WorldWideScience

Sample records for helmholtz resonator models

  1. Nonlinear aeroacoustic characterization of Helmholtz resonators with a local-linear neuro-fuzzy network model

    Förner, K.; Polifke, W.

    2017-10-01

    The nonlinear acoustic behavior of Helmholtz resonators is characterized by a data-based reduced-order model, which is obtained by a combination of high-resolution CFD simulation and system identification. It is shown that even in the nonlinear regime, a linear model is capable of describing the reflection behavior at a particular amplitude with quantitative accuracy. This observation motivates to choose a local-linear model structure for this study, which consists of a network of parallel linear submodels. A so-called fuzzy-neuron layer distributes the input signal over the linear submodels, depending on the root mean square of the particle velocity at the resonator surface. The resulting model structure is referred to as an local-linear neuro-fuzzy network. System identification techniques are used to estimate the free parameters of this model from training data. The training data are generated by CFD simulations of the resonator, with persistent acoustic excitation over a wide range of frequencies and sound pressure levels. The estimated nonlinear, reduced-order models show good agreement with CFD and experimental data over a wide range of amplitudes for several test cases.

  2. Extraordinary acoustic transmission mediated by Helmholtz resonators

    Vijay Koju

    2014-07-01

    Full Text Available We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of the necks. Further, we show that the transmitted sound experiences a continuous phase transition of π radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.

  3. Experimental realization of extraordinary acoustic transmission using Helmholtz resonators

    Brian C. Crow

    2015-02-01

    Full Text Available The phenomenon of extraordinary acoustic transmission through a solid barrier with an embedded Helmholtz resonator (HR is demonstrated. The Helmholtz resonator consists of an embedded cavity and two necks that protrude, one on each side of the barrier. Extraordinary transmission occurs for a narrow spectral range encompassing the resonant frequency of the Helmholtz resonator. We show that an amplitude transmission of 97.5% is achieved through a resonator whose neck creates an open area of 6.25% of the total barrier area. In addition to the enhanced transmission, we show that there is a smooth, continuous phase transition in the transmitted sound as a function of frequency. The frequency dependent phase transition is used to experimentally realize slow wave propagation for a narrow-band Gaussian wave packet centered at the maximum transmission frequency. The use of parallel pairs of Helmholtz resonators tuned to different resonant frequencies is experimentally explored as a means of increasing the transmission bandwidth. These experiments show that because of the phase transition, there is always a frequency between the two Helmholtz resonant frequencies at which destructive interference occurs whether the resonances are close or far apart. Finally, we explain how the phase transition associated with Helmholtz-resonator-mediated extraordinary acoustic transmission can be exploited to produce diffractive acoustic components including sub-wavelength thickness acoustic lenses.

  4. Simulation of Helmholtz Resonance Effects in Aircraft ECS

    Pollok, Alexander; Schröffer, Andreas

    2017-01-01

    Helmholtz resonators are closed volumes that are connected to pipes. They exhibit a pronounced resonance frequency, where small boundary pressure excitations in the volume or the environment lead to large mass flow excitations in the pipe. Aircraft have a topology similar to Helmholtz resonators, the closed volume is represented by the cabin, while the pipe is represented by the Environmental Control System. Some discrepancies appear due to the non-zero mass-flow or friction effects in...

  5. Acoustic superlens using Helmholtz-resonator-based metamaterials

    Yang, Xishan; Yin, Jing; Yu, Gaokun; Peng, Linhui; Wang, Ning

    2015-01-01

    Acoustic superlens provides a way to overcome the diffraction limit with respect to the wavelength of the bulk wave in air. However, the operating frequency range of subwavelength imaging is quite narrow. Here, an acoustic superlens is designed using Helmholtz-resonator-based metamaterials to broaden the bandwidth of super-resolution. An experiment is carried out to verify subwavelength imaging of double slits, the imaging of which can be well resolved in the frequency range from 570 to 650 Hz. Different from previous works based on the Fabry-Pérot resonance, the corresponding mechanism of subwavelength imaging is the Fano resonance, and the strong coupling between the neighbouring Helmholtz resonators separated at the subwavelength interval leads to the enhanced sound transmission over a relatively wide frequency range

  6. MODELING OBSERVED DECAY-LESS OSCILLATIONS AS RESONANTLY ENHANCED KELVIN–HELMHOLTZ VORTICES FROM TRANSVERSE MHD WAVES AND THEIR SEISMOLOGICAL APPLICATION

    Antolin, P.; De Moortel, I. [School of Mathematics and Statistics, University of St. Andrews, St. Andrews, Fife KY16 9SS (United Kingdom); Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Yokoyama, T., E-mail: patrick.antolin@st-andrews.ac.uk [Department of Earth and Planetary Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2016-10-20

    In the highly structured solar corona, resonant absorption is an unavoidable mechanism of energy transfer from global transverse MHD waves to local azimuthal Alfvén waves. Due to its localized nature, direct detection of this mechanism is extremely difficult. Yet, it is the leading theory explaining the observed fast damping of the global transverse waves. However, at odds with this theoretical prediction are recent observations that indicate that in the low-amplitude regime such transverse MHD waves can also appear decay-less, a still unsolved phenomenon. Recent numerical work has shown that Kelvin–Helmholtz instabilities (KHI) often accompany transverse MHD waves. In this work, we combine 3D MHD simulations and forward modeling to show that for currently achieved spatial resolution and observed small amplitudes, an apparent decay-less oscillation is obtained. This effect results from the combination of periodic brightenings produced by the KHI and the coherent motion of the KHI vortices amplified by resonant absorption. Such an effect is especially clear in emission lines forming at temperatures that capture the boundary dynamics rather than the core, and reflects the low damping character of the local azimuthal Alfvén waves resonantly coupled to the kink mode. Due to phase mixing, the detected period can vary depending on the emission line, with those sensitive to the boundary having shorter periods than those sensitive to the loop core. This allows us to estimate the density contrast at the boundary.

  7. Noise reduction efficiency of Helmholtz resonator in simulated channel of HVAC system

    Hossein Ali Yousefi Rizi

    2014-01-01

    Conclusions: This research showed that the designed Helmholtz resonators at a certain frequency of low-frequency sound demonstrated the soundest decrease. The increase in the Helmholtz resonators′ chamber volume and their neck′s pass area are negatively associated with the rate of sound resonance. As a result, of determining the effective frequency range of the Helmholtz resonator, the designed resonator could be applied as an effective and efficient instrument of removing or decreasing noise.

  8. Acoustic energy harvesting using an electromechanical Helmholtz resonator.

    Liu, Fei; Phipps, Alex; Horowitz, Stephen; Ngo, Khai; Cattafesta, Louis; Nishida, Toshikazu; Sheplak, Mark

    2008-04-01

    This paper presents the development of an acoustic energy harvester using an electromechanical Helmholtz resonator (EMHR). The EMHR consists of an orifice, cavity, and a piezoelectric diaphragm. Acoustic energy is converted to mechanical energy when sound incident on the orifice generates an oscillatory pressure in the cavity, which in turns causes the vibration of the diaphragm. The conversion of acoustic energy to electrical energy is achieved via piezoelectric transduction in the diaphragm of the EMHR. Moreover, the diaphragm is coupled with energy reclamation circuitry to increase the efficiency of the energy conversion. Lumped element modeling of the EMHR is used to provide physical insight into the coupled energy domain dynamics governing the energy reclamation process. The feasibility of acoustic energy reclamation using an EMHR is demonstrated in a plane wave tube for two power converter topologies. The first is comprised of only a rectifier, and the second uses a rectifier connected to a flyback converter to improve load matching. Experimental results indicate that approximately 30 mW of output power is harvested for an incident sound pressure level of 160 dB with a flyback converter. Such power level is sufficient to power a variety of low power electronic devices.

  9. Harvesting energy from airflow with a michromachined piezoelectric harvester inside a Helmholtz resonator

    Matova, S.P.; Elfrink, R.; Vullers, R.J.M.; Schaijk, R. van

    2011-01-01

    In this paper we report an airflow energy harvester that combines a piezoelectric energy harvester with a Helmholtz resonator. The resonator converts airflow energy to air oscillations which in turn are converted into electrical energy by a piezoelectric harvester. Two Helmholtz resonators with

  10. Increase in effectiveness of low frequency acoustic liners by use of coupled Helmholtz resonators

    Dean, L. W.

    1977-01-01

    Coupling of Helmholtz resonators in a low-frequency absorber array was studied as a means for increasing the effectiveness for absorbing low-frequency core engine noise. The equations for the impedance of the coupled-resonator systems were developed in terms of uncoupled-resonator parameters, and the predicted impedance for a parallel-coupled scheme is shown to compare favorably with measurements from a test model. In addition, attenuation measurements made in a flow duct on test coupled-resonator panels are shown to compare favorably with predicted values. Finally, the parallel-coupled concept is shown to give significantly more attenuation than that of a typical uncoupled resonator array of the same total volume.

  11. Helmholtz resonance in a piezoelectric–hydraulic pump-based hybrid actuator

    Kim, Gi-Woo; Wang, K W

    2011-01-01

    This paper demonstrates that a hydraulically acting Helmholtz resonator can exist in a piezoelectric–hydraulic pump (PHP) based hybrid actuator, which in turn affects the volumetric efficiency of the PHP. The simulation and experimental results illustrate the effect of Helmholtz resonance on the flow rate performance of the PHP. The study also shows how to shift the Helmholtz resonant frequency to a higher value through changing parameters such as the cylinder diameter and the effective bulk modulus of the working fluid, which will improve the volumetric efficiency and broaden the operating frequency range of the PHP actuator

  12. Harvesting energy from airflow with a michromachined piezoelectric harvester inside a Helmholtz resonator

    Matova, S P; Elfrink, R; Vullers, R J M; Van Schaijk, R

    2011-01-01

    In this paper we report an airflow energy harvester that combines a piezoelectric energy harvester with a Helmholtz resonator. The resonator converts airflow energy to air oscillations which in turn are converted into electrical energy by a piezoelectric harvester. Two Helmholtz resonators with adjustable resonance frequencies have been designed—one with a solid bottom and one with membrane on the bottom. The resonance frequencies of the resonators were matched to the complementing piezoelectric harvesters during harvesting. The aim of the presented work is a feasibility study on using packaged piezoelectric energy harvesters with Helmholtz resonators for airflow energy harvesting. The maximum energy we were able to obtain was 42.2 µW at 20 m s −1

  13. The Use of Helmholtz Resonance for Measuring the Volume of Liquids and Solids

    Clive E. Davies

    2010-11-01

    Full Text Available An experimental investigation was undertaken to ascertain the potential of using Helmholtz resonance for volume determination and the factors that may influence accuracy. The uses for a rapid non-interference volume measurement system range from agricultural produce and mineral sampling through to liquid fill measurements. By weighing the sample the density can also measured indirectly.

  14. Transmission loss of double wall panels containing Helmholtz resonators

    Prydz, R. A.; Kuntz, H. L.; Morrow, D. L.; Wirt, L. S.

    Data and an analysis are presented on the use of Helholtz resonators in double wall panels (i.e., aircraft sidewalls). Several wall materials and resonator configurations were tested, and the resonators were found to substantially increase the transmission loss of the double wall system at the tuning frequency.

  15. A Weakly Nonlinear Model for Kelvin–Helmholtz Instability in Incompressible Fluids

    Li-Feng, Wang; Wen-Hua, Ye; Zheng-Feng, Fan; Chuang, Xue; Ying-Jun, Li

    2009-01-01

    A weakly nonlinear model is proposed for the Kelvin–Helmholtz instability in two-dimensional incompressible fluids by expanding the perturbation velocity potential to third order. The third-order harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correction to the exponential growth of the fundamental modulation. The weakly nonlinear results are supported by numerical simulations. Density and resonance effects exist in the development of mode coupling. (fundamental areas of phenomenology (including applications))

  16. A low frequency acoustic insulator by using the acoustic metasurface to a Helmholtz resonator

    Xiang Zhao

    2017-06-01

    Full Text Available Acoustic metasurfaces (AMSs are able to manipulate wavefronts at an anomalous angle through a subwavelength layer. Their application provide a new way to control sound waves in addition to traditional materials. In this work, we introduced the AMS into the design of a Helmholtz resonator (HR and studied the acoustic transmission through the modified HR in a pipe with one branch. The variation of sound insulation capacity with the phase gradient of the AMS was studied, and the results show that the AMS can remarkably lower the frequency band of the sound insulation without increasing the size. Our investigation provides a new degree of freedom for acoustic control with a Helmholtz resonator, which is of great significance in acoustic metasurface theory and sound insulation design.

  17. A low frequency acoustic insulator by using the acoustic metasurface to a Helmholtz resonator

    Zhao, Xiang; Cai, Li; Yu, Dianlong; Lu, Zhimiao; Wen, Jihong

    2017-06-01

    Acoustic metasurfaces (AMSs) are able to manipulate wavefronts at an anomalous angle through a subwavelength layer. Their application provide a new way to control sound waves in addition to traditional materials. In this work, we introduced the AMS into the design of a Helmholtz resonator (HR) and studied the acoustic transmission through the modified HR in a pipe with one branch. The variation of sound insulation capacity with the phase gradient of the AMS was studied, and the results show that the AMS can remarkably lower the frequency band of the sound insulation without increasing the size. Our investigation provides a new degree of freedom for acoustic control with a Helmholtz resonator, which is of great significance in acoustic metasurface theory and sound insulation design.

  18. Preliminary analysis of resonance effect by Helmholtz-Schrödinger method

    Er-Yan, Yan; Fan-Bao, Meng; Hong-Ge, Ma; Chao-Yang, Chen

    2010-01-01

    The Helmholtz-Schrödinger method is employed to study the electric field standing wave caused by coupling through a simple slot. There is a good agreement between the numerical results and the resonant conditions presented by the Helmholtz—Schrödinger method. Thus, it can be used in similar cases where the amplitude of the electric field is the important quantity or eigenfunctions of the Schrödinger equation are needed for complicated quantum structures with hard wall boundary conditions. (general)

  19. Another Look at Helmholtz's Model for the Gravitational Contraction of the Sun

    Tort, A. C.; Nogarol, F.

    2011-01-01

    We take another look at the Helmholtz model for the gravitational contraction of the Sun. We show that there are two other pedagogically useful ways of rederiving Helmholtz's main results that make use of Gauss's law, the concept of gravitational field energy and the work-kinetic energy theorem. An account of the energy balance involved in the…

  20. Numerical investigation on an array of Helmholtz resonators for the reduction of micro-pressure waves in modern and future high-speed rail tunnel systems

    Tebbutt, J. A.; Vahdati, M.; Carolan, D.; Dear, J. P.

    2017-07-01

    Previous research has proposed that an array of Helmholtz resonators may be an effective method for suppressing the propagation of pressure and sound waves, generated by a high-speed train entering and moving in a tunnel. The array can be used to counteract environmental noise from tunnel portals and also the emergence of a shock wave in the tunnel. The implementation of an array of Helmholtz resonators in current and future high-speed train-tunnel systems is studied. Wave propagation in the tunnel is modelled using a quasi-one-dimensional formulation, accounting for non-linear effects, wall friction and the diffusivity of sound. A multi-objective genetic algorithm is then used to optimise the design of the array, subject to the geometric constraints of a demonstrative tunnel system and the incident wavefront in order to attenuate the propagation of pressure waves. It is shown that an array of Helmholtz resonators can be an effective countermeasure for various tunnel lengths. In addition, the array can be designed to function effectively over a wide operating envelope, ensuring it will still function effectively as train speeds increase into the future.

  1. Development of a high-sensitivity and portable cell using Helmholtz resonance for noninvasive blood glucose-level measurement based on photoacoustic spectroscopy.

    Tachibana, K; Okada, K; Kobayashi, R; Ishihara, Y

    2016-08-01

    We describe the possibility of high-sensitivity noninvasive blood glucose measurement based on photoacoustic spectroscopy (PAS). The demand for noninvasive blood glucose-level measurement has increased due to the explosive increase in diabetic patients. We have developed a noninvasive blood glucose-level measurement based on PAS. The conventional method uses a straight-type resonant cell. However, the cell volume is large, which results in a low detection sensitivity and difficult portability. In this paper, a small-sized Helmholtz-type resonant cell is proposed to improve detection sensitivity and portability by reducing the cell dead volume. First, the acoustic property of the small-sized Helmholtz-type resonant cell was evaluated by performing an experiment using a silicone rubber. As a result, the detection sensitivity of the small-sized Helmholtz-type resonant cell was approximately two times larger than that of the conventional straight-type resonant cell. In addition, the inside volume was approximately 30 times smaller. Second, the detection limits of glucose concentration were estimated by performing an experiment using glucose solutions. The experimental results showed that a glucose concentration of approximately 1% was detected by the small-sized Helmholtz-type resonant cell. Although these results on the sensitivity of blood glucose-level measurement are currently insufficient, they suggest that miniaturization of a resonance cell is effective in the application of noninvasive blood glucose-level measurement.

  2. Nonlinearity, Viscosity and Air-Compressibility Effects on the Helmholtz Resonant Wave Motion Generated by an Oscillating Twin Body in a Free Surface

    Ananthakrishnan, Palaniswamy

    2012-11-01

    The problem is of practical relevance in determining the motion response of multi-hull and air-cushion vehicles in high seas and in littoral waters. The linear inviscid problem without surface pressure has been well studied in the past. In the present work, the nonlinear wave-body interaction problem is solved using finite-difference methods based on boundary-fitted coordinates. The inviscid nonlinear problem is tackled using the mixed Eulerian-Lagrangian formulation and the solution of the incompressible Navier-Stokes equations governing the viscous problem using a fractional-step method. The pressure variation in the air cushion is modeled using the isentropic gas equation pVγ = Constant. Results show that viscosity and free-surface nonlinearity significantly affect the hydrodynamic force and the wave motion at the resonant Helmholtz frequency (at which the primary wave motion is the vertical oscillation of the mean surface in between the bodies). Air compressibility suppresses the Helmholtz oscillation and enhances the wave radiation. Work supported by the ONR under the grant N00014-98-1-0151.

  3. Modern solvers for Helmholtz problems

    Tang, Jok; Vuik, Kees

    2017-01-01

    This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz equation. The book consists of three parts: new developments and analysis in Helmholtz solvers, practical methods and implementations of Helmholtz solvers, and industrial applications. The Helmholtz equation appears in a wide range of science and engineering disciplines in which wave propagation is modeled. Examples are: seismic inversion, ultrasone medical imaging, sonar detection of submarines, waves in harbours and many more. The partial differential equation looks simple but is hard to solve. In order to approximate the solution of the problem numerical methods are needed. First a discretization is done. Various methods can be used: (high order) Finite Difference Method, Finite Element Method, Discontinuous Galerkin Method and Boundary Element Method. The resulting linear system is large, where the size of the problem increases with increasing frequency. Due to higher frequencies the seismic images need to b...

  4. Nonlinear evolution of the magnetized Kelvin-Helmholtz instability: From fluid to kinetic modeling

    Henri, P.; Cerri, S.S.; Califano, F.; Pegoraro, F.; Rossi, C.; Faganello, M.; Šebek, Ondřej; Trávníček, Pavel M.; Hellinger, Petr; Frederiksen, J. T.; Nordlund, A.; Markidis, S.; Keppens, R.; Lapenta, G.

    2013-01-01

    Roč. 20, č. 10 (2013), 102118/1-102118/13 ISSN 1070-664X R&D Projects: GA MŠk(CZ) 7E11053 EU Projects: European Commission(XE) 263340 - SWIFF Grant - others:European Commission(XE) HPC-EUROPA2 - No. 228398; EU(XE) RI-283493; NASA (US) NNX11A1164G Institutional support: RVO:67985815 ; RVO:68378289 Keywords : Kelvin-Helmholtz instability * plasma kinetic theory * plasma magnetohydrodynamics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics; BL - Plasma and Gas Discharge Physics (UFA-U) Impact factor: 2.249, year: 2013

  5. Helmholtz algebraic solitons

    Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2010-02-26

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  6. Helmholtz algebraic solitons

    Christian, J M; McDonald, G S; Chamorro-Posada, P

    2010-01-01

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  7. Multimode Coupling Theory for Kelvin–Helmholtz Instability in Incompressible Fluid

    Li-Feng, Wang; Ying-Jun, Li; Wen-Hua, Ye; Zheng-Feng, Fan

    2009-01-01

    A weakly nonlinear model is proposed for multimode Kelvin–Helmholtz instability. The second-order mode coupling formula for Kelvin–Helmholtz instability in two-dimensional incompressible fluid is presented by expanding the perturbation velocity potential to second order. It is found that there is an important resonance in the course of the sum frequency mode coupling but the difference frequency mode coupling does not have. This resonance makes the sum frequency mode coupling process relatively complex. The sum frequency mode coupling is strongly dependent on time especially when the density of the two fluids is adjacent and the difference frequency mode coupling is not

  8. A model for precalculus students to determine the resonance frequency of a trumpet mouthpiece

    Chapman, Robert C.

    2004-05-01

    The trumpet mouthpiece as a Helmholtz resonator is used to show precalculus students a mathematical model for determining the approximate resonance frequency of the mouthpiece. The mathematics is limited to algebra and trigonometry. Using a system of mouthpieces that have interchangeable cups and backbores, students are introduced to the acoustics of this resonator. By gathering data on 51 different configurations of mouthpieces, the author modifies the existing Helmholtz resonator equation to account for both cup volumes and backbore configurations. Students then use this model for frequency predictions. Included are how to measure the different physical attributes of a trumpet mouthpiece at minimal cost. This includes methods for measuring cup volume, backbore volume, backbore length, throat area, etc. A portion of this phase is de-signed for students to become acquainted with some of the vocabulary of acoustics and the physics of sound.

  9. Computational issues and applications of line-elements to model subsurface flow governed by the modified Helmholtz equation

    Bakker, Mark; Kuhlman, Kristopher L.

    2011-09-01

    Two new approaches are presented for the accurate computation of the potential due to line elements that satisfy the modified Helmholtz equation with complex parameters. The first approach is based on fundamental solutions in elliptical coordinates and results in products of Mathieu functions. The second approach is based on the integration of modified Bessel functions. Both approaches allow evaluation of the potential at any distance from the element. The computational approaches are applied to model transient flow with the Laplace transform analytic element method. The Laplace domain solution is computed using a combination of point elements and the presented line elements. The time domain solution is obtained through a numerical inversion. Two applications are presented to transient flow fields, which could not be modeled with the Laplace transform analytic element method prior to this work. The first application concerns transient single-aquifer flow to wells near impermeable walls modeled with line-doublets. The second application concerns transient two-aquifer flow to a well near a stream modeled with line-sinks.

  10. Mean shear flows, zonal flows, and generalized Kelvin-Helmholtz modes in drift wave turbulence: A minimal model for L→H transition

    Kim, Eun-jin; Diamond, P.H.

    2003-01-01

    The dynamics of and an interplay among structures (mean shear flows, zonal flows, and generalized Kelvin-Helmholtz modes) are studied in drift wave turbulence. Mean shear flows are found to inhibit the nonlinear generation of zonal flows by weakening the coherent modulation response of the drift wave spectrum. Based on this result, a minimal model for the L→H (low- to high-confinement) transition is proposed, which involves the amplitude of drift waves, zonal flows, and the density gradient. A transition to quiescent H-mode sets in as the profile becomes sufficiently steep to completely damp out drift waves, following an oscillatory transition phase where zonal flows regulate drift wave turbulence. The different roles of mean flows and zonal flows are elucidated. Finally, the effect of poloidally nonaxisymmetric structures (generalized Kelvin-Helmholtz mode) on anomalous transport is investigated, especially in reference to damping of collisionless zonal flows. Results indicate that nonlinear excitation of this structure can be potentially important in enhancing anomalous transport as well as in damping zonal flows

  11. HNF - Helmholtz Nano Facility

    Wolfgang Albrecht

    2017-05-01

    Full Text Available The Helmholtz Nano Facility (HNF is a state-of-the-art cleanroom facility. The cleanroom has ~1100 m2 with cleanroom classes of DIN ISO 1-3. HNF operates according to VDI DIN 2083, Good Manufacturing Practice (GMP and aquivalent to Semiconductor Industry Association (SIA standards. HNF is a user facility of Forschungszentrum Jülich and comprises a network of facilities, processes and systems for research, production and characterization of micro- and nanostructures. HNF meets the basic supply of micro- and nanostructures for nanoelectronics, fluidics. micromechanics, biology, neutron and energy science, etc.. The task of HNF is rapid progress in nanostructures and their technology, offering efficient access to infrastructure and equipment. HNF gives access to expertise and provides resources in production, synthesis, characterization and integration of structures, devices and circuits. HNF covers the range from basic research to application oriented research facilitating a broad variety of different materials and different sample sizes.

  12. Model for resonant plasma probe.

    Warne, Larry Kevin; Johnson, William Arthur; Hebner, Gregory Albert; Jorgenson, Roy E.; Coats, Rebecca Sue

    2007-04-01

    This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic simulations of the probe are compared to the circuit model results. The perturbing effects of the disc cavity in which the probe operates are also found.

  13. Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations

    Bourdon, A; Pasko, V P; Liu, N Y; Celestin, S; Segur, P; Marode, E

    2007-01-01

    This paper presents formulation of computationally efficient models of photoionization produced by non-thermal gas discharges in air based on three-group Eddington and improved Eddington (SP 3 ) approximations to the radiative transfer equation, and on effective representation of the classic integral model for photoionization in air developed by Zheleznyak et al (1982) by a set of three Helmholtz differential equations. The reported formulations represent extensions of ideas advanced recently by Segur et al (2006) and Luque et al (2007), and allow fast and accurate solution of photoionization problems at different air pressures for the range 0.1 O 2 O 2 is the partial pressure of molecular oxygen in air in units of Torr ( p O 2 = 150 Torr) at atmospheric pressure) and R in cm is an effective geometrical size of the physical system of interest. The presented formulations can be extended to other gases and gas mixtures subject to availability of related emission, absorption and photoionization coefficients. The validity of the developed models is demonstrated by performing direct comparisons of the results from these models and results obtained from the classic integral model. Specific validation comparisons are presented for a set of artificial sources of photoionizing radiation with different Gaussian dimensions, and for a realistic problem involving development of a double-headed streamer at ground pressure. The reported results demonstrate the importance of accurate definition of the boundary conditions for the photoionization production rate for the solution of second order partial differential equations involved in the Eddington, SP 3 and the Helmholtz formulations. The specific algorithms derived from the classic photoionization model of Zheleznyak et al (1982), allowing accurate calculations of boundary conditions for differential equations involved in all three new models described in this paper, are presented. It is noted that the accurate formulation of

  14. Geometrical optics model of Mie resonances

    Roll; Schweiger

    2000-07-01

    The geometrical optics model of Mie resonances is presented. The ray path geometry is given and the resonance condition is discussed with special emphasis on the phase shift that the rays undergo at the surface of the dielectric sphere. On the basis of this model, approximate expressions for the positions of first-order resonances are given. Formulas for the cavity mode spacing are rederived in a simple manner. It is shown that the resonance linewidth can be calculated regarding the cavity losses. Formulas for the mode density of Mie resonances are given that account for the different width of resonances and thus may be adapted to specific experimental situations.

  15. Magnetohydrodynamic Kelvin-Helmholtz instability; Magnetohydrodynamische Kelvin-Helmholtz-Instabilitaet

    Brett, Walter

    2014-07-21

    In the presented work the Kelvin-Helmholtz-Instability in magnetohydrodynamic flows is analyzed with the methods of Multiple Scales. The concerned fluids are incompressible or have a varying density perpendicular to the vortex sheet, which is taken into account using a Boussinesq-Approximation and constant Brunt-Vaeisaelae-Frequencies. The Multiple Scale Analysis leads to nonlinear evolution equations for the amplitude of the perturbations. Special solutions to these equations are presented and the effects of the magnetic fields are discussed.

  16. Helmholtz bright and boundary solitons

    Christian, J M [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P [Departmento de TeorIa de la Senal y Comunicaciones e IngenierIa Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2007-02-16

    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts.

  17. Helmholtz bright and boundary solitons

    Christian, J M; McDonald, G S; Chamorro-Posada, P

    2007-01-01

    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts

  18. One-dimensional two-fluid model for wavy flow beyond the Kelvin–Helmholtz instability: Limit cycles and chaos

    Lopez de Bertodano, Martín, E-mail: bertodan@purdue.edu [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Fullmer, William D. [Department of Chemical and Biological Engineering, U. of Colorado, Boulder, CO 80309 (United States); Clausse, Alejandro [CNEA-CONICET and Universidad Nacional del Centro, 7000 Tandil (Argentina)

    2016-12-15

    A 1D TFM numerical simulation of near horizontal stratified two-phase flow is performed where the TFM, including surface tension and viscous stresses, is simplified to a two-equation model using the fixed-flux approximation. As the angle of inclination of the channel increases so does the driving body force, so the flow becomes KH unstable, and waves grow and develop nonlinearities. It is shown that these waves grow until they reach a limit cycle due to viscous dissipation at wave fronts. Upon further inclination of the channel, chaos is observed. The appearance of chaos in a 1D TFM implies a nonlinear process that transfers energy intermittently from long wavelengths where energy is produced to short wavelengths where energy is dissipated by viscosity, so that an averaged energy equilibrium in frequency space is attained. This is comparable to the well-known turbulent stability mechanism of the multi-dimensional Navier–Stokes equations, i.e., chaos implies Lyapunov stability, but in this case it is strictly a two-phase phenomenon.

  19. Acoustic response of Helmholtz dampers in the presence of hot grazing flow

    Ćosić, B.; Wassmer, D.; Terhaar, S.; Paschereit, C. O.

    2015-01-01

    Thermoacoustic instabilities are high amplitude instabilities of premixed gas turbine combustors. Cooled passive dampers are used to attenuate or suppress these instabilities in the combustion chamber. For the first time, the influence of temperature differences between the grazing flow in the combustor and the cross-flow emanating from the Helmholtz damper is comprehensively investigated in the linear and nonlinear amplitude regime. The flow field inside the resonator and in the vicinity of the neck is measured with high-speed particle image velocimetry for various amplitudes and at different momentum-flux ratios of grazing and purging flow. Seeding is used as a tracer to qualitatively assess the mixing of the grazing and purging flow as well as the ingestion into the neck of the resonator. Experimentally, the acoustic response for various temperature differences between grazing and purging flow is investigated. The multi-microphone method, in combination with two microphones flush-mounted in the resonator volume and two microphones in the plane of the resonator entrance, is used to determine the impedance of the Helmholtz resonator in the linear and nonlinear amplitude regime for various temperatures and different momentum-flux ratios. Additionally, a thermocouple was used to measure the temperature in the neck. The acoustic response and the temperature measurements are used to obtain the virtual neck length and the effective area jump from a detailed impedance model. This model is extended to include the observed acoustic energy dissipation caused by the density gradients at the neck vicinity. A clear correlation between temperature differences and changes of the mass end-correction is confirmed. The capabilities of the impedance model are demonstrated.

  20. Bistable dark solitons of a cubic-quintic Helmholtz equation

    Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.

    2010-01-01

    We provide a report on exact analytical bistable dark spatial solitons of a nonlinear Helmholtz equation with a cubic-quintic refractive-index model. Our analysis begins with an investigation of the modulational instability characteristics of Helmholtz plane waves. We then derive a dark soliton by mapping the desired asymptotic form onto a uniform background field and obtain a more general solution by deploying rotational invariance laws in the laboratory frame. The geometry of the new soliton is explored in detail, and a range of new physical predictions is uncovered. Particular attention is paid to the unified phenomena of arbitrary-angle off-axis propagation and nondegenerate bistability. Crucially, the corresponding solution of paraxial theory emerges in a simultaneous multiple limit. We conclude with a set of computer simulations that examine the role of Helmholtz dark solitons as robust attractors.

  1. Helmholtz solitons in power-law optical materials

    Christian, J. M.; McDonald, G. S.; Potton, R. J.; Chamorro-Posada, P.

    2007-01-01

    A nonlinear Helmholtz equation for optical materials with regimes of power-law type of nonlinearity is proposed. This model captures the evolution of broad beams at any angle with respect to the reference direction in a wide range of media, including some semiconductors, doped glasses, and liquid crystals. Exact analytical soliton solutions are presented for a generic nonlinearity, within which known Kerr solitons comprise a subset. Three general conservation laws are also reported. Analysis and numerical simulations examine the stability of the Helmholtz power-law solitons. A propagation feature, associated with spatial solitons in power-law media, constituting a class of oscillatory solution, is identified

  2. Bistable Helmholtz solitons in cubic-quintic materials

    Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.

    2007-01-01

    We propose a nonlinear Helmholtz equation for modeling the evolution of broad optical beams in media with a cubic-quintic intensity-dependent refractive index. This type of nonlinearity is appropriate for some semiconductor materials, glasses, and polymers. Exact analytical soliton solutions are presented that describe self-trapped nonparaxial beams propagating at any angle with respect to the reference direction. These spatially symmetric solutions are, to the best of our knowledge, the first bistable Helmholtz solitons to be derived. Accompanying conservation laws (both integral and particular forms) are also reported. Numerical simulations investigate the stability of the solitons, which appear to be remarkably robust against perturbations

  3. Modeling of supermodes in coupled unstable resonators

    Townsend, S.S.

    1986-01-01

    A general formalism describing the supermodes of an array of N identical, circulantly coupled resonators is presented. The symmetry of the problem results in a reduction of the N coupled integral equations to N decoupled integral equations. Each independent integral equation defines a set of single-resonator modes derived for a hypothetical resonator whose geometry resembles a member of the real array with the exception that all coupling beams are replaced by feedback beams, each with a prescribed constant phase. A given array supermode consists of a single equivalent resonator mode appearing repetitively in each resonator with a prescribed relative phase between individual resonators. The specific array design chosen for example is that of N adjoint coupled confocal unstable resonators. The impact of coupling on the computer modeling of this system is discussed and computer results for the cases of two- and four-laser coupling are presented

  4. Reconstruction of extended sources for the Helmholtz equation

    Kress, Rainer; Rundell, William

    2013-01-01

    The basis of most imaging methods is to detect hidden obstacles or inclusions within a body when one can only make measurements on an exterior surface. Our underlying model is that of inverse acoustic scattering based on the Helmholtz equation. Our

  5. Voluntarism in early psychology: the case of Hermann von Helmholtz.

    De Kock, Liesbet

    2014-05-01

    The failure to recognize the programmatic similarity between (post-)Kantian German philosophy and early psychology has impoverished psychology's historical self-understanding to a great extent. This article aims to contribute to recent efforts to overcome the gaps in the historiography of contemporary psychology, which are the result of an empiricist bias. To this end, we present an analysis of the way in which Hermann von Helmholtz's theory of perception resonates with Johann Gottlieb Fichte's Ego-doctrine. It will be argued that this indebtedness is particularly clear when focusing on the foundation of the differential awareness of subject and object in perception. In doing so, the widespread reception of Helmholtz's work as proto-positivist or strictly empiricist is challenged, in favor of the claim that important elements of his theorizing can only be understood properly against the background of Fichte's Ego-doctrine. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  6. Hyperon resonances in SU(3) soliton models

    Scoccola, N.N.

    1990-01-01

    Hyperon resonances excited in kaon-nucleon scattering are investigated in the framework of an SU(3) soliton model in which kaon degrees of freedom are treated as small fluctuations around an SU(2) soliton. For partial waves l≥2 the model predicts correctly the quantum numbers and average excitation energies of most of the experimentally observed Λ and Σ resonances. Some disagreements are found for lower partial waves. (orig.)

  7. Helmholtz's Kant revisited (Once more). The all-pervasive nature of Helmholtz's struggle with Kant's Anschauung.

    De Kock, Liesbet

    2016-04-01

    In this analysis, the classical problem of Hermann von Helmholtz's (1821-1894) Kantianism is explored from a particular vantage point, that to my knowledge, has not received the attention it deserves notwithstanding its possible key role in disentangling Helmholtz's relation to Kant's critical project. More particularly, we will focus on Helmholtz's critical engagement with Kant's concept of intuition [Anschauung] and (the related issue of) his dissatisfaction with Kant's doctrinal dualism. In doing so, it soon becomes clear that both (i) crucially mediated Helmholtz's idiosyncratic appropriation and criticism of (certain aspects of) Kant's critical project, and (ii) can be considered as a common denominator in a variety of issues that are usually addressed separately under the general header of (the problem of) Helmholtz's Kantianism. The perspective offered in this analysis can not only shed interesting new light on some interpretive issues that have become commonplace in discussions on Helmholtz's Kantianism, but also offers a particular way of connecting seemingly unrelated dimensions of Helmholtz's engagement with Kant's critical project (e.g. Helmholtz's views on causality and space). Furthermore, it amounts to the rather surprising conclusion that Helmholtz's most drastic revision of Kant's project pertains to his assumption of free will as a formal condition of experience and knowledge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Stochastic resonance in models of neuronal ensembles

    Chialvo, D.R.; Longtin, A.; Mueller-Gerkin, J.

    1997-01-01

    Two recently suggested mechanisms for the neuronal encoding of sensory information involving the effect of stochastic resonance with aperiodic time-varying inputs are considered. It is shown, using theoretical arguments and numerical simulations, that the nonmonotonic behavior with increasing noise of the correlation measures used for the so-called aperiodic stochastic resonance (ASR) scenario does not rely on the cooperative effect typical of stochastic resonance in bistable and excitable systems. Rather, ASR with slowly varying signals is more properly interpreted as linearization by noise. Consequently, the broadening of the open-quotes resonance curveclose quotes in the multineuron stochastic resonance without tuning scenario can also be explained by this linearization. Computation of the input-output correlation as a function of both signal frequency and noise for the model system further reveals conditions where noise-induced firing with aperiodic inputs will benefit from stochastic resonance rather than linearization by noise. Thus, our study clarifies the tuning requirements for the optimal transduction of subthreshold aperiodic signals. It also shows that a single deterministic neuron can perform as well as a network when biased into a suprathreshold regime. Finally, we show that the inclusion of a refractory period in the spike-detection scheme produces a better correlation between instantaneous firing rate and input signal. copyright 1997 The American Physical Society

  9. Thin-Layer Solutions of the Helmholtz and Related Equations

    Ockendon, J. R.

    2012-01-01

    This paper concerns a certain class of two-dimensional solutions to four generic partial differential equations-the Helmholtz, modified Helmholtz, and convection-diffusion equations, and the heat conduction equation in the frequency domain-and the connections between these equations for this particular class of solutions.S pecifically, we consider thin-layer solutions, valid in narrow regions across which there is rapid variation, in the singularly perturbed limit as the coefficient of the Laplacian tends to zero.F or the wellstudied Helmholtz equation, this is the high-frequency limit and the solutions in question underpin the conventional ray theory/WKB approach in that they provide descriptions valid in some of the regions where these classical techniques fail.E xamples are caustics, shadow boundaries, whispering gallery, and creeping waves and focusing and bouncing ball modes.It transpires that virtually all such thin-layer models reduce to a class of generalized parabolic wave equations, of which the heat conduction equation is a special case. Moreover, in most situations, we will find that the appropriate parabolic wave equation solutions can be derived as limits of exact solutions of the Helmholtz equation.W e also show how reasonably well-understood thin-layer phenomena associated with any one of the four generic equations may translate into less well-known effects associated with the others.In addition, our considerations also shed some light on the relationship between the methods of matched asymptotic, WKB, and multiple-scales expansions. © 2012 Society for Industrial and Applied Mathematics.

  10. Kelvin-Helmholtz instability in solar spicules

    H Ebadi

    2016-12-01

    Full Text Available Magneto hydrodynamic waves, propagating along spicules, may become unstable and the expected instability is of Kelvin-Helmholtz type. Such instability can trigger the onset of wave turbulence leading to an effective plasma heating and particle acceleration. In present study, two-dimensional magneto hydrodynamic simulations performed on a Cartesian grid is presented in spicules with different densities, moving at various speeds depending on their environment. Simulations being applied in this study show the onset of Kelvin-Helmholtz type instability and transition to turbulent flow in spicules. Development of Kelvin-Helmholtz instability leads to momentum and energy transport, dissipation, and mixing of fluids. When magnetic fields are involved, field amplification is also possible to take place

  11. Helmholtz and the psychophysiology of time.

    Debru, C

    2001-09-01

    After having measured the velocity of the nervous impulse in the 1850s, Helmholtz began doing research on the temporal dimensions of visual perception. Experiments dealing with the velocity of propagation in nerves (as well as with aspects of perception) were carried out occasionally for some fifteen years until their final publication in 1871. Although the temporal dimension of perception seems to have interested Helmholtz less than problems of geometry and space, his experiments on the time of perception were technically rather subtle and seminal, especially compared with experiments performed by his contemporaries, such as Sigmund Exner, William James, Rudolf Hermann Lotze, Ernst Mach, Wilhelm Volkmann, and Wilhelm Wundt. Helmholtz's conception of the temporal aspects of perception reflects the continuity that holds between psychophysiological research and the Kantian philosophical background.

  12. On Helmholtz Problem for Plane Periodical Structures

    Akishin, P.G.; Vinitskij, S.I.

    1994-01-01

    The plane Helmholtz problem of the periodical disc structures with the phase shifts conditions of the solutions along the basis lattice vectors and the Dirichlet conditions on the basic boundaries is considered. The Green function satisfying the quasi periodical conditions on the lattice is constructed. The Helmholtz problem is reduced to the boundary integral equations for the simple layer potentials of this Green function. The methods of the discretization of the arising integral equations are proposed. The procedures of calculation of the matrix elements are discussed. The reality of the spectral parameter of the nonlinear continuous and discretized problems is shown. 8 refs., 2 figs

  13. The sympletic model for giant monopole resonances

    Oliveira, M.M.B.M.

    1985-01-01

    Following recently published articles, it's investigated how to apply the sympletic model to the study of giant monopole resonances in spherical nuclei. The results obtained agree with those already published for monopole mode energies, wave functions, radii and nuclear incompressibility of 16 O and 40 Ca nuclei. An analyse of how the spurious center-of-mass motion influence resonance energies is made. The sum rules of the monopole operator, m-bar e , o ≤ e ≤ 3, are calculated, demonstrating at first that they are conserved in the sympletic model. Then it's studied, for those sum rules, the importance of n-boson correlations in the fundamental state, which is an extension of those sum rules, of the analysis for the nuclear incompressibility, performed in above mentioned articles. (Author) [pt

  14. Reconstruction of extended sources for the Helmholtz equation

    Kress, Rainer; Rundell, William

    2013-01-01

    The basis of most imaging methods is to detect hidden obstacles or inclusions within a body when one can only make measurements on an exterior surface. Our underlying model is that of inverse acoustic scattering based on the Helmholtz equation. Our inclusions are interior forces with compact support and our data consist of a single measurement of near-field Cauchy data on the external boundary. We propose an algorithm that under certain assumptions allows for the determination of the support set of these forces by solving a simpler ‘equivalent point source’ problem, and which uses a Newton scheme to improve the corresponding initial approximation. (paper)

  15. Reconstruction of extended sources for the Helmholtz equation

    Kress, Rainer

    2013-02-26

    The basis of most imaging methods is to detect hidden obstacles or inclusions within a body when one can only make measurements on an exterior surface. Our underlying model is that of inverse acoustic scattering based on the Helmholtz equation. Our inclusions are interior forces with compact support and our data consist of a single measurement of near-field Cauchy data on the external boundary. We propose an algorithm that under certain assumptions allows for the determination of the support set of these forces by solving a simpler \\'equivalent point source\\' problem, and which uses a Newton scheme to improve the corresponding initial approximation. © 2013 IOP Publishing Ltd.

  16. Modeling and analysis of a resonant nanosystem

    Calvert, Scott L.

    The majority of investigations into nanoelectromechanical resonators focus on a single area of the resonator's function. This focus varies from the development of a model for a beam's vibration, to the modeling of electrostatic forces, to a qualitative explanation of experimentally-obtained currents. Despite these efforts, there remains a gap between these works, and the level of sophistication needed to truly design nanoresonant systems for efficient commercial use. Towards this end, a comprehensive system model for both a nanobeam resonator and its related experimental setup is proposed. Furthermore, a simulation arrangement is suggested as a method for facilitating the study of the system-level behavior of these devices in a variety of cases that could not be easily obtained experimentally or analytically. The dynamics driving the nanoresonator's motion, as well as the electrical interactions influencing the forcing and output of the system, are modeled, experimentally validated, and studied. The model seeks to develop both a simple circuit representation of the nanoresonator, and to create a mathematical system that can be used to predict and interpret the observed behavior. Due to the assumptions used to simplify the model to a point of reasonable comprehension, the model is most accurate for small beam deflections near the first eigenmode of the beam. The process and results of an experimental investigation are documented, and compared with a circuit simulation modeling the full test system. The comparison qualitatively proves the functionality of the model, while a numerical analysis serves to validate the functionality and setup of the circuit simulation. The use of the simulation enables a much broader investigation of both the electrical behavior and the physical device's dynamics. It is used to complement an assessment of the tuning behavior of the system's linear natural frequency by demonstrating the tuning behavior of the full nonlinear response. The

  17. Isoscalar giant resonances in a relativistic model

    L'Huillier, M.; Nguyen Van Giai.

    1988-07-01

    Isoscalar giant resonances in finite nuclei are studied in a relativistic Random Phase Approximation (RRPA) approach. The model is self-consistent in the sense that one set of coupling constants generates the Dirac-Hartree single-particle spectrum and the residual particle-hole interaction. The RRPA is used to calculate response functions of multipolarity L = 0,2,3, and 4 in light and medium nuclei. It is found that monopole and quadrupole modes exhibit a collective character. The peak energies are overestimated, but not as much as one might think if the bulk properties (compression modulus, effective mass) were the only relevant quantities

  18. The Helmholtz legacy in physiological acoustics

    Hiebert, Erwin

    2014-01-01

    This book explores the interactions between science and music in the late nineteenth- and early twentieth century. It examines and evaluates the work of Hermann von Helmholtz, Max Planck, Shohe Tanaka, and Adriaan Fokker, leading physicists and physiologists who were committed to understanding crucial aesthetic components of the art of music, including the standardization of pitch and the implementation of various types of intonations. With a mixture of physics, physiology, and aesthetics, author Erwin Hiebert addresses throughout the book how just intonation came to intersect with the history of keyboard instruments and exert an influence on the development of Western music. He begins with the work of Hermann von Helmholtz, a leading nineteenth-century physicist and physiologist who not only made important contributions in vision, optics, electrodynamics and thermodynamics, but also helped advanced the field of music theory as well. The author traces the Helmholtzian trends of thought that become inherently ...

  19. Capillary and viscous perturbations to Helmholtz flows

    Moore, M. R.; Ockendon, H.; Ockendon, J. R.; Oliver, J. M.

    2014-01-01

    Inspired by recent calculations by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, p. 264506) relating to droplet impact, this paper presents an analysis of the perturbations to the free surface caused by small surface tension and viscosity in steady Helmholtz flows. In particular, we identify the regimes in which appreciable vorticity can be shed from the boundary layer to the bulk flow. © 2014 Cambridge University Press.

  20. Capillary and viscous perturbations to Helmholtz flows

    Moore, M. R.

    2014-02-21

    Inspired by recent calculations by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, p. 264506) relating to droplet impact, this paper presents an analysis of the perturbations to the free surface caused by small surface tension and viscosity in steady Helmholtz flows. In particular, we identify the regimes in which appreciable vorticity can be shed from the boundary layer to the bulk flow. © 2014 Cambridge University Press.

  1. Modelling of a diode laser with a resonant grating of quantum wells and an external mirror

    Vysotskii, D V; Elkin, N N; Napartovich, A P; Kozlovskii, Vladimir I; Lavrushin, B M

    2011-01-01

    A three-dimensional numerical model of a diode laser with a resonant grating of quantum wells (QWs) and an external mirror is developed and used to calculate diode laser pulses that are long compared to the time of reaching a stationary regime and are short enough to neglect heating of the medium. The consistent solutions of the Helmholtz field equation and the system of diffusion equations for inversion in each QW are found. A source of charge carriers can be both an electron beam and a pump laser beam. The calculations yielded the longitudinal and radial profiles of the generated field, as well as its wavelength and power. The effective threshold pump current is determined. In the created iteration algorithm, the calculation time linearly increases with the number of QWs, which allows one to find the characteristics of lasers with a large number of QWs. The output powers and beam divergence angles of a cylindrical laser are calculated for different cavity lengths and pump spot radii. After calculating the fundamental mode characteristics, high-order modes were additionally calculated on the background of the frozen carrier distributions in the QW grating. It is shown that all the competing modes remain below the excitation threshold for the pump powers used in the experiment. The calculated and experimental data for the case of pumping by a nanosecond electron beam are qualitatively compared.

  2. Markov Chain Models for Stochastic Behavior in Resonance Overlap Regions

    McCarthy, Morgan; Quillen, Alice

    2018-01-01

    We aim to predict lifetimes of particles in chaotic zoneswhere resonances overlap. A continuous-time Markov chain model isconstructed using mean motion resonance libration timescales toestimate transition times between resonances. The model is applied todiffusion in the co-rotation region of a planet. For particles begunat low eccentricity, the model is effective for early diffusion, butnot at later time when particles experience close encounters to the planet.

  3. Novel baryon resonances in the Skyrme model

    Hussain, F.; Sri Ram, M.S.

    1985-01-01

    We predict a novel family of baryons with or without the charm quantum number by quantizing the ''maximal solitons'' in the SU(4) Skyrme model. The baryon number B of these solitons can take any integer value. The low-lying states with B = 1 belong to 4( with spin (3/2), 20( with spin (1/2), (3/2), (5/2), or (7/2), and 20('' with spin (3/2), (5/2), or (9/2). The charm-zero states among them could correspond to some of the observed resonances in meson-baryon scattering between 1.5--2 GeV. The lowest among the dibaryon states is an SU(3) singlet contained in the 10( of SU(4) with spin 1, with mass in the range 2.5--3 GeV

  4. Rayleigh-Taylor and Kelvin-Helmholtz instabilities in targets accelerated by laser ablation

    Emery, M.H.; Gardner, J.H.; Boris, J.P.

    1982-01-01

    With use of the fast2d laser-shell model, the acceleration of a 20-μm-thick plastic foil up to 160 km/s has been simulated. It is possible to follow the Rayleigh-Taylor bubble-and-spike development far into the nonlinear regime and beyond the point of foil fragmentation. Strong shear flow develops which evolves into the Kelvin-Helmholtz instability. The Kelvin-Helmholtz instability causes the tips of the spikes to widen and as a result reduce their rate of ''fall.''

  5. The use of acoustically tuned resonators to improve the sound transmission loss of double panel partitions

    Mason, J. M.; Fahy, F. J.

    1986-10-01

    The effectiveness of tuned Helmholtz resonators connected to the partition cavity in double-leaf partitions utilized in situations requiring low weight structures with high transmission loss is investigated as a method of improving sound transmission loss. This is demonstrated by a simple theoretical model and then experimentally verified. Results show that substantial improvements may be obtained at and around the mass-air-mass frequency for a total resonator volume 15 percent of the cavity volume.

  6. Novel Hyperbolic Homoclinic Solutions of the Helmholtz-Duffing Oscillators

    Yang-Yang Chen

    2016-01-01

    Full Text Available The exact and explicit homoclinic solution of the undamped Helmholtz-Duffing oscillator is derived by a presented hyperbolic function balance procedure. The homoclinic solution of the self-excited Helmholtz-Duffing oscillator can also be obtained by an extended hyperbolic perturbation method. The application of the present homoclinic solutions to the chaos prediction of the nonautonomous Helmholtz-Duffing oscillator is performed. Effectiveness and advantage of the present solutions are shown by comparisons.

  7. Oscillation thresholds for "striking outwards" reeds coupled to a resonator

    Silva , Fabrice; Kergomard , Jean; Vergez , Christophe

    2007-01-01

    International audience; This paper considers a "striking outwards" reed coupled to a resonator. This expression, due to Helmholtz, is not discussed here : it corresponds to the most common model of a lip-type valve, when the valve is assumed to be a one degree of freedom oscillator. The presented work is an extension of the works done by Wilson and Beavers (1974), Tarnopolsky (2000). The range of the playing frequencies is investigated. The first results are analytical : when no losses are pr...

  8. The Kelvin-Helmholtz instability on the magnetopause

    Kivelson, M.G.; California Univ., Los Angeles; Pu, Z.-Y.

    1984-01-01

    Conditions for the development of Kelvin-Helmholtz (K-H) waves on the magnetopause have been known for more than 15 years; more recently, spacecraft observations have stimulated further examination of the properties of K-H waves. For a magnetopause with no boundary layer, two different modes of surface waves have been identified and their properties have been investigated for various assumed orientations of magnetic field and flow velocity vectors. The power radiated into the magnetosphere from the velocity shear at the boundary has been estimated. Other calculations have focused on the consequences of finite thickness boundary layers, both uniform and non-uniform. The boundary layer is found to modify the wave modes present at the magnetopause and to yield a criterion for the wavelength of the fastest growing surface waves. The paper concludes by questioning the extent to which the inferences from boundary layer models are model dependent and identifies areas where further work is needed or anticipated. (author)

  9. Impedance models in time domain

    Rienstra, S.W.

    2005-01-01

    Necessary conditions for an impedance function are derived. Methods available in the literature are discussed. A format with recipe is proposed for an exact impedance condition in time domain on a time grid, based on the Helmholtz resonator model. An explicit solution is given of a pulse reflecting

  10. Dual resonance models and their currents

    Johnson, E.A.

    1978-01-01

    It is shown how dual resonance models were rederived from the concept of a string tracing out a surface in space-time. Thus, interacting strings reproduce the dual amplitudes. A scheme for tackling the unitarity problem began to develop. As a consistent theory of hadronic processes began to be built, workers at the same time were naturally led to expect that leptons could be included with hadrons in a unified dual theory. Thus, there is a search for dual amplitudes which would describe interactions between hadrons and currents (for example, electrons), as well as interactions involving only hadrons. Such amplitudes, it is believed, will be the correct ones, describing the real world. Such amplitudes will provide valuable information concerning such things as hadronic form factors. The great difficulties in building current-amplitudes with the required properties of proper factorization on a good spectrum, duality, current algebra, and proper asymptotic behavior are described. Dual models at the present time require for consistency, an intercept value of α 0 = 1 and a dimension value of d = 26 (or d = 10). There have been speculations that the unphysical dimension may be made physical by associating the ''extra dimensions'' with certain internal degrees of freedom. However, it is desired that the theory itself, force the dimension d = 4. It is quite possible that the dimension problem and the intercept problem are tied together and that resolving either problem will resolve the other. Order by order, a new dual current is constructed that is manifestly factorizable and which appears to be valid for arbitrary space-time dimension. The fact that this current is not bound at d = 26, leads to interesting speculations on the nature of dual currents

  11. Modeling of nanofabricated paddle bridges for resonant mass sensing

    Lobontiu, N.; Ilic, B.; Garcia, E.; Reissman, T.; Craighead, H. G.

