WorldWideScience

Sample records for helmholtz theorem

  1. Another Look at Helmholtz's Model for the Gravitational Contraction of the Sun

    Tort, A. C.; Nogarol, F.

    2011-01-01

    We take another look at the Helmholtz model for the gravitational contraction of the Sun. We show that there are two other pedagogically useful ways of rederiving Helmholtz's main results that make use of Gauss's law, the concept of gravitational field energy and the work-kinetic energy theorem. An account of the energy balance involved in the…

  2. Poncelet's theorem

    Flatto, Leopold

    2009-01-01

    Poncelet's theorem is a famous result in algebraic geometry, dating to the early part of the nineteenth century. It concerns closed polygons inscribed in one conic and circumscribed about another. The theorem is of great depth in that it relates to a large and diverse body of mathematics. There are several proofs of the theorem, none of which is elementary. A particularly attractive feature of the theorem, which is easily understood but difficult to prove, is that it serves as a prism through which one can learn and appreciate a lot of beautiful mathematics. This book stresses the modern appro

  3. Helmholtz algebraic solitons

    Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2010-02-26

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  4. Helmholtz algebraic solitons

    Christian, J M; McDonald, G S; Chamorro-Posada, P

    2010-01-01

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  5. Frege's theorem

    Heck, Richard G

    2011-01-01

    Frege's Theorem collects eleven essays by Richard G Heck, Jr, one of the world's leading authorities on Frege's philosophy. The Theorem is the central contribution of Gottlob Frege's formal work on arithmetic. It tells us that the axioms of arithmetic can be derived, purely logically, from a single principle: the number of these things is the same as the number of those things just in case these can be matched up one-to-one with those. But that principle seems so utterlyfundamental to thought about number that it might almost count as a definition of number. If so, Frege's Theorem shows that a

  6. HNF - Helmholtz Nano Facility

    Wolfgang Albrecht

    2017-05-01

    Full Text Available The Helmholtz Nano Facility (HNF is a state-of-the-art cleanroom facility. The cleanroom has ~1100 m2 with cleanroom classes of DIN ISO 1-3. HNF operates according to VDI DIN 2083, Good Manufacturing Practice (GMP and aquivalent to Semiconductor Industry Association (SIA standards. HNF is a user facility of Forschungszentrum Jülich and comprises a network of facilities, processes and systems for research, production and characterization of micro- and nanostructures. HNF meets the basic supply of micro- and nanostructures for nanoelectronics, fluidics. micromechanics, biology, neutron and energy science, etc.. The task of HNF is rapid progress in nanostructures and their technology, offering efficient access to infrastructure and equipment. HNF gives access to expertise and provides resources in production, synthesis, characterization and integration of structures, devices and circuits. HNF covers the range from basic research to application oriented research facilitating a broad variety of different materials and different sample sizes.

  7. Modern solvers for Helmholtz problems

    Tang, Jok; Vuik, Kees

    2017-01-01

    This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz equation. The book consists of three parts: new developments and analysis in Helmholtz solvers, practical methods and implementations of Helmholtz solvers, and industrial applications. The Helmholtz equation appears in a wide range of science and engineering disciplines in which wave propagation is modeled. Examples are: seismic inversion, ultrasone medical imaging, sonar detection of submarines, waves in harbours and many more. The partial differential equation looks simple but is hard to solve. In order to approximate the solution of the problem numerical methods are needed. First a discretization is done. Various methods can be used: (high order) Finite Difference Method, Finite Element Method, Discontinuous Galerkin Method and Boundary Element Method. The resulting linear system is large, where the size of the problem increases with increasing frequency. Due to higher frequencies the seismic images need to b...

  8. Pythagoras theorem

    Debattista, Josephine

    2000-01-01

    Pythagoras 580 BC was a Greek mathematician who became famous for formulating Pythagoras Theorem but its principles were known earlier. The ancient Egyptians wanted to layout square (90°) corners to their fields. To solve this problem about 2000 BC they discovered the 'magic' of the 3-4-5 triangle.

  9. Magnetohydrodynamic Kelvin-Helmholtz instability; Magnetohydrodynamische Kelvin-Helmholtz-Instabilitaet

    Brett, Walter

    2014-07-21

    In the presented work the Kelvin-Helmholtz-Instability in magnetohydrodynamic flows is analyzed with the methods of Multiple Scales. The concerned fluids are incompressible or have a varying density perpendicular to the vortex sheet, which is taken into account using a Boussinesq-Approximation and constant Brunt-Vaeisaelae-Frequencies. The Multiple Scale Analysis leads to nonlinear evolution equations for the amplitude of the perturbations. Special solutions to these equations are presented and the effects of the magnetic fields are discussed.

  10. Acceleration theorems

    Palmer, R.

    1994-06-01

    Electromagnetic fields can be separated into near and far components. Near fields are extensions of static fields. They do not radiate, and they fall off more rapidly from a source than far fields. Near fields can accelerate particles, but the ratio of acceleration to source fields at a distance R, is always less than R/λ or 1, whichever is smaller. Far fields can be represented as sums of plane parallel, transversely polarized waves that travel at the velocity of light. A single such wave in a vacuum cannot give continuous acceleration, and it is shown that no sums of such waves can give net first order acceleration. This theorem is proven in three different ways; each method showing a different aspect of the situation

  11. The quantitative Morse theorem

    Loi, Ta Le; Phien, Phan

    2013-01-01

    In this paper, we give a proof of the quantitative Morse theorem stated by {Y. Yomdin} in \\cite{Y1}. The proof is based on the quantitative Sard theorem, the quantitative inverse function theorem and the quantitative Morse lemma.

  12. Helmholtz bright and boundary solitons

    Christian, J M [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P [Departmento de TeorIa de la Senal y Comunicaciones e IngenierIa Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2007-02-16

    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts.

  13. Helmholtz bright and boundary solitons

    Christian, J M; McDonald, G S; Chamorro-Posada, P

    2007-01-01

    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts

  14. The Levinson theorem

    Ma Zhongqi

    2006-01-01

    The Levinson theorem is a fundamental theorem in quantum scattering theory, which shows the relation between the number of bound states and the phase shift at zero momentum for the Schroedinger equation. The Levinson theorem was established and developed mainly with the Jost function, with the Green function and with the Sturm-Liouville theorem. In this review, we compare three methods of proof, study the conditions of the potential for the Levinson theorem and generalize it to the Dirac equation. The method with the Sturm-Liouville theorem is explained in some detail. References to development and application of the Levinson theorem are introduced. (topical review)

  15. Fermat's Last Theorem A Theorem at Last!

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 1. Fermat's Last Theorem A Theorem at Last! C S Yogananda. General Article Volume 1 Issue 1 January 1996 pp 71-79. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/001/01/0071-0079 ...

  16. Gap and density theorems

    Levinson, N

    1940-01-01

    A typical gap theorem of the type discussed in the book deals with a set of exponential functions { \\{e^{{{i\\lambda}_n} x}\\} } on an interval of the real line and explores the conditions under which this set generates the entire L_2 space on this interval. A typical gap theorem deals with functions f on the real line such that many Fourier coefficients of f vanish. The main goal of this book is to investigate relations between density and gap theorems and to study various cases where these theorems hold. The author also shows that density- and gap-type theorems are related to various propertie

  17. Helmholtz's Kant revisited (Once more). The all-pervasive nature of Helmholtz's struggle with Kant's Anschauung.

    De Kock, Liesbet

    2016-04-01

    In this analysis, the classical problem of Hermann von Helmholtz's (1821-1894) Kantianism is explored from a particular vantage point, that to my knowledge, has not received the attention it deserves notwithstanding its possible key role in disentangling Helmholtz's relation to Kant's critical project. More particularly, we will focus on Helmholtz's critical engagement with Kant's concept of intuition [Anschauung] and (the related issue of) his dissatisfaction with Kant's doctrinal dualism. In doing so, it soon becomes clear that both (i) crucially mediated Helmholtz's idiosyncratic appropriation and criticism of (certain aspects of) Kant's critical project, and (ii) can be considered as a common denominator in a variety of issues that are usually addressed separately under the general header of (the problem of) Helmholtz's Kantianism. The perspective offered in this analysis can not only shed interesting new light on some interpretive issues that have become commonplace in discussions on Helmholtz's Kantianism, but also offers a particular way of connecting seemingly unrelated dimensions of Helmholtz's engagement with Kant's critical project (e.g. Helmholtz's views on causality and space). Furthermore, it amounts to the rather surprising conclusion that Helmholtz's most drastic revision of Kant's project pertains to his assumption of free will as a formal condition of experience and knowledge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The Patchwork Divergence Theorem

    Dray, Tevian; Hellaby, Charles

    1994-01-01

    The divergence theorem in its usual form applies only to suitably smooth vector fields. For vector fields which are merely piecewise smooth, as is natural at a boundary between regions with different physical properties, one must patch together the divergence theorem applied separately in each region. We give an elegant derivation of the resulting "patchwork divergence theorem" which is independent of the metric signature in either region, and which is thus valid if the signature changes. (PA...

  19. Extraordinary acoustic transmission mediated by Helmholtz resonators

    Vijay Koju

    2014-07-01

    Full Text Available We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of the necks. Further, we show that the transmitted sound experiences a continuous phase transition of π radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.

  20. Kelvin-Helmholtz instability in solar spicules

    H Ebadi

    2016-12-01

    Full Text Available Magneto hydrodynamic waves, propagating along spicules, may become unstable and the expected instability is of Kelvin-Helmholtz type. Such instability can trigger the onset of wave turbulence leading to an effective plasma heating and particle acceleration. In present study, two-dimensional magneto hydrodynamic simulations performed on a Cartesian grid is presented in spicules with different densities, moving at various speeds depending on their environment. Simulations being applied in this study show the onset of Kelvin-Helmholtz type instability and transition to turbulent flow in spicules. Development of Kelvin-Helmholtz instability leads to momentum and energy transport, dissipation, and mixing of fluids. When magnetic fields are involved, field amplification is also possible to take place

  1. Helmholtz and the psychophysiology of time.

    Debru, C

    2001-09-01

    After having measured the velocity of the nervous impulse in the 1850s, Helmholtz began doing research on the temporal dimensions of visual perception. Experiments dealing with the velocity of propagation in nerves (as well as with aspects of perception) were carried out occasionally for some fifteen years until their final publication in 1871. Although the temporal dimension of perception seems to have interested Helmholtz less than problems of geometry and space, his experiments on the time of perception were technically rather subtle and seminal, especially compared with experiments performed by his contemporaries, such as Sigmund Exner, William James, Rudolf Hermann Lotze, Ernst Mach, Wilhelm Volkmann, and Wilhelm Wundt. Helmholtz's conception of the temporal aspects of perception reflects the continuity that holds between psychophysiological research and the Kantian philosophical background.

  2. On Helmholtz Problem for Plane Periodical Structures

    Akishin, P.G.; Vinitskij, S.I.

    1994-01-01

    The plane Helmholtz problem of the periodical disc structures with the phase shifts conditions of the solutions along the basis lattice vectors and the Dirichlet conditions on the basic boundaries is considered. The Green function satisfying the quasi periodical conditions on the lattice is constructed. The Helmholtz problem is reduced to the boundary integral equations for the simple layer potentials of this Green function. The methods of the discretization of the arising integral equations are proposed. The procedures of calculation of the matrix elements are discussed. The reality of the spectral parameter of the nonlinear continuous and discretized problems is shown. 8 refs., 2 figs

  3. Preserving the Helmholtz dispersion relation: One-way acoustic wave propagation using matrix square roots

    Keefe, Laurence

    2016-11-01

    Parabolized acoustic propagation in transversely inhomogeneous media is described by the operator update equation U (x , y , z + Δz) =eik0 (- 1 +√{ 1 + Z }) U (x , y , z) for evolution of the envelope of a wavetrain solution to the original Helmholtz equation. Here the operator, Z =∇T2 + (n2 - 1) , involves the transverse Laplacian and the refractive index distribution. Standard expansion techniques (on the assumption Z << 1)) produce pdes that approximate, to greater or lesser extent, the full dispersion relation of the original Helmholtz equation, except that none of them describe evanescent/damped waves without special modifications to the expansion coefficients. Alternatively, a discretization of both the envelope and the operator converts the operator update equation into a matrix multiply, and existing theorems on matrix functions demonstrate that the complete (discrete) Helmholtz dispersion relation, including evanescent/damped waves, is preserved by this discretization. Propagation-constant/damping-rates contour comparisons for the operator equation and various approximations demonstrate this point, and how poorly the lowest-order, textbook, parabolized equation describes propagation in lined ducts.

  4. The relativistic virial theorem

    Lucha, W.; Schoeberl, F.F.

    1989-11-01

    The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)

  5. Wigner's Symmetry Representation Theorem

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Wigner's Symmetry Representation Theorem: At the Heart of Quantum Field Theory! Aritra Kr Mukhopadhyay. General Article Volume 19 Issue 10 October 2014 pp 900-916 ...

  6. Nonextensive Pythagoras' Theorem

    Dukkipati, Ambedkar

    2006-01-01

    Kullback-Leibler relative-entropy, in cases involving distributions resulting from relative-entropy minimization, has a celebrated property reminiscent of squared Euclidean distance: it satisfies an analogue of the Pythagoras' theorem. And hence, this property is referred to as Pythagoras' theorem of relative-entropy minimization or triangle equality and plays a fundamental role in geometrical approaches of statistical estimation theory like information geometry. Equvalent of Pythagoras' theo...

  7. Some approximation theorems

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. The general theme of this note is illustrated by the following theorem: Theorem 1. Suppose K is a compact set in the complex plane and 0 belongs to the boundary ∂K. Let A(K) denote the space of all functions f on K such that f is holo- morphic in a neighborhood of K and f(0) = 0. Also for any given positive integer ...

  8. The Helmholtz legacy in physiological acoustics

    Hiebert, Erwin

    2014-01-01

    This book explores the interactions between science and music in the late nineteenth- and early twentieth century. It examines and evaluates the work of Hermann von Helmholtz, Max Planck, Shohe Tanaka, and Adriaan Fokker, leading physicists and physiologists who were committed to understanding crucial aesthetic components of the art of music, including the standardization of pitch and the implementation of various types of intonations. With a mixture of physics, physiology, and aesthetics, author Erwin Hiebert addresses throughout the book how just intonation came to intersect with the history of keyboard instruments and exert an influence on the development of Western music. He begins with the work of Hermann von Helmholtz, a leading nineteenth-century physicist and physiologist who not only made important contributions in vision, optics, electrodynamics and thermodynamics, but also helped advanced the field of music theory as well. The author traces the Helmholtzian trends of thought that become inherently ...

  9. Capillary and viscous perturbations to Helmholtz flows

    Moore, M. R.; Ockendon, H.; Ockendon, J. R.; Oliver, J. M.

    2014-01-01

    Inspired by recent calculations by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, p. 264506) relating to droplet impact, this paper presents an analysis of the perturbations to the free surface caused by small surface tension and viscosity in steady Helmholtz flows. In particular, we identify the regimes in which appreciable vorticity can be shed from the boundary layer to the bulk flow. © 2014 Cambridge University Press.

  10. Capillary and viscous perturbations to Helmholtz flows

    Moore, M. R.

    2014-02-21

    Inspired by recent calculations by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, p. 264506) relating to droplet impact, this paper presents an analysis of the perturbations to the free surface caused by small surface tension and viscosity in steady Helmholtz flows. In particular, we identify the regimes in which appreciable vorticity can be shed from the boundary layer to the bulk flow. © 2014 Cambridge University Press.

  11. Complex proofs of real theorems

    Lax, Peter D

    2011-01-01

    Complex Proofs of Real Theorems is an extended meditation on Hadamard's famous dictum, "The shortest and best way between two truths of the real domain often passes through the imaginary one." Directed at an audience acquainted with analysis at the first year graduate level, it aims at illustrating how complex variables can be used to provide quick and efficient proofs of a wide variety of important results in such areas of analysis as approximation theory, operator theory, harmonic analysis, and complex dynamics. Topics discussed include weighted approximation on the line, Müntz's theorem, Toeplitz operators, Beurling's theorem on the invariant spaces of the shift operator, prediction theory, the Riesz convexity theorem, the Paley-Wiener theorem, the Titchmarsh convolution theorem, the Gleason-Kahane-Żelazko theorem, and the Fatou-Julia-Baker theorem. The discussion begins with the world's shortest proof of the fundamental theorem of algebra and concludes with Newman's almost effortless proof of the prime ...

  12. Definable davies' theorem

    Törnquist, Asger Dag; Weiss, W.

    2009-01-01

    We prove the following descriptive set-theoretic analogue of a theorem of R. 0. Davies: Every σ function f:ℝ × ℝ → ℝ can be represented as a sum of rectangular Σ functions if and only if all reals are constructible.......We prove the following descriptive set-theoretic analogue of a theorem of R. 0. Davies: Every σ function f:ℝ × ℝ → ℝ can be represented as a sum of rectangular Σ functions if and only if all reals are constructible....

  13. Converse Barrier Certificate Theorem

    Wisniewski, Rafael; Sloth, Christoffer

    2013-01-01

    This paper presents a converse barrier certificate theorem for a generic dynamical system.We show that a barrier certificate exists for any safe dynamical system defined on a compact manifold. Other authors have developed a related result, by assuming that the dynamical system has no singular...... points in the considered subset of the state space. In this paper, we redefine the standard notion of safety to comply with generic dynamical systems with multiple singularities. Afterwards, we prove the converse barrier certificate theorem and illustrate the differences between ours and previous work...

  14. The Fluctuation Theorem and Dissipation Theorem for Poiseuille Flow

    Brookes, Sarah J; Reid, James C; Evans, Denis J; Searles, Debra J

    2011-01-01

    The fluctuation theorem and the dissipation theorem provide relationships to describe nonequilibrium systems arbitrarily far from, or close to equilibrium. They both rely on definition of a central property, the dissipation function. In this manuscript we apply these theorems to examine a boundary thermostatted system undergoing Poiseuille flow. The relationships are verified computationally and show that the dissipation theorem is potentially useful for study of boundary thermostatted systems consisting of complex molecules undergoing flow in the nonlinear regime.

  15. Gödel's Theorem

    Dalen, D. van

    The following pages make form a new chapter for the book Logic and Structure. This chapter deals with the incompleteness theorem, and contains enough basic material for the treatment of the required notions of computability, representability and the like. This chapter will appear in the next

  16. Cantor's Little Theorem

    eralizing the method of proof of the well known. Cantor's ... Godel's first incompleteness theorem is proved. ... that the number of elements in any finite set is a natural number. ..... proof also has a Godel number; of course, you have to fix.

  17. The Pythagoras' Theorem

    Saikia, Manjil P.

    2013-01-01

    We give a brief historical overview of the famous Pythagoras' theorem and Pythagoras. We present a simple proof of the result and dicsuss some extensions. We follow \\cite{thales}, \\cite{wiki} and \\cite{wiki2} for the historical comments and sources.

  18. Converse Barrier Certificate Theorems

    Wisniewski, Rafael; Sloth, Christoffer

    2016-01-01

    This paper shows that a barrier certificate exists for any safe dynamical system. Specifically, we prove converse barrier certificate theorems for a class of structurally stable dynamical systems. Other authors have developed a related result by assuming that the dynamical system has neither...

  19. Generalized optical theorems

    Cahill, K.

    1975-11-01

    Local field theory is used to derive formulas that express certain boundary values of the N-point function as sums of products of scattering amplitudes. These formulas constitute a generalization of the optical theorem and facilitate the analysis of multiparticle scattering functions [fr

  20. Novel Hyperbolic Homoclinic Solutions of the Helmholtz-Duffing Oscillators

    Yang-Yang Chen

    2016-01-01

    Full Text Available The exact and explicit homoclinic solution of the undamped Helmholtz-Duffing oscillator is derived by a presented hyperbolic function balance procedure. The homoclinic solution of the self-excited Helmholtz-Duffing oscillator can also be obtained by an extended hyperbolic perturbation method. The application of the present homoclinic solutions to the chaos prediction of the nonautonomous Helmholtz-Duffing oscillator is performed. Effectiveness and advantage of the present solutions are shown by comparisons.

  1. Virial theorem and hypervirial theorem in a spherical geometry

    Li Yan; Chen Jingling; Zhang Fulin

    2011-01-01

    The virial theorem in the one- and two-dimensional spherical geometry are presented in both classical and quantum mechanics. Choosing a special class of hypervirial operators, the quantum hypervirial relations in the spherical spaces are obtained. With the aid of the Hellmann-Feynman theorem, these relations can be used to formulate a perturbation theorem without wavefunctions, corresponding to the hypervirial-Hellmann-Feynman theorem perturbation theorem of Euclidean geometry. The one-dimensional harmonic oscillator and two-dimensional Coulomb system in the spherical spaces are given as two sample examples to illustrate the perturbation method. (paper)

  2. Discovering the Theorem of Pythagoras

    Lattanzio, Robert (Editor)

    1988-01-01

    In this 'Project Mathematics! series, sponsored by the California Institute of Technology, Pythagoraus' theorem a(exp 2) + b(exp 2) = c(exp 2) is discussed and the history behind this theorem is explained. hrough live film footage and computer animation, applications in real life are presented and the significance of and uses for this theorem are put into practice.

  3. The equivalence theorem

    Veltman, H.

    1990-01-01

    The equivalence theorem states that, at an energy E much larger than the vector-boson mass M, the leading order of the amplitude with longitudinally polarized vector bosons on mass shell is given by the amplitude in which these vector bosons are replaced by the corresponding Higgs ghosts. We prove the equivalence theorem and show its validity in every order in perturbation theory. We first derive the renormalized Ward identities by using the diagrammatic method. Only the Feynman-- 't Hooft gauge is discussed. The last step of the proof includes the power-counting method evaluated in the large-Higgs-boson-mass limit, needed to estimate the leading energy behavior of the amplitudes involved. We derive expressions for the amplitudes involving longitudinally polarized vector bosons for all orders in perturbation theory. The fermion mass has not been neglected and everything is evaluated in the region m f ∼M much-lt E much-lt m Higgs

  4. Fully Quantum Fluctuation Theorems

    Åberg, Johan

    2018-02-01

    Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce "conditional" fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.

  5. Multivariable Chinese Remainder Theorem

    IAS Admin

    to sleep. The 3rd thief wakes up and finds the rest of the coins make 7 equal piles excepting a coin which he pockets. If the total number of coins they stole is not more than 200, what is the exact number? With a bit of hit and miss, one can find that 157 is a possible number. The Chinese remainder theorem gives a systematic ...

  6. CFD simulation of Kelvin-Helmholtz instability

    Strubelj, L.; Tiselj, I.

    2005-01-01

    Kelvin-Helmholtz instability appears in stratified two-fluid flow at surface. When the relative velocity is higher than the critical relative velocity, the growth of waves occurs. The experiment of Thorpe [1] used as a benchmark in the present paper, is made in a rectangular glass tube filled with two immiscible fluids of various densities. We simulated the growth of instability with CFX-5.7 code and compared simulation with analytical solution. It was found that surface tension force, which stabilizes growth of waves, actually has a destabilizing effect in simulation, unless very small timestep and residual is used. In CFX code system of nonlinear Navier-Stokes equations is linearised and solved iterative in each timestep, until prescribed residual is achieved. On the other hand, simulation without surface tension force is more stable than analytical result predicts. (author)

  7. Characterizing permanent magnet blocks with Helmholtz coils

    Carnegie, D. W.; Timpf, J.

    1992-08-01

    Most of the insertion devices to be installed at the Advanced Photon Source will utilize permanent magnets in their magnetic structures. The quality of the spectral output is sensitive to the errors in the field of the device which are related to variations in the magnetic properties of the individual blocks. The Advanced Photon Source will have a measurement facility to map the field in the completed insertion devices and equipment to test and modify the magnetic strength of the individual magnet blocks. One component of the facility, the Helmholtz coil permanent magnet block measurement system, has been assembled and tested. This system measures the total magnetic moment vector of a block with a precision better than 0.01% and a directional resolution of about 0.05°. The design and performance of the system will be presented.

  8. Goedel's theorem and leapfrog

    Lloyd, Mark Anthony

    1999-01-01

    We in the nuclear power industry consider ourselves to be at the forefront of civilised progress. Yet, all too often, even we ourselves don't believe our public relations statements about nuclear power. Why is this? Let us approach the question by considering Godel's Theorem. Godel's Theorem is extremely complicated mathematically, but for our purposes can be simplified to the maxim that one cannot validate a system from within that system. Scientists, especially those in the fields of astronomy and nuclear physics, have long realised the implications of Godel's Theorem. The people to whom we must communicate look to us, who officially know everything about our industry, to comfort and reassure them. And we forget that we can only comfort them by addressing their emotional needs, not by demonstrating our chilling o bjectivity . Let us try something completely new in communication. Instead of looking for incremental rules which will help us marginally differentiate the way we communicate about minor or major incidents, let us leapfrog across 'objectivity' to meaning and relevance. If we truly believe that nuclear energy is a good thing, this leap should not be difficult. Finally, if we as communicators are not prepared to be meaningful and relevant - not prepared to leapfrog beyond weasel terms like 'minor incident' - what does that say about the kinds of people we believe the nuclear community to be? Are nuclear people a group apart, divisible from the rest of the human race by their evil? In fact the nuclear community is a living, laughing, normal part of a whole society; and is moreover a good contributor to the technological progress that society demands. When we ourselves recognise this, we will start to communicate nuclear issues in the same language as the rest of society. We will start to speak plainly and convincingly, and our conviction will leapfrog our audience into being able to believe us

  9. Topological interpretation of Luttinger theorem

    Seki, Kazuhiro; Yunoki, Seiji

    2017-01-01

    Based solely on the analytical properties of the single-particle Green's function of fermions at finite temperatures, we show that the generalized Luttinger theorem inherently possesses topological aspects. The topological interpretation of the generalized Luttinger theorem can be introduced because i) the Luttinger volume is represented as the winding number of the single-particle Green's function and thus ii) the deviation of the theorem, expressed with a ratio between the interacting and n...

  10. Bertrand's theorem and virial theorem in fractional classical mechanics

    Yu, Rui-Yan; Wang, Towe

    2017-09-01

    Fractional classical mechanics is the classical counterpart of fractional quantum mechanics. The central force problem in this theory is investigated. Bertrand's theorem is generalized, and virial theorem is revisited, both in three spatial dimensions. In order to produce stable, closed, non-circular orbits, the inverse-square law and the Hooke's law should be modified in fractional classical mechanics.

  11. The Non-Signalling theorem in generalizations of Bell's theorem

    Walleczek, J.; Grössing, G.

    2014-04-01

    Does "epistemic non-signalling" ensure the peaceful coexistence of special relativity and quantum nonlocality? The possibility of an affirmative answer is of great importance to deterministic approaches to quantum mechanics given recent developments towards generalizations of Bell's theorem. By generalizations of Bell's theorem we here mean efforts that seek to demonstrate the impossibility of any deterministic theories to obey the predictions of Bell's theorem, including not only local hidden-variables theories (LHVTs) but, critically, of nonlocal hidden-variables theories (NHVTs) also, such as de Broglie-Bohm theory. Naturally, in light of the well-established experimental findings from quantum physics, whether or not a deterministic approach to quantum mechanics, including an emergent quantum mechanics, is logically possible, depends on compatibility with the predictions of Bell's theorem. With respect to deterministic NHVTs, recent attempts to generalize Bell's theorem have claimed the impossibility of any such approaches to quantum mechanics. The present work offers arguments showing why such efforts towards generalization may fall short of their stated goal. In particular, we challenge the validity of the use of the non-signalling theorem as a conclusive argument in favor of the existence of free randomness, and therefore reject the use of the non-signalling theorem as an argument against the logical possibility of deterministic approaches. We here offer two distinct counter-arguments in support of the possibility of deterministic NHVTs: one argument exposes the circularity of the reasoning which is employed in recent claims, and a second argument is based on the inconclusive metaphysical status of the non-signalling theorem itself. We proceed by presenting an entirely informal treatment of key physical and metaphysical assumptions, and of their interrelationship, in attempts seeking to generalize Bell's theorem on the basis of an ontic, foundational

  12. Morley’s Trisector Theorem

    Coghetto Roland

    2015-06-01

    Full Text Available Morley’s trisector theorem states that “The points of intersection of the adjacent trisectors of the angles of any triangle are the vertices of an equilateral triangle” [10]. There are many proofs of Morley’s trisector theorem [12, 16, 9, 13, 8, 20, 3, 18]. We follow the proof given by A. Letac in [15].

  13. Geometry of the Adiabatic Theorem

    Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas

    2012-01-01

    We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…

  14. Iterative solution of the Helmholtz equation

    Larsson, E.; Otto, K. [Uppsala Univ. (Sweden)

    1996-12-31

    We have shown that the numerical solution of the two-dimensional Helmholtz equation can be obtained in a very efficient way by using a preconditioned iterative method. We discretize the equation with second-order accurate finite difference operators and take special care to obtain non-reflecting boundary conditions. We solve the large, sparse system of equations that arises with the preconditioned restarted GMRES iteration. The preconditioner is of {open_quotes}fast Poisson type{close_quotes}, and is derived as a direct solver for a modified PDE problem.The arithmetic complexity for the preconditioner is O(n log{sub 2} n), where n is the number of grid points. As a test problem we use the propagation of sound waves in water in a duct with curved bottom. Numerical experiments show that the preconditioned iterative method is very efficient for this type of problem. The convergence rate does not decrease dramatically when the frequency increases. Compared to banded Gaussian elimination, which is a standard solution method for this type of problems, the iterative method shows significant gain in both storage requirement and arithmetic complexity. Furthermore, the relative gain increases when the frequency increases.

  15. A Decomposition Theorem for Finite Automata.

    Santa Coloma, Teresa L.; Tucci, Ralph P.

    1990-01-01

    Described is automata theory which is a branch of theoretical computer science. A decomposition theorem is presented that is easier than the Krohn-Rhodes theorem. Included are the definitions, the theorem, and a proof. (KR)

  16. The Helmholtz Hierarchy: Phase Space Statistics of Cold Dark Matter

    Tassev, Svetlin

    2010-01-01

    We present a new formalism to study large-scale structure in the universe. The result is a hierarchy (which we call the "Helmholtz Hierarchy") of equations describing the phase space statistics of cold dark matter (CDM). The hierarchy features a physical ordering parameter which interpolates between the Zel'dovich approximation and fully-fledged gravitational interactions. The results incorporate the effects of stream crossing. We show that the Helmholtz hierarchy is self-consistent and obeys...

  17. Simulation of Helmholtz Resonance Effects in Aircraft ECS

    Pollok, Alexander; Schröffer, Andreas

    2017-01-01

    Helmholtz resonators are closed volumes that are connected to pipes. They exhibit a pronounced resonance frequency, where small boundary pressure excitations in the volume or the environment lead to large mass flow excitations in the pipe. Aircraft have a topology similar to Helmholtz resonators, the closed volume is represented by the cabin, while the pipe is represented by the Environmental Control System. Some discrepancies appear due to the non-zero mass-flow or friction effects in...

  18. Experimental realization of extraordinary acoustic transmission using Helmholtz resonators

    Brian C. Crow

    2015-02-01

    Full Text Available The phenomenon of extraordinary acoustic transmission through a solid barrier with an embedded Helmholtz resonator (HR is demonstrated. The Helmholtz resonator consists of an embedded cavity and two necks that protrude, one on each side of the barrier. Extraordinary transmission occurs for a narrow spectral range encompassing the resonant frequency of the Helmholtz resonator. We show that an amplitude transmission of 97.5% is achieved through a resonator whose neck creates an open area of 6.25% of the total barrier area. In addition to the enhanced transmission, we show that there is a smooth, continuous phase transition in the transmitted sound as a function of frequency. The frequency dependent phase transition is used to experimentally realize slow wave propagation for a narrow-band Gaussian wave packet centered at the maximum transmission frequency. The use of parallel pairs of Helmholtz resonators tuned to different resonant frequencies is experimentally explored as a means of increasing the transmission bandwidth. These experiments show that because of the phase transition, there is always a frequency between the two Helmholtz resonant frequencies at which destructive interference occurs whether the resonances are close or far apart. Finally, we explain how the phase transition associated with Helmholtz-resonator-mediated extraordinary acoustic transmission can be exploited to produce diffractive acoustic components including sub-wavelength thickness acoustic lenses.

  19. MVT a most valuable theorem

    Smorynski, Craig

    2017-01-01

    This book is about the rise and supposed fall of the mean value theorem. It discusses the evolution of the theorem and the concepts behind it, how the theorem relates to other fundamental results in calculus, and modern re-evaluations of its role in the standard calculus course. The mean value theorem is one of the central results of calculus. It was called “the fundamental theorem of the differential calculus” because of its power to provide simple and rigorous proofs of basic results encountered in a first-year course in calculus. In mathematical terms, the book is a thorough treatment of this theorem and some related results in the field; in historical terms, it is not a history of calculus or mathematics, but a case study in both. MVT: A Most Valuable Theorem is aimed at those who teach calculus, especially those setting out to do so for the first time. It is also accessible to anyone who has finished the first semester of the standard course in the subject and will be of interest to undergraduate mat...

  20. Studies on Bell's theorem

    Guney, Veli Ugur

    In this work we look for novel classes of Bell's inequalities and methods to produce them. We also find their quantum violations including, if possible, the maximum one. The Jordan bases method that we explain in Chapter 2 is about using a pair of certain type of orthonormal bases whose spans are subspaces related to measurement outcomes of incompatible quantities on the same physical system. Jordan vectors are the briefest way of expressing the relative orientation of any two subspaces. This feature helps us to reduce the dimensionality of the parameter space on which we do searches for optimization. The work is published in [24]. In Chapter 3, we attempt to find a connection between group theory and Bell's theorem. We devise a way of generating terms of a Bell's inequality that are related to elements of an algebraic group. The same group generates both the terms of the Bell's inequality and the observables that are used to calculate the quantum value of the Bell expression. Our results are published in [25][26]. In brief, Bell's theorem is the main tool of a research program that was started by Einstein, Podolsky, Rosen [19] and Bohr [8] in the early days of quantum mechanics in their discussions about the core nature of physical systems. These debates were about a novel type of physical states called superposition states, which are introduced by quantum mechanics and manifested in the apparent inevitable randomness in measurement outcomes of identically prepared systems. Bell's huge contribution was to find a means of quantifying the problem and hence of opening the way to experimental verification by rephrasing the questions as limits on certain combinations of correlations between measurement results of spatially separate systems [7]. Thanks to Bell, the fundamental questions related to the nature of quantum mechanical systems became quantifiable [6]. According to Bell's theorem, some correlations between quantum entangled systems that involve incompatible

  1. Application of the Banach Fixed-Point Theorem to the Scattering Problem at a Nonlinear Three-Layer Structure with Absorption

    V. S. Serov

    2010-01-01

    Full Text Available A method based on the Banach fixed-point theorem is proposed for obtaining certain solutions (TE-polarized electromagnetic waves of the Helmholtz equation describing the reflection and transmission of a plane monochromatic wave at a nonlinear lossy dielectric film situated between two lossless linear semiinfinite media. All three media are assumed to be nonmagnetic and isotropic. The permittivity of the film is modelled by a continuously differentiable function of the transverse coordinate with a saturating Kerr nonlinearity. It is shown that the solution of the Helmholtz equation exists in form of a uniformly convergent sequence of iterations of the equivalent Volterra integral equation. Numerical results are presented.

  2. Strong versions of Bell's theorem

    Stapp, H.P.

    1994-01-01

    Technical aspects of a recently constructed strong version of Bell's theorem are discussed. The theorem assumes neither hidden variables nor factorization, and neither determinism nor counterfactual definiteness. It deals directly with logical connections. Hence its relationship with modal logic needs to be described. It is shown that the proof can be embedded in an orthodox modal logic, and hence its compatibility with modal logic assured, but that this embedding weakens the theorem by introducing as added assumptions the conventionalities of the particular modal logic that is adopted. This weakening is avoided in the recent proof by using directly the set-theoretic conditions entailed by the locality assumption

  3. Green's theorem and Gorenstein sequences

    Ahn, Jeaman; Migliore, Juan C.; Shin, Yong-Su

    2016-01-01

    We study consequences, for a standard graded algebra, of extremal behavior in Green's Hyperplane Restriction Theorem. First, we extend his Theorem 4 from the case of a plane curve to the case of a hypersurface in a linear space. Second, assuming a certain Lefschetz condition, we give a connection to extremal behavior in Macaulay's theorem. We apply these results to show that $(1,19,17,19,1)$ is not a Gorenstein sequence, and as a result we classify the sequences of the form $(1,a,a-2,a,1)$ th...

  4. -Dimensional Fractional Lagrange's Inversion Theorem

    F. A. Abd El-Salam

    2013-01-01

    Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.

  5. Complex integration and Cauchy's theorem

    Watson, GN

    2012-01-01

    This brief monograph by one of the great mathematicians of the early twentieth century offers a single-volume compilation of propositions employed in proofs of Cauchy's theorem. Developing an arithmetical basis that avoids geometrical intuitions, Watson also provides a brief account of the various applications of the theorem to the evaluation of definite integrals.Author G. N. Watson begins by reviewing various propositions of Poincaré's Analysis Situs, upon which proof of the theorem's most general form depends. Subsequent chapters examine the calculus of residues, calculus optimization, the

  6. The Levy sections theorem revisited

    Figueiredo, Annibal; Gleria, Iram; Matsushita, Raul; Silva, Sergio Da

    2007-01-01

    This paper revisits the Levy sections theorem. We extend the scope of the theorem to time series and apply it to historical daily returns of selected dollar exchange rates. The elevated kurtosis usually observed in such series is then explained by their volatility patterns. And the duration of exchange rate pegs explains the extra elevated kurtosis in the exchange rates of emerging markets. In the end, our extension of the theorem provides an approach that is simpler than the more common explicit modelling of fat tails and dependence. Our main purpose is to build up a technique based on the sections that allows one to artificially remove the fat tails and dependence present in a data set. By analysing data through the lenses of the Levy sections theorem one can find common patterns in otherwise very different data sets

  7. Keller’s theorem revisited

    Ortiz, Guillermo P.; Mochán, W. Luis

    2018-02-01

    Keller’s theorem relates the components of the macroscopic dielectric response of a binary two-dimensional composite system with those of the reciprocal system obtained by interchanging its components. We present a derivation of the theorem that, unlike previous ones, does not employ the common assumption that the response function relates an irrotational to a solenoidal field and that is valid for dispersive and dissipative anisotropic systems. We show that the usual statement of Keller’s theorem in terms of the conductivity is strictly valid only at zero frequency and we obtain a new generalization for finite frequencies. We develop applications of the theorem to the study of the optical properties of systems such as superlattices, 2D isotropic and anisotropic metamaterials and random media, to test the accuracy of theories and computational schemes, and to increase the accuracy of approximate calculations.

  8. The Levy sections theorem revisited

    Figueiredo, Annibal; Gleria, Iram; Matsushita, Raul; Da Silva, Sergio

    2007-06-01

    This paper revisits the Levy sections theorem. We extend the scope of the theorem to time series and apply it to historical daily returns of selected dollar exchange rates. The elevated kurtosis usually observed in such series is then explained by their volatility patterns. And the duration of exchange rate pegs explains the extra elevated kurtosis in the exchange rates of emerging markets. In the end, our extension of the theorem provides an approach that is simpler than the more common explicit modelling of fat tails and dependence. Our main purpose is to build up a technique based on the sections that allows one to artificially remove the fat tails and dependence present in a data set. By analysing data through the lenses of the Levy sections theorem one can find common patterns in otherwise very different data sets.

