of mutations in the DNA of hematopoietic precursor cells. These genetic

  8. Regulatory T cells and immune tolerance after allogeneic hematopoietic stem cell transplantation

    NARCIS (Netherlands)

    M. Bruinsma (Marieke)

    2010-01-01

    textabstractThe story of allogeneic hematopoietic stem cell transplantation (allo-SCT) begins after the atomic bombings of Hiroshima and Nagasaki in 1945. It was observed that fallout radiation caused dose-dependent depression of hematopoiesis 1. Research first focused on how to protect the

  9. De Novo Chromosome Copy Number Variation in Fanconi Anemia-Associated Hematopoietic Defects

    Science.gov (United States)

    2014-08-01

    Laboratory used two cell types for these experimental approaches: 090 hTERT and HCT116. 090 hTERT are a normal hTERT-immortalized skin fibroblast...Adam, Z., Rani, R., Zhang, X. and Pang, Q. (2008) Oxidative stress in Fanconi anemia hematopoiesis and disease progression. Antioxid Redox Signal, 10

  10. Thirteen Week Oral Toxicity Study of WR238605 with a Thirteen Week Recovery Period in Dogs. Volume 1

    Science.gov (United States)

    1993-06-11

    collar, and was additionally tattooed in the inner aspect of the ear on the same day. Animals were singly housed in runs, except as subsequently...included extramedullary hematopoiesis and hemosiderin pigment in high dose and to a lesser extent in mid dose males and females. Hemosiderin pigment ...subacute inflammation Spleen - hemosiderin pigment (M) Liver - hemosiderin pigment (F) subacute inflammation (M) Bone marrow - hypercellularity

  11. TET2 deficiency inhibits mesoderm and hematopoietic differentiation in human embryonic stem cells

    DEFF Research Database (Denmark)

    Langlois, Thierry; da Costa Reis Monte Mor, Barbara; Lenglet, Gaëlle

    2014-01-01

    Ten-Eleven-Translocation 2 (TET2) belongs to the TET protein family that catalyzes the conversion of 5-methylcytosine into 5-hydroxymethylcytosine and plays a central role in normal and malignant adult hematopoiesis. Yet, the role of TET2 in human hematopoietic development remains largely unknown...

  12. Noncanonical Wnt5a-Ca(2+) -NFAT signaling axis in pesticide induced bone marrow aplasia mouse model: A study to explore the novel mechanism of pesticide toxicity.

    Science.gov (United States)

    Chattopadhyay, Sukalpa; Chatterjee, Ritam; Law, Sujata

    2016-10-01

    According to case-control studies, long-term pesticide exposure can cause bone marrow aplasia like hematopoietic degenerative disease leading to impaired hematopoiesis and increased risk of aplastic anemia in human subjects. However, the exact mechanism of pesticide mediated hematotoxicity still remains elusive. In this study, we investigated the role of noncanonical Wnt signaling pathway, a crucial regulator of adult hematopoiesis, in pesticide induced bone marrow aplasia mouse model. Aplasia mouse model was developed following inhalation and dermal exposure of 5% aqueous mixture of common agriculturally used pesticides for 6 h/day for 5 days a week up to 90 days. After that, blood hemogram, marrow smear, cellularity, scanning electron microscopy, extramedullary hematopoiesis and flowcytometric expression analysis of noncanonical Wnt signaling components, such as Wnt 5a, fzd5, NFAT, IFN-γ, intracellular Ca(2+) level were evaluated in the bone marrow hematopoietic stem/progenitor compartment of the control and pesticide induced aplasia groups of animals. Results showed that pesticide exposed mice were anemic with peripheral blood pancytopenia, hypocellular degenerative marrow, and extramedullary hematopoiesis in the spleen. Upon pesticide exposure, Wnt 5a expression was severely downregulated with a decline in intracellular Ca(2+) level. Moreover, downstream of Wnt5a, we observed sharp downregulation of NFATc2 transcription factor expression, the major target of pesticide toxicity and its target molecule IFN-γ. Taken together, our result suggests that deregulation of Wnt5a-Ca(2+) -NFAT signaling axis in the hematopoietic stem/progenitor compartment plays a crucial role behind the pathogenesis of pesticide mediated bone marrow aplasia by limiting primitive hematopoietic stem cells' ability to maintain hematopoietic homeostasis and reconstitution mechanism in vivo during xenobiotic stress leading to ineffective hematopoiesis and evolution of bone marrow aplasia.

  13. Possible role of minor h antigens in the persistence of donor chimerism after stem cell transplantation; relevance for sustained leukemia remission.

    Directory of Open Access Journals (Sweden)

    Cornelis R van der Torren

    Full Text Available Persistent complete donor chimerism is an important clinical indicator for remissions of hematological malignancies after HLA-matched allogeneic stem cell transplantation (SCT. However, the mechanisms mediating the persistence of complete donor chimerism are poorly understood. The frequent coincidence of complete donor chimerism with graft-versus-leukemia effects and graft-versus-host disease suggests that immune responses against minor histocompatibility antigens (mHags are playing an important role in suppressing the host hematopoiesis after allogeneic SCT. Here, we investigated a possible relationship between donor immune responses against the hematopoiesis-restricted mHag HA-1 and the long-term kinetics of host hematopoietic chimerism in a cohort of 10 patients after allogeneic HLA-matched, HA-1 mismatched SCT. Functional HA-1 specific CTLs (HA-1 CTLs were detectable in 6/10 patients lysing host-type hematopoietic cells in vitro. Presence of HA-1 CTLs in the peripheral blood coincided with low host hematopoiesis levels quantified by highly sensitive mHag specific PCR. Additionally, co-incubation of host type CD34+ cells with HA-1 CTLs isolated after allogeneic SCT prevented progenitor and cobblestone area forming cell growth in vitro and human hematopoietic engraftment in immunodeficient mice. Conversely, absence or loss of HA-1 CTLs mostly coincided with high host hematopoiesis levels and/or relapse. In summary, in this first study, presence of HA-1 CTLs paralleled low host hematopoiesis levels. This coincidence might be supported by the capacity of HA-1 CTLs isolated after allogeneic SCT to specifically eliminate host type hematopoietic stem/progenitor cells. Additional studies involving multiple mismatched mHags in more patients are required to confirm this novel characteristic of mHag CTLs as factor for the persistence of complete donor chimerism and leukemia remission after allogeneic SCT.

  14. Linking Hematopoietic Differentiation to Co-Expressed Sets of Pluripotency-Associated and Imprinted Genes and to Regulatory microRNA-Transcription Factor Motifs

    Science.gov (United States)

    Hamed, Mohamed; Trumm, Johannes; Spaniol, Christian; Sethi, Riccha; Irhimeh, Mohammad R.; Fuellen, Georg; Paulsen, Martina

    2017-01-01

    Maintenance of cell pluripotency, differentiation, and reprogramming are regulated by complex gene regulatory networks (GRNs) including monoallelically-expressed imprinted genes. Besides transcriptional control, epigenetic modifications and microRNAs contribute to cellular differentiation. As a model system for studying the capacity of cells to preserve their pluripotency state and the onset of differentiation and subsequent specialization, murine hematopoiesis was used and compared to embryonic stem cells (ESCs) as a control. Using published microarray data, the expression profiles of two sets of genes, pluripotent and imprinted, were compared to a third set of known hematopoietic genes. We found that more than half of the pluripotent and imprinted genes are clearly upregulated in ESCs but subsequently repressed during hematopoiesis. The remaining genes were either upregulated in hematopoietic progenitors or in differentiated blood cells. The three gene sets each consist of three similarly behaving gene groups with similar expression profiles in various lineages of the hematopoietic system as well as in ESCs. To explain this co-regulation behavior, we explored the transcriptional and post-transcriptional mechanisms of pluripotent and imprinted genes and their regulator/target miRNAs in six different hematopoietic lineages. Therewith, lineage-specific transcription factor (TF)-miRNA regulatory networks were generated and their topologies and functional impacts during hematopoiesis were analyzed. This led to the identification of TF-miRNA co-regulatory motifs, for which we validated the contribution to the cellular development of the corresponding lineage in terms of statistical significance and relevance to biological evidence. This analysis also identified key miRNAs and TFs/genes that might play important roles in the derived lineage networks. These molecular associations suggest new aspects of the cellular regulation of the onset of cellular differentiation and

  15. Účinek osmitýdenního plicního rehabilitačního programu na hrudní mobilitu a maximální vdechový a výdechový ústní tlak u pacientů s bronchiálním astmatem The effect of 8 week pulmonary rehabilitation programme on chest mobility and maximal inspiratory and expiratory mouth pressure in patients with bronchial asthma

    Directory of Open Access Journals (Sweden)

    Ivan Vařeka

    2008-04-01

    Full Text Available U nemocných s bronchiálním astmatem se mohou vyskytovat nejen poruchy dýchání, ale také muskuloskeletální poruchy. Poruchy dýchání a muskuloskeletální poruchy mohou vést k dalším zdravotním problémům a mohou tak snižovat kvalitu života. Tyto poruchy mohou být také spojeny s psychosociálními problémy a mohou mít vliv na omezení různých aktivit nemocných (pohybové aktivity, sportování, běžné denní aktivity – nakupování, uklízení atd.. Mezi nejvíce omezující symptomy u nemocných s bronchiálním astmatem patří ztížené dýchání a kašel. Komprehensivní léčba je založena nejen na farmakoterapii, ale také na nemedikamentózní léčbě, jejíž důležitou součástí je respirační fyzioterapie. Pro účinek rehabilitační léčby je ale nutné správné nastavení farmakoterapie. Cílem této studie bylo zjistit, zda program plicní rehabilitace ovlivní hodnoty maximálních nádechových a výdechových ústních tlaků a rozvíjení hrudníku u nemocných s bronchiálním astmatem. Výzkumný soubor byl tvořen 23 nemocnými s bronchiálním astmatem, kteří absolvovali osmitýdenní program plicní rehabilitace (30minutová terapie dvakrát týdně. Jednalo se o pacienty s intermitentním lehkým stádiem bronchiálního astmatu beze změn ve farmakoterapii. Program plicní rehabilitace byl zaměřen na dechová cvičení (aktivace bráničního dýchání, aktivace výdechu, nácvik efektivní expektorace atd. a techniky měkkých tkání s cílem uvolnění svalů a fascií v oblasti hrudního koše a pletence ramenního. Na začátku a konci osmitýdenního programu plicní rehabilitace byly vyšetřeny maximální nádechové a výdechové ústní tlaky a rozvíjení hrudníku. Rozvíjení hrudníku bylo hodnoceno ve dvou úrovních – mezosternální a xiphosternální. Po absolvování osmitýdenního programu plicní rehabilitace bylo zaznamenáno zlepšení rozv

  16. Stability Analysis of a Simplified Yet Complete Model for Chronic Myelegenous Leukemia

    CERN Document Server

    Jauffret, Marie Doumic; Perthame, Benoît

    2009-01-01

    We analyze the asymptotic behavior of a partial differential equation (PDE) model for hematopoiesis. This PDE model is derived from the original agent-based model formulated by (Roeder et al., Nat. Med., 2006), and it describes the progression of blood cell development from the stem cell to the terminally differentiated state. To conduct our analysis, we start with the PDE model of (Kim et al, JTB, 2007), which coincides very well with the simulation results obtained by Roeder et al. We simplify the PDE model to make it amenable to analysis and justify our approximations using numerical simulations. An analysis of the simplified PDE model proves to exhibit very similar properties to those of the original agent-based model, even if for slightly different parameters. Hence, the simplified model is of value in understanding the dynamics of hematopoiesis and of chronic myelogenous leukemia, and it presents the advantage of having fewer parameters, which makes comparison with both experimental data and alternative...

  17. Recombinant Human Prolactin Protects against Irradiation Induced Myelosuppression

    Institute of Scientific and Technical Information of China (English)

    Weici Zhang; Rui Sun; Jianhua Zhang; Jian Zhang; Zhigang Tian

    2005-01-01

    Prolactin is a multifunctional hormone that exerts many separate functions and acts as an important connection between the endocrine and immune systems. There are increasing researches implicating the role of prolactin in hematopoiesis. Enhanced erythropoiesis in pregnant women and direct erythropoietic effects in vitro of plasma either from pregnant or lactating mice have been reported. Furthermore, regression of erythroblastic leukemia has been observed in a significant number of rats after hypophysectomy. In this study, the effects of recombinant human prolactin (rhPRL) on hematopoiesis were assessed in irradiated mice. Mice were treated with rhPRL for five consecutive days after exposure to a lethal dose or a sub-dose irradiation. Prolonged survival rate and increased erythropoiesis were observed in the irradiation-induced myelosuppressive mice. It was concluded that rhPRL might act on erythropoiesis and could be a potential candidate for the treatment of irradiation-induced myelosuppresion in clinic. Cellular & Molecular Immunology.

  18. Notch signaling and development of the hematopoietic system.

    Science.gov (United States)

    Sandy, Ashley R; Jones, Morgan; Maillard, Ivan

    2012-01-01

    Notch signaling exerts multiple important functions in the hematopoietic system. Notch1-mediated signals are essential to induce the onset of definitive hematopoiesis within specialized domains of hemogenic endothelium in the fetal dorsal aorta. In contrast, Notch is dispensable for the subsequent maintenance of hematopoietic stem cells in the adult bone marrow. Notch is a key regulator of early T-cell development in the thymus. An expanding number of hematopoietic and lymphoid cell types have been reported to receive context-dependent inputs from the Notch pathway that regulate their differentiation and function. Progress in the field will continue to bring fundamental information about hematopoiesis and practical insights into the potential to modulate Notch signaling for therapeutic purposes.

  19. [Bone marrow stromal damage mediated by immune response activity].

    Science.gov (United States)

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  20. Experiment list: SRX100521 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available e Bcl11a/Evi9 protein. Functions as a myeloid and B-cell proto-oncogene. May play important roles in leukemo...to the mouse Bcl11a/Evi9 protein. Functions as a myeloid and B-cell proto-oncogene. May play important rol...es in leukemogenesis and hematopoiesis. An essential factor in lymphopoiesis,is req

  1. MicroRNAs in Pediatric Acute Lymphoblastic Leukemia: Small players with huge potential

    OpenAIRE

    Schotte, Diana

    2011-01-01

    textabstractHematopoiesis is a dynamic balance of cellular proliferation, survival, apoptosis and differentiation in which the pluripotent hematopoietic stem cell gives rise to lymphoid and myeloid precursors of blood cells. The B-lymphoid precursor sequentially differentiates from proB-cells into common/preB-cells and fi nally yields mature B-lymphocytes. The T-lymphoid precursor generates thymocytes or proT-cells that further differentiate into T-lymphocytes. The myeloid precursor gives ris...

  2. The clinical application of mesenchymal stromal cells in hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Ke Zhao

    2016-05-01

    Full Text Available Abstract Mesenchymal stromal cells (MSCs are multipotent stem cells well known for repairing tissue, supporting hematopoiesis, and modulating immune and inflammation response. These outstanding properties make MSCs as an attractive candidate for cellular therapy in immune-based disorders, especially hematopoietic stem cell transplantation (HSCT. In this review, we outline the progress of MSCs in preventing and treating engraftment failure (EF, graft-versus-host disease (GVHD following HSCT and critically discuss unsolved issues in clinical applications.

  3. APLASTIC ANEMIA ET CAUSA OF SUSPECT VIRAL HEPATITIS INFECTION: A CASE REPORT

    OpenAIRE

    I Wayan Wawan Lismana

    2014-01-01

    Aplastic anemia is anemia that occurs because of a failure of hematopoiesis is relatively rarebut can be life threatening. The cause of aplastic anemia itself is still largely unknown oridiopathic. Minority of cases mainly due to a virus infection, one of which is viral hepatitishas long been known to cause symptoms of aplastic anemia. This report discusses thesuspected aplastic anemia caused by hepatitis virus infection. Course of the disease or theprognosis of aplastic anemia varies, but a ...

  4. Myelofibrosis-associated complications: pathogenesis, clinical manifestations, and effects on outcomes

    Directory of Open Access Journals (Sweden)

    Mughal TI

    2014-01-01

    Full Text Available Tariq I Mughal,1 Kris Vaddi,2 Nicholas J Sarlis,2 Srdan Verstovsek31Tufts University School of Medicine, Boston, MA, 2Incyte Corporation, Wilmington, DE, 3Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USAAbstract: Myelofibrosis (MF is a rare chronic BCR-ABL1 (breakpoint cluster region-Abelson murine leukemia viral oncogene homologue 1-negative myeloproliferative neoplasm characterized by progressive bone marrow fibrosis, inefficient hematopoiesis, and shortened survival. The clinical manifestations of MF include splenomegaly, consequent to extramedullary hematopoiesis, cytopenias, and an array of potentially debilitating abdominal and constitutional symptoms. Dysregulated Janus kinase (JAK-signal transducer and activator of transcription signaling underlies secondary disease-associated effects in MF, such as myeloproliferation, bone marrow fibrosis, constitutional symptoms, and cachexia. Common fatal complications of MF include transformation to acute leukemia, thrombohemorrhagic events, organ failure, and infections. Potential complications from hepatosplenomegaly include portal hypertension and variceal bleeding, whereas extramedullary hematopoiesis outside the spleen and liver – depending on the affected organ – may result in intracranial hypertension, spinal cord compression, pulmonary hypertension, pleural effusions, lymphadenopathy, skin lesions, and/or exacerbation of abdominal symptoms. Although allogeneic stem cell transplantation is the only potentially curative therapy, it is suitable for few patients. The JAK1/JAK2 inhibitor ruxolitinib is effective in improving splenomegaly, MF-related symptoms, and quality-of-life measures. Emerging evidence that ruxolitinib may be associated with a survival benefit in intermediate- or high-risk MF suggests the possibility of a disease-modifying effect. Consequently, ruxolitinib could provide a treatment backbone to which other (conventional and novel

  5. Ikaros in B cell development and function

    Institute of Scientific and Technical Information of China (English)

    MacLean; Sellars; Philippe; Kastner; Susan; Chan

    2011-01-01

    The zinc finger transcription factor,Ikaros,is a central regulator of hematopoiesis.It is required for the development of the earliest B cell progenitors and at later stages for VDJ recombination and B cell receptor expression.Mature B cells rely on Ikaros to set the activation threshold for various stimuli,and to choose the correct antibody isotype during class switch recombination.Thus,Ikaros contributes to nearly every level of B cell differentiation and function.

  6. AFRRI (Armed Forces Radiobiology Research Institute) Reports, January-March 1985

    Science.gov (United States)

    1985-01-01

    stains for cell sorting 56 genesis 213 Anticoagulants long-term hematopoiesis, role :472 granulocytic diffeentiation 56 medullary vs.extramedullary 215...functional ability of the mononuclear and macro- phage progeny of the M-CFC derived from the bone marrow and extra- medullary sources. The point to be...hemopoictic aplasia , the implications vival2’. The exact correlation between giucan’s hemo- and possible applications of glueall treatment are in- poietic

  7. Chemokines: proinflammatory and cell traffic regulator cytokines Las quimioquinas: citoquinas proinflamatorias y reguladoras del tráfico celular

    OpenAIRE

    2001-01-01

    Chemokines are a large group of proinflammatory cytokines; currently, there are about 40 different chemokines produced by different cellular sources and with pleiotropic actions. Interest in chemokines’ research is growing due to their selectivity to activate and to direct the traffic of different leukocyte populations, in contrast with other chemotactic factors that attract neutrophils and monocytes similarly. Furthermore, it has been observed that chemokines are involved in hematopoiesis, a...

  8. Les chémokines et leurs récepteurs : rôle dans les infections virales et dans les pathologies cancéreuses

    Directory of Open Access Journals (Sweden)

    Catherine Burteau

    2007-01-01

    Full Text Available The chemokines and their receptors: the main functions of chemokines are cell activation and stimulation of leukocyte migration. By interacting with G protein-coupled receptors, these proteins regulate many biological processes like apoptosis, proliferation, angiogenesis, hematopoiesis or organogenesis. They maintain the homeostasis of the lymphocyte compartment and ensure correct functioning of the immune system. Interestingly, the chemokines and their receptors are ideal targets for viruses. Furthermore, most cancers are characterized by a default of their expression or their activity.

  9. IMPACT OF IMMUNOGENETIC POLYMORPHISMS ON IMMUNE RESPONSE AND CLINICAL FEATURES IN BONE MARROW FAILURE SYNDROMES

    OpenAIRE

    2008-01-01

    Hematopietic stem cells (HSC) are responsible for the production of mature blood cells in bone marrow; peripheral pancytopenia may result from several different conditions, including hematological or extra-hematological diseases (mostly cancers) affecting the marrow function as well as primary failure of hematopoiesis. Although the clinical presentation may appear homogeneous, primary bone marrow failure syndromes are a heterogeneous group of diseases with specific pathogenic mechanisms, whic...

  10. Rabbit hematology.

    Science.gov (United States)

    Marshall, Kemba L

    2008-09-01

    Using laboratory animal medicine as an established resource, companion animal veterinarians have access to many physiologic and basic science studies that we can now merge with our clinical impressions. By working with reference laboratories, companion animal veterinarians are poised to accelerate our knowledge of the normal rabbit rapidly. The aim of this article is to discuss normal hematopoiesis and infectious and metabolic diseases that specifically target the hemolymphatic system. Additionally, photographic representation of cell types is provided.

  11. The bone marrow endosteal niche: how far from the surface?

    OpenAIRE

    Cordeiro-Spinetti, Eric; Taichman, Russell S; Balduino, Alex

    2015-01-01

    Hematopoietic stem cells (HSC) self-renewal takes place in the same microenvironment in which massive hematopoietic progenitor proliferation, commitment, and differentiation will occur. This is only made possible if the bone marrow microenvironment comprises different specific niches, composed by different stromal cells that work in harmony to regulate all the steps of the hematopoiesis cascade. Histological and functional assays indicated that HSC and multipotent progenitors preferentially c...

  12. Neonatal microbial colonization in mice promotes prolonged dominance of CD11b+Gr-1+cells and accelerated establishment of the CD4+T cell population in the spleen

    DEFF Research Database (Denmark)

    Kristensen, Matilde Bylov; Metzdorff, Stine Broeng; Bergström, Anders;

    2015-01-01

    To assess the microbial influence on postnatal hematopoiesis, we examined the role of early life microbial colonization on the composition of leukocyte subsets in the neonatal spleen. A high number of CD11b+Gr-1+ splenocytes present perinatally was sustained for a longer period in conventionally...... event, which we suggest impacts the subsequent development of the T cell population in the murine spleen....

  13. Origin and fate of hematopoietic stem precursor cells in the leech Hirudo medicinalis

    OpenAIRE

    GRIMALDI, A

    2016-01-01

    The hematopoietic process by which blood cells are formed has been intensely studied for over a century using several model systems. An increasing amount of evidence shows that hematopoiesis, angiogenesis, immune response and the regulating these processes (i.e., cytokines) are highly conserved across taxonomic groups. Over the last decade, the leech Hirudo medicinalis, given its simple anatomy and its repertoire of less varied cell types when compared to vertebrates, has been ...

  14. In vitro generation and characterization of acute myeloid leukemia-reactive CD8 + cytotoxic T-lymphocyte clones from healthy donors

    OpenAIRE

    Distler, Eva

    2007-01-01

    Donor-derived CD8+ cytotoxic T lymphocytes (CTLs) eliminating host leukemic cells mediate curative graft-versus-leukemia (GVL) reactions after allogeneic hematopoietic stem cell transplantation (HSCT). The leukemia-reactive CTLs recognize hematopoiesis-restricted or broadly expressed minor histocompatibility and leukemia-associated peptide antigens that are presented by human leukocyte antigen (HLA) class I molecules on recipient cells. The development of allogeneic CTL therapy in acute myelo...

  15. The histone demethylase Jarid1b is required for hematopoietic stem cell self-renewal

    DEFF Research Database (Denmark)

    Stewart, Morag H; Albert, Mareike; Sroczynska, Patrycja;

    2015-01-01

    Jarid1b/KDM5b is a histone demethylase that regulates self-renewal and differentiation in stem cells and cancer, however its function in hematopoiesis is unclear. Here, we find that Jarid1b is highly expressed in primitive hematopoietic compartments and is overexpressed in acute myeloid leukemias...... compromises hematopoietic stem cell (HSC) self-renewal capacity and suggest that Jarid1b is a positive regulator of HSC potential....

  16. Hematopoietic Stem Cells Expansionin Rotating Wall Vessel

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionClinical trials have demonstrated that ex vivo expanded hematopoietic stem cells (HSCs) and progenitors offer great promise in reconstituting in vivo hematopoiesis in patients who have undergone intensive chemotherapy. It is therefore necessary to develop a clinical-scale culture system to provide the expanded HSCs and progenitors. Static culture systems such as T-flasks and gas-permeable blood bags are the most widely used culture devices for expanding hematopoietic cells. But they reveal sev...

  17. The Effect of Bone Marrow Mesenchymal Stem Cells on Vitamin D3 Induced Monocytic Differentiation of U937 Cells

    OpenAIRE

    Zahra Molaeipour; Karim Shamsasanjan; Ali Akbari Movassaghpour; Parvin Akbarzadehlaleh; Fatemeh Sabaghi; Mahshid Saleh

    2016-01-01

    Purpose: Mesenchymal stem cells (MSCs) are key components of the hematopoietic stem cells (HSCs) niche. They control the process of hematopoiesis by secreting regulatory cytokines, growth factors and expression of important cell adhesion molecules for cell-to-cell interactions. In this research, we have investigated the effect of bone marrow derived MSCs on monocytic differentiation of U937 cells line. Methods: U937 cells were cultured in both direct co-culture with...

  18. The Role of U2AF1 Mutations in the Pathogenesis of Myelodysplastic Syndromes

    Science.gov (United States)

    2015-10-01

    Spliceosome, Mouse Model, Hematopoiesis, RNA-seq, U2AF1 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME...transplanted mice (n=3 each). Unsupervised clustering based on the splicing ratio of cassette and mutually exclusive exon junctions segregated U2AF1...vivo. (A) Unsupervised principal component analysis of standardized splicing ratios of expressed 3’ splice sites of cassette and mutually exclusive

  19. Toll-like receptors 2 and 4 mediate the capacity of mesenchymal stromal cells to support the proliferation and differentiation of CD34{sup +} cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xingbing, E-mail: wangxingbing91@hotmail.com [Department of Hematology of Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui (China); Cheng, Qiansong; Li, Lailing; Wang, Jian; Xia, Liang [Department of Hematology of Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui (China); Xu, Xiucai [The Center Laboratory of Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui (China); Sun, Zimin [Department of Hematology of Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui (China)

    2012-02-01

    Bone marrow derived-mesenchymal stromal cells (BM-MSCs) are multipotent, nonhematopoietic progenitors in a hematopoietic microenvironment and indispensable for regulating hematopoiesis. Several studies have reported that toll-like receptors (TLRs) are expressed in mesenchymal stromal cells (MSCs) to modulate their biological functions. In this study, we investigated the possible role(s) of TLRs in mediating the hematopoiesis-supporting role of human BM-MSCs. Human BM-MSCs were analyzed for mRNA expression of TLR1-10 by reverse transcription-polymerase chain reaction. TLR1-6, but not TLR7-10 were expressed by BM-MSCs. The protein expression of TLR2 and TLR4 was also confirmed by flow cytometry. We further explored the role of TLR2 and TLR4 in mediating the capacity of BM-MSCs to support the proliferation and differentiation of CD34{sup +} hematopoietic stem/progenitor cells obtained from cord blood. BM-MSCs increased proliferation of CD34{sup +} cells and promoted the differentiation towards the myeloid lineage 7 or 14 days after co-culture, as well as colony formation by those cells and the production of interleukin 1 (IL-1), IL-8, IL-11, stem cell factor (SCF), granulocyte colony-stimulating factor (CSF), macrophage CSF and granulocyte-macrophage CSF, if MSCs had been stimulated with TLR2 agonist (PAM{sub 3}CSK{sub 4}) or TLR4 agonist (LPS). Interestingly, although these effects were elevated in a different degree, a synergistic effect was not observed in BM-MSCs co-stimulated with PAM{sub 3}CSK{sub 4} and LPS. Together, our findings suggest that TLR2 and TLR4 signaling may indirectly regulate hematopoiesis by modulating BM-MSCs' functions. The increased hematopoietic proliferation and differentiation could be mediated, at least in part, by augmented hematopoiesis-related cytokine production of BM-MSCs.

