WorldWideScience

Sample records for helix-coil phase transition

  1. Ab initio theory of helix <-> coil phase transition

    DEFF Research Database (Denmark)

    Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2008-01-01

    In this paper, we suggest a theoretical method based on the statistical mechanics for treating the alpha-helix <-> random coil transition in alanine polypeptides. We consider this process as a first-order phase transition and develop a theory which is free of model parameters and is based solely ...

  2. Thermal helix-coil transition in UV irradiated collagen from rat tail tendon.

    Science.gov (United States)

    Sionkowska, A; Kamińska, A

    1999-05-01

    The thermal helix-coil transition in UV irradiated collagen solution, collagen film and pieces of rat tail tendon (RTT) were compared. Their thermal stability's were determined by differential scanning calorimeter (DSC) and by viscometric measurements. The denaturation temperatures of collagen solution, film and pieces of RTT were different. The helix-coil transition occur near 40 degrees C in collagen solution, near 112 degrees C in collagen film, and near 101 degrees C in pieces of RTT. After UV irradiation the thermal helix-coil transition of collagen samples were changed. These changes depend on the degree of hydratation.

  3. Intersegment interactions and helix-coil transition within the generalized model of polypeptide chains approach

    Science.gov (United States)

    Badasyan, A. V.; Hayrapetyan, G. N.; Tonoyan, Sh. A.; Mamasakhlisov, Y. Sh.; Benight, A. S.; Morozov, V. F.

    2009-09-01

    The generalized model of polypeptide chains is extended to describe the helix-coil transition in a system comprised of two chains interacting side-by-side. The Hamiltonian of the model takes into account four possible types of interactions between repeated units of the two chains, i.e., helix-helix, helix-coil, coil-helix, and coil-coil. Analysis reveals when the energy Ihh+Icc of (h-h, c-c) interactions overwhelms the energy Ihc+Ich of mixed (h-c, c-h) interactions, the correlation length rises substantially, resulting in narrowing of the transition interval. In the opposite case, when Ihh+Icctransition point. Conceptual links are established with experimentally oriented theories of Ghosh and Dill [J. Am. Chem. Soc. 131, 2306 (2009)] and Skolnick and Holtzer [Biochemistry 25, 6192 (1986)], providing a potential explanation for both favorable helix formation and disfavored intersegment interactions from the same theoretical perspective.

  4. The Effect of a Helix-Coil Transition on the Extension Elasticity

    Science.gov (United States)

    Buhot, Arnaud; Halperin, Avi

    2000-03-01

    The secondary structure of a polymer affects its deformation behavior in accordance with the Le Chatelier principle. An important example of such secondary structure is the alpha helix encountered in polypeptides. Similar structure was recently proposed for PEO in aqueous media. Our discussion concerns the coupling of the cooperative helix-coil transition and the extension elasticity. In particular, we analyze the extension of a long single chain by use of optical tweezers or AFM. We consider chains that exist in the coil-state when unperturbed. The transition nevertheless occurs because the extension favors the low entropy helical state. As a result, the corresponding force law exhibits a plateau. The analysis of this situation involves two ingredients: (I) the stretching free energy penalty for a rod-coil mutiblock copolymer (II) the entropy associated with the possible placements of the rod and coil blocks.

  5. The generalized model of polypeptide chain describing the helix-coil transition in biopolymers

    International Nuclear Information System (INIS)

    Mamasakhlisov, E.S.; Badasyan, A.V.; Tsarukyan, A.V.; Grigoryan, A.V.; Morozov, V.F.

    2005-07-01

    In this paper we summarize some results of our theoretical investigations of helix-coil transition both in single-strand (polypeptides) and two-strand (polynucleotides) macromolecules. The Hamiltonian of the Generalized Model of Polypeptide Chain (GMPC) is introduced to describe the system in which the conformations are correlated over some dimensional range Δ (it equals 3 for polypeptide, because one H-bond fixes three pairs of rotation, for double strand DNA it equals to one chain rigidity because of impossibility of loop formation on the scale less than Δ). The Hamiltonian does not contain any parameter designed especially for helix-coil transition and uses pure molecular microscopic parameters (the energy of hydrogen bond formation, reduced partition function of repeated unit, the number of repeated units fixed by one hydrogen bond, the energies of interaction between the repeated units and the solvent molecules). To calculate averages we evaluate the partition function using the transfer-matrix approach. The GMPC allowed to describe the influence of a number of factors, affecting the transition, basing on a unified microscopic approach. Thus we obtained, that solvents change transition temperature and interval in different ways, depending on type of solvent and on energy of solvent- macromolecule interaction; stacking on the background of H-bonding increases stability and decreases cooperativity of melting. For heterogeneous DNA we could analytically derive well known formulae for transition temperature and interval. In the framework of GMPC we calculate and show the difference of two order parameters of helix-coil transition - the helicity degree, and the average fraction of repeated units in helical conformation. Given article has the aim to review the results obtained during twenty years in the context of GMPC. (author)

  6. Salt- and pH-Triggered Helix-Coil Transition of Ionic Polypeptides under Physiology Conditions.

    Science.gov (United States)

    Yuan, Jingsong; Zhang, Yi; Sun, Yue; Cai, Zhicheng; Yang, Lijiang; Lu, Hua

    2018-06-11

    Controlling the helix-coil transition of polypeptides under physiological conditions is an attractive way toward smart functional materials. Here, we report the synthesis of a series of tertiary amine-functionalized ethylene glycol (EG x )-linked polypeptide electrolytes with their secondary structures tunable under physiological conditions. The resultant polymers, denoted as P(EG x DMA-Glu) ( x = 1, 2, and 3), show excellent aqueous solubility (>20 mg/mL) regardless of their charge states. Unlike poly-l-lysine that can form a helix only at pH above 10, P(EG x DMA-Glu) undergo a pH-dependent helix-coil switch with their transition points within the physiological range (pH ∼5.3-6.5). Meanwhile, P(EG x DMA-Glu) exhibit an unusual salt-induced helical conformation presumably owing to the unique properties of EG x linkers. Together, the current work highlights the importance of fine-tuning the linker chemistry in achieving conformation-switchable polypeptides and represents a facile approach toward stimuli-responsive biopolymers for advanced biological applications.

  7. Yang-Lee zeros for a Potts model of helix-coil transition with nontrivial topology

    International Nuclear Information System (INIS)

    Ananikian, N.; Ananikyan, L.; Artuso, R.; Sargsyan, K.

    2007-07-01

    The Yang-Lee partition function zeros of the Q-state Potts model on a zigzag ladder are studied by a transfer-matrix approach. This Q-state model has a non-trivial topology induced by three-site interactions on a zigzag ladder and is proposed as a description of helix-coil transition in homo-polymers. The Yang-Lee zeros are associated to complex values of the solvent-related coupling constant K (magnetic field) and they are exactly derived for arbitrary values of the system parameters: Q, J (coupling constant of hydrogen binding) and temperature. It is shown that there is only a quasi-phase transition for all temperatures. The densities of the Yang-Lee zeros are singular at the edge singularity points and the critical exponent σ = -1/2. (author)

  8. Glass-like dynamics of the strain-induced coil/helix transition on a permanent polymer network.

    Science.gov (United States)

    Ronsin, O; Caroli, C; Baumberger, T

    2016-02-14

    We study the stress response to a step strain of covalently bonded gelatin gels in the temperature range where triple helix reversible crosslink formation is prohibited. We observe slow stress relaxation towards a T-dependent finite asymptotic level. We show that this is assignable to the strain-induced coilhelix transition, previously evidenced by Courty et al. [Proc. Natl. Acad. Sci. U. S. A. 102, 13457 (2005)], of a fraction of the polymer strands. Relaxation proceeds, in a first stage, according to a stretched exponential dynamics, then crosses over to a terminal simple exponential decay. The respective characteristic times τK and τf exhibit an Arrhenius-like T-dependence with an associated energy E incompatibly larger than the activation barrier height for the isomerisation process which sets the clock for an elementary coilhelix transformation event. We tentatively assign this glass-like slowing down of the dynamics to the long-range couplings due to the mechanical noise generated by the local elementary events in this random elastic medium.

  9. Effect of the Helix-Coil transition in Bovine skin gelatin on its associative phase separation with Lysozyme

    NARCIS (Netherlands)

    Antonov, Y.A.; Zhuravleva, I.L.; Volodine, A.; Moldenaers, P.; Cardinaels, R.M.

    2017-01-01

    It is known that the formation of electrostatic polyelectrolyte complexes can induce conformational changes in the interacting macromolecules. However, the opposite effect, namely, that of the helix–coil transition of one of the interacting polyelectrolytes on its associative phase separation with

  10. Frictional pressure drop of steam-water two-phase flow in helical coils with small helix diameter of HTR-10

    International Nuclear Information System (INIS)

    Bi Qincheng; Chen Tingkuan; Luo Yushan; Zheng Jianxue

    1996-01-01

    Experiments of steam-water two-phase flow frictional pressure drop through five vertically and horizontally positioned helical coils were carried out in the high pressure steam water test loop of Xi'an Jiaotong University. Two kinds of tube with inner diameters of 10 mm and 12 mm were used to form the coils. The helix diameter was 115 mm with coil pitch 22.5 mm. The experimental conditions were: pressure p = 4-14 MPa, mass velocity G = 400-2000 kg/(m 2 ·s), and inner wall heat flux q = 0-750 kW/m 2 . Theoretical analysis with a semi-empirical correlation was made to predict the two-phase flow fictional pressure drop through these kinds of helical coils

  11. Strong contributions from vertical triads to helix-partner preferences in parallel coiled coils.

    Science.gov (United States)

    Steinkruger, Jay D; Bartlett, Gail J; Woolfson, Derek N; Gellman, Samuel H

    2012-09-26

    Pairing preferences in heterodimeric coiled coils are determined by complementarities among side chains that pack against one another at the helix-helix interface. However, relationships between dimer stability and interfacial residue identity are not fully understood. In the context of the "knobs-into-holes" (KIH) packing pattern, one can identify two classes of interactions between side chains from different helices: "lateral", in which a line connecting the adjacent side chains is perpendicular to the helix axes, and "vertical", in which the connecting line is parallel to the helix axes. We have previously analyzed vertical interactions in antiparallel coiled coils and found that one type of triad constellation (a'-a-a') exerts a strong effect on pairing preferences, while the other type of triad (d'-d-d') has relatively little impact on pairing tendencies. Here, we ask whether vertical interactions (d'-a-d') influence pairing in parallel coiled-coil dimers. Our results indicate that vertical interactions can exert a substantial impact on pairing specificity, and that the influence of the d'-a-d' triad depends on the lateral a' contact within the local KIH motif. Structure-informed bioinformatic analyses of protein sequences reveal trends consistent with the thermodynamic data derived from our experimental model system in suggesting that heterotriads involving Leu and Ile are preferred over homotriads involving Leu and Ile.

  12. Theoretical study for volume changes associated with the helix-coil transition of peptides.

    Science.gov (United States)

    Imai, T; Harano, Y; Kovalenko, A; Hirata, F

    2001-12-01

    We calculate the partial molar volumes and their changes associated with the coil(extended)-to-helix transition of two types of peptide, glycine-oligomer and glutamic acid-oligomer, in aqueous solutions by using the Kirkwood-Buff solution theory coupled with the three-dimensional reference interaction site model (3D-RISM) theory. The volume changes associated with the transition are small and positive. The volume is analyzed by decomposing it into five contributions following the procedure proposed by Chalikian and Breslauer: the ideal volume, the van der Waals volume, the void volume, the thermal volume, and the interaction volume. The ideal volumes and the van der Waals volumes do not change appreciably upon the transition. In the both cases of glycine-peptide and glutamic acid-peptide, the changes in the void volumes are positive, while those in the thermal volumes are negative, and tend to balance those in the void volumes. The change in the interaction volume of glycine-peptide does not significantly contribute, while that of glutamic acid-peptide makes a negative contribution. Copyright 2001 John Wiley & Sons, Inc. Biopolymers 59: 512-519, 2001

  13. Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides.

    Science.gov (United States)

    Best, Robert B; Hummer, Gerhard

    2009-07-02

    Obtaining the correct balance of secondary structure propensities is a central priority in protein force-field development. Given that current force fields differ significantly in their alpha-helical propensities, a correction to match experimental results would be highly desirable. We have determined simple backbone energy corrections for two force fields to reproduce the fraction of helix measured in short peptides at 300 K. As validation, we show that the optimized force fields produce results in excellent agreement with nuclear magnetic resonance experiments for folded proteins and short peptides not used in the optimization. However, despite the agreement at ambient conditions, the dependence of the helix content on temperature is too weak, a problem shared with other force fields. A fit of the Lifson-Roig helix-coil theory shows that both the enthalpy and entropy of helix formation are too small: the helix extension parameter w agrees well with experiment, but its entropic and enthalpic components are both only about half the respective experimental estimates. Our structural and thermodynamic analyses point toward the physical origins of these shortcomings in current force fields, and suggest ways to address them in future force-field development.

  14. Phase transitions in polypeptides: analysis of energy fluctuations

    DEFF Research Database (Denmark)

    Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2009-01-01

    The helix random coil transition in alanine, valine, and leucine polypeptides consisting of 30 amino acids is studied in vacuo using the Langevin molecular dynamics approach. The influence of side chain radicals on internal energy and heat capacity of the polypeptides is discussed. The heat...... of simulation time. This study provides a comparison of methods for the description of structural transitions in polypeptides....

  15. Helix-coil transition of a four-way DNA junction observed by multiple fluorescence parameters.

    Science.gov (United States)

    Vámosi, György; Clegg, Robert M

    2008-10-16

    The thermal denaturation of immobile four-way DNA ("Holliday-") junctions with 17 base pair arms was studied via fluorescence spectroscopic measurements. Two arms of the molecule were labeled at the 5'-end with fluorescein and tetramethylrhodamine, respectively. Melting was monitored by the fluorescence intensity of the dyes, the fluorescence anisotropy of tetramethylrhodamine, and Forster resonance energy transfer (FRET) between fluorescein and rhodamine. To fit the thermal denaturation curves of the four-way junctions, two basic thermodynamic models were tested: (1) all-or-none transitions assuming a molecularity of one, two, or four and (2) a statistical "zipper" model. The all-or-none models correspond to reaction mechanisms assuming that the cooperative melting unit (that is, the structure changing from complete helix to complete coil) consists of (1) one arm, (2) two neighboring arms (which have one continuous strand common to the two arms), or (3) all four arms. In each case, the melting of the cooperative unit takes place in a single step. The tetramolecular reaction model (four-arm melting) yielded unrealistically low van't Hoff enthalpy and entropy values, whereas the monomolecular model (one-arm melting) resulted in a poor fit to the experimental data. The all-or-none bimolecular (two neighboring arm model) fit gave intermediate standard enthalpy change (Delta H) values between those expected for the melting of a duplex with a total length between the helix lengths of one and two arms (17 and 34 base pairs). Simulations according to the zipper model fit the experimental curves best when the length of the simulated duplex was assumed to be 34 base pairs, the length of a single strand. This suggests that the most important parameter determining the melting behavior of the molecule is the end-to-end distance of the strands (34 bases) rather than the length of the individual arms (17 base pairs) and that the equilibrium concentration of partially denatured

  16. Representing environment-induced helix-coil transitions in a coarse grained peptide model

    Science.gov (United States)

    Dalgicdir, Cahit; Globisch, Christoph; Sayar, Mehmet; Peter, Christine

    2016-10-01

    Coarse grained (CG) models are widely used in studying peptide self-assembly and nanostructure formation. One of the recurrent challenges in CG modeling is the problem of limited transferability, for example to different thermodynamic state points and system compositions. Understanding transferability is generally a prerequisite to knowing for which problems a model can be reliably used and predictive. For peptides, one crucial transferability question is whether a model reproduces the molecule's conformational response to a change in its molecular environment. This is of particular importance since CG peptide models often have to resort to auxiliary interactions that aid secondary structure formation. Such interactions take care of properties of the real system that are per se lost in the coarse graining process such as dihedral-angle correlations along the backbone or backbone hydrogen bonding. These auxiliary interactions may then easily overstabilize certain conformational propensities and therefore destroy the ability of the model to respond to stimuli and environment changes, i.e. they impede transferability. In the present paper we have investigated a short peptide with amphiphilic EALA repeats which undergoes conformational transitions between a disordered and a helical state upon a change in pH value or due to the presence of a soft apolar/polar interface. We designed a base CG peptide model that does not carry a specific (backbone) bias towards a secondary structure. This base model was combined with two typical approaches of ensuring secondary structure formation, namely a C α -C α -C α -C α pseudodihedral angle potential or a virtual site interaction that mimics hydrogen bonding. We have investigated the ability of the two resulting CG models to represent the environment-induced conformational changes in the helix-coil equilibrium of EALA. We show that with both approaches a CG peptide model can be obtained that is environment-transferable and that

  17. Conformational Diffusion and Helix Formation Kinetics

    International Nuclear Information System (INIS)

    Hummer, Gerhard; Garcia, Angel E.; Garde, Shekhar

    2000-01-01

    The time, temperature, and sequence dependences of helix formation kinetics of fully atomistic peptide models in explicit solvent are described quantitatively by a diffusive search within the coil state with barrierless transitions into the helical state. Conformational diffusion leads to nonexponential kinetics and jump-width dependences in temperature jump experiments. (c) 2000 The American Physical Society

  18. Conformational Diffusion and Helix Formation Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Hummer, Gerhard [Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 (United States); Garcia, Angel E. [Theoretical Biology and Biophysics Group T-10, MS K710, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Garde, Shekhar [Department of Chemical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States)

    2000-09-18

    The time, temperature, and sequence dependences of helix formation kinetics of fully atomistic peptide models in explicit solvent are described quantitatively by a diffusive search within the coil state with barrierless transitions into the helical state. Conformational diffusion leads to nonexponential kinetics and jump-width dependences in temperature jump experiments. (c) 2000 The American Physical Society.

  19. Exploring the membrane fusion mechanism through force-induced disassembly of HIV-1 six-helix bundle

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Kai [Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yong [Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Lou, Jizhong, E-mail: jlou@ibp.ac.cn [Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2016-05-13

    Enveloped virus, such as HIV-1, employs membrane fusion mechanism to invade into host cell. HIV-1 gp41 ectodomain uses six-helix bundle configuration to accomplish this process. Using molecular dynamic simulations, we confirmed the stability of this six-helix bundle by showing high occupancy of hydrogen bonds and hydrophobic interactions. Key residues and interactions important for the bundle integration were characterized by force-induced unfolding simulations of six-helix bundle, exhibiting the collapse order of these groups of interactions. Moreover, our results in some way concerted with a previous theory that the formation of coiled-coil choose a route which involved cooperative interactions between the N-terminal and C-terminal helix. -- Highlights: •Unfolding of HIV-1 gp41 six-helix bundle is studied by molecular dynamics simulations. •Specific interactions responsible for the stability of HIV-1 envelope post-fusion conformation were identified. •The gp41 six-helix bundle transition inducing membrane fusion might be a cooperative process of the three subunits.

  20. Generating structured light with phase helix and intensity helix using reflection-enhanced plasmonic metasurface at 2 μm

    Science.gov (United States)

    Zhao, Yifan; Du, Jing; Zhang, Jinrun; Shen, Li; Wang, Jian

    2018-04-01

    Mid-infrared (2-20 μm) light has been attracting great attention in many areas of science and technology. Beyond the extended wavelength range from visible and near-infrared to mid-infrared, shaping spatial structures may add opportunities to grooming applications of mid-infrared photonics. Here, we design and fabricate a reflection-enhanced plasmonic metasurface and demonstrate efficient generation of structured light with the phase helix and intensity helix at 2 μm. This work includes two distinct aspects. First, structured light (phase helix, intensity helix) generation at 2 μm, which is far beyond the ability of conventional spatial light modulators, is enabled by the metasurface with sub-wavelength engineered structures. Second, the self-referenced intensity helix against environmental noise is generated without using a spatially separated light. The demonstrations may open up advanced perspectives to structured light applications at 2 μm, such as phase helix for communications and non-communications (imaging, sensing) and intensity helix for enhanced microscopy and advanced metrology.

  1. α-helix to β-hairpin transition of human amylin monomer

    Science.gov (United States)

    Singh, Sadanand; Chiu, Chi-cheng; Reddy, Allam S.; de Pablo, Juan J.

    2013-04-01

    The human islet amylin polypeptide is produced along with insulin by pancreatic islets. Under some circumstances, amylin can aggregate to form amyloid fibrils, whose presence in pancreatic cells is a common pathological feature of Type II diabetes. A growing body of evidence indicates that small, early stage aggregates of amylin are cytotoxic. A better understanding of the early stages of the amylin aggregation process and, in particular, of the nucleation events leading to fibril growth could help identify therapeutic strategies. Recent studies have shown that, in dilute solution, human amylin can adopt an α-helical conformation, a β-hairpin conformation, or an unstructured coil conformation. While such states have comparable free energies, the β-hairpin state exhibits a large propensity towards aggregation. In this work, we present a detailed computational analysis of the folding pathways that arise between the various conformational states of human amylin in water. A free energy surface for amylin in explicit water is first constructed by resorting to advanced sampling techniques. Extensive transition path sampling simulations are then employed to identify the preferred folding mechanisms between distinct minima on that surface. Our results reveal that the α-helical conformer of amylin undergoes a transformation into the β-hairpin monomer through one of two mechanisms. In the first, misfolding begins through formation of specific contacts near the turn region, and proceeds via a zipping mechanism. In the second, misfolding occurs through an unstructured coil intermediate. The transition states for these processes are identified. Taken together, the findings presented in this work suggest that the inter-conversion of amylin between an α-helix and a β-hairpin is an activated process and could constitute the nucleation event for fibril growth.

  2. Double-helix stellarator

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-09-01

    A new stellarator configuration, the Double-Helix Stellarator (DHS), is introduced. This novel configuration features a double-helix center post as the only helical element of the stellarator coil system. The DHS configuration has many unique characteristics. One of them is the extreme low plasma aspect ratio, A ∼ 1--1.2. Other advantages include a high enclosed volume, appreciable rotational transform, and a possibility of extreme-high-β MHD equilibria. Moreover, the DHS features improved transport characteristics caused by the absence of the magnetic field ripple on the outboard of the torus. Compactness, simplicity and modularity of the coil system add to the DHS advantages for fusion applications

  3. Automated de novo phasing and model building of coiled-coil proteins.

    Science.gov (United States)

    Rämisch, Sebastian; Lizatović, Robert; André, Ingemar

    2015-03-01

    Models generated by de novo structure prediction can be very useful starting points for molecular replacement for systems where suitable structural homologues cannot be readily identified. Protein-protein complexes and de novo-designed proteins are examples of systems that can be challenging to phase. In this study, the potential of de novo models of protein complexes for use as starting points for molecular replacement is investigated. The approach is demonstrated using homomeric coiled-coil proteins, which are excellent model systems for oligomeric systems. Despite the stereotypical fold of coiled coils, initial phase estimation can be difficult and many structures have to be solved with experimental phasing. A method was developed for automatic structure determination of homomeric coiled coils from X-ray diffraction data. In a benchmark set of 24 coiled coils, ranging from dimers to pentamers with resolutions down to 2.5 Å, 22 systems were automatically solved, 11 of which had previously been solved by experimental phasing. The generated models contained 71-103% of the residues present in the deposited structures, had the correct sequence and had free R values that deviated on average by 0.01 from those of the respective reference structures. The electron-density maps were of sufficient quality that only minor manual editing was necessary to produce final structures. The method, named CCsolve, combines methods for de novo structure prediction, initial phase estimation and automated model building into one pipeline. CCsolve is robust against errors in the initial models and can readily be modified to make use of alternative crystallographic software. The results demonstrate the feasibility of de novo phasing of protein-protein complexes, an approach that could also be employed for other small systems beyond coiled coils.

  4. Routine phasing of coiled-coil protein crystal structures with AMPLE

    Directory of Open Access Journals (Sweden)

    Jens M. H. Thomas

    2015-03-01

    Full Text Available Coiled-coil protein folds are among the most abundant in nature. These folds consist of long wound α-helices and are architecturally simple, but paradoxically their crystallographic structures are notoriously difficult to solve with molecular-replacement techniques. The program AMPLE can solve crystal structures by molecular replacement using ab initio search models in the absence of an existent homologous protein structure. AMPLE has been benchmarked on a large and diverse test set of coiled-coil crystal structures and has been found to solve 80% of all cases. Successes included structures with chain lengths of up to 253 residues and resolutions down to 2.9 Å, considerably extending the limits on size and resolution that are typically tractable by ab initio methodologies. The structures of two macromolecular complexes, one including DNA, were also successfully solved using their coiled-coil components. It is demonstrated that both the ab initio modelling and the use of ensemble search models contribute to the success of AMPLE by comparison with phasing attempts using single structures or ideal polyalanine helices. These successes suggest that molecular replacement with AMPLE should be the method of choice for the crystallographic elucidation of a coiled-coil structure. Furthermore, AMPLE may be able to exploit the presence of a coiled coil in a complex to provide a convenient route for phasing.

  5. Characterization of the biomechanical properties of T4 pili expressed by Streptococcus pneumoniae--a comparison between helix-like and open coil-like pili.

    Science.gov (United States)

    Castelain, Mickaël; Koutris, Efstratios; Andersson, Magnus; Wiklund, Krister; Björnham, Oscar; Schedin, Staffan; Axner, Ove

    2009-07-13

    Bacterial adhesion organelles, known as fimbria or pili, are expressed by gram-positive as well as gram-negative bacteria families. These appendages play a key role in the first steps of the invasion and infection processes, and they therefore provide bacteria with pathogenic abilities. To improve the knowledge of pili-mediated bacterial adhesion to host cells and how these pili behave under the presence of an external force, we first characterize, using force measuring optical tweezers, open coil-like T4 pili expressed by gram-positive Streptococcus pneumoniae with respect to their biomechanical properties. It is shown that their elongation behavior can be well described by the worm-like chain model and that they possess a large degree of flexibility. Their properties are then compared with those of helix-like pili expressed by gram-negative uropathogenic Escherichia coli (UPEC), which have different pili architecture. The differences suggest that these two types of pili have distinctly dissimilar mechanisms to adhere and sustain external forces. Helix-like pili expressed by UPEC bacteria adhere to host cells by single adhesins located at the distal end of the pili while their helix-like structures act as shock absorbers to dampen the irregularly shear forces induced by urine flow and to increase the cooperativity of the pili ensemble, whereas open coil-like pili expressed by S. pneumoniae adhere to cells by a multitude of adhesins distributed along the pili. It is hypothesized that these two types of pili represent different strategies of adhering to host cells in the presence of external forces. When exposed to significant forces, bacteria expressing helix-like pili remain attached by distributing the external force among a multitude of pili, whereas bacteria expressing open coil-like pili sustain large forces primarily by their multitude of binding adhesins which presumably detach sequentially.

  6. Critical phenomena and polymer coil-to-globule transition

    International Nuclear Information System (INIS)

    Chu, B.; Xu Renliang; Wang Zhulun; Zuo Ju

    1988-01-01

    Small-angle scattering techniques including laser light scattering (LLS), small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) have been useful tools to measure the static and dynamic properties (in terms of critical fluctuations) of fluids, fluid mixtures, polymer and micellar solutions, polymer blends and metallic alloys. A brief review is given of recent results in critical-phenomena experiments using small-angle scattering techniques. Topics of current interest are pointed out, and a guide to the vast literature on critical opalescence is provided. Coil-to-globule transition in polymer solutions has been a classic experimental challenge over the past decade. In order to succeed in reaching the collapsed regime, it becomes important to realize that single coil contraction of a linear polymer molecule in solution takes place in the neighborhood of phase separations. By using the recent development of a small-angle light-scattering spectrometer and by taking advantage of a successful polymer fractionation experiment, the transition behavior of linear polystyrene in cyclohexane from the Θ state to the collapsed regime can be characterized based on both the radius of gyration and the hydrodynamic radius. (orig.)

  7. Anomalies in the coil-stretch transition of flexible polymers

    Science.gov (United States)

    Ghosal, Aishani; Cherayil, Binny J.

    2018-03-01

    The flow-induced coil-stretch transition of high molecular weight polymers has generally been held to be of first order. But evidence of significant slowing down in the rate at which the polymers relax to equilibrium in the vicinity of the transition suggests that the thermodynamic character of the transition may be less clear-cut. The above slowing down effect is actually characteristic of a second-order transition, and it points to the existence of a broad spectrum of conformational states in the transition region, analogous to the existence of fluctuations of all length scales at a critical point. In this paper, using a path integral approach based on a free-draining finitely extensible chain model, we calculate various polymer properties as a function of elongational flow as a way of exploring different statistical mechanical details of the coil-stretch transition. These properties include the molecular weight dependence of the flow-extension curve of the polymer, the distribution of its steady-state end-to-end distances, and the characteristic relaxation time τR of these distances. Among other findings, our calculations indicate that the coil-stretch transition is discontinuous in the N → ∞ limit, that the effective free energy of the chain is unimodal at all values of the flow, becoming broad and flat in the immediate vicinity of the transition, and that the ratio of τR to the Rouse relaxation time increases abruptly at the transition before eventually reaching a plateau value at large flow strengths. These aspects of the coil-stretch transition place it among a larger class of unconventional nominally first-order single chain transitions that include the adsorption transition of surface-tethered polymers and the escape transition of compressed polymers.

  8. Nucleic acid helices: I. Structure of M1 RNA from E. coli as determined bypsoralen crosslinking. II. Thermodynamics of the helix-coil transition of DNA oligonucleotides in solutions containing 3. 0 M tetramethylammonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, S.E.

    1987-01-01

    This work includes two different investigations examining nucleic acid helices. The first study discusses secondary and tertiary interactions in the RNA moiety of ribonuclease P from Escherichia coli. The second study discusses the thermodynamics of the helix-coil transition of DNA oligonucleotides in solutions containing tetramethylammonium chloride. The RNA moiety of ribonuclease P from Escherichia coli (M1 RNA) has been photoreacted with 4{prime}-hydroxymethyl-4,5{prime}8-trimethylpsoralen and long wave UV light (320-380 nm) in a buffer in which the M1 RNA alone acts as a true catalyst of tRNA processing. Limited specific digestion followed by two dimensional gel electrophoresis yields fragments crosslinked by HMT. The positions of the crosslinks have been determined to within {plus minus}15 nucleotides by photoreversal of the isolated crosslinked fragments and enzymatic sequencing of the resulting RNA. Further assignments of the exact locations of the crosslinks have been made on the known photoreactivity of the psoralen with different bases.

  9. Nucleic acid helices: I. Structure of M1 RNA from E. coli as determined bypsoralen crosslinking. II. Thermodynamics of the helix-coil transition of DNA oligonucleotides in solutions containing 3.0 M tetramethylammonium chloride

    International Nuclear Information System (INIS)

    Lipson, S.E.

    1987-01-01

    This work includes two different investigations examining nucleic acid helices. The first study discusses secondary and tertiary interactions in the RNA moiety of ribonuclease P from Escherichia coli. The second study discusses the thermodynamics of the helix-coil transition of DNA oligonucleotides in solutions containing tetramethylammonium chloride. The RNA moiety of ribonuclease P from Escherichia coli (M1 RNA) has been photoreacted with 4'-hydroxymethyl-4,5'8-trimethylpsoralen and long wave UV light (320-380 nm) in a buffer in which the M1 RNA alone acts as a true catalyst of tRNA processing. Limited specific digestion followed by two dimensional gel electrophoresis yields fragments crosslinked by HMT. The positions of the crosslinks have been determined to within ±15 nucleotides by photoreversal of the isolated crosslinked fragments and enzymatic sequencing of the resulting RNA. Further assignments of the exact locations of the crosslinks have been made on the known photoreactivity of the psoralen with different bases

  10. Improved SNR of phased-array PERES coils via simulation study

    International Nuclear Information System (INIS)

    RodrIguez, Alfredo O; Medina, LucIa

    2005-01-01

    A computational comparison of signal-to-noise ratio (SNR) was performed between a conventional phased array of two circular-shaped coils and a petal resonator surface array. The quasi-static model and phased-array optimum SNR were combined to derive an SNR formula for each array. Analysis of mutual inductance between coil petals was carried out to compute the optimal coil separation and optimum number of petal coils. Mutual interaction between coil arrays was not included in the model because this does not drastically affect coil performance. Phased arrays of PERES coils show a 114% improvement in SNR over that of the simplest circular configuration. (note)

  11. Conserved residues in the coiled-coil pocket of human immunodeficiency virus type 1 gp41 are essential for viral replication and interhelical interaction

    International Nuclear Information System (INIS)

    Mo Hongmei; Konstantinidis, Alex K.; Stewart, Kent D.; Dekhtyar, Tatyana; Ng, Teresa; Swift, Kerry; Matayoshi, Edmund D.; Kati, Warren; Kohlbrenner, William; Molla, Akhteruzzaman

    2004-01-01

    The human immunodeficiency virus type 1 (HIV-1) gp41 plays an important role in mediating the fusion of HIV with host cells. During the fusion process, three N-terminal helices and three C-terminal helices pack in an anti-parallel direction to form a six-helix bundle. X-ray crystallographic analysis of the gp41 core demonstrated that within each coiled-coil interface, there is a deep and large pocket, formed by a cluster of residues in the N-helix coiled-coil. In this report, we systematically analyzed the role of seven conserved residues that are either lining or packing this pocket on the infectivity and interhelical interaction using novel approaches. Our results show that residues L568, V570, W571, and K574 of the N-helix that are lining the side chain and right wall of the pocket are important for establishing a productive infection. Mutations V570A and W571A completely abolished replication, while replication of the L568A and K574A mutants was significantly attenuated relative to wild type. Similarly, residues W628, W631, and I635 of the C-helix that insert into the pocket are essential for infectivity. The impaired infectivity of these seven mutants is in part attributed to the loss in binding affinity of the interhelical interaction. Molecular modeling of the crystal structure of the coiled-coil further shows that alanine substitution of those residues disrupts the hydrophobic interaction between the N- and C-helix. These results suggest that the conserved residues in the coiled-coil domain play a key role in HIV infection and this coiled-coil pocket is a good target for development of inhibitors against HIV. In addition, our data indicate that the novel fluorescence polarization assay described in this study could be valuable in screening for inhibitors that block the interhelical interaction and HIV entry

  12. Sub-20 nm Stable Micelles Based on a Mixture of Coiled-Coils: A Platform for Controlled Ligand Presentation.

    Science.gov (United States)

    Ang, JooChuan; Ma, Dan; Jung, Benson T; Keten, Sinan; Xu, Ting

    2017-11-13

    Ligand-functionalized, multivalent nanoparticles have been extensively studied for biomedical applications from imaging agents to drug delivery vehicles. However, the ligand cluster size is usually heterogeneous and the local valency is ill-defined. Here, we present a mixed micelle platform hierarchically self-assembled from a mixture of two amphiphilic 3-helix and 4-helix peptide-polyethylene glycol (PEG)-lipid hybrid conjugates. We demonstrate that the local multivalent ligand cluster size on the micelle surface can be controlled based on the coiled-coil oligomeric state. The oligomeric states of mixed peptide bundles were found to be in their individual native states. Similarly, mixed micelles indicate the orthogonal self-association of coiled-coil amphiphiles. Using differential scanning calorimetry, fluorescence recovery spectroscopy, and coarse-grained molecular dynamics simulation, we studied the distribution of coiled-coil bundles within the mixed micelles and observed migration of coiled-coils into nanodomains within the sub-20 nm mixed micelle. This report provides important insights into the assembly and formation of nanophase-separated micelles with precise control over the local multivalent state of ligands on the micelle surface.

  13. Transition of W7-X non-planar coils from manufacturing to assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ehrke, G. [Max-Planck-Institut fuer Plasmaphysik (IPP), EURATOM Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)], E-mail: gunnar.ehrke@ipp.mpg.de

    2009-06-15

    The main magnetic field of Wendelstein 7-X fusion experiment (W7-X) at Max-Planck-Institut fuer Plasmaphysik Greifswald, Germany will be provided by 50 non-planar coils and supported by 20 planar coils. The non-planar coils were delivered by a consortium (CON) consisting of Babcock Noell GmbH Germany (BNG) and ASG Superconductors S.p.A. Italy (ASG). The coil production ended with the delivery of the last non-planar coil in March 2008 at the manufacturing branch of BNG in Zeitz, Germany. The construction of the coils was characterised by design changes, many rework actions and resulting time delays. Due to these numerous adjustments and changes a continuous improvement process was needed. This paper will give an overview about the transition of the non-planar coils from the acceptance tests at the manufacturer site to the beginning of the assembly at IPP. Furthermore this report will highlight technical interfaces in the period of transition.

  14. Equilibrium shift in solution: molecular shape recognition and precipitation of a synthetic double helix using helicene-grafted silica nanoparticles.

    Science.gov (United States)

    Miyagawa, Masamichi; Ichinose, Wataru; Yamaguchi, Masahiko

    2014-01-27

    Chiral silica nanoparticles (70 nm) grafted with (P)-helicene recognized the molecular shape of double helix and random coil (P)-ethynylhelicene oligomers in solution. A mixture of the (P)-nanoparticles and double helix precipitated much faster than a mixture of the (P)-nanoparticles and random coil, and the precipitate contained only the double helix. The mixture of the (P)-nanoparticles and (P)-ethynylhelicene pentamer reversibly dispersed in trifluoromethylbenzene upon heating at 70 °C and precipitated upon cooling at 25 °C. When a 10:90 equilibrium mixture of the double helix and random coil in solution was treated with the (P)-nanoparticles, the double helix was precipitated in 53% yield and was accompanied by equilibrium shift. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Delivery of AAV2/9-microdystrophin genes incorporating helix 1 of the coiled-coil motif in the C-terminal domain of dystrophin improves muscle pathology and restores the level of α1-syntrophin and α-dystrobrevin in skeletal muscles of mdx mice.

    Science.gov (United States)

    Koo, Taeyoung; Malerba, Alberto; Athanasopoulos, Takis; Trollet, Capucine; Boldrin, Luisa; Ferry, Arnaud; Popplewell, Linda; Foster, Helen; Foster, Keith; Dickson, George

    2011-11-01

    Duchenne muscular dystrophy is a severe X-linked inherited muscle wasting disorder caused by mutations in the dystrophin gene. Adeno-associated virus (AAV) vectors have been extensively used to deliver genes efficiently for dystrophin expression in skeletal muscles. To overcome limited packaging capacity of AAV vectors (pathology of dystrophic mdx mice. However, the CT domain of dystrophin is thought to recruit part of the dystrophin-associated protein complex, which acts as a mediator of signaling between extracellular matrix and cytoskeleton in muscle fibers. In this study, we extended the ΔR4-23/ΔCT microdystrophin by incorporating helix 1 of the coiled-coil motif in the CT domain of dystrophin (MD2), which contains the α1-syntrophin and α-dystrobrevin binding sites. Intramuscular injection of AAV2/9 expressing CT domain-extended microdystrophin showed efficient dystrophin expression in tibialis anterior muscles of mdx mice. The presence of the CT domain of dystrophin in MD2 increased the recruitment of α1-syntrophin and α-dystrobrevin at the sarcolemma and significantly improved the muscle resistance to lengthening contraction-induced muscle damage in the mdx mice compared with MD1. These results suggest that the incorporation of helix 1 of the coiled-coil motif in the CT domain of dystrophin to the microdystrophins will substantially improve their efficiency in restoring muscle function in patients with Duchenne muscular dystrophy.

  16. Large superconducting coil fabrication development

    International Nuclear Information System (INIS)

    Brown, R.L.; Allred, E.L.; Anderson, W.C.; Burn, P.B.; Deaderick, R.I.; Henderson, G.M.; Marguerat, E.F.

    1975-01-01

    Toroidal fields for some fusion devices will be produced by an array of large superconducting coils. Their size, space limitation, and field requirements dictate that they be high performance coils. Once installed, accessibility for maintenance and repairs is severely restricted; therefore, good reliability is an obvious necessity. Sufficient coil fabrication will be undertaken to develop and test methods that are reliable, fast, and economical. Industrial participation will be encouraged from the outset to insure smooth transition from development phases to production phases. Initially, practice equipment for three meter bore circular coils will be developed. Oval shape coil forms will be included in the practice facility later. Equipment that is more automated will be developed with the expectation of winding faster and obtaining good coil quality. Alternate types of coil construction, methods of winding and insulating, will be investigated. Handling and assembly problems will be studied. All technology developed must be feasible for scaling up when much larger coils are needed. Experimental power reactors may need coils having six meter or larger bores

  17. High voltage fault current limiter having immersed phase coils

    Science.gov (United States)

    Darmann, Francis Anthony

    2014-04-22

    A fault current limiter including: a ferromagnetic circuit formed from a ferromagnetic material and including at least a first limb, and a second limb; a saturation mechanism surrounding a limb for magnetically saturating the ferromagnetic material; a phase coil wound around a second limb; a dielectric fluid surrounding the phase coil; a gaseous atmosphere surrounding the saturation mechanism.

  18. First assembly phase for the ATLAS toroid coils

    CERN Document Server

    Patrice Loïez

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. In the first phase of assembly, the two 'pancakes' are packed into their vacuum vessel. This is done using bladders filled with resin and glass microbeads under pressure. The resin is heated and, once cooled, holds the pancakes in place. The operation has to be performed on both sides of the coil, which necessitated a special technique to turn the coils over and then transport them to the heating table. Photos 01, 02, 03: Use of the overhead travelling crane to hoist the coil up and then tilt it over, the coil frame's metal feet being used as rotational pivots, supporting half the coil's weight. Once it has been turned over, the coil, now with only half the frame, is transported to the heating table using a special lifting gant...

  19. Effect of TFE on the Helical Content of AK17 and HAL-1 Peptides: Theoretical Insights into the Mechanism of Helix Stabilization.

    Science.gov (United States)

    Vymětal, Jiří; Bednárová, Lucie; Vondrášek, Jiří

    2016-02-18

    Fluorinated alcohols such as 2,2,2-trifluoroethanol (TFE) are among the most frequently used cosolvents in experiment studies of peptides. They have significant effects on secondary structure and a particularly strong promotion of α-helix is induced by TFE. In this study we validated recently proposed force field parameters for TFE in molecular dynamics simulations with two model peptides-alanine-rich AK-17 and antimicrobial peptide halictine-1 (HAL-1). In the case of HAL-1, we characterized the effect of TFE on this peptide experimentally by ECD spectroscopy. Our TFE model in question reproduced the helix-promoting effect of TFE and provided insight into the mechanisms of TFE action on peptides. Our simulations confirmed the preferential interaction of TFE molecules with α-helices, although the TFE molecules accumulate in the vicinity of the peptides in various conformations. Moreover, we observed a significant effect of TFE on the thermodynamics of the helix-coil transition and a change in local conformational preferences in the unfolded (coil) state induced by TFE. In addition, our simulation-based analysis suggests that different mechanisms participate in helix stabilization in both model peptides in water and TFE solution. Our results thus support the picture of complex TFE action on peptides that is further diversified by the identity and intrinsic properties of the peptide.

  20. First assembly phase for the ATLAS toroid coils

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. In the first phase of assembly, the two 'pancakes' are packed into their vacuum vessel. This is done using bladders filled with resin and glass microbeads under pressure. The resin is heated and, once cooled, holds the pancakes in place. The operation has to be performed on both sides of the coil, which necessitated a special technique to turn the coils over and then transport them to the heating table. Photos 01, 02, 03: Transporting the coil to the heating table using a special lifting gantry manufactured at JINR-Dubna, Russia in preparation for the 'bladderisation' operation.

  1. A double-helix and cross-patterned solenoid used as a wirelessly powered receiver for medical implants

    Science.gov (United States)

    Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui

    2018-05-01

    Many medical implants need to be designed in the shape of a cylinder (rod), a cuboid or a capsule in order to adapt to a specific site within the human body or facilitate the implantation procedure. In order to wirelessly power these types of implants, a pair of coils, one is located inside the human body and one is outside, is often used. Since most organs such as major muscles, blood vessels, and nerve bundles are anatomically parallel to the body surface, the most desired wireless power transfer (WPT) direction is from the external power transmission pad (a planar coil) to the lateral surface of the implant. However, to obtain optimal coupling, the currently used solenoid coil requires being positioned perpendicular to the body surface, which is often medically or anatomically unacceptable. In this research, a concentric double-helix (DH) coil with an air core is presented for use in implantable devices. Two helical coils are tilted at opposite angles (±45 degrees) to form a cross pattern. The WPT system is designed using the magnetic resonance concept for wireless power transfer (MR-WPT). The power transfer efficiency (PTE) relies on the near-field magnetic coupling which is closely related to the location and orientation of the DH coil. We explain how the novel structure of the DH solenoid magnifies the mutual inductance with the widely adopted circular planner coil and how the PTE is improved in comparison to the case of the conventional solenoid coil. We also study an important case where the double-helix power reception coil is laterally and angularly misaligned with the transmitter. Finally, our computational study using the finite element method and experimental study with actually constructed prototypes are presented which have proven our new double-helix coil design.

  2. A double-helix and cross-patterned solenoid used as a wirelessly powered receiver for medical implants

    Directory of Open Access Journals (Sweden)

    Shitong Mao

    2018-05-01

    Full Text Available Many medical implants need to be designed in the shape of a cylinder (rod, a cuboid or a capsule in order to adapt to a specific site within the human body or facilitate the implantation procedure. In order to wirelessly power these types of implants, a pair of coils, one is located inside the human body and one is outside, is often used. Since most organs such as major muscles, blood vessels, and nerve bundles are anatomically parallel to the body surface, the most desired wireless power transfer (WPT direction is from the external power transmission pad (a planar coil to the lateral surface of the implant. However, to obtain optimal coupling, the currently used solenoid coil requires being positioned perpendicular to the body surface, which is often medically or anatomically unacceptable. In this research, a concentric double-helix (DH coil with an air core is presented for use in implantable devices. Two helical coils are tilted at opposite angles (±45 degrees to form a cross pattern. The WPT system is designed using the magnetic resonance concept for wireless power transfer (MR-WPT. The power transfer efficiency (PTE relies on the near-field magnetic coupling which is closely related to the location and orientation of the DH coil. We explain how the novel structure of the DH solenoid magnifies the mutual inductance with the widely adopted circular planner coil and how the PTE is improved in comparison to the case of the conventional solenoid coil. We also study an important case where the double-helix power reception coil is laterally and angularly misaligned with the transmitter. Finally, our computational study using the finite element method and experimental study with actually constructed prototypes are presented which have proven our new double-helix coil design.

  3. A fourth gradient to overcome slice dependent phase effects of voxel-sized coils in planar arrays.

    Science.gov (United States)

    Bosshard, John C; Eigenbrodt, Edwin P; McDougall, Mary P; Wright, Steven M

    2010-01-01

    The signals from an array of densely spaced long and narrow receive coils for MRI are complicated when the voxel size is of comparable dimension to the coil size. The RF coil causes a phase gradient across each voxel, which is dependent on the distance from the coil, resulting in a slice dependent shift of k-space. A fourth gradient coil has been implemented and used with the system's gradient set to create a gradient field which varies with slice. The gradients are pulsed together to impart a slice dependent phase gradient to compensate for the slice dependent phase due to the RF coils. However the non-linearity in the fourth gradient which creates the desired slice dependency also results in a through-slice phase ramp, which disturbs normal slice refocusing and leads to additional signal cancelation and reduced field of view. This paper discusses the benefits and limitations of using a fourth gradient coil to compensate for the phase due to RF coils.

  4. High resolution MR imaging of the hip using pelvic phased-array coil

    Energy Technology Data Exchange (ETDEWEB)

    Niitsu, Mamoru; Mishima, Hajime; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    1997-01-01

    A pelvic phased-array coil was applied to obtain high resolution MR images of the hip. Three-mm-thick fast spin-echo images were obtained in seven hips. Images with a pelvic coil enhanced delineation of acetabular labrum and articular cartilage more clearly than those with a body coil or flexible-surface coil. The use of a pelvic coil in imaging of the hip may be of diagnostic value because of its superior delineation. (author)

  5. Peptide-oligonucleotide conjugates as nanoscale building blocks for assembly of an artificial three-helix protein mimic

    DEFF Research Database (Denmark)

    Lou, Chenguang; Martos-Maldonado, Manuel C.; Madsen, Charlotte Stahl

    2016-01-01

    Peptide-based structures can be designed to yield artificial proteins with specific folding patterns and functions. Template-based assembly of peptide units is one design option, but the use of two orthogonal self-assembly principles, oligonucleotide triple helix and a coiled coil protein domain ...

  6. Phase transitions of single polymer chains and of polymer solutions: insights from Monte Carlo simulations

    International Nuclear Information System (INIS)

    Binder, K; Paul, W; Strauch, T; Rampf, F; Ivanov, V; Luettmer-Strathmann, J

    2008-01-01

    The statistical mechanics of flexible and semiflexible macromolecules is distinct from that of small molecule systems, since the thermodynamic limit can also be approached when the number of (effective) monomers of a single chain (realizable by a polymer solution in the dilute limit) is approaching infinity. One can introduce effective attractive interactions into a simulation model for a single chain such that a swollen coil contracts when the temperature is reduced, until excluded volume interactions are effectively canceled by attractive forces, and the chain conformation becomes almost Gaussian at the theta point. This state corresponds to a tricritical point, as the renormalization group theory shows. Below the theta temperature a fluid globule is predicted (at nonzero concentration then phase separation between dilute and semidilute solutions occurs), while at still lower temperature a transition to a solid phase (crystal or glass) occurs. Monte Carlo simulations have shown, however, that the fluid globule phase may become suppressed, when the range of the effective attractive forces becomes too short, with the result that a direct (ultimately first-order) transition from the swollen coil to the solid occurs. This behavior is analogous to the behavior of colloidal particles with a very short range of attractive forces, where liquid-vapor-type phase separation may be suppressed. Analogous first-order transitions from swollen coils to dense rodlike or toroidal structures occur for semiflexible polymers. Finally, the modifications of the behavior discussed when the polymers are adsorbed at surfaces are also mentioned, and possible relations to wetting behavior of polymer solutions are addressed.

  7. Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment

    Science.gov (United States)

    Keshock, Edward G.; Lin, Chin S.

    1996-01-01

    A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized.

  8. Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper).

    Science.gov (United States)

    Jelesarov, I; Dürr, E; Thomas, R M; Bosshard, H R

    1998-05-19

    The stability of a coiled coil or leucine zipper is controlled by hydrophobic interactions and electrostatic forces between the constituent helices. We have designed a 30-residue peptide with the repeating seven-residue pattern of a coiled coil, (abcdefg)n, and with Glu in positions e and g of each heptad. The glutamate side chains prevented folding at pH values above 6 because of electrostatic repulsion across the helix dimer interface as well as within the individual helices. Protonation of the carboxylates changed the conformation from a random coil monomer to a coiled coil dimer. Folding at alkaline pH where the peptide had a net charge of -7e was promoted by the addition of salts. The nature of the charge screening cation was less important than that of the anion. The high salt concentrations (>1 M) necessary to induce folding indicated that the salt-induced folding resulted from alterations in the protein-water interaction. Folding was promoted by the kosmotropic anions sulfate and fluoride and to a lesser extent by the weak kosmotrope formate, whereas chloride and the strong chaotrope perchlorate were ineffective. Kosmotropes are excluded from the protein surface, which is preferentially hydrated, and this promotes folding by strengthening hydrophobic interactions at the coiled coil interface. Although charge neutralization also contributed to folding, it was effective only when the screening cation was partnered by a good kosmotropic anion. Folding conformed to a two-state transition from random coil monomer to coiled coil dimer and was enthalpy driven and characterized by a change in the heat capacity of unfolding of 3.9 +/- 1.2 kJ mol-1 K-1. The rate of folding was analyzed by fluorescence stopped-flow measurements. Folding occurred in a biphasic reaction in which the rapid formation of an initial dimer (kf = 2 x 10(7) M-1 s-1) was followed by an equally rapid concentration-independent rearrangement to the folded dimer (k > 100 s-1).

  9. Circularly Polarized Planar Helix Phased Antenna Array for 5G Mobile Terminals

    DEFF Research Database (Denmark)

    Syrytsin, Igor A.; Zhang, Shuai; Pedersen, Gert F.

    2017-01-01

    In this paper, a planar helix mobile phased antenna array is proposed for 5th generation communication systems with operating frequency of 28GHz. The proposed array displays circular polarization in the endfire direction. Over 65 degrees of axial ratio beamwidth and 7GHz of axial ratio bandwidth...... has been achieved in the proposed design. The coverage performance of the proposed phased antenna array has also been studied by using the coverage efficiency metric. Coverage efficiency of 50 % at 5 dBi gain is achieved by the proposed phased mobile antenna array....

  10. CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies.

    Science.gov (United States)

    Wood, Christopher W; Bruning, Marc; Ibarra, Amaurys Á; Bartlett, Gail J; Thomson, Andrew R; Sessions, Richard B; Brady, R Leo; Woolfson, Derek N

    2014-11-01

    The ability to accurately model protein structures at the atomistic level underpins efforts to understand protein folding, to engineer natural proteins predictably and to design proteins de novo. Homology-based methods are well established and produce impressive results. However, these are limited to structures presented by and resolved for natural proteins. Addressing this problem more widely and deriving truly ab initio models requires mathematical descriptions for protein folds; the means to decorate these with natural, engineered or de novo sequences; and methods to score the resulting models. We present CCBuilder, a web-based application that tackles the problem for a defined but large class of protein structure, the α-helical coiled coils. CCBuilder generates coiled-coil backbones, builds side chains onto these frameworks and provides a range of metrics to measure the quality of the models. Its straightforward graphical user interface provides broad functionality that allows users to build and assess models, in which helix geometry, coiled-coil architecture and topology and protein sequence can be varied rapidly. We demonstrate the utility of CCBuilder by assembling models for 653 coiled-coil structures from the PDB, which cover >96% of the known coiled-coil types, and by generating models for rarer and de novo coiled-coil structures. CCBuilder is freely available, without registration, at http://coiledcoils.chm.bris.ac.uk/app/cc_builder/. © The Author 2014. Published by Oxford University Press.

  11. Alpha-helix <-> random coil phase transition: analysis of ab initio theory predictions

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2008-01-01

    have obtained same thermodynamical characteristics from the use of molecular dynamics simulations and compared them with the results of the new statistical mechanics approach. The comparison proves the validity of the statistical mechanic approach and establishes its accuracy....

  12. Quantum phase transitions

    International Nuclear Information System (INIS)

    Sachdev, S.

    1999-01-01

    Phase transitions are normally associated with changes of temperature but a new type of transition - caused by quantum fluctuations near absolute zero - is possible, and can tell us more about the properties of a wide range of systems in condensed-matter physics. Nature abounds with phase transitions. The boiling and freezing of water are everyday examples of phase transitions, as are more exotic processes such as superconductivity and superfluidity. The universe itself is thought to have passed through several phase transitions as the high-temperature plasma formed by the big bang cooled to form the world as we know it today. Phase transitions are traditionally classified as first or second order. In first-order transitions the two phases co-exist at the transition temperature - e.g. ice and water at 0 deg., or water and steam at 100 deg. In second-order transitions the two phases do not co-exist. In the last decade, attention has focused on phase transitions that are qualitatively different from the examples noted above: these are quantum phase transitions and they occur only at the absolute zero of temperature. The transition takes place at the ''quantum critical'' value of some other parameter such as pressure, composition or magnetic field strength. A quantum phase transition takes place when co-operative ordering of the system disappears, but this loss of order is driven solely by the quantum fluctuations demanded by Heisenberg's uncertainty principle. The physical properties of these quantum fluctuations are quite distinct from those of the thermal fluctuations responsible for traditional, finite-temperature phase transitions. In particular, the quantum system is described by a complex-valued wavefunction, and the dynamics of its phase near the quantum critical point requires novel theories that have no analogue in the traditional framework of phase transitions. In this article the author describes the history of quantum phase transitions. (UK)

  13. Design features of the A-cell and transition coils of MFTF-B

    International Nuclear Information System (INIS)

    Tatro, R.E.; Wohlwend, J.W.; Ring, D.S.

    1981-01-01

    The MFTF-B transition coil and A-cell magnet designs use variations of the copper-stabilized NbTi conductor developed by LLNL for the MFTF Yin-Yang magnets. This conductor will be wound on the one inch thick (12.7 mm) stainless steel coil forms using a two-axis winding machine similar to the existing LLNL Yin-Yang winding machine. After winding, covers will be placed over the coil and welded to the coil form to form a helium-tight jacket around the conductor. These jacketed coils are then enclosed in thick structural cases that react the large Lorentz forces on the magnets. The space between the coil jacket and case will be filled by a stainless steel bladder that will be injected with urethane. The injection bladder will provide cooling passages during cooldown as well as transmitting the Lorentz forces between the jacket and the case. The large self-equilibrating lobe-spreading forces on the magnets (29.10 6 lb, 127.0 MN) for the A-cell are reacted primarily through the thick 304 LN case into the external superstructure. The net Lorentz forces and the inertial forces on the magnet are reacted through support systems into the LLNL vacuum vessel structure

  14. Comparison of pelvic phased-array versus endorectal coil magnetic resonance imaging at 3 Tesla for local staging of prostate cancer.

    Science.gov (United States)

    Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun; Yoo, Eun Sang

    2012-05-01

    Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI.

  15. Flow pattern assessment in tubes with wire coil inserts in laminar and transition regimes

    International Nuclear Information System (INIS)

    Garcia, A.; Solano, J.P.; Vicente, P.G.; Viedma, A.

    2007-01-01

    The paper presents an analysis of the flow mechanisms in tubes with wire coils using hydrogen bubble visualization and PIV techniques. Results have been contrasted with experimental data on pressure drop. The relation between the observed flow patterns and the friction factor has been analysed. The experimental analysis that has been carried out allows one to state that at low Reynolds numbers (Re < 400) the flow in tubes with wire coils is basically similar to the flow in smooth tubes. At Reynolds numbers between 500 and 700 and in short pitch wire coils a recirculating flow appears. The insertion of wires coils in a smooth tube accelerates significantly the transition to turbulence. This is produced at Reynolds numbers between 700 and 1000 depending on the wire pitch

  16. Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity

    Energy Technology Data Exchange (ETDEWEB)

    Manjasetty, Babu A.; Halavaty, Andrei S.; Luan, Chi-Hao; Osipiuk, Jerzy; Mulligan, Rory; Kwon, Keehwan; Anderson, Wayne F.; Joachimiak, Andrzej

    2016-04-01

    Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56 Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices a4 and a7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helix a4 is stabilized by the hydrogen bond between Glu67 (helix a4) and Gln130 (helix a7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix a4. This local conformational switch of helix a4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution smallmolecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol.

  17. Fabrication experiments for large helix heat exchangers

    International Nuclear Information System (INIS)

    Burgsmueller, P.