  9. Adiabatic theorem and spectral concentration

    Nenciu, G.

    1981-01-01

    The spectral concentration of arbitrary order, for the Stark effect is proved to exist for a large class of Hamiltonians appearing in nonrelativistic and relativistic quantum mechanics. The results are consequences of an abstract theorem about the spectral concentration for self-ad oint operators. A general form of the adiabatic theorem of quantum mechanics, generalizing an earlier result of the author as well as some results of Lenard, is also proved [ru

  10. Numerical solution of the helmholtz equation for the superellipsoid via the galerkin method

    Hy Dinh

    2013-01-01

    Full Text Available The objective of this work was to find the numerical solution of the Dirichlet problem for the Helmholtz equation for a smooth superellipsoid. The superellipsoid is a shape that is controlled by two parameters. There are some numerical issues in this type of an analysis; any integration method is affected by the wave number k, because of the oscillatory behavior of the fundamental solution. In this case we could only obtain good numerical results for super ellipsoids that were more shaped like super cones, which is a narrow range of super ellipsoids. The formula for these shapes was: $x=cos(xsin(y^{n},y=sin(xsin(y^{n},z=cos(y$ where $n$ varied from 0.5 to 4. The Helmholtz equation, which is the modified wave equation, is used in many scattering problems. This project was funded by NASA RI Space Grant for testing of the Dirichlet boundary condition for the shape of the superellipsoid. One practical value of all these computations can be getting a shape for the engine nacelles in a ray tracing the space shuttle. We are researching the feasibility of obtaining good convergence results for the superellipsoid surface. It was our view that smaller and lighter wave numbers would reduce computational costs associated with obtaining Galerkin coefficients. In addition, we hoped to significantly reduce the number of terms in the infinite series needed to modify the original integral equation, all of which were achieved in the analysis of the superellipsoid in a finite range. We used the Green's theorem to solve the integral equation for the boundary of the surface. Previously, multiple surfaces were used to test this method, such as the sphere, ellipsoid, and perturbation of the sphere, pseudosphere and the oval of Cassini Lin and Warnapala , Warnapala and Morgan .

  11. Generalized Dandelin’s Theorem

    Kheyfets, A. L.

    2017-11-01

    The paper gives a geometric proof of the theorem which states that in case of the plane section of a second-order surface of rotation (quadrics of rotation, QR), such conics as an ellipse, a hyperbola or a parabola (types of conic sections) are formed. The theorem supplements the well-known Dandelin’s theorem which gives the geometric proof only for a circular cone and applies the proof to all QR, namely an ellipsoid, a hyperboloid, a paraboloid and a cylinder. That’s why the considered theorem is known as the generalized Dandelin’s theorem (GDT). The GDT proof is based on a relatively unknown generalized directrix definition (GDD) of conics. The work outlines the GDD proof for all types of conics as their necessary and sufficient condition. Based on the GDD, the author proves the GDT for all QR in case of a random position of the cutting plane. The graphical stereometric structures necessary for the proof are given. The implementation of the structures by 3d computer methods is considered. The article shows the examples of the builds made in the AutoCAD package. The theorem is intended for the training course of theoretical training of elite student groups of architectural and construction specialties.

  12. The Second Noether Theorem on Time Scales

    Agnieszka B. Malinowska

    2013-01-01

    Full Text Available We extend the second Noether theorem to variational problems on time scales. As corollaries we obtain the classical second Noether theorem, the second Noether theorem for the h-calculus and the second Noether theorem for the q-calculus.

  13. Factor and Remainder Theorems: An Appreciation

    Weiss, Michael

    2016-01-01

    The high school curriculum sometimes seems like a disconnected collection of topics and techniques. Theorems like the factor theorem and the remainder theorem can play an important role as a conceptual "glue" that holds the curriculum together. These two theorems establish the connection between the factors of a polynomial, the solutions…

  14. Bistable dark solitons of a cubic-quintic Helmholtz equation

    Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.

    2010-01-01

    We provide a report on exact analytical bistable dark spatial solitons of a nonlinear Helmholtz equation with a cubic-quintic refractive-index model. Our analysis begins with an investigation of the modulational instability characteristics of Helmholtz plane waves. We then derive a dark soliton by mapping the desired asymptotic form onto a uniform background field and obtain a more general solution by deploying rotational invariance laws in the laboratory frame. The geometry of the new soliton is explored in detail, and a range of new physical predictions is uncovered. Particular attention is paid to the unified phenomena of arbitrary-angle off-axis propagation and nondegenerate bistability. Crucially, the corresponding solution of paraxial theory emerges in a simultaneous multiple limit. We conclude with a set of computer simulations that examine the role of Helmholtz dark solitons as robust attractors.

  15. The Helmholtz Hierarchy: phase space statistics of cold dark matter

    Tassev, Svetlin V.

    2011-01-01

    We present a new formalism to study large-scale structure in the universe. The result is a hierarchy (which we call the ''Helmholtz Hierarchy'') of equations describing the phase space statistics of cold dark matter (CDM). The hierarchy features a physical ordering parameter which interpolates between the Zel'dovich approximation and fully-fledged gravitational interactions. The results incorporate the effects of stream crossing. We show that the Helmholtz hierarchy is self-consistent and obeys causality to all orders. We present an interpretation of the hierarchy in terms of effective particle trajectories

  16. Helmholtz solitons in power-law optical materials

    Christian, J. M.; McDonald, G. S.; Potton, R. J.; Chamorro-Posada, P.

    2007-01-01

    A nonlinear Helmholtz equation for optical materials with regimes of power-law type of nonlinearity is proposed. This model captures the evolution of broad beams at any angle with respect to the reference direction in a wide range of media, including some semiconductors, doped glasses, and liquid crystals. Exact analytical soliton solutions are presented for a generic nonlinearity, within which known Kerr solitons comprise a subset. Three general conservation laws are also reported. Analysis and numerical simulations examine the stability of the Helmholtz power-law solitons. A propagation feature, associated with spatial solitons in power-law media, constituting a class of oscillatory solution, is identified

  17. Bistable Helmholtz solitons in cubic-quintic materials

    Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.

    2007-01-01

    We propose a nonlinear Helmholtz equation for modeling the evolution of broad optical beams in media with a cubic-quintic intensity-dependent refractive index. This type of nonlinearity is appropriate for some semiconductor materials, glasses, and polymers. Exact analytical soliton solutions are presented that describe self-trapped nonparaxial beams propagating at any angle with respect to the reference direction. These spatially symmetric solutions are, to the best of our knowledge, the first bistable Helmholtz solitons to be derived. Accompanying conservation laws (both integral and particular forms) are also reported. Numerical simulations investigate the stability of the solitons, which appear to be remarkably robust against perturbations

  18. Preservation theorems on finite structures

    Hebert, M.

    1994-09-01

    This paper concerns classical Preservation results applied to finite structures. We consider binary relations for which a strong form of preservation theorem (called strong interpolation) exists in the usual case. This includes most classical cases: embeddings, extensions, homomorphisms into and onto, sandwiches, etc. We establish necessary and sufficient syntactic conditions for the preservation theorems for sentences and for theories to hold in the restricted context of finite structures. We deduce that for all relations above, the restricted theorem for theories hold provided the language is finite. For the sentences the restricted version fails in most cases; in fact the ''homomorphism into'' case seems to be the only possible one, but the efforts to show that have failed. We hope our results may help to solve this frustrating problem; in the meantime, they are used to put a lower bound on the level of complexity of potential counterexamples. (author). 8 refs

  19. Green's Theorem for Sign Data

    Houston, Louis M.

    2012-01-01

    Sign data are the signs of signal added to noise. It is well known that a constant signal can be recovered from sign data. In this paper, we show that an integral over variant signal can be recovered from an integral over sign data based on the variant signal. We refer to this as a generalized sign data average. We use this result to derive a Green's theorem for sign data. Green's theorem is important to various seismic processing methods, including seismic migration. Results in this paper ge...

  20. Scale symmetry and virial theorem

    Westenholz, C. von

    1978-01-01

    Scale symmetry (or dilatation invariance) is discussed in terms of Noether's Theorem expressed in terms of a symmetry group action on phase space endowed with a symplectic structure. The conventional conceptual approach expressing invariance of some Hamiltonian under scale transformations is re-expressed in alternate form by infinitesimal automorphisms of the given symplectic structure. That is, the vector field representing scale transformations leaves the symplectic structure invariant. In this model, the conserved quantity or constant of motion related to scale symmetry is the virial. It is shown that the conventional virial theorem can be derived within this framework

  1. Nonperturbative Adler-Bardeen theorem

    Mastropietro, Vieri

    2007-01-01

    The Adler-Bardeen theorem has been proven only as a statement valid at all orders in perturbation theory, without any control on the convergence of the series. In this paper we prove a nonperturbative version of the Adler-Bardeen theorem in d=2 by using recently developed technical tools in the theory of Grassmann integration. The proof is based on the assumption that the boson propagator decays fast enough for large momenta. If the boson propagator does not decay, as for Thirring contact interactions, the anomaly in the WI (Ward Identities) is renormalized by higher order contributions

  2. An implicit finite-difference operator for the Helmholtz equation

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    We have developed an implicit finite-difference operator for the Laplacian and applied it to solving the Helmholtz equation for computing the seismic responses in the frequency domain. This implicit operator can greatly improve the accuracy of the simulation results without adding significant extra computational cost, compared with the corresponding conventional explicit finite-difference scheme. We achieved this by taking advantage of the inherently implicit nature of the Helmholtz equation and merging together the two linear systems: one from the implicit finite-difference discretization of the Laplacian and the other from the discretization of the Helmholtz equation itself. The end result of this simple yet important merging manipulation is a single linear system, similar to the one resulting from the conventional explicit finite-difference discretizations, without involving any differentiation matrix inversions. We analyzed grid dispersions of the discrete Helmholtz equation to show the accuracy of this implicit finite-difference operator and used two numerical examples to demonstrate its efficiency. Our method can be extended to solve other frequency domain wave simulation problems straightforwardly. © 2012 Society of Exploration Geophysicists.

  3. Reconstruction of extended sources for the Helmholtz equation

    Kress, Rainer; Rundell, William

    2013-01-01

    The basis of most imaging methods is to detect hidden obstacles or inclusions within a body when one can only make measurements on an exterior surface. Our underlying model is that of inverse acoustic scattering based on the Helmholtz equation. Our

  4. An implicit finite-difference operator for the Helmholtz equation

    Chu, Chunlei

    2012-07-01

    We have developed an implicit finite-difference operator for the Laplacian and applied it to solving the Helmholtz equation for computing the seismic responses in the frequency domain. This implicit operator can greatly improve the accuracy of the simulation results without adding significant extra computational cost, compared with the corresponding conventional explicit finite-difference scheme. We achieved this by taking advantage of the inherently implicit nature of the Helmholtz equation and merging together the two linear systems: one from the implicit finite-difference discretization of the Laplacian and the other from the discretization of the Helmholtz equation itself. The end result of this simple yet important merging manipulation is a single linear system, similar to the one resulting from the conventional explicit finite-difference discretizations, without involving any differentiation matrix inversions. We analyzed grid dispersions of the discrete Helmholtz equation to show the accuracy of this implicit finite-difference operator and used two numerical examples to demonstrate its efficiency. Our method can be extended to solve other frequency domain wave simulation problems straightforwardly. © 2012 Society of Exploration Geophysicists.

  5. Kolmogorov-Arnold-Moser Theorem

    system (not necessarily the 2-body system). Kolmogorov was the first to provide a solution to the above general problem in a theorem formulated in 1954 (see Suggested. Reading). However, he provided only an outline of the proof. The actual proof (with all the details) turned to be quite difficult and was provided by Arnold ...

  6. Dynamic Newton-Puiseux Theorem

    Mannaa, Bassel; Coquand, Thierry

    2013-01-01

    A constructive version of Newton-Puiseux theorem for computing the Puiseux expansions of algebraic curves is presented. The proof is based on a classical proof by Abhyankar. Algebraic numbers are evaluated dynamically; hence the base field need not be algebraically closed and a factorization...

  7. Opechowski's theorem and commutator groups

    Caride, A.O.; Zanette, S.I.

    1985-01-01

    It is shown that the conditions of application of Opechowski's theorem for double groups of subgroups of O(3) are directly associated to the structure of their commutator groups. Some characteristics of the structure of classes are also discussed. (Author) [pt

  8. Shell theorem for spontaneous emission

    Kristensen, Philip Trøst; Mortensen, Jakob Egeberg; Lodahl, Peter

    2013-01-01

    and therefore is given exactly by the dipole approximation theory. This surprising result is a spontaneous emission counterpart to the shell theorems of classical mechanics and electrostatics and provides insights into the physics of mesoscopic emitters as well as great simplifications in practical calculations....

  9. KLN theorem and infinite statistics

    Grandou, T.

    1992-01-01

    The possible extension of the Kinoshita-Lee-Nauenberg (KLN) theorem to the case of infinite statistics is examined. It is shown that it appears as a stable structure in a quantum field theory context. The extension is provided by working out the Fock space realization of a 'quantum algebra'. (author) 2 refs

  10. The Geometric Mean Value Theorem

    de Camargo, André Pierro

    2018-01-01

    In a previous article published in the "American Mathematical Monthly," Tucker ("Amer Math Monthly." 1997; 104(3): 231-240) made severe criticism on the Mean Value Theorem and, unfortunately, the majority of calculus textbooks also do not help to improve its reputation. The standard argument for proving it seems to be applying…

  11. Fermion fractionization and index theorem

    Hirayama, Minoru; Torii, Tatsuo

    1982-01-01

    The relation between the fermion fractionization and the Callias-Bott-Seeley index theorem for the Dirac operator in the open space of odd dimension is clarified. Only the case of one spatial dimension is discussed in detail. Sum rules for the expectation values of various quantities in fermion-fractionized configurations are derived. (author)

  12. The Completeness Theorem of Godel

    GENERAL I ARTICLE. The Completeness Theorem of Godel. 2. Henkin's Proof for First Order Logic. S M Srivastava is with the. Indian Statistical,. Institute, Calcutta. He received his PhD from the Indian Statistical. Institute in 1980. His research interests are in descriptive set theory. I Part 1. An Introduction to Math- ematical ...

  13. Angle Defect and Descartes' Theorem

    Scott, Paul

    2006-01-01

    Rene Descartes lived from 1596 to 1650. His contributions to geometry are still remembered today in the terminology "Descartes' plane". This paper discusses a simple theorem of Descartes, which enables students to easily determine the number of vertices of almost every polyhedron. (Contains 1 table and 2 figures.)

  14. Optical theorem and its history

    Newton, R.G.

    1978-01-01

    A translation is presented of a paper submitted to the symposium ''Concepts and methods in microscopic physics'' held at Washington University in 1974. A detailed description is given of the history of the optical theorem, its various formulations and derivations and its use in the scattering theory. (Z.J.)

  15. On the Fourier integral theorem

    Koekoek, J.

    1987-01-01

    Introduction. In traditional proofs of convergence of Fourier series and of the Fourier integraI theorem basic tools are the theory of Dirichlet integraIs and the Riemann-Lebesgue lemma. Recently CHERNOFF [I) and REoIlEFFER (2) gave new proofs of convergenceof Fourier series which make no use of the

  16. The Classical Version of Stokes' Theorem Revisited

    Markvorsen, Steen

    2005-01-01

    Using only fairly simple and elementary considerations - essentially from first year undergraduate mathematics - we prove that the classical Stokes' theorem for any given surface and vector field in $\\mathbb{R}^{3}$ follows from an application of Gauss' divergence theorem to a suitable modification...... of the vector field in a tubular shell around the given surface. The intuitive appeal of the divergence theorem is thus applied to bootstrap a corresponding intuition for Stokes' theorem. The two stated classical theorems are (like the fundamental theorem of calculus) nothing but shadows of the general version...... to above. Our proof that Stokes' theorem follows from Gauss' divergence theorem goes via a well known and often used exercise, which simply relates the concepts of divergence and curl on the local differential level. The rest of the paper uses only integration in $1$, $2$, and $3$ variables together...

  17. An extended characterisation theorem for quantum logics

    Sharma, C.S.; Mukherjee, M.K.

    1977-01-01

    Two theorems are proved. In the first properties of an important mapping from an orthocomplemented lattice to itself are studied. In the second the characterisation theorem of Zierler (Pacific J. Math.; 11:1151 (1961)) is extended to obtain a very useful theorem characterising orthomodular lattices. Since quantum logics are merely sigma-complete orthomodular lattices, the principal result is, for application in quantum physics, a characterisation theorem for quantum logics. (author)

  18. A note on generalized Weyl's theorem

    Zguitti, H.

    2006-04-01

    We prove that if either T or T* has the single-valued extension property, then the spectral mapping theorem holds for B-Weyl spectrum. If, moreover T is isoloid, and generalized Weyl's theorem holds for T, then generalized Weyl's theorem holds for f(T) for every . An application is given for algebraically paranormal operators.

  19. A definability theorem for first order logic

    Butz, C.; Moerdijk, I.

    1997-01-01

    In this paper we will present a definability theorem for first order logic This theorem is very easy to state and its proof only uses elementary tools To explain the theorem let us first observe that if M is a model of a theory T in a language L then clearly any definable subset S M ie a subset S

  20. Tight closure and vanishing theorems

    Smith, K.E.

    2001-01-01

    Tight closure has become a thriving branch of commutative algebra since it was first introduced by Mel Hochster and Craig Huneke in 1986. Over the past few years, it has become increasingly clear that tight closure has deep connections with complex algebraic geometry as well, especially with those areas of algebraic geometry where vanishing theorems play a starring role. The purpose of these lectures is to introduce tight closure and to explain some of these connections with algebraic geometry. Tight closure is basically a technique for harnessing the power of the Frobenius map. The use of the Frobenius map to prove theorems about complex algebraic varieties is a familiar technique in algebraic geometry, so it should perhaps come as no surprise that tight closure is applicable to algebraic geometry. On the other hand, it seems that so far we are only seeing the tip of a large and very beautiful iceberg in terms of tight closure's interpretation and applications to algebraic geometry. Interestingly, although tight closure is a 'characteristic p' tool, many of the problems where tight closure has proved useful have also yielded to analytic (L2) techniques. Despite some striking parallels, there had been no specific result directly linking tight closure and L∼ techniques. Recently, however, the equivalence of an ideal central to the theory of tight closure was shown to be equivalent to a certain 'multiplier ideal' first defined using L2 methods. Presumably, deeper connections will continue to emerge. There are two main types of problems for which tight closure has been helpful: in identifying nice structure and in establishing uniform behavior. The original algebraic applications of tight closure include, for example, a quick proof of the Hochster-Roberts theorem on the Cohen-Macaulayness of rings of invariants, and also a refined version of the Brianqon-Skoda theorem on the uniform behaviour of integral closures of powers of ideals. More recent, geometric

  1. The de Finetti theorem for test spaces

    Barrett, Jonathan; Leifer, Matthew

    2009-01-01

    We prove a de Finetti theorem for exchangeable sequences of states on test spaces, where a test space is a generalization of the sample space of classical probability theory and the Hilbert space of quantum theory. The standard classical and quantum de Finetti theorems are obtained as special cases. By working in a test space framework, the common features that are responsible for the existence of these theorems are elucidated. In addition, the test space framework is general enough to imply a de Finetti theorem for classical processes. We conclude by discussing the ways in which our assumptions may fail, leading to probabilistic models that do not have a de Finetti theorem.

  2. Acoustic superlens using Helmholtz-resonator-based metamaterials

    Yang, Xishan; Yin, Jing; Yu, Gaokun; Peng, Linhui; Wang, Ning

    2015-01-01

    Acoustic superlens provides a way to overcome the diffraction limit with respect to the wavelength of the bulk wave in air. However, the operating frequency range of subwavelength imaging is quite narrow. Here, an acoustic superlens is designed using Helmholtz-resonator-based metamaterials to broaden the bandwidth of super-resolution. An experiment is carried out to verify subwavelength imaging of double slits, the imaging of which can be well resolved in the frequency range from 570 to 650 Hz. Different from previous works based on the Fabry-Pérot resonance, the corresponding mechanism of subwavelength imaging is the Fano resonance, and the strong coupling between the neighbouring Helmholtz resonators separated at the subwavelength interval leads to the enhanced sound transmission over a relatively wide frequency range

  3. Fourier-Based Fast Multipole Method for the Helmholtz Equation

    Cecka, Cris

    2013-01-01

    The fast multipole method (FMM) has had great success in reducing the computational complexity of solving the boundary integral form of the Helmholtz equation. We present a formulation of the Helmholtz FMM that uses Fourier basis functions rather than spherical harmonics. By modifying the transfer function in the precomputation stage of the FMM, time-critical stages of the algorithm are accelerated by causing the interpolation operators to become straightforward applications of fast Fourier transforms, retaining the diagonality of the transfer function, and providing a simplified error analysis. Using Fourier analysis, constructive algorithms are derived to a priori determine an integration quadrature for a given error tolerance. Sharp error bounds are derived and verified numerically. Various optimizations are considered to reduce the number of quadrature points and reduce the cost of computing the transfer function. © 2013 Society for Industrial and Applied Mathematics.

  4. Voluntarism in early psychology: the case of Hermann von Helmholtz.

    De Kock, Liesbet

    2014-05-01

    The failure to recognize the programmatic similarity between (post-)Kantian German philosophy and early psychology has impoverished psychology's historical self-understanding to a great extent. This article aims to contribute to recent efforts to overcome the gaps in the historiography of contemporary psychology, which are the result of an empiricist bias. To this end, we present an analysis of the way in which Hermann von Helmholtz's theory of perception resonates with Johann Gottlieb Fichte's Ego-doctrine. It will be argued that this indebtedness is particularly clear when focusing on the foundation of the differential awareness of subject and object in perception. In doing so, the widespread reception of Helmholtz's work as proto-positivist or strictly empiricist is challenged, in favor of the claim that important elements of his theorizing can only be understood properly against the background of Fichte's Ego-doctrine. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  5. A Randomized Central Limit Theorem

    Eliazar, Iddo; Klafter, Joseph

    2010-01-01

    The Central Limit Theorem (CLT), one of the most elemental pillars of Probability Theory and Statistical Physics, asserts that: the universal probability law of large aggregates of independent and identically distributed random summands with zero mean and finite variance, scaled by the square root of the aggregate-size (√(n)), is Gaussian. The scaling scheme of the CLT is deterministic and uniform - scaling all aggregate-summands by the common and deterministic factor √(n). This Letter considers scaling schemes which are stochastic and non-uniform, and presents a 'Randomized Central Limit Theorem' (RCLT): we establish a class of random scaling schemes which yields universal probability laws of large aggregates of independent and identically distributed random summands. The RCLT universal probability laws, in turn, are the one-sided and the symmetric Levy laws.

  6. Bell's theorem, accountability and nonlocality

    Vona, Nicola; Liang, Yeong-Cherng

    2014-01-01

    Bell's theorem is a fundamental theorem in physics concerning the incompatibility between some correlations predicted by quantum theory and a large class of physical theories. In this paper, we introduce the hypothesis of accountability, which demands that it is possible to explain the correlations of the data collected in many runs of a Bell experiment in terms of what happens in each single run. Under this assumption, and making use of a recent result by Colbeck and Renner (2011 Nature Commun. 2 411), we then show that any nontrivial account of these correlations in the form of an extension of quantum theory must violate parameter independence. Moreover, we analyze the violation of outcome independence of quantum mechanics and show that it is also a manifestation of nonlocality. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell's theorem’. (paper)

  7. Fluctuation theorems and atypical trajectories

    Sahoo, M; Lahiri, S; Jayannavar, A M

    2011-01-01

    In this work, we have studied simple models that can be solved analytically to illustrate various fluctuation theorems. These fluctuation theorems provide symmetries individually to the distributions of physical quantities such as the classical work (W c ), thermodynamic work (W), total entropy (Δs tot ) and dissipated heat (Q), when the system is driven arbitrarily out of equilibrium. All these quantities can be defined for individual trajectories. We have studied the number of trajectories which exhibit behaviour unexpected at the macroscopic level. As the time of observation increases, the fraction of such atypical trajectories decreases, as expected at the macroscale. The distributions for the thermodynamic work and entropy production in nonlinear models may exhibit a peak (most probable value) in the atypical regime without violating the expected average behaviour. However, dissipated heat and classical work exhibit a peak in the regime of typical behaviour only.

  8. Calculation of the beam injector steering system using Helmholtz coils

    Passaro, A.; Sircilli Neto, F.; Migliano, A.C.C.

    1991-03-01

    In this work, a preliminary evaluation of the beam injector steering system of the IEAv electron linac is presented. From the existing injector configuration and with the assumptions of monoenergetic beam (100 keV) and uniform magnetic field, two pairs of Helmholtz coils were calculated for the steering system. Excitations of 105 A.turn and 37 A.turn were determined for the first and second coils, respectively. (author)

  9. Thin-Layer Solutions of the Helmholtz and Related Equations

    Ockendon, J. R.

    2012-01-01

    This paper concerns a certain class of two-dimensional solutions to four generic partial differential equations-the Helmholtz, modified Helmholtz, and convection-diffusion equations, and the heat conduction equation in the frequency domain-and the connections between these equations for this particular class of solutions.S pecifically, we consider thin-layer solutions, valid in narrow regions across which there is rapid variation, in the singularly perturbed limit as the coefficient of the Laplacian tends to zero.F or the wellstudied Helmholtz equation, this is the high-frequency limit and the solutions in question underpin the conventional ray theory/WKB approach in that they provide descriptions valid in some of the regions where these classical techniques fail.E xamples are caustics, shadow boundaries, whispering gallery, and creeping waves and focusing and bouncing ball modes.It transpires that virtually all such thin-layer models reduce to a class of generalized parabolic wave equations, of which the heat conduction equation is a special case. Moreover, in most situations, we will find that the appropriate parabolic wave equation solutions can be derived as limits of exact solutions of the Helmholtz equation.W e also show how reasonably well-understood thin-layer phenomena associated with any one of the four generic equations may translate into less well-known effects associated with the others.In addition, our considerations also shed some light on the relationship between the methods of matched asymptotic, WKB, and multiple-scales expansions. © 2012 Society for Industrial and Applied Mathematics.

  10. Kelvin-Helmholtz instability in a weakly ionized layer

    Shadmehri, Mohsen; Downes, Turlough P.

    2007-01-01

    We study the linear theory of Kelvin-Helmholtz instability in a layer of ions and neutrals with finite thickness. In the short wavelength limit the thickness of the layer has a negligible effect on the growing modes. However, perturbations with wavelength comparable to layer's thickness are significantly affected by the thickness of the layer. We show that the thickness of the layer has a stabilizing effect on the two dominant growing modes. Transition between the modes not only depends on th...

  11. Lectures on Fermat's last theorem

    Sury, B.

    1993-09-01

    The report presents the main ideas involved in the approach towards the so-called Fermat's last theorem (FLT). The discussion leads to the point where recent work of A. Wiles starts and his work is not discussed. After a short history of the FLT and of the present approach, are discussed the elliptic curves and the modular forms with their relations, the Taniyama-Shimura-Well conjecture and the FLT

  12. Pythagoras Theorem and Relativistic Kinematics

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  13. Notes on the area theorem

    Park, Mu-In

    2008-01-01

    Hawking's area theorem can be understood from a quasi-stationary process in which a black hole accretes positive energy matter, independent of the details of the gravity action. I use this process to study the dynamics of the inner as well as the outer horizons for various black holes which include the recently discovered exotic black holes and three-dimensional black holes in higher derivative gravities as well as the usual BTZ black hole and the Kerr black hole in four dimensions. I find that the area for the inner horizon 'can decrease', rather than increase, with the quasi-stationary process. However, I find that the area for the outer horizon 'never decreases' such that the usual area theorem still works in our examples, though this is quite non-trivial in general. There exists an instability problem of the inner horizons but it seems that the instability is not important in my analysis. I also find a generalized area theorem by combining those of the outer and inner horizons

  14. Expanding the Interaction Equivalency Theorem

    Brenda Cecilia Padilla Rodriguez

    2015-06-01

    Full Text Available Although interaction is recognised as a key element for learning, its incorporation in online courses can be challenging. The interaction equivalency theorem provides guidelines: Meaningful learning can be supported as long as one of three types of interactions (learner-content, learner-teacher and learner-learner is present at a high level. This study sought to apply this theorem to the corporate sector, and to expand it to include other indicators of course effectiveness: satisfaction, knowledge transfer, business results and return on expectations. A large Mexican organisation participated in this research, with 146 learners, 30 teachers and 3 academic assistants. Three versions of an online course were designed, each emphasising a different type of interaction. Data were collected through surveys, exams, observations, activity logs, think aloud protocols and sales records. All course versions yielded high levels of effectiveness, in terms of satisfaction, learning and return on expectations. Yet, course design did not dictate the types of interactions in which students engaged within the courses. Findings suggest that the interaction equivalency theorem can be reformulated as follows: In corporate settings, an online course can be effective in terms of satisfaction, learning, knowledge transfer, business results and return on expectations, as long as (a at least one of three types of interaction (learner-content, learner-teacher or learner-learner features prominently in the design of the course, and (b course delivery is consistent with the chosen type of interaction. Focusing on only one type of interaction carries a high risk of confusion, disengagement or missed learning opportunities, which can be managed by incorporating other forms of interactions.

  15. On Krasnoselskii's Cone Fixed Point Theorem

    Man Kam Kwong

    2008-04-01

    Full Text Available In recent years, the Krasnoselskii fixed point theorem for cone maps and its many generalizations have been successfully applied to establish the existence of multiple solutions in the study of boundary value problems of various types. In the first part of this paper, we revisit the Krasnoselskii theorem, in a more topological perspective, and show that it can be deduced in an elementary way from the classical Brouwer-Schauder theorem. This viewpoint also leads to a topology-theoretic generalization of the theorem. In the second part of the paper, we extend the cone theorem in a different direction using the notion of retraction and show that a stronger form of the often cited Leggett-Williams theorem is a special case of this extension.

  16. Confinement, diquarks and goldstone's theorem

    Roberts, C.D.

    1996-01-01

    Determinations of the gluon propagator in the continuum and in lattice simulations are compared. A systematic truncation procedure for the quark Dyson-Schwinger and bound state Bethe-Salpeter equations is described. The procedure ensures the flavor-octet axial- vector Ward identity is satisfied order-by-order, thereby guaranteeing the preservation of Goldstone's theorem; and identifies a mechanism that simultaneously ensures the absence of diquarks in QCD and their presence in QCD N c =2 , where the color singlet diquark is the ''baryon'' of the theory

  17. Comparison theorems in Riemannian geometry

    Cheeger, Jeff

    2008-01-01

    The central theme of this book is the interaction between the curvature of a complete Riemannian manifold and its topology and global geometry. The first five chapters are preparatory in nature. They begin with a very concise introduction to Riemannian geometry, followed by an exposition of Toponogov's theorem-the first such treatment in a book in English. Next comes a detailed presentation of homogeneous spaces in which the main goal is to find formulas for their curvature. A quick chapter of Morse theory is followed by one on the injectivity radius. Chapters 6-9 deal with many of the most re

  18. Bernstein Lethargy Theorem and Reflexivity

    Aksoy, Asuman Güven; Peng, Qidi

    2018-01-01

    In this paper, we prove the equivalence of reflexive Banach spaces and those Banach spaces which satisfy the following form of Bernstein's Lethargy Theorem. Let $X$ be an arbitrary infinite-dimensional Banach space, and let the real-valued sequence $\\{d_n\\}_{n\\ge1}$ decrease to $0$. Suppose that $\\{Y_n\\}_{n\\ge1}$ is a system of strictly nested subspaces of $X$ such that $\\overline Y_n \\subset Y_{n+1}$ for all $n\\ge1$ and for each $n\\ge1$, there exists $y_n\\in Y_{n+1}\\backslash Y_n$ such that ...

  19. Cyclic graphs and Apery's theorem

    Sorokin, V N

    2002-01-01

    This is a survey of results about the behaviour of Hermite-Pade approximants for graphs of Markov functions, and a survey of interpolation problems leading to Apery's result about the irrationality of the value ζ(3) of the Riemann zeta function. The first example is given of a cyclic graph for which the Hermite-Pade problem leads to Apery's theorem. Explicit formulae for solutions are obtained, namely, Rodrigues' formulae and integral representations. The asymptotic behaviour of the approximants is studied, and recurrence formulae are found

  20. Abstract decomposition theorem and applications

    Grossberg, R; Grossberg, Rami; Lessmann, Olivier

    2005-01-01

    Let K be an Abstract Elementary Class. Under the asusmptions that K has a nicely behaved forking-like notion, regular types and existence of some prime models we establish a decomposition theorem for such classes. The decomposition implies a main gap result for the class K. The setting is general enough to cover \\aleph_0-stable first-order theories (proved by Shelah in 1982), Excellent Classes of atomic models of a first order tehory (proved Grossberg and Hart 1987) and the class of submodels of a large sequentially homogenuus \\aleph_0-stable model (which is new).

  1. Noise reduction efficiency of Helmholtz resonator in simulated channel of HVAC system

    Hossein Ali Yousefi Rizi

    2014-01-01

    Conclusions: This research showed that the designed Helmholtz resonators at a certain frequency of low-frequency sound demonstrated the soundest decrease. The increase in the Helmholtz resonators′ chamber volume and their neck′s pass area are negatively associated with the rate of sound resonance. As a result, of determining the effective frequency range of the Helmholtz resonator, the designed resonator could be applied as an effective and efficient instrument of removing or decreasing noise.

  2. Symbolic logic and mechanical theorem proving

    Chang, Chin-Liang

    1969-01-01

    This book contains an introduction to symbolic logic and a thorough discussion of mechanical theorem proving and its applications. The book consists of three major parts. Chapters 2 and 3 constitute an introduction to symbolic logic. Chapters 4-9 introduce several techniques in mechanical theorem proving, and Chapters 10 an 11 show how theorem proving can be applied to various areas such as question answering, problem solving, program analysis, and program synthesis.

  3. Equivalent conserved currents and generalized Noether's theorem

    Gordon, T.J.

    1984-01-01

    A generalized Noether theorem is presented, relating symmetries and equivalence classes of local) conservation laws in classical field theories; this is contrasted with the standard theorem. The concept of a ''Noether'' field theory is introduced, being a theory for which the generalized theorem applies; not only does this include the cases of Lagrangian and Hamiltonian field theories, these structures are ''derived'' from the Noether property in a natural way. The generalized theorem applies to currents and symmetries that contain derivatives of the fields up to an arbitrarily high order

  4. Bit-Blasting ACL2 Theorems

    Sol Swords

    2011-10-01

    Full Text Available Interactive theorem proving requires a lot of human guidance. Proving a property involves (1 figuring out why it holds, then (2 coaxing the theorem prover into believing it. Both steps can take a long time. We explain how to use GL, a framework for proving finite ACL2 theorems with BDD- or SAT-based reasoning. This approach makes it unnecessary to deeply understand why a property is true, and automates the process of admitting it as a theorem. We use GL at Centaur Technology to verify execution units for x86 integer, MMX, SSE, and floating-point arithmetic.

  5. Helmholtz and Zoellner: nineteenth-century empiricism, spiritism, and the theory of space perception.

    Stromberg, W H

    1989-10-01

    J. K. F. Zoellner began writing on "experimental proofs" of a fourth spatial dimension, and of the existence of spirits, in 1878. His arguments caused strong controversy, with rebuttal essays by Wilhelm Wundt and others. The author argues that Zoellner's case that these matters are experimental questions rested on arguments which Hermann von Helmholtz, inveighing against rationalist views of space and space perception, had recently published. Zoellner's use of Helmholtz's arguments to advance and defend his spiritist views occasioned strong criticism of Helmholtz, affected careers and reputations of scholars in Berlin and Leipzig, and caused enduring controversy over the credibility of Helmholtz's empiricist theory of space perception.

  6. Effect of cold plasma on the Kelvin-Helmholtz instability

    Melander, B.G.

    1978-01-01

    The thesis studies the effect of a two-component plasma (hot and cold) on the shear driven Kelvin-Helmholtz instability. An ion distribution with a shear flow parallel to the ambient magnetic field and a density gradient parallel to the shear direction is used. Both the electrostatic and electromagnetic versions of the instability are studied in the limit of hydromagnetic frequencies. The dispersion relation is obtained in the electrostatic case by solving the Vlasov equation for the perturbed ion and electron densities and then using the quasineutrality condition. In the electromagnetic case the coupled Vlasov and Maxwell's equations are solved to obtain the dispersion relation

  7. Semi-analytic solution to planar Helmholtz equation

    Tukač M.

    2013-06-01

    Full Text Available Acoustic solution of interior domains is of great interest. Solving acoustic pressure fields faster with lower computational requirements is demanded. A novel solution technique based on the analytic solution to the Helmholtz equation in rectangular domain is presented. This semi-analytic solution is compared with the finite element method, which is taken as the reference. Results show that presented method is as precise as the finite element method. As the semi-analytic method doesn’t require spatial discretization, it can be used for small and very large acoustic problems with the same computational costs.

  8. Reconstruction of extended sources for the Helmholtz equation

    Kress, Rainer; Rundell, William

    2013-01-01

    The basis of most imaging methods is to detect hidden obstacles or inclusions within a body when one can only make measurements on an exterior surface. Our underlying model is that of inverse acoustic scattering based on the Helmholtz equation. Our inclusions are interior forces with compact support and our data consist of a single measurement of near-field Cauchy data on the external boundary. We propose an algorithm that under certain assumptions allows for the determination of the support set of these forces by solving a simpler ‘equivalent point source’ problem, and which uses a Newton scheme to improve the corresponding initial approximation. (paper)

  9. Black and gray Helmholtz-Kerr soliton refraction

    Sanchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S.

    2011-01-01

    Refraction of black and gray solitons at boundaries separating different defocusing Kerr media is analyzed within a Helmholtz framework. A universal nonlinear Snell's law is derived that describes gray soliton refraction, in addition to capturing the behavior of bright and black Kerr solitons at interfaces. Key regimes, defined by beam and interface characteristics, are identified, and predictions are verified by full numerical simulations. The existence of a unique total nonrefraction angle for gray solitons is reported; both internal and external refraction at a single interface is shown possible (dependent only on incidence angle). This, in turn, leads to the proposal of positive or negative lensing operations on soliton arrays at planar boundaries.

  10. Reconstruction of extended sources for the Helmholtz equation

    Kress, Rainer

    2013-02-26

    The basis of most imaging methods is to detect hidden obstacles or inclusions within a body when one can only make measurements on an exterior surface. Our underlying model is that of inverse acoustic scattering based on the Helmholtz equation. Our inclusions are interior forces with compact support and our data consist of a single measurement of near-field Cauchy data on the external boundary. We propose an algorithm that under certain assumptions allows for the determination of the support set of these forces by solving a simpler \\'equivalent point source\\' problem, and which uses a Newton scheme to improve the corresponding initial approximation. © 2013 IOP Publishing Ltd.

  11. Kelvin-Helmholtz Instability: Lessons Learned and Ways Forward

    Masson, A.; Nykyri, K.