    2006-01-01

    The modeling of nanopaddle bridges is studied in this article by proposing a lumped-parameter mathematical model which enables structural characterization in the resonant domain. The distributed compliance and inertia of all three segments composing a paddle bridge are taken into consideration in order to determine the equivalent lumped-parameter stiffness and inertia fractions, and further on the bending and torsion resonant frequencies. The approximate model produces results which are confirmed by finite element analysis and experimental measurements. The model is subsequently utilized to quantify the amount of mass which attaches to the bridge by predicting the modified resonant frequencies in either bending or torsion

  12. A Parallel Sweeping Preconditioner for Heterogeneous 3D Helmholtz Equations

    Poulson, Jack

    2013-05-02

    A parallelization of a sweeping preconditioner for three-dimensional Helmholtz equations without large cavities is introduced and benchmarked for several challenging velocity models. The setup and application costs of the sequential preconditioner are shown to be O(γ2N4/3) and O(γN logN), where γ(ω) denotes the modestly frequency-dependent number of grid points per perfectly matched layer. Several computational and memory improvements are introduced relative to using black-box sparse-direct solvers for the auxiliary problems, and competitive runtimes and iteration counts are reported for high-frequency problems distributed over thousands of cores. Two open-source packages are released along with this paper: Parallel Sweeping Preconditioner (PSP) and the underlying distributed multifrontal solver, Clique. © 2013 Society for Industrial and Applied Mathematics.

  13. CFD simulation of Kelvin-Helmholtz instability

    Strubelj, L.; Tiselj, I.

    2005-01-01

    Kelvin-Helmholtz instability appears in stratified two-fluid flow at surface. When the relative velocity is higher than the critical relative velocity, the growth of waves occurs. The experiment of Thorpe [1] used as a benchmark in the present paper, is made in a rectangular glass tube filled with two immiscible fluids of various densities. We simulated the growth of instability with CFX-5.7 code and compared simulation with analytical solution. It was found that surface tension force, which stabilizes growth of waves, actually has a destabilizing effect in simulation, unless very small timestep and residual is used. In CFX code system of nonlinear Navier-Stokes equations is linearised and solved iterative in each timestep, until prescribed residual is achieved. On the other hand, simulation without surface tension force is more stable than analytical result predicts. (author)

  14. Characterizing permanent magnet blocks with Helmholtz coils

    Carnegie, D. W.; Timpf, J.

    1992-08-01

    Most of the insertion devices to be installed at the Advanced Photon Source will utilize permanent magnets in their magnetic structures. The quality of the spectral output is sensitive to the errors in the field of the device which are related to variations in the magnetic properties of the individual blocks. The Advanced Photon Source will have a measurement facility to map the field in the completed insertion devices and equipment to test and modify the magnetic strength of the individual magnet blocks. One component of the facility, the Helmholtz coil permanent magnet block measurement system, has been assembled and tested. This system measures the total magnetic moment vector of a block with a precision better than 0.01% and a directional resolution of about 0.05°. The design and performance of the system will be presented.

  15. Chrystal and Proudman resonances simulated with three numerical models

    Bubalo, Maja; Janeković, Ivica; Orlić, Mirko

    2018-05-01

    The aim of this work was to study Chrystal and Proudman resonances in a simple closed basin and to explore and compare how well the two resonant mechanisms are reproduced with different, nowadays widely used, numerical ocean models. The test case was based on air pressure disturbances of two commonly used shapes (a sinusoidal and a boxcar), having various wave lengths, and propagating at different speeds. Our test domain was a closed rectangular basin, 300 km long with a uniform depth of 50 m, with the theoretical analytical solution available for benchmark. In total, 2250 simulations were performed for each of the three different numerical models: ADCIRC, SCHISM and ROMS. During each of the simulations, we recorded water level anomalies and computed the integral of the energy density spectrum for a number of points distributed along the basin. We have successfully documented the transition from Proudman to Chrystal resonance that occurs for a sinusoidal air pressure disturbance having a wavelength between one and two basin lengths. An inter-model comparison of the results shows that different models represent the two resonant phenomena in a slightly different way. For Chrystal resonance, all the models showed similar behavior; however, ADCIRC model providing slightly higher values of the mean resonant period than the other two models. In the case of Proudman resonance, the most consistent results, closest to the analytical solution, were obtained using ROMS model, which reproduced the mean resonant speed equal to 22.00 m/s— i.e., close to the theoretical value of 22.15 m/s. ADCIRC and SCHISM models showed small deviations from that value, with the mean speed being slightly lower—21.97 m/s (ADCIRC) and 21.93 m/s (SCHISM). The findings may seem small but could play an important role when resonance is a crucial process producing enhancing effects by two orders of magnitude (i.e., meteotsunamis).

  16. Entanglement Evolution of Jaynes-Cummings Model in Resonance Case and Non-resonance Case

    Cheng, Jing; Chen, Xi; Shan, Chuan-Jia

    2018-03-01

    We investigate the entanglement evolution of a two-level atom and a quantized single model electromagnetic filed in the resonance and non-resonance cases. The effects of the initial state, detuning degree, photon number on the entanglement are shown in detail. The results show that the atom-cavity entanglement state appears with periodicity. The increasing of the photon number can make the period of quantum entanglement be shorter. In the non-resonant case, if we choose the suitable initial state the entanglement of atom-cavity can be 1.0

  17. Monolithically integrated Helmholtz coils by 3-dimensional printing

    Li, Longguang [Department of Electrical Engineering, University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Abedini-Nassab, Roozbeh; Yellen, Benjamin B., E-mail: yellen@duke.edu [Department of Electrical Engineering, University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)

    2014-06-23

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  18. Monolithically integrated Helmholtz coils by 3-dimensional printing

    Li, Longguang; Abedini-Nassab, Roozbeh; Yellen, Benjamin B.

    2014-01-01

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  19. The Friedrichs model and its use in resonance phenomena

    Gadella, M. [Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias, 47071 Valladolid (Spain); Pronko, G.P. [Institute for High Energy Physics, Protvino 142284, Moscow Region (Russian Federation)

    2011-09-15

    We present here a relation of different types of Friedrichs models and their use in the description and comprehension of resonance phenomena. We first discuss the basic Friedrichs model and obtain its resonance in the case that this is simple or doubly degenerated. Next, we discuss the model with N levels and show how the probability amplitude has an oscillatory behavior. Two generalizations of the Friedrichs model are suitable to introduce resonance behavior in quantum field theory. We also discuss a discrete version of the Friedrichs model and also a resonant interaction between two systems both with continuous spectrum. In an appendix, we review the mathematics of rigged Hilbert spaces. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Iterative solution of the Helmholtz equation

    Larsson, E.; Otto, K. [Uppsala Univ. (Sweden)

    1996-12-31

    We have shown that the numerical solution of the two-dimensional Helmholtz equation can be obtained in a very efficient way by using a preconditioned iterative method. We discretize the equation with second-order accurate finite difference operators and take special care to obtain non-reflecting boundary conditions. We solve the large, sparse system of equations that arises with the preconditioned restarted GMRES iteration. The preconditioner is of {open_quotes}fast Poisson type{close_quotes}, and is derived as a direct solver for a modified PDE problem.The arithmetic complexity for the preconditioner is O(n log{sub 2} n), where n is the number of grid points. As a test problem we use the propagation of sound waves in water in a duct with curved bottom. Numerical experiments show that the preconditioned iterative method is very efficient for this type of problem. The convergence rate does not decrease dramatically when the frequency increases. Compared to banded Gaussian elimination, which is a standard solution method for this type of problems, the iterative method shows significant gain in both storage requirement and arithmetic complexity. Furthermore, the relative gain increases when the frequency increases.

  1. The Helmholtz Hierarchy: Phase Space Statistics of Cold Dark Matter

    Tassev, Svetlin

    2010-01-01

    We present a new formalism to study large-scale structure in the universe. The result is a hierarchy (which we call the "Helmholtz Hierarchy") of equations describing the phase space statistics of cold dark matter (CDM). The hierarchy features a physical ordering parameter which interpolates between the Zel'dovich approximation and fully-fledged gravitational interactions. The results incorporate the effects of stream crossing. We show that the Helmholtz hierarchy is self-consistent and obeys...

  2. Analytical Model of Planar Double Split Ring Resonator

    Zhurbenko, Vitaliy; Jensen, Thomas; Krozer, Viktor

    2007-01-01

    This paper focuses on accurate modelling of microstrip double split ring resonators. The impedance matrix representation for coupled lines is applied for the first time to model the SRR, resulting in excellent model accuracy over a wide frequency range. Phase compensation is implemented to take i...

  3. Semi classical model of the neutron resonance compound nucleus

    Ohkubo, Makio

    1995-01-01

    A Semi-classical model of compound nucleus is developed, where time evolution and recurrence for many degrees of freedom (oscillators) excited simultaneously are explicitly considered. The effective number of oscillators plays the role in the compound nucleus, and the nuclear temperatures are derived, which are in good agreement with the traditional values. Time structures of the compound nucleus at resonance are considered, from which equidistant level series with an envelope of strength function of giant resonance nature is obtained. S-matrix formulation for fine structure resonance is derived. (author)

  4. Validation of an Acoustic Impedance Prediction Model for Skewed Resonators

    Howerton, Brian M.; Parrott, Tony L.

    2009-01-01

    An impedance prediction model was validated experimentally to determine the composite impedance of a series of high-aspect ratio slot resonators incorporating channel skew and sharp bends. Such structures are useful for packaging acoustic liners into constrained spaces for turbofan noise control applications. A formulation of the Zwikker-Kosten Transmission Line (ZKTL) model, incorporating the Richards correction for rectangular channels, is used to calculate the composite normalized impedance of a series of six multi-slot resonator arrays with constant channel length. Experimentally, acoustic data was acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3500 Hz at 120 and 140 dB OASPL. Normalized impedance was reduced using the Two-Microphone Method for the various combinations of channel skew and sharp 90o and 180o bends. Results show that the presence of skew and/or sharp bends does not significantly alter the impedance of a slot resonator as compared to a straight resonator of the same total channel length. ZKTL predicts the impedance of such resonators very well over the frequency range of interest. The model can be used to design arrays of slot resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  5. Hybrid model for the decay of nuclear giant resonances

    Hussein, M.S.

    1986-12-01

    The decay properties of nuclear giant multipole resonances are discussed within a hybrid model that incorporates, in a unitary consistent way, both the coherent and statistical features. It is suggested that the 'direct' decay of the GR is described with continuum first RPA and the statistical decay calculated with a modified Hauser-Feshbach model. Application is made to the decay of the giant monopole resonance in 208 Pb. Suggestions are made concerning the calculation of the mixing parameter using the statistical properties of the shell model eigenstates at high excitation energies. (Author) [pt

  6. Relativistic Coulomb excitation of giant resonances in the hydrodynamic model

    Vasconcellos Gomes, Ana Cristina de.

    1990-05-01

    We investigate the Coulomb excitation of giant dipole resonances in relativistic heavy ion collisions using a macroscopic hydrodynamical model for the harmonic vibrations of the nuclear fluid. The motion is treated as a combination of the Goldhaber-Teller displacement mode and the Steinwedel-Jensen acoustic mode, and the restoring forces are calculated using the droplet model. This model is used as input to study the characteristics of multiple excitation of giant dipole resonances in nuclei. Possible signatures for the existence of such states are also discussed quantitatively. (author). 52 refs., 14 figs., 3 tabs

  7. Nonlinear Dynamics of a Helicopter Model in Ground Resonance

    Tang, D. M.; Dowell, E. H.

    1985-01-01

    An approximate theoretical method is presented which determined the limit cycle behavior of a helicopter model which has one or two nonlinear dampers. The relationship during unstable ground resonance oscillations between lagging motion of the blades and fuselage motion is discussed. An experiment was carried out on using a helicopter scale model. The experimental results agree with those of the theoretical analysis.

  8. Magnetized Kelvin-Helmholtz instability: theory and simulations in the Earth's magnetosphere context

    Faganello, Matteo; Califano, Francesco

    2017-12-01

    The Kelvin-Helmholtz instability, proposed a long time ago for its role in and impact on the transport properties at magnetospheric flanks, has been widely investigated in the Earth's magnetosphere context. This review covers more than fifty years of theoretical and numerical efforts in investigating the evolution of Kelvin-Helmholtz vortices and how the rich nonlinear dynamics they drive allow solar wind plasma bubbles to enter into the magnetosphere. Special care is devoted to pointing out the main advantages and weak points of the different plasma models that can be adopted for describing the collisionless magnetospheric medium and in underlying the important role of the three-dimensional geometry of the system.

  9. Small-signal model for the series resonant converter

    King, R. J.; Stuart, T. A.

    1985-01-01

    The results of a previous discrete-time model of the series resonant dc-dc converter are reviewed and from these a small signal dynamic model is derived. This model is valid for low frequencies and is based on the modulation of the diode conduction angle for control. The basic converter is modeled separately from its output filter to facilitate the use of these results for design purposes. Experimental results are presented.

  10. A dual resonance model for high energy electroweak reactions

    Picard, Jean-Francois

    1995-01-01

    The aim of this work is to propose an original model for the weak interaction at high energy (about 1 TeV) that is inspired from resonance dual models established for hadron physics. The first chapter details the basis and assumptions of the standard model. The second chapter deals with various scenarios that go beyond the standard model and that involve a strong interaction and a perturbative approach to assess coupling. The third chapter is dedicated to the main teachings of hadron physics concerning resonances, the model of Regge poles and the concept of duality. We present our new model in the fourth chapter, we build a scenario in which standard fermions and the 3 massive gauge bosons would have a sub-structure alike that of hadrons. In order to give non-null values to the width of resonances we use the K matrix method, we describe this method in the last chapter and we apply it for the computation of the width of the Z 0 boson. Our model predicts a large spectra of states particularly with the 143-up-lets of ff-bar states. The K matrix method has allowed us to compute amplitudes for helicity, then to collapse them in amplitudes invariant with SU(2) and to project these amplitudes in partial waves of helicity. For most resonances partial widths are very low compared to their mass

  11. Resonance

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  12. Equivalent-circuit model for the thickness-shear mode resonator with a viscoelastic film near film resonance.

    Martin, S J; Bandey, H L; Cernosek, R W; Hillman, A R; Brown, M J

    2000-01-01

    We derive a lumped-element, equivalent-circuit model for the thickness-shear mode (TSM) resonator with a viscoelastic film. This modified Butterworth-Van Dyke model includes in the motional branch a series LCR resonator, representing the quartz resonance, and a parallel LCR resonator, representing the film resonance. This model is valid in the vicinity of film resonance, which occurs when the acoustic phase shift across the film is an odd multiple of pi/2 rad. For low-loss films, this model accurately predicts the frequency changes and damping that arise at resonance and is a reasonable approximation away from resonance. Elements of the parallel LCR resonator are explicitly related to film properties and can be interpreted in terms of elastic energy storage and viscous power dissipation. The model leads to a simple graphical interpretation of the coupling between the quartz and film resonances and facilitates understanding of the resulting responses. These responses are compared with predictions from the transmission-line and Sauerbrey models.

  13. Modelling Strategies for Functional Magnetic Resonance Imaging

    Madsen, Kristoffer Hougaard

    2009-01-01

    and generalisations to higher order arrays are considered. Additionally, an application of the natural conjugate prior for supervised learning in the general linear model to efficiently incorporate prior information for supervised analysis is presented. Further extensions include methods to model nuisance effects...... in fMIR data thereby suppressing noise for both supervised and unsupervised analysis techniques....

  14. Giant resonance of electrical multipole from droplet model

    Tauhata, L.

    1984-01-01

    The formalism of the electrical multipole resonance developed from the Droplet nuclear model is presented. It combines the approaches of Goldhaber-Teller (GT) and Steinwedel-Jensen (SJ) and it shows the relative contribution of Coulomb, superficial and neutron excess energies. It also discusses the calculation of half-width. The model evaluates correctly the resonance energies as a function of nuclear mass and allows, through the Mixture Index, the prediction of the complementary participation of modes SJ and GT in the giant nuclear resonance. Values of the mixture index, for each multipolarity, reproduce well the form factors obtained from experiments of charged particle inelastic scattering. The formalism presented for the calculation of the half-width gives a macroscopic description of the friction mechanism. The establishment of the macroscopic structure of the Dissipation Function is used as a reference in the comparison of microscopic calculations. (Author) [pt

  15. An efficient Helmholtz solver for acoustic transversely isotropic media

    Wu, Zedong

    2017-11-11

    The acoustic approximation, even for anisotropic media, is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on less medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from S-wave artifacts. Thus, we propose to separate the quasi-P wave propagation in anisotropic media into the elliptic anisotropic operator (free of the artifacts) and the non-elliptic-anisotropic components, which form a pseudo-differential operator. We, then, develop a separable approximation of the dispersion relation of non-elliptic-anisotropic components, specifically for transversely isotropic (TI) media. Finally, we iteratively solve the simpler lower-order elliptical wave equation for a modified source function that includes the non-elliptical terms represented in the Fourier domain. A frequency domain Helmholtz formulation of the approach renders the iterative implementation efficient as the cost is dominated by the Lower-Upper (LU) decomposition of the impedance matrix for the simpler elliptical anisotropic model. Also, the resulting wavefield is free of S-wave artifacts and has balanced amplitude. Numerical examples show that the method is reasonably accurate and efficient.

  16. Kelvin-Helmholtz instability: the ``atom'' of geophysical turbulence?

    Smyth, William

    2017-11-01

    Observations of small-scale turbulence in Earth's atmosphere and oceans have most commonly been interpreted in terms of the Kolmogorov theory of isotropic turbulence, despite the fact that the observed turbulence is significantly anisotropic due to density stratification and sheared large-scale flows. I will describe an alternative picture in which turbulence consists of distinct events that occur sporadically in space and time. The simplest model for an individual event is the ``Kelvin-Helmholtz (KH) ansatz'', in which turbulence relieves the dynamic instability of a localized shear layer. I will summarize evidence that the KH ansatz is a valid description of observed turbulence events, using microstructure measurements from the equatorial Pacific ocean as an example. While the KH ansatz has been under study for many decades and is reasonably well understood, the bigger picture is much less clear. How are the KH events distributed in space and time? How do different events interact with each other? I will describe some tentative steps toward a more thorough understanding.

  17. An efficient Helmholtz solver for acoustic transversely isotropic media

    Wu, Zedong; Alkhalifah, Tariq Ali

    2017-01-01

    The acoustic approximation, even for anisotropic media, is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on less medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from S-wave artifacts. Thus, we propose to separate the quasi-P wave propagation in anisotropic media into the elliptic anisotropic operator (free of the artifacts) and the non-elliptic-anisotropic components, which form a pseudo-differential operator. We, then, develop a separable approximation of the dispersion relation of non-elliptic-anisotropic components, specifically for transversely isotropic (TI) media. Finally, we iteratively solve the simpler lower-order elliptical wave equation for a modified source function that includes the non-elliptical terms represented in the Fourier domain. A frequency domain Helmholtz formulation of the approach renders the iterative implementation efficient as the cost is dominated by the Lower-Upper (LU) decomposition of the impedance matrix for the simpler elliptical anisotropic model. Also, the resulting wavefield is free of S-wave artifacts and has balanced amplitude. Numerical examples show that the method is reasonably accurate and efficient.

  18. Semi-analytical model for hollow-core anti-resonant fibers

    Wei eDing

    2015-03-01

    Full Text Available We detailedly describe a recently-developed semi-analytical method to quantitatively calculate light transmission properties of hollow-core anti-resonant fibers (HC-ARFs. Formation of equiphase interface at fiber’s outermost boundary and outward light emission ruled by Helmholtz equation in fiber’s transverse plane constitute the basis of this method. Our semi-analytical calculation results agree well with those of precise simulations and clarify the light leakage dependences on azimuthal angle, geometrical shape and polarization. Using this method, we show investigations on HC-ARFs having various core shapes (e.g. polygon, hypocycloid with single- and multi-layered core-surrounds. The polarization properties of ARFs are also studied. Our semi-analytical method provides clear physical insights into the light guidance in ARF and can play as a fast and useful design aid for better ARFs.

  19. RECONSTRUCTION OF HUMAN LUNG MORPHOLOGY MODELS FROM MAGNETIC RESONANCE IMAGES

    Reconstruction of Human Lung Morphology Models from Magnetic Resonance ImagesT. B. Martonen (Experimental Toxicology Division, U.S. EPA, Research Triangle Park, NC 27709) and K. K. Isaacs (School of Public Health, University of North Carolina, Chapel Hill, NC 27514)

  20. The early years of string theory: The dual resonance model

    Ramond, P.

    1987-10-01

    This paper reviews the past quantum mechanical history of the dual resonance model which is an early string theory. The content of this paper is listed as follows: historical review, the Veneziano amplitude, the operator formalism, the ghost story, and the string story

  1. A non-static model for the Roper resonances

    Guichon, P.A.M.

    1985-07-01

    We solve the M.I.T. bag equations for Fermions in the limit of small fluctuations and quantize the solution. We get a non static bag model which provides a satisfactory interpretation of the Roper resonances if the time averaged radius of the cavitity is about 1 fm

  2. Modeling the full-bridge series-resonant power converter

    King, R. J.; Stuart, T. A.

    1982-01-01

    A steady state model is derived for the full-bridge series-resonant power converter. Normalized parametric curves for various currents and voltages are then plotted versus the triggering angle of the switching devices. The calculations are compared with experimental measurements made on a 50 kHz converter and a discussion of certain operating problems is presented.

  3. The fusion rate in the transmission resonance model

    Jaendel, M.

    1992-01-01

    Resonant transmission of deuterons through a chain of target deuterons in a metal matrix has been suggested as an explanation for the cold fusion phenomena. In this paper the fusion rate in such transmission resonance models is estimated, and the basic physical constraints are discussed. The dominating contribution to the fusion yield is found to come from metastable states. The fusion rate is well described by the Wentzel-Kramer-Brillouin approximation and appears to be much too small to explain the experimental anomalies

  4. Parameter Identification for Nonlinear Circuit Models of Power BAW Resonator

    CONSTANTINESCU, F.

    2011-02-01

    Full Text Available The large signal operation of the bulk acoustic wave (BAW resonators is characterized by the amplitude-frequency effect and the intermodulation effect. The measurement of these effects, together with that of the small signal frequency characteristic, are used in this paper for the parameter identification of the nonlinear circuit models developed previously by authors. As the resonator has been connected to the measurement bench by wire bonding, the parasitic elements of this connection have been taken into account, being estimated solving some electrical and magnetic field problems.

  5. The Helmholtz Hierarchy: phase space statistics of cold dark matter

    Tassev, Svetlin V.

    2011-01-01

    We present a new formalism to study large-scale structure in the universe. The result is a hierarchy (which we call the ''Helmholtz Hierarchy'') of equations describing the phase space statistics of cold dark matter (CDM). The hierarchy features a physical ordering parameter which interpolates between the Zel'dovich approximation and fully-fledged gravitational interactions. The results incorporate the effects of stream crossing. We show that the Helmholtz hierarchy is self-consistent and obeys causality to all orders. We present an interpretation of the hierarchy in terms of effective particle trajectories

  6. Modelling Brain Tissue using Magnetic Resonance Imaging

    Dyrby, Tim Bjørn

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...... models then use the directions of greatest diffusion as estimates of white matter fibre orientation. Several fibre tracking algorithms have emerged in the last few years that provide reproducible visualizations of three-dimensional fibre bundles. One class of these algorithms is probabilistic...... the possibility of using high-field experimental MR scanners and long scanning times, thereby significantly improving the signal-to-noise ratio (SNR) and anatomical resolution. Moreover, many of the degrading effects observed in vivo, such as physiological noise, are no longer present. However, the post mortem...

  7. On the quark structure of resonance states in dual models

    Volkov, D.V.; Zheltukhin, A.A.; Pashnev, A.I.

    1975-01-01

    It is shown using as an example the Veneziano dual model, that each particular dual model already contains a certain latent quark structure unambiauously determined by internal properties of the dual model. To prove this degeneration of the resonance state spectrum is studied by introducing an additional disturbing interaction into the model being considered. Induced transitions of particles into a vacuum act as such an additional disturbance. This method complements the known factorization method of Fubini, Gordon and Veneziano and turns out to be free from an essential limitation of the latter connected with implicit assumption about the basence of internal additive laws of conservation in the model. By using the method of induced transitions of particles into a vacuum it has been possible to show that the resonance state spectrum is indeed more degenerated than it should be expected from the factorization theorem, and that the supplementary degeneration corresponds to the quark model with an infinite number of quarks of the increasing mass. Structures of some terms of the dual amplitude expansion over the degrees of the constant of the induced transition of particles to vacuum are considered; it is shown that the summation of this expansion may be reduced to a solution of a certain integral equation. On the basis of the integral equation obtained an integral representation ofr dual amplitudes is established. The problems related with degeneration of resonance states and with determination of additive quantum numbers leading to the quark interpretation of the degeneration being considered are discussed

  8. Resonances

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...

  9. An implicit finite-difference operator for the Helmholtz equation

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    We have developed an implicit finite-difference operator for the Laplacian and applied it to solving the Helmholtz equation for computing the seismic responses in the frequency domain. This implicit operator can greatly improve the accuracy of the simulation results without adding significant extra computational cost, compared with the corresponding conventional explicit finite-difference scheme. We achieved this by taking advantage of the inherently implicit nature of the Helmholtz equation and merging together the two linear systems: one from the implicit finite-difference discretization of the Laplacian and the other from the discretization of the Helmholtz equation itself. The end result of this simple yet important merging manipulation is a single linear system, similar to the one resulting from the conventional explicit finite-difference discretizations, without involving any differentiation matrix inversions. We analyzed grid dispersions of the discrete Helmholtz equation to show the accuracy of this implicit finite-difference operator and used two numerical examples to demonstrate its efficiency. Our method can be extended to solve other frequency domain wave simulation problems straightforwardly. © 2012 Society of Exploration Geophysicists.

  10. An implicit finite-difference operator for the Helmholtz equation

    Chu, Chunlei

    2012-07-01

    We have developed an implicit finite-difference operator for the Laplacian and applied it to solving the Helmholtz equation for computing the seismic responses in the frequency domain. This implicit operator can greatly improve the accuracy of the simulation results without adding significant extra computational cost, compared with the corresponding conventional explicit finite-difference scheme. We achieved this by taking advantage of the inherently implicit nature of the Helmholtz equation and merging together the two linear systems: one from the implicit finite-difference discretization of the Laplacian and the other from the discretization of the Helmholtz equation itself. The end result of this simple yet important merging manipulation is a single linear system, similar to the one resulting from the conventional explicit finite-difference discretizations, without involving any differentiation matrix inversions. We analyzed grid dispersions of the discrete Helmholtz equation to show the accuracy of this implicit finite-difference operator and used two numerical examples to demonstrate its efficiency. Our method can be extended to solve other frequency domain wave simulation problems straightforwardly. © 2012 Society of Exploration Geophysicists.

  11. Conserved number fluctuations in a hadron resonance gas model

    Garg, P.; Mishra, D.K.; Netrakanti, P.K.; Mohanty, B.; Mohanty, A.K.; Singh, B.K.; Xu, N.

    2013-01-01

    Net-baryon, net-charge and net-strangeness number fluctuations in high energy heavy-ion collisions are discussed within the framework of a hadron resonance gas (HRG) model. Ratios of the conserved number susceptibilities calculated in HRG are being compared to the corresponding experimental measurements to extract information about the freeze-out condition and the phase structure of systems with strong interactions. We emphasize the importance of considering the actual experimental acceptances in terms of kinematics (pseudorapidity (η) and transverse momentum (p T )), the detected charge state, effect of collective motion of particles in the system and the resonance decay contributions before comparisons are made to the theoretical calculations. In this work, based on HRG model, we report that the net-baryon number fluctuations are least affected by experimental acceptances compared to the net-charge and net-strangeness number fluctuations

  12. The Droplet model of the Giant Fipole Resonance

    Myers, W.D.; Kodama, T.; El-Jaick, L.J.; Hilf, E.R.

    1976-10-01

    The nuclear Giant Dipole Resonance (GDR) energies are calculated using a macroscopic hydronamical model with two new features. The motion is treated as a combination of the usual Goldhaber-Teller (GT) and Steinwedel-Jensen (SJ) modes, and the restoring forces are all calculated using the Droplet Model. The A dependence of the resonance energies is well reproduced without any adjustable parameters, and the measured magnitude of the energies serves to fix the value of the effective mass m* used in the theory. The GDR is found to consist mainly of a GT-type motion with the SJ-mode becoming more important for heavy nuclei. The width P of the GDR is also estimated on the basis of an expression for one-body damping [pt

  13. Magnetohydrodynamic Kelvin-Helmholtz instabilities in astrophysics. 2. Cylindrical boundary layer in vortex sheet approximation

    Ferrari, A [Max-Planck-Institut fuer Extraterrestrische Physik, Garching b. Muenchen (Germany, F.R.); Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica); Trussoni, E; Zaninetti, L [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica

    1981-09-01

    This second paper of the series is devoted to Kelvin-Helmholtz instabilities in cylindrical boundary layer flows (jets). The vortex-sheet approximation is still used, and compressible flows are studied in subsonic, transonic, supersonic and relativistic regimes. Magnetic field effects are analysed, together with density contrast inside and outside the jet. The general result is that, due to the onset of a so-called reflection branch of resonant modes, jets are always unstable, both to pinching and helical perturbations with wavelengths of the order of the jet circumference. In particular the time-scales for instability are such that this certainly plays a significant part in the morphology and energetics of extended radio sources.

  14. Modeling laser brightness from cross Porro prism resonators

    Forbes, Andrew; Burger, Liesl; Litvin, Igor Anatolievich

    2006-08-01

    Laser brightness is a parameter often used to compare high power laser beam delivery from various sources, and incorporates both the power contained in the particular mode, as well as the propagation of that mode through the beam quality factor, M2. In this study a cross Porro prism resonator is considered; crossed Porro prism resonators have been known for some time, but until recently have not been modeled as a complete physical optics system that allows the modal output to be determined as a function of the rotation angle of the prisms. In this paper we consider the diffraction losses as a function of the prism rotation angle relative to one another, and combine this with the propagation of the specific modes to determine the laser output brightness as a function of the prism orientation.

  15. Statistical Modelling of Resonant Cross Section Structure in URR, Model of the Characteristic Function

    Koyumdjieva, N.

    2006-01-01

    A statistical model for the resonant cross section structure in the Unresolved Resonance Region has been developed in the framework of the R-matrix formalism in Reich Moore approach with effective accounting of the resonance parameters fluctuations. The model uses only the average resonance parameters and can be effectively applied for analyses of cross sections functional, averaged over many resonances. Those are cross section moments, transmission and self-indication functions measured through thick sample. In this statistical model the resonant cross sections structure is accepted to be periodic and the R-matrix is a function of ε=E/D with period 0≤ε≤N; R nc (ε)=π/2√(S n *S c )1/NΣ(i=1,N)(β in *β ic *ctg[π(ε i - = ε-iS i )/N]; Here S n ,S c ,S i is respectively neutron strength function, strength function for fission or inelastic channel and strength function for radiative capture, N is the number of resonances (ε i ,β i ) that obey the statistic of Porter-Thomas and Wigner's one. The simple case of this statistical model concerns the resonant cross section structure for non-fissile nuclei under the threshold for inelastic scattering - the model of the characteristic function with HARFOR program. In the above model some improvements of calculation of the phases and logarithmic derivatives of neutron channels have been done. In the parameterization we use the free parameter R l ∞ , which accounts the influence of long-distant resonances. The above scheme for statistical modelling of the resonant cross section structure has been applied for evaluation of experimental data for total, capture and inelastic cross sections for 232 Th in the URR (4-150) keV and also the transmission and self-indication functions in (4-175) keV. The set of evaluated average resonance parameters have been obtained. The evaluated average resonance parameters in the URR are consistent with those in the Resolved Resonance Region (CRP for Th-U cycle, Vienna, 2006

  16. Optimal 25-Point Finite-Difference Subgridding Techniques for the 2D Helmholtz Equation

    Tingting Wu

    2016-01-01

    Full Text Available We present an optimal 25-point finite-difference subgridding scheme for solving the 2D Helmholtz equation with perfectly matched layer (PML. This scheme is second order in accuracy and pointwise consistent with the equation. Subgrids are used to discretize the computational domain, including the interior domain and the PML. For the transitional node in the interior domain, the finite difference equation is formulated with ghost nodes, and its weight parameters are chosen by a refined choice strategy based on minimizing the numerical dispersion. Numerical experiments are given to illustrate that the newly proposed schemes can produce highly accurate seismic modeling results with enhanced efficiency.

  17. ASTEM, Evaluation of Gibbs, Helmholtz and Saturation Line Function for Thermodynamics Calculation

    Moore, K.V.; Burgess, M.P.; Fuller, G.L.; Kaiser, A.H.; Jaeger, D.L.

    1974-01-01

    1 - Description of problem or function: ASTEM is a modular set of FORTRAN IV subroutines to evaluate the Gibbs, Helmholtz, and saturation line functions as published by the American Society of Mechanical Engineers (1967). Any thermodynamic quantity including derivative properties can be obtained from these routines by a user-supplied main program. PROPS is an auxiliary routine available for the IBM360 version which makes it easier to apply the ASTEM routines to power station models. 2 - Restrictions on the complexity of the problem: Unless re-dimensioned by the user, the highest derivative allowed is order 9. All arrays within ASTEM are one-dimensional to save storage area

  18. Density-space potential phase difference in a Kelvin--Helmholtz instability

    Glowienka, J.C.; Jennings, W.C.; Hickok, R.L.

    1974-01-01

    The low-frequency instability found in a hollow cathode discharge in helium was studied using an ion beam probe as a primary diagnostic tool. Three aspects of the instability are discussed: the location and amplitude of the oscillation and its correlation with the shape of the space potential; the phase angle between density and space potential oscillations; and the comparison of the data with three known instability models: Kelvin--Helmholtz, Rayleigh--Taylor, and drift waves--for mode identification. (U.S.)

  19. Rectifier Current Control for an LLC Resonant Converter Based on a Simplified Linearized Model

    Zhijian Fang; Junhua Wang; Shanxu Duan; Liangle Xiao; Guozheng Hu; Qisheng Liu

    2018-01-01

    In this paper, a rectifier current control for an LLC resonant converter is proposed, based on a simplified, two-order, linearized model that adds a rectifier current feedback inner loop to improve dynamic performance. Compared to the traditional large-signal model with seven resonant states, this paper utilizes a rectifier current state to represent the characteristics of the resonant states, simplifying the LLC resonant model from seven orders to two orders. Then, the rectifier current feed...

  20. Fourier-Based Fast Multipole Method for the Helmholtz Equation

    Cecka, Cris

    2013-01-01

    The fast multipole method (FMM) has had great success in reducing the computational complexity of solving the boundary integral form of the Helmholtz equation. We present a formulation of the Helmholtz FMM that uses Fourier basis functions rather than spherical harmonics. By modifying the transfer function in the precomputation stage of the FMM, time-critical stages of the algorithm are accelerated by causing the interpolation operators to become straightforward applications of fast Fourier transforms, retaining the diagonality of the transfer function, and providing a simplified error analysis. Using Fourier analysis, constructive algorithms are derived to a priori determine an integration quadrature for a given error tolerance. Sharp error bounds are derived and verified numerically. Various optimizations are considered to reduce the number of quadrature points and reduce the cost of computing the transfer function. © 2013 Society for Industrial and Applied Mathematics.

  1. Calculation of the beam injector steering system using Helmholtz coils

    Passaro, A.; Sircilli Neto, F.; Migliano, A.C.C.

    1991-03-01

    In this work, a preliminary evaluation of the beam injector steering system of the IEAv electron linac is presented. From the existing injector configuration and with the assumptions of monoenergetic beam (100 keV) and uniform magnetic field, two pairs of Helmholtz coils were calculated for the steering system. Excitations of 105 A.turn and 37 A.turn were determined for the first and second coils, respectively. (author)

  2. Kelvin-Helmholtz instability in a weakly ionized layer

    Shadmehri, Mohsen; Downes, Turlough P.

    2007-01-01

    We study the linear theory of Kelvin-Helmholtz instability in a layer of ions and neutrals with finite thickness. In the short wavelength limit the thickness of the layer has a negligible effect on the growing modes. However, perturbations with wavelength comparable to layer's thickness are significantly affected by the thickness of the layer. We show that the thickness of the layer has a stabilizing effect on the two dominant growing modes. Transition between the modes not only depends on th...

  3. Model of the transverse modes of stable and unstable porro–prism resonators using symmetry considerations

    Burger, L

    2007-01-01

    Full Text Available of this type of resonator. Further use of the model reveals the formation of more complex beam patterns, and the nature of these patterns is investigated. Also, the output of stable and unstable resonator modes is presented....

  4. Modelling of optoelectronic circuits based on resonant tunneling diodes

    Rei, João. F. M.; Foot, James A.; Rodrigues, Gil C.; Figueiredo, José M. L.

    2017-08-01

    Resonant tunneling diodes (RTDs) are the fastest pure electronic semiconductor devices at room temperature. When integrated with optoelectronic devices they can give rise to new devices with novel functionalities due to their highly nonlinear properties and electrical gain, with potential applications in future ultra-wide-band communication systems (see e.g. EU H2020 iBROW Project). The recent coverage on these devices led to the need to have appropriated simulation tools. In this work, we present RTD based optoelectronic circuits simulation packages to provide circuit signal level analysis such as transient and frequency responses. We will present and discuss the models, and evaluate the simulation packages.

  5. Covariant introduction of quark spin into the dual resonance model

    Iroshnikov, G.S.

    1979-01-01

    A very simple method of insertion of a quark spin into the dual resonance model of hadron interaction is proposed. The method is suitable for amplitudes with an arbitrary number of particles. The amplitude of interaction of real particles is presented as a product of contribution of oscillatory excitations in the (q anti q) system and of a spin factor. The latter is equal to the trace of the product of the external particle wave functions constructed from structural quarks and satisfying the relativistic Bargman-Wigner equations. Two examples of calculating the meson interaction amplitudes are presented

  6. Parton recombination model including resonance production. RL-78-040

    Roberts, R.G.; Hwa, R.C.; Matsuda, S.

    1978-05-01

    Possible effects of resonance production on the meson inclusive distribution in the fragmentation region are investigated in the framework of the parton recombination model. From a detailed study of the data on vector-meson production, a reliable ratio of the vector-to-pseudoscalar rates is determined. Then the influence of the decay of the vector mesons on the pseudoscalar spectrum is examined, and the effect found to be no more than 25% for x > 0.5. The normalization of the non-strange antiquark distributions are still higher than those in a quiescent proton. The agreement between the calculated results and data remain very good. 36 references

  7. Modelling of Resonantly Forced Density Waves in Dense Planetary Rings

    Lehmann, M.; Schmidt, J.; Salo, H.

    2014-04-01

    Density wave theory, originally proposed to explain the spiral structure of galactic disks, has been applied to explain parts of the complex sub-structure in Saturn's rings, such as the wavetrains excited at the inner Lindblad resonances (ILR) of various satellites. The linear theory for the excitation and damping of density waves in Saturn's rings is fairly well developed (e.g. Goldreich & Tremaine [1979]; Shu [1984]). However, it fails to describe certain aspects of the observed waves. The non-applicability of the linear theory is already indicated by the "cusplike" shape of many of the observed wave profiles. This is a typical nonlinear feature which is also present in overstability wavetrains (Schmidt & Salo [2003]; Latter & Ogilvie [2010]). In particular, it turns out that the detailed damping mechanism, as well as the role of different nonlinear effects on the propagation of density waves remain intransparent. First attemps are being made to investigate the excitation and propagation of nonlinear density waves within a hydrodynamical formalism, which is also the natural formalism for describing linear density waves. A simple weakly nonlinear model, derived from a multiple-scale expansion of the hydrodynamic equations, is presented. This model describes the damping of "free" spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients, where the effects of the hydrodynamic nonlinearities are included. The model predicts that density waves are linearly unstable in a ring region where the conditions for viscous overstability are met, which translates to a steep dependence of the shear viscosity with respect to the disk's surface density. The possibility that this dependence could lead to a growth of density waves with increasing distance from the resonance, was already mentioned in Goldreich & Tremaine [1978]. Sufficiently far away from the ILR, the surface density perturbation caused by the wave, is predicted to

  8. Parton recombination model including resonance production. RL-78-040

    Roberts, R. G.; Hwa, R. C.; Matsuda, S.

    1978-05-01

    Possible effects of resonance production on the meson inclusive distribution in the fragmentation region are investigated in the framework of the parton recombination model. From a detailed study of the data on vector-meson production, a reliable ratio of the vector-to-pseudoscalar rates is determined. Then the influence of the decay of the vector mesons on the pseudoscalar spectrum is examined, and the effect found to be no more than 25% for x > 0.5. The normalization of the non-strange antiquark distributions are still higher than those in a quiescent proton. The agreement between the calculated results and data remain very good. 36 references.

  9. Extreme Wave-Induced Oscillation in Paradip Port Under the Resonance Conditions

    Kumar, Prashant; Gulshan

    2017-12-01

    A mathematical model is constructed to analyze the long wave-induced oscillation in Paradip Port, Odisha, India under the resonance conditions to avert any extreme wave hazards. Boundary element method (BEM) with corner contribution is utilized to solve the Helmholtz equation under the partial reflection boundary conditions. Furthermore, convergence analysis is also performed for the boundary element scheme with uniform and non-uniform discretization of the boundary. The numerical scheme is also validated with analytic approximation and existing studies based on harbor resonance. Then, the amplification factor is estimated at six key record stations in the Paradip Port with multidirectional incident waves and resonance modes are also estimated at the boundary of the port. Ocean surface wave field is predicted in the interior of Paradip Port for the different directional incident wave at various resonance modes. Moreover, the safe locations in the port have been identified for loading and unloading of moored ship with different resonance modes and directional incident waves.

  10. Stochastic resonance in a generalized Von Foerster population growth model

    Lumi, N.; Mankin, R. [Institute of Mathematics and Natural Sciences, Tallinn University, 25 Narva Road, 10120 Tallinn (Estonia)

    2014-11-12

    The stochastic dynamics of a population growth model, similar to the Von Foerster model for human population, is studied. The influence of fluctuating environment on the carrying capacity is modeled as a multiplicative dichotomous noise. It is established that an interplay between nonlinearity and environmental fluctuations can cause single unidirectional discontinuous transitions of the mean population size versus the noise amplitude, i.e., an increase of noise amplitude can induce a jump from a state with a moderate number of individuals to that with a very large number, while by decreasing the noise amplitude an opposite transition cannot be effected. An analytical expression of the mean escape time for such transitions is found. Particularly, it is shown that the mean transition time exhibits a strong minimum at intermediate values of noise correlation time, i.e., the phenomenon of stochastic resonance occurs. Applications of the results in ecology are also discussed.

  11. Interacting hadron resonance gas model in the K -matrix formalism

    Dash, Ashutosh; Samanta, Subhasis; Mohanty, Bedangadas

    2018-05-01

    An extension of hadron resonance gas (HRG) model is constructed to include interactions using relativistic virial expansion of partition function. The noninteracting part of the expansion contains all the stable baryons and mesons and the interacting part contains all the higher mass resonances which decay into two stable hadrons. The virial coefficients are related to the phase shifts which are calculated using K -matrix formalism in the present work. We have calculated various thermodynamics quantities like pressure, energy density, and entropy density of the system. A comparison of thermodynamic quantities with noninteracting HRG model, calculated using the same number of hadrons, shows that the results of the above formalism are larger. A good agreement between equation of state calculated in K -matrix formalism and lattice QCD simulations is observed. Specifically, the lattice QCD calculated interaction measure is well described in our formalism. We have also calculated second-order fluctuations and correlations of conserved charges in K -matrix formalism. We observe a good agreement of second-order fluctuations and baryon-strangeness correlation with lattice data below the crossover temperature.

  12. Magnetohydrodynamic Kelvin-Helmholtz instabilities in astrophysics. 1. Relativistic flows-plane boundary layer in vortex sheet approximation

    Ferrari, A; Trussoni, E; Zaninetti, L [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica)

    1980-11-01

    In this paper some unsolved problems of the linear MHD Kelvin-Helmholtz instability are re-examined, starting from the analysis of relativistic (and non-relativistic) flows in the approximation of a plane vortex sheet, for the contact layer between the fluids in relative motion. Results are discussed for a range of physical parameters in specific connection with application to models of jets in extragalactic radio sources. Other physical aspects of the instability will be considered in forthcoming papers.

  13. RESONANCE

    To the extent that genes influence our behaviour it may well be that our ... other by a coefficient of genetic relatedness r of 0.75 but a female. Figure 1. ... cal and empirical work. ... rather famous one is called PSR, for paternally transmitted sex ... Life cycle of ... Genic balance sex determination (GBSD): According to this model ...

  14. Equation of state and Helmholtz free energy for the atomic system of the repulsive Lennard-Jones particles.

    Mirzaeinia, Ali; Feyzi, Farzaneh; Hashemianzadeh, Seyed Majid

    2017-12-07

    Simple and accurate expressions are presented for the equation of state (EOS) and absolute Helmholtz free energy of a system composed of simple atomic particles interacting through the repulsive Lennard-Jones potential model in the fluid and solid phases. The introduced EOS has 17 and 22 coefficients for fluid and solid phases, respectively, which are regressed to the Monte Carlo (MC) simulation data over the reduced temperature range of 0.6≤T * ≤6.0 and the packing fraction range of 0.1 ≤ η ≤ 0.72. The average absolute relative percent deviation in fitting the EOS parameters to the MC data is 0.06 and 0.14 for the fluid and solid phases, respectively. The thermodynamic integration method is used to calculate the free energy using the MC simulation results. The Helmholtz free energy of the ideal gas is employed as the reference state for the fluid phase. For the solid phase, the values of the free energy at the reduced density equivalent to the close-packed of a hard sphere are used as the reference state. To check the validity of the predicted values of the Helmholtz free energy, the Widom particle insertion method and the Einstein crystal technique of Frenkel and Ladd are employed. The results obtained from the MC simulation approaches are well agreed to the EOS results, which show that the proposed model can reliably be utilized in the framework of thermodynamic theories.

  15. Simple model for low-frequency guitar function

    Christensen, Ove; Vistisen, Bo B.

    1980-01-01

    - frequency guitar function. The model predicts frequency responce of sound pressure and top plate mobility which are in close quantitative agreement with experimental responses. The absolute sound pressure level and mobility level are predicted to within a few decibels, and the equivalent piston area......The frequency response of sound pressure and top plate mobility is studied around the two first resonances of the guitar. These resonances are shown to result from a coupling between the fundamental top plate mode and the Helmholtz resonance of the cavity. A simple model is proposed for low...

  16. Helmholtz and Zoellner: nineteenth-century empiricism, spiritism, and the theory of space perception.

    Stromberg, W H

    1989-10-01

    J. K. F. Zoellner began writing on "experimental proofs" of a fourth spatial dimension, and of the existence of spirits, in 1878. His arguments caused strong controversy, with rebuttal essays by Wilhelm Wundt and others. The author argues that Zoellner's case that these matters are experimental questions rested on arguments which Hermann von Helmholtz, inveighing against rationalist views of space and space perception, had recently published. Zoellner's use of Helmholtz's arguments to advance and defend his spiritist views occasioned strong criticism of Helmholtz, affected careers and reputations of scholars in Berlin and Leipzig, and caused enduring controversy over the credibility of Helmholtz's empiricist theory of space perception.

  17. Interacting-string picture of dual-resonance models

    Mandelstam, S.

    1985-01-01

    Dual-resonance models are an alyzed by means of operators which act within the physical Hilbert space of positive-metric states. The basis of the method is to extend the relativistic-string picture of a previous study to interacting particles. Functional methods are used, but their relation to the operator is evident, and factorization is maintained. An expression is given for the N-point amplitude in terms of physical-particle operators. For the three-point function the Neumann functions which occur in this expression are evaluated, so that we have a formula for the on- and off-energy-shell vertex. The authors assume that the string has no longitudinal degrees of freedom, and their results are Lorentz invariant and dual only if d=26

  18. The inherent complexity in nonlinear business cycle model in resonance

    Ma Junhai; Sun Tao; Liu Lixia

    2008-01-01

    Based on Abraham C.-L. Chian's research, we applied nonlinear dynamic system theory to study the first-order and second-order approximate solutions to one category of the nonlinear business cycle model in resonance condition. We have also analyzed the relation between amplitude and phase of second-order approximate solutions as well as the relation between outer excitements' amplitude, frequency approximate solutions, and system bifurcation parameters. Then we studied the system quasi-periodical solutions, annulus periodical solutions and the path leading to system bifurcation and chaotic state with different parameter combinations. Finally, we conducted some numerical simulations for various complicated circumstances. Therefore this research will lay solid foundation for detecting the complexity of business cycles and systems in the future

  19. Polyakov loop and the hadron resonance gas model.

    Megías, E; Arriola, E Ruiz; Salcedo, L L

    2012-10-12

    The Polyakov loop has been used repeatedly as an order parameter in the deconfinement phase transition in QCD. We argue that, in the confined phase, its expectation value can be represented in terms of hadronic states, similarly to the hadron resonance gas model for the pressure. Specifically, L(T)≈1/2[∑(α)g(α)e(-Δ(α)/T), where g(α) are the degeneracies and Δ(α) are the masses of hadrons with exactly one heavy quark (the mass of the heavy quark itself being subtracted). We show that this approximate sum rule gives a fair description of available lattice data with N(f)=2+1 for temperatures in the range 150 MeVmodels. For temperatures below 150 MeV different lattice results disagree. One set of data can be described if exotic hadrons are present in the QCD spectrum while other sets do not require such states.

  20. Numerical model of electron cyclotron resonance ion source

    V. Mironov

    2015-12-01

    Full Text Available Important features of the electron cyclotron resonance ion source (ECRIS operation are accurately reproduced with a numerical code. The code uses the particle-in-cell technique to model the dynamics of ions in ECRIS plasma. It is shown that a gas dynamical ion confinement mechanism is sufficient to provide the ion production rates in ECRIS close to the experimentally observed values. Extracted ion currents are calculated and compared to the experiment for a few sources. Changes in the simulated extracted ion currents are obtained with varying the gas flow into the source chamber and the microwave power. Empirical scaling laws for ECRIS design are studied and the underlying physical effects are discussed.

  1. Effect of cold plasma on the Kelvin-Helmholtz instability

    Melander, B.G.

    1978-01-01

    The thesis studies the effect of a two-component plasma (hot and cold) on the shear driven Kelvin-Helmholtz instability. An ion distribution with a shear flow parallel to the ambient magnetic field and a density gradient parallel to the shear direction is used. Both the electrostatic and electromagnetic versions of the instability are studied in the limit of hydromagnetic frequencies. The dispersion relation is obtained in the electrostatic case by solving the Vlasov equation for the perturbed ion and electron densities and then using the quasineutrality condition. In the electromagnetic case the coupled Vlasov and Maxwell's equations are solved to obtain the dispersion relation

  2. Semi-analytic solution to planar Helmholtz equation

    Tukač M.

    2013-06-01

    Full Text Available Acoustic solution of interior domains is of great interest. Solving acoustic pressure fields faster with lower computational requirements is demanded. A novel solution technique based on the analytic solution to the Helmholtz equation in rectangular domain is presented. This semi-analytic solution is compared with the finite element method, which is taken as the reference. Results show that presented method is as precise as the finite element method. As the semi-analytic method doesn’t require spatial discretization, it can be used for small and very large acoustic problems with the same computational costs.

  3. Black and gray Helmholtz-Kerr soliton refraction

    Sanchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S.

    2011-01-01

    Refraction of black and gray solitons at boundaries separating different defocusing Kerr media is analyzed within a Helmholtz framework. A universal nonlinear Snell's law is derived that describes gray soliton refraction, in addition to capturing the behavior of bright and black Kerr solitons at interfaces. Key regimes, defined by beam and interface characteristics, are identified, and predictions are verified by full numerical simulations. The existence of a unique total nonrefraction angle for gray solitons is reported; both internal and external refraction at a single interface is shown possible (dependent only on incidence angle). This, in turn, leads to the proposal of positive or negative lensing operations on soliton arrays at planar boundaries.

  4. Shear wave induced resonance elastography of spherical masses with polarized torsional waves

    Hadj Henni, Anis; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy

    2012-03-01

    Shear wave induced resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an invitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary invivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.

  5. Matter-neutrino resonance in a multiangle neutrino bulb model

    Vlasenko, Alexey; McLaughlin, G. C.

    2018-04-01

    Simulations of neutrino flavor evolution in compact merger environments have shown that neutrino flavor, and hence nucleosynthesis, can be strongly affected by the presence of matter-neutrino resonances (MNRs), where there is a cancelation between the matter and the neutrino potential. Simulations performed thus far follow flavor evolution along a single neutrino trajectory, but self-consistency requires all trajectories to be treated simultaneously, and it has not been known whether MNR phenomena would still occur in multiangle models. In this paper, we present the first fully multi-angle calculations of MNR. We find that familiar MNR phenomena, where neutrinos transform to a greater extent than anti-neutrinos and a feedback mechanism maintains the cancellation between the matter and neutrino potential, still occurs for a subset of angular bins, although the flavor transformation is not as efficient as in the single-angle case. In addition, we find other types of flavor transformation that are not seen in single-angle simulations. These flavor transformation phenomena appear to be robust and are present for a wide range of model parameters, as long as an MNR is present. Although computational constraints currently limit us to models with spherical symmetry, our results suggest that the presence of an MNR generally leads to large-scale neutrino flavor evolution in multiangle systems.

  6. Kelvin-Helmholtz Instability: Lessons Learned and Ways Forward

    Masson, A.; Nykyri, K.

    2018-06-01

    The Kelvin-Helmholtz instability (KHI) is a ubiquitous phenomenon across the Universe, observed from 500 m deep in the oceans on Earth to the Orion molecular cloud. Over the past two decades, several space missions have enabled a leap forward in our understanding of this phenomenon at the Earth's magnetopause. Key results obtained by these missions are first presented, with a special emphasis on Cluster and THEMIS. In particular, as an ideal instability, the KHI was not expected to produce mass transport. Simulations, later confirmed by spacecraft observations, indicate that plasma transport in Kelvin-Helmholtz (KH) vortices can arise during non-linear stage of its development via secondary process. In addition to plasma transport, spacecraft observations have revealed that KHI can also lead to significant ion heating due to enhanced ion-scale wave activity driven by the KHI. Finally, we describe what are the upcoming observational opportunities in 2018-2020, thanks to a unique constellation of multi-spacecraft missions including: MMS, Cluster, THEMIS, Van Allen Probes and Swarm.

  7. The Common Data Acquisition Platform in the Helmholtz Association

    Kaever, P.; Balzer, M.; Kopmann, A.; Zimmer, M.; Rongen, H.

    2017-01-01

    Various centres of the German Helmholtz Association (HGF) started in 2012 to develop a modular data acquisition (DAQ) platform, covering the entire range from detector readout to data transfer into parallel computing environments. This platform integrates generic hardware components like the multi-purpose HGF-Advanced Mezzanine Card or a smart scientific camera framework, adding user value with Linux drivers and board support packages. Technically the scope comprises the DAQ-chain from FPGA-modules to computing servers, notably frontend-electronics-interfaces, microcontrollers and GPUs with their software plus high-performance data transmission links. The core idea is a generic and component-based approach, enabling the implementation of specific experiment requirements with low effort. This so called DTS-platform will support standards like MTCA.4 in hard- and software to ensure compatibility with commercial components. Its capability to deploy on other crate standards or FPGA-boards with PCI express or Ethernet interfaces remains an essential feature. Competences of the participating centres are coordinated in order to provide a solid technological basis for both research topics in the Helmholtz Programme ''Matter and Technology'': ''Detector Technology and Systems'' and ''Accelerator Research and Development''. The DTS-platform aims at reducing costs and development time and will ensure access to latest technologies for the collaboration. Due to its flexible approach, it has the potential to be applied in other scientific programs.

