WorldWideScience

Sample records for helium-neon lasers

  1. Molecular Iodine Fluorescence Using a Green Helium-Neon Laser

    Williamson, J. Charles

    2011-01-01

    Excitation of molecular iodine vapor with a green (543.4 nm) helium-neon laser produces a fluorescence spectrum that is well suited for the upper-level undergraduate physical chemistry laboratory. Application of standard evaluation techniques to the spectrum yields ground electronic-state molecular parameters in good agreement with literature…

  2. Effect of helium-neon laser radiation on conventionally - pathogenous microorganisms

    Shesterina, M.V.; Kalyuk, A.N.; Maliev, B.M.

    1987-01-01

    Results are reported of single and multiple irradiation with low-energy helium-neon lasers (different doses and regimens) on growth and properties of conventionally-pathogenous microflora isolated from patients with pulmonary tuberculosis and cultures of standard microorganisms. The above mentioned laser radiation produced an inhibitory effect on some strains of conventionally-pathogenous microflora manifested in inhibition of the growth properties of cultures as the energy dose increased

  3. Photobiological effects of helium neon laser on hematologic and biochemical factors of rabbit blood

    J Rahmani Kahnamoei

    2008-11-01

    Full Text Available Low-level helium neon laser has many applications due to its photobiostimulatory effects. Although the therapeutic effects of low-level laser radiation of different wavelengths and doses are well known, but the exact mechanism of action of the laser radiation on living cells is not yet determined. The present study is designed to evaluate the photobiological effects of 2 mw helium neon laser with wavelength of 632.8 nm on hematologic and biochemical factors of rabbit blood for this purpose, 30 male New Zealand white rabbits with the body weight of 1/5-2 kg were randomly allocated into two groups of control and laser treatment. Animals of both groups were anesthetized and those of laser treatment group were subjected to irradiation with helium neon laser at a                        wavelength of 632.8 nm and output 2 mw for 30 minutes. Finally blood samples were collected from all animals and the biochemical and hematologic factors evaluated. Significant difference (p

  4. Results of presowing helium-neon-laser irradiation of sunflower seeds

    Tsvetanova, K.

    1989-01-01

    In the period of 1983-1985 under non-irrigation, on calcareous chernozem a trial was carried out with the Start hybrid through single-, double-and triple irradiation of the seeds being stored for 1.8 and 16 days prior to sowing. It is found that the presowing helium-neon-laser irradiation of the sunflower seeds of the Start hybrid exerts a negative effect on the seed yield. Laser use does not stimulate the following: emerged seeds and percentage of the plants being in blossom in the beginning of the phase and after 7 days, seed moisture in harvesting and oil content in them

  5. Experimental study of the effects of helium-neon laser radiation on repair of injured tendon

    Xu, Yong-Qing; Li, Zhu-Yi; Weng, Long-Jiang; An, Mei; Li, Kai-Yun; Chen, Shao-Rong; Wang, Jian-Xin; Lu, Yu

    1993-03-01

    Despite extensive research into the biology of tendon healing, predictably restoring normal function to a digit after a flexor tendon laceration remains one of the most difficult problems facing the hand surgeon. The challenge of simultaneously achieving tendon healing while minimizing the peritendinous scar formation, which limits tendon gliding, has captured the attention of investigators for many years. It has been said that low-power density helium-neon laser radiation had effects on anti-inflammation, detumescence, progressive wound healing, and reducing intestinal adhesions. This experimental study aims at whether helium-neon laser can reduce injured tendon adhesions and improve functional recovery of the injured tendon. Fifty white Leghorn hens were used. Ten were randomly assigned as a normal control group, the other forty were used in the operation. After anesthetizing them with Amytal, a half of the profundus tendons of the second and third foretoes on both sides of the feet were cut. Postoperatively, the hens moved freely in the cages. One side of the toes operated on were randomly chosen as a treatment group, the other side served as an untreated control group. The injured tendon toes in the treatment group were irradiated for twenty minutes daily with a fiber light needle of helium-neon laser therapeutic apparatus (wavelength, 6328 angstroms) at a constant power density of 12.74 mW/cm2, the first exposure taking place 24 hours after the operation. The longest course of treatment was 3 weeks. The control group was not irradiated. At 3 days, 1, 2, 3, and 5 weeks after surgery, 8 hens were sacrificed and their tendons were examined. The experimental results: (1) active, passive flexion and tendon gliding functional recovery were significantly better in the treatment group (p < 0.01); (2) width and thickness of the tendon at the cut site were significantly smaller in the treatment group (p < 0.01); (3) degrees of tendon adhesions were significantly lighter

  6. Helium Neon laser therapy for post mastectomy lymphedema and ...

    Mohamed M. Khalaf

    2012-12-08

    Dec 8, 2012 ... mastectomy lymphedema and shoulder mobility. Mohamed M. Khalaf *. ,1 .... neurological and orthopedic problems, or diabetes. The patients were ... included 15 patients who received placebo laser therapy in addition to ...