    2018-06-01

    The Kelvin-Helmholtz instability (KHI) is a ubiquitous phenomenon across the Universe, observed from 500 m deep in the oceans on Earth to the Orion molecular cloud. Over the past two decades, several space missions have enabled a leap forward in our understanding of this phenomenon at the Earth's magnetopause. Key results obtained by these missions are first presented, with a special emphasis on Cluster and THEMIS. In particular, as an ideal instability, the KHI was not expected to produce mass transport. Simulations, later confirmed by spacecraft observations, indicate that plasma transport in Kelvin-Helmholtz (KH) vortices can arise during non-linear stage of its development via secondary process. In addition to plasma transport, spacecraft observations have revealed that KHI can also lead to significant ion heating due to enhanced ion-scale wave activity driven by the KHI. Finally, we describe what are the upcoming observational opportunities in 2018-2020, thanks to a unique constellation of multi-spacecraft missions including: MMS, Cluster, THEMIS, Van Allen Probes and Swarm.

  12. The Common Data Acquisition Platform in the Helmholtz Association

    Kaever, P.; Balzer, M.; Kopmann, A.; Zimmer, M.; Rongen, H.

    2017-01-01

    Various centres of the German Helmholtz Association (HGF) started in 2012 to develop a modular data acquisition (DAQ) platform, covering the entire range from detector readout to data transfer into parallel computing environments. This platform integrates generic hardware components like the multi-purpose HGF-Advanced Mezzanine Card or a smart scientific camera framework, adding user value with Linux drivers and board support packages. Technically the scope comprises the DAQ-chain from FPGA-modules to computing servers, notably frontend-electronics-interfaces, microcontrollers and GPUs with their software plus high-performance data transmission links. The core idea is a generic and component-based approach, enabling the implementation of specific experiment requirements with low effort. This so called DTS-platform will support standards like MTCA.4 in hard- and software to ensure compatibility with commercial components. Its capability to deploy on other crate standards or FPGA-boards with PCI express or Ethernet interfaces remains an essential feature. Competences of the participating centres are coordinated in order to provide a solid technological basis for both research topics in the Helmholtz Programme ''Matter and Technology'': ''Detector Technology and Systems'' and ''Accelerator Research and Development''. The DTS-platform aims at reducing costs and development time and will ensure access to latest technologies for the collaboration. Due to its flexible approach, it has the potential to be applied in other scientific programs.

  13. The Common Data Acquisition Platform in the Helmholtz Association

    Kaever, P.; Balzer, M.; Kopmann, A.; Zimmer, M.; Rongen, H.

    2017-04-01

    Various centres of the German Helmholtz Association (HGF) started in 2012 to develop a modular data acquisition (DAQ) platform, covering the entire range from detector readout to data transfer into parallel computing environments. This platform integrates generic hardware components like the multi-purpose HGF-Advanced Mezzanine Card or a smart scientific camera framework, adding user value with Linux drivers and board support packages. Technically the scope comprises the DAQ-chain from FPGA-modules to computing servers, notably frontend-electronics-interfaces, microcontrollers and GPUs with their software plus high-performance data transmission links. The core idea is a generic and component-based approach, enabling the implementation of specific experiment requirements with low effort. This so called DTS-platform will support standards like MTCA.4 in hard- and software to ensure compatibility with commercial components. Its capability to deploy on other crate standards or FPGA-boards with PCI express or Ethernet interfaces remains an essential feature. Competences of the participating centres are coordinated in order to provide a solid technological basis for both research topics in the Helmholtz Programme ``Matter and Technology'': ``Detector Technology and Systems'' and ``Accelerator Research and Development''. The DTS-platform aims at reducing costs and development time and will ensure access to latest technologies for the collaboration. Due to its flexible approach, it has the potential to be applied in other scientific programs.

  14. Helmholtz and Goethe -- controversies at the birth of modern neuroscience.

    Kesselring, Jürg

    2013-01-01

    Hermann von Helmholtz (1821-1894), a great German scientist and philosopher, made his mark during the exciting twilight period from the Enlightenment and Romanticism to the beginnings of modern neuroscience and offered new perspectives through his work. His early inclination was for physics, which he found more attractive than purely geometric and algebraic studies, but his father was not able to make it possible for him to study physics, and so he studied medicine in order to earn a living. His lecture before the Physical Society in Berlin on July 23, 1847, 'about the conservation of the force' marked an epochal turn, even though his intention had been to deliver 'merely, some critical investigations and arrangement of facts in favor of the physiologists' as well as good arguments for the refusal of the theory of 'vitality'. Even though these new concepts were at first dismissed as fantastic speculation by some of the authorities in physics and philosophy of the day, they were enthusiastically welcomed by younger students of philosophy and the older men soon had to allow themselves to be persuaded that the effectiveness of vitality, though great and beautiful, is actually always dependent on some source of energy. Helmholtz critically assessed Goethe as a physical scientist but he did not dispute his great importance as a poet. Copyright © 2012 S. Karger AG, Basel.

  15. Stacked spheres and lower bound theorem

    BASUDEB DATTA

    2011-11-20

    Nov 20, 2011 ... Preliminaries. Lower bound theorem. On going work. Definitions. An n-simplex is a convex hull of n + 1 affinely independent points. (called vertices) in some Euclidean space R. N . Stacked spheres and lower bound theorem. Basudeb Datta. Indian Institute of Science. 2 / 27 ...

  16. Unpacking Rouché's Theorem

    Howell, Russell W.; Schrohe, Elmar

    2017-01-01

    Rouché's Theorem is a standard topic in undergraduate complex analysis. It is usually covered near the end of the course with applications relating to pure mathematics only (e.g., using it to produce an alternate proof of the Fundamental Theorem of Algebra). The "winding number" provides a geometric interpretation relating to the…

  17. Other trigonometric proofs of Pythagoras theorem

    Luzia, Nuno

    2015-01-01

    Only very recently a trigonometric proof of the Pythagoras theorem was given by Zimba \\cite{1}, many authors thought this was not possible. In this note we give other trigonometric proofs of Pythagoras theorem by establishing, geometrically, the half-angle formula $\\cos\\theta=1-2\\sin^2 \\frac{\\theta}{2}$.

  18. On Newton’s shell theorem

    Borghi, Riccardo

    2014-03-01

    In the present letter, Newton’s theorem for the gravitational field outside a uniform spherical shell is considered. In particular, a purely geometric proof of proposition LXXI/theorem XXXI of Newton’s Principia, which is suitable for undergraduates and even skilled high-school students, is proposed. Minimal knowledge of elementary calculus and three-dimensional Euclidean geometry are required.

  19. Theorems of low energy in Compton scattering

    Chahine, J.

    1984-01-01

    We have obtained the low energy theorems in Compton scattering to third and fouth order in the frequency of the incident photon. Next we calculated the polarized cross section to third order and the unpolarized to fourth order in terms of partial amplitudes not covered by the low energy theorems, what will permit the experimental determination of these partial amplitudes. (Author) [pt

  20. A density Corradi-Hajnal theorem

    Allen, P.; Böttcher, J.; Hladký, Jan; Piguet, D.

    2015-01-01

    Roč. 67, č. 4 (2015), s. 721-758 ISSN 0008-414X Institutional support: RVO:67985840 Keywords : extremal graph theory * Mantel's theorem * Corradi-Hajnal theorem Subject RIV: BA - General Mathematics Impact factor: 0.618, year: 2015 http://cms.math.ca/10.4153/CJM-2014-030-6

  1. Visualizing the Central Limit Theorem through Simulation

    Ruggieri, Eric

    2016-01-01

    The Central Limit Theorem is one of the most important concepts taught in an introductory statistics course, however, it may be the least understood by students. Sure, students can plug numbers into a formula and solve problems, but conceptually, do they really understand what the Central Limit Theorem is saying? This paper describes a simulation…

  2. The Classical Version of Stokes' Theorem Revisited

    Markvorsen, Steen

    2008-01-01

    Using only fairly simple and elementary considerations--essentially from first year undergraduate mathematics--we show how the classical Stokes' theorem for any given surface and vector field in R[superscript 3] follows from an application of Gauss' divergence theorem to a suitable modification of the vector field in a tubular shell around the…

  3. The divergence theorem for unbounded vector fields

    De Pauw, Thierry; Pfeffer, Washek F.

    2007-01-01

    In the context of Lebesgue integration, we derive the divergence theorem for unbounded vector. elds that can have singularities at every point of a compact set whose Minkowski content of codimension greater than two is. nite. The resulting integration by parts theorem is applied to removable sets of holomorphic and harmonic functions.

  4. The Pomeranchuk theorem and its modifications

    Fischer, J.; Saly, R.

    1980-01-01

    A review of the various modifications and improvements of the Pomeranchuk theorem and also of related statements is given. The present status of the Pomeranchuk relation based on dispersion relation is discussed. Numerous problems related to the Pomeranchuk theorem and some answers to these problems are collected in a clear table

  5. Coalgebraic Lindström Theorems

    Kurz, A.; Venema, Y.

    2010-01-01

    We study modal Lindström theorems from a coalgebraic perspective. We provide three different Lindström theorems for coalgebraic logic, one of which is a direct generalisation of de Rijke's result for Kripke models. Both the other two results are based on the properties of bisimulation invariance,

  6. A Metrized Duality Theorem for Markov Processes

    Kozen, Dexter; Mardare, Radu Iulian; Panangaden, Prakash

    2014-01-01

    We extend our previous duality theorem for Markov processes by equipping the processes with a pseudometric and the algebras with a notion of metric diameter. We are able to show that the isomorphisms of our previous duality theorem become isometries in this quantitative setting. This opens the wa...

  7. Uniqueness theorems in linear elasticity

    Knops, Robin John

    1971-01-01

    The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff. To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniquenes...

  8. Riemannian and Lorentzian flow-cut theorems

    Headrick, Matthew; Hubeny, Veronika E.

    2018-05-01

    We prove several geometric theorems using tools from the theory of convex optimization. In the Riemannian setting, we prove the max flow-min cut (MFMC) theorem for boundary regions, applied recently to develop a ‘bit-thread’ interpretation of holographic entanglement entropies. We also prove various properties of the max flow and min cut, including respective nesting properties. In the Lorentzian setting, we prove the analogous MFMC theorem, which states that the volume of a maximal slice equals the flux of a minimal flow, where a flow is defined as a divergenceless timelike vector field with norm at least 1. This theorem includes as a special case a continuum version of Dilworth’s theorem from the theory of partially ordered sets. We include a brief review of the necessary tools from the theory of convex optimization, in particular Lagrangian duality and convex relaxation.

  9. OTTER, Resolution Style Theorem Prover

    McCune, W.W.

    2001-01-01

    1 - Description of program or function: OTTER (Other Techniques for Theorem-proving and Effective Research) is a resolution-style theorem-proving program for first-order logic with equality. OTTER includes the inference rules binary resolution, hyper-resolution, UR-resolution, and binary para-modulation. These inference rules take as small set of clauses and infer a clause. If the inferred clause is new and useful, it is stored and may become available for subsequent inferences. Other capabilities are conversion from first-order formulas to clauses, forward and back subsumption, factoring, weighting, answer literals, term ordering, forward and back demodulation, and evaluable functions and predicates. 2 - Method of solution: For its inference process OTTER uses the given-clause algorithm, which can be viewed as a simple implementation of the set of support strategy. OTTER maintains three lists of clauses: axioms, sos (set of support), and demodulators. OTTER is not automatic. Even after the user has encoded a problem into first-order logic or into clauses, the user must choose inference rules, set options to control the processing of inferred clauses, and decide which input formulae or clauses are to be in the initial set of support and which, if any, equalities are to be demodulators. If OTTER fails to find a proof, the user may try again different initial conditions. 3 - Restrictions on the complexity of the problem - Maxima of: 5000 characters in an input string, 64 distinct variables in a clause, 51 characters in any symbol. The maxima can be changed by finding the appropriate definition in the header.h file, increasing the limit, and recompiling OTTER. There are a few constraints on the order of commands

  10. Harvesting energy from airflow with a michromachined piezoelectric harvester inside a Helmholtz resonator

    Matova, S.P.; Elfrink, R.; Vullers, R.J.M.; Schaijk, R. van

    2011-01-01

    In this paper we report an airflow energy harvester that combines a piezoelectric energy harvester with a Helmholtz resonator. The resonator converts airflow energy to air oscillations which in turn are converted into electrical energy by a piezoelectric harvester. Two Helmholtz resonators with

  11. Transmission problems for the Helmholtz equation for a rectilinear-circular lune

    Volodymyr Denysenko

    2007-01-01

    Full Text Available The question related to the construction of the solution of plane transmission problem for the Helmholtz equation in a rectilinear-circular lune is considered. An approach is proposed based on the method of partial domains and the principle of reflection for the solutions of the Helmholtz equation through the segment.

  12. A Parallel Sweeping Preconditioner for Heterogeneous 3D Helmholtz Equations

    Poulson, Jack

    2013-05-02

    A parallelization of a sweeping preconditioner for three-dimensional Helmholtz equations without large cavities is introduced and benchmarked for several challenging velocity models. The setup and application costs of the sequential preconditioner are shown to be O(γ2N4/3) and O(γN logN), where γ(ω) denotes the modestly frequency-dependent number of grid points per perfectly matched layer. Several computational and memory improvements are introduced relative to using black-box sparse-direct solvers for the auxiliary problems, and competitive runtimes and iteration counts are reported for high-frequency problems distributed over thousands of cores. Two open-source packages are released along with this paper: Parallel Sweeping Preconditioner (PSP) and the underlying distributed multifrontal solver, Clique. © 2013 Society for Industrial and Applied Mathematics.

  13. The Kelvin-Helmholtz instability on the magnetopause

    Kivelson, M.G.; California Univ., Los Angeles; Pu, Z.-Y.

    1984-01-01

    Conditions for the development of Kelvin-Helmholtz (K-H) waves on the magnetopause have been known for more than 15 years; more recently, spacecraft observations have stimulated further examination of the properties of K-H waves. For a magnetopause with no boundary layer, two different modes of surface waves have been identified and their properties have been investigated for various assumed orientations of magnetic field and flow velocity vectors. The power radiated into the magnetosphere from the velocity shear at the boundary has been estimated. Other calculations have focused on the consequences of finite thickness boundary layers, both uniform and non-uniform. The boundary layer is found to modify the wave modes present at the magnetopause and to yield a criterion for the wavelength of the fastest growing surface waves. The paper concludes by questioning the extent to which the inferences from boundary layer models are model dependent and identifies areas where further work is needed or anticipated. (author)

  14. Integrability and symmetries for the Helmholtz oscillator with friction

    Almendral, Juan A; Sanjuan, Miguel A F

    2003-01-01

    This paper deals with the Helmholtz oscillator, which is a simple nonlinear oscillator whose equation presents a quadratic nonlinearity and the possibility of escape. When a periodic external force is introduced, the width of the stochastic layer, which is a region around the separatrix where orbits may exhibit transient chaos, is calculated. In the absence of friction and external force, it is well known that analytical solutions exist since it is completely integrable. When only friction is included, there is no analytical solution for all parameter values. However, by means of the Lie theory for differential equations we find a relation between parameters for which the oscillator is integrable. This is related to the fact that the system possesses a symmetry group and the corresponding symmetries are computed. Finally, the analytical explicit solutions are shown and related to the basins of attraction

  15. The classical version of Stokes' Theorem revisited

    Markvorsen, Steen

    2008-01-01

    Using only fairly simple and elementary considerations - essentially from first year undergraduate mathematics - we show how the classical Stokes' theorem for any given surface and vector field in $\\mathbb{R}^{3}$ follows from an application of Gauss' divergence theorem to a suitable modification...... exercise, which simply relates the concepts of divergence and curl on the local differential level. The rest of the paper uses only integration in $1$, $2$, and $3$ variables together with a 'fattening' technique for surfaces and the inverse function theorem....

  16. Security Theorems via Model Theory

    Joshua Guttman

    2009-11-01

    Full Text Available A model-theoretic approach can establish security theorems for cryptographic protocols. Formulas expressing authentication and non-disclosure properties of protocols have a special form. They are quantified implications for all xs . (phi implies for some ys . psi. Models (interpretations for these formulas are *skeletons*, partially ordered structures consisting of a number of local protocol behaviors. *Realized* skeletons contain enough local sessions to explain all the behavior, when combined with some possible adversary behaviors. We show two results. (1 If phi is the antecedent of a security goal, then there is a skeleton A_phi such that, for every skeleton B, phi is satisfied in B iff there is a homomorphism from A_phi to B. (2 A protocol enforces for all xs . (phi implies for some ys . psi iff every realized homomorphic image of A_phi satisfies psi. Hence, to verify a security goal, one can use the Cryptographic Protocol Shapes Analyzer CPSA (TACAS, 2007 to identify minimal realized skeletons, or "shapes," that are homomorphic images of A_phi. If psi holds in each of these shapes, then the goal holds.

  17. Linear electrical circuits. Definitions - General theorems; Circuits electriques lineaires. Definitions - Theoremes generaux

    Escane, J.M. [Ecole Superieure d' Electricite, 91 - Gif-sur-Yvette (France)

    2005-04-01

    The first part of this article defines the different elements of an electrical network and the models to represent them. Each model involves the current and the voltage as a function of time. Models involving time functions are simple but their use is not always easy. The Laplace transformation leads to a more convenient form where the variable is no more directly the time. This transformation leads also to the notion of transfer function which is the object of the second part. The third part aims at defining the fundamental operation rules of linear networks, commonly named 'general theorems': linearity principle and superimposition theorem, duality principle, Thevenin theorem, Norton theorem, Millman theorem, triangle-star and star-triangle transformations. These theorems allow to study complex power networks and to simplify the calculations. They are based on hypotheses, the first one is that all networks considered in this article are linear. (J.S.)

  18. Dimensional analysis beyond the Pi theorem

    Zohuri, Bahman

    2017-01-01

    Dimensional Analysis and Physical Similarity are well understood subjects, and the general concepts of dynamical similarity are explained in this book. Our exposition is essentially different from those available in the literature, although it follows the general ideas known as Pi Theorem. There are many excellent books that one can refer to; however, dimensional analysis goes beyond Pi theorem, which is also known as Buckingham’s Pi Theorem. Many techniques via self-similar solutions can bound solutions to problems that seem intractable. A time-developing phenomenon is called self-similar if the spatial distributions of its properties at different points in time can be obtained from one another by a similarity transformation, and identifying one of the independent variables as time. However, this is where Dimensional Analysis goes beyond Pi Theorem into self-similarity, which has represented progress for researchers. In recent years there has been a surge of interest in self-similar solutions of the First ...

  19. Stable convergence and stable limit theorems

    Häusler, Erich

    2015-01-01

    The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level...

  20. Theorem on axially symmetric gravitational vacuum configurations

    Papadopoulos, A; Le Denmat, G [Paris-6 Univ., 75 (France). Inst. Henri Poincare

    1977-01-24

    A theorem is proved which asserts the non-existence of axially symmetric gravitational vacuum configurations with non-stationary rotation only. The eventual consequences in black-hole physics are suggested.

  1. Non-renormalisation theorems in string theory

    Vanhove, P.

    2007-10-01

    In this thesis we describe various non renormalisation theorems for the string effective action. These results are derived in the context of the M theory conjecture allowing to connect the four gravitons string theory S matrix elements with that of eleven dimensional supergravity. These theorems imply that N = 8 supergravity theory has the same UV behaviour as the N = 4 supersymmetric Yang Mills theory at least up to three loops, and could be UV finite in four dimensions. (author)

  2. There is No Quantum Regression Theorem

    Ford, G.W.; OConnell, R.F.

    1996-01-01

    The Onsager regression hypothesis states that the regression of fluctuations is governed by macroscopic equations describing the approach to equilibrium. It is here asserted that this hypothesis fails in the quantum case. This is shown first by explicit calculation for the example of quantum Brownian motion of an oscillator and then in general from the fluctuation-dissipation theorem. It is asserted that the correct generalization of the Onsager hypothesis is the fluctuation-dissipation theorem. copyright 1996 The American Physical Society

  3. Singularity theorems from weakened energy conditions

    Fewster, Christopher J; Galloway, Gregory J

    2011-01-01

    We establish analogues of the Hawking and Penrose singularity theorems based on (a) averaged energy conditions with exponential damping; (b) conditions on local stress-energy averages inspired by the quantum energy inequalities satisfied by a number of quantum field theories. As particular applications, we establish singularity theorems for the Einstein equations coupled to a classical scalar field, which violates the strong energy condition, and the nonminimally coupled scalar field, which also violates the null energy condition.

  4. The matrix Euler-Fermat theorem

    Arnol'd, Vladimir I

    2004-01-01

    We prove many congruences for binomial and multinomial coefficients as well as for the coefficients of the Girard-Newton formula in the theory of symmetric functions. These congruences also imply congruences (modulo powers of primes) for the traces of various powers of matrices with integer elements. We thus have an extension of the matrix Fermat theorem similar to Euler's extension of the numerical little Fermat theorem

  5. Level comparison theorems and supersymmetric quantum mechanics

    Baumgartner, B.; Grosse, H.

    1986-01-01

    The sign of the Laplacian of the spherical symmetric potential determines the order of energy levels with the same principal Coulomb quantum number. This recently derived theorem has been generalized, extended and applied to various situations in particle, nuclear and atomic physics. Besides a comparison theorem the essential step was the use of supersymmetric quantum mechanics. Recently worked out applications of supersymmetric quantum mechanics to index problems of Dirac operators are mentioned. (Author)

  6. Liouville's theorem and phase-space cooling

    Mills, R.L.; Sessler, A.M.

    1993-01-01

    A discussion is presented of Liouville's theorem and its consequences for conservative dynamical systems. A formal proof of Liouville's theorem is given. The Boltzmann equation is derived, and the collisionless Boltzmann equation is shown to be rigorously true for a continuous medium. The Fokker-Planck equation is derived. Discussion is given as to when the various equations are applicable and, in particular, under what circumstances phase space cooling may occur

  7. The Osgood-Schoenflies theorem revisited

    Siebenmann, L C

    2005-01-01

    The very first unknotting theorem of a purely topological character established that every compact subset of the Euclidean plane homeomorphic to a circle can be moved onto a round circle by a globally defined self-homeomorphism of the plane. This difficult hundred-year-old theorem is here celebrated with a partly new elementary proof, and a first but tentative account of its history. Some quite fundamental corollaries of the proof are sketched, and some generalizations are mentioned

  8. Double soft theorem for perturbative gravity

    Saha, Arnab

    2016-01-01

    Following up on the recent work of Cachazo, He and Yuan \\cite{arXiv:1503.04816 [hep-th]}, we derive the double soft graviton theorem in perturbative gravity. We show that the double soft theorem derived using CHY formula precisely matches with the perturbative computation involving Feynman diagrams. In particular, we find how certain delicate limits of Feynman diagrams play an important role in obtaining this equivalence.

  9. A Converse of Fermat's Little Theorem

    Bruckman, P. S.

    2007-01-01

    As the name of the paper implies, a converse of Fermat's Little Theorem (FLT) is stated and proved. FLT states the following: if p is any prime, and x any integer, then x[superscript p] [equivalent to] x (mod p). There is already a well-known converse of FLT, known as Lehmer's Theorem, which is as follows: if x is an integer coprime with m, such…

  10. The large deviations theorem and ergodicity

    Gu Rongbao

    2007-01-01

    In this paper, some relationships between stochastic and topological properties of dynamical systems are studied. For a continuous map f from a compact metric space X into itself, we show that if f satisfies the large deviations theorem then it is topologically ergodic. Moreover, we introduce the topologically strong ergodicity, and prove that if f is a topologically strongly ergodic map satisfying the large deviations theorem then it is sensitively dependent on initial conditions

  11. Pascal’s Theorem in Real Projective Plane

    Coghetto Roland

    2017-01-01

    In this article we check, with the Mizar system [2], Pascal’s theorem in the real projective plane (in projective geometry Pascal’s theorem is also known as the Hexagrammum Mysticum Theorem)1. Pappus’ theorem is a special case of a degenerate conic of two lines.

  12. Pascal’s Theorem in Real Projective Plane

    Coghetto Roland

    2017-07-01

    Full Text Available In this article we check, with the Mizar system [2], Pascal’s theorem in the real projective plane (in projective geometry Pascal’s theorem is also known as the Hexagrammum Mysticum Theorem1. Pappus’ theorem is a special case of a degenerate conic of two lines.

  13. The direct Flow parametric Proof of Gauss' Divergence Theorem revisited

    Markvorsen, Steen

    The standard proof of the divergence theorem in undergraduate calculus courses covers the theorem for static domains between two graph surfaces. We show that within first year undergraduate curriculum, the flow proof of the dynamic version of the divergence theorem - which is usually considered...... we apply the key instrumental concepts and verify the various steps towards this alternative proof of the divergence theorem....

  14. Commentaries on Hilbert's Basis Theorem | Apine | Science World ...

    The famous basis theorem of David Hilbert is an important theorem in commutative algebra. In particular the Hilbert's basis theorem is the most important source of Noetherian rings which are by far the most important class of rings in commutative algebra. In this paper we have used Hilbert's theorem to examine their unique ...

  15. Illustrating the Central Limit Theorem through Microsoft Excel Simulations

    Moen, David H.; Powell, John E.

    2005-01-01

    Using Microsoft Excel, several interactive, computerized learning modules are developed to demonstrate the Central Limit Theorem. These modules are used in the classroom to enhance the comprehension of this theorem. The Central Limit Theorem is a very important theorem in statistics, and yet because it is not intuitively obvious, statistics…

  16. Helmholtz resonance in a piezoelectric–hydraulic pump-based hybrid actuator

    Kim, Gi-Woo; Wang, K W

    2011-01-01

    This paper demonstrates that a hydraulically acting Helmholtz resonator can exist in a piezoelectric–hydraulic pump (PHP) based hybrid actuator, which in turn affects the volumetric efficiency of the PHP. The simulation and experimental results illustrate the effect of Helmholtz resonance on the flow rate performance of the PHP. The study also shows how to shift the Helmholtz resonant frequency to a higher value through changing parameters such as the cylinder diameter and the effective bulk modulus of the working fluid, which will improve the volumetric efficiency and broaden the operating frequency range of the PHP actuator

  17. Solving the Helmholtz equation in conformal mapped ARROWstructures using homotopy perturbation method

    Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole

    2011-01-01

    . The solution of the mapped Helmholtz equation is found by solving an infinite series of Poisson equations using two dimensional Fourier series. The solution is entirely based on analytical expressions and is not mesh dependent. The analytical results are compared to a numerical (finite element method) solution......The scalar wave equation, or Helmholtz equation, describes within a certain approximation the electromagnetic field distribution in a given system. In this paper we show how to solve the Helmholtz equation in complex geometries using conformal mapping and the homotopy perturbation method...

  18. The Determinate World Kant and Helmholtz on the Physical Meaning of Geometry

    Hyder, David

    2009-01-01

    This study examines the place of Hermann von Helmholtz´s seminal papers on geometry in his philosophy of science. The arguments of these papers are traced back to his prior work on the theory of magnitudes, as well as to Helmholtz´s early, Kantian position. The author claims that Helmholtz should be understood not as opposing Kant, but as modifying the latter´s theory of magnitudes so as to remove obstacles to their common project of constructing a complete system of natural science.

  19. Kelvin-Helmholtz instability as a possible cause of edge localized modes

    Strauss, H.R.

    1992-01-01

    Edge localized modes may be a Kelvin-Helmholtz instability caused by the sheared rotation of H-mode plasmas. The Kelvin-Helmholtz instability is stabilized by coupling to Alfven waves. There is a critical velocity gradient, of the order of the Alfven velocity divided by the magnetic shear length. This is verified in a numerical simulation. The critical velocity shear is consistent with experiment. A non-linear simulation shows how the Kelvin-Helmholtz mode can cause oscillations of the velocity profile. (author). Letter-to-the-editor. 13 refs, 6 figs

  20. Theorem on magnet fringe field

    Wei, Jie; Talman, R.

    1995-01-01

    Transverse particle motion in particle accelerators is governed almost totally by non-solenoidal magnets for which the body magnetic field can be expressed as a series expansion of the normal (b n ) and skew (a n ) multipoles, B y + iB x = summation(b n + ia n )(x + iy) n , where x, y, and z denote horizontal, vertical, and longitudinal (along the magnet) coordinates. Since the magnet length L is necessarily finite, deflections are actually proportional to ''field integrals'' such as bar BL ≡ ∫ B(x,y,z)dz where the integration range starts well before the magnet and ends well after it. For bar a n , bar b n , bar B x , and bar B y defined this way, the same expansion Eq. 1 is valid and the ''standard'' approximation is to neglect any deflections not described by this expansion, in spite of the fact that Maxwell's equations demand the presence of longitudinal field components at the magnet ends. The purpose of this note is to provide a semi-quantitative estimate of the importance of |Δp ∝ |, the transverse deflection produced by the ion-gitudinal component of the fringe field at one magnet end relative to |Δp 0 |, the total deflection produced by passage through the whole magnet. To emphasize the generality and simplicity of the result it is given in the form of a theorem. The essence of the proof is an evaluation of the contribution of the longitudinal field B x from the vicinity of one magnet end since, along a path parallel to the magnet axis such as path BC

  1. Combined Helmholtz Integral Equation - Fourier series formulation of acoustical radiation and scattering problems

    Fedotov, I

    2006-07-01

    Full Text Available The Combined Helmholtz Integral Equation – Fourier series Formulation (CHIEFF) is based on representation of a velocity potential in terms of Fourier series and finding the Fourier coefficients of this expansion. The solution could be substantially...

  2. Coupled Kelvin-Helmholtz and Tearing Mode Instabilities at the Mercury's Magnetopause

    Ivanovski, S. L.; Milillo, A.; Kartalev, M.; Massetti, S.

    2018-05-01

    A MHD approach for numerical simulations of coupled Kelvin-Helmholtz and tearing mode instabilities has been applied to Mercury’s magnetopause and used to perform a physical parameters study constrained by the MESSENGER data.

  3. Archive of Geosample Information from the GEOMAR Helmholtz Centre for Ocean Research Kiel Core Repository

    National Oceanic and Atmospheric Administration, Department of Commerce — The GEOMAR Helmholtz Centre for Ocean Research Kiel made a one-time contribution to the Index to Marine and Lacustrine Geological Samples (IMLGS) database of...

  4. The Hellmann–Feynman theorem, the comparison theorem, and the envelope theory

    Claude Semay

    2015-01-01

    Full Text Available The envelope theory is a convenient method to compute approximate solutions for bound state equations in quantum mechanics. It is shown that these approximate solutions obey a kind of Hellmann–Feynman theorem, and that the comparison theorem can be applied to these approximate solutions for two ordered Hamiltonians.

  5. Acoustic energy harvesting using an electromechanical Helmholtz resonator.

    Liu, Fei; Phipps, Alex; Horowitz, Stephen; Ngo, Khai; Cattafesta, Louis; Nishida, Toshikazu; Sheplak, Mark

    2008-04-01

    This paper presents the development of an acoustic energy harvester using an electromechanical Helmholtz resonator (EMHR). The EMHR consists of an orifice, cavity, and a piezoelectric diaphragm. Acoustic energy is converted to mechanical energy when sound incident on the orifice generates an oscillatory pressure in the cavity, which in turns causes the vibration of the diaphragm. The conversion of acoustic energy to electrical energy is achieved via piezoelectric transduction in the diaphragm of the EMHR. Moreover, the diaphragm is coupled with energy reclamation circuitry to increase the efficiency of the energy conversion. Lumped element modeling of the EMHR is used to provide physical insight into the coupled energy domain dynamics governing the energy reclamation process. The feasibility of acoustic energy reclamation using an EMHR is demonstrated in a plane wave tube for two power converter topologies. The first is comprised of only a rectifier, and the second uses a rectifier connected to a flyback converter to improve load matching. Experimental results indicate that approximately 30 mW of output power is harvested for an incident sound pressure level of 160 dB with a flyback converter. Such power level is sufficient to power a variety of low power electronic devices.

  6. Monolithically integrated Helmholtz coils by 3-dimensional printing

    Li, Longguang [Department of Electrical Engineering, University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Abedini-Nassab, Roozbeh; Yellen, Benjamin B., E-mail: yellen@duke.edu [Department of Electrical Engineering, University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)

    2014-06-23

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  7. Monolithically integrated Helmholtz coils by 3-dimensional printing

    Li, Longguang; Abedini-Nassab, Roozbeh; Yellen, Benjamin B.

    2014-01-01

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  8. Kelvin-Helmholtz evolution in subsonic cold streams feeding galaxies

    Angulo, Adrianna; Coffing, S.; Kuranz, C.; Drake, R. P.; Klein, S.; Trantham, M.; Malamud, G.

    2017-10-01

    The most prolific star formers in cosmological history lie in a regime where dense filament structures carried substantial mass into the galaxy to sustain star formation without producing a shock. However, hydrodynamic instabilities present on the filament surface limit the ability of such structures to deliver dense matter deeply enough to sustain star formation. Simulations lack the finite resolution necessary to allow fair treatment of the instabilities present at the stream boundary. Using the Omega EP laser, we simulate this mode of galaxy formation with a cold, dense, filament structure within a hotter, subsonic flow and observe the interface evolution. Machined surface perturbations stimulate the development of the Kelvin-Helmholtz (KH) instability due to the resultant shear between the two media. A spherical crystal imaging system produces high-resolution radiographs of the KH structures along the filament surface. The results from the first experiments of this kind, using a rod with single-mode, long-wavelength modulations, will be discussed. This work is funded by the U.S. Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956, and the National Laser User Facility Program, Grant Number DE-NA0002719, and through.

  9. An efficient Helmholtz solver for acoustic transversely isotropic media

    Wu, Zedong

    2017-11-11

    The acoustic approximation, even for anisotropic media, is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on less medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from S-wave artifacts. Thus, we propose to separate the quasi-P wave propagation in anisotropic media into the elliptic anisotropic operator (free of the artifacts) and the non-elliptic-anisotropic components, which form a pseudo-differential operator. We, then, develop a separable approximation of the dispersion relation of non-elliptic-anisotropic components, specifically for transversely isotropic (TI) media. Finally, we iteratively solve the simpler lower-order elliptical wave equation for a modified source function that includes the non-elliptical terms represented in the Fourier domain. A frequency domain Helmholtz formulation of the approach renders the iterative implementation efficient as the cost is dominated by the Lower-Upper (LU) decomposition of the impedance matrix for the simpler elliptical anisotropic model. Also, the resulting wavefield is free of S-wave artifacts and has balanced amplitude. Numerical examples show that the method is reasonably accurate and efficient.

  10. Reconstruction of propagating Kelvin-Helmholtz vortices at Mercury's magnetopause

    Sundberg, Torbjörn; Boardsen, Scott A.; Slavin, James A.; Blomberg, Lars G.; Cumnock, Judy A.; Solomon, Sean C.; Anderson, Brian J.; Korth, Haje

    2011-12-01

    A series of quasi-periodic magnetopause crossings were recorded by the MESSENGER spacecraft during its third flyby of Mercury on 29 September 2009, likely caused by a train of propagating Kelvin-Helmholtz (KH) vortices. We here revisit the observations to study the internal structure of the waves. Exploiting MESSENGER's rapid traversal of the magnetopause, we show that the observations permit a reconstruction of the structure of a rolled-up KH vortex directly from the spacecraft's magnetic field measurements. The derived geometry is consistent with all large-scale fluctuations in the magnetic field data, establishes the non-linear nature of the waves, and shows their vortex-like structure. In several of the wave passages, a reduction in magnetic field strength is observed in the middle of the wave, which is characteristic of rolled-up vortices and is related to the increase in magnetic pressure required to balance the centrifugal force on the plasma in the outer regions of a vortex, previously reported in computer simulations. As the KH wave starts to roll up, the reconstructed geometry suggests that the vortices develop two gradual transition regions in the magnetic field, possibly related to the mixing of magnetosheath and magnetospheric plasma, situated at the leading edges from the perspectives of both the magnetosphere and the magnetosheath.

  11. MHD Kelvin-Helmholtz instability in non-hydrostatic equilibrium

    Laghouati, Y; Bouabdallah, A; Zizi, M; Alemany, A

    2007-01-01

    The present work deals with the linear stability of a magnetohydrodynamic shear flow so that a stratified inviscid fluid rotating about a vertical axis when a uniform magnetic field is applied in the direction of the streaming or zonal flow. In geophysical flow, the stability of the flow is determined by taking into account the nonhydrostatic condition depending on Richardson number R i and the deviation δ from hydrostatic equilibrium. According to Stone (Stone P H 1971 J. Fluid. Mech. 45 659), it is shown that such deviation δ decreases the growth rates of three kinds of instability which can appear as geostrophic (G), symmetric (S) and Kelvin-Helmholtz (K-H) instabilities. To be specific, the evolution of the flow is therefore considered in the light of the influence of magnetic field, particularly, on K-H instability. The results of this study are presented by the linear stability of a magnetohydrodynamic, with horizontal free-shear flow of stratified fluid, subject to rotation about the vertical axis and uniform magnetic field in the zonal direction. Results are discussed and compared to previous works as Chandrasekhar (Chandrasekhar S 1961 Hydrodynamic and hydromagnetic stability (Oxford: Clarendon Press) chapter 11 pp 481-513) and Stone

  12. KELVIN-HELMHOLTZ INSTABILITY OF A CORONAL STREAMER

    Feng, L.; Gan, W. Q. [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210008 Nanjing (China); Inhester, B., E-mail: lfeng@pmo.ac.cn [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Str.2, D-37191 Katlenburg-Lindau (Germany)

    2013-09-10

    Shear-flow-driven instability can play an important role in energy transfer processes in coronal plasma. We present for the first time the observation of a kink-like oscillation of a streamer that is probably caused by the streaming kink-mode Kelvin-Helmholtz instability (KHI). The wave-like behavior of the streamer was observed by the Large Angle and Spectrometric Coronagraph Experiment C2 and C3 on board the SOlar and Heliospheric Observatory. The observed wave had a period of about 70-80 minutes, and its wavelength increased from 2 R{sub Sun} to 3 R{sub Sun} in about 1.5 hr. The phase speeds of its crests and troughs decreased from 406 {+-} 20 to 356 {+-} 31 km s{sup -1} during the event. Within the same heliocentric range, the wave amplitude also appeared to increase with time. We attribute the phenomena to the MHD KHI, which occurs at a neutral sheet in a fluid wake. The free energy driving the instability is supplied by the sheared flow and sheared magnetic field across the streamer plane. The plasma properties of the local environment of the streamer were estimated from the phase speed and instability threshold criteria.

  13. Kelvin-Helmholtz instability: the ``atom'' of geophysical turbulence?

    Smyth, William

    2017-11-01

    Observations of small-scale turbulence in Earth's atmosphere and oceans have most commonly been interpreted in terms of the Kolmogorov theory of isotropic turbulence, despite the fact that the observed turbulence is significantly anisotropic due to density stratification and sheared large-scale flows. I will describe an alternative picture in which turbulence consists of distinct events that occur sporadically in space and time. The simplest model for an individual event is the ``Kelvin-Helmholtz (KH) ansatz'', in which turbulence relieves the dynamic instability of a localized shear layer. I will summarize evidence that the KH ansatz is a valid description of observed turbulence events, using microstructure measurements from the equatorial Pacific ocean as an example. While the KH ansatz has been under study for many decades and is reasonably well understood, the bigger picture is much less clear. How are the KH events distributed in space and time? How do different events interact with each other? I will describe some tentative steps toward a more thorough understanding.

  14. Interactions between two magnetohydrodynamic Kelvin-Helmholtz instabilities

    Lai, S. H.; Ip, W.-H.