  20. The Role of U2AF1 Mutations in the Pathogenesis of Myelodysplastic Syndromes

    Science.gov (United States)

    2014-10-01

    effect has been previously reported in acute myeloid leukemia (AML) patient samples with U2AF1 mutations . To prioritize altered junctions for...hematopoiesis and pre-mRNA splicing observed in patients with U2AF1 mutations . This study also identifies changes in gene isoform expression unique to U2AF1...making it one of the most commonly mutated genes in MDS. Overall, mutations in spliceosome genes occur in up to 57% of patients with MDS, further

  1. ADAM10 overexpression shifts lympho- and myelopoiesis by dysregulating site 2/site 3 cleavage products of Notch.

    Science.gov (United States)

    Gibb, David R; Saleem, Sheinei J; Kang, Dae-Joong; Subler, Mark A; Conrad, Daniel H

    2011-04-01

    Although the physiological consequences of Notch signaling in hematopoiesis have been extensively studied, the differential effects of individual notch cleavage products remain to be elucidated. Given that ADAM10 is a critical regulator of Notch and that its deletion is embryonically lethal, we generated mice that overexpress ADAM10 (ADAM10 transgenic [A10Tg]) at early stages of lympho- and myeloid development. Transgene expression resulted in abrogated B cell development, delayed T cell development in the thymus, and unexpected systemic expansion of CD11b(+)Gr-1(+) cells, also known as myeloid-derived suppressor cells. Mixed bone marrow reconstitution assays demonstrated that transgene expression altered hematopoiesis via a cell-intrinsic mechanism. Consistent with previously reported observations, we hypothesized that ADAM10 overexpression dysregulated Notch by uncoupling the highly regulated proteolysis of Notch receptors. This was confirmed using an in vitro model of hematopoiesis via culturing A10Tg hematopoietic Lineage(-)Sca-1(+)c-Kit(+) cells with OP-9 stromal cells in the presence or absence of Delta-like 1, a primary ligand for Notch. Blockade of the site 2 (S2) and site 3 (S3) cleavage of the Notch receptor demonstrated differential effects on hematopoiesis. OP9-DL1 cultures containing the ADAM10 inhibitor (S2 cleavage site) enhanced and rescued B cell development from wild-type and A10Tg Lineage(-)Sca-1(+)c-Kit(+) cells, respectively. In contrast, blockade of γ-secretase at the S3 cleavage site induced accumulation of the S2 product and consequently prevented B cell development and resulted in myeloid cell accumulation. Collectively, these findings indicate that the differential cleavage of Notch into S2 and S3 products regulated by ADAM10 is critical to hematopoietic cell-fate determination.

  2. Hematopoietic stem cells, overview and pathways implied on their self-renewal mechanisms

    OpenAIRE

    2010-01-01

    Blood tissue is composed approximately in 45% by cells and its derivatives, with a life span of around 120 days for erythrocytes and 3 years for certain type of lymphocytes. This lost is compensated with the hematopoietic system activity and the presence of an immature primitive cell population known as Hematopoietic Stem Cells (HSCs) which perform the hematopoiesis, a process that is active from the beginning of the fetal life and produces near to 2 x 1011 eritrocytes and 1010 white blood ce...

  3. Effects of endotoxin on proliferation of human hematopoietic cell precursors

    OpenAIRE

    Rinehart, John J.; Keville, Lisa

    1997-01-01

    In examining the effects of corticosteroids on hematopoiesis in vitro, we observed that results were highly dependent on the lot of commercial fetal calf serum (FCS) utilized. We hypothesized that this variability correlated with the picogram (pg) level of endotoxin contaminating the FCS. Randomly obtained commercial lots of FCS contained 0.39 to 187 pg/ml of lipopolysaccharide (LPS). Standard FCS concentrations in hematopoietic precursor proliferation assays (granulocyte-marcrophage colony f...

  4. MicroRNAs in Sjögren’s syndrome as a prototypic autoimmune disease

    OpenAIRE

    Alevizos, Ilias; Illei, Gabor G.

    2010-01-01

    MicroRNAs are endogenous non-coding RNAs, approximately 22 nucleotides in length. They regulate gene expression and are important in a wide range of physiological and pathological processes. MicroRNA expression is tightly regulated during hematopoiesis and lymphoid cell differentiation and disruption of the entire microRNA network or selected microRNAs may lead to dysregulated immune responses. Abnormalities in microRNA expression related to inflammatory cytokines, Th-17 and regulatory T cell...

  5. Commensal Gut Microbiota Immunomodulatory Actions in Bone Marrow and Liver have Catabolic Effects on Skeletal Homeostasis in Health

    OpenAIRE

    Novince, Chad M.; Whittow, Carolyn R.; Aartun, Johannes D.; Hathaway, Jessica D.; Poulides, Nicole; Chavez, Michael B.; Steinkamp, Heidi M.; Kirkwood, Kaeleigh A.; Huang, Emily; Westwater, Caroline; Kirkwood, Keith L.

    2017-01-01

    Despite knowledge the gut microbiota regulates bone mass, mechanisms governing the normal gut microbiota?s osteoimmunomodulatory effects on skeletal remodeling and homeostasis are unclear in the healthy adult skeleton. Young adult specific-pathogen-free and germ-free mice were used to delineate the commensal microbiota?s immunoregulatory effects on osteoblastogenesis, osteoclastogenesis, marrow T-cell hematopoiesis, and extra-skeletal endocrine organ function. We report the commensal microbio...

  6. Stem and Progenitor Cell Expansion in Co-culture of Mobilized CD34 + Cells and Osteopetrotic Mouse Stroma

    Institute of Scientific and Technical Information of China (English)

    Na LI; Shahin Rafii; JF Stoltz; Malcolm A.S. Moore; Pierre Feugier; Deog-Yeon JO; Jae Hung Shieh; Karen L. MacKenzie; JF Lesesve; V Latger-Cannard; D Bensoussan; Ronald G Crystal

    2005-01-01

    @@ 1 Introduction Culture systems capable of expanding and/or maintaining hematopoietic stem cells will not only facilitate our understanding of stem cell biology, but also broaden clinical applications. Among various in vitro hematopoietic culture systems, co-cultures of marrow or CD34+ cells with an adherent stromal layer that can produce cytokines and extracellular matrix components most effectively supports long-term hematopoiesis ( LTC ), mimicking the bone marrow micro-environment.

  7. Systems hematology: an introduction.

    Science.gov (United States)

    Corey, Seth Joel; Kimmel, Marek; Leonard, Joshua N

    2014-01-01

    Hematologists have traditionally studied blood and its components by simplifying it into its components and functions. A variety of new techniques have generated large and complex datasets. Coupled to an appreciation of blood as a dynamic system, a new approach in systems hematology is needed. Systems hematology embraces the multi-scale complexity with a combination of mathematical, engineering, and computational tools for constructing and validating models of biological phenomena. The validity of mathematical modeling in hematopoiesis was established early by the pioneering work of Till and McCulloch. This volume seeks to introduce to the various scientists and physicians to the multi-faceted field of hematology by highlighting recent works in systems biology. Deterministic, stochastic, statistical, and network-based models have been used to better understand a range of topics in hematopoiesis, including blood cell production, the periodicity of cyclical neutropenia, stem cell production in response to cytokine administration, and the emergence of drug resistance. Future advances require technological improvements in computing power, imaging, and proteomics as well as greater collaboration between experimentalists and modelers. Altogether, systems hematology will improve our understanding of normal and abnormal hematopoiesis, better define stem cells and their daughter cells, and potentially lead to more effective therapies.

  8. ETS transcription factors in hematopoietic stem cell development.

    Science.gov (United States)

    Ciau-Uitz, Aldo; Wang, Lu; Patient, Roger; Liu, Feng

    2013-12-01

    Hematopoietic stem cells (HSCs) are essential for the maintenance of the hematopoietic system. However, these cells cannot be maintained or created in vitro, and very little is known about their generation during embryogenesis. Many transcription factors and signaling pathways play essential roles at various stages of HSC development. Members of the ETS ('E twenty-six') family of transcription factors are recognized as key regulators within the gene regulatory networks governing hematopoiesis, including the ontogeny of HSCs. Remarkably, although all ETS transcription factors bind the same DNA consensus sequence and overlapping tissue expression is observed, individual ETS transcription factors play unique roles in the development of HSCs. Also, these transcription factors are recurrently used throughout development and their functions are context-dependent, increasing the challenge of studying their mechanism of action. Critically, ETS factors also play roles under pathological conditions, such as leukemia and, therefore, deciphering their mechanism of action will not only enhance our knowledge of normal hematopoiesis, but also inform protocols for their creation in vitro from pluripotent stem cells and the design of new therapeutic approaches for the treatment of malignant blood cell diseases. In this review, we summarize the key findings on the roles of ETS transcription factors in HSC development and discuss novel mechanisms by which they could control hematopoiesis. © 2013.

  9. Loss of c-Kit and bone marrow failure upon conditional removal of the GATA-2 C-terminal zinc finger domain in adult mice.

    Science.gov (United States)

    Li, Haiyan S; Jin, Jin; Liang, Xiaoxuan; Matatall, Katie A; Ma, Ying; Zhang, Huiyuan; Ullrich, Stephen E; King, Katherine Y; Sun, Shao-Cong; Watowich, Stephanie S

    2016-09-01

    Heterozygous mutations in the transcriptional regulator GATA-2 associate with multilineage immunodeficiency, myelodysplastic syndrome (MDS), and acute myeloid leukemia (AML). The majority of these mutations localize in the zinc finger (ZnF) domains, which mediate GATA-2 DNA binding. Deregulated hematopoiesis with GATA-2 mutation frequently develops in adulthood, yet GATA-2 function in the bone marrow remains unresolved. To investigate this, we conditionally deleted the GATA-2 C-terminal ZnF (C-ZnF) coding sequences in adult mice. Upon Gata2 C-ZnF deletion, we observed rapid peripheral cytopenia, bone marrow failure, and decreased c-Kit expression on hematopoietic progenitors. Transplant studies indicated GATA-2 has a cell-autonomous role in bone marrow hematopoiesis. Moreover, myeloid lineage populations were particularly sensitive to Gata2 hemizygosity, while molecular assays indicated GATA-2 regulates c-Kit expression in multilineage progenitor cells. Enforced c-Kit expression in Gata2 C-ZnF-deficient hematopoietic progenitors enhanced myeloid colony activity, suggesting GATA-2 sustains myelopoiesis via a cell intrinsic role involving maintenance of c-Kit expression. Our results provide insight into mechanisms regulating hematopoiesis in bone marrow and may contribute to a better understanding of immunodeficiency and bone marrow failure associated with GATA-2 mutation.

  10. Targeting hedgehog in hematologic malignancy.

    Science.gov (United States)

    Irvine, David A; Copland, Mhairi

    2012-03-08

    The Hedgehog pathway is a critical mediator of embryonic patterning and organ development, including hematopoiesis. It influences stem cell fate, differentiation, proliferation, and apoptosis in responsive tissues. In adult organisms, hedgehog pathway activity is required for aspects of tissue maintenance and regeneration; however, there is increasing awareness that abnormal hedgehog signaling is associated with malignancy. Hedgehog signaling is critical for early hematopoietic development, but there is controversy over its role in normal hematopoiesis in adult organisms where it may be dispensable. Conversely, hedgehog signaling appears to be an important survival and proliferation signal for a spectrum of hematologic malignancies. Furthermore, hedgehog signaling may be critical for the maintenance and expansion of leukemic stem cells and therefore provides a possible mechanism to selectively target these primitive cell subpopulations, which are resistant to conventional chemotherapy. Indeed, phase 1 clinical trials of hedgehog pathway inhibitors are currently underway to test this hypothesis in myeloid leukemias. This review covers: (1) the hedgehog pathway and its role in normal and malignant hematopoiesis, (2) the recent development of clinical grade small molecule inhibitors of the pathway, and (3) the potential utility of hedgehog pathway inhibition as a therapeutic strategy in hemato-oncology.

  11. Distinct Sources of Hematopoietic Progenitors Emerge before HSCs and Provide Functional Blood Cells in the Mammalian Embryo

    Directory of Open Access Journals (Sweden)

    Kathleen E. McGrath

    2015-06-01

    Full Text Available Hematopoietic potential arises in mammalian embryos before adult-repopulating hematopoietic stem cells (HSCs. At embryonic day 9.5 (E9.5, we show the first murine definitive erythro-myeloid progenitors (EMPs have an immunophenotype distinct from primitive hematopoietic progenitors, maturing megakaryocytes and macrophages, and rare B cell potential. EMPs emerge in the yolk sac with erythroid and broad myeloid, but not lymphoid, potential. EMPs migrate to the fetal liver and rapidly differentiate, including production of circulating neutrophils by E11.5. Although the surface markers, transcription factors, and lineage potential associated with EMPs overlap with those found in adult definitive hematopoiesis, they are present in unique combinations or proportions that result in a specialized definitive embryonic progenitor. Furthermore, we find that embryonic stem cell (ESC-derived hematopoiesis recapitulates early yolk sac hematopoiesis, including primitive, EMP, and rare B cell potential. EMPs do not have long-term potential when transplanted in immunocompromised adults, but they can provide transient adult-like RBC reconstitution.

  12. Cytokine receptors and hematopoietic differentiation.

    Science.gov (United States)

    Robb, L

    2007-10-15

    Colony-stimulating factors and other cytokines signal via their cognate receptors to regulate hematopoiesis. In many developmental systems, inductive signalling determines cell fate and, by analogy with this, it has been postulated that cytokines, signalling via their cognate receptors, may play an instructive role in lineage specification in hematopoiesis. An alternative to this instructive hypothesis is the stochastic or permissive hypothesis. The latter proposes that commitment to a particular hematopoietic lineage is an event that occurs independently of extrinsic signals. It predicts that the role of cytokines is to provide nonspecific survival and proliferation signals. In this review, we look at the role of cytokine receptor signalling in hematopoiesis and consider the evidence for both hypotheses. Data from experiments that genetically manipulate receptor gene expression in vitro or in vivo are reviewed. Experiments in which cytokine receptors were installed in multipotential cells showed that, in some cases, stimulation with the cognate ligand could lead to alterations in lineage output. The creation of genetically manipulated mouse strains demonstrated that cytokine receptors are required for expansion and survival of single lineages but did not reveal a role in lineage commitment. We conclude that hematopoietic differentiation involves mainly stochastic events, but that cytokine receptors also have some instructive role.

  13. AF10 plays a key role in the survival of uncommitted hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Raquel Chamorro-Garcia

    Full Text Available Hematopoiesis is a complex process regulated by both cell intrinsic and cell extrinsic factors. Alterations in the expression of critical genes during hematopoiesis can modify the balance between stem cell differentiation and proliferation, and may ultimately give rise to leukemia and other diseases. AF10 is a transcription factor that has been implicated in the development of leukemia following chromosomal rearrangements between the AF10 gene and one of at least two other genes, MLL and CALM. The link between AF10 and leukemia, together with the known interactions between AF10 and hematopoietic regulators, suggests that AF10 may be important in hematopoiesis and in leukemic transformation. Here we show that AF10 is important for proper hematopoietic differentiation. The induction of hematopoietic differentiation in both human hematopoietic cell lines and murine total bone marrow cells triggers a decrease of AF10 mRNA and protein levels, particularly in stem cells and multipotent progenitors. Gain- and loss-of-function studies demonstrate that over- or under-expression of AF10 leads to apoptotic cell death in stem cells and multipotent progenitors. We conclude that AF10 plays a key role in the maintenance of multipotent hematopoietic cells.

  14. Bone marrow mononuclear cells up-regulate toll-like receptor expression and produce inflammatory mediators in response to cigarette smoke extract.

    Directory of Open Access Journals (Sweden)

    Junmin Zhou

    Full Text Available Several reports link cigarette smoking with leukemia. However, the effects of cigarette smoke extract (CSE on bone marrow hematopoiesis remain unknown. The objective of this study was to elucidate the direct effects of cigarette smoke on human bone marrow hematopoiesis and characterize the inflammatory process known to result from cigarette smoking. Bone marrow mononuclear cells (BMCs from healthy individuals when exposed to CSE had significantly diminished CFU-E, BFU-E and CFU-GM. We found increased nuclear translocation of the NF-κB p65 subunit and, independently, enhanced activation of AKT and ERK1/2. Exposure of BMCs to CSE induced IL-8 and TGF-β1 production, which was dependent on NF-κB and ERK1/2, but not on AKT. CSE treatment had no effect on the release of TNF-α, IL-10, or VEGF. Finally, CSE also had a significant induction of TLR2, TLR3 and TLR4, out of which, the up-regulation of TLR2 and TLR3 was found to be dependent on ERK1/2 and NF-κB activation, but not AKT. These results indicate that CSE profoundly inhibits the growth of erythroid and granulocyte-macrophage progenitors in the bone marrow. Further, CSE modulates NF-κB- and ERK1/2-dependent responses, suggesting that cigarette smoking may impair bone marrow hematopoiesis in vivo as well as induce inflammation, two processes that proceed malignant transformation.

  15. The Aryl Hydrocarbon Receptor Pathway: A Key Component of the microRNA-Mediated AML Signalisome

    Directory of Open Access Journals (Sweden)

    Julia E. Rager

    2012-05-01

    Full Text Available Recent research has spotlighted the role of microRNAs (miRNAs as critical epigenetic regulators of hematopoietic stem cell differentiation and leukemia development. Despite the recent advances in knowledge surrounding epigenetics and leukemia, the mechanisms underlying miRNAs’ influence on leukemia development have yet to be clearly elucidated. Our aim was to identify high ranking biological pathways altered at the gene expression level and under epigenetic control. Specifically, we set out to test the hypothesis that miRNAs dysregulated in acute myeloid leukemia (AML converge on a common pathway that can influence signaling related to hematopoiesis and leukemia development. We identified genes altered in AML patients that are under common regulation of seven key miRNAs. By mapping these genes to a global interaction network, we identified the “AML Signalisome”. The AML Signalisome comprises 53 AML-associated molecules, and is enriched for proteins that play a role in the aryl hydrocarbon receptor (AhR pathway, a major regulator of hematopoiesis. Furthermore, we show biological enrichment for hematopoiesis-related proteins within the AML Signalisome. These findings provide important insight into miRNA-regulated pathways in leukemia, and may help to prioritize targets for disease prevention and treatment.

  16. Oncostatin M maintains the hematopoietic microenvironment in the bone marrow by modulating adipogenesis and osteogenesis.

    Directory of Open Access Journals (Sweden)

    Fumi Sato

    Full Text Available The bone marrow (BM is an essential organ for hematopoiesis in adult, in which proliferation and differentiation of hematopoietic stem/progenitor cells (HSPC is orchestrated by various stromal cells. Alterations of BM hematopoietic environment lead to various hematopoietic disorders as exemplified by the linking of fatty marrow with increased adipogenesis to anemia or pancytopenia. Therefore, the composition of mesenchymal stromal cell (MSC-derived cells in the BM could be crucial for proper hematopoiesis, but the mechanisms underlying the MSC differentiation for hematopoiesis remain poorly understood. In this study, we show that Oncostatin M (OSM knock out mice exhibited pancytopenia advancing fatty marrow with age. OSM strongly inhibited adipogenesis from BM MSC in vitro, whereas it enhanced their osteogenesis but suppressed the terminal differentiation. Intriguingly, OSM allowed the MSC-derived cells to support the ex vivo expansion of HSPC effectively as feeder cells. Furthermore, the administration of OSM in lethally irradiated wild-type mice blocked fatty marrow and enhanced the recovery of HSPC number in the BM and peripheral blood cells after engraftment of HSPC. Collectively, OSM plays multiple critical roles in the maintenance and development of the hematopoietic microenvironment in the BM at a steady state as well as after injury.

  17. A novel role for fibronectin type I domain in the regulation of human hematopoietic cell adhesiveness through binding to follistatin domains of FLRG and follistatin.

    Science.gov (United States)

    Maguer-Satta, Véronique; Forissier, Stéphanie; Bartholin, Laurent; Martel, Sylvie; Jeanpierre, Sandrine; Bachelard, Elodie; Rimokh, Ruth

    2006-02-15

    FLRG and follistatin belong to the family of follistatin proteins involved in the regulation of various biological effects, such as hematopoiesis, mediated by their binding to activin and BMP, both members of the TGFbeta family. To further characterize the function of FLRG, we searched for other possible functional partners using a yeast two-hybrid screen. We identified human fibronectin as a new partner for both FLRG and follistatin. We also demonstrated that their physical interaction is mediated by type I motifs of fibronectin and follistatin domains. We then analyzed the biological consequences of these protein interactions on the regulation of hematopoiesis. For the first time, we associated a biological effect with the regulation of human hematopoietic cell adhesiveness of both the type I motifs of fibronectin and the follistatin domains of FLRG and follistatin. Indeed, we observed a significant and specific dose-dependent increase of cell adhesion to fibronectin in the presence of FLRG or follistatin, using either a human hematopoietic cell line or primary cells. In particular, we observed a significantly increased adhesion of immature hematopoietic precursors (CFC, LTC-IC). Altogether these results highlight a new mechanism by which FLRG and follistatin regulate human hematopoiesis.

  18. HSC-explorer: a curated database for hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Corinna Montrone

    Full Text Available HSC-Explorer (http://mips.helmholtz-muenchen.de/HSC/ is a publicly available, integrative database containing detailed information about the early steps of hematopoiesis. The resource aims at providing fast and easy access to relevant information, in particular to the complex network of interacting cell types and molecules, from the wealth of publications in the field through visualization interfaces. It provides structured information on more than 7000 experimentally validated interactions between molecules, bioprocesses and environmental factors. Information is manually derived by critical reading of the scientific literature from expert annotators. Hematopoiesis-relevant interactions are accompanied with context information such as model organisms and experimental methods for enabling assessment of reliability and relevance of experimental results. Usage of established vocabularies facilitates downstream bioinformatics applications and to convert the results into complex networks. Several predefined datasets (Selected topics offer insights into stem cell behavior, the stem cell niche and signaling processes supporting hematopoietic stem cell maintenance. HSC-Explorer provides a versatile web-based resource for scientists entering the field of hematopoiesis enabling users to inspect the associated biological processes through interactive graphical presentation.

  19. Recombinant human erythropoietin (rHuEPO): more than just the correction of uremic anemia.

    Science.gov (United States)

    Buemi, Michele; Aloisi, Carmela; Cavallaro, Emanuela; Corica, Francesco; Floccari, Fulvio; Grasso, Giovanni; Lasco, Antonino; Pettinato, Giuseppina; Ruello, Antonella; Sturiale, Alessio; Frisina, Nicola

    2002-01-01

    Hematopoiesis is controlled by numerous interdependent humoral and endocrine factors. Erythropoietin (EPO), a hydrophobic sialoglycoproteic hormone, plays a crucial role in the regulation of hematopoiesis, and induces proliferation, maturation and differentiation of the erythroid cell line precursors. Thanks to recombinant DNA techniques, different recombinant hormones can now be produced at low cost and in large amounts. This has led to greater understanding of the pathophysiological factors regulating hematopoiesis. This in turn, hasprompted the search for new therapeutic approaches. EPO might also be used to treat patients with different types of anemia: uremics, newborns, patients with anemia from cancer or myeloproliferative disease, thalassemia, bone marrow transplants, chronic infectious diseases. Besides erythroid cells, EPO affects other blood cell lines, such as myeloid cells, lymphocytes and megakaryocytes. It can also enhance polymorphonuclear cell phagocytosis and reduce macrophage activation, thus modulating the inflammatory process. Hematopoietic and endothelial cells probably have the same origin, and the discovery of eyrthropoietin receptors also on mesangial, myocardial and smooth muscle cells has prompted research into the non-erythropoietic function of the hormone. EPO has an important, direct, hemodynamic and vasoactive effect, which does not depend only on an increase in hematocrit and viscosity. Moreover, EPO and its receptors have been found in the brain, suggesting a role in preventing neuronal death. Finally, the recently discovered interaction between EPO and vascular endothelial growth factor (VEGF), and the ability of EPO to stimulate endothelial cell mitosis and motility may be of importance in neovascularization and wound healing.

  20. Neurological Findings in Myeloproliferative Neoplasms

    Directory of Open Access Journals (Sweden)

    Semra Paydas

    2013-04-01

    Full Text Available Myeloproliferative neoplasms (MPN arise from genetic deficiencies at the level of pluripotent stem cells. Each of these neoplasms is a clonal stem cell disorder with specific phenotypic, genetic and clinical properties. Age is one of the most important factors in the development of symptoms and complications associated with MPNs.High white blood cell counts in chronic myelocytic leukemia also known as leukocytosis may lead to central nervous system findings. Tumors developing outside the bone marrow named as extramedullary myeloid tumors (EMMT could be detected at the initial diagnosis or during the prognosis of the disease, which may cause neurological symptoms due to pressure of leukemic cell mass on various tissues along with spinal cord. Central nervous system involvement and thrombocytopenic hemorrhage may lead to diverse neurological symptoms and findings.Transient ischemic attack and thrombotic stroke are the most common symptoms in polycythemia vera. Besides thrombosis and hemorrage, transformation to acute leukemia can cause neurological symptoms and findings. Transient ischemic attack, thrombotic stroke and specifically hemorrage can give rise to neurological symptoms similar to MPN in essential thrombocytosis.Extramedullary hematopoiesis refers to hematopoietic centers arise in organ/tissues other than bone marrow in myelofibrosis. Extramedullar hematopoietic centers may cause intracranial involvement, spinal cord compression, seizures and hydrocephalia. Though rare, extramedullary hematopoiesis can be detected in cranial/spinal meninges, paraspinal tissue and intracerebral regions. Extramedullary hematopoiesis has been reported in peripheral neurons, choroid plexus, pituitary, orbits, orbital and lacrimal fossa and in sphenoidal sinuses. [Cukurova Med J 2013; 38(2.000: 157-169

  1. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates capacity of hematopoietic stem cells to undergo lymphocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenhoerster, Lori S.; Tate, Everett R.; Lakatos, Peter A. [Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee (United States); Program in Environmental and Occupational Health, Milwaukee, WI 53211 (United States); Wang, Xuexia [Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee (United States); Program in Biostatistics, Milwaukee, WI 53211 (United States); Laiosa, Michael D., E-mail: laiosa@uwm.edu [Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee (United States); Program in Environmental and Occupational Health, Milwaukee, WI 53211 (United States)

    2014-06-01

    The process of hematopoiesis, characterized by long-term self-renewal and multi-potent lineage differentiation, has been shown to be regulated in part by the ligand-activated transcription factor known as the aryl hydrocarbon receptor (AHR). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a ubiquitous contaminant and the most potent AHR agonist, also modulates regulation of adult hematopoietic stem and progenitor cell (HSC/HPC) homeostasis. However, the effect of developmental TCDD exposure on early life hematopoiesis has not been fully explored. Given the inhibitory effects of TCDD on hematopoiesis and lymphocyte development, we hypothesized that in utero exposure to TCDD would alter the functional capacity of fetal HSC/HPCs to complete lymphocyte differentiation. To test this hypothesis, we employed a co-culture system designed to facilitate the maturation of progenitor cells to either B or T lymphocytes. Furthermore, we utilized an innovative limiting dilution assay to precisely quantify differences in lymphocyte differentiation between HSC/HPCs obtained from fetuses of dams exposed to 3 μg/kg TCDD or control. We found that the AHR is transcribed in yolk sac hematopoietic cells and is transcriptionally active as early as gestational day (GD) 7.5. Furthermore, the number of HSC/HPCs present in the fetal liver on GD 14.5 was significantly increased in fetuses whose mothers were exposed to TCDD throughout pregnancy. Despite this increase in HSC/HPC cell number, B and T lymphocyte differentiation is decreased by approximately 2.5 fold. These findings demonstrate that inappropriate developmental AHR activation in HSC/HPCs adversely impacts lymphocyte differentiation and may have consequences for lymphocyte development in the bone marrow and thymus later in life.