  7. Photobiomodulation by helium neon and diode lasers in an excisional wound model: A single blinded trial

    Snehil Dixit

    2012-01-01

    Full Text Available Background: Application of different kinds of lasers in clinical and experimental studies causes photobiomodulation that works at localized cellular and humoral level on various biological systems. Increased numbers of fibroblasts, myofibroblast, and degranulation of mast cells have been the observed benefits post-irradiation. Objective: Was to find out the effect of irradiation with energy densities of 3.38 J/cm 2 , 8 J/cm 2 , and 18 J/cm 2 on animal tissue (albino wistar rats in an excisional wound model and to assess changes in biochemical (hydroxyproline and histopathological levels in excisional wound model. Materials and Methods: The animals were divided into 4 groups, which were labeled as L1, diode laser (18 J/cm 2 , L2 Helium-neon (He-Ne, 8 J/cm 2 , L3 diode laser (3.38 J/cm 2 , and sham treatment for control was depicted by C, respectively. Histological and hydroxyproline analysis was performed on 7, 14, 21 days of post-wounding. One-way analysis of variance, ANOVA and Bonferroni′s multiple comparison tests were done for tissue hydroxyproline levels. Results: There was no significant increase in the hydroxyproline content (P < 0.005 when observed in study group and compared to controls. Whereas significant epithelizations was seen in group treated with He-Ne laser of intensity of 8 J/cm 2 . Conclusion: The experimental observations suggest that low intensity helium-neon laser of 8 J/cm 2 intensity facilitated photo stimulation by tissue repair, but failed to show significant tissue hydroxyproline levels in excisional wound model.

  8. Use of helium-neon laser for the prevention of acute radiation reaction of the skin in neutron-beam therapy of head and neck tumors

    Popovich, V.I.; Musabaeva, L.I.; Kitsmanyuk, Z.D.; Lavrenkov, K.A.

    1991-01-01

    Preliminary data on helium-neon laser usage to prevent acute radiation skinresponse in patients with head and neck neoplasm were presented in case of fast neutrons therapy with average energy of ≅ 6.3 MeV. Irradiation was performed by 2 fractions a week with single absorbed focal dose of 1.2-1.4 Gy and the dose for the skin was 2-2.2 Gy. RBE of the fast neutrons comprised ∼ 3. Some patients were subjected to neutron therapy in combination with helium-neon laser treatment, the others underwent only neutron therapy. Combination of neutron and helium-neon laser therapy increased skin resistance to neutron irradiation. Combined treatment with neutrons and helium-neon laser decreased development of humid epidermitis by half than in case of neutron treatment alone

  9. Effect of helium-neon laser irradiation on hair follicle growth cycle of Swiss albino mice.

    Shukla, S; Sahu, K; Verma, Y; Rao, K D; Dube, A; Gupta, P K

    2010-01-01

    We report the results of a study carried out to investigate the effect of helium-neon (He-Ne) laser (632.8 nm) irradiation on the hair follicle growth cycle of testosterone-treated and untreated mice. Both histology and optical coherence tomography (OCT) were used for the measurement of hair follicle length and the relative percentage of hair follicles in different growth phases. A positive correlation (R = 0.96) was observed for the lengths of hair follicles measured by both methods. Further, the ratios of the lengths of hair follicles in the anagen and catagen phases obtained by both methods were nearly the same. However, the length of the hair follicles measured by both methods differed by a factor of 1.6, with histology showing smaller lengths. He-Ne laser irradiation (at approximately 1 J/cm(2)) of the skin of both the control and the testosterone-treated mice was observed to lead to a significant increase (p alopecia. (c) 2009 S. Karger AG, Basel.

  10. The helium neon laser radiation use in the profilaxy of post surgical complication on the surgical gynecologic neoplasms

    Baranov, I.; Sofroni, M.; Potapova, L.; Sohotchi, V.