  8. The Common Data Acquisition Platform in the Helmholtz Association

    Kaever, P.; Balzer, M.; Kopmann, A.; Zimmer, M.; Rongen, H.

    2017-04-01

    Various centres of the German Helmholtz Association (HGF) started in 2012 to develop a modular data acquisition (DAQ) platform, covering the entire range from detector readout to data transfer into parallel computing environments. This platform integrates generic hardware components like the multi-purpose HGF-Advanced Mezzanine Card or a smart scientific camera framework, adding user value with Linux drivers and board support packages. Technically the scope comprises the DAQ-chain from FPGA-modules to computing servers, notably frontend-electronics-interfaces, microcontrollers and GPUs with their software plus high-performance data transmission links. The core idea is a generic and component-based approach, enabling the implementation of specific experiment requirements with low effort. This so called DTS-platform will support standards like MTCA.4 in hard- and software to ensure compatibility with commercial components. Its capability to deploy on other crate standards or FPGA-boards with PCI express or Ethernet interfaces remains an essential feature. Competences of the participating centres are coordinated in order to provide a solid technological basis for both research topics in the Helmholtz Programme ``Matter and Technology'': ``Detector Technology and Systems'' and ``Accelerator Research and Development''. The DTS-platform aims at reducing costs and development time and will ensure access to latest technologies for the collaboration. Due to its flexible approach, it has the potential to be applied in other scientific programs.

  9. Helmholtz and Goethe -- controversies at the birth of modern neuroscience.

    Kesselring, Jürg

    2013-01-01

    Hermann von Helmholtz (1821-1894), a great German scientist and philosopher, made his mark during the exciting twilight period from the Enlightenment and Romanticism to the beginnings of modern neuroscience and offered new perspectives through his work. His early inclination was for physics, which he found more attractive than purely geometric and algebraic studies, but his father was not able to make it possible for him to study physics, and so he studied medicine in order to earn a living. His lecture before the Physical Society in Berlin on July 23, 1847, 'about the conservation of the force' marked an epochal turn, even though his intention had been to deliver 'merely, some critical investigations and arrangement of facts in favor of the physiologists' as well as good arguments for the refusal of the theory of 'vitality'. Even though these new concepts were at first dismissed as fantastic speculation by some of the authorities in physics and philosophy of the day, they were enthusiastically welcomed by younger students of philosophy and the older men soon had to allow themselves to be persuaded that the effectiveness of vitality, though great and beautiful, is actually always dependent on some source of energy. Helmholtz critically assessed Goethe as a physical scientist but he did not dispute his great importance as a poet. Copyright © 2012 S. Karger AG, Basel.

  10. Application of Resonant Converter in Ozone Generator Model

    Mochammad Facta

    2008-04-01

    Full Text Available Ozone is one of the favorable oxidant to use in home appliance and industry as disinfectant for food processing, food storage, odor abatement, groundwater remediation, and drinking water purification. The common and previous technical method for generating ozone uses a high voltage and low frequency. This kind of method has disadvantage of energy efficiency, size and weight. This paper proposed the use power electronics in the inverter resonant circuit to produce alternating current with high frequency. The basic RLC resonance circuit is used for early study to determine resonance frequency for inverter. As the result, the ozone chamber terminal voltage had been achieved for initiation by using resonance frequency.

  11. Modelling and analysis of the transformer current resonance in dual active bridge converters

    Qin, Zian; Shen, Zhan; Blaabjerg, Frede

    2017-01-01

    Due to the parasitic capacitances of the transformer and inductor in Dual Active Bridge (DAB) converters, resonance happens in the transformer currents. This high frequency resonant current flowing into the full bridges will worsen their soft-switching performance and thereby reduce its efficiency....... In order to study the generation mechanism of this current resonance, the impedance of the transformer and inductor with parasitic components is modelled in this digest. Then, based on the impedance model, an approach is proposed to mitigate the current resonance. Finally, both the impedance model...

  12. Doorway-resonance model for pion-nucleon D- and F-wave scattering

    Ernst, D.J.; Parnell, G.E.; Assad, C.; Texas A and M Univ., College Station, TX

    1990-01-01

    A model for the resonant pion-nucleon D- and F-waves is developed which assumes that the pion-plus-nucleon couples to a resonance and that the resonance can serve as a doorway to the inelastic channels. With the use of simple form factors, the model is capable of reproducing the pion-nucleon phase shifts up to an energy of T π =1.4 GeV if the coupling of the elastic channel to the inelastic channels is taken from data as input into the model. A value for the mass of the resonance that would result in the absence of the coupling to decay channels is extracted from the data utilizing the model. This is the mass that is most easily modeled by bag models. For the non-resonant D- and F-wave channels a separable potential model is used. This model, like the resonance model, is developed utilizing the invariant amplitude which is free of kinematic singularities and uses invariant norms and phase spaces. The model is also applied to the S-wave channels. A relation between the resonance model and the Chew-Low model is discovered and used to derive an extended Chew-Low model which is applied to the P 13 , P 31 and P 33 channels. Implications of the model for understanding the range of the pion-nucleon interaction and the dynamic structure of the interaction are presented. (orig.)

  13. A three-dimensional model for calculating the micro disk laser resonant-modes

    Sabetjoo, H.; Bahrampor, A.; Farrahi-Moghaddam, R.

    2006-01-01

    In this article, a semi-analytical model for theoretical analysis of micro disk lasers is presented. Using this model, the necessary conditions for the existence of loss less and low-loss modes of micro-resonators are obtained. The resonance frequency of the resonant modes and also the attenuation of low-loss modes are calculated. By comparing the results with results of finite difference method, their validity is certified.

  14. Resonant freak microwaves

    Aguiar, F.M. de

    2011-01-01

    The Helmholtz equation describing transverse magnetic modes in a closed flat microwave resonator with 60 randomly distributed discs is numerically solved. At lower frequencies, the calculated wave intensity spatially distributed obeys the universal Porter-Thomas form if localized modes are excluded. A superposition of resonant modes is shown to lead to rare events of extreme intensities (freak waves) at localized 'hot spots'. The temporally distributed intensity of such a superposition at the center of a hot spot also follows the Porter-Thomas form. Branched modes are found at higher frequencies. The results bear resemblance to recent experiments reported in an open cavity.

  15. Diffusion at the Earth magnetopause: enhancement by Kelvin-Helmholtz instability

    R. Smets

    2007-02-01

    Full Text Available Using hybrid simulations, we examine how particles can diffuse across the Earth's magnetopause because of finite Larmor radius effects. We focus on tangential discontinuities and consider a reversal of the magnetic field that closely models the magnetopause under southward interplanetary magnetic field. When the Larmor radius is on the order of the field reversal thickness, we show that particles can cross the discontinuity. We also show that with a realistic initial shear flow, a Kelvin-Helmholtz instability develops that increases the efficiency of the crossing process. We investigate the distribution functions of the transmitted ions and demonstrate that they are structured according to a D-shape. It accordingly appears that magnetic reconnection at the magnetopause is not the only process that leads to such specific distribution functions. A simple analytical model that describes the built-up of these functions is proposed.

  16. Self-consistent modeling of electron cyclotron resonance ion sources

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lecot, C.

    2004-01-01

    In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally

  17. Self-consistent modeling of electron cyclotron resonance ion sources

    Girard, A.; Hitz, D.; Melin, G.; Serebrennikov, K.; Lécot, C.

    2004-05-01

    In order to predict the performances of electron cyclotron resonance ion source (ECRIS), it is necessary to perfectly model the different parts of these sources: (i) magnetic configuration; (ii) plasma characteristics; (iii) extraction system. The magnetic configuration is easily calculated via commercial codes; different codes also simulate the ion extraction, either in two dimension, or even in three dimension (to take into account the shape of the plasma at the extraction influenced by the hexapole). However the characteristics of the plasma are not always mastered. This article describes the self-consistent modeling of ECRIS: we have developed a code which takes into account the most important construction parameters: the size of the plasma (length, diameter), the mirror ratio and axial magnetic profile, whether a biased probe is installed or not. These input parameters are used to feed a self-consistent code, which calculates the characteristics of the plasma: electron density and energy, charge state distribution, plasma potential. The code is briefly described, and some of its most interesting results are presented. Comparisons are made between the calculations and the results obtained experimentally.

  18. Transmission problems for the Helmholtz equation for a rectilinear-circular lune

    Volodymyr Denysenko

    2007-01-01

    Full Text Available The question related to the construction of the solution of plane transmission problem for the Helmholtz equation in a rectilinear-circular lune is considered. An approach is proposed based on the method of partial domains and the principle of reflection for the solutions of the Helmholtz equation through the segment.

  19. Systematic assignment of Feshbach resonances via an asymptotic bound state model

    Goosen, M.; Kokkelmans, SJ.J.M.F.

    2008-01-01

    We present an Asymptotic Bound state Model (ABM), which is useful to predict Feshbach resonances. The model utilizes asymptotic properties of the interaction potentials to represent coupled molecular wavefunctions. The bound states of this system give rise to Feshbach resonances, localized at the

  20. Analytical model for double split ring resonators with arbitrary ring width

    Zhurbenko, Vitaliy; Jensen, Thomas; Krozer, Viktor

    2008-01-01

    For the first time, the analytical model for a double split ring resonator with unequal width rings is developed. The proposed models for the resonators with equal and unequal widths are based on an impedance matrix representation and provide the prediction of performance in a wide frequency range...

  1. Detection and quantification of creep strain using process compensated resonance testing (PCRT) sorting modules trained with modeled resonance spectra

    Heffernan, Julieanne; Biedermann, Eric; Mayes, Alexander; Livings, Richard; Jauriqui, Leanne; Goodlet, Brent; Aldrin, John C.; Mazdiyasni, Siamack

    2018-04-01

    Process Compensated Resonant Testing (PCRT) is a full-body nondestructive testing (NDT) method that measures the resonance frequencies of a part and correlates them to the part's material and/or damage state. PCRT testing is used in the automotive, aerospace, and power generation industries via automated PASS/FAIL inspections to distinguish parts with nominal process variation from those with the defect(s) of interest. Traditional PCRT tests are created through the statistical analysis of populations of "good" and "bad" parts. However, gathering a statistically significant number of parts can be costly and time-consuming, and the availability of defective parts may be limited. This work uses virtual databases of good and bad parts to create two targeted PCRT inspections for single crystal (SX) nickel-based superalloy turbine blades. Using finite element (FE) models, populations were modeled to include variations in geometric dimensions, material properties, crystallographic orientation, and creep damage. Model results were verified by comparing the frequency variation in the modeled populations with the measured frequency variations of several physical blade populations. Additionally, creep modeling results were verified through the experimental evaluation of coupon geometries. A virtual database of resonance spectra was created from the model data. The virtual database was used to create PCRT inspections to detect crystallographic defects and creep strain. Quantification of creep strain values using the PCRT inspection results was also demonstrated.

  2. A one-dimensional model of resonances with a delta barrier and mass jump

    Alvarez, J.J.; Gadella, M.; Heras, F.J.H.; Nieto, L.M.

    2009-01-01

    In this Letter, we present a one-dimensional model that includes a hard core at the origin, a Dirac delta barrier at a point in the positive semiaxis and a mass jump at the same point. We study the effect of this mass jump in the behavior of the resonances of the model. We obtain an infinite number of resonances for this situation, showing that for the case of a mass jump the imaginary part of the resonance poles tend to a fixed value depending on the quotient of masses, and demonstrate that none of these resonances is degenerated.

  3. Magnetic resonance spectroscopy of traumatic brain in SD rats model

    Li Ke; Li Yangbin; Li Zhiming; Huang Yong; Li Bin; Lu Guangming

    2009-01-01

    Objective: To assess the value and prospect of magnetic resonance spectroscopy (MRS) in early diagnosis of traumatic brain with traumatic brain model in SD rats. Methods: Traumatic brain modal was established in 40 male SD rats utilizing a weigh-drop device, and MRS was performed before trauma and 4,8,24 and 48 hours after trauma. The ratio of N-acetylaspartate/creatine (NAA/Ct) and choline/creatine (Cho/Cr) were calculated and compared with pathological findings respectively. Results: Axonal changes were confirmed in microscopic study 4 hours after injury. The ratio of NAA/Ct decreased distinctly at 4 hours after trauma, followed by a steadily recover at 8 hours, and no significant change from 24h to 48h. There was no significant change in the ratio of Cho/Cr before and after trauma. Conclusion: MRS can be used to monitor the metabolic changes of brain non-invasively. MRS could play a positive role in early diagnosis, prognosis and follow-up of traumatic brain. (authors)

  4. Model for decays of boson resonances with arbitrary spins

    Grigoryan, A.A.; Ivanov, N.Ya.

    1985-01-01

    A formula for the width of resonance with spin J decay into hadrons with arbitrary spins is derived. This width is expressed via S-channel helicity residues of Regge trajectory α J where the resonance J lies. Using the quark-gluon picture predictions for the coupling of quarks with Regge trajectories and SU(6)-classification of hadrons this formula is applied to calculate the widths of decays of resonances, which lie on the vector and tensor trajectories, into pseudoscalar and vector, two vectors and NN-bar-pair

  5. Seafloor identification in sonar imagery via simulations of Helmholtz equations and discrete optimization

    Engquist, Björn; Frederick, Christina; Huynh, Quyen; Zhou, Haomin

    2017-06-01

    We present a multiscale approach for identifying features in ocean beds by solving inverse problems in high frequency seafloor acoustics. The setting is based on Sound Navigation And Ranging (SONAR) imaging used in scientific, commercial, and military applications. The forward model incorporates multiscale simulations, by coupling Helmholtz equations and geometrical optics for a wide range of spatial scales in the seafloor geometry. This allows for detailed recovery of seafloor parameters including material type. Simulated backscattered data is generated using numerical microlocal analysis techniques. In order to lower the computational cost of the large-scale simulations in the inversion process, we take advantage of a pre-computed library of representative acoustic responses from various seafloor parameterizations.

  6. Stability of a modified Peaceman–Rachford method for the paraxial Helmholtz equation on adaptive grids

    Sheng, Qin, E-mail: Qin_Sheng@baylor.edu [Department of Mathematics and Center for Astrophysics, Space Physics and Engineering Research, Baylor University, One Bear Place, Waco, TX 76798-7328 (United States); Sun, Hai-wei, E-mail: hsun@umac.mo [Department of Mathematics, University of Macau (Macao)

    2016-11-15

    This study concerns the asymptotic stability of an eikonal, or ray, transformation based Peaceman–Rachford splitting method for solving the paraxial Helmholtz equation with high wave numbers. Arbitrary nonuniform grids are considered in transverse and beam propagation directions. The differential equation targeted has been used for modeling propagations of high intensity laser pulses over a long distance without diffractions. Self-focusing of high intensity beams may be balanced with the de-focusing effect of created ionized plasma channel in the situation, and applications of grid adaptations are frequently essential. It is shown rigorously that the fully discretized oscillation-free decomposition method on arbitrary adaptive grids is asymptotically stable with a stability index one. Simulation experiments are carried out to illustrate our concern and conclusions.

  7. Inverse random source scattering for the Helmholtz equation in inhomogeneous media

    Li, Ming; Chen, Chuchu; Li, Peijun

    2018-01-01

    This paper is concerned with an inverse random source scattering problem in an inhomogeneous background medium. The wave propagation is modeled by the stochastic Helmholtz equation with the source driven by additive white noise. The goal is to reconstruct the statistical properties of the random source such as the mean and variance from the boundary measurement of the radiated random wave field at multiple frequencies. Both the direct and inverse problems are considered. We show that the direct problem has a unique mild solution by a constructive proof. For the inverse problem, we derive Fredholm integral equations, which connect the boundary measurement of the radiated wave field with the unknown source function. A regularized block Kaczmarz method is developed to solve the ill-posed integral equations. Numerical experiments are included to demonstrate the effectiveness of the proposed method.

  8. Integrability and symmetries for the Helmholtz oscillator with friction

    Almendral, Juan A; Sanjuan, Miguel A F

    2003-01-01

    This paper deals with the Helmholtz oscillator, which is a simple nonlinear oscillator whose equation presents a quadratic nonlinearity and the possibility of escape. When a periodic external force is introduced, the width of the stochastic layer, which is a region around the separatrix where orbits may exhibit transient chaos, is calculated. In the absence of friction and external force, it is well known that analytical solutions exist since it is completely integrable. When only friction is included, there is no analytical solution for all parameter values. However, by means of the Lie theory for differential equations we find a relation between parameters for which the oscillator is integrable. This is related to the fact that the system possesses a symmetry group and the corresponding symmetries are computed. Finally, the analytical explicit solutions are shown and related to the basins of attraction

  9. Analysis and Modeling of Integrated Magnetics for LLC resonant Converters

    Li, Mingxiao; Ouyang, Ziwei; Zhao, Bin

    2017-01-01

    Shunt-inserted transformers are widely used toobtain high leakage inductance. This paper investigates thismethod in depth to make it applicable to integrate resonantinductor for the LLC resonant converters. The analysis andmodel of magnetizing inductance and leakage inductance forshunt...... transformers can provide a significantdifference. The way to obtain the desirable magnetizing andleakage inductance value for LLC resonant converters issimplified by the creation of air gaps together with a magneticshunt. The calculation and relation are validated by finiteelement analysis (FEA) simulations...

  10. Two-Mode Resonator and Contact Model for Standing Wave Piezomotor

    Andersen, B.; Blanke, Mogens; Helbo, J.

    2001-01-01

    The paper presents a model for a standing wave piezoelectric motor with a two bending mode resonator. The resonator is modelled using Hamilton's principle and the Rayleigh-Ritz method. The contact is modelled using the Lagrange Multiplier method under the assumption of slip and it is showed how...... to solve the set of differential-algebraic equations. Detailed simulations show resonance frequencies as function of the piezoelement's position, tip trajectories and contact forces. The paper demonstrates that contact stiffness and stick should be included in such model to obtain physically realistic...

  11. Environmental Light and Its Relationship with Electromagnetic Resonances of Biomolecular Interactions, as Predicted by the Resonant Recognition Model

    Irena Cosic

    2016-06-01

    Full Text Available The meaning and influence of light to biomolecular interactions, and consequently to health, has been analyzed using the Resonant Recognition Model (RRM. The RRM proposes that biological processes/interactions are based on electromagnetic resonances between interacting biomolecules at specific electromagnetic frequencies within the infra-red, visible and ultra-violet frequency ranges, where each interaction can be identified by the certain frequency critical for resonant activation of specific biological activities of proteins and DNA. We found that: (1 the various biological interactions could be grouped according to their resonant frequency into super families of these functions, enabling simpler analyses of these interactions and consequently analyses of influence of electromagnetic frequencies to health; (2 the RRM spectrum of all analyzed biological functions/interactions is the same as the spectrum of the sun light on the Earth, which is in accordance with fact that life is sustained by the sun light; (3 the water is transparent to RRM frequencies, enabling proteins and DNA to interact without loss of energy; (4 the spectrum of some artificial sources of light, as opposed to the sun light, do not cover the whole RRM spectrum, causing concerns for disturbance to some biological functions and consequently we speculate that it can influence health.

  12. A comparison of high-order polynomial and wave-based methods for Helmholtz problems

    Lieu, Alice; Gabard, Gwénaël; Bériot, Hadrien

    2016-09-01

    The application of computational modelling to wave propagation problems is hindered by the dispersion error introduced by the discretisation. Two common strategies to address this issue are to use high-order polynomial shape functions (e.g. hp-FEM), or to use physics-based, or Trefftz, methods where the shape functions are local solutions of the problem (typically plane waves). Both strategies have been actively developed over the past decades and both have demonstrated their benefits compared to conventional finite-element methods, but they have yet to be compared. In this paper a high-order polynomial method (p-FEM with Lobatto polynomials) and the wave-based discontinuous Galerkin method are compared for two-dimensional Helmholtz problems. A number of different benchmark problems are used to perform a detailed and systematic assessment of the relative merits of these two methods in terms of interpolation properties, performance and conditioning. It is generally assumed that a wave-based method naturally provides better accuracy compared to polynomial methods since the plane waves or Bessel functions used in these methods are exact solutions of the Helmholtz equation. Results indicate that this expectation does not necessarily translate into a clear benefit, and that the differences in performance, accuracy and conditioning are more nuanced than generally assumed. The high-order polynomial method can in fact deliver comparable, and in some cases superior, performance compared to the wave-based DGM. In addition to benchmarking the intrinsic computational performance of these methods, a number of practical issues associated with realistic applications are also discussed.

  13. A statistical model for combustion resonance from a DI diesel engine with applications

    Bodisco, Timothy; Low Choy, Samantha; Masri, Assaad; Brown, Richard J.

    2015-08-01

    Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging-allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.

  14. Numerical analysis of the resonance mechanism of the lumped parameter system model for acoustic mine detection

    Wang Chi; Zhou Yu-Qiu; Shen Gao-Wei; Wu Wen-Wen; Ding Wei

    2013-01-01

    The method of numerical analysis is employed to study the resonance mechanism of the lumped parameter system model for acoustic mine detection. Based on the basic principle of the acoustic resonance technique for mine detection and the characteristics of low-frequency acoustics, the ''soil-mine'' system could be equivalent to a damping ''mass-spring'' resonance model with a lumped parameter analysis method. The dynamic simulation software, Adams, is adopted to analyze the lumped parameter system model numerically. The simulated resonance frequency and anti-resonance frequency are 151 Hz and 512 Hz respectively, basically in agreement with the published resonance frequency of 155 Hz and anti-resonance frequency of 513 Hz, which were measured in the experiment. Therefore, the technique of numerical simulation is validated to have the potential for analyzing the acoustic mine detection model quantitatively. The influences of the soil and mine parameters on the resonance characteristics of the soil—mine system could be investigated by changing the parameter setup in a flexible manner. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. The computer simulation of the resonant network for the B-factory model power supply

    Zhou, W.; Endo, K.

    1993-07-01

    A high repetition model power supply and the resonant magnet network are simulated with the computer in order to check and improve the design of the power supply for the B-factory booster. We put our key point on a transient behavior of the power supply and the resonant magnet network. The results of the simulation are given. (author)

  16. Using Micromechanical Resonators to Measure Rheological Properties and Alcohol Content of Model Solutions and Commercial Beverages

    Bart W. Hoogenboom

    2012-05-01

    Full Text Available Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of both model solutions and commercial beverages such as beer, wine and liquor. This demonstrates how micromechanical resonators can be used for quality control of every-day drinks.

  17. Solving the Helmholtz equation in conformal mapped ARROWstructures using homotopy perturbation method

    Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole

    2011-01-01

    . The solution of the mapped Helmholtz equation is found by solving an infinite series of Poisson equations using two dimensional Fourier series. The solution is entirely based on analytical expressions and is not mesh dependent. The analytical results are compared to a numerical (finite element method) solution......The scalar wave equation, or Helmholtz equation, describes within a certain approximation the electromagnetic field distribution in a given system. In this paper we show how to solve the Helmholtz equation in complex geometries using conformal mapping and the homotopy perturbation method...

  18. The Determinate World Kant and Helmholtz on the Physical Meaning of Geometry

    Hyder, David

    2009-01-01

    This study examines the place of Hermann von Helmholtz´s seminal papers on geometry in his philosophy of science. The arguments of these papers are traced back to his prior work on the theory of magnitudes, as well as to Helmholtz´s early, Kantian position. The author claims that Helmholtz should be understood not as opposing Kant, but as modifying the latter´s theory of magnitudes so as to remove obstacles to their common project of constructing a complete system of natural science.

  19. Kelvin-Helmholtz instability as a possible cause of edge localized modes

    Strauss, H.R.

    1992-01-01

    Edge localized modes may be a Kelvin-Helmholtz instability caused by the sheared rotation of H-mode plasmas. The Kelvin-Helmholtz instability is stabilized by coupling to Alfven waves. There is a critical velocity gradient, of the order of the Alfven velocity divided by the magnetic shear length. This is verified in a numerical simulation. The critical velocity shear is consistent with experiment. A non-linear simulation shows how the Kelvin-Helmholtz mode can cause oscillations of the velocity profile. (author). Letter-to-the-editor. 13 refs, 6 figs

  20. Connecting science and the musical arts in teaching tone quality: Integrating Helmholtz motion and master violin teachers' pedagogies

    Collins, Cheri D.

    Is it possible for students to achieve better tone quality from even their factory-made violins? All violins, regardless of cost, have a common capacity for good tone in certain frequencies. These signature modes outline the first position range of a violin (196-600 hertz). To activate this basic capacity of all violins, the string must fully vibrate. To accomplish this the bow must be pulled across the string with enough pressure (relative to its speed and contact point) for the horsehairs to catch. This friction permits the string to vibrate in Helmholtz Motion, which produces a corner that travels along the edge of the string between the bridge and the nut. Creating this corner is the most fundamental technique for achieving good tone. The findings of celebrated scientists Ernest Chladni, Hermann von Helmholtz, and John Schelleng will be discussed and the tone-production pedagogy of master teachers Carl Flesch, Ivan Galamian, Robert Gerle, and Simon Fischer will be investigated. Important connections between the insights of these scientists and master teachers are evident. Integrating science and art can provide teachers with a better understanding of the characteristics of good tone. This can help their students achieve the best possible sound from their instruments. In the private studio the master teacher may not use the words "Helmholtz Motion." Yet through modeling and listening students are able to understand and create a quality tone. Music teachers without experience in string performance may be assigned to teach strings in classroom and ensembles settings. As a result modeling good tone is not always possible. However, all teachers and conductors can understand the fundamental behavior of string vibration and adapt their instruction strategies towards student success. Better tonal quality for any string instrument is ultimately achieved. Mastery and use of the Helmholtz Motion benefits teachers and students alike. Simple practice exercises for teaching

  1. Mathematical model of thyristor inverter including a series-parallel resonant circuit

    Luft, M.; Szychta, E.

    2008-01-01

    The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with the aid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  2. Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit

    Miroslaw Luft; Elzbieta Szychta

    2008-01-01

    The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  3. Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit

    Miroslaw Luft

    2008-01-01

    Full Text Available The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  4. Compact extended model for doppler broadening of neutron absorption resonances in solids

    Villanueva, A. J; Granada, J.R

    2009-01-01

    We present a simplified compact model for calculating Doppler broadening of neutron absorption resonances in an incoherent Debye solid. Our model extends the effective temperature gas model to cover the whole range of energies and temperatures, and reduces the information of the dynamical system to a minimum content compatible with a much better accuracy of the calculation. This model is thus capable of replacing the existing algorithm in standard codes for resonance cross sections preparation aimed at neutron and reactor physics calculations. The model is applied to the 238 U 6.671 eV effective broadened cross section. We also show how this model can be used for thermometry in an improved fashion compared to the effective temperature gas model. Experimental data of the same resonance at low and high temperatures are also shown and the performances of each model are put to the test on this basis. [es

  5. Neutron strength functions: the link between resolved resonances and the optical model

    Moldauer, P.A.

    1980-01-01

    Neutron strength functions and scattering radii are useful as energy and channel radius independent parameters that characterize neutron scattering resonances and provide a connection between R-matrix resonance analysis and the optical model. The choice of R-matrix channel radii is discussed, as are limitations on the accuracies of strength functions. New definitions of the p-wave strength function and scattering radius are proposed. For light nuclei, where strength functions display optical model energy variations over the resolved resonances, a doubly reduced partial neutron width is introduced for more meaningful statistical analyses of widths. The systematic behavior of strength functions and scattering radii is discussed

  6. Combined Helmholtz Integral Equation - Fourier series formulation of acoustical radiation and scattering problems

    Fedotov, I

    2006-07-01

    Full Text Available The Combined Helmholtz Integral Equation – Fourier series Formulation (CHIEFF) is based on representation of a velocity potential in terms of Fourier series and finding the Fourier coefficients of this expansion. The solution could be substantially...

  7. Coupled Kelvin-Helmholtz and Tearing Mode Instabilities at the Mercury's Magnetopause

    Ivanovski, S. L.; Milillo, A.; Kartalev, M.; Massetti, S.

    2018-05-01

    A MHD approach for numerical simulations of coupled Kelvin-Helmholtz and tearing mode instabilities has been applied to Mercury’s magnetopause and used to perform a physical parameters study constrained by the MESSENGER data.

  8. Archive of Geosample Information from the GEOMAR Helmholtz Centre for Ocean Research Kiel Core Repository

    National Oceanic and Atmospheric Administration, Department of Commerce — The GEOMAR Helmholtz Centre for Ocean Research Kiel made a one-time contribution to the Index to Marine and Lacustrine Geological Samples (IMLGS) database of...

  9. Kelvin-Helmholtz evolution in subsonic cold streams feeding galaxies

    Angulo, Adrianna; Coffing, S.; Kuranz, C.; Drake, R. P.; Klein, S.; Trantham, M.; Malamud, G.

    2017-10-01

    The most prolific star formers in cosmological history lie in a regime where dense filament structures carried substantial mass into the galaxy to sustain star formation without producing a shock. However, hydrodynamic instabilities present on the filament surface limit the ability of such structures to deliver dense matter deeply enough to sustain star formation. Simulations lack the finite resolution necessary to allow fair treatment of the instabilities present at the stream boundary. Using the Omega EP laser, we simulate this mode of galaxy formation with a cold, dense, filament structure within a hotter, subsonic flow and observe the interface evolution. Machined surface perturbations stimulate the development of the Kelvin-Helmholtz (KH) instability due to the resultant shear between the two media. A spherical crystal imaging system produces high-resolution radiographs of the KH structures along the filament surface. The results from the first experiments of this kind, using a rod with single-mode, long-wavelength modulations, will be discussed. This work is funded by the U.S. Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956, and the National Laser User Facility Program, Grant Number DE-NA0002719, and through.

  10. Reconstruction of propagating Kelvin-Helmholtz vortices at Mercury's magnetopause

    Sundberg, Torbjörn; Boardsen, Scott A.; Slavin, James A.; Blomberg, Lars G.; Cumnock, Judy A.; Solomon, Sean C.; Anderson, Brian J.; Korth, Haje

    2011-12-01

    A series of quasi-periodic magnetopause crossings were recorded by the MESSENGER spacecraft during its third flyby of Mercury on 29 September 2009, likely caused by a train of propagating Kelvin-Helmholtz (KH) vortices. We here revisit the observations to study the internal structure of the waves. Exploiting MESSENGER's rapid traversal of the magnetopause, we show that the observations permit a reconstruction of the structure of a rolled-up KH vortex directly from the spacecraft's magnetic field measurements. The derived geometry is consistent with all large-scale fluctuations in the magnetic field data, establishes the non-linear nature of the waves, and shows their vortex-like structure. In several of the wave passages, a reduction in magnetic field strength is observed in the middle of the wave, which is characteristic of rolled-up vortices and is related to the increase in magnetic pressure required to balance the centrifugal force on the plasma in the outer regions of a vortex, previously reported in computer simulations. As the KH wave starts to roll up, the reconstructed geometry suggests that the vortices develop two gradual transition regions in the magnetic field, possibly related to the mixing of magnetosheath and magnetospheric plasma, situated at the leading edges from the perspectives of both the magnetosphere and the magnetosheath.

  11. MHD Kelvin-Helmholtz instability in non-hydrostatic equilibrium

    Laghouati, Y; Bouabdallah, A; Zizi, M; Alemany, A

    2007-01-01

    The present work deals with the linear stability of a magnetohydrodynamic shear flow so that a stratified inviscid fluid rotating about a vertical axis when a uniform magnetic field is applied in the direction of the streaming or zonal flow. In geophysical flow, the stability of the flow is determined by taking into account the nonhydrostatic condition depending on Richardson number R i and the deviation δ from hydrostatic equilibrium. According to Stone (Stone P H 1971 J. Fluid. Mech. 45 659), it is shown that such deviation δ decreases the growth rates of three kinds of instability which can appear as geostrophic (G), symmetric (S) and Kelvin-Helmholtz (K-H) instabilities. To be specific, the evolution of the flow is therefore considered in the light of the influence of magnetic field, particularly, on K-H instability. The results of this study are presented by the linear stability of a magnetohydrodynamic, with horizontal free-shear flow of stratified fluid, subject to rotation about the vertical axis and uniform magnetic field in the zonal direction. Results are discussed and compared to previous works as Chandrasekhar (Chandrasekhar S 1961 Hydrodynamic and hydromagnetic stability (Oxford: Clarendon Press) chapter 11 pp 481-513) and Stone

  12. KELVIN-HELMHOLTZ INSTABILITY OF A CORONAL STREAMER

    Feng, L.; Gan, W. Q. [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210008 Nanjing (China); Inhester, B., E-mail: lfeng@pmo.ac.cn [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Str.2, D-37191 Katlenburg-Lindau (Germany)

    2013-09-10

    Shear-flow-driven instability can play an important role in energy transfer processes in coronal plasma. We present for the first time the observation of a kink-like oscillation of a streamer that is probably caused by the streaming kink-mode Kelvin-Helmholtz instability (KHI). The wave-like behavior of the streamer was observed by the Large Angle and Spectrometric Coronagraph Experiment C2 and C3 on board the SOlar and Heliospheric Observatory. The observed wave had a period of about 70-80 minutes, and its wavelength increased from 2 R{sub Sun} to 3 R{sub Sun} in about 1.5 hr. The phase speeds of its crests and troughs decreased from 406 {+-} 20 to 356 {+-} 31 km s{sup -1} during the event. Within the same heliocentric range, the wave amplitude also appeared to increase with time. We attribute the phenomena to the MHD KHI, which occurs at a neutral sheet in a fluid wake. The free energy driving the instability is supplied by the sheared flow and sheared magnetic field across the streamer plane. The plasma properties of the local environment of the streamer were estimated from the phase speed and instability threshold criteria.

  13. Interactions between two magnetohydrodynamic Kelvin-Helmholtz instabilities

    Lai, S. H.; Ip, W.-H.

    2011-01-01

    Kelvin-Helmholtz instability (KHI) driven by velocity shear is a generator of waves found away from the vicinity of the velocity-shear layers since the fast-mode waves radiated from the surface perturbation can propagate away from the transition layer. Thus the nonlinear evolution associated with KHI is not confined near the velocity-shear layer. To understand the physical processes in multiple velocity-shear layers, the interactions between two KHIs at a pair of tangential discontinuities are studied by two-dimensional magnetohydrodynamic simulations. It is shown that the interactions between two neighboring velocity-shear layers are dominated by the propagation of the fast-mode waves radiated from KHIs in a nonuniform medium. That is, the fast-mode Mach number of the surface waves M Fy , a key factor of the nonlinear evolution of KHI, will vary with the nonuniform background plasma velocity due to the existence of two neighboring velocity-shear layers. As long as the M Fy observed in the plasma rest frame across the neighboring velocity-shear layer is larger than one, newly formed fast-mode Mach-cone-like (MCL) plane waves generated by the fast-mode waves can be found in this region. As results of the interactions of two KHIs, reflection and distortion of the MCL plane waves generate the turbulence and increase the plasma temperature, which provide possible mechanisms of heating and accelerating local plasma between two neighboring velocity-shear layers.

  14. Kelvin-Helmholtz instability in a bounded plasma flow

    Burinskaya, T. M.

    2008-01-01

    Kelvin-Helmholtz instability in a three-layer plane geometry is investigated theoretically. It is shown that, in a three-layer system (in contrast to the traditionally considered case in which instability develops at the boundary between two plasma flows), instability can develop at an arbitrary ratio of the plasma flow velocity to the ion-acoustic velocity. Perturbations with wavelengths on the order of the flow thickness or longer can increase even at a zero temperature. The system can also be unstable against long-wavelength perturbations if the flow velocity at one of the boundaries is lower than the sum of the Alfven velocities in the flow and the ambient plasma. The possibility of applying the results obtained to interpret the experimental data acquired in the framework of the CLUSTER multisatellite project is discussed. It follows from these data that, in many cases, the propagation of an accelerated particle flow in the plasma-sheet boundary layer of the Earth's magnetotail is accompanied by the generation of magnetic field oscillations propagating with a velocity on the order of the local Alfven velocity.

  15. Correlations between resonances in a statistical scattering model

    Gorin, T.; Rotter, I.

    1997-01-01

    The distortion of the regular motion in a quantum system by its coupling to the continuum of decay channels is investigated. The regular motion is described by means of a Poissonian ensemble. We focus on the case of only few channels K 2 K distribution in the GOE case. 2. Due to the coupling to the continuum, correlations are induced not only between the positions of the resonances but also between positions and widths. These correlations remain even in the strong coupling limit. In order to explain these results, an asymptotic expression for the width distribution is derived for the one channel case. It relates the width of a trapped resonance state to the distance between its two neighboring levels. (orig.)

  16. Self-consistent modelling of resonant tunnelling structures

    Fiig, T.; Jauho, A.P.

    1992-01-01

    We report a comprehensive study of the effects of self-consistency on the I-V-characteristics of resonant tunnelling structures. The calculational method is based on a simultaneous solution of the effective-mass Schrödinger equation and the Poisson equation, and the current is evaluated...... applied voltages and carrier densities at the emitter-barrier interface. We include the two-dimensional accumulation layer charge and the quantum well charge in our self-consistent scheme. We discuss the evaluation of the current contribution originating from the two-dimensional accumulation layer charges......, and our qualitative estimates seem consistent with recent experimental studies. The intrinsic bistability of resonant tunnelling diodes is analyzed within several different approximation schemes....

  17. Resonance phenomena in a time-dependent, three-dimensional model of an idealized eddy

    Rypina, I. I.; Pratt, L. J.; Wang, P.; Äe; -zgökmen, T. M.; Mezic, I.

    2015-08-01

    We analyze the geometry of Lagrangian motion and material barriers in a time-dependent, three-dimensional, Ekman-driven, rotating cylinder flow, which serves as an idealization for an isolated oceanic eddy and other overturning cells with cylindrical geometry in the ocean and atmosphere. The flow is forced at the top through an oscillating upper lid, and the response depends on the frequency and amplitude of lid oscillations. In particular, the Lagrangian geometry changes near the resonant tori of the unforced flow, whose frequencies are rationally related to the forcing frequencies. Multi-scale analytical expansions are used to simplify the flow in the vicinity of resonant trajectories and to investigate the resonant flow geometries. The resonance condition and scaling can be motivated by simple physical argument. The theoretically predicted flow geometries near resonant trajectories have then been confirmed through numerical simulations in a phenomenological model and in a full solution of the Navier-Stokes equations.

  18. Rectifier Current Control for an LLC Resonant Converter Based on a Simplified Linearized Model

    Zhijian Fang

    2018-03-01

    Full Text Available In this paper, a rectifier current control for an LLC resonant converter is proposed, based on a simplified, two-order, linearized model that adds a rectifier current feedback inner loop to improve dynamic performance. Compared to the traditional large-signal model with seven resonant states, this paper utilizes a rectifier current state to represent the characteristics of the resonant states, simplifying the LLC resonant model from seven orders to two orders. Then, the rectifier current feedback inner loop is proposed to increase the control system damping, improving dynamic performance. The modeling and design methodology for the LLC resonant converter are also presented in this paper. A frequency analysis is conducted to verify the accuracy of the simplified model. Finally, a 200 W LLC resonant converter prototype is built to verify the effectiveness of the proposed control strategy. Compared to a traditional single-loop controller, the settling time and voltage droop were reduced from 10.8 ms to 8.6 ms and from 6.8 V to 4.8 V, respectively, using the proposed control strategy.

  19. Kelvin-Helmholtz instability in type-1 comet tails and associated phenomena

    Ershkovich, A.I.

    1980-01-01

    Selected problems of the solar wind - comet tail coupling that are currently accessible to quantitative analysis are reviewed. The model of a comet tail as a plasma cylinder separated by a tangential discontinuity surface from the solar wind is discussed in detail. This model is compatible with the well-known Alfven mechanism of formation of the comet tail. The stability problem of the comet tail boundary (considered as a discontinuity surface) is solved. Under typical conditions a comet tail boundary can undergo the Kelvin-Helmholtz instability. With finite amplitude the stabilizing effect of the magnetic field increases, and waves become stabilized. This model supplies a detailed quantitative description of helical waves observed in type-1 comet tails. A more general model of the tail boundary as a transition layer with a continuous change of the plasma parameters within it is also considered. This theory, in principle, enables us to solve one of the fundamental problems of cometary physics: the magnetic field of the comet tail can be derived from the observations of helical waves. This field turns out to be of the order of the interplanetary field. Various other considerations, discussed in this review also support this conclusion. (orig.)

  20. Continuum Modeling of Inductor Hysteresis and Eddy Current Loss Effects in Resonant Circuits

    Pries, Jason L. [ORNL; Tang, Lixin [ORNL; Burress, Timothy A. [ORNL

    2017-10-01

    This paper presents experimental validation of a high-fidelity toroid inductor modeling technique. The aim of this research is to accurately model the instantaneous magnetization state and core losses in ferromagnetic materials. Quasi–static hysteresis effects are captured using a Preisach model. Eddy currents are included by coupling the associated quasi-static Everett function to a simple finite element model representing the inductor cross sectional area. The modeling technique is validated against the nonlinear frequency response from two different series RLC resonant circuits using inductors made of electrical steel and soft ferrite. The method is shown to accurately model shifts in resonant frequency and quality factor. The technique also successfully predicts a discontinuity in the frequency response of the ferrite inductor resonant circuit.

  1. A model of the transverse modes of stable and unstable porro-prism resonators using symmetry considerations

    Burger, Liesl; Forbes, Andrew

    2007-09-01

    A simple model of a Porro prism laser resonator has been found to correctly predict the formation of the "petal" mode patterns typical of these resonators. A geometrical analysis of the petals suggests that these petals are the lowest-order modes of this type of resonator. Further use of the model reveals the formation of more complex beam patterns, and the nature of these patterns is investigated. Also, the output of stable and unstable resonator modes is presented.

  2. Transition polarizability model of induced resonance Raman optical activity

    Yamamoto, S.; Bouř, Petr

    2013-01-01

    Roč. 34, č. 25 (2013), s. 2152-2158 ISSN 0192-8651 R&D Projects: GA ČR GAP208/11/0105; GA ČR GA13-03978S; GA MŠk(CZ) LH11033 Grant - others:AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : induced resonance Raman optical activity * europium complexes * density functional computations * light scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.601, year: 2013

  3. Physical optics modeling of modal patterns in a crossed porro prism resonator

    Litvin, IA

    2006-07-01

    Full Text Available A physical optics model is proposed to describe the transverse modal patterns in crossed Porro prism resonators. The model departs from earlier attempts in that the prisms are modeled as non-classical rotating elements with amplitude and phase...

  4. Random matrix approach to plasmon resonances in the random impedance network model of disordered nanocomposites

    Olekhno, N. A.; Beltukov, Y. M.

    2018-05-01

    Random impedance networks are widely used as a model to describe plasmon resonances in disordered metal-dielectric and other two-component nanocomposites. In the present work, the spectral properties of resonances in random networks are studied within the framework of the random matrix theory. We have shown that the appropriate ensemble of random matrices for the considered problem is the Jacobi ensemble (the MANOVA ensemble). The obtained analytical expressions for the density of states in such resonant networks show a good agreement with the results of numerical simulations in a wide range of metal filling fractions 0

  5. Modeling and understanding of effects of randomness in arrays of resonant meta-atoms

    Tretyakov, Sergei A.; Albooyeh, Mohammad; Alitalo, Pekka

    2013-01-01

    In this review presentation we will discuss approaches to modeling and understanding electromagnetic properties of 2D and 3D lattices of small resonant particles (meta-atoms) in transition from regular (periodic) to random (amorphous) states. Nanostructured metasurfaces (2D) and metamaterials (3D......) are arrangements of optically small but resonant particles (meta-atoms). We will present our results on analytical modeling of metasurfaces with periodical and random arrangements of electrically and magnetically resonant meta-atoms with identical or random sizes, both for the normal and oblique-angle excitations....... We show how the electromagnetic response of metasurfaces is related to the statistical parameters of the structure. Furthermore, we will discuss the phenomenon of anti-resonance in extracted effective parameters of metamaterials and clarify its relation to the periodicity (or amorphous nature...

  6. Computer aided design of Langasite resonant cantilevers: analytical models and simulations

    Tellier, C. R.; Leblois, T. G.; Durand, S.

    2010-05-01

    Analytical models for the piezoelectric excitation and for the wet micromachining of resonant cantilevers are proposed. Firstly, computations of metrological performances of micro-resonators allow us to select special cuts and special alignment of the cantilevers. Secondly the self-elaborated simulator TENSOSIM based on the kinematic and tensorial model furnishes etching shapes of cantilevers. As the result the number of selected cuts is reduced. Finally the simulator COMSOL® is used to evaluate the influence of final etching shape on metrological performances and especially on the resonance frequency. Changes in frequency are evaluated and deviating behaviours of structures with less favourable built-ins are tested showing that the X cut is the best cut for LGS resonant cantilevers vibrating in flexural modes (type 1 and type 2) or in torsion mode.

  7. Texture zero neutrino models and their connection with resonant leptogenesis

    Achelashvili, Avtandil; Tavartkiladze, Zurab

    2018-04-01

    Within the low scale resonant leptogenesis scenario, the cosmological CP asymmetry may arise by radiative corrections through the charged lepton Yukawa couplings. While in some cases, as one expects, decisive role is played by the λτ coupling, we show that in specific neutrino textures only by inclusion of the λμ the cosmological CP violation is generated at 1-loop level. With the purpose to relate the cosmological CP violation to the leptonic CP phase δ, we consider an extension of MSSM with two right handed neutrinos (RHN), which are degenerate in mass at high scales. Together with this, we first consider two texture zero 3 × 2 Dirac Yukawa matrices of neutrinos. These via see-saw generated neutrino mass matrices augmented by single ΔL = 2 dimension five (d = 5) operator give predictive neutrino sectors with calculable CP asymmetries. The latter is generated through λμ,τ coupling(s) at 1-loop level. Detailed analysis of the leptogenesis is performed. We also revise some one texture zero Dirac Yukawa matrices, considered earlier, and show that addition of a single ΔL = 2, d = 5 entry in the neutrino mass matrices, together with newly computed 1-loop corrections to the CP asymmetries, give nice accommodation of the neutrino sector and desirable amount of the baryon asymmetry via the resonant leptogenesis even for rather low RHN masses (∼few TeV-107 GeV).

  8. Global Simulations of the Asymmetry in Forming Kelvin-Helmholtz Instability at Mercury

    Paral, J.; Rankin, R.

    2013-12-01

    MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) is the first spacecraft to provide data from the orbit of Mercury. After the probe's insertion into the orbit on March 2011, the in situ measurements revealed a dawn-dusk asymmetry in the observations of Kelvin-Helmholtz (KH) instability. This instability forms at the magnetopause boundary due to the high shear of the plasma flows. The asymmetry in the observations is unexpected and largely unexplained, although it has been speculated that finite ion gyroradius effect plays an important role. The large gyroradius implies that kinetic effects are important and thus must be taken into account. We employ global ion hybrid-kinetic simulations to obtain a 2D model of Mercury's magnetosphere. This code treats ions as particles and follows the full trajectory while electrons act as a charge neutralizing fluid. The planet is treated as the perfect conductor placed in the streaming solar wind to form a quasi steady state of the magnetosphere. By placing a virtual probe in the simulation domain we obtain time series of the plasma parameters which can be compared to the observations by the MESSENGER spacecraft. The comparison of the KH instability is remarkably close to the observations of MESSENGER; to within a factor of two. The model also confirms the asymmetry in the observations. The ion density obtained from the computer model is shown together with velocity vectors (represented by arrows). The solid line represents the trajectory of the third flyby of MESSENGER on September 29, 2009.

  9. Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps

    Melezhik, Vladimir S.

    2018-02-01

    We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.

  10. Roper resonances and generator coordinate method in the chiral-soliton model

    Meissner, T.; Gruemmer, F.; Goeke, K.; Harvey, M.

    1989-01-01

    The nucleon and Δ Roper resonances are described by means of the generator coordinate method in the framework of the nontopological chiral-soliton model. Solitons with various sizes are constructed with a constrained variational technique. The masses of all known Roper resonances come out to within 150 MeV of their experimental values. A nucleon compression modulus of about 4 GeV is extracted. The limits of the approach due to the polarization of the Dirac vacuum are displayed

  11. Informational model verification of ZVS Buck quasi-resonant DC-DC converter

    Vakovsky, Dimiter; Hinov, Nikolay

    2016-12-01

    The aim of the paper is to create a polymorphic informational model of a ZVS Buck quasi-resonant DC-DC converter for the modeling purposes of the object. For the creation of the model is applied flexible open standards for setting, storing, publishing and exchange of data in distributed information environment. The created model is useful for creation of many and different by type variants with different configuration of the composing elements and different inner model of the examined object.

  12. Ferromagnetic linewidth measurements employing electrodynamic model of the magnetic plasmon resonance

    Krupka, Jerzy; Aleshkevych, Pavlo; Salski, Bartlomiej; Kopyt, Pawel

    2018-02-01

    The mode of uniform precession, or Kittel mode, in a magnetized ferromagnetic sphere, has recently been proven to be the magnetic plasmon resonance. In this paper we show how to apply the electrodynamic model of the magnetic plasmon resonance for accurate measurements of the ferromagnetic resonance linewidth ΔH. Two measurement methods are presented. The first one employs Q-factor measurements of the magnetic plasmon resonance coupled to the resonance of an empty metallic cavity. Such coupled modes are known as magnon-polariton modes, i.e. hybridized modes between the collective spin excitation and the cavity excitation. The second one employs direct Q-factor measurements of the magnetic plasmon resonance in a filter setup with two orthogonal semi-loops used for coupling. Q-factor measurements are performed employing a vector network analyser. The methods presented in this paper allow one to extend the measurement range of the ferromagnetic resonance linewidth ΔH well beyond the limits of the commonly used measurement standards in terms of the size of the samples and the lowest measurable linewidths. Samples that can be measured with the newly proposed methods may have larger size as compared to the size of samples that were used in the standard methods restricted by the limits of perturbation theory.

  13. Realistic Gamow shell model for resonance and continuum in atomic nuclei

    Xu, F. R.; Sun, Z. H.; Wu, Q.; Hu, B. S.; Dai, S. J.

    2018-02-01

    The Gamow shell model can describe resonance and continuum for atomic nuclei. The model is established in the complex-moment (complex-k) plane of the Berggren coordinates in which bound, resonant and continuum states are treated on equal footing self-consistently. In the present work, the realistic nuclear force, CD Bonn, has been used. We have developed the full \\hat{Q}-box folded-diagram method to derive the realistic effective interaction in the model space which is nondegenerate and contains resonance and continuum channels. The CD-Bonn potential is renormalized using the V low-k method. With choosing 16O as the inert core, we have applied the Gamow shell model to oxygen isotopes.

  14. Vector and axial-vector resonances in composite models of the Higgs boson

    Franzosi, Diogo Buarque [II. Physikalisches Institut, Universität Göttingen,Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Cacciapaglia, Giacomo; Cai, Haiying; Deandrea, Aldo [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPNL,F-69622, Villeurbanne (France); Frandsen, Mads [CP-Origins & Danish Institute for Advanced Study DIAS, University of Southern Denmark,Campusvej 55, DK-5230 Odense M (Denmark)

    2016-11-11

    We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.

  15. Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging.

    Yunsong Liu

    Full Text Available Compressed sensing has shown to be promising to accelerate magnetic resonance imaging. In this new technology, magnetic resonance images are usually reconstructed by enforcing its sparsity in sparse image reconstruction models, including both synthesis and analysis models. The synthesis model assumes that an image is a sparse combination of atom signals while the analysis model assumes that an image is sparse after the application of an analysis operator. Balanced model is a new sparse model that bridges analysis and synthesis models by introducing a penalty term on the distance of frame coefficients to the range of the analysis operator. In this paper, we study the performance of the balanced model in tight frame based compressed sensing magnetic resonance imaging and propose a new efficient numerical algorithm to solve the optimization problem. By tuning the balancing parameter, the new model achieves solutions of three models. It is found that the balanced model has a comparable performance with the analysis model. Besides, both of them achieve better results than the synthesis model no matter what value the balancing parameter is. Experiment shows that our proposed numerical algorithm constrained split augmented Lagrangian shrinkage algorithm for balanced model (C-SALSA-B converges faster than previously proposed algorithms accelerated proximal algorithm (APG and alternating directional method of multipliers for balanced model (ADMM-B.

  16. Nonlinear behaviour of cantilevered carbon nanotube resonators based on a new nonlinear electrostatic load model

    Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.

    2018-04-01

    The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.

  17. Modelling and simulation of a thermally induced optical transparency in a dual micro-ring resonator.

    Lydiate, Joseph

    2017-07-01

    This paper introduces the simulation and modelling of a novel dual micro-ring resonator. The geometric configuration of the resonators, and the implementation of a simulated broadband excitation source, results in the realization of optical transparencies in the combined through port output spectrum. The 130 nm silicon on insulator rib fabrication process is adopted for the simulation of the dual-ring configuration. Two titanium nitride heaters are positioned over the coupling regions of the resonators, which can be operated independently, to control the spectral position of the optical transparency. A third heater, centrally located above the dual resonator rings, can be used to red shift the entire spectrum to a required reference resonant wavelength. The free spectral range with no heater currents applied is 4.29 nm. For a simulated heater current of 7 mA (55.7 mW heater power) applied to one of the through coupling heaters, the optical transparency exhibits a red shift of 1.79 nm from the reference resonant wavelength. The ring-to-ring separation of approximately 900 nm means that it can be assumed that there is a zero ring-to-ring coupling field in this model. This novel arrangement has potential applications as a gas mass airflow sensor or a gas species identification sensor.

  18. Resonances and fusion in heavy ion reactions: new models and developments

    Cindro, N.