  2. Marrow Adipose Tissue Expansion Coincides with Insulin Resistance in MAGP1-Deficient Mice.

    Science.gov (United States)

    Walji, Tezin A; Turecamo, Sarah E; Sanchez, Alejandro Coca; Anthony, Bryan A; Abou-Ezzi, Grazia; Scheller, Erica L; Link, Daniel C; Mecham, Robert P; Craft, Clarissa S

    2016-01-01

    Marrow adipose tissue (MAT) is an endocrine organ with the potential to influence skeletal remodeling and hematopoiesis. Pathologic MAT expansion has been studied in the context of severe metabolic challenge, including caloric restriction, high fat diet feeding, and leptin deficiency. However, the rapid change in peripheral fat and glucose metabolism associated with these models impedes our ability to examine which metabolic parameters precede or coincide with MAT expansion. Microfibril-associated glycoprotein-1 (MAGP1) is a matricellular protein that influences cellular processes by tethering signaling molecules to extracellular matrix structures. MAGP1-deficient (Mfap2 (-/-)) mice display a progressive excess adiposity phenotype, which precedes insulin resistance and occurs without changes in caloric intake or ambulation. Mfap2 (-/-) mice were, therefore, used as a model to associate parameters of metabolic disease, bone remodeling, and hematopoiesis with MAT expansion. Marrow adiposity was normal in Mfap2 (-/-) mice until 6 months of age; however, by 10 months, marrow fat volume had increased fivefold relative to wild-type control at the same age. Increased gonadal fat pad mass and hyperglycemia were detectable in Mfap2 (-/-) mice by 2 months, but peaked by 6 months. The development of insulin resistance coincided with MAT expansion. Longitudinal characterization of bone mass demonstrated a disconnection in MAT volume and bone volume. Specifically, Mfap2 (-/-) mice had reduced trabecular bone volume by 2 months, but this phenotype did not progress with age or MAT expansion. Interestingly, MAT expansion in the 10-month-old Mfap2 (-/-) mice was associated with modest alterations in basal hematopoiesis, including a shift from granulopoiesis to B lymphopoiesis. Together, these findings indicate MAT expansion is coincident with insulin resistance, but not excess peripheral adiposity or hyperglycemia in Mfap2 (-/-) mice; and substantial MAT accumulation does

  3. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors.

    Science.gov (United States)

    Karamitros, Dimitris; Patmanidi, Alexandra L; Kotantaki, Panoraia; Potocnik, Alexandre J; Bähr-Ivacevic, Tomi; Benes, Vladimir; Lygerou, Zoi; Kioussis, Dimitris; Taraviras, Stavros

    2015-01-01

    Balancing stem cell self-renewal and initiation of lineage specification programs is essential for the development and homeostasis of the hematopoietic system. We have specifically ablated geminin in the developing murine hematopoietic system and observed profound defects in the generation of mature blood cells, leading to embryonic lethality. Hematopoietic stem cells (HSCs) accumulated in the fetal liver following geminin ablation, while committed progenitors were reduced. Genome-wide transcriptome analysis identified key HSC transcription factors as being upregulated upon geminin deletion, revealing a gene network linked with geminin that controls fetal hematopoiesis. In order to obtain mechanistic insight into the ability of geminin to regulate transcription, we examined Hoxa9 as an example of a key gene in definitive hematopoiesis. We demonstrate that in human K562 cells geminin is associated with HOXA9 regulatory elements and its absence increases HOXA9 transcription similarly to that observed in vivo. Moreover, silencing geminin reduced recruitment of the PRC2 component SUZ12 to the HOXA9 locus and resulted in an increase in RNA polymerase II recruitment and H3K4 trimethylation (H3K4me3), whereas the repressive marks H3K9me3 and H3K27me3 were reduced. The chromatin landscape was also modified at the regulatory regions of HOXA10 and GATA1. K562 cells showed a reduced ability to differentiate to erythrocytes and megakaryocytes upon geminin silencing. Our data suggest that geminin is indispensable for fetal hematopoiesis and regulates the generation of a physiological pool of stem and progenitor cells in the fetal hematopoietic system.

  4. Use of isotopes in the diagnosis of hematopoietic disorders.

    Science.gov (United States)

    Shreeve, Walton Wallace

    2007-04-01

    Isotopes of iron have been paramount in clinical tracer studies of hematopoiesis. Kinetics of disappearance from plasma, appearance in circulating erythrocytes, and localization in general areas of bone marrow, spleen, and liver were early revealed by gamma-/beta-emitting Fe-59 with note of characteristic differences of kind and degree of dysfunction among various anemias. Findings have helped in management (e.g., decisions about splenectomy). Positron/gamma-emitting Fe-52 (better for imaging) has provided more detail on marrow expansion and erythropoietic relocation. Other gamma-emitting tracers of hematopoiesis have been In-111 (linked to transferrin) and technetium 99m (Tc-99m) colloids (localizing to reticuloendothelial cells, which have close association with blood cell progenitors), but Fe-52 has proved to be more accurate for recognition of erythropoiesis. Occasional diverse heterotopic sites of hematopoiesis beyond spleen and liver in states of bone marrow disease have posed diagnostic challenges and also raised questions about migration and/or activation of stem cells. Studies of granulopoiesis utilize Tc-99m--labeled leukocytes or Tc99m-labeled antibodies to circulating and progenitor white cells. Iron-deficiency anemias due to malnutrition, malabsorption, blood loss, or special need are explored by dual study (oral vs intravenous) with radioactive (Fe-59, Fe-55) or stable (Fe-54, Fe-57) iron isotopes, which can guide dietary supplementation. Tests for B-12 deficiency in pernicious anemia or malabsorption with radioisotopes of cobalt (Co-57, Co-58) have been upgraded in sensitivity and scope. Rates of oxidation to expired carbon dioxide from particular carbon (radioactive C-14 or stable C-13)--labeled compounds can test B-12 or folic acid deficiencies or gastric infestation as causes of megaloblastic anemias.

  5. Modeling deterministic effects in hematopoietic system caused by chronic exposure to ionizing radiation in large human cohorts.

    Science.gov (United States)

    Akushevich, Igor V; Veremeyeva, Galina A; Dimov, Georgy P; Ukraintseva, Svetlana V; Arbeev, Konstantin G; Akleyev, Alexander V; Yashin, Anatoly I

    2010-09-01

    A new model of the hematopoietic system for humans chronically exposed to ionizing radiation allows for quantitative description of the initial hematopoiesis inhibition and subsequent increase in the risks of late stochastic effects such as leukemia. This model describes the dynamics of the hematopoietic stem cell compartment as well as the dynamics of each of the three blood cell types (leukocytes, erythrocytes, and platelets). The model parameters are estimated from the results of other experiments. They include the steady-state numbers of hematopoietic stem cells and peripheral blood cell lines for an unexposed organism, amplification parameters for each blood cell line, parameters describing the proliferation and apoptosis, parameters of feedback functions regulating the steady-state numbers, and characteristics of radiosensitivity in respect to cell death and non-lethal cell damages. The dynamic model of hematopoiesis is applied to the data on a subcohort of the Techa River residents with hematological measurements (e.g., blood counts) performed in 1950-1956 (which totals to about 3,500 exposed individuals). Among well-described effects observed in these data are the slope values of the dose-effect curves describing the hematopoietic inhibition and the dose rate patterns of the fractions of cytopenic states (e.g., leukopenia, thrombocytopenia). The model has been further generalized by inclusion of the component describing the risk of late stochastic effects. The risks of the development of late effects (such as leukemia) in population groups with specific patterns of early reactions in hematopoiesis (such as leukopenia induced by ionizing radiation) are investigated using simulation studies and compared to data.

  6. Targeted resequencing and analysis of the Diamond-Blackfan anemia disease locus RPS19.

    Directory of Open Access Journals (Sweden)

    Alvaro Martinez Barrio

    Full Text Available BACKGROUND: The Ribosomal protein S19 gene locus (RPS19 has been linked to two kinds of red cell aplasia, Diamond-Blackfan Anemia (DBA and Transient Erythroblastopenia in Childhood (TEC. Mutations in RPS19 coding sequences have been found in 25% of DBA patients, but not in TEC patients. It has been suggested that non-coding RPS19 sequence variants contribute to the considerable clinical variability in red cell aplasia. We therefore aimed at identifying non-coding variations associated with DBA or TEC phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: We targeted a region of 19'980 bp encompassing the RPS19 gene in a cohort of 89 DBA and TEC patients for resequencing. We provide here a catalog of the considerable, previously unrecognized degree of variation in this region. We identified 73 variations (65 SNPs, 8 indels that all are located outside of the RPS19 open reading frame, and of which 67.1% are classified as novel. We hypothesize that specific alleles in non-coding regions of RPS19 could alter the binding of regulatory proteins or transcription factors. Therefore, we carried out an extensive analysis to identify transcription factor binding sites (TFBS. A series of putative interaction sites coincide with detected variants. Sixteen of the corresponding transcription factors are of particular interest, as they are housekeeping genes or show a direct link to hematopoiesis, tumorigenesis or leukemia (e.g. GATA-1/2, PU.1, MZF-1. CONCLUSIONS: Specific alleles at predicted TFBSs may alter the expression of RPS19, modify an important interaction between transcription factors with overlapping TFBS or remove an important stimulus for hematopoiesis. We suggest that the detected interactions are of importance for hematopoiesis and could provide new insights into individual response to treatment.

  7. Practical use of herb mixture preparations as functional foods for hemato-immunomodulation and cancer therapy assistance

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran and others

    2006-01-15

    This research project was intended to verify biological efficacy and to develop optimal manufacturing process of a novel herbal preparation (HemoHIM), and finally to practicalize it as a functional food for hemato-immunomodulation and cancer therapy assistance. HemoHIM alleviated the suppression of immune and hematopoietic functions in irradiated or anticancer drug(cyclophosphamide)-treated mice, enhanced the anticancer immune activity, and reduced the biological damage by oxidative stress. From these results, the optical application condition of HemoHIM was established. Then, the biologically active components, polysaccharide fraction for immune and hematopoiesis, and 5 antioxidant compounds, were isolated and identified. Based on these results, the standards for the active component contents were established and the optimal manufacturing process was developed. The contents of heavy metals and pesticides were analyzed by US FDA and the pilot product was shown to contain no heavy metals and pesticides. Also the pilot product showed no biological toxicity in the animal toxicity test including the long-term administration, teratogenicity, and local toxicity test. These results confirmed the safety of HemoHIM as a food. Finally, the human efficacy was evaluated. In result, the pilot product alleviated the suppression of immune cell numbers in cancer patients who received the radiation or chemotherapy, and enhanced the immune cell numbers and functions in the immune-depressed sub-healthy volunteers. Based on these results, KAERI and Kolmar Korea, Co. founded the joint venture company, SunBioTech Co. and two herbal preparation products (HemoHIM and HemoTonic) were partially commercialized. This herbal preparation is expected to be applied as a heath functional food for immune and hematopoiesis modulation, and also as a general medicine for the alleviation of immune and hematopoiesis suppression during cancer treatments in the future through further study.

  8. Other hemopoietic disorders

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930585 Demineralized bone matrix induced het-erotopic bone marrow formation:an experimen-tal study on rats.ZHEN Xuechu(镇学初),et al.Jiuxianqiao Hosp,Beijing,100016.Chin J Hema-tol 1993;14(5):235-236.Sixteen 28 to 30 day-old male spraque-Daw-ley rats were implanted subcutaneously in thethorathic region with demineralized diaphysealbone matrix powder for inducing heterotopicbone marrow formation.Chondrolysis with vas-cular invasion was evidenced on day 11.The ini-tial bone marrow development was marked onday 17.With the proliferation of hematopoiesis

  9. Noncoding RNA and its associated proteins as regulatory elements of the immune system.

    Science.gov (United States)

    Turner, Martin; Galloway, Alison; Vigorito, Elena

    2014-06-01

    The rapid changes in gene expression that accompany developmental transitions, stress responses and proliferation are controlled by signal-mediated coordination of transcriptional and post-transcriptional mechanisms. In recent years, understanding of the mechanics of these processes and the contexts in which they are employed during hematopoiesis and immune challenge has increased. An important aspect of this progress is recognition of the importance of RNA-binding proteins and noncoding RNAs. These have roles in the development and function of the immune system and in pathogen life cycles, and they represent an important aspect of intracellular immunity.

  10. Angiotensin-converting enzyme overexpression in myelocytes enhances the immune response.

    Science.gov (United States)

    Bernstein, Kenneth E; Gonzalez-Villalobos, Romer A; Giani, Jorge F; Shah, Kandarp; Bernstein, Ellen; Janjulia, Tea; Koronyo, Yosef; Shi, Peng D; Koronyo-Hamaoui, Maya; Fuchs, Sebastien; Shen, Xiao Z

    2014-10-01

    Angiotensin-converting enzyme (ACE) plays an important role in blood pressure control. ACE also has effects on renal function, reproduction, hematopoiesis, and several aspects of the immune response. ACE 10/10 mice overexpress ACE in monocytic cells; macrophages from ACE 10/10 mice demonstrate increased polarization toward a proinflammatory phenotype. As a result, ACE 10/10 mice have a highly effective immune response following challenge with melanoma, bacterial infection, or Alzheimer disease. As shown in ACE 10/10 mice, enhanced monocytic function greatly contributes to the ability of the immune response to defend against a wide variety of antigenic and non-antigenic challenges.

  11. The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications.

    Science.gov (United States)

    Podar, Klaus; Anderson, Kenneth C

    2005-02-15

    Besides its role as an essential regulator of physiologic and pathologic angiogenesis, vascular endothelial growth factor (VEGF) triggers growth, survival, and migration of leukemia and multiple myeloma cells; plays a pivotal role in hematopoiesis; inhibits maturation of dendritic cells; and increases osteoclastic bone-resorbing activity as well as osteoclast chemotaxis. Dysregulation of VEGF expression and signaling pathways therefore plays an important role in the pathogenesis and clinical features of hematologic malignancies, in particular multiple myeloma. Direct and indirect targeting of VEGF and its receptors therefore may provide a potent novel therapeutic approach to overcome resistance to therapies and thereby improve patient outcome.

  12. Idiopathic myelofibrosis with generalized periostitis in a 4-year-old girl.

    Science.gov (United States)

    Walia, Mandeep; Mehta, Rajesh; Paul, Premila; Saluja, Sumita; Kapoor, Sujala; Sharma, Monika

    2005-05-01

    Idiopathic myelofibrosis, a chronic myeloproliferative disorder of unknown origin, is characterized by splenomegaly, extramedullary hematopoiesis, leukoerythroblastosis, teardrop erythrocytes, and myelofibrosis. It is a rare disorder in childhood. The authors describe a 4-year-old girl with features consistent with idiopathic myelofibrosis, who also had generalized solid laminated periosteal reaction involving all long bones. The presence of thrombocytopenia at the onset and lack of leukocytosis were in contrast to the reported features seen in children. Recent case reports describe a relatively indolent course in children. Spontaneous remissions have also been described in pediatric cases. The fulminant course of this patient without any features of malignant transformation was noteworthy in this regard.

  13. Biological Bases of Space Radiation Risk

    Science.gov (United States)

    1997-01-01

    In this session, Session JP4, the discussion focuses on the following topics: Hematopoiesis Dynamics in Irradiated Mammals, Mathematical Modeling; Estimating Health Risks in Space from Galactic Cosmic Rays; Failure of Heavy Ions to Affect Physiological Integrity of the Corneal Endothelial Monolayer; Application of an Unbiased Two-Gel CDNA Library Screening Method to Expression Monitoring of Genes in Irradiated Versus Control Cells; Detection of Radiation-Induced DNA Strand Breaks in Mammalian Cells By Enzymatic Post-Labeling; Evaluation of Bleomycin-Induced Chromosome Aberrations Under Microgravity Conditions in Human Lymphocytes, Using "Fish" Techniques; Technical Description of the Space Exposure Biology Assembly Seba on ISS; and Cytogenetic Research in Biological Dosimetry.

  14. MDSCs in cancer: Conceiving new prognostic and therapeutic targets.

    Science.gov (United States)

    De Sanctis, Francesco; Solito, Samantha; Ugel, Stefano; Molon, Barbara; Bronte, Vincenzo; Marigo, Ilaria

    2016-01-01

    The incomplete clinical efficacy of anti-tumor immunotherapy can depend on the presence of an immunosuppressive environment in the host that supports tumor progression. Tumor-derived cytokines and growth factors induce an altered hematopoiesis that modifies the myeloid cell differentiation process, promoting proliferation and expansion of cells with immunosuppressive skills, namely myeloid derived suppressor cells (MDSCs). MDSCs promote tumor growth not only by shaping immune responses towards tumor tolerance, but also by supporting several processes necessary for the neoplastic progression such as tumor angiogenesis, cancer stemness, and metastasis dissemination. Thus, MDSC targeting represents a promising tool to eliminate host immune dysfunctions and increase the efficacy of immune-based cancer therapies.

  15. Mice deficient in the ALS2 gene exhibit lymphopenia and abnormal hematopietic function.

    Science.gov (United States)

    Erie, Elizabeth A; Shim, Hoon; Smith, Aleah L; Lin, Xian; Keyvanfar, Keyvan; Xie, Chengsong; Chen, Jichun; Cai, Huaibin

    2007-01-01

    One form of juvenile onset autosomal recessive amyotrophic lateral sclerosis (ALS2) has been linked to the dysfunction of the ALS2 gene. The ALS2 gene is expressed in lymphoblasts, however, whether ALS2-deficiency affects periphery blood is unclear. Here we report that ALS2 knockout (ALS2(-/-)) mice developed peripheral lymphopenia but had higher proportions of hematopoietic stem and progenitor cells in which the stem cell factor-induced cell proliferation was up-regulated. Our findings reveal a novel function of the ALS2 gene in the lymphopoiesis and hematopoiesis, suggesting that the immune system is involved in the pathogenesis of ALS2.

  16. The Role of Vitamin D in Hematologic Disease and Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Aric C. Hall

    2013-06-01

    Full Text Available Vitamin D is a steroid hormone with a broad range of biological effects ranging from the classical role as a mediator of calcium and phosphate balance to cellular differentiation and immune modulation. These effects impact normal and dysfunctional hematopoietic and immune function, which may allow an avenue for improved treatment and support of patients suffering from hematologic disorders. In this review, we will summarize the role of vitamin D in normal hematopoiesis, discuss ways in which vitamin D may improve outcomes, and discuss a potential role of vitamin D for treating hematologic disorders and modulating the immune system to improve the outcome of allogeneic stem cell transplant.

  17. Down syndrome preleukemia and leukemia.

    Science.gov (United States)

    Maloney, Kelly W; Taub, Jeffrey W; Ravindranath, Yaddanapudi; Roberts, Irene; Vyas, Paresh

    2015-02-01

    Children with Down syndrome (DS) and acute leukemias acute have unique biological, cytogenetic, and intrinsic factors that affect their treatment and outcome. Myeloid leukemia of Down syndrome (ML-DS) is associated with high event-free survival (EFS) rates and frequently preceded by a preleukemia condition, the transient abnormal hematopoiesis (TAM) present at birth. For acute lymphoblastic leukemia (ALL), their EFS and overall survival are poorer than non-DS ALL, it is important to enroll them on therapeutic trials, including relapse trials; investigate new agents that could potentially improve their leukemia-free survival; and strive to maximize the supportive care these patients need.

  18. [Management of graft failure and erythroblastopenia in patients undergoing allogeneic hematopoietic stem cell transplantation: Guidelines from the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC)].

    Science.gov (United States)

    Cornillon, Jérôme; Sicre de Fontbrune, Flore; Chantepie, Sylvain; Coiteux, Valérie; Gauthier, Jordan; Masouridi-Levrat, Stavroula; Pochon, Cécile; Terriou, Louis; Yakoub-Agha, Ibrahim; Dalle, Jean-Hugues

    2016-11-01

    Success of allogeneic hematopoietic stem cells transplantation requires both the underlying disease eradication and satisfying reconstitution of hematopoiesis from donor cells. However, reconstitution delays, secondary development or persistence of cytopenia are regularly observed and are potential causes of failure after allogeneic transplantation. These graft dysfunctions should be distinguished from non-engraftment/engraftment failure. Although these situations are relatively common, there is no consensus in the literature for their management. During the workshop of the SFGM-TC, the working group proposed recommendations from an analysis of the literature. Copyright © 2016. Published by Elsevier Masson SAS.

  19. A T Cell View of the Bone Marrow

    OpenAIRE

    Bonomo, Adriana; Monteiro, Ana Carolina; Gonçalves-Silva, Triciana; Cordeiro-Spinetti, Eric; Galvani, Rômulo Gonçalves; Balduino, Alex

    2016-01-01

    The majority of T cells present in the bone marrow (BM) represent an activated/memory phenotype and most of these, if not all, are circulating T cells. Their lodging in the BM keeps them activated, turning the BM microenvironment into a “memory reservoir.” This article will focus on how T cell activation in the BM results in both direct and indirect effects on the hematopoiesis. The hematopoietic stem cell niche will be presented, with its main components and organization, along with the role...

  20. Special Education: Aplastic Anemia.

    Science.gov (United States)

    Teramura; Mizoguchi

    1996-01-01

    WHAT IS HYPOPLASTIC ANEMIA? Aplastic anemia is a hematological disease characterized by pancytopenia and bone marrow hypoplasia. Acquired cases of aplastic anemia are almost all idiopathic and arise from unknown causes. Other cases of aplastic anemia are secondary and are caused by radiation, chemicals or viruses. PATHOPHYSIOLOGY: Aplastic anemia is manifested as a marked reduction in the number of pluripotent hematopoietic stem cells, but why this occurs is still uncertain. Some of the proposed causes include abnormalities of the hematopoietic stem cells, abnormalities in the hematopoietic microenvironment, and immunologically mediated damage to the hematopoietic stem cells (Figure 1). ABNORMALTIES OF THE HEMATOPOIETIC STEM CELLS: Patients with aplastic anemia, and long-term survivors in particular, are at increased risk of developing paroxysmal nocturnal hemoglobinuria (PNH), myelodysplastic syndrome (MDS), or acute myelocytic leukemia. This suggests that, in at least some of these patients, the hematopoietic stem cells themselves are abnormal. It also suggests that in some of these patients the blood cells are clonal (that is, all the blood cells are derived from a single pluripotent stem cell). In short, what these findings imply is that aplastic anemia may be caused by the emergence of an abnormal clone. Clonal hematopoiesis, however, can also be considered nothing more than a consequence. In other words, it is possible that hematopoiesis in this kind of patient is performed by a lone pluripotent stem cell that somehow managed to survive eradication. No definitive interpretation of clonal hematopoiesis has been agreed upon, and it is still a topic for future research. ABNORMAL HEMATOPOIETIC MICROENVIRONMENT: The presence of stromal cells, which form the microenvironment of bone marrow, is very important in hematopoiesis. Hematopoietic stem cells proliferate and differentiate either by adhering to stromal cells or by being stimulated by the various

  1. Indications of hematopoietic stem cell transplantations and therapeutic strategies of accidental irradiations; Indications des greffes de cellules souches hematopoietiques et strategies therapeutiques des irradiations accidentelles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Produced by a group of experts, this document first discusses the issue of accidental irradiations in terms of medical management. They notably outline the peculiar characteristics of these irradiations with respect to therapeutic irradiations. They agreed on general principles regarding casualty sorting criteria and process, and their medical treatment (systematic hematopoiesis stimulation, allogeneic transplantation of hematopoietic stem cells). They discuss some practical aspects of these issues: casualty sorting within a therapeutic perspective (actions to be performed within 48 hours), therapeutic strategies (support therapy, use of cytokines, and therapy by hematopoietic stem cell transplant). They state a set of recommendations regarding the taking into care and diagnosis, therapeutic strategies, research perspectives, and teaching

  2. Anatomy and physiology of the embryo, fetus and placenta

    Energy Technology Data Exchange (ETDEWEB)

    Wegst, A.V. (Diagnostic Technology Consultants, Inc., Kansas City, MO (United States)); Davis, J.M. (Kansas Univ., Kansas City, KS (United States). Medical Center)

    1992-01-01

    Complexities of fetal and placental development introduce unique problems in quantitating a fetal radiation dose from internal radionuclide contamination. The paper briefly describes the many transitory stages in the development of the fetal organs and placenta from the time of the union of the egg and sperm. Descriptions of migration, differentiation and functional changes of cell lines will illustrate the difficulties in establishing a radiation history. The development of the cells responsible for hematopoiesis are reviewed, along with the thyroid gland and blood brain barrier, because of the importance of these tissues in radiation protection. (author).

  3. Preterm infant with a late presentation of blueberry muffin lesions secondary to recombinant erythropoietin.

    Science.gov (United States)

    Rajpara, Anand; Blackmon, Joseph; Laarman, Rachel; Skaggs, Robert; Liolios, Ana; Lui, Deede; Fraga, Garth

    2013-09-14

    Our patient is a 26-week-old preterm female infant delivered by caesarean section secondary to severe maternal preeclampsia who had been receiving subcutaneous recombinant erythropoietin (r-EPO) for anemia of prematurity. At 8 weeks of age after 8 doses of r-EPO, the infant developed numerous non-blanching erythematous macules and patches located on the back, posterior shoulder, and posterior arms, concerning for late-onset blueberry muffin lesions. Biopsy of the lesions confirmed dermal hematopoiesis. After r-EPO was discontinued all skin lesions gradually resolved over a period of 2 weeks and never recurred.

  4. [Thymus Development in Early Ontogeny: A Comparative Aspect].

    Science.gov (United States)

    Vasil'ev, K A; Polevshchikov, A V

    2015-01-01

    This review is dedicated to comparative analysis of the early stages of thymus ontogeny in fish, amphibians, and mammals. Morphological and molecular-genetic aspects of the formation of thymic stroma, colonization of this organ with T-cell progenitors, and interaction of different cell populations in the course of organogenesis are considered. Particular attention is given to the hematopoietic role of the thymus during embryogenesis and new data on the origin of T-cell progenitors. The hypothesis about the possible presence in the organ of a self-sustaining population of stem cells, formed regardless of fetal hematopoiesis areas, is discussed.

  5. Proliferation and Apoptosis of Bone Marrow CD4~+ T Cells in Patients with Aplastic Anemia and Impacts of the Secreted Cytokines on Hematopoietic Stem Cells from Umbilical Cord Blood

    Institute of Scientific and Technical Information of China (English)

    郑邈; 孙汉英; 周剑峰; 徐慧珍; 黄丽芳; 刘文励

    2010-01-01

    Recent studies indicate that immune-associated aplastic anemia(AA)resembles such autoimmune diseases as insulin-dependent diabetes and chronic autoimmune thyroiditis that belong to organ-specific autoimmune diseases.Many independent investigation groups have successfully isolated the pathopoiesis-associated T cell clone causing hematopoiesis failure with a CD4 phenotype from peripheral blood and bone marrow(BM)in AA patients.In the current study,BM CD4+ T cells were isolated from AA patients and healthy con...