    1978-01-01

    The helical tube has gained increasing attention as a heat transfer element for various kinds of heat exchangers over the last decade. Regardless of reactor type and heat transport medium, nuclear steam generators of the helix type are now in operation, installlation, fabrication or in the project phase. As a rule, projects are based on the extrapolation of existing technologies. In the particlular case of steam generators for HTGR power stations, however, existing experience is with steam generators of up to about 2 m diameter whereas several projects involve units more than twice as large. For this reason it was felt that a fabrication experiment was necessary in order to verify the feasibility of modern steam generator designs. A test rig was erected in the SULZER steam generator shops at Mantes, France, and skilled personnel and conventional production tools were employed in conducting experiments relating to the coiling, handling and threading of large helices. (Auth.)

  18. Conformational plasticity of the coiled-coil domain of BmrR is required for bmr operator binding: the structure of unliganded BmrR.

    Science.gov (United States)

    Kumaraswami, Muthiah; Newberry, Kate J; Brennan, Richard G

    2010-04-30

    The multidrug-binding transcription regulator BmrR from Bacillus subtilis is a MerR family member that binds to a wide array of cationic lipophilic toxins to activate the transcription of the multidrug efflux pump gene bmr. Transcription activation from the sigma(A)-dependent bmr operator requires BmrR to remodel the nonoptimal 19-bp spacer between the -10 promoter element and the -35 promoter element in order to facilitate productive RNA polymerase binding. Despite the availability of several structures of BmrR bound to DNA and drugs, the lack of a BmrR structure in its unliganded or apo (DNA free and drug free) state hinders our full understanding of the structural transitions required for DNA binding and transcription activation. Here, we report the crystal structure of the constitutively active, unliganded BmrR mutant BmrR(E253Q/R275E). Superposition of the ligand-free (apo BmrR(E253Q/R275E)) and DNA-bound BmrR structures reveals that apo BmrR must undergo significant rearrangement in order to assume the DNA-bound conformation, including an outward rotation of minor groove binding wings, an inward movement of helix-turn-helix motifs, and a downward relocation of pliable coiled-coil helices. Computational analysis of the DNA-free and DNA-bound structures reveals a flexible joint that is located at the center of the coiled-coil helices. This region, which is composed of residues 94 through 98, overlaps the helical bulge that is observed only in the apo BmrR structure. This conformational hinge is likely common to other MerR family members with large effector-binding domains, but appears to be missing from the smaller metal-binding MerR family members. Interestingly, the center-to-center distance of the recognition helices of apo BmrR is 34 A and suggests that the conformational change from the apo BmrR structure to the bmr operator-bound BmrR structure is initiated by the binding of this transcription activator to a more B-DNA-like conformation. (c) 2010 Elsevier

  19. Eigenstate Phase Transitions

    Science.gov (United States)

    Zhao, Bo

    Phase transitions are one of the most exciting physical phenomena ever discovered. The understanding of phase transitions has long been of interest. Recently eigenstate phase transitions have been discovered and studied; they are drastically different from traditional thermal phase transitions. In eigenstate phase transitions, a sharp change is exhibited in properties of the many-body eigenstates of the Hamiltonian of a quantum system, but not the thermal equilibrium properties of the same system. In this thesis, we study two different types of eigenstate phase transitions. The first is the eigenstate phase transition within the ferromagnetic phase of an infinite-range spin model. By studying the interplay of the eigenstate thermalization hypothesis and Ising symmetry breaking, we find two eigenstate phase transitions within the ferromagnetic phase: In the lowest-temperature phase the magnetization can macroscopically oscillate by quantum tunneling between up and down. The relaxation of the magnetization is always overdamped in the remainder of the ferromagnetic phase, which is further divided into phases where the system thermally activates itself over the barrier between the up and down states, and where it quantum tunnels. The second is the many-body localization phase transition. The eigenstates on one side of the transition obey the eigenstate thermalization hypothesis; the eigenstates on the other side are many-body localized, and thus thermal equilibrium need not be achieved for an initial state even after evolving for an arbitrary long time. We study this many-body localization phase transition in the strong disorder renormalization group framework. After setting up a set of coarse-graining rules for a general one dimensional chain, we get a simple "toy model'' and obtain an almost purely analytical solution to the infinite-randomness critical fixed point renormalization group equation. We also get an estimate of the correlation length critical exponent nu

  20. Examination of measurement and its method of compensation of the sensitivity distribution using phased array coil for body scan

    CERN Document Server

    Kimura, T; Iizuka, A; Taniguchi, Y; Ishikuro, A; Hongo, T; Inoue, H; Ogura, A

    2003-01-01

    The influence on the quality of images by measurement of a sensitivity distribution and the use of a sensitivity compensation filter was considered using an opposite-type phased array coil and volume-type phased array coil. With the opposite-type phased array coil, the relation between coil interval and filter was investigated for the image intensity correction (IIC) filter, surface coil intensity correction (SCIC) filter (GE), and the Normalize filter (SIEMENS). The SCIC filter and Normalize filter showed distance dependability over the coil interval of signal-to-noise ratio (SNR) and uniformity was observed, and the existence of an optimal coil interval was suggested. Moreover, with the IIC filter, distance dependability over a coil interval was small, and the decrease in contrast with use was remarkable. On the other hand, with the volume-type phased array coil, the overlap of an array element was investigated to determine the influence it had on sensitivity distribution. Although the value stabilized in t...

  1. Voltage harmonic variation in three-phase induction motors with different coil pitches

    International Nuclear Information System (INIS)

    Deshmukh, Ram; Moses, Anthony John; Anayi, Fatih

    2006-01-01

    A pulse-width modulation (PWM) inverter feeding four different chorded three-phase induction motors was tested for low-order odd harmonic voltage component and efficiency at different loads. Total harmonic distortion (THD) due to 3rd, 5th and 9th harmonics was less in a motor with 160 o coil pitch. Particular harmonic order for each coil pitch was suppressed and the efficiency of a 120 o coil pitch motor was increased by 7.5%

  2. Diffusion-weighted MRI of the prostate at 3.0 T: comparison of endorectal coil (ERC) MRI and phased-array coil (PAC) MRI-The impact of SNR on ADC measurement.

    Science.gov (United States)

    Mazaheri, Yousef; Vargas, H Alberto; Nyman, Gregory; Shukla-Dave, Amita; Akin, Oguz; Hricak, Hedvig

    2013-10-01

    To compare ADC values measured from diffusion-weighted MR (DW-MR) images of the prostate obtained with both endorectal and phased-array coils (ERC+PAC) to those from DW-MRI images obtained with an eight-channel torso phased-array coil (PAC) at 3.0 T. The institutional review board issued a waiver of informed consent for this HIPAA-compliant study. Twenty-five patients with biopsy-proven prostate cancer underwent standard 3-T MRI using 2 different coil arrangements (ERC+PAC and PAC only) in the same session. DW-MRI at five b-values (0, 600, 1000, 1200, and 1500 s/mm(2)) were acquired using both coil arrangements. On b=0 images, signal-to-noise ratios (SNRs) were measured as the ratio of the mean signal from PZ and TZ ROIs to the standard deviation from the mean signal in an artifact-free ROI in the rectum. Matching regions-of-interest (ROIs) were identified in the peripheral zone and transition zone on ERC-MRI and PAC-MRI. For each ROI, mean ADC values for all zero and non-zero b-value combinations were computed. Mean SNR with ERC-MRI at PZ (66.33 ± 27.07) and TZ (32.69 ± 12.52) was 9.27 and 5.52 times higher than with PAC-MRI ((7.32 ± 2.30) and (6.13 ± 1.56), respectively) (PERC-MRI (PERC. To address these requirements, clinical MR systems should have image processing capabilities which incorporate the noise distribution. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Chirality-specific lift forces of helix under shear flows: Helix perpendicular to shear plane.

    Science.gov (United States)

    Zhang, Qi-Yi

    2017-02-01

    Chiral objects in shear flow experience a chirality-specific lift force. Shear flows past helices in a low Reynolds number regime were studied using slender-body theory. The chirality-specific lift forces in the vorticity direction experienced by helices are dominated by a set of helix geometry parameters: helix radius, pitch length, number of turns, and helix phase angle. Its analytical formula is given. The chirality-specific forces are the physical reasons for the chiral separation of helices in shear flow. Our results are well supported by the latest experimental observations. © 2016 Wiley Periodicals, Inc.

  4. Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity.

    Science.gov (United States)

    Manjasetty, Babu A; Halavaty, Andrei S; Luan, Chi-Hao; Osipiuk, Jerzy; Mulligan, Rory; Kwon, Keehwan; Anderson, Wayne F; Joachimiak, Andrzej

    2016-04-01

    Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices α4 and α7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helix α4 is stabilized by the hydrogen bond between Glu67 (helix α4) and Gln130 (helix α7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix α4. This local conformational switch of helix α4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution small-molecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol. Copyright © 2016. Published by Elsevier Inc.

  5. Phase transitions

    CERN Document Server

    Sole, Ricard V; Solé, Ricard V; Solé, Ricard V; Sol, Ricard V; Solé, Ricard V

    2011-01-01

    Phase transitions--changes between different states of organization in a complex system--have long helped to explain physics concepts, such as why water freezes into a solid or boils to become a gas. How might phase transitions shed light on important problems in biological and ecological complex systems? Exploring the origins and implications of sudden changes in nature and society, Phase Transitions examines different dynamical behaviors in a broad range of complex systems. Using a compelling set of examples, from gene networks and ant colonies to human language and the degradation of diverse ecosystems, the book illustrates the power of simple models to reveal how phase transitions occur. Introductory chapters provide the critical concepts and the simplest mathematical techniques required to study phase transitions. In a series of example-driven chapters, Ricard Solé shows how such concepts and techniques can be applied to the analysis and prediction of complex system behavior, including the origins of ...

  6. Low pressure-induced secondary structure transitions of regenerated silk fibroin in its wet film studied by time-resolved infrared spectroscopy.

    Science.gov (United States)

    He, Zhipeng; Liu, Zhao; Zhou, Xiaofeng; Huang, He

    2018-06-01

    The secondary structure transitions of regenerated silk fibroin (RSF) under different external perturbations have been studied extensively, except for pressure. In this work, time-resolved infrared spectroscopy with the attenuated total reflectance (ATR) accessory was employed to follow the secondary structure transitions of RSF in its wet film under low pressure. It has been found that pressure alone is favorable only to the formation of β-sheet structure. Under constant pressure there is an optimum amount of D 2 O in the wet film (D 2 O : film = 2:1) so as to provide the optimal condition for the reorganization of the secondary structure and to have the largest formation of β-sheet structure. Under constant amount of D 2 O and constant pressure, the secondary structure transitions of RSF in its wet film can be divided into three stages along with time. In the first stage, random coil, α-helix, and β-turn were quickly transformed into β-sheet. In the second stage, random coil and β-turn were relatively slowly transformed into β-sheet and α-helix, and the content of α-helix was recovered to the value prior to the application of pressure. In the third and final stage, no measurable changes can be found for each secondary structure. This study may be helpful to understand the secondary structure changes of silk fibroin in silkworm's glands under hydrostatic pressure. © 2018 Wiley Periodicals, Inc.

  7. Sensitivity of an eight-element phased array coil in 3 Tesla MR imaging: a basic analysis.

    Science.gov (United States)

    Hiratsuka, Yoshiyasu; Miki, Hitoshi; Kikuchi, Keiichi; Kiriyama, Ikuko; Mochizuki, Teruhito; Takahashi, Shizue; Sadamoto, Kazuhiko

    2007-01-01

    To evaluate the performance advantages of an 8-element phased array head coil (8 ch coil) over a conventional quadrature-type birdcage head coil (QD coil) with regard to the signal-to-noise ratio (SNR) and image uniformity in 3 Tesla magnetic resonance (MR) imaging. We scanned a phantom filled with silicon oil using an 8 ch coil and a QD coil in a 3T MR imaging system and compared the SNR and image uniformity obtained from T(1)-weighted spin echo (SE) images and T(2)-weighted fast SE images between the 2 coils. We also visually evaluated images from 4 healthy volunteers. The SNR with the 8 ch coil was approximately twice that with the QD coil in the region of interest (ROI), which was set as 75% of the area in the center of the phantom images. With regard to the spatial variation of sensitivity, the SNR with the 8 ch coil was lower at the center of the images than at the periphery, whereas the SNR with the QD coil exhibited an inverse pattern. At the center of the images with the 8 ch coil, the SNR was somewhat lower, and that distribution was relatively flat compared to that in the periphery. Image uniformity varied less with the 8 ch coil than with the QD coil on both imaging sequences. The 8 ch phased array coil was useful for obtaining high quality 3T images because of its higher SNR and improved image uniformity than those obtained with conventional quadrature-type birdcage head coil.

  8. The Helix Nebula Viewed in HCO+: Large-scale Mapping of the J = 1 → 0 Transition

    Science.gov (United States)

    Zeigler, N. R.; Zack, L. N.; Woolf, N. J.; Ziurys, L. M.

    2013-11-01

    The J = 1 → 0 transition of HCO+ at 89 GHz has been mapped across the Helix Nebula (NGC 7293) with 70'' spatial resolution (1.68 km s-1 velocity resolution) using the Arizona Radio Observatory 12 m telescope. This work is the first large-scale mapping project of a dense gas tracer (n(H2) ~ 105 cm-3) in old planetary nebulae. Observations of over 200 positions encompassing the classical optical image were conducted with a 3σ noise level of ~20 mK. HCO+ was detected at most positions, often exhibiting multiple velocity components indicative of complex kinematic structures in dense gas. The HCO+ spectra suggest that the Helix is composed of a bipolar, barrel-like structure with red- and blue-shifted halves, symmetric with respect to the central star and oriented ~10° east from the line of sight. A second bipolar, higher velocity outflow exists as well, situated along the direction of the Helix "plumes." The column density of HCO+ across the Helix is N tot ~ 1.5 × 1010-5.0 × 1011 cm-2, with an average value N ave ~ 1 × 1011 cm-2, corresponding to an abundance, relative to H2, of f ~ 1.4 × 10-8. This value is similar to that observed in young PN, and contradicts chemical models, which predict that the abundance of HCO+ decreases with nebular age. This study indicates that polyatomic molecules readily survive the ultraviolet field of the central white dwarf, and can be useful in tracing nebular morphology in the very late stages of stellar evolution.

  9. Cosmological phase transitions

    International Nuclear Information System (INIS)

    Kolb, E.W.

    1993-10-01

    If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions

  10. Structural and phase transitions of one and two polymer mushrooms in poor solvent

    Science.gov (United States)

    Yang, Delian; Wang, Qiang

    2014-05-01

    Using the recently proposed fast lattice Monte Carlo (FLMC) simulations and the corresponding lattice self-consistent field (LSCF) calculations based on the same model system, where multiple occupancy of lattice sites is allowed [Q. Wang, Soft Matter 5, 4564 (2009); Q. Wang, Soft Matter 5, 6206 (2010)], we studied the coil-globule transition (CGT) of one-mushroom systems and the fused-separated transition (FST) of two-mushroom systems, where a polymer mushroom is formed by a group of n homopolymer chains each of N segments end-grafted at the same point onto a flat substrate and immersed in a poor solvent. With our soft potential that allows complete particle overlapping, LSCF theory neglecting the system fluctuations/correlations becomes exact in the limit of n → ∞, and FLMC results approach LSCF predictions with increasing n. Using LSCF calculations, we systematically constructed the phase diagrams of one- and two-mushroom systems. A second-order symmetric-asymmetric transition (SAT) was found in the globule state of one-mushroom systems, where the rotational symmetry around the substrate normal passing through the grafting point is broken in each individual configuration but preserved by the degeneracy of different orientations of these asymmetric configurations. Three different states were also found in two-mushroom systems: separated coils, separated globules, and fused globule. We further studied the coupling between FST in two-mushroom systems and CGT and SAT of each mushroom. Finally, direct comparisons between our simulation and theoretical results, without any parameter-fitting, unambiguously and quantitatively revealed the fluctuation/correlation effects on these phase transitions.

  11. Communication: A coil-stretch transition in planar elongational flow of an entangled polymeric melt

    Science.gov (United States)

    Nafar Sefiddashti, Mohammad H.; Edwards, Brian J.; Khomami, Bamin

    2018-04-01

    Virtual experimentation of atomistic entangled polyethylene melts undergoing planar elongational flow revealed an amazingly detailed depiction of individual macromolecular dynamics and the resulting effect on bistable configurational states. A clear coil-stretch transition was evident, in much the same form as first envisioned by de Gennes for dilute solutions of high polymers, resulting in an associated hysteresis in the configurational flow profile over the range of strain rates predicted by theory. Simulations conducted at steady state revealed bimodal distribution functions, in which equilibrium configurational states were simultaneously populated by relatively coiled and stretched molecules which could transition from one conformational mode to the other over a relatively long time scale at critical values of strain rates. The implication of such behavior points to a double-well conformational free energy potential with an activation barrier between the two configurational minima.

  12. A look at the effect of sequence complexity on pressure destabilisation of DNA polymers.

    Science.gov (United States)

    Rayan, Gamal; Macgregor, Robert B

    2015-04-01

    Our previous studies on the helix-coil transition of double-stranded DNA polymers have demonstrated that molar volume change (ΔV) accompanying the thermally-induced transition can be positive or negative depending on the experimental conditions, that the pressure-induced transition is more cooperative than the heat-induced transition [Rayan and Macgregor, J Phys Chem B2005, 109, 15558-15565], and that the pressure-induced transition does not occur in the absence of water [Rayan and Macgregor, Biophys Chem, 2009, 144, 62-66]. Additionally, we have shown that ΔV values obtained by pressure-dependent techniques differ from those obtained by ambient pressure techniques such as PPC [Rayan et al. J Phys Chem B2009, 113, 1738-1742] thus shedding light on the effects of pressure on DNA polymers. Herein, we examine the effect of sequence complexity, and hence cooperativity on pressure destabilisation of DNA polymers. Working with Clostridium perfringes DNA under conditions such that the estimated ΔV of the helix-coil transition corresponds to -1.78 mL/mol (base pair) at atmospheric pressure, we do not observe the pressure-induced helix-coil transition of this DNA polymer, whereas synthetic copolymers poly[d(A-T)] and poly[d(I-C)] undergo cooperative pressure-induced transitions at similar ΔV values. We hypothesise that the reason for the lack of pressure-induced helix-coil transition of C. perfringens DNA under these experimental conditions lies in its sequence complexity. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Nuclear Magnetic Resonance Structures of GCN4p Are Largely Conserved When Ion Pairs Are Disrupted at Acidic pH but Show a Relaxation of the Coiled Coil Superhelix.

    Science.gov (United States)

    Kaplan, Anne R; Brady, Megan R; Maciejewski, Mark W; Kammerer, Richard A; Alexandrescu, Andrei T

    2017-03-21

    To understand the roles ion pairs play in stabilizing coiled coils, we determined nuclear magnetic resonance structures of GCN4p at three pH values. At pH 6.6, all acidic residues are fully charged; at pH 4.4, they are half-charged, and at pH 1.5, they are protonated and uncharged. The α-helix monomer and coiled coil structures of GCN4p are largely conserved, except for a loosening of the coiled coil quaternary structure with a decrease in pH. Differences going from neutral to acidic pH include (i) an unwinding of the coiled coil superhelix caused by the loss of interchain ion pair contacts, (ii) a small increase in the separation of the monomers in the dimer, (iii) a loosening of the knobs-into-holes packing motifs, and (iv) an increased separation between oppositely charged residues that participate in ion pairs at neutral pH. Chemical shifts (HN, N, C', Cα, and Cβ) of GCN4p display a seven-residue periodicity that is consistent with α-helical structure and is invariant with pH. By contrast, periodicity in hydrogen exchange rates at neutral pH is lost at acidic pH as the exchange mechanism moves into the EX1 regime. On the basis of 1 H- 15 N nuclear Overhauser effect relaxation measurements, the α-helix monomers experience only small increases in picosecond to nanosecond backbone dynamics at acidic pH. By contrast, 13 C rotating frame T 1 relaxation (T 1ρ ) data evince an increase in picosecond to nanosecond side-chain dynamics at lower pH, particularly for residues that stabilize the coiled coil dimerization interface through ion pairs. The results on the structure and dynamics of GCNp4 over a range of pH values help rationalize why a single structure at neutral pH poorly predicts the pH dependence of the unfolding stability of the coiled coil.

  14. Cosmological phase transitions

    International Nuclear Information System (INIS)

    Kolb, E.W.

    1987-01-01

    If the universe stated from conditions of high temperature and density, there should have been a series of phase transitions associated with spontaneous symmetry breaking. The cosmological phase transitions could have observable consequences in the present Universe. Some of the consequences including the formation of topological defects and cosmological inflation are reviewed here. One of the most important tools in building particle physics models is the use of spontaneous symmetry breaking (SSB). The proposal that there are underlying symmetries of nature that are not manifest in the vacuum is a crucial link in the unification of forces. Of particular interest for cosmology is the expectation that are the high temperatures of the big bang symmetries broken today will be restored, and that there are phase transitions to the broken state. The possibility that topological defects will be produced in the transition is the subject of this section. The possibility that the Universe will undergo inflation in a phase transition will be the subject of the next section. Before discussing the creation of topological defects in the phase transition, some general aspects of high-temperature restoration of symmetry and the development of the phase transition will be reviewed. 29 references, 1 figure, 1 table

  15. Unraveling double stranded alpha-helical coiled coils: an x-ray diffraction study on hard alpha-keratin fibers.

    Science.gov (United States)

    Kreplak, L; Doucet, J; Briki, F

    2001-04-15

    Transformations of proteins secondary and tertiary structures are generally studied in globular proteins in solution. In fibrous proteins, such as hard alpha-keratin, that contain long and well-defined double stranded alpha-helical coiled coil domains, such study can be directly done on the native fibrous tissue. In order to assess the structural behavior of the coiled coil domains under an axial mechanical stress, wide angle x-ray scattering and small angle x-ray scattering experiments have been carried out on stretched horse hair fibers at relative humidity around 30%. Our observations of the three major axial spacings as a function of the applied macroscopic strain have shown two rates. Up to 4% macroscopic strain the coiled coils were slightly distorted but retained their overall conformation. Above 4% the proportion of coiled coil domains progressively decreased. The main and new result of our study is the observation of the transition from alpha-helical coiled coils to disordered chains instead of the alpha-helical coiled coil to beta-sheet transition that occurs in wet fibers.

  16. Recognition and Binding of a Helix-Loop-Helix Peptide to Carbonic Anhydrase Occurs via Partly Folded Intermediate Structures

    Science.gov (United States)

    Lignell, Martin; Becker, Hans-Christian

    2010-01-01

    Abstract We have studied the association of a helix-loop-helix peptide scaffold carrying a benzenesulfonamide ligand to carbonic anhydrase using steady-state and time-resolved fluorescence spectroscopy. The helix-loop-helix peptide, developed for biosensing applications, is labeled with the fluorescent probe dansyl, which serves as a polarity-sensitive reporter of the binding event. Using maximum entropy analysis of the fluorescence lifetime of dansyl at 1:1 stoichiometry reveals three characteristic fluorescence lifetime groups, interpreted as differently interacting peptide/protein structures. We characterize these peptide/protein complexes as mostly bound but unfolded, bound and partly folded, and strongly bound and folded. Furthermore, analysis of the fluorescence anisotropy decay resulted in three different dansyl rotational correlation times, namely 0.18, 1.2, and 23 ns. Using the amplitudes of these times, we can correlate the lifetime groups with the corresponding fluorescence anisotropy component. The 23-ns rotational correlation time, which appears with the same amplitude as a 17-ns fluorescence lifetime, shows that the dansyl fluorophore follows the rotational diffusion of carbonic anhydrase when it is a part of the folded peptide/protein complex. A partly folded and partly hydrated interfacial structure is manifested in an 8-ns dansyl fluorescence lifetime and a 1.2-ns rotational correlation time. This structure, we believe, is similar to a molten-globule-like interfacial structure, which allows segmental movement and has a higher degree of solvent exposure of dansyl. Indirect excitation of dansyl on the helix-loop-helix peptide through Förster energy transfer from one or several tryptophans in the carbonic anhydrase shows that the helix-loop-helix scaffold binds to a tryptophan-rich domain of the carbonic anhydrase. We conclude that binding of the peptide to carbonic anhydrase involves a transition from a disordered to an ordered structure of the

  17. Mass and heat transfer at the outer surface of helical coils under single and two phase flow

    International Nuclear Information System (INIS)

    Abdel-Aziz, M.H.; Nirdosh, I.; Sedahmed, G.H.

    2016-01-01

    Highlights: • The work aims to develop reactors which need rapid temperature control. • Mass and heat transfer at the outer surface of helical coils was studied experimentally. • The experiments were conducted under gas sparing, single and two phase flow. • Variables were helical tube diameter, physical properties, and gas and liquid velocity. • Results verification in terms of natural convection and surface renewal mechanism was explained. - Abstract: The mass transfer behavior of the outer surface of vertical helical coil was studied by the electrochemical technique under single phase flow, gas sparging and two phase flow. Variables studied were helical tube diameter, physical properties of the solution, solution velocity and superficial gas velocity. The mass transfer data were correlated by dimensionless equations. Mass transfer enhancement ratio in case of two phase flow ranged from 1.1 to 4.9 compared to single phase flow. Implication of the results for the design and operation of helical coil reactors used to conduct L–S exothermic diffusion controlled reactions which need rapid temperature control were outlined. In this case the inner coil surface will act as a cooler while the outer surface will act a reaction surface. Immobilized enzyme catalyzed biochemical reactions where heat sensitive materials may be involved represent an example for the reactions which can employ the helical coil reactor. Also the importance of the results in the design of and operation of diffusion controlled membrane processes which employ helical coil membrane was noted. In view of the analogy between heat and mass transfer the possibility of using the results in the design and operation of helical coil heat exchangers was highlighted.

  18. Kevlar: Transitioning Helix for Research to Practice

    Science.gov (United States)

    2016-03-01

    x86 binaries, although it can be targeted to any platform that is targeted by IDA Pro. Currently, IDA Pro targets more than 40 processors and...effects its own transformations. Helix/Kevlar then automatically generates SPRI rules for any program variants by essentially performing a “ smart diff...execute permission on the pages of memory it uses, leaving only execute (but not write) permission on the code cache. Strata also watches for attempts

  19. Comparison of Pelvic Phased-Array versus Endorectal Coil Magnetic Resonance Imaging at 3 Tesla for Local Staging of Prostate Cancer

    OpenAIRE

    Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun; Yoo, Eun Sang

    2012-01-01

    Purpose Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Materials and Methods Between January 2005 and May 2010, 151 patients underwent radi...

  20. Diffusion-weighted MRI of the prostate at 3.0 T: Comparison of endorectal coil (ERC) MRI and phased-array coil (PAC) MRI—The impact of SNR on ADC measurement

    International Nuclear Information System (INIS)

    Mazaheri, Yousef; Vargas, H. Alberto; Nyman, Gregory; Shukla-Dave, Amita; Akin, Oguz; Hricak, Hedvig

    2013-01-01

    Purpose: To compare ADC values measured from diffusion-weighted MR (DW-MR) images of the prostate obtained with both endorectal and phased-array coils (ERC + PAC) to those from DW-MRI images obtained with an eight-channel torso phased-array coil (PAC) at 3.0 T. Methods: The institutional review board issued a waiver of informed consent for this HIPAA-compliant study. Twenty-five patients with biopsy-proven prostate cancer underwent standard 3-T MRI using 2 different coil arrangements (ERC + PAC and PAC only) in the same session. DW-MRI at five b-values (0, 600, 1000, 1200, and 1500 s/mm 2 ) were acquired using both coil arrangements. On b = 0 images, signal-to-noise ratios (SNRs) were measured as the ratio of the mean signal from PZ and TZ ROIs to the standard deviation from the mean signal in an artifact-free ROI in the rectum. Matching regions-of-interest (ROIs) were identified in the peripheral zone and transition zone on ERC-MRI and PAC-MRI. For each ROI, mean ADC values for all zero and non-zero b-value combinations were computed. Results: Mean SNR with ERC-MRI at PZ (66.33 ± 27.07) and TZ (32.69 ± 12.52) was 9.27 and 5.52 times higher than with PAC-MRI ((7.32 ± 2.30) and (6.13 ± 1.56), respectively) (P < 0.0001 for both). ADCs from DW-MR images obtained with all b-values in the PZ and TZ were significantly lower with PAC-MRI than with ERC-MRI (P < 0.001 for all). Conclusion: Lower SNR of DW-MR images of the prostate obtained with a PAC can significantly decrease ADC values at higher b-values compared to similar measurements obtained using the ERC. To address these requirements, clinical MR systems should have image processing capabilities which incorporate the noise distribution

  1. Electroweak phase transitions

    International Nuclear Information System (INIS)

    Anderson, G.W.

    1991-01-01

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, left-angle φ right-angle T is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of left-angle φ right-angle T . In very minimal extensions of the standard model it is quite easy to increase left-angle φ right-angle T so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value left-angle φ right-angle = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state left-angle φ right-angle = 246 GeV unstable. The requirement that the state left-angle φ right-angle = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field

  2. Martensitic phase transitions

    International Nuclear Information System (INIS)

    Petry, W.; Neuhaus, J.

    1996-01-01

    Many elements transform from a high temperature bcc phase to a more dense packed temperature phase. The great majority of these transitions are of 1st order, displacive and reconstructive. The lattice potentials which govern these martensitic transitions can be probed by inelastic neutron scattering, thereby answering fundamental questions like : Will the transition be announced by dynamical or static fluctuations? What are the trajectories for the displacements needed for the transformation? Does the vibrational entropy stabilize the high temperature phase? Are the unusual transport properties in these materials related to their ability to transform? (author) 17 figs., 1 tab., 46 refs

  3. Martensitic phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Petry, W; Neuhaus, J [Techn. Universitaet Muenchen, Physik Department E13, Munich (Germany)

    1996-11-01

    Many elements transform from a high temperature bcc phase to a more dense packed temperature phase. The great majority of these transitions are of 1st order, displacive and reconstructive. The lattice potentials which govern these martensitic transitions can be probed by inelastic neutron scattering, thereby answering fundamental questions like : Will the transition be announced by dynamical or static fluctuations? What are the trajectories for the displacements needed for the transformation? Does the vibrational entropy stabilize the high temperature phase? Are the unusual transport properties in these materials related to their ability to transform? (author) 17 figs., 1 tab., 46 refs.

  4. Phase transitions in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, L.G.; Phair, L.; Wozniak, G.J.

    1997-08-01

    A critical overview of the low energy phase transitions in nuclei is presented with particular attention to the 2nd (1st) order pairing phase transitions, and to the 1st order liquid-vapor phase transition. The role of fluctuations in washing out these transitions is discussed and illustrated with examples. A robust indicator of phase coexistence in multifragmentation is presented.

  5. Phase transitions in nuclear physics

    International Nuclear Information System (INIS)

    Moretto, L.G.; Phair, L.; Wozniak, G.J.

    1997-08-01

    A critical overview of the low energy phase transitions in nuclei is presented with particular attention to the 2nd (1st) order pairing phase transitions, and to the 1st order liquid-vapor phase transition. The role of fluctuations in washing out these transitions is discussed and illustrated with examples. A robust indicator of phase coexistence in multifragmentation is presented

  6. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments.

    Science.gov (United States)

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).

  7. Thermodynamics of phase transitions

    International Nuclear Information System (INIS)

    Cofta, H.

    1972-01-01

    The phenomenology of the phase transitions has been considered. The definitions of thermodynamic functions and parameters, as well as those of the phase transitions, are given and some of the relations between those quantities are discussed. The phase transitions classification proposed by Ehrenfest has been described. The most important features of phase transitions are discussed using the selected physical examples including the critical behaviour of ferromagnetic materials at the Curie temperature and antiferromagnetic materials at the Neel temperature. Some aspects of the Ehrenfest's equations, that have been derived, for the interfacial lines and surfaces are considered as well as the role the notion of interfaces. (S.B.)

  8. Magnetic field alignment of coil-coil diblock copolymers and blends via intrinsic chain anisotropy

    Science.gov (United States)

    Rokhlenko, Yekaterina; Majewski, Pawel; Larson, Steven; Yager, Kevin; Gopalan, Padma; Avgeropoulos, Apostolos; Chan, Edwin; Osuji, Chinedum

    Magnetic fields can control alignment of self-assembled soft materials such as block copolymers provided there is a suitably large magnetic susceptibility anisotropy present in the system. Recent results have highlighted the existence of a non-trivial intrinsic anisotropy in coil-coil diblock copolymers, specifically in lamellar-forming PS-b-P4VP, which enables alignment at field strengths of a few tesla in systems lacking mesogenic components. Alignment is predicated on correlation in the orientation of end-end vectors implied by the localization of block junctions at the microdomain interface and is observed on cooling across the order-disorder transition in the presence of the field. For appropriate combinations of field strength and grain size, we can leverage intrinsic chain anisotropy to magnetically direct self-assembly of many non-mesogenic systems, including other coil-coil BCPs like PS-b-PDMS and PS-b-PMMA, blends of BCPs of disparate morphologies and MWs, and blends of BCPs with homopolymers. This is noteworthy as blends of PS-b-P4VP with PEO provide a route to form functional materials such as nanoporous films by dissolution of PEO, or aligned ion conduction materials. We survey these various systems using TEM and in-situ X-ray scattering to study the phase behavior and temperature-, time- and field- dependent dynamics of alignment.

  9. Phase transitions modern applications

    CERN Document Server

    Gitterman, Moshe

    2014-01-01

    This book provides a comprehensive review of the theory of phase transitions and its modern applications, based on the five pillars of the modern theory of phase transitions i.e. the Ising model, mean field, scaling, renormalization group and universality. This expanded second edition includes, along with a description of vortices and high temperature superconductivity, a discussion of phase transitions in chemical reaction and moving systems. The book covers a close connection between phase transitions and small world phenomena as well as scale-free systems such as the stock market and the Internet. Readership: Scientists working in different fields of physics, chemistry, biology and economics as well as teaching material for undergraduate and graduate courses.

  10. Investigation of light-induced conformation changes in spiropyran-modified succinylated poly(L-lysine).

    Science.gov (United States)

    Cooper, T M; Stone, M O; Natarajan, L V; Crane, R L

    1995-08-01

    To determine the maximum range of coupling between side-chain photochromism and polypeptide conformation change, we modified the carboxylate side chains of succinylated poly(L-lysine) with a spiropyran to form polypeptide I. The extent of modification was determined to be 35.5%. The spacer group length between the polypeptide alpha-carbon and the dye was 12 atoms, providing minimum polypeptide-dye interaction. Conformation changes were monitored by circular dichroism as a function of light adaptation and solvent composition (hexafluoroisopropanol [HFIP] vs trifluoroethanol [TFE]). Under all solvent compositions, the dark-adapted dye was in the merocyanine form. Light adaptation by visible light converted the dye to the spiropyran form. When dissolved in TFE, I adopted a helical conformation insensitive to light adaptation. With increasing percentage HFIP, a solvent-induced helix-to-coil transition was observed around 80% (vol/vol) HFIP. At 100% HFIP, both light- and dark-adapted forms of I were in the coil state. Near the midpoint of the solvent-induced helix-to-coil transition, light adaptation caused conformation changes. Applying helix-to-coil transition theory, we measured a statistically significant difference in coil segment-HFIP binding constant for light- vs dark-adapted solutions (6.38 +/- 0.03 M-1 vs 6.56 +/- 0.03 M-1), but not for the nucleation parameter sigma (1.2 +/- 0.4 10(-3) vs 1.3 +/- 0.3 x 10(-3). The small binding constant difference translated to a light-induced binding energy difference of 17 cal/mol/monomer. Near the midpoint of the helix-to-coil transition, collective interactions between monomer units made possible the translation of a small energy difference (less than RT) into large macromolecular conformation changes.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. The local phase transitions of the solvent in the neighborhood of a solvophobic polymer at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Budkov, Yu. A., E-mail: urabudkov@rambler.ru [G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); National Research University Higher School of Economics, Moscow (Russian Federation); Department of Chemistry, Lomonosov Moscow State University, Moscow (Russian Federation); Vyalov, I. I. [Istituto Italiano di Tecnologia, via Morego 30, Genova 16163 (Italy); Kolesnikov, A. L. [Ivanovo State University, Ivanovo (Russian Federation); Institut für Nichtklassische Chemie e.V., Universitat Leipzig, Leipzig (Germany); Georgi, N., E-mail: bancocker@mail.ru [Max Planck Institute for Mathematics in the Sciences, Leipzig (Germany); Chuev, G. N. [Max Planck Institute for the Physics of Complex Systems, Dresden (Germany); Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, Moscow Region (Russian Federation); Kiselev, M. G. [G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); Department of Chemistry, Lomonosov Moscow State University, Moscow (Russian Federation)

    2014-11-28

    We investigate local phase transitions of the solvent in the neighborhood of a solvophobic polymer chain which is induced by a change of the polymer-solvent repulsion and the solvent pressure in the bulk solution. We describe the polymer in solution by the Edwards model, where the conditional partition function of the polymer chain at a fixed radius of gyration is described by a mean-field theory. The contributions of the polymer-solvent and the solvent-solvent interactions to the total free energy are described within the mean-field approximation. We obtain the total free energy of the solution as a function of the radius of gyration and the average solvent number density within the gyration volume. The resulting system of coupled equations is solved varying the polymer-solvent repulsion strength at high solvent pressure in the bulk. We show that the coil-globule (globule-coil) transition occurs accompanied by a local solvent evaporation (condensation) within the gyration volume.

  12. Phase transitions in surfactant monolayers

    International Nuclear Information System (INIS)

    Casson, B.D.

    1998-01-01

    Two-dimensional phase transitions have been studied in surfactant monolayers at the air/water interface by sum-frequency spectroscopy and ellipsometry. In equilibrium monolayers of medium-chain alcohols C n H 2n+1 OH (n = 9-14) a transition from a two-dimensional crystalline phase to a liquid was observed at temperatures above the bulk melting point. The small population of gauche defects in the solid phase increased only slightly at the phase transition. A model of the hydrocarbon chains as freely rotating rigid rods allowed the area per molecule and chain tilt in the liquid phase to be determined. The area per molecule, chain tilt and density of the liquid phase all increased with increasing chain length, but for each chain length the density was higher than in a bulk liquid hydrocarbon. In a monolayer of decanol adsorbed at the air/water interface a transition from a two-dimensional liquid to a gas was observed. A clear discontinuity in the coefficient of ellipticity as a function of temperature showed that the transition is first-order. This result suggests that liquid-gas phase transitions in surfactant monolayers may be more widespread than once thought. A solid-liquid phase transition has also been studied in mixed monolayers of dodecanol with an anionic surfactant (sodium dodecyl sulphate) and with a homologous series of cationic surfactants (alkyltrimethylammonium bromides: C n TABs, n = 12, 14, 16). The composition and structure of the mixed monolayers was studied above and below the phase transition. At low temperatures the mixed monolayers were as densely packed as a monolayer of pure dodecanol in its solid phase. At a fixed temperature the monolayers under-went a first-order phase transition to form a phase that was less dense and more conformationally disordered. The proportion of ionic surfactant in the mixed monolayer was greatest in the high temperature phase. As the chain length of the C n TAB increased the number of conformational defects

  13. Superconducting coil protection

    International Nuclear Information System (INIS)

    Woods, E.L.

    1975-01-01

    The protection system is based on a two-phase construction program. Phase I is the development of a reliable hardwired relay control system with a digital loop utilizing firmware and a microprocessor controller. Phase II is an expansion of the digital loop to include many heretofore unmonitored coil variables. These new monitored variables will be utilized to establish early quench detection and to formulate confirmation techniques of the quench detection mechanism. Established quench detection methods are discussed and a new approach to quench detection is presented. The new circuit is insensitive to external pulsed magnetic fields and the associated induced voltages. Reliability aspects of the coil protection system are discussed with respect to shutdowns of superconducting coil systems. Redundance and digital system methods are presented as related topics

  14. On the molecular origin of the cooperative coil-to-globule transition of poly(N-isopropylacrylamide) in water.

    Science.gov (United States)

    Tavagnacco, L; Zaccarelli, E; Chiessi, E

    2018-04-18

    By means of atomistic molecular dynamics simulations we investigate the behaviour of poly(N-isopropylacrylamide), PNIPAM, in water at temperatures below and above the lower critical solution temperature (LCST), including the undercooled regime. The transition between water soluble and insoluble states at the LCST is described as a cooperative process involving an intramolecular coil-to-globule transition preceding the aggregation of chains and the polymer precipitation. In this work we investigate the molecular origin of such cooperativity and the evolution of the hydration pattern in the undercooled polymer solution. The solution behaviour of an atactic 30-mer at high dilution is studied in the temperature interval from 243 to 323 K with a favourable comparison to available experimental data. In the water soluble states of PNIPAM we detect a correlation between polymer segmental dynamics and diffusion motion of bound water, occurring with the same activation energy. Simulation results show that below the coil-to-globule transition temperature PNIPAM is surrounded by a network of hydrogen bonded water molecules and that the cooperativity arises from the structuring of water clusters in proximity to hydrophobic groups. Differently, the perturbation of the hydrogen bond pattern involving water and amide groups occurs above the transition temperature. Altogether these findings reveal that even above the LCST PNIPAM remains largely hydrated and that the coil-to-globule transition is related with a significant rearrangement of the solvent in the proximity of the surface of the polymer. The comparison between the hydrogen bonding of water in the surrounding of PNIPAM isopropyl groups and in the bulk displays a decreased structuring of solvent at the hydrophobic polymer-water interface across the transition temperature, as expected because of the topological extension along the chain of such interface. No evidence of an upper critical solution temperature behaviour

  15. Li-ion batteries: Phase transition

    International Nuclear Information System (INIS)

    Hou Peiyu; Zhang Yantao; Zhang Lianqi; Chu Geng; Gao Jian

    2016-01-01

    Progress in the research on phase transitions during Li + extraction/insertion processes in typical battery materials is summarized as examples to illustrate the significance of understanding phase transition phenomena in Li-ion batteries. Physical phenomena such as phase transitions (and resultant phase diagrams) are often observed in Li-ion battery research and already play an important role in promoting Li-ion battery technology. For example, the phase transitions during Li + insertion/extraction are highly relevant to the thermodynamics and kinetics of Li-ion batteries, and even physical characteristics such as specific energy, power density, volume variation, and safety-related properties. (topical review)

  16. Symmetry and Phase Transitions in Nuclei

    International Nuclear Information System (INIS)

    Iachello, F.

    2009-01-01

    Phase transitions in nuclei have received considerable attention in recent years, especially after the discovery that, contrary to expectations, systems at the critical point of a phase transition display a simple structure. In this talk, quantum phase transitions (QPT), i.e. phase transitions that occur as a function of a coupling constant that appears in the quantum Hamiltonian, H, describing the system, will be reviewed and experimental evidence for their occurrence in nuclei will be presented. The phase transitions discussed in the talk will be shape phase transitions. Different shapes have different symmetries, classified by the dynamic symmetries of the Interacting Boson Model, U(5), SU(3) and SO(6). Very recently, the concept of Quantum Phase Transitions has been extended to Excited State Quantum Phase Transitions (ESQPT). This extension will be discussed and some evidence for incipient ESQPT in nuclei will be presented. Systems at the critical point of a phase transition are called 'critical systems'. Approximate analytic formulas for energy spectra and other properties of 'critical nuclei', in particular for nuclei at the critical point of the second order U(5)-SO(6) transition, called E(5), and along the line of first order U(5)-SU(3) transitions, called X(5), will be presented. Experimental evidence for 'critical nuclei' will be also shown. Finally, the microscopic derivation of shape phase transitions in nuclei within the framework of density functional methods will be briefly discussed.(author)

  17. Non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte; Lübeck, Sven

    2009-01-01

    This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.

  18. Teaching helix and problems connected with helix using GeoGebra

    Science.gov (United States)

    Bímová, Daniela

    2017-12-01

    The contribution presents the dynamic applets created in GeoGebra that show the origin and main properties of a helix and it also presents some constructive problems connected with the helix. There are created the step by step algorithms of some constructions in the chosen applets. Three-dimensional applets include illustrative helix samples and spatial animations that help students better see problems concerning the helix spatially. There is mentioned the website in the contribution on which there is situated GeoGebra book dedicated to the topic "Helix" and containing the mentioned applets. The created applets and materials of the GeoGebra book "Helix" help in teaching and studying the course Constructive Geometry determined for the students of the Faculty of Mechanical Engineering of the Technical University of Liberec.

  19. Phase transition in finite systems

    International Nuclear Information System (INIS)

    Chomaz, Ph.; Duflot, V.; Duflot, V.; Gulminelli, F.

    2000-01-01

    In this paper we present a review of selected aspects of Phase transitions in finite systems applied in particular to the liquid-gas phase transition in nuclei. We show that the problem of the non existence of boundary conditions can be solved by introducing a statistical ensemble with an averaged constrained volume. In such an ensemble the microcanonical heat capacity becomes negative in the transition region. We show that the caloric curve explicitly depends on the considered transformation of the volume with the excitation energy and so does not bear direct informations on the characteristics of the phase transition. Conversely, partial energy fluctuations are demonstrated to be a direct measure of the equation of state. Since the heat capacity has a negative branch in the phase transition region, the presence of abnormally large kinetic energy fluctuations is a signal of the liquid gas phase transition. (author)

  20. Characterization of polycyclic aromatic hydrocarbon emissions in the particulate and gas phase from smoldering mosquito coils containing various atomic hydrogen/carbon ratios

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tzu-Ting, E-mail: d89844001@ntu.edu.tw [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu 30015, Taiwan (China); Lin, Shaw-Tao [Department of Applied Chemistry, Providence University, No. 200 Chung-Chi Rd., Salu Dist., Taichung City 43301, Taiwan (China); Lin, Tser-Sheng [Department of Safety, Health, and Environmental Engineering, National United University, 2 Lien Da, Maioli 360, Taiwan (China); Chung, Hua-Yi [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu 30015, Taiwan (China)

    2015-02-15

    The polycyclic aromatic hydrocarbon emissions in particulate and gas phases generated from smoldering mosquito coils containing various atomic H/C ratios were examined. Five types of mosquito coils were burned in a test chamber with a total airflow rate of 8.0 L/min at a constant relative humidity and temperature. The concentrations of individual PAHs were determined using the GC/MS technique. Among the used mosquito coils, the atomic H/C ratio ranged from 1.23 to 1.57, yielding total mass, gaseous, and particulate PAH emission factors of 28.17–78.72 mg/g, 26,139.80–35,932.98 and 5735.22–13,431.51 ng/g, respectively. The various partitions of PAHs in the gaseous and particulate phases were in the ranges, 70.26–83.70% and 16.30–29.74% for the utilized mosquito coils. The carcinogenic potency of PAH emissions in the particulate phase (203.82–797.76 ng/g) was approximately 6.92–25.08 times higher than that of the gaseous phase (26.27–36.07 ng/g). Based on the analyses of PAH emissions, mosquito coils containing the lowest H/C ratio, a low oxygen level, and additional additives (i.e., CaCO{sub 3}) are recommended for minimizing the production of total PAH emission factors and carcinogenic potency. - Highlights: • PAHs emissions are influenced by mosquito coils containing various atomic H/C ratios. • The PAHs generated by burning mosquito coils mainly occur in the gaseous phase. • Total TEQ emission factors of PAHs mainly consisted of the particulate phase (> 87%). • The BaP and BaA accounted for 71.13–77.28% of the total TEQ emission factors. • Special PAH ratios were regarded as characteristic ratios for burning mosquito coil.

  1. PARTITION EFFICIENCY OF NEWLY DESIGNED LOCULAR MULTILAYER COIL FOR COUNTERCURRENT CHROMATOGRAPHIC SEPARATION OF PROTEINS USING SMALL-SCALE CROSS-AXIS COIL PLANET CENTRIFUGE WITH AQUEOUS-AQUEOUS POLYMER PHASE SYSTEMS.

    Science.gov (United States)

    Shinomiya, Kazufusa; Ito, Yoichiro

    2009-01-01

    Countercurrent chromatographic performance of the locular multilayer coil separation column newly designed in our laboratory was evaluated in terms of theoretical plate number, peak resolution and retention of the stationary phase in protein separation with an aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The locular column was made from 1.0 mm I.D., 2.0 mm O.D. or 1.5 mm I.D., 2.5 mm O.D. PTFE tubing compressed with a pair of hemostat at 2 or 4 cm intervals. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin and lysozyme with the 12.5% (w/w) polyethylene glycol 1000 and 12.5% (w/w) dibasic potassium phosphate system under 1000 rpm of column revolution. The 1.5 mm I.D., 2.5 mm O.D. locular tubing compressed at 2 cm intervals yielded better partition efficiencies than the non-clamped tubing using both lower and upper mobile phases with satisfactory retention of the stationary phase. The overall results suggest that the newly designed locular multilayer coil is useful to the preparative separation of proteins with aqueous-aqueous polymer phase system using our small-scale X-axis CPC.

  2. Sequence charge decoration dictates coil-globule transition in intrinsically disordered proteins.

    Science.gov (United States)

    Firman, Taylor; Ghosh, Kingshuk

    2018-03-28

    We present an analytical theory to compute conformations of heteropolymers-applicable to describe disordered proteins-as a function of temperature and charge sequence. The theory describes coil-globule transition for a given protein sequence when temperature is varied and has been benchmarked against the all-atom Monte Carlo simulation (using CAMPARI) of intrinsically disordered proteins (IDPs). In addition, the model quantitatively shows how subtle alterations of charge placement in the primary sequence-while maintaining the same charge composition-can lead to significant changes in conformation, even as drastic as a coil (swelled above a purely random coil) to globule (collapsed below a random coil) and vice versa. The theory provides insights on how to control (enhance or suppress) these changes by tuning the temperature (or solution condition) and charge decoration. As an application, we predict the distribution of conformations (at room temperature) of all naturally occurring IDPs in the DisProt database and notice significant size variation even among IDPs with a similar composition of positive and negative charges. Based on this, we provide a new diagram-of-states delineating the sequence-conformation relation for proteins in the DisProt database. Next, we study the effect of post-translational modification, e.g., phosphorylation, on IDP conformations. Modifications as little as two-site phosphorylation can significantly alter the size of an IDP with everything else being constant (temperature, salt concentration, etc.). However, not all possible modification sites have the same effect on protein conformations; there are certain "hot spots" that can cause maximal change in conformation. The location of these "hot spots" in the parent sequence can readily be identified by using a sequence charge decoration metric originally introduced by Sawle and Ghosh. The ability of our model to predict conformations (both expanded and collapsed states) of IDPs at a high

  3. Sequence charge decoration dictates coil-globule transition in intrinsically disordered proteins

    Science.gov (United States)

    Firman, Taylor; Ghosh, Kingshuk

    2018-03-01

    We present an analytical theory to compute conformations of heteropolymers—applicable to describe disordered proteins—as a function of temperature and charge sequence. The theory describes coil-globule transition for a given protein sequence when temperature is varied and has been benchmarked against the all-atom Monte Carlo simulation (using CAMPARI) of intrinsically disordered proteins (IDPs). In addition, the model quantitatively shows how subtle alterations of charge placement in the primary sequence—while maintaining the same charge composition—can lead to significant changes in conformation, even as drastic as a coil (swelled above a purely random coil) to globule (collapsed below a random coil) and vice versa. The theory provides insights on how to control (enhance or suppress) these changes by tuning the temperature (or solution condition) and charge decoration. As an application, we predict the distribution of conformations (at room temperature) of all naturally occurring IDPs in the DisProt database and notice significant size variation even among IDPs with a similar composition of positive and negative charges. Based on this, we provide a new diagram-of-states delineating the sequence-conformation relation for proteins in the DisProt database. Next, we study the effect of post-translational modification, e.g., phosphorylation, on IDP conformations. Modifications as little as two-site phosphorylation can significantly alter the size of an IDP with everything else being constant (temperature, salt concentration, etc.). However, not all possible modification sites have the same effect on protein conformations; there are certain "hot spots" that can cause maximal change in conformation. The location of these "hot spots" in the parent sequence can readily be identified by using a sequence charge decoration metric originally introduced by Sawle and Ghosh. The ability of our model to predict conformations (both expanded and collapsed states) of IDPs at

  4. The nuclear liquid gas phase transition and phase coexistence

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    2001-01-01

    In this talk we will review the different signals of liquid gas phase transition in nuclei. From the theoretical side we will first discuss the foundations of the concept of equilibrium, phase transition and critical behaviors in infinite and finite systems. From the experimental point of view we will first recall the evidences for some strong modification of the behavior of hot nuclei. Then we will review quantitative detailed analysis aiming to evidence phase transition, to define its order and phase diagram. Finally, we will present a critical discussion of the present status of phase transitions in nuclei and we will draw some lines for future development of this field. (author)

  5. The nuclear liquid gas phase transition and phase coexistence

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph

    2001-07-01

    In this talk we will review the different signals of liquid gas phase transition in nuclei. From the theoretical side we will first discuss the foundations of the concept of equilibrium, phase transition and critical behaviors in infinite and finite systems. From the experimental point of view we will first recall the evidences for some strong modification of the behavior of hot nuclei. Then we will review quantitative detailed analysis aiming to evidence phase transition, to define its order and phase diagram. Finally, we will present a critical discussion of the present status of phase transitions in nuclei and we will draw some lines for future development of this field. (author)

  6. Results from a model system of superconducting solenoids and phase shifting bridge for pulsed power studies for proposed tokamak EF coils

    International Nuclear Information System (INIS)

    Fuja, R.E.; Kustom, R.L.; Smith, R.P.

    1977-01-01

    A matched pair of superconducting solenoids and a phase-shifting bridge circuit has been constructed to study energy storage and transfer for application to tokamak EF coils. The intrinsically stable solenoids, each with 4 H self-inductance, incorporate sufficient cooling to allow charging at several hundred volts, corresponding to B = 1 T/sec. The three-phase inductor-convertor capacitive bridge network operating at up to 150 V rms transfers energy reversibly and at controllable rates from the storage coil to the load coil

  7. Magnetic resonance of phase transitions

    CERN Document Server

    Owens, Frank J; Farach, Horacio A

    1979-01-01

    Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also

  8. Results from a model system of superconducting solenoids and phase shifting bridge for pulsed power studies for proposed tokamak EF coils

    International Nuclear Information System (INIS)

    Fuja, R.E.; Kustom, R.L.; Smith, R.P.

    1977-01-01

    A matched pair of superconducting solenoids and a phase-shifting bridge circuit has been constructed to study energy storage and transfer for application to tokamak EF coils. The intrinsically stable solenoids, each with 4 H self-inductance, incorporate sufficient cooling to allow charging at several hundred volts, corresponding to B approximately equal 1 T/sec. The three-phase inductor-convertor capacitive bridge network operating at up to 150 V rms transfers energy reversibly and at controllable rates from the storage coil to the load coil

  9. Determination of melting curves of irradiated DNA preparations and of preparations isolated from irradiated calf lymph nodes

    International Nuclear Information System (INIS)

    Grabowska, B.

    1977-01-01

    Measurements of melting curves enabled to establish differences of melting temperature, hyperchromic effect and breadth of the helix - coil phase transition dependent on dose of the ionizing radiation applied and on kind of the irradiated object. Changes of the investigated parameters of DNA irradiated after isolation were detectably more pronounced that of DNA from irradiated lymph nodes. The obtained results suggest a protective role of tissue to the secondary structure of DNA. (author)

  10. Helix Nebula Science Cloud pilot phase open session

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    This Helix Nebula Science Cloud (HNSciCloud) public session is open to everyone and will be webcast. The session will provide the audience with an overview of the HNSciCloud pre-commercial procurement project and the innovative cloud platforms that have been developed. A number of practical use-cases from the physics community will be presented as well as the next steps to be undertaken.

  11. Theoretical study of solvent effects on the coil-globule transition

    Science.gov (United States)

    Polson, James M.; Opps, Sheldon B.; Abou Risk, Nicholas

    2009-06-01

    The coil-globule transition of a polymer in a solvent has been studied using Monte Carlo simulations of a single chain subject to intramolecular interactions as well as a solvent-mediated effective potential. This solvation potential was calculated using several different theoretical approaches for two simple polymer/solvent models, each employing hard-sphere chains and hard-sphere solvent particles as well as attractive square-well potentials between some interaction sites. For each model, collapse is driven by variation in a parameter which changes the energy mismatch between monomers and solvent particles. The solvation potentials were calculated using two fundamentally different methodologies, each designed to predict the conformational behavior of polymers in solution: (1) the polymer reference interaction site model (PRISM) theory and (2) a many-body solvation potential (MBSP) based on scaled particle theory introduced by Grayce [J. Chem. Phys. 106, 5171 (1997)]. For the PRISM calculations, two well-studied solvation monomer-monomer pair potentials were employed, each distinguished by the closure relation used in its derivation: (i) a hypernetted-chain (HNC)-type potential and (ii) a Percus-Yevick (PY)-type potential. The theoretical predictions were each compared to results obtained from explicit-solvent discontinuous molecular dynamics simulations on the same polymer/solvent model systems [J. Chem. Phys. 125, 194904 (2006)]. In each case, the variation in the coil-globule transition properties with solvent density is mostly qualitatively correct, though the quantitative agreement between the theory and prediction is typically poor. The HNC-type potential yields results that are more qualitatively consistent with simulation. The conformational behavior of the polymer upon collapse predicted by the MBSP approach is quantitatively correct for low and moderate solvent densities but is increasingly less accurate for higher densities. At high solvent densities

  12. 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry.

    Science.gov (United States)

    Wiggins, G C; Triantafyllou, C; Potthast, A; Reykowski, A; Nittka, M; Wald, L L

    2006-07-01

    A 32-channel 3T receive-only phased-array head coil was developed for human brain imaging. The helmet-shaped array was designed to closely fit the head with individual overlapping circular elements arranged in patterns of hexagonal and pentagonal symmetry similar to that of a soccer ball. The signal-to-noise ratio (SNR) and noise amplification (g-factor) in accelerated imaging applications were quantitatively evaluated in phantom and human images and compared with commercially available head coils. The 32-channel coil showed SNR gains of up to 3.5-fold in the cortex and 1.4-fold in the corpus callosum compared to a (larger) commercial eight-channel head coil. The experimentally measured g-factor performance of the helmet array showed significant improvement compared to the eight-channel array (peak g-factor 59% and 26% of the eight-channel values for four- and fivefold acceleration). The performance of the arrays is demonstrated in high-resolution and highly accelerated brain images. Copyright (c) 2006 Wiley-Liss, Inc.

  13. Cooling and dehumidifying coils

    International Nuclear Information System (INIS)

    Murthy, M.V.K.