    2011-01-01

    Kelvin-Helmholtz instability (KHI) driven by velocity shear is a generator of waves found away from the vicinity of the velocity-shear layers since the fast-mode waves radiated from the surface perturbation can propagate away from the transition layer. Thus the nonlinear evolution associated with KHI is not confined near the velocity-shear layer. To understand the physical processes in multiple velocity-shear layers, the interactions between two KHIs at a pair of tangential discontinuities are studied by two-dimensional magnetohydrodynamic simulations. It is shown that the interactions between two neighboring velocity-shear layers are dominated by the propagation of the fast-mode waves radiated from KHIs in a nonuniform medium. That is, the fast-mode Mach number of the surface waves M Fy , a key factor of the nonlinear evolution of KHI, will vary with the nonuniform background plasma velocity due to the existence of two neighboring velocity-shear layers. As long as the M Fy observed in the plasma rest frame across the neighboring velocity-shear layer is larger than one, newly formed fast-mode Mach-cone-like (MCL) plane waves generated by the fast-mode waves can be found in this region. As results of the interactions of two KHIs, reflection and distortion of the MCL plane waves generate the turbulence and increase the plasma temperature, which provide possible mechanisms of heating and accelerating local plasma between two neighboring velocity-shear layers.

  15. Kelvin-Helmholtz instability in a bounded plasma flow

    Burinskaya, T. M.

    2008-01-01

    Kelvin-Helmholtz instability in a three-layer plane geometry is investigated theoretically. It is shown that, in a three-layer system (in contrast to the traditionally considered case in which instability develops at the boundary between two plasma flows), instability can develop at an arbitrary ratio of the plasma flow velocity to the ion-acoustic velocity. Perturbations with wavelengths on the order of the flow thickness or longer can increase even at a zero temperature. The system can also be unstable against long-wavelength perturbations if the flow velocity at one of the boundaries is lower than the sum of the Alfven velocities in the flow and the ambient plasma. The possibility of applying the results obtained to interpret the experimental data acquired in the framework of the CLUSTER multisatellite project is discussed. It follows from these data that, in many cases, the propagation of an accelerated particle flow in the plasma-sheet boundary layer of the Earth's magnetotail is accompanied by the generation of magnetic field oscillations propagating with a velocity on the order of the local Alfven velocity.

  16. An efficient Helmholtz solver for acoustic transversely isotropic media

    Wu, Zedong; Alkhalifah, Tariq Ali

    2017-01-01

    The acoustic approximation, even for anisotropic media, is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on less medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from S-wave artifacts. Thus, we propose to separate the quasi-P wave propagation in anisotropic media into the elliptic anisotropic operator (free of the artifacts) and the non-elliptic-anisotropic components, which form a pseudo-differential operator. We, then, develop a separable approximation of the dispersion relation of non-elliptic-anisotropic components, specifically for transversely isotropic (TI) media. Finally, we iteratively solve the simpler lower-order elliptical wave equation for a modified source function that includes the non-elliptical terms represented in the Fourier domain. A frequency domain Helmholtz formulation of the approach renders the iterative implementation efficient as the cost is dominated by the Lower-Upper (LU) decomposition of the impedance matrix for the simpler elliptical anisotropic model. Also, the resulting wavefield is free of S-wave artifacts and has balanced amplitude. Numerical examples show that the method is reasonably accurate and efficient.

  17. The Non-Signalling theorem in generalizations of Bell's theorem

    Walleczek, J; Grössing, G

    2014-01-01

    Does 'epistemic non-signalling' ensure the peaceful coexistence of special relativity and quantum nonlocality? The possibility of an affirmative answer is of great importance to deterministic approaches to quantum mechanics given recent developments towards generalizations of Bell's theorem. By generalizations of Bell's theorem we here mean efforts that seek to demonstrate the impossibility of any deterministic theories to obey the predictions of Bell's theorem, including not only local hidden-variables theories (LHVTs) but, critically, of nonlocal hidden-variables theories (NHVTs) also, such as de Broglie-Bohm theory. Naturally, in light of the well-established experimental findings from quantum physics, whether or not a deterministic approach to quantum mechanics, including an emergent quantum mechanics, is logically possible, depends on compatibility with the predictions of Bell's theorem. With respect to deterministic NHVTs, recent attempts to generalize Bell's theorem have claimed the impossibility of any such approaches to quantum mechanics. The present work offers arguments showing why such efforts towards generalization may fall short of their stated goal. In particular, we challenge the validity of the use of the non-signalling theorem as a conclusive argument in favor of the existence of free randomness, and therefore reject the use of the non-signalling theorem as an argument against the logical possibility of deterministic approaches. We here offer two distinct counter-arguments in support of the possibility of deterministic NHVTs: one argument exposes the circularity of the reasoning which is employed in recent claims, and a second argument is based on the inconclusive metaphysical status of the non-signalling theorem itself. We proceed by presenting an entirely informal treatment of key physical and metaphysical assumptions, and of their interrelationship, in attempts seeking to generalize Bell's theorem on the

  18. Gleason-Busch theorem for sequential measurements

    Flatt, Kieran; Barnett, Stephen M.; Croke, Sarah

    2017-12-01

    Gleason's theorem is a statement that, given some reasonable assumptions, the Born rule used to calculate probabilities in quantum mechanics is essentially unique [A. M. Gleason, Indiana Univ. Math. J. 6, 885 (1957), 10.1512/iumj.1957.6.56050]. We show that Gleason's theorem contains within it also the structure of sequential measurements, and along with this the state update rule. We give a small set of axioms, which are physically motivated and analogous to those in Busch's proof of Gleason's theorem [P. Busch, Phys. Rev. Lett. 91, 120403 (2003), 10.1103/PhysRevLett.91.120403], from which the familiar Kraus operator form follows. An axiomatic approach has practical relevance as well as fundamental interest, in making clear those assumptions which underlie the security of quantum communication protocols. Interestingly, the two-time formalism is seen to arise naturally in this approach.

  19. Adiabatic Theorem for Quantum Spin Systems

    Bachmann, S.; De Roeck, W.; Fraas, M.

    2017-08-01

    The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.

  20. A uniform Tauberian theorem in dynamic games

    Khlopin, D. V.

    2018-01-01

    Antagonistic dynamic games including games represented in normal form are considered. The asymptotic behaviour of value in these games is investigated as the game horizon tends to infinity (Cesàro mean) and as the discounting parameter tends to zero (Abel mean). The corresponding Abelian-Tauberian theorem is established: it is demonstrated that in both families the game value uniformly converges to the same limit, provided that at least one of the limits exists. Analogues of one-sided Tauberian theorems are obtained. An example shows that the requirements are essential even for control problems. Bibliography: 31 titles.

  1. The aftermath of the intermediate value theorem

    Morales Claudio H

    2004-01-01

    Full Text Available The solvability of nonlinear equations has awakened great interest among mathematicians for a number of centuries, perhaps as early as the Babylonian culture (3000–300 B.C.E.. However, we intend to bring to our attention that some of the problems studied nowadays appear to be amazingly related to the time of Bolzano's era (1781–1848. Indeed, this Czech mathematician or perhaps philosopher has rigorously proven what is known today as the intermediate value theorem, a result that is intimately related to various classical theorems that will be discussed throughout this work.

  2. Pauli and the spin-statistics theorem

    Duck, Ian M

    1997-01-01

    This book makes broadly accessible an understandable proof of the infamous spin-statistics theorem. This widely known but little-understood theorem is intended to explain the fact that electrons obey the Pauli exclusion principle. This fact, in turn, explains the periodic table of the elements and their chemical properties. Therefore, this one simply stated fact is responsible for many of the principal features of our universe, from chemistry to solid state physics to nuclear physics to the life cycle of stars.In spite of its fundamental importance, it is only a slight exaggeration to say that

  3. Elastic hadron scattering and optical theorem

    Lokajicek, Milos V.; Prochazka, Jiri

    2014-01-01

    In principle all contemporary phenomenological models of elastic hadronic scattering have been based on the assumption of optical theorem validity that has been overtaken from optics. It will be shown that the given theorem which has not been actually proved cannot be applied to short-ranged strong interactions in any case. The actual progress in description of collision processes might then exist only if the initial states are specified on the basis of impact parameter values of colliding particles and probability dependence on this parameter is established.

  4. At math meetings, enormous theorem eclipses fermat.

    Cipra, B

    1995-02-10

    Hardly a word was said about Fermat's Last Theorem at the joint meetings of the American Mathematical Society and the Mathematical Association of America, held this year from 4 to 7 January in San Francisco. For Andrew Wiles's proof, no news is good news: There are no reports of mistakes. But mathematicians found plenty of other topics to discuss. Among them: a computational breakthrough in the study of turbulent diffusion and progress in slimming down the proof of an important result in group theory, whose original size makes checking the proof of Fermat's Last Theorem look like an afternoon's pastime.

  5. A note on the Pfaffian integration theorem

    Borodin, Alexei; Kanzieper, Eugene

    2007-01-01

    Two alternative, fairly compact proofs are presented of the Pfaffian integration theorem that surfaced in the recent studies of spectral properties of Ginibre's Orthogonal Ensemble. The first proof is based on a concept of the Fredholm Pfaffian; the second proof is purely linear algebraic. (fast track communication)

  6. Mean value theorem in topological vector spaces

    Khan, L.A.

    1994-08-01

    The aim of this note is to give shorter proofs of the mean value theorem, the mean value inequality, and the mean value inclusion for the class of Gateaux differentiable functions having values in a topological vector space. (author). 6 refs

  7. 1/4-pinched contact sphere theorem

    Ge, Jian; Huang, Yang

    2016-01-01

    Given a closed contact 3-manifold with a compatible Riemannian metric, we show that if the sectional curvature is 1/4-pinched, then the contact structure is universally tight. This result improves the Contact Sphere Theorem in [EKM12], where a 4/9-pinching constant was imposed. Some tightness...

  8. Generalized Friedland's theorem for C0-semigroups

    Cichon, Dariusz; Jung, Il Bong; Stochel, Jan

    2008-07-01

    Friedland's characterization of bounded normal operators is shown to hold for infinitesimal generators of C0-semigroups. New criteria for normality of bounded operators are furnished in terms of Hamburger moment problem. All this is achieved with the help of the celebrated Ando's theorem on paranormal operators.

  9. Automated theorem proving theory and practice

    Newborn, Monty

    2001-01-01

    As the 21st century begins, the power of our magical new tool and partner, the computer, is increasing at an astonishing rate. Computers that perform billions of operations per second are now commonplace. Multiprocessors with thousands of little computers - relatively little! -can now carry out parallel computations and solve problems in seconds that only a few years ago took days or months. Chess-playing programs are on an even footing with the world's best players. IBM's Deep Blue defeated world champion Garry Kasparov in a match several years ago. Increasingly computers are expected to be more intelligent, to reason, to be able to draw conclusions from given facts, or abstractly, to prove theorems-the subject of this book. Specifically, this book is about two theorem-proving programs, THEO and HERBY. The first four chapters contain introductory material about automated theorem proving and the two programs. This includes material on the language used to express theorems, predicate calculus, and the rules of...

  10. Answering Junior Ant's "Why" for Pythagoras' Theorem

    Pask, Colin

    2002-01-01

    A seemingly simple question in a cartoon about Pythagoras' Theorem is shown to lead to questions about the nature of mathematical proof and the profound relationship between mathematics and science. It is suggested that an analysis of the issues involved could provide a good vehicle for classroom discussions or projects for senior students.…

  11. On Callan's proof of the BPHZ theorem

    Lesniewski, A.

    1984-01-01

    The author gives an elementary proof of the BPHZ theorem in the case of the Euclidean lambdaphi 4 theory. The method of proof relies on a detailed analysis of the skeleton structure of graphs and estimates based on the Callan-Symanzik equations. (Auth.)

  12. A Short Proof of Klee's Theorem

    Zanazzi, John J.

    2013-01-01

    In 1959, Klee proved that a convex body $K$ is a polyhedron if and only if all of its projections are polygons. In this paper, a new proof of this theorem is given for convex bodies in $\\mathbb{R}^3$.

  13. On Noethers theorem in quantum field theory

    Buchholz, D.; Doplicher, S.; Longo, R.

    1985-03-01

    Extending an earlier construction of local generators of symmetries in (S. Doplicher, 1982) to space-time and supersymmetries, we establish a weak form of Noethers theorem in quantum field theory. We also comment on the physical significance of the 'split property', underlying our analysis, and discuss some local aspects of superselection rules following from our results. (orig./HSI)

  14. Green-Tao theorem in function fields

    Le, Thai Hoang

    2009-01-01

    We adapt the proof of the Green-Tao theorem on arithmetic progressions in primes to the setting of polynomials over a finite field, to show that for every $k$, the irreducible polynomials in $\\mathbf{F}_q[t]$ contain configurations of the form $\\{f+ Pg : \\d(P)

  15. Pauli and The Spin-Statistics Theorem

    Duck, Ian; Sudarshan, E.C.G.

    1998-03-01

    This book makes broadly accessible an understandable proof of the infamous spin-statistics theorem. This widely known but little-understood theorem is intended to explain the fact that electrons obey the Pauli exclusion principle. This fact, in turn, explains the periodic table of the elements and their chemical properties.Therefore, this one simply stated fact is responsible for many of the principal features of our universe, from chemistry to solid state physics to nuclear physics to the life cycle of stars.In spite of its fundamental importance, it is only a slight exaggeration to say that 'everyone knows the spin-statistics theorem, but no one understands it'. This book simplifies and clarifies the formal statements of the theorem, and also corrects the invariably flawed intuitive explanations which are frequently put forward. The book will be of interest to many practising physicists in all fields who have long been frustrated by the impenetrable discussions on the subject which have been available until now.It will also be accessible to students at an advanced undergraduate level as an introduction to modern physics based directly on the classical writings of the founders, including Pauli, Dirac, Heisenberg, Einstein and many others

  16. Central Limit Theorem for Coloured Hard Dimers

    Maria Simonetta Bernabei

    2010-01-01

    Full Text Available We study the central limit theorem for a class of coloured graphs. This means that we investigate the limit behavior of certain random variables whose values are combinatorial parameters associated to these graphs. The techniques used at arriving this result comprise combinatorics, generating functions, and conditional expectations.

  17. Reciprocity theorem in high-temperature superconductors

    Janeček, I.; Vašek, Petr

    2003-01-01

    Roč. 390, - (2003), s. 330-340 ISSN 0921-4534 R&D Projects: GA ČR GA202/00/1602; GA AV ČR IAA1010919 Institutional research plan: CEZ:AV0Z1010914 Keywords : transport properties * reciprocity theorem Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.192, year: 2003

  18. Some Generalizations of Jungck's Fixed Point Theorem

    J. R. Morales

    2012-01-01

    Full Text Available We are going to generalize the Jungck's fixed point theorem for commuting mappings by mean of the concepts of altering distance functions and compatible pair of mappings, as well as, by using contractive inequalities of integral type and contractive inequalities depending on another function.

  19. Limit theorems for functionals of Gaussian vectors

    Hongshuai DAI; Guangjun SHEN; Lingtao KONG

    2017-01-01

    Operator self-similar processes,as an extension of self-similar processes,have been studied extensively.In this work,we study limit theorems for functionals of Gaussian vectors.Under some conditions,we determine that the limit of partial sums of functionals of a stationary Gaussian sequence of random vectors is an operator self-similar process.

  20. Bell's theorem and the nature of reality

    Bertlmann, R.A.

    1988-01-01

    We rediscuss the Einstein-Podolsky-Rosen paradox in Bohm's spin version and oppose to it Bohr's controversial point of view. Then we explain Bell's theorem, Bell inequalities and its consequences. We describe the experiment of Aspect, Dalibard and Roger in detail. Finally we draw attention to the nonlocal structure of the underlying theory. 61 refs., 8 tabs. (Author)

  1. A singularity theorem based on spatial averages

    journal of. July 2007 physics pp. 31–47. A singularity theorem based on spatial ... In this paper I would like to present a result which confirms – at least partially – ... A detailed analysis of how the model fits in with the .... Further, the statement that the spatial average ...... Financial support under grants FIS2004-01626 and no.

  2. A Density Turán Theorem

    Narins, L.; Tran, Tuan

    2017-01-01

    Roč. 85, č. 2 (2017), s. 496-524 ISSN 0364-9024 Institutional support: RVO:67985807 Keywords : Turán’s theorem * stability method * multipartite version Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.601, year: 2016

  3. H-theorems from macroscopic autonomous equations

    De Roeck, W.; Maes, C.; Netočný, Karel

    2006-01-01

    Roč. 123, č. 3 (2006), s. 571-583 ISSN 0022-4715 Institutional research plan: CEZ:AV0Z10100520 Keywords : H-theorem, entropy * irreversible equations Subject RIV: BE - Theoretical Physics Impact factor: 1.437, year: 2006

  4. Student Research Project: Goursat's Other Theorem

    Petrillo, Joseph

    2009-01-01

    In an elementary undergraduate abstract algebra or group theory course, a student is introduced to a variety of methods for constructing and deconstructing groups. What seems to be missing from contemporary texts and syllabi is a theorem, first proved by Edouard Jean-Baptiste Goursat (1858-1936) in 1889, which completely describes the subgroups of…

  5. On Viviani's Theorem and Its Extensions

    Abboud, Elias

    2010-01-01

    Viviani's theorem states that the sum of distances from any point inside an equilateral triangle to its sides is constant. Here, in an extension of this result, we show, using linear programming, that any convex polygon can be divided into parallel line segments on which the sum of the distances to the sides of the polygon is constant. Let us say…

  6. The Embedding Theorems of Whitney and Nash

    We begin by briefly motivating the idea of amanifold and then discuss the embedding theorems of Whitney and Nash that allow us toview these objects inside appropriately large Euclidean spaces. Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 4. Current Issue Volume 23 | Issue 4. April 2018.

  7. Nash-Williams’ cycle-decomposition theorem

    Thomassen, Carsten

    2016-01-01

    We give an elementary proof of the theorem of Nash-Williams that a graph has an edge-decomposition into cycles if and only if it does not contain an odd cut. We also prove that every bridgeless graph has a collection of cycles covering each edge at least once and at most 7 times. The two results...

  8. General Correlation Theorem for Trinion Fourier Transform

    Bahri, Mawardi

    2017-01-01

    - The trinion Fourier transform is an extension of the Fourier transform in the trinion numbers setting. In this work we derive the correlation theorem for the trinion Fourier transform by using the relation between trinion convolution and correlation definitions in the trinion Fourier transform domains.

  9. ON A LAGUERRE’S THEOREM

    SEVER ANGEL POPESCU

    2015-03-01

    Full Text Available In this note we make some remarks on the classical Laguerre’s theorem and extend it and some other old results of Walsh and Gauss-Lucas to the so called trace series associated with transcendental elements of the completion of the algebraic closure of Q in C, with respect to the spectral norm:

  10. Lagrange’s Four-Square Theorem

    Watase Yasushige

    2015-02-01

    Full Text Available This article provides a formalized proof of the so-called “the four-square theorem”, namely any natural number can be expressed by a sum of four squares, which was proved by Lagrange in 1770. An informal proof of the theorem can be found in the number theory literature, e.g. in [14], [1] or [23].

  11. Anomalous Levinson theorem and supersymmetric quantum mechanics

    Boya, L.J.; Casahorran, J.; Esteve, J.G.

    1993-01-01

    We analyse the symmetry breaking associated to anomalous realization of supersymmetry in the context of SUSY QM. In this case one of the SUSY partners is singular; that leads to peculiar forms of the Levinson theorem relating phase shifts and bound states. Some examples are exhibited; peculiarities include negative energies, incomplete pairing of states and extra phases in scattering. (Author) 8 refs

  12. Another look at the second incompleteness theorem

    Visser, A.

    2017-01-01

    In this paper we study proofs of some general forms of the Second Incompleteness Theorem. These forms conform to the Feferman format, where the proof predicate is xed and the representation of the axiom set varies. We extend the Feferman framework in one important point: we allow the interpretation

  13. Another look at the second incompleteness theorem

    Visser, Albert

    2017-01-01

    In this paper we study proofs of some general forms of the Second Incompleteness Theorem. These forms conform to the Feferman format, where the proof predicate is fixed and the representation of the axiom set varies. We extend the Feferman framework in one important point: we allow the

  14. On the Leray-Hirsch Theorem for the Lichnerowicz cohomology

    Ait Haddoul, Hassan

    2004-03-01

    The purpose of this paper is to prove the Leray-Hirsch theorem for the Lichnerowicz; cohomology with respect to basic and vertical closed 1-forms. This is a generalization of the Kfirmeth theorem to fiber bundles. (author)

  15. A Note on a Broken-Cycle Theorem for Hypergraphs

    Trinks Martin

    2014-08-01

    Full Text Available Whitney’s Broken-cycle Theorem states the chromatic polynomial of a graph as a sum over special edge subsets. We give a definition of cycles in hypergraphs that preserves the statement of the theorem there

  16. A STRONG OPTIMIZATION THEOREM IN LOCALLY CONVEX SPACES

    程立新; 腾岩梅

    2003-01-01

    This paper presents a geometric characterization of convex sets in locally convex spaces onwhich a strong optimization theorem of the Stegall-type holds, and gives Collier's theorem ofw* Asplund spaces a localized setting.

  17. Applications of square-related theorems

    Srinivasan, V. K.

    2014-04-01

    The square centre of a given square is the point of intersection of its two diagonals. When two squares of different side lengths share the same square centre, there are in general four diagonals that go through the same square centre. The Two Squares Theorem developed in this paper summarizes some nice theoretical conclusions that can be obtained when two squares of different side lengths share the same square centre. These results provide the theoretical basis for two of the constructions given in the book of H.S. Hall and F.H. Stevens , 'A Shorter School Geometry, Part 1, Metric Edition'. In page 134 of this book, the authors present, in exercise 4, a practical construction which leads to a verification of the Pythagorean theorem. Subsequently in Theorems 29 and 30, the authors present the standard proofs of the Pythagorean theorem and its converse. In page 140, the authors present, in exercise 15, what amounts to a geometric construction, whose verification involves a simple algebraic identity. Both the constructions are of great importance and can be replicated by using the standard equipment provided in a 'geometry toolbox' carried by students in high schools. The author hopes that the results proved in this paper, in conjunction with the two constructions from the above-mentioned book, would provide high school students an appreciation of the celebrated theorem of Pythagoras. The diagrams that accompany this document are based on the free software GeoGebra. The author formally acknowledges his indebtedness to the creators of this free software at the end of this document.

  18. DISCRETE FIXED POINT THEOREMS AND THEIR APPLICATION TO NASH EQUILIBRIUM

    Sato, Junichi; Kawasaki, Hidefumi

    2007-01-01

    Fixed point theorems are powerful tools in not only mathematics but also economic. In some economic problems, we need not real-valued but integer-valued equilibriums. However, classical fixed point theorems guarantee only real-valued equilibria. So we need discrete fixed point theorems in order to get discrete equilibria. In this paper, we first provide discrete fixed point theorems, next apply them to a non-cooperative game and prove the existence of a Nash equilibrium of pure strategies.

  19. A general comparison theorem for backward stochastic differential equations

    Cohen, Samuel N.; Elliott, Robert J.; Pearce, Charles E. M.

    2010-01-01

    A useful result when dealing with backward stochastic differential equations is the comparison theorem of Peng (1992). When the equations are not based on Brownian motion, the comparison theorem no longer holds in general. In this paper we present a condition for a comparison theorem to hold for backward stochastic differential equations based on arbitrary martingales. This theorem applies to both vector and scalar situations. Applications to the theory of nonlinear expectat...

  20. Theorems of Tarski's Undefinability and Godel's Second Incompleteness - Computationally

    Salehi, Saeed

    2015-01-01

    We present a version of Godel's Second Incompleteness Theorem for recursively enumerable consistent extensions of a fixed axiomatizable theory, by incorporating some bi-theoretic version of the derivability conditions (first discussed by M. Detlefsen 2001). We also argue that Tarski's theorem on the Undefinability of Truth is Godel's First Incompleteness Theorem relativized to definable oracles; here a unification of these two theorems is given.

  1. From Helmholtz to Schlick: The evolution of the sign-theory of perception.

    Oberdan, Thomas

    2015-08-01

    Efforts to trace the influence of fin de siècle neo-Kantianism on early 20th Century philosophy of science have led scholars to recognize the powerful influence on Moritz Schlick of Hermann von Helmholtz, the doyen of 19th Century physics and a leader of the zurȕck zu Kant movement. But Michael Friedman thinks that Schlick misunderstood Helmholtz' signature philosophical doctrine, the sign-theory of perception. Indeed, Friedman has argued that Schlick transformed Helmholtz' Kantian view of spatial intuition into an empiricist version of the causal theory of perception. However, it will be argued that, despite the key role the sign-theory played in his epistemology, Schlick thought the Kantianism in Helmholtz' thought was deeply flawed, rendered obsolete by philosophical insights which emerged from recent scientific developments. So even though Schlick embraced the sign-theory, he rejected Helmholtz' ideas about spatial intuition. In fact, like his teacher, Max Planck, Schlick generalized the sign-theory into a form of structural realism. At the same time, Schlick borrowed the method of concept-formation developed by the formalist mathematicians, Moritz Pasch and David Hilbert, and combined it with the conventionalism of Henri Poincaré. Then, to link formally defined concepts with experience, Schlick's introduced his 'method of coincidences', similar to the 'point-coincidences' featured in Einstein's physics. The result was an original scientific philosophy, which owed much to contemporary scientific thinkers, but little to Kant or Kantianism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The Interpretability of Inconsistency: Feferman's Theorem and Related Results

    Visser, Albert

    This paper is an exposition of Feferman's Theorem concerning the interpretability of inconsistency and of further insights directly connected to this result. Feferman's Theorem is a strengthening of the Second Incompleteness Theorem. It says, in metaphorical paraphrase, that it is not just the case

  3. The Interpretability of Inconsistency: Feferman's Theorem and Related Results

    Visser, Albert

    2014-01-01

    This paper is an exposition of Feferman's Theorem concerning the interpretability of inconsistency and of further insights directly connected to this result. Feferman's Theorem is a strengthening of the Second Incompleteness Theorem. It says, in metaphorical paraphrase, that it is not just the case

  4. On Comparison Theorems for Conformable Fractional Differential Equations

    Mehmet Zeki Sarikaya

    2016-10-01

    Full Text Available In this paper the more general comparison theorems for conformable fractional differential equations is proposed and tested. Thus we prove some inequalities for conformable integrals by using the generalization of Sturm's separation and Sturm's comparison theorems. The results presented here would provide generalizations of those given in earlier works. The numerical example is also presented to verify the proposed theorem.

  5. COMPARISON THEOREMS AND APPLICATIONS OF OSCILLATION OF NEUTRAL DIFFERENTIAL EQUATIONS

    燕居让

    1991-01-01

    We first establish comparison theorems of the oscillation for a higher-order neutral delaydifferential equation. By these comparison theorems, the criterion of oscillation propertiesof neutral delay differential equation is reduced to that of nonneutral delay differential equa-tion, from which we give a series of oscillation theorems for neutral delay differentialequation.

  6. A generalization of the virial theorem for strongly singular potentials

    Gesztesy, F.; Pittner, L.

    1978-09-01

    Using scale transformations the authors prove a generalization of the virial theorem for the eigenfunctions of non-relativistic Schroedinger Hamiltonians which are defined as the Friedrichs extension of strongly singular differential operators. The theorem also applies to situations where the ground state has divergent kinetic and potential energy and thus the usual version of the virial theorem becomes meaningless. (Auth.)

  7. No-go theorems for the minimization of potentials

    Chang, D.; Kumar, A.

    1985-01-01

    Using a theorem in linear algebra, we prove some no-go theorems in the minimization of potentials related to the problem of symmetry breaking. Some applications in the grand unified model building are mentioned. Another application of the algebraic theorem is also included to demonstrate its usefulness

  8. Search strategy for theorem proving in artificial systems. I

    Lovitskii, V A; Barenboim, M S

    1981-01-01

    A strategy is contrived, employing the language of finite-order predicate calculus, for finding proofs of theorems. A theorem is formulated, based on 2 known theorems on purity and absorption, and used to determine 5 properties of a set of propositions. 3 references.

  9. Goedel incompleteness theorems and the limits of their applicability. I

    Beklemishev, Lev D

    2011-01-01

    This is a survey of results related to the Goedel incompleteness theorems and the limits of their applicability. The first part of the paper discusses Goedel's own formulations along with modern strengthenings of the first incompleteness theorem. Various forms and proofs of this theorem are compared. Incompleteness results related to algorithmic problems and mathematically natural examples of unprovable statements are discussed. Bibliography: 68 titles.

  10. Harvesting energy from airflow with a michromachined piezoelectric harvester inside a Helmholtz resonator

    Matova, S P; Elfrink, R; Vullers, R J M; Van Schaijk, R

    2011-01-01

    In this paper we report an airflow energy harvester that combines a piezoelectric energy harvester with a Helmholtz resonator. The resonator converts airflow energy to air oscillations which in turn are converted into electrical energy by a piezoelectric harvester. Two Helmholtz resonators with adjustable resonance frequencies have been designed—one with a solid bottom and one with membrane on the bottom. The resonance frequencies of the resonators were matched to the complementing piezoelectric harvesters during harvesting. The aim of the presented work is a feasibility study on using packaged piezoelectric energy harvesters with Helmholtz resonators for airflow energy harvesting. The maximum energy we were able to obtain was 42.2 µW at 20 m s −1

  11. Rayleigh-Taylor and Kelvin-Helmholtz instabilities in targets accelerated by laser ablation

    Emery, M.H.; Gardner, J.H.; Boris, J.P.

    1982-01-01

    With use of the fast2d laser-shell model, the acceleration of a 20-μm-thick plastic foil up to 160 km/s has been simulated. It is possible to follow the Rayleigh-Taylor bubble-and-spike development far into the nonlinear regime and beyond the point of foil fragmentation. Strong shear flow develops which evolves into the Kelvin-Helmholtz instability. The Kelvin-Helmholtz instability causes the tips of the spikes to widen and as a result reduce their rate of ''fall.''

  12. [Scientific theoretical founding of medicine as a natural science by Hermann von Helmholtz (1821-1894)].

    Neumann, J N

    1994-01-01

    In this study an attempt will be made to discuss the epistemological problems in the theory and practice of modern technical medicine in the writings of Hermann von Helmholz. An inquiry into the relationship between von Helmholtz' thinking and the critical philosophy of Immanuel Kant is followed by the characteristics of von Helmholtz' philosophy of science which he himself called "empirical theory". The question of medicine as a science finally leads to the main problem of medical epistemology, viz., the relationship between theoretical knowledge and practice in medicine. In this context the anthropological dimension is brought into consideration.

  13. Multimode Coupling Theory for Kelvin–Helmholtz Instability in Incompressible Fluid

    Li-Feng, Wang; Ying-Jun, Li; Wen-Hua, Ye; Zheng-Feng, Fan

    2009-01-01

    A weakly nonlinear model is proposed for multimode Kelvin–Helmholtz instability. The second-order mode coupling formula for Kelvin–Helmholtz instability in two-dimensional incompressible fluid is presented by expanding the perturbation velocity potential to second order. It is found that there is an important resonance in the course of the sum frequency mode coupling but the difference frequency mode coupling does not have. This resonance makes the sum frequency mode coupling process relatively complex. The sum frequency mode coupling is strongly dependent on time especially when the density of the two fluids is adjacent and the difference frequency mode coupling is not

  14. Two numerical methods for an inverse problem for the 2-D Helmholtz equation

    Gryazin, Y A; Lucas, T R

    2003-01-01

    Two solution methods for the inverse problem for the 2-D Helmholtz equation are developed, tested, and compared. The proposed approaches are based on a marching finite-difference scheme which requires the solution of an overdetermined system at each step. The preconditioned conjugate gradient method is used for rapid solutions of these systems and an efficient preconditioner has been developed for this class of problems. Underlying target applications include the imaging of land mines, unexploded ordinance, and pollutant plumes in environmental cleanup sites, each formulated as an inverse problem for a 2-D Helmholtz equation. The images represent the electromagnetic properties of the respective underground regions. Extensive numerical results are presented.

  15. A Meinardus Theorem with Multiple Singularities

    Granovsky, Boris L.; Stark, Dudley

    2012-09-01

    Meinardus proved a general theorem about the asymptotics of the number of weighted partitions, when the Dirichlet generating function for weights has a single pole on the positive real axis. Continuing (Granovsky et al., Adv. Appl. Math. 41:307-328, 2008), we derive asymptotics for the numbers of three basic types of decomposable combinatorial structures (or, equivalently, ideal gas models in statistical mechanics) of size n, when their Dirichlet generating functions have multiple simple poles on the positive real axis. Examples to which our theorem applies include ones related to vector partitions and quantum field theory. Our asymptotic formula for the number of weighted partitions disproves the belief accepted in the physics literature that the main term in the asymptotics is determined by the rightmost pole.

  16. H-theorem in quantum physics.

    Lesovik, G B; Lebedev, A V; Sadovskyy, I A; Suslov, M V; Vinokur, V M

    2016-09-12

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy.

  17. A Geometrical Approach to Bell's Theorem

    Rubincam, David Parry

    2000-01-01

    Bell's theorem can be proved through simple geometrical reasoning, without the need for the Psi function, probability distributions, or calculus. The proof is based on N. David Mermin's explication of the Einstein-Podolsky-Rosen-Bohm experiment, which involves Stern-Gerlach detectors which flash red or green lights when detecting spin-up or spin-down. The statistics of local hidden variable theories for this experiment can be arranged in colored strips from which simple inequalities can be deduced. These inequalities lead to a demonstration of Bell's theorem. Moreover, all local hidden variable theories can be graphed in such a way as to enclose their statistics in a pyramid, with the quantum-mechanical result lying a finite distance beneath the base of the pyramid.

  18. A THEOREM ON CENTRAL VELOCITY DISPERSIONS

    An, Jin H.; Evans, N. Wyn

    2009-01-01

    It is shown that, if the tracer population is supported by a spherical dark halo with a core or a cusp diverging more slowly than that of a singular isothermal sphere (SIS), the logarithmic cusp slope γ of the tracers must be given exactly by γ = 2β, where β is their velocity anisotropy parameter at the center unless the same tracers are dynamically cold at the center. If the halo cusp diverges faster than that of the SIS, the velocity dispersion of the tracers must diverge at the center too. In particular, if the logarithmic halo cusp slope is larger than two, the diverging velocity dispersion also traces the behavior of the potential. The implication of our theorem on projected quantities is also discussed. We argue that our theorem should be understood as a warning against interpreting results based on simplifying assumptions such as isotropy and spherical symmetry.

  19. Asymptotic twistor theory and the Kerr theorem

    Newman, Ezra T

    2006-01-01

    We first review asymptotic twistor theory with its real subspace of null asymptotic twistors: a five-dimensional CR manifold. This is followed by a description of the Kerr theorem (the identification of shear-free null congruences, in Minkowski space, with the zeros of holomorphic functions of three variables) and an asymptotic version of the Kerr theorem that produces regular asymptotically shear-free null geodesic congruences in arbitrary asymptotically flat Einstein or Einstein-Maxwell spacetimes. A surprising aspect of this work is the role played by analytic curves in H-space, each curve generating an asymptotically flat null geodesic congruence. Also there is a discussion of the physical space realizations of the two associated five- and three-dimensional CR manifolds

  20. Theorem of comparative sensitivity of fibre sensors

    Belovolov, M. I.; Paramonov, V. M.; Belovolov, M. M.

    2017-12-01

    We report an analysis of sensitivity of fibre sensors of physical quantities based on different types of interferometers. We formulate and prove the following theorem: under the time-dependent external physical perturbations at nonzero frequencies (i.e., except the static and low-frequency ones) on the sensitive arms of an interferometer in the form of multiturn elements (coils), there exist such lengths L of the measuring arms of the fibre interferometers at which the sensitivity of sensors based on the Sagnac fibre interferometers can be comparable with the sensitivity of sensors based on Michelson, Mach - Zehnder, or Fabry - Perot fibre interferometers, as well as exceed it under similar other conditions (similar-type perturbations, similar arm lengths and single-mode fibre types). The consequences that follow from the theorem, important for practical implementation of arrays of fibre sensors for measurement purposes and the devices with stable metrological properties, are discussed.

  1. Proofs and generalizations of the pythagorean theorem

    Lialda B. Cavalcanti

    2011-01-01

    Full Text Available This article explores a topic developed by a group of researchers of the Science and Technology Teaching School of Instituto Federal de Pernambuco, Brazil (IFPE, in assistance to the development of the Mathematics Practical and Teaching Laboratory of the distance learning Teaching Licensure, financed by the Universidad Abierta de Brasil. In this article, we describe the peculiarities present in the proofs of the Pythagorean theorem with the purpose of illustrating some of these methods. The selection of these peculiarities was founded and based on the comparison of areas by means of the superimposition of geometrical shapes and used several different class resources. Some generalizations of this important theorem in mathematical problem-solving are also shown.

  2. The self-normalized Donsker theorem revisited

    Parczewski, Peter

    2016-01-01

    We extend the Poincar\\'{e}--Borel lemma to a weak approximation of a Brownian motion via simple functionals of uniform distributions on n-spheres in the Skorokhod space $D([0,1])$. This approach is used to simplify the proof of the self-normalized Donsker theorem in Cs\\"{o}rg\\H{o} et al. (2003). Some notes on spheres with respect to $\\ell_p$-norms are given.

  3. The untyped stack calculus and Bohm's theorem

    Alberto Carraro

    2013-03-01

    Full Text Available The stack calculus is a functional language in which is in a Curry-Howard correspondence with classical logic. It enjoys confluence but, as well as Parigot's lambda-mu, does not admit the Bohm Theorem, typical of the lambda-calculus. We present a simple extension of stack calculus which is for the stack calculus what Saurin's Lambda-mu is for lambda-mu.

  4. Gauge Invariance and the Goldstone Theorem

    Guralnik, Gerald S.

    This paper was originally created for and printed in the "Proceedings of seminar on unified theories of elementary particles" held in Feldafing, Germany from July 5 to 16, 1965 under the auspices of the Max-Planck-Institute for Physics and Astrophysics in Munich. It details and expands upon the 1964 Guralnik, Hagen, and Kibble paper demonstrating that the Goldstone theorem does not require physical zero mass particles in gauge theories.

  5. A remark on three-surface theorem

    Lu Zhujia

    1991-01-01

    The three-surface theorem for uniformly elliptic differential inequalities with nonpositive coefficient of zero-order term in some domain D is included in R n becomes trivial if the maximum of u on two separate boundary surface of D is nonpositive. We give a method in this paper for obtaining a nontrivial estimate of the maximum of u on a family of closed surfaces. (author). 2 refs

  6. Asynchronous networks: modularization of dynamics theorem

    Bick, Christian; Field, Michael

    2017-02-01

    Building on the first part of this paper, we develop the theory of functional asynchronous networks. We show that a large class of functional asynchronous networks can be (uniquely) represented as feedforward networks connecting events or dynamical modules. For these networks we can give a complete description of the network function in terms of the function of the events comprising the network: the modularization of dynamics theorem. We give examples to illustrate the main results.

  7. Fractional and integer charges from Levinson's theorem

    Farhi, E.; Graham, N.; Jaffe, R.L.; Weigel, H.

    2001-01-01

    We compute fractional and integer fermion quantum numbers of static background field configurations using phase shifts and Levinson's theorem. By extending fermionic scattering theory to arbitrary dimensions, we implement dimensional regularization in a (1+1)-dimensional gauge theory. We demonstrate that this regularization procedure automatically eliminates the anomaly in the vector current that a naive regulator would produce. We also apply these techniques to bag models in one and three dimensions

  8. Theorems for asymptotic safety of gauge theories

    Bond, Andrew D.; Litim, Daniel F. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-06-15

    We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasised. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated. (orig.)