  6. Studies of allogeneic bone marrow and spleen cell transplantation in a murine model using ultraviolet-B light

    Energy Technology Data Exchange (ETDEWEB)

    Pamphilon, D.H.; Alnaqdy, A.A.; Godwin, V.; Preece, A.W.; Wallington, T.B. (South Western Regional Transfusion Centre, Bristol (United Kingdom))

    1991-05-01

    Ultraviolet irradiation inhibits alloreactive and mitogen-induced responses and might reduce both graft-versus-host and host-versus-graft reactions after bone marrow transplantation (BMT). We have studied proliferative responses to mitogens and reactivity in mixed lymphocyte culture after irradiation with ultraviolet (UV)-B light using splenocytes from Balb/c (H-2d) and CBA (H-2k) mice. Response to mitogens and in MLC was strongly inhibited by 20 J/m{sup 2} and abolished at 50 J/m{sup 2}. Clonogenic cell recovery (CFU-GM; CFU-S) after UV-B irradiation was also reduced. When bone marrow and spleen cells were transplanted from parent (Balb/c) animals into F1 hybrid (Balb/c X CBA) recipients, all animals died with features indicative of graft-versus-host disease (GVHD) in 34 days. If the grafts were first irradiated with 100 J/m{sup 2} of UV-B at a mean wavelength of 310 nm, then 76% survived to day 80 when they were killed and shown to have normal marrow cellularity. The remainder died in marrow aplasia or of GVHD. H-2 typing in a group of surviving recipients showed either donor hematopoiesis only (8 of 15), mixed allogeneic chimerism (5 of 15), or recipient type hematopoiesis (2 of 15). Higher doses (200 to 300 J/m{sup 2}) were detrimental to survival with 88% of recipients dying in marrow aplasia. Syngeneic BMT in Balb/c mice showed slower hematopoietic reconstitution when the grafts were first irradiated with 100 J/m{sup 2}. After BMT from Balb/c to CBA mice all recipients of unirradiated grafts died within 54 days. By contrast, after graft irradiation with 100 J/m{sup 2} survival of recipient animals to day 80 was 59%. If these grafts were treated with 50 J/m{sup 2} survival was only 26% with an increase in deaths due to GVHD. Hematopoiesis at day 80 in a group of survivors studied by Ig heavy chain allotyping indicated donor type hematopoiesis in 6 of 10 (50 J/m{sup 2}) and 2 of 9 (100 J/m{sup 2}).

  7. Division of Biological and Medical Research annual research summary, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Barr, S.H. (ed.)

    1984-08-01

    This research summary contains brief descriptions of research in the following areas: (1) mechanisms of hepatocarcinogenesis; (2) role of metals in cocarcinogenesis and the use of liposomes for metal mobilization; (3) control of mutagenesis and cell differentiation in cultured cells by tumor promoters; (4) radiation effects in mammalian cells; (5) radiation carcinogenesis and radioprotectors; (6) life shortening, tumor induction, and tissue dose for fission-neutron and gamma-ray irradiations; (7) mammalian genetics and biostatistics; (8) radiation toxicity studies; (9) hematopoiesis in chronic toxicity; (10) molecular biology studies; (11) chemical toxicology; (12) carcinogen identification and metabolism; (13) metal metabolism and toxicity; and (14) neurobehavioral chronobiology. (ACR)

  8. THE PURE RED BLOOD CELL APLASIA IN RENAL TRANSPLANT RECIPIENT

    Directory of Open Access Journals (Sweden)

    B. T. Dzumabaeva

    2011-01-01

    Full Text Available The pure red blood cell aplasia of renal transplant recipients caused by parvovirus B19 (PB19 is characterized by persistent anemia which resistant to erythropoietin therapy, lack of reticulocytes, bone marrow hypoplasia, and clinically accompanied by severe recurrent bacterial, fungal and viral infection. In case of reactivation PB19 it is necessarv, first of all, eliminate the causes activation of this virus and to cancel or reduce the dose of drugs which depressed the normal hematopoiesis germs, thus to reduce the pancytopenia associating complications in this population. 

  9. Polydnaviral ankyrin proteins aid parasitic wasp survival by coordinate and selective inhibition of hematopoietic and immune NF-kappa B signaling in insect hosts.

    Science.gov (United States)

    Gueguen, Gwenaelle; Kalamarz, Marta E; Ramroop, Johnny; Uribe, Jeffrey; Govind, Shubha

    2013-01-01

    Polydnaviruses are mutualists of their parasitoid wasps and express genes in immune cells of their Lepidopteran hosts. Polydnaviral genomes carry multiple copies of viral ankyrins or vankyrins. Vankyrin proteins are homologous to IκB proteins, but lack sequences for regulated degradation. We tested if Ichnoviral Vankyrins differentially impede Toll-NF-κB-dependent hematopoietic and immune signaling in a heterologous in vivo Drosophila, system. We first show that hematopoiesis and the cellular encapsulation response against parasitoid wasps are tightly-linked via NF-κB signaling. The niche, which neighbors the larval hematopoietic progenitors, responds to parasite infection. Drosophila NF-κB proteins are expressed in the niche, and non cell-autonomously influence fate choice in basal and parasite-activated hematopoiesis. These effects are blocked by the Vankyrin I²-vank-3, but not by P-vank-1, as is the expression of a NF-κB target transgene. I²-vank-3 and P-vank-1 differentially obstruct cellular and humoral inflammation. Additionally, their maternal expression weakens ventral embryonic patterning. We propose that selective perturbation of NF-κB-IκB interactions in natural hosts of parasitic wasps negatively impacts the outcome of hematopoietic and immune signaling and this immune deficit contributes to parasite survival and species success in nature.

  10. FHL2 regulates hematopoietic stem cell functions under stress conditions

    Science.gov (United States)

    Hou, Yu; Wang, Xiaoqin; Li, LiPing; Fan, Rong; Chen, Ju; Zhu, Tongyu; Li, Wen; Jiang, Yanwen; Mittal, Nupur; Wu, Wenshu; Peace, David; Qian, Zhijian

    2014-01-01

    FHL2, a member of the four and one half LIM domain protein family, is a critical transcriptional modulator. Here, we identify FHL2 as a critical regulator of hematopoietic stem cells (HSCs) that is essential for maintaining HSC self-renewal under regenerative stress. We find that Fhl2 loss has limited effects on hematopoiesis under homeostatic conditions. In contrast, Fhl2-null chimeric mice reconstituted with Fhl2-null bone marrow cells developed abnormal hematopoiesis with significantly reduced numbers of HSCs, hematopoietic progenitor cells (HPCs), red blood cells and platelets as well as hemoglobin levels. In addition, HSCs displayed a significantly reduced self-renewal capacity and were skewed toward myeloid lineage differentiation. We find that Fhl2 loss reduces both HSC quiescence and survival in response to regenerative stress, probably as a consequence of Fhl2-loss-mediated down-regulation of cyclin dependent kinase (CDK)-inhibitors, including p21(Cip) and p27(Kip1). Interestingly, FHL2 is regulated under control of a tissue specific promoter in hematopoietic cells and it is down-regulated by DNA hypermethylation in the leukemia cell line and primary leukemia cells. Furthermore, we find that down-regulation of FHL2 frequently occurs in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) patients, raising a possibility that FHL2 down-regulation plays a role in the pathogenesis of myeloid malignancies. PMID:25179730

  11. Antineoplastic agents and the associated myelosuppressive effects: a review.

    Science.gov (United States)

    Barreto, Jason N; McCullough, Kristen B; Ice, Lauren L; Smith, Judith A

    2014-10-01

    Bone marrow is a complex organ responsible for the regulation of hematopoietic cell distribution throughout the human body. Patients receiving antineoplastic agents as a therapeutic intervention for hematologic malignancy often experience varying degrees of myelotoxicity. Antineoplastic agents cause hypocellularity in marrow resulting in a reduction in hematopoietic tissue activity and a corresponding decline in cell production. Quantifying the adverse effects on hematopoiesis is based on the properties of a single agent, the use of individual drugs within a combination chemotherapy regimen, and the course, or courses, of chemotherapy designed to treat cancer. The direct or indirect suppression of erythrocytes, granulocytes, and megakaryocytes has potential for multiple negative clinical consequences ranging from increased monitoring of blood counts to life-threatening infection and death. This review will provide an overview of the structure and function of competent adult bone marrow, describe the process of hematopoiesis, and characterize the myelotoxicities associated with common antineoplastic agents currently used in the treatment of cancer. © The Author(s) 2014.

  12. Omega 3 fatty acids reduce myeloid progenitor cell frequency in the bone marrow of mice and promote progenitor cell differentiation

    Directory of Open Access Journals (Sweden)

    Sollars Vincent E

    2009-03-01

    Full Text Available Abstract Background Omega 3 fatty acids have been found to inhibit proliferation, induce apoptosis, and promote differentiation in various cell types. The processes of cell survival, expansion, and differentiation are of key importance in the regulation of hematopoiesis. We investigated the role of omega 3 fatty acids in controlling the frequency of various myeloid progenitor cells in the bone marrow of mice. Increased progenitor cell frequency and blocked differentiation are characteristics of hematopoietic disorders of the myeloid lineage, such as myeloproliferative diseases and myeloid leukemias. Results We found that increasing the proportion of omega 3 fatty acids relative to the proportion of omega 6 fatty acids in the diet caused increased differentiation and reduced the frequency of myeloid progenitor cells in the bone marrow of mice. Furthermore, this had no adverse effect on peripheral white blood cell counts. Conclusion Our results indicate that omega 3 fatty acids impact hematopoietic differentiation by reducing myeloid progenitor cell frequency in the bone marrow and promoting progenitor cell differentiation. Further exploration of this discovery could lead to the use of omega 3 fatty acids as a therapeutic option for patients that have various disorders of hematopoiesis.

  13. Distinct mechanisms of regulation of the ITGA6 and ITGB4 genes by RUNX1 in myeloid cells.

    Science.gov (United States)

    Phillips, Jessica L; Taberlay, Phillippa C; Woodworth, Alexandra M; Hardy, Kristine; Brettingham-Moore, Kate H; Dickinson, Joanne L; Holloway, Adele F

    2017-09-19

    Integrins are transmembrane adhesion receptors that play an important role in hematopoiesis by facilitating interactions between hematopoietic cells and extracellular matrix components of the bone marrow and hematopoietic tissues. These interactions are important in regulating the function, proliferation and differentiation of hematopoietic cells, as well as their homing and mobilization in the bone marrow. Not surprisingly altered expression and function of integrins plays a key role in the development and progression of cancer including leukemias. However, the regulation of integrin gene expression is not well characterized and the mechanisms by which integrin genes are disrupted in cancer remain unclear. Here we demonstrate for the first time that a key regulator of hematopoiesis, RUNX1, binds to and regulates the promoters of both the ITGA6 and ITGB4 genes in myeloid cells. The ITGA6 and ITGB4 integrin genes form the α6β4 integrin receptor. However our data indicates that RUNX1 functions differently at these two promoters. RUNX1 regulates ITGA6 through a consensus RUNX1 binding motif in its promoter. In contrast, although the ITGB4 promoter is also activated by RUNX1, it does so in the absence of a recognized consensus RUNX1 binding motif. Further, our data suggest that regulation of ITGB4 may involve interactions between the promoter and upstream regulatory elements. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. PRMT4 Blocks Myeloid Differentiation by Assembling a Methyl-RUNX1-Dependent Repressor Complex

    Directory of Open Access Journals (Sweden)

    Ly P. Vu

    2013-12-01

    Full Text Available Defining the role of epigenetic regulators in hematopoiesis has become critically important, because recurrent mutations or aberrant expression of these genes has been identified in both myeloid and lymphoid hematological malignancies. We found that PRMT4, a type I arginine methyltransferase whose function in normal and malignant hematopoiesis is unknown, is overexpressed in acute myelogenous leukemia patient samples. Overexpression of PRMT4 blocks the myeloid differentiation of human stem/progenitor cells (HSPCs, whereas its knockdown is sufficient to induce myeloid differentiation of HSPCs. We demonstrated that PRMT4 represses the expression of miR-223 in HSPCs via the methylation of RUNX1, which triggers the assembly of a multiprotein repressor complex that includes DPF2. As part of the feedback loop, PRMT4 expression is repressed posttranscriptionally by miR-223. Depletion of PRMT4 results in differentiation of myeloid leukemia cells in vitro and their decreased proliferation in vivo. Thus, targeting PRMT4 holds potential as a novel therapy for acute myelogenous leukemia.

  15. Distinct regulation of the anterior and posterior myeloperoxidase expression by Etv2 and Gata1 during primitive Granulopoiesis in zebrafish.

    Science.gov (United States)

    Glenn, Nicole O; Schumacher, Jennifer A; Kim, Hyon J; Zhao, Emma J; Skerniskyte, Jurate; Sumanas, Saulius

    2014-09-01

    Neutrophilic granulocytes are the most abundant type of myeloid cells and form an essential part of the innate immune system. In vertebrates the first neutrophils are thought to originate during primitive hematopoiesis, which precedes hematopoietic stem cell formation. In zebrafish embryos, it has been suggested that primitive neutrophils may originate in two distinct sites, the anterior (ALPM) and posterior lateral plate mesoderm (PLPM). An ETS-family transcription factor Etsrp/Etv2/ER71 has been implicated in vasculogenesis and hematopoiesis in multiple vertebrates. However, its role during neutrophil development is not well understood. Here we demonstrate using zebrafish embryos that Etv2 has a specific cell-autonomous function during primitive neutropoiesis in the anterior lateral plate mesoderm (ALPM) but has little effect on erythropoiesis or the posterior lateral plate mesoderm (PLPM) expression of neutrophil marker myeloperoxidase mpo/mpx. Our results argue that ALPM-derived neutrophils originate from etv2-expressing cells which downregulate etv2 during neutropoiesis. We further show that Scl functions downstream of Etv2 in anterior neutropoiesis. Additionally, we demonstrate that mpx expression within the PLPM overlaps with gata1 expression, potentially marking the cells with a dual myelo-erythroid potential. Intriguingly, initiation of mpx expression in the PLPM is dependent on gata1 but not etv2 function. Our results demonstrate that mpx expression is controlled differently in the ALPM and PLPM regions and describe novel roles for etv2 and gata1 during primitive neutropoiesis.

  16. Epigenetic control of SPI1 gene by CTCF and ISWI ATPase SMARCA5.

    Directory of Open Access Journals (Sweden)

    Martina Dluhosova

    Full Text Available CCCTC-binding factor (CTCF can both activate as well as inhibit transcription by forming chromatin loops between regulatory regions and promoters. In this regard, Ctcf binding on non-methylated DNA and its interaction with the Cohesin complex results in differential regulation of the H19/Igf2 locus. Similarly, a role for CTCF has been established in normal hematopoietic development; however its involvement in leukemia remains elusive. Here, we show that Ctcf binds to the imprinting control region of H19/Igf2 in AML blasts. We also demonstrate that Smarca5, which also associates with the Cohesin complex, facilitates Ctcf binding to its target sites on DNA. Furthermore, Smarca5 supports Ctcf functionally and is needed for enhancer-blocking effect at ICR. We next asked whether CTCF and SMARCA5 control the expression of key hematopoiesis regulators. In normally differentiating myeloid cells both CTCF and SMARCA5 together with members of the Cohesin complex are recruited to the SPI1 gene, a key hematopoiesis regulator and leukemia suppressor. Due to DNA methylation, CTCF binding to the SPI1 gene is blocked in AML blasts. Upon AZA-mediated DNA demethylation of human AML blasts, CTCF and SMARCA5 are recruited to the -14.4 Enhancer of SPI1 gene and block its expression. Our data provide new insight into complex SPI1 gene regulation now involving additional key epigenetic factors, CTCF and SMARCA5 that control PU.1 expression at the -14.4 Enhancer.

  17. Clonal Dominance With Retroviral Vector Insertions Near the ANGPT1 and ANGPT2 Genes in a Human Xenotransplant Mouse Model

    Directory of Open Access Journals (Sweden)

    Reinhard Haemmerle

    2014-01-01

    Full Text Available Insertional leukemogenesis represents the major risk factor of hematopoietic stem cell (HSC based gene therapy utilizing integrating viral vectors. To develop a pre-clinical model for the evaluation of vector-related genotoxicity directly in the relevant human target cells, cord blood CD34+ HSCs were transplanted into immunodeficient NOD.SCID.IL2rg−/− (NSG mice after transduction with an LTR-driven gammaretroviral vector (GV. Furthermore, we specifically investigated the effect of prolonged in vitro culture in the presence of cytokines recently described to promote HSC expansion or maintenance. Clonality of human hematopoiesis in NSG mice was assessed by high throughput insertion site analyses and validated by insertion site-specific PCR depicting a GV typical integration profile with insertion sites resembling to 25% those of clinical studies. No overrepresentation of integrations in the vicinity of cancer-related genes was observed, however, several dominant clones were identified including two clones harboring integrations in the ANGPT1 and near the ANGPT2 genes associated with deregulated ANGPT1- and ANGPT2-mRNA levels. While these data underscore the potential value of the NSG model, our studies also identified short-comings such as overall low numbers of engrafted HSCs, limited in vivo observation time, and the challenges of in-depth insertion site analyses by low contribution of gene modified hematopoiesis.

  18. Transcriptome analysis of the white body of the squid Euprymna tasmanica with emphasis on immune and hematopoietic gene discovery.

    Directory of Open Access Journals (Sweden)

    Karla A Salazar

    Full Text Available In the mutualistic relationship between the squid Euprymna tasmanica and the bioluminescent bacterium Vibrio fischeri, several host factors, including immune-related proteins, are known to interact and respond specifically and exclusively to the presence of the symbiont. In squid and octopus, the white body is considered to be an immune organ mainly due to the fact that blood cells, or hemocytes, are known to be present in high numbers and in different developmental stages. Hence, the white body has been described as the site of hematopoiesis in cephalopods. However, to our knowledge, there are no studies showing any molecular evidence of such functions. In this study, we performed a transcriptomic analysis of white body tissue of the Southern dumpling squid, E. tasmanica. Our primary goal was to gain insights into the functions of this tissue and to test for the presence of gene transcripts associated with hematopoietic and immune processes. Several hematopoiesis genes including CPSF1, GATA 2, TFIID, and FGFR2 were found to be expressed in the white body. In addition, transcripts associated with immune-related signal transduction pathways, such as the toll-like receptor/NF-κβ, and MAPK pathways were also found, as well as other immune genes previously identified in E. tasmanica's sister species, E. scolopes. This study is the first to analyze an immune organ within cephalopods, and to provide gene expression data supporting the white body as a hematopoietic tissue.

  19. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: biology and treatment

    Directory of Open Access Journals (Sweden)

    Tiziana Grafone

    2012-04-01

    Full Text Available Hematopoiesis, the process by which the hematopoietic stem cells and progenitors differentiate into blood cells of various lineages, involves complex interactions of transcription factors that modulate the expression of downstream genes and mediate proliferation and differentiation signals. Despite the many controls that regulate hematopoiesis, mutations in the regulatory genes capable of promoting leukemogenesis may occur. The FLT3 gene encodes a tyrosine kinase receptor that plays a key role in controlling survival, proliferation and differentiation of hematopoietic cells. Mutations in this gene are critical in causing a deregulation of the delicate balance between cell proliferation and differentiation. In this review, we provide an update on the structure, synthesis and activation of the FLT3 receptor and the subsequent activation of multiple downstream signaling pathways. We also review activating FLT3 mutations that are frequently identified in acute myeloid leukemia, cause activation of more complex downstream signaling pathways and promote leukemogenesis. Finally, FLT3 has emerged as an important target for molecular therapy. We, therefore, report on some recent therapies directed against it.

  20. Regulation of Ikaros function by casein kinase 2 and protein phosphatase 1

    Institute of Scientific and Technical Information of China (English)

    Amy; K; Erbe; Aleksandar; Savic; Sinisa; Dovat

    2011-01-01

    The Ikaros gene encodes a zinc finger,DNA-binding protein that regulates gene transcription and chromatin remodeling.Ikaros is a master regulator of hematopoiesis and an established tumor suppressor.Moderate alteration of Ikaros activity (e.g.haploinsufficiency) appears to be sufficient to promote malignant transformation in human hematopoietic cells.This raises questions about the mechanisms that normally regulate Ikaros function and the potential of these mechanisms to contribute to the development of leukemia.The focus of this review is the regulation of Ikaros function by phosphorylation/dephosphorylation.Site-specific phosphorylation of Ikaros by casein kinase 2 (CK2) controls Ikaros DNA-binding ability and subcellular localization.As a consequence,the ability of Ikaros to regulate cell cycle progression,chromatin remodeling,target gene expression,and thymocyte differentiation are controlled by CK2.In addition,hyperphosphorylation of Ikaros by CK2 leads to decreased Ikaros levels due to ubiquitinmediated degradation.Dephosphorylation of Ikaros by protein phosphatase 1 (PP1) acts in opposition to CK2 to increase Ikaros stability and restore Ikaros DNA binding ability and pericentromeric localization.Thus,the CK2 and PP1 pathways act in concert to regulate Ikaros activity in hematopoiesis and as a tumor suppressor.This highlights the importance of these signal transduction pathways as potential mediators of leukemogenesis via their role in regulating the activities of Ikaros.

  1. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages.

    Science.gov (United States)

    Hoeffel, Guillaume; Chen, Jinmiao; Lavin, Yonit; Low, Donovan; Almeida, Francisca F; See, Peter; Beaudin, Anna E; Lum, Josephine; Low, Ivy; Forsberg, E Camilla; Poidinger, Michael; Zolezzi, Francesca; Larbi, Anis; Ng, Lai Guan; Chan, Jerry K Y; Greter, Melanie; Becher, Burkhard; Samokhvalov, Igor M; Merad, Miriam; Ginhoux, Florent

    2015-04-21

    Although classified as hematopoietic cells, tissue-resident macrophages (MFs) arise from embryonic precursors that seed the tissues prior to birth to generate a self-renewing population, which is maintained independently of adult hematopoiesis. Here we reveal the identity of these embryonic precursors using an in utero MF-depletion strategy and fate-mapping of yolk sac (YS) and fetal liver (FL) hematopoiesis. We show that YS MFs are the main precursors of microglia, while most other MFs derive from fetal monocytes (MOs). Both YS MFs and fetal MOs arise from erythro-myeloid progenitors (EMPs) generated in the YS. In the YS, EMPs gave rise to MFs without monocytic intermediates, while EMP seeding the FL upon the establishment of blood circulation acquired c-Myb expression and gave rise to fetal MOs that then seeded embryonic tissues and differentiated into MFs. Thus, adult tissue-resident MFs established from hematopoietic stem cell-independent embryonic precursors arise from two distinct developmental programs.

  2. Sox7-sustained expression alters the balance between proliferation and differentiation of hematopoietic progenitors at the onset of blood specification.

    Science.gov (United States)

    Gandillet, Arnaud; Serrano, Alicia G; Pearson, Stella; Lie-A-Ling, Michael; Lacaud, Georges; Kouskoff, Valerie

    2009-11-26

    The molecular mechanisms that regulate the balance between proliferation and differentiation of precursors at the onset of hematopoiesis specification are poorly understood. By using a global gene expression profiling approach during the course of embryonic stem cell differentiation, we identified Sox7 as a potential candidate gene involved in the regulation of blood lineage formation from the mesoderm germ layer. In the present study, we show that Sox7 is transiently expressed in mesodermal precursors as they undergo specification to the hematopoietic program. Sox7 knockdown in vitro significantly decreases the formation of both primitive erythroid and definitive hematopoietic progenitors as well as endothelial progenitors. In contrast, Sox7-sustained expression in the earliest committed hematopoietic precursors promotes the maintenance of their multipotent and self-renewing status. Removal of this differentiation block driven by Sox7-enforced expression leads to the efficient differentiation of hematopoietic progenitors to all erythroid and myeloid lineages. This study identifies Sox7 as a novel and important player in the molecular regulation of the first committed blood precursors. Furthermore, our data demonstrate that the mere sustained expression of Sox7 is sufficient to completely alter the balance between proliferation and differentiation at the onset of hematopoiesis.

  3. The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease.

    Science.gov (United States)

    Singbrant, Sofie; Wall, Meaghan; Moody, Jennifer; Karlsson, Göran; Chalk, Alistair M; Liddicoat, Brian; Russell, Megan R; Walkley, Carl R; Karlsson, Stefan

    2014-04-01

    The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced a gene signature associated with hematopoietic stem cells and myeloid differentiation, as well as hepatocyte growth factor signaling. Here we demonstrate that, in contrast to what has generally been assumed, the significant impact of SKI on hematopoiesis is independent of its ability to inhibit TGF-beta signaling. Instead, myeloid progenitors expressing SKI are partially dependent on functional hepatocyte growth factor signaling. Collectively our results demonstrate that SKI is an important regulator of hematopoietic stem cell activity and its overexpression leads to myeloproliferative disease.

  4. Thrombopoietin is a growth factor for rat hepatic progenitors.

    Science.gov (United States)

    Schmelzer, Eva; Deiwick, Andrea; Bruns, Helge; Fiegel, Henning C; Bader, Augustinus

    2008-03-01

    The liver is the primary site of hematopoiesis during fetal development; it has been shown that thrombopoietin (TPO) produced by the liver during fetal development is a major regulator of megakaryocytopoiesis. As maximum liver growth and hematopoiesis occur simultaneously, we hypothesized that TPO may act as a growth factor for hepatic progenitors. Therefore, the influence of TPO on the proliferation of fetal hepatic progenitors in vitro compared with that of adult hepatocytes was analyzed. The expression of the TPO receptor, c-mpl, was investigated in fetal and adult liver. Cell proliferation was measured by bromodeoxyuridine incorporation and total cell counts. TPO and c-mpl gene expression was investigated by reverse transcription polymerase chain reaction. The cell surface expression of c-mpl was analyzed in fetal and adult human liver by immunohistochemistry. Hepatic progenitors of fetal and adult liver but not hepatocytes expressed the TPO receptor, c-mpl, on the cell surface. Fetal hepatic progenitors expressed mRNA for TPO and its receptor. TPO stimulated cell proliferation and increased cell numbers of cultured rat fetal hepatic progenitors but not adult hepatocytes. We conclude that TPO acts in addition to its known role in megakaryocytopoiesis as a growth factor for hepatic progenitors but not hepatocytes in vitro; thus, TPO represents a growth factor for hepatic progenitors during fetal liver development.

  5. Development of functional foods for radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sung Kee; Yu, Young Beob; Park, Hae Ran; Byun, Myung Woo; Yang, Jae Seung; Kim, Sung Ho; Yee, Sung Tae

    2000-03-01

    In searching modulators of immunity and hematopoiesis among natural products, being used as foods, six herbs exhibited lymphocyte proliferation in vitro, and six exhibited augmentation of hematopoietic cell growth. The combined treatments showed synergistic effects of lymphocyte proliferation and of hematopoietic cell growth. On the other hand, we found four effective oriental medicinal prescriptions, used as energy tonic or blood-building decoctions, for survival and regeneration of hematopoietic cells and for protection of stem cells of intestinal crypt in irradiated mice. On the basis of these results, extracts from combinations of herbs were made in expectation of higher effects in the three respects. In immuno modulation activity by the two combinations of herbs was confirmed in mice. In culture of bone narrow cells, growth improvement of non-adherent precursor and induction of cytokine expression by herb mixture extracts were observed. In evaluation of fractions, polysaccharide fraction showed modulation of immunity and hematopoiesis, and methanol fraction showed stem cell protection from radiation. On the basis of the results, we made two provisional products by addition of polysaccharide fraction to the water extract. In further research, the active components would be identified and the fractional foods would be developed for overcoming of declined immunity and radiation damage. For security of sanitation by irradiation, the stability in activity of irradiated resources was confirmed. (author)

  6. How the avian model has pioneered the field of hematopoietic development.

    Science.gov (United States)

    Jaffredo, Thierry; Yvernogeau, Laurent

    2014-08-01

    The chicken embryo has a long history as a key model in developmental biology. Because of its distinctive developmental characteristics, it has contributed to major breakthroughs in the field of hematopoiesis. Among these, the discovery of B lymphocytes and the three rounds of thymus colonization; the embryonic origin of hematopoietic stem cells and the traffic between different hematopoietic organs; and the existence of two distinct endothelial cell lineages one angioblastic, restricted to endothelial cell production, and another, hemangioblastic, able to produce both endothelial and hematopoietic cells, should be cited. The avian model has also contributed to substantiate the endothelial-to-hematopoietic transition associated with aortic hematopoiesis and the existence of the allantois as a hematopoietic organ. Because the immune system develops relatively late in aves, the avian embryo is used to probe the tissue-forming potential of mouse tissues through mouse-into-chicken chimeras, providing insights into early mouse development by circumventing the lethality associated with some genetic strains. Finally, the avian embryo can be used to investigate the differentiation potential of human ES cells in the context of a whole organism. The combinations of classic approaches with the development of powerful genetic tools make the avian embryo a great and versatile model.

  7. Loss of RhoB expression enhances the myelodysplastic phenotype of mammalian diaphanous-related Formin mDia1 knockout mice.