    1982-01-01

    Several aspects of the problem of the resonant behaviour of heavy-ion induced reactions are discussed. First, the problem is set in its relation to fundamental nuclear physics and our understanding of nuclear structure. It is suggested that, if the resonant behaviour of heavy-ion reactions is indeed due to the presence of particular configurations in the composite systems, these configurations must have a very specific nature which prevents their mixing with the adjacent states or else other conditons (e.g. low level density) should be met. Further on, the problem of resonant behaviour observed in back-angle elastic scattering and in forward-angle reaction data is discussed. Collisions between heavy ions leading to the composite systems 36 Ar and 40 Ca are used to discuss the apparent lack of correlation between these two sets of data. A way to understand it, based on the fragmentation of broad resonances, is suggested. In the third part the relation between structure in the fusion cross section excitation functions and that in reaction channel cross sections is discussed. Finally, in the fourth part, the orbiting-cluster model of heavy-ion resonances is briefly described and its predictions discussed. Based on this model a list is given of colliding heavy-ion systems where resonances are expected. (author)

  19. Theoretical model and optimization of a novel temperature sensor based on quartz tuning fork resonators

    Xu Jun; You Bo; Li Xin; Cui Juan

    2007-01-01

    To accurately measure temperatures, a novel temperature sensor based on a quartz tuning fork resonator has been designed. The principle of the quartz tuning fork temperature sensor is that the resonant frequency of the quartz resonator changes with the variation in temperature. This type of tuning fork resonator has been designed with a new doubly rotated cut work at flexural vibration mode as temperature sensor. The characteristics of the temperature sensor were evaluated and the results sufficiently met the target of development for temperature sensor. The theoretical model for temperature sensing has been developed and built. The sensor structure was analysed by finite element method (FEM) and optimized, including tuning fork geometry, tine electrode pattern and the sensor's elements size. The performance curve of output versus measured temperature is given. The results from theoretical analysis and experiments indicate that the sensor's sensitivity can reach 60 ppm 0 C -1 with the measured temperature range varying from 0 to 100 0 C

  20. Non-monotonic resonance in a spatially forced Lengyel-Epstein model

    Haim, Lev [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Department of Oncology, Soroka University Medical Center, Beer-Sheva 84101 (Israel); Hagberg, Aric [Center for Nonlinear Studies, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Meron, Ehud [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990 (Israel)

    2015-06-15

    We study resonant spatially periodic solutions of the Lengyel-Epstein model modified to describe the chlorine dioxide-iodine-malonic acid reaction under spatially periodic illumination. Using multiple-scale analysis and numerical simulations, we obtain the stability ranges of 2:1 resonant solutions, i.e., solutions with wavenumbers that are exactly half of the forcing wavenumber. We show that the width of resonant wavenumber response is a non-monotonic function of the forcing strength, and diminishes to zero at sufficiently strong forcing. We further show that strong forcing may result in a π/2 phase shift of the resonant solutions, and argue that the nonequilibrium Ising-Bloch front bifurcation can be reversed. We attribute these behaviors to an inherent property of forcing by periodic illumination, namely, the increase of the mean spatial illumination as the forcing amplitude is increased.

  1. RECONSTRUCTION OF A HUMAN LUNG MORPHOLOGY MODEL FROM MAGNETIC RESONANCE IMAGES

    RATIONALE A description of lung morphological structure is necessary for modeling the deposition and fate of inhaled therapeutic aerosols. A morphological model of the lung boundary was generated from magnetic resonance (MR) images with the goal of creating a framework for anato...

  2. COMPUTER RECONSTRUCTION OF A HUMAN LUNG MORPHOLOGY MODEL FROM MAGNETIC RESONANCE (MR) IMAGES

    A mathematical description of the morphological structure of the lung is necessary for modeling and analysis of the deposition of inhaled aerosols. A morphological model of the lung boundary was generated from magnetic resonance (MR) images, with the goal of creating a frame...

  3. A collective model description of the low lying and giant dipole resonant properties of 40424446Ca

    Weise, J.I.

    1982-01-01

    The low-lying and giant dipole resonant properties of the even-even calcium isotopes are calculated within the framework of the Gneuss-Greiner model and compared with the experimental data. In the low energy region, comparison is also made with the predictions of a coexistence model

  4. From Helmholtz to Schlick: The evolution of the sign-theory of perception.

    Oberdan, Thomas

    2015-08-01

    Efforts to trace the influence of fin de siècle neo-Kantianism on early 20th Century philosophy of science have led scholars to recognize the powerful influence on Moritz Schlick of Hermann von Helmholtz, the doyen of 19th Century physics and a leader of the zurȕck zu Kant movement. But Michael Friedman thinks that Schlick misunderstood Helmholtz' signature philosophical doctrine, the sign-theory of perception. Indeed, Friedman has argued that Schlick transformed Helmholtz' Kantian view of spatial intuition into an empiricist version of the causal theory of perception. However, it will be argued that, despite the key role the sign-theory played in his epistemology, Schlick thought the Kantianism in Helmholtz' thought was deeply flawed, rendered obsolete by philosophical insights which emerged from recent scientific developments. So even though Schlick embraced the sign-theory, he rejected Helmholtz' ideas about spatial intuition. In fact, like his teacher, Max Planck, Schlick generalized the sign-theory into a form of structural realism. At the same time, Schlick borrowed the method of concept-formation developed by the formalist mathematicians, Moritz Pasch and David Hilbert, and combined it with the conventionalism of Henri Poincaré. Then, to link formally defined concepts with experience, Schlick's introduced his 'method of coincidences', similar to the 'point-coincidences' featured in Einstein's physics. The result was an original scientific philosophy, which owed much to contemporary scientific thinkers, but little to Kant or Kantianism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Modeling dendrite density from magnetic resonance diffusion measurements

    Jespersen, Sune Nørhøj; Kroenke, CD; Østergaard, Leif

    2007-01-01

    in this model: (i) the dendrites and axons, which are modeled as long cylinders with two diffusion coefficients, parallel (DL) and perpendicular (DT) to the cylindrical axis, and (ii) an isotropic monoexponential diffusion component describing water diffusion within and across all other structures, i.......e., in extracellular space and glia cells. The model parameters are estimated from 153 diffusion-weighted images acquired from a formalin-fixed baboon brain. A close correspondence between the data and the signal model is found, with the model parameters consistent with literature values. The model provides......Diffusion-weighted imaging (DWI) provides a noninvasive tool to probe tissue microstructure. We propose a simplified model of neural cytoarchitecture intended to capture the essential features important for water diffusion as measured by NMR. Two components contribute to the NMR signal...

  6. SMATASY. A Program for the model independent description of the Z resonance

    Kirsch, S.; Riemann, T.

    1994-07-01

    SMATASY is an interface for the ZF I T T ER package and may be used for the model independent description of the Z resonance at LEP 1 and SLC. It allows the determination of the Z mass and width and its resonance shape parameters r and j for cross-sections and their asymmetries. The r describes the peak height and j the interference of the Z resonance with photon exchange in each scattering channel and for σ T , σ FB , σ lr , σ pol etc. separately. Alternatively, the helicity amplitudes for a given scattering channel may be determined. We compare our formalism with other model independent approaches. The model independent treatment of QED corrections in SMATASY is applicable also far away from the Z peak. (orig.)

  7. Modeling the diffusion magnetic resonance imaging signal inside neurons

    Nguyen, D V; Li, J R; Grebenkov, D S; Le Bihan, D

    2014-01-01

    The Bloch-Torrey partial differential equation (PDE) describes the complex transverse water proton magnetization due to diffusion-encoding magnetic field gradient pulses. The integral of the solution of this PDE yields the diffusion magnetic resonance imaging (dMRI) signal. In a complex medium such as cerebral tissue, it is difficult to explicitly link the dMRI signal to biological parameters such as the cellular geometry or the cellular volume fraction. Studying the dMRI signal arising from a single neuron can provide insight into how the geometrical structure of neurons influences the measured signal. We formulate the Bloch-Torrey PDE inside a single neuron, under no water exchange condition with the extracellular space, and show how to reduce the 3D simulation in the full neuron to a 3D simulation around the soma and 1D simulations in the neurites. We show that this latter approach is computationally much faster than full 3D simulation and still gives accurate results over a wide range of diffusion times

  8. An analytical model for the determination of resonance frequencies of perforated beams

    Luschi, Luca; Pieri, Francesco

    2014-01-01

    In this paper, we develop closed expressions for the equivalent bending and shear stiffness of beams with regular square perforations, and apply them to the problem of determining the resonance frequencies of slender, regularly perforated clamped–clamped beams, which are of interest in the development of MEMS resonant devices. We prove that, depending on the perforation size, the Euler–Bernoulli equation or the more complex shear equation needs to be used to obtain accurate values for these frequencies. Extensive finite element method simulations are used to validate the proposed model over the full practical range of possible hole sizes. An experimental verification of the model is also presented. (paper)

  9. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography

    Z. Hashemiyan

    2016-01-01

    Full Text Available Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort.

  10. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography

    Packo, P.; Staszewski, W. J.; Uhl, T.

    2016-01-01

    Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808

  11. Partial widths of boson resonances in the quark-gluon model of strong interactions

    Kaidalov, A.B.; Volkovitsky, P.E.

    1981-01-01

    The quark-gluon model of strong interactions based on the topological expansion and the string model ib used for the calculation of the partial widths of boson resonances in the channels with two pseudoscalar mesons. The partial widths of mesons with arbitrary spins lying on the vector and tensor Regge trajectories are expressed in terms of the only rho-meson width. The violation of SU(3) symmetry increases with the growth of the spin of the resonance. The theoretical predictions are in a good agreement with experimental data [ru

  12. Competition model for aperiodic stochastic resonance in a Fitzhugh-Nagumo model of cardiac sensory neurons.

    Kember, G C; Fenton, G A; Armour, J A; Kalyaniwalla, N

    2001-04-01

    Regional cardiac control depends upon feedback of the status of the heart from afferent neurons responding to chemical and mechanical stimuli as transduced by an array of sensory neurites. Emerging experimental evidence shows that neural control in the heart may be partially exerted using subthreshold inputs that are amplified by noisy mechanical fluctuations. This amplification is known as aperiodic stochastic resonance (ASR). Neural control in the noisy, subthreshold regime is difficult to see since there is a near absence of any correlation between input and the output, the latter being the average firing (spiking) rate of the neuron. This lack of correlation is unresolved by traditional energy models of ASR since these models are unsuitable for identifying "cause and effect" between such inputs and outputs. In this paper, the "competition between averages" model is used to determine what portion of a noisy, subthreshold input is responsible, on average, for the output of sensory neurons as represented by the Fitzhugh-Nagumo equations. A physiologically relevant conclusion of this analysis is that a nearly constant amount of input is responsible for a spike, on average, and this amount is approximately independent of the firing rate. Hence, correlation measures are generally reduced as the firing rate is lowered even though neural control under this model is actually unaffected.

  13. The stochastic resonance for the incidence function model of metapopulation

    Li, Jiang-Cheng; Dong, Zhi-Wei; Zhou, Ruo-Wei; Li, Yun-Xian; Qian, Zhen-Wei

    2017-06-01

    A stochastic model with endogenous and exogenous periodicities is proposed in this paper on the basis of metapopulation dynamics to model the crop yield losses due to pests and diseases. The rationale is that crop yield losses occur because the physiology of the growing crop is negatively affected by pests and diseases in a dynamic way over time as crop both grows and develops. Metapopulation dynamics can thus be used to model the resultant crop yield losses. The stochastic metapopulation process is described by using the Simplified Incidence Function model (IFM). Compared to the original IFMs, endogenous and exogenous periodicities are considered in the proposed model to handle the cyclical patterns observed in pest infestations, diseases epidemics, and exogenous affecting factors such as temperature and rainfalls. Agricultural loss data in China are used to fit the proposed model. Experimental results demonstrate that: (1) Model with endogenous and exogenous periodicities is a better fit; (2) When the internal system fluctuations and external environmental fluctuations are negatively correlated, EIL or the cost of loss is monotonically increasing; when the internal system fluctuations and external environmental fluctuations are positively correlated, an outbreak of pests and diseases might occur; (3) If the internal system fluctuations and external environmental fluctuations are positively correlated, an optimal patch size can be identified which will greatly weaken the effects of external environmental influence and hence inhibit pest infestations and disease epidemics.

  14. Model of charge-state distributions for electron cyclotron resonance ion source plasmas

    D. H. Edgell

    1999-12-01

    Full Text Available A computer model for the ion charge-state distribution (CSD in an electron cyclotron resonance ion source (ECRIS plasma is presented that incorporates non-Maxwellian distribution functions, multiple atomic species, and ion confinement due to the ambipolar potential well that arises from confinement of the electron cyclotron resonance (ECR heated electrons. Atomic processes incorporated into the model include multiple ionization and multiple charge exchange with rate coefficients calculated for non-Maxwellian electron distributions. The electron distribution function is calculated using a Fokker-Planck code with an ECR heating term. This eliminates the electron temperature as an arbitrary user input. The model produces results that are a good match to CSD data from the ANL-ECRII ECRIS. Extending the model to 1D axial will also allow the model to determine the plasma and electrostatic potential profiles, further eliminating arbitrary user input to the model.

  15. The J3 SCR model applied to resonant converter simulation

    Avant, R. L.; Lee, F. C. Y.

    1985-01-01

    The J3 SCR model is a continuous topology computer model for the SCR. Its circuit analog and parameter estimation procedure are uniformly applicable to popular computer-aided design and analysis programs such as SPICE2 and SCEPTRE. The circuit analog is based on the intrinsic three pn junction structure of the SCR. The parameter estimation procedure requires only manufacturer's specification sheet quantities as a data base.

  16. Determination of freeze-out conditions from fluctuations in the Hadron Resonance Gas model

    Alba, P; Alberico, W; Sarti, V Mantovani; Ratti, C; Bellwied, R; Bluhm, M; Nahrgang, M

    2015-01-01

    Fluctuations of conserved charges measured in Heavy-Ion Collisions (HICs) received increasing attention in recent years, because they are good candidates to explore the phase diagram of QCD matter. During the last year, net-electric charge and net-proton moments of multiplicities measured at RHIC have been published by the STAR collaboration, for a range of collision energies which spans a region of the phase diagram at finite chemical potential. Here we present a new freeze-out curve obtained using the Hadron Resonance Gas (HRG) model approach to fit these experimental data. The HRG model is modified in order to have a realistic description of the HICs: kinematic cuts, resonance feed-down and resonance regeneration are taken into account. Our result is in agreement with preliminary studies by the ALICE collaboration, and is supported by a recent lattice analysis of the same quantities. (paper)

  17. Vector and Axial-vector resonances in composite models of the Higgs boson

    Franzosi, Diogo Buarque; Cacciapaglia, Giacomo; Cai, Haiying

    2016-01-01

    We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT const...... as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.......We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT...... constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used...

  18. Transmission line model for coupled rectangular double split‐ring resonators

    Yan, Lei; Tang, Meng; Krozer, Viktor

    2011-01-01

    In this work, a model based on a coupled transmission line formulation is developed for microstrip rectangular double split‐ring resonators (DSRRs). This model allows using the physical dimensions of the DSRRs as an input avoiding commonly used extraction of equivalent parameters. The model inclu...... simulations of the DSRR structures. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:1311–1315, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.25988...

  19. [Scientific theoretical founding of medicine as a natural science by Hermann von Helmholtz (1821-1894)].

    Neumann, J N

    1994-01-01

    In this study an attempt will be made to discuss the epistemological problems in the theory and practice of modern technical medicine in the writings of Hermann von Helmholz. An inquiry into the relationship between von Helmholtz' thinking and the critical philosophy of Immanuel Kant is followed by the characteristics of von Helmholtz' philosophy of science which he himself called "empirical theory". The question of medicine as a science finally leads to the main problem of medical epistemology, viz., the relationship between theoretical knowledge and practice in medicine. In this context the anthropological dimension is brought into consideration.

  20. Two numerical methods for an inverse problem for the 2-D Helmholtz equation

    Gryazin, Y A; Lucas, T R

    2003-01-01

    Two solution methods for the inverse problem for the 2-D Helmholtz equation are developed, tested, and compared. The proposed approaches are based on a marching finite-difference scheme which requires the solution of an overdetermined system at each step. The preconditioned conjugate gradient method is used for rapid solutions of these systems and an efficient preconditioner has been developed for this class of problems. Underlying target applications include the imaging of land mines, unexploded ordinance, and pollutant plumes in environmental cleanup sites, each formulated as an inverse problem for a 2-D Helmholtz equation. The images represent the electromagnetic properties of the respective underground regions. Extensive numerical results are presented.

  1. Prediction of multiple resonance characteristics by an extended resistor-inductor-capacitor circuit model for plasmonic metamaterials absorbers in infrared.

    Xu, Xiaolun; Li, Yongqian; Wang, Binbin; Zhou, Zili

    2015-10-01

    The resonance characteristics of plasmonic metamaterials absorbers (PMAs) are strongly dependent on geometric parameters. A resistor-inductor-capacitor (RLC) circuit model has been extended to predict the resonance wavelengths and the bandwidths of multiple magnetic polaritons modes in PMAs. For a typical metallic-dielectric-metallic structure absorber working in the infrared region, the developed model describes the correlation between the resonance characteristics and the dimensional sizes. In particular, the RLC model is suitable for not only the fundamental resonance mode, but also for the second- and third-order resonance modes. The prediction of the resonance characteristics agrees fairly well with those calculated by the finite-difference time-domain simulation and the experimental results. The developed RLC model enables the facilitation of designing multi-band PMAs for infrared radiation detectors and thermal emitters.

  2. Resonance in a Cone-Topped Tube

    Angus Cheng-Huan Chia

    2011-06-01

    Full Text Available The relationship between ratio of the upper opening diameter of a cone-topped cylinder to the cylinder diameter,and the ratio of the length of the air column to resonant period was examined. Plastic cones with upper openings ranging from 1.3 cm to 3.6 cm and tuning forks with frequencies ranging from 261.6 Hz to 523.3 Hz were used. The transition from a standing wave in a cylindrical column to a Helmholtz-type resonance in a resonant cavity with a narrow opening was observed.

  3. Iota-dependent resonance absorption in the optical model description of alpha particle elastic scattering

    Chyla, K.; Jarczyk, L.; Maciuk, B.; Zipper, W.

    1976-01-01

    Alpha particle scattering from 28 Si has been studied at five bombarding energies from 23.5 to 28.5 MeV. iota-dependent resonance absorption has been introduced to the optical model analysis of 28 Si (α,β) 28 Si reaction. (author)

  4. Modeling the Influence of Piriform Sinuses and Valleculae on the Vocal Tract Resonances and Antiresonances

    Vampola, T.; Horáček, Jaromír; Švec, J. G.

    2015-01-01

    Roč. 101, č. 3 (2015), s. 594-602 ISSN 1610-1928 R&D Projects: GA ČR(CZ) GAP101/12/1306 Institutional support: RVO:61388998 Keywords : biomechanics of voice * higher acoustic resonances in human vocal tract * reduced FE model of the vocal tract Subject RIV: BI - Acoustics Impact factor: 0.897, year: 2015

  5. Modeling of Nanophotonic Resonators with the Finite-Difference Frequency-Domain Method

    Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry

    2011-01-01

    Finite-difference frequency-domain method with perfectly matched layers and free-space squeezing is applied to model open photonic resonators of arbitrary morphology in three dimensions. Treating each spatial dimension independently, nonuniform mesh of continuously varying density can be built ea...

  6. Wave packet formulation of the boomerang model for resonant electron--molecule scattering

    McCurdy, C.W.; Turner, J.L.

    1983-01-01

    A time-dependent formulation of the boomerang model for resonant electron--molecule scattering is presented in terms of a wave packet propagating on the complex potential surface of the metastable anion. The results of calculations using efficient semiclassical techniques for propagating the wave packet are found to be in excellent agreement with full quantum-mechanical calculations of vibrational excitation cross sections in e - --N 2 scattering. The application of the wave packet formulation as a computational and conceptual approach to the problem of resonant collisions with polyatomic molecules is discussed in the light of recent wave packet calculations on polyatomic photodissociation and Raman spectra

  7. Information transfer with rate-modulated Poisson processes: a simple model for nonstationary stochastic resonance.

    Goychuk, I

    2001-08-01

    Stochastic resonance in a simple model of information transfer is studied for sensory neurons and ensembles of ion channels. An exact expression for the information gain is obtained for the Poisson process with the signal-modulated spiking rate. This result allows one to generalize the conventional stochastic resonance (SR) problem (with periodic input signal) to the arbitrary signals of finite duration (nonstationary SR). Moreover, in the case of a periodic signal, the rate of information gain is compared with the conventional signal-to-noise ratio. The paper establishes the general nonequivalence between both measures notwithstanding their apparent similarity in the limit of weak signals.

  8. Anomalous resonance of the symmetric single-impurity Anderson model in the presence of pairing fluctuations

    Guang-Ming Zhang; Lu Yu

    1998-10-01

    We consider the symmetric single-impurity Anderson model in the presence of pairing fluctuations. In the isotropic limit, the degrees of freedom of the local impurity are separated into hybridizing and non-hybridizing modes. The self-energy for the hybridizing modes can be obtained exactly, leading to two subbands centered at ±U/2. For the non-hybridizing modes, the second order perturbation yields a singular resonance of the marginal Fermi liquid form. By multiplicative renormalization, the self-energy is derived exactly, showing the resonance is pinned at the Fermi level, while its strength is weakened by renormalization. (author)

  9. Optical model calculation for the unresolved/resolved resonance region of Fe-56

    Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan); Froehner, F.H.

    1997-03-01

    We have studied optical model fits to total neutron cross sections of structural materials using the accurate data base for {sup 56}Fe existing in the resolved and unresolved resonance region. Averages over resolved resonances were calculated with Lorentzian weighting in Reich-Moore (reduced R matrix) approximation. Starting from the best available optical potentials we found that adjustment of the real and imaginary well depths does not work satisfactorily with the conventional weak linear energy dependence of the well depths. If, however, the linear dependences are modified towards low energies, the average total cross sections can be fitted quite well, from the resolved resonance region up to 20 MeV and higher. (author)

  10. Electromechanical model of a resonating nano-cantilever-based sensor for high-resolution and high-sensitivity mass detection

    Abadal, G.; Davis, Zachary James; Helbo, Bjarne

    2001-01-01

    A simple linear electromechanical model for an electrostatically driven resonating cantilever is derived. The model has been developed in order to determine dynamic quantities such as the capacitive current flowing through the cantilever-driver system at the resonance frequency, and it allows us ...

  11. Multi-Criteria Decision-Making Model for the Material Flow of Resonant Wood Production

    Patrik Aláč

    2017-03-01

    Full Text Available This paper proposes a multi-criteria decision-making model, for the selection and evaluation of the most valuable wooden input—resonant wood. Application of a given model can improve the process of input valuation as well as impact and improve particular economic indicators for the resonant wood manufacturer. We have tried to describe and evaluate the supply chain of resonant wood manufacturing and production of musical instruments. Particular value-added and non-value-added activities have been chosen according to the logical sequence of technology. Then, concrete criteria were specified and their significance weightings. Another important part of our paper is the description of resonant wood, specifications, and demands on log and wood species. There are some important physical and mechanical properties which should be taken into account and evaluated during the production of musical instruments. By the application of this model, a particular enterprise can reach an enhanced tool for the continuous evaluation of the product flowing through the supply chain. Visibility of particular operations and their logical sequence, presented by Petri nets, can lead to easier detection of possible defects in these operations and their origin. So, the main purpose of the paper lies in the suggestion of an objective and quantified managerial tool for the decision making.

  12. Asymptotically exact solution of the multi-channel resonant-level model

    Zhang Guangming; Su Zhaobin; Yu Lu.

    1994-01-01

    An asymptotically exact partition function of the multi-channel resonant-level model is obtained through Tomonaga-Luttinger bosonization. A Fermi-liquid vs. non-Fermi-liquid transition, resulting from a competition between the Kondo and X-ray edge physics, is elucidated explicitly via the renormalization group theory. In the strong-coupling limit, the model is renormalized to the Toulouse limit. (author). 20 refs, 1 fig

  13. Modelling the dynamic mechanisms associated with the principal resonance of the seated human body.

    Matsumoto, Y; Griffin, M J

    2001-01-01

    Simple mathematical models have been developed to obtain insights into resonance phenomena observed at about 5 Hz in the dynamic responses of the seated human body exposed to vertical whole-body vibration. Alternative lumped parameter models with a few degrees-of-freedom have been investigated. Rotational degrees-of-freedom, with eccentricity of the centre of gravity of the mass elements, represented responses in the fore-and-aft and pitch axes caused by vertical vibration. The causes of body resonance are not fully understood, but this information is required to develop cause-effect relationships between vibration exposures and effects on human health, comfort and performance.Method. The inertial and geometric parameters for models were based on published anatomical data. Other mechanical parameters were determined by comparing model responses to experimental data. Two models, with four and five degrees-of-freedom, gave more reasonable representations than other models. Mechanical parameters obtained with median and individual experimental data were consistent for vertical degrees-of-freedom but varied for rotational degrees-of-freedom. The resonance of the apparent mass at about 5 Hz may be attributed to a vibration mode consisting of vertical motion of the pelvis and legs and a pitch motion of the pelvis, both of which cause vertical motion of the upper-body above the pelvis, a bending motion of the spine, and vertical motion of the viscera. The mathematical models developed in this study may assist understanding of the dynamic mechanisms responsible for resonances in the seated human body. The information is required to represent mechanical responses of the body and assist the development of models for specific effects of vibration.

  14. Pionic corrections to the MIT bag model: The (3,3) resonance

    Theberge, S.; Thomas, A.W.; Miller, G.A.

    1980-01-01

    By incorporating chiral invariance in the MIT bag model, we are led to a theory in which the pion field is coupled to the confined quarks only at the bag surface. An equivalent quantized theory of nucleons and Δ's interacting with pions is then obtained. The pion-nucleon scattering amplitude in this model is found to give a good fit to experimental data on the (3,3) resonance, with a bag radius of about 0.72 fm

  15. QCD mixing effects in a gauge invariant quark model for photo- and electroproduction of baryon resonances

    Zhenping Li; Close, F.E.

    1990-03-01

    The photo and electroproduction of baryon resonances has been calculated using the Constituent Quark Model with chromodynamics consistent with O(υ 2 /c 2 ) for the quarks. We find that the successes of the nonrelativistic quark model are preserved, some problems are removed and that QCD mixing effects may become important with increasing q 2 in electroproduction. For the first time both spectroscopy and transitions receive a unified treatment with a single set of parameters. (author)

  16. Square Helmholtz coil with homogeneous field for magnetic measurement of longer HTS tapes

    Alamgir, A.K.M. [Applied Superconductivity Research Center, Department of Physics, Building Li Zhai, Room 209, Tsinghua University, Beijing 100084 (China)]. E-mail: alam643@hotmail.com; Fang, J. [Applied Superconductivity Research Center, Department of Physics, Building Li Zhai, Room 209, Tsinghua University, Beijing 100084 (China); Gu, C. [Applied Superconductivity Research Center, Department of Physics, Building Li Zhai, Room 209, Tsinghua University, Beijing 100084 (China); Han, Z. [Applied Superconductivity Research Center, Department of Physics, Building Li Zhai, Room 209, Tsinghua University, Beijing 100084 (China)

    2005-08-01

    Magnetic ac loss measurement of HTS tapes and films at various magnetic field orientations becomes a crucial issue from the view point of measurement precision. In principle, due to tiny loss component and anisotropic properties, longer HTS sample subjected to very good homogeneous field could facilitate the accuracy of this kind of measurement. We investigated field profile of Helmholtz coils with square winding as a magnetizer for HTS tape and films. It is found that square winding exhibits better field-homogeneity than that of conventional circular winding with the similar coil dimensions for ideal condition. Being apart from ideal condition, we investigated field profile of square Helmholtz coil with various combinations of coil parameters and made a conclusion for the best combination based on the field homogeneity and field intensity. The design also provides noise reduction facilities by allowing compact and identical pick up-compensation coil arrangement. In addition, we optimized the final design of Helmholtz coil to compensate the influence of difficulties in square winding on the field distribution. Finally, as small as 0.5% field variation was estimated for 50 mm long sample to be magnetized under a proper combination of fabrication parameters. Investigation of field homogeneity, noise effect and a practical design of square Helmholtz coil as a pick-up coil based magnetizer will be reported.

  17. Implicit Boundary Integral Methods for the Helmholtz Equation in Exterior Domains

    2016-06-01

    solve the Helmholtz equation as ∂Ω goes through significant change in its shape and topology — applications for which implicit representation of the...boundary-value problems for the wave equation and maxwell’s equations. Russian Math . Surv., 1965. [16] S. Reutskiy. The method of fundamental

  18. Optimization of field homogeneity of Helmholtz-like coils for measuring the balance of planar gradiometers

    Nordahn, M.A.; Holst, T.; Shen, Y.Q.

    1999-01-01

    Measuring the balance of planar SQUID gradiometers using a relatively small Helmholtz-like coil system requires a careful design of the coils in order to have a high degree of field uniformity along the radial direction. The level to which planar gradiometers can be balanced will be affected by any misalignment of the gradiometer relative to the ideal central position. Therefore, the maximum degree of balancing possible is calculated numerically for the Helmholtz geometry under various perturbations, including misalignment of the gradiometer along the cylindrical and the radial axis, and angular tilting relative to the normal plane. Furthermore, if the ratio between the coil separation and coil radius is chosen to be less than unity, calculations show that the expected radial uniformity of the field can be improved considerably compared to the traditional Helmholtz geometry. The optimized coil geometry is compared to the Helmholtz geometry and is found to yield up to an order of magnitude improvement of the worst case error signal within a volume spanned by the uncertainty in the alignment. (author)

  19. Continuous versus discrete structures II -- Discrete Hamiltonian systems and Helmholtz conditions

    Cresson, Jacky; Pierret, Frédéric

    2015-01-01

    We define discrete Hamiltonian systems in the framework of discrete embeddings. An explicit comparison with previous attempts is given. We then solve the discrete Helmholtz's inverse problem for the discrete calculus of variation in the Hamiltonian setting. Several applications are discussed.

  20. Square Helmholtz coil with homogeneous field for magnetic measurement of longer HTS tapes

    Alamgir, A.K.M.; Fang, J.; Gu, C.; Han, Z.

    2005-01-01

    Magnetic ac loss measurement of HTS tapes and films at various magnetic field orientations becomes a crucial issue from the view point of measurement precision. In principle, due to tiny loss component and anisotropic properties, longer HTS sample subjected to very good homogeneous field could facilitate the accuracy of this kind of measurement. We investigated field profile of Helmholtz coils with square winding as a magnetizer for HTS tape and films. It is found that square winding exhibits better field-homogeneity than that of conventional circular winding with the similar coil dimensions for ideal condition. Being apart from ideal condition, we investigated field profile of square Helmholtz coil with various combinations of coil parameters and made a conclusion for the best combination based on the field homogeneity and field intensity. The design also provides noise reduction facilities by allowing compact and identical pick up-compensation coil arrangement. In addition, we optimized the final design of Helmholtz coil to compensate the influence of difficulties in square winding on the field distribution. Finally, as small as 0.5% field variation was estimated for 50 mm long sample to be magnetized under a proper combination of fabrication parameters. Investigation of field homogeneity, noise effect and a practical design of square Helmholtz coil as a pick-up coil based magnetizer will be reported

  1. A third note: Helmholtz, Palestrina, and the Early History of Musicology

    Kursell, J.

    2015-01-01

    This contribution focuses on Hermann von Helmholtz’s work on Renaissance composer Giovanni Pierluigi da Palestrina. Helmholtz used his scientific concept of distortion to analyze this music and, reversely, to find corroboration for the concept in his musical analyses. In this, his work interlocked

  2. Riemann's and Helmholtz-Lie's problems of space from Weyl's relativistic perspective

    Bernard, Julien

    2018-02-01

    I reconstruct Riemann's and Helmholtz-Lie's problems of space, from some perspectives that allow for a fruitful comparison with Weyl. In Part II. of his inaugural lecture, Riemann justifies that the infinitesimal metric is the square root of a quadratic form. Thanks to Finsler geometry, I clarify both the implicit and explicit hypotheses used for this justification. I explain that Riemann-Finsler's kind of method is also appropriate to deal with indefinite metrics. Nevertheless, Weyl shares with Helmholtz a strong commitment to the idea that the notion of group should be at the center of the foundations of geometry. Riemann missed this point, and that is why, according to Weyl, he dealt with the problem of space in a "too formal" way. As a consequence, to solve the problem of space, Weyl abandoned Riemann-Finsler's methods for group-theoretical ones. However, from a philosophical point of view, I show that Weyl and Helmholtz are in strong opposition. The meditation on Riemann's inaugural lecture, and its clear methodological separation between the infinitesimal and the finite parts of the problem of space, must have been crucial for Weyl, while searching for strong epistemological foundations for the group-theoretical methods, avoiding Helmholtz's unjustified transition from the finite to the infinitesimal.

  3. Symmetry-breaking analysis for the general Helmholtz-Duffing oscillator

    Cao Hongjun; Seoane, Jesus M.; Sanjuan, Miguel A.F.

    2007-01-01

    The symmetry breaking phenomenon for a general Helmholtz-Duffing oscillator as a function of a symmetric parameter in the nonlinear force is investigated. Different values of this parameter convert the general oscillator into either the Helmholtz or the Duffing oscillator. Due to the variation of the symmetric parameter, the phase space patterns of the unperturbed Helmholtz-Duffing oscillator will cause a huge difference between the left-hand homoclinic orbit and the right-hand one. In particular, the area of the left-hand homoclinic orbits is a strictly monotonously decreasing function, while the area of the right-hand homoclinic orbit varies only in a very small range. There exist distinct local supercritical and subcritical saddle-node bifurcations at two different centers. The left-hand and the right-hand existing regions of the harmonic solutions of the Helmholtz-Duffing oscillator created by the left-hand and the right-hand saddle-node bifurcation curves will lead to different transition in the amplitude-frequency plane. There exists also a critical frequency which has the effect that the left-hand homoclinic bifurcation value is equal to the right-hand homoclinic bifurcation value. And, if the amplitude coefficient of the Helmholtz-Duffing oscillator is used as the control parameter, and it is larger than the same left-hand and right-hand homoclinic bifurcation, then the global stability of the system will be destroyed at a lowest cost. Besides this critical frequency, the left-hand and the right-hand homoclinic bifurcations are not only unequal, but also their effects for the system's stability are different. Among them, the effect resulting from the small homoclinic bifurcation for the system's stability is local and negligible, while the effect from the large homoclinic bifurcation is global but this is accomplished at a quite larger cost

  4. Modelling out-of-plane and in-plane resonant modes of microplates in liquid media

    Ruiz-Díez, V; Hernando-García, J; Manzaneque, T; Sánchez-Rojas, J L; Kucera, M; Schmid, U

    2015-01-01

    In this article, the quality factor and the resonant frequency of different vibrating modes of microplates immersed in liquid are simulated by means of a finite element method (FEM) and compared with experimental data. For the in-plane modes, we studied the first extensional mode of mid-point supported microplates, which may be efficiently actuated by a thin piezoelectric film on top of the structure. A comparison of different approaches to account for the viscous loading in computationally efficient 2D finite element models is presented. As an alternative to the harmonic response, a novel multitone excitation in the fluid–structure interaction model allows for the calculation of the frequency response of the structure. For the out-of-plane modes, different modes were simulated and compared to analytical models to validate our approach. Our 2D FEM model yields more accurate estimations of the experimental resonance frequency and quality factors than the available analytical models. With the help of these tools, the applicability of the micro-resonators as viscosity and density sensors is discussed. (paper)

  5. Dynamical response of multi-walled carbon nanotube resonators based on continuum mechanics modeling for mass sensing applications

    Choi, Myungseok; Olshevskiy, Alexander; Kim, Chang-Wan [Konkuk University, Seoul (Korea, Republic of); Eom, Kilho [Sungkyunkwan University, Suwon (Korea, Republic of); Gwak, Kwanwoong [Sejong University, Seoul (Korea, Republic of); Dai, Mai Duc [Ho Chi Minh City University of Technology and Education, Ho Chi Minh (Viet Nam)

    2017-05-15

    Carbon nanotube (CNT) has recently received much attention due to its excellent electromechanical properties, indicating that CNT can be employed for development of Nanoelectromechanical system (NEMS) such as nanomechanical resonators. For effective design of CNT-based resonators, it is required to accurately predict the vibration behavior of CNT resonators as well as their frequency response to mass adsorption. In this work, we have studied the vibrational behavior of Multi-walled CNT (MWCNT) resonators by using a continuum mechanics modeling that was implemented in Finite element method (FEM). In particular, we consider a transversely isotropic hollow cylinder solid model with Finite element (FE) implementation for modeling the vibration behavior of Multi-walled CNT (MWCNT) resonators. It is shown that our continuum mechanics model provides the resonant frequencies of various MWCNTs being comparable to those obtained from experiments. Moreover, we have investigated the frequency response of MWCNT resonators to mass adsorption by using our continuum model with FE implementation. Our study sheds light on our continuum mechanics model that is useful in predicting not only the vibration behavior of MWCNT resonators but also their sensing performance for further effective design of MWCNT- based NEMS devices.

  6. Validity of the electrical model representation of the effects of nuclear magnetic resonance (1961); Validite de la representation par modele electrique des effets de resonance magnetique nucleaire (1961)

    Bonnet, G [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1961-07-01

    When studying the behaviour of a magnetic resonance transducer formed by the association of an electrical network and of a set of nuclear spins, it is possible to bring about a representation that is analytically equivalent by means of an entirely electrical model, available for transients as well as steady-state. A detailed study of the validity conditions justifies its use in most cases. Also proposed is a linearity criterion of Bloch's equations in transient state that is simply the prolongation of the well-known condition of non-saturation in the steady-state. (author) [French] L'etude du comportement d'un transducteur a resonance magnetique forme de l'association d'un reseau electrique et d'un ensemble de noyaux dotes de spin, montre qu'il est possible d'en deduire une representation analytiquement equivalente au moyen d'un modele entierement electrique utilisable pour un regime transitoire aussi bien que pour un regime permanent. Une etude detaillee des conditions de validite permet d'en justifier l'emploi dans la majorite des cas. On propose enfin un critere de linearite des equations de Bloch en regime transitoire, qui constitue un prolongement de la condition connue de non-saturation en regime stationnaire. (auteur)

  7. Synthetic model for Doppler broadening of neutron absorption resonances in molecular fluids

    Villanueva, Alejandro J., E-mail: villanueva@cab.cnea.gov.a [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Instituto Balseiro, 8400 S.C. de Bariloche (RN) (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Granada, J.R. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Instituto Balseiro, 8400 S.C. de Bariloche (RN) (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina)

    2010-08-15

    A general and systematic approach expressed in modern language, accounting for molecular motion effects on Doppler Broadening of Neutron Absorption Resonances (DBNAR) is given the form of a new model. It relies on well validated hypothesis: The separability of atomic from nuclear degrees of freedom, the use of the Van Hove scattering formalism and the fact that a conceptually identical approach produced experimentally proved predictions when applied to DBNAR in solid systems. We treat the molecular internal degrees of freedom approximately as harmonic oscillators. As a second contribution of this work, a synthetic model is presented in order to make the more complete model mentioned above suitable for neutron calculation codes. This second synthetic model reduces to the exact expressions of the complete model in the low and high neutron energy regimes and provides a plausible transition in between. Numerical results are presented for a general hypothetical case to show its strengths and limitations. Also, both models are applied to a real case of the {sup 238}U 6.674 eV resonant effective broadened absorption cross-section in UF6 (uranium hexafluoride). A direct experimental validation of our models is still necessary for which a special high resolution neutron transmission experiment ought to be devised at low temperatures and pressures on a gaseous system. It is showed how the synthetic model can be used to make thermometric predictions in an improved fashion in comparison to the effective temperature gas model at low temperatures.

  8. The use of acoustically tuned resonators to improve the sound transmission loss of double-panel partitions

    Mason, J. M.; Fahy, F. J.

    1988-07-01

    Double-leaf partitions are often utilized in situations requiring low weight structures with high transmission loss, an example of current interest being the fuselage walls of propeller-driven aircraft. In this case, acoustic excitation is periodic and, if one of the frequencies of excitation lies in the region of the fundamental mass-air-mass frequency of the partition, insulation performance is considerably less than desired. The potential effectiveness of tuned Helmholtz resonators connected to the partition cavity is investigated as a method of improving transmission loss. This is demonstrated by a simple theoretical model and then experimentally verified. Results show that substantial improvements may be obtained at and around the mass-air-mass frequency for a total resonator volume 15 percent of the cavity volume.

  9. Comparative analysis of magnetic resonance in the polaron pair recombination and the triplet exciton-polaron quenching models

    Mkhitaryan, V. V.; Danilović, D.; Hippola, C.; Raikh, M. E.; Shinar, J.

    2018-01-01

    We present a comparative theoretical study of magnetic resonance within the polaron pair recombination (PPR) and the triplet exciton-polaron quenching (TPQ) models. Both models have been invoked to interpret the photoluminescence detected magnetic resonance (PLDMR) results in π -conjugated materials and devices. We show that resonance line shapes calculated within the two models differ dramatically in several regards. First, in the PPR model, the line shape exhibits unusual behavior upon increasing the microwave power: it evolves from fully positive at weak power to fully negative at strong power. In contrast, in the TPQ model, the PLDMR is completely positive, showing a monotonic saturation. Second, the two models predict different dependencies of the resonance signal on the photoexcitation power, PL. At low PL, the resonance amplitude Δ I /I is ∝PL within the PPR model, while it is ∝PL2 crossing over to PL3 within the TPQ model. On the physical level, the differences stem from different underlying spin dynamics. Most prominently, a negative resonance within the PPR model has its origin in the microwave-induced spin-Dicke effect, leading to the resonant quenching of photoluminescence. The spin-Dicke effect results from the spin-selective recombination, leading to a highly correlated precession of the on-resonance pair partners under the strong microwave power. This effect is not relevant for TPQ mechanism, where the strong zero-field splitting renders the majority of triplets off resonance. On the technical level, the analytical evaluation of the line shapes for the two models is enabled by the fact that these shapes can be expressed via the eigenvalues of a complex Hamiltonian. This bypasses the necessity of solving the much larger complex linear system of the stochastic Liouville equations. Our findings pave the way towards a reliable discrimination between the two mechanisms via cw PLDMR.

  10. Circuit model optimization of a nano split ring resonator dimer antenna operating in infrared spectral range

    Gneiding, N.; Zhuromskyy, O.; Peschel, U.; Shamonina, E.

    2014-01-01

    Metamaterials are comprised of metallic structures with a strong response to incident electromagnetic radiation, like, for example, split ring resonators. The interaction of resonator ensembles with electromagnetic waves can be simulated with finite difference or finite elements algorithms, however, above a certain ensemble size simulations become inadmissibly time or memory consuming. Alternatively a circuit description of metamaterials, a well developed modelling tool at radio and microwave frequencies, allows to significantly increase the simulated ensemble size. This approach can be extended to the IR spectral range with an appropriate set of circuit element parameters accounting for physical effects such as electron inertia and finite conductivity. The model is verified by comparing the coupling coefficients with the ones obtained from the full wave numerical simulations, and used to optimize the nano-antenna design with improved radiation characteristics.

  11. Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models

    Rosenthal, C. S.

    1992-01-01

    Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.

  12. Multipole giant resonances of 12C nucleus electro excitation in intermediate coupling model

    Goncharova, N.G.; Zhivopistsev, F.A.

    1977-01-01

    Multipole giant resonances in 12 C electroexcitation are considered using the shell model with coupling. Cross sections are calculated for the states of 1 - , 2 - , 3 - , 4 - , at T=1. The distributions of the transverse form factor at transferred momenta equal to q approximately 0.75, 1.04, 1.22 and 1.56 Fm -1 and the longitudinal form factor for q = 0.75, 1.04, 1.56 Fm -1 are presented. For the excitation energies in the range from 18 to 28 MeV positive-parity states have a small contribution in the cross section. The distribution of the total form factor in the excitation energies is given. It is concluded that the multipole giant resonances of anomalous parity levels calculated within the interatomic-coupling shell model show a satisfactorily close agreement with the behavior of experimental form factors in the excitation energy range from 18 to 28 MeV

  13. Histopathologic correlation of magnetic resonance imaging signal patterns in a spinal cord injury model.

    Weirich, S D; Cotler, H B; Narayana, P A; Hazle, J D; Jackson, E F; Coupe, K J; McDonald, C L; Langford, L A; Harris, J H

    1990-07-01

    Magnetic resonance imaging (MRI) provides a noninvasive method of monitoring the pathologic response to spinal cord injury. Specific MR signal intensity patterns appear to correlate with degrees of improvement in the neurologic status in spinal cord injury patients. Histologic correlation of two types of MR signal intensity patterns are confirmed in the current study using a rat animal model. Adult male Sprague-Dawley rats underwent spinal cord trauma at the midthoracic level using a weight-dropping technique. After laminectomy, 5- and 10-gm brass weights were dropped from designated heights onto a 0.1-gm impounder placed on the exposed dura. Animals allowed to regain consciousness demonstrated variable recovery of hind limb paraplegia. Magnetic resonance images were obtained from 2 hours to 1 week after injury using a 2-tesla MRI/spectrometer. Sacrifice under anesthesia was performed by perfusive fixation; spinal columns were excised en bloc, embedded, sectioned, and observed with the compound light microscope. Magnetic resonance axial images obtained during the time sequence after injury demonstrate a distinct correlation between MR signal intensity patterns and the histologic appearance of the spinal cord. Magnetic resonance imaging delineates the pathologic processes resulting from acute spinal cord injury and can be used to differentiate the type of injury and prognosis.

  14. Shear resonance mode decoupling to determine the characteristic matrix of piezoceramics for 3-D modeling.

    Pardo, Lorena; García, Alvaro; de Espinosa, Francisco Montero; Brebøl, Klaus

    2011-03-01

    The determination of the characteristic frequencies of an electromechanical resonance does not provide enough data to obtain the material properties of piezoceramics, including all losses, from complex impedance measurements. Values of impedance around resonance and antiresonance frequencies are also required to calculate the material losses. Uncoupled resonances are needed for this purpose. The shear plates used for the material characterization present unavoidable mode coupling of the shear mode and other modes of the plate. A study of the evolution of the complex material coefficients as the coupling of modes evolves with the change in the aspect ratio (lateral dimension/thickness) of the plate is presented here. These are obtained using software. A soft commercial PZT ceramic was used in this study and several shear plates amenable to material characterization were obtained in the range of aspect ratios below 15. The validity of the material properties for 3-D modeling of piezoceramics is assessed by means of finite element analysis, which shows that uncoupled resonances are virtually pure thickness-driven shear modes.

  15. Modified model of neutron resonance widths distribution. Results of total gamma-widths approximation

    Sukhovoj, A.M.; Khitrov, V.A.

    2011-01-01

    Functional dependences of probability to observe given Γ n 0 value and algorithms for determination of the most probable magnitudes of the modified model of resonance parameter distributions were used for analysis of the experimental data on the total radiative widths of neutron resonances. As in the case of neutron widths, precise description of the Γ γ spectra requires a superposition of three and more probability distributions for squares of the random normally distributed values with different nonzero average and nonunit dispersion. This result confirms the preliminary conclusion obtained earlier at analysis of Γ n 0 that practically in all 56 tested sets of total gamma widths there are several groups noticeably differing from each other by the structure of their wave functions. In addition, it was determined that radiative widths are much more sensitive than the neutron ones to resonance wave functions structure. Analysis of early obtained neutron reduced widths distribution parameters for 157 resonance sets in the mass region of nuclei 35 ≤ A ≤ 249 was also performed. It was shown that the experimental values of widths can correspond with high probability to superposition of several expected independent distributions with their nonzero mean values and nonunit dispersion

  16. The interpretation of resonance formation in coupled-channel models of positron scattering by atomic hydrogen using localized optical potentials

    Bransden, B.H.; Hewitt, R.N.

    1997-01-01

    Above-threshold resonances can occur in coupled-channel models of the e + + H system when Ps formation is taken into account (although it should be pointed out that, in this specific system, resonances do not occur in an exact theory). In general, to understand the mechanism of resonance formation it is useful to obtain the exact optical potential in a given channel in a localized form. The methods of achieving this localization are discussed with reference to a specific application to the resonance found in the two-state approximation for the l = 0 partial wave. (author)

  17. HelmholtzZentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt. Annual report 2011; HelmholtzZentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt. Jahresbericht 2011

    NONE

    2012-11-01

    The contribution under consideration is the annual report 2011 of the German Research Centre for Environmental Health (HelmholtzZentrum Munich, Federal Republic of Germany). The most important component of this annual report are the scientific highlights according to the following topics: (1) Systems researches for the health (M. Hrabe de Angelis); (2) Mechanisms of the interaction between genes and environment (M. Goetz); (3) Research of the metabolism (M. Tschoep); (4) Research of lungs and allergies (O. Eickelberg); (5) Technologies for the bio medicine (V. Ntziachristos); (6) Natural basis of existence (J. Durner).

  18. Stochastic resonance induced by novel random transitions of motion of FitzHugh-Nagumo neuron model

    Zhang Guangjun; Xu Jianxue

    2005-01-01

    In contrast to the previous studies which have dealt with stochastic resonance induced by random transitions of system motion between two coexisting limit cycle attractors in the FitzHugh-Nagumo (FHN) neuron model after Hopf bifurcation and which have dealt with the phenomenon of stochastic resonance induced by external noise when the model with periodic input has only one attractor before Hopf bifurcation, in this paper we have focused our attention on stochastic resonance (SR) induced by a novel transition behavior, the transitions of motion of the model among one attractor on the left side of bifurcation point and two attractors on the right side of bifurcation point under the perturbation of noise. The results of research show: since one bifurcation of transition from one to two limit cycle attractors and the other bifurcation of transition from two to one limit cycle attractors occur in turn besides Hopf bifurcation, the novel transitions of motion of the model occur when bifurcation parameter is perturbed by weak internal noise; the bifurcation point of the model may stochastically slightly shift to the left or right when FHN neuron model is perturbed by external Gaussian distributed white noise, and then the novel transitions of system motion also occur under the perturbation of external noise; the novel transitions could induce SR alone, and when the novel transitions of motion of the model and the traditional transitions between two coexisting limit cycle attractors after bifurcation occur in the same process the SR also may occur with complicated behaviors types; the mechanism of SR induced by external noise when FHN neuron model with periodic input has only one attractor before Hopf bifurcation is related to this kind of novel transition mentioned above

  19. Modeling and control of Type-2 wind turbines for sub-synchronous resonance damping

    Mancilla-David, Fernando; Domínguez-García, José Luis; De Prada, Mikel; Gomis-Bellmunt, Oriol; Singh, Mohit; Muljadi, Eduard

    2015-01-01

    Highlights: • Dynamic modeling of Type-2 wind turbines for sub-synchronous resonance studies. • Systematic design of a power system stabilizer for Type-2 wind turbines. • Assessment of Type-2 wind turbines to suppress sub-synchronous resonance events. - Abstract: The rapid increase of wind power penetration into power systems around the world has led transmission system operators to enforce stringent grid codes requiring novel functionalities from renewable energy-based power generation. For this reason, there exists a need to asses whether wind turbines (WTs) will comply with such functionalities to ensure power system stability. This paper demonstrates that Type-2 WTs may induce sub-synchronous resonance (SSR) events when connected to a series-compensated transmission line, and with proper control, they may also suppress such events. The paper presents a complete dynamic model tailored to study, via eigenanalysis, SSR events in the presence of Type-2 WTs, and a systematic procedure to design a power system stabilizer using only local and measurable signals. Results are validated through a case study based on the IEEE first benchmark model for SSR studies, as well as with transient computer simulations

  20. A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.

  1. Plasmonic Resonances for Spectroscopy Applications using 3D Finite-Difference Time-Domain Models

    Ravi, Aruna

    Tuning plasmonic extinction resonances of sub-wavelength scale structures is essential to achieve maximum sensitivity and accuracy. These resonances can be controlled with careful design of nanoparticle geometries and incident wave attributes. In the first part of this dissertation, plasmonically enhanced effects on hexagonal-arrays of metal nanoparticles, metal-hole arrays (micro-mesh), and linear-arrays of metal nanorings are analyzed using three-dimensional Finite-Difference Time-Domain (3D-FDTD) simulations. The effect of particle size, lattice spacing, and lack of monodispersity of a self-assembled, hexagonal array layer of silver (Ag) nanoparticles on the extinction resonance is investigated to help determine optimal design specifications for efficient organic solar power harvesting. The enhancement of transmission resonances using plasmonic thin metal films with arrays of holes which enable recording of scatter-free infrared (IR) transmission spectra of individual particles is also explored. This method is quantitative, non-destructive and helps in better understanding the interaction of light with sub-wavelength particles. Next, plasmonically enhanced effects on linear arrays of gold (Au) rings are studied. Simulations employing 3D-FDTD can be used to determine the set of geometrical parameters to attain localized surface plasmon resonance (LSPR). The shifts in resonances due to changes in the effective dielectric of the structure are investigated, which is useful in sensing applications. Computational models enrich experimental studies. In the second part of this dissertation, the effect of particle size, shape and orientation on the IR spectra is investigated using 3D-FDTD and Mie-Bruggeman models. This computational analysis is extended to include clusters of particles of mixed composition. The prediction of extinction and absorption spectra of single particles of mixed composition helps in interpreting their physical properties and predict chemical

  2. Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: Experimental investigation and reduced-order modeling

    Ruzziconi, Laura

    2013-06-10

    We present a study of the dynamic behavior of a microelectromechanical systems (MEMS) device consisting of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected, the first four experimental natural frequencies are identified and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. Several backward and forward frequency sweeps are acquired. The nonlinear behavior is highlighted, which includes ranges of multistability, where the nonresonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is also capable of capturing the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. © 2013 IOP Publishing Ltd.

  3. Kalman Filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry.

    Zhang, Yuxin; Chen, Shuo; Deng, Kexin; Chen, Bingyao; Wei, Xing; Yang, Jiafei; Wang, Shi; Ying, Kui

    2017-01-01

    To develop a self-adaptive and fast thermometry method by combining the original hybrid magnetic resonance thermometry method and the bio heat transfer equation (BHTE) model. The proposed Kalman filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry, abbreviated as KalBHT hybrid method, introduced the BHTE model to synthesize a window on the regularization term of the hybrid algorithm, which leads to a self-adaptive regularization both spatially and temporally with change of temperature. Further, to decrease the sensitivity to accuracy of the BHTE model, Kalman filter is utilized to update the window at each iteration time. To investigate the effect of the proposed model, computer heating simulation, phantom microwave heating experiment and dynamic in-vivo model validation of liver and thoracic tumor were conducted in this study. The heating simulation indicates that the KalBHT hybrid algorithm achieves more accurate results without adjusting λ to a proper value in comparison to the hybrid algorithm. The results of the phantom heating experiment illustrate that the proposed model is able to follow temperature changes in the presence of motion and the temperature estimated also shows less noise in the background and surrounding the hot spot. The dynamic in-vivo model validation with heating simulation demonstrates that the proposed model has a higher convergence rate, more robustness to susceptibility problem surrounding the hot spot and more accuracy of temperature estimation. In the healthy liver experiment with heating simulation, the RMSE of the hot spot of the proposed model is reduced to about 50% compared to the RMSE of the original hybrid model and the convergence time becomes only about one fifth of the hybrid model. The proposed model is able to improve the accuracy of the original hybrid algorithm and accelerate the convergence rate of MR temperature estimation.

  4. Analytical Model for LLC Resonant Converter With Variable Duty-Cycle Control

    Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede

    2016-01-01

    are identified and discussed. The proposed model enables a better understanding of the operation characteristics and fast parameter design of the LLC converter, which otherwise cannot be achieved by the existing simulation based methods and numerical models. The results obtained from the proposed model......In LLC resonant converters, the variable duty-cycle control is usually combined with a variable frequency control to widen the gain range, improve the light-load efficiency, or suppress the inrush current during start-up. However, a proper analytical model for the variable duty-cycle controlled LLC...... converter is still not available due to the complexity of operation modes and the nonlinearity of steady-state equations. This paper makes the efforts to develop an analytical model for the LLC converter with variable duty-cycle control. All possible operation models and critical operation characteristics...

  5. A Linearized Large Signal Model of an LCL-Type Resonant Converter

    Hong-Yu Li

    2015-03-01

    Full Text Available In this work, an LCL-type resonant dc/dc converter with a capacitive output filter is modeled in two stages. In the first high-frequency ac stage, all ac signals are decomposed into two orthogonal vectors in a synchronous rotating d–q frame using multi-frequency modeling. In the dc stage, all dc quantities are represented by their average values with average state-space modeling. A nonlinear two-stage model is then created by means of a non-linear link. By aligning the transformer voltage on the d-axis, the nonlinear link can be eliminated, and the whole converter can be modeled by a single set of linear state-space equations. Furthermore, a feedback control scheme can be formed according to the steady-state solutions. Simulation and experimental results have proven that the resulted model is good for fast simulation and state variable estimation.