  9. Optical theorem, depolarization and vector tomography

    Toperverg, B.P.

    2003-01-01

    A law of the total flux conservation is formulated in the form of the optical theorem. It is employed to explicitly derive equations for the description of the neutron polarization within the range of the direct beam defined by its angular divergence. General considerations are illustrated by calculations using the Born and Eikonal approximations. Results are briefly discussed as applied to Larmor-Fourier tomography

  10. Central limit theorem and deformed exponentials

    Vignat, C; Plastino, A

    2007-01-01

    The central limit theorem (CLT) can be ranked among the most important ones in probability theory and statistics and plays an essential role in several basic and applied disciplines, notably in statistical thermodynamics. We show that there exists a natural extension of the CLT from exponentials to so-called deformed exponentials (also denoted as q-Gaussians). Our proposal applies exactly in the usual conditions in which the classical CLT is used. (fast track communication)

  11. Convergence theorems for quasi-contractive mappings

    Chidume, C.E.

    1992-01-01

    It is proved that each of two well known fixed point iteration methods (the Mann and Ishikawa iteration methods) converges strongly, without any compactness assumption on the domain of the map, to the unique fixed point of a quasi-contractive map in real Banach spacers with property (U, α, m+1, m). These Banach spaces include the L p (or l p ) spaces, p ≥ 2. Our theorems generalize important known results. (author). 29 refs

  12. Optical theorem for heavy-ion scattering

    Schwarzschild, A.Z.; Auerbach, E.H.; Fuller, R.C.; Kahana, S.

    1976-01-01

    An heuristic derivation is given of an equivalent of the optical theorem stated in the charged situation with the remainder or nuclear elastic scattering amplitude defined as a difference of elastic and Coulomb amplitudes. To test the detailed behavior of this elastic scattering amplitude and the cross section, calculations were performed for elastic scattering of 18 O + 58 Ni, 136 Xe + 209 Bi, 84 Kr + 208 Pb, and 11 B + 26 Mg at 63.42 to 114 MeV

  13. Applications of Wck's theorem, ch. 17

    Brussaard, P.J.; Glaudemans, P.W.M.

    1977-01-01

    Wick's theorem is introduced and used to write the many-body Hamiltonian in a selfconsistent basis. The terms of a perturbation expansion are evaluated with the use of the second-quantization formalism.The correspondence with Feyman diagrams is demonstrated. For some nuclei a description in terms of particle-hole configurations is quite convenient. The simplest case, i.e. one-particle, one-hole states, is treated

  14. Theorem Proving In Higher Order Logics

    Carreno, Victor A. (Editor); Munoz, Cesar A.; Tahar, Sofiene

    2002-01-01

    The TPHOLs International Conference serves as a venue for the presentation of work in theorem proving in higher-order logics and related areas in deduction, formal specification, software and hardware verification, and other applications. Fourteen papers were submitted to Track B (Work in Progress), which are included in this volume. Authors of Track B papers gave short introductory talks that were followed by an open poster session. The FCM 2002 Workshop aimed to bring together researchers working on the formalisation of continuous mathematics in theorem proving systems with those needing such libraries for their applications. Many of the major higher order theorem proving systems now have a formalisation of the real numbers and various levels of real analysis support. This work is of interest in a number of application areas, such as formal methods development for hardware and software application and computer supported mathematics. The FCM 2002 consisted of three papers, presented by their authors at the workshop venue, and one invited talk.

  15. The universality of the Carnot theorem

    Gonzalez-Ayala, Julian; Angulo-Brown, F

    2013-01-01

    It is common in many thermodynamics textbooks to illustrate the Carnot theorem through the use of diverse state equations for gases, paramagnets, and other simple thermodynamic systems. As is well known, the universality of the Carnot efficiency is easily demonstrated in a temperature–entropy diagram, which means that η C is independent of the working substance. In this paper we remark that the universality of the Carnot theorem goes beyond conventional state equations, and is fulfilled by gas state equations that do not correspond to an ideal gas in the dilution limit, namely V → ∞. Some of these unconventional state equations have certain thermodynamic ‘anomalies’ that nonetheless do not forbid them from obeying the Carnot theorem. We discuss how this very general behaviour arises from Maxwell relations, which are connected with a geometrical property expressed through preserving area transformations. A rule is proposed to calculate the Maxwell relations associated with a thermodynamic system by using the preserving area relationships. In this way it is possible to calculate the number of possible preserving area mappings by giving the number of possible Jacobian identities between all pairs of thermodynamic variables included in the corresponding Gibbs equation. This paper is intended for undergraduates and specialists in thermodynamics and related areas. (paper)

  16. Soft theorems from conformal field theory

    Lipstein, Arthur E.

    2015-01-01

    Strominger and collaborators recently proposed that soft theorems for gauge and gravity amplitudes can be interpreted as Ward identities of a 2d CFT at null infinity. In this paper, we will consider a specific realization of this CFT known as ambitwistor string theory, which describes 4d Yang-Mills and gravity with any amount of supersymmetry. Using 4d ambtwistor string theory, we derive soft theorems in the form of an infinite series in the soft momentum which are valid to subleading order in gauge theory and sub-subleading order in gravity. Furthermore, we describe how the algebra of soft limits can be encoded in the braiding of soft vertex operators on the worldsheet and point out a simple relation between soft gluon and soft graviton vertex operators which suggests an interesting connection to color-kinematics duality. Finally, by considering ambitwistor string theory on a genus one worldsheet, we compute the 1-loop correction to the subleading soft graviton theorem due to infrared divergences.

  17. Joint probability distributions and fluctuation theorems

    García-García, Reinaldo; Kolton, Alejandro B; Domínguez, Daniel; Lecomte, Vivien

    2012-01-01

    We derive various exact results for Markovian systems that spontaneously relax to a non-equilibrium steady state by using joint probability distribution symmetries of different entropy production decompositions. The analytical approach is applied to diverse problems such as the description of the fluctuations induced by experimental errors, for unveiling symmetries of correlation functions appearing in fluctuation–dissipation relations recently generalized to non-equilibrium steady states, and also for mapping averages between different trajectory-based dynamical ensembles. Many known fluctuation theorems arise as special instances of our approach for particular twofold decompositions of the total entropy production. As a complement, we also briefly review and synthesize the variety of fluctuation theorems applying to stochastic dynamics of both continuous systems described by a Langevin dynamics and discrete systems obeying a Markov dynamics, emphasizing how these results emerge from distinct symmetries of the dynamical entropy of the trajectory followed by the system. For Langevin dynamics, we embed the 'dual dynamics' with a physical meaning, and for Markov systems we show how the fluctuation theorems translate into symmetries of modified evolution operators

  18. Four theorems on the psychometric function.

    May, Keith A; Solomon, Joshua A

    2013-01-01

    In a 2-alternative forced-choice (2AFC) discrimination task, observers choose which of two stimuli has the higher value. The psychometric function for this task gives the probability of a correct response for a given stimulus difference, Δx. This paper proves four theorems about the psychometric function. Assuming the observer applies a transducer and adds noise, Theorem 1 derives a convenient general expression for the psychometric function. Discrimination data are often fitted with a Weibull function. Theorem 2 proves that the Weibull "slope" parameter, β, can be approximated by β(Noise) x β(Transducer), where β(Noise) is the β of the Weibull function that fits best to the cumulative noise distribution, and β(Transducer) depends on the transducer. We derive general expressions for β(Noise) and β(Transducer), from which we derive expressions for specific cases. One case that follows naturally from our general analysis is Pelli's finding that, when d' ∝ (Δx)(b), β ≈ β(Noise) x b. We also consider two limiting cases. Theorem 3 proves that, as sensitivity improves, 2AFC performance will usually approach that for a linear transducer, whatever the actual transducer; we show that this does not apply at signal levels where the transducer gradient is zero, which explains why it does not apply to contrast detection. Theorem 4 proves that, when the exponent of a power-function transducer approaches zero, 2AFC performance approaches that of a logarithmic transducer. We show that the power-function exponents of 0.4-0.5 fitted to suprathreshold contrast discrimination data are close enough to zero for the fitted psychometric function to be practically indistinguishable from that of a log transducer. Finally, Weibull β reflects the shape of the noise distribution, and we used our results to assess the recent claim that internal noise has higher kurtosis than a Gaussian. Our analysis of β for contrast discrimination suggests that, if internal noise is stimulus

  19. Four theorems on the psychometric function.

    Keith A May

    Full Text Available In a 2-alternative forced-choice (2AFC discrimination task, observers choose which of two stimuli has the higher value. The psychometric function for this task gives the probability of a correct response for a given stimulus difference, Δx. This paper proves four theorems about the psychometric function. Assuming the observer applies a transducer and adds noise, Theorem 1 derives a convenient general expression for the psychometric function. Discrimination data are often fitted with a Weibull function. Theorem 2 proves that the Weibull "slope" parameter, β, can be approximated by β(Noise x β(Transducer, where β(Noise is the β of the Weibull function that fits best to the cumulative noise distribution, and β(Transducer depends on the transducer. We derive general expressions for β(Noise and β(Transducer, from which we derive expressions for specific cases. One case that follows naturally from our general analysis is Pelli's finding that, when d' ∝ (Δx(b, β ≈ β(Noise x b. We also consider two limiting cases. Theorem 3 proves that, as sensitivity improves, 2AFC performance will usually approach that for a linear transducer, whatever the actual transducer; we show that this does not apply at signal levels where the transducer gradient is zero, which explains why it does not apply to contrast detection. Theorem 4 proves that, when the exponent of a power-function transducer approaches zero, 2AFC performance approaches that of a logarithmic transducer. We show that the power-function exponents of 0.4-0.5 fitted to suprathreshold contrast discrimination data are close enough to zero for the fitted psychometric function to be practically indistinguishable from that of a log transducer. Finally, Weibull β reflects the shape of the noise distribution, and we used our results to assess the recent claim that internal noise has higher kurtosis than a Gaussian. Our analysis of β for contrast discrimination suggests that, if internal noise is

  20. Square Helmholtz coil with homogeneous field for magnetic measurement of longer HTS tapes

    Alamgir, A.K.M. [Applied Superconductivity Research Center, Department of Physics, Building Li Zhai, Room 209, Tsinghua University, Beijing 100084 (China)]. E-mail: alam643@hotmail.com; Fang, J. [Applied Superconductivity Research Center, Department of Physics, Building Li Zhai, Room 209, Tsinghua University, Beijing 100084 (China); Gu, C. [Applied Superconductivity Research Center, Department of Physics, Building Li Zhai, Room 209, Tsinghua University, Beijing 100084 (China); Han, Z. [Applied Superconductivity Research Center, Department of Physics, Building Li Zhai, Room 209, Tsinghua University, Beijing 100084 (China)

    2005-08-01

    Magnetic ac loss measurement of HTS tapes and films at various magnetic field orientations becomes a crucial issue from the view point of measurement precision. In principle, due to tiny loss component and anisotropic properties, longer HTS sample subjected to very good homogeneous field could facilitate the accuracy of this kind of measurement. We investigated field profile of Helmholtz coils with square winding as a magnetizer for HTS tape and films. It is found that square winding exhibits better field-homogeneity than that of conventional circular winding with the similar coil dimensions for ideal condition. Being apart from ideal condition, we investigated field profile of square Helmholtz coil with various combinations of coil parameters and made a conclusion for the best combination based on the field homogeneity and field intensity. The design also provides noise reduction facilities by allowing compact and identical pick up-compensation coil arrangement. In addition, we optimized the final design of Helmholtz coil to compensate the influence of difficulties in square winding on the field distribution. Finally, as small as 0.5% field variation was estimated for 50 mm long sample to be magnetized under a proper combination of fabrication parameters. Investigation of field homogeneity, noise effect and a practical design of square Helmholtz coil as a pick-up coil based magnetizer will be reported.

  1. Implicit Boundary Integral Methods for the Helmholtz Equation in Exterior Domains

    2016-06-01

    solve the Helmholtz equation as ∂Ω goes through significant change in its shape and topology — applications for which implicit representation of the...boundary-value problems for the wave equation and maxwell’s equations. Russian Math . Surv., 1965. [16] S. Reutskiy. The method of fundamental

  2. Optimization of field homogeneity of Helmholtz-like coils for measuring the balance of planar gradiometers

    Nordahn, M.A.; Holst, T.; Shen, Y.Q.

    1999-01-01

    Measuring the balance of planar SQUID gradiometers using a relatively small Helmholtz-like coil system requires a careful design of the coils in order to have a high degree of field uniformity along the radial direction. The level to which planar gradiometers can be balanced will be affected by any misalignment of the gradiometer relative to the ideal central position. Therefore, the maximum degree of balancing possible is calculated numerically for the Helmholtz geometry under various perturbations, including misalignment of the gradiometer along the cylindrical and the radial axis, and angular tilting relative to the normal plane. Furthermore, if the ratio between the coil separation and coil radius is chosen to be less than unity, calculations show that the expected radial uniformity of the field can be improved considerably compared to the traditional Helmholtz geometry. The optimized coil geometry is compared to the Helmholtz geometry and is found to yield up to an order of magnitude improvement of the worst case error signal within a volume spanned by the uncertainty in the alignment. (author)

  3. Continuous versus discrete structures II -- Discrete Hamiltonian systems and Helmholtz conditions

    Cresson, Jacky; Pierret, Frédéric

    2015-01-01

    We define discrete Hamiltonian systems in the framework of discrete embeddings. An explicit comparison with previous attempts is given. We then solve the discrete Helmholtz's inverse problem for the discrete calculus of variation in the Hamiltonian setting. Several applications are discussed.

  4. The Use of Helmholtz Resonance for Measuring the Volume of Liquids and Solids

    Clive E. Davies

    2010-11-01

    Full Text Available An experimental investigation was undertaken to ascertain the potential of using Helmholtz resonance for volume determination and the factors that may influence accuracy. The uses for a rapid non-interference volume measurement system range from agricultural produce and mineral sampling through to liquid fill measurements. By weighing the sample the density can also measured indirectly.

  5. Square Helmholtz coil with homogeneous field for magnetic measurement of longer HTS tapes

    Alamgir, A.K.M.; Fang, J.; Gu, C.; Han, Z.

    2005-01-01

    Magnetic ac loss measurement of HTS tapes and films at various magnetic field orientations becomes a crucial issue from the view point of measurement precision. In principle, due to tiny loss component and anisotropic properties, longer HTS sample subjected to very good homogeneous field could facilitate the accuracy of this kind of measurement. We investigated field profile of Helmholtz coils with square winding as a magnetizer for HTS tape and films. It is found that square winding exhibits better field-homogeneity than that of conventional circular winding with the similar coil dimensions for ideal condition. Being apart from ideal condition, we investigated field profile of square Helmholtz coil with various combinations of coil parameters and made a conclusion for the best combination based on the field homogeneity and field intensity. The design also provides noise reduction facilities by allowing compact and identical pick up-compensation coil arrangement. In addition, we optimized the final design of Helmholtz coil to compensate the influence of difficulties in square winding on the field distribution. Finally, as small as 0.5% field variation was estimated for 50 mm long sample to be magnetized under a proper combination of fabrication parameters. Investigation of field homogeneity, noise effect and a practical design of square Helmholtz coil as a pick-up coil based magnetizer will be reported

  6. A third note: Helmholtz, Palestrina, and the Early History of Musicology

    Kursell, J.

    2015-01-01

    This contribution focuses on Hermann von Helmholtz’s work on Renaissance composer Giovanni Pierluigi da Palestrina. Helmholtz used his scientific concept of distortion to analyze this music and, reversely, to find corroboration for the concept in his musical analyses. In this, his work interlocked

  7. Riemann's and Helmholtz-Lie's problems of space from Weyl's relativistic perspective

    Bernard, Julien

    2018-02-01

    I reconstruct Riemann's and Helmholtz-Lie's problems of space, from some perspectives that allow for a fruitful comparison with Weyl. In Part II. of his inaugural lecture, Riemann justifies that the infinitesimal metric is the square root of a quadratic form. Thanks to Finsler geometry, I clarify both the implicit and explicit hypotheses used for this justification. I explain that Riemann-Finsler's kind of method is also appropriate to deal with indefinite metrics. Nevertheless, Weyl shares with Helmholtz a strong commitment to the idea that the notion of group should be at the center of the foundations of geometry. Riemann missed this point, and that is why, according to Weyl, he dealt with the problem of space in a "too formal" way. As a consequence, to solve the problem of space, Weyl abandoned Riemann-Finsler's methods for group-theoretical ones. However, from a philosophical point of view, I show that Weyl and Helmholtz are in strong opposition. The meditation on Riemann's inaugural lecture, and its clear methodological separation between the infinitesimal and the finite parts of the problem of space, must have been crucial for Weyl, while searching for strong epistemological foundations for the group-theoretical methods, avoiding Helmholtz's unjustified transition from the finite to the infinitesimal.

  8. Symmetry-breaking analysis for the general Helmholtz-Duffing oscillator

    Cao Hongjun; Seoane, Jesus M.; Sanjuan, Miguel A.F.

    2007-01-01

    The symmetry breaking phenomenon for a general Helmholtz-Duffing oscillator as a function of a symmetric parameter in the nonlinear force is investigated. Different values of this parameter convert the general oscillator into either the Helmholtz or the Duffing oscillator. Due to the variation of the symmetric parameter, the phase space patterns of the unperturbed Helmholtz-Duffing oscillator will cause a huge difference between the left-hand homoclinic orbit and the right-hand one. In particular, the area of the left-hand homoclinic orbits is a strictly monotonously decreasing function, while the area of the right-hand homoclinic orbit varies only in a very small range. There exist distinct local supercritical and subcritical saddle-node bifurcations at two different centers. The left-hand and the right-hand existing regions of the harmonic solutions of the Helmholtz-Duffing oscillator created by the left-hand and the right-hand saddle-node bifurcation curves will lead to different transition in the amplitude-frequency plane. There exists also a critical frequency which has the effect that the left-hand homoclinic bifurcation value is equal to the right-hand homoclinic bifurcation value. And, if the amplitude coefficient of the Helmholtz-Duffing oscillator is used as the control parameter, and it is larger than the same left-hand and right-hand homoclinic bifurcation, then the global stability of the system will be destroyed at a lowest cost. Besides this critical frequency, the left-hand and the right-hand homoclinic bifurcations are not only unequal, but also their effects for the system's stability are different. Among them, the effect resulting from the small homoclinic bifurcation for the system's stability is local and negligible, while the effect from the large homoclinic bifurcation is global but this is accomplished at a quite larger cost

  9. Stochastic thermodynamics, fluctuation theorems and molecular machines

    Seifert, Udo

    2012-01-01

    Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics such as work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. For a basic Markovian dynamics implemented either on the continuum level with Langevin equations or on a discrete set of states as a master equation, thermodynamic consistency imposes a local-detailed balance constraint on noise and rates, respectively. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation–dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production. (review article)

  10. The implicit function theorem history, theory, and applications

    Krantz, Steven G

    2003-01-01

    The implicit function theorem is part of the bedrock of mathematics analysis and geometry. Finding its genesis in eighteenth century studies of real analytic functions and mechanics, the implicit and inverse function theorems have now blossomed into powerful tools in the theories of partial differential equations, differential geometry, and geometric analysis. There are many different forms of the implicit function theorem, including (i) the classical formulation for Ck functions, (ii) formulations in other function spaces, (iii) formulations for non-smooth function, (iv) formulations for functions with degenerate Jacobian. Particularly powerful implicit function theorems, such as the Nash-Moser theorem, have been developed for specific applications (e.g., the imbedding of Riemannian manifolds). All of these topics, and many more, are treated in the present volume. The history of the implicit function theorem is a lively and complex store, and intimately bound up with the development of fundamental ideas in a...

  11. Some fixed point theorems in fuzzy reflexive Banach spaces

    Sadeqi, I.; Solaty kia, F.

    2009-01-01

    In this paper, we first show that there are some gaps in the fixed point theorems for fuzzy non-expansive mappings which are proved by Bag and Samanta, in [Bag T, Samanta SK. Fixed point theorems on fuzzy normed linear spaces. Inf Sci 2006;176:2910-31; Bag T, Samanta SK. Some fixed point theorems in fuzzy normed linear spaces. Inform Sci 2007;177(3):3271-89]. By introducing the notion of fuzzy and α- fuzzy reflexive Banach spaces, we obtain some results which help us to establish the correct version of fuzzy fixed point theorems. Second, by applying Theorem 3.3 of Sadeqi and Solati kia [Sadeqi I, Solati kia F. Fuzzy normed linear space and it's topological structure. Chaos, Solitons and Fractals, in press] which says that any fuzzy normed linear space is also a topological vector space, we show that all topological version of fixed point theorems do hold in fuzzy normed linear spaces.

  12. On the inverse of the Pomeranchuk theorem

    Nagy, E.

    1977-04-01

    The Pomeranchuk theorem is valid only for bounded total cross sections at infinite energies, and for arbitrarily rising cross sections one cannot prove the zero asymptotic limit of the difference of the particle and antiparticle total cross sections. In the paper the problem is considered from the inverse point of view. It is proved using dispersion relations that if the total cross sections rise with some power of logarithm and the difference of the particle and antiparticle total cross sections remain finite, then the real to imaginary ratios of both the particle and antiparticle forward scattering amplitudes are bounded. (Sz.N.Z.)

  13. Noncommutative gauge theories and Kontsevich's formality theorem

    Jurco, B.; Schupp, P.; Wess, J.

    2001-01-01

    The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map.) Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; as a byproduct we obtain a 'Mini Seiberg-Witten map' that explicitly relates ordinary abelian and nonabelian gauge fields. All constructions are also valid for non-constant B-field, and even more generally for any Poisson tensor

  14. The Invariance and the General CCT Theorems

    Stancu, Alin

    2010-01-01

    The \\begin{it} Invariance Theorem \\end{it} of M. Gerstenhaber and S. D. Schack states that if $\\mathbb{A}$ is a diagram of algebras then the subdivision functor induces a natural isomorphism between the Yoneda cohomologies of the category $\\mathbb{A}$-$\\mathbf{mod}$ and its subdivided category $\\mathbb{A}'$-$\\mathbf{mod}$. In this paper we generalize this result and show that the subdivision functor is a full and faithful functor between two suitable derived categories of $\\mathbb{A}$-$\\mathb...

  15. No-cloning theorem on quantum logics

    Miyadera, Takayuki; Imai, Hideki

    2009-01-01

    This paper discusses the no-cloning theorem in a logicoalgebraic approach. In this approach, an orthoalgebra is considered as a general structure for propositions in a physical theory. We proved that an orthoalgebra admits cloning operation if and only if it is a Boolean algebra. That is, only classical theory admits the cloning of states. If unsharp propositions are to be included in the theory, then a notion of effect algebra is considered. We proved that an atomic Archimedean effect algebra admitting cloning operation is a Boolean algebra. This paper also presents a partial result, indicating a relation between the cloning on effect algebras and hidden variables.

  16. Paraconsistent Probabilities: Consistency, Contradictions and Bayes’ Theorem

    Juliana Bueno-Soler

    2016-09-01

    Full Text Available This paper represents the first steps towards constructing a paraconsistent theory of probability based on the Logics of Formal Inconsistency (LFIs. We show that LFIs encode very naturally an extension of the notion of probability able to express sophisticated probabilistic reasoning under contradictions employing appropriate notions of conditional probability and paraconsistent updating, via a version of Bayes’ theorem for conditionalization. We argue that the dissimilarity between the notions of inconsistency and contradiction, one of the pillars of LFIs, plays a central role in our extended notion of probability. Some critical historical and conceptual points about probability theory are also reviewed.

  17. Stone's representation theorem in fuzzy topology

    刘应明; 张德学

    2003-01-01

    In this paper, a complete solution to the problem of Stone's repesentation theorem in fuzzy topology is given for a class of completely distributive lattices. Precisely, it is proved that if L is a frame such that 0 ∈ L is a prime or 1 ∈ L is a coprime, then the category of distributive lattices is dually equivalent to the category of coherent L-locales and that if L is moreover completely distributive, then the category of distributive lattices is dually equivalent to the category of coherent stratified L-topological spaces.

  18. Soft theorems for shift-symmetric cosmologies

    Finelli, Bernardo; Goon, Garrett; Pajer, Enrico; Santoni, Luca

    2018-03-01

    We derive soft theorems for single-clock cosmologies that enjoy a shift symmetry. These so-called consistency conditions arise from a combination of a large diffeomorphism and the internal shift symmetry and fix the squeezed limit of all correlators with a soft scalar mode. As an application, we show that our results reproduce the squeezed bispectrum for ultra-slow-roll inflation, a particular shift-symmetric, nonattractor model which is known to violate Maldacena's consistency relation. Similar results have been previously obtained by Mooij and Palma using background-wave methods. Our results shed new light on the infrared structure of single-clock cosmological spacetimes.

  19. Central limit theorems under special relativity.

    McKeague, Ian W

    2015-04-01

    Several relativistic extensions of the Maxwell-Boltzmann distribution have been proposed, but they do not explain observed lognormal tail-behavior in the flux distribution of various astrophysical sources. Motivated by this question, extensions of classical central limit theorems are developed under the conditions of special relativity. The results are related to CLTs on locally compact Lie groups developed by Wehn, Stroock and Varadhan, but in this special case the asymptotic distribution has an explicit form that is readily seen to exhibit lognormal tail behavior.

  20. Fixed point theorems in spaces and -trees

    Kirk WA

    2004-01-01

    Full Text Available We show that if is a bounded open set in a complete space , and if is nonexpansive, then always has a fixed point if there exists such that for all . It is also shown that if is a geodesically bounded closed convex subset of a complete -tree with , and if is a continuous mapping for which for some and all , then has a fixed point. It is also noted that a geodesically bounded complete -tree has the fixed point property for continuous mappings. These latter results are used to obtain variants of the classical fixed edge theorem in graph theory.

  1. Logic for computer science foundations of automatic theorem proving

    Gallier, Jean H

    2015-01-01

    This advanced text for undergraduate and graduate students introduces mathematical logic with an emphasis on proof theory and procedures for algorithmic construction of formal proofs. The self-contained treatment is also useful for computer scientists and mathematically inclined readers interested in the formalization of proofs and basics of automatic theorem proving. Topics include propositional logic and its resolution, first-order logic, Gentzen's cut elimination theorem and applications, and Gentzen's sharpened Hauptsatz and Herbrand's theorem. Additional subjects include resolution in fir

  2. On Pythagoras Theorem for Products of Spectral Triples

    D'Andrea, Francesco; Martinetti, Pierre

    2013-01-01

    We discuss a version of Pythagoras theorem in noncommutative geometry. Usual Pythagoras theorem can be formulated in terms of Connes' distance, between pure states, in the product of commutative spectral triples. We investigate the generalization to both non pure states and arbitrary spectral triples. We show that Pythagoras theorem is replaced by some Pythagoras inequalities, that we prove for the product of arbitrary (i.e. non-necessarily commutative) spectral triples, assuming only some un...

  3. A remark on the energy conditions for Hawking's area theorem

    Lesourd, Martin

    2018-06-01

    Hawking's area theorem is a fundamental result in black hole theory that is universally associated with the null energy condition. That this condition can be weakened is illustrated by the formulation of a strengthened version of the theorem based on an energy condition that allows for violations of the null energy condition. With the semi-classical context in mind, some brief remarks pertaining to the suitability of the area theorem and its energy condition are made.

  4. The direct Flow parametric Proof of Gauss' Divergence Theorem revisited

    Markvorsen, Steen

    2006-01-01

    The standard proof of the divergence theorem in undergraduate calculus courses covers the theorem for static domains between two graph surfaces. We show that within first year undergraduate curriculum, the flow proof of the dynamic version of the divergence theorem - which is usually considered only much later in more advanced math courses - is comprehensible with only a little extension of the first year curriculum. Moreover, it is more intuitive than the static proof. We support this intuit...

  5. A Converse to the Cayley-Hamilton Theorem

    follows that qj = api, where a is a unit. Thus, we must have that the expansion of I into irreducibles is unique. Hence, K[x] is a UFD. A famous theorem of Gauss implies that K[XI' X2,. ,xn] is also an UFD. Gauss's Theorem: R[x] is a UFD, if and only if R is a UFD. For a proof of Gauss's theorem and a detailed proof of the fact that ...

  6. The Surprise Examination Paradox and the Second Incompleteness Theorem

    Kritchman, Shira; Raz, Ran

    2010-01-01

    We give a new proof for Godel's second incompleteness theorem, based on Kolmogorov complexity, Chaitin's incompleteness theorem, and an argument that resembles the surprise examination paradox. We then go the other way around and suggest that the second incompleteness theorem gives a possible resolution of the surprise examination paradox. Roughly speaking, we argue that the flaw in the derivation of the paradox is that it contains a hidden assumption that one can prove the consistency of the...

  7. Goedel incompleteness theorems and the limits of their applicability. I

    Beklemishev, Lev D [Steklov Mathematical Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2011-01-25

    This is a survey of results related to the Goedel incompleteness theorems and the limits of their applicability. The first part of the paper discusses Goedel's own formulations along with modern strengthenings of the first incompleteness theorem. Various forms and proofs of this theorem are compared. Incompleteness results related to algorithmic problems and mathematically natural examples of unprovable statements are discussed. Bibliography: 68 titles.

  8. From Einstein's theorem to Bell's theorem: a history of quantum non-locality

    Wiseman, H. M.

    2006-04-01

    In this Einstein Year of Physics it seems appropriate to look at an important aspect of Einstein's work that is often down-played: his contribution to the debate on the interpretation of quantum mechanics. Contrary to physics ‘folklore’, Bohr had no defence against Einstein's 1935 attack (the EPR paper) on the claimed completeness of orthodox quantum mechanics. I suggest that Einstein's argument, as stated most clearly in 1946, could justly be called Einstein's reality locality completeness theorem, since it proves that one of these three must be false. Einstein's instinct was that completeness of orthodox quantum mechanics was the falsehood, but he failed in his quest to find a more complete theory that respected reality and locality. Einstein's theorem, and possibly Einstein's failure, inspired John Bell in 1964 to prove his reality locality theorem. This strengthened Einstein's theorem (but showed the futility of his quest) by demonstrating that either reality or locality is a falsehood. This revealed the full non-locality of the quantum world for the first time.

  9. Generalizations of the Nash Equilibrium Theorem in the KKM Theory

    Sehie Park

    2010-01-01

    Full Text Available The partial KKM principle for an abstract convex space is an abstract form of the classical KKM theorem. In this paper, we derive generalized forms of the Ky Fan minimax inequality, the von Neumann-Sion minimax theorem, the von Neumann-Fan intersection theorem, the Fan-type analytic alternative, and the Nash equilibrium theorem for abstract convex spaces satisfying the partial KKM principle. These results are compared with previously known cases for G-convex spaces. Consequently, our results unify and generalize most of previously known particular cases of the same nature. Finally, we add some detailed historical remarks on related topics.

  10. HelmholtzZentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt. Annual report 2011; HelmholtzZentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt. Jahresbericht 2011

    NONE

    2012-11-01

    The contribution under consideration is the annual report 2011 of the German Research Centre for Environmental Health (HelmholtzZentrum Munich, Federal Republic of Germany). The most important component of this annual report are the scientific highlights according to the following topics: (1) Systems researches for the health (M. Hrabe de Angelis); (2) Mechanisms of the interaction between genes and environment (M. Goetz); (3) Research of the metabolism (M. Tschoep); (4) Research of lungs and allergies (O. Eickelberg); (5) Technologies for the bio medicine (V. Ntziachristos); (6) Natural basis of existence (J. Durner).

  11. Randomized central limit theorems: A unified theory.

    Eliazar, Iddo; Klafter, Joseph

    2010-08-01

    The central limit theorems (CLTs) characterize the macroscopic statistical behavior of large ensembles of independent and identically distributed random variables. The CLTs assert that the universal probability laws governing ensembles' aggregate statistics are either Gaussian or Lévy, and that the universal probability laws governing ensembles' extreme statistics are Fréchet, Weibull, or Gumbel. The scaling schemes underlying the CLTs are deterministic-scaling all ensemble components by a common deterministic scale. However, there are "random environment" settings in which the underlying scaling schemes are stochastic-scaling the ensemble components by different random scales. Examples of such settings include Holtsmark's law for gravitational fields and the Stretched Exponential law for relaxation times. In this paper we establish a unified theory of randomized central limit theorems (RCLTs)-in which the deterministic CLT scaling schemes are replaced with stochastic scaling schemes-and present "randomized counterparts" to the classic CLTs. The RCLT scaling schemes are shown to be governed by Poisson processes with power-law statistics, and the RCLTs are shown to universally yield the Lévy, Fréchet, and Weibull probability laws.

  12. Birth of a theorem a mathematical adventure

    Villani, Cédric

    2015-01-01

    This man could plainly do for mathematics what Brian Cox has done for physics" (Sunday Times). What goes on inside the mind of a rock-star mathematician? Where does inspiration come from? With a storyteller's gift, Cedric Villani takes us on a mesmerising journey as he wrestles with a new theorem that will win him the most coveted prize in mathematics. Along the way he encounters obstacles and setbacks, losses of faith and even brushes with madness. His story is one of courage and partnership, doubt and anxiety, elation and despair. We discover how it feels to be obsessed by a theorem during your child's cello practise and throughout your dreams, why appreciating maths is a bit like watching an episode of Columbo, and how sometimes inspiration only comes from locking yourself away in a dark room to think. Blending science with history, biography with myth, Villani conjures up an inimitable cast of characters including the omnipresent Einstein, mad genius Kurt Godel, and Villani's personal hero, John Nash. Bir...

  13. Sensitivity Filters In Topology Optimisation As A Solution To Helmholtz Type Differential Equation

    Lazarov, Boyan Stefanov; Sigmund, Ole

    2009-01-01

    The focus of the study in this article is on the use of a Helmholtz type differential equation as a filter for topology optimisation problems. Until now various filtering schemes have been utilised in order to impose mesh independence in this type of problems. The usual techniques require topology...... information about the neighbour sub-domains is an expensive operation. The proposed filtering technique requires only mesh information necessary for the finite element discretisation of the problem. The main idea is to define the filtered variable implicitly as a solution of a Helmholtz type differential...... equation with homogeneous Neumann boundary conditions. The properties of the filter are demonstrated for various 2D and 3D topology optimisation problems in linear elasticity, solved on sequential and parallel computers....

  14. The research reactor BER II at the Helmholtz-Center Berlin

    Krohn, Herbert [Helmholtz-Zentrum Berlin (HZB), Berlin (Germany)

    2012-10-15

    For basic and application-oriented research assignments the Helmholtz-Center Berlin (Helmholtz Zentrum Berlin - HZB) runs a research reactor that operates as a source of neutron beams for a wide range of scientific investigations. At the end of the 1980{sup th} the BER II was completed renewed and fitted with new experimental facilities. The BER II is a light water cooled and moderated swimming pool type reactor to be operated at 10 MW thermal power. Six neutron guides deliver cold neutrons from the cold moderator cell to a neutron guide hall adjacent to the experiment hall. With its 24 experimental stations, experimenters at HZB have practically all neutron scattering or neutron radiography techniques at their disposal. (orig.)

  15. Korteweg-de Vries description of Helmholtz-Kerr dark solitons

    Christian, J M [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom) ; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom) ; Chamorro-Posada, P [Departmento de TeorIa de la Senal y Comunicaciones e IngenierIa Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2006-12-15

    A wide variety of different physical systems can be described by a relatively small set of universal equations. For example, small-amplitude nonlinear Schroedinger dark solitons can be described by a Korteweg-de Vries (KdV) equation. Reductive perturbation theory, based on linear boosts and Gallilean transformations, is often employed to establish connections to and between such universal equations. Here, a novel analytical approach reveals that the evolution of small-amplitude Helmholtz-Kerr dark solitons is also governed by a KdV equation. This broadens the class of nonlinear systems that are known to possess KdV soliton solutions, and provides a framework for perturbative analyses when propagation angles are not negligibly small. The derivation of this KdV equation involves an element that appears new to weakly nonlinear analyses, since transformations are required to preserve the rotational symmetry inherent to Helmholtz-type equations.

  16. A low frequency acoustic insulator by using the acoustic metasurface to a Helmholtz resonator

    Xiang Zhao

    2017-06-01

    Full Text Available Acoustic metasurfaces (AMSs are able to manipulate wavefronts at an anomalous angle through a subwavelength layer. Their application provide a new way to control sound waves in addition to traditional materials. In this work, we introduced the AMS into the design of a Helmholtz resonator (HR and studied the acoustic transmission through the modified HR in a pipe with one branch. The variation of sound insulation capacity with the phase gradient of the AMS was studied, and the results show that the AMS can remarkably lower the frequency band of the sound insulation without increasing the size. Our investigation provides a new degree of freedom for acoustic control with a Helmholtz resonator, which is of great significance in acoustic metasurface theory and sound insulation design.

  17. A low frequency acoustic insulator by using the acoustic metasurface to a Helmholtz resonator

    Zhao, Xiang; Cai, Li; Yu, Dianlong; Lu, Zhimiao; Wen, Jihong

    2017-06-01

    Acoustic metasurfaces (AMSs) are able to manipulate wavefronts at an anomalous angle through a subwavelength layer. Their application provide a new way to control sound waves in addition to traditional materials. In this work, we introduced the AMS into the design of a Helmholtz resonator (HR) and studied the acoustic transmission through the modified HR in a pipe with one branch. The variation of sound insulation capacity with the phase gradient of the AMS was studied, and the results show that the AMS can remarkably lower the frequency band of the sound insulation without increasing the size. Our investigation provides a new degree of freedom for acoustic control with a Helmholtz resonator, which is of great significance in acoustic metasurface theory and sound insulation design.

  18. Magnetized Kelvin-Helmholtz instability: theory and simulations in the Earth's magnetosphere context

    Faganello, Matteo; Califano, Francesco

    2017-12-01

    The Kelvin-Helmholtz instability, proposed a long time ago for its role in and impact on the transport properties at magnetospheric flanks, has been widely investigated in the Earth's magnetosphere context. This review covers more than fifty years of theoretical and numerical efforts in investigating the evolution of Kelvin-Helmholtz vortices and how the rich nonlinear dynamics they drive allow solar wind plasma bubbles to enter into the magnetosphere. Special care is devoted to pointing out the main advantages and weak points of the different plasma models that can be adopted for describing the collisionless magnetospheric medium and in underlying the important role of the three-dimensional geometry of the system.

  19. Korteweg-de Vries description of Helmholtz-Kerr dark solitons

    Christian, J M; McDonald, G S; Chamorro-Posada, P

    2006-01-01

    A wide variety of different physical systems can be described by a relatively small set of universal equations. For example, small-amplitude nonlinear Schroedinger dark solitons can be described by a Korteweg-de Vries (KdV) equation. Reductive perturbation theory, based on linear boosts and Gallilean transformations, is often employed to establish connections to and between such universal equations. Here, a novel analytical approach reveals that the evolution of small-amplitude Helmholtz-Kerr dark solitons is also governed by a KdV equation. This broadens the class of nonlinear systems that are known to possess KdV soliton solutions, and provides a framework for perturbative analyses when propagation angles are not negligibly small. The derivation of this KdV equation involves an element that appears new to weakly nonlinear analyses, since transformations are required to preserve the rotational symmetry inherent to Helmholtz-type equations

  20. The research reactor BER II at the Helmholtz-Center Berlin

    Krohn, Herbert

    2012-01-01

    For basic and application-oriented research assignments the Helmholtz-Center Berlin (Helmholtz Zentrum Berlin - HZB) runs a research reactor that operates as a source of neutron beams for a wide range of scientific investigations. At the end of the 1980 th the BER II was completed renewed and fitted with new experimental facilities. The BER II is a light water cooled and moderated swimming pool type reactor to be operated at 10 MW thermal power. Six neutron guides deliver cold neutrons from the cold moderator cell to a neutron guide hall adjacent to the experiment hall. With its 24 experimental stations, experimenters at HZB have practically all neutron scattering or neutron radiography techniques at their disposal. (orig.)