    Directory of Open Access Journals (Sweden)

    Aaron D DeWard

    Full Text Available Myelodysplastic syndrome (MDS is characterized by ineffective hematopoiesis and hyperplastic bone marrow. Complete loss or interstitial deletions of the long arm of chromosome 5 occur frequently in MDS. One candidate tumor suppressor on 5q is the mammalian Diaphanous (mDia-related formin mDia1, encoded by DIAPH1 (5q31.3. mDia-family formins act as effectors for Rho-family small GTP-binding proteins including RhoB, which has also been shown to possess tumor suppressor activity. Mice lacking the Drf1 gene that encodes mDia1 develop age-dependent myelodysplastic features. We crossed mDia1 and RhoB knockout mice to test whether the additional loss of RhoB expression would compound the myelodysplastic phenotype. Drf1(-/-RhoB(-/- mice are fertile and develop normally. Relative to age-matched Drf1(-/-RhoB(+/- mice, the age of myelodysplasia onset was earlier in Drf1(-/-RhoB(-/- animals--including abnormally shaped erythrocytes, splenomegaly, and extramedullary hematopoiesis. In addition, we observed a statistically significant increase in the number of activated monocytes/macrophages in both the spleen and bone marrow of Drf1(-/-RhoB(-/- mice relative to Drf1(-/-RhoB(+/- mice. These data suggest a role for RhoB-regulated mDia1 in the regulation of hematopoietic progenitor cells.

  8. Hypermethylation of the VTRNA1-3 Promoter is Associated with Poor Outcome in Lower Risk Myelodysplastic Syndrome Patients

    Directory of Open Access Journals (Sweden)

    Alexandra Søgaard Helbo

    2015-10-01

    Full Text Available Myelodysplastic syndrome (MDS is a heterogeneous group of clonal hematopoietic disorders. MDS is frequently associated with deletions on chromosome 5q as well as aberrant DNA methylation patterns including hypermethylation of key tumor suppressors. We have previously shown that hypermethylation and silencing of the non-coding RNA VTRNA2-1 are correlated with poor outcomes in acute myeloid leukemia patients. In this study, we find that VTRNA1-2 and VTRNA1-3, both located on chromosome 5q, can be regulated and silenced by promoter DNA methylation, and that the hypomethylating agent 5-aza-2-deoxycytidine causes reactivation these genes. In normal hematopoiesis, we find that vault RNAs (vtRNAs show differential methylation between various hematopoietic cell populations, indicating that allele-specific methylation events may occur during hematopoiesis. In addition, we show that VTRNA1-3 promoter hypermethylation is frequent in lower risk MDS patients and is associated with a decreased overall survival.

  9. Loss of RhoB expression enhances the myelodysplastic phenotype of mammalian diaphanous-related Formin mDia1 knockout mice.

    Science.gov (United States)

    DeWard, Aaron D; Leali, Kellie; West, Richard A; Prendergast, George C; Alberts, Arthur S

    2009-09-21

    Myelodysplastic syndrome (MDS) is characterized by ineffective hematopoiesis and hyperplastic bone marrow. Complete loss or interstitial deletions of the long arm of chromosome 5 occur frequently in MDS. One candidate tumor suppressor on 5q is the mammalian Diaphanous (mDia)-related formin mDia1, encoded by DIAPH1 (5q31.3). mDia-family formins act as effectors for Rho-family small GTP-binding proteins including RhoB, which has also been shown to possess tumor suppressor activity. Mice lacking the Drf1 gene that encodes mDia1 develop age-dependent myelodysplastic features. We crossed mDia1 and RhoB knockout mice to test whether the additional loss of RhoB expression would compound the myelodysplastic phenotype. Drf1(-/-)RhoB(-/-) mice are fertile and develop normally. Relative to age-matched Drf1(-/-)RhoB(+/-) mice, the age of myelodysplasia onset was earlier in Drf1(-/-)RhoB(-/-) animals--including abnormally shaped erythrocytes, splenomegaly, and extramedullary hematopoiesis. In addition, we observed a statistically significant increase in the number of activated monocytes/macrophages in both the spleen and bone marrow of Drf1(-/-)RhoB(-/-) mice relative to Drf1(-/-)RhoB(+/-) mice. These data suggest a role for RhoB-regulated mDia1 in the regulation of hematopoietic progenitor cells.

  10. Identification of Genes Expressed in the Migrating Primitive Myeloid Lineage of Xenopus laevis

    Science.gov (United States)

    Agricola, Zachary N.; Jagpal, Amrita K.; Allbee, Andrew W.; Prewitt, Allison R.; Shifley, Emily T.; Rankin, Scott A.; Zorn, Aaron M.; Kenny, Alan P.

    2017-01-01

    Background During primitive hematopoiesis in Xenopus, cebpa and spib expressing myeloid cells emerge from the anterior ventral blood island. Primitive myeloid cells migrate throughout the embryo and are critical for immunity, healing, and development. Although definitive hematopoiesis has been studied extensively, molecular mechanisms leading to the migration of primitive myelocytes remain poorly understood. We hypothesized these cells have specific extracellular matrix modifying and cell motility gene expression. Results In situ hybridization screens of transcripts expressed in Xenopus foregut mesendoderm at stage 23 identified seven genes with restricted expression in primitive myeloid cells: destrin; coronin actin binding protein, 1a; formin-like 1; ADAM metallopeptidase domain 28; cathepsin S; tissue inhibitor of metalloproteinase-1; and protein tyrosine phosphatase nonreceptor 6. A detailed in situ hybridization analysis revealed these genes are initially expressed in the aVBI but become dispersed throughout the embryo as the primitive myeloid cells become migratory, similar to known myeloid markers. Morpholino-mediated loss-of-function and mRNA-mediated gain-of-function studies revealed the identified genes are downstream of Spib.a and Cebpa, key transcriptional regulators of the myeloid lineage. Conclusions We have identified genes specifically expressed in migratory primitive myeloid progenitors, providing tools to study how different gene networks operate in these primitive myelocytes during development and immunity. PMID:26264370

  11. Knockdown of ribosomal protein S7 causes developmental abnormalities via p53 dependent and independent pathways in zebrafish.

    Science.gov (United States)

    Duan, Juan; Ba, Qian; Wang, Ziliang; Hao, Miao; Li, Xiaoguang; Hu, Pingting; Zhang, Deyi; Zhang, Ruiwen; Wang, Hui

    2011-08-01

    Ribosomal proteins (RPs), structural components of the ribosome involved in protein synthesis, are of significant importance in all organisms. Previous studies have suggested that some RPs may have other functions in addition to assembly of the ribosome. The small ribosomal subunits RPS7, has been reported to modulate the mdm2-p53 interaction. To further investigate the biological functions of RPS7, we used morpholino antisense oligonucleotides (MO) to specifically knockdown RPS7 in zebrafish. In RPS7-deficient embryos, p53 was activated, and its downstream target genes and biological events were induced, including apoptosis and cell cycle arrest. Hematopoiesis was also impaired seriously in RPS7-deficient embryos, which was confirmed by the hemoglobin O-dianisidine staining of blood cells, and the expression of scl, gata1 and α-E1 globin were abnormal. The matrix metalloproteinase (mmp) family genes were also activated in RPS7 morphants, indicating that improper cell migration might also cause development defects. Furthermore, simultaneously knockdown of the p53 protein by co-injecting a p53 MO could partially reverse the abnormal phenotype in the morphants. These results strengthen the hypothesis that specific ribosomal proteins regulate p53 and that their deficiency affects hematopoiesis. Moreover, our data implicate that RPS7 is a regulator of matrix metalloproteinase (mmp) family in zebrafish system. These specific functions of RPS7 may provide helpful clues to study the roles of RPs in human disease.

  12. Myelodysplastic syndrome and pancytopenia responding to treatment of hyperthyroidism: Peripheral blood and bone marrow analysis before and after antihormonal treatment

    Directory of Open Access Journals (Sweden)

    Akoum Riad

    2007-01-01

    Full Text Available Hematological disorders, especially single lineage abnormalities, have been described in hyperthyroidism. Pancytopenia has been reported, without myelodysplastic syndrome or megaloblastic anemia. We studied the peripheral blood smear and the bone marrow aspiration and biopsy of a 65-year-old lady, who presented with pancytopenia and thyrotoxicosis due to multinodular goiter. She denied ingesting any toxic medication. At diagnosis: WBC: 2500 /ul, platelets count: 58.000/ul, hemoglobin level: 6.5 g/dl. The bone marrow was moderately hyper cellular with moderate myelofibrosis and arrested hematopoiesis. The TSH level was: 0.02 mIU/l (N: 0.25-4, the fT3: 18 pmol/l (N: 4-10, the routine serum immunologic tests were negative. After treatment with single agent neomercazole (carbimazole, complete recovery of the blood cell counts was obtained within one month. The bone marrow aspiration, performed three months after starting therapy, showed normal hematopoiesis. The thyroid function tests returned to normal and no autoimmune reaction was detected on routine serum testing. Persistent response was observed six months later under medical treatment. The patient has refused surgical treatment. Reversible myelodysplastic syndrome may also be part of the changes in blood picture of patients with hyperthyroidism, probably due to direct toxic mechanism.

  13. HEBAlt enhances the T-cell potential of fetal myeloid-biased precursors.

    Science.gov (United States)

    Braunstein, Marsela; Rajkumar, Paula; Claus, Carol L; Vaccarelli, Giovanna; Moore, Amanda J; Wang, Duncheng; Anderson, Michele K

    2010-12-01

    Hematopoiesis is controlled by the interplay between transcription factors and environmental signals. One of the primary determinants of the T-lineage choice is Delta-like (DL)-Notch signaling, which promotes T-cell development and inhibits B-cell development. We have found that the transcription factor HEBAlt is up-regulated in early hematopoietic precursors in response to DL-Notch signaling and that it can promote early T-cell development. Here, we identified a population of lineage-negative Sca-1⁻c-kit(+) (LK) cells in the mouse fetal liver that rapidly gave rise to myeloid cells and B cells but exhibited very little T-cell potential. However, forced expression of HEBAlt in these precursors restored their ability to develop into T cells. We also showed that Ikaros and Notch1 are up-regulated in response to HEBAlt over-expression and that activated Notch1 enhances the ability of LK cells to enter the T-cell lineage. Furthermore, the myeloid transcription factor C/EBPα is down-regulated in response to HEBAlt. We therefore propose that HEBAlt plays a role in the network that enforces the T-lineage fate and limits myeloid fate during hematopoiesis.

  14. Recent advances in crayfish hematopoietic stem cell culture: a model for studies of hemocyte differentiation and immunity.

    Science.gov (United States)

    Söderhäll, Irene

    2013-10-01

    Hematopoiesis is the process by which blood cells (hemocytes) mature and subsequently enter the circulation and we have developed a new technique to culture the hematopoietic progenitor cells in vitro. The reason for the successful culture was the isolation of a plasma protein that turned out to be a novel cytokine, astakine 1 (Ast1) containing a domain present in several vertebrates, so-called prokineticins. Now we have detected several astakines from other invertebrate species. Depending on our discovery of the cytokine Ast1 we have an opportunity to study in detail the differentiation of cells in the hematopoietic tissue of a crustacean, a tissue of evolutionary interest for studies of the connection between the vascular system and the nervous system. We have been able to isolate the entire hematopoietic tissue and for the first time detected a link between this tissue and the brain. We have further localized a proliferation center in the tissue and characterized its different parts. We have also used this system to isolate a new hematopoietic factor CHF that is important in the crossroad between apoptosis and hemocyte differentiation. Our technique for culture of crayfish hematopoietic stem cells provides a simple tool for studying the mechanism of hematopoiesis, but also enables detailed studies of immune defense reactions. Further, the culture system has been used for studies of viral defense and the system is suitable for gene silencing which allows functional characterization of different molecules involved in host defense as well as in hemocyte differentiation.

  15. Integrating extrinsic and intrinsic cues into a minimal model of lineage commitment for hematopoietic progenitors.

    Directory of Open Access Journals (Sweden)

    Santhosh Palani

    2009-09-01

    Full Text Available Autoregulation of transcription factors and cross-antagonism between lineage-specific transcription factors are a recurrent theme in cell differentiation. An equally prevalent event that is frequently overlooked in lineage commitment models is the upregulation of lineage-specific receptors, often through lineage-specific transcription factors. Here, we use a minimal model that combines cell-extrinsic and cell-intrinsic elements of regulation in order to understand how both instructive and stochastic events can inform cell commitment decisions in hematopoiesis. Our results suggest that cytokine-mediated positive receptor feedback can induce a "switch-like" response to external stimuli during multilineage differentiation by providing robustness to both bipotent and committed states while protecting progenitors from noise-induced differentiation or decommitment. Our model provides support to both the instructive and stochastic theories of commitment: cell fates are ultimately driven by lineage-specific transcription factors, but cytokine signaling can strongly bias lineage commitment by regulating these inherently noisy cell-fate decisions with complex, pertinent behaviors such as ligand-mediated ultrasensitivity and robust multistability. The simulations further suggest that the kinetics of differentiation to a mature cell state can depend on the starting progenitor state as well as on the route of commitment that is chosen. Lastly, our model shows good agreement with lineage-specific receptor expression kinetics from microarray experiments and provides a computational framework that can integrate both classical and alternative commitment paths in hematopoiesis that have been observed experimentally.

  16. Donor Dependent Variations in Hematopoietic Differentiation among Embryonic and Induced Pluripotent Stem Cell Lines.

    Directory of Open Access Journals (Sweden)

    Olivier Féraud

    Full Text Available Hematopoiesis generated from human embryonic stem cells (ES and induced pluripotent stem cells (iPS are unprecedented resources for cell therapy. We compared hematopoietic differentiation potentials from ES and iPS cell lines originated from various donors and derived them using integrative and non-integrative vectors. Significant differences in differentiation toward hematopoietic lineage were observed among ES and iPS. The ability of engraftment of iPS or ES-derived cells in NOG mice varied among the lines with low levels of chimerism. iPS generated from ES cell-derived mesenchymal stem cells (MSC reproduce a similar hematopoietic outcome compared to their parental ES cell line. We were not able to identify any specific hematopoietic transcription factors that allow to distinguish between good versus poor hematopoiesis in undifferentiated ES or iPS cell lines. There is a relatively unpredictable variation in hematopoietic differentiation between ES and iPS cell lines that could not be predicted based on phenotype or gene expression of the undifferentiated cells. These results demonstrate the influence of genetic background in variation of hematopoietic potential rather than the reprogramming process.

  17. Myelotoxicity of trichothecenes and apoptosis: an in vitro study on human cord blood CD34+ hematopoietic progenitor.

    Science.gov (United States)

    Le Dréan, G; Auffret, M; Batina, P; Arnold, F; Sibiril, Y; Arzur, D; Parent-Massin, D

    2005-12-01

    Previous studies have revealed that hematological disorders associated with trichothecenes intoxication in humans could result from hematopoiesis inhibition. The most frequent and potent trichothecene mycotoxins are T-2 toxin and deoxynivalenol (DON), respectively. Apoptosis induction by these two toxins was investigated in vitro on human hematopoietic progenitors (CD34+ cells). Hoechst coloration, DNA fragmentation and annexin-V/PI labeling in flow cytometry showed that T-2 toxin, in contrast to DON, induced apoptosis in CD34+ cells. T-2 toxin effect was dose- and time-dependent with a significant increase of apoptotic cells as early as 3h after incubation at 10(-7) M and a maximum reached at 12 h. This observation evidenced the high sensitivity of hematopoietic progenitors to T-2 toxin. The inhibition of T-2 toxin-induced apoptosis by a pan-caspase inhibitor (Z-VAD-fmk) suggested the involvement of caspases. The proportional increase of caspase-3 specific activity (DEVDase) with T-2 toxin concentration confirmed its role in the process. After incubation of CD34+ cells with T-2 toxin, in conditions that induced apoptosis, clonal expansion of granulo-monocytes, erythrocytes and megakaryocytes precursors was dose-dependently inhibited. The hematological effects observed in T-2 toxin mycotoxicosis could then be assigned to hematopoiesis inhibition by apoptosis. Different mechanisms that need to be further elucidated are involved in DON myelotoxicity.

  18. A T Cell View of the Bone Marrow

    Science.gov (United States)

    Bonomo, Adriana; Monteiro, Ana Carolina; Gonçalves-Silva, Triciana; Cordeiro-Spinetti, Eric; Galvani, Rômulo Gonçalves; Balduino, Alex

    2016-01-01

    The majority of T cells present in the bone marrow (BM) represent an activated/memory phenotype and most of these, if not all, are circulating T cells. Their lodging in the BM keeps them activated, turning the BM microenvironment into a “memory reservoir.” This article will focus on how T cell activation in the BM results in both direct and indirect effects on the hematopoiesis. The hematopoietic stem cell niche will be presented, with its main components and organization, along with the role played by T lymphocytes in basal and pathologic conditions and their effect on the bone remodeling process. Also discussed herein will be how “normal” bone mass peak is achieved only in the presence of an intact adaptive immune system, with T and B cells playing critical roles in this process. Our main hypothesis is that the partnership between T cells and cells of the BM microenvironment orchestrates numerous processes regulating immunity, hematopoiesis, and bone remodeling. PMID:27242791

  19. A synthetic fragment of leptin increase hematopoietic stem cell population and improve its engraftment ability.

    Science.gov (United States)

    Dias, Carolina C; Nogueira-Pedro, Amanda; Tokuyama, Paula Yumi; Martins, Marta N C; Segreto, Helena Regina Comodo; Buri, Marcus V; Miranda, Antonio; Paredes-Gamero, Edgar J

    2015-07-01

    Several studies have shown the important actions of cytokine leptin that regulates food intake and energy expenditure. Additionally, the ability to modulate hematopoiesis has also been demonstrated. Previous reports have shown that some synthetic sequences of leptin molecules can activate leptin receptor. Herein, decapeptides encompassing amino acids from positions 98 to 122 of the leptin molecule were constructed to evaluate their effects on hematopoiesis. Among them, the synthetic peptide Lep(110-119)-NH2 (LEP F) was the only peptide that possessed the ability to increase the percentage of hematopoietic stem cells (HSC). Moreover, LEP F also produced an increase of granulocyte/macrophage colony-forming units and activated leptin receptor. Furthermore, LEP F also improves the grafting of HSC in bone marrow, but did not accelerate the recovery of bone marrow after ablation with 5-fluorouracil. These results show that LEP F is a positive modulator of the in vivo expansion of HSC and could be useful in bone marrow transplantation. © 2015 Wiley Periodicals, Inc.

  20. Chronic exposure to low concentrations of strontium 90 affects bone physiology but not the hematopoietic system in mice.

    Science.gov (United States)

    Synhaeve, Nicholas; Wade-Gueye, Ndéye Marième; Musilli, Stefania; Stefani, Johanna; Grandcolas, Line; Gruel, Gaëtan; Souidi, Maâmar; Dublineau, Isabelle; Bertho, Jean-Marc

    2014-01-01

    The aim of this work was to delineate the effects of chronic ingestion of strontium 90 ((90) Sr) at low concentrations on the hematopoiesis and the bone physiology. A mouse model was used for that purpose. Parent animals ingested water containing 20 kBq l(-1) of (90) Sr two weeks before mating. Offspring were then continuously contaminated with (90) Sr through placental transfer during fetal life, through lactation after birth and through drinking water after weaning. At various ages between birth and 20 weeks, animals were tested for hematopoietic parameters such as blood cell counts, colony forming cells in spleen and bone marrow and cytokine concentrations in the plasma. However, we did not find any modification in (90) Sr ingesting animals as compared with control animals. By contrast, the analysis of bone physiology showed a modification of gene expression towards bone resorption. This was confirmed by an increase in C-telopeptide of collagen in the plasma of (90) Sr ingesting animals as compared with control animals. This modification in bone metabolism was not linked to a modification of the phosphocalcic homeostasis, as measured by calcium, phosphorus, vitamin D and parathyroid hormone in the blood. Overall these results suggest that the chronic ingestion of (90) Sr at low concentration in the long term may induce modifications in bone metabolism but not in hematopoiesis.

  1. Modeling hematopoietic system response caused by chronic exposure to ionizing radiation.

    Science.gov (United States)

    Akushevich, Igor V; Veremeyeva, Galina A; Dimov, Georgy P; Ukraintseva, Svetlana V; Arbeev, Konstantin G; Akleyev, Alexander V; Yashin, Anatoly I

    2011-05-01

    A new model of the hematopoietic system response in humans chronically exposed to ionizing radiation describes the dynamics of the hematopoietic stem cell compartment as well as the dynamics of each of the four blood cell types (lymphocytes, neutrophiles, erythrocytes, and platelets). The required model parameters were estimated based on available results of human and experimental animal studies. They include the steady-state number of hematopoietic stem cells and peripheral blood cell lines in an unexposed organism, amplification parameters for each blood line, parameters describing proliferation and apoptosis, parameters of feedback functions regulating the steady-state numbers, and characteristics of radiosensitivity related to cell death and non-lethal cell damage. The model predictions were tested using data on hematological measurements (e.g., blood counts) performed in 1950-1956 in the Techa River residents chronically exposed to ionizing radiation since 1949. The suggested model of hematopoiesis is capable of describing experimental findings in the Techa River Cohort, including: (1) slopes of the dose-effect curves reflecting the inhibition of hematopoiesis due to chronic ionizing radiation, (2) delay in effect of chronic exposure and accumulated character of the effect, and (3) dose-rate patterns for different cytopenic states (e.g., leukopenia, thrombocytopenia).

  2. [Toll-like receptors in development and function of the hematopoietic system].

    Science.gov (United States)

    Vadillo, Eduardo; Pelayo, Rosana

    2012-01-01

    Virus, bacteria, fungi and parasites are pathogens to which individuals are constantly exposed. Pathogen recognition by cells of the immune system is carried out by a growing list of pattern-recognition receptors (PRRs) which are evolutionally conserved and absent in mammals, named pathogen-associated molecular patterns (PAMPs). PRRs can be found in extracellular matrix, within cytoplasm and on cellular membranes. Among the membrane PRRs, Toll-like receptors (TLRs) induce the production of pro-inflammatory cytokines and the expression of co-stimulatory molecules upon stimulation on mature cells, resulting in the triggering of immune danger signals. Recent reports showing the regulation of hematopoiesis by TLRs, suggest that they are involved in the most primitive stages of hematopoietic development and contribute to emergent replenishment of innate immune cells. These data entail TLRs to hematopoiesis and also revolutionize our understanding of the mechanisms governing infection responses. In this review, we focus on the most relevant findings from the TLR discovery to the use of TLR agonists and antagonists in novel therapies for infectious, autoimmune and neoplastic diseases. Of special interest is the research progress in the TLR functional expression by primitive hematopoietic stem and progenitor cells.

  3. MiR-24 is required for hematopoietic differentiation of mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Lynn Roy

    2015-01-01

    Full Text Available Overexpression of miRNA, miR-24, in mouse hematopoietic progenitors increases monocytic/ granulocytic differentiation and inhibits B cell development. To determine if endogenous miR-24 is required for hematopoiesis, we antagonized miR-24 in mouse embryonic stem cells (ESCs and performed in vitro differentiations. Suppression of miR-24 resulted in an inability to produce blood and hematopoietic progenitors (HPCs from ESCs. The phenotype is not a general defect in mesoderm production since we observe production of nascent mesoderm as well as mesoderm derived cardiac muscle and endothelial cells. Results from blast colony forming cell (BL-CFC assays demonstrate that miR-24 is not required for generation of the hemangioblast, the mesoderm progenitor that gives rise to blood and endothelial cells. However, expression of the transcription factors Runx1 and Scl is greatly reduced, suggesting an impaired ability of the hemangioblast to differentiate. Lastly, we observed that known miR-24 target, Trib3, is upregulated in the miR-24 antagonized embryoid bodies (EBs. Overexpression of Trib3 alone in ESCs was able to decrease HPC production, though not as great as seen with miR-24 knockdown. These results demonstrate an essential role for miR-24 in the hematopoietic differentiation of ESCs. Although many miRNAs have been implicated in regulation of hematopoiesis, this is the first miRNA observed to be required for the specification of mammalian blood progenitors from early mesoderm.

  4. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Orfali, Nina [Cork Cancer Research Center, University College Cork, Cork (Ireland); Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States); McKenna, Sharon L. [Cork Cancer Research Center, University College Cork, Cork (Ireland); Cahill, Mary R. [Department of Hematology, Cork University Hospital, Cork (Ireland); Gudas, Lorraine J., E-mail: ljgudas@med.cornell.edu [Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States); Mongan, Nigel P., E-mail: nigel.mongan@nottingham.ac.uk [Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, LE12 5RD (United Kingdom); Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States)

    2014-05-15

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. - Highlights: • Normal and aberrant retinoid signaling in hematopoiesis and leukemia is reviewed. • We suggest a novel role for RARα in the development of X-RARα gene fusions in APL. • ATRA therapy in APL activates transcription and promotes onco-protein degradation. • Autophagy may be involved in both onco-protein degradation and differentiation. • Pharmacologic autophagy induction may potentiate ATRA's therapeutic effects.

  5. Comprehensive population-based genome sequencing provides insight into hematopoietic regulatory mechanisms

    Science.gov (United States)

    Guo, Michael H.; Nandakumar, Satish K.; Ulirsch, Jacob C.; Zekavat, Seyedeh M.; Buenrostro, Jason D.; Natarajan, Pradeep; Salem, Rany M.; Chiarle, Roberto; Mitt, Mario; Kals, Mart; Pärn, Kalle; Fischer, Krista; Milani, Lili; Mägi, Reedik; Palta, Priit; Gabriel, Stacey B.; Metspalu, Andres; Lander, Eric S.; Kathiresan, Sekar; Hirschhorn, Joel N.; Esko, Tõnu; Sankaran, Vijay G.

    2017-01-01

    Genetic variants affecting hematopoiesis can influence commonly measured blood cell traits. To identify factors that affect hematopoiesis, we performed association studies for blood cell traits in the population-based Estonian Biobank using high-coverage whole-genome sequencing (WGS) in 2,284 samples and SNP genotyping in an additional 14,904 samples. Using up to 7,134 samples with available phenotype data, our analyses identified 17 associations across 14 blood cell traits. Integration of WGS-based fine-mapping and complementary epigenomic datasets provided evidence for causal mechanisms at several loci, including at a previously undiscovered basophil count-associated locus near the master hematopoietic transcription factor CEBPA. The fine-mapped variant at this basophil count association near CEBPA overlapped an enhancer active in common myeloid progenitors and influenced its activity. In situ perturbation of this enhancer by CRISPR/Cas9 mutagenesis in hematopoietic stem and progenitor cells demonstrated that it is necessary for and specifically regulates CEBPA expression during basophil differentiation. We additionally identified basophil count-associated variation at another more pleiotropic myeloid enhancer near GATA2, highlighting regulatory mechanisms for ordered expression of master hematopoietic regulators during lineage specification. Our study illustrates how population-based genetic studies can provide key insights into poorly understood cell differentiation processes of considerable physiologic relevance. PMID:28031487

  6. Cord Blood Cells Responses to IL2, IL7 and IL15 Cytokines for mTOR Expression

    Directory of Open Access Journals (Sweden)

    Anahita Mohammadian

    2017-04-01

    Full Text Available Purpose: Mammalian target of rapamycin (mTORis important in hematopoiesis and affect cell growth,differentiation and survival. Although previous studies were identified the effect of cytokines on the mononuclear cells development however the cytokines effect on mTOR in cord blood mononuclear cells was unclear. The aim of this study was to evaluate mTOR expression in cord blood mononuclear and cord blood stem cells (CD34+ cells in culture conditions for lymphoid cell development. Methods: Isolation of The mononuclear cells (MNCs from umbilical cord blood were done with use of Ficollpaque density gradient. We evaluated cultured cord blood mononuclear and CD34+ cells in presece of IL2, IL7 and IL15 at distinct time points during 21 days by using flow cytometry. In this study, we presented the role of IL2, IL7 and IL15 on the expression of mTOR in cord blood cells. Results: mTOR expression were increased in peresence of IL2, IL7 and IL15 in day 14 and afterword reduced. However in persence of IL2 and IL15 expression of mTOR significantly reduced. mTOR expression in CD34+ cells decreased significantly from day7 to day 21 in culture. Conclusion: cytokines play important role in mTOR expression during hematopoiesis and development of cord blood mononuclear cells.