    1988-01-01

    The operating features of cooling and dehumidifying coils and their constructional details are discussed. The heat transfer relations as applicable to the boiling refrigerant and a single phase fluid are presented. Methods of accounting for the effect of moisture condensation on the air side heat transfer coefficient and the fin effectiveness are explained. The logic flow necessary to analyze direct expansion coils and chilled water coils is discussed

  14. Electronic phase transitions

    CERN Document Server

    Kopaev, YuV

    1992-01-01

    Electronic Phase Transitions deals with topics, which are presently at the forefront of scientific research in modern solid-state theory. Anderson localization, which has fundamental implications in many areas of solid-state physics as well as spin glasses, with its influence on quite different research activities such as neural networks, are two examples that are reviewed in this book. The ab initio statistical mechanics of structural phase transitions is another prime example, where the interplay and connection of two unrelated disciplines of solid-state theory - first principle ele

  15. CFD analysis of the two-phase bubbly flow characteristics in helically coiled rectangular and circular tube heat exchangers

    Science.gov (United States)

    Hussain, Alamin; Fsadni, Andrew M.

    2016-03-01

    Due to their ease of manufacture, high heat transfer efficiency and compact design, helically coiled heat exchangers are increasingly being adopted in a number of industries. The higher heat transfer efficiency over straight pipes is due to the secondary flow that develops as a result of the centrifugal force. In spite of the widespread use of helically coiled heat exchangers, and the presence of bubbly two-phase flow in a number of systems, very few studies have investigated the resultant flow characteristics. This paper will therefore present the results of CFD simulations for the two-phase bubbly flow in helically coiled heat exchangers as a function of the volumetric void fraction and the tube cross-section design. The CFD results are compared to the scarce flow visualisation experimental results available in the open literature.

  16. Unconventional phase transitions in liquid crystals

    Science.gov (United States)

    Kats, E. I.

    2017-12-01

    According to classical textbooks on thermodynamics or statistical physics, there are only two types of phase transitions: continuous, or second-order, in which the latent heat L is zero, and first-order, in which L ≠ 0. Present-day textbooks and monographs also mention another, stand-alone type—the Berezinskii-Kosterlitz-Thouless transition, which exists only in two dimensions and shares some features with first- and second-order phase transitions. We discuss examples of non-conventional thermodynamic behavior (i.e., which is inconsistent with the theoretical phase transition paradigm now universally accepted). For phase transitions in smectic liquid crystals, mechanisms for nonconventional behavior are proposed and the predictions they imply are examined.

  17. Thermodynamics of coil-hyperbranched poly(styrene-b-acrylated epoxidized soybean oil) block copolymers

    Science.gov (United States)

    Lin, Fang-Yi; Hohmann, Austin; Hernández, Nacú; Cochran, Eric

    Here we present the phase behavior of a new type of coil-hyperbranched diblock copolymer: poly(styrene- b-acrylated epoxidized soybean oil), or PS-PAESO. PS-PAESO is an example of a biorenewable thermoplastic elastomer (bio-TPE). To date, we have shown that bio-TPEs can be economical commercial substitutes for their petrochemically derived analogues--such as poly(styrene- b-butadiene- b-styrene) (SBS)--in a range of applications including pressure sensitive adhesives and bitumen modification. From a polymer physics perspective, PS-PAESO is an interesting material in that it couples a linear coil-like block with a highly branched block. Thus in contrast to the past five decades of studies on linear AB diblock copolymers, coil-hyperbranched block copolymers are relatively unknown to the community and can be expected to deviate substantially from the standard ``universal'' phase behavior in the AB systems. To explore these new materials, we have constructed a library of PS-PAESO materials spanning a range of molecular weight and composition values. The phase transition behavior and the morphology information will be interpreted by isochronal temperature scanning in dynamic shear rheology, small angle X-ray scattering and the corresponding transmission electron microscopy.

  18. Increased Vessel Depiction of the Carotid Bifurcation with a Specialized 16-Channel Phased Array Coil at 3T

    Science.gov (United States)

    Tate, Quinn; Kim, Seong-Eun; Treiman, Gerald; Parker, Dennis L.; Hadley, J. Rock

    2012-01-01

    The purpose of this work was to design and construct a multi-channel receive-only RF coil for 3 Tesla magnetic resonance imaging of the human carotid artery and bifurcation with optimized signal to noise ratio in the carotid vessels along the full extent of the neck. A neck phantom designed to match the anatomy of a subject with a neck representing the body habitus often seen in subjects with carotid arterial disease, was constructed. Sixteen circular coil elements were arranged on a semi-rigid fiberglass former that closely fit the shape of the phantom, resulting in a 16-channel bilateral phased array coil. Comparisons were made between this coil and a typical 4-channel carotid coil in a study of 10 carotid vessels in 5 healthy volunteers. The 16-channel carotid coil showed a 73% average improvement in signal to noise ratio (SNR) at the carotid bifurcation. This coil also maintained an SNR greater than the peak SNR of the 4-channel coil over a vessel length of 10 cm. The resulting increase in SNR improved vessel depiction of the carotid arteries over an extended field of view, and demonstrated better image quality for higher parallel imaging reduction factors compared to the 4-channel coil. PMID:22777692

  19. CFD analysis of the two-phase bubbly flow characteristics in helically coiled rectangular and circular tube heat exchangers

    Directory of Open Access Journals (Sweden)

    Hussain Alamin

    2016-01-01

    Full Text Available Due to their ease of manufacture, high heat transfer efficiency and compact design, helically coiled heat exchangers are increasingly being adopted in a number of industries. The higher heat transfer efficiency over straight pipes is due to the secondary flow that develops as a result of the centrifugal force. In spite of the widespread use of helically coiled heat exchangers, and the presence of bubbly two-phase flow in a number of systems, very few studies have investigated the resultant flow characteristics. This paper will therefore present the results of CFD simulations for the two-phase bubbly flow in helically coiled heat exchangers as a function of the volumetric void fraction and the tube cross-section design. The CFD results are compared to the scarce flow visualisation experimental results available in the open literature.

  20. TOWARDS UNDERSTANDING OF HELIX B BASED CONFORMATIONAL DISEASES IN SERPIN

    Directory of Open Access Journals (Sweden)

    Mohamad Aman Jairajpuri

    2012-12-01

    Full Text Available Serine protease inhibitors (serpins are a unique family of protease inhibitors that are prone to polymer formation due to their metastable nature and a complex inhibition mechanism that involves large scale conformational change. Helix B is in the shutter region near the strand 2A and strand 3A of �-sheet A, where reactive centre loop inserts during the serpin inhibition mechanism. Helix B region in serpins is a mutation hotspot for naturally occurring variants that result in pathological conditions due to polymerization. Helix B residues are completely buried in the native state and loop inserted latent state but not in the inhibitory loop inserted cleaved conformation. Native to cleaved transition during inhibition forms a large cavity in the shutter region, which invariably is the largest cavity in most serpins in native state. In a recent paper we had for the first time hypothesized that exposure of helix B at the N-terminal end is important for smooth insertion of the reactive center loop during serpin inhibition mechanism. It is therefore possible that natural variant that induces conformational deformation of helix B probably alter the cavity size which increases the rate of loop-sheet interaction between the monomers resulting in increased polymerization.

  1. Structural phase transitions and Huang scattering

    International Nuclear Information System (INIS)

    Yamada, Yasusada

    1980-01-01

    The usefulness of the application of the concept of Huang scattering to the understandings of the origin of diffuse scatterings near structural phase transitions are discussed. It is pointed out that in several phase transitions, the observed diffuse scatterings can not be interpreted in terms of critical fluctuations of the order parameters associated with the structural phase transitions, and that they are rather interpreted as Huang scattering due to random distribution of individual order parameter which is 'dressed' by strain fields. Examples to show effective applications of this concept to analyze the experimental X-ray data and whence to understand microscopic mechanisms of structural phase transitions are presented. (author)

  2. Qualifying tests for TRIAM-1M superconducting toroidal magnetic field coil

    Energy Technology Data Exchange (ETDEWEB)

    Nakanura, Yukio; Hiraki, Naoji; Nakamura, Kazuo; Tanaka, Masayoshi; Nagao, Akihiro; Kawasaki, Shoji; Itoh, Satoshi

    1984-09-01

    In the strong toroidal magnetic field experimental facility ''TRIAM-1M'' currently under construction, construction of the superconducting toroidal magnetic field coil and the following qualifying tests conducted on the full-scale superconducting toroidal magnetic field coil actually fabricated are described: (1) coil excitation test, (2) superconducting stability test, (3) external magnetic field application test, and (4) high-speed excitation test. On the basis of these test results, stability was evaluated of the superconducting coil being operated in the tokamak device. In normal tokamak operation, there occurs no normal conduction transition. At the time of plasma disruption, though this transition takes place in part of the coil, the superconducting state is immediately restored. By its electromagnetic force analysis, the superconducting coil is also stable in structure.

  3. Modern theories of phase transitions

    International Nuclear Information System (INIS)

    Rajaraman, R.

    1979-01-01

    Modern applications of the ideas of phase transitions to nuclear systems and the modern techniques as applied to familiar phase transitions in solid-state physics are discussed with illustrations. The phenomenon of pion condensation in nuclei and neutron stars, is presented as an example of phase transitions in nuclear systems. The central physical ideas behind this subject as well as techniques used to tackle it are broadly summarised. It is pointed out that unlike familiar examples of ferromagnetism or superconductivity, the order parameter here has spatial variation even in the ground state. Possible experimental consequences are discussed. As an example of the second category, the use of renormalisation group techniques in solid state physics is reviewed. The basic idea behind the renormalisation group in the infra-red (thermodynamic) limit is presented. The observed universality and scaling of critical exponents in second order phase transitions is explained in a model-independent way. (auth.)

  4. Manufacturing development of the Westinghouse Nb3Sn coil for the Large Coil Test Program

    International Nuclear Information System (INIS)

    Young, J.L.; Vota, T.L.; Singh, S.K.

    1983-01-01

    The Westinghouse Nb 3 Sn Magnet for the Oak Ridge National Laboratory Large Coil Program (LCP) is currently well into the manufacturing phase. This paper identifies the manufacturing processes and development tasks for his unique, advanced coil

  5. Dynamics of a quantum phase transition

    International Nuclear Information System (INIS)

    Zurek, W.H.

    2005-01-01

    We present two approaches to the non-equilibrium dynamics of a quench-induced phase transition in quantum Ising model. First approach retraces steps of the standard calculation to thermodynamic second order phase transitions in the quantum setting. The second calculation is purely quantum, based on the Landau-Zener formula for transition probabilities in processes that involve avoided level crossings. We show that the two approaches yield compatible results for the scaling of the defect density with the quench rate. We exhibit similarities between them, and comment on the insights they give into dynamics of quantum phase transitions. (author)

  6. Renal magnetic resonance angiography at 3.0 Tesla using a 32-element phased-array coil system and parallel imaging in 2 directions.

    Science.gov (United States)

    Fenchel, Michael; Nael, Kambiz; Deshpande, Vibhas S; Finn, J Paul; Kramer, Ulrich; Miller, Stephan; Ruehm, Stefan; Laub, Gerhard

    2006-09-01

    The aim of the present study was to assess the feasibility of renal magnetic resonance angiography at 3.0 T using a phased-array coil system with 32-coil elements. Specifically, high parallel imaging factors were used for an increased spatial resolution and anatomic coverage of the whole abdomen. Signal-to-noise values and the g-factor distribution of the 32 element coil were examined in phantom studies for the magnetic resonance angiography (MRA) sequence. Eleven volunteers (6 men, median age of 30.0 years) were examined on a 3.0-T MR scanner (Magnetom Trio, Siemens Medical Solutions, Malvern, PA) using a 32-element phased-array coil (prototype from In vivo Corp.). Contrast-enhanced 3D-MRA (TR 2.95 milliseconds, TE 1.12 milliseconds, flip angle 25-30 degrees , bandwidth 650 Hz/pixel) was acquired with integrated generalized autocalibrating partially parallel acquisition (GRAPPA), in both phase- and slice-encoding direction. Images were assessed by 2 independent observers with regard to image quality, noise and presence of artifacts. Signal-to-noise levels of 22.2 +/- 22.0 and 57.9 +/- 49.0 were measured with (GRAPPAx6) and without parallel-imaging, respectively. The mean g-factor of the 32-element coil for GRAPPA with an acceleration of 3 and 2 in the phase-encoding and slice-encoding direction, respectively, was 1.61. High image quality was found in 9 of 11 volunteers (2.6 +/- 0.8) with good overall interobserver agreement (k = 0.87). Relatively low image quality with higher noise levels were encountered in 2 volunteers. MRA at 3.0 T using a 32-element phased-array coil is feasible in healthy volunteers. High diagnostic image quality and extended anatomic coverage could be achieved with application of high parallel imaging factors.

  7. Quantum phase transitions of strongly correlated electron systems

    International Nuclear Information System (INIS)

    Imada, Masatoshi

    1998-01-01

    Interacting electrons in solids undergo various quantum phase transitions driven by quantum fluctuations. The quantum transitions take place at zero temperature by changing a parameter to control quantum fluctuations rather than thermal fluctuations. In contrast to classical phase transitions driven by thermal fluctuations, the quantum transitions have many different features where quantum dynamics introduces a source of intrinsic fluctuations tightly connected with spatial correlations and they have been a subject of recent intensive studies as we see below. Interacting electron systems cannot be fully understood without deep analyses of the quantum phase transitions themselves, because they are widely seen and play essential roles in many phenomena. Typical and important examples of the quantum phase transitions include metal-insulator transitions, (2, 3, 4, 5, 6, 7, 8, 9) metal-superconductor transitions, superconductor-insulator transitions, magnetic transitions to antiferromagnetic or ferromagnetic phases in metals as well as in Mott insulators, and charge ordering transitions. Here, we focus on three different types of transitions

  8. CFD analysis and flow model reduction for surfactant production in helix reactor

    Directory of Open Access Journals (Sweden)

    Nikačević N.M.

    2015-01-01

    Full Text Available Flow pattern analysis in a spiral Helix reactor is conducted, for the application in the commercial surfactant production. Step change response curves (SCR were obtained from numerical tracer experiments by three-dimensional computational fluid dynamics (CFD simulations. Non-reactive flow is simulated, though viscosity is treated as variable in the direction of flow, as it increases during the reaction. The design and operating parameters (reactor diameter, number of coils and inlet velocity are varied in CFD simulations, in order to examine the effects on the flow pattern. Given that 3D simulations are not practical for fast computations needed for optimization, scale-up and control, CFD flow model is reduced to one-dimensional axial dispersion (AD model with spatially variable dispersion coefficient. Dimensionless dispersion coefficient (Pe is estimated under different conditions and results are analyzed. Finally, correlation which relates Pe number with Reynolds number and number of coils from the reactor entrance is proposed for the particular reactor application and conditions.

  9. Triple Helix going abroad?

    DEFF Research Database (Denmark)

    Sørensen, Olav Jull; Hu, Yimei

    2014-01-01

    The aim of the article is to explore to what extent the Tripple helix is being internationalized. Each of the helixes have their own internationalization rationale but the article show by small example that the helix itself is being internationalized and integrated with the host country tripple h...

  10. Phase transitions in finite systems

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), DSM-CEA / IN2P3-CNRS, 14 - Caen (France); Gulminelli, F. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire

    2002-07-01

    In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)

  11. Phase transitions in finite systems

    International Nuclear Information System (INIS)

    Chomaz, Ph.; Gulminelli, F.

    2002-01-01

    In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)

  12. Non-equilibrium phase transition

    International Nuclear Information System (INIS)

    Mottola, E.; Cooper, F.M.; Bishop, A.R.; Habib, S.; Kluger, Y.; Jensen, N.G.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Non-equilibrium phase transitions play a central role in a very broad range of scientific areas, ranging from nuclear, particle, and astrophysics to condensed matter physics and the material and biological sciences. The aim of this project was to explore the path to a deeper and more fundamental understanding of the common physical principles underlying the complex real time dynamics of phase transitions. The main emphasis was on the development of general theoretical tools to deal with non-equilibrium processes, and of numerical methods robust enough to capture the time-evolving structures that occur in actual experimental situations. Specific applications to Laboratory multidivisional efforts in relativistic heavy-ion physics (transition to a new phase of nuclear matter consisting of a quark-gluon plasma) and layered high-temperature superconductors (critical currents and flux flow at the National High Magnetic Field Laboratory) were undertaken

  13. Predicting a new phase (T'') of two-dimensional transition metal di-chalcogenides and strain-controlled topological phase transition

    Science.gov (United States)

    Ma, Fengxian; Gao, Guoping; Jiao, Yalong; Gu, Yuantong; Bilic, Ante; Zhang, Haijun; Chen, Zhongfang; Du, Aijun

    2016-02-01

    Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological

  14. Quark–hadron phase transition in massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir

    2016-11-15

    We study the quark–hadron phase transition in the framework of massive gravity. We show that the modification of the FRW cosmological equations leads to the quark–hadron phase transition in the early massive Universe. Using numerical analysis, we consider that a phase transition based on the chiral symmetry breaking after the electroweak transition, occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons.

  15. First order electroweak phase transition

    International Nuclear Information System (INIS)

    Buchmueller, W.; Fodor, Z.

    1993-01-01

    In this work, the authors have studied the phase transition in the SU(2)gauge theory at finite temperature. The authors' improved perturbative approach does not suffer from the infrared problems appearing in the ordinary loop expansion. The authors have calculated the effective potential up to cubic terms in the couplings. The higher order terms suggest that the method is reliable for Higgs masses smaller than 80 GeV. The authors have obtained a non-vanishing magnetic mass which further weakens the transitions. By use of Langer's theory of metastability, the authors have calculated the nucleation rate for critical bubbles and have discussed some cosmological consequences. For m H <80 GeV the phase transition is first order and proceeds via bubble nucleation and growth. The thin wall approximation is only marginally applicable. Since the phase transition is quite weak SM baryogenesis is unlikely. 8 refs., 5 figs

  16. How to quantify the transition phase during golf swing performance: Torsional load affects low back complaints during the transition phase.

    Science.gov (United States)

    Sim, Taeyong; Choi, Ahnryul; Lee, Soeun; Mun, Joung Hwan

    2017-10-01

    The transition phase of a golf swing is considered to be a decisive instant required for a powerful swing. However, at the same time, the low back torsional loads during this phase can have a considerable effect on golf-related low back pain (LBP). Previous efforts to quantify the transition phase were hampered by problems with accuracy due to methodological limitations. In this study, vector-coding technique (VCT) method was proposed as a comprehensive methodology to quantify the precise transition phase and examine low back torsional load. Towards this end, transition phases were assessed using three different methods (VCT, lead hand speed and X-factor stretch) and compared; then, low back torsional load during the transition phase was examined. As a result, the importance of accurate transition phase quantification has been documented. The largest torsional loads were observed in healthy professional golfers (10.23 ± 1.69 N · kg -1 ), followed by professional golfers with a history of LBP (7.93 ± 1.79 N · kg -1 ), healthy amateur golfers (1.79 ± 1.05 N · kg -1 ) and amateur golfers with a history of LBP (0.99 ± 0.87 N · kg -1 ), which order was equal to that of the transition phase magnitudes of each group. These results indicate the relationship between the transition phase and LBP history and the dependency of the torsional load magnitude on the transition phase.

  17. Comments on the electroweak phase transition

    International Nuclear Information System (INIS)

    Dine, M.; Leigh, R.G.; Huet, P.; Linde, A.; Linde, D.

    1992-01-01

    We report on an investigation of various problems related to the theory of the electroweak phase transition. This includes a determination of the nature of the phase transition, a discussion of the possible role of higher order radiative corrections and the theory of the formation and evolution of the bubbles of the new phase. We find in particular that no dangerous linear terms appear in the effective potential. However, the strength of the first-order phase transition is 2/3 times less than what follows from the one-loop approximation. This rules out baryogenesis in the minimal version of the electroweak theory with light Higgs bosons. (orig.)

  18. Effect of hyperons on nuclear phase transition

    International Nuclear Information System (INIS)

    Das, P.; Mallik, S.; Chaudhuri, G.

    2016-01-01

    Phase transition of nuclear system in heavy ion-collisions at intermediate energy has been studied well for many years and it has also been extended to strange nuclear matter. Recently, using the Canonical Thermodynamical Model (CTM), detailed work on multiplicity distribution of fragments produced from fragmentation of hypernuclear system shows the existence of phase transition or phase coexistence in strange system with Λ-hyperons. In present work we want to continue the investigation on phase transition with respect to some other thermodynamic observables like free energy, specific heat etc. in order to be confirmed about the nature of the transition

  19. Generalized definitions of phase transitions

    International Nuclear Information System (INIS)

    Chomaz, Ph.; Gulminelli, F.

    2001-09-01

    We define a first order phase transition as a bimodality of the event distribution in the space of observations and we show that this is equivalent to a curvature anomaly of the thermodynamical potential and that it implies the Yang Lee behavior of the zeros of the partition sum. Moreover, it allows to study phase transitions out of equilibrium. (authors)

  20. Quantum phase transition with dissipative frustration

    Science.gov (United States)

    Maile, D.; Andergassen, S.; Belzig, W.; Rastelli, G.

    2018-04-01

    We study the quantum phase transition of the one-dimensional phase model in the presence of dissipative frustration, provided by an interaction of the system with the environment through two noncommuting operators. Such a model can be realized in Josephson junction chains with shunt resistances and resistances between the chain and the ground. Using a self-consistent harmonic approximation, we determine the phase diagram at zero temperature which exhibits a quantum phase transition between an ordered phase, corresponding to the superconducting state, and a disordered phase, corresponding to the insulating state with localized superconducting charge. Interestingly, we find that the critical line separating the two phases has a nonmonotonic behavior as a function of the dissipative coupling strength. This result is a consequence of the frustration between (i) one dissipative coupling that quenches the quantum phase fluctuations favoring the ordered phase and (ii) one that quenches the quantum momentum (charge) fluctuations leading to a vanishing phase coherence. Moreover, within the self-consistent harmonic approximation, we analyze the dissipation induced crossover between a first and second order phase transition, showing that quantum frustration increases the range in which the phase transition is second order. The nonmonotonic behavior is reflected also in the purity of the system that quantifies the degree of correlation between the system and the environment, and in the logarithmic negativity as an entanglement measure that encodes the internal quantum correlations in the chain.

  1. Microscopic origin of black hole reentrant phase transitions

    Science.gov (United States)

    Zangeneh, M. Kord; Dehyadegari, A.; Sheykhi, A.; Mann, R. B.

    2018-04-01

    Understanding the microscopic behavior of the black hole ingredients has been one of the important challenges in black hole physics during the past decades. In order to shed some light on the microscopic structure of black holes, in this paper, we explore a recently observed phenomenon for black holes namely reentrant phase transition, by employing the Ruppeiner geometry. Interestingly enough, we observe two properties for the phase behavior of small black holes that leads to reentrant phase transition. They are correlated and they are of the interaction type. For the range of pressure in which the system underlies reentrant phase transition, it transits from the large black holes phase to the small one which possesses higher correlation than the other ranges of pressures. On the other hand, the type of interaction between small black holes near the large/small transition line differs for usual and reentrant phase transitions. Indeed, for the usual case, the dominant interaction is repulsive whereas for the reentrant case we encounter an attractive interaction. We show that in the reentrant phase transition case, the small black holes behave like a bosonic gas whereas in the usual phase transition case, they behave like a quantum anyon gas.

  2. A coil test facility for the cryogenic tests of the JT-60SA TF coils

    International Nuclear Information System (INIS)

    Chantant, M.; Genini, L.; Bayetti, P.; Millet, F.; Wanner, M.; Massaut, V.; Corte, A. Della; Ardelier-Desage, F.; Catherine-Dumont, V.; Dael, A.; Decool, P.; Donati, A.; Duchateau, J.L.; Garibaldi, P.; Girard, S.; Hatchressian, J.C.; Fejoz, P.; Jamotton, P.; Jourdheuil, L.; Juster, F.P.

    2011-01-01

    In the framework of the Broader Approach Activities, the EU will deliver to Japan the 18 superconducting coils, which constitute the JT-60SA Toroidal field magnet. These 18 coils, manufactured by France and Italy, will be cold tested before shipping to Japan. For this purpose, the European Joint Undertaking for ITER, the Development of Fusion Energy ('Fusion for Energy', F4E) and the European Voluntary Contributors are collaborating to design and set-up a coil test facility (CTF) and to perform the acceptance test of the 18 JT-60SA Toroidal Field (TF) coils. The test facility is designed to test one coil at a time at nominal current and cryogenic temperature. The test of the first coil of each manufacturer includes a quench triggered by increasing the temperature. The project is presently in the detailed design phase.

  3. The quantum phase-transitions of water

    Science.gov (United States)

    Fillaux, François

    2017-08-01

    It is shown that hexagonal ices and steam are macroscopically quantum condensates, with continuous spacetime-translation symmetry, whereas liquid water is a quantum fluid with broken time-translation symmetry. Fusion and vaporization are quantum phase-transitions. The heat capacities, the latent heats, the phase-transition temperatures, the critical temperature, the molar volume expansion of ice relative to water, as well as neutron scattering data and dielectric measurements are explained. The phase-transition mechanisms along with the key role of quantum interferences and that of Hartley-Shannon's entropy are enlightened. The notions of chemical bond and force-field are questioned.

  4. Phase transition in SO(3) gauge theory

    International Nuclear Information System (INIS)

    Datta, Saumen; Gavai, Rajiv V.

    1998-01-01

    The phase transition in SO(3) lattice gauge theory is investigated by Monte Carlo techniques with a view (i) to understand the relationship between the bulk transition and the deconfinement transition, and (ii) to resolve the current ambiguity about the nature of the high temperature phase. By introduction of a magnetic field, it was shown that the +ve and -ve values of a > correspond to the same phase. Studies on different sized lattices lead to the conclusion that in SO(3), there is only one transition, which is deconfining in nature. (author)

  5. What's new with the electroweak phase transition?

    CERN Document Server

    Laine, M.

    1999-01-01

    We review the status of non-perturbative lattice studies of the electroweak phase transition. In the Standard Model, the complete phase diagram has been reliably determined, and the conclusion is that there is no phase transition at all for the experimentally allowed Higgs masses. In the Minimal Supersymmetric Standard Model (MSSM), in contrast, there can be a strong first order transition allowing for baryogenesis. Finally, we point out possibilities for future simulations, such as the problem of CP-violation at the MSSM electroweak phase boundary.

  6. Microgravity Two-Phase Flow Transition

    Science.gov (United States)

    Parang, M.; Chao, D.

    1999-01-01

    Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.

  7. Wilson loop's phase transition probed by non-local observable

    Directory of Open Access Journals (Sweden)

    Hui-Ling Li

    2018-04-01

    Full Text Available In order to give further insights into the holographic Van der Waals phase transition, it would be of great interest to investigate the behavior of Wilson loop across the holographic phase transition for a higher dimensional hairy black hole. We offer a possibility to proceed with a numerical calculation in order to discussion on the hairy black hole's phase transition, and show that Wilson loop can serve as a probe to detect a phase structure of the black hole. Furthermore, for a first order phase transition, we calculate numerically the Maxwell's equal area construction; and for a second order phase transition, we also study the critical exponent in order to characterize the Wilson loop's phase transition.

  8. Problem-Solving Phase Transitions During Team Collaboration.

    Science.gov (United States)

    Wiltshire, Travis J; Butner, Jonathan E; Fiore, Stephen M

    2018-01-01

    Multiple theories of problem-solving hypothesize that there are distinct qualitative phases exhibited during effective problem-solving. However, limited research has attempted to identify when transitions between phases occur. We integrate theory on collaborative problem-solving (CPS) with dynamical systems theory suggesting that when a system is undergoing a phase transition it should exhibit a peak in entropy and that entropy levels should also relate to team performance. Communications from 40 teams that collaborated on a complex problem were coded for occurrence of problem-solving processes. We applied a sliding window entropy technique to each team's communications and specified criteria for (a) identifying data points that qualify as peaks and (b) determining which peaks were robust. We used multilevel modeling, and provide a qualitative example, to evaluate whether phases exhibit distinct distributions of communication processes. We also tested whether there was a relationship between entropy values at transition points and CPS performance. We found that a proportion of entropy peaks was robust and that the relative occurrence of communication codes varied significantly across phases. Peaks in entropy thus corresponded to qualitative shifts in teams' CPS communications, providing empirical evidence that teams exhibit phase transitions during CPS. Also, lower average levels of entropy at the phase transition points predicted better CPS performance. We specify future directions to improve understanding of phase transitions during CPS, and collaborative cognition, more broadly. Copyright © 2017 Cognitive Science Society, Inc.

  9. Late-time cosmological phase transitions

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1990-11-01

    It is shown that the potential galaxy formation and large-scale structure problems of objects existing at high redshifts (Z approx-gt 5), structures existing on scales of 100M pc as well as velocity flows on such scales, and minimal microwave anisotropies (ΔT/T) approx-lt 10 -5 can be solved if the seeds needed to generate structure form in a vacuum phase transition after decoupling. It is argued that the basic physics of such a phase transition is no more exotic than that utilized in the more traditional GUT scale phase transitions, and that, just as in the GUT case, significant random gaussian fluctuations and/or topological defects can form. Scale lengths of ∼100M pc for large-scale structure as well as ∼1 M pc for galaxy formation occur naturally. Possible support for new physics that might be associated with such a late-time transition comes from the preliminary results of the SAGE solar neutrino experiment, implying neutrino flavor mixing with values similar to those required for a late-time transition. It is also noted that a see-saw model for the neutrino masses might also imply a tau neutrino mass that is an ideal hot dark matter candidate. However, in general either hot or cold dark matter can be consistent with a late-time transition. 47 refs., 2 figs

  10. Helically coiled tube heat exchanger

    International Nuclear Information System (INIS)

    Harris, A.M.

    1981-01-01

    In a heat exchanger such as a steam generator for a nuclear reactor, two or more bundles of helically coiled tubes are arranged in series with the tubes in each bundle integrally continuing through the tube bundles arranged in series therewith. Pitch values for the tubing in any pair of tube bundles, taken transverse to the path of the reactor coolant flow about the tubes, are selected as a ratio of two unequal integers to permit efficient operation of each tube bundle while maintaining the various tube bundles of the heat exchanger within a compact envelope. Preferably, the helix angle and tube pitch parallel to the path of coolant flow are constant for all tubes in a single bundle so that the tubes are of approximately the same length within each bundle

  11. Phase transitions and neutron scattering

    International Nuclear Information System (INIS)

    Shirane, G.

    1993-01-01

    A review is given of recent advances in neutron scattering studies of solid state physics. I have selected the study of a structural phase transition as the best example to demonstrate the power of neutron scattering techniques. Since energy analysis is relatively easy, the dynamical aspects of a transition can be elucidated by the neutron probe. I shall discuss in some detail current experiments on the 100 K transition in SrTiO 3 , the crystal which has been the paradigm of neutron studies of phase transitions for many years. This new experiment attempts to clarify the relation between the neutron central peak, observed in energy scans, and the two length scales observed in recent x-ray diffraction studies where only scans in momentum space are possible. (author)

  12. The Swiss LCT-coil

    International Nuclear Information System (INIS)

    Vecsey, G.; Benz, H.; Horvath, I.

    1985-01-01

    With delivery of the coil to ORNL on February 4, 1984, the second phase of the Swiss Large Coil Program - design and construction - was terminated. Mainlines of the Swiss design concept are summarized and related to theoretical calculations, experimental results of the supporting program, fabricational experience and first successful test results. An attempt is made to draw preliminary conclusions with regard to the design of future toroidal systems such as NET

  13. Quantum phase transitions in random XY spin chains

    International Nuclear Information System (INIS)

    Bunder, J.E.; McKenzie, R.H.

    2000-01-01

    Full text: The XY spin chain in a transverse field is one of the simplest quantum spin models. It is a reasonable model for heavy fermion materials such as CeCu 6-x Au x . It has two quantum phase transitions: the Ising transition and the anisotropic transition. Quantum phase transitions occur at zero temperature. We are investigating what effect the introduction of randomness has on these quantum phase transitions. Disordered systems which undergo quantum phase transitions can exhibit new universality classes. The universality class of a phase transition is defined by the set of critical exponents. In a random system with quantum phase transitions we can observe Griffiths-McCoy singularities. Such singularities are observed in regions which have no long range order, so they are not classified as critical regions, yet they display phenomena normally associated with critical points, such as a diverging susceptibility. Griffiths-McCoy phases are due to rare regions with stronger than! average interactions and may be present far from the quantum critical point. We show how the random XY spin chain may be mapped onto a random Dirac equation. This allows us to calculate the density of states without making any approximations. From the density of states we can describe the conditions which should allow a Griffiths-McCoy phase. We find that for the Ising transition the dynamic critical exponent, z, is not universal. It is proportional to the disorder strength and inversely proportional to the energy gap, hence z becomes infinite at the critical point where the energy gap vanishes

  14. Phase transition phenomenon: A compound measure analysis

    Science.gov (United States)

    Kang, Bo Soo; Park, Chanhi; Ryu, Doojin; Song, Wonho

    2015-06-01

    This study investigates the well-documented phenomenon of phase transition in financial markets using combined information from both return and volume changes within short time intervals. We suggest a new measure for the phase transition behaviour of markets, calculated as a return distribution conditional on local variance in volume imbalance, and show that this measure successfully captures phase transition behaviour under various conditions. We analyse the intraday trade and quote dataset from the KOSPI 200 index futures, which includes detailed information on the original order size and the type of each initiating investor. We find that among these two competing factors, the submitted order size yields more explanatory power on the phenomenon of market phase transition than the investor type.

  15. Behavior of the antiferromagnetic phase transition near the fermion condensation quantum phase transition in YbRh{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R., E-mail: vrshag@thd.pnpi.spb.r [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation)

    2010-01-11

    Low-temperature specific-heat measurements on YbRh{sub 2}Si{sub 2} at the second order antiferromagnetic (AF) phase transition reveal a sharp peak at T{sub N}=72 mK. The corresponding critical exponent alpha turns out to be alpha=0.38, which differs significantly from that obtained within the framework of the fluctuation theory of second order phase transitions based on the scale invariance, where alphaapprox =0.1. We show that under the application of magnetic field the curve of the second order AF phase transitions passes into a curve of the first order ones at the tricritical point leading to a violation of the critical universality of the fluctuation theory. This change of the phase transition is generated by the fermion condensation quantum phase transition. Near the tricritical point the Landau theory of second order phase transitions is applicable and gives alphaapprox =1/2. We demonstrate that this value of alpha is in good agreement with the specific-heat measurements.

  16. Insights on the structure and stability of Licanantase: a trimeric acid-stable coiled-coil lipoprotein from Acidithiobacillus thiooxidans

    Directory of Open Access Journals (Sweden)

    Fernando Abarca

    2014-08-01

    Full Text Available Licanantase (Lic is the major component of the secretome of Acidithiobacillus thiooxidans when grown in elemental sulphur. When used as an additive, Lic improves copper recovery from bioleaching processes. However, this recovery enhancement is not fully understood. In this context, our aim is to predict the 3D structure of Lic, to shed light on its structure-function relationships. Bioinformatics analyses on the amino acid sequence of Lic showed a great similarity with Lpp, an Escherichia coli Lipoprotein that can form stable trimers in solution. Lic and Lpp share the secretion motif, intracellular processing and alpha helix structure, as well as the distribution of hydrophobic residues in heptads forming a hydrophobic core, typical of coiled-coil structures. Cross-linking experiments showed the presence of Lic trimers, supporting our predictions. Taking the in vitro and in silico evidence as a whole, we propose that the most probable structure for Lic is a trimeric coiled-coil. According to this prediction, a suitable model for Lic was produced using the de novo algorithm “Rosetta Fold-and-Dock”. To assess the structural stability of our model, Molecular Dynamics (MD and Replica Exchange MD simulations were performed using the structure of Lpp and a 14-alanine Lpp mutant as controls, at both acidic and neutral pH. Our results suggest that Lic was the most stable structure among the studied proteins in both pH conditions. This increased stability can be explained by a higher number of both intermonomer hydrophobic contacts and hydrogen bonds, key elements for the stability of Lic’s secondary and tertiary structure.

  17. Structural Phase Transition Nomenclature, Report of an IUCr Working Group on Phase Transition Nomenclature

    NARCIS (Netherlands)

    Toleddano, J.C.; Glazer, A.M.; Hahn, Th.; Parthe, E.; Roth, R.S.; Berry, R.S.; Metselaar, R.; Abrahams, S.C.

    1998-01-01

    A compact and intuitive nomenclature is recommended for naming each phase formed by a given material in a sequence of phase transitions as a function of temperature and/or pressure. The most commonly used label for each phase in a sequence, such as [alpha], [beta], ..., I, II, ... etc., is included

  18. Democracy and environment as references for quadruple and quintuple helix innovation systems

    Science.gov (United States)

    Carayannis, Elias G.; Campbell, David F. J.; Orr, Barron J.

    2015-04-01

    The perspective of democracy and the ecological context define key references for knowledge production and innovation in innovation systems. Particularly under conditions of environmental change where enhancing the potential for adaptation is critical, this requires a closer look at ecological responsibility and sensitivity in the different innovation models and governance regimes. The "Quintuple Helix" innovation model is an approach that stresses the necessary socio-ecological transition of society and economy by adding an environment helix to an innovation system already made up of three (university-industry-government) or four (civil society relations) helices in a way that supports adaptation by incorporating global warming as both a challenge to and a driver of innovation. There is the proposition that knowledge production and innovation co-evolve with democracy (Carayannis and Campbell, 2014). In the Triple Helix model (Etzkowitz and Leydesdorff, 2000) the existence of a democracy does not appear to be necessary for knowledge production and innovation. However, the Quadruple Helix (Carayannis and Campbell, 2009, 2010 and 2014) is defined and represented by additional key attributes and components: "media-based and culture-based public", "civil society" and "arts, artistic research and arts-based innovation" (Bast, Carayannis and Campbell, 2015). Implications of this are that the fourth helix in the Quadruple Helix innovation systems brings in and represents the perspective of "dimension of democracy" or the "context of democracy" for knowledge in general and knowledge production and innovation in more particular. Within theories of democracy there is a competition between narrow and broader concepts of democracy (Campbell, 2013). This is particularly true when democracy is to be understood to transcend more substantially the narrow understanding of being primarily based on or being primarily rooted in government institutions (within a Triple Helix

  19. The Structural Phase Transition in Octaflournaphtalene

    DEFF Research Database (Denmark)

    Mackenzie, Gordon A.; Arthur, J. W.; Pawley, G. S.

    1977-01-01

    The phase transition in octafluoronaphthalene has been investigated by Raman scattering and neutron powder diffraction. The weight of the experimental evidence points to a unit cell doubling in the a direction, but with no change in space group symmetry. Lattice dynamics calculations support...... this evidence and indicate that the mechanism of the phase transition may well be the instability of a zone boundary acoustic mode of librational character. The structure of the low-temperature phase has been refined and the Raman spectra of the upper and lower phases are reported....

  20. Phases and phase transitions of S=1 bosons

    Indian Academy of Sciences (India)

    smukerjee

    Quantum phases and phase transitions of bosons. Subroto Mukerjee. Dept. of Physics & Centre for Quantum. Information and Quantum Computing (CQIQC). Indian Institute of Science, Bangalore. 77th annual meeting of the IAS, Nov. 20 2011, PRL Ahmedabad ...

  1. Unconventional phase transitions in a constrained single polymer chain

    International Nuclear Information System (INIS)

    Klushin, L I; Skvortsov, A M

    2011-01-01

    Phase transitions were recognized among the most fascinating phenomena in physics. Exactly solved models are especially important in the theory of phase transitions. A number of exactly solved models of phase transitions in a single polymer chain are discussed in this review. These are three models demonstrating the second order phase transitions with some unusual features: two-dimensional model of β-structure formation, the model of coil–globule transition and adsorption of a polymer chain grafted on the solid surface. We also discuss models with first order phase transitions in a single macromolecule which admit not only exact analytical solutions for the partition function with explicit finite-size effects but also the non-equilibrium free energy as a function of the order parameter (Landau function) in closed analytical form. One of them is a model of mechanical desorption of a macromolecule, which demonstrates an unusual first order phase transition with phase coexistence within a single chain. Features of first and second order transitions become mixed here due to phase coexistence which is not accompanied by additional interfacial free energy. Apart from that, there exist several single-chain models belonging to the same class (adsorption of a polymer chain tethered near the solid surface or liquid–liquid interface, and escape transition upon compressing a polymer between small pistons) that represent examples of a highly unconventional first order phase transition with several inter-related unusual features: no simultaneous phase coexistence, and hence no phase boundary, non-concave thermodynamic potential and non-equivalence of conjugate ensembles. An analysis of complex zeros of partition functions upon approaching the thermodynamic limit is presented for models with and without phase coexistence. (topical review)

  2. Evaluation of CFD Methods for Simulation of Two-Phase Boiling Flow Phenomena in a Helical Coil Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shaver, Dillon [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, Yang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vegendla, Prasad [Argonne National Lab. (ANL), Argonne, IL (United States); Tentner, Adrian [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-30

    The U.S. Department of Energy, Office of Nuclear Energy charges participants in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program with the development of advanced modeling and simulation capabilities that can be used to address design, performance and safety challenges in the development and deployment of advanced reactor technology. The NEAMS has established a high impact problem (HIP) team to demonstrate the applicability of these tools to identification and mitigation of sources of steam generator flow induced vibration (SGFIV). The SGFIV HIP team is working to evaluate vibration sources in an advanced helical coil steam generator using computational fluid dynamics (CFD) simulations of the turbulent primary coolant flow over the outside of the tubes and CFD simulations of the turbulent multiphase boiling secondary coolant flow inside the tubes integrated with high resolution finite element method assessments of the tubes and their associated structural supports. This report summarizes the demonstration of a methodology for the multiphase boiling flow analysis inside the helical coil steam generator tube. A helical coil steam generator configuration has been defined based on the experiments completed by Polytecnico di Milano in the SIET helical coil steam generator tube facility. Simulations of the defined problem have been completed using the Eulerian-Eulerian multi-fluid modeling capabilities of the commercial CFD code STAR-CCM+. Simulations suggest that the two phases will quickly stratify in the slightly inclined pipe of the helical coil steam generator. These results have been successfully benchmarked against both empirical correlations for pressure drop and simulations using an alternate CFD methodology, the dispersed phase mixture modeling capabilities of the open source CFD code Nek5000.

  3. Phase transitions and baryogenesis from decays

    Science.gov (United States)

    Shuve, Brian; Tamarit, Carlos

    2017-10-01

    We study scenarios in which the baryon asymmetry is generated from the decay of a particle whose mass originates from the spontaneous breakdown of a symmetry. This is realized in many models, including low-scale leptogenesis and theories with classical scale invariance. Symmetry breaking in the early universe proceeds through a phase transition that gives the parent particle a time-dependent mass, which provides an additional departure from thermal equilibrium that could modify the efficiency of baryogenesis from out-of-equilibrium decays. We characterize the effects of various types of phase transitions and show that an enhancement in the baryon asymmetry from decays is possible if the phase transition is of the second order, although such models are typically fine-tuned. We also stress the role of new annihilation modes that deplete the parent particle abundance in models realizing such a phase transition, reducing the efficacy of baryogenesis. A proper treatment of baryogenesis in such models therefore requires the inclusion of the effects we study in this paper.

  4. Sound speed during the QCD phase transition

    International Nuclear Information System (INIS)

    Nagasawa, Michiyasu; Yokoyama, Jun'ichi

    1998-01-01

    The Jeans scale is estimated during the coexistence epoch of quark-gluon and hadron phases in the first-order QCD phase transition. It is shown that, contrary to previous claims, reduction of the sound speed is so little that the phase transition does not affect evolution of cosmological density fluctuations appreciably. (author)

  5. 3D 1H MRSI of brain tumors at 3.0 Tesla using an eight-channel phased-array head coil.

    Science.gov (United States)

    Osorio, Joseph A; Ozturk-Isik, Esin; Xu, Duan; Cha, Soonmee; Chang, Susan; Berger, Mitchel S; Vigneron, Daniel B; Nelson, Sarah J

    2007-07-01

    To implement proton magnetic resonance spectroscopic imaging (1H MRSI) at 3 Tesla (3T) using an eight-channel phased-array head coil in a population of brain-tumor patients. A total of 49 MRI/MRSI examinations were performed on seven volunteers and 34 patients on a 3T GE Signa EXCITE scanner using body coil excitation and reception with an eight-channel phased-array head coil. 1H MRSI was acquired using point-resolved spectroscopy (PRESS) volume selection and three-dimensional (3D) phase encoding using a 144-msec echo time (TE). The mean choline to N-acetyl aspartate ratio (Cho/NAA) was similar within regions of normal-appearing white matter (NAWM) in volunteers (0.5 +/- 0.04) and patients (0.6 +/- 0.1, P = 0.15). This ratio was significantly higher in regions of T2-hyperintensity lesion (T2L) relative to NAWM for patients (1.4 +/- 0.7, P = 0.001). The differences between metabolite intensities in lesions and NAWM were similar, but there was an increase in SNR of 1.95 when an eight-channel head coil was used at 3T vs. previous results at 1.5T. The realized increase in SNR means that clinically relevant data can be obtained in five to 10 minutes at 3T and used to predict the spatial extent of tumor in a manner similar to that previously used to acquire 1.5T data in 17 minutes. Copyright 2007 Wiley-Liss, Inc.

  6. On the escape transition of a tethered Gaussian chain; exact results in two conjugate ensembles

    NARCIS (Netherlands)

    Skvortsov, A.M.; Klushin, L.I.; Leermakers, F.A.M.

    2006-01-01

    Upon compression between two pistons an end-tethered polymer chain undergoes an abrupt transition from a confined coil state to an inhomogeneous flower-like conformation that is partially escaped from the gap. In the thermodynamic limit the system demonstrates a first-order phase transition. A

  7. Conformational properties of rigid-chain amphiphilic macromolecules : The phase diagram

    NARCIS (Netherlands)

    Markov, V. A.; Vasilevskaya, V. V.; Khalatur, P. G.; ten Brinke, G.; Khokhlov, A. R.

    The coil-globule transition in rigid-chain amphiphilic macromolecules was studied by means of computer simulation, and the phase diagrams for such molecules in the solvent quality-persistence length coordinates were constructed. It was shown that the type of phase diagram depends to a substantial

  8. Non-equilibrium phase transitions in complex plasma

    International Nuclear Information System (INIS)

    Suetterlin, K R; Raeth, C; Ivlev, A V; Thomas, H M; Khrapak, S; Zhdanov, S; Rubin-Zuzic, M; Morfill, G E; Wysocki, A; Loewen, H; Goedheer, W J; Fortov, V E; Lipaev, A M; Molotkov, V I; Petrov, O F

    2010-01-01

    Complex plasma being the 'plasma state of soft matter' is especially suitable for investigations of non-equilibrium phase transitions. Non-equilibrium phase transitions can manifest in dissipative structures or self-organization. Two specific examples are lane formation and phase separation. Using the permanent microgravity laboratory PK-3 Plus, operating onboard the International Space Station, we performed unique experiments with binary mixtures of complex plasmas that showed both lane formation and phase separation. These observations have been augmented by comprehensive numerical and theoretical studies. In this paper we present an overview of our most important results. In addition we put our results in context with research of complex plasmas, binary systems and non-equilibrium phase transitions. Necessary and promising future complex plasma experiments on phase separation and lane formation are briefly discussed.

  9. Phase transition of aragonite in abalone nacre

    Science.gov (United States)

    An, Yuanlin; Liu, Zhiming; Wu, Wenjian

    2013-04-01

    Nacre is composed of about 95 vol.% aragonite and 5 vol.% biopolymer and famous for its "brick and mortar" microstructure. The phase transition temperature of aragonite in nacre is lower than the pure aragonite. In situ XRD was used to identify the phase transition temperature from aragonite to calcite in nacre, based on the analysis of TG-DSC of fresh nacre and demineralized nacre. The results indicate that the microstructure and biopolymer are the two main factors that influence the phase transition temperature of aragonite in nacre.

  10. Mixed-order phase transition in a colloidal crystal

    Science.gov (United States)

    Alert, Ricard; Tierno, Pietro; Casademunt, Jaume

    2017-12-01

    Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid-solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field H. At the transition field Hs, the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length ξ∝|H2-Hs2|-1/2. Mean-field critical exponents are predicted, since the upper critical dimension of the transition is du=2. Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.

  11. Mixed-order phase transition in a colloidal crystal.

    Science.gov (United States)

    Alert, Ricard; Tierno, Pietro; Casademunt, Jaume

    2017-12-05

    Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid-solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field [Formula: see text] At the transition field [Formula: see text], the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length [Formula: see text] Mean-field critical exponents are predicted, since the upper critical dimension of the transition is [Formula: see text] Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.

  12. Gravitational waves from global second order phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Jr, John T. Giblin [Department of Physics, Kenyon College, 201 North College Rd, Gambier, OH 43022 (United States); Price, Larry R.; Siemens, Xavier; Vlcek, Brian, E-mail: giblinj@kenyon.edu, E-mail: larryp@caltech.edu, E-mail: siemens@gravity.phys.uwm.edu, E-mail: bvlcek@uwm.edu [Center for Gravitation and Cosmology, Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States)

    2012-11-01

    Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation.

  13. High temperature phase transitions without infrared divergences

    International Nuclear Information System (INIS)

    Tetradis, N.; Wetterich, C.

    1993-09-01

    The most commonly used method for the study of high temperature phase transitions is based on the perturbative evaluation of the temperature dependent effective potential. This method becomes unreliable in the case of a second order or weakly first order phase transition, due to the appearance of infrared divergences. These divergences can be controlled through the method of the effective average action which employs renormalization group ideas. We report on the study of the high temperature phase transition for the N-component φ 4 theory. A detailed quantitative picture of the second order phase transition is presented, including the critical exponents for the behaviour in the vicinity of the critical temperature. An independent check of the results is obtained in the large N limit, and contact with the perturbative approach is established through the study of the Schwinger-Dyson equations. (orig.)

  14. Probabilistic physical characteristics of phase transitions at highway bottlenecks: incommensurability of three-phase and two-phase traffic-flow theories.

    Science.gov (United States)

    Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael

    2014-05-01

    Physical features of induced phase transitions in a metastable free flow at an on-ramp bottleneck in three-phase and two-phase cellular automaton (CA) traffic-flow models have been revealed. It turns out that at given flow rates at the bottleneck, to induce a moving jam (F → J transition) in the metastable free flow through the application of a time-limited on-ramp inflow impulse, in both two-phase and three-phase CA models the same critical amplitude of the impulse is required. If a smaller impulse than this critical one is applied, neither F → J transition nor other phase transitions can occur in the two-phase CA model. We have found that in contrast with the two-phase CA model, in the three-phase CA model, if the same smaller impulse is applied, then a phase transition from free flow to synchronized flow (F → S transition) can be induced at the bottleneck. This explains why rather than the F → J transition, in the three-phase theory traffic breakdown at a highway bottleneck is governed by an F → S transition, as observed in real measured traffic data. None of two-phase traffic-flow theories incorporates an F → S transition in a metastable free flow at the bottleneck that is the main feature of the three-phase theory. On the one hand, this shows the incommensurability of three-phase and two-phase traffic-flow theories. On the other hand, this clarifies why none of the two-phase traffic-flow theories can explain the set of fundamental empirical features of traffic breakdown at highway bottlenecks.

  15. Hydration, phase separation and nonlinear rheology of temperature-sensitive water-soluble polymers

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Fumihiko; Koga, Tsuyoshi [Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510 (Japan); Kaneda, Isamu [Department of Food Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501 (Japan); Winnik, Francoise M, E-mail: ftanaka@phys.polym.kyoto-u.ac.jp [Department of Chemistry and Faculty of Pharmacy, University of Montreal, Montreal, H3C 3J7 (Canada)

    2011-07-20

    The collapse of a poly(N-isopropylacrylamide) (PNIPAM) chain upon heating and the phase diagrams of aqueous PNIPAM solutions with a very flat lower critical solution temperature (LCST) phase separation line are theoretically studied on the basis of cooperative dehydration (simultaneous dissociation of bound water molecules in a group of correlated sequence), and compared with the experimental observation of temperature-induced coil-globule transition by light scattering methods. The transition becomes sharper with the cooperativity parameter {sigma} of hydration. The reentrant coil-globule-coil transition and cononsolvency in a mixed solvent of water and methanol are also studied from the viewpoint of competitive hydrogen bonds between polymer-water and polymer-methanol. The downward shift of the cloud-point curves (LCST cononsolvency) with the mol fraction of methanol due to the competition is calculated and compared with the experimental data. Aqueous solutions of hydrophobically modified PNIPAM carrying short alkyl chains at both chain ends (telechelic PNIPAM) are theoretically and experimentally studied. The LCST of these solutions is found to shift downward along the sol-gel transition curve as a result of end-chain association (association-induced phase separation), and separate from the coil-globule transition line. Associated structures in the solution, such as flower micelles, mesoglobules, and higher fractal assembly, are studied by ultra small-angle neutron scattering with theoretical modeling of the scattering function. Dynamic-mechanical modulus, nonlinear stationary viscosity, and stress build-up in start-up shear flows of the associated networks are studied on the basis of the affine and non-affine transient network theory. The molecular conditions for thickening, strain hardening, and stress overshoot are found in terms of the nonlinear amplitude A of the chain tension and the tension-dissociation coupling constant g.

  16. Design, synthesis, and evaluation of an alpha-helix mimetic library targeting protein-protein interactions.

    Science.gov (United States)

    Shaginian, Alex; Whitby, Landon R; Hong, Sukwon; Hwang, Inkyu; Farooqi, Bilal; Searcey, Mark; Chen, Jiandong; Vogt, Peter K; Boger, Dale L

    2009-04-22

    The design and solution-phase synthesis of an alpha-helix mimetic library as an integral component of a small-molecule library targeting protein-protein interactions are described. The iterative design, synthesis, and evaluation of the candidate alpha-helix mimetic was initiated from a precedented triaryl template and refined by screening the designs for inhibition of MDM2/p53 binding. Upon identifying a chemically and biologically satisfactory design and consistent with the screening capabilities of academic collaborators, the corresponding complete library was assembled as 400 mixtures of 20 compounds (20 x 20 x 20-mix), where the added subunits are designed to mimic all possible permutations of the naturally occurring i, i + 4, i + 7 amino acid side chains of an alpha-helix. The library (8000 compounds) was prepared using a solution-phase synthetic protocol enlisting acid/base liquid-liquid extractions for purification on a scale that insures its long-term availability for screening campaigns. Screening of the library for inhibition of MDM2/p53 binding not only identified the lead alpha-helix mimetic upon which the library was based, but also suggests that a digestion of the initial screening results that accompany the use of such a comprehensive library can provide insights into the nature of the interaction (e.g., an alpha-helix mediated protein-protein interaction) and define the key residues and their characteristics responsible for recognition.

  17. Renormalization group approach to QCD phase transitions

    International Nuclear Information System (INIS)

    Midorikawa, S.; Yoshimoto, S.; So, H.

    1987-01-01

    Effective scalar theories for QCD are proposed to investigate the deconfining and chiral phase transitions. The orders of the phase transitions are determined by infrared stabilities of the fixed points. It is found that the transitions in SU(3) gauge theories are of 1st order for any number of massless flavors. The cases of SU(2) and SU(4) gauge theories are also discussed. (orig.)

  18. Phase transitions in nonequilibrium traffic theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.M.

    2000-02-01

    This paper uses the center difference scheme of Lax-Friedrichs to numerically solve a newly developed continuum traffic flow theory and the kinematic theory of Lighthill and Whitham, and Richards, and it studies the flow-concentration phase transitions in flow containing both shock and rarefaction waves. A homogeneous road with finite length was modeled by both theories. Numerical simulations show that both theories yield nearly identical results for two representative Riemann problems--one has a shock solution and the other a rarefaction wave solution. Their phase transition curves, however, are different: those derived from the new theory have two branches--one for acceleration flow and one for deceleration flow, whereas those derived from the LWR theory comprise a single curve--the equilibrium curve. The phase transition curves in the shock case agree well with certain experimental observations but disagree with others. This disagreement may be resolved by studying transitions among nonequilibrium states, which awaits further development of a more accurate finite difference approximation of the nonequilibrium theory.

  19. Facilitating Quintuple helix innovation with urban living labs

    OpenAIRE

    Baccarne, Bastiaan; Schuurman, Dimitri; De Marez, Lieven

    2015-01-01

    This paper discusses the Urban Living Lab approach as a way to put the Quintuple Helix model for innovation into practice. In this analysis we focus on the concepts innovation democracy, ‘mode 3’ knowledge production, the innovation ecosystem as a system of societal subsystems and socioecological transition. The empirical analysis is performed by means of a multidimensional case study design, applied on a project-based ad hoc collaborative innovation development process in an ecological doma...

  20. Dynamical quantum phase transitions: a review

    Science.gov (United States)

    Heyl, Markus

    2018-05-01

    Quantum theory provides an extensive framework for the description of the equilibrium properties of quantum matter. Yet experiments in quantum simulators have now opened up a route towards the generation of quantum states beyond this equilibrium paradigm. While these states promise to show properties not constrained by equilibrium principles, such as the equal a priori probability of the microcanonical ensemble, identifying the general properties of nonequilibrium quantum dynamics remains a major challenge, especially in view of the lack of conventional concepts such as free energies. The theory of dynamical quantum phase transitions attempts to identify such general principles by lifting the concept of phase transitions to coherent quantum real-time evolution. This review provides a pedagogical introduction to this field. Starting from the general setting of nonequilibrium dynamics in closed quantum many-body systems, we give the definition of dynamical quantum phase transitions as phase transitions in time with physical quantities becoming nonanalytic at critical times. We summarize the achieved theoretical advances as well as the first experimental observations, and furthermore provide an outlook to major open questions as well as future directions of research.

  1. Dynamical quantum phase transitions: a review.

    Science.gov (United States)

    Heyl, Markus

    2018-05-01

    Quantum theory provides an extensive framework for the description of the equilibrium properties of quantum matter. Yet experiments in quantum simulators have now opened up a route towards the generation of quantum states beyond this equilibrium paradigm. While these states promise to show properties not constrained by equilibrium principles, such as the equal a priori probability of the microcanonical ensemble, identifying the general properties of nonequilibrium quantum dynamics remains a major challenge, especially in view of the lack of conventional concepts such as free energies. The theory of dynamical quantum phase transitions attempts to identify such general principles by lifting the concept of phase transitions to coherent quantum real-time evolution. This review provides a pedagogical introduction to this field. Starting from the general setting of nonequilibrium dynamics in closed quantum many-body systems, we give the definition of dynamical quantum phase transitions as phase transitions in time with physical quantities becoming nonanalytic at critical times. We summarize the achieved theoretical advances as well as the first experimental observations, and furthermore provide an outlook to major open questions as well as future directions of research.