  1. The outlooks of Helmholtz, Plank and Einstein on the unified physical theory

    Treder, G.Yu.

    1982-01-01

    The outlooks of Helmholtz, Planck and Einstein on the unified physical theory are exposed. Planck formulated the Einstein relativistic mechanics in the canonical form stemming from the suggested by Helmholtz approach that the principle of action is the unified formal principle of physics. Einstein and his companious proceeded from machroscopic fields in the attempts to prove the unified geometric field theory. The sense of Planck length as ''the smallest length in physics'' is determined, on the one hand, by the Heizenberg uncerntainty principle for the measurement process, and on the other hand by the universal proportionality between inertia and gravity. It results from geometrical nature and gravitational potential, i. e. from Einstein interpretation of the equivalence principle

  2. A perceptron network theorem prover for the propositional calculus

    Drossaers, M.F.J.

    In this paper a short introduction to neural networks and a design for a perceptron network theorem prover for the propositional calculus are presented. The theorem prover is a representation of a variant of the semantic tableau method, called the parallel tableau method, by a network of

  3. Leaning on Socrates to Derive the Pythagorean Theorem

    Percy, Andrew; Carr, Alistair

    2010-01-01

    The one theorem just about every student remembers from school is the theorem about the side lengths of a right angled triangle which Euclid attributed to Pythagoras when writing Proposition 47 of "The Elements". Usually first met in middle school, the student will be continually exposed throughout their mathematical education to the…

  4. A new proof of the positive energy theorem

    Witten, E.

    1981-01-01

    A new proof is given of the positive energy theorem of classical general relativity. Also, a new proof is given that there are no asymptotically Euclidean gravitational instantons. (These theorems have been proved previously, by a different method, by Schoen and Yau). The relevance of these results to the stability of Minkowski space is discussed. (orig.)

  5. COMPARISON THEOREM OF BACKWARD DOUBLY STOCHASTIC DIFFERENTIAL EQUATIONS

    2010-01-01

    This paper is devoted to deriving a comparison theorem of solutions to backward doubly stochastic differential equations driven by Brownian motion and backward It-Kunita integral. By the application of this theorem, we give an existence result of the solutions to these equations with continuous coefficients.

  6. The Boundary Crossing Theorem and the Maximal Stability Interval

    Jorge-Antonio López-Renteria

    2011-01-01

    useful tools in the study of the stability of family of polynomials. Although both of these theorem seem intuitively obvious, they can be used for proving important results. In this paper, we give generalizations of these two theorems and we apply such generalizations for finding the maximal stability interval.

  7. K S Krishnan's 1948 Perception of the Sampling Theorem

    K S Krishnan's 1948 Perception of the. Sampling Theorem. Raiiah Simon is a. Professor at the Institute of Mathematical. Sciences, Chennai. His primary interests are in classical and quantum optics, geometric phases, group theoretical techniques and quantum information science. Keywords. Sompling theorem, K S ...

  8. On Frobenius, Mazur, and Gelfand-Mazur theorems on division ...

    ... R of real numbers, the field C of complex numbers, or the non-commutative algebra Q of quaternions. Gelfand [15] proved that every normed division algebra over the field C is isomorphic to C. He named this theorem, which is fundamental for the development of the theory of Banach Algebras, the Gelfand-Mazur theorem.

  9. An extension of Brosowski-Meinardus theorem on invariant approximation

    Liaqat Ali Khan; Abdul Rahim Khan.

    1991-07-01

    We obtain a generalization of a fixed point theorem of Dotson for non-expansive mappings on star-shaped sets and then use it to prove a unified Brosowski-Meinardus theorem on invariant approximation in the setting of p-normed linear spaces. (author). 13 refs

  10. A general conservative extension theorem in process algebras with inequalities

    d' Argenio, P.R.; Verhoef, Chris

    1997-01-01

    We prove a general conservative extension theorem for transition system based process theories with easy-to-check and reasonable conditions. The core of this result is another general theorem which gives sufficient conditions for a system of operational rules and an extension of it in order to

  11. A power counting theorem for Feynman integrals on the lattice

    Reisz, T.

    1988-01-01

    A convergence theorem is proved, which states sufficient conditions for the existence of the continuum limit for a wide class of Feynman integrals on a space-time lattice. A new kind of a UV-divergence degree is introduced, which allows the formulation of the theorem in terms of power counting conditions. (orig.)

  12. A Hohenberg-Kohn theorem for non-local potentials

    Meron, E.; Katriel, J.

    1977-01-01

    It is shown that within any class of commuting one-body potentials a Hohenberg-Kohn type theorem is satisfied with respect to an appropriately defined density. The Hohenberg-Kohn theorem for local potentials follows as a special case. (Auth.)

  13. A note on the homomorphism theorem for hemirings

    D. M. Olson

    1978-01-01

    Full Text Available The fundamental homomorphism theorem for rings is not generally applicable in hemiring theory. In this paper, we show that for the class of N-homomorphism of hemirings the fundamental theorem is valid. In addition, the concept of N-homomorphism is used to prove that every hereditarily semisubtractive hemiring is of type (K.

  14. On the Riesz representation theorem and integral operators ...

    We present a Riesz representation theorem in the setting of extended integration theory as introduced in [6]. The result is used to obtain boundedness theorems for integral operators in the more general setting of spaces of vector valued extended integrable functions. Keywords: Vector integral, integral operators, operator ...

  15. On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation

    Bory Reyes, Juan; Abreu Blaya, Ricardo; Rodríguez Dagnino, Ramón Martin; Kats, Boris Aleksandrovich

    2018-01-01

    The Riemann boundary value problem (RBVP to shorten notation) in the complex plane, for different classes of functions and curves, is still widely used in mathematical physics and engineering. For instance, in elasticity theory, hydro and aerodynamics, shell theory, quantum mechanics, theory of orthogonal polynomials, and so on. In this paper, we present an appropriate hyperholomorphic approach to the RBVP associated to the two dimensional Helmholtz equation in R^2 . Our analysis is based on a suitable operator calculus.

  16. Numerical solution of an inverse 2D Cauchy problem connected with the Helmholtz equation

    Wei, T; Qin, H H; Shi, R

    2008-01-01

    In this paper, the Cauchy problem for the Helmholtz equation is investigated. By Green's formulation, the problem can be transformed into a moment problem. Then we propose a numerical algorithm for obtaining an approximate solution to the Neumann data on the unspecified boundary. Error estimate and convergence analysis have also been given. Finally, we present numerical results for several examples and show the effectiveness of the proposed method

  17. A Weakly Nonlinear Model for Kelvin–Helmholtz Instability in Incompressible Fluids

    Li-Feng, Wang; Wen-Hua, Ye; Zheng-Feng, Fan; Chuang, Xue; Ying-Jun, Li

    2009-01-01

    A weakly nonlinear model is proposed for the Kelvin–Helmholtz instability in two-dimensional incompressible fluids by expanding the perturbation velocity potential to third order. The third-order harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correction to the exponential growth of the fundamental modulation. The weakly nonlinear results are supported by numerical simulations. Density and resonance effects exist in the development of mode coupling. (fundamental areas of phenomenology (including applications))

  18. Can Hall effect trigger Kelvin-Helmholtz instability in sub-Alfvénic flows?

    Pandey, B. P.

    2018-05-01

    In the Hall magnetohydrodynamics, the onset condition of the Kelvin-Helmholtz instability is solely determined by the Hall effect and is independent of the nature of shear flows. In addition, the physical mechanism behind the super- and sub-Alfvénic flows becoming unstable is quite different: the high-frequency right circularly polarized whistler becomes unstable in the super-Alfvénic flows whereas low-frequency, left circularly polarized ion-cyclotron wave becomes unstable in the presence of sub-Alfvénic shear flows. The growth rate of the Kelvin-Helmholtz instability in the super-Alfvénic case is higher than the corresponding ideal magnetohydrodynamic rate. In the sub-Alfvénic case, the Hall effect opens up a new, hitherto inaccessible (to the magnetohydrodynamics) channel through which the partially or fully ionized fluid can become Kelvin-Helmholtz unstable. The instability growth rate in this case is smaller than the super-Alfvénic case owing to the smaller free shear energy content of the flow. When the Hall term is somewhat smaller than the advection term in the induction equation, the Hall effect is also responsible for the appearance of a new overstable mode whose growth rate is smaller than the purely growing Kelvin-Helmholtz mode. On the other hand, when the Hall diffusion dominates the advection term, the growth rate of the instability depends only on the Alfvén -Mach number and is independent of the Hall diffusion coefficient. Further, the growth rate in this case linearly increases with the Alfvén frequency with smaller slope for sub-Alfvénic flows.

  19. Bell's "Theorem": loopholes vs. conceptual flaws

    Kracklauer, A. F.

    2017-12-01

    An historical overview and detailed explication of a critical analysis of what has become known as Bell's Theorem to the effect that, it should be impossible to extend Quantum Theory with the addition of local, real variables so as to obtain a version free of the ambiguous and preternatural features of the currently accepted interpretations is presented. The central point on which this critical analysis, due originally to Edwin Jaynes, is that Bell incorrectly applied probabilistic formulas involving conditional probabilities. In addition, mathematical technicalities that have complicated the understanding of the logical or mathematical setting in which current theory and experimentation are embedded, are discussed. Finally, some historical speculations on the sociological environment, in particular misleading aspects, in which recent generations of physicists lived and worked are mentioned.

  20. A Theorem on Grid Access Control

    XU ZhiWei(徐志伟); BU GuanYing(卜冠英)

    2003-01-01

    The current grid security research is mainly focused on the authentication of grid systems. A problem to be solved by grid systems is to ensure consistent access control. This problem is complicated because the hosts in a grid computing environment usually span multiple autonomous administrative domains. This paper presents a grid access control model, based on asynchronous automata theory and the classic Bell-LaPadula model. This model is useful to formally study the confidentiality and integrity problems in a grid computing environment. A theorem is proved, which gives the necessary and sufficient conditions to a grid to maintain confidentiality.These conditions are the formalized descriptions of local (node) relations or relationship between grid subjects and node subjects.

  1. Theorem Proving in Intel Hardware Design

    O'Leary, John

    2009-01-01

    For the past decade, a framework combining model checking (symbolic trajectory evaluation) and higher-order logic theorem proving has been in production use at Intel. Our tools and methodology have been used to formally verify execution cluster functionality (including floating-point operations) for a number of Intel products, including the Pentium(Registered TradeMark)4 and Core(TradeMark)i7 processors. Hardware verification in 2009 is much more challenging than it was in 1999 - today s CPU chip designs contain many processor cores and significant firmware content. This talk will attempt to distill the lessons learned over the past ten years, discuss how they apply to today s problems, outline some future directions.

  2. Virial Theorem in Nonlocal Newtonian Gravity

    Bahram Mashhoon

    2016-05-01

    Full Text Available Nonlocal gravity is the recent classical nonlocal generalization of Einstein’s theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for “isolated” astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy’s baryonic diameter D 0 —namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time—is predicted to be larger than the effective dark matter fraction f D M times a universal length that is the basic nonlocality length scale λ 0 ≈ 3 ± 2 kpc.

  3. On a curvature-statistics theorem

    Calixto, M; Aldaya, V

    2008-01-01

    The spin-statistics theorem in quantum field theory relates the spin of a particle to the statistics obeyed by that particle. Here we investigate an interesting correspondence or connection between curvature (κ = ±1) and quantum statistics (Fermi-Dirac and Bose-Einstein, respectively). The interrelation between both concepts is established through vacuum coherent configurations of zero modes in quantum field theory on the compact O(3) and noncompact O(2; 1) (spatial) isometry subgroups of de Sitter and Anti de Sitter spaces, respectively. The high frequency limit, is retrieved as a (zero curvature) group contraction to the Newton-Hooke (harmonic oscillator) group. We also make some comments on the physical significance of the vacuum energy density and the cosmological constant problem.

  4. On a curvature-statistics theorem

    Calixto, M [Departamento de Matematica Aplicada y Estadistica, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 56, 30203 Cartagena (Spain); Aldaya, V [Instituto de Astrofisica de Andalucia, Apartado Postal 3004, 18080 Granada (Spain)], E-mail: Manuel.Calixto@upct.es

    2008-08-15

    The spin-statistics theorem in quantum field theory relates the spin of a particle to the statistics obeyed by that particle. Here we investigate an interesting correspondence or connection between curvature ({kappa} = {+-}1) and quantum statistics (Fermi-Dirac and Bose-Einstein, respectively). The interrelation between both concepts is established through vacuum coherent configurations of zero modes in quantum field theory on the compact O(3) and noncompact O(2; 1) (spatial) isometry subgroups of de Sitter and Anti de Sitter spaces, respectively. The high frequency limit, is retrieved as a (zero curvature) group contraction to the Newton-Hooke (harmonic oscillator) group. We also make some comments on the physical significance of the vacuum energy density and the cosmological constant problem.

  5. An interlacing theorem for reversible Markov chains

    Grone, Robert; Salamon, Peter; Hoffmann, Karl Heinz

    2008-01-01

    Reversible Markov chains are an indispensable tool in the modeling of a vast class of physical, chemical, biological and statistical problems. Examples include the master equation descriptions of relaxing physical systems, stochastic optimization algorithms such as simulated annealing, chemical dynamics of protein folding and Markov chain Monte Carlo statistical estimation. Very often the large size of the state spaces requires the coarse graining or lumping of microstates into fewer mesoscopic states, and a question of utmost importance for the validity of the physical model is how the eigenvalues of the corresponding stochastic matrix change under this operation. In this paper we prove an interlacing theorem which gives explicit bounds on the eigenvalues of the lumped stochastic matrix. (fast track communication)

  6. An interlacing theorem for reversible Markov chains

    Grone, Robert; Salamon, Peter [Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182-7720 (United States); Hoffmann, Karl Heinz [Institut fuer Physik, Technische Universitaet Chemnitz, D-09107 Chemnitz (Germany)

    2008-05-30

    Reversible Markov chains are an indispensable tool in the modeling of a vast class of physical, chemical, biological and statistical problems. Examples include the master equation descriptions of relaxing physical systems, stochastic optimization algorithms such as simulated annealing, chemical dynamics of protein folding and Markov chain Monte Carlo statistical estimation. Very often the large size of the state spaces requires the coarse graining or lumping of microstates into fewer mesoscopic states, and a question of utmost importance for the validity of the physical model is how the eigenvalues of the corresponding stochastic matrix change under this operation. In this paper we prove an interlacing theorem which gives explicit bounds on the eigenvalues of the lumped stochastic matrix. (fast track communication)

  7. Asset management using an extended Markowitz theorem

    Paria Karimi

    2014-06-01

    Full Text Available Markowitz theorem is one of the most popular techniques for asset management. The method has been widely used to solve many applications, successfully. In this paper, we present a multi objective Markowitz model to determine asset allocation by considering cardinality constraints. The resulted model is an NP-Hard problem and the proposed study uses two metaheuristics, namely genetic algorithm (GA and particle swarm optimization (PSO to find efficient solutions. The proposed study has been applied on some data collected from Tehran Stock Exchange over the period 2009-2011. The study considers four objectives including cash return, 12-month return, 36-month return and Lower Partial Moment (LPM. The results indicate that there was no statistical difference between the implementation of PSO and GA methods.

  8. Helmholtz and Diffusion Equations Associated with Local Fractional Derivative Operators Involving the Cantorian and Cantor-Type Cylindrical Coordinates

    Ya-Juan Hao

    2013-01-01

    Full Text Available The main object of this paper is to investigate the Helmholtz and diffusion equations on the Cantor sets involving local fractional derivative operators. The Cantor-type cylindrical-coordinate method is applied to handle the corresponding local fractional differential equations. Two illustrative examples for the Helmholtz and diffusion equations on the Cantor sets are shown by making use of the Cantorian and Cantor-type cylindrical coordinates.

  9. On Pythagoras Theorem for Products of Spectral Triples

    D'Andrea, Francesco; Martinetti, Pierre

    2013-05-01

    We discuss a version of Pythagoras theorem in noncommutative geometry. Usual Pythagoras theorem can be formulated in terms of Connes' distance, between pure states, in the product of commutative spectral triples. We investigate the generalization to both non-pure states and arbitrary spectral triples. We show that Pythagoras theorem is replaced by some Pythagoras inequalities, that we prove for the product of arbitrary (i.e. non-necessarily commutative) spectral triples, assuming only some unitality condition. We show that these inequalities are optimal, and we provide non-unital counter-examples inspired by K-homology.

  10. Fluctuation theorem for Hamiltonian Systems: Le Chatelier's principle

    Evans, Denis J.; Searles, Debra J.; Mittag, Emil

    2001-05-01

    For thermostated dissipative systems, the fluctuation theorem gives an analytical expression for the ratio of probabilities that the time-averaged entropy production in a finite system observed for a finite time takes on a specified value compared to the negative of that value. In the past, it has been generally thought that the presence of some thermostating mechanism was an essential component of any system that satisfies a fluctuation theorem. In the present paper, we point out that a fluctuation theorem can be derived for purely Hamiltonian systems, with or without applied dissipative fields.

  11. An Almost Sure Ergodic Theorem for Quasistatic Dynamical Systems

    Stenlund, Mikko

    2016-01-01

    We prove an almost sure ergodic theorem for abstract quasistatic dynamical systems, as an attempt of taking steps toward an ergodic theory of such systems. The result at issue is meant to serve as a working counterpart of Birkhoff’s ergodic theorem which fails in the quasistatic setup. It is formulated so that the conditions, which essentially require sufficiently good memory-loss properties, could be verified in a straightforward way in physical applications. We also introduce the concept of a physical family of measures for a quasistatic dynamical system. These objects manifest themselves, for instance, in numerical experiments. We then illustrate the use of the theorem by examples.

  12. A note on the weighted Khintchine-Groshev Theorem

    Hussain, Mumtaz; Yusupova, Tatiana

    Let W(m,n;ψ−−) denote the set of ψ1,…,ψn-approximable points in Rmn. The classical Khintchine-Groshev theorem assumes a monotonicity condition on the approximating functions ψ−−. Removing monotonicity from the Khintchine-Groshev theorem is attributed to different authors for different cases of m...... and n. It can not be removed for m=n=1 as Duffin-Shcaeffer provided the counter example. We deal with the only remaining case m=2 and thereby remove all unnecessary conditions from the Khintchine-Groshev theorem....

  13. Quantum voting and violation of Arrow's impossibility theorem

    Bao, Ning; Yunger Halpern, Nicole

    2017-06-01

    We propose a quantum voting system in the spirit of quantum games such as the quantum prisoner's dilemma. Our scheme enables a constitution to violate a quantum analog of Arrow's impossibility theorem. Arrow's theorem is a claim proved deductively in economics: Every (classical) constitution endowed with three innocuous-seeming properties is a dictatorship. We construct quantum analogs of constitutions, of the properties, and of Arrow's theorem. A quantum version of majority rule, we show, violates this quantum Arrow conjecture. Our voting system allows for tactical-voting strategies reliant on entanglement, interference, and superpositions. This contribution to quantum game theory helps elucidate how quantum phenomena can be harnessed for strategic advantage.

  14. Convergence theorems for certain classes of nonlinear mappings

    Chidume, C.E.

    1992-01-01

    Recently, Xinlong Weng announced a convergence theorem for the iterative approximation of fixed points of local strictly pseudo-contractive mappings in uniformly smooth Banach spaces, (Proc. Amer. Math. Soc. Vol.113, No.3 (1991) 727-731). An example is presented which shows that this theorem of Weng is false. Then, a convergence theorem is proved, in certain real Banach spaces, for approximation a solution of the inclusion f is an element of x + Tx, where T is a set-valued monotone operator. An explicit error estimate is also presented. (author). 26 refs

  15. Direct and converse theorems the elements of symbolic logic

    Gradshtein, I S; Stark, M; Ulam, S

    1963-01-01

    Direct and Converse Theorems: The Elements of Symbolic Logic, Third Edition explains the logical relations between direct, converse, inverse, and inverse converse theorems, as well as the concept of necessary and sufficient conditions. This book consists of two chapters. The first chapter is devoted to the question of negation. Connected with the question of the negation of a proposition are interrelations of the direct and converse and also of the direct and inverse theorems; the interrelations of necessary and sufficient conditions; and the definition of the locus of a point. The second chap

  16. A primer on Higgs boson low-energy theorems

    Dawson, S.; Haber, H.E.; California Univ., Santa Cruz, CA

    1989-05-01

    We give a pedagogical review of Higgs boson low-energy theorems and their applications in the study of light Higgs boson interactions with mesons and baryons. In particular, it is shown how to combine the chiral Lagrangian method with the Higgs low-energy theorems to obtain predictions for the interaction of Higgs bosons and pseudoscalar mesons. Finally, we discuss the relation between the low-energy theorems and a technique which makes use of the trace of the QCD energy-momentum tensor. 35 refs

  17. An Almost Sure Ergodic Theorem for Quasistatic Dynamical Systems

    Stenlund, Mikko, E-mail: mikko.stenlund@helsinki.fi [University of Helsinki, Department of Mathematics and Statistics (Finland)

    2016-09-15

    We prove an almost sure ergodic theorem for abstract quasistatic dynamical systems, as an attempt of taking steps toward an ergodic theory of such systems. The result at issue is meant to serve as a working counterpart of Birkhoff’s ergodic theorem which fails in the quasistatic setup. It is formulated so that the conditions, which essentially require sufficiently good memory-loss properties, could be verified in a straightforward way in physical applications. We also introduce the concept of a physical family of measures for a quasistatic dynamical system. These objects manifest themselves, for instance, in numerical experiments. We then illustrate the use of the theorem by examples.

  18. Markov's theorem and algorithmically non-recognizable combinatorial manifolds

    Shtan'ko, M A

    2004-01-01

    We prove the theorem of Markov on the existence of an algorithmically non-recognizable combinatorial n-dimensional manifold for every n≥4. We construct for the first time a concrete manifold which is algorithmically non-recognizable. A strengthened form of Markov's theorem is proved using the combinatorial methods of regular neighbourhoods and handle theory. The proofs coincide for all n≥4. We use Borisov's group with insoluble word problem. It has two generators and twelve relations. The use of this group forms the base for proving the strengthened form of Markov's theorem

  19. Flat deformation theorem and symmetries in spacetime

    Llosa, Josep; Carot, Jaume

    2009-01-01

    The flat deformation theorem states that given a semi-Riemannian analytic metric g on a manifold, locally there always exists a two-form F, a scalar function c, and an arbitrarily prescribed scalar constraint depending on the point x of the manifold and on F and c, say Ψ(c, F, x) = 0, such that the deformed metric η = cg - εF 2 is semi-Riemannian and flat. In this paper we first show that the above result implies that every (Lorentzian analytic) metric g may be written in the extended Kerr-Schild form, namely η ab := ag ab - 2bk (a l b) where η is flat and k a , l a are two null covectors such that k a l a = -1; next we show how the symmetries of g are connected to those of η, more precisely; we show that if the original metric g admits a conformal Killing vector (including Killing vectors and homotheties), then the deformation may be carried out in a way such that the flat deformed metric η 'inherits' that symmetry.

  20. The Michaelis-Menten-Stueckelberg Theorem

    Alexander N. Gorban

    2011-05-01

    Full Text Available We study chemical reactions with complex mechanisms under two assumptions: (i intermediates are present in small amounts (this is the quasi-steady-state hypothesis or QSS and (ii they are in equilibrium relations with substrates (this is the quasiequilibrium hypothesis or QE. Under these assumptions, we prove the generalized mass action law together with the basic relations between kinetic factors, which are sufficient for the positivity of the entropy production but hold even without microreversibility, when the detailed balance is not applicable. Even though QE and QSS produce useful approximations by themselves, only the combination of these assumptions can render the possibility beyond the “rarefied gas” limit or the “molecular chaos” hypotheses. We do not use any a priori form of the kinetic law for the chemical reactions and describe their equilibria by thermodynamic relations. The transformations of the intermediate compounds can be described by the Markov kinetics because of their low density (low density of elementary events. This combination of assumptions was introduced by Michaelis and Menten in 1913. In 1952, Stueckelberg used the same assumptions for the gas kinetics and produced the remarkable semi-detailed balance relations between collision rates in the Boltzmann equation that are weaker than the detailed balance conditions but are still sufficient for the Boltzmann H-theorem to be valid. Our results are obtained within the Michaelis-Menten-Stueckelbeg conceptual framework.

  1. Low energy theorems of hidden local symmetries

    Harada, Masayasu; Kugo, Taichiro; Yamawaki, Koichi.

    1994-01-01

    We prove to all orders of the loop expansion the low energy theorems of hidden local symmetries in four-dimensional nonlinear sigma models based on the coset space G/H, with G and H being arbitrary compact groups. Although the models are non-renormalizable, the proof is done in an analogous manner to the renormalization proof of gauge theories and two-dimensional nonlinear sigma models by restricting ourselves to the operators with two derivatives (counting a hidden gauge boson field as one derivative), i.e., with dimension 2, which are the only operators relevant to the low energy limit. Through loop-wise mathematical induction based on the Ward-Takahashi identity for the BRS symmetry, we solve renormalization equation for the effective action up to dimension-2 terms plus terms with the relevant BRS sources. We then show that all the quantum corrections to the dimension-2 operators, including the finite parts as well as the divergent ones, can be entirely absorbed into a re-definition (renormalization) of the parameters and the fields in the dimension-2 part of the tree-level Lagrangian. (author)

  2. Quantum fluctuation theorems and power measurements

    Prasanna Venkatesh, B; Watanabe, Gentaro; Talkner, Peter

    2015-01-01

    Work in the paradigm of the quantum fluctuation theorems of Crooks and Jarzynski is determined by projective measurements of energy at the beginning and end of the force protocol. In analogy to classical systems, we consider an alternative definition of work given by the integral of the supplied power determined by integrating up the results of repeated measurements of the instantaneous power during the force protocol. We observe that such a definition of work, in spite of taking account of the process dependence, has different possible values and statistics from the work determined by the conventional two energy measurement approach (TEMA). In the limit of many projective measurements of power, the system’s dynamics is frozen in the power measurement basis due to the quantum Zeno effect leading to statistics only trivially dependent on the force protocol. In general the Jarzynski relation is not satisfied except for the case when the instantaneous power operator commutes with the total Hamiltonian at all times. We also consider properties of the joint statistics of power-based definition of work and TEMA work in protocols where both values are determined. This allows us to quantify their correlations. Relaxing the projective measurement condition, weak continuous measurements of power are considered within the stochastic master equation formalism. Even in this scenario the power-based work statistics is in general not able to reproduce qualitative features of the TEMA work statistics. (paper)

  3. Subexponential estimates in Shirshov's theorem on height

    Belov, Aleksei Ya; Kharitonov, Mikhail I

    2012-01-01

    Suppose that F 2,m is a free 2-generated associative ring with the identity x m =0. In 1993 Zelmanov put the following question: is it true that the nilpotency degree of F 2,m has exponential growth? We give the definitive answer to Zelmanov's question by showing that the nilpotency class of an l-generated associative algebra with the identity x d =0 is smaller than Ψ(d,d,l), where Ψ(n,d,l)=2 18 l(nd) 3log 3 (nd)+13 d 2 . This result is a consequence of the following fact based on combinatorics of words. Let l, n and d≥n be positive integers. Then all words over an alphabet of cardinality l whose length is not less than Ψ(n,d,l) are either n-divisible or contain x d ; a word W is n-divisible if it can be represented in the form W=W 0 W 1 …W n so that W 1 ,...,W n are placed in lexicographically decreasing order. Our proof uses Dilworth's theorem (according to V.N. Latyshev's idea). We show that the set of not n-divisible words over an alphabet of cardinality l has height h 87 l·n 12log 3 n+48 . Bibliography: 40 titles.

  4. Calibration of Helmholtz Coils for the characterization of MEMS magnetic sensor using fluxgate magnetometer with DAS1 magnetic range data acquisition system

    Ahmad, Farooq; Dennis, John Ojur; Md Khir, Mohd Haris; Hamid, Nor Hisham

    2012-09-01

    This paper presents the calibration of Helmholtz coils for the characterization of MEMS Magnetic sensor using Fluxgate magnetometer with DAS1 Magnetic Range Data Acquisition System. The Helmholtz coils arrangement is often used to generate a uniform magnetic field in space. In the past, standard magnets were used to calibrate the Helmholtz coils. A method is presented here for calibrating these coils using a Fluxgate magnetometer and known current source, which is easier and results in greater accuracy.

  5. A non linear ergodic theorem and application to a theorem of A. Pazy

    Djafari Rouhani, B.

    1989-07-01

    We prove that if (y n )n≥1 is a sequence in a real Hilbert space H such that for every non negative integer m the sequence (parallelΣ l =0 m y i +l parallel) i≥1 is non increasing, then: s n = 1/n Σ i=1 n y i converges strongly in H to the element of minimum norm in the closed convex hull of the sequence (y n ) n≥1 . We deduce a direct proof of a result containing a theorem of A. Pazy. (author). 27 refs

  6. Two proofs of Fine's theorem

    Halliwell, J.J.

    2014-01-01

    Fine's theorem concerns the question of determining the conditions under which a certain set of probabilities for pairs of four bivalent quantities may be taken to be the marginals of an underlying probability distribution. The eight CHSH inequalities are well-known to be necessary conditions, but Fine's theorem is the striking result that they are also sufficient conditions. Here two transparent and self-contained proofs of Fine's theorem are presented. The first is a physically motivated proof using an explicit local hidden variables model. The second is an algebraic proof which uses a representation of the probabilities in terms of correlation functions. - Highlights: • A discussion of the various approaches to proving Fine's theorem. • A new physically-motivated proof using a local hidden variables model. • A new algebraic proof. • A new form of the CHSH inequalities

  7. A Coordinate-Based Proof of the Scallop Theorem

    Ishimoto, Kenta; Yamada, Michio

    2012-01-01

    We reconsider fluid dynamics for a self-propulsive swimmer in Stokes flow. With an exact definition of deformation of a swimmer, a coordinate-based proof is first given to Purcell's scallop theorem including the body rotation.

  8. Forest Carbon Uptake and the Fundamental Theorem of Calculus

    Zobitz, John

    2013-01-01

    Using the fundamental theorem of calculus and numerical integration, we investigate carbon absorption of ecosystems with measurements from a global database. The results illustrate the dynamic nature of ecosystems and their ability to absorb atmospheric carbon.

  9. The power counting theorem for Feynman integrals with massless propagators

    Lowenstein, J.H.

    2000-01-01

    Dyson's power counting theorem is extended to the case where some of the mass parameters vanish. Weinberg's ultraviolet convergence conditions are supplemented by infrared convergence conditions which combined are sufficient for the convergence of Feynman integrals. (orig.)

  10. The power counting theorem for Feynman integrals with massless propagators

    Lowenstein, J.H.

    1975-01-01

    Dyson's power counting theorem is extended to the case where some of the mass parameters vanish. Weinberg's ultraviolet convergence conditions are supplemented by infrared convergence conditions which combined are sufficient for the convergence of Feynman integrals. (orig.) [de

  11. A divergence theorem for pseudo-Finsler spaces

    Minguzzi, E.

    2015-01-01

    We study the divergence theorem on pseudo-Finsler spaces and obtain a completely Finslerian version for spaces having a vanishing mean Cartan torsion. This result helps to clarify the problem of energy-momentum conservation in Finsler gravity theories.

  12. The Weinberg-Witten theorem on massless particles: an essay

    Loebbert, F.

    2008-01-01

    In this essay we deal with the Weinberg-Witten theorem which imposes limitations on massless particles. First we motivate a classification of massless particles given by the Poincare group as the symmetry group of Minkowski spacetime. We then use the fundamental structure of the background in the form of Poincare covariance to derive restrictions on charged massless particles known as the Weinberg-Witten theorem. We address possible misunderstandings in the proof of this theorem motivated by several papers on this topic. In the last section the consequences of the theorem are discussed. We treat it in the context of known particles and as a constraint for emergent theories. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  13. Integrable equations, addition theorems, and the Riemann-Schottky problem

    Buchstaber, Viktor M; Krichever, I M

    2006-01-01

    The classical Weierstrass theorem claims that, among the analytic functions, the only functions admitting an algebraic addition theorem are the elliptic functions and their degenerations. This survey is devoted to far-reaching generalizations of this result that are motivated by the theory of integrable systems. The authors discovered a strong form of the addition theorem for theta functions of Jacobian varieties, and this form led to new approaches to known problems in the geometry of Abelian varieties. It is shown that strong forms of addition theorems arise naturally in the theory of the so-called trilinear functional equations. Diverse aspects of the approaches suggested here are discussed, and some important open problems are formulated.

  14. Generalized Optical Theorem Detection in Random and Complex Media

    Tu, Jing

    The problem of detecting changes of a medium or environment based on active, transmit-plus-receive wave sensor data is at the heart of many important applications including radar, surveillance, remote sensing, nondestructive testing, and cancer detection. This is a challenging problem because both the change or target and the surrounding background medium are in general unknown and can be quite complex. This Ph.D. dissertation presents a new wave physics-based approach for the detection of targets or changes in rather arbitrary backgrounds. The proposed methodology is rooted on a fundamental result of wave theory called the optical theorem, which gives real physical energy meaning to the statistics used for detection. This dissertation is composed of two main parts. The first part significantly expands the theory and understanding of the optical theorem for arbitrary probing fields and arbitrary media including nonreciprocal media, active media, as well as time-varying and nonlinear scatterers. The proposed formalism addresses both scalar and full vector electromagnetic fields. The second contribution of this dissertation is the application of the optical theorem to change detection with particular emphasis on random, complex, and active media, including single frequency probing fields and broadband probing fields. The first part of this work focuses on the generalization of the existing theoretical repertoire and interpretation of the scalar and electromagnetic optical theorem. Several fundamental generalizations of the optical theorem are developed. A new theory is developed for the optical theorem for scalar fields in nonhomogeneous media which can be bounded or unbounded. The bounded media context is essential for applications such as intrusion detection and surveillance in enclosed environments such as indoor facilities, caves, tunnels, as well as for nondestructive testing and communication systems based on wave-guiding structures. The developed scalar

  15. A priori knowledge and the Kochen-Specker theorem

    Brunet, Olivier

    2007-01-01

    We introduce and formalize a notion of 'a priori knowledge' about a quantum system, and show some properties about this form of knowledge. Finally, we show that the Kochen-Specker theorem follows directly from this study

  16. Supersymmetric extension of the Adler-Bardeen theorem

    Novikov, V.A.; Zakharov, V.I.; Shifman, M.A.; Vainshtein, A.I.

    1985-01-01

    A supersymmetric generalization of the Adler-Bardeen theorem in SUSY gauge theories is given. We show that within the Adler-Bardeen procedure, both the conformal and axial anomalies are exhausted by one loop. (orig.)

  17. An Elementary Proof of the Polynomial Matrix Spectral Factorization Theorem

    Ephremidze, Lasha

    2010-01-01

    A very simple and short proof of the polynomial matrix spectral factorization theorem (on the unit circle as well as on the real line) is presented, which relies on elementary complex analysis and linear algebra.

  18. Perron–Frobenius theorem for nonnegative multilinear forms and extensions

    Friedland, S.; Gaubert, S.; Han, L.

    2013-01-01

    We prove an analog of Perron-Frobenius theorem for multilinear forms with nonnegative coefficients, and more generally, for polynomial maps with nonnegative coefficients. We determine the geometric convergence rate of the power algorithm to the unique normalized eigenvector.

  19. Analogy to Derive an Extended Pythagorean Theorem to ''N'' Dimensions

    Acosta-Robledo J.U.

    2012-01-01

    Full Text Available This article demonstrates that it is possible to extend the Pythagorean Theorem to ''N'' dimensions. This demonstration is mainly done based on linear algebra, especially in the vector product of ''N'' dimensions.

  20. Quantum nonlocality and reality 50 years of Bell's theorem

    Gao, Shan

    2016-01-01

    Description Contents Resources Courses About the Authors Combining twenty-six original essays written by an impressive line-up of distinguished physicists and philosophers of physics, this anthology reflects some of the latest thoughts by leading experts on the influence of Bell's theorem on quantum physics. Essays progress from John Bell's character and background, through studies of his main work, and on to more speculative ideas, addressing the controversies surrounding the theorem, and investigating the theorem's meaning and its deep implications for the nature of physical reality. Combined, they present a powerful comment on the undeniable significance of Bell's theorem for the development of ideas in quantum physics over the past 50 years. Questions surrounding the assumptions and significance of Bell's work still inspire discussion in the field of quantum physics. Adding to this with a theoretical and philosophical perspective, this balanced anthology is an indispensable volume for students and researc...

  1. An imbedding theorem and its applications in degenerate elliptic equations

    Duong Minh Duc.

    1988-06-01

    We improve the Rellich-Kondrachov theorem and apply it to study strongly degenerate and singular elliptic equations. We obtain the maximum principle, Harnacks's inequality and global regularity for solutions of those equations. (author). 11 refs

  2. Preliminary analysis of resonance effect by Helmholtz-Schrödinger method

    Er-Yan, Yan; Fan-Bao, Meng; Hong-Ge, Ma; Chao-Yang, Chen

    2010-01-01

    The Helmholtz-Schrödinger method is employed to study the electric field standing wave caused by coupling through a simple slot. There is a good agreement between the numerical results and the resonant conditions presented by the Helmholtz—Schrödinger method. Thus, it can be used in similar cases where the amplitude of the electric field is the important quantity or eigenfunctions of the Schrödinger equation are needed for complicated quantum structures with hard wall boundary conditions. (general)

  3. Magnetohydrodynamic Kelvin-Helmholtz instabilities in astrophysics. 4. Single shear layer in MHD flows

    Ferrari, A [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica Generale); Trussoni, E [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Max-Planck-Institut fuer Physik und Astrophysik, Garching (Germany, F.R.). Inst. fuer Extraterrestrische Physik)

    1983-11-01

    In this further paper on the physics of Kelvin-Helmholtz instabilities the case in which the fluids in relative motion are magnetized and separated by a shear layer is investigated. The present study points out, with respect to previous treatments, that different velocity profiles affect perturbations of short wavelength (as compared to the scale of the shear). Another new result is in the destabilizing effect, even in the subsonic regime, of the magnetic field on modes neutrally stable in the vortex sheet approximation. Such a behaviour is analogous to that found in the fluid case for Mach numbers >approx. = to 2. Possible astrophysical implications are also discussed.

  4. Optimal 25-Point Finite-Difference Subgridding Techniques for the 2D Helmholtz Equation

    Tingting Wu

    2016-01-01

    Full Text Available We present an optimal 25-point finite-difference subgridding scheme for solving the 2D Helmholtz equation with perfectly matched layer (PML. This scheme is second order in accuracy and pointwise consistent with the equation. Subgrids are used to discretize the computational domain, including the interior domain and the PML. For the transitional node in the interior domain, the finite difference equation is formulated with ghost nodes, and its weight parameters are chosen by a refined choice strategy based on minimizing the numerical dispersion. Numerical experiments are given to illustrate that the newly proposed schemes can produce highly accurate seismic modeling results with enhanced efficiency.