  7. Hematopoietic Support Capacity of Mesenchymal Stem Cells: Biology and Clinical Potential.

    Science.gov (United States)

    Fajardo-Orduña, Guadalupe R; Mayani, Héctor; Montesinos, Juan J

    2015-11-01

    Mesenchymal stem cells (MSCs) play an important role in the physiology and homeostasis of the hematopoietic system. Because MSCs generate most of the stromal cells present in the bone marrow (BM), form part of the hematopoietic stem cell (HSC) niche, and produce various molecules regulating hematopoiesis, their hematopoiesis-supporting capacity has been demonstrated. In the last decade, BM-MSCs have been proposed to be useful in some ex vivo protocols for HSC expansion, with the aim of expanding their numbers for transplant purposes (HSC transplant, HSCT). Furthermore, application of MSCs has been proposed as an adjuvant cellular therapy for promoting rapid hematopoietic recovery in HSCT patients. Although the MSCs used in preliminary clinical trials have come from the BM, isolation of MSCs from far more accessible sources such as neonatal tissues has now been achieved, and these cells have been found to possess similar biological characteristics to those isolated from the BM. Therefore, such tissues are now considered as a potential alternative source of MSCs for clinical applications. In this review, we discuss current knowledge regarding the biological characteristics of MSCs as related to their capacity to support the formation of hematopoietic stem and progenitor cells. We also describe MSC manipulation for ex vivo HSC expansion protocols used for transplants and their clinical relevance for hematopoietic recovery in HSCT patients.

  8. Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors.

    Science.gov (United States)

    Takayama, Naoya; Nishikii, Hidekazu; Usui, Joichi; Tsukui, Hiroko; Sawaguchi, Akira; Hiroyama, Takashi; Eto, Koji; Nakauchi, Hiromitsu

    2008-06-01

    Human embryonic stem cells (hESCs) could potentially represent an alternative source for blood transfusion therapies and a promising tool for studying the ontogeny of hematopoiesis. When we cultured hESCs on either C3H10T1/2 or OP-9 cells to facilitate hematopoiesis, we found that exogenous administration of vascular endothelial growth factor promoted the emergence of sac-like structures, which we named embryonic stem cell-derived sacs (ES-sacs). These ES-sacs consisted of multiple cysts demarcated by cellular monolayers that retained some of the properties of endothelial cells. The spherical cells inside ES-sacs expressed primarily CD34, along with VE-cadherin, CD31, CD41a, and CD45, and were able to form hematopoietic colonies in semisolid culture and to differentiate into mature megakaryocytes by day 24 in the presence of thrombopoietin. Apparently, ES-sacs provide a suitable environment for hematopoietic progenitors. Relatively large numbers of mature megakaryocytes could be induced from the hematopoietic progenitors within ES-sacs, which were then able to release platelets that displayed integrin alpha IIb beta 3 activation and spreading in response to ADP or thrombin. This novel protocol thus provides a means of generating platelets from hESCs, which could serve as the basis for efficient production of platelets for clinical transfusion and studies of thrombopoiesis.

  9. TET proteins and 5-methylcytosine oxidation in hematological cancers.

    Science.gov (United States)

    Ko, Myunggon; An, Jungeun; Pastor, William A; Koralov, Sergei B; Rajewsky, Klaus; Rao, Anjana

    2015-01-01

    DNA methylation has pivotal regulatory roles in mammalian development, retrotransposon silencing, genomic imprinting, and X-chromosome inactivation. Cancer cells display highly dysregulated DNA methylation profiles characterized by global hypomethylation in conjunction with hypermethylation of promoter CpG islands that presumably lead to genome instability and aberrant expression of tumor suppressor genes or oncogenes. The recent discovery of ten-eleven-translocation (TET) family dioxygenases that oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) in DNA has led to profound progress in understanding the mechanism underlying DNA demethylation. Among the three TET genes, TET2 recurrently undergoes inactivating mutations in a wide range of myeloid and lymphoid malignancies. TET2 functions as a bona fide tumor suppressor particularly in the pathogenesis of myeloid malignancies resembling chronic myelomonocytic leukemia (CMML) and myelodysplastic syndromes (MDS) in human. Here we review diverse functions of TET proteins and the novel epigenetic marks that they generate in DNA methylation/demethylation dynamics and normal and malignant hematopoietic differentiation. The impact of TET2 inactivation in hematopoiesis and various mechanisms modulating the expression or activity of TET proteins are also discussed. Furthermore, we also present evidence that TET2 and TET3 collaborate to suppress aberrant hematopoiesis and hematopoietic transformation. A detailed understanding of the normal and pathological functions of TET proteins may provide new avenues to develop novel epigenetic therapies for treating hematological malignancies.

  10. Loss of Forkhead box M1 promotes erythropoiesis through increased proliferation of erythroid progenitors.

    Science.gov (United States)

    Youn, Minyoung; Wang, Nan; LaVasseur, Corinne; Bibikova, Elena; Kam, Sharon; Glader, Bertil; Sakamoto, Kathleen M; Narla, Anupama

    2017-05-01

    Forkhead box M1 (FOXM1) belongs to the forkhead/winged-helix family of transcription factors and regulates a network of proliferation-associated genes. Its abnormal upregulation has been shown to be a key driver of cancer progression and an initiating factor in oncogenesis. FOXM1 is also highly expressed in stem/progenitor cells and inhibits their differentiation, suggesting that FOXM1 plays a role in the maintenance of multipotency. However, the exact molecular mechanisms by which FOXM1 regulates human stem/progenitor cells are still uncharacterized. To understand the role of FOXM1 in normal hematopoiesis, human cord blood CD34(+) cells were transduced with FOXM1 short hairpin ribonucleic acid (shRNA) lentivirus. Knockdown of FOXM1 resulted in a 2-fold increase in erythroid cells compared to myeloid cells. Additionally, knockdown of FOXM1 increased bromodeoxyuridine (BrdU) incorporation in erythroid cells, suggesting greater proliferation of erythroid progenitors. We also observed that the defective phosphorylation of FOXM1 by checkpoint kinase 2 (CHK2) or cyclin-dependent kinases 1/2 (CDK1/2) increased the erythroid population in a manner similar to knockdown of FOXM1. Finally, we found that an inhibitor of FOXM1, forkhead domain inhibitor-6 (FDI-6), increased red blood cell numbers through increased proliferation of erythroid precursors. Overall, our data suggest a novel function of FOXM1 in normal human hematopoiesis. Copyright© Ferrata Storti Foundation.

  11. PR-domain-containing Mds1-Evi1 is critical for long-term hematopoietic stem cell function.

    Science.gov (United States)

    Zhang, Yi; Stehling-Sun, Sandra; Lezon-Geyda, Kimberly; Juneja, Subhash C; Coillard, Lucie; Chatterjee, Gouri; Wuertzer, Charles A; Camargo, Fernando; Perkins, Archibald S

    2011-10-06

    The Mds1 and Evi1 complex locus (Mecom) gives rise to several alternative transcripts implicated in leukemogenesis. However, the contribution that Mecom-derived gene products make to normal hematopoiesis remains largely unexplored. To investigate the role of the upstream transcription start site of Mecom in adult hematopoiesis, we created a mouse model with a lacZ knock-in at this site, termed ME(m1), which eliminates Mds1-Evi1 (ME), the longer, PR-domain-containing isoform produced by the gene (also known as PRDM3). β-galactosidase-marking studies revealed that, within hematopoietic cells, ME is exclusively expressed in the stem cell compartment. ME deficiency leads to a reduction in the number of HSCs and a complete loss of long-term repopulation capacity, whereas the stem cell compartment is shifted from quiescence to active cycling. Genetic exploration of the relative roles of endogenous ME and EVI1 isoforms revealed that ME preferentially rescues long-term HSC defects. RNA-seq analysis in Lin(-)Sca-1(+)c-Kit(+) cells (LSKs) of ME(m1) documents near complete silencing of Cdkn1c, encoding negative cell-cycle regulator p57-Kip2. Reintroduction of ME into ME(m1) LSKs leads to normalization of both p57-Kip2 expression and growth control. Our results clearly demonstrate a critical role of PR-domain-containing ME in linking p57-kip2 regulation to long-term HSC function.

  12. Pregnancy associated with myelodysplastic syndrome:one case report%妊娠合并骨髓异常增生综合征1例

    Institute of Scientific and Technical Information of China (English)

    吕小慧; 郭欣; 李佳; 周福兴; 刘朵朵; 刘淑娟; 陈必良

    2016-01-01

    Myelodysplastic syndrome ( MDS) is a group heterogeneous of clonal myeloid disorders derived from hematopoietic stem cells . The pathological manifestations are abnormalities of myeloid cell differentiation and development .The clinical manifestations are ineffective hematopoiesis, refractory cytopenia, hematopoiesis failure and high-risk conversion to acute myeloid leukemia (AML).The treatment of MDS mainly focuses on two points: bone marrow failure and complications as well as AML transformation .For different patients , the natural disease course and prognosis of MDS varies widely and the treatment should be individualized .%骨髓增生异常综合征( MDS)是起源于造血干细胞的一组异质性髓系克隆性疾病,病理学表现为髓系细胞分化及发育异常,临床表现为无效造血、难治性血细胞减少、造血功能衰竭,高风险向急性髓系白血病( AML)转化。 MDS治疗主要集中于两类问题:骨髓衰竭及并发症、AML转化。对于不同的患者而言,MDS患者自然病程和预后的差异性很大,治疗宜个体化。

  13. The Runx-PU.1 pathway preserves normal and AML/ETO9a leukemic stem cells.

    Science.gov (United States)

    Staber, Philipp B; Zhang, Pu; Ye, Min; Welner, Robert S; Levantini, Elena; Di Ruscio, Annalisa; Ebralidze, Alexander K; Bach, Christian; Zhang, Hong; Zhang, Junyan; Vanura, Katrina; Delwel, Ruud; Yang, Henry; Huang, Gang; Tenen, Daniel G

    2014-10-01

    Runx transcription factors contribute to hematopoiesis and are frequently implicated in hematologic malignancies. All three Runx isoforms are expressed at the earliest stages of hematopoiesis; however, their function in hematopoietic stem cells (HSCs) is not fully elucidated. Here, we show that Runx factors are essential in HSCs by driving the expression of the hematopoietic transcription factor PU.1. Mechanistically, by using a knockin mouse model in which all three Runx binding sites in the -14kb enhancer of PU.1 are disrupted, we observed failure to form chromosomal interactions between the PU.1 enhancer and its proximal promoter. Consequently, decreased PU.1 levels resulted in diminished long-term HSC function through HSC exhaustion, which could be rescued by reintroducing a PU.1 transgene. Similarly, in a mouse model of AML/ETO9a leukemia, disrupting the Runx binding sites resulted in decreased PU.1 levels. Leukemia onset was delayed, and limiting dilution transplantation experiments demonstrated functional loss of leukemia-initiating cells. This is surprising, because low PU.1 levels have been considered a hallmark of AML/ETO leukemia, as indicated in mouse models and as shown here in samples from leukemic patients. Our data demonstrate that Runx-dependent PU.1 chromatin interaction and transcription of PU.1 are essential for both normal and leukemia stem cells.

  14. H2S protects against fatal myelosuppression by promoting the generation of megakaryocytes/platelets.

    Science.gov (United States)

    Liu, Huan-Di; Zhang, Ai-Jie; Xu, Jing-Jing; Chen, Ying; Zhu, Yi-Chun

    2016-02-24

    Our previous pilot studies aimed to examine the role of hydrogen sulfide (H2S) in the generation of endothelial progenitor cells led to an unexpected result, i.e., H2S promoted the differentiation of certain hematopoietic stem/progenitor cells in the bone marrow. This gave rise to an idea that H2S might promote hematopoiesis. To test this idea, a mice model of myelosuppression and cultured fetal liver cells were used to examine the role of H2S in hematopoiesis. H2S promoted the generation of megakaryocytes, increased platelet levels, ameliorate entorrhagia, and improved survival. These H2S effects were blocked in both in vivo and in vitro models with thrombopoietin (TPO) receptor knockout mice (c-mpl(-/-) mice). In contrast, H2S promoted megakaryocytes/platelets generation in both in vivo and in vitro models with TPO knockout mice (TPO(-/-) mice). H2S is a novel promoter for megakaryopoiesis by acting on the TPO receptors but not TPO to generate megakaryocytes/platelets.

  15. Neonatal cellular and gene therapies for mucopolysaccharidoses: the earlier the better?

    Science.gov (United States)

    Tomatsu, Shunji; Azario, Isabella; Sawamoto, Kazuki; Pievani, Alice Silvia; Biondi, Andrea; Serafini, Marta

    2016-03-01

    Mucopolysaccharidoses (MPSs) are a group of lysosomal storage disorders (LSDs). The increasing interest in newborn screening procedures for LSDs underlines the need for alternative cellular and gene therapy approaches to be developed during the perinatal period, supporting the treatment of MPS patients before the onset of clinical signs and symptoms. The rationale for considering these early therapies results from the clinical experience in the treatment of MPSs and other genetic disorders. The normal or gene-corrected hematopoiesis transplanted in patients can produce the missing protein at levels sufficient to improve and/or halt the disease-related abnormalities. However, these current therapies are only partially successful, probably due to the limited efficacy of the protein provided through the hematopoiesis. An alternative explanation is that the time at which the cellular or gene therapy procedures are performed could be too late to prevent pre-existing or progressive organ damage. Considering these aspects, in the last several years, novel cellular and gene therapy approaches have been tested in different animal models at birth, a highly early stage, showing that precocious treatment is critical to prevent long-term pathological consequences. This review provides insights into the state-of-art accomplishments made with neonatal cellular and gene-based therapies and the major barriers that need to be overcome before they can be implemented in the medical community.

  16. SIMPL enhancement of tumor necrosis factor-α dependent p65-MED1 complex formation is required for mammalian hematopoietic stem and progenitor cell function.

    Directory of Open Access Journals (Sweden)

    Weina Zhao

    Full Text Available Significant insight into the signaling pathways leading to activation of the Rel transcription factor family, collectively termed NF-κB, has been gained. Less well understood is how subsets of NF-κB-dependent genes are regulated in a signal specific manner. The SIMPL protein (signaling molecule that interacts with mouse pelle-like kinase is required for full Tumor Necrosis Factor-α (TNFα induced NF-κB activity. We show that SIMPL is required for steady-state hematopoiesis and the expression of a subset of TNFα induced genes whose products regulate hematopoietic cell activity. To gain insight into the mechanism through which SIMPL modulates gene expression we focused on the Tnf gene, an immune response regulator required for steady-state hematopoiesis. In response to TNFα SIMPL localizes to the Tnf gene promoter where it modulates the initiation of Tnf gene transcription. SIMPL binding partners identified by mass spectrometry include proteins involved in transcription and the interaction between SIMPL and MED1 was characterized in more detail. In response to TNFα, SIMPL is found in p65-MED1 complexes where SIMPL enhances p65/MED1/SIMPL complex formation. Together our results indicate that SIMPL functions as a TNFα-dependent p65 co-activator by facilitating the recruitment of MED1 to p65 containing transcriptional complexes to control the expression of a subset of TNFα-induced genes.

  17. The role of osteoblasts in regulating hematopoietic stem cell activity and tumor metastasis

    Directory of Open Access Journals (Sweden)

    Neiva K.

    2005-01-01

    Full Text Available Bone marrow stromal cells are critical regulators of hematopoiesis. Osteoblasts are part of the stromal cell support system in bone marrow and may be derived from a common precursor. Several studies suggested that osteoblasts regulate hematopoiesis, yet the entire mechanism is not understood. It is clear, however, that both hematopoietic precursors and osteoblasts interact for the production of osteoclasts and the activation of resorption. We observed that hematopoietic stem cells (HSCs regulate osteoblastic secretion of various growth factors, and that osteoblasts express some soluble factors exclusively in the presence of HSCs. Osteoblasts and hematopoietic cells are closely associated with each other in the bone marrow, suggesting a reciprocal relationship between them to develop the HSC niche. One critical component regulating the niche is stromal-derived factor-1 (SDF-1 and its receptor CXCR4 which regulates stem cell homing and, as we have recently demonstrated, plays a crucial role in facilitating those tumors which metastasize to bone. Osteoblasts produce abundant amounts of SDF-1 and therefore osteoblasts play an important role in metastasis. These findings are discussed in the context of the role of osteoblasts in marrow function in health and disease.

  18. Enhanced Reconstitution of Human Erythropoiesis and Thrombopoiesis in an Immunodeficient Mouse Model with KitWv Mutations

    Directory of Open Access Journals (Sweden)

    Ayano Yurino

    2016-09-01

    Full Text Available In human-to-mouse xenograft models, reconstitution of human hematopoiesis is usually B-lymphoid dominant. Here we show that the introduction of homozygous KitWv mutations into C57BL/6.Rag2nullIl2rgnull mice with NOD-Sirpa (BRGS strongly promoted human multi-lineage reconstitution. After xenotransplantation of human CD34+CD38− cord blood cells, these newly generated C57BL/6.Rag2nullIl2rgnullNOD-Sirpa KitWv/Wv (BRGSKWv/Wv mice showed significantly higher levels of human cell chimerism and long-term multi-lineage reconstitution compared with BRGS mice. Strikingly, this mouse displayed a robust reconstitution of human erythropoiesis and thrombopoiesis with terminal maturation in the bone marrow. Furthermore, depletion of host macrophages by clodronate administration resulted in the presence of human erythrocytes and platelets in the circulation. Thus, attenuation of mouse KIT signaling greatly enhances the multi-lineage differentiation of human hematopoietic stem and progenitor cells (HSPCs in mouse bone marrow, presumably by outcompeting mouse HSPCs to occupy suitable microenvironments. The BRGSKWv/Wv mouse model is a useful tool to study human multi-lineage hematopoiesis.

  19. NEW APPLICATIONS OF ADAPTOGENS TO REDUCE RADIATION SIDE EFFECTS.

    Science.gov (United States)

    Alekseeva, S N; Antipina, U D; Arzhakova, L I; Protodyakonov, S V

    2015-01-01

    One of the live medical issues today is to find medication to prevent adverse effects of ionizing radiation on the immune and hematopoietic systems. In Yakutia where in most of its regions the overall environmental situation is getting worse due to the development of natural deposits including radioactive deposits, this problem remains vital. The purpose of this work is to study radioprotective properties of adaptogens in the case of the hematopoietic system under irradiation. The studies were conducted on certain groups of hybrid mice. We used the methods of radiation exposure by a radiological apparatus RUM-25 on hybrid mice followed by studying the cellularity of bone marrow, spleen and thymus. The functional activity of all compartments of early hematopoiesis (bone marrow hematopoiesis) was identified by the exogenous colony forming method. The study found that the extracts of reindeer and moose antlers have a stimulating effect on the functional activity of the hematopoietic precursors in response to radiation. The study medication stimulates regeneration processes in the thymus and bone marrow after irradiation. Further, the adaptogens stimulatory effect on CFU functional activity was identified. The most pronounced effect has the extracts of reindeer antlers "Epsorin".

  20. Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor.

    Science.gov (United States)

    Povinelli, Benjamin J; Nemeth, Michael J

    2014-01-01

    Proper regulation of the balance between hematopoietic stem cell (HSC) proliferation, self-renewal, and differentiation is necessary to maintain hematopoiesis throughout life. The Wnt family of ligands has been implicated as critical regulators of these processes through a network of signaling pathways. Previously, we have demonstrated that the Wnt5a ligand can induce HSC quiescence through a noncanonical Wnt pathway, resulting in an increased ability to reconstitute hematopoiesis. In this study, we tested the hypothesis that the Ryk protein, a Wnt ligand receptor that can bind the Wnt5a ligand, regulated the response of HSCs to Wnt5a. We observed that inhibiting Ryk blocked the ability of Wnt5a to induce HSC quiescence and enhance short-term and long-term hematopoietic repopulation. We found that Wnt5a suppressed production of reactive oxygen species, a known inducer of HSC proliferation. The ability of Wnt5a to inhibit ROS production was also regulated by Ryk. From these data, we propose that Wnt5a regulates HSC quiescence and hematopoietic repopulation through the Ryk receptor and that this process is mediated by suppression of reactive oxygen species. © 2013 AlphaMed Press.

  1. Repression of p53-target gene Bbc3/PUMA by MYSM1 is essential for the survival of hematopoietic multipotent progenitors and contributes to stem cell maintenance.

    Science.gov (United States)

    Belle, J I; Petrov, J C; Langlais, D; Robert, F; Cencic, R; Shen, S; Pelletier, J; Gros, P; Nijnik, A

    2016-05-01

    p53 is a central mediator of cellular stress responses, and its precise regulation is essential for the normal progression of hematopoiesis. MYSM1 is an epigenetic regulator essential for the maintenance of hematopoietic stem cell (HSC) function, hematopoietic progenitor survival, and lymphocyte development. We recently demonstrated that all developmental and hematopoietic phenotypes of Mysm1 deficiency are p53-mediated and rescued in the Mysm1(-/-)p53(-/-) mouse model. However, the mechanisms triggering p53 activation in Mysm1(-/-) HSPCs, and the pathways downstream of p53 driving different aspects of the Mysm1(-/-) phenotype remain unknown. Here we show the transcriptional activation of p53 stress responses in Mysm1(-/-) HSPCs. Mechanistically, we find that the MYSM1 protein associates with p53 and colocalizes to promoters of classical p53-target genes Bbc3/PUMA (p53 upregulated modulator of apoptosis) and Cdkn1a/p21. Furthermore, it antagonizes their p53-driven expression by modulating local histone modifications (H3K27ac and H3K4me3) and p53 recruitment. Using double-knockout mouse models, we establish that PUMA, but not p21, is an important mediator of p53-driven Mysm1(-/-) hematopoietic dysfunction. Specifically, Mysm1(-/-)Puma(-/-) mice show full rescue of multipotent progenitor (MPP) viability, partial rescue of HSC quiescence and function, but persistent lymphopenia. Through transcriptome analysis of Mysm1(-/-)Puma(-/-) MPPs, we demonstrate strong upregulation of other p53-induced mediators of apoptosis and cell-cycle arrest. The full viability of Mysm1(-/-)Puma(-/-) MPPs, despite strong upregulation of many other pro-apoptotic mediators, establishes PUMA as the essential non-redundant effector of p53-induced MPP apoptosis. Furthermore, we identify potential mediators of p53-dependent but PUMA-independent Mysm1(-/-)hematopoietic deficiency phenotypes. Overall, our study provides novel insight into the cell-type-specific roles of p53 and its downstream

  2. HIV-1 infection and CD4 T cell depletion in the humanized Rag2-/-γc-/- (RAG-hu mouse model

    Directory of Open Access Journals (Sweden)

    Connick Elizabeth

    2006-11-01

    Full Text Available Abstract Background The currently well-established humanized mouse models, namely the hu-PBL-SCID and SCID-hu systems played an important role in HIV pathogenesis studies. However, despite many notable successes, several limitations still exist. They lack multi-lineage human hematopoiesis and a functional human immune system. These models primarily reflect an acute HIV infection with rapid CD4 T cell loss thus limiting pathogenesis studies to a short-term period. The new humanized Rag2-/-γc-/- mouse model (RAG-hu created by intrahepatic injection of CD34 hematopoietic stem cells sustains long-term multi-lineage human hematopoiesis and is capable of mounting immune responses. Thus, this model shows considerable promise to study long-term in vivo HIV infection and pathogenesis. Results Here we demonstrate that RAG-hu mice produce human cell types permissive to HIV-1 infection and that they can be productively infected by HIV-1 ex vivo. To assess the capacity of these mice to sustain long-term infection in vivo, they were infected by either X4-tropic or R5-tropic HIV-1. Viral infection was assessed by PCR, co-culture, and in situ hybridization. Our results show that both X4 and R5 viruses are capable of infecting RAG-hu mice and that viremia lasts for at least 30 weeks. Moreover, HIV-1 infection leads to CD4 T cell depletion in peripheral blood and thymus, thus mimicking key aspects of HIV-1 pathogenesis. Additionally, a chimeric HIV-1 NL4-3 virus expressing a GFP reporter, although capable of causing viremia, failed to show CD4 T cell depletion possibly due to attenuation. Conclusion The humanized RAG-hu mouse model, characterized by its capacity for sustained multi-lineage human hematopoiesis and immune response, can support productive HIV-1 infection. Both T cell and macrophage tropic HIV-1 strains can cause persistent infection of RAG-hu mice resulting in CD4 T cell loss. Prolonged viremia in the context of CD4 T cell depletion seen in this

  3. Mice with a Mutation in the Mdm2 Gene That Interferes with MDM2/Ribosomal Protein Binding Develop a Defect in Erythropoiesis

    Science.gov (United States)

    Kamio, Takuya; Gu, Bai-wei; Olson, Timothy S.; Zhang, Yanping; Mason, Philip J.; Bessler, Monica

    2016-01-01

    MDM2, an E3 ubiquitin ligase, is an important negative regulator of tumor suppressor p53. In turn the Mdm2 gene is a transcriptional target of p53, forming a negative feedback loop that is important in cell cycle control. It has recently become apparent that the ubiquitination of p53 by MDM2 can be inhibited when certain ribosomal proteins, including RPL5 and RPL11, bind to MDM2. This inhibition, and the resulting increase in p53 levels has been proposed to be responsible for the red cell aplasia seen in Diamond-Blackfan anemia (DBA) and in 5q- myelodysplastic syndrome (MDS). DBA and 5q- MDS are associated with inherited (DBA) or acquired (5q- MDS) haploinsufficiency of ribosomal proteins. A mutation in Mdm2 causing a C305F amino acid substitution blocks the binding of ribosomal proteins. Mice harboring this mutation (Mdm2C305F), retain a normal p53 response to DNA damage, but lack the p53 response to perturbations in ribosome biogenesis. While studying the interaction between RP haploinsufficiency and the Mdm2C305F mutation we noticed that Mdm2C305F homozygous mice had altered hematopoiesis. These mice developed a mild macrocytic anemia with reticulocytosis. In the bone marrow (BM), these mice showed a significant decrease in Ter119hi cells compared to wild type (WT) littermates, while no decrease in the number of mature erythroid cells (Ter119hiCD71low) was found in the spleen, which showed compensated bone marrow hematopoiesis. In methylcellulose cultures, BFU-E colonies from the mutant mice were slightly reduced in number and there was a significant reduction in CFU-E colony numbers in mutant mice compared with WT controls (p < 0.01). This erythropoietic defect was abrogated by concomitant p53 deficiency (Trp53ko/ko). Further investigation revealed that in Mdm2C305F animals, there was a decrease in Lin-Sca-1+c-Kit+ (LSK) cells, accompanied by significant decreases in multipotent progenitor (MPP) cells (p < 0.01). Competitive BM repopulation experiments showed

  4. Mice with a Mutation in the Mdm2 Gene That Interferes with MDM2/Ribosomal Protein Binding Develop a Defect in Erythropoiesis.