    1997-01-01

    The subject of the report consists of complex application of the helium-neon laser irradiation on all surgery stage treatment of the gynecologic patients. For laser therapy of the surgical field pre- and during surgery intervention was used 10 mW laser; for intra blood vessels laser therapy was used 0,5 mW laser. Utilisation of complex laser irradiation of surgery treatment of the neoplasms gynecologic patients permit to decrease the post surgical complication and increase the time of post surgical heal up

  11. Helium-neon laser used to stimulate regeneration of the skeletal muscle damaged by ionizing radiation

    Popova, M.F.; Bulyakova, N.V.; Azarova, V.S.

    1983-01-01

    A comparative study was made of the therapeutic effects of transplantation of the regenerating muscular tissue and helium-neon lazer rays on the skeletal muscle received 20 Gy x radiation. The results of four series of experiments showed that the effect of lazer rays on the irradiated transversely cut musculus gastrocnemius is simular to that of transplantation of the minced muscular tissue to the defect of the muscle. Regeneration of the muscle in both cases is normalized so that the regenerating muscular organ slightly differs from the control regenerate of unirradiated muscle

  12. Using a helium--neon laser to convert infrared radiation to visible emission on lithium niobate crystals

    Aurtyunyan, E.A.; Kostanyan, R.B.; Mkrtchyan, V.S.; Mkrtchyan, M.A.

    1975-01-01

    The conversion of infrared emission to the visible region was investigated by mixing with helium-neon laser emission in lithium niobate crystals. The infrared source was a Globar, and the laser was the LG-75. Emission of the sum frequencies was filtered out. The spectral composition of the converted radiation was analyzed by the ISP-51 spectrograph with an FEU-79 photomultiplier at the output. The amplified photomultiplier signal was recorded by the ChZ-33 frequency meter. By varying the angle between the optical axis of the crystal and the incident emission, infrared radiation in the 1.75 to 3.3 ..mu..m wavelength band could be converted to visible emission. It is suggested that measurement of the wavelength of converted emission might be used to study the distribution of concentration nonhomogeneities in crystals.

  13. Low-level laser therapy with helium-neon laser improved viability of osteoporotic bone marrow-derived mesenchymal stem cells from ovariectomy-induced osteoporotic rats

    Fallahnezhad, Somaye; Piryaei, Abbas; Tabeie, Faraj; Nazarian, Hamid; Darbandi, Hasan; Amini, Abdoldllah; Mostafavinia, Ataroalsadat; Ghorishi, Seyed Kamran; Jalalifirouzkouhi, Ali; Bayat, Mohammad

    2016-09-01

    The purpose of this study was to evaluate the influences of helium-neon (He-Ne) and infrared (IR) lasers on the viability and proliferation rate of healthy and ovariectomy-induced osteoporotic (OVX) bone marrow mesenchymal stem cells (BMMSCs) in vitro. MSCs harvested from the BM of healthy and OVX rats were culture expanded. He-Ne and IR lasers were applied three times at energy densities of 0.6, 1.2, and 2.4 J/cm2 for BMMSCs. BMMSCs viability and proliferation rate were evaluated by MTT assay on days 2, 4, 6, 14, and 21. The results showed that healthy BMMSCs responded optimally to 0.6 J/cm2 using an IR laser after three times of laser radiation. Moreover, it was found that OVX-BMMSCs responded optimally to 0.6 J/cm2 with He-Ne laser and one-time laser radiation. It is concluded that the low-level laser therapy (LLLT) effect depends on the physiological state of the BMMSCs, type of the laser, wavelength, and number of laser sessions. The biostimulation efficiency of LLLT also depends on the delivered energy density. LLLT can enhance the viability and proliferation rate of healthy and especially osteoporotic autologous BMMSCs, which could be very useful in regenerative medicine.

  14. Effect of presowing irradiation of seed from winter rapeseed by helium-neon laser on the growth, yield and quality of the green mass

    Ivanova, R.; Stoyanova, S.