  2. Density Functional Theory for Phase-Ordering Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianzhong [Univ. of California, Riverside, CA (United States)

    2016-03-30

    Colloids display astonishing structural and dynamic properties that can be dramatically altered by modest changes in the solution condition or an external field. This complex behavior stems from a subtle balance of colloidal forces and intriguing mesoscopic and macroscopic phase transitions that are sensitive to the processing conditions and the dispersing environment. Whereas the knowledge on the microscopic structure and phase behavior of colloidal systems at equilibrium is now well-advanced, quantitative predictions of the dynamic properties and the kinetics of phase-ordering transitions in colloids are not always realized. Many important mesoscopic and off-equilibrium colloidal states remain poorly understood. The proposed research aims to develop a new, unifying approach to describe colloidal dynamics and the kinetics of phase-ordering transitions based on accomplishments from previous work for the equilibrium properties of both uniform and inhomogeneous systems and on novel concepts from the state-of-the-art dynamic density functional theory. In addition to theoretical developments, computational research is designed to address a number of fundamental questions on phase-ordering transitions in colloids, in particular those pertinent to a competition of the dynamic pathways leading to various mesoscopic structures, off-equilibrium states, and crystalline phases. By providing a generic theoretical framework to describe equilibrium, metastable as well as non-ergodic phase transitions concurrent with the colloidal self-assembly processes, accomplishments from this work will have major impacts on both fundamental research and technological applications.

  3. Problem-solving phase transitions during team collaboration

    DEFF Research Database (Denmark)

    Wiltshire, Travis; Butner, Jonathan E.; Fiore, Stephen M.

    2018-01-01

    ) with dynamical systems theory suggesting that when a system is undergoing a phase transition it should exhibit a peak in entropy and that entropy levels should also relate to team performance. Communications from 40 teams that collaborated on a complex problem were coded for occurrence of problem......-solving processes. We applied a sliding window entropy technique to each team's communications and specified criteria for (a) identifying data points that qualify as peaks and (b) determining which peaks were robust. We used multilevel modeling, and provide a qualitative example, to evaluate whether phases exhibit...... phases. Peaks in entropy thus corresponded to qualitative shifts in teams’ CPS communications, providing empirical evidence that teams exhibit phase transitions during CPS. Also, lower average levels of entropy at the phase transition points predicted better CPS performance. We specify future directions...

  4. Exploring the conserved water site and hydration of a coiled-coil trimerisation motif: a MD simulation study.

    Science.gov (United States)

    Dolenc, Jozica; Baron, Riccardo; Missimer, John H; Steinmetz, Michel O; van Gunsteren, Wilfred F

    2008-07-21

    The solvent structure and dynamics around ccbeta-p, a 17-residue peptide that forms a parallel three-stranded alpha-helical coiled coil in solution, was analysed through 10 ns explicit solvent molecular dynamics (MD) simulations at 278 and 330 K. Comparison with two corresponding simulations of the monomeric form of ccbeta-p was used to investigate the changes of hydration upon coiled-coil formation. Pronounced peaks in the solvent density distribution between residues Arg8 and Glu13 of neighbouring helices show the presence of water bridges between the helices of the ccbeta-p trimer; this is in agreement with the water sites observed in X-ray crystallography experiments. Interestingly, this water site is structurally conserved in many three-stranded coiled coils and, together with the Arg and Glu residues, forms part of a motif that determines three-stranded coiled-coil formation. Our findings show that little direct correlation exists between the solvent density distribution and the temporal ordering of water around the trimeric coiled coil. The MD-calculated effective residence times of up to 40 ps show rapid exchange of surface water molecules with the bulk phase, and indicate that the solvent distribution around biomolecules requires interpretation in terms of continuous density distributions rather than in terms of discrete molecules of water. Together, our study contributes to understanding the principles of three-stranded coiled-coil formation.

  5. Computational advances in transition phase analysis

    International Nuclear Information System (INIS)

    Morita, K.; Kondo, S.; Tobita, Y.; Shirakawa, N.; Brear, D.J.; Fischer, E.A.

    1994-01-01

    In this paper, historical perspective and recent advances are reviewed on computational technologies to evaluate a transition phase of core disruptive accidents in liquid-metal fast reactors. An analysis of the transition phase requires treatment of multi-phase multi-component thermohydraulics coupled with space- and energy-dependent neutron kinetics. Such a comprehensive modeling effort was initiated when the program of SIMMER-series computer code development was initiated in the late 1970s in the USA. Successful application of the latest SIMMER-II in USA, western Europe and Japan have proved its effectiveness, but, at the same time, several areas that require further research have been identified. Based on the experience and lessons learned during the SIMMER-II application through 1980s, a new project of SIMMER-III development is underway at the Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan. The models and methods of SIMMER-III are briefly described with emphasis on recent advances in multi-phase multi-component fluid dynamics technologies and their expected implication on a future reliable transition phase analysis. (author)

  6. Critical Line of the Deconfinement Phase Transitions

    Science.gov (United States)

    Gorenstein, Mark I.

    Phase diagram of strongly interacting matter is discussed within the exactly solvable statistical model of the quark-gluon bags. The model predicts two phases of matter: the hadron gas at a low temperature T and baryonic chemical potential μ B , and the quark-gluon gas at a high T and/or μ B . The nature of the phase transition depends on a form of the bag massvolume spectrum (its pre-exponential factor), which is expected to change with the μ B /T ratio. It is therefore likely that the line of the 1 st order transition at a high μ B/T ratio is followed by the line of the 2 nd order phase transition at an intermediate μ B/T, and then by the lines of "higher order transitions" at a low μ B /T. This talk is based on a recent paper (Gorenstein, Gaździcki, and Greiner, 2005).

  7. Comparative study of fast T 2-weighted images using respiratory triggered, breath-hold, fat suppression and phased array multi coil for liver evaluation by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Abbehusen, Cristiane L.; D'Ippolito, Giuseppe; Palacio, Glaucia A.S.; Szejnfeld, Jacob

    2003-01-01

    The objective of this study was to compare both qualitatively and quantitatively six T 2-weighted turbo spin-echo sequences varying the respiratory compensation technique, associating or not fat tissue suppression and using different types of coils. We performed a prospective study of 71 consecutive patients that were submitted to MRI of the liver using a 1.5 T magnet. The six following pulse sequences were used: fat-suppressed respiratory triggered with conventional body coil; breath-hold fat-suppressed with conventional body coil; non-suppressed respiratory triggered with conventional body coil; breath-hold non fat-suppressed with conventional body coil; fat-suppressed respiratory triggered with phased-array multi coil; breath-hold fat-suppressed with phased-array multi coil. Images were analyzed quantitatively by measuring the signal-to-noise ratios and qualitatively by evaluating the sharpness of hepatic contours, visibility of intrahepatic vessels and other segmental landmarks, and the presence of artifacts. Results: the qualitative analysis showed that the mean values obtained with the six sequences were 7.8, 4.6, 7.9, 5.2, 6.7 and 4.6 respectively. The respiratory-triggered sequences were better than the breath-hold sequences in both qualitative and quantitative analysis (p < 0.001). No significant differences in the values of signal-to-noise ratios and in overall image quality were found between the sequences with and without fat suppression (p . 0.05). The sequences using the body coil were similar in terms of image quality (p . 0.05) and better regarding signal-to-noise ratios than those obtained with the phased=array multi coil (p ,0.001). Our qualitative and quantitative results suggest that the best MRI sequences for the valuation of the liver are the sequences with respiratory triggering using a conventional body coil, with or without fat suppression. (author)

  8. The MSSM Electroweak Phase Transition on the Lattice

    CERN Document Server

    Laine, Mikko

    1998-01-01

    We study the MSSM finite temperature electroweak phase transition with lattice Monte Carlo simulations, for a large Higgs mass (m_H ~ 95 GeV) and light stop masses (m_tR ~ 150...160 GeV). We employ a 3d effective field theory approach, where the degrees of freedom appearing in the action are the SU(2) and SU(3) gauge fields, the weakly interacting Higgs doublet, and the strongly interacting stop triplet. We determine the phase diagram, the critical temperatures, the scalar field expectation values, the latent heat, the interface tension and the correlation lengths at the phase transition points. Extrapolating the results to the infinite volume and continuum limits, we find that the transition is stronger than indicated by 2-loop perturbation theory, guaranteeing that the MSSM phase transition is strong enough for baryogenesis in this regime. We also study the possibility of a two-stage phase transition, in which the stop field gets an expectation value in an intermediate phase. We find that a two-stage transi...

  9. Hadronization during quark-gluon plasma phase transition

    International Nuclear Information System (INIS)

    Mohanty, A.K.; Kataria, S.K.

    1996-01-01

    The hadron multiplicity distributions and factorial moments are studied in the framework of Landau theory of phase transitions. The factorial moments show a scaling law with a scaling exponent ν which characterizes the intermittency properties of the hadron phase for T c (or T t ) where T c (or T t ) is the transition temperature for second (or first) order transition. The scaling exponent ν is weakly dependent on the free energy parameters as well as on temperature. It is shown that ν remains practically constant in the hadron phase for which T c or T t whether the transition is second order or first order of second kind where the free energy expansion includes cubic term. This universality in the scaling exponent is also maintained above T c over a wide range of temperature even if the transition is strongly first order of first kind where the free energy expansion has only even order coefficients, except around the critical temperature T t where T t approx-gt T c . Therefore, the scaling exponent ν is rather more universal and only indicates the presence of a possible phase transition. It is further shown that the hadron multiplicity distribution is quite sensitive to the free energy parameters. The study of hadron multiplicity distribution at various resolution or bin size reveals more information about the dynamics of the phase transition. The calculated hadron multiplicity distributions are also compared with the negative binomial distribution, often used to explain the experimental multiplicity distributions. copyright 1996 The American Physical Society

  10. Multiple helix ecosystems for sustainable competitiveness

    CERN Document Server

    Ferreira, João; Farinha, Luís; Fernandes, Nuno

    2016-01-01

    This book discusses the main issues, challenges, opportunities, and trends involving the interactions between academia, industry, government and society. Specifically, it aims to explore how these interactions enhance the ways in which companies deliver products and services in order to achieve sustainable competitiveness in the marketplace. Sustainable competitiveness has been widely discussed by academics and practitioners, considering the importance of protecting the environment while sustaining the economic goals of organizations. The Quintuple Helix innovation model is a framework for facilitating knowledge, innovation and sustainable competitive advantage. It embeds the Triple and the Quadruple Helix models by adding a fifth helix, the “natural environment.” The Triple Helix model focuses on the university-industry-government triad, while the Quadruple adds civil society (the media- and culture-driven public) as a fourth helix. The Quintuple Helix model facilitates research, public policy, and pract...

  11. Kinetics of Coil-to-Globule Transition of Dansyl-Labeled Poly(N-sopropylacrylamide) Chains in Aqueous Solution

    Science.gov (United States)

    Li, Chun-liang; Ye, Xiao-dong; Ding, Yan-wei; Liu, Shi-lin

    2012-08-01

    The coil-to-globule transition of thermally sensitive linear poly(N-isopropylacrylamide) (PNIPAM) labeled with dansyl group is induced by 1.54 μm laser pulses (width≈10 ns). The dansyl group is used to follow the transition kinetics because its fluorescence intensity is very sensitive to its micro-environment. As the molar ratio of NIPAM monomer to dansyl group increases from 110 to 300, the effect of covalently attached dansyl fluorophores on the transition decreases. In agreement with our previous study in which we used 8-anilino-1-naphthalensulfonic acid ammonium salt free in water as a fluorescent probe, the current study reveals that the transition has two distinct stages with two characteristic times, namely, τfast≈0.1 ms, which can be attributed to the nucleation and formation of some “pearls" (locally contracting segments) on the chain, and τslow≈0.5 ms, which is related to the merging and coarsening of the “pearls". τfast is independent of the PNIPAM chain length over a wide range (Mw=2.8×106-4.2×107 g/mol). On the other hand, τslow only slightly increases with the chain length.

  12. MR-based conductivity imaging using multiple receiver coils.

    Science.gov (United States)

    Lee, Joonsung; Shin, Jaewook; Kim, Dong-Hyun

    2016-08-01

    To propose a signal combination method for MR-based tissue conductivity mapping using a standard clinical scanner with multiple receiver coils. The theory of the proposed method is presented with two practical approaches, a coil-specific approach and a subject-specific approach. Conductivity maps were reconstructed using the transceive phase of the combined signal. The sensitivities of the coefficients used for signal combination were analyzed and the method was compared with other signal combination methods. For validation, multiple receiver brain coils and multiple receiver breast coils were used in phantom, in vivo brain, and in vivo breast studies. The variation among the conductivity estimates was conductivity estimates. MR-based tissue conductivity mapping is feasible when using a standard clinical MR scanner with multiple receiver coils. The proposed method reduces systematic errors in phase-based conductivity mapping that can occur due to the inhomogeneous magnitude of the combined receive profile. Magn Reson Med 76:530-539, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Two kinds of phase transitions in a voting model

    Science.gov (United States)

    Hisakado, M.; Mori, S.

    2012-08-01

    In this paper, we discuss a voting model with two candidates, C0 and C1. We consider two types of voters—herders and independents. The voting of independents is based on their fundamental values, while the voting of herders is based on the number of previous votes. We can identify two kinds of phase transitions. One is an information cascade transition similar to a phase transition seen in the Ising model. The other is a transition of super and normal diffusions. These phase transitions coexist. We compared our results to the conclusions of experiments and identified the phase transitions in the upper limit of the time t by using the analysis of human behavior obtained from experiments.

  14. Stability tests of the Westinghouse coil in the International Fusion Superconducting Magnet Test Facility

    International Nuclear Information System (INIS)

    Dresner, L.; Fehling, D.T.; Lubell, M.S.; Lue, J.W.; Luton, J.N.; McManamy, T.J.; Shen, S.S.; Wilson, C.T.

    1987-09-01

    The Westinghouse coil is one of three forced-flow coils in the six-coil toroidal array of the International Fusion Superconducting Magnet Test Facility at Oak Ridge National Laboratory. It is wound with an 18-kA, Nb 3 Sn/Cu, cable-in-conduit superconductor structurally supported by aluminum plates and cooled by 4-K, 15-atm supercritical helium. The coil is instrumented to permit measurement of helium temperature, pressure, and flow rate; structure temperature and strain; field; and normal zone voltage. A resistive heater has been installed to simulate nuclear heating, and inductive heaters have been installed to facilitate stability testing. The coil has been tested both individually and in the six-coil array. The tests covered charging to full design current and field, measuring the current-sharing threshold temperature using the resistive heaters, and measuring the stability margin using the pulsed inductive heaters. At least one section of the conductor exhibits a very broad resistive transition (resistive transition index = 4). The broad transition, though causing the appearance of voltage at relatively low temperatures, does not compromise the stability margin of the coil, which was greater than 1.1 J/cm 3 of strands. In another, nonresistive location, the stability margin was between 1.7 and 1.9 J/cm 3 of strands. The coil is completely stable in operation at 100% design current in both the single- and six-coil modes

  15. Quarks-bags phase transition in quantum chromodynamics

    International Nuclear Information System (INIS)

    Gorenshtejn, M.I.

    1981-01-01

    Phase transitions in the quark-gluon plasma are considered at finite temperatures and chemical potentials. A phenomenological account for a complicated structure of the QCD vacuum results in the necessity to use the formalism of isobaric ensembles to describe the system. The phase transition curve separating the regions of the quark-gluon plasma and the hadronic bag phase in the μT plane is calculated [ru

  16. Phase Transitions in Algebraic Cluster Models

    International Nuclear Information System (INIS)

    Yepez-Martinez, H.; Cseh, J.; Hess, P.O.

    2006-01-01

    Complete text of publication follows. Phase transitions in nuclear systems are of utmost interest. An interesting class of phase transitions can be seen in algebraic models of nuclear structure. They are called shapephase transitions due to the following reason. These models have analytically solvable limiting cases, called dynamical symmetries, which are characterized by a chain of nested subgroups. They correspond to well-defined geometrical shape and behaviour, e.g. to rotation of an ellipsoid, or spherical vibration. The general case of the model, which includes interactions described by more than one groupchain, breaks the symmetry, and changing the relative strengths of these interactions, one can go from one shape to the other. In doing so a phase-transition can be seen. A phase transition is defined as a discontinuity of some quantity as a function of the control parameter, which gives the relative strength of the interactions of different symmetries. Real phase transitions can take place only in infinite systems, like in the classical limits of these algebraic models, when the particle number N is very large: N → ∞. For finite N the discontinuities are smoothed out, nevertheless, some indications of the phase-transitions can still be there. A controlled way of breaking the dynamical symmetries may reveal another very interesting phenomenon, i.e. the appearance of a quasidynamical (or effective) symmetry. This rather general symmetry-concept of quantum mechanics corresponds to a situation, in which the symmetry-breaking interactions are so strong that the energy-eigenfunctions are not symmetric, i.e. are not basis states of an irreducible representation of the symmetry group, rather they are linear combinations of these basis states. However, they are very special linear combinations in the sense that their coefficients are (approximately) identical for states with different spin values. When this is the case, then the underlying intrinsic state is the

  17. Unconventional transformation of spin Dirac phase across a topological quantum phase transition

    Science.gov (United States)

    Xu, Su-Yang; Neupane, Madhab; Belopolski, Ilya; Liu, Chang; Alidoust, Nasser; Bian, Guang; Jia, Shuang; Landolt, Gabriel; Slomski, Batosz; Dil, J. Hugo; Shibayev, Pavel P.; Basak, Susmita; Chang, Tay-Rong; Jeng, Horng-Tay; Cava, Robert J.; Lin, Hsin; Bansil, Arun; Hasan, M. Zahid

    2015-01-01

    The topology of a topological material can be encoded in its surface states. These surface states can only be removed by a bulk topological quantum phase transition into a trivial phase. Here we use photoemission spectroscopy to image the formation of protected surface states in a topological insulator as we chemically tune the system through a topological transition. Surprisingly, we discover an exotic spin-momentum locked, gapped surface state in the trivial phase that shares many important properties with the actual topological surface state in anticipation of the change of topology. Using a spin-resolved measurement, we show that apart from a surface bandgap these states develop spin textures similar to the topological surface states well before the transition. Our results offer a general paradigm for understanding how surface states in topological phases arise from a quantum phase transition and are suggestive for the future realization of Weyl arcs, condensed matter supersymmetry and other fascinating phenomena in the vicinity of a quantum criticality. PMID:25882717

  18. Quantum trajectory phase transitions in the micromaser.

    Science.gov (United States)

    Garrahan, Juan P; Armour, Andrew D; Lesanovsky, Igor

    2011-08-01

    We study the dynamics of the single-atom maser, or micromaser, by means of the recently introduced method of thermodynamics of quantum jump trajectories. We find that the dynamics of the micromaser displays multiple space-time phase transitions, i.e., phase transitions in ensembles of quantum jump trajectories. This rich dynamical phase structure becomes apparent when trajectories are classified by dynamical observables that quantify dynamical activity, such as the number of atoms that have changed state while traversing the cavity. The space-time transitions can be either first order or continuous, and are controlled not just by standard parameters of the micromaser but also by nonequilibrium "counting" fields. We discuss how the dynamical phase behavior relates to the better known stationary-state properties of the micromaser.

  19. Negative compressibility and non-equivalence of two statistical ensembles in the escape transition of a polymer chain

    NARCIS (Netherlands)

    Skvortsov, A.M.; Klushin, L.I.; Leermakers, F.A.M.

    2007-01-01

    An end-tethered polymer chain compressed between two pistons undergoes an abrupt transition from a confined coil state to an inhomogeneous flowerlike conformation partially escaped from the gap. This phase transition is first order in the thermodynamic limit of infinitely long chains. A rigorous

  20. An absorbing phase transition from a structured active particle phase

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Cristobal [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain); Ramos, Francisco [Departamento de Electromagnetismo y Fisica de la Materia and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hernandez-GarcIa, Emilio [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain)

    2007-02-14

    In this work we study the absorbing state phase transition of a recently introduced model for interacting particles with neighbourhood-dependent reproduction rates. The novelty of the transition is that as soon as the active phase is reached by increasing a control parameter a periodically arranged structure of particle clusters appears. A numerical study in one and two dimensions shows that the system falls into the directed percolation universality class.

  1. A drift-pump coil design for a Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Neef, W.S.; Logan, B.

    1983-01-01

    This paper describes both the theory and mechanical design behind a new concept for trapped ion removal from tandem mirror end plugs. The design has been developed for the Mirror Advanced Reactor Study (MARS). The new drift-pump coils replace charge exchange pump beams. Pump beams consume large amounts of power and seriously reduce reactor performance. Drift-pump coils consume only a few megawatts of power and introduce no added burden to the reactor vacuum pumps. In addition, they are easy to replace. The coils are similar in shape to a paper clip and are located at two positions in each end plug. The coils between the transition coil and the first anchor yinyang serve to remove ions trapped in the magnetic well just outboard of the high field choke coil. The coils located between the anchor coil set and the plug coil set remove sloshing ions and trapped cold ions from the plug region

  2. Liquid-liquid phase transition in Stillinger-Weber silicon

    International Nuclear Information System (INIS)

    Beaucage, Philippe; Mousseau, Normand

    2005-01-01

    It was recently demonstrated that Stillinger-Weber silicon undergoes a liquid-liquid first-order phase transition deep into the supercooled region (Sastry and Angell 2003 Nat. Mater. 2 739). Here we study the effects of perturbations on this phase transition. We show that the order of the liquid-liquid transition changes with negative pressure. We also find that the liquid-liquid transition disappears when the three-body term of the potential is strengthened by as little as 5%. This implies that the details of the potential could affect strongly the nature and even the existence of the liquid-liquid phase

  3. Measurement of Two-Phase Flow Characteristics Under Microgravity Conditions

    Science.gov (United States)

    Keshock, E. G.; Lin, C. S.; Edwards, L. G.; Knapp, J.; Harrison, M. E.; Xhang, X.

    1999-01-01

    This paper describes the technical approach and initial results of a test program for studying two-phase annular flow under the simulated microgravity conditions of KC-135 aircraft flights. A helical coil flow channel orientation was utilized in order to circumvent the restrictions normally associated with drop tower or aircraft flight tests with respect to two-phase flow, namely spatial restrictions preventing channel lengths of sufficient size to accurately measure pressure drops. Additionally, the helical coil geometry is of interest in itself, considering that operating in a microgravity environment vastly simplifies the two-phase flows occurring in coiled flow channels under 1-g conditions for virtually any orientation. Pressure drop measurements were made across four stainless steel coil test sections, having a range of inside tube diameters (0.95 to 1.9 cm), coil diameters (25 - 50 cm), and length-to-diameter ratios (380 - 720). High-speed video photographic flow observations were made in the transparent straight sections immediately preceding and following the coil test sections. A transparent coil of tygon tubing of 1.9 cm inside diameter was also used to obtain flow visualization information within the coil itself. Initial test data has been obtained from one set of KC-135 flight tests, along with benchmark ground tests. Preliminary results appear to indicate that accurate pressure drop data is obtainable using a helical coil geometry that may be related to straight channel flow behavior. Also, video photographic results appear to indicate that the observed slug-annular flow regime transitions agree quite reasonably with the Dukler microgravity map.

  4. Singlet Higgs phenomenology and the electroweak phase transition

    International Nuclear Information System (INIS)

    Profumo, Stefano; Ramsey-Musolf, Michael J.; Shaughnessy, Gabe

    2007-01-01

    We study the phenomenology of gauge singlet extensions of the Standard Model scalar sector and their implications for the electroweak phase transition. We determine the conditions on the scalar potential parameters that lead to a strong first order phase transition as needed to produce the observed baryon asymmetry of the universe. We analyze the constraints on the potential parameters derived from Higgs boson searches at LEP and electroweak precision observables. For models that satisfy these constraints and that produce a strong first order phase transition, we discuss the prospective signatures in future Higgs studies at the Large Hadron Collider and a Linear Collider. We argue that such studies will provide powerful probes of phase transition dynamics in models with an extended scalar sector

  5. paraelectric phase transition

    Indian Academy of Sciences (India)

    The ferroelectric phase transition is diffuse in nature and broadening of the peak increases with La content. Keywords. PLZT ... Marssi et al (1998) concluded the PLZTs x/65/35 as a model. ∗ ... by analysing field cooled (FC) and zero field cooled (ZFC) dielectric ... material are fitted with universal dielectric behaviour within.

  6. Phase-transition-like behaviour of quantum games

    International Nuclear Information System (INIS)

    Du Jiangfeng; Li Hui; Xu Xiaodong; Zhou Xianyi; Han Rongdian

    2003-01-01

    The discontinuous dependence of the properties of a quantum game on its entanglement has been shown to be very much like phase transitions viewed in the entanglement-payoff diagram (J Du et al 2002 Phys. Rev. Lett. 88 137902). In this paper we investigate such phase-transition-like behaviour of quantum games, by suggesting a method which would help to illuminate the origin of such a kind of behaviour. For the particular case of the generalized Prisoners' Dilemma, we find that, for different settings of the numerical values in the payoff table, even though the classical game behaves the same, the quantum game exhibits different and interesting phase-transition-like behaviour

  7. Phase-transition-like behaviour of quantum games

    CERN Document Server

    Du Jiang Feng; Xu Xiao Dong; Zhou Xian Yi; Han Rong Dian

    2003-01-01

    The discontinuous dependence of the properties of a quantum game on its entanglement has been shown to be very much like phase transitions viewed in the entanglement-payoff diagram (J Du et al 2002 Phys. Rev. Lett. 88 137902). In this paper we investigate such phase-transition-like behaviour of quantum games, by suggesting a method which would help to illuminate the origin of such a kind of behaviour. For the particular case of the generalized Prisoners' Dilemma, we find that, for different settings of the numerical values in the payoff table, even though the classical game behaves the same, the quantum game exhibits different and interesting phase-transition-like behaviour.

  8. Observation of the Photon-Blockade Breakdown Phase Transition

    Directory of Open Access Journals (Sweden)

    J. M. Fink

    2017-01-01

    Full Text Available Nonequilibrium phase transitions exist in damped-driven open quantum systems when the continuous tuning of an external parameter leads to a transition between two robust steady states. In second-order transitions this change is abrupt at a critical point, whereas in first-order transitions the two phases can coexist in a critical hysteresis domain. Here, we report the observation of a first-order dissipative quantum phase transition in a driven circuit quantum electrodynamics system. It takes place when the photon blockade of the driven cavity-atom system is broken by increasing the drive power. The observed experimental signature is a bimodal phase space distribution with varying weights controlled by the drive strength. Our measurements show an improved stabilization of the classical attractors up to the millisecond range when the size of the quantum system is increased from one to three artificial atoms. The formation of such robust pointer states could be used for new quantum measurement schemes or to investigate multiphoton phases of finite-size, nonlinear, open quantum systems.

  9. Nonequilibrium thermodynamic fluctuations and phase transition in black holes

    International Nuclear Information System (INIS)

    Su, R.; Cai, R.; Yu, P.K.N.

    1994-01-01

    Landau nonequilibrium fluctuation and phase transition theory is applied to the discussion of the phase transition of black holes. Some second moments of relevant thermodynamical quantities for Kerr-Newman black holes are estimated. A theorem governing the divergence of some second moments and the occurrence of the phase transition in black holes is given

  10. Phase transitions and critical behaviour for charged black holes

    International Nuclear Information System (INIS)

    Carlip, S; Vaidya, S

    2003-01-01

    We investigate the thermodynamics of a four-dimensional charged black hole in a finite cavity in asymptotically flat and asymptotically de Sitter spaces. In each case, we find a Hawking-Page-like phase transition between a black hole and a thermal gas very much like the known transition in asymptotically anti-de Sitter space. For a 'supercooled' black hole - a thermodynamically unstable black hole below the critical temperature for the Hawking-Page phase transition - the phase diagram has a line of first-order phase transitions that terminates in a second-order point. For the asymptotically flat case, we calculate the critical exponents at the second-order phase transition and find that they exactly match the known results for a charged black hole in anti-de Sitter space. We find strong evidence for similar phase transitions for the de Sitter black hole as well. Thus many of the thermodynamic features of charged anti-de Sitter black holes do not really depend on asymptotically anti-de Sitter boundary conditions; the thermodynamics of charged black holes is surprisingly universal

  11. A grain boundary phase transition in Si–Au

    International Nuclear Information System (INIS)

    Ma, Shuailei; Meshinchi Asl, Kaveh; Tansarawiput, Chookiat; Cantwell, Patrick R.; Qi, Minghao; Harmer, Martin P.; Luo, Jian

    2012-01-01

    A grain boundary transition from a bilayer to an intrinsic (nominally clean) boundary is observed in Si–Au. An atomically abrupt transition between the two complexions (grain boundary stabilized phases) implies the occurrence of a first-order interfacial phase transition associated with a discontinuity in the interfacial excess. This observation supports a grain-boundary complexion theory with broad applications. This transition is atypical in that the monolayer complexion is absent. A model is proposed to explain the bilayer stabilization and the origin of this complexion transition.

  12. A Classification of Basic Helix-Loop-Helix Transcription Factors of Soybean

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson

    2015-01-01

    Full Text Available The complete genome sequence of soybean allows an unprecedented opportunity for the discovery of the genes controlling important traits. In particular, the potential functions of regulatory genes are a priority for analysis. The basic helix-loop-helix (bHLH family of transcription factors is known to be involved in controlling a wide range of systems critical for crop adaptation and quality, including photosynthesis, light signalling, pigment biosynthesis, and seed pod development. Using a hidden Markov model search algorithm, 319 genes with basic helix-loop-helix transcription factor domains were identified within the soybean genome sequence. These were classified with respect to their predicted DNA binding potential, intron/exon structure, and the phylogeny of the bHLH domain. Evidence is presented that the vast majority (281 of these 319 soybean bHLH genes are expressed at the mRNA level. Of these soybean bHLH genes, 67% were found to exist in two or more homeologous copies. This dataset provides a framework for future studies on bHLH gene function in soybean. The challenge for future research remains to define functions for the bHLH factors encoded in the soybean genome, which may allow greater flexibility for genetic selection of growth and environmental adaptation in this widely grown crop.

  13. Phase Transitions in Geomorphology

    Science.gov (United States)

    Ortiz, C. P.; Jerolmack, D. J.

    2015-12-01

    Landscapes are patterns in a dynamic steady-state, due to competing processes that smooth or sharpen features over large distances and times. Geomorphic transport laws have been developed to model the mass-flux due to different processes, but are unreasonably effective at recovering the scaling relations of landscape features. Using a continuum approximation to compare experimental landscapes and the observed landscapes of the earth, one finds they share similar morphodynamics despite a breakdown of classical dynamical similarity between the two. We propose the origin of this effectiveness is a different kind of dynamic similarity in the statistics of initiation and cessation of motion of groups of grains, which is common to disordered systems of grains under external driving. We will show how the existing data of sediment transport points to common signatures with dynamical phase transitions between "mobile" and "immobile" phases in other disordered systems, particularly granular materials, colloids, and foams. Viewing landscape evolution from the lens of non-equilibrium statistical physics of disordered systems leads to predictions that the transition of bulk measurements such as particle flux is continuous from one phase to another, that the collective nature of the particle dynamics leads to very slow aging of bulk properties, and that the dynamics are history-dependent. Recent results from sediment transport experiments support these predictions, suggesting that existing geomorphic transport laws may need to be replaced by a new generation of stochastic models with ingredients based on the physics of disordered phase transitions. We discuss possible strategies for extracting the necessary information to develop these models from measurements of geomorphic transport noise by connecting particle-scale collective dynamics and space-time fluctuations over landscape features.

  14. BI-ground microstrip array coil vs. conventional microstrip array coil for mouse imaging at 7 tesla

    Science.gov (United States)

    Hernández, Ricardo; Terrones, M. A. López; Jakob, P. M.

    2012-10-01

    At high field strengths, the need for more efficient high frequency coils has grown. Since the radiation losses and the interaction between coil and sample increase proportionally to field strength, the quality factor (Q) and the sensitivity of the coil decrease as consequence of these negative effects. Since Zhang et al proposed in 2001 a new surface coil based on the microstrip transmission line for high frequency, different Tx-Rx phased arrays based on this concept have been already introduced in animal and whole body systems at high field strengths, each of them with different modifications in order to get better field homogeneity, SNR or isolation between coil elements in the array. All these arrays for animals systems have been built for rat imaging. One of these modifications is called BI-Ground Microstrip Array Coil (BIGMAC). The implementation of a smaller two-channel BIGMAC design for mouse imaging is studied and its performance compared to a two-channel conventional Microstrip array at 7 Tesla, the higher isolation by using BIGMAC elements in comparison with conventional Microstrip elements is shown in this work.

  15. Phase transitions in solids under high pressure

    CERN Document Server

    Blank, Vladimir Davydovich

    2013-01-01

    Phase equilibria and kinetics of phase transformations under high pressureEquipment and methods for the study of phase transformations in solids at high pressuresPhase transformations of carbon and boron nitride at high pressure and deformation under pressurePhase transitions in Si and Ge at high pressure and deformation under pressurePolymorphic α-ω transformation in titanium, zirconium and zirconium-titanium alloys Phase transformations in iron and its alloys at high pressure Phase transformations in gallium and ceriumOn the possible polymorphic transformations in transition metals under pressurePressure-induced polymorphic transformations in АIBVII compoundsPhase transformations in AIIBVI and AIIIBV semiconductor compoundsEffect of pressure on the kinetics of phase transformations in iron alloysTransformations during deformation at high pressure Effects due to phase transformations at high pressureKinetics and hysteresis in high-temperature polymorphic transformations under pressureHysteresis and kineti...

  16. Late time phase transition as dark energy

    Indian Academy of Sciences (India)

    Abstract. We show that the dark energy field can naturally be described by the scalar condensates of a non-abelian gauge group. This gauge group is unified with the standard model gauge groups and it has a late time phase transition. The small phase transition explains why the positive acceleration of the universe is ...

  17. Quench detection system of the EURATOM coil for the Large Coil Task

    International Nuclear Information System (INIS)

    Noether, G.; Gauss, S.; Maurer, W.; Siewerdt, L.; Ulbricht, A.; Wuechner, F.

    1989-01-01

    A special quench detection system has been developed for the EURATOM Large Coil Task (LCT) coil. The system is based on a bridge circuit which uses a special 'two in hand' winding technique for the pancakes of the EURATOM LCT coil. The electronic circuit was designed in a fail safe way to prevent failure of the quench detector due to failure of one of its components. A method for quick balancing of the quench detection system in a large toroidal magnet system was applied. The quench detection system worked very reliably during the experimental phase of the LCT and was within the quench detection level setting of 50 mV, i.e. the system was not sensitive to poloidal field transients at or below this level. Non-electrical methods for quench detection were also investigated. (author)

  18. Fabrication and testing of a superconducting coil: Phase 3 of the Maglev development program

    Energy Technology Data Exchange (ETDEWEB)

    Fife, A A; Lee, S; Tillotson, M [CTF Systems Inc., Port Coquitlam, BC (Canada)

    1989-03-01

    This report documents developmental research on superconducting magnet technology suitable for the levitation and propulsion units of the Canadian Maglev vehicle. The contract work involved the design, fabrication and testing of a racetrack coil fabricated using epoxy-impregnated windings of copper stabilized NbTi wire. The following results were achieved: successful fabrication and testing of a superconducting racetrack magnet with strength {gt} 400,000 A-turns integrated in a support frame; selection and characterization of cryogenic strain gauges; characterization of strain in solenoidal and racetrack superconducting magnets; design, fabrication and testing of high current persistent switches; and operation of superconducting magnets in persistent mode. The racetrack coil reached the design current after the third quench and short sample critical current after the eighth quench. This behavior is essentially identical to that observed with a superconducting solenoid fabricated during a previous phase. The strain measured perpendicular to the straight sides of the racetrack coil was proportional to the square of the energizing current. Persistent switches were fabricated, one type with low resistance (10{sup -2} ohm) and the other with high resistance (1.2 ohm) in their normal states. The low resistance switch could be operated in 1-Tesla fields with stabel characteristics up to about 800A drive current and the high resistance switch to 475A.

  19. Phase separation in the nonequilibrium Verwey transition in magnetite

    Science.gov (United States)

    Randi, F.; Vergara, I.; Novelli, F.; Esposito, M.; Dell'Angela, M.; Brabers, V. A. M.; Metcalf, P.; Kukreja, R.; Dürr, H. A.; Fausti, D.; Grüninger, M.; Parmigiani, F.

    2016-02-01

    We present equilibrium and out-of-equilibrium studies of the Verwey transition in magnetite. In the equilibrium optical conductivity, we find a steplike change at the phase transition for photon energies below about 2 eV. The possibility of triggering a nonequilibrium transient metallic state in insulating magnetite by photo excitation was recently demonstrated by an x-ray study. Here we report a full characterization of the optical properties in the visible frequency range across the nonequilibrium phase transition. Our analysis of the spectral features is based on a detailed description of the equilibrium properties. The out-of-equilibrium optical data bear the initial electronic response associated to localized photoexcitation, the occurrence of phase separation, and the transition to a transient metallic phase for excitation density larger than a critical value. This allows us to identify the electronic nature of the transient state, to unveil the phase transition dynamics, and to study the consequences of phase separation on the reflectivity, suggesting a spectroscopic feature that may be generally linked to out-of-equilibrium phase separation.

  20. Liquid-liquid phase transition and glass transition in a monoatomic model system.

    Science.gov (United States)

    Xu, Limei; Buldyrev, Sergey V; Giovambattista, Nicolas; Stanley, H Eugene

    2010-01-01

    We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses.

  1. Liquid-Liquid Phase Transition and Glass Transition in a Monoatomic Model System

    Directory of Open Access Journals (Sweden)

    Nicolas Giovambattista

    2010-12-01

    Full Text Available We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses.

  2. Towards the theory of the electroweak phase transition

    International Nuclear Information System (INIS)

    Dine, M.; Leigh, R.G.; Huet, P.; Linde, A.; Linde, D.

    1992-01-01

    We investigate various problems related to the theory of the electroweak phase transition. This includes determination of the nature of the phase transition, discussion of the possible role of the higher-order radiative corrections, and the theory of the formation and evolution of bubbles of the new phase. We show, in particular, that no dangerous linear terms in the scalar field φ appear in the expression for the effective potential. We have found that, for the Higgs-boson mass smaller than the masses of W and Z bosons, the phase transition is of the first order. However, its strength is approximately 2/3 times less than what follows from the one-loop approximation. The phase transition occurs due to production and expansion of critical bubbles. Subcritical bubbles may be important only if the phase transition is very weakly first order. A general analytic expression for the probability of the bubble formation is obtained, which may be used for study of tunneling in a wide class of theories. The bubble-wall velocity depends on many factors, including the ratio of the mean free path of the particles to the thickness of the wall. Thin walls in the electroweak theory have a nonrelativistic velocity, whereas thick walls may be relativistic. A decrease of the cubic term by the factor 2/3 rules our baryogenesis in the minimal version of the electroweak theory. Even though we concentrate in this paper on the phase transition in this theory, most of our results can be applied to more general models as well, where baryogenesis is possible

  3. Surface phase transitions in cu-based solid solutions

    Science.gov (United States)

    Zhevnenko, S. N.; Chernyshikhin, S. V.

    2017-11-01

    We have measured surface energy in two-component Cu-based systems in H2 + Ar gas atmosphere. The experiments on solid Cu [Ag] and Cu [Co] solutions show presence of phase transitions on the surfaces. Isotherms of the surface energy have singularities (the minimum in the case of copper solid solutions with silver and the maximum in the case of solid solutions with cobalt). In both cases, the surface phase transitions cause deficiency of surface miscibility: formation of a monolayer (multilayer) (Cu-Ag) or of nanoscale particles (Cu-Co). At the same time, according to the volume phase diagrams, the concentration and temperature of the surface phase transitions correspond to the solid solution within the volume. The method permits determining the rate of diffusional creep in addition to the surface energy. The temperature and concentration dependence of the solid solutions' viscosity coefficient supports the fact of the surface phase transitions and provides insights into the diffusion properties of the transforming surfaces.

  4. The infinite limit as an eliminable approximation for phase transitions

    Science.gov (United States)

    Ardourel, Vincent

    2018-05-01

    It is generally claimed that infinite idealizations are required for explaining phase transitions within statistical mechanics (e.g. Batterman 2011). Nevertheless, Menon and Callender (2013) have outlined theoretical approaches that describe phase transitions without using the infinite limit. This paper closely investigates one of these approaches, which consists of studying the complex zeros of the partition function (Borrmann et al., 2000). Based on this theory, I argue for the plausibility for eliminating the infinite limit for studying phase transitions. I offer a new account for phase transitions in finite systems, and I argue for the use of the infinite limit as an approximation for studying phase transitions in large systems.

  5. Phase transitions in field theory

    International Nuclear Information System (INIS)

    Carvalho, C.A.A. de; Bollini, C.G.; Giambiagi, J.J.

    1984-01-01

    By means of an example for which the effective potential is explicitly calculable (up to the one loop approximation), it is discussed how a phase transition takes place as the temperature is increased and pass from spontaneously broken symmetry to a phase in which the symmetry is restored. (Author) [pt

  6. Sensing of phase transition in medium with terahertz pulsed spectroscopy

    International Nuclear Information System (INIS)

    Zaytsev, Kirill I; Fokina, Irina N; Fedorov, Aleksey K; Yurchenko, Stanislav O

    2014-01-01

    Phase state identification and phase transition registration in condensed matter are significant applications of terahertz spectroscopy. A set of fundamental and applied problems are associated with the phase state problem. Our report is devoted to the experimental analysis of the spectral characteristics of water and water solution during the phase transition from the solid state to the liquid state via the method of terahertz pulsed spectroscopy. In this work transformation of the sample spectral characteristics during the phase transition were observed and discussed. Possible application of terahertz pulsed spectroscopy as an effective instrument for phase transition sensing was considered

  7. Phase transition to QGP matter : confined vs deconfined matter

    CERN Multimedia

    Maire, Antonin

    2015-01-01

    Simplified phase diagram of the nuclear phase transition, from the regular hadronic matter to the QGP phase. The sketch is meant to describe the transition foreseen along the temperature axis, at low baryochemical potential, µB.

  8. Origin and Diversification of Basic-Helix-Loop-Helix Proteins in Plants

    OpenAIRE

    Pires, Nuno; Dolan, Liam

    2009-01-01

    Basic helix-loop-helix (bHLH) proteins are a class of transcription factors found throughout eukaryotic organisms. Classification of the complete sets of bHLH proteins in the sequenced genomes of Arabidopsis thaliana and Oryza sativa (rice) has defined the diversity of these proteins among flowering plants. However, the evolutionary relationships of different plant bHLH groups and the diversity of bHLH proteins in more ancestral groups of plants are currently unknown. In this study, we use wh...

  9. Exceptional Points and Dynamical Phase Transitions

    Directory of Open Access Journals (Sweden)

    I. Rotter

    2010-01-01

    Full Text Available In the framework of non-Hermitian quantum physics, the relation between exceptional points,dynamical phase transitions and the counter intuitive behavior of quantum systems at high level density is considered. The theoretical results obtained for open quantum systems and proven experimentally some years ago on a microwave cavity, may explain environmentally induce deffects (including dynamical phase transitions, which have been observed in various experimental studies. They also agree(qualitatively with the experimental results reported recently in PT symmetric optical lattices.

  10. Two kinds of Phase transitions in a Voting model

    OpenAIRE

    Hisakado, Masato; Mori, Shintaro

    2012-01-01

    In this paper, we discuss a voting model with two candidates, C_0 and C_1. We consider two types of voters--herders and independents. The voting of independents is based on their fundamental values; on the other hand, the voting of herders is based on the number of previous votes. We can identify two kinds of phase transitions. One is an information cascade transition similar to a phase transition seen in Ising model. The other is a transition of super and normal diffusions. These phase trans...

  11. Molecular basis of coiled-coil oligomerization-state specificity.

    Science.gov (United States)

    Ciani, Barbara; Bjelic, Saša; Honnappa, Srinivas; Jawhari, Hatim; Jaussi, Rolf; Payapilly, Aishwarya; Jowitt, Thomas; Steinmetz, Michel O; Kammerer, Richard A

    2010-11-16

    Coiled coils are extensively and successfully used nowadays to rationally design multistranded structures for applications, including basic research, biotechnology, nanotechnology, materials science, and medicine. The wide range of applications as well as the important functions these structures play in almost all biological processes highlight the need for a detailed understanding of the factors that control coiled-coil folding and oligomerization. Here, we address the important and unresolved question why the presence of particular oligomerization-state determinants within a coiled coil does frequently not correlate with its topology. We found an unexpected, general link between coiled-coil oligomerization-state specificity and trigger sequences, elements that are indispensable for coiled-coil formation. By using the archetype coiled-coil domain of the yeast transcriptional activator GCN4 as a model system, we show that well-established trimer-specific oligomerization-state determinants switch the peptide's topology from a dimer to a trimer only when inserted into the trigger sequence. We successfully confirmed our results in two other, unrelated coiled-coil dimers, ATF1 and cortexillin-1. We furthermore show that multiple topology determinants can coexist in the same trigger sequence, revealing a delicate balance of the resulting oligomerization state by position-dependent forces. Our experimental results should significantly improve the prediction of the oligomerization state of coiled coils. They therefore should have major implications for the rational design of coiled coils and consequently many applications using these popular oligomerization domains.

  12. Friction forces on phase transition fronts

    International Nuclear Information System (INIS)

    Mégevand, Ariel

    2013-01-01

    In cosmological first-order phase transitions, the microscopic interaction of the phase transition fronts with non-equilibrium plasma particles manifests itself macroscopically as friction forces. In general, it is a nontrivial problem to compute these forces, and only two limits have been studied, namely, that of very slow walls and, more recently, ultra-relativistic walls which run away. In this paper we consider ultra-relativistic velocities and show that stationary solutions still exist when the parameters allow the existence of runaway walls. Hence, we discuss the necessary and sufficient conditions for the fronts to actually run away. We also propose a phenomenological model for the friction, which interpolates between the non-relativistic and ultra-relativistic values. Thus, the friction depends on two friction coefficients which can be calculated for specific models. We then study the velocity of phase transition fronts as a function of the friction parameters, the thermodynamic parameters, and the amount of supercooling

  13. Friction pressure drop and heat transfer coefficient of two-phase flow in helically coiled tube once-through steam generator for integrated type marine water reactor

    International Nuclear Information System (INIS)

    Nariai, Hideki; Kobayashi, Michiyuki; Matsuoka, Takeshi.

    1982-01-01

    Two-phase friction pressure drop and heat transfer coefficients in a once-through steam generator with helically coiled tubes were investigated with the model test rig of an integrated type marine water reactor. As the dimensions of the heat transfer tubes and the thermal-fluid conditions are almost the same as those of real reactors, the data applicable directly to the real reactor design were obtained. As to the friction pressure drop, modified Kozeki's prediction which is based on the experimental data by Kozeki for coiled tubes, agreed the best with the experimental data. Modified Martinelli-Nelson's prediction which is based on Martinelli-Nelson's multiplier using Ito's equation for single-phase flow in coiled tube, agreed within 30%. The effect of coiled tube on the average heat transfer coefficients at boiling region were small, and the predictions for straight tube could also be applied to coiled tube. Schrock-Grossman's correlation agreed well with the experimental data at the pressures of lower than 3.5 MPa. It was suggested that dryout should be occurred at the quality of greater than 90% within the conditions of this report. (author)

  14. Three-phase receiving coil of wireless power transmission system for gastrointestinal robot

    Science.gov (United States)

    Jia, Z. W.; Jiang, T.; Liu, Y.

    2017-11-01

    Power shortage is the bottleneck for the wide application of gastrointestinal (GI) robot. Owing to the limited volume and free change of orientation of the receiving set in GI trace, the optimal of receiving set is the key point to promote the transmission efficiency of wireless power transmission system. A new type of receiving set, similar to the winding of three-phase asynchronous motor, is presented and compared with the original three-dimensional orthogonal coil. Considering the given volume and the space utilization ratio, the three-phase and the three-orthogonal ones are the parameters which are optimized and compared. Both the transmission efficiency and stability are analyzed and verified by in vitro experiments. Animal experiments show that the new one could provide at least 420 mW power in volume of Φ11 × 13mm with a uniformity of 78.3% for the GI robot.

  15. Scaling theory and the classification of phase transitions

    International Nuclear Information System (INIS)

    Hilfer, R.

    1992-01-01

    In this paper, the recent classification theory for phase transitions and its relation with the foundations of statistical physics is reviewed. First it is outlined how Ehrenfests classification scheme can be generalized into a general thermodynamic classification theory for phase transitions. The classification theory implies scaling and multiscaling thereby eliminating the need to postulate the scaling hypothesis as a fourth law of thermodynamics. The new classification has also led to the discovery and distinction of nonequilibrium transitions within equilibrium statistical physics. Nonequilibrium phase transitions are distinguished from equilibrium transitions by orders less than unity and by the fact the equilibrium thermodynamics and statistical mechanics become inapplicable at the critical point. The latter fact requires a change in the Gibbs assumption underlying the canonical and grandcanonical ensembles in order to recover the thermodynamic description in the critical limit

  16. A perturbative RS I cosmological phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Bunk, Don [Skidmore College, Department of Physics, Saratoga Springs, NY (United States); Hubisz, Jay [Syracuse University, Department of Physics, Syracuse, NY (United States); Jain, Bithika [Korea Institute for Advanced Study, School of Physics, Seoul (Korea, Republic of)

    2018-01-15

    We identify a class of Randall-Sundrum type models with a successful first order cosmological phase transition during which a 5D dual of approximate conformal symmetry is spontaneously broken. Our focus is on soft-wall models that naturally realize a light radion/dilaton and suppressed dynamical contribution to the cosmological constant. We discuss phenomenology of the phase transition after developing a theoretical and numerical analysis of these models both at zero and finite temperature. We demonstrate a model with a TeV-Planck hierarchy and with a successful cosmological phase transition where the UV value of the curvature corresponds, via AdS/CFT, to an N of 20, where 5D gravity is expected to be firmly in the perturbative regime. (orig.)

  17. First-principles study of doping effect on the phase transition of zinc oxide with transition metal doped

    International Nuclear Information System (INIS)

    Wu, Liang; Hou, Tingjun; Wang, Yi; Zhao, Yanfei; Guo, Zhenyu; Li, Youyong; Lee, Shuit-Tong

    2012-01-01

    Highlights: ► We study the doping effect on B4, B1 structures and phase transition of ZnO. ► We calculate the phase transition barrier and phase transition path of doped ZnO. ► The transition metal doping decreases the bulk modulus and phase transition pressure. ► The magnetic properties are influenced by the phase transition process. - Abstract: Zinc oxide (ZnO) is a promising material for its wide application in solid-state devices. With the pressure raised from an ambient condition, ZnO transforms from fourfold wurtzite (B4) to sixfold coordinated rocksalt (B1) structure. Doping is an efficient approach to improve the structures and properties of materials. Here we use density-functional theory (DFT) to study doped ZnO and find that the transition pressure from B4 phase to B1 phase of ZnO always decreases with different types of transition metal (V, Cr, Mn, Fe, Co, or Ni) doped, but the phase transition path is not affected by doping. This is consistent with the available experimental results for Mn-doped ZnO and Co-doped ZnO. Doping in ZnO causes the lattice distortion, which leads to the decrease of the bulk modulus and accelerates the phase transition. Mn-doped ZnO shows the strongest magnetic moment due to its half filled d orbital. For V-doped ZnO and Cr-doped ZnO, the magnetism is enhanced by phase transition from B4 to B1. But for Mn-doped ZnO, Fe-doped ZnO, Co-doped ZnO, and Ni-doped ZnO, B1 phase shows weaker magnetic moment than B4 phase. These results can be explained by the amount of charge transferred from the doped atom to O atom. Our results provide a theoretical basis for the doping approach to change the structures and properties of ZnO.

  18. The IEA large coil task test results in IFSMTF

    International Nuclear Information System (INIS)

    Lubell, M.S.; Clinard, J.A.; Dresner, L.

    1987-01-01

    The Large Coil Task (LCT) is an international collaboration of the United States, EURATOM, Japan, and Switzerland to develop large superconducting magnets for fusion reactors. The testing phase of LCT was completed on September 3, 1987. All six coils exceeded the design goals, both as single coils and in six-coil toroidal tests. In addition, a symmetric torus test was performed in which a maximum field of 9 T was reached in all coils simultaneously. These are by far the largest magnets (either in size, weight, or stored energy) ever to achieve such a field. 6 refs., 6 figs., 3 tabs

  19. A Bayesian Interpretation of First-Order Phase Transitions

    Science.gov (United States)

    Davis, Sergio; Peralta, Joaquín; Navarrete, Yasmín; González, Diego; Gutiérrez, Gonzalo

    2016-03-01

    In this work we review the formalism used in describing the thermodynamics of first-order phase transitions from the point of view of maximum entropy inference. We present the concepts of transition temperature, latent heat and entropy difference between phases as emergent from the more fundamental concept of internal energy, after a statistical inference analysis. We explicitly demonstrate this point of view by making inferences on a simple game, resulting in the same formalism as in thermodynamical phase transitions. We show that analogous quantities will inevitably arise in any problem of inferring the result of a yes/no question, given two different states of knowledge and information in the form of expectation values. This exposition may help to clarify the role of these thermodynamical quantities in the context of different first-order phase transitions such as the case of magnetic Hamiltonians (e.g. the Potts model).

  20. Bubble nucleation and growth in very strong cosmological phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Mégevand, Ariel, E-mail: megevand@mdp.edu.ar; Ramírez, Santiago

    2017-06-15

    Strongly first-order phase transitions, i.e., those with a large order parameter, are characterized by a considerable supercooling and high velocities of phase transition fronts. A very strong phase transition may have important cosmological consequences due to the departures from equilibrium caused in the plasma. In general, there is a limit to the strength, since the metastability of the old phase may prevent the transition to complete. Near this limit, the bubble nucleation rate achieves a maximum and thus departs from the widely assumed behavior in which it grows exponentially with time. We study the dynamics of this kind of phase transitions. We show that in some cases a gaussian approximation for the nucleation rate is more suitable, and in such a case we solve analytically the evolution of the phase transition. We compare the gaussian and exponential approximations with realistic cases and we determine their ranges of validity. We also discuss the implications for cosmic remnants such as gravitational waves.

  1. Reconstructive structural phase transitions in dense Mg

    International Nuclear Information System (INIS)

    Yao Yansun; Klug, Dennis D

    2012-01-01

    The question raised recently about whether the high-pressure phase transitions of Mg follow a hexagonal close-packed (hcp) → body centered cubic (bcc) or hcp → double hexagonal close-packed (dhcp) → bcc sequence at room temperature is examined by the use of first principles density functional methods. Enthalpy calculations show that the bcc structure replaces the hcp structure to become the most stable structure near 48 GPa, whereas the dhcp structure is never the most stable structure in the pressure range of interest. The characterized phase-transition mechanisms indicate that the hcp → dhcp transition is also associated with a higher enthalpy barrier. At room temperature, the structural sequence hcp → bcc is therefore more energetically favorable for Mg. The same conclusion is also reached from the simulations of the phase transitions using metadynamics methods. At room temperature, the metadynamics simulations predict the onset of a hcp → bcc transition at 40 GPa and the transition becomes more prominent upon further compression. At high temperatures, the metadynamics simulations reveal a structural fluctuation among the hcp, dhcp, and bcc structures at 15 GPa. With increasing pressure, the structural evolution at high temperatures becomes more unambiguous and eventually settles to a bcc structure once sufficient pressure is applied. (paper)

  2. Manufacture and mechanical test of a TORE SUPRA model coil

    International Nuclear Information System (INIS)

    Aymar, R.; Claudet, G.; Disdier, F.; Hamelin, J.; Libeyre, P.; Mayaux, G.; Meuris, C.; Parain, J.; Torossian, A.

    1980-09-01

    Inside the qualifying test programme, supporting the Tore Supra Design, a reduced scale model of a Bsub(T) coil was fabricated by a large industrial firm. This model coil is provided with the same features as those retained for the complete magnet. Tests of this model coil have been carried out in such a way that most of stresses which will arise in Tore Supra windings are simulated; simultaneously its cryogenic supply is fully representative of the system retained for the complete machine. Operation of the model coil has been found highly stable; under the conditions of applied field and forces a coil transition could be triggered, by an electrical heater located inside the coil, only when the temperature of the superfluid helium bath was close to Tsub(lambda). Thus, design and manufacturing techniques have been qualified satisfactorily to proceed to the next step: fabrication of the superconducting Bsub(T) coils of Tore Supra

  3. A Solvable Model for Nuclear Shape Phase Transitions

    International Nuclear Information System (INIS)

    Levai, G.; Arias, J. M.

    2009-01-01

    There has been considerable interest recently in phase transitions that occur between some well-defined nuclear shapes, e.g. the spherical vibrator, the axially deformed rotor and the γ-unstable rotor, which are assigned to the U(5), SU(3) and 0(6) symmetries. These shape phase transitions occur through critical points of the IBM phase diagram and correspond to rapid structural changes. The first transition of this type describes transition form the spherical to the γ-unstable phase and has been associated with an E(5) symmetry. Later further critical point symmetries e.g. X(5) and Y(5) have also been proposed for transitions between other nuclear shape phases. In another application the chain of even Ru isotopes was considered from A 98 to 112 [2]. The parameters were extracted from a fit to the low-lying energy spectrum of each nucleus and were used to plot the corresponding potential. It was found that up to A =102 the potential is essentially an harmonic oscillator, while at A =104 a rather flat potential was seen, in accordance with the expected phase transition and E(5) symmetry there. With increasing A then the minimum got increasingly deeper and moved away from β = 0. We discuss the possibility of generalizing the formalism in two ways: first by including dependence on the 7 variable allowing for the approximate description of nuclei close to the X(5) symmetry, and second, including higher-lying energy levels in the quasi-exactly solvable formalism

  4. Quantum Phase Transition and Entanglement in Topological Quantum Wires.

    Science.gov (United States)

    Cho, Jaeyoon; Kim, Kun Woo

    2017-06-05

    We investigate the quantum phase transition of the Su-Schrieffer-Heeger (SSH) model by inspecting the two-site entanglements in the ground state. It is shown that the topological phase transition of the SSH model is signified by a nonanalyticity of local entanglement, which becomes discontinuous for finite even system sizes, and that this nonanalyticity has a topological origin. Such a peculiar singularity has a universal nature in one-dimensional topological phase transitions of noninteracting fermions. We make this clearer by pointing out that an analogous quantity in the Kitaev chain exhibiting the identical nonanalyticity is the local electron density. As a byproduct, we show that there exists a different type of phase transition, whereby the pattern of the two-site entanglements undergoes a sudden change. This transition is characterised solely by quantum information theory and does not accompany the closure of the spectral gap. We analyse the scaling behaviours of the entanglement in the vicinities of the transition points.

  5. High-pressure phase transition of alkali metal-transition metal deuteride Li2PdD2

    Science.gov (United States)

    Yao, Yansun; Stavrou, Elissaios; Goncharov, Alexander F.; Majumdar, Arnab; Wang, Hui; Prakapenka, Vitali B.; Epshteyn, Albert; Purdy, Andrew P.