  6. Observation of Motion of Bowed Strings and Resonant Strings in Violin Performances

    Matsutani, Akihiro

    2013-10-01

    The motion of a bowed string and a resonant string of a violin were simultaneously observed for the first time. The results of the direct observation of string motion in double stops and harmonics are also presented. The importance of the resonance was experimentally demonstrated from these observations. It is suggested that players should take account of the resonance and ideal Helmholtz motion in violin performances.

  7. Multi-axis force sensing using a resonant composite piezoelectric plate: model and experiments

    Castaño-Cano, Davinson; Grossard, Mathieu; Hubert, Arnaud

    2015-05-01

    Wrist force/torque sensors used in robotic applications increase the performances and flexibility of the automated tasks. They also offer new possibilities in the manufacturing process, where physical contact between the work-piece and environment is required. The wide spreading of these sensors is for now restricted by their features. As an alternative to the existing strain-gauges force sensors, this paper presents a resonant composite structure, which is sensitive to multiple components of force that are considered via the pre-stress effect. Structurally bonded piezoelectric patches are used to bring the structure to its resonance, which is shifted according to applied forces. The relationship between force and frequency shift is modelled considering the multi-physics of this smart structure. This model is built using Hamilton's principle and takes into account pre-stress phenomena. A finite element model (FEM) based on Mindlin theory for plates, has been derived from the analytical model. The FEM model is implemented in MATLAB and compared with commercial FE software. Finally, an experimental prototype validates the model, and shows that it is possible to measure multiple force-components with one single sensing element such as a plate.

  8. Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models

    Nabeela Nathoo

    2014-01-01

    Full Text Available There are exciting new advances in multiple sclerosis (MS resulting in a growing understanding of both the complexity of the disorder and the relative involvement of grey matter, white matter and inflammation. Increasing need for preclinical imaging is anticipated, as animal models provide insights into the pathophysiology of the disease. Magnetic resonance (MR is the key imaging tool used to diagnose and to monitor disease progression in MS, and thus will be a cornerstone for future research. Although gadolinium-enhancing and T2 lesions on MRI have been useful for detecting MS pathology, they are not correlative of disability. Therefore, new MRI methods are needed. Such methods require validation in animal models. The increasing necessity for MRI of animal models makes it critical and timely to understand what research has been conducted in this area and what potential there is for use of MRI in preclinical models of MS. Here, we provide a review of MRI and magnetic resonance spectroscopy (MRS studies that have been carried out in animal models of MS that focus on pathology. We compare the MRI phenotypes of animals and patients and provide advice on how best to use animal MR studies to increase our understanding of the linkages between MR and pathology in patients. This review describes how MRI studies of animal models have been, and will continue to be, used in the ongoing effort to understand MS.

  9. Multi-axis force sensing using a resonant composite piezoelectric plate: model and experiments

    Castaño-Cano, Davinson; Grossard, Mathieu; Hubert, Arnaud

    2015-01-01

    Wrist force/torque sensors used in robotic applications increase the performances and flexibility of the automated tasks. They also offer new possibilities in the manufacturing process, where physical contact between the work-piece and environment is required. The wide spreading of these sensors is for now restricted by their features. As an alternative to the existing strain-gauges force sensors, this paper presents a resonant composite structure, which is sensitive to multiple components of force that are considered via the pre-stress effect. Structurally bonded piezoelectric patches are used to bring the structure to its resonance, which is shifted according to applied forces. The relationship between force and frequency shift is modelled considering the multi-physics of this smart structure. This model is built using Hamilton's principle and takes into account pre-stress phenomena. A finite element model (FEM) based on Mindlin theory for plates, has been derived from the analytical model. The FEM model is implemented in MATLAB and compared with commercial FE software. Finally, an experimental prototype validates the model, and shows that it is possible to measure multiple force-components with one single sensing element such as a plate. (paper)

  10. Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling.

    Zhao, Bo; Setsompop, Kawin; Adalsteinsson, Elfar; Gagoski, Borjan; Ye, Huihui; Ma, Dan; Jiang, Yun; Ellen Grant, P; Griswold, Mark A; Wald, Lawrence L

    2018-02-01

    This article introduces a constrained imaging method based on low-rank and subspace modeling to improve the accuracy and speed of MR fingerprinting (MRF). A new model-based imaging method is developed for MRF to reconstruct high-quality time-series images and accurate tissue parameter maps (e.g., T 1 , T 2 , and spin density maps). Specifically, the proposed method exploits low-rank approximations of MRF time-series images, and further enforces temporal subspace constraints to capture magnetization dynamics. This allows the time-series image reconstruction problem to be formulated as a simple linear least-squares problem, which enables efficient computation. After image reconstruction, tissue parameter maps are estimated via dictionary-based pattern matching, as in the conventional approach. The effectiveness of the proposed method was evaluated with in vivo experiments. Compared with the conventional MRF reconstruction, the proposed method reconstructs time-series images with significantly reduced aliasing artifacts and noise contamination. Although the conventional approach exhibits some robustness to these corruptions, the improved time-series image reconstruction in turn provides more accurate tissue parameter maps. The improvement is pronounced especially when the acquisition time becomes short. The proposed method significantly improves the accuracy of MRF, and also reduces data acquisition time. Magn Reson Med 79:933-942, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Modelling of magneto-acoustic resonance in ferrite-piezoelectric bilayers

    Bichurin, M I; Petrov, V M; Averkin, S V; Filippov, A V [Institute for Electronic Information Systems, Novgorod State University, Veliky Novgorod 173003 (Russian Federation); Liverts, E [Department of Physics, Ben-Gurion University of the Negev, Beersheva 84105 (Israel); Mandal, S; Srinivasan, G [Physics Department, Oakland University, Rochester, MI 48309 (United States)

    2009-11-07

    A model is discussed for magnetoelectric (ME) effects in a single-crystal ferrite-piezoelectric bilayer on a substrate. The specific focus is on coupling at magneto-acoustic resonance (MAR) at the coincidence of ferromagnetic resonance in the ferrite and thickness modes of the electromechanical resonance in the piezoelectric. The clamping effect of the substrate has been considered in determining the ME voltage coefficient and applied to a model system of a bilayer of lead zirconate titanate (PZT) and yttrium iron garnet (YIG) on a gadolinium gallium garnet substrate. The theory predicts a giant ME effect at MAR due to interaction and transfer of energy between elastic modes and the uniform precession spin-wave mode. It is shown that the ME coupling strength decreases with increasing substrate thickness. Estimates for YIG-PZT for nominal film parameters predict MAR at 5 GHz and ME coefficients on the order of 5-70 V cm{sup -1} Oe{sup -1}. The phenomenon is of importance for the realization of multifunctional ME sensors and transducers operating at microwave frequencies.

  12. A Novel Murine Model for Localized Radiation Necrosis and its Characterization Using Advanced Magnetic Resonance Imaging

    Jost, Sarah C.; Hope, Andrew; Kiehl, Erich; Perry, Arie; Travers, Sarah; Garbow, Joel R.

    2009-01-01

    Purpose: To develop a murine model of radiation necrosis using fractionated, subtotal cranial irradiation; and to investigate the imaging signature of radiation-induced tissue damage using advanced magnetic resonance imaging techniques. Methods and Materials: Twenty-four mice each received 60 Gy of hemispheric (left) irradiation in 10 equal fractions. Magnetic resonance images at 4.7 T were subsequently collected using T1-, T2-, and diffusion sequences at selected time points after irradiation. After imaging, animals were killed and their brains fixed for correlative histologic analysis. Results: Contrast-enhanced T1- and T2-weighted magnetic resonance images at months 2, 3, and 4 showed changes consistent with progressive radiation necrosis. Quantitatively, mean diffusivity was significantly higher (mean = 0.86, 1.13, and 1.24 μm 2 /ms at 2, 3, and 4 months, respectively) in radiated brain, compared with contralateral untreated brain tissue (mean = 0.78, 0.82, and 0.83 μm 2 /ms) (p < 0.0001). Histology reflected changes typically seen in radiation necrosis. Conclusions: This murine model of radiation necrosis will facilitate investigation of imaging biomarkers that distinguish between radiation necrosis and tumor recurrence. In addition, this preclinical study supports clinical data suggesting that diffusion-weighted imaging may be helpful in answering this diagnostic question in clinical settings.

  13. Multi-dimensional Inversion Modeling of Surface Nuclear Magnetic Resonance (SNMR Data for Groundwater Exploration

    Warsa

    2014-07-01

    Full Text Available Groundwater is an important economic source of water supply for drinking water and irrigation water for agriculture. Surface nuclear magnetic resonance (SNMR sounding is a relatively new geophysical method that can be used to determine the presence of culturally and economically important substances, such as subsurface water or hydrocarbon distribution. SNMR sounding allows the determination of water content and pore size distribution directly from the surface. The SNMR method is performed by stimulating an alternating current pulse through an antenna at the surface in order to confirm the existence of water in the subsurface. This paper reports the development of a 3-D forward modeling code for SNMR amplitudes and decay times, after which an improved 2-D and 3-D inversion algorithm is investigated, consisting of schemes for regularizing model parameterization. After briefly reviewing inversion schemes generally used in geophysics, the special properties of SNMR or magnetic resonance sounding (MRS inversion are evaluated. We present an extension of MRS to magnetic resonance tomography (MRT, i.e. an extension for 2-D and 3-D investigation, and the appropriate inversions.

  14. A numerical model of the mirror electron cyclotron resonance MECR source

    Hellblom, G.

    1986-03-01

    Results from numerical modeling of a new type of ion source are presented. The plasma in this source is produced by electron cyclotron resonance in a strong conversion magnetic field. Experiments have shown that a well-defined plasma column, extended along the magnetic field (z-axis) can be produced. The electron temperature and the densities of the various plasma particles have been found to have a strong z-position dependence. With the numerical model, a simulation of the evolution of the composition of the plasma as a function of z is made. A qualitative agreement with experimental data can be obtained for certain parameter regimes. (author)

  15. The optical/ultraviolet excess of isolated neutron stars in the resonant cyclotron scattering model

    Tong, Hao; Xu, Ren-Xin; Song, Li-Ming

    2011-12-01

    X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing problem. Recently Kaplan et al. measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may be due to contributions from the bremsstrahlung emission of the electron system in addition to the RCS process.

  16. Combined electromagnetic and photoreaction modeling of CLD-1 photobleaching in polymer microring resonators

    Huang, Yanyi; Poon, Joyce K. S.; Liang, Wei; Yariv, Amnon; Zhang, Cheng; Dalton, Larry R.

    2005-08-01

    By combining a solid-state photoreaction model with the modal solutions of an optical waveguide, we simulate the refractive index change due to the photobleaching of CLD-1 chromophores in an amorphous polycarbonate microring resonator. The simulation agrees well with experimental results. The photobleaching quantum efficiency of the CLD-1 chromophores is determined to be 0.65%. The combined modeling of the electromagnetic wave propagation and photoreaction precisely illustrates the spatial and temporal evolution of the optical properties of the polymer material as manifested in the refractive index and their effects on the modal and physical properties of the optical devices.

  17. Motor circuit computer model based on studies of functional Nuclear Magnetic Resonance

    Garcia Ramo, Karla Batista; Rodriguez Rojas, Rafael; Carballo Barreda, Maylen

    2012-01-01

    The basal ganglia are a complex network of subcortical nuclei involved in motor control, sensorimotor integration, and cognitive processes. Their functioning and interaction with other cerebral structures remains as a subject of debate. The aim of the present work was to simulate the basal ganglia-thalamus-cortex circuitry interaction in motor program selection, supported by functional connectivity pattern obtained by functional nuclear magnetic resonance imaging. Determination of connections weights between neural populations by functional magnetic resonance imaging, contributed to a more realistic formulation of the model; and consequently to obtain similar results to clinical and experimental data. The network allowed to describe the participation of the basal ganglia in motor program selection and the changes in Parkinson disease. The simulation allowed to demonstrate that dopamine depletion above to 40 % leads to a loss of action selection capability, and to reflect the system adaptation ability to compensate dysfunction in Parkinson disease, coincident with experimental and clinical studies

  18. Investigation of the resonant power oscillation in the Halden Boiling Water Reactor by autoregressive modeling

    Oguma, Ritsuo

    1980-01-01

    In the HBWR (Halden Boiling Water Reactor), there exists a resonant power oscillation with period about 0.04 Hz at power levels higher than about 9.5 MWt. While the resonant oscillation in not so large as to affect the normal reactor operation, it is significant, from the viewpoint of reactor diagnosis, to grasp its characteristics and find the cause. Noise analysis based on the autoregressive (AR) modeling technique has been made to reveal the driving source for this oscillation which led to the suggestion that it is attributed to the dynamic interference of heat exchange process between two parallel-connected steam transformers against the reactor. The present study demonstrates that the method used here is highly effective for tracing back to a noise source inducing the variation of quantities in a system, and also applicable to problems of reactor noise analysis and diagnosis. (author)

  19. Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment

    Li Dongxi, E-mail: lidongxi@mail.nwpu.edu.c [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Xu Wei; Guo, Yongfeng; Xu Yong [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-01-31

    We investigate a stochastic model of tumor growth derived from the catalytic Michaelis-Menten reaction with positional and environmental fluctuations under subthreshold periodic treatment. Firstly, the influences of environmental fluctuations on the treatable stage are analyzed numerically. Applying the standard theory of stochastic resonance derived from the two-state approach, we derive the signal-to-noise ratio (SNR) analytically, which is used to measure the stochastic resonance phenomenon. It is found that the weak environmental fluctuations could induce the extinction of tumor cells in the subthreshold periodic treatment. The positional stability is better in favor of the treatment of the tumor cells. Besides, the appropriate and feasible treatment intensity and the treatment cycle should be highlighted considered in the treatment of tumor cells.

  20. Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment

    Li Dongxi; Xu Wei; Guo, Yongfeng; Xu Yong

    2011-01-01

    We investigate a stochastic model of tumor growth derived from the catalytic Michaelis-Menten reaction with positional and environmental fluctuations under subthreshold periodic treatment. Firstly, the influences of environmental fluctuations on the treatable stage are analyzed numerically. Applying the standard theory of stochastic resonance derived from the two-state approach, we derive the signal-to-noise ratio (SNR) analytically, which is used to measure the stochastic resonance phenomenon. It is found that the weak environmental fluctuations could induce the extinction of tumor cells in the subthreshold periodic treatment. The positional stability is better in favor of the treatment of the tumor cells. Besides, the appropriate and feasible treatment intensity and the treatment cycle should be highlighted considered in the treatment of tumor cells.

  1. Sensitivity Filters In Topology Optimisation As A Solution To Helmholtz Type Differential Equation

    Lazarov, Boyan Stefanov; Sigmund, Ole

    2009-01-01

    The focus of the study in this article is on the use of a Helmholtz type differential equation as a filter for topology optimisation problems. Until now various filtering schemes have been utilised in order to impose mesh independence in this type of problems. The usual techniques require topology...... information about the neighbour sub-domains is an expensive operation. The proposed filtering technique requires only mesh information necessary for the finite element discretisation of the problem. The main idea is to define the filtered variable implicitly as a solution of a Helmholtz type differential...... equation with homogeneous Neumann boundary conditions. The properties of the filter are demonstrated for various 2D and 3D topology optimisation problems in linear elasticity, solved on sequential and parallel computers....

  2. The research reactor BER II at the Helmholtz-Center Berlin

    Krohn, Herbert [Helmholtz-Zentrum Berlin (HZB), Berlin (Germany)

    2012-10-15

    For basic and application-oriented research assignments the Helmholtz-Center Berlin (Helmholtz Zentrum Berlin - HZB) runs a research reactor that operates as a source of neutron beams for a wide range of scientific investigations. At the end of the 1980{sup th} the BER II was completed renewed and fitted with new experimental facilities. The BER II is a light water cooled and moderated swimming pool type reactor to be operated at 10 MW thermal power. Six neutron guides deliver cold neutrons from the cold moderator cell to a neutron guide hall adjacent to the experiment hall. With its 24 experimental stations, experimenters at HZB have practically all neutron scattering or neutron radiography techniques at their disposal. (orig.)

  3. Korteweg-de Vries description of Helmholtz-Kerr dark solitons

    Christian, J M [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom) ; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom) ; Chamorro-Posada, P [Departmento de TeorIa de la Senal y Comunicaciones e IngenierIa Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2006-12-15

    A wide variety of different physical systems can be described by a relatively small set of universal equations. For example, small-amplitude nonlinear Schroedinger dark solitons can be described by a Korteweg-de Vries (KdV) equation. Reductive perturbation theory, based on linear boosts and Gallilean transformations, is often employed to establish connections to and between such universal equations. Here, a novel analytical approach reveals that the evolution of small-amplitude Helmholtz-Kerr dark solitons is also governed by a KdV equation. This broadens the class of nonlinear systems that are known to possess KdV soliton solutions, and provides a framework for perturbative analyses when propagation angles are not negligibly small. The derivation of this KdV equation involves an element that appears new to weakly nonlinear analyses, since transformations are required to preserve the rotational symmetry inherent to Helmholtz-type equations.

  4. Korteweg-de Vries description of Helmholtz-Kerr dark solitons

    Christian, J M; McDonald, G S; Chamorro-Posada, P

    2006-01-01

    A wide variety of different physical systems can be described by a relatively small set of universal equations. For example, small-amplitude nonlinear Schroedinger dark solitons can be described by a Korteweg-de Vries (KdV) equation. Reductive perturbation theory, based on linear boosts and Gallilean transformations, is often employed to establish connections to and between such universal equations. Here, a novel analytical approach reveals that the evolution of small-amplitude Helmholtz-Kerr dark solitons is also governed by a KdV equation. This broadens the class of nonlinear systems that are known to possess KdV soliton solutions, and provides a framework for perturbative analyses when propagation angles are not negligibly small. The derivation of this KdV equation involves an element that appears new to weakly nonlinear analyses, since transformations are required to preserve the rotational symmetry inherent to Helmholtz-type equations

  5. The research reactor BER II at the Helmholtz-Center Berlin

    Krohn, Herbert

    2012-01-01

    For basic and application-oriented research assignments the Helmholtz-Center Berlin (Helmholtz Zentrum Berlin - HZB) runs a research reactor that operates as a source of neutron beams for a wide range of scientific investigations. At the end of the 1980 th the BER II was completed renewed and fitted with new experimental facilities. The BER II is a light water cooled and moderated swimming pool type reactor to be operated at 10 MW thermal power. Six neutron guides deliver cold neutrons from the cold moderator cell to a neutron guide hall adjacent to the experiment hall. With its 24 experimental stations, experimenters at HZB have practically all neutron scattering or neutron radiography techniques at their disposal. (orig.)

  6. The outlooks of Helmholtz, Plank and Einstein on the unified physical theory

    Treder, G.Yu.

    1982-01-01

    The outlooks of Helmholtz, Planck and Einstein on the unified physical theory are exposed. Planck formulated the Einstein relativistic mechanics in the canonical form stemming from the suggested by Helmholtz approach that the principle of action is the unified formal principle of physics. Einstein and his companious proceeded from machroscopic fields in the attempts to prove the unified geometric field theory. The sense of Planck length as ''the smallest length in physics'' is determined, on the one hand, by the Heizenberg uncerntainty principle for the measurement process, and on the other hand by the universal proportionality between inertia and gravity. It results from geometrical nature and gravitational potential, i. e. from Einstein interpretation of the equivalence principle

  7. On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation

    Bory Reyes, Juan; Abreu Blaya, Ricardo; Rodríguez Dagnino, Ramón Martin; Kats, Boris Aleksandrovich

    2018-01-01

    The Riemann boundary value problem (RBVP to shorten notation) in the complex plane, for different classes of functions and curves, is still widely used in mathematical physics and engineering. For instance, in elasticity theory, hydro and aerodynamics, shell theory, quantum mechanics, theory of orthogonal polynomials, and so on. In this paper, we present an appropriate hyperholomorphic approach to the RBVP associated to the two dimensional Helmholtz equation in R^2 . Our analysis is based on a suitable operator calculus.

  8. Numerical solution of an inverse 2D Cauchy problem connected with the Helmholtz equation

    Wei, T; Qin, H H; Shi, R

    2008-01-01

    In this paper, the Cauchy problem for the Helmholtz equation is investigated. By Green's formulation, the problem can be transformed into a moment problem. Then we propose a numerical algorithm for obtaining an approximate solution to the Neumann data on the unspecified boundary. Error estimate and convergence analysis have also been given. Finally, we present numerical results for several examples and show the effectiveness of the proposed method

  9. Can Hall effect trigger Kelvin-Helmholtz instability in sub-Alfvénic flows?

    Pandey, B. P.

    2018-05-01

    In the Hall magnetohydrodynamics, the onset condition of the Kelvin-Helmholtz instability is solely determined by the Hall effect and is independent of the nature of shear flows. In addition, the physical mechanism behind the super- and sub-Alfvénic flows becoming unstable is quite different: the high-frequency right circularly polarized whistler becomes unstable in the super-Alfvénic flows whereas low-frequency, left circularly polarized ion-cyclotron wave becomes unstable in the presence of sub-Alfvénic shear flows. The growth rate of the Kelvin-Helmholtz instability in the super-Alfvénic case is higher than the corresponding ideal magnetohydrodynamic rate. In the sub-Alfvénic case, the Hall effect opens up a new, hitherto inaccessible (to the magnetohydrodynamics) channel through which the partially or fully ionized fluid can become Kelvin-Helmholtz unstable. The instability growth rate in this case is smaller than the super-Alfvénic case owing to the smaller free shear energy content of the flow. When the Hall term is somewhat smaller than the advection term in the induction equation, the Hall effect is also responsible for the appearance of a new overstable mode whose growth rate is smaller than the purely growing Kelvin-Helmholtz mode. On the other hand, when the Hall diffusion dominates the advection term, the growth rate of the instability depends only on the Alfvén -Mach number and is independent of the Hall diffusion coefficient. Further, the growth rate in this case linearly increases with the Alfvén frequency with smaller slope for sub-Alfvénic flows.

  10. Methodologies for Wind Turbine and STATCOM Integration in Wind Power Plant Models for Harmonic Resonances Assessment

    Freijedo Fernandez, Francisco Daniel; Chaudhary, Sanjay Kumar; Guerrero, Josep M.

    2015-01-01

    -domain. As an alternative, a power based averaged modelling is also proposed. Type IV wind turbine harmonic signature and STATCOM active harmonic mitigation are considered for the simulation case studies. Simulation results provide a good insight of the features and limitations of the proposed methodologies.......This paper approaches modelling methodologies for integration of wind turbines and STATCOM in harmonic resonance studies. Firstly, an admittance equivalent model representing the harmonic signature of grid connected voltage source converters is provided. A simplified type IV wind turbine modelling...... is then straightforward. This linear modelling is suitable to represent the wind turbine in the range of frequencies at which harmonic interactions are likely. Even the admittance method is suitable both for frequency and time domain studies, some limitations arise in practice when implementing it in the time...

  11. Damping width of giant dipole resonances of cold and hot nuclei: A macroscopic model

    Mughabghab, S.F.; Sonzogni, A.A.

    2002-01-01

    A phenomenological macroscopic model of the giant dipole resonance (GDR) damping width of cold and hot nuclei with ground-state spherical and near-spherical shapes is developed. The model is based on a generalized Fermi liquid model which takes into account the nuclear surface dynamics. The temperature dependence of the GDR damping width is accounted for in terms of surface and volume components. Parameter-free expressions for the damping width and the effective deformation are obtained. The model is validated with GDR measurements of the following nuclides: 39,40 K, 42 Ca, 45 Sc, 59,63 Cu, 109-120 Sn, 147 Eu, 194 Hg, and 208 Pb, and is compared with the predictions of other models

  12. Recent Advances in Translational Magnetic Resonance Imaging in Animal Models of Stress and Depression.

    McIntosh, Allison L; Gormley, Shane; Tozzi, Leonardo; Frodl, Thomas; Harkin, Andrew

    2017-01-01

    Magnetic resonance imaging (MRI) is a valuable translational tool that can be used to investigate alterations in brain structure and function in both patients and animal models of disease. Regional changes in brain structure, functional connectivity, and metabolite concentrations have been reported in depressed patients, giving insight into the networks and brain regions involved, however preclinical models are less well characterized. The development of more effective treatments depends upon animal models that best translate to the human condition and animal models may be exploited to assess the molecular and cellular alterations that accompany neuroimaging changes. Recent advances in preclinical imaging have facilitated significant developments within the field, particularly relating to high resolution structural imaging and resting-state functional imaging which are emerging techniques in clinical research. This review aims to bring together the current literature on preclinical neuroimaging in animal models of stress and depression, highlighting promising avenues of research toward understanding the pathological basis of this hugely prevalent disorder.

  13. Do basal Ganglia amplify willed action by stochastic resonance? A model.

    V Srinivasa Chakravarthy

    Full Text Available Basal ganglia are usually attributed a role in facilitating willed action, which is found to be impaired in Parkinson's disease, a pathology of basal ganglia. We hypothesize that basal ganglia possess the machinery to amplify will signals, presumably weak, by stochastic resonance. Recently we proposed a computational model of Parkinsonian reaching, in which the contributions from basal ganglia aid the motor cortex in learning to reach. The model was cast in reinforcement learning framework. We now show that the above basal ganglia computational model has all the ingredients of stochastic resonance process. In the proposed computational model, we consider the problem of moving an arm from a rest position to a target position: the two positions correspond to two extrema of the value function. A single kick (a half-wave of sinusoid, of sufficiently low amplitude given to the system in resting position, succeeds in taking the system to the target position, with high probability, only at a critical noise level. But for suboptimal noise levels, the model arm's movements resemble Parkinsonian movement symptoms like akinetic rigidity (low noise and dyskinesias (high noise.

  14. On the synthesis of resonance lines in dynamical models of structured hot-star winds

    Puls, J.; Owocki, S. P.; Fullerton, A. W.

    1993-01-01

    We examine basic issues involved in synthesizing resonance-line profiles from 1-D, dynamical models of highly structured hot-star winds. Although these models exhibit extensive variations in density as well as velocity, the density scale length is still typically much greater than the Sobolev length. The line transfer is thus treated using a Sobolev approach, as generalized by Rybicki & Hummer (1978) to take proper account of the multiple Sobolev resonances arising from the nonmonotonic velocity field. The resulting reduced-lambda-matrix equation describing nonlocal coupling of the source function is solved by iteration, and line profiles are then derived from formal solution integration using this source function. Two more approximate methods that instead use either a stationary or a structured, local source function yield qualitatively similar line-profiles, but are found to violate photon conservation by 10% or more. The full results suggest that such models may indeed be able to reproduce naturally some of the qualitative properties long noted in observed UV line profiles, such as discrete absorption components in unsaturated lines, or the blue-edge variability in saturated lines. However, these particular models do not yet produce the black absorption troughs commonly observed in saturated lines, and it seems that this and other important discrepancies (e.g., in acceleration time scale of absorption components) may require development of more complete models that include rotation and other 2-D and/or 3-D effects.

  15. Preserving the Helmholtz dispersion relation: One-way acoustic wave propagation using matrix square roots

    Keefe, Laurence

    2016-11-01

    Parabolized acoustic propagation in transversely inhomogeneous media is described by the operator update equation U (x , y , z + Δz) =eik0 (- 1 +√{ 1 + Z }) U (x , y , z) for evolution of the envelope of a wavetrain solution to the original Helmholtz equation. Here the operator, Z =∇T2 + (n2 - 1) , involves the transverse Laplacian and the refractive index distribution. Standard expansion techniques (on the assumption Z << 1)) produce pdes that approximate, to greater or lesser extent, the full dispersion relation of the original Helmholtz equation, except that none of them describe evanescent/damped waves without special modifications to the expansion coefficients. Alternatively, a discretization of both the envelope and the operator converts the operator update equation into a matrix multiply, and existing theorems on matrix functions demonstrate that the complete (discrete) Helmholtz dispersion relation, including evanescent/damped waves, is preserved by this discretization. Propagation-constant/damping-rates contour comparisons for the operator equation and various approximations demonstrate this point, and how poorly the lowest-order, textbook, parabolized equation describes propagation in lined ducts.

  16. Helmholtz and Diffusion Equations Associated with Local Fractional Derivative Operators Involving the Cantorian and Cantor-Type Cylindrical Coordinates

    Ya-Juan Hao

    2013-01-01

    Full Text Available The main object of this paper is to investigate the Helmholtz and diffusion equations on the Cantor sets involving local fractional derivative operators. The Cantor-type cylindrical-coordinate method is applied to handle the corresponding local fractional differential equations. Two illustrative examples for the Helmholtz and diffusion equations on the Cantor sets are shown by making use of the Cantorian and Cantor-type cylindrical coordinates.

  17. The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice

    Kallarackal, Jim

    2011-04-28

    Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the

  18. The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice

    Kallarackal, Jim

    2011-01-01

    Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the

  19. Acoustic radiation force induced resonance elastography of coagulating blood: theoretical viscoelasticity modeling and ex vivo experimentation

    Bhatt, Manish; Montagnon, Emmanuel; Destrempes, François; Chayer, Boris; Kazemirad, Siavash; Cloutier, Guy

    2018-03-01

    Deep vein thrombosis is a common vascular disease that can lead to pulmonary embolism and death. The early diagnosis and clot age staging are important parameters for reliable therapy planning. This article presents an acoustic radiation force induced resonance elastography method for the viscoelastic characterization of clotting blood. The physical concept of this method relies on the mechanical resonance of the blood clot occurring at specific frequencies. Resonances are induced by focusing ultrasound beams inside the sample under investigation. Coupled to an analytical model of wave scattering, the ability of the proposed method to characterize the viscoelasticity of a mimicked venous thrombosis in the acute phase is demonstrated. Experiments with a gelatin-agar inclusion sample of known viscoelasticity are performed for validation and establishment of the proof of concept. In addition, an inversion method is applied in vitro for the kinetic monitoring of the blood coagulation process of six human blood samples obtained from two volunteers. The computed elasticity and viscosity values of blood samples at the end of the 90 min kinetics were estimated at 411  ±  71 Pa and 0.25  ±  0.03 Pa · s for volunteer #1, and 387  ±  35 Pa and 0.23  ±  0.02 Pa · s for volunteer #2, respectively. The proposed method allowed reproducible time-varying thrombus viscoelastic measurements from samples having physiological dimensions.

  20. Simultaneous multislice magnetic resonance fingerprinting with low-rank and subspace modeling.

    Bo Zhao; Bilgic, Berkin; Adalsteinsson, Elfar; Griswold, Mark A; Wald, Lawrence L; Setsompop, Kawin

    2017-07-01

    Magnetic resonance fingerprinting (MRF) is a new quantitative imaging paradigm that enables simultaneous acquisition of multiple magnetic resonance tissue parameters (e.g., T 1 , T 2 , and spin density). Recently, MRF has been integrated with simultaneous multislice (SMS) acquisitions to enable volumetric imaging with faster scan time. In this paper, we present a new image reconstruction method based on low-rank and subspace modeling for improved SMS-MRF. Here the low-rank model exploits strong spatiotemporal correlation among contrast-weighted images, while the subspace model captures the temporal evolution of magnetization dynamics. With the proposed model, the image reconstruction problem is formulated as a convex optimization problem, for which we develop an algorithm based on variable splitting and the alternating direction method of multipliers. The performance of the proposed method has been evaluated by numerical experiments, and the results demonstrate that the proposed method leads to improved accuracy over the conventional approach. Practically, the proposed method has a potential to allow for a 3× speedup with minimal reconstruction error, resulting in less than 5 sec imaging time per slice.

  1. A Squeeze-film Damping Model for the Circular Torsion Micro-resonators

    Yang, Fan; Li, Pu

    2017-07-01

    In recent years, MEMS devices are widely used in many industries. The prediction of squeeze-film damping is very important for the research of high quality factor resonators. In the past, there have been many analytical models predicting the squeeze-film damping of the torsion micro-resonators. However, for the circular torsion micro-plate, the works over it is very rare. The only model presented by Xia et al[7] using the method of eigenfunction expansions. In this paper, The Bessel series solution is used to solve the Reynolds equation under the assumption of the incompressible gas of the gap, the pressure distribution of the gas between two micro-plates is obtained. Then the analytical expression for the damping constant of the device is derived. The result of the present model matches very well with the finite element method (FEM) solutions and the result of Xia’s model, so the present models’ accuracy is able to be validated.

  2. Spallation Neutron Source Drift Tube Linac Resonance Control Cooling System Modeling

    Tang, Johnny Y; Champion, Marianne M; Feschenko, Alexander; Gibson, Paul; Kiselev, Yuri; Kovalishin, A S; Kravchuk, Leonid V; Kvasha, Adolf; Schubert, James P

    2005-01-01

    The Resonance Control Cooling System (RCCS) for the warm linac of the Spallation Neutron Source was designed by Los Alamos National Laboratory. The primary design focus was on water cooling of individual component contributions. The sizing the RCCS water skid was accomplished by means of a specially created SINDA/FLUINT model tailored to these system requirements. A new model was developed in Matlab Simulink and incorporates actual operational values and control valve interactions. Included is the dependence of RF input power on system operation, cavity detuning values during transients, time delays that result from water flows through the heat exchanger, the dynamic process of water warm-up in the cooling system due to dissipated RF power on the cavity surface, differing contributions on the cavity detuning due to drift tube and wall heating, and a dynamic model of the heat exchanger with characteristics in close agreement to the real unit. Because of the Matlab Simulink model, investigation of a wide range ...

  3. Multi-component fiber track modelling of diffusion-weighted magnetic resonance imaging data

    Yasser M. Kadah

    2010-01-01

    Full Text Available In conventional diffusion tensor imaging (DTI based on magnetic resonance data, each voxel is assumed to contain a single component having diffusion properties that can be fully represented by a single tensor. Even though this assumption can be valid in some cases, the general case involves the mixing of components, resulting in significant deviation from the single tensor model. Hence, a strategy that allows the decomposition of data based on a mixture model has the potential of enhancing the diagnostic value of DTI. This project aims to work towards the development and experimental verification of a robust method for solving the problem of multi-component modelling of diffusion tensor imaging data. The new method demonstrates significant error reduction from the single-component model while maintaining practicality for clinical applications, obtaining more accurate Fiber tracking results.

  4. Improvement in transmission loss of aircraft double wall with resonators

    Sun, Jincai; Shi, Liming; Ye, Xining

    1991-08-01

    A little volume low frequency resonator applicable to double-wall configuration of propeller-driven aircraft was designed on the basis of the principle of Helmholtz resonator. The normal incidence absorption coefficient of the various single resonator has been measured. The agreement between theoretical and experimental results is encouraging. An array of resonators whose resonant frequency at 85 Hz and 160 Hz, respectively, are installed between aircraft double-panel, and it has been shown that transmission loss of the double wall structure with resonators improve 4 dB and 6.5 dB in 1/3rd octave bandwidth at 80 Hz and 160 Hz center frequency, respectively, and 5 dB and 7 dB at resonant frequencies, compared with that of the double wall configuration without resonators.

  5. Absolute cross sections from the ''boomerang model'' for resonant electron-molecule scattering

    Dube, L.; Herzenberg, A.

    1979-01-01

    The boomerang model is used to calculate absolute cross sections near the 2 Pi/sub g/ shape resonance in e-N 2 scattering. The calculated cross sections are shown to satisfy detailed balancing. The exchange of electrons is taken into account. A parametrized complex-potential curve for the intermediate N 2 /sup ts-/ ion is determined from a small part of the experimental data, and then used to calculate other properties. The calculations are in good agreement with the absolute cross sections for vibrational excitation from the ground state, the absolute cross section v = 1 → 2, and the absolute total cross section

  6. Estimation of parasitic losses in a proposed mesoscale resonant engine: Experiment and model

    Preetham, B. S.; Anderson, M.; Richards, C.

    2014-02-01

    A resonant engine in which the piston-cylinder assembly is replaced by a flexible cavity is realized at the mesoscale using flexible metal bellows to demonstrate the feasibility of the concept. A four stroke motoring technique is developed and measurements are performed to determine parasitic losses. A non-linear lumped parameter model is developed to evaluate the engine performance. Experimentally, the heat transfer and friction effects are separated by varying the engine speed and operating frequency. The engine energy flow diagram showing the energy distribution among various parasitic elements reveals that the friction loss in the bellows is smaller than the sliding friction loss in a typical piston-cylinder assembly.

  7. Multichannel coupling with supersymmetric quantum mechanics and exactly-solvable model for the Feshbach resonance

    Sparenberg, Jean-Marc; Samsonov, Boris F; Foucart, Francois; Baye, Daniel

    2006-01-01

    A new type of supersymmetric transformations of the coupled-channel radial Schroedinger equation is introduced, which do not conserve the vanishing behaviour of solutions at the origin. Contrary to the usual transformations, these 'non-conservative' transformations allow, in the presence of thresholds, the construction of well-behaved potentials with coupled scattering matrices from uncoupled potentials. As an example, an exactly-solvable potential matrix is obtained which provides a very simple model of the Feshbach-resonance phenomenon. (letter to the editor)

  8. The Hagedorn Spectrum and the Dual Resonance Model: An Old Love Affair

    Veneziano, Gabriele

    2016-01-01

    In this contribution I recall how people working in the late 1960s on the dual resonance model came to the surprising discovery of a Hagedorn-like spectrum, and why they should not have been surprised. I will then turn to discussing the Hagedorn spectrum from a string theory viewpoint (which adds a huge degeneracy to the exponential spectrum). Finally, I will discuss how all this can be reinterpreted in the new incarnation of string theory through the properties of quantum black holes.

  9. Resonant spin-flavor conversion of supernova neutrinos: Dependence on presupernova models and future prospects

    Ando, Shin'ichiro; Sato, Katsuhiko

    2003-07-01

    We study the resonant spin-flavor (RSF) conversion of supernova neutrinos, which is induced by the interaction between the nonzero neutrino magnetic moment and the supernova magnetic fields, and its dependence on presupernova models. As the presupernova models, we adopt the latest ones by Woosley, Heger, and Weaver, and, further, models with both solar and zero metallicity are investigated. Since the (1-2Ye) profile of the new presupernova models, which is responsible for the RSF conversion, suddenly drops at the resonance region, the completely adiabatic RSF conversion is not realized, even if μνB0=(10-12μB)(1010 G), where B0 is the strength of the magnetic field at the surface of the iron core. In particular for the model with zero metallicity, the conversion is highly nonadiabatic in the high energy region, reflecting the (1-2Ye) profile of the model. In calculating the flavor conversion, we find that the shock wave propagation, which changes density profiles drastically, is a much more severe problem than it is for the pure Mikheyev-Smirnov-Wolfenstein (MSW) conversion case. This is because the RSF effect occurs at a far deeper region than the MSW effect. To avoid the uncertainty concerning the shock propagation, we restrict our discussion to 0.5 s after the core bounce (and for more conservative discussion, 0.25 s), during which the shock wave is not expected to affect the RSF region. We also evaluate the energy spectrum at the Super-Kamiokande detector for various models using the calculated conversion probabilities, and find that it is very difficult to obtain useful information on the supernova metallicities and magnetic fields or on the neutrino magnetic moment from the supernova neutrino observation. Future prospects are also discussed.

  10. SAR in human head model due to resonant wireless power transfer system.

    Zhang, Chao; Liu, Guoqiang; Li, Yanhong; Song, Xianjin

    2016-04-29

    Efficient mid-range wireless power transfer between transmitter and the receiver has been achieved based on the magnetic resonant coupling method. The influence of electromagnetic field on the human body due to resonant wireless power transfer system (RWPT) should be taken into account during the design process of the system. To analyze the transfer performance of the RWPT system and the change rules of the specific absorption rate (SAR) in the human head model due to the RWPT system. The circuit-field coupling method for a RWPT system with consideration of the displacement current was presented. The relationship between the spiral coil parameters and transfer performance was studied. The SAR in the human head model was calculated under two different exposure conditions. A system with output power higher than 10 W at 0.2 m distance operating at a frequency of approximately 1 MHz was designed. The FEM simulation results show the peak SAR value is below the safety limit which appeared when the human head model is in front of the transmitter. The simulation results agreed well with the experimental results, which verified the validity of the analysis and design.

  11. Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations

    Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Huijsmans, G. [ITER Organization, Route de Vinon, F-13115 Saint-Paul-Lez-Durance (France); Pamela, S. [IIFS-PIIM. Aix Marseille Université - CNRS, 13397 Marseille Cedex20 (France); Chapman, I.; Kirk, A.; Thornton, A. [EURATOM/CCFE Fusion Association, Culham Science Centre, Oxon OX14 3DB (United Kingdom); Hoelzl, M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Cahyna, P. [Association EURATOM/IPP.CR, Prague (Czech Republic)

    2013-10-15

    The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.

  12. Protein structure analysis using the resonant recognition model and wavelet transforms

    Fang, Q.; Cosic, I.

    1998-01-01

    An approach based on the resonant recognition model and the discrete wavelet transform is introduced here for characterising proteins' biological function. The protein sequence is converted into a numerical series by assigning the electron-ion interaction potential to each amino acid from N-terminal to C-terminal. A set of peaks is found after performing a wavelet transform onto a numerical series representing a group of homologous proteins. These peaks are related to protein structural and functional properties and named characteristic vector of that protein group. Further more, the amino acids contributing mostly to a protein's biological functions, the so-called 'hot spots' amino acids, are predicted by the continuous wavelet transform. It is found that the hot spots are clustered around the protein's cleft structure. The wavelets approach provides a novel methods for amino acid sequence analysis as well as an expansion for the newly established macromolecular interaction model: the resonant recognition model. Copyright (1998) Australasian Physical and Engineering Sciences in Medicine

  13. High-Resolution Longitudinal Screening with Magnetic Resonance Imaging in a Murine Brain Cancer Model

    Nicholas A. Bock

    2003-11-01

    Full Text Available One of the main limitations of intracranial models of diseases is our present inability to monitor and evaluate the intracranial compartment noninvasively over time. Therefore, there is a growing need for imaging modalities that provide thorough neuropathological evaluations of xenograft and transgenic models of intracranial pathology. In this study, we have established protocols for multiple-mouse magnetic resonance imaging (MRI to follow the growth and behavior of intracranial xenografts of gliomas longitudinally. We successfully obtained weekly images on 16 mice for a total of 5 weeks on a 7-T multiple-mouse MRI. T2- and Ti-weighted imaging with gadolinium enhancement of vascularity was used to detect tumor margins, tumor size, and growth. These experiments, using 3D whole brain images obtained in four mice at once, demonstrate the feasibility of obtaining repeat radiological images in intracranial tumor models and suggest that MRI should be incorporated as a research modality for the investigation of intracranial pathobiology.

  14. Neural Model for Left-Handed CPW Bandpass Filter Loaded Split Ring Resonator

    Liu, Haiwen; Wang, Shuxin; Tan, Mingtao; Zhang, Qijun

    2010-02-01

    Compact left-handed coplanar waveguide (CPW) bandpass filter loaded split ring resonator (SRR) is presented in this paper. The proposed filter exhibits a quasi-elliptic function response and its circuit size occupies only 12 × 11.8 mm2 (≈0.21 λg × 0.20 λg). Also, a simple circuit model is given and the parametric study of this filter is discussed. Then, with the aid of NeuroModeler software, a five-layer feed-forward perceptron neural networks model is built up to optimize the proposed filter design fast and accurately. Finally, this newly left-handed CPW bandpass filter was fabricated and measured. A good agreement between simulations and measurement verifies the proposed left-handed filter and the validity of design methodology.

  15. A model of electrostatically actuated MEMS and carbon nanotubes resonators for biological mass detection

    Bouchaala, Adam M.

    2015-01-01

    We investigate the dynamics of electrically actuated Micro and Nano (Carbon nanotube (CNT)) cantilever beams implemented as resonant sensors for mass detection of biological elements. The beams are modeled using an Euler-Bernoulli beam theory including the nonlinear electrostatic forces and the added biological elements, which are modeled as a discrete point mass. A multi-mode Galerkin procedure is utilized to derive a reduced-order model, which is used for the dynamic simulations. The frequency shifts due to added mass of Escherichia coli (E. coli) and Prostate Specific Antigen (PSA) are calculated for the primary and higher order modes of vibrations. Also, analytical expressions of the natural frequency shift under dc voltage and added mass have been developed. We found that using higher-order modes of vibration of MEMS beams or miniaturizing the size of the beam to Nano scale leads to significant improved sensitivity. © Springer International Publishing Switzerland 2015.

  16. The Higgs boson resonance width from a chiral Higgs-Yukawa model on the lattice

    Gerhold, Philipp; Kallarackal, Jim; Humboldt-Universitaet, Berlin; Jansen, Karl

    2011-11-01

    The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for quarks, leptons and the weak gauge bosons. We use a 4-dimensional Euclidean lattice formulation of the Higgs-Yukawa sector of the electroweak model to compute physical quantities in the path integral approach which is evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. The chiral symmetry of the model is incorporated by using the Neuberger overlap Dirac operator. The here considered Higgs-Yukawa model does not involve the weak gauge bosons and furthermore, only a degenerate doublet of top- and bottom quarks are incorporated. The goal of this work is to study the resonance properties of the Higgs boson and its sensitivity to the strength of the quartic self coupling. (orig.)

  17. Nonlinear Modeling and Simulation of Thermal Effects in Microcantilever Resonators Dynamic

    Tadayon, M A; Sayyaadi, H; Jazar, G Nakhaie

    2006-01-01

    Thermal dependency of material characteristics in micro electromechanical systems strongly affects their performance, design, and control. Hence, it is essential to understand and model that in MEMS devices to optimize their designs. A thermal phenomenon introduces two main effects: damping due to internal friction, and softening due to Young modulus temperature relation. Based on some reported theoretical and experimental results, we model the thermal phenomena and use two Lorentzian functions to describe the restoring and damping forces caused by thermal phenomena. In order to emphasize the thermal effects, a nonlinear model of the MEMS, by considering capacitor nonlinearity, have been used. The response of the system is developed by employing multiple time scales perturbation method on nondimensionalized form of equations. Frequency response, resonant frequency and peak amplitude are examined for variation of dynamic parameters involved

  18. 3D Modeling of Vascular Pathologies from contrast enhanced magnetic resonance images (MRI)

    Cantor Rivera, Diego; Orkisz, Maciej; Arias, Julian; Uriza, Luis Felipe

    2007-01-01

    This paper presents a method for generating 3D vascular models from contrast enhanced magnetic resonance images (MRI) using a fast marching algorithm. The main contributions of this work are: the use of the original image for defining a speed function (which determines the movement of the interface) and the calculation of the time in which the interface identifies the artery. The proposed method was validated on pathologic carotid artery images of patients and vascular phantoms. A visual appraisal of vascular models obtained with the method shows a satisfactory extraction of the vascular wall. A quantitative assessment proved that the generated models depend on the values of algorithm parameters. The maximum induced error was equal to 1.34 voxels in the diameter of the measured stenoses.

  19. Slackline dynamics and the Helmholtz-Duffing oscillator

    Athanasiadis, Panos J.

    2018-01-01

    Slacklining is a new, rapidly expanding sport, and understanding its physics is paramount for maximizing fun and safety. Yet, compared to other sports, very little has been published so far on slackline dynamics. The equations of motion describing a slackline are fundamentally nonlinear, and assuming linear elasticity, they lead to a form of the Duffing equation. Following this approach, characteristic examples of slackline motion are simulated, including trickline bouncing, leash falls and longline surfing. The time-dependent solutions of the differential equations describing the system are acquired by numerical integration. A simple form of energy dissipation (linear drag) is added in some cases. It is recognized in this study that geometric nonlinearity is a fundamental aspect characterizing the dynamics of slacklines. Sports, and particularly slackline, is an excellent way of engaging young people with physics. A slackline is a simple yet insightful example of a nonlinear oscillator. It is very easy to model in the laboratory, as well as to rig and try on a university campus. For instructive purposes, its behaviour can be explored by numerically integrating the respective equations of motion. A form of the Duffing equation emerges naturally in the analysis and provides a powerful introduction to nonlinear dynamics. The material is suitable for graduate students and undergraduates with a background in classical mechanics and differential equations.

  20. Application of the resonating Hartree-Fock random phase approximation to the Lipkin model

    Nishiyama, S.; Ishida, K.; Ido, M.

    1996-01-01

    We have applied the resonating Hartree-Fock (Res-HF) approximation to the exactly solvable Lipkin model by utilizing a newly developed orbital-optimization algorithm. The Res-HF wave function was superposed by two Slater determinants (S-dets) which give two corresponding local energy minima of monopole ''deformations''. The self-consistent Res-HF calculation gives an excellent ground-state correlation energy. There exist excitations due to small vibrational fluctuations of the orbitals and mixing coefficients around their stationary values. They are described by a new approximation called the resonating Hartree-Fock random phase approximation (Res-HF RPA). Matrices of the second-order variation of the Res-HF energy have the same structures as those of the Res-HF RPA's matrices. The quadratic steepest descent of the Res-HF energy in the orbital optimization is considered to include certainly both effects of RPA-type fluctuations up to higher orders and their mode-mode couplings. It is a very important and interesting task to apply the Res-HF RPA to the Lipkin model with the use of the stationary values and to prove the above argument. It turns out that the Res-HF RPA works far better than the usual HF RPA and the renormalized one. We also show some important features of the Res-HF RPA. (orig.)

  1. Preclinical Magnetic Resonance Fingerprinting (MRF) at 7 T: Effective Quantitative Imaging for Rodent Disease Models

    Gao, Ying; Chen, Yong; Ma, Dan; Jiang, Yun; Herrmann, Kelsey A.; Vincent, Jason A.; Dell, Katherine M.; Drumm, Mitchell L.; Brady-Kalnay, Susann M.; Griswold, Mark A.; Flask, Chris A.; Lu, Lan

    2015-01-01

    High field, preclinical magnetic resonance imaging (MRI) scanners are now commonly used to quantitatively assess disease status and efficacy of novel therapies in a wide variety of rodent models. Unfortunately, conventional MRI methods are highly susceptible to respiratory and cardiac motion artifacts resulting in potentially inaccurate and misleading data. We have developed an initial preclinical, 7.0 T MRI implementation of the highly novel Magnetic Resonance Fingerprinting (MRF) methodology that has been previously described for clinical imaging applications. The MRF technology combines a priori variation in the MRI acquisition parameters with dictionary-based matching of acquired signal evolution profiles to simultaneously generate quantitative maps of T1 and T2 relaxation times and proton density. This preclinical MRF acquisition was constructed from a Fast Imaging with Steady-state Free Precession (FISP) MRI pulse sequence to acquire 600 MRF images with both evolving T1 and T2 weighting in approximately 30 minutes. This initial high field preclinical MRF investigation demonstrated reproducible and differentiated estimates of in vitro phantoms with different relaxation times. In vivo preclinical MRF results in mouse kidneys and brain tumor models demonstrated an inherent resistance to respiratory motion artifacts as well as sensitivity to known pathology. These results suggest that MRF methodology may offer the opportunity for quantification of numerous MRI parameters for a wide variety of preclinical imaging applications. PMID:25639694

  2. Modeling the neutron spin-flip process in a time-of-flight spin-resonance energy filter

    Parizzi, A A; Klose, F

    2002-01-01

    A computer program for modeling the neutron spin-flip process in a novel time-of-flight (TOF) spin-resonance energy filter has been developed. The software allows studying the applicability of the device in various areas of spallation neutron scattering instrumentation, for example as a dynamic TOF monochromator. The program uses a quantum-mechanical approach to calculate the local spin-dependent spectra and is essential for optimizing the magnetic field profiles along the resonator axis. (orig.)

  3. The description of neutron and giant resonances within the quasiparticle-phonon nuclear model

    Soloviev, V.G.

    1978-01-01

    The general assumptions of the quasiparticle-phonon model of complex nuclei are given. The choice of the model Hamiltonian as an average field and residual forces is discussed. The phonon description and quasiparticle-phonon interaction are presented. The system of basic equations and their approximate solutions are obtained. The approximation is chosen so as to obtain the most correct description of few-quasiparticle components rather than of the whole wave function. The method of strength functions is presented, which plays a decisive role in practical realization of the quasiparticle-phonon model for the description of some properties of complex nuclei. The range of applicability of the quasiparticle-phonon nuclear model is determined as few-quasiparticle components of the wave functions at low, intermediate and high excitation energies averaged in a certain energy interval. The fragmentation of single-particle states in deformed nuclei is studied within this model. The dependence of neutron strength functions on the excitation energy is investigated for the transfer reactions of the type (d,p) and (d,t). The s - ,p - , and d-wave neutron strength functions are calculated at the neutron binding energy Bsub(n). A satisfactory agreement with experiment is obtained. A correct description of the radiative strength functions in spherical nuclei is obtained. The influence of the tail of the giant dipole resonance on the E1-strength functions is studied. The energies and EΛ-strength functions for giant multipole resonances in spherical and deformed nuclei are calculated. A correct description of their widths is obtained. (author)

  4. Calibration of Helmholtz Coils for the characterization of MEMS magnetic sensor using fluxgate magnetometer with DAS1 magnetic range data acquisition system

    Ahmad, Farooq; Dennis, John Ojur; Md Khir, Mohd Haris; Hamid, Nor Hisham

    2012-09-01

    This paper presents the calibration of Helmholtz coils for the characterization of MEMS Magnetic sensor using Fluxgate magnetometer with DAS1 Magnetic Range Data Acquisition System. The Helmholtz coils arrangement is often used to generate a uniform magnetic field in space. In the past, standard magnets were used to calibrate the Helmholtz coils. A method is presented here for calibrating these coils using a Fluxgate magnetometer and known current source, which is easier and results in greater accuracy.

  5. The spectral energy distributions of isolated neutron stars in the resonant cyclotron scattering model

    Tong, Hao; Xu, Renxin

    2013-03-01

    The X-ray dim isolated neutron stars (XDINSs) are peculiar pulsar-like objects, characterized by their very well Planck-like spectrum. In studying their spectral energy distributions, the optical/UV excess is a long standing problem. Recently, Kaplan et al. (2011) have measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may due to contribution from bremsstrahlung emission of the electron system in addition to the RCS process.

  6. Memory effects on a resonate-and-fire neuron model subjected to Ornstein-Uhlenbeck noise

    Paekivi, S.; Mankin, R.; Rekker, A.

    2017-10-01

    We consider a generalized Langevin equation with an exponentially decaying memory kernel as a model for the firing process of a resonate-and-fire neuron. The effect of temporally correlated random neuronal input is modeled as Ornstein-Uhlenbeck noise. In the noise-induced spiking regime of the neuron, we derive exact analytical formulas for the dependence of some statistical characteristics of the output spike train, such as the probability distribution of the interspike intervals (ISIs) and the survival probability, on the parameters of the input stimulus. Particularly, on the basis of these exact expressions, we have established sufficient conditions for the occurrence of memory-time-induced transitions between unimodal and multimodal structures of the ISI density and a critical damping coefficient which marks a dynamical transition in the behavior of the system.