  5. Severe accident research activities at Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

    Wilhelm, Polina; Jobst, Matthias; Schaefer, Frank; Kliem, Soeren [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2016-05-15

    In the frame of the nuclear safety research program of the Helmholtz Association HZDR performs fundamental and applied research to assess and to reduce the risks related to the nuclear fuel cycle and the production of electricity in nuclear power plants. One of the research topics focuses on the safety aspects of current and future reactor designs. This includes the development and application of methods for analyses of transients and postulated accidents, covering the whole spectrum from normal operation till severe accident sequences including core degradation. This paper gives an overview of the severe accident research activities at the Reactor Safety Division at the Institute of Resource Ecology.

  6. ASTEM, Evaluation of Gibbs, Helmholtz and Saturation Line Function for Thermodynamics Calculation

    Moore, K.V.; Burgess, M.P.; Fuller, G.L.; Kaiser, A.H.; Jaeger, D.L.

    1974-01-01

    1 - Description of problem or function: ASTEM is a modular set of FORTRAN IV subroutines to evaluate the Gibbs, Helmholtz, and saturation line functions as published by the American Society of Mechanical Engineers (1967). Any thermodynamic quantity including derivative properties can be obtained from these routines by a user-supplied main program. PROPS is an auxiliary routine available for the IBM360 version which makes it easier to apply the ASTEM routines to power station models. 2 - Restrictions on the complexity of the problem: Unless re-dimensioned by the user, the highest derivative allowed is order 9. All arrays within ASTEM are one-dimensional to save storage area

  7. Density-space potential phase difference in a Kelvin--Helmholtz instability

    Glowienka, J.C.; Jennings, W.C.; Hickok, R.L.

    1974-01-01

    The low-frequency instability found in a hollow cathode discharge in helium was studied using an ion beam probe as a primary diagnostic tool. Three aspects of the instability are discussed: the location and amplitude of the oscillation and its correlation with the shape of the space potential; the phase angle between density and space potential oscillations; and the comparison of the data with three known instability models: Kelvin--Helmholtz, Rayleigh--Taylor, and drift waves--for mode identification. (U.S.)

  8. Nonlinear evolution of the magnetized Kelvin-Helmholtz instability: From fluid to kinetic modeling

    Henri, P.; Cerri, S.S.; Califano, F.; Pegoraro, F.; Rossi, C.; Faganello, M.; Šebek, Ondřej; Trávníček, Pavel M.; Hellinger, Petr; Frederiksen, J. T.; Nordlund, A.; Markidis, S.; Keppens, R.; Lapenta, G.

    2013-01-01

    Roč. 20, č. 10 (2013), 102118/1-102118/13 ISSN 1070-664X R&D Projects: GA MŠk(CZ) 7E11053 EU Projects: European Commission(XE) 263340 - SWIFF Grant - others:European Commission(XE) HPC-EUROPA2 - No. 228398; EU(XE) RI-283493; NASA (US) NNX11A1164G Institutional support: RVO:67985815 ; RVO:68378289 Keywords : Kelvin-Helmholtz instability * plasma kinetic theory * plasma magnetohydrodynamics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics; BL - Plasma and Gas Discharge Physics (UFA-U) Impact factor: 2.249, year: 2013

  9. Quantum work fluctuation theorem: Nonergodic Brownian motion case

    Bai, Zhan-Wu

    2014-01-01

    The work fluctuations of a quantum Brownian particle driven by an external force in a general nonergodic heat bath are studied under a general initial state. The exact analytical expression of the work probability distribution function is derived. Results show the existence of a quantum asymptotic fluctuation theorem, which is in general not a direct generalization of its classical counterpart. The form of this theorem is dependent on the structure of the heat bath and the specified initial condition.

  10. Probability densities and the radon variable transformation theorem

    Ramshaw, J.D.

    1985-01-01

    D. T. Gillespie recently derived a random variable transformation theorem relating to the joint probability densities of functionally dependent sets of random variables. The present author points out that the theorem can be derived as an immediate corollary of a simpler and more fundamental relation. In this relation the probability density is represented as a delta function averaged over an unspecified distribution of unspecified internal random variables. The random variable transformation is derived from this relation

  11. A short list color proof of Grotzsch's theorem

    Thomassen, Carsten

    2000-01-01

    We give a short proof of the result that every planar graph of girth $5$is $3$-choosable and hence also of Gr\\"{o}tzsch's theorem saying that everyplanar triangle-free graph is $3$-colorable.......We give a short proof of the result that every planar graph of girth $5$is $3$-choosable and hence also of Gr\\"{o}tzsch's theorem saying that everyplanar triangle-free graph is $3$-colorable....

  12. Locally Hamiltonian systems with symmetry and a generalized Noether's theorem

    Carinena, J.F.; Ibort, L.A.

    1985-01-01

    An analysis of global aspects of the theory of symmetry groups G of locally Hamiltonian dynamical systems is carried out for particular cases either of the symmetry group, or the differentiable manifold M supporting the symplectic structure, or the action of G on M. In every case it is obtained a generalization of Noether's theorem. It has been looked at the classical Noether's theorem for Lagrangian systems from a modern perspective

  13. Metrical theorems on systems of small inhomogeneous linear forms

    Hussain, Mumtaz; Kristensen, Simon

    In this paper we establish complete Khintchine-Groshev and Schmidt type theorems for inhomogeneous small linear forms in the so-called doubly metric case, in which the inhomogeneous parameter is not fixed.......In this paper we establish complete Khintchine-Groshev and Schmidt type theorems for inhomogeneous small linear forms in the so-called doubly metric case, in which the inhomogeneous parameter is not fixed....

  14. Extension and reconstruction theorems for the Urysohn universal metric space

    Kubiś, Wieslaw; Rubin, M.

    2010-01-01

    Roč. 60, č. 1 (2010), s. 1-29 ISSN 0011-4642 R&D Projects: GA AV ČR IAA100190901 Institutional research plan: CEZ:AV0Z10190503 Keywords : Urysohn space * bilipschitz homeomorphism * modulus of continuity * reconstruction theorem * extension theorem Subject RIV: BA - General Mathematics Impact factor: 0.265, year: 2010 http://dml.cz/handle/10338.dmlcz/140544

  15. A New Simple Approach for Entropy and Carnot Theorem

    Veliev, E. V.

    2004-01-01

    Entropy and Carnot theorem occupy central place in the typical Thermodynamics courses at the university level. In this work, we suggest a new simple approach for introducing the concept of entropy. Using simple procedure in TV plane, we proved that for reversible processes ∫dQ/T=0 and it is sufficient to define entropy. And also, using reversible processes in TS plane, we give an alternative simple proof for Carnot theorem

  16. On the c-theorem in higher genus

    Espriu, D.; Mavromatos, N.E.

    1990-01-01

    We study the extension of the c-therorem to arbitrary genus Riemann surfaces. We analyze the breakdown of conformal invariance caused by the need of cutting off regions of moduli space to regulate divergences and argue how these can be absorbed in the bare couplings on the sphere. An extension of the c-theorem then follows. We also discuss the relationship between the c-theorem and the effective action when corrections from higher genera are accounted for. (orig.)

  17. Some functional limit theorems for compound Cox processes

    Korolev, Victor Yu. [Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow (Russian Federation); Institute of Informatics Problems FRC CSC RAS (Russian Federation); Chertok, A. V. [Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow (Russian Federation); Euphoria Group LLC (Russian Federation); Korchagin, A. Yu. [Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow (Russian Federation); Kossova, E. V. [Higher School of Economics National Research University, Moscow (Russian Federation); Zeifman, Alexander I. [Vologda State University, S.Orlova, 6, Vologda (Russian Federation); Institute of Informatics Problems FRC CSC RAS, ISEDT RAS (Russian Federation)

    2016-06-08

    An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.

  18. Some functional limit theorems for compound Cox processes

    Korolev, Victor Yu.; Chertok, A. V.; Korchagin, A. Yu.; Kossova, E. V.; Zeifman, Alexander I.

    2016-01-01

    An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.

  19. Cosmological constant, inflation and no-cloning theorem

    Huang Qingguo, E-mail: huangqg@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Lin Fengli, E-mail: linfengli@phy.ntnu.edu.tw [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Physics, National Taiwan Normal University, Taipei, 116, Taiwan (China)

    2012-05-30

    From the viewpoint of no-cloning theorem we postulate a relation between the current accelerated expansion of our universe and the inflationary expansion in the very early universe. It implies that the fate of our universe should be in a state with accelerated expansion. Quantitatively we find that the no-cloning theorem leads to a lower bound on the cosmological constant which is compatible with observations.

  20. The Hellman-Feynman theorem at finite temperature

    Cabrera, A.; Calles, A.

    1990-01-01

    The possibility of a kind of Hellman-Feynman theorem at finite temperature is discussed. Using the cannonical ensembles, the derivative of the internal energy is obtained when it depends explicitly on a parameter. It is found that under the low temperature regime the derivative of the energy can be obtained as the statistical average of the derivative of the hamiltonian operator. The result allows to speak of the existence of the Hellman-Feynman theorem at finite temperatures (Author)

  1. Generalized Perron--Frobenius Theorem for Nonsquare Matrices

    Avin, Chen; Borokhovich, Michael; Haddad, Yoram; Kantor, Erez; Lotker, Zvi; Parter, Merav; Peleg, David

    2013-01-01

    The celebrated Perron--Frobenius (PF) theorem is stated for irreducible nonnegative square matrices, and provides a simple characterization of their eigenvectors and eigenvalues. The importance of this theorem stems from the fact that eigenvalue problems on such matrices arise in many fields of science and engineering, including dynamical systems theory, economics, statistics and optimization. However, many real-life scenarios give rise to nonsquare matrices. A natural question is whether the...

  2. Generalized Panofsky-Wenzel theorem and hybrid coupling

    Smirnov, A V

    2001-01-01

    The Panofsky-Wenzel theorem is reformulated for the case in which phase slippage between the wave and beam is not negligible. The extended theorem can be applied in analysis of detuned waveguides, RF injectors, bunchers, some tapered waveguides or high-power sources and multi-cell cavities for dipole and higher order modes. As an example, the relative contribution of the Lorentz' component of the deflecting force is calculated for a conventional circular disk-loaded waveguide.

  3. On the first case of Fermat's theorem for cyclotomic fields

    Kolyvagin, V A

    1999-01-01

    The classical criteria of Kummer, Mirimanov and Vandiver for the validity of the first case of Fermat's theorem for the field Q of rationals and prime exponent l are generalized to the field Q( l √1) and exponent l. As a consequence, some simpler criteria are established. For example, the validity of the first case of Fermat's theorem is proved for the field Q( l √1) and exponent l on condition that l 2 does not divide 2 l -2

  4. Factorization theorems in perturbative quantum field theory

    Date, G.D.

    1982-01-01

    This dissertation deals with factorization properties of Green functions and cross-sections in perturbation theory. It consists of two parts. Part I deals with the factorization theorem for the Drell-Yan cross-section. The new approach developed for this purpose is based upon a renormalization group equation with a generalized anomalous dimension. Using an alternate form of factorization for the Drell-Yan cross-section, derived in perturbation theory, a corresponding generalized anomalous dimension is defined, and explicit Feynman rules for its calculation are given. The resultant renormalization group equation is solved by a formal solution which is exhibited explicitly. Simple, explicit calculations are performed which verify Mueller's conjecture for the recovery of the usual parton model results for the Drell-Yan cross-section. The approach developed in this work offers a general framework to analyze the role played by the group factors in the cancellation of the soft divergences, and study their influence on the asymptotic behavior. Part II deals with factorization properties of the Green functions in position space. In this part, a Landau equation analysis is carried out for the singularities of the position space Green fucntions, in perturbation theory with the theta 4 interaction Lagrangian. A physical picture interpretation is given for the corresponding Landau equations. It is used to suggest a light-cone expansion. Using a power counting method, a formal derivation of the light-cone expansion for the two point function, the three point function and a product of two currents, is given without assuming a short distance expansion. Possible extensions to other theories is also considered

  5. Applying the Helmholtz Illusion to Fashion: Horizontal Stripes Won't Make You Look Fatter

    Peter Thompson

    2011-01-01

    Full Text Available A square composed of horizontal lines appears taller and narrower than an identical square made up of vertical lines. Reporting this illusion, Hermann von Helmholtz noted that such illusions, in which filled space seems to be larger than unfilled space, were common in everyday life, adding the observation that ladies' frocks with horizontal stripes make the figure look taller. As this assertion runs counter to modern popular belief, we have investigated whether vertical or horizontal stripes on clothing should make the wearer appear taller or fatter. We find that a rectangle of vertical stripes needs to be extended by 7.1% vertically to match the height of a square of horizontal stripes and that a rectangle of horizontal stripes must be made 4.5% wider than a square of vertical stripes to match its perceived width. This illusion holds when the horizontal or vertical lines are on the dress of a line drawing of a woman. We have examined the claim that these effects apply only for 2-dimensional figures in an experiment with 3-D cylinders and find no support for the notion that horizontal lines would be ‘fattening’ on clothes. Significantly, the illusion persists when the horizontal or vertical lines are on pictures of a real half-body mannequin viewed stereoscopically. All the evidence supports Helmholtz's original assertion.

  6. A Third Note: Helmholtz, Palestrina, and the Early History of Musicology.

    Kursell, Julia

    2015-06-01

    This contribution focuses on Hermann von Helmholtz's work on Renaissance composer Giovanni Pierluigi da Palestrina. Helmholtz used his scientific concept of distortion to analyze this music and, reversely, to find corroboration for the concept in his musical analyses. In this, his work interlocked with nineteenth-century aesthetic and scholarly ideals. His eagerness to use the latest products of historical scholarship in early music reveals a specific view of music history. Historical documents of music provide the opportunity for the discovery of new experimental research topics and thereby also reveal insights into hearing under different conditions. The essay argues that this work occupies a peculiar position in the history of musicology; it falls under the header of "systematic musicology," which eventually emerged as a discipline of musicology at the end of the nineteenth century. That this discipline has a history at all is easily overlooked, as many of its contributors were scientists with an interest in music. A history of musicology therefore must consider at least the following two caveats: parts of it take place outside the institutionalized field of musicology, and any history of musicology must, in the last instance, be embedded in a history of music.

  7. Kelvin-Helmholtz instability for a bounded plasma flow in a longitudinal magnetic field

    Burinskaya, T. M.; Shevelev, M. M.; Rauch, J.-L.

    2011-01-01

    Kelvin-Helmholtz MHD instability in a plane three-layer plasma is investigated. A general dispersion relation for the case of arbitrarily orientated magnetic fields and flow velocities in the layers is derived, and its solutions for a bounded plasma flow in a longitudinal magnetic field are studied numerically. Analysis of Kelvin-Helmholtz instability for different ion acoustic velocities shows that perturbations with wavelengths on the order of or longer than the flow thickness can grow in an arbitrary direction even at a zero temperature. Oscillations excited at small angles with respect to the magnetic field exist in a limited range of wavenumbers even without allowance for the finite width of the transition region between the flow and the ambient plasma. It is shown that, in a low-temperature plasma, solutions resulting in kink-like deformations of the plasma flow grow at a higher rate than those resulting in quasi-symmetric (sausage-like) deformations. The transverse structure of oscillatory-damped eigenmodes in a low-temperature plasma is analyzed. The results obtained are used to explain mechanisms for the excitation of ultra-low-frequency long-wavelength oscillations propagating along the magnetic field in the plasma sheet boundary layer of the Earth’s magnetotail penetrated by fast plasma flows.

  8. Effect of plasma density profile of tokamak on Kelvin-Helmholtz instability

    Tang Fulin

    1984-01-01

    The purpose of this paper is to study the effect of radial distribution of plasma density profile of tokamak on Kelvin-Helmholtz instability caused by toroidal rotation. The effect of radial distribution of plasma rotational velocity on stability is also examine for comparison. It is found that within the range of tokamak parameters the only radial distribution of plasma rotational velocity cannot induce Kelvin-Helmholtz instability. On the contrary, when there is a radial distribution of plasma density, i.e. P 01 =P 0 e -tx and V 0 1 = const, plasma becomes unstable, and instability will increase proportionally to the value of t. Meanwhile when the value of t remains constant, the instability growth rate will decrease if P 0 grows or the distance between plasma and wall of container decreases too. It shows that the Kelvin-Helmoltz instability is not only influenced by the steepness of density profile but also by the inertia of plasma in central region, which is helpful for depressing the instability. (author). 5 refs, 4 figs, 2 tabs

  9. Virtual continuity of the measurable functions of several variables, and Sobolev embedding theorems

    Vershik, Anatoly; Zatitskiy, Pavel; Petrov, Fedor

    2013-01-01

    Classical Luzin's theorem states that the measurable function of one variable is "almost" continuous. This is not so anymore for functions of several variables. The search of right analogue of the Luzin theorem leads to a notion of virtually continuous functions of several variables. This probably new notion appears implicitly in the statements like embeddings theorems and traces theorems for Sobolev spaces. In fact, it reveals their nature as theorems about virtual continuity. This notion is...

  10. Formalization of the Integral Calculus in the PVS Theorem Prover

    Ricky Wayne Butler

    2009-04-01

    Full Text Available The PVS Theorem prover is a widely used formal verification tool used for the analysis of safetycritical systems. The PVS prover, though fully equipped to support deduction in a very general logic framework, namely higher-order logic, it must nevertheless, be augmented with the definitions and associated theorems for every branch of mathematics and Computer Science that is used in a verification. This is a formidable task, ultimately requiring the contributions of researchers and developers all over the world. This paper reports on the formalization of the integral calculus in the PVS theorem prover. All of the basic definitions and theorems covered in a first course on integral calculus have been completed.The theory and proofs were based on Rosenlicht’s classic text on real analysis and follow the traditional epsilon-delta method. The goal of this work was to provide a practical set of PVS theories that could be used for verification of hybrid systems that arise in air traffic management systems and other aerospace applications. All of the basic linearity, integrability, boundedness, and continuity properties of the integral calculus were proved. The work culminated in the proof of the Fundamental Theorem Of Calculus. There is a brief discussion about why mechanically checked proofs are so much longer than standard mathematics textbook proofs.

  11. Formalization of the Integral Calculus in the PVS Theorem Prover

    Butler, Ricky W.

    2004-01-01

    The PVS Theorem prover is a widely used formal verification tool used for the analysis of safety-critical systems. The PVS prover, though fully equipped to support deduction in a very general logic framework, namely higher-order logic, it must nevertheless, be augmented with the definitions and associated theorems for every branch of mathematics and Computer Science that is used in a verification. This is a formidable task, ultimately requiring the contributions of researchers and developers all over the world. This paper reports on the formalization of the integral calculus in the PVS theorem prover. All of the basic definitions and theorems covered in a first course on integral calculus have been completed.The theory and proofs were based on Rosenlicht's classic text on real analysis and follow the traditional epsilon-delta method. The goal of this work was to provide a practical set of PVS theories that could be used for verification of hybrid systems that arise in air traffic management systems and other aerospace applications. All of the basic linearity, integrability, boundedness, and continuity properties of the integral calculus were proved. The work culminated in the proof of the Fundamental Theorem Of Calculus. There is a brief discussion about why mechanically checked proofs are so much longer than standard mathematics textbook proofs.

  12. The Goldstone equivalence theorem and AdS/CFT

    Anand, Nikhil; Cantrell, Sean [Department of Physics & Astronomy, Johns Hopkins University,Baltimore, MD 21218 (United States)

    2015-08-03

    The Goldstone equivalence theorem allows one to relate scattering amplitudes of massive gauge fields to those of scalar fields in the limit of large scattering energies. We generalize this theorem under the framework of the AdS/CFT correspondence. First, we obtain an expression of the equivalence theorem in terms of correlation functions of creation and annihilation operators by using an AdS wave function approach to the AdS/CFT dictionary. It is shown that the divergence of the non-conserved conformal current dual to the bulk gauge field is approximately primary when computing correlators for theories in which the masses of all the exchanged particles are sufficiently large. The results are then generalized to higher spin fields. We then go on to generalize the theorem using conformal blocks in two and four-dimensional CFTs. We show that when the scaling dimensions of the exchanged operators are large compared to both their spins and the dimension of the current, the conformal blocks satisfy an equivalence theorem.

  13. Generalized Fourier slice theorem for cone-beam image reconstruction.

    Zhao, Shuang-Ren; Jiang, Dazong; Yang, Kevin; Yang, Kang

    2015-01-01

    The cone-beam reconstruction theory has been proposed by Kirillov in 1961, Tuy in 1983, Feldkamp in 1984, Smith in 1985, Pierre Grangeat in 1990. The Fourier slice theorem is proposed by Bracewell 1956, which leads to the Fourier image reconstruction method for parallel-beam geometry. The Fourier slice theorem is extended to fan-beam geometry by Zhao in 1993 and 1995. By combining the above mentioned cone-beam image reconstruction theory and the above mentioned Fourier slice theory of fan-beam geometry, the Fourier slice theorem in cone-beam geometry is proposed by Zhao 1995 in short conference publication. This article offers the details of the derivation and implementation of this Fourier slice theorem for cone-beam geometry. Especially the problem of the reconstruction from Fourier domain has been overcome, which is that the value of in the origin of Fourier space is 0/0. The 0/0 type of limit is proper handled. As examples, the implementation results for the single circle and two perpendicular circle source orbits are shown. In the cone-beam reconstruction if a interpolation process is considered, the number of the calculations for the generalized Fourier slice theorem algorithm is O(N^4), which is close to the filtered back-projection method, here N is the image size of 1-dimension. However the interpolation process can be avoid, in that case the number of the calculations is O(N5).

  14. Quantum de Finetti theorem in phase-space representation

    Leverrier, Anthony; Cerf, Nicolas J.

    2009-01-01

    The quantum versions of de Finetti's theorem derived so far express the convergence of n-partite symmetric states, i.e., states that are invariant under permutations of their n parties, toward probabilistic mixtures of independent and identically distributed (IID) states of the form σ xn . Unfortunately, these theorems only hold in finite-dimensional Hilbert spaces, and their direct generalization to infinite-dimensional Hilbert spaces is known to fail. Here, we address this problem by considering invariance under orthogonal transformations in phase space instead of permutations in state space, which leads to a quantum de Finetti theorem particularly relevant to continuous-variable systems. Specifically, an n-mode bosonic state that is invariant with respect to this continuous symmetry in phase space is proven to converge toward a probabilistic mixture of IID Gaussian states (actually, n identical thermal states).

  15. Fourier diffraction theorem for diffusion-based thermal tomography

    Baddour, Natalie

    2006-01-01

    There has been much recent interest in thermal imaging as a method of non-destructive testing and for non-invasive medical imaging. The basic idea of applying heat or cold to an area and observing the resulting temperature change with an infrared camera has led to the development of rapid and relatively inexpensive inspection systems. However, the main drawback to date has been that such an approach provides mainly qualitative results. In order to advance the quantitative results that are possible via thermal imaging, there is interest in applying techniques and algorithms from conventional tomography. Many tomography algorithms are based on the Fourier diffraction theorem, which is inapplicable to thermal imaging without suitable modification to account for the attenuative nature of thermal waves. In this paper, the Fourier diffraction theorem for thermal tomography is derived and discussed. The intent is for this thermal-diffusion based Fourier diffraction theorem to form the basis of tomographic reconstruction algorithms for quantitative thermal imaging

  16. More on Weinberg's no-go theorem in quantum gravity

    Nagahama, Munehiro; Oda, Ichiro

    2018-05-01

    We complement Weinberg's no-go theorem on the cosmological constant problem in quantum gravity by generalizing it to the case of a scale-invariant theory. Our analysis makes use of the effective action and the BRST symmetry in a manifestly covariant quantum gravity instead of the classical Lagrangian density and the G L (4 ) symmetry in classical gravity. In this sense, our proof is very general since it does not depend on details of quantum gravity and holds true for general gravitational theories which are invariant under diffeomorphisms. As an application of our theorem, we comment on an idea that in the asymptotic safety scenario the functional renormalization flow drives a cosmological constant to zero, solving the cosmological constant problem without reference to fine tuning of parameters. Finally, we also comment on the possibility of extending the Weinberg theorem in quantum gravity to the case where the translational invariance is spontaneously broken.

  17. Noncommutative gauge field theories: A no-go theorem

    Chaichian, M.; Tureanu, A.; Presnajder, P.; Sheikh-Jabbari, M.M.

    2001-06-01

    Studying the mathematical structure of the noncommutative groups in more detail, we prove a no-go theorem for the noncommutative gauge theories. According to this theorem, the closure condition of the gauge algebra implies that: 1) the local noncommutative u(n) algebra only admits the irreducible nxn matrix-representation. Hence the gauge fields, as elements of the algebra, are in nxn matrix form, while the matter fields can only be either in fundamental, adjoint or singlet states; 2) for any gauge group consisting of several simple group factors, the matter fields can transform nontrivially under at most two noncommutative group factors. In other words, the matter fields cannot carry more than two simple noncommutative gauge group charges. This no-go theorem imposes strong restrictions on the construction of the noncommutative version of the Standard Model and in resolving the standing problem of charge quantization in noncommutative QED. (author)

  18. Deviations from Wick's theorem in the canonical ensemble

    Schönhammer, K.

    2017-07-01

    Wick's theorem for the expectation values of products of field operators for a system of noninteracting fermions or bosons plays an important role in the perturbative approach to the quantum many-body problem. A finite-temperature version holds in the framework of the grand canonical ensemble, but not for the canonical ensemble appropriate for systems with fixed particle number such as ultracold quantum gases in optical lattices. Here we present formulas for expectation values of products of field operators in the canonical ensemble using a method in the spirit of Gaudin's proof of Wick's theorem for the grand canonical case. The deviations from Wick's theorem are examined quantitatively for two simple models of noninteracting fermions.

  19. An improved version of the Mar otto Theorem

    Li Changpin; Chen Guanrong

    2003-01-01

    In 1975, Li and Yorke introduced the first precise definition of discrete chaos and established a very simple criterion for chaos in one-dimensional difference equations, 'period three implies chaos' for brevity. After three years. Marotto generalized this result to n-dimensional difference equations, showing that the existence of a snap-back repeller implies chaos in the sense of Li-Yorke. This theorem is up to now the best one in predicting and analyzing discrete chaos in multidimensional difference equations. Yet, it is well known that there exists an error in the condition of the original Marotto Theorem, and several authors had tried to correct it in different ways. In this paper, we further clarify the issue, with an improved version of the Marotto Theorem derived

  20. Out-of-time-order fluctuation-dissipation theorem

    Tsuji, Naoto; Shitara, Tomohiro; Ueda, Masahito

    2018-01-01

    We prove a generalized fluctuation-dissipation theorem for a certain class of out-of-time-ordered correlators (OTOCs) with a modified statistical average, which we call bipartite OTOCs, for general quantum systems in thermal equilibrium. The difference between the bipartite and physical OTOCs defined by the usual statistical average is quantified by a measure of quantum fluctuations known as the Wigner-Yanase skew information. Within this difference, the theorem describes a universal relation between chaotic behavior in quantum systems and a nonlinear-response function that involves a time-reversed process. We show that the theorem can be generalized to higher-order n -partite OTOCs as well as in the form of generalized covariance.

  1. Kochen-Specker theorem studied with neutron interferometer.

    Hasegawa, Yuji; Durstberger-Rennhofer, Katharina; Sponar, Stephan; Rauch, Helmut

    2011-04-01

    The Kochen-Specker theorem shows the incompatibility of noncontextual hidden variable theories with quantum mechanics. Quantum contextuality is a more general concept than quantum non-locality which is quite well tested in experiments using Bell inequalities. Within neutron interferometry we performed an experimental test of the Kochen-Specker theorem with an inequality, which identifies quantum contextuality, by using spin-path entanglement of single neutrons. Here entanglement is achieved not between different particles, but between degrees of freedom of a single neutron, i.e., between spin and path degree of freedom. Appropriate combinations of the spin analysis and the position of the phase shifter allow an experimental verification of the violation of an inequality derived from the Kochen-Specker theorem. The observed violation 2.291±0.008≰1 clearly shows that quantum mechanical predictions cannot be reproduced by noncontextual hidden variable theories.

  2. Kochen-Specker theorem studied with neutron interferometer

    Hasegawa, Yuji, E-mail: Hasegawa@ati.ac.a [Atominstitut, Technische Universitaet Wien, Stadionallee 2, A-1020 Wien (Austria); Durstberger-Rennhofer, Katharina; Sponar, Stephan; Rauch, Helmut [Atominstitut, Technische Universitaet Wien, Stadionallee 2, A-1020 Wien (Austria)

    2011-04-01

    The Kochen-Specker theorem shows the incompatibility of noncontextual hidden variable theories with quantum mechanics. Quantum contextuality is a more general concept than quantum non-locality which is quite well tested in experiments using Bell inequalities. Within neutron interferometry we performed an experimental test of the Kochen-Specker theorem with an inequality, which identifies quantum contextuality, by using spin-path entanglement of single neutrons. Here entanglement is achieved not between different particles, but between degrees of freedom of a single neutron, i.e., between spin and path degree of freedom. Appropriate combinations of the spin analysis and the position of the phase shifter allow an experimental verification of the violation of an inequality derived from the Kochen-Specker theorem. The observed violation 2.291{+-}0.008 not {<=} 1 clearly shows that quantum mechanical predictions cannot be reproduced by noncontextual hidden variable theories.

  3. Limit theorems for multi-indexed sums of random variables

    Klesov, Oleg

    2014-01-01

    Presenting the first unified treatment of limit theorems for multiple sums of independent random variables, this volume fills an important gap in the field. Several new results are introduced, even in the classical setting, as well as some new approaches that are simpler than those already established in the literature. In particular, new proofs of the strong law of large numbers and the Hajek-Renyi inequality are detailed. Applications of the described theory include Gibbs fields, spin glasses, polymer models, image analysis and random shapes. Limit theorems form the backbone of probability theory and statistical theory alike. The theory of multiple sums of random variables is a direct generalization of the classical study of limit theorems, whose importance and wide application in science is unquestionable. However, to date, the subject of multiple sums has only been treated in journals. The results described in this book will be of interest to advanced undergraduates, graduate students and researchers who ...

  4. Some commutativity theorems for a certain class of rings

    Khan, M.A.

    1994-08-01

    In the present paper we first establish the commutativity theorem for semiprime ring satisfying the polynomial identity [x n ,y]x r = ±y s [x,y m ]y t for all x,y in R, where m,n,r,s and t are fixed nonnegative integers, and further, we investigate commutativity of rings with unity under some additional hypothesis. Moreover, it is also shown that the above result is true for s-unital. Also, we provide some counter examples which show that the hypothesis of our theorems are not altogether superfluous. The results of this paper generalize some of the well-known commutativity theorems for rings which are right s-unital. (author). 21 refs

  5. A general product measurability theorem with applications to variational inequalities

    Kenneth L. Kuttler

    2016-03-01

    Full Text Available This work establishes the existence of measurable weak solutions to evolution problems with randomness by proving and applying a novel theorem on product measurability of limits of sequences of functions. The measurability theorem is used to show that many important existence theorems within the abstract theory of evolution inclusions or equations have straightforward generalizations to settings that include random processes or coefficients. Moreover, the convex set where the solutions are sought is not fixed but may depend on the random variables. The importance of adding randomness lies in the fact that real world processes invariably involve randomness and variability. Thus, this work expands substantially the range of applications of models with variational inequalities and differential set-inclusions.

  6. Kochen-Specker theorem studied with neutron interferometer

    Hasegawa, Yuji; Durstberger-Rennhofer, Katharina; Sponar, Stephan; Rauch, Helmut

    2011-01-01

    The Kochen-Specker theorem shows the incompatibility of noncontextual hidden variable theories with quantum mechanics. Quantum contextuality is a more general concept than quantum non-locality which is quite well tested in experiments using Bell inequalities. Within neutron interferometry we performed an experimental test of the Kochen-Specker theorem with an inequality, which identifies quantum contextuality, by using spin-path entanglement of single neutrons. Here entanglement is achieved not between different particles, but between degrees of freedom of a single neutron, i.e., between spin and path degree of freedom. Appropriate combinations of the spin analysis and the position of the phase shifter allow an experimental verification of the violation of an inequality derived from the Kochen-Specker theorem. The observed violation 2.291±0.008 not ≤ 1 clearly shows that quantum mechanical predictions cannot be reproduced by noncontextual hidden variable theories.

  7. Hadronic interactions of the J/ψ and Adler's theorem

    Bourque, A.; Gale, C.; Haglin, K.L.

    2004-01-01

    Effective Lagrangian models of charmonium have recently been used to estimate dissociation cross sections with light hadrons. Detailed study of the symmetry properties reveals possible shortcomings relative to chiral symmetry. We therefore propose a new Lagrangian and point out distinguishing features amongst the different approaches. Moreover, we test the models against Adler's theorem, which requires, in the appropriate limit, the decoupling of pions from the theory for the normal parity sector. Using the newly proposed Lagrangian, which exhibits SU L (N f )xSU R (N f ) symmetry and complies with Adler's theorem, we find dissociation cross sections with pions that are reduced in an energy-dependent way, with respect to cases where the theorem is not fulfilled

  8. Zamolodchikov's c-theorem and string effective actions

    Mavromatos, N.E.; Miramontes, J.L.

    1988-01-01

    Zamolodchikov's c-theorem for 2D renormalisable field theories is presented in a way which allows for a straightforward application to the case of bosonic σ-models. As a consistency check in the latter case, the Curci-Paffuti relation is rederived. It is also shown that the 'metric' in coupling constant space in this case is a c-number function of the backgrounds. Attempts to derive off-shell functional relations between the Weyl anomaly coefficients and field variations of string effective actions, compatible with the c-theorem, are discussed by emphasising the necessity of performing explicit perturbative calculations in order to arrive at definite conclusions. Comments concerning the extension of the c-theorem to the case of supersymmetric and heterotic σ-models are also made. (orig.)

  9. Towards a Novel no-hair Theorem for Black Holes

    Hertog, T

    2006-01-01

    We provide strong numerical evidence for a new no-scalar-hair theorem for black holes in general relativity, which rules out spherical scalar hair of static four dimensional black holes if the scalar field theory, when coupled to gravity, satisfies the Positive Energy Theorem. This sheds light on the no-scalar-hair conjecture for Calabi-Yau compactifications of string theory, where the effective potential typically has negative regions but where supersymmetry ensures the total energy is always positive. In theories where the scalar tends to a negative local maximum of the potential at infinity, we find the no-scalar-hair theorem holds provided the asymptotic conditions are invariant under the full anti-de Sitter symmetry group.

  10. Application of He’s Variational Iteration Method to Nonlinear Helmholtz Equation and Fifth-Order KDV Equation

    Miansari, Mo; Miansari, Me; Barari, Amin

    2009-01-01

    In this article, He’s variational iteration method (VIM), is implemented to solve the linear Helmholtz partial differential equation and some nonlinear fifth-order Korteweg-de Vries (FKdV) partial differential equations with specified initial conditions. The initial approximations can be freely c...

  11. Collisionless Kelvin-Helmholtz instability and vortex-induced reconnection in the external region of the Earth magnetotail

    Pegoraro, F; Faganello, M; Califano, F

    2008-01-01

    In a magnetized plasma streaming with a non uniform velocity, the Kelvin-Helmholtz instability plays a major role in mixing different plasma regions and in stretching the magnetic field lines leading to the formation of layers with a sheared magnetic field where magnetic field line reconnection can take place. A relevant example is provided by the formation of a mixing layer between the Earth's magnetosphere and the solar wind at low latitudes during northward periods. In the considered configuration, in the presence of a magnetic field nearly perpendicular to the plane defined by the velocity field and its inhomogeneity direction, velocity shear drives a Kelvin-Helmholtz instability which advects and distorts the magnetic field configuration. If the Alfven velocity associated to the in-plane magnetic field is sufficiently weak with respect to the variation of the fluid velocity in the plasma, the Kelvin-Helmholtz instability generates fully rolled-up vortices which advect the magnetic field lines into a complex configuration, causing the formation of current layers along the inversion curves of the in-plane magnetic field component. Pairing of the vortices generated by the Kelvin-Helmholtz instability is a well know phenomenon in two-dimensional hydrodynamics. Here we investigate the development of magnetic reconnection during the vortex pairing process and show that completely different magnetic structures are produced depending on how fast the reconnection process develops on the time scale set by the pairing process.

  12. Novel approach to the Helmholtz integral equation solution by Fourier series expansion for acoustic radiation and scattering problems

    Shatalov, MY

    2006-01-01

    Full Text Available -scale structure to guarantee the numerical accuracy of solution. In the present paper the authors propose to use a novel method of solution of the Helmholtz integral equation, which is based on expansion of the integrands in double Fourier series. The main...

  13. Increase in effectiveness of low frequency acoustic liners by use of coupled Helmholtz resonators

    Dean, L. W.

    1977-01-01

    Coupling of Helmholtz resonators in a low-frequency absorber array was studied as a means for increasing the effectiveness for absorbing low-frequency core engine noise. The equations for the impedance of the coupled-resonator systems were developed in terms of uncoupled-resonator parameters, and the predicted impedance for a parallel-coupled scheme is shown to compare favorably with measurements from a test model. In addition, attenuation measurements made in a flow duct on test coupled-resonator panels are shown to compare favorably with predicted values. Finally, the parallel-coupled concept is shown to give significantly more attenuation than that of a typical uncoupled resonator array of the same total volume.

  14. Magnetohydrodynamic Kelvin-Helmholtz instabilities in astrophysics. 2. Cylindrical boundary layer in vortex sheet approximation

    Ferrari, A [Max-Planck-Institut fuer Extraterrestrische Physik, Garching b. Muenchen (Germany, F.R.); Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica); Trussoni, E; Zaninetti, L [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica

    1981-09-01

    This second paper of the series is devoted to Kelvin-Helmholtz instabilities in cylindrical boundary layer flows (jets). The vortex-sheet approximation is still used, and compressible flows are studied in subsonic, transonic, supersonic and relativistic regimes. Magnetic field effects are analysed, together with density contrast inside and outside the jet. The general result is that, due to the onset of a so-called reflection branch of resonant modes, jets are always unstable, both to pinching and helical perturbations with wavelengths of the order of the jet circumference. In particular the time-scales for instability are such that this certainly plays a significant part in the morphology and energetics of extended radio sources.

  15. An Investigation of Hall Currents Associated with Tripolar Magnetic Fields During Magnetospheric Kelvin Helmholtz Waves

    Sturner, A. P.; Eriksson, S.; Newman, D. L.; Lapenta, G.; Gershman, D. J.; Plaschke, F.; Ergun, R.; Wilder, F. D.; Torbert, R. B.; Giles, B. L.; Strangeway, R. J.; Russell, C. T.; Burch, J. L.

    2016-12-01

    Kinetic simulations and observations of magnetic reconnection suggest the Hall term of Ohm's Law is necessary for understanding fast reconnection in the Earth's magnetosphere. During high (>1) guide field plasma conditions in the solar wind and in Earth's magnetopause, tripolar variations in the guide magnetic field are often observed during current sheet crossings, and have been linked to reconnection Hall magnetic fields. Two proposed mechanisms for these tripolar variations are the presence of multiple nearby X-lines and magnetic island coalescence. We present results of an investigation into the structure of the electron currents supporting tripolar guide magnetic field variations during Kelvin-Helmholtz wave current sheet crossings using the Magnetosphere Multiscale (MMS) Mission, and compare with bipolar magnetic field structures and with kinetic simulations to understand how these tripolar structures may be used as tracers for magnetic islands.