    2017-06-01

    A combined theoretical and experimental study of lithium palladium deuteride (Li2PdD2) subjected to pressures up to 50 GPa reveals one structural phase transition near 10 GPa, detected by synchrotron powder x-ray diffraction, and metadynamics simulations. The ambient-pressure tetragonal phase of Li2PdD2 transforms into a monoclinic C2/m phase that is distinct from all known structures of alkali metal-transition metal hydrides/deuterides. The structure of the high-pressure phase was characterized using ab initio computational techniques and from refinement of the powder x-ray diffraction data. In the high-pressure phase, the PdD2 complexes lose molecular integrity and are fused to extended [PdD2]∞ chains. The discovered phase transition and new structure are relevant to the possible hydrogen storage application of Li2PdD2 and alkali metal-transition metal hydrides in general.

  6. Phenomenology of cosmic phase transitions

    International Nuclear Information System (INIS)

    Kaempfer, B.; Lukacs, B.; Paal, G.

    1989-11-01

    The evolution of the cosmic matter from Planck temperature to the atomic combination temperature is considered from a phenomenological point of view. Particular emphasis is devoted to the sequence of cosmic phase transitions. The inflationary era at the temperature of the order of the grand unification energy scale and the quantum chromodynamic confinement transition are dealt with in detail. (author) 131 refs.; 26 figs

  7. A periodic table of coiled-coil protein structures.

    Science.gov (United States)

    Moutevelis, Efrosini; Woolfson, Derek N

    2009-01-23

    Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.

  8. Notes on Phase Transition of Nonsingular Black Hole

    International Nuclear Information System (INIS)

    Ma Meng-Sen; Zhao Ren

    2015-01-01

    On the belief that a black hole is a thermodynamic system, we study the phase transition of nonsingular black holes. If the black hole entropy takes the form of the Bekenstein—Hawking area law, the black hole mass M is no longer the internal energy of the black hole thermodynamic system. Using the thermodynamic quantities, we calculate the heat capacity, thermodynamic curvature and free energy. It is shown that there will be a larger black hole/smaller black hole phase transition for the nonsingular black hole. At the critical point, the second-order phase transition appears. (paper)

  9. Novel phase transitions in B-site doped manganites

    International Nuclear Information System (INIS)

    Popovic, Z.V.; Cantarero, A.; Thijssen, W.H.A.; Paunovic, N.; Dohcevic-Mitrovic, Z.; Sapina, F.

    2005-01-01

    We have examined the infrared reflectivity and the electrical resistivity of La 1- x [Sr(Ba)] x Mn 1- z [Cu(Zn)] z O 3 samples in ferromagnetic metallic and insulator regime. Several phase transitions are observed, the most obvious being the transition from a ferromagnetic metallic to a ferromagnetic insulator phase that is related to the formation of short-range orbitally ordered domains. The temperature T 1 of the phase transition is dependent on doping concentration and for optimally doped samples (∼32% of Mn 4+ ions) we have found T 1 ∼0.93 T C

  10. On the structure of K/l-hybrid carrageenans

    NARCIS (Netherlands)

    Velde, F. van de; Peppelman, H.A.; Rollema, H.S.; Tromp, R.H.

    2001-01-01

    The coil-to-helix transition and temperature dependence of the viscosity of commercial κ/ι-hybrid carrageenans produced by the red algae Sarcothalia crispata, Mazaella laminarioides, and Chondrus crispus were studied using rheometry and optical rotation. The structure of these κ/ι-hybrid

  11. FRC translation into a compression coil

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1986-01-01

    The equilibrium and translational kinematics of Field-Reversed Configurations (FRCs) in a cylindrical coil which does not conserve flux are problems that arise in connection with adiabatic compressional heating. In this paper, they consider several features of the problem of FRC translation into a compression coil. First, the magnitude of the guide field is calculated and found to exceed that which would be applied to a flux conserver. Second, energy conservation is applied to FRC translation from a flux conserver into a compression coil. It is found that a significant temperature decrease is required for translation to be energetically possible. The temperature change depends on the external inductance in the compression circuit. An analogous case is that of a compression region composed of a compound magnet; in this case the temperature change depends on the ratio of inner and outer coil radii. Finally, the kinematics of intermediate translation states are calculated using an abrupt transition model. It is found, in this model, that the FRC must overcome a potential hill during translation, which requires a small initial velocity

  12. Baryogenesis via leptonic CP-violating phase transition

    Science.gov (United States)

    Pascoli, Silvia; Turner, Jessica; Zhou, Ye-Ling

    2018-05-01

    We propose a new mechanism to generate a lepton asymmetry based on the vacuum CP-violating phase transition (CPPT). This approach differs from classical thermal leptogenesis as a specific seesaw model, and its UV completion, need not be specified. The lepton asymmetry is generated via the dynamically realised coupling of the Weinberg operator during the phase transition. This mechanism provides a connection with low-energy neutrino observables.

  13. Progress of the ITER Correction Coils in China

    CERN Document Server

    Wei, J; Han, S; Yu, X; Du, S; Li, C; Fang, C; Wang, L; Zheng, W; Liu, L; Wen, J; Li, H; Libeyre, P; Dolgetta, N; Cormany, C; Sgobba, S

    2014-01-01

    The ITER Correction Coils (CC) include three sets of six coils each, distributed symmetrically around the tokamak to correct error fields. Each pair of coils, located on opposite sides of the tokamak, is series connected with polarity to produce asymmetric fields. The manufacturing of these superconducting coils is undergoing qualification of the main fabrication processes: winding into multiple pancakes, welding helium inlet/outlet on the conductor jacket, turn and ground insulation, vacuum pressure impregnation, inserting into an austenitic stainless steel case, enclosure welding, and assembling the terminal service box. It has been proceeding by an intense phase of R\\&D, trials tests, and final adjustment of the tooling. This paper mainly describes the progress in ASIPP for the CC manufacturing process before and on qualification phase and the status of corresponding equipment which are ordered or designed for each process. Some test results for the key component and procedure are also presented.

  14. High-pressure phase transitions - Examples of classical predictability

    Science.gov (United States)

    Celebonovic, Vladan

    1992-09-01

    The applicability of the Savic and Kasanin (1962-1967) classical theory of dense matter to laboratory experiments requiring estimates of high-pressure phase transitions was examined by determining phase transition pressures for a set of 19 chemical substances (including elements, hydrocarbons, metal oxides, and salts) for which experimental data were available. A comparison between experimental and transition points and those predicted by the Savic-Kasanin theory showed that the theory can be used for estimating values of transition pressures. The results also support conclusions obtained in previous astronomical applications of the Savic-Kasanin theory.

  15. Phase transitions in K-doped MoO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Alves, L. M. S., E-mail: leandro-fisico@hotmail.com; Lima, B. S. de; Santos, C. A. M. dos [Departamento de Engenharia de Materiais, Escola de Engenharia de Lorena-USP, Lorena, São Paulo 12602-810 (Brazil); Rebello, A.; Masunaga, S. H.; Neumeier, J. J. [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, Montana 59717-3840 (United States); Leão, J. B. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Dr. MS 6102, Gaithersburg, Maryland 20899-6102 (United States)

    2014-05-28

    K{sub 0.05}MoO{sub 2} has been studied by x-ray and neutron diffractometry, electrical resistivity, magnetization, heat capacity, and thermal expansion measurements. The compound displays two phase transitions, a first-order phase transition near room temperature and a second-order transition near 54 K. Below the transition at 54 K, a weak magnetic anomaly is observed and the electrical resistivity is well described by a power-law temperature dependence with exponent near 0.5. The phase transitions in the K-doped MoO{sub 2} compound have been discussed for the first time using neutron diffraction, high resolution thermal expansion, and heat capacity measurements as a function of temperature.

  16. Gravitational radiation from first-order phase transitions

    International Nuclear Information System (INIS)

    Child, Hillary L.; Giblin, John T. Jr.

    2012-01-01

    It is believed that first-order phase transitions at or around the GUT scale will produce high-frequency gravitational radiation. This radiation is a consequence of the collisions and coalescence of multiple bubbles during the transition. We employ high-resolution lattice simulations to numerically evolve a system of bubbles using only scalar fields, track the anisotropic stress during the process and evolve the metric perturbations associated with gravitational radiation. Although the radiation produced during the bubble collisions has previously been estimated, we find that the coalescence phase enhances this radiation even in the absence of a coupled fluid or turbulence. We comment on how these simulations scale and propose that the same enhancement should be found at the Electroweak scale; this modification should make direct detection of a first-order electroweak phase transition easier

  17. Gravitational radiation from first-order phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Child, Hillary L.; Giblin, John T. Jr., E-mail: childh@kenyon.edu, E-mail: giblinj@kenyon.edu [Department of Physics, Kenyon College, 201 North College Road, Gambier, OH 43022 (United States)

    2012-10-01

    It is believed that first-order phase transitions at or around the GUT scale will produce high-frequency gravitational radiation. This radiation is a consequence of the collisions and coalescence of multiple bubbles during the transition. We employ high-resolution lattice simulations to numerically evolve a system of bubbles using only scalar fields, track the anisotropic stress during the process and evolve the metric perturbations associated with gravitational radiation. Although the radiation produced during the bubble collisions has previously been estimated, we find that the coalescence phase enhances this radiation even in the absence of a coupled fluid or turbulence. We comment on how these simulations scale and propose that the same enhancement should be found at the Electroweak scale; this modification should make direct detection of a first-order electroweak phase transition easier.

  18. Phase transition signals of finite systems

    International Nuclear Information System (INIS)

    Duflot-Flandrois, Veronique

    2001-01-01

    Phase transitions are universal properties of interacting matter. They are well described if the considered system is infinite, by using standard thermodynamics. But in the case of small systems like atomic nuclei, this formalism cannot be applied anymore. Our aim is to propose a statistical mechanics approach in order to define the thermodynamical features of small open systems subject to non-saturating forces. We concentrate in particular on the definition and characterization for such systems of phase transitions belonging to the liquid gas universality class. Theoretical and experimental observables are defined to signal the occurrence and the order of this transition without any ambiguity. One of the most relevant and experimentally accessible observables consists in the study of kinetic energy fluctuations for a fixed value of the total deposited energy. In a first order phase transition such fluctuations become anomaly high and at the same time the size distribution appears to behave critically. All our results are obtained within numerical simulations of the lattice gas model with a nearest neighbors attractive interaction. Finally we check the influence of non-saturating forces, developing the specific example of the Coulomb interaction in the nucleus. Future improvements and perspectives at this work consist in the analysis of specific effects occurring in nuclei: isospin and quantum mechanics. (author) [fr

  19. Analyzing phase diagrams and phase transitions in networked competing populations

    Science.gov (United States)

    Ni, Y.-C.; Yin, H. P.; Xu, C.; Hui, P. M.

    2011-03-01

    Phase diagrams exhibiting the extent of cooperation in an evolutionary snowdrift game implemented in different networks are studied in detail. We invoke two independent payoff parameters, unlike a single payoff often used in most previous works that restricts the two payoffs to vary in a correlated way. In addition to the phase transition points when a single payoff parameter is used, phase boundaries separating homogeneous phases consisting of agents using the same strategy and a mixed phase consisting of agents using different strategies are found. Analytic expressions of the phase boundaries are obtained by invoking the ideas of the last surviving patterns and the relative alignments of the spectra of payoff values to agents using different strategies. In a Watts-Strogatz regular network, there exists a re-entrant phenomenon in which the system goes from a homogeneous phase into a mixed phase and re-enters the homogeneous phase as one of the two payoff parameters is varied. The non-trivial phase diagram accompanying this re-entrant phenomenon is quantitatively analyzed. The effects of noise and cooperation in randomly rewired Watts-Strogatz networks are also studied. The transition between a mixed phase and a homogeneous phase is identify to belong to the directed percolation universality class. The methods used in the present work are applicable to a wide range of problems in competing populations of networked agents.

  20. Solid-solid phase transitions in Fe nanowires induced by axial strain

    International Nuclear Information System (INIS)

    Sandoval, Luis; Urbassek, Herbert M

    2009-01-01

    By means of classical molecular-dynamics simulations we investigate the solid-solid phase transition from a bcc to a close-packed crystal structure in cylindrical iron nanowires, induced by axial strain. The interatomic potential employed has been shown to be capable of describing the martensite-austenite phase transition in iron. We study the stress versus strain curves for different temperatures and show that for a range of temperatures it is possible to induce a solid-solid phase transition by axial strain before the elasticity is lost; these transition temperatures are below the bulk transition temperature. The two phases have different (non-linear) elastic behavior: the bcc phase softens, while the close-packed phase stiffens with temperature. We also consider the reversibility of the transformation in the elastic regimes, and the role of the strain rate on the critical strain necessary for phase transition.

  1. Helix-Hopes on Finite Hyperfields

    Directory of Open Access Journals (Sweden)

    Thomas Vougiouklis

    2016-12-01

    Full Text Available Hyperstructure theory can overcome restrictions which ordinary algebraic structures have. A hyperproduct on non-square ordinary matrices can be defined by using the so called helix-hyperoperations. We study the helix-hyperstructures on the representations using ordinary fields. The related theory can be faced by defining the hyperproduct on the set of non square matrices. The main tools of the Hyperstructure Theory are the fundamental relations which connect the largest class of hyperstructures, the Hv-structures, with the corresponding classical ones. We focus on finite dimensional helix-hyperstructures and on small Hv-fields, as well.

  2. Flow-induced vibration of steam generator helical tubes subjected to external liquid cross flow and internal two-phase flow

    International Nuclear Information System (INIS)

    Jong Chull Jo; Myung Jo Jhung; Woong Sik Kim; Hho Jung Kim

    2005-01-01

    Full text of publication follows: This paper addresses the potential flow-induced vibration problems in a helically-coiled tube steam generator of integral-type nuclear reactor, of which the tubes are subjected to liquid cross flow externally and multi-phase flow externally. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted using a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency and corresponding mode shape of the helical type tubes with various conditions, a finite element analysis code is used. Based on the results of both helical coiled tube steam generator thermal-hydraulic and coiled tube modal analyses, turbulence-induced vibration and fluid-elastic instability analyses are performed. And then the potential for damages on the tubes due to either turbulence-induced vibration or fluid-elastic instability is assessed. In the assessment, special emphases are put on the detailed investigation for the effects of support conditions, coil diameter, and helix pitch on the modal, vibration amplitude and instability characteristics of tubes, from which a technical information and basis needed for designers and regulatory reviewers can be derived. (authors)

  3. Diffusionless phase transitions and related structures in oxides

    International Nuclear Information System (INIS)

    Boulesteix, C.

    1992-01-01

    The relative importance of oxides in the field of materials science has been spectacularly increasing during the last twenty years. First the study of ferroelectrics kept the attention of scientists. Nevertheless this domain is far from being worked out and a lot of new results and of new fields of interest were recently discovered. Other ferroic oxides, especially ferroelastics, have also been the subject of a very great number of new results. In these cases the properties of oxides are at room temperature very tightly related to the phase transition that is generally occurring a few hundred of degrees above this room temperature. In many other cases also properties of oxides can be related to the existence of a phase transition or to a rather similar phenomenon. This book has been specially devoted to the study of the properties of oxides which are in some way related to the existence of a phase transition. The first chapters are focussed on general considerations: the first one is devoted to a general study of phase transitions, the second one to the twinning phenomenon which is of special interest for many oxides. Chapters 3 and 4 are focussed on ferroelectric and ferroelastic materials. These four chapters consitute the first part of the book. Chapters 5 to 8 are devoted to the study of oxides of special interest which have some of their properties related to a phase transition or to a rather similar phenomenon: rare earth oxides, oxides with a diffuse phase transition, zirconia and alumina systems, tungsten oxides and their relatives. These four chapters constitute the second part of the book. (orig.)

  4. Large coil task and results of testing US coils

    International Nuclear Information System (INIS)

    Haubenreich, P.N.

    1986-01-01

    The United States, EURATOM, Japan, and Switzerland have collaborated since 1978 in development of superconducting toroidal field coils for fusion reactor applications. The United States provided a test facility nd three coils; the other participants, one coil each. All coils have the same interface dimensions and performance requirements (stable at 8 T), but internal design was decided by each team. Two US coil teams chose bath-cooled NbTi, 10-kA conductors. One developed a Nb 3 Sn conductor, cooled by internal flow, rated at 18 kA. All US coils have diagnostic instrumentation and imbedded heaters that enable stability tests and simulated nuclear heating experiments. In single-coil tests, each coil operated at full current in self-field (6.4 T). In six-coil tests that began in July 1986, one US coil and the Japanese coil hve been successfully operated at full current at 8 T. The other coils have operated as background coils while awaiting their turn as test coil. Coil tests have been informative and results gratifying. The facility has capably supported coil testing and its operation has provided information that will be useful in designing future fusion systems. Coil capabilities beyond nominal design points will be determined

  5. Discontinuous structural phase transition of liquid metal and alloys (2)

    International Nuclear Information System (INIS)

    Wang, Li; Liu, Jiantong

    2004-01-01

    The diameter (d f ) of diffusion fluid cluster before and after phase transition has been calculated in terms of the paper ''Discontinuous structural phase transition of liquid metal and alloy (1)'' Physics Letters. A 326 (2004) 429-435, to verify quantitatively the discontinuity of structural phase transition; the phenomena of thermal contraction and thermal expansion during the phase transition, together with the evolution model of discontinuous structural phase transition are also discussed in this Letter to explore further the nature of structural transition; In addition, based on the viscosity experimental result mentioned in paper [Y. Waseda, The Structure of Non-Crystalline Materials--Liquids and Amorphous Solids, McGraw-Hill, New York, 1980], we present an approach to draw an embryo of the liquid-liquid (L-L) phase diagram for binary alloys above liquidus in the paper, expecting to guide metallurgy process so as to improve the properties of alloys. The idea that controls amorphous structure and its properties by means of the L-L phase diagram for alloys and by the rapid cooling technique to form the amorphous alloy has been brought forward in the end

  6. Test of a model coil of TORE SUPRA

    International Nuclear Information System (INIS)

    Aymar, R.; Claudet, G.; Disdier, F.; Hamelin, J.; Libeyre, P.; Mayaux, C.; Meuris, C.; Parain, J.; Torossian, A.

    1980-10-01

    Inside the qualifying test programme, supporting the 'Tore Supra' Tokamak design, a reduced scale model of coil was fabricated by an industrial firm and fully tested. This model coil is provided with the same features as those retained for the complete magnet and is built according to the same design; in particular the Nb-Ti mixed matrix monolithic conductor is cooled by a pressurized superfluid helium bath, supplied from a model of the envisaged complete cryogenic system. Three main objectives have been assigned to this test: operation of the cryogenic system, stability of the superconductor winding under high mechanical stresses, mainly shear, and simulation of coil quench conditions. For this purpose, the model coil (outside bore 0.8 m) is located inside a 4 T magnet, an hydraulic jack applies a 1 MN force along a coil diameter. Operation of the model coil has been found highly stable, under the conditions of applied field and forces, a coil transition can be induced by an electrical heater only when the superfluid bath temperature is close to Tlambda. The 1.8 K cryogenic system provides a useful calorimetric measure of total losses induced inside the winding; its operation has been quite simple and reliable, permitting a sure extrapolation to a much larger size

  7. An alternative conformation of the gp41 heptad repeat 1 region coiled coil exists in the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor

    International Nuclear Information System (INIS)

    Mische, Claudia C.; Yuan Wen; Strack, Bettina; Craig, Stewart; Farzan, Michael; Sodroski, Joseph

    2005-01-01

    The human immunodeficiency virus (HIV-1) transmembrane envelope glycoprotein, gp41, which mediates virus-cell fusion, exists in at least three different conformations within the trimeric envelope glycoprotein complex. The structures of the prefusogenic and intermediate states are unknown; structures representing the postfusion state have been solved. In the postfusion conformation, three helical heptad repeat 2 (HR2) regions pack in an antiparallel fashion into the hydrophobic grooves on the surface of a triple-helical coiled coil formed by the heptad repeat 1 (HR1) regions. We studied the prefusogenic conformation of gp41 by mutagenic alteration of membrane-anchored and soluble forms of the HIV-1 envelope glycoproteins. Our results indicate that, in the HIV-1 envelope glycoprotein precursor, the gp41 HR1 region is in a conformation distinct from that of a trimeric coiled coil. Thus, the central gp41 coiled coil is formed during the transition of the HIV-1 envelope glycoproteins from the precursor state to the receptor-bound intermediate

  8. Random coil chemical shifts in acidic 8 M urea: Implementation of random coil shift data in NMRView

    International Nuclear Information System (INIS)

    Schwarzinger, Stephan; Kroon, Gerard J.A.; Foss, Ted R.; Wright, Peter E.; Dyson, H. Jane

    2000-01-01

    Studies of proteins unfolded in acid or chemical denaturant can help in unraveling events during the earliest phases of protein folding. In order for meaningful comparisons to be made of residual structure in unfolded states, it is necessary to use random coil chemical shifts that are valid for the experimental system under study. We present a set of random coil chemical shifts obtained for model peptides under experimental conditions used in studies of denatured proteins. This new set, together with previously published data sets, has been incorporated into a software interface for NMRView, allowing selection of the random coil data set that fits the experimental conditions best

  9. Dimension changing phase transitions in instanton crystals

    International Nuclear Information System (INIS)

    Kaplunovsky, Vadim; Sonnenschein, Jacob

    2014-01-01

    We investigate lattices of instantons and the dimension-changing transitions between them. Our ultimate goal is the 3D→4D transition, which is holographically dual to the phase transition between the baryonic and the quarkyonic phases of cold nuclear matter. However, in this paper (just as in http://dx.doi.org/10.1007/JHEP11(2012)047) we focus on lower dimensions — the 1D lattice of instantons in a harmonic potential V∝M 2 2 x 2 2 +M 3 2 x 2 2 +M 4 2 x 4 2 , and the zigzag-shaped lattice as a first stage of the 1D→2D transition. We prove that in the low- and moderate-density regimes, interactions between the instantons are dominated by two-body forces. This drastically simplifies finding the ground state of the instantons’ orientations, so we made a numeric scan of the whole orientation space instead of assuming any particular ansatz. We find that depending on the M 2 /M 3 /M 4 ratios, the ground state of instanton orientations can follow a wide variety of patterns. For the straight 1D lattices, we found orientations periodically running over elements of a ℤ 2 , Klein, prismatic, or dihedral subgroup of the SU(2)/ℤ 2 , as well as irrational but link-periodic patterns. For the zigzag-shaped lattices, we detected 4 distinct orientation phases — the anti-ferromagnet, another abelian phase, and two non-abelian phases. Allowing the zigzag amplitude to vary as a function of increasing compression force, we obtained the phase diagrams for the straight and zigzag-shaped lattices in the (force,M 3 /M 4 ), (chemical potential,M 3 /M 4 ), and (density,M 3 /M 4 ) planes. Some of the transitions between these phases are second-order while others are first-order. Our techniques can be applied to other types of non-abelian crystals

  10. Binding of HIV-1 gp41-directed neutralizing and non-neutralizing fragment antibody binding domain (Fab and single chain variable fragment (ScFv antibodies to the ectodomain of gp41 in the pre-hairpin and six-helix bundle conformations.

    Directory of Open Access Journals (Sweden)

    John M Louis

    Full Text Available We previously reported a series of antibodies, in fragment antigen binding domain (Fab formats, selected from a human non-immune phage library, directed against the internal trimeric coiled-coil of the N-heptad repeat (N-HR of HIV-1 gp41. Broadly neutralizing antibodies from that series bind to both the fully exposed N-HR trimer, representing the pre-hairpin intermediate state of gp41, and to partially-exposed N-HR helices within the context of the gp41 six-helix bundle. While the affinities of the Fabs for pre-hairpin intermediate mimetics vary by only 2 to 20-fold between neutralizing and non-neutralizing antibodies, differences in inhibition of viral entry exceed three orders of magnitude. Here we compare the binding of neutralizing (8066 and non-neutralizing (8062 antibodies, differing in only four positions within the CDR-H2 binding loop, in Fab and single chain variable fragment (ScFv formats, to several pre-hairpin intermediate and six-helix bundle constructs of gp41. Residues 56 and 58 of the mini-antibodies are shown to be crucial for neutralization activity. There is a large differential (≥ 150-fold in binding affinity between neutralizing and non-neutralizing antibodies to the six-helix bundle of gp41 and binding to the six-helix bundle does not involve displacement of the outer C-terminal helices of the bundle. The binding stoichiometry is one six-helix bundle to one Fab or three ScFvs. We postulate that neutralization by the 8066 antibody is achieved by binding to a continuum of states along the fusion pathway from the pre-hairpin intermediate all the way to the formation of the six-helix bundle, but prior to irreversible fusion between viral and cellular membranes.

  11. Novel phase transitions in B-site doped manganites

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Z.V. [Institute of Physics, P.O. Box 68, 11080 Belgrade/Zemun (Serbia and Montenegro)]. E-mail: zoran.popovic@phy.bg.ac.yu; Cantarero, A. [Materials Science Institute, University of Valencia, P.O. Box 22085, 46071 Valencia (Spain); Thijssen, W.H.A. [Kamerlingh Onnes Laboratorium, Leiden University, Postbus 9504, 2300 RA Leiden (Netherlands); Paunovic, N. [Institute of Physics, P.O. Box 68, 11080 Belgrade/Zemun (Serbia and Montenegro); Dohcevic-Mitrovic, Z. [Institute of Physics, P.O. Box 68, 11080 Belgrade/Zemun (Serbia and Montenegro); Sapina, F. [Materials Science Institute, University of Valencia, P.O. Box 22085, 46071 Valencia (Spain)

    2005-04-30

    We have examined the infrared reflectivity and the electrical resistivity of La{sub 1-} {sub x} [Sr(Ba)] {sub x} Mn{sub 1-} {sub z} [Cu(Zn)] {sub z} O{sub 3} samples in ferromagnetic metallic and insulator regime. Several phase transitions are observed, the most obvious being the transition from a ferromagnetic metallic to a ferromagnetic insulator phase that is related to the formation of short-range orbitally ordered domains. The temperature T {sub 1} of the phase transition is dependent on doping concentration and for optimally doped samples ({approx}32% of Mn{sup 4+} ions) we have found T {sub 1}{approx}0.93 T {sub C}.

  12. Baryon inhomogeneity from the cosmic quark-hadron phase transition

    International Nuclear Information System (INIS)

    Kurki-Suonio, H.

    1991-01-01

    We discuss the generation of inhomogeneity in the baryon-number density during the cosmic quark-hadron phase transition. We use a simple model with thin-wall phase boundaries and ideal-gas equations of state. The nucleation of the phase transition introduces a new distance scale into the universe which will be the scale of the generated inhomogeneity. We review the estimate of this scale. During the transition baryon number is likely to collect onto a layer at the phase boundary. These layers may in the end be deposited as small regions of very high baryon density. 21 refs., 1 fig

  13. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  14. Restrictions on TWT Helix Voltage Ripple for Acceptable Notch Filter Performance

    Energy Technology Data Exchange (ETDEWEB)

    Hyslop, B.

    1984-12-01

    An ac ripple on the helix voltage of the 1-2 GHz TWT's creates FM sidebands that cause amplitude and phase modulation of the microwave TWT output signal. A limit of 16 volts peak-to-peak is required for acceptable superconducting notch filter performance.

  15. Phase transitions in liquids with directed intermolecular bonding

    OpenAIRE

    Son, L.; Ryltcev, R.

    2005-01-01

    Liquids with quasi - chemical bonding between molecules are described in terms of vertex model. It is shown that this bonding results in liquid - liquid phase transition, which occurs between phases with different mean density of intermolecular bonds. The transition may be suggested to be a universal phenomena for those liquids.

  16. The triple helix of collagens - an ancient protein structure that enabled animal multicellularity and tissue evolution.

    Science.gov (United States)

    Fidler, Aaron L; Boudko, Sergei P; Rokas, Antonis; Hudson, Billy G

    2018-04-09

    The cellular microenvironment, characterized by an extracellular matrix (ECM), played an essential role in the transition from unicellularity to multicellularity in animals (metazoans), and in the subsequent evolution of diverse animal tissues and organs. A major ECM component are members of the collagen superfamily -comprising 28 types in vertebrates - that exist in diverse supramolecular assemblies ranging from networks to fibrils. Each assembly is characterized by a hallmark feature, a protein structure called a triple helix. A current gap in knowledge is understanding the mechanisms of how the triple helix encodes and utilizes information in building scaffolds on the outside of cells. Type IV collagen, recently revealed as the evolutionarily most ancient member of the collagen superfamily, serves as an archetype for a fresh view of fundamental structural features of a triple helix that underlie the diversity of biological activities of collagens. In this Opinion, we argue that the triple helix is a protein structure of fundamental importance in building the extracellular matrix, which enabled animal multicellularity and tissue evolution. © 2018. Published by The Company of Biologists Ltd.

  17. On growth and form of irregular coiled-shell of a terrestrial snail: Plectostoma concinnum (Fulton, 1901) (Mollusca: Caenogastropoda: Diplommatinidae).

    Science.gov (United States)

    Liew, Thor-Seng; Kok, Annebelle C M; Schilthuizen, Menno; Urdy, Severine

    2014-01-01

    The molluscan shell can be viewed as a petrified representation of the organism's ontogeny and thus can be used as a record of changes in form during growth. However, little empirical data is available on the actual growth and form of shells, as these are hard to quantify and examine simultaneously. To address these issues, we studied the growth and form of a land snail that has an irregularly coiled and heavily ornamented shell-Plectostoma concinnum. The growth data were collected in a natural growth experiment and the actual form changes of the aperture during shell ontogeny were quantified. We used an ontogeny axis that allows data of growth and form to be analysed simultaneously. Then, we examined the association between the growth and the form during three different whorl growing phases, namely, the regular coiled spire phase, the transitional constriction phase, and the distortedly-coiled tuba phase. In addition, we also explored the association between growth rate and the switching between whorl growing mode and rib growing mode. As a result, we show how the changes in the aperture ontogeny profiles in terms of aperture shape, size and growth trajectory, and the changes in growth rates, are associated with the different shell forms at different parts of the shell ontogeny. These associations suggest plausible constraints that underlie the three different shell ontogeny phases and the two different growth modes. We found that the mechanism behind the irregularly coiled-shell is the rotational changes of the animal's body and mantle edge with respect to the previously secreted shell. Overall, we propose that future study should focus on the role of the mantle and the columellar muscular system in the determination of shell form.

  18. On growth and form of irregular coiled-shell of a terrestrial snail: Plectostoma concinnum (Fulton, 1901 (Mollusca: Caenogastropoda: Diplommatinidae

    Directory of Open Access Journals (Sweden)

    Thor-Seng Liew

    2014-05-01

    Full Text Available The molluscan shell can be viewed as a petrified representation of the organism’s ontogeny and thus can be used as a record of changes in form during growth. However, little empirical data is available on the actual growth and form of shells, as these are hard to quantify and examine simultaneously. To address these issues, we studied the growth and form of a land snail that has an irregularly coiled and heavily ornamented shell–Plectostoma concinnum. The growth data were collected in a natural growth experiment and the actual form changes of the aperture during shell ontogeny were quantified. We used an ontogeny axis that allows data of growth and form to be analysed simultaneously. Then, we examined the association between the growth and the form during three different whorl growing phases, namely, the regular coiled spire phase, the transitional constriction phase, and the distortedly-coiled tuba phase. In addition, we also explored the association between growth rate and the switching between whorl growing mode and rib growing mode. As a result, we show how the changes in the aperture ontogeny profiles in terms of aperture shape, size and growth trajectory, and the changes in growth rates, are associated with the different shell forms at different parts of the shell ontogeny. These associations suggest plausible constraints that underlie the three different shell ontogeny phases and the two different growth modes. We found that the mechanism behind the irregularly coiled-shell is the rotational changes of the animal’s body and mantle edge with respect to the previously secreted shell. Overall, we propose that future study should focus on the role of the mantle and the columellar muscular system in the determination of shell form.

  19. Energy transition and phasing out nuclear

    International Nuclear Information System (INIS)

    Laponche, Bernard

    2013-05-01

    In the first part of this report, the author outlines and comments the need of an energy transition in the world: overview of world challenges (world energy consumption and its constraints, a necessary energy transition, new actors and new responsibilities), and describes the German example of an energy transition policy. In the second part, he presents and discusses the main reasons for phasing out nuclear: description of a nuclear plant operation (fission and chain reaction, heat production, production of radioactive elements, how to stop a nuclear reactor), safety and risk issues (protection arrangements, risk and consequence of a nuclear accident), issue of radioactive wastes, relationship between civil techniques and proliferation of nuclear weapons. In a third part, the author proposes an overview of the energy issue in France: final energy consumption, electricity production and consumption, primary energy consumption, characteristics of the French energy system (oil dependency, electricity consumption, and high share of nuclear energy in electricity production). In a last part, the author addresses the issue of energy transition in a perspective of phasing out nuclear: presentation of the Negawatt scenario, assessments made by Global Chance, main programmes of energy transition

  20. Sticky water surfaces: Helix-​coil transitions suppressed in a cell-​penetrating peptide at the air-​water interface

    NARCIS (Netherlands)

    Schach, D.; Globisch, C.; Roeters, S.J.; Woutersen, S.; Fuchs, A.; Weiss, C.K.; Backus, E.H.G.; Landfester, K.; Bonn, M.; Peter, C.; Weidner, T.

    2014-01-01

    GALA is a 30 amino acid synthetic peptide consisting of a Glu-​Ala-​Leu-​Ala repeat and is known to undergo a reversible structural transition from a disordered to an α-​helical structure when changing the pH from basic to acidic values. In its helical state GALA can insert into and disintegrate

  1. Heat capacity characterization at phase transition temperature of Agl superionic

    International Nuclear Information System (INIS)

    Widowati, Arie

    2000-01-01

    The phase transition of Agl superionic conductor was investigated by calorometric. A single phase transition was found at (153±5) o C which corresponds to the α - β transition. Calorimetric measurement showed an anomalously high heat capacity with a large discontinues change in the Arrhenius plot, was found above the transition temperature of β - α phase. The maximum heat capacity was found to be ±19.7 cal/gmol. Key words : superionic conductor, thermal capacity

  2. Generalized transport model for phase transition with memory

    International Nuclear Information System (INIS)

    Chen, Chi; Ciucci, Francesco

    2013-01-01

    A general model for phenomenological transport in phase transition is derived, which extends Jäckle and Frisch model of phase transition with memory and the Cahn–Hilliard model. In addition to including interfacial energy to account for the presence of interfaces, we introduce viscosity and relaxation contributions, which result from incorporating memory effect into the driving potential. Our simulation results show that even without interfacial energy term, the viscous term can lead to transient diffuse interfaces. From the phase transition induced hysteresis, we discover different energy dissipation mechanism for the interfacial energy and the viscosity effect. In addition, by combining viscosity and interfacial energy, we find that if the former dominates, then the concentration difference across the phase boundary is reduced; conversely, if the interfacial energy is greater then this difference is enlarged.

  3. Role of end effects in helical aggregation

    NARCIS (Netherlands)

    Gestel, van J.A.M.; Schoot, van der P.P.A.M.; Michels, M.A.J.

    2003-01-01

    End effects are known to play a pivotal role in equilibrium polymerization. To investigate their role in detail, we apply constraints to the first and last bonds of model linear aggregates that exhibit a helix-coil type configurational transition. Three different classes of behavior manifest

  4. Structure of a designed, right-handed coiled-coil tetramer containing all biological amino acids.

    Science.gov (United States)

    Sales, Mark; Plecs, Joseph J; Holton, James M; Alber, Tom

    2007-10-01

    The previous design of an unprecedented family of two-, three-, and four-helical, right-handed coiled coils utilized nonbiological amino acids to efficiently pack spaces in the oligomer cores. Here we show that a stable, right-handed parallel tetrameric coiled coil, called RH4B, can be designed entirely using biological amino acids. The X-ray crystal structure of RH4B was determined to 1.1 Angstrom resolution using a designed metal binding site to coordinate a single Yb(2+) ion per 33-amino acid polypeptide chain. The resulting experimental phases were particularly accurate, and the experimental electron density map provided an especially clear, unbiased view of the molecule. The RH4B structure closely matched the design, with equivalent core rotamers and an overall root-mean-square deviation for the N-terminal repeat of the tetramer of 0.24 Angstrom. The clarity and resolution of the electron density map, however, revealed alternate rotamers and structural differences between the three sequence repeats in the molecule. These results suggest that the RH4B structure populates an unanticipated variety of structures.

  5. Non-equilibrium effects evidenced by vibrational spectra during the coil-to-globule transition in poly(N-isopropylacrylamide) subjected to an ultrafast heating-cooling cycle.

    Science.gov (United States)

    Deshmukh, Sanket A; Kamath, Ganesh; Suthar, Kamlesh J; Mancini, Derrick C; Sankaranarayanan, Subramanian K R S

    2014-03-14

    Molecular dynamics simulations in conjunction with finite element calculations are used to explore the conformational dynamics of a thermo-sensitive oligomer, namely poly(N-isopropylacrylamide) (PNIPAM), subjected to an ultra-fast heating-cooling cycle. Finite element (FE) calculations were used to predict the temperature profile resulting from laser-induced heating of the polymer-aqueous system. The heating rate (∼0.6 K ps(-1)) deduced from FE calculations was used to heat an aqueous solution of PNIPAM consisting of 30 monomeric units (30-mer) from 285 K to 315 K. Non-equilibrium effects arising from the ultra-fast heating-cooling cycle results in a hysteresis during the coil-to-globule transition. The corresponding atomic scale conformations were characterized by monitoring the changes in the vibrational spectra, which provided a reliable metric to study the coil-to-globule transition in PNIPAM and vice-versa across the LCST. The vibrational spectra of bonds involving atoms from the oligomer backbone and the various side-groups (amide I, amide II, and the isopropyl group of PNIPAM) of the oligomers were analyzed to study the conformational changes in the oligomer corresponding to the observed hysteresis. The differences in the vibrational spectra calculated at various temperatures during heating and cooling cycles were used to understand the coil-to-globule and globule-to-coil transitions in the PNIPAM oligomer and identify the changes in the relative interactions between various atoms in the backbone and in the side groups of the oligomer with water. The shifts in the computed vibrational spectral peaks and the changes in the intensity of peaks for the different regions of PNIPAM, seen across the LCST during the heating cycle, are in good agreement with previous experimental studies. The changes in the radius of gyration (Rg) and vibrational spectra for amide I and amide II regions of PNIPAM suggest a clear coil-to-globule transition at ∼301 K during the

  6. Thermodynamic phase transition of a black hole in rainbow gravity

    Directory of Open Access Journals (Sweden)

    Zhong-Wen Feng

    2017-09-01

    Full Text Available In this letter, using the rainbow functions that were proposed by Magueijo and Smolin, we investigate the thermodynamics and the phase transition of rainbow Schwarzschild black hole. First, we calculate the rainbow gravity corrected Hawking temperature. From this modification, we then derive the local temperature, free energy, and other thermodynamic quantities in an isothermal cavity. Finally, we analyze the critical behavior, thermodynamic stability, and phase transition of the rainbow Schwarzschild black hole. The results show that the rainbow gravity can stop the Hawking radiation in the final stages of black holes' evolution and lead to the remnants of black holes. Furthermore, one can observe that the rainbow Schwarzschild black hole has one first-order phase transition, two second-order phase transitions, and three Hawking–Page-type phase transitions in the framework of rainbow gravity theory.

  7. Group theoretical arguments on the Landau theory of second-order phase transitions applied to the phase transitions in some liquid crystals

    International Nuclear Information System (INIS)

    Rosciszewski, K.

    1979-01-01

    The phase transitions between liquids and several of the simplest liquid crystalline phases (nematic, cholesteric, and the simplest types of smectic A and smectic C) were studied from the point of view of the group-theoretical arguments of Landau theory. It was shown that the only possible candidates for second-order phase transitions are those between nematic and smectic A, between centrosymmetric nematic and smectic C and between centrosymmetric smectic A and smectic C. Simple types of density functions for liquid crystalline phases are proposed. (author)

  8. Fermion condensation quantum phase transition versus conventional quantum phase transitions

    International Nuclear Information System (INIS)

    Shaginyan, V.R.; Han, J.G.; Lee, J.

    2004-01-01

    The main features of fermion condensation quantum phase transition (FCQPT), which are distinctive in several aspects from that of conventional quantum phase transition (CQPT), are considered. We show that in contrast to CQPT, whose physics in quantum critical region is dominated by thermal and quantum fluctuations and characterized by the absence of quasiparticles, the physics of a Fermi system near FCQPT or undergone FCQPT is controlled by the system of quasiparticles resembling the Landau quasiparticles. Contrary to the Landau quasiparticles, the effective mass of these quasiparticles strongly depends on the temperature, magnetic fields, density, etc. This system of quasiparticles having general properties determines the universal behavior of the Fermi system in question. As a result, the universal behavior persists up to relatively high temperatures comparatively to the case when such a behavior is determined by CQPT. We analyze striking recent measurements of specific heat, charge and heat transport used to study the nature of magnetic field-induced QCP in heavy-fermion metal CeCoIn 5 and show that the observed facts are in good agreement with our scenario based on FCQPT and certainly seem to rule out the critical fluctuations related with CQPT. Our general consideration suggests that FCQPT and the emergence of novel quasiparticles near and behind FCQPT and resembling the Landau quasiparticles are distinctive features intrinsic to strongly correlated substances

  9. Dynamical Symmetries and Causality in Non-Equilibrium Phase Transitions

    Directory of Open Access Journals (Sweden)

    Malte Henkel

    2015-11-01

    Full Text Available Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant n-point functions. These are important for the physical identification of n-point functions as responses or correlators.

  10. Universal phase transition in community detectability under a stochastic block model.

    Science.gov (United States)

    Chen, Pin-Yu; Hero, Alfred O

    2015-03-01

    We prove the existence of an asymptotic phase-transition threshold on community detectability for the spectral modularity method [M. E. J. Newman, Phys. Rev. E 74, 036104 (2006) and Proc. Natl. Acad. Sci. (USA) 103, 8577 (2006)] under a stochastic block model. The phase transition on community detectability occurs as the intercommunity edge connection probability p grows. This phase transition separates a subcritical regime of small p, where modularity-based community detection successfully identifies the communities, from a supercritical regime of large p where successful community detection is impossible. We show that, as the community sizes become large, the asymptotic phase-transition threshold p* is equal to √[p1p2], where pi(i=1,2) is the within-community edge connection probability. Thus the phase-transition threshold is universal in the sense that it does not depend on the ratio of community sizes. The universal phase-transition phenomenon is validated by simulations for moderately sized communities. Using the derived expression for the phase-transition threshold, we propose an empirical method for estimating this threshold from real-world data.

  11. Multipartite entanglement characterization of a quantum phase transition

    Science.gov (United States)

    Costantini, G.; Facchi, P.; Florio, G.; Pascazio, S.

    2007-07-01

    A probability density characterization of multipartite entanglement is tested on the one-dimensional quantum Ising model in a transverse field. The average and second moment of the probability distribution are numerically shown to be good indicators of the quantum phase transition. We comment on multipartite entanglement generation at a quantum phase transition.

  12. Multipartite entanglement characterization of a quantum phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Costantini, G [Dipartimento di Fisica, Universita di Bari, I-70126 Bari (Italy); Facchi, P [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Florio, G [Dipartimento di Fisica, Universita di Bari, I-70126 Bari (Italy); Pascazio, S [Dipartimento di Fisica, Universita di Bari, I-70126 Bari (Italy)

    2007-07-13

    A probability density characterization of multipartite entanglement is tested on the one-dimensional quantum Ising model in a transverse field. The average and second moment of the probability distribution are numerically shown to be good indicators of the quantum phase transition. We comment on multipartite entanglement generation at a quantum phase transition.

  13. Phase transitions and glass transition in a hyperquenched silica–alumina glass

    DEFF Research Database (Denmark)

    Zhang, Y.F.; Zhao, D.H.; Yue, Yuanzheng

    2017-01-01

    We investigate phase transitions, glass transition, and dynamic behavior in the hyperquenched 69SiO2–31Al2O3 (mol%) glass (SA glass). Upon reheating, the SA glass exhibits a series of thermal responses. Subsequent to the sub-Tg enthalpy release, the glass undergoes a large jump in isobaric heat...... capacity (ΔCp) during glass transition, implying the fragile nature of the SA glass. The mullite starts to form before the end of glass transition, indicating that the SA glass is extremely unstable against crystallization. After the mullite formation, the remaining glass phase exhibits an increased Tg...... and a suppressed ΔCp. The formation of cristobalite at 1553 K indicates the dominance of silica in the remaining glass matrix. The cristobalite gradually re-melts as the isothermal heat-treatment temperature is raised from 1823 to 1853 K, which is well below the melting point of cristobalite, while the amount...

  14. Calorimetric Study of Phase Transitions Involving Twist-Grain-Boundary TGB{A} and TGB{C} Phases

    Science.gov (United States)

    Navailles, L.; Garland, C. W.; Nguyen, H. T.

    1996-09-01

    High-resolution calorimetry has been used to determine the heat capacity and latent heat associated with phase transitions in the homologous series of chiral liquid crystals nF_2BTFO_1M_7 [ 3-fluoro-4(1-methylheptyloxy)4'-(4''-alkoxy-2'', 3''-difluorobenzoyloxy)tolane] . These compounds exhibit smectic-C^* (SmC^*), twist-grain-boundary (TGBA for n=10, TGBC for n=11, 12) and cholesteric (N^*) phases. All the phase transitions are first order with small to moderate latent heats. There is a large rounded excess heat capacity peak in the N^* phase that is consistent with the predicted appearance of short-range TGB order (chiral line liquid character). This is analogous to the development of an Abrikosov flux vortex liquid in type-II superconductors. Both the n=11 and 12 homologs exhibit two closely spaced transitions in the region where a single TGBC - N^* transition was expected. This suggests the existence of two thermodynamically distinct TGBC phases. Des exprériences de calorimétrie haute résolution ont été réalisées pour déterminer les chaleurs spécifiques et les chaleurs latentes associées aux transitions de phase des homologues de la série crystal liquide nF_2BTFO_1M_7: 3-fluoro-4[1-methyl-heptyloxy]4'-(4''-alcoxy-2'', 3''-difluorobenzoyloxy)tolanes. Ces produits présentent la phase smectique C^* (SmC^*), les phases à torsion par joint de grain (TGBA pour n=10 et TGBC pour n=11, 12) et la phase cholestérique (N^*). Toutes les transitions de phase sont du premier ordre. La chaleur latente associée à ces transitions est faibles ou modérée. Nous observons, dans la phase N^*, un grand pic arrondi qui est en accord avec les prédictions de l'apparition d'un ordre TGB à courte distance (liquide de ligne de dislocation). Ce phénomène est l'analogue du liquide de vortex dans les supraconducteurs de type II. Les composés n=11 et 12 présentent, dans la région où nous attendions une transition TGBC - N^* unique, deux transitions sur un très faible

  15. FRC translation into a compression coil

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1985-01-01

    Several features of the problem of FRC translation into a compression coil are considered. First, the magnitude of the guide field is calculated and found to exceed that which would be applied to a flux conserver. Second, energy conservation is applied to FRC translation from a flux conserver into a compression coil. It is found that a significant temperature decrease is required for translation to be energetically possible. The temperature change depends on the external inductance in the compression circuit. An analogous case is that of a compression region composed of a compound magnet; in this case the temperature change depends on the ratio of inner and outer coil radii. Finally, the kinematics of intermediate translation states are calculated using an ''abrupt transition'' model. It is found, in this model, that the FRC must overcome a potential hill during translation, which requires a small initial velocity

  16. The problem of phase transitions in statistical mechanics

    International Nuclear Information System (INIS)

    Martynov, Georgii A

    1999-01-01

    The first part of this review deals with the single-phase approach to the statistical theory of phase transitions. This approach is based on the assumption that a first-order phase transition is due to the loss of stability of the parent phase. We demonstrate that it is practically impossible to find the coordinates of the transition points using this criterion in the framework of the global Gibbs theory which describes the state of the entire macroscopic system. On the basis of the Ornstein-Zernike equation we formulate a local approach that analyzes the state of matter inside the correlation sphere of radius R c ∼ 10 A. This approach is proved to be as rigorous as the Gibbs theory. In the context of the local approach we formulate a criterion that allows finding the transition points without calculating the chemical potential and the pressure of the second conjugate phase. In the second part of the review we consider second-order phase transitions (critical phenomena). The Kadanoff-Wilson theory of critical phenomena is analyzed, based on the global Gibbs approach. Again we use the Ornstein-Zernike equation to formulate a local theory of critical phenomena. With regard to experimentally established quantities this theory yields precisely the same results as the Kadanoff-Wilson theory; secondly, the local approach allows the prediction of many previously unknown details of critical phenomena, and thirdly, the local approach paves the way for constructing a unified theory of liquids that will describe the behavior of matter not only in the regular domain of the phase diagram, but also at the critical point and in its vicinity. (reviews of topical problems)

  17. DNA binding specificity of the basic-helix-loop-helix protein MASH-1.

    Science.gov (United States)

    Meierhan, D; el-Ariss, C; Neuenschwander, M; Sieber, M; Stackhouse, J F; Allemann, R K

    1995-09-05

    Despite the high degree of sequence similarity in their basic-helix-loop-helix (BHLH) domains, MASH-1 and MyoD are involved in different biological processes. In order to define possible differences between the DNA binding specificities of these two proteins, we investigated the DNA binding properties of MASH-1 by circular dichroism spectroscopy and by electrophoretic mobility shift assays (EMSA). Upon binding to DNA, the BHLH domain of MASH-1 underwent a conformational change from a mainly unfolded to a largely alpha-helical form, and surprisingly, this change was independent of the specific DNA sequence. The same conformational transition could be induced by the addition of 20% 2,2,2-trifluoroethanol. The apparent dissociation constants (KD) of the complexes of full-length MASH-1 with various oligonucleotides were determined from half-saturation points in EMSAs. MASH-1 bound as a dimer to DNA sequences containing an E-box with high affinity KD = 1.4-4.1 x 10(-14) M2). However, the specificity of DNA binding was low. The dissociation constant for the complex between MASH-1 and the highest affinity E-box sequence (KD = 1.4 x 10(-14) M2) was only a factor of 10 smaller than for completely unrelated DNA sequences (KD = approximately 1 x 10(-13) M2). The DNA binding specificity of MASH-1 was not significantly increased by the formation of an heterodimer with the ubiquitous E12 protein. MASH-1 and MyoD displayed similar binding site preferences, suggesting that their different target gene specificities cannot be explained solely by differential DNA binding. An explanation for these findings is provided on the basis of the known crystal structure of the BHLH domain of MyoD.

  18. Martensitic phase transitions in Co-0.85 at % Fe

    International Nuclear Information System (INIS)

    Prem, M.

    1997-12-01

    Co-0.85at%Fe shows the two martensitic phase transitions hcp-dhcp and dhcp-fcc. The lattice dynamics of Co-0.85at%Fe was investigated by the means of inelastic neutron scattering at a series of temperatures up to 750K in order to understand the two martensitic phase transitions of this system. In all of the measured phonon branches anomalies were neither found near the hcp-dhcp phase transition nor going through the dhcp-fcc transition. Lattice-parameter scans were performed through the whole temperature range. Diffuse neutron scattering revealed a lattice parameter shift between the dhcp and fcc phase of ∼0.4 % measured at the same temperature. This was possible because the system shows a wide temperature hysteresis at the two phase transitions. In the temperature region of coexistence of dhcp and fcc phase diffuse satellites arose near the (111)fcc Bragg peak (which is equivalent to the (00.2)dhcp peak). Their intensity varied in accordance to the volume fraction of the phases but vanished on changing wavelength. The elastic measurements were performed at the Austrian triple axis spectrometer VALSE located at the Laboratoire Leon Brillouin (LLB) in Saclay (F); the inelastic measurements were performed at the spectrometers IN3 and INS of the Institute Laue Langevin (ILL) in Grenoble (F). (author)

  19. Phase transition in finite systems

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph.; Duflot, V. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Duflot, V.; Gulminelli, F. [Laboratoire de Physique Corpusculaire, LPC-ISMRa, CNRS-IN2P3, 14 - Caen (France)

    2000-07-01

    The general problem of the definition of a phase transition without employing the thermodynamical limit is addressed. Different necessary conditions are considered and illustrated with examples from different nuclear and general physics phenomenologies. (authors)

  20. Phase transition in finite systems

    International Nuclear Information System (INIS)

    Chomaz, Ph.; Duflot, V.; Duflot, V.; Gulminelli, F.

    2000-01-01

    The general problem of the definition of a phase transition without employing the thermodynamical limit is addressed. Different necessary conditions are considered and illustrated with examples from different nuclear and general physics phenomenologies. (authors)

  1. Signatures of topological phase transitions in mesoscopic superconducting rings

    International Nuclear Information System (INIS)

    Pientka, Falko; Romito, Alessandro; Duckheim, Mathias; Oppen, Felix von; Oreg, Yuval

    2013-01-01

    We investigate Josephson currents in mesoscopic rings with a weak link which are in or near a topological superconducting phase. As a paradigmatic example, we consider the Kitaev model of a spinless p-wave superconductor in one dimension, emphasizing how this model emerges from more realistic settings based on semiconductor nanowires. We show that the flux periodicity of the Josephson current provides signatures of the topological phase transition and the emergence of Majorana fermions (MF) situated on both sides of the weak link even when fermion parity is not a good quantum number. In large rings, the MF hybridize only across the weak link. In this case, the Josephson current is h/e periodic in the flux threading the loop when fermion parity is a good quantum number but reverts to the more conventional h/2e periodicity in the presence of fermion-parity changing relaxation processes. In mesoscopic rings, the MF also hybridize through their overlap in the interior of the superconducting ring. We find that in the topological superconducting phase, this gives rise to an h/e-periodic contribution even when fermion parity is not conserved and that this contribution exhibits a peak near the topological phase transition. This signature of the topological phase transition is robust to the effects of disorder. As a byproduct, we find that close to the topological phase transition, disorder drives the system deeper into the topological phase. This is in stark contrast to the known behavior far from the phase transition, where disorder tends to suppress the topological phase. (paper)

  2. Fault-current limiter using a superconducting coil

    International Nuclear Information System (INIS)

    Boenig, H.J.; Paice, D.A.

    1982-01-01

    A novel circuit, consisting of solid-state diodes and a biased superconducting coil, for limiting the fault currents in three-phase ac systems is presented. A modification of the basic circuit results in a solid-state ac breaker with current-limiting features. The operating characteristics of the fault-current limiter and the ac breaker are analyzed. An optimization procedure for sizing the superconducting coil is derived

  3. Gibberellin-regulated gene in the basal region of rice leaf sheath encodes basic helix-loop-helix transcription factor.

    Science.gov (United States)

    Komatsu, Setsuko; Takasaki, Hironori

    2009-07-01

    Genes regulated by gibberellin (GA) during leaf sheath elongation in rice seedlings were identified using the transcriptome approach. mRNA from the basal regions of leaf sheaths treated with GA3 was analyzed by high-coverage gene expression profiling. 33,004 peaks were detected, and 30 transcripts showed significant changes in the presence of GA3. Among these, basic helix-loop-helix transcription factor (AK073385) was significantly upregulated. Quantitative PCR analysis confirmed that expression of AK073385 was controlled by GA3 in a time- and dose-dependent manner. Basic helix-loop-helix transcription factor (AK073385) is therefore involved in the regulation of gene expression by GA3.

  4. Shear induced phase transitions induced in edible fats

    Science.gov (United States)

    Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.

    2003-03-01

    The food industry crystallizes fats under different conditions of temperature and shear to obtain products with desired crystalline phases. Milk fat, palm oil, cocoa butter and chocolate were crystallized from the melt in a temperature controlled Couette cell. Synchrotron x-ray diffraction studies were conducted to examine the role of shear on the phase transitions seen in edible fats. The shear forces on the crystals induced acceleration of the alpha to beta-prime phase transition with increasing shear rate in milk fat and palm oil. The increase was slow at low shear rates and became very strong above 360 s-1. In cocoa butter the acceleration between beta-prime-III and beta-V phase transition increased until a maximum of at 360 s-1, and then decreased, showing competition between enhanced heat transfer and viscous heat generation.

  5. Structural phase transition in monolayer MoTe2 driven by electrostatic doping

    Science.gov (United States)

    Wang, Ying; Xiao, Jun; Zhu, Hanyu; Li, Yao; Alsaid, Yousif; Fong, King Yan; Zhou, Yao; Wang, Siqi; Shi, Wu; Wang, Yuan; Zettl, Alex; Reed, Evan J.; Zhang, Xiang

    2017-10-01

    Monolayers of transition-metal dichalcogenides (TMDs) exhibit numerous crystal phases with distinct structures, symmetries and physical properties. Exploring the physics of transitions between these different structural phases in two dimensions may provide a means of switching material properties, with implications for potential applications. Structural phase transitions in TMDs have so far been induced by thermal or chemical means; purely electrostatic control over crystal phases through electrostatic doping was recently proposed as a theoretical possibility, but has not yet been realized. Here we report the experimental demonstration of an electrostatic-doping-driven phase transition between the hexagonal and monoclinic phases of monolayer molybdenum ditelluride (MoTe2). We find that the phase transition shows a hysteretic loop in Raman spectra, and can be reversed by increasing or decreasing the gate voltage. We also combine second-harmonic generation spectroscopy with polarization-resolved Raman spectroscopy to show that the induced monoclinic phase preserves the crystal orientation of the original hexagonal phase. Moreover, this structural phase transition occurs simultaneously across the whole sample. This electrostatic-doping control of structural phase transition opens up new possibilities for developing phase-change devices based on atomically thin membranes.

  6. Model for pairing phase transition in atomic nuclei

    International Nuclear Information System (INIS)

    Schiller, A.; Guttormsen, M.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.

    2002-01-01

    A model is developed which allows the investigation and classification of the pairing phase transition in atomic nuclei. The regions of the parameter space are discussed for which a pairing phase transition can be observed. The model parameters include number of particles, attenuation of pairing correlations with increasing seniority, single-particle level spacing, and pairing gap parameter

  7. Deconfinement phase transition in QCD with heavy quarks

    International Nuclear Information System (INIS)

    Attig, N.; Petersson, B.; Wolff, M.; Gavai, R.V.

    1988-01-01

    Using the pseudo-fermion method to simulate QCD with dynamical quarks we investigate the effects of heavy dynamical quarks of 2 flavours on the deconfinement phase transition in the quenched QCD. As the mass of the quark is decreased the phase transition weakens as expected. Compared to the earlier results with leading order hopping parameter expansion, however, the weakening is less rapid. Our estimated upper bound on the critical mass where the transition becomes continuous is 1.5-2 times lower than earlier results. (orig.)