    2000-01-01

    The experiment was carried out with the cultivar Ossiek 4. The seed have been irradiated using helium - neon laser of 623.8 nm wave length and power 20 mwt. The average duration of seed treatment in the irradiation zone was 1-10E-3 s and the mean single irradiation doze -3.10E-7 s. The seed was irradiated 1,2,3,4,5 and 6 times. Untreated seed was used as control (C). The results of biometric analysis showed tendency for development of powerful vegetation organs from irradiated variants. It was established that the plant from irradiation seeds had most leaves and flowers. The highest stimulating effect of the three year experiment was obtained by 2 times treated seed- 103000 kg/ha which exceeded 1.7 times the control. There were no depressing effect by the higher values of irradiation. Yield and crude protein content were the highest in irradiation variants

  15. Low energy helium-neon laser in the prevention of oral mucositis in patients undergoing bone marrow transplant: results of a double blind randomized trial

    Cowen, Didier; Tardieu, Corrine; Schubert, Mark; Peterson, Douglas; Resbeut, Michel; Faucher, Catherine; Franquin, Jean-Claude

    1997-01-01

    Purpose: To evaluate the efficiency of Helium-Neon (He-Ne) laser in the prevention of oral mucositis induced by high dose chemoradiotherapy before autologous bone marrow transplantation (BMT). Methods and Materials: Between 1993 and 1995, 30 consecutive patients receiving an autologous peripheral stem-cell or bone marrow transplant (BMT) after high dose chemoradiotherapy were randomized to possibly receive prophylactic laser to the oral mucosa after giving informed consent. Chemotherapy consisted of cyclophosphamide, 60 mg/kg intravenously (IV) on day (d)-5 and d-4 in 27 cases, or melphalan 140 mg/kg IV on d-4 in three cases. Total body irradiation (TBI) consisted of 12 Gy midplane dose in six fractions (4 Gy/day for three days). He-Ne laser (632.8 nm wavelength, power 60 mW) applications were performed daily from d-5 to d-1 on five anatomic sites of the oral mucosa. Oral examination was performed daily from d0 to d + 20. Mucositis was scored according to an oral exam guide with a 16 item scale of which four were assessed by the patients themselves. Mean daily self assessment scores for oral pain, ability to swallow and oral dryness were measured. A daily mucositis index (DMI) and a cumulative oral mucositis score (COMS) were established. Requirement for narcotics and parenteral nutrition was recorded. Results: The COMS was significantly reduced among laser treated (L+) patients (p = 0.04). The improvement of DMI in L+ patients was also statistically significant (p < 0.05) from d + 2 to d + 7. Occurrence and duration of grade III oral mucositis were reduced in L+ patients (p = 0.01). Laser applications reduced oral pain as assessed by patients (p = 0.05) and L+ patients required less morphine (p = 0.05). Xerostomia and ability to swallow were improved among the L+ patients (p = 0.005 and p = 0.01, respectively). Requirement for parenteral nutrition was not reduced (p = NS). Conclusion: Helium-Neon laser treatment was well tolerated, feasible in all cases, and

  16. Low energy helium-neon laser prevents oral mucositis after high-dose chemo-radiotherapy: results of a double-blind randomized trial

    Cowen, Didier; Tardieu, Corinne; Resbeut, Michel; Hannoun-Levi, Jean-Michel; Alzieu, Claude; Schubert, Marc; Franquin, Jean-Claude

    1996-01-01

    Purpose: To evaluate the efficiency of Helium-Neon (He-Ne) laser in the prevention of oral mucositis (OM) induced by high dose chemoradiotherapy before bone marrow transplantation (BMT). Methods and materials: Between 1993 and 1995, 30 consecutive patients (pts) receiving an autologous peripheral stem-cell or bone marrow transplant (BMT) after high dose chemoradiotherapy were randomized to receive or not prophylactic laser applications to the oral mucosa. Chemotherapy consisted of cyclophosphamide, 60 mg/kg intravenously (IV) on day (d)-5 and d-4 in 27 cases, or melphalan 140 mg/kg IV on d-4 in 3 cases. Total body irradiation consisted of 12 Gy midplane dose in six fractions and 3 days. He-Ne laser (632.8 nm wavelength, power 60 mW) applications were performed daily from d-5 to d-1 on 5 anatomic sites of the oral mucosa. Oral examination was performed daily from d0 to d+20. Mucositis was scored according to an oral exam guide with a 16 items scale of which 4 were assessed by the pts themselves. Mean daily scores of pain, ability to swallow and saliva production were measured. A daily mucositis index (DMI) and a cumulative score of oral mucositis (CSOM) were established. Requirement for narcotics and parenteral nutrition were measured. Validation of the grading scale was carried out using the Cronbach alpha coefficient for the internal validation and the test-retest correlation coefficient for the reproducibility analysis. The U Mann Whitney test was used to test for differences among groups. Patients were assigned to either laser treatment (L+) or sham-treatment (L-) by computer blocked randomization. Results: No pt was excluded for failure to complete the laser application protocol. Laser applications were well tolerated and no side effects were reported. The items were highly interrelated as well as the index considered as a whole: over 21 days, α = 0.97. Reproducibility analysis between the nurses in charge with the oral examination showed a significant