  7. Channel noise enhances signal detectability in a model of acoustic neuron through the stochastic resonance paradigm.

    Liberti, M; Paffi, A; Maggio, F; De Angelis, A; Apollonio, F; d'Inzeo, G

    2009-01-01

    A number of experimental investigations have evidenced the extraordinary sensitivity of neuronal cells to weak input stimulations, including electromagnetic (EM) fields. Moreover, it has been shown that biological noise, due to random channels gating, acts as a tuning factor in neuronal processing, according to the stochastic resonant (SR) paradigm. In this work the attention is focused on noise arising from the stochastic gating of ionic channels in a model of Ranvier node of acoustic fibers. The small number of channels gives rise to a high noise level, which is able to cause a spike train generation even in the absence of stimulations. A SR behavior has been observed in the model for the detection of sinusoidal signals at frequencies typical of the speech.

  8. Generalized Net Model of the Cognitive and Neural Algorithm for Adaptive Resonance Theory 1

    Todor Petkov

    2013-12-01

    Full Text Available The artificial neural networks are inspired by biological properties of human and animal brains. One of the neural networks type is called ART [4]. The abbreviation of ART stands for Adaptive Resonance Theory that has been invented by Stephen Grossberg in 1976 [5]. ART represents a family of Neural Networks. It is a cognitive and neural theory that describes how the brain autonomously learns to categorize, recognize and predict objects and events in the changing world. In this paper we introduce a GN model that represent ART1 Neural Network learning algorithm [1]. The purpose of this model is to explain when the input vector will be clustered or rejected among all nodes by the network. It can also be used for explanation and optimization of ART1 learning algorithm.

  9. Bodily tides near the 1:1 spin-orbit resonance: correction to Goldreich's dynamical model

    Williams, James G.; Efroimsky, Michael

    2012-12-01

    Spin-orbit coupling is often described in an approach known as " the MacDonald torque", which has long become the textbook standard due to its apparent simplicity. Within this method, a concise expression for the additional tidal potential, derived by MacDonald (Rev Geophys 2:467-541, 1994), is combined with a convenient assumption that the quality factor Q is frequency-independent (or, equivalently, that the geometric lag angle is constant in time). This makes the treatment unphysical because MacDonald's derivation of the said formula was, very implicitly, based on keeping the time lag frequency-independent, which is equivalent to setting Q scale as the inverse tidal frequency. This contradiction requires the entire MacDonald treatment of both non-resonant and resonant rotation to be rewritten. The non-resonant case was reconsidered by Efroimsky and Williams (Cel Mech Dyn Astron 104:257-289, 2009), in application to spin modes distant from the major commensurabilities. In the current paper, we continue this work by introducing the necessary alterations into the MacDonald-torque-based model of falling into a 1-to-1 resonance. (The original version of this model was offered by Goldreich (Astron J 71:1-7, 1996). Although the MacDonald torque, both in its original formulation and in its corrected version, is incompatible with realistic rheologies of minerals and mantles, it remains a useful toy model, which enables one to obtain, in some situations, qualitatively meaningful results without resorting to the more rigorous (and complicated) theory of Darwin and Kaula. We first address this simplified model in application to an oblate primary body, with tides raised on it by an orbiting zero-inclination secondary. (Here the role of the tidally-perturbed primary can be played by a satellite, the perturbing secondary being its host planet. A planet may as well be the perturbed primary, its host star acting as the tide-raising secondary). We then extend the model to a

  10. Quantum thermodynamics of the resonant-level model with driven system-bath coupling

    Haughian, Patrick; Esposito, Massimiliano; Schmidt, Thomas L.

    2018-02-01

    We study nonequilibrium thermodynamics in a fermionic resonant-level model with arbitrary coupling strength to a fermionic bath, taking the wide-band limit. In contrast to previous theories, we consider a system where both the level energy and the coupling strength depend explicitly on time. We find that, even in this generalized model, consistent thermodynamic laws can be obtained, up to the second order in the drive speed, by splitting the coupling energy symmetrically between system and bath. We define observables for the system energy, work, heat, and entropy, and calculate them using nonequilibrium Green's functions. We find that the observables fulfill the laws of thermodynamics, and connect smoothly to the known equilibrium results.

  11. Science Court on ICRH [ion cyclotron resonance heating] modeling of tokamak plasmas

    Hively, L.M.; Sadowski, W.L.

    1987-10-01

    The Applied Plasma Physics (APP) Theory program in the Office of Fusion Energy is charged with supporting the development of advanced physics models for fusion research. One such effort is ion cyclotron resonance heating (ICRH), which has seen substantial progress recently. However, due to serious questions about the adequacy of present models for CIT (Compact Ignition Tokamak), a Science Court was formed to assess ICRH models, including: validity of theoretical and computational approximations; underlying physics assumptions and corresponding limits on the results; self-consistency; any subsidiary issues needing resolution (e.g., new computer tools); adequacy of the models in simulating experiments (especially CIT); and new or improved experiments to validate and refine the models. The Court did not review work by specific individuals, institutions, or programs, thereby avoiding any biases along these lines. Rather, the Science Court was carefully structured as a technical review of ICRH theory and modeling in the US. This paper discusses the Science Court process, findings, and conclusions

  12. Nonlinear Container Ship Model for the Study of Parametric Roll Resonance

    Christian Holden

    2007-10-01

    Full Text Available Parametric roll is a critical phenomenon for ships, whose onset may cause roll oscillations up to +-40 degrees, leading to very dangerous situations and possibly capsizing. Container ships have been shown to be particularly prone to parametric roll resonance when they are sailing in moderate to heavy head seas. A Matlab/Simulink parametric roll benchmark model for a large container ship has been implemented and validated against a wide set of experimental data. The model is a part of a Matlab/Simulink Toolbox (MSS, 2007. The benchmark implements a 3rd-order nonlinear model where the dynamics of roll is strongly coupled with the heave and pitch dynamics. The implemented model has shown good accuracy in predicting the container ship motions, both in the vertical plane and in the transversal one. Parametric roll has been reproduced for all the data sets in which it happened, and the model provides realistic results which are in good agreement with the model tank experiments.

  13. Magnetohydrodynamic Kelvin-Helmholtz instabilities in astrophysics. 4. Single shear layer in MHD flows

    Ferrari, A [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica Generale); Trussoni, E [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Max-Planck-Institut fuer Physik und Astrophysik, Garching (Germany, F.R.). Inst. fuer Extraterrestrische Physik)

    1983-11-01

    In this further paper on the physics of Kelvin-Helmholtz instabilities the case in which the fluids in relative motion are magnetized and separated by a shear layer is investigated. The present study points out, with respect to previous treatments, that different velocity profiles affect perturbations of short wavelength (as compared to the scale of the shear). Another new result is in the destabilizing effect, even in the subsonic regime, of the magnetic field on modes neutrally stable in the vortex sheet approximation. Such a behaviour is analogous to that found in the fluid case for Mach numbers >approx. = to 2. Possible astrophysical implications are also discussed.

  14. Severe accident research activities at Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

    Wilhelm, Polina; Jobst, Matthias; Schaefer, Frank; Kliem, Soeren [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2016-05-15

    In the frame of the nuclear safety research program of the Helmholtz Association HZDR performs fundamental and applied research to assess and to reduce the risks related to the nuclear fuel cycle and the production of electricity in nuclear power plants. One of the research topics focuses on the safety aspects of current and future reactor designs. This includes the development and application of methods for analyses of transients and postulated accidents, covering the whole spectrum from normal operation till severe accident sequences including core degradation. This paper gives an overview of the severe accident research activities at the Reactor Safety Division at the Institute of Resource Ecology.

  15. Modelling of Plasma Response to Resonant Magnetic Perturbations and its Influence on Divertor Strike Points

    Cahyna, P.; Peterka, M.; Panek, R., E-mail: cahyna@ipp.cas.cz [Institute of Plasma Physics AS CR, Prague (Czech Republic); Liu, Y.; Kirk, A.; Harrison, J.; Thornton, A.; Chapman, I. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Nardon, E. [Association Euratom/CEA, CEA Cadarache, St. Paul-lez-Durance (France); Schmitz, O. [Forschung Zentrum Juelich, Juelich (Germany)

    2012-09-15

    Full text: Resonant magnetic perturbations (RMPs) for edge localized mode (ELM) mitigation in tokamaks can be modified by the plasma response and indeed strong screening of the applied perturbation is in some cases predicted by simulations. In this contribution we investigate what effect would such screening have on the spiralling patterns (footprints) which may appear at the divertor when RMPs are applied. We use two theoretical tools for investigation of the impact of plasma response on footprints: a simple model of the assumed screening currents, which can be used to translate the screening predicted by MHD codes in a simplified geometry into the real geometry, and the MHD code MARS-F. The former consistently predicts that footprints are significantly reduced when complete screening of the resonant perturbation modes (like it is the case in ideal MHD) is assumed. This result is supported by the result of MARS-F in ideal mode for the case of the MAST tokamak. To predict observed patterns of fluxes it is necessary to take into account the deformation of the scrape-off layer, and for this we developed an approximative method based on the Melnikov integral. If the screening of perturbations indeed reduces the footprints, it would provide us with an important tool to evaluate the amount of screening in experiments, as the footprints can be easily observed. We thus present a comparison between predictions and experimental data, especially for the MAST tokamak, where a significant amount of data has been collected. (author)

  16. Applications of Magnetic Resonance in Model Systems: Tumor Biology and Physiology

    Robert J. Gillies

    2000-01-01

    Full Text Available A solid tumor presents a unique challenge as a system in which the dynamics of the relationship between vascularization, the physiological environment and metabolism are continually changing with growth and following treatment. Magnetic resonance imaging (MRI and magnetic resonance spectroscopy (MRS studies have demonstrated quantifiable linkages between the physiological environment, angiogenesis, vascularization and metabolism of tumors. The dynamics between these parameters continually change with tumor aggressiveness, tumor growth and during therapy and each of these can be monitored longitudinally, quantitatively and non-invasively with MRI and MRS. An important aspect of MRI and MRS studies is that techniques and findings are easily translated between systems. Hence, pre-clinical studies using cultured cells or experimental animals have a high connectivity to potential clinical utility. In the following review, leaders in the field of MR studies of basic tumor physiology using pre-clinical models have contributed individual sections according to their expertise and outlook. The following review is a cogent and timely overview of the current capabilities and state-of-the-art of MRI and MRS as applied to experimental cancers. A companion review deals with the application of MR methods to anticancer therapy.

  17. Higgs boson resonance parameters and the finite temperature phase transition in a chirally invariant Higgs-Yukawa model

    Bulava, John; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Gerhold, Philip; Kallarackal, Jim; Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humbolt-Univ. Berlin (Germany)

    2011-12-15

    We study a chirally invariant Higgs-Yukawa model regulated on a space-time lattice. We calculate Higgs boson resonance parameters and mass bounds for various values of the mass of the degenerate fermion doublet. Also, first results on the phase transition temperature are presented. In general, this model may be relevant for BSM scenarios with a heavy fourth generation of quarks. (orig.)

  18. THE ROLE OF KELVIN–HELMHOLTZ INSTABILITY FOR PRODUCING LOOP-TOP HARD X-RAY SOURCES IN SOLAR FLARES

    Fang, Xia; Yuan, Ding; Xia, Chun; Doorsselaere, Tom Van; Keppens, Rony [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium)

    2016-12-10

    We propose a model for the formation of loop-top hard X-ray (HXR) sources in solar flares through the inverse Compton mechanism, scattering the surrounding soft X-ray (SXR) photons to higher energy HXR photons. We simulate the consequences of a flare-driven energy deposit in the upper chromosphere in the impulsive phase of single loop flares. The consequent chromosphere evaporation flows from both footpoints reach speeds up to hundreds of kilometers per second, and we demonstrate how this triggers Kelvin–Helmholtz instability (KHI) in the loop top, under mildly asymmetric conditions, or more toward the loop flank for strongly asymmetric cases. The KHI vortices further fragment the magnetic topology into multiple magnetic islands and current sheets, and the hot plasma within leads to a bright loop-top SXR source region. We argue that the magnetohydrodynamic turbulence that appears at the loop apex could be an efficient accelerator of non-thermal particles, which the island structures can trap at the loop-top. These accelerated non-thermal particles can upscatter the surrounding thermal SXR photons emitted by the extremely hot evaporated plasma to HXR photons.

  19. The Kelvin-Helmholtz instability in National Ignition Facility hohlraums as a source of gold-gas mixing

    Vandenboomgaerde, M.; Bonnefille, M.; Gauthier, P. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2016-05-15

    Highly resolved radiation-hydrodynamics FCI2 simulations have been performed to model laser experiments on the National Ignition Facility. In these experiments, cylindrical gas-filled hohlraums with gold walls are driven by a 20 ns laser pulse. For the first time, simulations show the appearance of Kelvin-Helmholtz (KH) vortices at the interface between the expanding wall material and the gas fill. In this paper, we determine the mechanisms which generate this instability: the increase of the gas pressure around the expanding gold plasma leads to the aggregation of an over-dense gold layer simultaneously with shear flows. At the surface of this layer, all the conditions are met for a KH instability to grow. Later on, as the interface decelerates, the Rayleigh-Taylor instability also comes into play. A potential scenario for the generation of a mixing zone at the gold-gas interface due to the KH instability is presented. Our estimates of the Reynolds number and the plasma diffusion width at the interface support the possibility of such a mix. The key role of the first nanosecond of the laser pulse in the instability occurrence is also underlined.

  20. Magnetoacoustic Waves and the Kelvin-Helmholtz Instability in a Steady Asymmetric Slab. I: The Effects of Varying Density Ratios

    Barbulescu, M.; Erdélyi, R.

    2018-06-01

    Recent observations have shown that bulk flow motions in structured solar plasmas, most evidently in coronal mass ejections (CMEs), may lead to the formation of Kelvin-Helmholtz instabilities (KHIs). Analytical models are thus essential in understanding both how the flows affect the propagation of magnetohydrodynamic (MHD) waves, and what the critical flow speed is for the formation of the KHI. We investigate both these aspects in a novel way: in a steady magnetic slab embedded in an asymmetric environment. The exterior of the slab is defined as having different equilibrium values of the background density, pressure, and temperature on either side. A steady flow and constant magnetic field are present in the slab interior. Approximate solutions to the dispersion relation are obtained analytically and classified with respect to mode and speed. General solutions and the KHI thresholds are obtained numerically. It is shown that, generally, both the KHI critical value and the cut-off speeds for magnetoacoustic waves are lowered by the external asymmetry.

  1. Precision tools and models to narrow in on the 750 GeV diphoton resonance

    Staub, Florian; Athron, Peter; Basso, Lorenzo

    2016-02-01

    The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective vertices from the spectrum generator to a Monte-Carlo tool. Finally, as an example to demonstrate the power of the entire setup, we present a new supersymmetric model that accommodates the diphoton excess, explicitly demonstrating how a large width can be obtained. We explicitly show several steps in detail to elucidate the use of these public tools in the precision study of this model.

  2. A prediction model for the grade of liver fibrosis using magnetic resonance elastography.

    Mitsuka, Yusuke; Midorikawa, Yutaka; Abe, Hayato; Matsumoto, Naoki; Moriyama, Mitsuhiko; Haradome, Hiroki; Sugitani, Masahiko; Tsuji, Shingo; Takayama, Tadatoshi

    2017-11-28

    Liver stiffness measurement (LSM) has recently become available for assessment of liver fibrosis. We aimed to develop a prediction model for liver fibrosis using clinical variables, including LSM. We performed a prospective study to compare liver fibrosis grade with fibrosis score. LSM was measured using magnetic resonance elastography in 184 patients that underwent liver resection, and liver fibrosis grade was diagnosed histologically after surgery. Using the prediction model established in the training group, we validated the classification accuracy in the independent test group. First, we determined a cut-off value for stratifying fibrosis grade using LSM in 122 patients in the training group, and correctly diagnosed fibrosis grades of 62 patients in the test group with a total accuracy of 69.3%. Next, on least absolute shrinkage and selection operator analysis in the training group, LSM (r = 0.687, P prediction model. This prediction model applied to the test group correctly diagnosed 32 of 36 (88.8%) Grade I (F0 and F1) patients, 13 of 18 (72.2%) Grade II (F2 and F3) patients, and 7 of 8 (87.5%) Grade III (F4) patients in the test group, with a total accuracy of 83.8%. The prediction model based on LSM, ICGR15, and platelet count can accurately and reproducibly predict liver fibrosis grade.

  3. Precision tools and models to narrow in on the 750 GeV diphoton resonance

    Staub, Florian [CERN, Theoretical Physics Department, Geneva (Switzerland); Athron, Peter [Monash University, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Melbourne, VIC (Australia); Basso, Lorenzo [CPPM, Aix-Marseille Universite, CNRS-IN2P3, UMR 7346, Marseille Cedex 9 (France); Goodsell, Mark D. [Sorbonne Universites, LPTHE, UMR 7589, CNRS and Universite Pierre et Marie Curie, Paris Cedex 05 (France); Harries, Dylan [The University of Adelaide, Department of Physics, ARC Centre of Excellence for Particle Physics at the Terascale, Adelaide, SA (Australia); Krauss, Manuel E.; Nickel, Kilian; Opferkuch, Toby [Bethe Center for Theoretical Physics and Physikalisches Institut der Universitaet Bonn, Bonn (Germany); Ubaldi, Lorenzo [Tel-Aviv University, Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv (Israel); Vicente, Avelino [Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Valencia (Spain); Voigt, Alexander [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)

    2016-09-15

    The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective vertices from the spectrum generator to a Monte-Carlo tool. Finally, as an example to demonstrate the power of the entire setup, we present a new supersymmetric model that accommodates the diphoton excess, explicitly demonstrating how a large width can be obtained. We explicitly show several steps in detail to elucidate the use of these public tools in the precision study of this model. (orig.)

  4. Precision tools and models to narrow in on the 750 GeV diphoton resonance

    Staub, Florian [CERN, Geneva (Switzerland). Theoretical Physics Dept.; Athron, Peter [Monash Univ., Melbourne (Australia). ARC Center of Excellence for Particle Physics at the Terascale; Basso, Lorenzo [Aix-Marseille Univ., CNRS-IN2P3, UMR 7346 (France). CPPM; and others

    2016-02-15

    The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective vertices from the spectrum generator to a Monte-Carlo tool. Finally, as an example to demonstrate the power of the entire setup, we present a new supersymmetric model that accommodates the diphoton excess, explicitly demonstrating how a large width can be obtained. We explicitly show several steps in detail to elucidate the use of these public tools in the precision study of this model.

  5. Precision tools and models to narrow in on the 750 GeV diphoton resonance

    Staub, Florian; Athron, Peter; Basso, Lorenzo; Goodsell, Mark D.; Harries, Dylan; Krauss, Manuel E.; Nickel, Kilian; Opferkuch, Toby; Ubaldi, Lorenzo; Vicente, Avelino; Voigt, Alexander

    2016-01-01

    The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective vertices from the spectrum generator to a Monte-Carlo tool. Finally, as an example to demonstrate the power of the entire setup, we present a new supersymmetric model that accommodates the diphoton excess, explicitly demonstrating how a large width can be obtained. We explicitly show several steps in detail to elucidate the use of these public tools in the precision study of this model. (orig.)

  6. Recent Advances in Translational Magnetic Resonance Imaging in Animal Models of Stress and Depression

    Allison L. McIntosh

    2017-05-01

    Full Text Available Magnetic resonance imaging (MRI is a valuable translational tool that can be used to investigate alterations in brain structure and function in both patients and animal models of disease. Regional changes in brain structure, functional connectivity, and metabolite concentrations have been reported in depressed patients, giving insight into the networks and brain regions involved, however preclinical models are less well characterized. The development of more effective treatments depends upon animal models that best translate to the human condition and animal models may be exploited to assess the molecular and cellular alterations that accompany neuroimaging changes. Recent advances in preclinical imaging have facilitated significant developments within the field, particularly relating to high resolution structural imaging and resting-state functional imaging which are emerging techniques in clinical research. This review aims to bring together the current literature on preclinical neuroimaging in animal models of stress and depression, highlighting promising avenues of research toward understanding the pathological basis of this hugely prevalent disorder.

  7. Large-scale inverse and forward modeling of adaptive resonance in the tinnitus decompensation.

    Low, Yin Fen; Trenado, Carlos; Delb, Wolfgang; D'Amelio, Roberto; Falkai, Peter; Strauss, Daniel J

    2006-01-01

    Neural correlates of psychophysiological tinnitus models in humans may be used for their neurophysiological validation as well as for their refinement and improvement to better understand the pathogenesis of the tinnitus decompensation and to develop new therapeutic approaches. In this paper we make use of neural correlates of top-down projections, particularly, a recently introduced synchronization stability measure, together with a multiscale evoked response potential (ERP) model in order to study and evaluate the tinnitus decompensation by using a hybrid inverse-forward mathematical methodology. The neural synchronization stability, which according to the underlying model is linked to the focus of attention on the tinnitus signal, follows the experimental and inverse way and allows to discriminate between a group of compensated and decompensated tinnitus patients. The multiscale ERP model, which works in the forward direction, is used to consolidate hypotheses which are derived from the experiments for a known neural source dynamics related to attention. It is concluded that both methodologies agree and support each other in the description of the discriminatory character of the neural correlate proposed, but also help to fill the gap between the top-down adaptive resonance theory and the Jastreboff model of tinnitus.

  8. Three-dimensional FDTD Modeling of Earth-ionosphere Cavity Resonances

    Yang, H.; Pasko, V. P.

    2003-12-01

    Resonance properties of the earth-ionosphere cavity were first predicted by W. O. Schumann in 1952 [Schumann, Z. Naturforsch. A, 7, 149, 1952]. Since then observations of extremely low frequency (ELF) signals in the frequency range 1-500 Hz have become a powerful tool for monitoring of global lightning activity and planetary scale variability of the lower ionosphere, as well as, in recent years, for location and remote sensing of sprites, jets and elves and associated lightning discharges [e.g., Sato et al., JASTP, 65, 607, 2003; Su et al., Nature, 423, 974, 2003; and references cited therein]. The simplicity and flexibility of finite difference time domain (FDTD) technique for finding first principles solutions of electromagnetic problems in a medium with arbitrary inhomogeneities and ever-increasing computer power make FDTD an excellent candidate to be the technique of the future in development of realistic numerical models of VLF/ELF propagation in Earth-ionosphere waveguide [Cummer, IEEE Trans. Antennas Propagat., 48, 1420, 2000], and several reports about successful application of the FDTD technique for solution of related problems have recently appeared in the literature [e.g., Thevenot et al., Ann. Telecommun., 54, 297, 1999; Cummer, 2000; Berenger, Ann. Telecommun., 57, 1059, 2002, Simpson and Taflove, IEEE Antennas Wireless Propagat. Lett., 1, 53, 2002]. In this talk we will present results from a new three-dimensional spherical FDTD model, which is designed for studies of ELF electromagnetic signals under 100 Hz in the earth-ionosphere cavity. The model accounts for a realistic latitudinal and longitudinal variation of ground conductivity (i.e., for the boundaries between oceans and continents) by employing a broadband surface impedance technique proposed in [Breggs et al., IEEE Trans. Antenna Propagat., 41, 118, 1993]. The realistic distributions of atmospheric/lower ionospheric conductivity are derived from the international reference ionosphere model

  9. Enhancement of epidemic spread by noise and stochastic resonance in spatial network models with viral dynamics.

    Tuckwell, H C; Toubiana, L; Vibert, J F

    2000-05-01

    We extend a previous dynamical viral network model to include stochastic effects. The dynamical equations for the viral and immune effector densities within a host population of size n are bilinear, and the noise is white, additive, and Gaussian. The individuals are connected with an n x n transmission matrix, with terms which decay exponentially with distance. In a single individual, for the range of noise parameters considered, it is found that increasing the amplitude of the noise tends to decrease the maximum mean virion level, and slightly accelerate its attainment. Two different spatial dynamical models are employed to ascertain the effects of environmental stochasticity on viral spread. In the first model transmission is unrestricted and there is no threshold within individuals. This model has the advantage that it can be analyzed using a Fokker-Planck approach. The noise is found both to synchronize and uniformize the trajectories of the viral levels across the population of infected individuals, and thus to promote the epidemic spread of the virus. Quantitative measures of the speed of spread and overall amplitude of the epidemic are obtained as functions of the noise and virulence parameters. The mean amplitude increases steadily without threshold effects for a fixed value of the virulence as the noise amplitude sigma is increased, and there is no evidence of a stochastic resonance. However, the speed of transmission, both with respect to its mean and variance, undergoes rapid increases as sigma changes by relatively small amounts. In the second, more realistic, model, there is a threshold for infection and an upper limit to the transmission rate. There may be no spread of infection at all in the absence of noise. With increasing noise level and a low threshold, the mean maximum virion level grows quickly and shows a broad-based stochastic resonance effect. When the threshold within individuals is increased, the mean population virion level increases only

  10. Measurement and modeling of nitrogen resonance line profiles from an electrodeless discharge lamp

    Wood, D.R.; Skinner, G.B.; Lifshitz, A.

    1987-01-01

    Experimental profiles of the 1200 A resonance triplet of atomic nitrogen were measured for a variety of operating conditions of an end-on electrodeless lamp, and corresponding absorption curves were calculated. Each source profile was determined by fitting parameters to an empirical two-layer model, then convoluting with the instrumental function for comparison with experimental data. Each three-component profile was fitted with three adjustable parameters: an absorption parameter for each of the two layers and a third absorption parameter to adjust for radiation trapping. Curves of absorption as a function of atom concentration, calculated from these profiles, are very similar to the shock tube calibrations of Thielen and Roth in which a source of similar design has been used

  11. Stochastic resonance and noise delayed extinction in a model of two competing species

    Valenti, D.; Fiasconaro, A.; Spagnolo, B.

    2004-01-01

    We study the role of the noise in the dynamics of two competing species. We consider generalized Lotka-Volterra equations in the presence of a multiplicative noise, which models the interaction between the species and the environment. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence of a periodic driving term, which accounts for the environment temperature variation. We find noise-induced periodic oscillations of the species concentrations and stochastic resonance phenomenon. We find also a nonmonotonic behavior of the mean extinction time of one of the two competing species as a function of the additive noise intensity.

  12. Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model

    Cannat, F., E-mail: felix.cannat@onera.fr, E-mail: felix.cannat@gmail.com; Lafleur, T. [Physics and Instrumentation Department, Onera -The French Aerospace Lab, Palaiseau, Cedex 91123 (France); Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France); Jarrige, J.; Elias, P.-Q.; Packan, D. [Physics and Instrumentation Department, Onera -The French Aerospace Lab, Palaiseau, Cedex 91123 (France); Chabert, P. [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France)

    2015-05-15

    A new cathodeless plasma thruster currently under development at Onera is presented and characterized experimentally and analytically. The coaxial thruster consists of a microwave antenna immersed in a magnetic field, which allows electron heating via cyclotron resonance. The magnetic field diverges at the thruster exit and forms a nozzle that accelerates the quasi-neutral plasma to generate a thrust. Different thruster configurations are tested, and in particular, the influence of the source diameter on the thruster performance is investigated. At microwave powers of about 30 W and a xenon flow rate of 0.1 mg/s (1 SCCM), a mass utilization of 60% and a thrust of 1 mN are estimated based on angular electrostatic probe measurements performed downstream of the thruster in the exhaust plume. Results are found to be in fair agreement with a recent analytical helicon thruster model that has been adapted for the coaxial geometry used here.

  13. Applying the Helmholtz Illusion to Fashion: Horizontal Stripes Won't Make You Look Fatter

    Peter Thompson

    2011-01-01

    Full Text Available A square composed of horizontal lines appears taller and narrower than an identical square made up of vertical lines. Reporting this illusion, Hermann von Helmholtz noted that such illusions, in which filled space seems to be larger than unfilled space, were common in everyday life, adding the observation that ladies' frocks with horizontal stripes make the figure look taller. As this assertion runs counter to modern popular belief, we have investigated whether vertical or horizontal stripes on clothing should make the wearer appear taller or fatter. We find that a rectangle of vertical stripes needs to be extended by 7.1% vertically to match the height of a square of horizontal stripes and that a rectangle of horizontal stripes must be made 4.5% wider than a square of vertical stripes to match its perceived width. This illusion holds when the horizontal or vertical lines are on the dress of a line drawing of a woman. We have examined the claim that these effects apply only for 2-dimensional figures in an experiment with 3-D cylinders and find no support for the notion that horizontal lines would be ‘fattening’ on clothes. Significantly, the illusion persists when the horizontal or vertical lines are on pictures of a real half-body mannequin viewed stereoscopically. All the evidence supports Helmholtz's original assertion.

  14. A Third Note: Helmholtz, Palestrina, and the Early History of Musicology.

    Kursell, Julia

    2015-06-01

    This contribution focuses on Hermann von Helmholtz's work on Renaissance composer Giovanni Pierluigi da Palestrina. Helmholtz used his scientific concept of distortion to analyze this music and, reversely, to find corroboration for the concept in his musical analyses. In this, his work interlocked with nineteenth-century aesthetic and scholarly ideals. His eagerness to use the latest products of historical scholarship in early music reveals a specific view of music history. Historical documents of music provide the opportunity for the discovery of new experimental research topics and thereby also reveal insights into hearing under different conditions. The essay argues that this work occupies a peculiar position in the history of musicology; it falls under the header of "systematic musicology," which eventually emerged as a discipline of musicology at the end of the nineteenth century. That this discipline has a history at all is easily overlooked, as many of its contributors were scientists with an interest in music. A history of musicology therefore must consider at least the following two caveats: parts of it take place outside the institutionalized field of musicology, and any history of musicology must, in the last instance, be embedded in a history of music.

  15. Kelvin-Helmholtz instability for a bounded plasma flow in a longitudinal magnetic field

    Burinskaya, T. M.; Shevelev, M. M.; Rauch, J.-L.

    2011-01-01

    Kelvin-Helmholtz MHD instability in a plane three-layer plasma is investigated. A general dispersion relation for the case of arbitrarily orientated magnetic fields and flow velocities in the layers is derived, and its solutions for a bounded plasma flow in a longitudinal magnetic field are studied numerically. Analysis of Kelvin-Helmholtz instability for different ion acoustic velocities shows that perturbations with wavelengths on the order of or longer than the flow thickness can grow in an arbitrary direction even at a zero temperature. Oscillations excited at small angles with respect to the magnetic field exist in a limited range of wavenumbers even without allowance for the finite width of the transition region between the flow and the ambient plasma. It is shown that, in a low-temperature plasma, solutions resulting in kink-like deformations of the plasma flow grow at a higher rate than those resulting in quasi-symmetric (sausage-like) deformations. The transverse structure of oscillatory-damped eigenmodes in a low-temperature plasma is analyzed. The results obtained are used to explain mechanisms for the excitation of ultra-low-frequency long-wavelength oscillations propagating along the magnetic field in the plasma sheet boundary layer of the Earth’s magnetotail penetrated by fast plasma flows.

  16. Effect of plasma density profile of tokamak on Kelvin-Helmholtz instability

    Tang Fulin

    1984-01-01

    The purpose of this paper is to study the effect of radial distribution of plasma density profile of tokamak on Kelvin-Helmholtz instability caused by toroidal rotation. The effect of radial distribution of plasma rotational velocity on stability is also examine for comparison. It is found that within the range of tokamak parameters the only radial distribution of plasma rotational velocity cannot induce Kelvin-Helmholtz instability. On the contrary, when there is a radial distribution of plasma density, i.e. P 01 =P 0 e -tx and V 0 1 = const, plasma becomes unstable, and instability will increase proportionally to the value of t. Meanwhile when the value of t remains constant, the instability growth rate will decrease if P 0 grows or the distance between plasma and wall of container decreases too. It shows that the Kelvin-Helmoltz instability is not only influenced by the steepness of density profile but also by the inertia of plasma in central region, which is helpful for depressing the instability. (author). 5 refs, 4 figs, 2 tabs

  17. A singular K-space model for fast reconstruction of magnetic resonance images from undersampled data.

    Luo, Jianhua; Mou, Zhiying; Qin, Binjie; Li, Wanqing; Ogunbona, Philip; Robini, Marc C; Zhu, Yuemin

    2017-12-09

    Reconstructing magnetic resonance images from undersampled k-space data is a challenging problem. This paper introduces a novel method of image reconstruction from undersampled k-space data based on the concept of singularizing operators and a novel singular k-space model. Exploring the sparsity of an image in the k-space, the singular k-space model (SKM) is proposed in terms of the k-space functions of a singularizing operator. The singularizing operator is constructed by combining basic difference operators. An algorithm is developed to reliably estimate the model parameters from undersampled k-space data. The estimated parameters are then used to recover the missing k-space data through the model, subsequently achieving high-quality reconstruction of the image using inverse Fourier transform. Experiments on physical phantom and real brain MR images have shown that the proposed SKM method constantly outperforms the popular total variation (TV) and the classical zero-filling (ZF) methods regardless of the undersampling rates, the noise levels, and the image structures. For the same objective quality of the reconstructed images, the proposed method requires much less k-space data than the TV method. The SKM method is an effective method for fast MRI reconstruction from the undersampled k-space data. Graphical abstract Two Real Images and their sparsified images by singularizing operator.

  18. A numerical study on acoustic behavior in gas turbine combustor with acoustic resonator

    Park, I Sun; Sohn, Chae Hoon

    2005-01-01

    Acoustic behavior in gas turbine combustor with acoustic resonator is investigated numerically by adopting linear acoustic analysis. Helmholtz-type resonator is employed as acoustic resonator to suppress acoustic instability passively. The tuning frequency of acoustic resonator is adjusted by varying its length. Through harmonic analysis, acoustic-pressure responses of chamber to acoustic excitation are obtained and the resonant acoustic modes are identified. Acoustic damping effect of acoustic resonator is quantified by damping factor. As the tuning frequency of acoustic resonator approaches the target frequency of the resonant mode to be suppressed, mode split from the original resonant mode to lower and upper modes appears and thereby complex patterns of acoustic responses show up. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic resonator tuned to broad-band frequencies near the maximum frequency of those of the possible upper modes

  19. Multiquark Resonances

    Esposito, A.; Polosa, A.D.

    2016-01-01

    Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties has been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.

  20. Modelling and characterization of the roof tile-shaped modes of AlN-based cantilever resonators in liquid media

    Ruiz-Díez, V; Hernando-García, J; Toledo, J; Manzaneque, T; Sánchez-Rojas, J L; Kucera, M; Pfusterschmied, G; Schmid, U

    2016-01-01

    In this work, roof tile-shaped modes of MEMS (micro electro-mechanical systems) cantilever resonators with various geometries and mode orders are analysed. These modes can be efficiently excited by a thin piezoelectric film and a properly designed top electrode. The electrical and optical characterization of the resonators are performed in liquid media and the device performance is evaluated in terms of quality factor, resonant frequency and motional conductance. A quality factor as high as 165 was measured in isopropanol for a cantilever oscillating in the seventh order roof tile-shaped mode at 2 MHz. To support the results of the experimental characterization, a 2D finite element method simulation model is presented and studied. An analytical model for the estimation of the motional conductance was also developed and validated with the experimental measurements. (paper)

  1. Fiducial-based fusion of 3D dental models with magnetic resonance imaging.

    Abdi, Amir H; Hannam, Alan G; Fels, Sidney

    2018-04-16

    Magnetic resonance imaging (MRI) is widely used in study of maxillofacial structures. While MRI is the modality of choice for soft tissues, it fails to capture hard tissues such as bone and teeth. Virtual dental models, acquired by optical 3D scanners, are becoming more accessible for dental practice and are starting to replace the conventional dental impressions. The goal of this research is to fuse the high-resolution 3D dental models with MRI to enhance the value of imaging for applications where detailed analysis of maxillofacial structures are needed such as patient examination, surgical planning, and modeling. A subject-specific dental attachment was digitally designed and 3D printed based on the subject's face width and dental anatomy. The attachment contained 19 semi-ellipsoidal concavities in predetermined positions where oil-based ellipsoidal fiducial markers were later placed. The MRI was acquired while the subject bit on the dental attachment. The spatial position of the center of mass of each fiducial in the resultant MR Image was calculated by averaging its voxels' spatial coordinates. The rigid transformation to fuse dental models to MRI was calculated based on the least squares mapping of corresponding fiducials and solved via singular-value decomposition. The target registration error (TRE) of the proposed fusion process, calculated in a leave-one-fiducial-out fashion, was estimated at 0.49 mm. The results suggest that 6-9 fiducials suffice to achieve a TRE of equal to half the MRI voxel size. Ellipsoidal oil-based fiducials produce distinguishable intensities in MRI and can be used as registration fiducials. The achieved accuracy of the proposed approach is sufficient to leverage the merged 3D dental models with the MRI data for a finer analysis of the maxillofacial structures where complete geometry models are needed.

  2. Numerical examinations of simplified spondylodesis models concerning energy absorption in magnetic resonance imaging

    Hadert Nicole

    2016-09-01

    Full Text Available Metallic implants in magnetic resonance imaging (MRI are a potential safety risk since the energy absorption may increase temperature of the surrounding tissue. The temperature rise is highly dependent on implant size. Numerical examinations can be used to calculate the energy absorption in terms of the specific absorption rate (SAR induced by MRI on orthopaedic implants. This research presents the impact of titanium osteosynthesis spine implants, called spondylodesis, deduced by numerical examinations of energy absorption in simplified spondylodesis models placed in 1.5 T and 3.0 T MRI body coils. The implants are modelled along with a spine model consisting of vertebrae and disci intervertebrales thus extending previous investigations [1], [2]. Increased SAR values are observed at the ends of long implants, while at the center SAR is significantly lower. Sufficiently short implants show increased SAR along the complete length of the implant. A careful data analysis reveals that the particular anatomy, i.e. vertebrae and disci intervertebrales, has a significant effect on SAR. On top of SAR profile due to the implant length, considerable SAR variations at small scale are observed, e.g. SAR values at vertebra are higher than at disc positions.

  3. Precision tools and models to narrow in on the 750 GeV diphoton resonance

    Staub, Florian; Basso, Lorenzo; Goodsell, Mark D.; Harries, Dylan; Krauss, Manuel E.; Nickel, Kilian; Opferkuch, Toby; Ubaldi, Lorenzo; Vicente, Avelino; Voigt, Alexander

    2016-09-23

    The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective...

  4. Metabolomics with Nuclear Magnetic Resonance Spectroscopy in a Drosophila melanogaster Model of Surviving Sepsis

    Bakalov, Veli; Amathieu, Roland; Triba, Mohamed N.; Clément, Marie-Jeanne; Reyes Uribe, Laura; Le Moyec, Laurence; Kaynar, Ata Murat

    2016-01-01

    Patients surviving sepsis demonstrate sustained inflammation, which has been associated with long-term complications. One of the main mechanisms behind sustained inflammation is a metabolic switch in parenchymal and immune cells, thus understanding metabolic alterations after sepsis may provide important insights to the pathophysiology of sepsis recovery. In this study, we explored metabolomics in a novel Drosophila melanogaster model of surviving sepsis using Nuclear Magnetic Resonance (NMR), to determine metabolite profiles. We used a model of percutaneous infection in Drosophila melanogaster to mimic sepsis. We had three experimental groups: sepsis survivors (infected with Staphylococcus aureus and treated with oral linezolid), sham (pricked with an aseptic needle), and unmanipulated (positive control). We performed metabolic measurements seven days after sepsis. We then implemented metabolites detected in NMR spectra into the MetExplore web server in order to identify the metabolic pathway alterations in sepsis surviving Drosophila. Our NMR metabolomic approach in a Drosophila model of recovery from sepsis clearly distinguished between all three groups and showed two different metabolomic signatures of inflammation. Sham flies had decreased levels of maltose, alanine, and glutamine, while their level of choline was increased. Sepsis survivors had a metabolic signature characterized by decreased glucose, maltose, tyrosine, beta-alanine, acetate, glutamine, and succinate. PMID:28009836

  5. Memory-induced resonancelike suppression of spike generation in a resonate-and-fire neuron model

    Mankin, Romi; Paekivi, Sander

    2018-01-01

    The behavior of a stochastic resonate-and-fire neuron model based on a reduction of a fractional noise-driven generalized Langevin equation (GLE) with a power-law memory kernel is considered. The effect of temporally correlated random activity of synaptic inputs, which arise from other neurons forming local and distant networks, is modeled as an additive fractional Gaussian noise in the GLE. Using a first-passage-time formulation, in certain system parameter domains exact expressions for the output interspike interval (ISI) density and for the survival probability (the probability that a spike is not generated) are derived and their dependence on input parameters, especially on the memory exponent, is analyzed. In the case of external white noise, it is shown that at intermediate values of the memory exponent the survival probability is significantly enhanced in comparison with the cases of strong and weak memory, which causes a resonancelike suppression of the probability of spike generation as a function of the memory exponent. Moreover, an examination of the dependence of multimodality in the ISI distribution on input parameters shows that there exists a critical memory exponent αc≈0.402 , which marks a dynamical transition in the behavior of the system. That phenomenon is illustrated by a phase diagram describing the emergence of three qualitatively different structures of the ISI distribution. Similarities and differences between the behavior of the model at internal and external noises are also discussed.

  6. Cyclotron resonance in a cathode ray tube

    Gherbanovschi, N.; Tanasa, M.; Stoican, O.

    2002-01-01

    Absorption of the RF energy by the electron beam in a cathode ray tube due to the cyclotron resonance is described. The cathode ray tube is placed within a Helmholtz coils system supplied by a sawtooth current generator. In order to generate RF field and to detect RF absorption a gate dip-meter equipped with a FET transistor is used. The bias voltage variations of the FET transistors as a function of the magnetic field are recorded. The operating point of the cathode ray tube has been chosen so that the relaxation oscillations of the detection system can be observed. (authors)

  7. Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models

    Khalvati, Farzad; Wong, Alexander; Haider, Masoom A.

    2015-01-01

    Prostate cancer is the most common form of cancer and the second leading cause of cancer death in North America. Auto-detection of prostate cancer can play a major role in early detection of prostate cancer, which has a significant impact on patient survival rates. While multi-parametric magnetic resonance imaging (MP-MRI) has shown promise in diagnosis of prostate cancer, the existing auto-detection algorithms do not take advantage of abundance of data available in MP-MRI to improve detection accuracy. The goal of this research was to design a radiomics-based auto-detection method for prostate cancer via utilizing MP-MRI data. In this work, we present new MP-MRI texture feature models for radiomics-driven detection of prostate cancer. In addition to commonly used non-invasive imaging sequences in conventional MP-MRI, namely T2-weighted MRI (T2w) and diffusion-weighted imaging (DWI), our proposed MP-MRI texture feature models incorporate computed high-b DWI (CHB-DWI) and a new diffusion imaging modality called correlated diffusion imaging (CDI). Moreover, the proposed texture feature models incorporate features from individual b-value images. A comprehensive set of texture features was calculated for both the conventional MP-MRI and new MP-MRI texture feature models. We performed feature selection analysis for each individual modality and then combined best features from each modality to construct the optimized texture feature models. The performance of the proposed MP-MRI texture feature models was evaluated via leave-one-patient-out cross-validation using a support vector machine (SVM) classifier trained on 40,975 cancerous and healthy tissue samples obtained from real clinical MP-MRI datasets. The proposed MP-MRI texture feature models outperformed the conventional model (i.e., T2w+DWI) with regard to cancer detection accuracy. Comprehensive texture feature models were developed for improved radiomics-driven detection of prostate cancer using MP-MRI. Using a

  8. Search for tt-bar resonances and implications for new physics models

    Khalatyan, S.

    2014-01-01

    CMS and ATLAS experiments searched for top quark pair resonances using 2001 data recorded in pp collisions at √(s)=7 TeV at the Large Hadron Collider in all final states: dilepton, lepton+jets, and all hadronic. No significant deviation over backgrounds are observed. The experiments have set 95% confidence level upper limits on the resonance production cross section times branching ratio, and reported the excluded resonance mass region. (author)

  9. Magnetic resonance imaging of an equine fracture model containing stainless steel metal implants.

    Pownder, S L; Koff, M F; Shah, P H; Fortier, L A; Potter, H G

    2016-05-01

    Post operative imaging in subjects with orthopaedic implants is challenging across all modalities. Magnetic resonance imaging (MRI) is preferred to assess human post operative musculoskeletal complications, as soft tissue and bones are evaluated without using ionising radiation. However, with conventional MRI pulse sequences, metal creates susceptibility artefact that distorts anatomy. Assessment of the post operative equine patient is arguably more challenging due to the volume of metal present, and MRI is often not performed in horses with implants. Novel pulse sequences such as multiacquisition variable resonance image combination (MAVRIC) now provide improved visibility in the vicinity of surgical-grade implants and offer an option for imaging horses with metal implants. To compare conspicuity of regional anatomy in an equine fracture-repair model using MAVRIC, narrow receiver bandwidth (NBW) fast spin echo (FSE), and wide receiver bandwidth (WBW) FSE sequences. Nonrandomised in vitro experiment. MAVRIC, NBW FSE and WBW FSE were performed on 9 cadaveric distal limbs with fractures and stainless steel implants in the third metacarpal bone and proximal phalanx. Objective measures of artefact reduction were performed by calculating the total artefact area in each transverse image as a percentage of the total anatomic area. The number of transverse images in which fracture lines were visible was tabulated for each sequence. Regional soft tissue conspicuity was assessed subjectively. Overall anatomic delineation was improved using MAVRIC compared with NBW FSE; delineation of structures closest to the metal implants was improved using MAVRIC compared with WBW FSE and NBW FSE. Total artefact area was the highest for NBW FSE and lowest for MAVRIC; the total number of transverse slices with a visible fracture line was highest in MAVRIC and lowest in NBW FSE. MAVRIC and WBW FSE are feasible additions to minimise artefact around implants. © 2015 EVJ Ltd.

  10. Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling

    Yeoh, S.Y.; Arias Moreno, A.J.; Rietbergen, van B.; Hoeve, ter N.D.; Diest, van P.J.; Grull, H.

    2015-01-01

    Background Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a promising technique for palliative treatment of bone pain. In this study, the effects of MR-HIFU ablation on bone mechanics and modeling were investigated. Methods A total of 12 healthy rat femurs were ablated

  11. Interacting sp-boson model with isospin: an unified description of giant multipole resonances and other collective motions

    Chen, C.H.-T.

    1980-10-01

    A unified description of the following classes of nuclear collective states in terms of an interacting sp-boson model is proposed: (i) Low-lying collective states in the light nuclei, both odd-odd and even-even; (ii) Giant multipole resonances (GMR), and (iii) pairing collective motions. (Author) [pt

  12. A comparative Pc1 case study applying two modes of ionospheric Alfvén resonator modeling

    Prikner, Karel; Feygin, F. Z.; Raita, T.

    2010-01-01

    Roč. 54, č. 3 (2010), s. 495-511 ISSN 0039-3169 Grant - others:EU(XE) HPRI 200100132 Institutional research plan: CEZ:AV0Z30120515 Keywords : ionospheric Alfvén resonator * Pc1 pulsations * numerical simulation * EISCAT data * IRI models Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.123, year: 2010

  13. Magnetic resonance imaging of reconstructed ferritin as an iron-induced pathological model system

    Balejcikova, Lucia [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Kosice (Slovakia); Institute of Measurement Science SAS, Dubravska cesta 9, 841 04 Bratislava 4 (Slovakia); Strbak, Oliver [Institute of Measurement Science SAS, Dubravska cesta 9, 841 04 Bratislava 4 (Slovakia); Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin (Slovakia); Baciak, Ladislav [Faculty of Chemical and Food Technology STU, Radlinskeho 9, 812 37 Bratislava (Slovakia); Kovac, Jozef [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Kosice (Slovakia); Masarova, Marta; Krafcik, Andrej; Frollo, Ivan [Institute of Measurement Science SAS, Dubravska cesta 9, 841 04 Bratislava 4 (Slovakia); Dobrota, Dusan [Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin (Slovakia); Kopcansky, Peter [Institute of Experimental Physics SAS, Watsonova 47, 040 01 Kosice (Slovakia)

    2017-04-01

    Iron, an essential element of the human body, is a significant risk factor, particularly in the case of its concentration increasing above the specific limit. Therefore, iron is stored in the non-toxic form of the globular protein, ferritin, consisting of an apoferritin shell and iron core. Numerous studies confirmed the disruption of homeostasis and accumulation of iron in patients with various diseases (e.g. cancer, cardiovascular or neurological conditions), which is closely related to ferritin metabolism. Such iron imbalance enables the use of magnetic resonance imaging (MRI) as a sensitive technique for the detection of iron-based aggregates through changes in the relaxation times, followed by the change in the inherent image contrast. For our in vitrostudy, modified ferritins with different iron loadings were prepared by chemical reconstruction of the iron core in an apoferritin shell as pathological model systems. The magnetic properties of samples were studied using SQUID magnetometry, while the size distribution was detected via dynamic light scattering. We have shown that MRI could represent the most advantageous method for distinguishing native ferritin from reconstructed ferritin which, after future standardisation, could then be suitable for the diagnostics of diseases associated with iron accumulation. - Highlights: • MRI is the sensitive technique for detecting iron-based aggregates. • Reconstructed Ferritin is suitable model system of iron-related disorders. • MRI allow distinguish of native ferritin from reconstructed ferritin. • MRI could be useful for diagnostics of diseases associated with iron accumulation.

  14. A numerically efficient damping model for acoustic resonances in microfluidic cavities

    Hahn, P., E-mail: hahnp@ethz.ch; Dual, J. [Institute of Mechanical Systems (IMES), Department of Mechanical and Process Engineering, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich (Switzerland)

    2015-06-15

    Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results are fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.

  15. Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model

    Kidon, Lyran; Wilner, Eli Y.; Rabani, Eran

    2015-12-01

    The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima-Zwanzig-Mori time-convolution (TC) and the other on the Tokuyama-Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called "memory kernel" or "generator," going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green's function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.

  16. A fractal derivative model for the characterization of anomalous diffusion in magnetic resonance imaging

    Liang, Yingjie; Ye, Allen Q.; Chen, Wen; Gatto, Rodolfo G.; Colon-Perez, Luis; Mareci, Thomas H.; Magin, Richard L.

    2016-10-01

    Non-Gaussian (anomalous) diffusion is wide spread in biological tissues where its effects modulate chemical reactions and membrane transport. When viewed using magnetic resonance imaging (MRI), anomalous diffusion is characterized by a persistent or 'long tail' behavior in the decay of the diffusion signal. Recent MRI studies have used the fractional derivative to describe diffusion dynamics in normal and post-mortem tissue by connecting the order of the derivative with changes in tissue composition, structure and complexity. In this study we consider an alternative approach by introducing fractal time and space derivatives into Fick's second law of diffusion. This provides a more natural way to link sub-voxel tissue composition with the observed MRI diffusion signal decay following the application of a diffusion-sensitive pulse sequence. Unlike previous studies using fractional order derivatives, here the fractal derivative order is directly connected to the Hausdorff fractal dimension of the diffusion trajectory. The result is a simpler, computationally faster, and more direct way to incorporate tissue complexity and microstructure into the diffusional dynamics. Furthermore, the results are readily expressed in terms of spectral entropy, which provides a quantitative measure of the overall complexity of the heterogeneous and multi-scale structure of biological tissues. As an example, we apply this new model for the characterization of diffusion in fixed samples of the mouse brain. These results are compared with those obtained using the mono-exponential, the stretched exponential, the fractional derivative, and the diffusion kurtosis models. Overall, we find that the order of the fractal time derivative, the diffusion coefficient, and the spectral entropy are potential biomarkers to differentiate between the microstructure of white and gray matter. In addition, we note that the fractal derivative model has practical advantages over the existing models from the

  17. Competitive resonance interference models in direct whole core transport code nTRACER

    Bacha, Meer; Joo, Han Gyu [Seoul National Univ., Seoul (Korea, Republic of)

    2015-05-15

    The capability of nTRACER was enhanced with WIMS IAEA library using the equivalence theory and Dancoff correction method based on the resonance integral data. The background XSs, for the heterogeneous system, incorporating the shadowing effects, are evaluated by the enhanced neutron current method. The effective XSs are generated using the Resonance Integral (RI) data by interpolating for background XSs and temperatures. The conventional method, which augments the background XS with average absorption XSs of all other resonant isotopes in the mixture, is used for treating the resonance interference in mixed resonant absorbers. A lot of methods are being developed for the resonance self-shielding in mixed absorbers, but still there exists some inadequacy in the XSs evaluation. The most accurate method is solving the UFG slowing down equation, but at the cost of huge computational burden. On the other hand, the conventional method is the simplest and easy to implement, but it has drawback, that it can't correctly estimate the cross sections in mixed absorbers because it adds the absorption XS. The resonance interference treatment methods are studied and implemented in nTRACER and checked the capacity to improve the overlap effects for multiple resonant isotopes. In XST method, the XSs are improved a lot as compared to conventional method, but still there exists discrepancy in the lower energy range. This method is very fast having no burden during execution.

  18. Application of He’s Variational Iteration Method to Nonlinear Helmholtz Equation and Fifth-Order KDV Equation

    Miansari, Mo; Miansari, Me; Barari, Amin

    2009-01-01

    In this article, He’s variational iteration method (VIM), is implemented to solve the linear Helmholtz partial differential equation and some nonlinear fifth-order Korteweg-de Vries (FKdV) partial differential equations with specified initial conditions. The initial approximations can be freely c...

  19. Collisionless Kelvin-Helmholtz instability and vortex-induced reconnection in the external region of the Earth magnetotail

    Pegoraro, F; Faganello, M; Califano, F

    2008-01-01

    In a magnetized plasma streaming with a non uniform velocity, the Kelvin-Helmholtz instability plays a major role in mixing different plasma regions and in stretching the magnetic field lines leading to the formation of layers with a sheared magnetic field where magnetic field line reconnection can take place. A relevant example is provided by the formation of a mixing layer between the Earth's magnetosphere and the solar wind at low latitudes during northward periods. In the considered configuration, in the presence of a magnetic field nearly perpendicular to the plane defined by the velocity field and its inhomogeneity direction, velocity shear drives a Kelvin-Helmholtz instability which advects and distorts the magnetic field configuration. If the Alfven velocity associated to the in-plane magnetic field is sufficiently weak with respect to the variation of the fluid velocity in the plasma, the Kelvin-Helmholtz instability generates fully rolled-up vortices which advect the magnetic field lines into a complex configuration, causing the formation of current layers along the inversion curves of the in-plane magnetic field component. Pairing of the vortices generated by the Kelvin-Helmholtz instability is a well know phenomenon in two-dimensional hydrodynamics. Here we investigate the development of magnetic reconnection during the vortex pairing process and show that completely different magnetic structures are produced depending on how fast the reconnection process develops on the time scale set by the pairing process.

  20. Novel approach to the Helmholtz integral equation solution by Fourier series expansion for acoustic radiation and scattering problems

    Shatalov, MY

    2006-01-01

    Full Text Available -scale structure to guarantee the numerical accuracy of solution. In the present paper the authors propose to use a novel method of solution of the Helmholtz integral equation, which is based on expansion of the integrands in double Fourier series. The main...

  1. ULF Waves in the Ionospheric Alfven Resonator: Modeling of MICA Observations

    Streltsov, A. V.; Tulegenov, B.