  8. Phase transition in a modified square Josephson-junction array

    CERN Document Server

    Han, J

    1999-01-01

    We study the phase transition in a modified square proximity-coupled Josephson-junction array with small superconducting islands at the center of each plaquette. We find that the modified square array undergoes a Kosterlitz-Thouless-Berezinskii-like phase transition, but at a lower temperature than the simple square array with the same single-junction critical current. The IV characteristics, as well as the phase transition, resemble qualitatively those of a disordered simple square array. The effects of the presence of the center islands in the modified square array are discussed.

  9. Modeling of Lossy Inductance in Moving-Coil Loudspeakers

    DEFF Research Database (Denmark)

    Kong, Xiao-Peng; Agerkvist, Finn T.; Zeng, Xin-Wu

    2015-01-01

    The electrical impedance of moving-coil loudspeakers is dominated by the lossy inductance in high frequency range. Using the equivalent electrical circuit method, a new model for the lossy inductance based on separate functions for the magnitude and phase of the impedance is presented. The electr......The electrical impedance of moving-coil loudspeakers is dominated by the lossy inductance in high frequency range. Using the equivalent electrical circuit method, a new model for the lossy inductance based on separate functions for the magnitude and phase of the impedance is presented...

  10. Partition Efficiency of High-Pitch Locular Multilayer Coil for Countercurrent Chromatographic Separation of Proteins Using Small-Scale Cross-Axis Coil Planet Centrifuge and Application to Purification of Various Collagenases with Aqueous-Aqueous Polymer Phase Systems.

    Science.gov (United States)

    Shinomiya, Kazufusa; Kobayashi, Hiroko; Inokuchi, Norio; Nakagomi, Kazuya; Ito, Yoichiro

    2011-01-01

    Partition efficiency of the high-pitch locular multilayer coil was evaluated in countercurrent chromatographic (CCC) separation of proteins with an aqueous-aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The separation column was specially made by high-pitch (ca 5 cm) winding of 1.0 mm I.D., 2.0 mm O.D. locular tubing compressed at 2 cm intervals with a total capacity of 29.5 mL. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin, and lysozyme with the 12.5% (w/w) polyethylene glycol (PEG) 1000 and 12.5% (w/w) dibasic potassium phosphate system (pH 9.2) under 1000 rpm of column revolution. This high-pitch locular tubing yielded substantially increased stationary phase retention than the normal locular tubing for both lower and upper mobile phases. In order to demonstrate the capability of the high-pitch locular tubing, the purification of collagenase from the crude commercial sample was carried out using an aqueous-aqueous polymer phase system. Using the 16.0% (w/w) PEG 1000 - 6.3% (w/w) dibasic potassium phosphate - 6.3% (w/w) monobasic potassium phosphate system (pH 6.6), collagenase I, II, V and X derived from Clostridium hystolyticum were separated from other proteins and colored small molecular weight compounds present in the crude commercial sample, while collagenase N-2 and S-1 from Streptomyces parvulus subsp. citrinus were eluted with impurities at the solvent front with the upper phase. The collagenase from C. hystolyticum retained its enzymatic activity in the purified fractions. The overall results demonstrated that the high-pitch locular multilayer coil is effectively used for the CCC purification of bioactive compounds without loss of their enzymatic activities.

  11. Partition Efficiency of High-Pitch Locular Multilayer Coil for Countercurrent Chromatographic Separation of Proteins Using Small-Scale Cross-Axis Coil Planet Centrifuge and Application to Purification of Various Collagenases with Aqueous-Aqueous Polymer Phase Systems

    Science.gov (United States)

    Shinomiya, Kazufusa; Kobayashi, Hiroko; Inokuchi, Norio; Nakagomi, Kazuya; Ito, Yoichiro

    2010-01-01

    Partition efficiency of the high-pitch locular multilayer coil was evaluated in countercurrent chromatographic (CCC) separation of proteins with an aqueous-aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The separation column was specially made by high-pitch (ca 5 cm) winding of 1.0 mm I.D., 2.0 mm O.D. locular tubing compressed at 2 cm intervals with a total capacity of 29.5 mL. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin, and lysozyme with the 12.5% (w/w) polyethylene glycol (PEG) 1000 and 12.5% (w/w) dibasic potassium phosphate system (pH 9.2) under 1000 rpm of column revolution. This high-pitch locular tubing yielded substantially increased stationary phase retention than the normal locular tubing for both lower and upper mobile phases. In order to demonstrate the capability of the high-pitch locular tubing, the purification of collagenase from the crude commercial sample was carried out using an aqueous-aqueous polymer phase system. Using the 16.0% (w/w) PEG 1000 – 6.3% (w/w) dibasic potassium phosphate – 6.3% (w/w) monobasic potassium phosphate system (pH 6.6), collagenase I, II, V and X derived from Clostridium hystolyticum were separated from other proteins and colored small molecular weight compounds present in the crude commercial sample, while collagenase N-2 and S-1 from Streptomyces parvulus subsp. citrinus were eluted with impurities at the solvent front with the upper phase. The collagenase from C. hystolyticum retained its enzymatic activity in the purified fractions. The overall results demonstrated that the high-pitch locular multilayer coil is effectively used for the CCC purification of bioactive compounds without loss of their enzymatic activities. PMID:21869859

  12. Gravitationally self-induced phase transition

    International Nuclear Information System (INIS)

    Novello, M.; Duque, S.L.S.

    1990-01-01

    We propose a new mechanism by means of which a phase transition can be stimulated by self-gravitating matter. We suggest that this model could be used to explain the observed isotropy of the Universe. (orig.)

  13. Quantum phase transitions between a class of symmetry protected topological states

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Lokman; Jiang, Hong-Chen; Lu, Yuan-Ming; Lee, Dung-Hai

    2015-07-01

    The subject of this paper is the phase transition between symmetry protected topological states (SPTs). We consider spatial dimension d and symmetry group G so that the cohomology group, Hd+1(G,U(1)), contains at least one Z2n or Z factor. We show that the phase transition between the trivial SPT and the root states that generate the Z2n or Z groups can be induced on the boundary of a (d+1)-dimensional View the MathML source-symmetric SPT by a View the MathML source symmetry breaking field. Moreover we show these boundary phase transitions can be “transplanted” to d dimensions and realized in lattice models as a function of a tuning parameter. The price one pays is for the critical value of the tuning parameter there is an extra non-local (duality-like) symmetry. In the case where the phase transition is continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the transition. This theory also predicts other phase transition scenarios including first order transition and transition via an intermediate symmetry breaking phase.

  14. Superconducting phase transition in STM tips

    Energy Technology Data Exchange (ETDEWEB)

    Eltschka, Matthias; Jaeck, Berthold; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R. [Max Planck Institute for Solid State Research, Stuttgart (Germany); Kern, Klaus [Max Planck Institute for Solid State Research, Stuttgart (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland)

    2015-07-01

    The superconducting properties of systems with dimensions comparable to the London penetration depth considerably differ from macroscopic systems. We have studied the superconducting phase transition of vanadium STM tips in external magnetic fields. Employing Maki's theory we extract the superconducting parameters such as the gap or the Zeeman splitting from differential conductance spectra. While the Zeeman splitting follows the theoretical description of a system with s=1/2 and g=2, the superconducting gaps as well as the critical fields depend on the specific tip. For a better understanding of the experimental results, we solve a one dimensional Usadel equation modeling the superconducting tip as a cone with the opening angle α in an external magnetic field. We find that only a small region at the apex of the tip is superconducting in high magnetic fields and that the order of the phase transition is directly determined by α. Further, the spectral broadening increases with α indicating an intrinsic broadening mechanism due to the conical shape of the tip. Comparing these calculations to our experimental results reveals the order of the superconducting phase transition of the STM tips.

  15. CosmoTransitions: Computing cosmological phase transition temperatures and bubble profiles with multiple fields

    Science.gov (United States)

    Wainwright, Carroll L.

    2012-09-01

    I present a numerical package (CosmoTransitions) for analyzing finite-temperature cosmological phase transitions driven by single or multiple scalar fields. The package analyzes the different vacua of a theory to determine their critical temperatures (where the vacuum energy levels are degenerate), their supercooling temperatures, and the bubble wall profiles which separate the phases and describe their tunneling dynamics. I introduce a new method of path deformation to find the profiles of both thin- and thick-walled bubbles. CosmoTransitions is freely available for public use.Program summaryProgram Title: CosmoTransitionsCatalogue identifier: AEML_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEML_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 8775No. of bytes in distributed program, including test data, etc.: 621096Distribution format: tar.gzProgramming language: Python.Computer: Developed on a 2009 MacBook Pro. No computer-specific optimization was performed.Operating system: Designed and tested on Mac OS X 10.6.8. Compatible with any OS with Python installed.RAM: Approximately 50 MB, mostly for loading plotting packages.Classification: 1.9, 11.1.External routines: SciPy, NumPy, matplotLibNature of problem: I describe a program to analyze early-Universe finite-temperature phase transitions with multiple scalar fields. The goal is to analyze the phase structure of an input theory, determine the amount of supercooling at each phase transition, and find the bubble-wall profiles of the nucleated bubbles that drive the transitions.Solution method: To find the bubble-wall profile, the program assumes that tunneling happens along a fixed path in field space. This reduces the equations of motion to one dimension, which can then be solved using the overshoot

  16. Explosive transitions to synchronization in networks of phase oscillators.

    Science.gov (United States)

    Leyva, I; Navas, A; Sendiña-Nadal, I; Almendral, J A; Buldú, J M; Zanin, M; Papo, D; Boccaletti, S

    2013-01-01

    The emergence of dynamical abrupt transitions in the macroscopic state of a system is currently a subject of the utmost interest. The occurrence of a first-order phase transition to synchronization of an ensemble of networked phase oscillators was reported, so far, for very particular network architectures. Here, we show how a sharp, discontinuous transition can occur, instead, as a generic feature of networks of phase oscillators. Precisely, we set conditions for the transition from unsynchronized to synchronized states to be first-order, and demonstrate how these conditions can be attained in a very wide spectrum of situations. We then show how the occurrence of such transitions is always accompanied by the spontaneous setting of frequency-degree correlation features. Third, we show that the conditions for abrupt transitions can be even softened in several cases. Finally, we discuss, as a possible application, the use of this phenomenon to express magnetic-like states of synchronization.

  17. High-pressure phase transition and phase diagram of gallium arsenide

    Science.gov (United States)

    Besson, J. M.; Itié, J. P.; Polian, A.; Weill, G.; Mansot, J. L.; Gonzalez, J.

    1991-09-01

    Under hydrostatic pressure, cubic GaAs-I undergoes phase transitions to at least two orthorhombic structures. The initial phase transition to GaAs-II has been investigated by optical-transmittance measurements, Raman scattering, and x-ray absorption. The structure of pressurized samples, which are retrieved at ambient, has been studied by x-ray diffraction and high-resolution diffraction microscopy. Various criteria that define the domain of stability of GaAs-I are examined, such as the occurrence of crystalline defects, the local variation in atomic coordination number, or the actual change in crystal structure. These are shown not to occur at the same pressure at 300 K, the latter being observable only several GPa above the actual thermodynamic instability pressure of GaAs-I. Comparison of the evolution of these parameters on increasing and decreasing pressure locates the thermodynamic transition region GaAs-I-->GaAs-II at 12+/-1.5 GPa and at 300 K that is lower than generally reported. The use of thermodynamic relations around the triple point, and of regularities in the properties of isoelectronic and isostructural III-V compounds, yields a phase diagram for GaAs which is consistent with this value.

  18. Van der Waals phase transition in the framework of holography

    International Nuclear Information System (INIS)

    Zeng, Xiao-Xiong; Li, Li-Fang

    2017-01-01

    Phase structure of the quintessence Reissner–Nordström–AdS black hole is probed by the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the Van der Waals-like phase transition. To reinforce this conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.

  19. Van der Waals phase transition in the framework of holography

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Xiong, E-mail: xxzeng@itp.ac.cn [State School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074 (China); Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Li-Fang, E-mail: lilf@itp.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-01-10

    Phase structure of the quintessence Reissner–Nordström–AdS black hole is probed by the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the Van der Waals-like phase transition. To reinforce this conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.

  20. Van der Waals phase transition in the framework of holography

    Directory of Open Access Journals (Sweden)

    Xiao-Xiong Zeng

    2017-01-01

    Full Text Available Phase structure of the quintessence Reissner–Nordström–AdS black hole is probed by the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the Van der Waals-like phase transition. To reinforce this conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.

  1. Moessbauer study of phase transitions under high hydrostatic pressures. 1

    International Nuclear Information System (INIS)

    Kapitanov, E.V.; Yakovlev, E.N.

    1979-01-01

    Experimental results of the hydrostatic pressure influence on Moessbauer spectrum parameters are obtained over the pressure range including the area of structural phase transition. A linear increase of the Moessbauer effect probability (recoilless fraction) is accompanied by a linear decrease of the electron density at tin nuclei within the pressure range foregoing the phase transition. The electric resistance and the recoilless fraction of the new phase of Mg 2 Sn are lower, but the electron density at tin nuclei is greater than the initial phase ones. Hydrostatic conditions allow to fix clearly the diphasic transition area and to determine the influence of the pressure on the Moessbauer line position and on the recoilless fraction of the high pressure phase. The phase transition heat Q = 415 cal mol -1 is calculated using recoilless fractions of the high and low pressure phases at 25 kbar. The present results are qualitatively and quantitatively different from the results, obtained at nonhydrostatic conditions. (author)

  2. The design of the SULTAN inner coil

    International Nuclear Information System (INIS)

    Franken, W.M.P.; Spoorenberg, C.J.G.

    1981-12-01

    The background field of the first phase of the test facility SULTAN will be generated by two concentric solenoids: a 6 Tesla outer coil with a free bore of 1.3 m and an inner coil for increasing the field to 8 Tesla. The free bore (cold) will be 1.055 m. The final design of the 8 Tesla inner coil is described. The coil will operate at an overall current density of 23 x 10 6 A/m 2 . It will be cooled directly by forced flow supercritical helium. A hollow conductor is applied, composed of a rectangular copper tube and a 16 strands Rutherford cable, soldered on one side of the tube. The copper tube will be cold worked to cope with the high stress level (165 MPa). The design base (field and stress analysis, cooling, stability), the mechanical design and the instrumentation will be specified. The design and construction of the coil is a part of the collaboration between ECN and Holec Transformer Group

  3. Continuous Easy-Plane Deconfined Phase Transition on the Kagome Lattice

    Science.gov (United States)

    Zhang, Xue-Feng; He, Yin-Chen; Eggert, Sebastian; Moessner, Roderich; Pollmann, Frank

    2018-03-01

    We use large scale quantum Monte Carlo simulations to study an extended Hubbard model of hard core bosons on the kagome lattice. In the limit of strong nearest-neighbor interactions at 1 /3 filling, the interplay between frustration and quantum fluctuations leads to a valence bond solid ground state. The system undergoes a quantum phase transition to a superfluid phase as the interaction strength is decreased. It is still under debate whether the transition is weakly first order or represents an unconventional continuous phase transition. We present a theory in terms of an easy plane noncompact C P1 gauge theory describing the phase transition at 1 /3 filling. Utilizing large scale quantum Monte Carlo simulations with parallel tempering in the canonical ensemble up to 15552 spins, we provide evidence that the phase transition is continuous at exactly 1 /3 filling. A careful finite size scaling analysis reveals an unconventional scaling behavior hinting at deconfined quantum criticality.

  4. Photoinduced charge transfer phase transition in cesium manganese hexacyanoferrate

    International Nuclear Information System (INIS)

    Matsuda, Tomoyuki; Tokoro, Hiroko; Hashimoto, Kazuhito; Ohkoshi, Shin-ichi

    2007-01-01

    Cesium manganese hexacyanoferrate, Cs 1.51 Mn[Fe(CN) 6 ], shows a thermal phase transition between Mn II -NC-Fe III [high-temperature (HT) phase] and Mn III -NC-Fe II [low-temperature (LT) phase] with phase transition temperatures of 170 K (HT→LT) and 230 K (LT→HT). The LT phase shows ferromagnetism with Curie temperature of 7 K and coercive field of 60 Oe. Irradiating with 532 nm laser light converts the LT phase into the photoinduced (PI) phase, which does not have spontaneous magnetization. The electronic state of the PI phase corresponds to that of the HT phase and the relaxation temperature from the PI to the LT phase is observed at 90 K

  5. The Physics of Structural Phase Transitions

    CERN Document Server

    Fujimoto, Minoru

    2005-01-01

    Phase transitions in which crystalline solids undergo structural changes present an interesting problem in the interplay between the crystal structure and the ordering process that is typically nonlinear. Intended for readers with prior knowledge of basic condensed-matter physics, this book emphasizes the physics behind spontaneous structural changes in crystals. Starting with the relevant thermodynamic principles, the text discusses the nature of order variables in collective motion in structural phase transitions, where a singularity in such a collective mode is responsible for lattice instability as revealed by soft phonons. In this book, critical anomalies at second-order structural transitions are first analyzed with the condensate model. Discussions on the nonlinear ordering mechanism are followed with the soliton theory, thereby interpreting the role of long-range order. Relevant details for nonlinear mathematics are therefore given for minimum necessity. The text also discusses experimental methods fo...

  6. Role of relativity in high-pressure phase transitions of thallium.

    Science.gov (United States)

    Kotmool, Komsilp; Chakraborty, Sudip; Bovornratanaraks, Thiti; Ahuja, Rajeev

    2017-02-20

    We demonstrate the relativistic effects in high-pressure phase transitions of heavy element thallium. The known first phase transition from h.c.p. to f.c.c. is initially investigated by various relativistic levels and exchange-correlation functionals as implemented in FPLO method, as well as scalar relativistic scheme within PAW formalism. The electronic structure calculations are interpreted from the perspective of energetic stability and electronic density of states. The full relativistic scheme (FR) within L(S)DA performs to be the scheme that resembles mostly with experimental results with a transition pressure of 3 GPa. The s-p hybridization and the valence-core overlapping of 6s and 5d states are the primary reasons behind the f.c.c. phase occurrence. A recent proposed phase, i.e., a body-centered tetragonal (b.c.t.) phase, is confirmed with a small distortion from the f.c.c. phase. We have also predicted a reversible b.c.t. → f.c.c. phase transition at 800 GPa. This finding has been suggested that almost all the III-A elements (Ga, In and Tl) exhibit the b.c.t. → f.c.c. phase transition at extremely high pressure.

  7. Neutron and x-ray scattering studies of ferroelectric phase transitions

    International Nuclear Information System (INIS)

    Dolling, G.

    1982-08-01

    The subject of ferroelectric type phase transitions is introduced by means of examples of two main classes (a) displacive transitions, e.g. KNbO 3 , and (b) order-disorder transitions, e.g. NaNO 2 . The significance of crystal structure and crystal dynamics (i.e. the phonon dispersion relations) for ferroelectric behaviour is emphasized. The chief methods for structure determination are x-ray and neutron diffraction, while the most powerful of all techniques for studying phonon properties is that of coherent inelastic neutron scattering. The most useful type of neutron spectrometer for phase transition studies, the triple axis crystal spectrometer, is discussed in detail. The history of the soft mode theory of displacive phase transitions, and its application to the antiferroelectric and 'almost ferroelectric' transitions in SrTiO 3 , provides an introduction to more recent developments in this area, including over-damped soft modes, central peaks and critical scattering, incommensurate phase transitions (e.g. K 2 SeO 4 ), amplitudons, phasons and finally solitions. The treatment throughout is descriptive and introductory, designed for graduate students

  8. Signatures of a dissipative phase transition in photon correlation measurements

    Science.gov (United States)

    Fink, Thomas; Schade, Anne; Höfling, Sven; Schneider, Christian; Imamoglu, Ataç

    2018-04-01

    Understanding and characterizing phase transitions in driven-dissipative systems constitutes a new frontier for many-body physics1-8. A generic feature of dissipative phase transitions is a vanishing gap in the Liouvillian spectrum9, which leads to long-lived deviations from the steady state as the system is driven towards the transition. Here, we show that photon correlation measurements can be used to characterize the corresponding critical slowing down of non-equilibrium dynamics. We focus on the extensively studied phenomenon of optical bistability in GaAs cavity polaritons10,11, which can be described as a first-order dissipative phase transition12-14. Increasing the excitation strength towards the bistable range results in an increasing photon-bunching signal along with a decay time that is prolonged by more than nine orders of magnitude as compared with that of single polaritons. In the limit of strong polariton interactions leading to pronounced quantum fluctuations, the mean-field bistability threshold is washed out. Nevertheless, the functional form with which the Liouvillian gap closes as the thermodynamic limit is approached provides a signature of the emerging dissipative phase transition. Our results establish photon correlation measurements as an invaluable tool for studying dynamical properties of dissipative phase transitions without requiring phase-sensitive interferometric measurements.

  9. Pressure-induced phase transitions in nanocrystalline ReO3

    International Nuclear Information System (INIS)

    Biswas, Kanishka; Muthu, D V S; Sood, A K; Kruger, M B; Chen, B; Rao, C N R

    2007-01-01

    Pressure-induced phase transitions in the nanocrystals of ReO 3 with an average diameter of ∼12 nm have been investigated in detail by using synchrotron x-ray diffraction and the results compared with the literature data of bulk samples of ReO 3 . The study shows that the ambient-pressure cubic I phase (space group Pm3-barm) transforms to a monoclinic phase (space group C 2/c), then to a rhombohedral I phase (space group R3-barc), and finally to another rhombohedral phase (rhombohedral II, space group R3-barc) with increasing pressure over the 0.0-20.3 GPa range. The cubic I to monoclinic transition is associated with the largest volume change (∼5%), indicative of a reconstructive transition. The transition pressures are generally lower than those known for bulk ReO 3 . The cubic II (Im3-bar) or tetragonal (P4/mbm) phases do not occur at lower pressures. The nanocrystals are found to be more compressible than bulk ReO 3 . On decompression to ambient pressure, the structure does not revert back to the cubic I structure

  10. A stress-induced phase transition model for semi-crystallize shape memory polymer

    Science.gov (United States)

    Guo, Xiaogang; Zhou, Bo; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2014-03-01

    The developments of constitutive models for shape memory polymer (SMP) have been motivated by its increasing applications. During cooling or heating process, the phase transition which is a continuous time-dependent process happens in semi-crystallize SMP and the various individual phases form at different temperature and in different configuration. Then, the transformation between these phases occurred and shape memory effect will emerge. In addition, stress applied on SMP is an important factor for crystal melting during phase transition. In this theory, an ideal phase transition model considering stress or pre-strain is the key to describe the behaviors of shape memory effect. So a normal distributed model was established in this research to characterize the volume fraction of each phase in SMP during phase transition. Generally, the experiment results are partly backward (in heating process) or forward (in cooling process) compared with the ideal situation considering delay effect during phase transition. So, a correction on the normal distributed model is needed. Furthermore, a nonlinear relationship between stress and phase transition temperature Tg is also taken into account for establishing an accurately normal distributed phase transition model. Finally, the constitutive model which taking the stress as an influence factor on phase transition was also established. Compared with the other expressions, this new-type model possesses less parameter and is more accurate. For the sake of verifying the rationality and accuracy of new phase transition and constitutive model, the comparisons between the simulated and experimental results were carried out.

  11. The effect of brain hematoma location on volumetric inductive phase shift spectroscopy of the brain with circular and magnetron sensor coils: a numerical simulation study

    International Nuclear Information System (INIS)

    Rojas, R; González, C A; Rubinsky, B

    2008-01-01

    This numerical simulation study addressed the effects of the location of a discrete brain hematoma on the volumetric inductive phase shift of the brain measured with an induction circular sensor coil and an induction magnetron sensor coil. The theoretical study simulates the brain cavity as a circular sphere transversely centered with respect to the circular and magnetron sensor coils. As a case study for the effects of hematoma location, we employed similar size simulated spherical hematomas placed at three different positions from the center of the brain outward. A three-dimensional finite element analysis of the field equations in the frequency range from 100 kHz to 100 MHz revealed a substantial effect of hematoma location on the ability of both the circular and magnetron sensors to detect the hematomas. In particular it was found that there are frequencies, which may be related to resonance, at which the occurrence of the hematomas has no effect on the volumetric inductive phase shift of the brain. Furthermore it was found that the relative sensitivity of circular and magnetron sensor coils with respect to the occurrence of hematoma varies with the location of the hematoma

  12. Phase transitions in nuclear matter

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1984-11-01

    The rather general circumstances under which a phase transition in hadronic matter at finite temperature to an abnormal phase in which baryon effective masses become small and in which copious baryon-antibaryon pairs appear is emphasized. A preview is also given of a soliton model of dense matter, in which at a density of about seven times nuclear density, matter ceases to be a color insulator and becomes increasingly color conducting. 22 references

  13. Phase transitions and quantum entropy

    International Nuclear Information System (INIS)

    Arrachea, L.; Canosa, N.; Plastino, A.; Portesi, M.; Rossignoli, R.

    1990-01-01

    An examination is made of the possibility to predict phase transitions of the fundamental state of finite quantum system, knowing the quantum entropy of these states, defined on the basis of the information theory. (Author). 7 refs., 3 figs

  14. An objective indicator for two-phase flow pattern transition

    International Nuclear Information System (INIS)

    Hervieu, E.; Seleghim, P. Jr.

    1998-01-01

    This work concerns the development of a methodology which objective is to characterize and diagnose two-phase flow regime transitions. The approach is based on the fundamental assumption that a transition flow is less stationary than a flow with an established regime. In a first time, the efforts focused on: the design and construction of an experimental loop, allowing to reproduce the main horizontal two-phase flow patterns, in a stable and controlled way; the design and construction of an electrical impedance probe, providing an imaged information of the spatial phase distribution in the pipe; the systematic study of the joint time-frequency and time-scale analysis methods, which permitted to define an adequate parameter quantifying the unstationarity degree. In a second time, in order to verify the fundamental assumption, a series of experiments were conducted, which objective was to demonstrate the correlation between unstationarity and regime transition. The unstationarity degree was quantified by calculating the Gabor's transform time-frequency covariance of the impedance probe signals. Furthermore, the phenomenology of each transition was characterized by the joint moments and entropy. The results clearly show that the regime transitions are correlated with local time-frequency covariance peaks, which demonstrates that these regime transitions are characterized by a loss of stationarity. Consequently, the time-frequency covariance constitutes an objective two-phase flow regime transition indicator. (author)

  15. Multiple phase transitions in the generalized Curie-Weiss model

    International Nuclear Information System (INIS)

    Eisele, T.; Ellis, R.S.

    1988-01-01

    The generalized Curie-Weiss model is an extension of the classical Curie-Weiss model in which the quadratic interaction function of the mean spin value is replaced by a more general interaction function. It is shown that the generalized Curie-Weiss model can have a sequence of phase transitions at different critical temperatures. Both first-order and second-order phase transitions can occur, and explicit criteria for the two types are given. Three examples of generalized Curie-Weiss models are worked out in detail, including one example with infinitely many phase transitions. A number of results are derived using large-deviation techniques

  16. Phase transitions in Pareto optimal complex networks.

    Science.gov (United States)

    Seoane, Luís F; Solé, Ricard

    2015-09-01

    The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem, finding phase transitions of different kinds. Distinct phases are associated with different arrangements of the connections, but the need of drastic topological changes does not determine the presence or the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.

  17. Geometry-induced phase transition in fluids: capillary prewetting.

    Science.gov (United States)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2013-02-01

    We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature T(cw). The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>T(cw), the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.

  18. Extending the self-assembly of coiled-coil hybrids

    NARCIS (Netherlands)

    Robson Marsden, Hana

    2009-01-01

    Of the various biomolecular building blocks in use in nature, coiled-coil forming peptides are amongst those with the most potential as building blocks for the synthetic self-assembly of nanostructures. Native coiled coils have the ability to function in, and influence, complex systems composed of

  19. Resting-state networks in healthy adult subjects: a comparison between a 32-element and an 8-element phased array head coil at 3.0 Tesla.

    Science.gov (United States)

    Paolini, Marco; Keeser, Daniel; Ingrisch, Michael; Werner, Natalie; Kindermann, Nicole; Reiser, Maximilian; Blautzik, Janusch

    2015-05-01

    Little research exists on the influence of a magnetic resonance imaging (MRI) head coil's channel count on measured resting-state functional connectivity. To compare a 32-element (32ch) and an 8-element (8ch) phased array head coil with respect to their potential to detect functional connectivity within resting-state networks. Twenty-six healthy adults (mean age, 21.7 years; SD, 2.1 years) underwent resting-state functional MRI at 3.0 Tesla with both coils using equal standard imaging parameters and a counterbalanced design. Independent component analysis (ICA) at different model orders and a dual regression approach were performed. Voxel-wise non-parametric statistical between-group contrasts were determined using permutation-based non-parametric inference. Phantom measurements demonstrated a generally higher image signal-to-noise ratio using the 32ch head coil. However, the results showed no significant differences between corresponding resting-state networks derived from both coils (p coil does not offer any significant advantages in detecting ICA-based functional connectivity within RSNs. © The Foundation Acta Radiologica 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Polymorphic phase transitions: Macroscopic theory and molecular simulation.

    Science.gov (United States)

    Anwar, Jamshed; Zahn, Dirk

    2017-08-01

    Transformations in the solid state are of considerable interest, both for fundamental reasons and because they underpin important technological applications. The interest spans a wide spectrum of disciplines and application domains. For pharmaceuticals, a common issue is unexpected polymorphic transformation of the drug or excipient during processing or on storage, which can result in product failure. A more ambitious goal is that of exploiting the advantages of metastable polymorphs (e.g. higher solubility and dissolution rate) while ensuring their stability with respect to solid state transformation. To address these issues and to advance technology, there is an urgent need for significant insights that can only come from a detailed molecular level understanding of the involved processes. Whilst experimental approaches at best yield time- and space-averaged structural information, molecular simulation offers unprecedented, time-resolved molecular-level resolution of the processes taking place. This review aims to provide a comprehensive and critical account of state-of-the-art methods for modelling polymorph stability and transitions between solid phases. This is flanked by revisiting the associated macroscopic theoretical framework for phase transitions, including their classification, proposed molecular mechanisms, and kinetics. The simulation methods are presented in tutorial form, focusing on their application to phase transition phenomena. We describe molecular simulation studies for crystal structure prediction and polymorph screening, phase coexistence and phase diagrams, simulations of crystal-crystal transitions of various types (displacive/martensitic, reconstructive and diffusive), effects of defects, and phase stability and transitions at the nanoscale. Our selection of literature is intended to illustrate significant insights, concepts and understanding, as well as the current scope of using molecular simulations for understanding polymorphic

  1. Extracellular ice phase transitions in insects.

    Science.gov (United States)

    Hawes, T C

    2014-01-01

    At temperatures below their temperature of crystallization (Tc), the extracellular body fluids of insects undergo a phase transition from liquid to solid. Insects that survive the transition to equilibrium (complete freezing of the body fluids) are designated as freeze tolerant. Although this phenomenon has been reported and described in many Insecta, current nomenclature and theory does not clearly delineate between the process of transition (freezing) and the final solid phase itself (the frozen state). Thus freeze tolerant insects are currently, by convention, described in terms of the temperature at which the crystallization of their body fluids is initiated, Tc. In fact, the correct descriptor for insects that tolerate freezing is the temperature of equilibrium freezing, Tef. The process of freezing is itself a separate physical event with unique physiological stresses that are associated with ice growth. Correspondingly there are a number of insects whose physiological cryo-limits are very specifically delineated by this transitional envelope. The distinction also has considerable significance for our understanding of insect cryobiology: firstly, because the ability to manage endogenous ice growth is a fundamental segregator of cryotype; and secondly, because our understanding of internal ice management is still largely nascent.

  2. Holography and the Electroweak Phase Transition

    CERN Document Server

    Creminelli, Paolo; Rattazzi, Riccardo; Creminelli, Paolo; Nicolis, Alberto; Rattazzi, Riccardo

    2002-01-01

    We study through holography the compact Randall-Sundrum (RS) model at finite temperature. In the presence of radius stabilization, the system is described at low enough temperature by the RS solution. At high temperature it is described by the AdS-Schwarzshild solution with an event horizon replacing the TeV brane. We calculate the transition temperature T_c between the two phases and we find it to be somewhat smaller than the TeV scale. Assuming that the Universe starts out at T >> T_c and cools down by expansion, we study the rate of the transition to the RS phase. We find that the transition is too slow and the Universe ends up in an old inflation scenario unless tight bounds are satisfied by the model parameters. In particular we find that the AdS curvature must be comparable to the 5D Planck mass and that the radius stabilization mechanism must lead to a sizeable distortion of the basic RS metric.

  3. No Hawking-Page phase transition in three dimensions

    International Nuclear Information System (INIS)

    Myung, Y.S.

    2005-01-01

    We investigate whether or not the Hawking-Page phase transition is possible to occur in three dimensions. Starting with the simplest class of Lanczos-Lovelock action, thermodynamic behavior of all AdS-type black holes without charge falls into two classes: Schwarzschild-AdS black holes in even dimensions and Chern-Simons black holes in odd dimensions. The former class can provide the Hawking-Page transition between Schwarzschild-AdS black holes and thermal AdS space. On the other hand, the latter class is exceptional and thus the Hawking-Page transition is hard to occur. In three dimensions, a second-order phase transition might occur between the non-rotating BTZ black hole and the massless BTZ black hole (thermal AdS space), instead of the first-order Hawking-Page transition between the non-rotating BTZ black hole and thermal AdS space

  4. Dynamical phase transitions in quantum mechanics

    International Nuclear Information System (INIS)

    Rotter, Ingrid

    2012-01-01

    1936 Niels Bohr: In the atom and in the nucleus we have indeed to do with two extreme cases of mechanical many-body problems for which a procedure of approximation resting on a combination of one-body problems, so effective in the former case, loses any validity in the latter where we, from the very beginning, have to do with essential collective aspects of the interplay between the constituent particles. 1963: Maria Goeppert-Mayer and J. Hans D. Jensen received the Nobel Prize in Physics for their discoveries concerning nuclear shell structure. State of the art 2011: - The nucleus is an open quantum system described by a non-Hermitian Hamilton operator with complex eigenvalues. The eigenvalues may cross in the complex plane ('exceptional points'), the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By this, a dynamical phase transition occurs in the many-level system. The dynamical phase transition starts at a critical value of the level density. Hence the properties of he low-lying nuclear states (described well by the shell model) and those of highly excited nuclear states (described by random ensembles) differ fundamentally from one another. The statement of Niels Bohr for compound nucleus states at high level density is not in contradiction to the shell-model description of nuclear (and atomic) states at low level density. Dynamical phase transitions are observed experimentally in different systems, including PT-symmetric ones, by varying one or more parameters

  5. The Kibble-Zurek mechanism in phase transitions of non-equilibrium systems

    Science.gov (United States)

    Cheung, Hil F. H.; Patil, Yogesh S.; Date, Aditya G.; Vengalattore, Mukund

    2017-04-01

    We experimentally realize a driven-dissipative phase transition using a mechanical parametric amplifier to demonstrate key signatures of a second order phase transition, including a point where the susceptibilities and relaxation time scales diverge, and where the system exhibits a spontaneous breaking of symmetry. Though reminiscent of conventional equilibrium phase transitions, it is unclear if such driven-dissipative phase transitions are amenable to the conventional Landau-Ginsburg-Wilson paradigm, which relies on concepts of scale invariance and universality, and recent work has shown that such phase transitions can indeed lie beyond such conventional universality classes. By quenching the system past the critical point, we investigate the dynamics of the emergent ordered phase and find that our measurements are in excellent agreement with the Kibble-Zurek mechanism. In addition to verifying the Kibble-Zurek hypothesis in driven-dissipative phase transitions for the first time, we also demonstrate that the measured critical exponents accurately reflect the interplay between intrinsic coherent dynamics and environmental correlations, showing a clear departure from mean field exponents in the case of non-Markovian system-bath interactions. We further discuss how reservoir engineering and the imposition of artificial environmental correlations can result in the stabilization of novel many-body quantum phases and aid in the creation of exotic non-equilibrium states of matter.

  6. Structural phase transitions in niobium oxide nanocrystals

    Science.gov (United States)

    Yuvakkumar, R.; Hong, Sun Ig

    2015-09-01

    Niobium oxide nanocrystals were successfully synthesized employing the green synthesis method. Phase formation, microstructure and compositional properties of 1, 4 and 7 days incubation treated samples after calcinations at 450 °C were examined using X-ray diffraction, Raman, photoluminescence (PL), infrared, X-ray photoelectron spectra and transmission electron microscopic characterizations. It was observed that phase formation of Nb2O5 nanocrystals was dependent upon the incubation period required to form stable metal oxides. The characteristic results clearly revealed that with increasing incubation and aging, the transformation of cubic, orthorhombic and monoclinic phases were observed. The uniform heating at room temperature (32 °C) and the ligation of niobium atoms due to higher phenolic constituents of utilized rambutan during aging processing plays a vital role in structural phase transitions in niobium oxide nanocrystals. The defects over a period of incubation and the intensities of the PL spectra changing over a period of aging were related to the amount of the defects induced by the phase transition.

  7. Phase transitions in multiplicative competitive processes

    International Nuclear Information System (INIS)

    Shimazaki, Hideaki; Niebur, Ernst

    2005-01-01

    We introduce a discrete multiplicative process as a generic model of competition. Players with different abilities successively join the game and compete for finite resources. Emergence of dominant players and evolutionary development occur as a phase transition. The competitive dynamics underlying this transition is understood from a formal analogy to statistical mechanics. The theory is applicable to bacterial competition, predicting novel population dynamics near criticality

  8. Test results for a Bi-2223 HTS racetrack coil for generator applications

    International Nuclear Information System (INIS)

    Salasoo, L.; Herd, K.G.; Laskaris, E.T.; Hart, H.R. Jr.; Chari, M.V.K.

    1996-01-01

    Testing, results and analysis of a Bi-2223 model superconducting generator coil produced under the DOE Superconductivity Partnership Initiative are presented. The test arrangement enables coil energization with dc and transient currents over a range of operating temperatures to explore coil performance under conditions analogous to those that would be experienced by a superconducting generator field coil. Analytical calculations of coil ac and ohmic losses and temperature rise compare well with experimental measurements. Good performance is predicted for a typical 3-phase fault condition. Coil steady state and transient performance can be predicted with confidence for full scale superconductor application

  9. Probing phase transitions via energetic nuclear collisions

    International Nuclear Information System (INIS)

    Lukacs, B.; Csernai, L.P.

    1983-07-01

    The possible effects of the nucleon-quark phase transition on the dynamics of heavy ion collisions are discussed. It is shown that the formation of the quark phase can be expected at recent experiments. Nevertheless, the compressibility of the two-phase mixture remains relatively low, thus the quark phase remains limited in both space and time, and the observables are not strongly affected. (author)

  10. High pressure structural phase transitions of TiO2 nanomaterials

    International Nuclear Information System (INIS)

    Li Quan-Jun; Liu Bing-Bing

    2016-01-01

    Recently, the high pressure study on the TiO 2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO 2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO 2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO 2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO 2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets, and nanoporous materials, and pressure-induced amorphization (PIA) and polyamorphism in ultrafine nanoparticles and TiO 2 -B nanoribbons. Various TiO 2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO 2 nanoribbons, α -PbO 2 -type TiO 2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO 2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO 2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications. (topical review)

  11. Theoretical description of the properties of magnetization fluctuations in the vicinity of phase transition from paramagnetic phase to ferromagnetic phase with domain structure

    International Nuclear Information System (INIS)

    Wasilewski, W.

    1983-08-01

    This paper presents a theoretical description of the phase transition from a paramagnetic phase P to the homogeneous and domain structure ferromagnetic phases within the phenomenological theory of phase transitions

  12. Thermally Induced Alpha-Helix to Beta-Sheet Transition in Regenerated Silk Fibers and Films

    Energy Technology Data Exchange (ETDEWEB)

    Drummy,L.; Phillips, D.; Stone, M.; Farmer, B.; Naik, R.

    2005-01-01

    The structure of thin films cast from regenerated solutions of Bombyx mori cocoon silk in hexafluoroisopropyl alcohol (HFIP) was studied by synchrotron X-ray diffraction during heating. A solid-state conformational transition from an alpha-helical structure to the well-known beta-sheet silk II structure occurred at a temperature of approximately 140 degrees C. The transition appeared to be homogeneous, as both phases do not coexist within the resolution of the current study. Modulated differential scanning calorimetry (DSC) of the films showed an endothermic melting peak followed by an exothermic crystallization peak, both occurring near 140 degrees C. Oriented fibers were also produced that displayed this helical molecular conformation. Subsequent heating above the structural transition temperature produced oriented beta-sheet fibers very similar in structure to B. mori cocoon fibers. Heat treatment of silk films at temperatures well below their degradation temperature offers a controllable route to materials with well-defined structures and mechanical behavior.

  13. Isotropic–Nematic Phase Transitions in Gravitational Systems

    Energy Technology Data Exchange (ETDEWEB)

    Roupas, Zacharias; Kocsis, Bence [Institute of Physics, Eötvös University, Pázmány P. s. 1/A, Budapest, 1117 (Hungary); Tremaine, Scott [Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2017-06-20

    We examine dense self-gravitating stellar systems dominated by a central potential, such as nuclear star clusters hosting a central supermassive black hole. Different dynamical properties of these systems evolve on vastly different timescales. In particular, the orbital-plane orientations are typically driven into internal thermodynamic equilibrium by vector resonant relaxation before the orbital eccentricities or semimajor axes relax. We show that the statistical mechanics of such systems exhibit a striking resemblance to liquid crystals, with analogous ordered-nematic and disordered-isotropic phases. The ordered phase consists of bodies orbiting in a disk in both directions, with the disk thickness depending on temperature, while the disordered phase corresponds to a nearly isotropic distribution of the orbit normals. We show that below a critical value of the total angular momentum, the system undergoes a first-order phase transition between the ordered and disordered phases. At a critical point, the phase transition becomes second order, while for higher angular momenta there is a smooth crossover. We also find metastable equilibria containing two identical disks with mutual inclinations between 90° and 180°.

  14. Isostructural magnetic phase transition and magnetocaloric effect in Ising antiferromagnet

    International Nuclear Information System (INIS)

    Lavanov, G.Yu; Kalita, V.M.; Loktev, V.M.

    2014-01-01

    It is shown that the external magnetic field induced isostructural I st order magnetic phase transition between antiferromagnetic phases with different antiferromagnetic vector values is associated with entropy. It is found, that depending on temperature the entropy jump and the related heat release change their sign at this transition point. In the low-temperature region of metamagnetic I st order phase tensition the entropy jump is positive, and in the triple point region this jump for isostructural magnetic transition is negative

  15. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2001-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies.Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations.The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable in

  16. Complexes of neutralizing and non-neutralizing affinity matured Fabs with a mimetic of the internal trimeric coiled-coil of HIV-1 gp41.

    Directory of Open Access Journals (Sweden)

    Elena Gustchina

    Full Text Available A series of mini-antibodies (monovalent and bivalent Fabs targeting the conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR of HIV-1 gp41 has been previously constructed and reported. Crystal structures of two closely related monovalent Fabs, one (Fab 8066 broadly neutralizing across a wide panel of HIV-1 subtype B and C viruses, and the other (Fab 8062 non-neutralizing, representing the extremes of this series, were previously solved as complexes with 5-Helix, a gp41 pre-hairpin intermediate mimetic. Binding of these Fabs to covalently stabilized chimeric trimers of N-peptides of HIV-1 gp41 (named (CCIZN363 or 3-H has now been investigated using X-ray crystallography, cryo-electron microscopy, and a variety of biophysical methods. Crystal structures of the complexes between 3-H and Fab 8066 and Fab 8062 were determined at 2.8 and 3.0 Å resolution, respectively. Although the structures of the complexes with the neutralizing Fab 8066 and its non-neutralizing counterpart Fab 8062 were generally similar, small differences between them could be correlated with the biological properties of these antibodies. The conformations of the corresponding CDRs of each antibody in the complexes with 3-H and 5-Helix are very similar. The adaptation to a different target upon complex formation is predominantly achieved by changes in the structure of the trimer of N-HR helices, as well as by adjustment of the orientation of the Fab molecule relative to the N-HR in the complex, via rigid-body movement. The structural data presented here indicate that binding of three Fabs 8062 with high affinity requires more significant changes in the structure of the N-HR trimer compared to binding of Fab 8066. A comparative analysis of the structures of Fabs complexed to different gp41 intermediate mimetics allows further evaluation of biological relevance for generation of neutralizing antibodies, as well as provides novel structural insights into immunogen

  17. An objective indicator for two-phase flow pattern transition

    International Nuclear Information System (INIS)

    Hervieua, E.; Seleghim, P. Jr.

    1998-01-01

    This work concerns the development of a methodology the objective of which is to characterize and diagnose two-phase flow regime transitions. The approach is based on the fundamental assumption that a transition flow is less stationary than a flow with an established regime. During the first time, the efforts focused on: (1) the design and construction of an experimental loop, allowing to reproduce the main horizontal two-phase flow patterns, in a stable and controlled way; (2) the design and construction of an electrical impedance probe, providing an imaged information of the spatial phase distribution in the pipe; and (3) the systematic study of the joint time-frequency and time-scale analysis methods, which permitted to define an adequate parameter quantifying the unstationarity degree. During the second time, in order to verify the fundamental assumption, a series of experiments were conducted, the objective of which was to demonstrate the correlation between unstationarity and regime transition. The unstationarity degree was quantified by calculating the Gabor's transform time-frequency covariance of the impedance probe signals. Furthermore, the phenomenology of each transition was characterized by the joint moments and entropy. The results clearly show that the regime transitions are correlated with local time-frequency covariance peaks, which demonstrates that these regime transitions are characterized by a loss of stationarity. Consequently, the time-frequency covariance constitutes an objective two-phase flow regime transition indicator. (orig.)

  18. Discontinuity of maximum entropy inference and quantum phase transitions

    International Nuclear Information System (INIS)

    Chen, Jianxin; Ji, Zhengfeng; Yu, Nengkun; Zeng, Bei; Li, Chi-Kwong; Poon, Yiu-Tung; Shen, Yi; Zhou, Duanlu

    2015-01-01

    In this paper, we discuss the connection between two genuinely quantum phenomena—the discontinuity of quantum maximum entropy inference and quantum phase transitions at zero temperature. It is shown that the discontinuity of the maximum entropy inference of local observable measurements signals the non-local type of transitions, where local density matrices of the ground state change smoothly at the transition point. We then propose to use the quantum conditional mutual information of the ground state as an indicator to detect the discontinuity and the non-local type of quantum phase transitions in the thermodynamic limit. (paper)

  19. Phase transitions in (NH4)2MoO2F4 crystal

    Science.gov (United States)

    Krylov, Alexander; Laptash, Natalia; Vtyurin, Alexander; Krylova, Svetlana

    2016-11-01

    The mechanisms of temperature and high pressure phase transitions have been studied by Raman spectroscopy. Room temperature (295 K) experiments under high hydrostatic pressure up to 3.6 GPa for (NH4)2 MoO2 F4 have been carried out. Experimental data indicates a phase transition into a new high-pressure phase for (NH4)2 MoO2 F4 at 1.2 GPa. This phase transition is related to the ordering anion octahedron groups [MoO2 F4]2- and is not associated with ammonium group. Raman spectra of small non-oriented crystals ranging from 10 to 350 K have been observed. The experiment shows anion groups [MoO2 F4]2- and ammonium in high temperature phase are disordered. The phase transition at T1 = 269.8 K is of the first-order, close to the tricritical point. The first temperature phase transition is related to the ordering anion octahedron groups [MoO2 F4]2-. Second phase transitions T2 = 180 K are associated with the ordering of ammonium. The data presented within this study demonstrate that 2D correlation analysis combined with traditional Raman spectroscopy are powerful tool to study phase transitions in the crystals.

  20. Transitional region of phase transitions in nuclear models

    Energy Technology Data Exchange (ETDEWEB)

    Kotze, A A

    1988-01-01

    The phase transition in an exactly solvable nuclear model, the Lipkin model, is scrutinised, first using Hartree-Fock methods or the plain mean flield approximation, and then using projected wave functions. It turns out that the plain mean field is not reliable in the transitional region. Although the projection methods give better resutls in the transitional region, it leads to spurious singularities. While the energy of the projection before variation is slightly better than its projection after variation counterpart, the perfomance of the wave function is considerably worse in the transitional region. The model's wave function undergoes dramatic changes in the transitional region. The mechanism that brings about these changes is studied within a model Hamiltonian that can reproduce the Lipkin model mathematically. It turns out that the numerous exceptional points found in the transitional region, bring about the change of the ground state wave function. Exceptional points are associated with level crossings in the complex plane. These level crossings can be seen as level repulsions in the spectrum. Level repulsion and a sensitive dependence of the system on some external parameter are characteristics of chaotic behaviour. These two features are found in the transitional region of the Lipkin model. In order to study chaos, one has to resort to a statistical analysis. A measure of the chaotic behaviour of systems, the ..delta../sub 3/ statistic, is introduced. The results show that the Lipkin model is harmonic, even in the transitional region. For the Lipkin model the exceptional points are regularly distributed in the complex plane. In a total chaotic system the points would be randomly distributed.

  1. Phase Transition Behavior in a Neutral Evolution Model

    Science.gov (United States)

    King, Dawn; Scott, Adam; Maric, Nevena; Bahar, Sonya

    2014-03-01

    The complexity of interactions among individuals and between individuals and the environment make agent based modeling ideal for studying emergent speciation. This is a dynamically complex problem that can be characterized via the critical behavior of a continuous phase transition. Concomitant with the main tenets of natural selection, we allow organisms to reproduce, mutate, and die within a neutral phenotype space. Previous work has shown phase transition behavior in an assortative mating model with variable fitness landscapes as the maximum mutation size (μ) was varied (Dees and Bahar, 2010). Similarly, this behavior was recently presented in the work of Scott et al. (2013), even on a completely neutral landscape, for bacterial-like fission as well as for assortative mating. Here we present another neutral model to investigate the `critical' phase transition behavior of three mating types - assortative, bacterial, and random - in a phenotype space as a function of the percentage of random death. Results show two types of phase transitions occurring for the parameters of the population size and the number of clusters (an analogue of species), indicating different evolutionary dynamics for system survival and clustering. This research was supported by funding from: University of Missouri Research Board and James S. McDonnell Foundation.

  2. Temperature-Controlled High-Speed AFM: Real-Time Observation of Ripple Phase Transitions.

    Science.gov (United States)

    Takahashi, Hirohide; Miyagi, Atsushi; Redondo-Morata, Lorena; Scheuring, Simon

    2016-11-01

    With nanometer lateral and Angstrom vertical resolution, atomic force microscopy (AFM) has contributed unique data improving the understanding of lipid bilayers. Lipid bilayers are found in several different temperature-dependent states, termed phases; the main phases are solid and fluid phases. The transition temperature between solid and fluid phases is lipid composition specific. Under certain conditions some lipid bilayers adopt a so-called ripple phase, a structure where solid and fluid phase domains alternate with constant periodicity. Because of its narrow regime of existence and heterogeneity ripple phase and its transition dynamics remain poorly understood. Here, a temperature control device to high-speed atomic force microscopy (HS-AFM) to observe dynamics of phase transition from ripple phase to fluid phase reversibly in real time is developed and integrated. Based on HS-AFM imaging, the phase transition processes from ripple phase to fluid phase and from ripple phase to metastable ripple phase to fluid phase could be reversibly, phenomenologically, and quantitatively studied. The results here show phase transition hysteresis in fast cooling and heating processes, while both melting and condensation occur at 24.15 °C in quasi-steady state situation. A second metastable ripple phase with larger periodicity is formed at the ripple phase to fluid phase transition when the buffer contains Ca 2+ . The presented temperature-controlled HS-AFM is a new unique experimental system to observe dynamics of temperature-sensitive processes at the nanoscopic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tesla Coil Theoretical Model and its Experimental Verification

    Directory of Open Access Journals (Sweden)

    Voitkans Janis

    2014-12-01

    Full Text Available In this paper a theoretical model of Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wire form, where the line voltage is measured across electrically neutral space. By applying the principle of equivalence of single-wire and two-wire schemes an equivalent two-wire scheme can be found for a single-wire scheme and the already known long line theory can be applied to the Tesla coil. A new method of multiple reflections is developed to characterize a signal in a long line. Formulas for calculation of voltage in Tesla coil by coordinate and calculation of resonance frequencies are proposed. The theoretical calculations are verified experimentally. Resonance frequencies of Tesla coil are measured and voltage standing wave characteristics are obtained for different output capacities in the single-wire mode. Wave resistance and phase coefficient of Tesla coil is obtained. Experimental measurements show good compliance with the proposed theory. The formulas obtained in this paper are also usable for a regular two-wire long line with distributed parameters.

  4. Nonlinear time-dependent simulation of helix traveling wave tubes

    International Nuclear Information System (INIS)

    Peng Wei-Feng; Yang Zhong-Hai; Hu Yu-Lu; Li Jian-Qing; Lu Qi-Ru; Li Bin

    2011-01-01

    A one-dimensional nonlinear time-dependent theory for helix traveling wave tubes is studied. A generalized electromagnetic field is applied to the expression of the radio frequency field. To simulate the variations of the high frequency structure, such as the pitch taper and the effect of harmonics, the spatial average over a wavelength is substituted by a time average over a wave period in the equation of the radio frequency field. Under this assumption, the space charge field of the electron beam can be treated by a space charge wave model along with the space charge coefficient. The effects of the radio frequency and the space charge fields on the electrons are presented by the equations of the electron energy and the electron phase. The time-dependent simulation is compared with the frequency-domain simulation for a helix TWT, which validates the availability of this theory. (interdisciplinary physics and related areas of science and technology)

  5. Phase transition from strong-coupling expansion

    International Nuclear Information System (INIS)

    Polonyi, J.; Szlachanyi, K.

    1982-01-01

    Starting with quarkless SU(2) lattice gauge theory and using the strong-coupling expansion we calculate the action of the effective field theory which corresponds to the thermal Wilson loop. This effective action makes evident that the quark liberating phase transition traces back to the spontaneous breaking of a global Z(2) symmetry group. It furthermore describes both phases qualitatively. (orig.)

  6. Signals of a phase transition in nuclear breakup

    International Nuclear Information System (INIS)

    Campi, X.

    1987-01-01

    We show that nuclei break up like finite systems that exhibit a clean phase transition in infinite size. This is done by studying conditional moments of the fragment multiplicities, the largest fragment size produced by event and its fluctuations. The nature of this smooth phase transition cannot be determined from the available experimental data. The ''critical point'' is reached when the energy deposited in the nucleus is 90% of its binding energy

  7. Optical study of phase transitions in single-crystalline RuP

    Science.gov (United States)

    Chen, R. Y.; Shi, Y. G.; Zheng, P.; Wang, L.; Dong, T.; Wang, N. L.

    2015-03-01

    RuP single crystals of MnP-type orthorhombic structure were synthesized by the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal that the compound experiences two structural phase transitions, which are further confirmed by enormous anomalies shown in temperature-dependent resistivity and magnetic susceptibility. Particularly, the resistivity drops monotonically upon temperature cooling below the second transition, indicating that the material shows metallic behavior, in sharp contrast with the insulating ground state of polycrystalline samples. Optical conductivity measurements were also performed in order to unravel the mechanism of these two transitions. The measurement revealed a sudden reconstruction of band structure over a broad energy scale and a significant removal of conducting carriers below the first phase transition, while a charge-density-wave-like energy gap opens below the second phase transition.

  8. Time-delay-induced phase-transition to synchrony in coupled bursting neurons

    Science.gov (United States)

    Adhikari, Bhim Mani; Prasad, Awadhesh; Dhamala, Mukeshwar

    2011-06-01

    Signal transmission time delays in a network of nonlinear oscillators are known to be responsible for a variety of interesting dynamic behaviors including phase-flip transitions leading to synchrony or out of synchrony. Here, we uncover that phase-flip transitions are general phenomena and can occur in a network of coupled bursting neurons with a variety of coupling types. The transitions are marked by nonlinear changes in both temporal and phase-space characteristics of the coupled system. We demonstrate these phase-transitions with Hindmarsh-Rose and Leech-Heart interneuron models and discuss the implications of these results in understanding collective dynamics of bursting neurons in the brain.

  9. Ring diagrams and phase transitions

    International Nuclear Information System (INIS)

    Takahashi, K.

    1986-01-01

    Ring diagrams at finite temperatures carry most infrared-singular parts among Feynman diagrams. Their effect to effective potentials are in general so significant that one must incorporate them as well as 1-loop diagrams. The author expresses these circumstances in some examples of supercooled phase transitions

  10. Electrostatic Effects in Phase Transitions of Biomembranes between Cubic Phases and Lamellar Liquid-Crystalline (Lα) phase

    Science.gov (United States)

    Masum, Shah Md.; Li, Shu Jie; Tamba, Yukihiro; Yamashita, Yuko; Yamazaki, Masahito

    2004-04-01

    Elucidation of the mechanisms of transitions between cubic phase and liquid-crystalline (Lα) phase, and between different IPMS cubic phases, are essential for understanding of dynamics of biomembranes and topological transformation of lipid membranes. Recently, we found that electrostatic interactions due to surface charges of lipid membranes induce transition between cubic phase and Lα phase, and between different IPMS cubic phases. As electrostatic interactions increase, the most stable phase of a monoolein (MO) membrane changes: Q224 ⇒ Q229 ⇒ Lα. We also found that a de novo designed peptide partitioning into electrically neutral lipid membrane changed the phase stability of the MO membranes. As peptide-1 concentration increased, the most stable phase of a MO membrane changes: Q224 ⇒ Q229 ⇒Lα. In both cases, the increase in the electrostatic repulsive interaction greatly reduced the absolute value of spontaneous curvature of the MO monolayer membrane. We also investigated factors such as poly (L-lysine) and osmotic stress to control structure and phase stability of DOPA/MO membranes. Based on these results, we discuss the mechanism of the effect of electrostatic interactions on the stability of cubic phase.

  11. Entropy and baryon number conservation in the deconfinement phase transition

    International Nuclear Information System (INIS)

    Leonidov, A.; Redlich, K.; Satz, H.; Suhonen, E.; Weber, G.