  17. The effect of green helium-neon laser on the healing of extraction wounds: histological study in rats

    Nicolli Filho, Walter Domingos; Picon, Luciana Christofolini; Okamoto, Tetuo; Cardenuto, Ney

    1993-01-01

    A histological study on healing of extraction wounds following laser irradiation, using a green He-Ne laser, was carried out in rats. The results suggest that this kind of treatment has no significant beneficial effect on bony wound healing. Proliferation of fibroblasts and formation of trabecular osteoid were found to be not more pro eminent within the irradiated group. (author)

  18. Effect of single-dose low-level helium-neon laser irradiation on orthodontic pain: a split-mouth single-blind placebo-controlled randomized clinical trial.

    Sobouti, Farhad; Khatami, Maziar; Chiniforush, Nasim; Rakhshan, Vahid; Shariati, Mahsa

    2015-01-01

    Pain is the most common complication of orthodontic treatment. Low-level laser therapy (LLLT) has been suggested as a new analgesic treatment free of the adverse effects of analgesic medications. However, it is not studied thoroughly, and the available studies are quite controversial. Moreover, helium neon (He-Ne) laser has not been assessed before. This split-mouth placebo-controlled randomized clinical trial was performed on 16 male and 14 female orthodontic patients requiring bilateral upper canine retraction. The study was performed at a private clinic in Sari, Iran, in 2014. It was single blind: patients, orthodontist, and personnel were blinded of the allocations, but the laser operator (periodontist) was not blinded. Once canine retractor was activated, a randomly selected maxillary quarter received a single dose of He-Ne laser irradiation (632.8 nm, 10 mw, 6 j/cm(2) density). The other quarter served as the placebo side, treated by the same device but powered off. In the first, second, fourth, and seventh days, blinded patients rated their pain sensed on each side at home using visual analog scale (VAS) questionnaires. There was no harm identified during or after the study. Pain changes were analyzed using two- and one-way repeated-measures ANOVA, Bonferroni, and t-test (α = 0.01, β > 0.99). This trial was not registered. It was self-funded by the authors. Sixteen males and 11 females remained in the study (aged 12-21). Average pain scores sensed in all 4 intervals on control and laser sides were 4.06 ± 2.85 and 2.35 ± 1.77, respectively (t-test P < 0.0001). One-way ANOVA showed significant pain declines over time, in each group (P < 0.0001). Two-way ANOVA showed significant effects for LLLT (P < 0.0001) and time (P = <0.0001). Single-dose He-Ne laser therapy might reduce orthodontic pain caused by retracting maxillary canines.

  19. Photo-stimulatory effect of low energy helium-neon laser irradiation on excisional diabetic wound healing dynamics in wistar rats

    Maiya Arun

    2009-01-01

    Full Text Available Background: Generally, the significances of laser photo stimulation are now accepted, but the laser light facilitates wound healing and tissue repair remains poorly understood. Aims: We have examined the hypothesis that the laser photo stimulation can enhance the collagen production in diabetic wounds using the excision wound model in the Wistar rat model. Methods: The circular wounds were created on the dorsum of the back of the animals. The animals were divided into two groups. The study group (N = 24 wound was treated with 632.8 nm He-Ne laser at a dose of 3-9J/cm 2 for 5 days a week until the wounds healed completely. The control group was sham irradiated. Result: A significant increase in the hydroxyproline content and reduction in the wound size were observed in the study group. The pro-healing actions seem to be due to increased collagen deposition as well as better alignment and maturation. Conclusion: The biochemical analysis and clinical observation suggested that 3-6 J/cm 2 laser photo stimulation facilitates the tissue repair process by accelerating collagen production in diabetic wound healing.

  20. Láser helio-neón combinado con clorhexidina al 0,2 %.: Efectos clínicos y microbiológicos en el tratamiento de la gingivitis crónica Helium-neon laser combined with 0.2% chlorhexidine: Clinical and microbiological effects in the treatment of chronic gingivitis.