    Directory of Open Access Journals (Sweden)

    Takuya Kamio

    Full Text Available MDM2, an E3 ubiquitin ligase, is an important negative regulator of tumor suppressor p53. In turn the Mdm2 gene is a transcriptional target of p53, forming a negative feedback loop that is important in cell cycle control. It has recently become apparent that the ubiquitination of p53 by MDM2 can be inhibited when certain ribosomal proteins, including RPL5 and RPL11, bind to MDM2. This inhibition, and the resulting increase in p53 levels has been proposed to be responsible for the red cell aplasia seen in Diamond-Blackfan anemia (DBA and in 5q- myelodysplastic syndrome (MDS. DBA and 5q- MDS are associated with inherited (DBA or acquired (5q- MDS haploinsufficiency of ribosomal proteins. A mutation in Mdm2 causing a C305F amino acid substitution blocks the binding of ribosomal proteins. Mice harboring this mutation (Mdm2C305F, retain a normal p53 response to DNA damage, but lack the p53 response to perturbations in ribosome biogenesis. While studying the interaction between RP haploinsufficiency and the Mdm2C305F mutation we noticed that Mdm2C305F homozygous mice had altered hematopoiesis. These mice developed a mild macrocytic anemia with reticulocytosis. In the bone marrow (BM, these mice showed a significant decrease in Ter119hi cells compared to wild type (WT littermates, while no decrease in the number of mature erythroid cells (Ter119hiCD71low was found in the spleen, which showed compensated bone marrow hematopoiesis. In methylcellulose cultures, BFU-E colonies from the mutant mice were slightly reduced in number and there was a significant reduction in CFU-E colony numbers in mutant mice compared with WT controls (p < 0.01. This erythropoietic defect was abrogated by concomitant p53 deficiency (Trp53ko/ko. Further investigation revealed that in Mdm2C305F animals, there was a decrease in Lin-Sca-1+c-Kit+ (LSK cells, accompanied by significant decreases in multipotent progenitor (MPP cells (p < 0.01. Competitive BM repopulation experiments

  5. The Stomatological Complications of Diamond-Blackfan Anemia: A Case Report

    Science.gov (United States)

    Gomes, Rita Fabiane Teixeira; Munerato, Maria Cristina

    2016-01-01

    Diamond-Blackfan Anemia (DBA) is a rare heterogeneous genetic disease characterized by severe anemia, reduction or absence of erythroid progenitors, and pro-apoptoptic hematopoiesis, which culminates in bone marrow failure. The disease generally manifests in infancy, as craniofacial, cardiac, genitourinary, and upper limb congenital anomalies. Therapy with corticoids is the treatment of choice, while blood transfusion is adopted during diagnosis and as a chronic approach if the patient does not respond to corticoids. This case report describes DBA in a patient that presented with lesions on the oral mucosa caused by secondary neutropenia. The stomatologist plays an important role in a transdisciplinary team and must remain attentive to the general health conditions of patients, since some oral lesions may be associated with systemic events. PMID:26864506

  6. THE LINK BETWEEN VITAMIN В12 DEFICIENCY, RISK OF CARDIOVASCULAR DISEASES AND AGING PROCESS

    Directory of Open Access Journals (Sweden)

    O. M. Drapkina

    2017-01-01

    Full Text Available Disorder of formation of vitamin B12, which has a wide range  of biological properties and is involved in the regulation of many important physiological functions, is the basis of a number of serious diseases. Usually internists consider that vitamin В12 deficiency is associated with disturbances of hematopoiesis or central nervous system. However cobalamin deficiency also affects the state of the cardiovascular system. Its connections to the increased incidence of myocardial infarction, stroke, and congestive heart failure were found, as well as the elevated risk of restenosis after coronary artery bypass surgery. Besides, there are data that demonstrate an association between vitamin В12 and telomere length (a marker of aging. This review presents the main reasons of cobalamin deficiency in the elderly, as well as an analysis of clinical studies that show the link between vitamin В12 deficiency and the risk of cardio-vascular diseases and aging process.

  7. Comparative genomics of human stem cell factor (SCF

    Directory of Open Access Journals (Sweden)

    Moein Dehbashi

    2017-03-01

    Full Text Available Stem cell factor (SCF is a critical protein with key roles in the cell such as hematopoiesis, gametogenesis and melanogenesis. In the present study a comparative analysis on nucleotide sequences of SCF was performed in Humanoids using bioinformatics tools including NCBI-BLAST, MEGA6, and JBrowse. Our analysis of nucleotide sequences to find closely evolved organisms with high similarity by NCBI-BLAST tools and MEGA6 showed that human and Chimpanzee (Pan troglodytes were placed into the same cluster. By using JBrowse, we found that SCF in Neanderthal had a single copy number similar to modern human and partly conserved nucleotide sequences. Together, the results approved the gene flow and genetics similarity of SCF among human and P. troglodytes. This may suggest that during evolution, SCF gene transferred partly intact either on the basis of sequence or function from the same ancestors to P. troglodytes, the ancient human like Neanderthal, and then to the modern human.

  8. The Role of Runx1 in Embryonic Blood Cell Formation.

    Science.gov (United States)

    Yzaguirre, Amanda D; de Bruijn, Marella F T R; Speck, Nancy A

    2017-01-01

    The de novo generation of hematopoietic stem and progenitor cells (HSPC) occurs solely during embryogenesis from a population of epithelial cells called hemogenic endothelium (HE). During midgestation HE cells in multiple intra- and extraembryonic vascular beds leave the vessel wall as they transition into HSPCs in a process termed the endothelial to hematopoietic transition (EHT). Runx1 expression in HE cells orchestrates the transcriptional switch necessary for the transdifferentiation of endothelial cells into functional HSPCs. Runx1 is widely considered the master regulator of developmental hematopoiesis because it plays an essential function during specification of the hematopoietic lineage during embryogenesis. Here we review the role of Runx1 in embryonic HSPC formation, with a particular focus on its role in hemogenic endothelium.

  9. Role of RUNX1 in hematological malignancies.

    Science.gov (United States)

    Sood, Raman; Kamikubo, Yasuhiko; Liu, Paul

    2017-04-13

    RUNX1 is a member of the core-binding factor family of transcription factors and is indispensable for the establishment of definitive hematopoiesis in vertebrates. RUNX1 is one of the most frequently mutated genes in a variety of hematological malignancies. Germ line mutations in RUNX1 cause familial platelet disorder with associated myeloid malignancies. Somatic mutations and chromosomal rearrangements involving RUNX1 are frequently observed in myelodysplastic syndrome and leukemias of myeloid and lymphoid lineages, that is, acute myeloid leukemia, acute lymphoblastic leukemia, and chronic myelomonocytic leukemia. More recent studies suggest that the wild-type RUNX1 is required for growth and survival of certain types of leukemia cells. The purpose of this review is to discuss the current status of our understanding about the role of RUNX1 in hematological malignancies.

  10. Extra-adrenal myelolipoma presenting in the spleen: A report of two cases

    Directory of Open Access Journals (Sweden)

    N.S. Aguilera

    2016-12-01

    Full Text Available Myelolipoma is a rare neoplasm composed of mature fat and bone marrow occurring most frequently in the adrenal gland with rare occurrences in extra adrenal locations including lung, liver, retroperitoneum, mediastinum and testes. Splenic myelolipomas are seen most commonly in non-human species including cat and dog. Only rare cases of splenic myelolipoma in humans have been reported previously. We present two cases of myelolipoma in the spleen. The first is a 62 year old female presenting with abdominal pain and a splenic mass. The second is a 44 year old male presenting with hematuria and a mass in the spleen. Both cases showed trilineage bone marrow elements with mature fat. These cases demonstrate that myelolipoma do rarely occur in human spleen and we highlight the distinction from extramedullary hematopoiesis, mature extramedullary myeloid tumor (myeloid sarcoma, lipoma and well differentiated liposarcoma.

  11. Bone Marrow Cells in Acute Lymphoblastic Leukemia Create a Proinflammatory Microenvironment Influencing Normal Hematopoietic Differentiation Fates

    Directory of Open Access Journals (Sweden)

    Armando Vilchis-Ordoñez

    2015-01-01

    Full Text Available B-cell acute lymphoblastic leukemia (B-ALL is a serious public health problem in the pediatric population worldwide, contributing to 85% of deaths from childhood cancers. Understanding the biology of the disease is crucial for its clinical management and the development of therapeutic strategies. In line with that observed in other malignancies, chronic inflammation may contribute to a tumor microenvironment resulting in the damage of normal processes, concomitant to development and maintenance of neoplastic cells. We report here that hematopoietic cells from bone marrow B-ALL have the ability to produce proinflammatory and growth factors, including TNFα, IL-1β, IL-12, and GM-CSF that stimulate proliferation and differentiation of normal stem and progenitor cells. Our findings suggest an apparently distinct CD13+CD33+ population of leukemic cells contributing to a proinflammatory microenvironment that may be detrimental to long-term normal hematopoiesis within B-ALL bone marrow.

  12. Hematopoietic reconstitution by multipotent adult progenitor cells: precursors to long-term hematopoietic stem cells

    Science.gov (United States)

    Serafini, Marta; Dylla, Scott J.; Oki, Masayuki; Heremans, Yves; Tolar, Jakub; Jiang, Yuehua; Buckley, Shannon M.; Pelacho, Beatriz; Burns, Terry C.; Frommer, Sarah; Rossi, Derrick J.; Bryder, David; Panoskaltsis-Mortari, Angela; O'Shaughnessy, Matthew J.; Nelson-Holte, Molly; Fine, Gabriel C.; Weissman, Irving L.; Blazar, Bruce R.; Verfaillie, Catherine M.

    2007-01-01

    For decades, in vitro expansion of transplantable hematopoietic stem cells (HSCs) has been an elusive goal. Here, we demonstrate that multipotent adult progenitor cells (MAPCs), isolated from green fluorescent protein (GFP)-transgenic mice and expanded in vitro for >40–80 population doublings, are capable of multilineage hematopoietic engraftment of immunodeficient mice. Among MAPC-derived GFP+CD45.2+ cells in the bone marrow of engrafted mice, HSCs were present that could radioprotect and reconstitute multilineage hematopoiesis in secondary and tertiary recipients, as well as myeloid and lymphoid hematopoietic progenitor subsets and functional GFP+ MAPC-derived lymphocytes that were functional. Although hematopoietic contribution by MAPCs was comparable to control KTLS HSCs, approximately 103-fold more MAPCs were required for efficient engraftment. Because GFP+ host-derived CD45.1+ cells were not observed, fusion is not likely to account for the generation of HSCs by MAPCs. PMID:17227908

  13. Cytokines in Human Seminal Plasma and Their Effect on Male Fertility

    Institute of Scientific and Technical Information of China (English)

    Snje(z)ana (Z)idovec; Sanja Vujisi(c)

    2005-01-01

    Cytokines are a heterogeneous group of peptides that play an important role in intercellular communication, regulation of innate and specific immunity, hematopoiesis,interaction between the immune system and neuroendocrine network as well as in reproduction and development. Seminal plasma provides an immunological environment for the semen and contains important biological response mediators. Numerous studies investigated the presence of various cytokines in the seminal plasma and tried to correlate cytokine levels with sperm quality and male fertility. However, the pathophysiological significance of seminal cytokines in sperm function is still not completely understood. The purpose of this review is to provide a brief summary of the extensive literature dealing with cytokines in the seminal plasma and to discuss the contribution of local cytokine immunity to male fertility.

  14. Insect immune resistance to parasitoids

    Institute of Scientific and Technical Information of China (English)

    Yves Carton; Marylène Poirié; Anthony J. Nappi

    2008-01-01

    Insect host-parasitoid interactions involve complex physiological, biochemical and genetic interactions. Against endoparasitoids, immune-competent hosts initiate a blood cell-mediated response that quickly destroys the intruders and envelops them in a multilayered melanotic capsule. During the past decade, considerable progress has been made in identifying some of the critical components of the host response, mainly because of the use of efficient molecular tools. This review examines some of the components of the innate immune response of Drosophila, an insect that has served as an exceptionally good experimental model for studying non-self recognition processes and immune cell signaling mechanisms. Topics considered in this review include hematopoiesis, proliferation and adhesion of hemocytes, melanogenesis and associated cytotoxic molecules, and the genetic aspects of the host-parasitoid interaction.

  15. Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network.

    Science.gov (United States)

    Krumsiek, Jan; Marr, Carsten; Schroeder, Timm; Theis, Fabian J

    2011-01-01

    Hematopoiesis is an ideal model system for stem cell biology with advanced experimental access. A systems view on the interactions of core transcription factors is important for understanding differentiation mechanisms and dynamics. In this manuscript, we construct a Boolean network to model myeloid differentiation, specifically from common myeloid progenitors to megakaryocytes, erythrocytes, granulocytes and monocytes. By interpreting the hematopoietic literature and translating experimental evidence into Boolean rules, we implement binary dynamics on the resulting 11-factor regulatory network. Our network contains interesting functional modules and a concatenation of mutual antagonistic pairs. The state space of our model is a hierarchical, acyclic graph, typifying the principles of myeloid differentiation. We observe excellent agreement between the steady states of our model and microarray expression profiles of two different studies. Moreover, perturbations of the network topology correctly reproduce reported knockout phenotypes in silico. We predict previously uncharacterized regulatory interactions and alterations of the differentiation process, and line out reprogramming strategies.

  16. C/EBPα Is Required for Long-Term Self-Renewal and Lineage Priming of Hematopoietic Stem Cells and for the Maintenance of Epigenetic Configurations in Multipotent Progenitors

    DEFF Research Database (Denmark)

    Hasemann, Marie S; Lauridsen, Felicia K B; Waage, Johannes;

    2014-01-01

    Transcription factors are key regulators of hematopoietic stem cells (HSCs) and act through their ability to bind DNA and impact on gene transcription. Their functions are interpreted in the complex landscape of chromatin, but current knowledge on how this is achieved is very limited. C....../EBPα is an important transcriptional regulator of hematopoiesis, but its potential functions in HSCs have remained elusive. Here we report that C/EBPα serves to protect adult HSCs from apoptosis and to maintain their quiescent state. Consequently, deletion of Cebpa is associated with loss of self-renewal and HSC...... as a priming factor at the HSC level where it actively promotes myeloid differentiation and counteracts lymphoid lineage choice. Taken together, our results show that C/EBPα is a key regulator of HSC biology, which influences the epigenetic landscape of HSCs in order to balance different cell fate options....

  17. IKAROS: a multifunctional regulator of the polymerase II transcription cycle.

    Science.gov (United States)

    Bottardi, Stefania; Mavoungou, Lionel; Milot, Eric

    2015-09-01

    Transcription factors are important determinants of lineage specification during hematopoiesis. They favor recruitment of cofactors involved in epigenetic regulation, thereby defining patterns of gene expression in a development- and lineage-specific manner. Additionally, transcription factors can facilitate transcription preinitiation complex (PIC) formation and assembly on chromatin. Interestingly, a few lineage-specific transcription factors, including IKAROS, also regulate transcription elongation. IKAROS is a tumor suppressor frequently inactivated in leukemia and associated with a poor prognosis. It forms a complex with the nucleosome remodeling and deacetylase (NuRD) complex and the positive transcription elongation factor b (P-TEFb), which is required for productive transcription elongation. It has also been reported that IKAROS interacts with factors involved in transcription termination. Here we review these and other recent findings that establish IKAROS as the first transcription factor found to act as a multifunctional regulator of the transcription cycle in hematopoietic cells.

  18. The Polycomb Group Protein L3MBTL1 Represses a SMAD5-Mediated Hematopoietic Transcriptional Program in Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Fabiana Perna

    2015-04-01

    Full Text Available Epigenetic regulation of key transcriptional programs is a critical mechanism that controls hematopoietic development, and, thus, aberrant expression patterns or mutations in epigenetic regulators occur frequently in hematologic malignancies. We demonstrate that the Polycomb protein L3MBTL1, which is monoallelically deleted in 20q- myeloid malignancies, represses the ability of stem cells to drive hematopoietic-specific transcriptional programs by regulating the expression of SMAD5 and impairing its recruitment to target regulatory regions. Indeed, knockdown of L3MBTL1 promotes the development of hematopoiesis and impairs neural cell fate in human pluripotent stem cells. We also found a role for L3MBTL1 in regulating SMAD5 target gene expression in mature hematopoietic cell populations, thereby affecting erythroid differentiation. Taken together, we have identified epigenetic priming of hematopoietic-specific transcriptional networks, which may assist in the development of therapeutic approaches for patients with anemia.

  19. DNA Polymorphisms in River Buffalo Leptin Gene

    Directory of Open Access Journals (Sweden)

    B. Moioli

    2010-02-01

    Full Text Available Leptin is a protein involved in the regulation of feed intake, fat metabolism, whole body energy balance, reproduction and hematopoiesis. In cattle Leptin gene has been considered a potential QTL influencing several production traits like meat production, milk performance and reproduction. Several studies on bovine leptin gene have found association between polymorphisms and traits like milk yield, feed intake, fat content, carcass and meat quality. With the aim to assess the presence of sequences polymorphisms in the Buffalo leptin gene, we sequenced the entire coding region and part of the introns on a panel of Italian River Buffalos. In this study we identified a new set of SNP (Single Nucleotide Polymorphism useful for association studies.

  20. Occurrence of Wilms' tumor in a child with hereditary spherocytosis.

    Science.gov (United States)

    Özyörük, Derya; Demir, Hacı Ahmet; Emir, Suna; Karakuş, Esra; Tunç, Bahattin

    2015-01-01

    Hereditary spherocytosis (HS) is the most frequent cause of congenital hemolytic anemia. It is an autosomal dominant genetic disorder characterized by cell membrane abnormalities, specifically in red blood cells. Although the association between benign, borderline and malignant tumors and HS is not clear, various tumors such as splenoma, adrenal myolipoma, pancreatic schwannoma, ganglioneuroma, extramedullary hematopoiesis, myeloproliferative disorders, multiple myeloma, B-cell lymphoma and acute lymphoblastic leukemia have been presented in case reports concerning HS patients. Here we describe a 6-year-old boy with HS who presented with a mass in the left kidney. Tru-cut biopsy revealed Wilms' tumor (WT). To the best of our knowledge, this is the first case of WT associated with HS to be reported in the literature.

  1. Effects of Serum from Aplastic Anemia patients on the Expression of Cyclin D3 Isoform in Umbilical Cord Blood CD34+ Cells

    Institute of Scientific and Technical Information of China (English)

    孟凡凯; 谭细友; 刘文励; 孙汉英; 周剑锋; 李春蕊; 刘丹; 何莉; 孙岚

    2004-01-01

    Summary: The pathogenesis of aplastic anemia (AA) was explored and the effects of AA serum on the expression of crucial cyclin D isoform (cyclin D3) in umbilical cord blood hematopoietic stem/progenitor cells were observed. The CD34+ cells were isolated from the cord blood with MIDIMACS Semi-solid methylcellulose culture technique was used to measure the formation of CFUGM;The expression level of cyclin D3 was assayed by semi-quantitative RT-PCR and Western-blot after the hematopoietic stem/progenitor cells were incubated in AA serum. The results showed that the AA serum could inhibit the formation of CFU-GM and down regulate the expression level of the cyclin D3 at the mRNA and protein level respectively. In conclusion, the AA serum could inhibit the proliferation of hematopoietic stem cells and down regulate level of cyclin D3, which might be one mechanism of hematopoiesis inhibition in AA.

  2. Microbe-Induced Inflammatory Signals Triggering Acquired Bone Marrow Failure Syndromes

    Science.gov (United States)

    Espinoza, J. Luis; Kotecha, Ritesh; Nakao, Shinji

    2017-01-01

    Acquired bone marrow failure syndromes encompass a unique set of disorders characterized by a reduction in the effective production of mature cells by the bone marrow (BM). In the majority of cases, these syndromes are the result of the immune-mediated destruction of hematopoietic stem cells or their progenitors at various stages of differentiation. Microbial infection has also been associated with hematopoietic stem cell injury and may lead to associated transient or persistent BM failure, and recent evidence has highlighted the potential impact of commensal microbes and their metabolites on hematopoiesis. We summarize the interactions between microorganisms and the host immune system and emphasize how they may impact the development of acquired BM failure. PMID:28286502

  3. Exogenous endothelial cells as accelerators of hematopoietic reconstitution

    Directory of Open Access Journals (Sweden)

    Mizer J

    2012-11-01

    Full Text Available Abstract Despite the successes of recombinant hematopoietic-stimulatory factors at accelerating bone marrow reconstitution and shortening the neutropenic period post-transplantation, significant challenges remain such as cost, inability to reconstitute thrombocytic lineages, and lack of efficacy in conditions such as aplastic anemia. A possible means of accelerating hematopoietic reconstitution would be administration of cells capable of secreting hematopoietic growth factors. Advantages of this approach would include: a ability to regulate secretion of cytokines based on biological need; b long term, localized production of growth factors, alleviating need for systemic administration of factors that possess unintended adverse effects; and c potential to actively repair the hematopoietic stem cell niche. Here we overview the field of hematopoietic growth factors, discuss previous experiences with mesenchymal stem cells (MSC in accelerating hematopoiesis, and conclude by putting forth the rationale of utilizing exogenous endothelial cells as a novel cellular therapy for acceleration of hematopoietic recovery.

  4. Lessons from the atomic bomb about secondary MDS.

    Science.gov (United States)

    Hata, Tomoko; Imanishi, Daisuke; Miyazaki, Yasushi

    2014-12-01

    Myelodysplastic syndromes (MDSs) is a hematological neoplasm defined by ineffective hematopoiesis, dysplasia of hematopoietic cells, and risk of progression to acute leukemia. MDS occurs as de novo or secondary, and chemoradiotherapy for cancers is thought to increase the risk of MDS among patients. Recently, an epidemiological study for MDS among A-bomb survivors was performed, and it clearly demonstrated that the exposure to external radiation significantly increased the risk of MDS. Precise epidemiological data among survivors have revealed important clinical factors related to the risk of leukemias. In this review, by comparing data for secondary MDS and leukemia/MDS among survivors, several factors which would affect the risk of MDS, especially secondary MDS, are discussed.

  5. ACE overexpression in myelomonocytic cells: effect on a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Koronyo-Hamaoui, Maya; Shah, Kandarp; Koronyo, Yosef; Bernstein, Ellen; Giani, Jorge F; Janjulia, Tea; Black, Keith L; Shi, Peng D; Gonzalez-Villalobos, Romer A; Fuchs, Sebastien; Shen, Xiao Z; Bernstein, Kenneth E

    2014-07-01

    While it is well known that angiotensin converting enzyme (ACE) plays an important role in blood pressure control, ACE also has effects on renal function, hematopoiesis, reproduction, and aspects of the immune response. ACE 10/10 mice overexpress ACE in myelomonocytic cells. Macrophages from these mice have an increased polarization towards a pro-inflammatory phenotype that results in a very effective immune response to challenge by tumors or bacterial infection. In a mouse model of Alzheimer's disease (AD), the ACE 10/10 phenotype provides significant protection against AD pathology, including reduced inflammation, reduced burden of the neurotoxic amyloid-β protein and preserved cognitive function. Taken together, these studies show that increased myelomonocytic ACE expression in mice alters the immune response to better defend against many different types of pathologic insult, including the cognitive decline observed in an animal model of AD.

  6. Guidelines for diagnosis and management of Beta-thalassemia intermedia.

    Science.gov (United States)

    Karimi, Mehran; Cohan, Nader; De Sanctis, Vincenzo; Mallat, Naji S; Taher, Ali

    2014-10-01

    Beta-thalassemia intermedia (β-TI) is a genetic variant of beta-thalassemias with a clinical disorder whose severity falls between thalassemia minor and thalassemia major. Different genetic defects are involved in this disorder and, based on severity of disease, clinical complications like skeletal deformities and growth retardation, splenomegaly, extramedullary hematopoiesis, heart failure, and endocrine disorders may be present in untreated patients. Precise diagnosis and management are essential in these patients for prevention of later clinical complications. Diagnosis of TI is based on clinical and laboratory data. There are some treatment strategies like modulation of gamma-globulin chain production with hydroxyurea or other drugs, transfusion, splenectomy, and stem cell transplantation. Iron chelation therapy is also needed in many of these patients even if they are not transfused. The aim of this manuscript is to review the clinical manifestations, complications, genetic defects, and unmet treatments needs in TI.

  7. Context-sensitive patch histograms for detecting rare events in histopathological data

    Science.gov (United States)

    Diaz, Kristians; Baust, Maximilian; Navab, Nassir

    2017-03-01

    Assessment of histopathological data is not only difficult due to its varying appearance, e.g. caused by staining artifacts, but also due to its sheer size: Common whole slice images feature a resolution of 6000x4000 pixels. Therefore, finding rare events in such data sets is a challenging and tedious task and developing sophisticated computerized tools is not easy, especially when no or little training data is available. In this work, we propose learning-free yet effective approach based on context sensitive patch-histograms in order to find extramedullary hematopoiesis events in Hematoxylin-Eosin-stained images. When combined with a simple nucleus detector, one can achieve performance levels in terms of sensitivity 0.7146, specificity 0.8476 and accuracy 0.8353 which are very well comparable to a recently published approach based on random forests.

  8. Maternal Embryonic Leucine Zipper Kinase (MELK: A Novel Regulator in Cell Cycle Control, Embryonic Development, and Cancer

    Directory of Open Access Journals (Sweden)

    Pengfei Jiang

    2013-10-01

    Full Text Available Maternal embryonic leucine zipper kinase (MELK functions as a modulator of intracellular signaling and affects various cellular and biological processes, including cell cycle, cell proliferation, apoptosis, spliceosome assembly, gene expression, embryonic development, hematopoiesis, and oncogenesis. In these cellular processes, MELK functions by binding to numerous proteins. In general, the effects of multiple protein interactions with MELK are oncogenic in nature, and the overexpression of MELK in kinds of cancer provides some evidence that it may be involved in tumorigenic process. In this review, our current knowledge of MELK function and recent discoveries in MELK signaling pathway were discussed. The regulation of MELK in cancers and its potential as a therapeutic target were also described.

  9. MicroRNAs of the immune system: roles in inflammation and cancer.

    Science.gov (United States)

    Davidson-Moncada, Jan; Papavasiliou, F Nina; Tam, Wayne

    2010-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by binding to complementary target mRNAs and either promoting their decay or inhibiting their translation. Most eukaryotic genomes studied encode miRNAs, which are processed from longer noncoding transcripts through pathways conserved from fungi to plants to animals. miRNAs are now understood to be key mediators of developmental transitions in a number of model organisms. With respect to the immune system, miRNAs affect all facets of immune system development, from hematopoiesis to activation in response to infection during both the innate and the adaptive immune response. At the same time, miRNA dysregulation is a central event in the development and pathophysiology of a number of cancers of the immune system. Here we will discuss our current understanding of this general regulatory mechanism, focusing on its involvement in inflammation and in oncogenesis.

  10. Signal transducer and activator of transcription 3 regulation by novel binding partners

    Institute of Scientific and Technical Information of China (English)

    Tadashi; Matsuda; Ryuta; Muromoto; Yuichi; Sekine; Sumihito; Togi; Yuichi; Kitai; Shigeyuki; Kon; Kenji; Oritani

    2015-01-01

    Signal transducers and activators of transcription(STATs) mediate essential signals for various biological processes,including immune responses,hematopoiesis,and neurogenesis. STAT3,for example,is involved in the pathogenesis of various human diseases,including cancers,autoimmune and inflammatory disorders. STAT3 activation is therefore tightly regulated at multiple levels to prevent these pathological conditions. A number of proteins have been reported to associate with STAT3 and regulate its activity. These STAT3-interacting proteins function to modulate STAT3-mediated signaling at various steps and mediate the crosstalk of STAT3 with other cellular signaling pathways. This article reviews the roles of novel STAT3 binding partners such as DAXX,zipperinteracting protein kinase,Krüppel-associated box-associated protein 1,Y14,PDZ and LIM domain 2 and signal transducing adaptor protein-2,in the regulation of STAT3-mediated signaling.

  11. Generation of axolotl hematopoietic chimeras

    Directory of Open Access Journals (Sweden)

    David Lopez

    2015-02-01

    Full Text Available Wound repair is an extremely complex process that requires precise coordination between various cell types including immune cells.  Unfortunately, in mammals this usually results in scar formation instead of restoration of the original fully functional tissue, otherwise known as regeneration.  Various animal models like frogs and salamanders are currently being studied to determine the intracellular and intercellular pathways, controlled by gene expression, that elicit cell proliferation, differentiation, and migration of cells during regenerative healing.  Now, the necessary genetic tools to map regenerative pathways are becoming available for the axolotl salamander, thus allowing comparative studies between scarring and regeneration.  Here, we describe in detail three methods to produce axolotl hematopoietic cell-tagged chimeras for the study of hematopoiesis and regeneration.