    2017-12-01

    We present results from a numerical study of physical processes responsible for the generation of small-scale, intense electromagnetic structures in the ultra-low-frequency range frequently observed in the close vicinity of bright discrete auroral arcs. In particular, our research is focused on the role of the ionosphere in generating these structures. A significant body of observations demonstrate that small-scale electromagnetic waves with frequencies below 1 Hz are detected at high latitudes where the large-scale, downward magnetic field-aligned current (FAC) interact with the ionosphere. Some theoretical studies suggest that these waves can be generated by the ionospheric feedback instability (IFI) inside the ionospheric Alfven resonator (IAR). The IAR is the region in the low-altitude magnetosphere bounded by the strong gradient in the Alfven speed at high altitude and the conducting bottom of the ionosphere (ionospheric E-region) at low altitude. To study ULF waves in this region we use a numerical model developed from reduced two fluid MHD equations describing shear Alfven waves in the ionosphere and magnetosphere of the earth. The active ionospheric feedback on structure and amplitude of magnetic FACs that interact with the ionosphere is implemented through the ionospheric boundary conditions that link the parallel current density with the plasma density and the perpendicular electric field in the ionosphere. Our numerical results are compared with the in situ measurements performed by the Magnetosphere-Ionosphere Coupling in the Alfven Resonator (MICA) sounding rocket, launched on February 19, 2012 from Poker Flat Research Range in Alaska to measure fields and particles during a passage through a discreet auroral arc. Parameters of the simulations are chosen to match actual MICA parameters, allowing the comparison in the most precise and rigorous way. Waves generated in the numerical model have frequencies between 0.30 and 0.45 Hz, while MICA measured

  2. An Investigation of Hall Currents Associated with Tripolar Magnetic Fields During Magnetospheric Kelvin Helmholtz Waves

    Sturner, A. P.; Eriksson, S.; Newman, D. L.; Lapenta, G.; Gershman, D. J.; Plaschke, F.; Ergun, R.; Wilder, F. D.; Torbert, R. B.; Giles, B. L.; Strangeway, R. J.; Russell, C. T.; Burch, J. L.

    2016-12-01

    Kinetic simulations and observations of magnetic reconnection suggest the Hall term of Ohm's Law is necessary for understanding fast reconnection in the Earth's magnetosphere. During high (>1) guide field plasma conditions in the solar wind and in Earth's magnetopause, tripolar variations in the guide magnetic field are often observed during current sheet crossings, and have been linked to reconnection Hall magnetic fields. Two proposed mechanisms for these tripolar variations are the presence of multiple nearby X-lines and magnetic island coalescence. We present results of an investigation into the structure of the electron currents supporting tripolar guide magnetic field variations during Kelvin-Helmholtz wave current sheet crossings using the Magnetosphere Multiscale (MMS) Mission, and compare with bipolar magnetic field structures and with kinetic simulations to understand how these tripolar structures may be used as tracers for magnetic islands.

  3. Cluster observations of reconnection due to the Kelvin-Helmholtz instability at the dawnside magnetospheric flank

    K. Nykyri

    2006-10-01

    Full Text Available On 3 July 2001, the four Cluster satellites traversed along the dawnside magnetospheric flank and observed large variations in all plasma parameters. The estimated magnetopause boundary normals were oscillating in the z-direction and the normal component of the magnetic field showed systematic  2–3 min bipolar variations for 1 h when the IMF had a small positive bz-component and a Parker-spiral orientation in the x,y-plane. Brief  33 s intervals with excellent deHoffman Teller frames were observed satisfying the Walén relation. Detailed comparisons with 2-D MHD simulations indicate that Cluster encountered rotational discontinuities generated by Kelvin-Helmholtz instability. We estimate a wave length of  6 RE and a wave vector with a significant z-component.

  4. Kelvin-Helmholtz instability and kinetic internal kink modes in tokamaks

    Naitou, H.

    2002-01-01

    The m=1 and n=1 kinetic internal kink (KIK) mode with a nonuniform density profile is studied by the cylindrical version of the gyro-reduced-MHD code which is one of the extended MHD codes being able to treat the physics beyond resistive MHD. Electron inertia and electron finite temperature effects are crucial. The linear mode structure of KIK mode includes the sheared poloidal flow with m=1, which excites the vortexes due to the Kelvin-Helmholtz (K-H) instability. We have found that there is a strong coupling between the KIK mode and the K-H mode even in the early nonlinear stage of KIK instability in which the width of the m=1 magnetic island is sufficiently small. (author)

  5. Decay of MHD-scale Kelvin-Helmholtz vortices mediated by parasitic electron dynamics

    Nakamura, T.K.M.; Hayashi, D.; Fujimoto, M.; Shinohara, I.

    2004-01-01

    We have simulated nonlinear development of MHD-scale Kelvin-Helmholtz (KH) vortices by a two-dimensional two-fluid system including finite electron inertial effects. In the presence of moderate density jump across a shear layer, in striking contrast to MHD results, MHD KH vortices are found to decay by the time one eddy turnover is completed. The decay is mediated by smaller vortices that appear within the parent vortex and stays effective even when the shear layer width is made larger. It is shown that the smaller vortices are basically of MHD nature while the seeding for these is achieved by the electron inertial effect. Application of the results to the magnetotail boundary layer is discussed

  6. Bringing new archival sources to Wundt scholarship: the case of Wundt's assistantship with Helmholtz.

    Araujo, Saulo de Freitas

    2014-02-01

    Wilhelm Wundt's biography is one of the main domains in Wundt scholarship that deserves more detailed attention. The few existing biographical works present many problems, ranging from vagueness to chronological inaccuracies, among others. One of the important gaps concerns the so-called Heidelberg period (1852-1874), during which he went from being a medical student to holding a professorship at the University of Heidelberg. The aim of this article is to dispel a very common confusion in the secondary literature, which refers to Wundt's assistantship with Helmholtz at the Physiological Institute, by establishing the precise dates of his assistantship. Contrary to what is generally repeated in the secondary literature, the primary sources allow us to determine precisely this period from October 1858 to March 1865. I conclude by pointing out the indispensability of the primary sources not only to Wundt scholarship but also to the historiography of psychology in general.

  7. The evolution of a localized nonlinear wave of the Kelvin-Helmholtz instability with gravity

    Orazzo, Annagrazia; Hoepffner, Jérôme

    2012-11-01

    At the interface between two fluids of different density and in the presence of gravity, there are well known periodic surface waves which can propagate for long distances with little attenuation, as it is for instance the case at the surface of the sea. If wind is present, these waves progressively accumulate energy as they propagate and grow to large sizes—this is the Kelvin-Helmholtz instability. On the other hand, we show in this paper that for a given wind strength, there is potential for the growth of a localized nonlinear wave. This wave can reach a size such that the hydrostatic pressure drop from top to bottom equals the stagnation pressure of the wind. This process for the disruption of the flat interface is localized and nonlinear. We study the properties of this wave using numerical simulations of the Navier-Stokes equations.

  8. Double-reconnected magnetic structures driven by Kelvin-Helmholtz vortices at the Earth's magnetosphere

    Faganello, Matteo; Borgogno, Dario; Califano, Francesco; Pegoraro, Francesco

    2015-11-01

    In an almost collisionless MagnetoHydrodynamic plasma in a relatively strong magnetic field, stresses can be conveyed far from the region where they are exerted e.g., through the propagation of Alfvèn waves. The forced dynamics of line-tied magnetic structures in solar and stellar coronae is a paradigmatic case. We investigate how this action at a distance develops from the equatorial region of the Kelvin-Helmholtz unstable flanks of the Earth's magnetosphere leading to the onset, at mid latitude in both hemispheres, of correlated double magnetic field line reconnection events that can allow the solar wind plasma to enter the Earth's magnetosphere. This mid-latitude double reconnection process, first investigated in, has been confirmed here by following a large set of individual field lines using a method similar to a Poincarè map.

  9. Application of catastrophe theory to a point model for bumpy torus with neoclassical non-resonant electrons

    Punjabi, A; Vahala, G [College of William and Mary, Williamsburg, VA (USA). Dept. of Physics

    1983-12-01

    The point model for the toroidal core plasma in the ELMO Bumpy Torus (with neoclassical non-resonant electrons) is examined in the light of catastrophe theory. Even though the point model equations do not constitute a gradient dynamic system, the equilibrium surfaces are similar to those of the canonical cusp catastrophe. The point model is then extended to incorporate ion cyclotron resonance heating. A detailed parametric study of the equilibria is presented. Further, the nonlinear time evolution of these equilibria is studied, and it is observed that the point model obeys the delay convention (and hence hysteresis) and shows catastrophes at the fold edges of the equilibrium surfaces. Tentative applications are made to experimental results.

  10. Development of a Miniature, Two-Axis, Triple-Helmholtz-Driven Gimbal

    Sharif, Boz; Joscelyn, Ed; Wilcox, Brian; Johnson, Michael R.

    2000-01-01

    This paper details the development of a Helmholtz-driven, 2-axis gimbal to position a flat mirror within 50 microradian (fine positioning) in a space environment. The gimbal is intended to travel on a deep space mission mounted on a miniature "rover" vehicle. The gimbal will perform both pointing and scanning functions. The goal for total mass of the gimbal was 25 grams. The primary challenge was to design and build a bearing system that would achieve the required accuracy in addition to supporting the relatively large mass of the mirror and the outer gimbal. The mechanism is subjected to 100-G loading without the aid of any additional caging mechanism. Additionally, it was desired to have the same level of accuracy during Earth-bound, 1-G testing. Due to the inherent lack of damping in a zero-G, vacuum environment; the ability of the gimbal to respond to very small amounts of input energy is paramount. Initial testing of the first prototype revealed exceedingly long damping times required even while exposed to the damping effects of air and 1-G friction. It is envisioned that fine positioning of the gimbal will be accomplished in very small steps to avoid large disturbances to the mirror. Various bearing designs, including materials, lubrication options and bearing geometry will be discussed. In addition various options for the Helmholtz coil design will be explored with specific test data given. Ground testing in the presence of 1-G was compounded by the local magnetic fields due to the "compass" effect on the gimbal. The test data will be presented and discussed. Additionally, rationale for estimating gimbal performance in a zero-G environment will be presented and discussed.

  11. Blob Formation and Ejection in Coronal Jets due to the Plasmoid and Kelvin–Helmholtz Instabilities

    Ni, Lei; Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216 (China); Zhang, Qing-Min [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Murphy, Nicholas A., E-mail: leini@ynao.ac.cn [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2017-05-20

    We perform 2D resistive magnetohydrodynamic simulations of coronal jets driven by flux emergence along the lower boundary. The reconnection layers are susceptible to the formation of blobs that are ejected in the jet. Our simulation with low plasma β (Case I) shows that magnetic islands form easily and propagate upward in the jet. These islands are multithermal and thus are predicted to show up in hot channels (335 Å and 211 Å) and the cool channel (304 Å) in observations by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory . The islands have maximum temperatures of 8 MK, lifetimes of 120 s, diameters of 6 Mm, and velocities of 200 km s{sup −1}. These parameters are similar to the properties of blobs observed in extreme-ultraviolet (EUV) jets by AIA. The Kelvin–Helmholtz instability develops in our simulation with moderately high plasma β (Case II) and leads to the formation of bright vortex-like blobs above the multiple high magnetosonic Mach number regions that appear along the jet. These vortex-like blobs can also be identified in the AIA channels. However, they eventually move downward and disappear after the high magnetosonic Mach number regions disappear. In the lower plasma β case, the lifetime for the jet is shorter, the jet and magnetic islands are formed with higher velocities and temperatures, the current-sheet fragments are more chaotic, and more magnetic islands are generated. Our results show that the plasmoid instability and Kelvin–Helmholtz instability along the jet are both possible causes of the formation of blobs observed at EUV wavelengths.

  12. Numerical solution of the helmholtz equation for the superellipsoid via the galerkin method

    Hy Dinh

    2013-01-01

    Full Text Available The objective of this work was to find the numerical solution of the Dirichlet problem for the Helmholtz equation for a smooth superellipsoid. The superellipsoid is a shape that is controlled by two parameters. There are some numerical issues in this type of an analysis; any integration method is affected by the wave number k, because of the oscillatory behavior of the fundamental solution. In this case we could only obtain good numerical results for super ellipsoids that were more shaped like super cones, which is a narrow range of super ellipsoids. The formula for these shapes was: $x=cos(xsin(y^{n},y=sin(xsin(y^{n},z=cos(y$ where $n$ varied from 0.5 to 4. The Helmholtz equation, which is the modified wave equation, is used in many scattering problems. This project was funded by NASA RI Space Grant for testing of the Dirichlet boundary condition for the shape of the superellipsoid. One practical value of all these computations can be getting a shape for the engine nacelles in a ray tracing the space shuttle. We are researching the feasibility of obtaining good convergence results for the superellipsoid surface. It was our view that smaller and lighter wave numbers would reduce computational costs associated with obtaining Galerkin coefficients. In addition, we hoped to significantly reduce the number of terms in the infinite series needed to modify the original integral equation, all of which were achieved in the analysis of the superellipsoid in a finite range. We used the Green's theorem to solve the integral equation for the boundary of the surface. Previously, multiple surfaces were used to test this method, such as the sphere, ellipsoid, and perturbation of the sphere, pseudosphere and the oval of Cassini Lin and Warnapala , Warnapala and Morgan .

  13. Building a Unified Computational Model for the Resonant X-Ray Scattering of Strongly Correlated Materials

    Bansil, Arun [Northeastern Univ., Boston, MA (United States)

    2016-12-01

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering—density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization—to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers, and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.

  14. Building a Unified Computational Model for the Resonant X-Ray Scattering of Strongly Correlated Materials

    Bansil, Arun

    2016-01-01

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering-density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization-to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers, and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.

  15. Edge Sharpness Assessment by Parametric Modeling: Application to Magnetic Resonance Imaging.

    Ahmad, R; Ding, Y; Simonetti, O P

    2015-05-01

    In biomedical imaging, edge sharpness is an important yet often overlooked image quality metric. In this work, a semi-automatic method to quantify edge sharpness in the presence of significant noise is presented with application to magnetic resonance imaging (MRI). The method is based on parametric modeling of image edges. First, an edge map is automatically generated and one or more edges-of-interest (EOI) are manually selected using graphical user interface. Multiple exclusion criteria are then enforced to eliminate edge pixels that are potentially not suitable for sharpness assessment. Second, at each pixel of the EOI, an image intensity profile is read along a small line segment that runs locally normal to the EOI. Third, the profiles corresponding to all EOI pixels are individually fitted with a sigmoid function characterized by four parameters, including one that represents edge sharpness. Last, the distribution of the sharpness parameter is used to quantify edge sharpness. For validation, the method is applied to simulated data as well as MRI data from both phantom imaging and cine imaging experiments. This method allows for fast, quantitative evaluation of edge sharpness even in images with poor signal-to-noise ratio. Although the utility of this method is demonstrated for MRI, it can be adapted for other medical imaging applications.

  16. Modelling the nonlinear behaviour of double walled carbon nanotube based resonator with curvature factors

    Patel, Ajay M.; Joshi, Anand Y.

    2016-10-01

    This paper deals with the nonlinear vibration analysis of a double walled carbon nanotube based mass sensor with curvature factor or waviness, which is doubly clamped at a source and a drain. Nonlinear vibrational behaviour of a double-walled carbon nanotube excited harmonically near its primary resonance is considered. The double walled carbon nanotube is harmonically excited by the addition of an excitation force. The modelling involves stretching of the mid plane and damping as per phenomenon. The equation of motion involves four nonlinear terms for inner and outer tubes of DWCNT due to the curved geometry and the stretching of the central plane due to the boundary conditions. The vibrational behaviour of the double walled carbon nanotube with different surface deviations along its axis is analyzed in the context of the time response, Poincaré maps and Fast Fourier Transformation diagrams. The appearance of instability and chaos in the dynamic response is observed as the curvature factor on double walled carbon nanotube is changed. The phenomenon of Periodic doubling and intermittency are observed as the pathway to chaos. The regions of periodic, sub-harmonic and chaotic behaviour are clearly seen to be dependent on added mass and the curvature factors in the double walled carbon nanotube. Poincaré maps and frequency spectra are used to explicate and to demonstrate the miscellany of the system behaviour. With the increase in the curvature factor system excitations increases and results in an increase of the vibration amplitude with reduction in excitation frequency.

  17. Magnetic resonance imaging (MRI to study striatal iron accumulation in a rat model of Parkinson's disease.

    Ana Virel

    Full Text Available Abnormal accumulation of iron is observed in neurodegenerative disorders. In Parkinson's disease, an excess of iron has been demonstrated in different structures of the basal ganglia and is suggested to be involved in the pathogenesis of the disease. Using the 6-hydroxydopamine (6-OHDA rat model of Parkinson's disease, the edematous effect of 6-OHDA and its relation with striatal iron accumulation was examined utilizing in vivo magnetic resonance imaging (MRI. The results revealed that in comparison with control animals, injection of 6-OHDA into the rat striatum provoked an edematous process, visible in T2-weighted images that was accompanied by an accumulation of iron clearly detectable in T2*-weighted images. Furthermore, Prussian blue staining to detect iron in sectioned brains confirmed the existence of accumulated iron in the areas of T2* hypointensities. The presence of ED1-positive microglia in the lesioned striatum overlapped with this accumulation of iron, indicating areas of toxicity and loss of dopamine nerve fibers. Correlation analyses demonstrated a direct relation between the hyperintensities caused by the edema and the hypointensities caused by the accumulation of iron.

  18. Methods for modeling and quantification in functional imaging by positron emissions tomography and magnetic resonance imaging

    Costes, Nicolas

    2017-01-01

    This report presents experiences and researches in the field of in vivo medical imaging by positron emission tomography (PET) and magnetic resonance imaging (MRI). In particular, advances in terms of reconstruction, quantification and modeling in PET are described. The validation of processing and analysis methods is supported by the creation of data by simulation of the imaging process in PET. The recent advances of combined PET/MRI clinical cameras, allowing simultaneous acquisition of molecular/metabolic PET information, and functional/structural MRI information opens the door to unique methodological innovations, exploiting spatial alignment and simultaneity of the PET and MRI signals. It will lead to an increase in accuracy and sensitivity in the measurement of biological phenomena. In this context, the developed projects address new methodological issues related to quantification, and to the respective contributions of MRI or PET information for a reciprocal improvement of the signals of the two modalities. They open perspectives for combined analysis of the two imaging techniques, allowing optimal use of synchronous, anatomical, molecular and functional information for brain imaging. These innovative concepts, as well as data correction and analysis methods, will be easily translated into other areas of investigation using combined PET/MRI. (author) [fr

  19. Magnetic resonance imaging detects placental hypoxia and acidosis in mouse models of perturbed pregnancies.

    Gabriele Bobek

    Full Text Available Endothelial dysfunction as a result of dysregulation of anti-angiogenic molecules secreted by the placenta leads to the maternal hypertensive response characteristic of the pregnancy complication of preeclampsia. Structural abnormalities in the placenta have been proposed to result in altered placental perfusion, placental oxidative stress, cellular damage and inflammation and the release of anti-angiogenic compounds into the maternal circulation. The exact link between these factors is unclear. Here we show, using Magnetic Resonance Imaging as a tool to examine placental changes in mouse models of perturbed pregnancies, that T 2 contrast between distinct regions of the placenta is abolished at complete loss of blood flow. Alterations in T 2 (spin-spin or transverse relaxation times are explained as a consequence of hypoxia and acidosis within the tissue. Similar changes are observed in perturbed pregnancies, indicating that acidosis as well as hypoxia may be a feature of pregnancy complications such as preeclampsia and may play a prominent role in the signalling pathways that lead to the increased secretion of anti-angiogenic compounds.

  20. Glucosamine sulfate effect on the degenerated patellar cartilage: preliminary findings by pharmacokinetic magnetic resonance modeling

    Marti-Bonmati, Luis [Dr Peset University Hospital, Radiology Department, Valencia (Spain); Hospital Quiron Valencia, Radiology Department, Valencia (Spain); Sanz-Requena, Roberto; Alberich-Bayarri, Angel [Hospital Quiron Valencia, Radiology Department, Valencia (Spain); Rodrigo, Jose Luis [Dr Peset University Hospital, Traumatology and Orthopedics Surgery Department, Valencia (Spain); Carot, Jose Miguel [Universidad Politecnica de Valencia, EIO Department, Valencia (Spain)

    2009-06-15

    Normal and degenerated cartilages have different magnetic resonance (MR) capillary permeability (K{sup trans}) and interstitial interchangeable volume (v{sub e}). Our hypothesis was that glucosamine sulfate treatment modifies these neovascularity abnormalities in osteoarthritis. Sixteen patients with patella degeneration, randomly distributed into glucosamine or control groups, underwent two 1.5-Tesla dynamic contrast-enhanced MR imaging studies (treatment initiation and after 6 months). The pain visual analog scale (VAS) and American Knee Society (AKS) score were used. A two-compartment pharmacokinetic model was used. Percentages of variations (postreatment-pretreatment/pretreatment) were compared (t-test for independent data). In the glucosamine group, pain and functional outcomes statistically improved (VAS: 7.3 {+-} 1.1 to 3.6 {+-} 1.3, p < 0.001; AKS: 18.6 {+-} 6.9 to 42.9 {+-} 2.7, p < 0.01). Glucosamine significantly increased K{sup trans} at 6 months (-54.4 {+-} 21.2% vs 126.7 {+-} 56.9%, p < 0.001, control vs glucosamine). In conclusion, glucosamine sulfate decreases pain while improving functional outcome in patients with cartilage degeneration. Glucosamine sulfate increases K{sup trans}, allowing its proposal as a surrogate imaging biomarker after 6 months of treatment. (orig.)

  1. Sound attenuations of axial fan blade tones using flow-driven tunable resonator arrays

    Gorny, Lee James

    Flow-excited, tunable quarter-wavelength resonators can be integrated into the shrouds of ducted subsonic axial fans. This study explores their effectiveness in reducing propagations of tonal noise by means of acoustic wave cancellation. Resonators are a non-intrusive method of generating a secondary sound field near the plane of a rotor. As they can be strategically tuned to reduce radiated noise at the blade passage frequency (BPF) and its harmonics, resonators can be useful for a variety of applications to quiet existing and future turbomachinery. Experiments have demonstrated that a single quarter wave resonator is effective in reducing unidirectional plane wave propagations for long wavelength ducted applications while an array is effective for shorter wavelength or un-ducted facilities where shrouded fans are used. Testing conducted at Center for Acoustics and Vibrations (CAV) at the Pennsylvania State University the Deutsches Zentrum fur Luft und Raumfahrt (DLR) in Berlin, Germany demonstrated that resonator arrays were effective in attenuating shorter wavelength plane-wave and higher order modal propagations of blade tone noise. A chiller fan enclosure, constructed in the CAV laboratory emulated an industrial chiller in its operation. Using this facility, resonators were observed to attenuate blade tone noise from a non-ideal ducted geometry. The approaches used in this study evolved from Helmholtz resonators to conventional quarter wave tubes, to mouth tunable resonators, and finally to back-wall tunable resonators. These developments in tuning allowed for independent control of a resonator's magnitude and phase of the secondary sound field produced by the resonators. It was demonstrated that the use of two tunable resonator chambers oriented axially on either side of the blade region enables a dipole-like secondary sound field to be passively generated and bi-directional attenuations of plane wave noise to be achieved. Tonal attenuations of 28 dB were

  2. Equivalent circuit method research of resonant magnetoelectric characteristic in magnetoelectric laminate composites using nonlinear magnetostrictive constitutive model

    Zhou, Hao-Miao; Li, Chao; Xuan, Li-Ming; Zhao, Ji-Xiang; Wei, Jing

    2011-01-01

    This paper analyzes the magnetoelectric (ME) response around the resonance frequency in the magnetostrictive/piezoelectric/magnetostrictive (MPM) magnetoelectric laminate composites. Following the equivalent circuit method and considering the mechanical loss, we select the nonlinear magnetostrictive constitutive model to present a novel explicit nonlinear expression for the resonant magnetoelectric (ME) coefficient of the magnetoelectric laminate composites. Compared with the experimental results, the predicted resonant ME coefficient of the explicit expression shows a good agreement both qualitatively and quantitatively. Also, when the electromechanical coupling factor of the piezoelectric material, k 31 p , is small, this explicit expression can be reduced to the existing model. On this basis, this paper considers and predicts the magnetoelectric conversion characteristics of the magnetoelectric laminate composites, calculates and analyzes the influences of the thickness ratio of magnetostrictive layer and piezoelectric material, bias magnetic field, and saturation magnetostrictive coefficient on the resonant ME coefficient. This research can provide a theoretical basis for the preparation of magnetoelectric devices with good magnetoelectric conversion characteristics, such as magnetoelectric sensors, energy harvesting transducers, microwave devices etc

  3. Development and experimental evaluation of theoretical models for ion cyclotron resonance frequency heating of tokamak plasmas

    Mantsinen, M.

    1999-01-01

    Heating with electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is a well-established method for auxiliary heating of present-day tokamak plasmas and is envisaged as one of the main heating techniques for the International Thermonuclear Experimental Reactor (ITER) and future reactor plasmas. In order to predict the performance of ICRF heating in future machines, it is important to benchmark present theoretical modelling with experimental results on present tokamaks. This thesis reports on development and experimental evaluation of theoretical models for ICRF heating at the Joint European Torus (JET). Several ICRF physics effects and scenarios have been studied. Direct importance to the ITER is the theoretical analysis of ICRF heating experiments with deuterium-tritium (D-T) plasmas. These experiments clearly demonstrate the potential of ICRF heating for auxiliary heating of reactor plasmas. In particular, scenarios with potential for good bulk ion heating and enhanced D-T fusion reactivity have been identified. Good bulk ion heating is essential for reactor plasmas in order to obtain a high ion temperature and a high fusion reactivity. In JET good bulk ion heating with ICRF waves has been achieved in high-performance discharges by adding ICRF heating to neutral beam injection. In these experiments, as in other JET discharges where damping at higher harmonics of the ion cyclotron frequency takes place, so-called finite Larmor radius (FLR) effects play an important role. Due to FLR effects, the resonating ion velocity distribution function can have a strong influence on the power deposition. Evidence for this effect has been obtained from the third harmonic deuterium heating experiments. Because of FLR effects, the wave-particle interaction can also become weak at certain ion energies, which prevents resonating ions from reaching higher energies. When interacting with the wave, an ion receives not only a change in energy but also a change in

  4. Development and experimental evaluation of theoretical models for ion cyclotron resonance frequency heating of tokamak plasmas

    Mantsinen, M. [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Technical Physics

    1999-06-01

    Heating with electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is a well-established method for auxiliary heating of present-day tokamak plasmas and is envisaged as one of the main heating techniques for the International Thermonuclear Experimental Reactor (ITER) and future reactor plasmas. In order to predict the performance of ICRF heating in future machines, it is important to benchmark present theoretical modelling with experimental results on present tokamaks. This thesis reports on development and experimental evaluation of theoretical models for ICRF heating at the Joint European Torus (JET). Several ICRF physics effects and scenarios have been studied. Direct importance to the ITER is the theoretical analysis of ICRF heating experiments with deuterium-tritium (D-T) plasmas. These experiments clearly demonstrate the potential of ICRF heating for auxiliary heating of reactor plasmas. In particular, scenarios with potential for good bulk ion heating and enhanced D-T fusion reactivity have been identified. Good bulk ion heating is essential for reactor plasmas in order to obtain a high ion temperature and a high fusion reactivity. In JET good bulk ion heating with ICRF waves has been achieved in high-performance discharges by adding ICRF heating to neutral beam injection. In these experiments, as in other JET discharges where damping at higher harmonics of the ion cyclotron frequency takes place, so-called finite Larmor radius (FLR) effects play an important role. Due to FLR effects, the resonating ion velocity distribution function can have a strong influence on the power deposition. Evidence for this effect has been obtained from the third harmonic deuterium heating experiments. Because of FLR effects, the wave-particle interaction can also become weak at certain ion energies, which prevents resonating ions from reaching higher energies. When interacting with the wave, an ion receives not only a change in energy but also a change in

  5. Mathematical models for the diffusion magnetic resonance signal abnormality in patients with prion diseases

    Matteo Figini

    2015-01-01

    Full Text Available In clinical practice signal hyperintensity in the cortex and/or in the striatum on magnetic resonance (MR diffusion-weighted images (DWIs is a marker of sporadic Creutzfeldt–Jakob Disease (sCJD. MR diagnostic accuracy is greater than 90%, but the biophysical mechanisms underpinning the signal abnormality are unknown. The aim of this prospective study is to combine an advanced DWI protocol with new mathematical models of the microstructural changes occurring in prion disease patients to investigate the cause of MR signal alterations. This underpins the later development of more sensitive and specific image-based biomarkers. DWI data with a wide a range of echo times and diffusion weightings were acquired in 15 patients with suspected diagnosis of prion disease and in 4 healthy age-matched subjects. Clinical diagnosis of sCJD was made in nine patients, genetic CJD in one, rapidly progressive encephalopathy in three, and Gerstmann–Sträussler–Scheinker syndrome in two. Data were analysed with two bi-compartment models that represent different hypotheses about the histopathological alterations responsible for the DWI signal hyperintensity. A ROI-based analysis was performed in 13 grey matter areas located in affected and apparently unaffected regions from patients and healthy subjects. We provide for the first time non-invasive estimate of the restricted compartment radius, designed to reflect vacuole size, which is a key discriminator of sCJD subtypes. The estimated vacuole size in DWI hyperintense cortex was in the range between 3 and 10 µm that is compatible with neuropathology measurements. In DWI hyperintense grey matter of sCJD patients the two bi-compartment models outperform the classic mono-exponential ADC model. Both new models show that T2 relaxation times significantly increase, fast and slow diffusivities reduce, and the fraction of the compartment with slow/restricted diffusion increases compared to unaffected grey matter of

  6. Modeling, Fabrication and Characterization of Scalable Electroless Gold Plated Nanostructures for Enhanced Surface Plasmon Resonance

    Jang, Gyoung Gug

    The scientific and industrial demand for controllable thin gold (Au) film and Au nanostructures is increasing in many fields including opto-electronics, photovoltaics, MEMS devices, diagnostics, bio-molecular sensors, spectro-/microscopic surfaces and probes. In this study, a novel continuous flow electroless (CF-EL) Au plating method is developed to fabricate uniform Au thin films in ambient condition. The enhanced local mass transfer rate and continuous deposition resulting from CF-EL plating improved physical uniformity of deposited Au films and thermally transformed nanoparticles (NPs). Au films and NPs exhibited improved optical photoluminescence (PL) and surface plasmon resonance (SPR), respectively, relative to batch immersion EL (BI-EL) plating. Suggested mass transfer models of Au mole deposition are consistent with optical feature of CF-EL and BI-EL films. The prototype CF-EL plating system is upgraded an automated scalable CF-EL plating system with real-time transmission UV-vis (T-UV) spectroscopy which provides the advantage of CF-EL plating, such as more uniform surface morphology, and overcomes the disadvantages of conventional EL plating, such as no continuous process and low deposition rate, using continuous process and controllable deposition rate. Throughout this work, dynamic morphological and chemical transitions during redox-driven self-assembly of Ag and Au film on silica surfaces under kinetic and equilibrium conditions are distinguished by correlating real-time T-UV spectroscopy with X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The characterization suggests that four previously unrecognized time-dependent physicochemical regimes occur during consecutive EL deposition of silver (Ag) and Au onto tin-sensitized silica surfaces: self-limiting Ag activation; transitory Ag NP formation; transitional Au-Ag alloy formation during galvanic replacement of Ag by Au; and uniform morphology formation under

  7. Diffusion tensor magnetic resonance imaging driven growth modeling for radiotherapy target definition in glioblastoma.

    Jensen, Morten B; Guldberg, Trine L; Harbøll, Anja; Lukacova, Slávka; Kallehauge, Jesper F

    2017-11-01

    The clinical target volume (CTV) in radiotherapy is routinely based on gadolinium contrast enhanced T1 weighted (T1w + Gd) and T2 weighted fluid attenuated inversion recovery (T2w FLAIR) magnetic resonance imaging (MRI) sequences which have been shown to over- or underestimate the microscopic tumor cell spread. Gliomas favor spread along the white matter fiber tracts. Tumor growth models incorporating the MRI diffusion tensors (DTI) allow to account more consistently for the glioma growth. The aim of the study was to investigate the potential of a DTI driven growth model to improve target definition in glioblastoma (GBM). Eleven GBM patients were scanned using T1w, T2w FLAIR, T1w + Gd and DTI. The brain was segmented into white matter, gray matter and cerebrospinal fluid. The Fisher-Kolmogorov growth model was used assuming uniform proliferation and a difference in white and gray matter diffusion of a ratio of 10. The tensor directionality was tested using an anisotropy weighting parameter set to zero (γ0) and twenty (γ20). The volumetric comparison was performed using Hausdorff distance, Dice similarity coefficient (DSC) and surface area. The median of the standard CTV (CTVstandard) was 180 cm 3 . The median surface area of CTVstandard was 211 cm 2 . The median surface area of respective CTV γ0 and CTV γ20 significantly increased to 338 and 376 cm 2 , respectively. The Hausdorff distance was greater than zero and significantly increased for both CTV γ0 and CTV γ20 with respective median of 18.7 and 25.2 mm. The DSC for both CTV γ0 and CTV γ20 were significantly below one with respective median of 0.74 and 0.72, which means that 74 and 72% of CTVstandard were included in CTV γ0 and CTV γ20, respectively. DTI driven growth models result in CTVs with a significantly increased surface area, a significantly increased Hausdorff distance and decreased overlap between the standard and model derived volume.

  8. Model-based T{sub 2} relaxometry using undersampled magnetic resonance imaging

    Sumpf, Tilman

    2013-11-01

    T{sub 2} relaxometry refers to the quantitative determination of spin-spin relaxation times in magnetic resonance imaging (MRI). Particularly in clinical diagnostics, the method provides important information about tissue structures and respective pathologic alterations. Unfortunately, it also requires comparatively long measurement times which preclude widespread practical applications. To overcome such limitations, a so-called model-based reconstruction concept has recently been proposed. The method allows for the estimation of spin-density and T{sub 2} parameter maps from only a fraction of the usually required data. So far, promising results have been reported for a radial data acquisition scheme. However, due to technical reasons, radial imaging is only available on a very limited number of MRI systems. The present work deals with the realization and evaluation of different model-based T{sub 2} reconstruction methods that are applicable for the most widely available Cartesian (rectilinear) acquisition scheme. The initial implementation is based on the conventional assumption of a mono-exponential T{sub 2} signal decay. A suitable sampling scheme as well as an automatic scaling procedure are developed, which remove the necessity of manual parameter tuning. As demonstrated for human brain MRI data, the technique allows for a more than 5-fold acceleration of the underlying data acquisition. Furthermore, general limitations and specific error sources are identified and suitable simulation programs are developed for their detailed analysis. In addition to phase variations in image space, the simulations reveal truncation effects as a relevant cause of reconstruction artifacts. To reduce the latter, an alternative model formulation is developed and tested. For noise-free simulated data, the method yields an almost complete suppression of associated artifacts. Residual problems in the reconstruction of experimental MRI data point to the predominant influence of other

  9. Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model

    Kidon, Lyran [School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978 (Israel); Wilner, Eli Y. [School of Physics and Astronomy, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Rabani, Eran [The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978 (Israel); Department of Chemistry, University of California and Lawrence Berkeley National Laboratory, Berkeley California 94720-1460 (United States)

    2015-12-21

    The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima–Zwanzig–Mori time-convolution (TC) and the other on the Tokuyama–Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called “memory kernel” or “generator,” going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green’s function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.

  10. Cavity-enhanced surface-plasmon resonance sensing: Modeling and performance

    Giorgini, A.; Avino, S.; Malara, P.; Zullo, R.; Gaglio, G.; Homola, Jiří; De Natale, P.

    2014-01-01

    Roč. 25, č. 1 (2014), 015205 ISSN 0957-0233 Institutional support: RVO:67985882 Keywords : optical resonators * optical sensors * cavity ring-down spectroscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.433, year: 2014

  11. Modeling of Plutonium Ionization Probabilities for Use in Nuclear Forensic Analysis by Resonance Ionization Mass Spectrometry

    2016-12-01

    masses collide, they form a supercritical mass . Criticality refers to the neutron population within the system. A critical system is one that can...Spectrometry, no. 242, pp. 161–168, 2005. [9] S. Raeder, “Trace analysis of actinides in the environment by means of resonance ionization mass ...first ionization potential of actinide elements by resonance ionization mass spectrometry.” Spectrochimica Acta part B: Atomic Spectroscopy. vol. 52

  12. Inert two-Higgs-doublet model strongly coupled to a non-Abelian vector resonance

    Rojas-Abatte, Felipe; Mora, Maria Luisa; Urbina, Jose; Zerwekh, Alfonso R.

    2017-11-01

    We study the possibility of a dark matter candidate having its origin in an extended Higgs sector which, at least partially, is related to a new strongly interacting sector. More concretely, we consider an i2HDM (i.e., a Type-I two Higgs doublet model supplemented with a Z2 under which the nonstandard scalar doublet is odd) based on the gauge group S U (2 )1×S U (2 )2×U (1 )Y . We assume that one of the scalar doublets and the standard fermion transform nontrivially under S U (2 )1 while the second doublet transforms under S U (2 )2. Our main hypothesis is that standard sector is weakly coupled while the gauge interactions associated to the second group is characterized by a large coupling constant. We explore the consequences of this construction for the phenomenology of the dark matter candidate and we show that the presence of the new vector resonance reduces the relic density saturation region, compared to the usual i2DHM, in the high dark matter mass range. In the collider side, we argue that the mono-Z production is the channel which offers the best chances to manifest the presence of the new vector field. We study the departures from the usual i2HDM predictions and show that the discovery of the heavy vector at the LHC is challenging even in the mono-Z channel since the typical cross sections are of the order of 10-2 fb .

  13. Modeling and Simulation of a Resonant-Cavity-Enhanced InGaAs/GaAs Quantum Dot Photodetector

    W. W. Wang

    2015-01-01

    Full Text Available We simulated and analyzed a resonant-cavity-enhancedd InGaAs/GaAs quantum dot n-i-n photodiode using Crosslight Apsys package. The resonant cavity has a distributed Bragg reflector (DBR at one side. Comparing with the conventional photodetectors, the resonant-cavity-enhanced photodiode (RCE-PD showed higher detection efficiency, faster response speed, and better wavelength selectivity and spatial orientation selectivity. Our simulation results also showed that when an AlAs layer is inserted into the device structure as a blocking layer, ultralow dark current can be achieved, with dark current densities 0.0034 A/cm at 0 V and 0.026 A/cm at a reverse bias of 2 V. We discussed the mechanism producing the photocurrent at various reverse bias. A high quantum efficiency of 87.9% was achieved at resonant wavelength of 1030 nm with a FWHM of about 3 nm. We also simulated InAs QD RCE-PD to compare with InGaAs QD. At last, the photocapacitance characteristic of the model has been discussed under different frequencies.

  14. A quantitative modeling of the contributions of localized surface plasmon resonance and interband transitions to absorbance of gold nanoparticles

    Zhu, S.; Chen, T. P.; Liu, Y. C.; Liu, Y.; Fung, S.

    2012-01-01

    A quantitative modeling of the contributions of localized surface plasmon resonance (LSPR) and interband transitions to absorbance of gold nanoparticles has been achieved based on Lorentz–Drude dispersion function and Maxwell-Garnett effective medium approximation. The contributions are well modeled with three Lorentz oscillators. Influence of the structural properties of the gold nanoparticles on the LSPR and interband transitions has been examined. In addition, the dielectric function of the gold nanoparticles has been extracted from the modeling to absorbance, and it is found to be consistent with the result yielded from the spectroscopic ellipsometric analysis.

  15. Three-dimensional modeling of plasma edge transport and divertor fluxes during application of resonant magnetic perturbations on ITER

    Schmitz, O.; Becoulet, M.; Cahyna, Pavel; Evans, T.E.; Feng, Y.; Frerichs, H.; Loarte, A.; Pitts, R.A.; Reiser, D.; Fenstermacher, M.E.; Harting, D.; Kirschner, A.; Kukushkin, A.; Lunt, T.; Saibene, G.; Reiter, D.; Samm, U.; Wiesen, S.

    2016-01-01

    Roč. 56, č. 6 (2016), č. článku 066008. ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : resonant magnetic perturbations * plasma edge physics * 3D modeling * neutral particle physics * ITER * divertor heat and particle loads * ELM control Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/0029-5515/56/6/066008/meta

  16. The Vlasov equation with strong magnetic field and oscillating electric field as a model for isotop resonant separation

    Emmanuel Frenod

    2002-01-01

    Full Text Available We study the qualitative behavior of solutions to the Vlasov equation with strong external magnetic field and oscillating electric field. This model is relevant to the understanding of isotop resonant separation. We show that the effective equation is a kinetic equation with a memory term. This memory term involves a pseudo-differential operator whose kernel is characterized by an integral equation involving Bessel functions. The kernel is explicitly given in some particular cases.

  17. Two-body molecular model for resonances in heavy ion reactions

    Abe, Y.

    1978-01-01

    It is necessary to develop qualitative arguments on resonance mechanisms, which will give an overview on occurrences of resonances in heavy ion reactions, and further to identify typical examples of nuclear molecules among existing experimental data. In section 2, qualitative arguments on resonance mechanisms are given by exemplifying the 12 C + 16 O system with the 3 - excitation of the 16 O nucleus. In section 3 a simple formulation in the coupled channel framework is given. Resonances in the 12 C - 16 O system, which has been observed well above the Coulomb barrier, are investigated in section 4. In section 5 an old, but not yet solved problem on resonances in the 12 C + 12 C system which have been observed at sub-Coulomb energies, is taken up along the nuclear molecular picture. Further discussions are given on a role of the 20 Ne-α channel along the present simple qualitative picture given in section 2, which can be extended to rearrangement channels. (Auth.)

  18. Magnetic resonance in spin glasses, superconductivity of thin aluminum films and models for transport properties of one dimensional systems

    Elliott, J.H.

    1983-01-01

    This thesis reports on three separate investigations in solid state physics. The first is electron paramagnetic resonance in the spin glass Ag:Mn. EPR measurements were performed at two resonance frequencies, concentrating on temperatures above the glass transition temperature. The measured linewidth appears to diverge at T/sub g/ for low resonance frequencies. These results will be compared with recently proposed phenomenological and microscopic theories. The second topic reported in this thesis is the superconducting transition of thin aluminum films. These films were investigated as a function of grain size and thickness. The transition temperature was enhanced over the bulk value, in agreement with many previous investigations of granular aluminum. The third topic reported in this thesis is an extension of the variable rate hopping theory applied in one dimension to N-ME-Qn(TCNQ) 2 . This model is a classical one used to explain both the dc and ac electrical conductivity of organic conductors. The temperature dependence of the model does not agree with experiment at low temperatures. Tunneling has been added to the hopping. This increases the conductivity at low temperatures, and results in excellent agreement with the experimental conductivity over the measured temperature range. The model also predicts that the frequency dependence of the conductivity varies as ω/sup .5/ at low frequencies. This long time tail prediction agrees with the measured dielectric constant of N-Me-iso-Qn(TCNQ) 2

  19. a{sub 0}(980) as a dynamically generated resonance in the extended Linear Sigma Model

    Wolkanowski-Gans, Thomas; Giacosa, Francesco [Goethe-Universitaet Frankfurt am Main (Germany)

    2014-07-01

    We study basic properties of scalar hadronic resonances within the so-called extended linear sigma model (eLSM), which is an effective model of QCD based on chiral symmetry and dilatation invariance. In particular, we focus on the mass and decay width of the isovector state a{sub 0}(1450) and perform a numerical study of the propagator pole(s) on the unphysical Riemann sheets. Here, the a{sub 0}(1450) is understood as a seed state explicitly included in the eLSM - this is in fact not true for the corresponding resonance below 1 GeV, the a{sub 0}(980), which is sometimes interpreted as a kaonic (i.e., dynamically generated) bound state. In our work we want to clarify if the yet not included a{sub 0}(980) can be found as a propagator pole generated by hadronic loop contributions. From such an investigation one could learn more about the general dependence of the eLSM - and effective field models in general - on strongly coupled hadronic intermediate states, possibly giving new insight into the low-energy regime, scalar resonances and both its theoretical description and physical interpretation.

  20. Modelling fragmentations of amino-acids after resonant electron attachment: quantum evidence of possible direct -OH detachment

    Panosetti, C.; Sebastianelli, F.; Gianturco, F.A. [Department of Chemistry and CNISM, University of Rome -La Sapienza-, Roma (Italy); Baccarelli, I. [CASPUR, Supercomputing Consortium for University and Research, Roma (Italy)

    2010-10-15

    We investigate some aspects of the radiation damage mechanisms in biomolecules, focusing on the modelling of resonant fragmentation caused by the attachment of low-energy electrons (LEEs) initially ejected by biological tissues when exposed to ionizing radiation. Scattering equations are formulated within a symmetry-adapted, single-center expansion of both continuum and bound electrons, and the interaction forces are obtained from a combination of ab initio calculations and a nonempirical model of exchange and correlation effects developed in our group. We present total elastic scattering cross-sections and resonance features obtained for the equilibrium geometries of glycine, alanine, proline and valine. Our results at those geometries of the target molecules are briefly shown to qualitatively explain some of the fragmentation patterns obtained in experiments. We further carry out a one-dimensional (1D) modeling for the dynamics of intramolecular energy transfers mediated by the vibrational activation of selected bonds: our calculations indicate that resonant electron attachment to glycine can trigger direct, dissociative evolution of the complex into (Gly-OH)- and -OH losses, while they also find that the same process does not occur via a direct, 1D dissociative path in the larger amino acids of the present study. (authors)

  1. Cavity-enhanced surface-plasmon resonance sensing: modeling and performance

    Giorgini, A; Avino, S; Malara, P; Zullo, R; Gagliardi, G; Homola, J; De Natale, P

    2014-01-01

    We investigate the performance of a surface-plasmon-resonance refractive-index (RI) sensor based on an optical resonator. The resonator transforms RI changes of liquid samples, interacting with the surface plasmon excited by near-infrared light, into a variation of the intra-cavity optical loss. Cavity ring-down measurements are provided as a proof of concept of RI sensing on calibrated mixtures. A characterization of the overall sensor response and noise features as well as a discussion on possible improvements is carried out. A reproducibility analysis shows that a resolution of 10 −7 –10 −8  RIU is within reach over observation times of 1–30 s. The ultimate resolution is set only by intrinsic noise features of the cavity-based method, pointing to a potential limit below 10 −10  RIU/√Hz. (paper)

  2. Modeling and simulation of two-step resonance ionization processes using CW and pulsed lasers

    de Groote, Ruben; Flanagan, Kieran

    This thesis derives and discusses equations that describe the evolution of atomic systems subjected to two monochromatic and coherent radiation fields and treats both continuous and temporally pulsed irradiation. This theoretical description is de- veloped mainly to understand the influence of the photon field intensities on experimental ionization spectra. The primary ap- plication of this theoretical framework is on methods that rely on resonant laser excitation and non-resonant laser ionization to extract information on the hyperfine structure of atomic systems. In particular, qualitative and quantitative discussions on the laser-related changes in hyperfine splitting extracted from ion- ization spectra are presented. Also, a method for increasing the resolution of resonance ionization techniques (potentially up un- til the natural linewidth of the electronic transitions) is discussed and theoretically justified. Both topics are illustrated with exper- imental data.

  3. Routine magnetic resonance imaging for idiopathic olfactory loss: a modeling-based economic evaluation.

    Rudmik, Luke; Smith, Kristine A; Soler, Zachary M; Schlosser, Rodney J; Smith, Timothy L

    2014-10-01

    Idiopathic olfactory loss is a common clinical scenario encountered by otolaryngologists. While trying to allocate limited health care resources appropriately, the decision to obtain a magnetic resonance imaging (MRI) scan to investigate for a rare intracranial abnormality can be difficult. To evaluate the cost-effectiveness of ordering routine MRI in patients with idiopathic olfactory loss. We performed a modeling-based economic evaluation with a time horizon of less than 1 year. Patients included in the analysis had idiopathic olfactory loss defined by no preceding viral illness or head trauma and negative findings of a physical examination and nasal endoscopy. Routine MRI vs no-imaging strategies. We developed a decision tree economic model from the societal perspective. Effectiveness, probability, and cost data were obtained from the published literature. Litigation rates and costs related to a missed diagnosis were obtained from the Physicians Insurers Association of America. A univariate threshold analysis and multivariate probabilistic sensitivity analysis were performed to quantify the degree of certainty in the economic conclusion of the reference case. The comparative groups included those who underwent routine MRI of the brain with contrast alone and those who underwent no brain imaging. The primary outcome was the cost per correct diagnosis of idiopathic olfactory loss. The mean (SD) cost for the MRI strategy totaled $2400.00 ($1717.54) and was effective 100% of the time, whereas the mean (SD) cost for the no-imaging strategy totaled $86.61 ($107.40) and was effective 98% of the time. The incremental cost-effectiveness ratio for the MRI strategy compared with the no-imaging strategy was $115 669.50, which is higher than most acceptable willingness-to-pay thresholds. The threshold analysis demonstrated that when the probability of having a treatable intracranial disease process reached 7.9%, the incremental cost-effectiveness ratio for MRI vs no

  4. Liquid-Liquid Phase Separation in Model Nuclear Waste Glasses: A Solid-State Double-Resonance NMR Study

    Martineau, Ch.; Michaelis, V.K.; Kroeker, S. [Univ Manitoba, Dept Chem, Winnipeg, MB R3T 2N2 (Canada); Schuller, S. [CEA Valrho Marcoule, LDMC, SECM, DTCD, DEN, F-30207 Bagnols Sur Ceze (France)

    2010-07-01

    Double-resonance nuclear magnetic resonance (NMR) techniques are used in addition to single-resonance NMR experiments to probe the degree of mixing between network-forming cations Si and B, along with the modifier cations Cs{sup +} and Na{sup +} in two molybdenum-bearing model nuclear waste glasses. The double-resonance experiments involving {sup 29}Si in natural abundance are made possible by the implementation of a CPMG pulse-train during the acquisition period of the usual REDOR experiments. For the glass with lower Mo content, the NMR results show a high degree of Si-B mixing, as well as an homogeneous distribution of the cations within the borosilicate network, characteristic of a non-phase-separated glass. For the higher-Mo glass, a decrease of B-Si(Q{sup 4}) mixing is observed, indicating phase separation. {sup 23}Na and {sup 133}Cs NMR results show that although the Cs{sup +} cations, which do not seem to be influenced by the molybdenum content, are spread within the borate network, there is a clustering of the Na{sup +} cations, very likely around the molybdate units. The segregation of a Mo-rich region with Na{sup +} cations appears to shift the bulk borosilicate glass composition toward the metastable liquid liquid immiscibility region and induce additional phase separation. Although no crystallization is observed in the present case, this liquid liquid phase separation is likely to be the first stage of crystallization that can occur at higher Mo loadings or be driven by heat treatment. From this study emerges a consistent picture of the nature and extent of such phase separation phenomena in Mo-bearing glasses, and demonstrates the potential of double-resonance NMR methods for the investigation of phase separation in amorphous materials. (authors)

  5. Modeling of ICRH H-minorit driven n = 1 Resonant Modes in JET

    Gorelenkov, N.N.; Mantsinen, M.J.; Sharapov, S.E.; Cheng, C.Z.

    2003-01-01

    A nonperturbative code NOVA-KN (Kinetic Nonperturbative) has been developed to account for finite orbit width (FOW) effects in nonperturbative resonant modes such as the low-frequency MHD modes observed in the Joint European Torus (JET). The NOVA-KN code was used to show that the resonant modes with frequencies in the observed frequency range are ones having the characteristic toroidal precession frequency of H-minority ions. Results are similar to previous theoretical studies of fishbone instabilities, which were found to exist at characteristic precession frequencies of hot ions

  6. Giant dipole resonances in hot nuclear matter in the model of self-relaxing mean field

    Okolowicz, J.; Ploszajczak, M.; Drozdz, S.; Caurier, E.

    1989-01-01

    The extended time-dependent Hartree-Fock approach is applied for the description of the isovector giant dipole resonance in 40 Ca at finite temperatures. The thermalization process is described using the relaxation-time ansatz for the collision integral. Strong inhibition of the giant-dipole-resonance γ-decay is found due to the fast vaporization of the nuclear surface for thermal excitation energies above E * /A ≅ 4.5 MeV. This pre-equilibrium emission of particles in the vapor phase is associated with the radial expansion of nucleus and with the vanishing particle binding energies mainly for protons. (orig.)

  7. Enhancing DC Glow Discharge Tube Museuum Displays using a Theremin Controlled Helmholtz Coil to Demonstrate Magnetic Confinement

    Siu, Theodore; Wissel, Stephanie; Guttadora, Larry; Liao, Susan; Zwicker, Andrew

    2010-11-01

    Since their discovery in the mid 1800's, DC glow discharge apparatuses have commonly been used for spectral analysis, the demonstration of the Frank-Hertz experiment, and to study plasma breakdown voltages following from the Paschen Curve. A DC glow discharge tube museum display was outfitted with a Helmholtz Coil electromagnet in order to demonstrate magnetic confinement for a science museum display. A device commonly known as a ``theremin'' was designed and built in order to externally control the Helmholtz Coil current and the plasma current. Originally a musical instrument, a theremin has two variable capacitors connected to two radio frequency oscillators which determine pitch and volume. Using a theremin to control current and ``play'' the plasma adds appeal and durability by providing a new innovative means of interacting with a museum exhibit. Educationally, students can use the display to not only learn about plasma properties but also electronic properties of the human body.

  8. a First-Principles Model of Fermi Resonance in the Alkyl CH Stretch Region: Application to Hydronaphthalenes, Indanes, and Cyclohexane

    Sibert, Edwin; Kidwell, Nathanael; Zwier, Timothy S.

    2014-06-01

    The infrared (IR) spectroscopy of the alkyl CH stretch region (2750-3000 cm-1) of a series of bicyclic hydrocarbons and free radicals has been studied under supersonic expansion cooling in the gas phase, and compared with a theoretical model that describes the local mode stretch-bend Fermi resonance interactions. The double resonance method of fluorescence-dip infrared (FDIR) spectroscopy was used on the stable molecules 1,2-dihydronaphthalene, 1,4-dihydronaphthalene, tetralin, indene, and indane using the S_0-S_1 origin transition as a monitor of transitions. Resonant ion-dip infrared (RIDIR) spectra were recorded for the trihydronaphthyl (THN) and inden-2-yl methyl (I2M) radicals. The previously developed model Hamiltonian [J. Chem. Phys. 138 064308 (2013)] incorporates cubic stretch-bend coupling with parameters obtained from density functional theory methods. Full dimensional calculations are compared to reduced dimensional Hamiltonian results in which anharmonic CH streches and CH_2 scissor modes are Fermi coupled. Excellent agreement between theoretical results is found. Scale factors of select terms in the reduced dimensional Hamiltonian, obtained by fitting the theoretical Hamiltonian predictions to the experimental spectra, are found to be similar to previous work. The resulting Hamiltonian predicts successfully all the major spectral features considered in this study. A simplified model is introduced in which the CH_2 groups are decoupled. This model enables the assignment of many of the spectral features. The model results are extended to describe the CH stretch spectrum of the chair and twist-boat conformers of cyclohexane. The chair conformer is used to illustrate the shortcomings of the CH_2 coupling model.