    Tatiana Peña Ruiz

    2007-09-01

    Full Text Available La gingivitis crónica constituye una de las formas más frecuentes de enfermedad periodontal, caracterizada por la inflamación crónica de la encías, tumefacción, enrojecimiento y sangramiento. Su principal factor de riesgo lo constituye la microbiota del surco gingival, que resulta necesario, pero no suficiente para desencadenarla. Se realizó un ensayo clínico-terapéutico fase II, controlado, aleatorizado y a simple ciegas, para evaluar los efectos clínicos y microbiológicos del tratamiento combinado de la radiación láser helio-neón (He-Ne con la clorhexidina al 0,2 %. Todos los pacientes recibieron tratamiento inicial; al mes de finalizado este, se distribuyeron aleatoriamente en 2 grupos: un grupo estudio que recibió la combinación láser-neón y clorhexidina al 0,2 % y otro grupo control que solo recibió clorhexidina al 0,2 %. Se realizó una evaluación a los 15, 30 y 45 días, con criterios de eficacia clínicos y microbiológicos. Los resultados clínicos fueron satisfactorios en el grupo estudio con predominio de los morfotipos I, caracterizados por cocos gramnegativos y positivos, compatibles con un periodonto sano. Los eventos adversos detectados con esta terapéutica fueron mínimos, todos relacionados con la somnolencia.Chronic gingivitis is one of the most common periodontal diseases that is characterized by chronic inflammation, tumefaction, redness and bleeding. The main risk factor is gingival sulcus microbiota that is essential but not enough to unleash it. A phase II controlled randomized blind clinical/therapeutical assay was conducted to evaluate the clinical and microbiological effects of the combined treatment based on helium-neon laser (He-Ne with 0.2% chlorhexidine. All the patients were initially treated; after a month, they were randomly distributed into two groups, that is, the study group received a helium-neon laser plus 0.2% chlorhexidine combination and the control group was treated with 0

  1. Os efeitos do laser hélio-neônio de baixa intensidade na cicatrização de lesões cutâneas induzidas em ratos Effects of low-level helium-neon laser on induced wound healing in rats

    Viviane L. Busnardo

    2010-02-01

    Full Text Available OBJETIVO: Avaliar os efeitos do laser de baixa potência hélio e neônio (HeNe na cicatrização de feridas cutâneas de ratos. MÉTODOS: Sessenta ratos Wistar foram divididos em grupos controle e experimento. Utilizou-se ferida incisional, longitudinal, dorso-mediana, suturada com pontos separados simples. No grupo experimento, as feridas foram irradiadas diariamente com aparelho de laser de HeNe com potência contínua máxima de 5mW, comprimento de onda de 632,8 nm, visível com densidade de energia de 4J/cm², área de raio do laser de 0,015cm², durante 36 segundos, em três pontos da lesão. As feridas foram avaliadas no 3º, no 7º e no 14º dia de pós-operatório. Cortes histológicos foram corados com hematoxilina-eosina (H&E e avaliados segundo protocolo de Vizzotto et al. (2003* para identificar o tipo de reação inflamatória e com Picrosirius para identificar os colágenos I e III e o índice de maturidade da cicatriz (IMaC. Utilizou-se imunoistoquímica com anti-CD45-LCA para o reconhecimento das células inflamatórias. RESULTADOS: Ambos os grupos mostraram o mesmo padrão inflamatório. No grupo experimento, observaram-se menos células inflamatórias nos três tempos estudados (pOBJECTIVE: To evaluate the effects of low-level helium-neon (HeNe laser on cutaneous wound healing in rats. METHODS: Sixty Wistar rats were divided into control group and experimental group. A sutured longitudinal, dorsal-medial incision was made, with simple separate stitches. The experimental group was irradiated daily in three areas of the wound with HeNe laser (5mW maximum continuous power, 632.8 nm wavelength, 4 J/cm² energy density and 0.015 cm² laser beam area for 36 seconds. The areas were evaluated on the third, seventh and fourteenth days postoperative. Histological sections were stained with hematoxylin-eosin to determine the type of inflammatory reaction according to the protocol by Vizzotto et al. (2003* and with Picrosirius to identify

  2. Polarizability of Helium, Neon, and Argon: New Perspectives for Gas Metrology

    Gaiser, Christof; Fellmuth, Bernd

    2018-03-01

    With dielectric-constant gas thermometry, the molar polarizability of helium, neon, and argon has been determined with relative standard uncertainties of about 2 parts per million. A series of isotherms measured with the three noble gases and two different experimental setups led to this unprecedented level of uncertainty. These data are crucial for scientists in the field of gas metrology, working on pressure and temperature standards. Furthermore, with the new benchmark values for neon and argon, theoretical calculations, today about 3 orders of magnitude larger in uncertainty, can be checked and improved.