    1994-01-01

    The conservation of entropy and baryon number in the deconfinement phase transition is studied in the framework of the bag model. In the standard construction of the equilibrium phase transition from a quark-gluon plasma into a hadron gas a subsequent dilution and reheating of the system on the phase boundary is necessary to preserve the entropy and baryon number conservation. We propose modifying the bag pressure to depend explicitly on temperature and baryon chemical potential. It is shown that this modification is sufficient to construct a model in agreement with the Gibbs equilibrium criteria for a phase transition, while simultaneously assuring entropy and baryon number conservation on the phase boundary. Within this model the quark-gluon plasma hadronizes at a fixed temperature and chemical potential

  12. Electronic properties and phase transitions in low-dimensional semiconductors

    International Nuclear Information System (INIS)

    Panich, A M

    2008-01-01

    We present the first review of the current state of the literature on electronic properties and phase transitions in TlX and TlMX 2 (M = Ga, In; X = Se, S, Te) compounds. These chalcogenides belong to a family of the low-dimensional semiconductors possessing chain or layered structure. They are of significant interest because of their highly anisotropic properties, semi- and photoconductivity, nonlinear effects in their I-V characteristics (including a region of negative differential resistance), switching and memory effects, second harmonic optical generation, relaxor behavior and potential applications for optoelectronic devices. We review the crystal structure of TlX and TlMX 2 compounds, their transport properties under ambient conditions, experimental and theoretical studies of the electronic structure, transport properties and semiconductor-metal phase transitions under high pressure, and sequences of temperature-induced structural phase transitions with intermediate incommensurate states. The electronic nature of the ferroelectric phase transitions in the above-mentioned compounds, as well as relaxor behavior, nanodomains and possible occurrence of quantum dots in doped and irradiated crystals is discussed. (topical review)

  13. The swimming of a perfect deforming helix

    Science.gov (United States)

    Koens, Lyndon; Zhang, Hang; Mourran, Ahmed; Lauga, Eric

    2017-11-01

    Many bacteria rotate helical flagellar filaments in order to swim. When at rest or rotated counter-clockwise these flagella are left handed helices but they undergo polymorphic transformations to right-handed helices when the motor is reversed. These helical deformations themselves can generate motion, with for example Rhodobacter sphaeroides using the polymorphic transformation of the flagellum to generate rotation, or Spiroplasma propagating a change of helix handedness across its body's length to generate forward motion. Recent experiments reported on an artificial helical microswimmer generating motion without a propagating change in handedness. Made of a temperature sensitive gel, these swimmers moved by changing the dimensions of the helix in a non-reciprocal way. Inspired by these results and helix's ubiquitous presence in the bacterial world, we investigate how a deforming helix moves within a viscous fluid. Maintaining a single handedness along its entire length, we discuss how a perfect deforming helix can create a non-reciprocal swimming stroke, identify its principle directions of motion, and calculate the swimming kinematics asymptotically.

  14. Hadron-quark phase transition in dense stars

    International Nuclear Information System (INIS)

    Grassi, F.

    1987-10-01

    An equation of state is computed for a plasma of one flavor quarks interacting through some phenomenological potential, at zero temperature. Assuming that the confining potential is scalar and color-independent, it is shown that the quarks undergo a first-order mass phase transition. In addition, due to the way screening is introduced, all the thermodynamic quantities computed are independent of the actual shape of the interquark potential. This equation of state is then generalized to a several quark flavor plasma and applied to the study of the hadron-quark phase transition inside a neutron star. 45 refs., 4 figs

  15. Magnetic Phase Transitions of CeSb. I

    DEFF Research Database (Denmark)

    Fischer, Pernille Hertz; Lebech, Bente; Meier, G.

    1978-01-01

    The magnetic ordering of the anomalous antiferromagnet CeSb, which has a NaCl crystal structure, was determined in zero applied magnetic field by means of neutron diffraction investigations of single crystals and powder. Below the Neel temperature TN of (16.1+or-0.1)K, there exist six partially...... a first-order phase transition at TN. At approximately TN/2 there is a first-order phase transition to a FCC type IA low-temperature configuration. The unusual magnetic properties of CeSb, which result from anisotropic exchange and crystalline electric field effects, resemble those of certain actinide Na...

  16. Tuberothalamic Artery Infarction Following Coil Embolization of a Ruptured Posterior Communicating Artery Aneurysm Belonging to a Transitional Type Posterior Cerebral Artery

    Science.gov (United States)

    Lee, Kyeong Duk; Kwon, Soon Chan; Muniandy, Sarawana; Park, Eun Suk; Sim, Hong Bo; Lyo, In Uk

    2013-01-01

    Summary There are many potential anatomical variations in the connection between the internal carotid artery and the posterior circulation through the posterior communicating artery (PCoA). We describe the endovascular treatment of an aneurysm arising near the origin of the PCoA belonging to a transitional type posterior cerebral artery. Coil embolization subsequently resulted in thrombo-occlusion of the adjacent PCoA causing thalamic infarction even though sufficient retrograde flow had been confirmed pre-operatively by Allcock’s test. PMID:24070079

  17. On the chiral phase transition in the linear sigma model

    International Nuclear Information System (INIS)

    Tran Huu Phat; Nguyen Tuan Anh; Le Viet Hoa

    2003-01-01

    The Cornwall- Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged. (author)

  18. Role of multistability in the transition to chaotic phase synchronization

    DEFF Research Database (Denmark)

    Postnov, D.E.; Vadivasova, T.E.; Sosnovtseva, Olga

    1999-01-01

    In this paper we describe the transition to phase synchronization for systems of coupled nonlinear oscillators that individually follow the Feigenbaum route to chaos. A nested structure of phase synchronized regions of different attractor families is observed. With this structure, the transition...... to nonsynchronous behavior is determined by the loss of stability for the most stable synchronous mode. It is shown that the appearance of hyperchaos and the transition from lag synchronization to phase synchronization are related to the merging of chaotic attractors from different families. Numerical examples...

  19. Modular coils: a promising toroidal-reactor-coil system

    International Nuclear Information System (INIS)

    Chu, T.K.; Furth, H.P.; Johnson, J.L.; Ludescher, C.; Weimer, K.E.

    1981-04-01

    The concept of modular coils originated from a need to find reactor-relevant stellarator windings, but its usefulness can be extended to provide an externally applied, additional rotational transform in tokamaks. Considerations of (1) basic principles of modular coils, (2) types of coils, (3) types of configurations (general, helically symmetric, helically asymmetric, with magnetic well, with magnetic hill), (4) types of rotational transform profile, and (5) structure and origin of ripples are given. These results show that modular coils can offer a wide range of vacuum magnetic field configurations, some of which cannot be obtained with the classical stellarator or torsatron coil configuration

  20. Comparing two tetraalkylammonium ionic liquids. II. Phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.; Ribeiro, Mauro C. C., E-mail: mccribei@iq.usp.br [Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05513-970 São Paulo, SP (Brazil); Ferreira, Fabio F.; Costa, Fanny N. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP (Brazil); Giles, Carlos [Depto. de Física da Matéria Condensada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas, SP (Brazil)

    2016-06-14

    Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1114}][NTf{sub 2}], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1444}][NTf{sub 2}], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N{sub 1444}][NTf{sub 2}] experiences glass transition at low temperature, whereas [N{sub 1114}][NTf{sub 2}] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.

  1. A novel RNA-recognition-motif protein is required for premeiotic G1/S-phase transition in rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Ken-Ichi Nonomura

    2011-01-01

    Full Text Available The molecular mechanism for meiotic entry remains largely elusive in flowering plants. Only Arabidopsis SWI1/DYAD and maize AM1, both of which are the coiled-coil protein, are known to be required for the initiation of plant meiosis. The mechanism underlying the synchrony of male meiosis, characteristic to flowering plants, has also been unclear in the plant kingdom. In other eukaryotes, RNA-recognition-motif (RRM proteins are known to play essential roles in germ-cell development and meiosis progression. Rice MEL2 protein discovered in this study shows partial similarity with human proline-rich RRM protein, deleted in Azoospermia-Associated Protein1 (DAZAP1, though MEL2 also possesses ankyrin repeats and a RING finger motif. Expression analyses of several cell-cycle markers revealed that, in mel2 mutant anthers, most germ cells failed to enter premeiotic S-phase and meiosis, and a part escaped from the defect and underwent meiosis with a significant delay or continued mitotic cycles. Immunofluorescent detection revealed that T7 peptide-tagged MEL2 localized at cytoplasmic perinuclear region of germ cells during premeiotic interphase in transgenic rice plants. This study is the first report of the plant RRM protein, which is required for regulating the premeiotic G1/S-phase transition of male and female germ cells and also establishing synchrony of male meiosis. This study will contribute to elucidation of similarities and diversities in reproduction system between plants and other species.

  2. Space confinement and rotation stress induced self-organization of double-helix nanostructure: a nanotube twist with a moving catalyst head.

    Science.gov (United States)

    Zhao, Meng-Qiang; Zhang, Qiang; Tian, Gui-Li; Huang, Jia-Qi; Wei, Fei

    2012-05-22

    Inorganic materials with double-helix structure have attracted intensive attention due to not only their elegant morphology but also their amazing morphology-related potential applications. The investigation on the formation mechanism of the inorganic double-helix nanostructure is the first step for the fundamental studies of their materials or physical properties. Herein, we demonstrated the space confinement and rotation stress induced self-organization mechanism of the carbon nanotube (CNT)-array double helices under scanning electron microscopy by directly observing their formation process from individual layered double hydroxide flakes, which is a kind of hydrotalcite-like material composed of positively charged layers and charge-balancing interlayer anions. Space confinement is considered to be the most important extrinsic factor for the formation of CNT-array double helices. Synchronous growth of the CNT arrays oppositely from LDH flakes with space confinement on both sides at the same time is essential for the growth of CNT-array double helices. Coiling of the as-grown CNT arrays into double helices will proceed by self-organization, tending to the most stable morphology in order to release their internal rotation stress. Based on the demonstrated mechanism, effective routes were carried out to improve the selectivity for CNT-array double helices. The work provides a promising method for the fabrication of double-helix nanostructures with their two helices connected at the end by self-assembly.

  3. Pressure induced phase transition behaviour in -electron based ...

    Indian Academy of Sciences (India)

    The present review on the high pressure phase transition behaviour of ... For instance, closing of energy gaps lead to metal–insulator transitions [4], shift in energy ... systematic study of the pressure induced structural sequences has become ...

  4. Phase transitions in a lattice population model

    International Nuclear Information System (INIS)

    Windus, Alastair; Jensen, Henrik J

    2007-01-01

    We introduce a model for a population on a lattice with diffusion and birth/death according to 2A→3A and A→Φ for a particle A. We find that the model displays a phase transition from an active to an absorbing state which is continuous in 1 + 1 dimensions and of first-order in higher dimensions in agreement with the mean field equation. For the (1 + 1)-dimensional case, we examine the critical exponents and a scaling function for the survival probability and show that it belongs to the universality class of directed percolation. In higher dimensions, we look at the first-order phase transition by plotting a histogram of the population density and use the presence of phase coexistence to find an accurate value for the critical point in 2 + 1 dimensions

  5. Highly tilted liquid crystalline materials possessing a direct phase transition from antiferroelectric to isotropic phase

    Energy Technology Data Exchange (ETDEWEB)

    Milewska, K.; Drzewiński, W. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Czerwiński, M., E-mail: mczerwinski@wat.edu.pl [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Dąbrowski, R. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Piecek, W. [Institute of Applied Physics, Military University of Technology, 00-908 Warsaw (Poland)

    2016-03-01

    Pure compounds and multicomponent mixtures with a broad temperature range of high tilted liquid crystalline antiferroelectric phase and a direct phase transition from antiferroelectric to isotropic phase, were obtained. X-ray diffraction analysis confirms these kinds of materials form a high tilted anticlinic phase, with a fixed layer spacing and very weak dependency upon temperature, after the transition from the isotropic phase. Due to this, not only pure orthoconic antiferroelectric liquid crystals but also those with a moderate tilt should generate a good dark state. Furthermore, due to the increased potential for forming anticlinic forces, such materials could minimize a commonly observed asymmetry of a rise and fall switching times at a surface stabilized geometry. - Highlights: • The new class of liquid crystalline materials with the direct SmC{sub A}*. • Iso phase transition were obtained. • Materials possess the layer spacing fixed and very weak dependent upon temperature. • Smectic layers without shrinkage are observed. • A good dark state can be generate in SSAFLC.

  6. Chirality Quantum Phase Transition in Noncommutative Dirac Oscillator

    International Nuclear Information System (INIS)

    Wang Shao-Hua; Hou Yu-Long; Jing Jian; Wang Qing; Long Zheng-Wen

    2014-01-01

    The charged Dirac oscillator on a noncommutative plane coupling to a uniform perpendicular magnetic held is studied in this paper. We map the noncommutative plane to a commutative one by means of Bopp shift and study this problem on the commutative plane. We find that this model can be mapped onto a quantum optics model which contains Anti—Jaynes—Cummings (AJC) or Jaynes—Cummings (JC) interactions when a dimensionless parameter ζ (which is the function of the intensity of the magnetic held) takes values in different regimes. Furthermore, this model behaves as experiencing a chirality quantum phase transition when the dimensionless parameter ζ approaches the critical point. Several evidences of the chirality quantum phase transition are presented. We also study the non-relativistic limit of this model and find that a similar chirality quantum phase transition takes place in its non-relativistic limit. (physics of elementary particles and fields)

  7. On the thermodynamics of phase transitions in metal hydrides

    Science.gov (United States)

    di Vita, Andrea

    2012-02-01

    Metal hydrides are solutions of hydrogen in a metal, where phase transitions may occur depending on temperature, pressure etc. We apply Le Chatelier's principle of thermodynamics to a particular phase transition in TiH x , which can approximately be described as a second-order phase transition. We show that the fluctuations of the order parameter correspond to fluctuations both of the density of H+ ions and of the distance between adjacent H+ ions. Moreover, as the system approaches the transition and the correlation radius increases, we show -with the help of statistical mechanics-that the statistical weight of modes involving a large number of H+ ions (`collective modes') increases sharply, in spite of the fact that the Boltzmann factor of each collective mode is exponentially small. As a result, the interaction of the H+ ions with collective modes makes a tiny suprathermal fraction of the H+ population appear. Our results hold for similar transitions in metal deuterides, too. A violation of an -insofar undisputed-upper bound on hydrogen loading follows.

  8. Compact Stars with Sequential QCD Phase Transitions

    Science.gov (United States)

    Alford, Mark; Sedrakian, Armen

    2017-10-01

    Compact stars may contain quark matter in their interiors at densities exceeding several times the nuclear saturation density. We explore models of such compact stars where there are two first-order phase transitions: the first from nuclear matter to a quark-matter phase, followed at a higher density by another first-order transition to a different quark-matter phase [e.g., from the two-flavor color-superconducting (2SC) to the color-flavor-locked (CFL) phase]. We show that this can give rise to two separate branches of hybrid stars, separated from each other and from the nuclear branch by instability regions, and, therefore, to a new family of compact stars, denser than the ordinary hybrid stars. In a range of parameters, one may obtain twin hybrid stars (hybrid stars with the same masses but different radii) and even triplets where three stars, with inner cores of nuclear matter, 2SC matter, and CFL matter, respectively, all have the same mass but different radii.

  9. High pressure structural phase transition of neodymium mono pnictides

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Ojha, P.; Sanyal, S.P.; Aynyas, Mahendra

    2007-01-01

    We have investigated theoretically the high-pressure structural phase transition of two neodymium mono NdX (X=As, Sb) using an interionic potential theory with necessary modification to include the effect of Coulomb screening by the delocalized f electrons of Nd ion. These compounds exhibits first order crystallographic phase transition from their NaCl (B 1 ) phase to body centered tetragonal (BCT) at 27 GPa and 15.3 GPa respectively. We also calculated the Nd-Nd distance as a function of pressure. (author)

  10. Structural phase transition of BaZrO3 under high pressure

    International Nuclear Information System (INIS)

    Yang, Xue; Li, Quanjun; Liu, Ran; Liu, Bo; Zhang, Huafang; Jiang, Shuqing; Zou, Bo; Cui, Tian; Liu, Bingbing; Liu, Jing

    2014-01-01

    We studied the phase transition behavior of cubic BaZrO 3 perovskite by in situ high pressure synchrotron X-ray diffraction experiments up to 46.4 GPa at room temperature. The phase transition from cubic phase to tetragonal phase was observed in BaZrO 3 for the first time, which takes place at 17.2 GPa. A bulk modulus 189 (26) GPa for cubic BaZrO 3 is derived from the pressure–volume data. Upon decompression, the high pressure phase transforms into the initial cubic phase. It is suggested that the unstable phonon mode caused by the rotation of oxygen octahedra plays a crucial role in the high pressure phase transition behavior of BaZrO 3

  11. Open volume defects and magnetic phase transition in Fe{sub 60}Al{sub 40} transition metal aluminide

    Energy Technology Data Exchange (ETDEWEB)

    Liedke, M. O., E-mail: m.liedke@hzdr.de; Anwand, W.; Butterling, M.; Wagner, A. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Bali, R.; Cornelius, S.; Potzger, K. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Trinh, T. T. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Technical University Dresden, Helmholtzstr. 10, 01609 Dresden (Germany); Salamon, S.; Walecki, D.; Smekhova, A.; Wende, H. [Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47048 Duisburg (Germany)

    2015-04-28

    Magnetic phase transition in the Fe{sub 60}Al{sub 40} transition metal aluminide from the ferromagnetic disordered A2-phase to the paramagnetic ordered B2-phase as a function of annealing up to 1000 °C has been investigated by means of magneto-optical and spectroscopy techniques, i.e., Kerr effect, positron annihilation, and Mössbauer spectroscopy. The positron annihilation spectroscopy has been performed in-situ sequentially after each annealing step at the Apparatus for In-situ Defect Analysis that is a unique tool combining positron annihilation spectroscopy with temperature treatment, material evaporation, ion irradiation, and sheet resistance measurement techniques. The overall goal was to investigate the importance of the open volume defects onto the magnetic phase transition. No evidence of variation in the vacancy concentration in matching the magnetic phase transition temperature range (400–600 °C) has been found, whereas higher temperatures showed an increase in the vacancy concentration.

  12. Elastic modulus, thermal expansion, and specific heat at a phase transition

    International Nuclear Information System (INIS)

    Testardi, L.R.

    1975-01-01

    The interrelation of the elastic modulus, thermal-expansion coefficient, and specific heat of a transformed phase relative to the untransformed phase is calculated assuming a particular but useful form of the thermodynamic potential. For second-order phase transitions where this potential applies, measurements of modulus, expansion, and specific heat can yield the general (longitudinal as well as shear) first- and second-order stress (or strain) dependences of the transition temperature and of the order parameter at absolute zero. An exemplary application to one type of phase transition is given

  13. Phase transitions in light nuclei

    International Nuclear Information System (INIS)

    Dukelsky, J.; Poves, A.; Retamosa, J.

    1991-01-01

    The SU(3) Elliott model is used to study the thermal description of 20 Ne. This solvable model allows us to work in the canonical ensemble and still be able to define an order parameter, the expectation value of the intrinsic quadrupole moment, to investigate the occurrence of phase transitions

  14. MRI surface-coil pair with strong inductive coupling.

    Science.gov (United States)

    Mett, Richard R; Sidabras, Jason W; Hyde, James S

    2016-12-01

    A novel inductively coupled coil pair was used to obtain magnetic resonance phantom images. Rationale for using such a structure is described in R. R. Mett et al. [Rev. Sci. Instrum. 87, 084703 (2016)]. The original rationale was to increase the Q-value of a small diameter surface coil in order to achieve dominant loading by the sample. A significant improvement in the vector reception field (VRF) is also seen. The coil assembly consists of a 3-turn 10 mm tall meta-metallic self-resonant spiral (SRS) of inner diameter 10.4 mm and outer diameter 15.1 mm and a single-loop equalization coil of 25 mm diameter and 2 mm tall. The low-frequency parallel mode was used in which the rf currents on each coil produce magnetic fields that add constructively. The SRS coil assembly was fabricated and data were collected using a tissue-equivalent 30% polyacrylamide phantom. The large inductive coupling of the coils produces phase-coherency of the rf currents and magnetic fields. Finite-element simulations indicate that the VRF of the coil pair is about 4.4 times larger than for a single-loop coil of 15 mm diameter. The mutual coupling between coils influences the current ratio between the coils, which in turn influences the VRF and the signal-to-noise ratio (SNR). Data on a tissue-equivalent phantom at 9.4 T show a total SNR increase of 8.8 over the 15 mm loop averaged over a 25 mm depth and diameter. The experimental results are shown to be consistent with the magnetic resonance theory of the emf induced by spins in a coil, the theory of inductively coupled resonant circuits, and the superposition principle. The methods are general for magnetic resonance and other types of signal detection and can be used over a wide range of operating frequencies.

  15. Universal monopole scaling near transitions from the Coulomb phase.

    Science.gov (United States)

    Powell, Stephen

    2012-08-10

    Certain frustrated systems, including spin ice and dimer models, exhibit a Coulomb phase at low temperatures, with power-law correlations and fractionalized monopole excitations. Transitions out of this phase, at which the effective gauge theory becomes confining, provide examples of unconventional criticality. This Letter studies the behavior at nonzero monopole density near such transitions, using scaling theory to arrive at universal expressions for the crossover phenomena. For a particular transition in spin ice, quantitative predictions are made by mapping to the XY model and confirmed using Monte Carlo simulations.

  16. An N=2 dual pair and a phase transition

    International Nuclear Information System (INIS)

    Aspinwall, P.S.

    1996-01-01

    We carefully analyze the N=2 dual pair of string theories in four dimensions introduced by Ferrara, Harvey, Strominger and Vafa. The analysis shows that a second discrete degree of freedom must be switched on in addition to the known ''Wilson line'' to achieve a non-perturbatively consistent theory. We also identify the phase transition this model undergoes into another dual pair via a process analogous to a conifold transition. This provides the first known example of a phase transition which is understood from both the type II and the heterotic string picture. (orig.)

  17. Phase Transitions for Flat Anti - de Sitter Black Holes

    International Nuclear Information System (INIS)

    Surya, Sumati; Schleich, Kristin; Witt, Donald M.

    2001-01-01

    We reexamine the thermodynamics of anti - de Sitter (adS) black holes with Ricci flat horizons using the adS soliton as the thermal background. We find that there is a phase transition which is dependent not only on the temperature but also on the black hole area, which is an independent parameter. As in the spherical adS black hole, this phase transition is related via the adS/conformal-field-theory correspondence to a confinement-deconfinement transition in the large-N gauge theory on the conformal boundary at infinity

  18. The Structural Phase Transition in Solid DCN

    DEFF Research Database (Denmark)

    Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.

    1975-01-01

    Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase change from a tetragonal to an orthorhombic form at 160K is a first-order transition. A transverse acoustic phonon mode, which has the symmetry of the phase change, was observed at very low energies...

  19. CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information

    DEFF Research Database (Denmark)

    Bartoli, Lisa; Fariselli, Piero; Krogh, Anders

    2009-01-01

    tools are available for predicting coiled-coil domains in protein sequences, including those based on position-specific score matrices and machine learning methods. RESULTS: In this article, we introduce a hidden Markov model (CCHMM_PROF) that exploits the information contained in multiple sequence...... alignments (profiles) to predict coiled-coil regions. The new method discriminates coiled-coil sequences with an accuracy of 97% and achieves a true positive rate of 79% with only 1% of false positives. Furthermore, when predicting the location of coiled-coil segments in protein sequences, the method reaches...

  20. Nonequilibrium Phase Transitions in Supercooled Water

    Science.gov (United States)

    Limmer, David; Chandler, David

    2012-02-01

    We present results of a simulation study of water driven out of equilibrium. Using transition path sampling, we can probe stationary path distributions parameterize by order parameters that are extensive in space and time. We find that by coupling external fields to these parameters, we can drive water through a first order dynamical phase transition into amorphous ice. By varying the initial equilibrium distributions we can probe pathways for the creation of amorphous ices of low and high densities.

  1. High-pressure phase transition in Ho2O3

    International Nuclear Information System (INIS)

    Lonappan, Dayana; Shekar, N.V. Chandra; Ravindran, T.R.; Sahu, P. Ch.

    2010-01-01

    High-pressure X-ray diffraction and Raman studies on holmium sesquioxide (Ho 2 O 3 ) have been carried out up to a pressure of ∼17 GPa in a diamond-anvil cell at room temperature. Holmium oxide, which has a cubic or bixbyite structure under ambient conditions, undergoes an irreversible structural phase transition at around 9.5 GPa. The high-pressure phase has been identified to be low symmetry monoclinic type. The two phases coexist to up to about 16 GPa, above which the parent phase disappears. The high-pressure laser-Raman studies have revealed that the prominent Raman band ∼370 cm -1 disappears around the similar transition pressure. The bulk modulus of the parent phase is reported.

  2. The high temperature phase transition for the φ4 theory

    International Nuclear Information System (INIS)

    Tetradis, N.

    1994-01-01

    The use of the perturbative temperature dependent effective potential for the study of second order or weakly first order phase transitions is problematic, due to the appearance of infrared divergences. These divergences can be controlled through the method of the effective average action which employs renormalization group ideas. I review work done with C. Wetterich on the study of the high temperature phase transition for the N-component Φ 4 theory. A detailed quantitative picture of the second order phase transition is presented, including the critical exponents for the behaviour in the vicinity of the critical temperature. (orig.)

  3. Dual catalytic purpose of the tungsten filament during the synthesis of single-helix carbon microcoils by hot-wire CVD

    CSIR Research Space (South Africa)

    Oliphant, CJ

    2009-10-01

    Full Text Available This paper reports on the deposition of crystalline single-helix carbon microcoils, in the as-deposited state, by the hot-wire chemical vapor deposition process without any special preparation of nano-sized transition metal catalysts and subsequent...

  4. Private Venture Capital’s Investment on University Spin-Offs: A Case Study of Tsinghua University Based on Triple Helix Model

    DEFF Research Database (Denmark)

    Gao, Yuchen; Hu, Yimei; Wang, Jingyi

    2015-01-01

    and transition economies where governments are transforming their roles. Thus the main purpose of this study is to investigate how private venture capitals’ investment willingness on university spin-offs are influenced by universities and governments under the Chinese context based on the triple helix model....... Through an in-depth case study on the interactions of triple helix actors of Tsinghua University’s spin-offs, it is found that government and university developing an environment of marketization exert positive influences on the investment willingness of private venture capitals. Whilst financial direct...

  5. Dissipation-driven quantum phase transitions in collective spin systems

    International Nuclear Information System (INIS)

    Morrison, S; Parkins, A S

    2008-01-01

    We consider two different collective spin systems subjected to strong dissipation-on the same scale as interaction strengths and external fields-and show that either continuous or discontinuous dissipative quantum phase transitions can occur as the dissipation strength is varied. First, we consider a well-known model of cooperative resonance fluorescence that can exhibit a second-order quantum phase transition, and analyse the entanglement properties near the critical point. Next, we examine a dissipative version of the Lipkin-Meshkov-Glick interacting collective spin model, where we find that either first- or second-order quantum phase transitions can occur, depending only on the ratio of the interaction and external field parameters. We give detailed results and interpretation for the steady-state entanglement in the vicinity of the critical point, where it reaches a maximum. For the first-order transition we find that the semiclassical steady states exhibit a region of bistability. (fast track communication)

  6. Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition.

    Science.gov (United States)

    Zhu, Sheng-Cai; Guan, Shu-Hui; Liu, Zhi-Pan

    2016-07-21

    Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the

  7. Generic features of vacuum phase transitions in the early universe

    International Nuclear Information System (INIS)

    Kephart, T.W.; Weiler, T.J.; Yuan, T.C.

    1990-01-01

    A simple Higgs model is utilized to show the occurrence of a four-phase pattern of vacuum symmetry. As temperature changes, an interplay of spontaneous symmetry breaking and spontaneous symmetry restoration ensues, and resonant field interchange occurs. The generality of models which may contain a sequence of vacuum phase transitions is emphasized. The laboratory for these multi-phase transitions is the early Universe. (orig.)

  8. Temperature-dependent phase transitions in zeptoliter volumes of a complex biological membrane

    International Nuclear Information System (INIS)

    Nikiforov, Maxim P; Jesse, Stephen; Kalinin, Sergei V; Hohlbauch, Sophia; Proksch, Roger; King, William P; Voitchovsky, Kislon; Contera, Sonia Antoranz

    2011-01-01

    Phase transitions in purple membrane have been a topic of debate for the past two decades. In this work we present studies of a reversible transition of purple membrane in the 50-60 deg. C range in zeptoliter volumes under different heating regimes (global heating and local heating). The temperature of the reversible phase transition is 52 ± 5 deg. C for both local and global heating, supporting the hypothesis that this transition is mainly due to a structural rearrangement of bR molecules and trimers. To achieve high resolution measurements of temperature-dependent phase transitions, a new scanning probe microscopy-based method was developed. We believe that our new technique can be extended to other biological systems and can contribute to the understanding of inhomogeneous phase transitions in complex systems.

  9. Phase transition and computational complexity in a stochastic prime number generator

    Energy Technology Data Exchange (ETDEWEB)

    Lacasa, L; Luque, B [Departamento de Matematica Aplicada y EstadIstica, ETSI Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain); Miramontes, O [Departamento de Sistemas Complejos, Instituto de FIsica, Universidad Nacional Autonoma de Mexico, Mexico 01415 DF (Mexico)], E-mail: lucas@dmae.upm.es

    2008-02-15

    We introduce a prime number generator in the form of a stochastic algorithm. The character of this algorithm gives rise to a continuous phase transition which distinguishes a phase where the algorithm is able to reduce the whole system of numbers into primes and a phase where the system reaches a frozen state with low prime density. In this paper, we firstly present a broader characterization of this phase transition, both in analytical and numerical terms. Critical exponents are calculated, and data collapse is provided. Further on, we redefine the model as a search problem, fitting it in the hallmark of computational complexity theory. We suggest that the system belongs to the class NP. The computational cost is maximal around the threshold, as is common in many algorithmic phase transitions, revealing the presence of an easy-hard-easy pattern. We finally relate the nature of the phase transition to an average-case classification of the problem.

  10. Phase transitions in 3D gravity and fractal dimension

    Science.gov (United States)

    Dong, Xi; Maguire, Shaun; Maloney, Alexander; Maxfield, Henry

    2018-05-01

    We show that for three dimensional gravity with higher genus boundary conditions, if the theory possesses a sufficiently light scalar, there is a second order phase transition where the scalar field condenses. This three dimensional version of the holographic superconducting phase transition occurs even though the pure gravity solutions are locally AdS3. This is in addition to the first order Hawking-Page-like phase transitions between different locally AdS3 handlebodies. This implies that the Rényi entropies of holographic CFTs will undergo phase transitions as the Rényi parameter is varied, as long as the theory possesses a scalar operator which is lighter than a certain critical dimension. We show that this critical dimension has an elegant mathematical interpretation as the Hausdorff dimension of the limit set of a quotient group of AdS3, and use this to compute it, analytically near the boundary of moduli space and numerically in the interior of moduli space. We compare this to a CFT computation generalizing recent work of Belin, Keller and Zadeh, bounding the critical dimension using higher genus conformal blocks, and find a surprisingly good match.

  11. The crystal structure and the phase transitions of pyridinium trifluoromethanesulfonate

    International Nuclear Information System (INIS)

    Jesariew, Dominik; Ilczyszyn, Maria M; Pietraszko, Adam

    2014-01-01

    The calorimetric and optical studies and the structural properties of pyridinium trifluoromethanesulfonate (abbreviated as PyHOTf) are reported. A sequence of four fully reversible solid–solid phase transitions, at 223.0, 309.0, 359.9 and 394.3 K, has been discovered. The phase transition sequence was confirmed by x-ray diffraction data. The crystal structures of three phases (V, IV and III) have been determined from the single crystal x-ray diffraction data. Structural properties of the high temperature phases are characterized using powder x-ray diffraction data measured in the 290–425 K temperature range. The structural changes triggered by the temperature change are discussed in relation to the phase transitions. Two low temperature phases (V and IV) belong to the P4 3 2 1 2 space group of the tetragonal system. The intermediate phases (III and II) are monoclinic and the prototype high temperature phase (I) is a pseudo-cubic (tetragonal) one. The low temperature phases (V and IV) are well ordered. The crystal structure of intermediate (III and II) and prototype (I) phases are characterized by high disorder of the pyridinium cations and triflate anions. (papers)

  12. Insight into black hole phase transition from parametric solutions

    Science.gov (United States)

    Li, Dandan; Li, Shanshan; Mi, Li-Qin; Li, Zhong-Heng

    2017-12-01

    We consider the first-order phase transition of a charged anti-de Sitter black hole and introduce a new dimensionless parameter, ω =(Δ S /π Q2)2 . The parametric solutions of the two reduced volumes are obtained. Each volume is described by a piecewise analytic function. The demarcation point is located at ωd=12 (2 √{3 }-3 ). The volume function is smoothly connected at the point. We show that all properties of the coexistence curve can be studied from the two volume functions. In other words, an arbitrary reduced thermodynamic variable of the two coexisting phases is only a function of ω . Some phase diagrams are plotted by using parametric solutions. We find that, when the reduced pressure P ^>P^A (of order 7.4 ×10-4), the first-order phase transition of the black hole is similar to the van der Waals fluid. However, the similarity disappears when P ^≤P^A. At a van der Waals fluidlike stage, the values of the reduced Gibbs function and the reduced density average are equal. At a non-van der Waals fluid stage, the phase diagrams have extraordinarily rich structure. It is worth pointing out that the phase transition is very important for the low-pressure case since the pressure in essence is the cosmological constant, which is normally very small. Moreover, the thermodynamic behaviors as ω →0 are discussed, from which one can easily obtain some critical exponents and amplitudes for small-large black hole phase transitions.

  13. Tunable phase transition in single-layer TiSe2 via electric field

    Science.gov (United States)

    Liu, Lei; Zhuang, Houlong L.

    2018-06-01

    Phase transition represents an intriguing physical phenomenon that exists in a number of single-layer transition-metal dichalcogenides. This phenomenon often occurs below a critical temperature and breaks the long-range crystalline order leading to a reconstructed superstructure called the charge-density wave (CDW) structure, which can therefore be recovered by external stimuli such as temperature. Alternatively, we show here that another external stimulation, electric field can also result in the phase transition between the regular and CDW structures of a single-layer transition-metal dichalcogenide. We used single-layer TiSe2 as an example to elucidate the mechanism of the CDW followed by calculations of the electronic structure using a hybrid density functional. We found that applying electric field can tune the phase transition between the 1T and CDW phases of single-layer TiSe2. Our work opens up a route of tuning the phase transition of single-layer materials via electric field.

  14. Finite temperature susy GUT phase transitions determined by radiative corrections

    International Nuclear Information System (INIS)

    Kripfganz, J.; Perlt, H.

    1983-02-01

    Studying the 2-loop perturbative contribution to the free energy of grand unified theories a sequence of phase transitions is found, with SU(3)xSU(2)xU(1) being the prefered low temperature phase. The transition temperatures are still within the weak coupling regime. (author)

  15. Anomalous phase transition of InN nanowires under high pressure

    International Nuclear Information System (INIS)

    Tang Shun-Xi; Zhu Hong-Yang; Jiang Jun-Ru; Wu Xiao-Xin; Dong Yun-Xuan; Zhang Jian; Cui Qi-Liang; Yang Da-Peng

    2015-01-01

    Uniform InN nanowires were studied under pressures up to 35.5 GPa by using in situ synchrotron radiation x-ray diffraction technique at room temperature. An anomalous phase transition behavior has been discovered. Contrary to the results in the literature, which indicated that InN undergoes a fully reversible phase transition from the wurtzite structure to the rocksalt type structure, the InN nanowires in this study unusually showed a partially irreversible phase transition. The released sample contained the metastable rocksalt phase as well as the starting wurtzite one. The experimental findings of this study also reveal the potentiality of high pressure techniques to synthesize InN nanomaterials with the metastable rocksalt type structure, in addition to the generally obtained zincblende type one. (paper)

  16. Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.

    Science.gov (United States)

    Dobrovolsky, Alexander; Merdasa, Aboma; Unger, Eva L; Yartsev, Arkady; Scheblykin, Ivan G

    2017-06-26

    Solution-processed organometal halide perovskites are hybrid crystalline semiconductors highly interesting for low-cost and efficient optoelectronics. Their properties are dependent on the crystal structure. Literature shows a variety of crystal phase transition temperatures and often a spread of the transition over tens of degrees Kelvin. We explain this inconsistency by demonstrating that the temperature of the tetragonal-to-orthorhombic phase transition in methylammonium lead triiodide depends on the concentration and nature of local defects. Phase transition in individual nanowires was studied by photoluminescence microspectroscopy and super-resolution imaging. We propose that upon cooling from 160 to 140 K, domains of the crystal containing fewer defects stay in the tetragonal phase longer than highly defected domains that readily transform to the high bandgap orthorhombic phase at higher temperatures. The existence of relatively pure tetragonal domains during the phase transition leads to drastic photoluminescence enhancement, which is inhomogeneously distributed across perovskite microcrystals.Understanding crystal phase transition in materials is of fundamental importance. Using luminescence spectroscopy and super-resolution imaging, Dobrovolsky et al. study the transition from the tetragonal to orthorhombic crystal phase in methylammonium lead triiodide nanowires at low temperature.

  17. Low-temperature structural phase transition in deuterated and protonated lithium acetate dihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F., E-mail: schroeder@kristall.uni-frankfurt.d [Goethe-Universitaet Frankfurt am Main, Institut fuer Geowissenschaften, Abt. Kristallographie, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Winkler, B.; Haussuehl, E. [Goethe-Universitaet Frankfurt am Main, Institut fuer Geowissenschaften, Abt. Kristallographie, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Cong, P.T.; Wolf, B. [Goethe-Universitaet Frankfurt am Main, Physikalisches Institut, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Avalos-Borja, M. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C. Camino a la Presa San Jose 2055, Col. Lomas 4 seccion CP 78216, San Luis Potosi (Mexico); Quilichini, M.; Hennion, B. [Laboratoire Leon Brillouin, CEN Saclay, 91191 Gif-sur-Yvette (France)

    2010-08-15

    Heat capacity measurements of protonated lithium acetate dihydrate show a structural phase transition at T = 12 K. This finding is in contrast to earlier work, where it was thought that only the deuterated compound undergoes a low temperature structural phase transition. This finding is confirmed by low temperature ultrasound spectroscopy, where the structural phase transition is associated with a velocity decrease of the ultrasonic waves, i.e. with an elastic softening. We compare the thermodynamic properties of the protonated and deuterated compounds and discuss two alternatives for the mechanism of the phase transition based on the thermal expansion measurements.

  18. miRNA control of vegetative phase change in trees.

    Directory of Open Access Journals (Sweden)

    Jia-Wei Wang

    2011-02-01

    Full Text Available After germination, plants enter juvenile vegetative phase and then transition to an adult vegetative phase before producing reproductive structures. The character and timing of the juvenile-to-adult transition vary widely between species. In annual plants, this transition occurs soon after germination and usually involves relatively minor morphological changes, whereas in trees and other perennial woody plants it occurs after months or years and can involve major changes in shoot architecture. Whether this transition is controlled by the same mechanism in annual and perennial plants is unknown. In the annual forb Arabidopsis thaliana and in maize (Zea mays, vegetative phase change is controlled by the sequential activity of microRNAs miR156 and miR172. miR156 is highly abundant in seedlings and decreases during the juvenile-to-adult transition, while miR172 has an opposite expression pattern. We observed similar changes in the expression of these genes in woody species with highly differentiated, well-characterized juvenile and adult phases (Acacia confusa, Acacia colei, Eucalyptus globulus, Hedera helix, Quercus acutissima, as well as in the tree Populus x canadensis, where vegetative phase change is marked by relatively minor changes in leaf morphology and internode length. Overexpression of miR156 in transgenic P. x canadensis reduced the expression of miR156-targeted SPL genes and miR172, and it drastically prolonged the juvenile phase. Our results indicate that miR156 is an evolutionarily conserved regulator of vegetative phase change in both annual herbaceous plants and perennial trees.

  19. Alternative generation of well-aligned uniform lying helix texture in a cholesteric liquid crystal cell

    Directory of Open Access Journals (Sweden)

    Chia-Hua Yu

    2017-10-01

    Full Text Available This work demonstrates a simple approach for obtaining a well-aligned uniform lying helix (ULH texture and a tri-bistable feature at ambient temperature in a typical 90°-twisted cell filled with a short-pitch cholesteric liquid crystal. This ULH texture is obtained at room temperature from initially field-induced helix-free homeotropic state by gradually decreasing the applied voltage. Depending on the way and rate of reducing the voltage, three stable states (i.e., Grandjean planar, focal conic, and ULH are generated and switching between any two of them is realized. Moreover, the electrical operation of the cell in the ULH state enables the tunability in phase retardation via the deformation of the ULH. The observations made in this work may be useful for applications such as tunable phase modulators and energy-efficient photonic devices.

  20. Designing cooperatively folded abiotic uni- and multimolecular helix bundles

    Science.gov (United States)

    de, Soumen; Chi, Bo; Granier, Thierry; Qi, Ting; Maurizot, Victor; Huc, Ivan

    2018-01-01

    Abiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be developed. Here we report rationally designed interactional patterns to guide the folding and assembly of abiotic helix bundles. Computational design facilitated the introduction of hydrogen-bonding functionalities at defined locations on the aromatic amide backbones that promote cooperative folding into helix-turn-helix motifs in organic solvents. The hydrogen-bond-directed aggregation of helices not linked by a turn unit produced several thermodynamically and kinetically stable homochiral dimeric and trimeric bundles with structures that are distinct from the designed helix-turn-helix. Relative helix orientation within the bundles may be changed from parallel to tilted on subtle solvent variations. Altogether, these results prefigure the richness and uniqueness of abiotic tertiary structure behaviour.

  1. Phase transitions induced by the Aharonov-Bohm field

    International Nuclear Information System (INIS)

    Krive, I.V.; Naftulin, S.A.

    1990-07-01

    The influence of the Aharonov-Bohm flux (φ) on the order parameters of the 3-dimensional Gross-Neveu model and CP N -model in R 2 xS 1 space is considered. It is shown that the variation of flux causes the order parameter oscillations and for the small enough length of circular coordinate l c these oscillations attended with re-ordering phase transitions (i.e. the repeating transitions between the ordered and the disordered phases of the models in question). (author). 22 refs, 3 figs

  2. Theory of structural phase transition in MgTi{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Talanov, V. M., E-mail: valtalanov@mail.ru [South Russian State Polytechnical University (Russian Federation); Shirokov, V. B. [Russian Academy of Sciences, South Science Centre (Russian Federation); Ivanov, V. V. [South Russian State Polytechnical University (Russian Federation); Talanov, M. V. [South Federal University (Russian Federation)

    2015-01-15

    A theory of phase transition in MgTi{sub 2}O{sub 4} is proposed based on a study of the order-parameter symmetry, thermodynamics, and mechanisms of formation of the atomic and orbital structure of the low-symmetry MgTi{sub 2}O{sub 4} phase. The critical order parameter (which induces a phase transition) is determined. It is shown that the calculated MgTi{sub 2}O{sub 4} tetragonal structure is a result of displacements of magnesium, titanium, and oxygen atoms; ordering of oxygen atoms; and the participation of d{sub xy}, d{sub xz}, and d{sub yz} orbitals. The contribution of noncritical representations to ion displacements is proven to be insignificant. The existence of various metal clusters in the tetragonal phase has been established by calculation in correspondence with experimental data. It is shown (within the Landau theory of phase transitions) that phase states can be changed as a result of both first- and second-order phase transitions: the high-symmetry phase borders two low-symmetry phases by second-order transition lines, while the border between low-symmetry phases is a first-order transition line.

  3. Antiferrodistortive phase transitions and ground state of PZT ceramics

    International Nuclear Information System (INIS)

    Pandey, Dhananjai

    2013-01-01

    The ground state of the technologically important Pb(Zr x Ti (1-x) )O 3 , commonly known as PZT, ceramics is currently under intense debate. The phase diagram of this material shows a morphotropic phase boundary (MPB) for x∼0.52 at 300K, across which a composition induced structural phase transition occurs leading to maximization of the piezoelectric properties. In search for the true ground state of the PZT in the MPB region, Beatrix Noheda and coworkers first discovered a phase transition from tetragonal (space group P4mm) to an M A type monoclinic phase (space group Cm) at low temperatures for x=0.52. Soon afterwards, we discovered yet another low temperature phase transition for the same composition in which the M A type (Cm) monoclinic phase transforms to another monoclinic phase with Cc space group. We have shown that the Cm to Cc phase transition is an antiferrodistortive (AFD) transition involving tilting of oxygen octahedra leading to unit cell doubling and causing appearance of superlattice reflections which are observable in the electron and neutron diffraction patterns only and not in the XRD patterns, as a result of which Noheda and coworkers missed the Cc phase in their synchrotron XRD studies at low temperatures. Our findings were confirmed by leading groups using neutron, TEM, Raman and high pressure diffraction studies. The first principles calculations also confirmed that the true ground state of PZT in the MPB region has Cc space group. However, in the last couple of years, the Cc space group of the ground state has become controversial with an alternative proposal of R3c as the space group of the ground state phase which is proposed to coexist with the metastable Cm phase. In order to resolve this controversy, we recently revisited the issue using pure PZT and 6% Sr 2+ substituted PZT, the latter samples show larger tilt angle on account of the reduction in the average cationic radius at the Pb 2+ site. Using high wavelength neutrons and high

  4. Scaling behavior in first-order quark-hadron phase transition

    International Nuclear Information System (INIS)

    Hwa, R.C.

    1994-01-01

    It is shown that in the Ginzburg-Landau description of first-order quark-hadron phase transition the normalized factorial moments exhibit scaling behavior. The scaling exponent ν depends on only one effective parameter g, which characterizes the strength of the transition. For a strong first-order transition, we find ν=1.45. For weak transition it is 1.30 in agreement with the earlier result on second-order transition

  5. Critical phase transitions during ablation of atrial fibrillation

    Science.gov (United States)

    Iravanian, Shahriar; Langberg, Jonathan J.

    2017-09-01

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia with significant morbidity and mortality. Pharmacological agents are not very effective in the management of AF. Therefore, ablation procedures have become the mainstay of AF management. The irregular and seemingly chaotic atrial activity in AF is caused by one or more meandering spiral waves. Previously, we have shown the presence of sudden rhythm organization during ablation of persistent AF. We hypothesize that the observed transitions from a disorganized to an organized rhythm is a critical phase transition. Here, we explore this hypothesis by simulating ablation in an anatomically-correct 3D AF model. In 722 out of 2160 simulated ablation, at least one sudden transition from AF to an organized rhythm (flutter) was noted (33%). They were marked by a sudden decrease in the cycle length entropy and increase in the mean cycle length. At the same time, the number of reentrant wavelets decreased from 2.99 ± 0.06 in AF to 1.76 ± 0.05 during flutter, and the correlation length scale increased from 13.3 ± 1.0 mm to 196.5 ± 86.6 mm (both P < 0.0001). These findings are consistent with the hypothesis that transitions from AF to an anatomical flutter behave as phase transitions in complex non-equilibrium dynamical systems with flutter acting as an absorbing state. Clinically, the facilitation of phase transition should be considered a novel mechanism of ablation and may help to design effective ablation strategies.

  6. Sensitive quench detection of the HTS coil using a co-winding coil

    International Nuclear Information System (INIS)

    Takagi, Tomohiro; Ariyama, Takahiro; Takao, Tomoaki; Tsukamoto, Osami

    2017-01-01

    The authors have studied the co-winding coil method (CW method) using the co-wound coil electrically insulated from the HTS coil. In this method, the quench is detected by the voltage difference between the coil of the HTS tape (HTS coil) and the coil of the normal conductor (CW coil). The voltage induced in the CW coil caused by the change of the magnetic field is almost the same as that in the HTS coil because the coils are magnetically coupled close to each other. Therefore, it is expected that the induced voltage will be canceled with high accuracy and that the resistive voltage in the HTS coil will be detected with greater sensitivity compared to the bridge balance method, which is used commonly. In this study, quench detection applying the CW method is demonstrated using an experimental double-pancake coil. A tape with the copper layer deposited on the polymer substrate was used as the insulated conductor wire to form the CW coil. An additional pancake coil was used to expose the experimental double-pancake coil to the external magnetic field asymmetrically. It was shown that the CW method can detect the resistive voltage with greater sensitivity even when the HTS coil was exposed to the changing asymmetric external magnetic field. (author)

  7. On the phase transition nature in compressible Ising models

    International Nuclear Information System (INIS)

    Ota, A.T.

    1985-01-01

    The phase transition phenomenon is analysed in a compressible ferromagnetic Ising model at null field, through the mean-field approximation. The model studied is d-dimensional under the magnetic point of view and one-dimensional under the elastic point of view. This is achieved keeping the compressive interactions among the ions and rejecting annealing forces completely. The exchange parameter J is linear and the elastic potential quadratic in relation to the microscopic shifts of the lattice. In the one-dimensional case, this model shows no phase transition. In the two-dimensional case, the role of the S i spin of the i-the ion is crucial: a) for spin 1/2 the transitions are of second order; b) for spin 1, desides the second order transitions there is a three-critical point and a first-order transitions line. (L.C.) [pt

  8. Non-equilibrium physics at a holographic chiral phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Nick; Kim, Keun-young [Southampton Univ. (United Kingdom). School of Physics and Astronomy; Kavli Institute for Theoretical Physics China, Beijing (China); Kalaydzhyan, Tigran; Kirsch, Ingo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    The D3/D7 system holographically describes an N=2 gauge theory which spontaneously breaks a chiral symmetry by the formation of a quark condensate in the presence of a magnetic field. At finite temperature it displays a first order phase transition. We study out of equilibrium dynamics associated with this transition by placing probe D7 branes in a geometry describing a boost-invariant expanding or contracting plasma. We use an adiabatic approximation to track the evolution of the quark condensate in a heated system and reproduce the phase structure expected from equilibrium dynamics. We then study solutions of the full partial differential equation that describes the evolution of out of equilibrium configurations to provide a complete description of the phase transition including describing aspects of bubble formation. (orig.)

  9. Transition from boiling to two-phase forced convection

    International Nuclear Information System (INIS)

    Maroti, L.

    1985-01-01

    The paper presents a method for the prediction of the boundary points of the transition region between fully developed boiling and two-phase forced convection. It is shown that the concept for the determination of the onset of fully developed boiling can also be applied for the calculation of the point where the heat transfer is effected again by the forced convection. Similarly, the criterion for the onset of nucleate boiling can be used for the definition of the point where boiling is completely suppressed and pure two-phase forced convection starts. To calculate the heat transfer coefficient for the transition region, an equation is proposed that applies the boundary points and a relaxation function ensuring the smooth transition of the heat transfer coefficient at the boundaries

  10. The electroweak phase transition in models with gauge singlets

    Energy Technology Data Exchange (ETDEWEB)

    Ahriche, A.

    2007-04-18

    A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition {omega}(T{sub c})/T{sub c} >or similar 1, where {omega} = (v{sup 2} + (x - x{sub 0}){sup 2}){sup (}1)/(2) and x(x{sub 0}) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v{sub c}/T{sub c} >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)

  11. The electroweak phase transition in models with gauge singlets

    International Nuclear Information System (INIS)

    Ahriche, A.

    2007-01-01

    A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition Ω(T c )/T c >or similar 1, where Ω = (v 2 + (x - x 0 ) 2 ) ( 1)/(2) and x(x 0 ) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v c /T c >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)

  12. Phase transition in the countdown problem

    Science.gov (United States)

    Lacasa, Lucas; Luque, Bartolo

    2012-07-01

    We present a combinatorial decision problem, inspired by the celebrated quiz show called Countdown, that involves the computation of a given target number T from a set of k randomly chosen integers along with a set of arithmetic operations. We find that the probability of winning the game evidences a threshold phenomenon that can be understood in the terms of an algorithmic phase transition as a function of the set size k. Numerical simulations show that such probability sharply transitions from zero to one at some critical value of the control parameter, hence separating the algorithm's parameter space in different phases. We also find that the system is maximally efficient close to the critical point. We derive analytical expressions that match the numerical results for finite size and permit us to extrapolate the behavior in the thermodynamic limit.

  13. Higher-order phase transitions on financial markets

    Science.gov (United States)

    Kasprzak, A.; Kutner, R.; Perelló, J.; Masoliver, J.

    2010-08-01

    Statistical and thermodynamic properties of the anomalous multifractal structure of random interevent (or intertransaction) times were thoroughly studied by using the extended continuous-time random walk (CTRW) formalism of Montroll, Weiss, Scher, and Lax. Although this formalism is quite general (and can be applied to any interhuman communication with nontrivial priority), we consider it in the context of a financial market where heterogeneous agent activities can occur within a wide spectrum of time scales. As the main general consequence, we found (by additionally using the Saddle-Point Approximation) the scaling or power-dependent form of the partition function, Z(q'). It diverges for any negative scaling powers q' (which justifies the name anomalous) while for positive ones it shows the scaling with the general exponent τ(q'). This exponent is the nonanalytic (singular) or noninteger power of q', which is one of the pilar of higher-order phase transitions. In definition of the partition function we used the pausing-time distribution (PTD) as the central one, which takes the form of convolution (or superstatistics used, e.g. for describing turbulence as well as the financial market). Its integral kernel is given by the stretched exponential distribution (often used in disordered systems). This kernel extends both the exponential distribution assumed in the original version of the CTRW formalism (for description of the transient photocurrent measured in amorphous glassy material) as well as the Gaussian one sometimes used in this context (e.g. for diffusion of hydrogen in amorphous metals or for aging effects in glasses). Our most important finding is the third- and higher-order phase transitions, which can be roughly interpreted as transitions between the phase where high frequency trading is most visible and the phase defined by low frequency trading. The specific order of the phase transition directly depends upon the shape exponent α defining the stretched

  14. A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions

    DEFF Research Database (Denmark)

    Perez-Moreno, M A; Locascio, A; Rodrigo, I

    2001-01-01

    Down-regulation of E-cadherin expression is a determinant of tumor cell invasiveness, an event frequently associated with epithelial-mesenchymal transitions. Here we show that the mouse E12/E47 basic helix-loop-helix transcription factor (the E2A gene product) acts as a repressor of E-cadherin ex......Down-regulation of E-cadherin expression is a determinant of tumor cell invasiveness, an event frequently associated with epithelial-mesenchymal transitions. Here we show that the mouse E12/E47 basic helix-loop-helix transcription factor (the E2A gene product) acts as a repressor of E...

  15. The shape of the melting curve and phase transitions in the liquid state

    International Nuclear Information System (INIS)

    Yahel, Eyal

    2014-01-01

    The phase diagram of elemental liquids has been found to be surprisingly rich, including variations in the melting curve and transitions in the liquid phase. The effect of these transitions on the shape of the melting curve is reviewed and analyzed. First-order phase transitions intersecting the melting curve imply piecewise continuous melting curves, with solid-solid transitions generating upward kinks or minima and liquid-liquid transitions generating downward kinks or maxima

  16. Luminescence detection of phase transitions in crystals and nanoparticle inclusions

    International Nuclear Information System (INIS)

    Townsend, P. D.; Yang, B.; Wang, Y.

    2008-01-01

    Luminescence measurements are extremely sensitive to variations in structural environment and thus have the potential to probe distortions of fluorescence sites. Changes can be monitored via luminescence efficiency, emission spectra or excited state lifetimes and these factors are influenced by the local neighbourhood around the emission site, and therefore by structure, composition, pressure and temperature. A rarely exploited approach for condensed matter has been to use the changes in luminescence responses during heating or cooling of a material to provide a rapid survey to detect the presence of phase transitions. One can often differentiate between bulk and surface effects by contrasting results from radioluminescence for bulk responses, and cathodoluminescence or photoluminescence for surface effects. One expects that discontinuous changes in optical parameters occur during temperature changes through phase transitions of insulating materials. In practice, optical signals also exist from surface states of fullerenes and high temperature superconductors etc which identify the presence of structural or superconducting transitions. Numerous examples are cited which match standard documented transitions. Interestingly many examples show the host signals are strongly sensitive to impurity phase transitions from inclusions such as nanoparticles of water, N 2 , O 2 or CO 2 . Recent luminescence data reveal many examples of new transitions, hysteresis and irreversible changes. The signals equally respond to relaxations of a structure and surprisingly indicate that in some materials, such as SrTiO 3 or ZnO, ion implantation of the surface triggers relaxations and phase changes throughout the bulk of the material. Luminescence routes to detect phase transitions are powerful tools but have a tiny literature and so the subject is ideal for rapid exploitation and development. (Author)

  17. Phase transitions and dark matter problems

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1984-10-01

    The possible relationships between phase transitions in the early universe and dark matter problems are discussed. It is shown that there are at least 3 distinct cosmological dark matter problems: (1) halos; (2) galaxy formation and clustering; and (3) Ω = 1, each emphasizing different attributes for the dark matter. At least some of the dark matter must be baryonic but if problems 2 and 3 are real they seem to also require non-baryonic material. However, if seeds are generated at the quark-hardon-chiral symmetry transition then alternatives to the standard scenarios may occur. At present no simple simultaneous solution (neither hot, warm, nor cold) exists for all 3 problems, but non-standard solutions with strings, decaying particles or light not tracing to mass may work. An alternative interpretation of the relationship of the cluster-cluster and galaxy-galaxy correlation functions using renormalized scaling is mentioned. In this interpretation galaxies are more strongly correlated and the cluster-cluster function is not expected to go negative until greater than or equal to 200 Mpc. Possible phase transition origins for the cluster-cluster renormalized scale are presented as ways to obtain a dimension 1.2 fractal. 64 references

  18. Phenomena at the QCD phase transition in nonequilibrium chiral fluid dynamics (NχFD)

    Energy Technology Data Exchange (ETDEWEB)

    Nahrgang, Marlene [Duke University, Department of Physics, Durham, NC (United States); Herold, Christoph [Suranaree University of Technology, School of Physics, Nakhon Ratchasima (Thailand)

    2016-08-15

    Heavy-ion collisions performed in the beam energy range accessible by the NICA collider facility are expected to produce systems of extreme net-baryon densities and can thus reach yet unexplored regions of the QCD phase diagram. Here, one expects the phase transition between the plasma of deconfined quarks and gluons and the hadronic matter to be of first order. A discovery of the first-order phase transition would as well prove the existence of the QCD critical point, a landmark in the phase diagram. In order to understand possible signals of the first-order phase transition in heavy-ion collision experiments it is very important to develop dynamical models of the phase transition. Here, we discuss the opportunities of studying dynamical effects at the QCD first-order phase transition within our model of nonequilibrium chiral fluid dynamics. (orig.)

  19. Casimir amplitudes in topological quantum phase transitions.

    Science.gov (United States)

    Griffith, M A; Continentino, M A

    2018-01-01

    Topological phase transitions constitute a new class of quantum critical phenomena. They cannot be described within the usual framework of the Landau theory since, in general, the different phases cannot be distinguished by an order parameter, neither can they be related to different symmetries. In most cases, however, one can identify a diverging length at these topological transitions. This allows us to describe them using a scaling approach and to introduce a set of critical exponents that characterize their universality class. Here we consider some relevant models of quantum topological transitions associated with well-defined critical exponents that are related by a quantum hyperscaling relation. We extend to these models a finite-size scaling approach based on techniques for calculating the Casimir force in electromagnetism. This procedure allows us to obtain universal Casimir amplitudes at their quantum critical points. Our results verify the validity of finite-size scaling in these systems and confirm the values of the critical exponents obtained previously.