  9. Understanding Kelvin-Helmholtz instability in paraffin-based hybrid rocket fuels

    Petrarolo, Anna; Kobald, Mario; Schlechtriem, Stefan

    2018-04-01

    Liquefying fuels show higher regression rates than the classical polymeric ones. They are able to form, along their burning surface, a low viscosity and surface tension liquid layer, which can become unstable (Kelvin-Helmholtz instability) due to the high velocity gas flow in the fuel port. This causes entrainment of liquid droplets from the fuel surface into the oxidizer gas flow. To better understand the droplets entrainment mechanism, optical investigations on the combustion behaviour of paraffin-based hybrid rocket fuels in combination with gaseous oxygen have been conducted in the framework of this research. Combustion tests were performed in a 2D single-slab burner at atmospheric conditions. High speed videos were recorded and analysed with two decomposition techniques. Proper orthogonal decomposition (POD) and independent component analysis (ICA) were applied to the scalar field of the flame luminosity. The most excited frequencies and wavelengths of the wave-like structures characterizing the liquid melt layer were computed. The fuel slab viscosity and the oxidizer mass flow were varied to study their influence on the liquid layer instability process. The combustion is dominated by periodic, wave-like structures for all the analysed fuels. Frequencies and wavelengths characterizing the liquid melt layer depend on the fuel viscosity and oxidizer mass flow. Moreover, for very low mass flows, no wavelength peaks are detected for the higher viscosity fuels. This is important to better understand and predict the onset and development of the entrainment process, which is connected to the amplification of the longitudinal waves.

  10. SIMULATIONS OF THE KELVIN–HELMHOLTZ INSTABILITY DRIVEN BY CORONAL MASS EJECTIONS IN THE TURBULENT CORONA

    Gómez, Daniel O.; DeLuca, Edward E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Mininni, Pablo D. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina)

    2016-02-20

    Recent high-resolution Atmospheric Imaging Assembly/Solar Dynamics Observatory images show evidence of the development of the Kelvin–Helmholtz (KH) instability, as coronal mass ejections (CMEs) expand in the ambient corona. A large-scale magnetic field mostly tangential to the interface is inferred, both on the CME and on the background sides. However, the magnetic field component along the shear flow is not strong enough to quench the instability. There is also observational evidence that the ambient corona is in a turbulent regime, and therefore the criteria for the development of the instability are a priori expected to differ from the laminar case. To study the evolution of the KH instability with a turbulent background, we perform three-dimensional simulations of the incompressible magnetohydrodynamic equations. The instability is driven by a velocity profile tangential to the CME–corona interface, which we simulate through a hyperbolic tangent profile. The turbulent background is generated by the application of a stationary stirring force. We compute the instability growth rate for different values of the turbulence intensity, and find that the role of turbulence is to attenuate the growth. The fact that KH instability is observed sets an upper limit on the correlation length of the coronal background turbulence.

  11. Simulation of leakage current measurement on medical devices using helmholtz coil configuration with different current flow

    Sutanto, E.; Chandra, F.; Dinata, R.

    2017-05-01

    Leakage current measurement which can follow IEC standard for medical device is one of many challenges to be answered. The IEC 60601-1 has defined that the limit for a leakage current for Medical Device can be as low as 10 µA and as high as 500 µA, depending on which type of contact (applied part) connected to the patient. Most people are using ELCB (Earth-leakage circuit breaker) for safety purpose as this is the most common and available safety device in market. One type of ELCB devices is RCD (Residual Current Device) and this RCD type can measure the leakage current directly. This work will show the possibility on how Helmholtz Coil Configuration can be made to be like the RCD. The possibility is explored by comparing the magnetic field formula from each device, then it proceeds with a simulation using software EJS (Easy Java Simulation). The simulation will make sure the concept of magnetic field current cancellation follows the RCD concept. Finally, the possibility of increasing the measurement’s sensitivity is also analyzed. The sensitivity is needed to see the possibility on reaching the minimum leakage current limit defined by IEC, 0.01mA.

  12. Magnetohydrodynamic Kelvin-Helmholtz instabilities in astrophysics. 3. Hydrodynamic flows with shear layers

    Ferraro, A [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany, F.R.)); Massaglia, S [Turin Univ. (Italy). Ist. di Fisica; Trussoni, E [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica

    1982-03-01

    In this paper a discussion is presented on Kelvin-Helmholtz instabilities in pressure-confined two-dimensional flows (slabs) delimited by boundary layers with velocity and density gradients. It is found that the fastest growing modes in supersonic flows are produced by perturbations reflecting at the boundaries and have wavelengths of the order of the slab width; this peak of instability is even more evident than in the case of vortex-sheet cylindrical flows, discussed in a previous paper. From a comparison of the results for the two-dimensional slab and three-dimensional cylinder it is concluded that a two-dimensional treatment provides an adequate description of instabilities in fluid flows. In this analogy, symmetric and antisymmetric modes in the slab correspond to pinching and helical modes in the cylinder. In the final section a comparison is attempted of the results obtained with morphologies in collimated jets in extragalactic radio sources; general characteristics appear to be classifiable in terms of scale-lengths of the velocity and density gradients in the boundary layers.

  13. MESSENGER Orbital Observations of Large-Amplitude Kelvin-Helmholtz Waves at Mercury's Magnetopause

    Sundberg, Torbjorn; Boardsen, Scott A.; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Zurbuchen, Thomas H.; Raines, Jim M.; Solomon, Sean C.

    2012-01-01

    We present a survey of Kelvi\\ n-Helmholtz (KH) waves at Mercury's magnetopause during MESSENGER's first Mercury year in orb it. The waves were identified on the basis of the well-established sawtooth wave signatures that are associated with non-linear KH vortices at the magnetopause. MESSENGER frequently observed such KH waves in the dayside region of the magnetosphere where the magnetosheath flow velocity is still sub -sonic, which implies that instability growth rates at Mercury's magnetopau are much larger than at Earth. We attribute these greater rates to the limited wave energy dissipation in Mercury's highly resistive regolith. The wave amplitude was often on the order of ' 00 nT or more, and the wave periods were - 10- 20 s. A clear dawn-dusk asymmetry is present in the data, in that all of the observed wave events occurred in the post-noon and dusk-side sectors of the magnetopause. This asymmetry is like ly related to finite Larmor-radius effects and is in agreement with results from particle-in-cell simulations of the instability. The waves were observed almost exclusively during periods when the north-south component of the magnetosheath magnetic field was northward, a pattern similar to that for most terrestrial KH wave events. Accompanying plasma measurements show that the waves were associated with the transport of magnetosheath plasma into the magnetosphere.

  14. Four-Spacecraft Magnetic Curvature and Vorticity Analyses on Kelvin-Helmholtz Waves in MHD Simulations

    Kieokaew, Rungployphan; Foullon, Claire; Lavraud, Benoit

    2018-01-01

    Four-spacecraft missions are probing the Earth's magnetospheric environment with high potential for revealing spatial and temporal scales of a variety of in situ phenomena. The techniques allowed by these four spacecraft include the calculation of vorticity and the magnetic curvature analysis (MCA), both of which have been used in the study of various plasma structures. Motivated by curved magnetic field and vortical structures induced by Kelvin- Helmholtz (KH) waves, we investigate the robustness of the MCA and vorticity techniques when increasing (regular) tetrahedron sizes, to interpret real data. Here for the first time, we test both techniques on a 2.5-D MHD simulation of KH waves at the magnetopause. We investigate, in particular, the curvature and flow vorticity across KH vortices and produce time series for static spacecraft in the boundary layers. The combined results of magnetic curvature and vorticity further help us to understand the development of KH waves. In particular, first, in the trailing edge, the magnetic curvature across the magnetopause points in opposite directions, in the wave propagation direction on the magnetosheath side and against it on the magnetospheric side. Second, the existence of a "turnover layer" in the magnetospheric side, defined by negative vorticity for the duskside magnetopause, which persists in the saturation phase, is reminiscent of roll-up history. We found significant variations in the MCA measures depending on the size of the tetrahedron. This study lends support for cross-scale observations to better understand the nature of curvature and its role in plasma phenomena.

  15. Helmholtz Natural Modes: the universal and discrete spatial fabric of electromagnetic wavefields

    El Gawhary, Omar

    2017-01-01

    The interaction of electromagnetic waves with matter is at the foundation of the way we perceive and explore the world around us. In fact, when a field interacts with an object, signatures on the object’s geometry and physical properties are recorded in the resulting scattered field and are transported away from the object, where they can eventually be detected and processed. An optical field can transport information through its spectral content, its polarization state, and its spatial distribution. Generally speaking, the field’s spatial structure is typically subjected to changes under free-space propagation and any information therein encoded gets reshuffled by the propagation process. We must ascribe to this fundamental reason the fact that spectroscopy was known to the ancient civilizations already, and founded as modern science in the middle of seventeenth century, while to date we do not have an established scientific of field of ‘spatial spectroscopy’ yet. In this work we tackle this issue and we show how any field, whose evolution is dictated by Helmholtz equation, contains a universal and invariant spatial structure. When expressed in the framework of this spatial fabric, the spatial information content carried by any field reveals its invariant nature. This opens the way to novel paradigms in optical digital communications, inverse scattering, materials inspection, nanometrology and quantum optics. (paper)

  16. Hybrid simulations of plasma transport by Kelvin-Helmholtz instability at the magnetopause: magnetic shear

    Cowee, Misa M [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Gary, S Peter [Los Alamos National Laboratory

    2009-01-01

    Two-dimensional hybrid (kinetic ions, massless fluid electrons) simulations of the Kelvin Helmholtz Instability (KHI) for a magnetopause configuration with a magnetic shear across the boundary are carried out to examine how the transport of magnetosheath plasma into the magnetosphere is affected by the shear field. Low magnetic shear conditions where the magnetosheath magnetic field is within 30{sup o} of northward is included in the simulations because KHI is thought to be important for plasma transport only for northward or near-northward interplanetary magnetic field orientations. The simulations show that coherent vortices can grow for these near-northward angles, and that they are sometimes more coherent than for pure northward conditions because the turbulence which breaks-down these vortices is reduced when there are magnetic tension forces. With increasing magnetic shear angle, the growth rate is reduced, and the vortices do not grow to as large of size which reduces the plasma transport. By tracking the individual particle motions diffusion coefficients can be obtained for the system, where the diffusion is not classical in nature but instead has a time dependence resulting from both the increasingly large-scale vortex motion and the small-scale turbulence generated in the break-down of the instabilities. Results indicate that diffusion on the order of 10{sup 9} m{sup 2}/s could possibly be generated by KHI on the flanks of the magnetosphere.

  17. Electron Debye scale Kelvin-Helmholtz instability: Electrostatic particle-in-cell simulations

    Lee, Sang-Yun; Lee, Ensang; Kim, Khan-Hyuk; Lee, Dong-Hun; Seon, Jongho; Jin, Ho

    2015-01-01

    In this paper, we investigated the electron Debye scale Kelvin-Helmholtz (KH) instability using two-dimensional electrostatic particle-in-cell simulations. We introduced a velocity shear layer with a thickness comparable to the electron Debye length and examined the generation of the KH instability. The KH instability occurs in a similar manner as observed in the KH instabilities in fluid or ion scales producing surface waves and rolled-up vortices. The strength and growth rate of the electron Debye scale KH instability is affected by the structure of the velocity shear layer. The strength depends on the magnitude of the velocity and the growth rate on the velocity gradient of the shear layer. However, the development of the electron Debye scale KH instability is mainly determined by the electric field generated by charge separation. Significant mixing of electrons occurs across the shear layer, and a fraction of electrons can penetrate deeply into the opposite side fairly far from the vortices across the shear layer

  18. Simulation of leakage current measurement on medical devices using helmholtz coil configuration with different current flow

    Sutanto, E; Chandra, F; Dinata, R

    2017-01-01

    Leakage current measurement which can follow IEC standard for medical device is one of many challenges to be answered. The IEC 60601-1 has defined that the limit for a leakage current for Medical Device can be as low as 10 µA and as high as 500 µA, depending on which type of contact (applied part) connected to the patient. Most people are using ELCB (Earth-leakage circuit breaker) for safety purpose as this is the most common and available safety device in market. One type of ELCB devices is RCD (Residual Current Device) and this RCD type can measure the leakage current directly. This work will show the possibility on how Helmholtz Coil Configuration can be made to be like the RCD. The possibility is explored by comparing the magnetic field formula from each device, then it proceeds with a simulation using software EJS (Easy Java Simulation). The simulation will make sure the concept of magnetic field current cancellation follows the RCD concept. Finally, the possibility of increasing the measurement’s sensitivity is also analyzed. The sensitivity is needed to see the possibility on reaching the minimum leakage current limit defined by IEC, 0.01mA. (paper)

  19. Observation of the Kelvin–Helmholtz Instability in a Solar Prominence

    Yang, Heesu; Xu, Zhi; Lim, Eun-Kyung; Kim, Sujin; Cho, Kyung-Suk; Kim, Yeon-Han; Chae, Jongchul; Cho, Kyuhyoun; Ji, Kaifan

    2018-04-01

    Many solar prominences end their lives in eruptions or abrupt disappearances that are associated with dynamical or thermal instabilities. Such instabilities are important because they may be responsible for energy transport and conversion. We present a clear observation of a streaming kink-mode Kelvin–Helmholtz Instability (KHI) taking place in a solar prominence using the Hα Lyot filter installed at the New Vacuum Solar Telescope, Fuxian-lake Solar Observatory in Yunnan, China. On one side of the prominence, a series of plasma blobs floated up from the chromosphere and streamed parallel to the limb. The plasma stream was accelerated to about 20–60 km s‑1 and then undulated. We found that 2″- and 5″-size vortices formed, floated along the stream, and then broke up. After the 5″-size vortex, a plasma ejection out of the stream was detected in the Solar Dynamics Observatory/Atmospheric Imaging Assembly images. Just before the formation of the 5″-size vortex, the stream displayed an oscillatory transverse motion with a period of 255 s with the amplitude growing at the rate of 0.001 s‑1. We attribute this oscillation of the stream and the subsequent formation of the vortex to the KHI triggered by velocity shear between the stream, guided by the magnetic field and the surrounding media. The plasma ejection suggests the transport of prominence material into the upper layer by the KHI in its nonlinear stage.

  20. Kelvin-Helmholtz instability and kinetic internal kink modes in tokamaks

    Naitou, H.; Kobayashi, T.; Yagi, M.; Matsumoto, T.; Tokuda, S.; Kishimoto, Y.

    2003-01-01

    The m=1 (poloidal mode number) and n=1 (toroidal mode number) kinetic internal kink (KIK) mode in the presence of a density gradient is studied with the cylindrical version of the gyro-reduced MHD code, which is one of the extended MHD codes being able to treat the physics beyond resistive MHD. Electron inertia and electron finite temperature effects are included. The unstable KIK mode is observed in the parameter range in which the linear theory predicts complete stabilization due to the electron diamagnetic effect. The electrostatic potential profile in the linear stage of the KIK instability has the sheared poloidal flow with the m=1 mode structure. The vortexes are generated due to the Kelvin-Helmholtz (K-H) instability. The KIK is stabilized when the vortexes are formed, but it is destabilized again as the vortexes diminish due to the charge neutralizing electron motion along the magnetic field. These phenomena are observed in the early nonlinear stage of the KIK instability in which the width of the m=1 magnetic island is sufficiently small compared with the radial extent of the vortexes. The strong coupling between the vortexes and the KIK instability can be one of the candidates explaining the sudden onset of the sawtooth crash. (author)

  1. Spatial distribution of rolled up Kelvin-Helmholtz vortices at Earth's dayside and flank magnetopause

    M. G. G. T. Taylor

    2012-06-01

    Full Text Available The Kelvin-Helmholtz Instability (KHI can drive waves at the magnetopause. These waves can grow to form rolled-up vortices and facilitate transfer of plasma into the magnetosphere. To investigate the persistence and frequency of such waves at the magnetopause we have carried out a survey of all Double Star 1 magnetopause crossings, using a combination of ion and magnetic field measurements. Using criteria originally used in a Geotail study made by Hasegawa et al. (2006 (forthwith referred to as H2006, 17 candidate events were identified from the entire TC-1 mission (covering ~623 orbits where the magnetopause was sampled, a majority of which were on the dayside of the terminator. The relationship between density and shear velocity was then investigated, to identify the predicted signature of a rolled up vortex from H2006 and all 17 events exhibited some level of rolled up behavior. The location of the events had a clear dawn-dusk asymmetry, with 12 (71% on the post noon, dusk flank suggesting preferential growth in this region.

  2. Global reconnection topology as inferred from plasma observations inside Kelvin-Helmholtz vortices

    M. B. Bavassano Cattaneo

    2010-04-01

    Full Text Available During a long lasting period of northward interplanetary magnetic field and high solar wind speed (above 700 km/s, the Cluster spacecraft go across a number of very large rolled-up Kelvin-Helmholtz (KH vortices at the dusk magnetopause, close to the terminator. The peculiarity of the present event is a particular sequence of ions and electrons distribution functions observed repeatedly inside each vortex. In particular, whenever Cluster crosses the current layer inside the vortices, multiple field-aligned ion populations appear, suggesting the occurrence of reconnection. In addition, the ion data display a clear velocity filter effect both at the leading and at the trailing edge of each vortex. This effect is not present in the simultaneous electron data. Unlike other KH studies reported in the literature in which reconnection occurs within the vortices, in the present event the observations are not compatible with local reconnection, but are accounted for by lobe reconnection occurring along an extended X-line at the terminator in the Southern Hemisphere. The reconnected field lines "sink" across the magnetopause and then convect tailward-duskward where they become embedded in the vortices. Another observational evidence is the detected presence of solar wind plasma on the magnetospheric side of the vortices, which confirms unambiguously the occurrence of mass transport across the magnetopause already reported in the literature. The proposed reconnection scenario accounts for all the observational aspects, regarding both the transport process and the kinetic signatures.

  3. First-order system least-squares for the Helmholtz equation

    Lee, B.; Manteuffel, T.; McCormick, S.; Ruge, J.

    1996-12-31

    We apply the FOSLS methodology to the exterior Helmholtz equation {Delta}p + k{sup 2}p = 0. Several least-squares functionals, some of which include both H{sup -1}({Omega}) and L{sup 2}({Omega}) terms, are examined. We show that in a special subspace of [H(div; {Omega}) {intersection} H(curl; {Omega})] x H{sup 1}({Omega}), each of these functionals are equivalent independent of k to a scaled H{sup 1}({Omega}) norm of p and u = {del}p. This special subspace does not include the oscillatory near-nullspace components ce{sup ik}({sup {alpha}x+{beta}y)}, where c is a complex vector and where {alpha}{sub 2} + {beta}{sup 2} = 1. These components are eliminated by applying a non-standard coarsening scheme. We achieve this scheme by introducing {open_quotes}ray{close_quotes} basis functions which depend on the parameter pair ({alpha}, {beta}), and which approximate ce{sup ik}({sup {alpha}x+{beta}y)} well on the coarser levels where bilinears cannot. We use several pairs of these parameters on each of these coarser levels so that several coarse grid problems are spun off from the finer levels. Some extensions of this theory to the transverse electric wave solution for Maxwell`s equations will also be presented.

  4. Some resonances between Eastern thought and Integral Biomathics in the framework of the WLIMES formalism for modeling living systems.

    Simeonov, Plamen L; Ehresmann, Andrée C

    2017-12-01

    Forty-two years ago, Capra published "The Tao of Physics" (Capra, 1975). In this book (page 17) he writes: "The exploration of the atomic and subatomic world in the twentieth century has …. necessitated a radical revision of many of our basic concepts" and that, unlike 'classical' physics, the sub-atomic and quantum "modern physics" shows resonances with Eastern thoughts and "leads us to a view of the world which is very similar to the views held by mystics of all ages and traditions." This article stresses an analogous situation in biology with respect to a new theoretical approach for studying living systems, Integral Biomathics (IB), which also exhibits some resonances with Eastern thought. Stepping on earlier research in cybernetics 1 and theoretical biology, 2 IB has been developed since 2011 by over 100 scientists from a number of disciplines who have been exploring a substantial set of theoretical frameworks. From that effort, the need for a robust core model utilizing advanced mathematics and computation adequate for understanding the behavior of organisms as dynamic wholes was identified. At this end, the authors of this article have proposed WLIMES (Ehresmann and Simeonov, 2012), a formal theory for modeling living systems integrating both the Memory Evolutive Systems (Ehresmann and Vanbremeersch, 2007) and the Wandering Logic Intelligence (Simeonov, 2002b). Its principles will be recalled here with respect to their resonances to Eastern thought. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Nonlinear Container Ship Model for the Study of Parametric Roll Resonance

    Holden, Christian; Galeazzi, Roberto; Rodríguez, Claudio

    2007-01-01

    Parametric roll is a critical phenomenon for ships, whose onset may cause roll oscillations up to 40, leading to very dangerous situations and possibly capsizing. Container ships have been shown to be particularly prone to parametric roll resonance when they are sailing in moderate to heavy head ...

  6. A schizophrenia rat model induced by early postnatal phencyclidine treatment and characterized by Magnetic Resonance Imaging

    Broberg, Brian V; Madsen, Kristoffer H; Plath, Niels

    2013-01-01

    administration of phencyclidine (PCP) induces schizophrenia-like symptoms in healthy volunteers and exacerbates symptoms in patients with schizophrenia. In this study, pharmacological Magnetic Resonance Imaging (phMRI) was used to evaluate if rats treated with 20mg/kg PCP on postnatal days 7, 9, and 11 (neo...

  7. A normalized model for the half-bridge series resonant converter

    King, R.; Stuart, T. A.

    1981-01-01

    Closed-form steady-state equations are derived for the half-bridge series resonant converter with a rectified (dc) load. Normalized curves for various currents and voltages are then plotted as a function of the circuit parameters. Experimental results based on a 10-kHz converter are presented for comparison with the calculations.

  8. Ultrasonic transducers with resonant cavities as emitters for air-borne applications

    Montero De Espinosa Freijo, F.

    2009-08-01

    Full Text Available In this work a new proposal to improve the emission efficiency of air-borne ultrasonic transducers is introduced. A theoretical ultrasonic transducer design is studied using a piezoelectric membrane and a Helmholtz resonator with two acoustic ports. The resonator provides radiation in the acoustic ports in phase with that of the membrane. Several finite element simulations and experimental results are used to study the device. The finite element models were used to compare its behaviour with that of conventional vacuum-cavity transducers. These results show an improvement in the bandwidth reaching a quality factor value of 19. Furthermore, the experimental measurements were used to study the effects of the resonant cavity in the response. Several measurements for different cavity depths were performed. The results show an improvement of 25 dB in the emitted pressure through tuning the transducer.

    En este trabajo se presenta una nueva propuesta para mejorar la eficiencia de transductores ultrasónicos acoplados a aire. Para este estudio se ha empleado un diseño teórico de transductor ultrasónico que utiliza una membrana piezoeléctrica y un resonador de Helmholtz con dos puertos acústicos. El resonador hace que la radiación en los puertos acústicos se encuentre en fase con la producida por la membrana. Para estudiar el dispositivo se utilizaron resultados obtenidos mediante programas de elementos finitos y resultados experimentales. Por un lado, los modelos de elementos finitos se utilizaron para comparar el comportamiento del dispositivo con el de transductores convencionales con cavidades al vacío. Estos resultados indican una mejora en el ancho de banda alcanzando valores de factor de calidad de 19. Por otro lado, los resultados experimentales se emplearon para identificar los efectos de la cavidad resonante en el funcionamiento del dispositivo. Para ello se realizaron varias medidas utilizando ciertas profundidades de cavidad

  9. A Hybrid Finite Element/Helmholtz-Kirchhoff-Integral Model for Shooting Range Sound Prediction

    Nijhof, M.J.J.; Eerden, F.J.M. van der

    2013-01-01

    National legislation enforces a limit on the Sound Levels of outdoor military shooting ranges observed in nearby residential areas. These restrictions directly influence the number of shots that may be fired at a specific shooting range, which may conflict with the required/ scheduled training

  10. On Modeling the Kelvin–Helmholtz Instability in Solar Atmosphere I ...

    explained in terms of unstable m = −3 MHD mode. We also describe ... (2009). In other words, ..... Thus, we are convinced to accept the expanded definition of the CME suggested in. Vourlidas et al. .... The authors focused on the stability and oscillatory ...... Cavus, H., Kazkapan, D. 2013, New Astron., 25, 85–94. Chandra, R.

  11. Nonlinear evolution of the magnetized Kelvin-Helmholtz instability: From fluid to kinetic modeling

    Henri, P.; Cerri, E.; Califano, F.; Pegoraro, F.; Rossi, C.; Faganello, M.; Šebek, Ondřej; Trávníček, Pavel M.; Hellinger, Petr; Frederiksen, J. T.; Nordlund, A.; Markidis, S.; Keppens, R.; Lapenta, G.

    2013-01-01

    Roč. 20, č. 10 (2013), 102118/1-102118/13 ISSN 1070-664X EU Projects: European Commission(XE) 263340 - SWIFF Grant - others:European Commission(XE) HPC-EUROPA2 - No. 228398; EU(XE) FP7 - RI-283493; EU(XE) FP7 - 2012071282 Institutional support: RVO:68378289 Keywords : current advance method * ion larmor radius * plasma * simulations * vortices * magnetopause * boundary * parallel * schemes * fields Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.249, year: 2013 http://scitation.aip.org/content/aip/journal/pop/20/10/10.1063/1.4826214

  12. Nuclear safety research in HGF 2012; Fortschrittsbericht 2012. Programm 'Nukleare Sicherheitsforschung' Helmholtz-Gemeinschaft

    Anon.

    2013-06-15

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German Federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out safe is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the partners

  13. Zero Quantum Nuclear Magnetic Resonance experiments utilizing a toroid cell and coil

    Bebout, William Roach

    1989-01-01

    Over the past ten to fifteen years the area of Nuclear Magnetic Resonance (NMR) Spectroscopy has seen tremendous growth. For example, in conjunction with multiple quantum NMR, molecular structural mapping of a compound can be easily performed in a two dimensional (2D) experiment. However, only two kinds of detector coils have been typically used in NMR studies. These are the solenoid coil and the Helmholtz coil. The solenoid coil was very popular with the permanent and e...

  14. Frequency Preference Response to Oscillatory Inputs in Two-dimensional Neural Models: A Geometric Approach to Subthreshold Amplitude and Phase Resonance.

    Rotstein, Horacio G

    2014-01-01

    We investigate the dynamic mechanisms of generation of subthreshold and phase resonance in two-dimensional linear and linearized biophysical (conductance-based) models, and we extend our analysis to account for the effect of simple, but not necessarily weak, types of nonlinearities. Subthreshold resonance refers to the ability of neurons to exhibit a peak in their voltage amplitude response to oscillatory input currents at a preferred non-zero (resonant) frequency. Phase-resonance refers to the ability of neurons to exhibit a zero-phase (or zero-phase-shift) response to oscillatory input currents at a non-zero (phase-resonant) frequency. We adapt the classical phase-plane analysis approach to account for the dynamic effects of oscillatory inputs and develop a tool, the envelope-plane diagrams, that captures the role that conductances and time scales play in amplifying the voltage response at the resonant frequency band as compared to smaller and larger frequencies. We use envelope-plane diagrams in our analysis. We explain why the resonance phenomena do not necessarily arise from the presence of imaginary eigenvalues at rest, but rather they emerge from the interplay of the intrinsic and input time scales. We further explain why an increase in the time-scale separation causes an amplification of the voltage response in addition to shifting the resonant and phase-resonant frequencies. This is of fundamental importance for neural models since neurons typically exhibit a strong separation of time scales. We extend this approach to explain the effects of nonlinearities on both resonance and phase-resonance. We demonstrate that nonlinearities in the voltage equation cause amplifications of the voltage response and shifts in the resonant and phase-resonant frequencies that are not predicted by the corresponding linearized model. The differences between the nonlinear response and the linear prediction increase with increasing levels of the time scale separation between

  15. Through tissue imaging of a live breast cancer tumour model using handheld surface enhanced spatially offset resonance Raman spectroscopy (SESORRS).

    Nicolson, Fay; Jamieson, Lauren E; Mabbott, Samuel; Plakas, Konstantinos; Shand, Neil C; Detty, Michael R; Graham, Duncan; Faulds, Karen

    2018-04-21

    In order to improve patient survival and reduce the amount of unnecessary and traumatic biopsies, non-invasive detection of cancerous tumours is of imperative and urgent need. Multicellular tumour spheroids (MTS) can be used as an ex vivo cancer tumour model, to model in vivo nanoparticle (NP) uptake by the enhanced permeability and retention (EPR) effect. Surface enhanced spatially offset Raman spectroscopy (SESORS) combines both surface enhanced Raman spectroscopy (SERS) and spatially offset Raman spectroscopy (SORS) to yield enhanced Raman signals at much greater sub-surface levels. By utilizing a reporter that has an electronic transition in resonance with the laser frequency, surface enhanced resonance Raman scattering (SERRS) yields even greater enhancement in Raman signal. Using a handheld SORS spectrometer with back scattering optics, we demonstrate the detection of live breast cancer 3D MTS containing SERRS active NPs through 15 mm of porcine tissue. False color 2D heat intensity maps were used to determine tumour model location. In addition, we demonstrate the tracking of SERRS-active NPs through porcine tissue to depths of up to 25 mm. This unprecedented performance is due to the use of red-shifted chalcogenpyrylium-based Raman reporters to demonstrate the novel technique of surface enhanced spatially offset resonance Raman spectroscopy (SESORRS) for the first time. Our results demonstrate a significant step forward in the ability to detect vibrational fingerprints from a tumour model at depth through tissue. Such an approach offers significant promise for the translation of NPs into clinical applications for non-invasive disease diagnostics based on this new chemical principle of measurement.

  16. Toroidal modeling of plasma response and resonant magnetic perturbation field penetration

    Liu, Y.Q.; Kirk, A.; Sun, Y.; Cahyna, Pavel; Chapman, I.T.; Denner, P.; Fishpool, G.; Garofalo, A.M.; Harrison, J.R.; Nardon, E.

    2012-01-01

    Roč. 54, č. 12 (2012), s. 124013-124013 ISSN 0741-3335 Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * resonant magnetic perturbation * neoclassical toroidal viscosity Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.369, year: 2012 http://iopscience.iop.org/0741-3335/54/12/124013/pdf/0741-3335_54_12_124013.pdf

  17. Minipig Model of Huntington's Disease: H-1 Magnetic Resonance Spectroscopy of the Brain

    Jozefovičová, M.; Herynek, V.; Jírů, F.; Dezortová, M.; Juhásová, Jana; Juhás, Štefan; Motlík, Jan; Hájek, M.

    2016-01-01

    Roč. 65, č. 1 (2016), s. 155-163 ISSN 0862-8408 R&D Projects: GA TA ČR(CZ) TA01011466; GA MŠk(CZ) 7F14308; GA MŠk ED2.1.00/03.0124 Institutional support: RVO:67985904 Keywords : Huntington´s disease * minipigs * magnetic resonance spectroscopy Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.461, year: 2016

  18. Numerical simulation of coherent resonance in a model network of Rulkov neurons

    Andreev, Andrey V.; Runnova, Anastasia E.; Pisarchik, Alexander N.

    2018-04-01

    In this paper we study the spiking behaviour of a neuronal network consisting of Rulkov elements. We find that the regularity of this behaviour maximizes at a certain level of environment noise. This effect referred to as coherence resonance is demonstrated in a random complex network of Rulkov neurons. An external stimulus added to some of neurons excites them, and then activates other neurons in the network. The network coherence is also maximized at the certain stimulus amplitude.

  19. Modeling and analysis of harmonic resonance in a power electronics based AC power system

    Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe

    2013-01-01

    The dynamic interactions among the interconnected power converters may bring in harmonic resonance in a power electronics based power system. This paper addresses this issue in a power system dominated by multiple current- and voltage-controlled inverters with LCL- and LC-filters. The impedance...... stability criterion. To validate the theoretical analysis, the time domain simulations and experimental tests on a three-inverter-based system are presented....

  20. Mathematical modeling and calculation of forced resonant vibrations of composite electromechanical system

    Ластівка, Іван Олексійович

    2014-01-01

    Resonant vibrations of composite electromechanical symmetric three-element system “metal plate - piezoceramic cylindrical panels” are considered. Forced vibrations are made under the influence of external alternating electric field, supplied to the electrodes of piezoceramic segments of cylindrical panels, previously polarized in the tangential direction.Based on the improved theory, such as the S.P. Timoshenko’s, the system of differential equations of forced vibrations of the system, taking...

  1. Proceedings of the Helmholtz international school physics of heavy quarks and hadrons (HQ2013)

    Ali, Ahmed; Bystritskiy, Yury; Ivanov, Mikhail

    2014-07-01

    The following topics were dealt with: Higgs boson production and couplings with the ATLAS detector, recent CMS results on heavy quarks and hadrons, mesons with open charm and beauty, new-physics searches in B→D (*) τν τ , spectroscopy and Regge trajectories of heavy quarkonia, weak decays of B s mesons, the possible role of scalar glueball-quarkonia mixing in the f 0 (1370,1500,17100) resonances produced in charmonia decays, effective weak Lagrangians in the Standard Model and B decays, heavy-quark physics in the covariant quark model, application of QCD sum rules to heavy-quark physics, top-quark production, helicity amplitudes and angular decay distributions, small-x behavior of deep-inelastic structure functions F 2 and F 2 cc , XYZ stated, recent Belle results, light and heavy hadrons in AdS/QCD, renorm dynamics, valence quarks and multiparticle production, prompt photons and associated b,c-tagged jet production within the k T factorization approach, heavy quarkonium production at the LHC in the framework of NRQCD and parton Reggeization approach, light-cone distribution amplitudes of bottom baryons, rare semileptonic B + → π + l + l - decay, bimodality phenomenon in finite and infinite systems within an exactly solvable statistical model, CP violation in D meson decays, the scalar mesons in multichannel ππ scattering and decays of the ψ and Υ families, the latest results of the ATLAS experiment on heavy-quark physics, relativistic corrections to pair charmonium production at the LHC, the rise and fall of the fourth quark-lepton generation. (HSI)

  2. Human vocal tract resonances and the corresponding mode shapes investigated by three-dimensional finite-element modelling based on CT measurement.

    Vampola, Tomáš; Horáček, Jaromír; Laukkanen, Anne-Maria; Švec, Jan G

    2015-04-01

    Resonance frequencies of the vocal tract have traditionally been modelled using one-dimensional models. These cannot accurately represent the events in the frequency region of the formant cluster around 2.5-4.5 kHz, however. Here, the vocal tract resonance frequencies and their mode shapes are studied using a three-dimensional finite element model obtained from computed tomography measurements of a subject phonating on vowel [a:]. Instead of the traditional five, up to eight resonance frequencies of the vocal tract were found below the prominent antiresonance around 4.7 kHz. The three extra resonances were found to correspond to modes which were axially asymmetric and involved the piriform sinuses, valleculae, and transverse vibrations in the oral cavity. The results therefore suggest that the phenomenon of speaker's and singer's formant clustering may be more complex than originally thought.

  3. Investigation of Kelvin-Helmholtz Instability in the boundary layer using Doppler lidar and radiosonde data

    Das, Subrata Kumar; Das, Siddarth Shankar; Saha, Korak; Murali Krishna, U. V.; Dani, K. K.

    2018-04-01

    Characteristics of Kelvin Helmholtz Instability (KHI) using Doppler wind lidar observation have rarely been reported during the Indian summer monsoon season. In this paper, we present a case study of KHI near planetary boundary layer using Doppler wind lidar and radiosonde measurements at Mahabubnagar, a tropical Indian station. The data was collected during the Integrated Ground Observation Campaign (June-October 2011) under the Cloud Aerosol Interaction and Precipitation Enhancement EXperiment-2011. The continuous wind lidar observation during 10-16 August 2011 shows there is an increase in carrier-to-noise ratio values near planetary boundary layer from 03:00 to 11:00 LT on 13 August; reveals the formation of KHI. There is a strong power bursts pattern corresponding to high turbulence characteristics in the early half of the day. The KHI temporal evolution from initial to dissipating stage is observed with clear variation in the carrier-to-noise ratio values. The observed KHI billows are in the height between 600 and 1200 m and lasted for about 7.5 h. The vertical velocity from Doppler lidar measurement shows the presence of updrafts after breaking of KHI in the boundary layer. The presence of strong wind shear, high stability parameter, low Richardson number and high relative humidity during the enhanced carrier-to-noise ratio period indicates the ideal condition for the formation and persistence of this dynamic instability. A typical characteristic of trapped humidity above the KHI billows suggest the presence of strong inversion. A wavelet analysis of 3-dimensional wind components show dominant periodicity of 45-65 min and the periodicity in vertical wind is more prominent.

  4. Atlas of neutron resonances

    Mughabghab, Said

    2018-01-01

    Atlas of Neutron Resonances: Resonance Properties and Thermal Cross Sections Z= 1-60, Sixth Edition, contains an extensive list of detailed individual neutron resonance parameters for Z=1-60, as well as thermal cross sections, capture resonance integrals, average resonance parameters and a short survey of the physics of thermal and resonance neutrons. The long introduction contains: nuclear physics formulas aimed at neutron physicists; topics of special interest such as valence neutron capture, nuclear level density parameters, and s-, p-, and d-wave neutron strength functions; and various comparisons of measured quantities with the predictions of nuclear models, such as the optical model. As in the last edition, additional features have been added to appeal to a wider spectrum of users. These include: spin-dependent scattering lengths that are of interest to solid-state physicists, nuclear physicists and neutron evaluators; calculated and measured Maxwellian average 5-keV and 30-keV capture cross sections o...

  5. Efficient solution methodology for calibrating the hemodynamic model using functional Magnetic Resonance Imaging (fMRI) measurements

    Zambri, Brian

    2015-11-05

    Our aim is to propose a numerical strategy for retrieving accurately and efficiently the biophysiological parameters as well as the external stimulus characteristics corresponding to the hemodynamic mathematical model that describes changes in blood flow and blood oxygenation during brain activation. The proposed method employs the TNM-CKF method developed in [1], but in a prediction/correction framework. We present numerical results using both real and synthetic functional Magnetic Resonance Imaging (fMRI) measurements to highlight the performance characteristics of this computational methodology. © 2015 IEEE.

  6. Carbon 13 nuclear magnetic resonance chemical shifts empiric calculations of polymers by multi linear regression and molecular modeling

    Da Silva Pinto, P.S.; Eustache, R.P.; Audenaert, M.; Bernassau, J.M.

    1996-01-01

    This work deals with carbon 13 nuclear magnetic resonance chemical shifts empiric calculations by multi linear regression and molecular modeling. The multi linear regression is indeed one way to obtain an equation able to describe the behaviour of the chemical shift for some molecules which are in the data base (rigid molecules with carbons). The methodology consists of structures describer parameters definition which can be bound to carbon 13 chemical shift known for these molecules. Then, the linear regression is used to determine the equation significant parameters. This one can be extrapolated to molecules which presents some resemblances with those of the data base. (O.L.). 20 refs., 4 figs., 1 tab

  7. Analytical approach for modeling and performance analysis of microring resonators as optical filters with multiple output bus waveguides

    Lakra, Suchita; Mandal, Sanjoy

    2017-06-01

    A quadruple micro-optical ring resonator (QMORR) with multiple output bus waveguides is mathematically modeled and analyzed by making use of the delay-line signal processing approach in Z-domain and Mason's gain formula. The performances of QMORR with two output bus waveguides with vertical coupling are analyzed. This proposed structure is capable of providing wider free spectral response from both the output buses with appreciable cross talk. Thus, this configuration could provide increased capacity to insert a large number of communication channels. The simulated frequency response characteristic and its dispersion and group delay characteristics are graphically presented using the MATLAB environment.

  8. Efficient solution methodology for calibrating the hemodynamic model using functional Magnetic Resonance Imaging (fMRI) measurements

    Zambri, Brian; Djellouli, Rabia; Laleg-Kirati, Taous-Meriem

    2015-01-01

    Our aim is to propose a numerical strategy for retrieving accurately and efficiently the biophysiological parameters as well as the external stimulus characteristics corresponding to the hemodynamic mathematical model that describes changes in blood flow and blood oxygenation during brain activation. The proposed method employs the TNM-CKF method developed in [1], but in a prediction/correction framework. We present numerical results using both real and synthetic functional Magnetic Resonance Imaging (fMRI) measurements to highlight the performance characteristics of this computational methodology. © 2015 IEEE.

  9. Gratings for synchrotron and FEL beamlines: a project for the manufacture of ultra-precise gratings at Helmholtz Zentrum Berlin.

    Siewert, F; Löchel, B; Buchheim, J; Eggenstein, F; Firsov, A; Gwalt, G; Kutz, O; Lemke, St; Nelles, B; Rudolph, I; Schäfers, F; Seliger, T; Senf, F; Sokolov, A; Waberski, Ch; Wolf, J; Zeschke, T; Zizak, I; Follath, R; Arnold, T; Frost, F; Pietag, F; Erko, A

    2018-01-01

    Blazed gratings are of dedicated interest for the monochromatization of synchrotron radiation when a high photon flux is required, such as, for example, in resonant inelastic X-ray scattering experiments or when the use of laminar gratings is excluded due to too high flux densities and expected damage, for example at free-electron laser beamlines. Their availability became a bottleneck since the decommissioning of the grating manufacture facility at Carl Zeiss in Oberkochen. To resolve this situation a new technological laboratory was established at the Helmholtz Zentrum Berlin, including instrumentation from Carl Zeiss. Besides the upgraded ZEISS equipment, an advanced grating production line has been developed, including a new ultra-precise ruling machine, ion etching technology as well as laser interference lithography. While the old ZEISS ruling machine GTM-6 allows ruling for a grating length up to 170 mm, the new GTM-24 will have the capacity for 600 mm (24 inch) gratings with groove densities between 50 lines mm -1 and 1200 lines mm -1 . A new ion etching machine with a scanning radiofrequency excited ion beam (HF) source allows gratings to be etched into substrates of up to 500 mm length. For a final at-wavelength characterization, a new reflectometer at a new Optics beamline at the BESSY-II storage ring is under operation. This paper reports on the status of the grating fabrication, the measured quality of fabricated items by ex situ and in situ metrology, and future development goals.

  10. Simulation of a quadrupole resonator

    Kleindienst, Raphael [Helmholtz Zentrum Berlin (Germany)

    2013-07-01

    Modern particle accelerators often rely on superconducting radio frequency (SRF) technology for accelerating cavities. In particular in CW operation, very high quality factors up into the high range are desirable, since one of the main cost drivers of such an accelerator, the cryogenic refrigeration plant, is inversely proportional to Q{sub 0}. Present day superconducting cavities are generally made of solid Niobium. A possibility to increase the quality factor as well as accelerating fields is to use thin film coated cavities. Apart from Niobium thin films, other superconducting materials, such as MgB{sub 2}, NbN and Nb{sub 3}Sn are promising candidates. Measuring and understanding the RF-properties of superconducting thin films, specifically the surface resistance, is needed to drive forward this development. Currently only few facilities exist capable of measuring the surface resistance of thin films samples with a resolution in the nano-ohm range at the operating frequency of typical cavities(e.g. L-band). A dedicated test stand consisting of a quadrupole resonator is therefore being constructed at the Helmholtz Zentrum Berlin. This system is based on the 400 MHz quadrupole resonator at CERN, with the design adapted to 433 MHz (making available the higher harmonic mode at 1.3 GHz) and optimized with respect to resolution and maximum achievable fields using simulation data obtained with CST Microwave Studio as well as ANSYS. The simulated design is being manufactured. An outlook for future physics runs is given.

  11. Resonantly produced 7 keV sterile neutrino dark matter models and the properties of Milky Way satellites.

    Abazajian, Kevork N

    2014-04-25

    Sterile neutrinos produced through a resonant Shi-Fuller mechanism are arguably the simplest model for a dark matter interpretation of the origin of the recent unidentified x-ray line seen toward a number of objects harboring dark matter. Here, I calculate the exact parameters required in this mechanism to produce the signal. The suppression of small-scale structure predicted by these models is consistent with Local Group and high-z galaxy count constraints. Very significantly, the parameters necessary in these models to produce the full dark matter density fulfill previously determined requirements to successfully match the Milky Way Galaxy's total satellite abundance, the satellites' radial distribution, and their mass density profile, or the "too-big-to-fail problem." I also discuss how further precision determinations of the detailed properties of the candidate sterile neutrino dark matter can probe the nature of the quark-hadron transition, which takes place during the dark matter production.

  12. Modeling of mode-locked coupled-resonator optical waveguide lasers

    Agger, Christian; Skovgård, Troels Suhr; Gregersen, Niels

    2010-01-01

    Coupled-resonator optical waveguides made from coupled high-Q photonic crystal nanocavities are investigated for use as cavities in mode-locked lasers. Such devices show great potential in slowing down light and can serve to reduce the cavity length of a mode-locked laser. An explicit expression...... of the emerging pulse train. A range of tuning around this frequency allows for effective mode locking. Finally, noise is added to the generalized single-cavity eigenfrequencies in order to evaluate the effects of fabrication imperfections on the cold-cavity transmission properties and consequently on the locking...

  13. A particle-hole-rotator coupling model for the giant resonance of carbon-12

    McDougall, A.; Spicer, B.M.

    1975-01-01

    A collective correlations calculation has been made for the giant resonance of 12 C. The low-lying states are treated as members of two rotational bands, and higher energy low-lying states are included in the coupling procedure in an attempt to examine the connection of these states with structure in the 30-35 MeV region, and to examine a proposed rotational band of states built on the 7.65 MeV (0 + ) level. The calculation fails to transfer strength to the extent expected. (author)

  14. Semi-analytical model of laser resonance absorption in plasmas with a parabolic density profile

    Pestehe, S J; Mohammadnejad, M

    2010-01-01

    Analytical expressions for mode conversion and resonance absorption of electromagnetic waves in inhomogeneous, unmagnetized plasmas are required for laboratory and simulation studies. Although most of the analyses of this problem have concentrated on the linear plasma density profile, there are a few research works that deal with different plasma density profiles including the parabolic profile. Almost none of them could give clear analytical formulae for the electric and magnetic components of the electromagnetic field propagating through inhomogeneous plasmas. In this paper, we have considered the resonant absorption of laser light near the critical density of plasmas with parabolic electron density profiles followed by a uniform over-dense region and have obtained expressions for the electric and magnetic vectors of laser light propagating through the plasma. An estimation of the fractional absorption of laser energy has also been carried out. It has been shown that, in contrast to the linear density profile, the energy absorption depends explicitly on the value of collision frequency as well as on a new parameter, N, called the over-dense density order.

  15. Attorneys for the Ocean - Graduate Training in the Transatlantic Helmholtz Research School for Ocean System Science and Technology (HOSST/TOSST)

    van den Bogaard, Christel; Dullo, Christian; Devey, Colin; Kienast, Markus; Wallace, Douglas

    2016-04-01

    The worldwide growth in population and standards of living is leading to ever increasing human pressure on the oceans: as a source of resources, a transportation/trade pathway, and a sink for pollutants. However, use of the world's ocean is not presently guided by any over-arching management plan at either national or international level. Marine science and technology provide the necessary foundation, both in terms of system understanding and observational and modeling tools, to address these issues and to ensure that management of ocean activities can be placed on the best-possible scientific footing. The transatlantic Helmholtz Research School Ocean Science and Technology pools the complementary expertise of the Helmholtz Centre for Ocean Research Kiel (GEOMAR), the Christian-Albrechts-Universität zu Kiel, Dalhousie University and the Institute for Ocean Research Enterprise (IORE), to train the next generation of researchers in the key scientific areas critical for responsible resource utilization and management of the ocean with special emphasis on our "local ocean" - the North Atlantic. The Research School is organized around three themes which encompass key sensitivities of the North Atlantic to external forcing and resource exploitation: 4D Ocean Dynamics, Ecosystem Hotspots, and Seafloor Structures. Interactions within and between these themes regulate how the ocean system responds to both anthropogenic and natural change. The HOSST/TOSST fellows gain an in-depth understanding of how these ocean systems interact, which in turn provides a solid understanding for the formulation of scientifically-sound management practices. Given the broad scope of the school, student education is two-pronged: it provides excellent institutional support where needed, including scientific input, personal support and financial incentives, while simultaneously generating an open "intellectual space" in which ingenious, often unpredictable, ideas can take root, overcoming

  16. First Ph.D. Student Workshop of the Hermann von Helmholtz Association of National Research Centers (HGF) on ''Nuclear Safety Research''

    Knebel, J.U.; Sanchez Espinoza, V.H.

    2006-03-01

    The First Ph.D. Student Workshop ''Nuclear Safety Research'' of the Helmholtz Association of National Research Centers (HGF)'' was jointly organized by the Research Center Karlsruhe GmbH and the Energie Baden-Wuerttemberg AG (EnBW) from Wednesday 9th to Friday 11th March 2005. The workshop was opened with welcome greetings by Dr. Peter Fritz, Forschungszentrum Karlsruhe. Subsequently Dr. Joachim U. Knebel explained the main goals and the content of the workshop. The young scientists reported in 28 high-level presentations about their research work which covered a wide spectrum from reactor safety, partitions and transmutation, and innovative reactor systems, to safety research for nuclear waste disposal. The junior researchs showed excellent professional competence and demonstrated presentation qualities at the highest level. The successful funding of two Virtual Institutes, namely: the ''Competence in Nuclear Technologies'' and ''Functional Characteristics of Aquatic Interfaces both co-ordinated by Forschungszentrum Karlsruhe'', by the President of the Helmholtz Association Prof. Walter Kroell was the motivation for the organization of this first Ph.D. Student Workshop. Thanks to these two Virtual Institutes, the Reseach Center Karlsruhe and Juelich together with several univer-sities i.e. RWTH Aachen, Heidelberg, Karlsruhe, Muenster, and Stuttgart, have successfully financed eight Ph.D. and two post-doctoral students. Moreover, young scientists of the European Institute for Transuranium Elements (ITU) and additional seven Ph.D. Students, who are sponsored by the German nuclear industry (Framatome ANP, RWE Power, EnBW) in the frame of the Alliance Competence in on Nuclear Technology, and who are trained at Forschungszentrum Karlsruhe, actively contributed to this workshop. The EnBW-Award was handed over by Dr. Hans-Josef Zimmer, member of the board of directors of the EnBW-Kraftwerksgesellschaft, to Mrs. Ayelet Walter from the University of Stuttgart for the best

  17. Stochastic resonance in a piecewise nonlinear model driven by multiplicative non-Gaussian noise and additive white noise

    Guo, Yongfeng; Shen, Yajun; Tan, Jianguo

    2016-09-01

    The phenomenon of stochastic resonance (SR) in a piecewise nonlinear model driven by a periodic signal and correlated noises for the cases of a multiplicative non-Gaussian noise and an additive Gaussian white noise is investigated. Applying the path integral approach, the unified colored noise approximation and the two-state model theory, the analytical expression of the signal-to-noise ratio (SNR) is derived. It is found that conventional stochastic resonance exists in this system. From numerical computations we obtain that: (i) As a function of the non-Gaussian noise intensity, the SNR is increased when the non-Gaussian noise deviation parameter q is increased. (ii) As a function of the Gaussian noise intensity, the SNR is decreased when q is increased. This demonstrates that the effect of the non-Gaussian noise on SNR is different from that of the Gaussian noise in this system. Moreover, we further discuss the effect of the correlation time of the non-Gaussian noise, cross-correlation strength, the amplitude and frequency of the periodic signal on SR.

  18. Enhancement of information transmission with stochastic resonance in hippocampal CA1 neuron models: effects of noise input location.

    Kawaguchi, Minato; Mino, Hiroyuki; Durand, Dominique M

    2007-01-01

    Stochastic resonance (SR) has been shown to enhance the signal to noise ratio or detection of signals in neurons. It is not yet clear how this effect of SR on the signal to noise ratio affects signal processing in neural networks. In this paper, we investigate the effects of the location of background noise input on information transmission in a hippocampal CA1 neuron model. In the computer simulation, random sub-threshold spike trains (signal) generated by a filtered homogeneous Poisson process were presented repeatedly to the middle point of the main apical branch, while the homogeneous Poisson shot noise (background noise) was applied to a location of the dendrite in the hippocampal CA1 model consisting of the soma with a sodium, a calcium, and five potassium channels. The location of the background noise input was varied along the dendrites to investigate the effects of background noise input location on information transmission. The computer simulation results show that the information rate reached a maximum value for an optimal amplitude of the background noise amplitude. It is also shown that this optimal amplitude of the background noise is independent of the distance between the soma and the noise input location. The results also show that the location of the background noise input does not significantly affect the maximum values of the information rates generated by stochastic resonance.

  19. In vivo tracking of neuronal-like cells by magnetic resonance in rabbit models of spinal cord injury

    Zhang, Ruiping; Zhang, Kun; Li, Jianding; Liu, Qiang; Xie, Jun

    2013-01-01

    In vitro experiments have demonstrated that neuronal-like cells derived from bone marrow mesenchymal stem cells can survive, migrate, integrate and help to restore the function and behaviors of spinal cord injury models, and that they may serve as a suitable approach to treating spinal cord injury. However, it is very difficult to track transplanted cells in vivo. In this study, we injected superparamagnetic iron oxide-labeled neuronal-like cells into the subarachnoid space in a rabbit model of spinal cord injury. At 7 days after cell transplantation, a small number of dot-shaped low signal intensity shadows were observed in the spinal cord injury region, and at 14 days, the number of these shadows increased on T2-weighted imaging. Perl's Prussian blue staining detected dot-shaped low signal intensity shadows in the spinal cord injury region, indicative of superparamagnetic iron oxide nanoparticle-labeled cells. These findings suggest that transplanted neuronal-like cells derived from bone marrow mesenchymal stem cells can migrate to the spinal cord injury region and can be tracked by magnetic resonance in vivo. Magnetic resonance imaging represents an efficient noninvasive technique for visually tracking transplanted cells in vivo. PMID:25206659

  20. Of the Helmholtz Club, South-Californian seedbed for visual and cognitive neuroscience, and its patron Francis Crick.

    Aicardi, Christine

    2014-03-01

    Taking up the view that semi-institutional gatherings such as clubs, societies, research schools, have been instrumental in creating sheltered spaces from which many a 20th-century project-driven interdisciplinary research programme could develop and become established within the institutions of science, the paper explores the history of one such gathering from its inception in the early 1980s into the 2000s, the Helmholtz Club, which brought together scientists from such various research fields as neuroanatomy, neurophysiology, psychophysics, computer science and engineering, who all had an interest in the study of the visual system and of higher cognitive functions relying on visual perception such as visual consciousness. It argues that British molecular biologist turned South Californian neuroscientist Francis Crick had an early and lasting influence over the Helmholtz Club of which he was a founding pillar, and that from its inception, the club served as a constitutive element in his long-term plans for a neuroscience of vision and of cognition. Further, it argues that in this role, the Helmholtz Club served many purposes, the primary of which was to be a social forum for interdisciplinary discussion, where 'discussion' was not mere talk but was imbued with an epistemic value and as such, carefully cultivated. Finally, it questions what counts as 'doing science' and in turn, definitions of success and failure-and provides some material evidence towards re-appraising the successfulness of Crick's contribution to the neurosciences. Copyright © 2013 The Author. Published by Elsevier Ltd.. All rights reserved.