  3. First principles study of inert-gas (helium, neon, and argon) interactions with hydrogen in tungsten

    Kong, Xiang-Shan [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Hou, Jie [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Li, Xiang-Yan [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Wu, Xuebang, E-mail: xbwu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Liu, C.S., E-mail: csliu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Chen, Jun-Ling; Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-04-15

    We have systematically evaluated binding energies of hydrogen with inert-gas (helium, neon, and argon) defects, including interstitial clusters and vacancy-inert-gas complexes, and their stable configurations using first-principles calculations. Our calculations show that these inert-gas defects have large positive binding energies with hydrogen, 0.4–1.1 eV, 0.7–1.0 eV, and 0.6–0.8 eV for helium, neon, and argon, respectively. This indicates that these inert-gas defects can act as traps for hydrogen in tungsten, and impede or interrupt the diffusion of hydrogen in tungsten, which supports the discussion on the influence of inert-gas on hydrogen retention in recent experimental literature. The interaction between these inert-gas defects and hydrogen can be understood by the attractive interaction due to the distortion of the lattice structure induced by inert-gas defects, the intrinsic repulsive interaction between inert-gas atoms and hydrogen, and the hydrogen-hydrogen repelling in tungsten lattice.

  4. Ab initio calculation of the interaction potentials of helium, neon, and methane as well as theoretical studies on their thermophysical properties and those of water vapor

    Hellmann, Robert

    2009-01-01

    Thermophysical properties of the pure gases helium, neon, methane and water vapor were calculated for low densities over wide temperature ranges. Statistical thermodynamics was used for the determination of the pressure virial coefficients. The kinetic theory of gases was utilized for the calculation of the transport and relaxation properties. So far kinetic theory was limited to linear molecules and has now been extended to molecules of arbitrary geometry to enable calculations on methane and water vapor. The interaction potentials, which are needed for all computations, were determined for helium, neon and methane from the supermolecular approach using quantum chemical ab initio methods. For water the interaction potentials were taken from the literature. The calculated values of the thermophysical properties for the four gases show very good agreement with the best experimental data. At very low and very high temperatures the theoretical values are more accurate than experimental data. (orig.)

  5. The absolute photoionization cross sections of helium, neon, argon and krypton in the extreme vacuum ultraviolet region of the spectrum

    West, J.B.; Marr, G.V.

    1976-01-01

    An experiment has been set up at the Daresbury Synchrotron Radiation Facility to make absolute absorption cross section measurements over a wide range of photon energies. New data are reported for helium, neon, argon and krypton over the range 340 to 40 A which are believed to be reliable to +- 5%. A critical evaluation of published cross section data has been carried out to produce best value data from the ionization thresholds throughout the vacuum ultraviolet and x-ray region. Agreement with theoretical calculations on helium is demonstrated to be within +- 2 to 3% from threshold down to the double ionization threshold at 79 eV. Comparison with recent calculations of photoionization cross sections has shown that the effect of electron correlations is significant for the heavier inert gases. Contrary to previous claims, the position of the M shell maximum in krypton is located at 184 +- 10 eV in good agreement with r.p.a.e. calculations. Oscillator strength sum rules have been examined and their moments calculated. Discrepancies developing towards the heavier inert gases suggests a decrease in polarizabilities and other atomic factors from those predicted by Hartree-Fock calculations. (author)

  6. Ab initio calculation of the interaction potentials of helium, neon, and methane as well as theoretical studies on their thermophysical properties and those of water vapor; Ab initio-Berechnung der Wechselwirkungspotentiale von Helium, Neon und Methan sowie theoretische Untersuchungen zu ihren thermophysikalischen Eigenschaften und denen von Wasserdampf

    Hellmann, Robert

    2009-06-16

    Thermophysical properties of the pure gases helium, neon, methane and water vapor were calculated for low densities over wide temperature ranges. Statistical thermodynamics was used for the determination of the pressure virial coefficients. The kinetic theory of gases was utilized for the calculation of the transport and relaxation properties. So far kinetic theory was limited to linear molecules and has now been extended to molecules of arbitrary geometry to enable calculations on methane and water vapor. The interaction potentials, which are needed for all computations, were determined for helium, neon and methane from the supermolecular approach using quantum chemical ab initio methods. For water the interaction potentials were taken from the literature. The calculated values of the thermophysical properties for the four gases show very good agreement with the best experimental data. At very low and very high temperatures the theoretical values are more accurate than experimental data. (orig.)