  20. Magnetocaloric materials and first order phase transitions

    DEFF Research Database (Denmark)

    Neves Bez, Henrique

    and magnetocaloric regenerative tests. The magnetic, thermal and structural properties obtained from such measurements are then evaluated through different models, i.e. the Curie-Weiss law, the Bean-Rodbell model, the free electron model and the Debye model.The measured magnetocaloric properties of La0.67Ca0.33MnO3...... heat capacity, magnetization and entropy change measurements. By measuring bulky particles (with a particle size in the range of 5001000 μm) of La(Fe,Mn,Si)13Hz with first order phase transition, it was possible to observe very sharp transitions. This is not the case for finer ground particles which......This thesis studies the first order phase transitions of the magnetocaloric materials La0.67Ca0.33MnO3 and La(Fe,Mn,Si)13Hz trying to overcome challenges that these materials face when applied in active magnetic regenerators. The study is done through experimental characterization and modelling...

  1. Phase Transitions in Layered Diguanidinium Hexachlorostannate(IV)

    DEFF Research Database (Denmark)

    Szafranski, Marek; Ståhl, Kenny

    2016-01-01

    is different. The transitions involve also transformations in the networks of N-H center dot center dot center dot Cl hydrogen bonds. The large volume (similar to 3%) and entropy (similar to R ln 3) change at the transition between phases II and III, and the giant pressure coefficient of -755 K GPa(-1......Five crystalline phases of diguanidinium hexachlorostannate(IV), [C(NH2)(3)](2)SnCl6, have been identified and characterized by calorimetric and dielectric measurements, single crystal X-ray diffraction at atmospheric and high pressure, and synchrotron X-ray powder diffraction. The crystal...... structures of all phases are built of similar layers in which the tin hexachloride anions are connected to the guanidinium cations by N-H center dot center dot center dot Cl hydrogen bonds, forming a interact primarily by Coulombic forces between the ions from ap. double H-bonded sheets. The layers, neutral...

  2. Phase transitions in dense matter

    Science.gov (United States)

    Dexheimer, Veronica; Hempel, Matthias; Iosilevskiy, Igor; Schramm, Stefan

    2017-11-01

    As the density of matter increases, atomic nuclei disintegrate into nucleons and, eventually, the nucleons themselves disintegrate into quarks. The phase transitions (PT's) between these phases can vary from steep first order to smooth crossovers, depending on certain conditions. First-order PT's with more than one globally conserved charge, so-called non-congruent PT's, have characteristic differences compared to congruent PT's. In this conference proceeding we discuss the non-congruence of the quark deconfinement PT at high densities and/or temperatures relevant for heavy-ion collisions, neutron stars, proto-neutron stars, supernova explosions, and compact-star mergers.

  3. The transitional region of phase transitions in nuclear models

    International Nuclear Information System (INIS)

    Kotze, A.A.

    1988-01-01

    The phase transition in an exactly solvable nuclear model, the Lipkin model, is scrutinised, first using Hartree-Fock methods or the plain mean flield approximation, and then using projected wave functions. It turns out that the plain mean field is not reliable in the transitional region. Although the projection methods give better resutls in the transitional region, it leads to spurious singularities. While the energy of the projection before variation is slightly better than its projection after variation counterpart, the perfomance of the wave function is considerably worse in the transitional region. The model's wave function undergoes dramatic changes in the transitional region. The mechanism that brings about these changes is studied within a model Hamiltonian that can reproduce the Lipkin model mathematically. It turns out that the numerous exceptional points found in the transitional region, bring about the change of the ground state wave function. Exceptional points are associated with level crossings in the complex plane. These level crossings can be seen as level repulsions in the spectrum. Level repulsion and a sensitive dependence of the system on some external parameter are characteristics of chaotic behaviour. These two features are found in the transitional region of the Lipkin model. In order to study chaos, one has to resort to a statistical analysis. A measure of the chaotic behaviour of systems, the Δ 3 statistic, is introduced. The results show that the Lipkin model is harmonic, even in the transitional region. For the Lipkin model the exceptional points are regularly distributed in the complex plane. In a total chaotic system the points would be randomly distributed

  4. Optimization of Coil Element Configurations for a Matrix Gradient Coil.

    Science.gov (United States)

    Kroboth, Stefan; Layton, Kelvin J; Jia, Feng; Littin, Sebastian; Yu, Huijun; Hennig, Jurgen; Zaitsev, Maxim

    2018-01-01

    Recently, matrix gradient coils (also termed multi-coils or multi-coil arrays) were introduced for imaging and B 0 shimming with 24, 48, and even 84 coil elements. However, in imaging applications, providing one amplifier per coil element is not always feasible due to high cost and technical complexity. In this simulation study, we show that an 84-channel matrix gradient coil (head insert for brain imaging) is able to create a wide variety of field shapes even if the number of amplifiers is reduced. An optimization algorithm was implemented that obtains groups of coil elements, such that a desired target field can be created by driving each group with an amplifier. This limits the number of amplifiers to the number of coil element groups. Simulated annealing is used due to the NP-hard combinatorial nature of the given problem. A spherical harmonic basis set up to the full third order within a sphere of 20-cm diameter in the center of the coil was investigated as target fields. We show that the median normalized least squares error for all target fields is below approximately 5% for 12 or more amplifiers. At the same time, the dissipated power stays within reasonable limits. With a relatively small set of amplifiers, switches can be used to sequentially generate spherical harmonics up to third order. The costs associated with a matrix gradient coil can be lowered, which increases the practical utility of matrix gradient coils.

  5. A phase transition between small- and large-field models of inflation

    International Nuclear Information System (INIS)

    Itzhaki, Nissan; Kovetz, Ely D

    2009-01-01

    We show that models of inflection point inflation exhibit a phase transition from a region in parameter space where they are of large-field type to a region where they are of small-field type. The phase transition is between a universal behavior, with respect to the initial condition, at the large-field region and non-universal behavior at the small-field region. The order parameter is the number of e-foldings. We find integer critical exponents at the transition between the two phases.

  6. High pressure phase transition in Pr-monopnictides

    Energy Technology Data Exchange (ETDEWEB)

    Raypuria, Gajendra Singh, E-mail: sosfizix@gmail.com, E-mail: gsraypuria@gmail.com; Gupta, Dinesh Chandra [Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior - 474011 (India); Department of Physics, Govt. K.R.G. P.G. Autonomous College, Gwalior - 474001 (India)

    2015-06-24

    The Praseodymium-monopnictides compounds have been found to undergo transition from their initial NaCl-type structure to high pressure body centered tetragonal (BCT) structure (distorted CsCl-type P4/mmm) using CTIP model. The calculated values of cohesive energy, lattice constant, phase transition pressure, relative volume collapse agree well with the available measured data and better than those computed by earlier workers.

  7. The experimental study on positioning of the surface coil for magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Kyoji; Yotsui, Yoritaka; Koseki, Yonoshin [Osaka Dental Univ., Hirakata (Japan)

    2002-12-01

    We examined the correlation between signal intensity and setting angulations for magnetic resonance imagesobtained using a surface coil, which had a three inch surface coil, and dual coil, which and a three inch surface coil and an anterior neck coil. We took T2-3D weighted, T2-2D weighted and T1-2D weighted images with the angulated three-inch surface coil at 0-90 degrees with the magnetic direction. In every sequence, the maximum intensity with the dual coil was taken with angulations of 50-60 degrees. The intensity of the dual coil could be as much as the three times that of the single coil. As the angulations increased with the dual coil, the thickness of the effective intensity was decreased until it reached 50% of the maximum thickness. With the single coil it decreased until it reached 10%. When using a high-resolution coil that cannot be setup parallel with the magnetic direction, we recommend using a dual coil rather than a single coil to increase the signal intensity. In the oral cavity, the intraoral coil should be used with the extraoral coil as the phased array coil. This is the optimum condition of coil angulation for taking high resolution images. (author)

  8. Coherent state approach for the Φ6-lattice model and phase transitions

    International Nuclear Information System (INIS)

    Aguero-Granados, M.A.; Makhan'kov, V.G.

    1991-01-01

    Phase transitions in the lattice version of the Φ 6 -field theory are studied. The generalized coherent states approach to is used. In such a way the roles of kinks and bubbles in phase transitions have been reexamined. It is shown via a numerical analysis that first and second order phase transitions appear due to the behaviour of kinks and bubbles excitations. 12 refs.; 10 figs

  9. Strain-induced topological magnon phase transitions: applications to kagome-lattice ferromagnets

    Science.gov (United States)

    Owerre, S. A.

    2018-06-01

    A common feature of topological insulators is that they are characterized by topologically invariant quantity such as the Chern number and the index. This quantity distinguishes a nontrivial topological system from a trivial one. A topological phase transition may occur when there are two topologically distinct phases, and it is usually defined by a gap closing point where the topologically invariant quantity is ill-defined. In this paper, we show that the magnon bands in the strained (distorted) kagome-lattice ferromagnets realize an example of a topological magnon phase transition in the realistic parameter regime of the system. When spin–orbit coupling (SOC) is neglected (i.e. no Dzyaloshinskii–Moriya interaction), we show that all three magnon branches are dispersive with no flat band, and there exists a critical point where tilted Dirac and semi-Dirac point coexist in the magnon spectra. The critical point separates two gapless magnon phases as opposed to the usual phase transition. Upon the inclusion of SOC, we realize a topological magnon phase transition point at the critical strain , where D and J denote the perturbative SOC and the Heisenberg spin exchange interaction respectively. It separates two distinct topological magnon phases with different Chern numbers for and for . The associated anomalous thermal Hall conductivity develops an abrupt change at , due to the divergence of the Berry curvature in momentum space. The proposed topological magnon phase transition is experimentally feasible by applying external perturbations such as uniaxial strain or pressure.

  10. Study of the phase transition dynamics of the L to H transition

    International Nuclear Information System (INIS)

    Moyer, R.A.; Rhodes, T.L.; Rettig, C.L.

    1997-12-01

    A highly radiating zone (MARFE) just above the divertor X-point has been used to access the marginal transition regime P sep ∼ P thres to study the existence of a critical point for the L to H transition. Phase transition models predict that at the critical point, the transition duration increases and the plasma parameters vary continuously between L-mode and H-mode. In these experiments, the L to H transition duration increased 50--100 times over fast transitions. However, the evolution of E r shear, edge density gradient, H-mode pedestal, and fluctuations is essentially unchanged from that in fast transitions. The only difference is in the speed with which and the degree to which the fluctuation amplitudes are transiently reduced. This difference is understandable in terms of the time scales for fluctuation amplitude reduction (≤ 100 micros) and edge pressure gradient increase (several ms), provided the edge fluctuations are pressure-gradient driven

  11. Algebraic multigrid preconditioners for two-phase flow in porous media with phase transitions

    Science.gov (United States)

    Bui, Quan M.; Wang, Lu; Osei-Kuffuor, Daniel

    2018-04-01

    Multiphase flow is a critical process in a wide range of applications, including oil and gas recovery, carbon sequestration, and contaminant remediation. Numerical simulation of multiphase flow requires solving of a large, sparse linear system resulting from the discretization of the partial differential equations modeling the flow. In the case of multiphase multicomponent flow with miscible effect, this is a very challenging task. The problem becomes even more difficult if phase transitions are taken into account. A new approach to handle phase transitions is to formulate the system as a nonlinear complementarity problem (NCP). Unlike in the primary variable switching technique, the set of primary variables in this approach is fixed even when there is phase transition. Not only does this improve the robustness of the nonlinear solver, it opens up the possibility to use multigrid methods to solve the resulting linear system. The disadvantage of the complementarity approach, however, is that when a phase disappears, the linear system has the structure of a saddle point problem and becomes indefinite, and current algebraic multigrid (AMG) algorithms cannot be applied directly. In this study, we explore the effectiveness of a new multilevel strategy, based on the multigrid reduction technique, to deal with problems of this type. We demonstrate the effectiveness of the method through numerical results for the case of two-phase, two-component flow with phase appearance/disappearance. We also show that the strategy is efficient and scales optimally with problem size.

  12. Use of a High-Temperature Superconducting Coil for Magnetic Energy Storage

    International Nuclear Information System (INIS)

    Fagnard, J-F; Crate, D; Jamoye, J-F; Laurent, Ph; Mattivi, B; Cloots, R; Ausloos, M; Genon, A; Vanderbemden, Ph

    2006-01-01

    A high temperature superconducting magnetic energy storage device (SMES) has been realised using a 350 m-long BSCCO tape wound as a ''pancake'' coil. The coil is mounted on a cryocooler allowing temperatures down to 17.2 K to be achieved. The temperature dependence of coil electrical resistance R(T) shows a superconducting transition at T = 102.5 K. Measurements of the V(I) characteristics were performed at several temperatures between 17.2 K and 101.5 K to obtain the temperature dependence of the critical current (using a 1 μV/cm criterion). Critical currents were found to exceed 100 A for T < 30 K. An electronic DC-DC converter was built in order to control the energy flow in and out of the superconducting coil. The converter consists of a MOS transistor bridge switching at a 80 kHz frequency and controlled with standard Pulse Width Modulation (PWM) techniques. The system was tested using a 30 V squared wave power supply as bridge input voltage. The coil current, the bridge input and output voltages were recorded simultaneously. Using a 10 A setpoint current in the superconducting coil, the whole system (coil + DC-DC converter) can provide a stable output voltage showing uninterruptible power supply (UPS) capabilities over 1 s

  13. Cooling compact stars and phase transitions in dense QCD

    Energy Technology Data Exchange (ETDEWEB)

    Sedrakian, Armen [J.W. Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany)

    2016-03-15

    We report new simulations of cooling of compact stars containing quark cores and updated fits to the Cas A fast cooling data. Our model is built on the assumption that the transient behaviour of the star in Cas A is due to a phase transition within the dense QCD matter in the core of the star. Specifically, the fast cooling is attributed to an enhancement in the neutrino emission triggered by a transition from a fully gapped, two-flavor, red-green color-superconducting quark condensate to a superconducting crystalline or an alternative gapless, color-superconducting phase. The blue-colored condensate is modeled as a Bardeen-Cooper-Schrieffer (BCS)-type color superconductor with spin-one pairing order parameter. We study the sensitivity of the fits to the phase transition temperature, the pairing gap of blue quarks and the timescale characterizing the phase transition (the latter modelled in terms of a width parameter). Relative variations in these parameter around their best-fit values larger than 10{sup -3} spoil the fit to the data. We confirm the previous finding that the cooling curves show significant variations as a function of compact star mass, which allows one to account for dispersion in the data on the surface temperatures of thermally emitting neutron stars. (orig.)

  14. Hydrostatic-pressure induced phase transition of phonons in single-walled nanotubes

    International Nuclear Information System (INIS)

    Feng Peng; Meng Qingchao

    2009-01-01

    We study the effect of the hydrostatic pressure on the phonons in single-walled carbon nanotubes (SWNTs) in a magnetic field. We calculate the magnetic moments of the phonons using a functional integral technique, and find that the phonons in SWNTs undergo a pressure-induced phase transition from the paramagnetic phase to the diamagnetic phase under hydrostatic pressure 2 GPa. We explain the mechanism of generating this phase transition.

  15. Gravitational waves generated from the cosmological QCD phase transition within AdS/QCD

    Directory of Open Access Journals (Sweden)

    M. Ahmadvand

    2017-09-01

    Full Text Available We study the gravitational waves produced by the collision of the bubbles as a probe for the cosmological first order QCD phase transition, considering heavy static quarks. Using AdS/QCD and the correspondence between a first order Hawking–Page phase transition and confinement–deconfinement phase transition, we find the spectrum and the strain amplitude of the gravitational wave within the hard and soft wall models. We postulate the duration of the phase transition corresponds to the evaporation time of the black hole in the five dimensional dual gravity space, and thereby obtain a bound on the string length in the space and correspondingly on the duration of the QCD phase transition. We also show that IPTA and SKA detectors will be able to detect these gravitational waves, which can be an evidence for the first order deconfinement transition.

  16. Spin-Hall effect and emergent antiferromagnetic phase transition in n-Si

    Science.gov (United States)

    Lou, Paul C.; Kumar, Sandeep

    2018-04-01

    Spin current experiences minimal dephasing and scattering in Si due to small spin-orbit coupling and spin-lattice interactions is the primary source of spin relaxation. We hypothesize that if the specimen dimension is of the same order as the spin diffusion length then spin polarization will lead to non-equilibrium spin accumulation and emergent phase transition. In n-Si, spin diffusion length has been reported up to 6 μm. The spin accumulation in Si will modify the thermal transport behavior of Si, which can be detected with thermal characterization. In this study, we report observation of spin-Hall effect and emergent antiferromagnetic phase transition behavior using magneto-electro-thermal transport characterization. The freestanding Pd (1 nm)/Ni80Fe20 (75 nm)/MgO (1 nm)/n-Si (2 μm) thin film specimen exhibits a magnetic field dependent thermal transport and spin-Hall magnetoresistance behavior attributed to Rashba effect. An emergent phase transition is discovered using self-heating 3ω method, which shows a diverging behavior at 270 K as a function of temperature similar to a second order phase transition. We propose that spin-Hall effect leads to the spin accumulation and resulting emergent antiferromagnetic phase transition. We propose that the length scale for Rashba effect can be equal to the spin diffusion length and two-dimensional electron gas is not essential for it. The emergent antiferromagnetic phase transition is attributed to the site inversion asymmetry in diamond cubic Si lattice.

  17. Status report on the 12T split coil test facility SULTAN

    International Nuclear Information System (INIS)

    Blau, B.; Aebli, E.; Jakob, B.; Pasztor, G.; Vecsey, G.; della Corte, A.; Pasotti, G.; Sacchetti, N.; Spadoni, M.

    1992-01-01

    The third phase of upgrading of the superconductor test facility SULTAN into a split coil system (SULTAN III) is in progress. SULTAN III a join project of ENEA (Italy) and PSI (Switzerland) consists of two coil packages, each containing three concentrically mounted superconducting solenoids. Together they will produce a field of nearly 12T between the two coil packages, inside a solenoid bore of 58 cm. The outermost 6T coils have NbTi conductors, whereas the inner 9T and 12T coils are made of A-15 cables. All Nb 3 Sn coils are manufactured by the react-and-wind technique. The split coil arrangement, in connection with a sophisticated sample insert containing a 50 kA superconducting transformer, will allow testing of short samples of high current carrying superconductors, e.g. for fusion applications. The sample insert was designed to allow changing the samples within a few hours without warming up the whole magnet system. This paper deals with the present status and potential of the Split Coil Test Facility SULTAN III

  18. Berni Alder and Phase Transitions in Two Dimensions

    Science.gov (United States)

    Kosterlitz, J. Michael

    I do not know Berni Alder as a person, but I feel that I know him well through his seminal paper "Phase Transition in Elastic Disks𠇍 by B. J. Alder and T. E. Wainwright [1962], which was essential in motivating David Thouless and myself to think about phase transitions in two dimensional systems with a continuous symmetry. In the early 1970's, the conventional wisdom was that a crystalline solid could not exist in a two dimensional world because of the rigorous Mermin-Wagner theorem prohibiting true long range translational order at any non-zero temperature. This contradiction was settled by the theory of dislocation mediated melting to an intermediate hexatic phase followed by a second transition to the isotropic fluid at a higher temperature. This scenario, with its associated sophisticated theory, seemed to settle the controversy of two dimensional melting once and for all. However, in our elation at understanding the fundamental physics and the essential excitations of melting in 2D, we had all forgotten that the early work of Berni Alder also showed that this melting involved a weak first order transition while theory now predicted melting by two successive continuous transitions with no discontinuity in area at the critical pressure. This discrepancy could be hand waved away by arguing that Berni's system was far too small and his computers far too slow so that the areal discontinuity could be due to finite size effects or to failing to equilibrate the system. Experiments were not able to resolve the order of the transitions, but seemed to agree quantitatively with theory…

  19. Quantum phase transitions of a disordered antiferromagnetic topological insulator

    Science.gov (United States)

    Baireuther, P.; Edge, J. M.; Fulga, I. C.; Beenakker, C. W. J.; Tworzydło, J.

    2014-01-01

    We study the effect of electrostatic disorder on the conductivity of a three-dimensional antiferromagnetic insulator (a stack of quantum anomalous Hall layers with staggered magnetization). The phase diagram contains regions where the increase of disorder first causes the appearance of surface conduction (via a topological phase transition), followed by the appearance of bulk conduction (via a metal-insulator transition). The conducting surface states are stabilized by an effective time-reversal symmetry that is broken locally by the disorder but restored on long length scales. A simple self-consistent Born approximation reliably locates the boundaries of this so-called "statistical" topological phase.

  20. Partial inertia induces additional phase transition in the majority vote model.

    Science.gov (United States)

    Harunari, Pedro E; de Oliveira, M M; Fiore, C E

    2017-10-01

    Explosive (i.e., discontinuous) transitions have aroused great interest by manifesting in distinct systems, such as synchronization in coupled oscillators, percolation regime, absorbing phase transitions, and more recently, the majority-vote model with inertia. In the latter, the model rules are slightly modified by the inclusion of a term depending on the local spin (an inertial term). In such a case, Chen et al. [Phys Rev. E 95, 042304 (2017)2470-004510.1103/PhysRevE.95.042304] have found that relevant inertia changes the nature of the phase transition in complex networks, from continuous to discontinuous. Here we give a further step by embedding inertia only in vertices with degree larger than a threshold value 〈k〉k^{*}, 〈k〉 being the mean system degree and k^{*} the fraction restriction. Our results, from mean-field analysis and extensive numerical simulations, reveal that an explosive transition is presented in both homogeneous and heterogeneous structures for small and intermediate k^{*}'s. Otherwise, a large restriction can sustain a discontinuous transition only in the heterogeneous case. This shares some similarities with recent results for the Kuramoto model [Phys. Rev. E 91, 022818 (2015)PLEEE81539-375510.1103/PhysRevE.91.022818]. Surprisingly, intermediate restriction and large inertia are responsible for the emergence of an extra phase, in which the system is partially synchronized and the classification of phase transition depends on the inertia and the lattice topology. In this case, the system exhibits two phase transitions.

  1. Second-order phase transition at high-pressure in GeS crystal

    Energy Technology Data Exchange (ETDEWEB)

    Hashimzade, F.M.; Huseinova, D.A.; Jahangirli, Z.A.; Mehdiyev, B.H., E-mail: bachschi@yahoo.de

    2014-12-01

    In this paper we give a theoretical proof of the existence of a second-order structural phase transition in the GeS at a pressure of 35.4 GPa. We use the plane-wave pseudopotential approach to the density functional theory in the local density approximation. The evidence of the phase transition is the abrupt change in the bulk modulus as the volume of the unit cell of the crystal changes continuously. We show that the phase transition is caused by the softening of the low-frequency fully symmetric interlayer mode with increasing pressure. As a result, phase transition of a displacement type takes place with the change of translational symmetry of the crystal from the simple orthorhombic to the base-centered orthorhombic (P{sub bnm}(D{sub 2h}{sup 16})→C{sub mcm}(D{sub 2h}{sup 17}))

  2. Mixed-order phase transition of the contact process near multiple junctions.

    Science.gov (United States)

    Juhász, Róbert; Iglói, Ferenc

    2017-02-01

    We have studied the phase transition of the contact process near a multiple junction of M semi-infinite chains by Monte Carlo simulations. As opposed to the continuous transitions of the translationally invariant (M=2) and semi-infinite (M=1) system, the local order parameter is found to be discontinuous for M>2. Furthermore, the temporal correlation length diverges algebraically as the critical point is approached, but with different exponents on the two sides of the transition. In the active phase, the estimate is compatible with the bulk value, while in the inactive phase it exceeds the bulk value and increases with M. The unusual local critical behavior is explained by a scaling theory with an irrelevant variable, which becomes dangerous in the inactive phase. Quenched spatial disorder is found to make the transition continuous in agreement with earlier renormalization group results.

  3. Theoretical study of B3-to-B1 phase transition in ZnS

    International Nuclear Information System (INIS)

    Li, Qiang; Zhang, Rui; Lv, Tianquan; Cao, Qilong

    2016-01-01

    The pressure-induced phase transformation from B3 to B1 structures in ZnS using first-principle projector-augmented wave method is studied. To understand the nature and driving force behind the transition, the interesting properties in both phases, including enthalpy, phonon dispersion curves and elastic constants, are systematically investigated. The results show that the calculated transition pressure is within the range of 16.33 GPa to 19.04 GPa, which is in good agreement with the available experimental and theoretical data. The transition process can be viewed as the appearance and disappearance of very slight lattice distortion accompanied by the movement of Zn and S atoms along the [111] crystallographic axis. The physical driving force of the B3–B1 phase transition is confirmed to be a coupling effect between the mechanical instability of B3 phase under pressure and the softening acoustic phonon mode resulting from the pressure-induced lattice deformation. For B1 phase, it is further predicted that a new phase transition takes place at about 59.9 GPa. - Highlights: • The phase transformation from B3 to B1 structures in ZnS is studied using first-principle method. • The predicted transition pressure is within the range of 16.33 to 19.04 GPa. • The transition process can be viewed as the appearance and disappearance of very slight lattice distortion. • Physical driving force of the transition is a coupling effect between the mechanical instability and softening phonon. • For B1 phase, it is further predicted that a new phase transition takes place at about 59.9 GPa.

  4. The role of solid-solid phase transitions in mantle convection

    Science.gov (United States)

    Faccenda, Manuele; Dal Zilio, Luca

    2017-01-01

    With changing pressure and temperature conditions, downwelling and upwelling crustal and mantle rocks experience several solid-solid phase transitions that affect the mineral physical properties owing to structural changes in the crystal lattice and to the absorption or release of latent heat. Variations in density, together with phase boundary deflections related to the non-null reaction slope, generate important buoyancy forces that add to those induced by thermal perturbations. These buoyancy forces are proportional to the density contrast between reactant and product phases, their volume fraction, the slope and the sharpness of the reaction, and affect the style of mantle convection depending on the system composition. In a homogeneous pyrolitic mantle there is little tendency for layered convection, with slabs that may stagnate in the transition zone because of the positive buoyancy caused by post-spinel and post-ilmenite reactions, and hot plumes that are accelerated by phase transformations in the 600-800 km depth range. By adding chemical and mineralogical heterogeneities as on Earth, phase transitions introduce bulk rock and volatiles filtering effects that generate a compositional gradient throughout the entire mantle, with levels that are enriched or depleted in one or more of these components. Phase transitions often lead to mechanical softening or hardening that can be related to a different intrinsic mechanical behaviour and volatile solubility of the product phases, the heating or cooling associated with latent heat, and the transient grain size reduction in downwelling cold material. Strong variations in viscosity would enhance layered mantle convection, causing slab stagnation and plume ponding. At low temperatures and relatively dry conditions, reactions are delayed due to the sluggish kinetics, so that non-equilibrium phase aggregates can persist metastably beyond the equilibrium phase boundary. Survival of low-density metastable olivine

  5. Measurement of the ductile to brittle transition temperature for waste tank cooling coils

    International Nuclear Information System (INIS)

    Wiersma, B.J.

    1992-09-01

    Charpy impact tests were conducted on ASTM A106 carbon steel archived from SRS waste tanks to determine the susceptibility of the cooling coils to brittle fracture during a seismic event. The highest ductile to brittle transition temperature measured was -5 degree F and, with the addition of a 30 degree F safety factor, the minimum safe operating temperature was determined to be 25 degree F. Calculations also showed that a pre-existing circumferential flaw that is 2.2in. long would be necessary to initiate brittle fracture of the pipe. These results demonstrate that the pipes will not be susceptible to brittle fracture if the cooling water inlet temperature is lowered to 50 degree F. Visual observation of the inner and outer walls of the pipe showed no localized attack or significant wall thinning. A 100--200 micron zinc coating is probably the reason for the lack of corrosion. A build-up of zinc slag occurred at pipe fittings where the weld had burned through. Although no attack was observed, the slag created several crevices which have the potential to trap the chromated water and initiate localized attack

  6. Phase Transitions, Geometrothermodynamics, and Critical Exponents of Black Holes with Conformal Anomaly

    Directory of Open Access Journals (Sweden)

    Jie-Xiong Mo

    2014-01-01

    Full Text Available We investigate the phase transitions of black holes with conformal anomaly in canonical ensemble. Some interesting and novel phase transition phenomena have been discovered. It is shown that there are striking differences in both Hawking temperature and phase structure between black holes with conformal anomaly and those without it. Moreover, we probe in detail the dependence of phase transitions on the choice of parameters. The results show that black holes with conformal anomaly have much richer phase structure than those without it. There would be two, only one, or no phase transition points depending on the parameters. The corresponding parameter regions are derived both numerically and graphically. Geometrothermodynamics are built up to examine the phase structure we have discovered. It is shown that Legendre invariant thermodynamic scalar curvature diverges exactly where the specific heat diverges. Furthermore, critical behaviors are investigated by calculating the relevant critical exponents. And we prove that these critical exponents satisfy the thermodynamic scaling laws.

  7. Zpif's law in the liquid gas phase transition of nuclei

    International Nuclear Information System (INIS)

    Ma, Y.G.

    1999-01-01

    Zpif's law in the field of linguistics is tested in the nuclear disassembly within the framework of isospin dependent lattice gas model. It is found that the average cluster charge (or mass) of rank n in the charge (or mass) list shows exactly inversely to its rank, i.e., there exists Zpif's law, at the phase transition temperature. This novel criterion shall be helpful to search the nuclear liquid gas phase transition experimentally and theoretically. In addition, the finite size scaling of the effective phase transition temperature at which the Zpif's law appears is studied for several systems with different mass and the critical exponents of ν and β are tentatively extracted. (orig.)

  8. The transition to chaotic phase synchronization

    DEFF Research Database (Denmark)

    Mosekilde, E.; Laugesen, J. L.; Zhusubaliyev, Zh. T.

    2012-01-01

    The transition to chaotic phase synchronization for a periodically driven spiral-type chaotic oscillator is known to involve a dense set of saddle-node bifurcations. By following the synchronization transition through the cascade of period-doubling bifurcations in a forced Ro¨ssler system...... to the torus doubling bifurcations that take place outside this domain. By examining a physiology-based model of the blood flow regulation to the individual functional unit (nephron) of the kidney we demonstrate how a similar bifurcation structure may arise in this system as a response to a periodically...

  9. Triple Halo Coil: Development and Comparison with Other TMS Coils

    Science.gov (United States)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  10. Results of 3-dimensional structural FE-modeling of the coil end-regions of the LHC main dipoles

    CERN Document Server

    Hoeck, U; Schillo, M; Perini, D; Siegel, N

    2000-01-01

    The transition region between the straight part and the ends of the coils of the LHC model and prototype dipole magnets are often identified as the origin of training quenches. In order to study how the discontinuities in the material properties of these regions affect coil pre-stress and possibly gain more insight in the quench behavior, a program was set up at CERN to analyze by 3D-FEM these particular regions. The ACCEL team, who performed a similar analysis for the main quadrupoles of the Superconducting Supercollider SSC, is entrusted with this program. In this paper we report on the results of 3D-modeling and analysis of the coil return end region, including the complete coil mass, of a 1-m single bore model magnet. This magnet represents all relevant features of the "two-in-one" LHC main dipole design concerning the winding configuration, the collar pack, the yoke, and the outer shell representing the He-vessel. The transition region between coil ends and straight section is modeled by slicing the magn...

  11. Dynamical Detection of Topological Phase Transitions in Short-Lived Atomic Systems

    OpenAIRE

    Setiawan, F.; Sengupta, K.; Spielman, I. B.; Sau, Jay D.

    2015-01-01

    We demonstrate that dynamical probes provide direct means of detecting the topological phase transition (TPT) between conventional and topological phases, which would otherwise be difficult to access because of loss or heating processes. We propose to avoid such heating by rapidly quenching in and out of the short-lived topological phase across the transition that supports gapless excitations. Following the quench, the distribution of excitations in the final conventional phase carries signat...

  12. Identifying quantum phase transitions with adversarial neural networks

    Science.gov (United States)

    Huembeli, Patrick; Dauphin, Alexandre; Wittek, Peter

    2018-04-01

    The identification of phases of matter is a challenging task, especially in quantum mechanics, where the complexity of the ground state appears to grow exponentially with the size of the system. Traditionally, physicists have to identify the relevant order parameters for the classification of the different phases. We here follow a radically different approach: we address this problem with a state-of-the-art deep learning technique, adversarial domain adaptation. We derive the phase diagram of the whole parameter space starting from a fixed and known subspace using unsupervised learning. This method has the advantage that the input of the algorithm can be directly the ground state without any ad hoc feature engineering. Furthermore, the dimension of the parameter space is unrestricted. More specifically, the input data set contains both labeled and unlabeled data instances. The first kind is a system that admits an accurate analytical or numerical solution, and one can recover its phase diagram. The second type is the physical system with an unknown phase diagram. Adversarial domain adaptation uses both types of data to create invariant feature extracting layers in a deep learning architecture. Once these layers are trained, we can attach an unsupervised learner to the network to find phase transitions. We show the success of this technique by applying it on several paradigmatic models: the Ising model with different temperatures, the Bose-Hubbard model, and the Su-Schrieffer-Heeger model with disorder. The method finds unknown transitions successfully and predicts transition points in close agreement with standard methods. This study opens the door to the classification of physical systems where the phase boundaries are complex such as the many-body localization problem or the Bose glass phase.

  13. High-pressure phase transitions of deep earth materials

    International Nuclear Information System (INIS)

    Hirose, Kei

    2009-01-01

    Recent developments in synchrotron XRD measurements combined with laser-heated diamond-anvil cell (LHDAC) techniques have enabled us to search for a novel phase transition at extremely high pressure and temperature. A phase transition from MgSiO 3 perovskite to post-perovskite was discovered through a drastic change in XRD patterns above 120 GPa and 2500 K, corresponding to the condition in the lowermost mantle (Murakami et al., 2004; Oganov and Ono, 2004). A pressure-induced phase transformation from ABO 3 -type perovskite to any denser structures was not known at that time. This new MgSiO 3 polymorph called post-perovskite has an orthorhombic symmetry (space group: Cmcm) with a sheet-stacking structure. The Mg site in post-perovskite is smaller than that in perovskite, which results in a volume reduction by 1.0-1.5% from perovskite structure. The electrical conductivity of post-perovskite is higher by three orders of magnitude than that of perovskite at similar pressure range (Ohta et al., 2008). This is likely due to a shorter Fe-Fe distance in post-perovskite structure, while conduction mechanism is yet to be further examined. Phase transition boundary between perovskite and post-perovskite has been determined in a wide temperature range up to 4400 K at 170 GPa (Tateno et al., 2008). Phase relations of Fe alloys have been also studied at core pressures (>135 GPa), although the generation of high temperature is more difficult at higher pressures. A new high-pressure B2 phase of B2 phase of FeS was recently discovered above 180 GPa (Sata et al., 2008). The Fe-Ni alloys have a wide pressure-temperature stability field of fcc phase at the core pressure range, depending on the Ni content (Kuwayama et al., 2008). (author)

  14. Critical Assessment of Current Force Fields. Short Peptide Test Case

    Czech Academy of Sciences Publication Activity Database

    Vymětal, Jiří; Vondrášek, Jiří

    2013-01-01

    Roč. 9, č. 1 (2013), s. 441-451 ISSN 1549-9618 R&D Projects: GA MŠk(CZ) LH11020 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : Helix-coil transition * protein-folding simulations * amino-acids * side-chain * alanine dipeptide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013

  15. Helix probe areas for the utilization of geothermal power. A practical example; Helix-Sondenfelder zur Nutzung von Erdwaerme. Ein Praxisbeispiel

    Energy Technology Data Exchange (ETDEWEB)

    Kuebert, Markus; Walker-Hertkorn, Simone [tewag Technologie - Erdwaermeanlagen - Umweltschutz GmbH, Starzach (Germany); Tietz, Jan [REHAU AG und Co., Erlangen-Eltersdorf (Germany); Riepold, Markus; Gloeckl, Andreas [MR Tiefbau GmbH, Brunnen (Germany)

    2013-02-01

    Thanks to their spiral shape so-called helix probes with a tube length of 40 meter have a height of only three meter: A lot of heat exchange area in a small space. Thus, helix probes are an ideal solution for the utilization of geothermal energy at places at which one cannot drill deeply due to geothermal reasons. Under this aspect, the contribution under consideration reports on the planning of a helix probe area being sustainably adapted to the user requirements for the new construction of a production facility.

  16. Quasi-phases and pseudo-transitions in one-dimensional models with nearest neighbor interactions

    Science.gov (United States)

    de Souza, S. M.; Rojas, Onofre

    2018-01-01

    There are some particular one-dimensional models, such as the Ising-Heisenberg spin models with a variety of chain structures, which exhibit unexpected behaviors quite similar to the first and second order phase transition, which could be confused naively with an authentic phase transition. Through the analysis of the first derivative of free energy, such as entropy, magnetization, and internal energy, a "sudden" jump that closely resembles a first-order phase transition at finite temperature occurs. However, by analyzing the second derivative of free energy, such as specific heat and magnetic susceptibility at finite temperature, it behaves quite similarly to a second-order phase transition exhibiting an astonishingly sharp and fine peak. The correlation length also confirms the evidence of this pseudo-transition temperature, where a sharp peak occurs at the pseudo-critical temperature. We also present the necessary conditions for the emergence of these quasi-phases and pseudo-transitions.

  17. Evolution from successive phase transitions to "morphotropic phase boundary" in BaTiO3-based ferroelectrics

    Science.gov (United States)

    Zhou, Chao; Ke, Xiaoqin; Yao, Yonggang; Yang, Sen; Ji, Yuanchao; Liu, Wenfeng; Yang, Yaodong; Zhang, Lixue; Hao, Yanshuang; Ren, Shuai; Zhang, Le; Ren, Xiaobing

    2018-04-01

    Obtaining superior physical properties for ferroic materials by manipulating the phase transitions is a key concern in solid state physics. Here, we investigated the dielectric permittivity, piezoelectric coefficient d33, storage modulus, and crystal symmetry of (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba1-yCay)TiO3 (BZT-xBCyT) systems to demonstrate the gradual evolution process from successive phase transitions in BaTiO3 to the morphotropic phase boundary (MPB) regime in BZT-xBC0.3T. Furthermore, we analysed with a Landau-type theoretical model to show that the high field-sensitive response (dielectric permittivity) originates from a small polarization anisotropy and low energy barrier at the quadruple point. Together, the intermediate orthorhombic phase regime and the tetragonal-orthorhombic and orthorhombic-rhombohedral phase boundaries constitute the MPB. Our work not only reconciles the arguments regarding whether the structural state around the MPB corresponds to a single-phase regime or a multiple-phase-coexistence regime but also suggests an effective method to design high-performance functional ferroic materials by tailoring the successive phase transitions.

  18. Molecular dynamics simulations of nucleation and phase transitions in molecular clusters of hexafluorides

    International Nuclear Information System (INIS)

    Xu, S.

    1993-01-01

    Molecular dynamics simulations of nucleation and phase transitions in TeF 6 and SeF 6 clusters containing 100-350 molecules were carried out. Simulations successfully reproduced the crystalline structures observed in electron diffraction studies of large clusters (containing about 10 4 molecules) of the same materials. When the clusters were cooled, they spontaneously underwent the same bcc the monoclinic phase transition in simulations as in experiment, despite the million-fold difference in the time scales involved. Other transitions observed included melting and freezing. Several new techniques based on molecular translation and orientation were introduced to identify different condensed phases, to study nucleation and phase transitions, and to define characteristic temperatures of transitions. The solid-state transition temperatures decreased with cluster size in the same way as did the melting temperature, in that the depression of transition temperature was inversely proportional to the cluster radius. Rotational melting temperatures, as inferred from the rotational diffusion of molecules, coincided with those of the solid-state transition. Nucleation in liquid-solid and bcc-monoclinic transitions started in the interior of clusters on cooling, and at the surface on heating. Transition temperatures on cooling were always lower than those on heating due to the barriers to nucleation. Linear growth rates of nuclei in freezing were an order of magnitude lower than those in the bcc-monoclinic transition. Revealing evidence about the molecular behavior associated with phase changes was found. Simulations showed the formation of the actual transition complexes along the transition pathway, i.e., the critical nuclei of the new phase. These nuclei, consisting of a few dozen molecules, were distinguishable in the midst of the surrounding matter

  19. Structural phase transition and electronic properties in samarium chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, Y. S., E-mail: yspanwar2011@gmail.com [Department of Physics, Govt. New Science College Dewas-455001 (India); Aynyas, Mahendra [Department of Physics, C.S.A. Govt. P.G. College, Sehore, 466001 (India); Pataiya, J.; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal, 462026 (India)

    2016-05-06

    The electronic structure and high pressure properties of samarium monochalcogenides SmS, SmSe and SmTe have been reported by using tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). The total energy as a function of volume is evaluated. It is found that these monochalcogenides are stable in NaCl-type structure under ambient pressure. We predict a structural phase transition from NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-type) structure for these compounds. Phase transition pressures were found to be 1.7, 4.4 and 6.6 GPa, for SmS, SmSe and SmTe respectively. Apart from this, the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed that these compounds exhibit metallic character. The calculated values of equilibrium lattice parameter and phase transition pressure are in general good agreement with available data.

  20. Ignition experiment in a single-turn-coil tokamak

    International Nuclear Information System (INIS)

    Carrera, R.; Driga, M.; Gully, J.H.

    1989-01-01

    A novel concept for a fusion ignition experiment, IGNITEX proposed along the lines of previous ideas for a compact thermonuclear device is analyzed. A single-turn-coil tokamak is analyzed. A single-turn-coil tokamak supplied by homopolar generators can ohmically heat a DT plasma to ignition conditions and maintain a thermally stable ignited phase for about ten energy confinement times. The IGNITEX experiment can provide a simple and relatively inexpensive way to produce and control ignited plasmas for scientific study

  1. Tuberothalamic Artery Infarction Following Coil Embolization of a Ruptured Posterior Communicating Artery Aneurysm Belonging to a Transitional Type Posterior Cerebral Artery: A Case Report

    OpenAIRE

    Lee, Kyeong Duk; Kwon, Soon Chan; Muniandy, Sarawana; Park, Eun Suk; Sim, Hong Bo; Lyo, In Uk

    2013-01-01

    There are many potential anatomical variations in the connection between the internal carotid artery and the posterior circulation through the posterior communicating artery (PCoA). We describe the endovascular treatment of an aneurysm arising near the origin of the PCoA belonging to a transitional type posterior cerebral artery. Coil embolization subsequently resulted in thrombo-occlusion of the adjacent PCoA causing thalamic infarction even though sufficient retrograde flow had been confirm...

  2. Bose-Einstein condensation and chiral phase transition in linear sigma model

    International Nuclear Information System (INIS)

    Shu Song; Li Jiarong

    2005-01-01

    With the linear sigma model, we have studied Bose-Einstein condensation and the chiral phase transition in the chiral limit for an interacting pion system. A μ-T phase diagram including these two phenomena is presented. It is found that the phase plane has been divided into three areas: the Bose-Einstein condensation area, the chiral symmetry broken phase area and the chiral symmetry restored phase area. Bose-Einstein condensation can occur either from the chiral symmetry broken phase or from the restored phase. We show that the onset of the chiral phase transition is restricted in the area where there is no Bose-Einstein condensation

  3. Biomaterials Made from Coiled-Coil Peptides.

    Science.gov (United States)

    Conticello, Vincent; Hughes, Spencer; Modlin, Charles

    The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.

  4. Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems

    International Nuclear Information System (INIS)

    Mottola, E.; Bhattacharya, T.; Cooper, F.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys

  5. Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems

    Energy Technology Data Exchange (ETDEWEB)

    Mottola, E.; Bhattacharya, T.; Cooper, F. [and others

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys.

  6. New phase transitions in lead zirconate-titanate

    International Nuclear Information System (INIS)

    Ishchuk, V.M.; Morozov, E.M.; Klimov, V.V.

    1977-01-01

    Processes of disordering are considered in the paraelectric phase of lead zirconate-titanate. Te investigations were carried out on poly- and single-crystal specimens of the composition PbZrsub(1-x)Tisub(x)O 3 (0< x(<=)0.5). The results are presented of measurements of the temperature dependence of the dielectric constant and the dependence of the polarization on the temperature and the electric field. Anomaly is observed of the investigated characteristics above the Curie point due to a first-type phase transition. The results are interpreted within the framework of the model proposed by Coms, Lambert, and Guiniot, according to which this transition is due to the disordering of chains of unit cells existing above the Curie point

  7. Commensurate-incommensurate phase transition in the deformed crystal

    International Nuclear Information System (INIS)

    Parlinski, K.; Watanabe, Y.; Ohno, K.; Kawazoe, Y.

    1995-01-01

    Using simple orthorhombic microscopic model the commensurate-incommensurate phase transition has been studied. Coupling of the order parameter with spontaneous strain may lead to process which uses the ferroelastic domain walls to introduce the discommensurations to the incommensurate phase. (author). 4 refs, 1 fig

  8. Computation at the edge of chaos: Phase transition and emergent computation

    International Nuclear Information System (INIS)

    Langton, C.

    1990-01-01

    In order for computation to emerge spontaneously and become an important factor in the dynamics of a system, the material substrate must support the primitive functions required for computation: the transmission, storage, and modification of information. Under what conditions might we expect physical systems to support such computational primitives? This paper presents research on Cellular Automata which suggests that the optimal conditions for the support of information transmission, storage, and modification, are achieved in the vicinity of a phase transition. We observe surprising similarities between the behaviors of computations and systems near phase-transitions, finding analogs of computational complexity classes and the Halting problem within the phenomenology of phase-transitions. We conclude that there is a fundamental connection between computation and phase-transitions, and discuss some of the implications for our understanding of nature if such a connection is borne out. 31 refs., 16 figs

  9. Research for the energy turnaround. Phase transitions actively shape. Contributions

    International Nuclear Information System (INIS)

    Szczepanski, Petra; Wunschick, Franziska; Martin, Niklas

    2015-01-01

    The Annual Conference 2014 of the Renewable Energy Research Association was held in Berlin on 6 and 7 November 2014. This book documents the contributions of the conference on research for the energy turnaround, phase transitions actively shape. After an introduction and two contributions to the political framework, the contributions to the economic phases of the energy transition, the phase of the current turn, the phases of social energy revolution, the stages of heat turnaround (Waermewende), and the stages of the mobility turn deal with the stages of development of the energy system. Finally, the Research Association Renewable Energy is briefly presented. [de

  10. A novel approach to quench detection for high temperature superconducting coils

    International Nuclear Information System (INIS)

    Song, W.J.; Fang, X.Y.; Fang, J.; Wei, B.; Hou, J.Z.; Liu, L.F.; Lu, K.K.; Li, Shuo

    2015-01-01

    Highlights: • We proposed a novel quench detection method mainly based on phase for HTS coil. • We showed theory model and numerical simulation system by LabVIEW. • Experiment results are showed and analyzed. • Little quench voltage will cause obvious change on phase. • The approach can accurately detect quench resistance voltage in real-time. - Abstract: A novel approach to quench detection for high temperature superconducting (HTS) coils is proposed, which is mainly based on phase angle between voltage and current of two coils to detect the quench resistance voltage. The approach is analyzed theoretically, verified experimentally and analytically by MATLAB Simulink and LabVIEW. An analog quench circuit is built on Simulink and a quench alarm system program is written in LabVIEW. Experiment of quench detection is further conducted. The sinusoidal AC currents ranging from 19.9 A to 96 A are transported to the HTS coils, whose critical current is 90 A at 77 K. The results of analog simulation and experiment are analyzed and they show good consistency. It is shown that with the increase of current, the phase undergoes apparent growth, and it is up to 60° and 15° when the current reaches critical value experimentally and analytically, respectively. It is concluded that the approach proposed in this paper can meet the need of precision and quench resistance voltage can be detected in time.

  11. A novel approach to quench detection for high temperature superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Song, W.J., E-mail: songwenjuan@bjtu.edu.cn [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); China Electric Power Research Institute, Beijing (China); Fang, X.Y. [Department of Electrical and Computer Engineering, University of Victoria, PO Box 1700, STN CSC, Victoria, BC V8W 2Y2 (Canada); Fang, J., E-mail: fangseer@sina.com [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Wei, B.; Hou, J.Z. [China Electric Power Research Institute, Beijing (China); Liu, L.F. [Guangzhou Metro Design & Research Institute Co., Ltd, Guangdong (China); Lu, K.K. [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Li, Shuo [College of Information Science and Engineering, Northeastern University, Shenyang (China)

    2015-11-15

    Highlights: • We proposed a novel quench detection method mainly based on phase for HTS coil. • We showed theory model and numerical simulation system by LabVIEW. • Experiment results are showed and analyzed. • Little quench voltage will cause obvious change on phase. • The approach can accurately detect quench resistance voltage in real-time. - Abstract: A novel approach to quench detection for high temperature superconducting (HTS) coils is proposed, which is mainly based on phase angle between voltage and current of two coils to detect the quench resistance voltage. The approach is analyzed theoretically, verified experimentally and analytically by MATLAB Simulink and LabVIEW. An analog quench circuit is built on Simulink and a quench alarm system program is written in LabVIEW. Experiment of quench detection is further conducted. The sinusoidal AC currents ranging from 19.9 A to 96 A are transported to the HTS coils, whose critical current is 90 A at 77 K. The results of analog simulation and experiment are analyzed and they show good consistency. It is shown that with the increase of current, the phase undergoes apparent growth, and it is up to 60° and 15° when the current reaches critical value experimentally and analytically, respectively. It is concluded that the approach proposed in this paper can meet the need of precision and quench resistance voltage can be detected in time.

  12. No large scale curvature perturbations during the waterfall phase transition of hybrid inflation

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Firouzjahi, Hassan

    2011-01-01

    In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of the standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depends crucially on the competition between the classical and the quantum mechanical backreactions to terminate inflation. If one considers only the classical evolution of the system, we show that the highly blue-tilted entropy perturbations induce highly blue-tilted large scale curvature perturbations during the waterfall phase transition which dominate over the original adiabatic curvature perturbations. However, we show that the quantum backreactions of the waterfall field inhomogeneities produced during the phase transition dominate completely over the classical backreactions. The cumulative quantum backreactions of very small scale tachyonic modes terminate inflation very efficiently and shut off the curvature perturbation evolution during the waterfall phase transition. This indicates that the standard hybrid inflation model is safe under large scale curvature perturbations during the waterfall phase transition.

  13. Enthalpy of phase transition and prediction of phase Equilibria in systems of glycols and glycol ethers

    OpenAIRE

    Esina, Zoya; Miroshnikov, Aleksandr; Korchuganova, Margarita

    2014-01-01

    The PCEAS model was used to study the liquid-solid and liquid-vapor phase transitions at constant pressure in systems containing glycols and glycol ethers. This method is based on minimizing the excess Gibbs energy over the solvation parameter, which takes into account the processes of association of molecules in various phases. To compute the diagrams, the data on enthalpy and phase transition temperatures of pure components are required, while the information about the interactions in the b...

  14. Design of superconducting toroidal magnet coils and testing facility in the USA

    International Nuclear Information System (INIS)

    Luton, J.N.; Haubenreich, P.N.; Thompson, P.B.

    1977-01-01

    In the U.S. Large Coil Program, three industrial teams are presently designing test coils to general specifications prepared by the Oak Ridge National Laboratory with guidance from USERDA. Each test coil is approximately half the bore size of reactor coils, being oval or D-shaped, with a bore of 2.5 x 3.5 m. The dimensions and operating requirements of the coils are identical for all test coils. The coils are designed to produce a peak field of at least 8 tesla at the winding of a selected coil operated at its design current. This condition is met when the selected coil is operated in a compact toroidal array of 6 coils, with the other five coils being operated at 0.8 of their design current. The six coils are of three different designs. Both pool boiling and forced flow designs are included. The coils are housed in a single large vacuum chamber for economy and testing convenience. Auxiliary coils provide a pulse field over the test coil winding volume. This auxiliary system is designed to produce a pulse field which rises to a peak of 0.14 T in 1 sec. With the exception of material damage due to neutron irradiation, all reactor requirements and environments will be either duplicated, approximated, or simulated. The test facility is being designed to accept coils producing up to 12 tesla in later phases of the program

  15. Structural studies of polypeptides: Mechanism of immunoglobin catalysis and helix propagation in hybrid sequence, disulfide containing peptides

    Energy Technology Data Exchange (ETDEWEB)

    Storrs, Richard Wood [Univ. of California, Berkeley, CA (United States)

    1992-08-01

    Catalytic immunoglobin fragments were studied Nuclear Magnetic Resonance spectroscopy to identify amino acid residues responsible for the catalytic activity. Small, hybrid sequence peptides were analyzed for helix propagation following covalent initiation and for activity related to the protein from which the helical sequence was derived. Hydrolysis of p-nitrophenyl carbonates and esters by specific immunoglobins is thought to involve charge complementarity. The pK of the transition state analog P-nitrophenyl phosphate bound to the immunoglobin fragment was determined by 31P-NMR to verify the juxtaposition of a positively charged amino acid to the binding/catalytic site. Optical studies of immunoglobin mediated photoreversal of cis, syn cyclobutane thymine dimers implicated tryptophan as the photosensitizing chromophore. Research shows the chemical environment of a single tryptophan residue is altered upon binding of the thymine dimer. This tryptophan residue was localized to within 20 Å of the binding site through the use of a nitroxide paramagnetic species covalently attached to the thymine dimer. A hybrid sequence peptide was synthesized based on the bee venom peptide apamin in which the helical residues of apamin were replaced with those from the recognition helix of the bacteriophage 434 repressor protein. Oxidation of the disufide bonds occured uniformly in the proper 1-11, 3-15 orientation, stabilizing the 434 sequence in an α-helix. The glycine residue stopped helix propagation. Helix propagation in 2,2,2-trifluoroethanol mixtures was investigated in a second hybrid sequence peptide using the apamin-derived disulfide scaffold and the S-peptide sequence. The helix-stop signal previously observed was not observed in the NMR NOESY spectrum. Helical connectivities were seen throughout the S-peptide sequence. The apamin/S-peptide hybrid binded to the S-protein (residues 21-166 of ribonuclease A) and reconstituted enzymatic activity.

  16. Structural studies of polypeptides: Mechanism of immunoglobin catalysis and helix propagation in hybrid sequence, disulfide containing peptides

    Energy Technology Data Exchange (ETDEWEB)

    Storrs, R.W.

    1992-08-01

    Catalytic immunoglobin fragments were studied Nuclear Magnetic Resonance spectroscopy to identify amino acid residues responsible for the catalytic activity. Small, hybrid sequence peptides were analyzed for helix propagation following covalent initiation and for activity related to the protein from which the helical sequence was derived. Hydrolysis of p-nitrophenyl carbonates and esters by specific immunoglobins is thought to involve charge complementarity. The pK of the transition state analog P-nitrophenyl phosphate bound to the immunoglobin fragment was determined by [sup 31]P-NMR to verify the juxtaposition of a positively charged amino acid to the binding/catalytic site. Optical studies of immunoglobin mediated photoreversal of cis, syn cyclobutane thymine dimers implicated tryptophan as the photosensitizing chromophore. Research shows the chemical environment of a single tryptophan residue is altered upon binding of the thymine dimer. This tryptophan residue was localized to within 20 [Angstrom] of the binding site through the use of a nitroxide paramagnetic species covalently attached to the thymine dimer. A hybrid sequence peptide was synthesized based on the bee venom peptide apamin in which the helical residues of apamin were replaced with those from the recognition helix of the bacteriophage 434 repressor protein. Oxidation of the disufide bonds occured uniformly in the proper 1-11, 3-15 orientation, stabilizing the 434 sequence in an [alpha]-helix. The glycine residue stopped helix propagation. Helix propagation in 2,2,2-trifluoroethanol mixtures was investigated in a second hybrid sequence peptide using the apamin-derived disulfide scaffold and the S-peptide sequence. The helix-stop signal previously observed was not observed in the NMR NOESY spectrum. Helical connectivities were seen throughout the S-peptide sequence. The apamin/S-peptide hybrid binded to the S-protein (residues 21-166 of ribonuclease A) and reconstituted enzymatic activity.

  17. Two phase transitions in Nuclear Physics

    International Nuclear Information System (INIS)

    Bes, D.R.

    1985-01-01

    The status of the art of the problem associated with two phase transitions in the nuclear matter, viz.: the disappearance of the nuclear superfluiditiy with the raising of the rotation velocity and the appearance of an octupolar deformation in the actinide zone, is presented. (L.C.) [pt

  18. Stenting plus coiling: dangerous or helpful?; Stenting plus Coiling bei akut rupturierten intrakraniellen Aneurysmen

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, I.; Gizewski, E.; Doerfler, A.; Stolke, D.; Forsting, M. [Essen Univ. (Germany). Inst. fuer Radiologie und Neuroradiologie

    2005-09-01

    Purpose: the purpose of this study was to evaluate the procedural risk of treating acute ruptured aneurysms with a stentcoil combination. Material and methods: between August 2001 and January 2004 we treated nine acute subarachnoid hemorrhage (SAH) patients with a combination of stents and platinum coils. Results: six aneurysms were 100% eliminated; the residual three aneurysms had a 95% to 99% occlusion. A transient thrombosis in the stent in one patient could be recanalized by intravenous application of ReoPro {sup registered}. In another patient an occlusive vasospasm at the distal end of the stent was successfully treated with intraarterial Nimotop {sup registered}. Neurological complications occurred in none of the patients. Conclusion: in broad-based aneurysms which cannot be clipped or in which any neurosurgical treatment presents an unacceptably high risk (posterior circulation and paraophthalmic aneurysms), treatment using a combination of stent and platinum coils might be an option even in the acute phase of an SAH. Platelet aggregation can be treated with Aspirin registered and Plavix {sup registered} after placement of the first coil, vasospasms with intraarterial Nimotop {sup registered}, and acute stent thrombosis with GP IIa/IIIb-antagonists. (orig.)

  19. Neutron-Diffraction Study of the Phase Transition in Stannous Chloride Dihydrate

    DEFF Research Database (Denmark)

    Youngblood, R.; Kjems, Jørgen

    1979-01-01

    of the system does not change. We present neutron-diffraction results which show that the temperature dependence of the hydrogen-site occupancies is also highly symmetric around the phase-transition temperature. These results are discussed in terms of a lattice statistical model which was proposed and solved......The order-disorder phase transition in two-dimensional hydrogen-bonded layers of water molecules in SnCl2·2D2O is remarkable in several respects. It has been shown that the peak in the specific heat is highly symmetric around the phase-transition temperature, and that the crystallographic symmetry...

  20. The QCD phase transitions: From mechanism to observables

    Energy Technology Data Exchange (ETDEWEB)

    Shuryak, E.V.

    1997-09-22

    This paper contains viewgraphs on quantum chromodynamic phase transformations during heavy ion collisions. Some topics briefly described are: finite T transitions of I molecule pairs; finite density transitions of diquarks polymers; and the softtest point of the equation of state as a source of discontinuous behavior as a function of collision energy or centrality.