  12. Immature hematopoietic stem cells undergo maturation in the fetal liver.

    Science.gov (United States)

    Kieusseian, Aurelie; Brunet de la Grange, Philippe; Burlen-Defranoux, Odile; Godin, Isabelle; Cumano, Ana

    2012-10-01

    Hematopoietic stem cells (HSCs), which are defined by their capacity to reconstitute adult conventional mice, are first found in the dorsal aorta after 10.5 days post coitus (dpc) and in the fetal liver at 11 dpc. However, lympho-myeloid hematopoietic progenitors are detected in the dorsal aorta from 9 dpc, raising the issue of their role in establishing adult hematopoiesis. Here, we show that these progenitors are endowed with long-term reconstitution capacity, but only engraft natural killer (NK)-deficient Rag2γc(-/-) mice. This novel population, called here immature HSCs, evolves in culture with thrombopoietin and stromal cells, into HSCs, defined by acquisition of CD45 and MHC-1 expression and by the capacity to reconstitute NK-competent mice. This evolution occurs during ontogeny, as early colonization of fetal liver by immature HSCs precedes that of HSCs. Moreover, organ culture experiments show that immature HSCs acquire, in this environment, the features of HSCs.

  13. Transplantation of mouse fetal liver cells for analyzing the function of hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Gudmundsson, Kristbjorn Orri; Stull, Steven W; Keller, Jonathan R

    2012-01-01

    Hematopoietic stem cells are defined by their ability to self-renew and differentiate through progenitor cell stages into all types of mature blood cells. Gene-targeting studies in mice have demonstrated that many genes are essential for the generation and function of hematopoietic stem and progenitor cells. For definitively analyzing the function of these cells, transplantation studies have to be performed. In this chapter, we describe methods to isolate and transplant fetal liver cells as well as how to analyze donor cell reconstitution. This protocol is tailored toward mouse models where embryonic lethality precludes analysis of adult hematopoiesis or where it is suspected that the function of fetal liver hematopoietic stem and progenitor cells is compromised.

  14. Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow

    DEFF Research Database (Denmark)

    Potocnik, A J; Brakebusch, C; Fässler, R

    2000-01-01

    Homing of hematopoietic stem cells (HSCs) into hematopoietic organs is a prerequisite for the establishment of hematopoiesis during embryogenesis and after bone marrow transplantation. We show that beta1 integrin-deficient HSCs from the para-aortic splanchnopleura and the fetal blood had...... hematolymphoid differentiation potential in vitro and in fetal organ cultures but were unable to seed fetal and adult hematopoietic tissues. Adult beta1 integrin null HSCs isolated from mice carrying loxP-tagged beta1 integrin alleles and ablated for beta1 integrin expression by retroviral cre transduction...... failed to engraft irradiated recipient mice. Moreover, absence of beta1 integrin resulted in sequestration of HSCs in the circulation and their reduced adhesion to endothelioma cells. These findings define beta1 integrin as an essential adhesion receptor for the homing of HSCs....

  15. Dynamics of Graft Function Measured by DNA-Technology in a Patient with Severe Aplastic Anemia and Repeated Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Anna Karastaneva

    2014-01-01

    Full Text Available Although bone marrow transplantation (BMT from an HLA identical sibling is considered as treatment of choice in pediatric patients with severe aplastic anemia (SAA, a significant number of them experience graft failure (GF after BMT. We report a case of an 8-year-old male patient with SAA who presented with a complicated posttransplant course due to parvovirus B19 infection and GF. A subsequent attempt to support the graft by antithymocyte globulin (ATG and a peripheral stem cell boost resulted in transitory autologous recovery of hematopoiesis followed by mixed chimerism, supported by donor lymphocyte infusions (DLIs and finally graft rejection with relapse of SAA. Permanent complete chimerism was achieved by a second BMT. Dynamics of graft function, measured by a single nucleotide polymorphism (SNPs analysis, are discussed.

  16. Myelodysplastic syndrome: classification and prognostic systems

    Directory of Open Access Journals (Sweden)

    Rosangela Invernizzi

    2011-12-01

    Full Text Available Myelodysplastic syndromes (MDS are acquired clonal disorders of hematopoiesis, that are characterized most frequently by normocellular or hypercellular bone marrow specimens, and maturation that is morphologically and functionally dysplastic. MDS constitute a complex hematological problem: differences in disease presentation, progression and outcome have made it necessary to use classification systems to improve diagnosis, prognostication and treatment selection. On the basis of new scientific and clinical information, classification and prognostic systems have recently been updated and minimal diagnostic criteria forMDS have been proposed by expert panels. In addition, in the last few years our ability to define the prognosis of the individual patient with MDS has improved. In this paper World Health Organization (WHO classification refinements and recent prognostic scoring systems for the definition of individual risk are highlighted and current criteria are discussed. The recommendations should facilitate diagnostic and prognostic evaluations in MDS and selection of patients for new effective targeted therapies.

  17. The Drosophila histone demethylase dKDM5/LID regulates hematopoietic development.

    Science.gov (United States)

    Morán, Tomás; Bernués, Jordi; Azorín, Fernando

    2015-09-15

    dKDM5/LID regulates transcription of essential developmental genes and, thus, is required for different developmental processes. Here, we report the essential contribution of dKDM5/LID to hematopoiesis in Drosophila. Our results show that dKDM5/LID is abundant in hemocytes and that its depletion induces over-proliferation and differentiation defects of larval hemocytes and disrupts organization of the actin cytoskeleton. We also show that dKDM5/LID regulates expression of key factors of hematopoietic development. In particular, dKDM5/LID depletion up-regulates expression of several transcription factors involved in hemocytes proliferation and differentiation as well as of several small-GTPases that link signaling effectors to actin cytoskeleton formation and dynamics.

  18. Oncogenes, protooncogenes, and tumor suppressor genes in acute myelogenous leukemia.

    Science.gov (United States)

    Hijiya, N; Gewirtz, A M

    1995-05-01

    In recent years, our understanding of normal human hematopoiesis has expanded greatly. We have increased our knowledge of regulatory growth factors, the receptors through which they act, and the secondary messengers involved in transducing the growth/differentiation signals from the cytoplasmic membrane to the nucleus. This knowledge has revealed potential mechanisms for inducing the neoplastic transformation of hematopoietic cells. This applies in particular to the role of viral oncogenes and cellular protooncogenes and, more recently, to the role of tumor suppressor genes. Protooncogenes are intimately involved in the processes of cell proliferation and differentiation. Therefore, any amplification, mutation, structural alteration, or change in transcriptional regulation of protooncogenes might lead to or be associated with induction of the malignant phenotype. Based on the importance of these genes in leukemogenesis and the maintenance of the malignant phenotype, it seems reasonable to hypothesize that targeted disruption of leukemogenic genes may be of therapeutic value.

  19. Molecular bases of myelodysplastic syndromes: lessons from animal models.

    Science.gov (United States)

    Komeno, Yukiko; Kitaura, Jiro; Kitamura, Toshio

    2009-06-01

    Myelodysplastic syndrome (MDS) is a clonal disorder of hematopietic stem cells characterized by ineffective hematopoiesis, peripheral blood cytopenia, morphologic dysplasia, and susceptibility to acute myeloid leukemia. Several mechanisms have been suggested as causes of MDS: unbalanced chromosomal abnormalities reflecting a gain or loss of chromosomal material, point mutations of transcription factors, and inactivation of p53. However, appropriate animal models that mimic MDS have long been lacking. We recently reported a novel murine model of MDS that recapitulates trilineage dysplasia and transformation to AML. In this review, we summarize the animal models of MDS and discuss the molecular bases of MDS as well as those of leukemia and myeloproliferative disorders (MPD). J. Cell. Physiol. 219: 529-534, 2009. (c) 2009 Wiley-Liss, Inc.

  20. The role of ineffective erythropoiesis in non-transfusion-dependent thalassemia.

    Science.gov (United States)

    Rivella, Stefano

    2012-04-01

    Ineffective erythropoiesis is the hallmark of beta-thalassemia that triggers a cascade of compensatory mechanisms resulting in clinical sequelae such as erythroid marrow expansion, extramedullary hematopoiesis, splenomegaly, and increased gastrointestinal iron absorption. Recent studies have begun to shed light on the complex molecular mechanisms underlying ineffective erythropoiesis and the associated compensatory pathways; this new understanding may lead to the development of novel therapies. Increased or excessive activation of the Jak2/STAT5 pathway promotes unnecessary disproportionate proliferation of erythroid progenitors, while other factors suppress serum hepcidin levels leading to dysregulation of iron metabolism. Preclinical studies suggest that Jak inhibitors, hepcidin agonists, and exogenous transferrin may help to restore normal erythropoiesis and iron metabolism and reduce splenomegaly; however, further research is needed.

  1. Hematopoietic differentiation from human ESCs as a model for developmental studies and future clinical translations. Invited review following the FEBS Anniversary Prize received on 5 July 2009 at the 34th FEBS Congress in Prague.

    Science.gov (United States)

    Moreno-Gimeno, Inmaculada; Ledran, Maria H; Lako, Majlinda

    2010-12-01

    Human embryonic stem cells (hESCs) and induced pluripotent stem cells are excellent models for the study of embryonic hematopoiesis in vitro, aiding the design of new differentiation models that may be applicable to cell-replacement therapies. Adult and fetal hematopoietic stem cells are currently being used in biomedical applications; however, the latest advances in regenerative medicine and stem cell biology suggest that hESC-derived hematopoietic stem cells are an outstanding tool for enhancing immunotherapy and treatments for blood disorders and cancer, for example. In this review, we compare various methods used for inducing in vitro hematopoietic differentiation from hESCs, based on co-culture with stromal cells or formation of embryoid bodies, and analyse their ability to give rise to hematopoietic precursors, with emphasis on their engraftment potential as a measure of their functionality in vivo.

  2. Allogeneic hematopoietic stem cell transplantation for inherited bone marrow failure syndromes.

    Science.gov (United States)

    Dalle, Jean-Hugues; Peffault de Latour, Régis

    2016-04-01

    Inherited bone marrow failure (IBMF) syndromes are a heterogeneous group of rare hematological disorders characterized by the impairment of hematopoiesis, which harbor specific clinical presentations and pathogenic mechanisms. Some of these syndromes may progress through clonal evolution, myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Most prominent are failures of DNA repair such as Fanconi Anemia and much rarer failure of ribosomal apparatus, e.g., Diamond Blackfan Anemia or of telomere elongation such as dyskeratosis congenita. In these congenital disorders, hematopoietic stem cell transplantation (HSCT) is often a consideration. However, HSCT will not correct the underlying disease and possible co-existing extra-medullary (multi)-organ defects, but will improve BMF. Indications as well as transplantation characteristics are most of the time controversial in this setting because of the rarity of reported cases. The present paper proposes a short overview of current practices.

  3. EFFECTS OF INTERLEUKIN-4 ON GRANULOCYTE-MACROPHAGE-COLONY FORMATION FROM MURINE BONE MARROW CELLS AND HEMATOPOIETIC RECONSTITUTION FOLLOWING MURINE ALLOGENEIC BONE MARROW TRANSPLANTATION

    Institute of Scientific and Technical Information of China (English)

    朱康儿; KerryAtkinson

    1994-01-01

    We investigated the effects of mouse recombinant IL-4 on hematopoiesis in vitro and in vivo.IL-4 alone was found to be incapable of stimulating colony formation,but it inhibited both IL-3-and GM-CSF-induced colony for-mation by murine hematopoietic progenitor cells.In contrast,colony formation induced by G-CSF was enhanced in the presence of IL-4.We also studied the influence of IL-4 on hematopoietie reconstiution after allogeneic bone marrow transplantation in a murine model,and found that IL-4 and G-CSF was significantly suppressed by IL-4.The combination of IL-4 and GM-CSF caused a significant decrease in the absolute mumber of meutrophils.

  4. Concise Review: Asymmetric Cell Divisions in Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Florian Murke

    2015-11-01

    Full Text Available Somatic stem cells are rare cells with unique properties residing in many organs and tissues. They are undifferentiated cells responsible for tissue regeneration and homeostasis, and contain both the capacity to self-renew in order to maintain their stem cell potential and to differentiate towards tissue-specific, specialized cells. However, the knowledge about the mechanisms controlling somatic stem cell fate decisions remains sparse. One mechanism which has been described to control daughter cell fates in selected somatic stem cell systems is the process of asymmetric cell division (ACD. ACD is a tightly regulated and evolutionary conserved process allowing a single stem or progenitor cell to produce two differently specified daughter cells. In this concise review, we will summarize and discuss current concepts about the process of ACD as well as different ACD modes. Finally, we will recapitulate the current knowledge and our recent findings about ACD in human hematopoiesis.

  5. Periodic solutions of first-order functional differential equations in population dynamics

    CERN Document Server

    Padhi, Seshadev; Srinivasu, P D N

    2014-01-01

    This book provides cutting-edge results on the existence of multiple positive periodic solutions of first-order functional differential equations. It demonstrates how the Leggett-Williams fixed-point theorem can be applied to study the existence of two or three positive periodic solutions of functional differential equations with real-world applications, particularly with regard to the Lasota-Wazewska model, the Hematopoiesis model, the Nicholsons Blowflies model, and some models with Allee effects. Many interesting sufficient conditions are given for the dynamics that include nonlinear characteristics exhibited by population models. The last chapter provides results related to the global appeal of solutions to the models considered in the earlier chapters. The techniques used in this book can be easily understood by anyone with a basic knowledge of analysis. This book offers a valuable reference guide for students and researchers in the field of differential equations with applications to biology, ecology, a...

  6. Imaging features of thalassemia

    Energy Technology Data Exchange (ETDEWEB)

    Tunaci, M.; Tunaci, A.; Engin, G.; Oezkorkmaz, B.; Acunas, G.; Acunas, B. [Dept. of Radiology, Istanbul Univ. (Turkey); Dincol, G. [Dept. of Internal Medicine, Istanbul Univ. (Turkey)

    1999-07-01

    Thalassemia is a kind of chronic, inherited, microcytic anemia characterized by defective hemoglobin synthesis and ineffective erythropoiesis. In all thalassemias clinical features that result from anemia, transfusional, and absorptive iron overload are similar but vary in severity. The radiographic features of {beta}-thalassemia are due in large part to marrow hyperplasia. Markedly expanded marrow space lead to various skeletal manifestations including spine, skull, facial bones, and ribs. Extramedullary hematopoiesis (ExmH), hemosiderosis, and cholelithiasis are among the non-skeletal manifestations of thalassemia. The skeletal X-ray findings show characteristics of chronic overactivity of the marrow. In this article both skeletal and non-skeletal manifestations of thalassemia are discussed with an overview of X-ray findings, including MRI and CT findings. (orig.)

  7. Erythropoietin in bone - Controversies and consensus.

    Science.gov (United States)

    Hiram-Bab, Sahar; Neumann, Drorit; Gabet, Yankel

    2017-01-01

    Erythropoietin (Epo) is the main hormone that regulates the production of red blood cells (hematopoiesis), by stimulating their progenitors. Beyond this vital function, several emerging roles have been noted for Epo in other tissues, including neurons, heart and retina. The skeletal system is also affected by Epo, however, its actions on bone are, as yet, controversial. Here, we review the seemingly contradicting evidence regarding Epo effects on bone remodeling. We also discuss the evidence pointing to a direct versus indirect effect of Epo on the osteoblastic and osteoclastic cell lineages. The current controversy may derive from a context-dependent mode of action of Epo, namely opposite skeletal actions during bone regeneration and steady-state bone remodeling. Differences in conclusions from the published in-vitro studies may thus relate to the different experimental conditions. Taken together, these studies indicate a complexity of Epo functions in bone cells.

  8. Pro-Inflammatory Cytokines in Psychiatric Disorders in Children and Adolescents: A Review.

    Science.gov (United States)

    Miłkowska, Paulina; Popko, Katarzyna; Demkow, Urszula; Wolańczyk, Tomasz

    2017-04-30

    Cytokines are a large group of small proteins which play a significant role in cell signaling and regulate a variety of processes in organisms, including proliferation and differentiation of many cells, mediation in defense reactions and regulation of hematopoiesis. Cytokines can be divided into those with pro- and those with anti-inflammatory properties. In the group of pro-inflammatory cytokines the most important are: IL-1 beta, IL-6, TNF-alpha, and IFN-gamma. Pro-inflammatory cytokines might be involved in the pathophysiology of many psychiatric conditions in adults, but their role in children and adolescents is less clear. The aim of this article is to demonstrate the patterns of pro-inflammatory cytokines in children and adolescents.

  9. Phosphorylation of Serine 248 of C/EBPa Is Dispensable for Myelopoiesis but Its Disruption Leads to a Low Penetrant Myeloid Disorder with Long Latency

    DEFF Research Database (Denmark)

    Hasemann, Marie S; Schuster, Mikkel B; Frank, Anne-Katrine;

    2012-01-01

    Transcription factors play a key role in lineage commitment and differentiation of stem cells into distinct mature cells. In hematopoiesis, they regulate lineage-specific gene expression in a stage-specific manner through various physical and functional interactions with regulatory proteins......, alternative translation, protein interactions and posttranslational modifications, such as phosphorylation. In particular, the phosphorylation of serine 248 of the transactivation domain has been shown to be of crucial importance for granulocytic differentiation of 32Dcl3 cells in vitro....... that are simultanously recruited and activated to ensure timely gene expression. The transcription factor CCAAT/enhancer binding protein a (C/EBPa) is such a factor and is essential for the development of granulocytic/monocytic cells. The activity of C/EBPa is regulated on several levels including gene expression...

  10. Peritonitis in myeloifbrosis:a cautionar y tale

    Institute of Scientific and Technical Information of China (English)

    Narasimhaiah Srinivasaiah; Mohammad K Zia; Vummiti Muralikrishnan

    2010-01-01

    BACKGROUND: Primary myeloifbrosis (PMF) is a myelopro-liferative disorder characterized by bone marrow ifbrosis. Extra-medullary hematopoiesis sometimes occurs even in the peritoneal cavity, apart from organs such as the liver, spleen, and lymph nodes. This may sometimes be complicated by spontaneous infection and complications. We report a rather unusual case of PMF, who presented as an emergency with spontaneous peritonitis to general surgery department and had a fulminant clinical course. METHOD: A clinical case note review was done and a literature search was undertaken. RESULTS: A rather unusual case of PMF, who presented as an emergency with spontaneous peritonitis to general surgery department. The patient underwent a laparotomy and had a fulminant clinical course. CONCLUSIONS: Peritonitis in myeloifbrosis may have a number of causes. Clinicians need to be aware of them and provide conservative management prior to surgical treatment.

  11. Advances in studies on hepatic stem cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The question whether hepatic stem cells exist or not has been debated for several decades. Current researches confirm that there are hepatic stem cells in the liver. Oval cells, putative bipotential hepatic stem cells, are probably located within canals of Hering, portal tracts or branches of biliary trees. Bone marrow is a potential source of oval cells, indicating that there exists a close relationship between liver and hematopoiesis in adulthood. Hepatic stem cells are able to proliferate in vitro and can be induced to differentiate into hepatocytes. This will provide a promising approach of cell transplantation, tissue engineering and gene therapy for liver diseases. In this review, the evidence of their presence, origin, identification, proliferation in vitro, differentiation by induction, application prospects of hepatic stem cells and future directions for the field are discussed.

  12. The mystery of oncogenic KRAS: Lessons from studying its wild-type counter part.

    Science.gov (United States)

    Chang, Yuan-I; Damnernsawad, Alisa; Kong, Guangyao; You, Xiaona; Wang, Demin; Zhang, Jing

    2016-07-22

    Using conditional knock-in mouse models, we and others have shown that despite the very high sequence identity between Nras and Kras proteins, oncogenic Kras displays a much stronger leukemogenic activity than oncogenic Nras in vivo. In this manuscript, we will summarize our recent work of characterizing wild-type Kras function in adult hematopoiesis and in oncogenic Kras-induced leukemogenesis. We attribute the strong leukemogenic activity of oncogenic Kras to 2 unique aspects of Kras signaling. First, Kras is required in mediating cell type- and cytokine-specific ERK1/2 signaling. Second, oncogenic Kras, but not oncogenic Nras, induces hyperactivation of wild-type Ras, which significantly enhances Ras signaling in vivo. We will also discuss a possible mechanism that mediates oncogenic Kras-evoked hyperactivation of wild-type Ras and a potential approach to down-regulate oncogenic Kras signaling.

  13. Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and dysregulated myeloid proliferation.

    Science.gov (United States)

    Mortensen, Monika; Watson, Alexander Scarth; Simon, Anna Katharina

    2011-09-01

    The regulated lysosomal degradation pathway of autophagy prevents cellular damage and thus protects from malignant transformation. Autophagy is also required for the maturation of various hematopoietic lineages, namely the erythroid and lymphoid ones, yet its role in adult hematopoietic stem cells (HSCs) remained unexplored. While normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs or early progenitors leads to leukemia. Mechanisms protecting HSCs from cellular damage are therefore essential to prevent hematopoietic malignancies. By conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system, we found that autophagy is required for the maintenance of true HSCs and therefore also of downstream hematopoietic progenitors. Loss of autophagy in HSCs leads to the expansion of a progenitor cell population in the bone marrow, giving rise to a severe, invasive myeloproliferation, which strongly resembles human acute myeloid leukemia (AML).

  14. Bcl-2 proteins in development, health, and disease of the hematopoietic system.

    Science.gov (United States)

    Kollek, Matthias; Müller, Alexandra; Egle, Alexander; Erlacher, Miriam

    2016-08-01

    Members of the Bcl-2 protein family regulate cell fate decisions following a variety of developmental cues or stress signals, with the outcomes of cell death or survival, thus shaping multiple mammalian tissues. This review describes in detail how anti- and proapoptotic Bcl-2 proteins contribute to the development and functioning of the fetal and adult hematopoietic systems and how they influence the generation and maintenance of different hematopoietic lineages. An overview on how stress signals such as genotoxic stress or inflammation can compromise blood cell production, partially by engaging the intrinsic apoptosis pathway, is presented. Finally, the review describes how Bcl-2 protein deregulation-either leading to increased apoptosis resistance or excessive cell death-contributes to many hematological disorders, with specific focus on rare disorders of hematopoiesis and how this knowledge may be used therapeutically.

  15. Essential role of Ufm1 conjugation in the hematopoietic system.

    Science.gov (United States)

    Cai, Yafei; Singh, Nagendra; Li, Honglin

    2016-06-01

    Protein modification by ubiquitin (Ub) and ubiquitin-like (Ubl) proteins plays a pivotal role in a wide range of cellular functions and signaling pathways. The Ufm1 conjugation system is a novel ubiquitin-like system that consists of Ufm1, Uba5 (E1), Ufc1 (E2), and less defined E3 ligase(s) and targets. Despite its discovery more than a decade ago, its biological functions and working mechanism remains poorly understood. Recent genetic studies using knockout mouse models provide unambiguous evidence for the indispensable role of the Ufm1 system in animal development and hematopoiesis, especially erythroid development. In this short review, we summarize the recent progress on this important protein modification system and highlight potential challenges ahead. Further elucidation of the function and working mechanism of the ufmylation pathway would provide insight into disease pathogenesis and novel therapeutic targets for blood-related diseases such as anemia.

  16. Return to the hematopoietic stem cell origin

    Directory of Open Access Journals (Sweden)

    Igor M Samokhvalov

    2012-01-01

    Full Text Available Studying embryonic hematopoiesis is complicated by diversity of its locations in the constantly changing anatomy and by the mobility of blood cell precursors. Embryonic hematopoietic progenitors are identified in traditional in vivo and in vitro cell potential assays. Profound epigenetic plasticity of mammalian embryonic cells combined with significant inductive capacity of the potential assays suggest that our understanding of hematopoietic ontogenesis is substantially distorted. Non-invasive in vivo cell tracing methodology offers a better insight into complex processes of blood cell specification. In contrast to the widely accepted view based on the cell potential assays, the genetic tracing approach identified the yolk sac as the source of adult hematopoietic stem cell lineage. Realistic knowledge of the blood origin is critical for safe and efficient recapitulation of hematopoietic development in culture.

  17. JAM-B regulates maintenance of hematopoietic stem cells in the bone marrow.

    Science.gov (United States)

    Arcangeli, Marie-Laure; Frontera, Vincent; Bardin, Florence; Obrados, Elodie; Adams, Susanne; Chabannon, Christian; Schiff, Claudine; Mancini, Stephane J C; Adams, Ralf H; Aurrand-Lions, Michel

    2011-10-27

    In adult mammals, hematopoietic stem cells (HSCs) reside in the bone marrow (BM) and are maintained in a quiescent and undifferentiated state through adhesive interactions with specialized microenvironmental niches. Although junctional adhesion molecule-C (JAM-C) is expressed by HSCs, its function in adult hematopoiesis remains elusive. Here, we show that HSCs adhere to JAM-B expressed by BM stromal cells in a JAM-C dependent manner. The interaction regulates the interplay between HSCs and BM stromal cells as illustrated by the decreased pool of quiescent HSCs observed in jam-b deficient mice. We further show that this is probably because of alterations of BM stromal compartments and changes in SDF-1α BM content in jam-b(-/-) mice, suggesting that JAM-B is an active player in the maintenance of the BM stromal microenvironment.

  18. Roles of p53 in Various Biological Aspects of Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Takenobu Nii

    2012-01-01

    Full Text Available Hematopoietic stem cells (HSCs have the capacity to self-renew as well as to differentiate into all blood cell types, and they can reconstitute hematopoiesis in recipients with bone marrow ablation. In addition, transplantation therapy using HSCs is widely performed for the treatment of various incurable diseases such as hematopoietic malignancies and congenital immunodeficiency disorders. For the safe and successful transplantation of HSCs, their genetic and epigenetic integrities need to be maintained properly. Therefore, understanding the molecular mechanisms that respond to various cellular stresses in HSCs is important. The tumor suppressor protein, p53, has been shown to play critical roles in maintenance of “cell integrity” under stress conditions by controlling its target genes that regulate cell cycle arrest, apoptosis, senescence, DNA repair, or changes in metabolism. In this paper, we summarize recent reports that describe various biological functions of HSCs and discuss the roles of p53 associated with them.

  19. Systematic Cellular Disease Models Reveal Synergistic Interaction of Trisomy 21 and GATA1 Mutations in Hematopoietic Abnormalities

    Directory of Open Access Journals (Sweden)

    Kimihiko Banno

    2016-05-01

    Full Text Available Chromosomal aneuploidy and specific gene mutations are recognized early hallmarks of many oncogenic processes. However, the net effect of these abnormalities has generally not been explored. We focused on transient myeloproliferative disorder (TMD in Down syndrome, which is characteristically associated with somatic mutations in GATA1. To better understand functional interplay between trisomy 21 and GATA1 mutations in hematopoiesis, we constructed cellular disease models using human induced pluripotent stem cells (iPSCs and genome-editing technologies. Comparative analysis of these engineered iPSCs demonstrated that trisomy 21 perturbed hematopoietic development through the enhanced production of early hematopoietic progenitors and the upregulation of mutated GATA1, resulting in the accelerated production of aberrantly differentiated cells. These effects were mediated by dosage alterations of RUNX1, ETS2, and ERG, which are located in a critical 4-Mb region of chromosome 21. Our study provides insight into the genetic synergy that contributes to multi-step leukemogenesis.

  20. Trisomy 21 enhances human fetal erythro-megakaryocytic development

    Science.gov (United States)

    Chou, Stella T.; Opalinska, Joanna B.; Yao, Yu; Fernandes, Myriam A.; Kalota, Anna; Brooks, John S. J.; Choi, John K.; Gewirtz, Alan M.; Danet-Desnoyers, Gwenn-ael; Nemiroff, Richard L.

    2008-01-01

    Children with Down syndrome exhibit 2 related hematopoietic diseases: transient myeloproliferative disorder (TMD) and acute megakaryoblastic leukemia (AMKL). Both exhibit clonal expansion of blasts with biphenotypic erythroid and megakaryocytic features and contain somatic GATA1 mutations. While altered GATA1 inhibits erythro-megakaryocytic development, less is known about how trisomy 21 impacts blood formation, particularly in the human fetus where TMD and AMKL originate. We used in vitro and mouse transplantation assays to study hematopoiesis in trisomy 21 fetal livers with normal GATA1 alleles. Remarkably, trisomy 21 progenitors exhibited enhanced production of erythroid and megakaryocytic cells that proliferated excessively. Our findings indicate that trisomy 21 itself is associated with cell-autonomous expansion of erythro-megakaryocytic progenitors. This may predispose to TMD and AMKL by increasing the pool of cells susceptible to malignant transformation through acquired mutations in GATA1 and other cooperating genes. PMID:18812473