  16. Cluster observations of reconnection due to the Kelvin-Helmholtz instability at the dawnside magnetospheric flank

    K. Nykyri

    2006-10-01

    Full Text Available On 3 July 2001, the four Cluster satellites traversed along the dawnside magnetospheric flank and observed large variations in all plasma parameters. The estimated magnetopause boundary normals were oscillating in the z-direction and the normal component of the magnetic field showed systematic  2–3 min bipolar variations for 1 h when the IMF had a small positive bz-component and a Parker-spiral orientation in the x,y-plane. Brief  33 s intervals with excellent deHoffman Teller frames were observed satisfying the Walén relation. Detailed comparisons with 2-D MHD simulations indicate that Cluster encountered rotational discontinuities generated by Kelvin-Helmholtz instability. We estimate a wave length of  6 RE and a wave vector with a significant z-component.

  17. Seafloor identification in sonar imagery via simulations of Helmholtz equations and discrete optimization

    Engquist, Björn; Frederick, Christina; Huynh, Quyen; Zhou, Haomin

    2017-06-01

    We present a multiscale approach for identifying features in ocean beds by solving inverse problems in high frequency seafloor acoustics. The setting is based on Sound Navigation And Ranging (SONAR) imaging used in scientific, commercial, and military applications. The forward model incorporates multiscale simulations, by coupling Helmholtz equations and geometrical optics for a wide range of spatial scales in the seafloor geometry. This allows for detailed recovery of seafloor parameters including material type. Simulated backscattered data is generated using numerical microlocal analysis techniques. In order to lower the computational cost of the large-scale simulations in the inversion process, we take advantage of a pre-computed library of representative acoustic responses from various seafloor parameterizations.

  18. Kelvin-Helmholtz instability and kinetic internal kink modes in tokamaks

    Naitou, H.

    2002-01-01

    The m=1 and n=1 kinetic internal kink (KIK) mode with a nonuniform density profile is studied by the cylindrical version of the gyro-reduced-MHD code which is one of the extended MHD codes being able to treat the physics beyond resistive MHD. Electron inertia and electron finite temperature effects are crucial. The linear mode structure of KIK mode includes the sheared poloidal flow with m=1, which excites the vortexes due to the Kelvin-Helmholtz (K-H) instability. We have found that there is a strong coupling between the KIK mode and the K-H mode even in the early nonlinear stage of KIK instability in which the width of the m=1 magnetic island is sufficiently small. (author)

  19. Decay of MHD-scale Kelvin-Helmholtz vortices mediated by parasitic electron dynamics

    Nakamura, T.K.M.; Hayashi, D.; Fujimoto, M.; Shinohara, I.

    2004-01-01

    We have simulated nonlinear development of MHD-scale Kelvin-Helmholtz (KH) vortices by a two-dimensional two-fluid system including finite electron inertial effects. In the presence of moderate density jump across a shear layer, in striking contrast to MHD results, MHD KH vortices are found to decay by the time one eddy turnover is completed. The decay is mediated by smaller vortices that appear within the parent vortex and stays effective even when the shear layer width is made larger. It is shown that the smaller vortices are basically of MHD nature while the seeding for these is achieved by the electron inertial effect. Application of the results to the magnetotail boundary layer is discussed

  20. Stability of a modified Peaceman–Rachford method for the paraxial Helmholtz equation on adaptive grids

    Sheng, Qin, E-mail: Qin_Sheng@baylor.edu [Department of Mathematics and Center for Astrophysics, Space Physics and Engineering Research, Baylor University, One Bear Place, Waco, TX 76798-7328 (United States); Sun, Hai-wei, E-mail: hsun@umac.mo [Department of Mathematics, University of Macau (Macao)

    2016-11-15

    This study concerns the asymptotic stability of an eikonal, or ray, transformation based Peaceman–Rachford splitting method for solving the paraxial Helmholtz equation with high wave numbers. Arbitrary nonuniform grids are considered in transverse and beam propagation directions. The differential equation targeted has been used for modeling propagations of high intensity laser pulses over a long distance without diffractions. Self-focusing of high intensity beams may be balanced with the de-focusing effect of created ionized plasma channel in the situation, and applications of grid adaptations are frequently essential. It is shown rigorously that the fully discretized oscillation-free decomposition method on arbitrary adaptive grids is asymptotically stable with a stability index one. Simulation experiments are carried out to illustrate our concern and conclusions.

  1. Bringing new archival sources to Wundt scholarship: the case of Wundt's assistantship with Helmholtz.

    Araujo, Saulo de Freitas

    2014-02-01

    Wilhelm Wundt's biography is one of the main domains in Wundt scholarship that deserves more detailed attention. The few existing biographical works present many problems, ranging from vagueness to chronological inaccuracies, among others. One of the important gaps concerns the so-called Heidelberg period (1852-1874), during which he went from being a medical student to holding a professorship at the University of Heidelberg. The aim of this article is to dispel a very common confusion in the secondary literature, which refers to Wundt's assistantship with Helmholtz at the Physiological Institute, by establishing the precise dates of his assistantship. Contrary to what is generally repeated in the secondary literature, the primary sources allow us to determine precisely this period from October 1858 to March 1865. I conclude by pointing out the indispensability of the primary sources not only to Wundt scholarship but also to the historiography of psychology in general.

  2. The evolution of a localized nonlinear wave of the Kelvin-Helmholtz instability with gravity

    Orazzo, Annagrazia; Hoepffner, Jérôme

    2012-11-01

    At the interface between two fluids of different density and in the presence of gravity, there are well known periodic surface waves which can propagate for long distances with little attenuation, as it is for instance the case at the surface of the sea. If wind is present, these waves progressively accumulate energy as they propagate and grow to large sizes—this is the Kelvin-Helmholtz instability. On the other hand, we show in this paper that for a given wind strength, there is potential for the growth of a localized nonlinear wave. This wave can reach a size such that the hydrostatic pressure drop from top to bottom equals the stagnation pressure of the wind. This process for the disruption of the flat interface is localized and nonlinear. We study the properties of this wave using numerical simulations of the Navier-Stokes equations.

  3. Double-reconnected magnetic structures driven by Kelvin-Helmholtz vortices at the Earth's magnetosphere

    Faganello, Matteo; Borgogno, Dario; Califano, Francesco; Pegoraro, Francesco

    2015-11-01

    In an almost collisionless MagnetoHydrodynamic plasma in a relatively strong magnetic field, stresses can be conveyed far from the region where they are exerted e.g., through the propagation of Alfvèn waves. The forced dynamics of line-tied magnetic structures in solar and stellar coronae is a paradigmatic case. We investigate how this action at a distance develops from the equatorial region of the Kelvin-Helmholtz unstable flanks of the Earth's magnetosphere leading to the onset, at mid latitude in both hemispheres, of correlated double magnetic field line reconnection events that can allow the solar wind plasma to enter the Earth's magnetosphere. This mid-latitude double reconnection process, first investigated in, has been confirmed here by following a large set of individual field lines using a method similar to a Poincarè map.

  4. Diffusion at the Earth magnetopause: enhancement by Kelvin-Helmholtz instability

    R. Smets

    2007-02-01

    Full Text Available Using hybrid simulations, we examine how particles can diffuse across the Earth's magnetopause because of finite Larmor radius effects. We focus on tangential discontinuities and consider a reversal of the magnetic field that closely models the magnetopause under southward interplanetary magnetic field. When the Larmor radius is on the order of the field reversal thickness, we show that particles can cross the discontinuity. We also show that with a realistic initial shear flow, a Kelvin-Helmholtz instability develops that increases the efficiency of the crossing process. We investigate the distribution functions of the transmitted ions and demonstrate that they are structured according to a D-shape. It accordingly appears that magnetic reconnection at the magnetopause is not the only process that leads to such specific distribution functions. A simple analytical model that describes the built-up of these functions is proposed.

  5. Inverse random source scattering for the Helmholtz equation in inhomogeneous media

    Li, Ming; Chen, Chuchu; Li, Peijun

    2018-01-01

    This paper is concerned with an inverse random source scattering problem in an inhomogeneous background medium. The wave propagation is modeled by the stochastic Helmholtz equation with the source driven by additive white noise. The goal is to reconstruct the statistical properties of the random source such as the mean and variance from the boundary measurement of the radiated random wave field at multiple frequencies. Both the direct and inverse problems are considered. We show that the direct problem has a unique mild solution by a constructive proof. For the inverse problem, we derive Fredholm integral equations, which connect the boundary measurement of the radiated wave field with the unknown source function. A regularized block Kaczmarz method is developed to solve the ill-posed integral equations. Numerical experiments are included to demonstrate the effectiveness of the proposed method.

  6. Non-renormalization theorems andN=2 supersymmetric backgrounds

    Butter, Daniel; Wit, Bernard de; Lodato, Ivano

    2014-01-01

    The conditions for fully supersymmetric backgrounds of general N = 2 locally supersymmetric theories are derived based on the off-shell superconformal multiplet calculus. This enables the derivation of a non-renormalization theorem for a large class of supersymmetric invariants with higher-derivative couplings. The theorem implies that the invariant and its first order variation must vanish in a fully supersymmetric background. The conjectured relation of one particular higher-derivative invariant with a specific five-dimensional invariant containing the mixed gauge-gravitational Chern-Simons term is confirmed

  7. Radon transformation on reductive symmetric spaces:Support theorems

    Kuit, Job Jacob

    2013-01-01

    We introduce a class of Radon transforms for reductive symmetric spaces, including the horospherical transforms, and derive support theorems for these transforms. A reductive symmetric space is a homogeneous space G/H for a reductive Lie group G of the Harish-Chandra class, where H is an open sub...... is based on the relation between the Radon transform and the Fourier transform on G/H, and a Paley–Wiener-shift type argument. Our results generalize the support theorem of Helgason for the Radon transform on a Riemannian symmetric space....

  8. Reasoning by analogy as an aid to heuristic theorem proving.

    Kling, R. E.

    1972-01-01

    When heuristic problem-solving programs are faced with large data bases that contain numbers of facts far in excess of those needed to solve any particular problem, their performance rapidly deteriorates. In this paper, the correspondence between a new unsolved problem and a previously solved analogous problem is computed and invoked to tailor large data bases to manageable sizes. This paper outlines the design of an algorithm for generating and exploiting analogies between theorems posed to a resolution-logic system. These algorithms are believed to be the first computationally feasible development of reasoning by analogy to be applied to heuristic theorem proving.

  9. Refinement of Representation Theorems for Context-Free Languages

    Fujioka, Kaoru

    In this paper, we obtain some refinement of representation theorems for context-free languages by using Dyck languages, insertion systems, strictly locally testable languages, and morphisms. For instance, we improved the Chomsky-Schützenberger representation theorem and show that each context-free language L can be represented in the form L = h (D ∩ R), where D is a Dyck language, R is a strictly 3-testable language, and h is a morphism. A similar representation for context-free languages can be obtained, using insertion systems of weight (3, 0) and strictly 4-testable languages.

  10. On the proof of the first Carnot theorem in thermodynamics

    Morad, M R; Momeni, F

    2013-01-01

    The proof of the first Carnot theorem in classical thermodynamics is revisited in this study. The underlying conditions of a general proof of this principle presented by Senft (1978 Phys. Educ. 13 35–37) are explored and discussed. These conditions are analysed in more detail using a physical description of heat and work to present a simpler proof of the first principle prior to using the violation of the second law of thermodynamics. Finally, a new simple proof is also presented based on Gibbs relation. This discussion will benefit the teaching of classical thermodynamics and promote better understanding of the proof of the first Carnot theorem in general form. (paper)

  11. Strong limit theorems in noncommutative L2-spaces

    Jajte, Ryszard

    1991-01-01

    The noncommutative versions of fundamental classical results on the almost sure convergence in L2-spaces are discussed: individual ergodic theorems, strong laws of large numbers, theorems on convergence of orthogonal series, of martingales of powers of contractions etc. The proofs introduce new techniques in von Neumann algebras. The reader is assumed to master the fundamentals of functional analysis and probability. The book is written mainly for mathematicians and physicists familiar with probability theory and interested in applications of operator algebras to quantum statistical mechanics.

  12. Vanishing theorems and effective results in algebraic geometry

    Demailly, J.P.; Goettsche, L.; Lazarsfeld, R.

    2001-01-01

    The School on Vanishing Theorems and Effective Results in Algebraic Geometry took place in ICTP, Trieste from 25 April 2000 to 12 May 2000. It was organized by J. P. Demailly (Universite de Grenoble I) and R. Lazarsfeld (University of Michigan). The main topics considered were vanishing theorems, multiplyer ideal sheaves and effective results in algebraic geometry, tight closure, geometry of higher dimensional projective and Kahler manifolds, hyperbolic algebraic varieties. The school consisted of two weeks of lectures and one week of conference. This volume contains the lecture notes of most of the lectures in the first two weeks

  13. Bell's theorem based on a generalized EPR criterion of reality

    Eberhard, P.H.; Rosselet, P.

    1995-01-01

    First, the demonstration of Bell's theorem, i.e., of the nonlocal character of quantum theory, is spelled out using the EPR criterion of reality as premises and a gedanken experiment involving two particles. Then, the EPR criterion is extended to include quantities predicted almost with certainty, and Bell's theorem is demonstrated on these new premises. The same experiment is used but in conditions that become possible in real life, without the requirements of ideal efficiencies and zero background. Very high efficiencies and low background are needed, but these requirements may be met in the future

  14. Poisson's theorem and integrals of KdV equation

    Tasso, H.

    1978-01-01

    Using Poisson's theorem it is proved that if F = integral sub(-infinity)sup(+infinity) T(u,usub(x),...usub(n,t))dx is an invariant functional of KdV equation, then integral sub(-infinity)sup(+infinity) delta F/delta u dx integral sub(-infinity)sup(+infinity) delta T/delta u dx is also an invariant functional. In the case of a polynomial T, one finds in a simple way the known recursion ΔTr/Δu = Tsub(r-1). This note gives an example of the usefulness of Poisson's theorem. (author)

  15. Testing subleading multiple soft graviton theorem for CHY prescription

    Chakrabarti, Subhroneel; Kashyap, Sitender Pratap; Sahoo, Biswajit; Sen, Ashoke; Verma, Mritunjay

    2018-01-01

    In arXiv:1707.06803 we derived the subleading multiple soft graviton theorem in a generic quantum theory of gravity for arbitrary number of soft external gravitons and arbitrary number of finite energy external states carrying arbitrary mass and spin. In this paper we verify this explicitly using the CHY formula for tree level scattering amplitudes of arbitrary number of gravitons in Einstein gravity. We pay special care to fix the signs of the amplitudes and resolve an apparent discrepancy between our general results in arXiv:1707.06803 and previous results on soft graviton theorem from CHY formula.

  16. A variational proof of Thomson's theorem

    Fiolhais, Miguel C.N., E-mail: miguel.fiolhais@cern.ch [Department of Physics, City College of the City University of New York, 160 Convent Avenue, New York, NY 10031 (United States); Department of Physics, New York City College of Technology, 300 Jay Street, Brooklyn, NY 11201 (United States); LIP, Department of Physics, University of Coimbra, 3004-516 Coimbra (Portugal); Essén, Hanno [Department of Mechanics, Royal Institute of Technology (KTH), Stockholm SE-10044 (Sweden); Gouveia, Tomé M. [Cavendish Laboratory, 19 JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2016-08-12

    Thomson's theorem of electrostatics, which states the electric charge on a set of conductors distributes itself on the conductor surfaces to minimize the electrostatic energy, is reviewed in this letter. The proof of Thomson's theorem, based on a variational principle, is derived for a set of normal charged conductors, with and without the presence of external electric fields produced by fixed charge distributions. In this novel approach, the variations are performed on both the charge densities and electric potentials, by means of a local Lagrange multiplier associated with Poisson's equation, constraining the two variables.

  17. Dispersive approach to the axial anomaly and nonrenormalization theorem

    Pasechnik, R.S.; Teryaev, O.V.

    2006-01-01

    Anomalous triangle graphs for the divergence of the axial-vector current are studied using the dispersive approach generalized for the case of higher orders of perturbation theory. The validity of this procedure is proved up to the two-loop level. By direct calculation in the framework of dispersive approach we have obtained that the two-loop axial-vector-vector (AVV) amplitude is equal to zero. According to the Vainshtein's theorem, the transversal part of the anomalous triangle is not renormalized in the chiral limit. We generalize this theorem for the case of finite fermion mass in the triangle loop

  18. Convergence theorems for Banach space valued integrable multifunctions

    Nikolaos S. Papageorgiou

    1987-01-01

    Full Text Available In this work we generalize a result of Kato on the pointwise behavior of a weakly convergent sequence in the Lebesgue-Bochner spaces LXP(Ω (1≤p≤∞. Then we use that result to prove Fatou's type lemmata and dominated convergence theorems for the Aumann integral of Banach space valued measurable multifunctions. Analogous convergence results are also proved for the sets of integrable selectors of those multifunctions. In the process of proving those convergence theorems we make some useful observations concerning the Kuratowski-Mosco convergence of sets.

  19. A generalized integral fluctuation theorem for general jump processes

    Liu Fei; Ouyang Zhongcan; Luo Yupin; Huang Mingchang

    2009-01-01

    Using the Feynman-Kac and Cameron-Martin-Girsanov formulae, we obtain a generalized integral fluctuation theorem (GIFT) for discrete jump processes by constructing a time-invariable inner product. The existing discrete IFTs can be derived as its specific cases. A connection between our approach and the conventional time-reversal method is also established. Unlike the latter approach that has been extensively employed in the existing literature, our approach can naturally bring out the definition of a time reversal of a Markovian stochastic system. Additionally, we find that the robust GIFT usually does not result in a detailed fluctuation theorem. (fast track communication)

  20. Twelve years before the quantum no-cloning theorem

    Ortigoso, Juan

    2018-03-01

    The celebrated quantum no-cloning theorem establishes the impossibility of making a perfect copy of an unknown quantum state. The discovery of this important theorem for the field of quantum information is currently dated 1982. I show here that an article published in 1970 [J. L. Park, Found. Phys. 1, 23-33 (1970)] contained an explicit mathematical proof of the impossibility of cloning quantum states. I analyze Park's demonstration in the light of published explanations concerning the genesis of the better-known papers on no-cloning.

  1. Two theorems on flat space-time gravitational theories

    Castagnino, M.; Chimento, L.

    1980-01-01

    The first theorem states that all flat space-time gravitational theories must have a Lagrangian with a first term that is an homogeneous (degree-1) function of the 4-velocity usup(i), plus a functional of nsub(ij)usup(i)usup(j). The second theorem states that all gravitational theories that satisfy the strong equivalence principle have a Lagrangian with a first term gsub(ij)(x)usup(i)usup(j) plus an irrelevant term. In both cases the theories must issue from a unique variational principle. Therefore, under this condition it is impossible to find a flat space-time theory that satisfies the strong equivalence principle. (author)

  2. Bell's theorem based on a generalized EPR criterion of reality

    Eberhard, P.H.; Rosselet, P.

    1993-04-01

    First, the demonstration of Bell's theorem, i.e. of the non-local character of quantum theory, is spelled out using the EPR criterion of reality as premises and a gedanken experiment involving two particles. Then, the EPR criterion is extended to include quantities predicted almost with certainty, and Bell's theorem is demonstrated on these new premises. The same experiment is used but in conditions that become possible in real life, without the requirements of ideal efficiencies and zero background. Very high efficiencies and low background are needed, but these requirements may be met in the future. (author) 1 fig., 11 refs

  3. Vanishing theorems and effective results in algebraic geometry

    Demailly, J P [Universite de Grenoble (France); Goettsche, L [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Lazarsfeld, R [University of Michigan (United States)

    2001-12-15

    The School on Vanishing Theorems and Effective Results in Algebraic Geometry took place in ICTP, Trieste from 25 April 2000 to 12 May 2000. It was organized by J. P. Demailly (Universite de Grenoble I) and R. Lazarsfeld (University of Michigan). The main topics considered were vanishing theorems, multiplyer ideal sheaves and effective results in algebraic geometry, tight closure, geometry of higher dimensional projective and Kahler manifolds, hyperbolic algebraic varieties. The school consisted of two weeks of lectures and one week of conference. This volume contains the lecture notes of most of the lectures in the first two weeks.

  4. Restriction Theorem for Principal bundles in Arbitrary Characteristic

    Gurjar, Sudarshan

    2015-01-01

    The aim of this paper is to prove two basic restriction theorem for principal bundles on smooth projective varieties in arbitrary characteristic generalizing the analogues theorems of Mehta-Ramanathan for vector bundles. More precisely, let G be a reductive algebraic group over an algebraically...... closed field k and let X be a smooth, projective variety over k together with a very ample line bundle O(1). The main result of the paper is that if E is a semistable (resp. stable) principal G-bundle on X w.r.t O(1), then the restriction of E to a general, high multi-degree, complete-intersection curve...

  5. Development of a Miniature, Two-Axis, Triple-Helmholtz-Driven Gimbal

    Sharif, Boz; Joscelyn, Ed; Wilcox, Brian; Johnson, Michael R.

    2000-01-01

    This paper details the development of a Helmholtz-driven, 2-axis gimbal to position a flat mirror within 50 microradian (fine positioning) in a space environment. The gimbal is intended to travel on a deep space mission mounted on a miniature "rover" vehicle. The gimbal will perform both pointing and scanning functions. The goal for total mass of the gimbal was 25 grams. The primary challenge was to design and build a bearing system that would achieve the required accuracy in addition to supporting the relatively large mass of the mirror and the outer gimbal. The mechanism is subjected to 100-G loading without the aid of any additional caging mechanism. Additionally, it was desired to have the same level of accuracy during Earth-bound, 1-G testing. Due to the inherent lack of damping in a zero-G, vacuum environment; the ability of the gimbal to respond to very small amounts of input energy is paramount. Initial testing of the first prototype revealed exceedingly long damping times required even while exposed to the damping effects of air and 1-G friction. It is envisioned that fine positioning of the gimbal will be accomplished in very small steps to avoid large disturbances to the mirror. Various bearing designs, including materials, lubrication options and bearing geometry will be discussed. In addition various options for the Helmholtz coil design will be explored with specific test data given. Ground testing in the presence of 1-G was compounded by the local magnetic fields due to the "compass" effect on the gimbal. The test data will be presented and discussed. Additionally, rationale for estimating gimbal performance in a zero-G environment will be presented and discussed.

  6. A comparison of high-order polynomial and wave-based methods for Helmholtz problems

    Lieu, Alice; Gabard, Gwénaël; Bériot, Hadrien

    2016-09-01

    The application of computational modelling to wave propagation problems is hindered by the dispersion error introduced by the discretisation. Two common strategies to address this issue are to use high-order polynomial shape functions (e.g. hp-FEM), or to use physics-based, or Trefftz, methods where the shape functions are local solutions of the problem (typically plane waves). Both strategies have been actively developed over the past decades and both have demonstrated their benefits compared to conventional finite-element methods, but they have yet to be compared. In this paper a high-order polynomial method (p-FEM with Lobatto polynomials) and the wave-based discontinuous Galerkin method are compared for two-dimensional Helmholtz problems. A number of different benchmark problems are used to perform a detailed and systematic assessment of the relative merits of these two methods in terms of interpolation properties, performance and conditioning. It is generally assumed that a wave-based method naturally provides better accuracy compared to polynomial methods since the plane waves or Bessel functions used in these methods are exact solutions of the Helmholtz equation. Results indicate that this expectation does not necessarily translate into a clear benefit, and that the differences in performance, accuracy and conditioning are more nuanced than generally assumed. The high-order polynomial method can in fact deliver comparable, and in some cases superior, performance compared to the wave-based DGM. In addition to benchmarking the intrinsic computational performance of these methods, a number of practical issues associated with realistic applications are also discussed.

  7. Blob Formation and Ejection in Coronal Jets due to the Plasmoid and Kelvin–Helmholtz Instabilities

    Ni, Lei; Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216 (China); Zhang, Qing-Min [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Murphy, Nicholas A., E-mail: leini@ynao.ac.cn [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2017-05-20

    We perform 2D resistive magnetohydrodynamic simulations of coronal jets driven by flux emergence along the lower boundary. The reconnection layers are susceptible to the formation of blobs that are ejected in the jet. Our simulation with low plasma β (Case I) shows that magnetic islands form easily and propagate upward in the jet. These islands are multithermal and thus are predicted to show up in hot channels (335 Å and 211 Å) and the cool channel (304 Å) in observations by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory . The islands have maximum temperatures of 8 MK, lifetimes of 120 s, diameters of 6 Mm, and velocities of 200 km s{sup −1}. These parameters are similar to the properties of blobs observed in extreme-ultraviolet (EUV) jets by AIA. The Kelvin–Helmholtz instability develops in our simulation with moderately high plasma β (Case II) and leads to the formation of bright vortex-like blobs above the multiple high magnetosonic Mach number regions that appear along the jet. These vortex-like blobs can also be identified in the AIA channels. However, they eventually move downward and disappear after the high magnetosonic Mach number regions disappear. In the lower plasma β case, the lifetime for the jet is shorter, the jet and magnetic islands are formed with higher velocities and temperatures, the current-sheet fragments are more chaotic, and more magnetic islands are generated. Our results show that the plasmoid instability and Kelvin–Helmholtz instability along the jet are both possible causes of the formation of blobs observed at EUV wavelengths.

  8. Acoustic response of Helmholtz dampers in the presence of hot grazing flow

    Ćosić, B.; Wassmer, D.; Terhaar, S.; Paschereit, C. O.

    2015-01-01

    Thermoacoustic instabilities are high amplitude instabilities of premixed gas turbine combustors. Cooled passive dampers are used to attenuate or suppress these instabilities in the combustion chamber. For the first time, the influence of temperature differences between the grazing flow in the combustor and the cross-flow emanating from the Helmholtz damper is comprehensively investigated in the linear and nonlinear amplitude regime. The flow field inside the resonator and in the vicinity of the neck is measured with high-speed particle image velocimetry for various amplitudes and at different momentum-flux ratios of grazing and purging flow. Seeding is used as a tracer to qualitatively assess the mixing of the grazing and purging flow as well as the ingestion into the neck of the resonator. Experimentally, the acoustic response for various temperature differences between grazing and purging flow is investigated. The multi-microphone method, in combination with two microphones flush-mounted in the resonator volume and two microphones in the plane of the resonator entrance, is used to determine the impedance of the Helmholtz resonator in the linear and nonlinear amplitude regime for various temperatures and different momentum-flux ratios. Additionally, a thermocouple was used to measure the temperature in the neck. The acoustic response and the temperature measurements are used to obtain the virtual neck length and the effective area jump from a detailed impedance model. This model is extended to include the observed acoustic energy dissipation caused by the density gradients at the neck vicinity. A clear correlation between temperature differences and changes of the mass end-correction is confirmed. The capabilities of the impedance model are demonstrated.

  9. Natural relations and Appelquist-Carazzone decoupling theorem

    Grzadkowski, B.; Krawczyk, P.; Pokorski, S.

    1984-01-01

    It is pointed out that in some cases violation of the Appelquist-Carazzone decoupling theorem in spontaneously broken gauge theories is related to the presence in such theories of the so-called natural zeroth-order relations. In this context heavy-fermion effects in the Glashow-Salam-Weinberg model are discussed

  10. The Completeness Theorem of Gödel - An Introduction to ...

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 7. The Completeness Theorem of Gödel - An Introduction to Mathematical Logic. S M Srivastava. General Article Volume 6 Issue 7 July 2001 pp 29-41. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. Boltzmann's "H"-Theorem and the Assumption of Molecular Chaos

    Boozer, A. D.

    2011-01-01

    We describe a simple dynamical model of a one-dimensional ideal gas and use computer simulations of the model to illustrate two fundamental results of kinetic theory: the Boltzmann transport equation and the Boltzmann "H"-theorem. Although the model is time-reversal invariant, both results predict that the behaviour of the gas is time-asymmetric.…

  12. Quantum golden field theory - Ten theorems and various conjectures

    El Naschie, M.S.

    2008-01-01

    Ten theorems and few conjectures related to quantum field theory as applied to high energy physics are presented. The work connects classical quantum field theory with the golden mean renormalization groups of non-linear dynamics and E-Infinity theory

  13. The CAP Theorem Versus Databases with Relaxed ACID properties

    Frank, Lars; Pedersen, Rasmus Ulslev; Havnø Frank, Christian

    2014-01-01

    data from different locations can have at most two of the three desirable CAP properties [5]. The NoSQL movement has applied the CAP theorem as an argument against tradi- tional ACID (atomicity, consistency, isolation, and durabil- ity) databases, which prioritize consistency and partition- tolerance...

  14. An Extension of the Mean Value Theorem for Integrals

    Khalili, Parviz; Vasiliu, Daniel

    2010-01-01

    In this note we present an extension of the mean value theorem for integrals. The extension we consider is motivated by an older result (here referred as Corollary 2), which is quite classical for the literature of Mathematical Analysis or Calculus. We also show an interesting application for computing the sum of a harmonic series.

  15. An Elementary Proof of a Converse Mean-Value Theorem

    Almeida, Ricardo

    2008-01-01

    We present a new converse mean value theorem, with a rather elementary proof. [The work was supported by Centre for Research on Optimization and Control (CEOC) from the "Fundacaopara a Ciencia e a Tecnologia" FCT, co-financed by the European Community Fund FEDER/POCTI.

  16. Multiphonon theory: generalized Wick's theorem and recursion formulas

    Silvestre-Brac, B.; Piepenbring, R.

    1982-04-01

    Overlaps and matrix elements of one and two-body operators are calculated in a space spanned by multiphonons of different types taking properly the Pauli principle into account. Two methods are developped: a generalized Wick's theorem dealing with new contractions and recursion formulas well suited for numerical applications

  17. Farmer Brown v. Rancher Wyatt: Teaching the Coase Theorem

    Gourley, Patrick

    2018-01-01

    The Coase Theorem is a fundamental tenet of environmental economics and is taught to thousands of principles of microeconomics students each year. Its counterintuitive conclusion, that a Pareto optimal solution can result between private parties regardless of the initial allocation of property rights over a scarce resource, is difficult for…

  18. A Bayesian perspective on Markovian dynamics and the fluctuation theorem

    Virgo, Nathaniel

    2013-08-01

    One of E. T. Jaynes' most important achievements was to derive statistical mechanics from the maximum entropy (MaxEnt) method. I re-examine a relatively new result in statistical mechanics, the Evans-Searles fluctuation theorem, from a MaxEnt perspective. This is done in the belief that interpreting such results in Bayesian terms will lead to new advances in statistical physics. The version of the fluctuation theorem that I will discuss applies to discrete, stochastic systems that begin in a non-equilibrium state and relax toward equilibrium. I will show that for such systems the fluctuation theorem can be seen as a consequence of the fact that the equilibrium distribution must obey the property of detailed balance. Although the principle of detailed balance applies only to equilibrium ensembles, it puts constraints on the form of non-equilibrium trajectories. This will be made clear by taking a novel kind of Bayesian perspective, in which the equilibrium distribution is seen as a prior over the system's set of possible trajectories. Non-equilibrium ensembles are calculated from this prior using Bayes' theorem, with the initial conditions playing the role of the data. I will also comment on the implications of this perspective for the question of how to derive the second law.

  19. Modified intuitionistic fuzzy metric spaces and some fixed point theorems

    Saadati, R.; Sedghi, S.; Shobe, N.

    2008-01-01

    Since the intuitionistic fuzzy metric space has extra conditions (see [Gregori V, Romaguera S, Veereamani P. A note on intuitionistic fuzzy metric spaces. Chaos, Solitons and Fractals 2006;28:902-5]). In this paper, we consider modified intuitionistic fuzzy metric spaces and prove some fixed point theorems in these spaces. All the results presented in this paper are new

  20. The Unforgettable Experience of a Workshop on Pythagoras Theorem

    Arwani, Salima Shahzad

    2011-01-01

    The author conducted a workshop with colleagues in which awareness of Pythagoras' theorem was raised. This workshop was an unforgettable event in the author's life because it was the first time that she had interacted with teachers from a different school system, and it allowed her to develop presentation skills and confidence in her own…

  1. Another proof of Gell-Mann and Low's theorem

    Molinari, Luca Guido

    2006-01-01

    The theorem by Gell-Mann and Low is a cornerstone in QFT and zero-temperature many-body theory. The standard proof is based on Dyson's time-ordered expansion of the propagator; a proof based on exact identities for the time-propagator is here given.

  2. Another proof of Gell-Mann and Low's theorem

    Molinari, Luca Guido

    2007-01-01

    The theorem by Gell-Mann and Low is a cornerstone in quantum field theory and zero-temperature many-body theory. The standard proof is based on Dyson's time-ordered expansion of the propagator; a proof based on exact identities for the time propagator is here given

  3. Virial theorem and Gibbs thermodynamic potential for Coulomb systems

    Bobrov, V. B.; Trigger, S. A.

    2014-01-01

    Using the grand canonical ensemble and the virial theorem, we show that the Gibbs thermodynamic potential of the non-relativistic system of charged particles is uniquely defined by single-particle Green functions of electrons and nuclei. This result is valid beyond the perturbation theory with respect to the interparticle interaction

  4. Virial theorem and Gibbs thermodynamic potential for Coulomb systems

    Bobrov, V. B.; Trigger, S. A.

    2013-01-01

    Using the grand canonical ensemble and the virial theorem, we show that the Gibbs thermodynamic potential of the non-relativistic system of charged particles is uniquely defined by single-particle Green functions of electrons and nuclei. This result is valid beyond the perturbation theory with respect to the interparticle interaction.

  5. Quantum Many-Body Virial Theorem And Matsubara Green's Function

    Anma, D.; Fukuda, T.; Fujita, M.; Toyoda, T.; Takiuchi, K.

    2004-01-01

    We discuss the quantum field theoretical formulation of the virial theorem on the basis of the canonical field theory of the generalized coordinate transformation and show the equation of motion of a charged Fermion system coupled to an electromagnetic field. Possible application to Fermion-Boson mixtures is also discussed

  6. A General Representation Theorem for Integrated Vector Autoregressive Processes

    Franchi, Massimo

    We study the algebraic structure of an I(d) vector autoregressive process, where d is restricted to be an integer. This is useful to characterize its polynomial cointegrating relations and its moving average representation, that is to prove a version of the Granger representation theorem valid...

  7. Transient state work fluctuation theorem for a classical harmonic ...

    Based on a Hamiltonian description we present a rigorous derivation of the transient state work fluctuation theorem and the Jarzynski equality for a classical harmonic oscillator linearly coupled to a harmonic heat bath, which is dragged by an external agent. Coupling with the bath makes the dynamics dissipative. Since we ...

  8. The Second Fundamental Theorem of Welfare Economics: A Pedagogical Note

    Parrinello Sergio

    1998-01-01

    The author extends the criticism that W. Bryant (1994) levelled against the usual treatment given to the Second Fundamental Theorem of Welfare Economics in many microeconomics textbooks and economic journal literature. He argues that the omission of basic caveats makes the usual interpretation misleading and an obstacle to better economic education.

  9. Fermat's last theorem and Catalan's conjecture in weak exponential arithmetics

    Glivický, Petr; Kala, V.

    2017-01-01

    Roč. 63, 3-4 (2017), s. 162-174 ISSN 0942-5616 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : Fermat's last theorem * Catalan's conjecture Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.250, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/malq.201500069/full

  10. Limits theorems for tail processes with applications tointermediate quantile estimation

    Einmahl, J.H.J.

    1992-01-01

    A description of the weak and strong limiting behaviour of weighted uniform tail empirical and tail quantile processes is given. The results for the tail quantile process are applied to obtain weak and strong functional limit theorems for a weighted non-uniform tail-quantile-type process based on a

  11. Local central limit theorem for a Gibbs random field

    Campanino, M; Capocaccia, D; Tirozzi, B [L' Aquila Univ. (Italy). Istituto di Matematica; Rome Univ. (Italy). Istituto di Matematica)

    1979-12-01

    The validity of the implication of a local limit theorem is extended from an integral one. The extension eliminates the finite range assumption present in the previous works by using the cluster expansion to analyze the contribution from the tail of the potential.

  12. Hamiltonian Noether theorem for gauge systems and two time physics

    Villanueva, V M; Nieto, J A; Ruiz, L; Silvas, J

    2005-01-01

    The Noether theorem for Hamiltonian constrained systems is revisited. In particular, our review presents a novel method to show that the gauge transformations are generated by the conserved quantities associated with the first class constraints. We apply our results to the relativistic point particle, to the Friedberg et al model and, with special emphasis, to two time physics

  13. Rigidity theorem for Willmore surfaces in a sphere

    (Math. Sci.) Vol. 126, No. 2, May 2016, pp. 253–260. c Indian Academy of Sciences. Rigidity theorem for Willmore surfaces in a sphere. HONGWEI XU1 and DENGYUN YANG2,∗. 1Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027,. People's Republic of China. 2College of Mathematics and ...

  14. Externalities and the Coase Theorem: A Diagrammatic Presentation

    Halteman, James

    2005-01-01

    In intermediate microeconomic textbooks the reciprocal nature of externalities is presented using numerical examples of costs and benefits. This treatment of the Coase theorem obscures the fact that externality costs and benefits are best understood as being on a continuum where costs vary with the degree of intensity of the externality. When…

  15. Liouville's theorem and the method of the inverse problem

    Its, A.R.

    1985-01-01

    An approach to the investigation of the Zakharov-Shabat equations is developed. This approach is based on a classical theorem of Liouville and is the synthesis of ''finite-zone'' integration, the matrix Riemann problem method and the theory of isomonodromy deformations of differential equations. The effectiveness of the proposed scheme is demonstrated by developing ''dressing procedures'' for the Bullough-Dodd equation

  16. Matching factorization theorems with an inverse-error weighting

    Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe; Pisano, Cristian; Signori, Andrea

    2018-06-01

    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections to the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H0 boson and Drell-Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins-Soper-Sterman subtraction scheme. It is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.

  17. Negating Four Color Theorem with Neutrosophy and Quadstage Method

    Fu Yuhua

    2015-03-01

    Full Text Available With the help of Neutrosophy and Quad-stage Method, the proof for negation of “the four color theorem” is given. In which the key issue is to consider the color of the boundary, thus “the two color theorem” and “the five color theorem” are derived to replace "the four color theorem".

  18. Generalization of boson-fermion equivalence and Fay's addition theorem

    Kato, Hideyuki; Saito, Satoru

    1989-01-01

    Generalizations of Fay's addition theorem for Abel functions are obtained by using generalized boson-fermion equivalence of off-shell string amplitudes. A simple example of such generalizations is presented explicitly which relates derivatives of a Riemann θ-function to its determinant. (orig.)

  19. The generalized Mayer theorem in the approximating hamiltonian method

    Bakulev, A.P.; Bogoliubov, N.N. Jr.; Kurbatov, A.M.

    1982-07-01

    With the help of the generalized Mayer theorem we obtain the improved inequality for free energies of model and approximating systems, where only ''connected parts'' over the approximating hamiltonian are taken into account. For the concrete system we discuss the problem of convergency of appropriate series of ''connected parts''. (author)

  20. Szegö's theorem on Parreau-Widom sets

    Christiansen, Jacob Stordal

    2012-01-01

    In this paper, we generalize Szego's theorem for orthogonal polynomials on the real line to infinite gap sets of Parreau–Widom type. This notion includes Cantor sets of positive measure. The Szego condition involves the equilibrium measure which in turn is absolutely continuous. Our approach builds...