  7. Frequency stabilized HeNe gas laser with 3.5 mW from a single mode

    Ellis, J.D.; Voigt, D.; Spronck, J.W.; Verlaan, A.L.; Munnig Schmidt, R.H.

    2012-01-01

    This paper describes an optical frequency stabilization technique using a three-mode Helium Neon laser at 632.8 nm. Using this configuration, a maximum frequency stability relative to an iodine stabilized laser of 6×10 -12 (71 s integration time) was achieved. Two long term measurements of 62 h and

  8. Helium, neon, and argon composition of the solar wind as recorded in gold and other Genesis collector materials

    Pepin, Robert O.; Schlutter, Dennis J.; Becker, Richard H.; Reisenfeld, Daniel B.

    2012-07-01

    We report compositions and fluxes of light noble gases in the solar wind (SW), extracted by stepped pyrolysis and amalgamation from gold collector materials carried on the Genesis Solar Wind Sample Return Mission. Results are compared with data from other laboratories on SW-He, Ne and Ar distributions implanted in Genesis aluminum, carbon, and silicon collectors and extracted by laser ablation. Corrections for mass-dependent losses (“backscatter”) of impinging SW ions due to scattering from the collector material are substantially larger for gold than for these lower atomic weight targets. We assess such losses by SRIM simulation calculations of SW backscatter from gold which are applied to the measurements to recover the composition of the incident SW. Averaged results of integrated stepped pyrolysis and single-step amalgamation measurements, with 1σ errors, are as follows: for SW-Ne and Ar isotope ratios (3He/4He was not measured), 20Ne/22Ne = 14.001 ± 0.042, 21Ne/22Ne = 0.03361 ± 0.00018, 36Ar/38Ar = 5.501 ± 0.014; for SW element ratios, 4He/20Ne = 641 ± 15, 20Ne/36Ar = 51.6 ± 0.5; and for SW fluxes in atoms cm-2 s-1 at the Genesis L1 station, 4He = 1.14 ± 0.04 × 107, 20Ne = 1.80 ± 0.06 × 104, 36Ar = 3.58 ± 0.11 × 102. Except for the 21Ne/22Ne and 20Ne/36Ar ratios, these values are in reasonable accord (within ∼1-3σ) with measurements on different collector materials reported by one or both of two other Genesis noble gas research groups. We further find, in three stepped pyrolysis experiments on gold foil, that He, Ne and Ar are released at increasing temperatures without elemental fractionation, in contrast to a pyrolytic extraction of a single non-gold collector (Al) where the release patterns point to mass-dependent thermal diffusion. The pyrolyzed gold foils exhibit enhancements, relative to sample totals, in 20Ne/22Ne and 21Ne/22Ne ratios evolved at low temperatures. The absence of elemental fractionation in pyrolytic release from gold

  9. Low power laser irradiation does not affect the generation of signals in a sensory receptor

    Lundeberg, T.; Zhou, J.

    1989-01-01

    The effect of low power Helium-Neon (He-Ne) and Gallium-Arsenide (Ga-As) laser on the slowly adapting crustacean stretch receptor was studied. The results showed that low power laser irradiation did not affect the membrane potential of the stretch receptor. These results are discussed in relation to the use of low power laser irradiation on the skin overlaying acupuncture points in treatment of pain syndrome.

  10. Laser treatment of otitis media in children

    Podoynitsyna, L.F.

    1984-08-01

    Clinical trials were conducted with the helium-neon LG-75 laser (632.8 nm, 0.1 W/cm/sup 2/) in the management of 50 children with acute and chronic otitis media. The sessions consisted of 30 sec irradiation directed at the middle ear through the external meatus for a period of 5 days. Positive results were obtained in 45 of the patients with cessation of discharge on the 2nd or 3rd day, and return of hearing by the end of the week. The remission was not permanent in one patient with recurrent otitis media. These observations indicate that the anti-inflammatory effects of helium-neon irradiation constitute an effective treatment modality in children with otitis media. 6 references.

  11. Effect of low-power density laser radiation on heatling of open skin wounds in rats

    Kana, J.S.; Hutschenreiter, G.; Haina, D.; Waidelich, W.

    1981-03-01

    Researchers performed a study to determine whether laser radation of low-power density would affect the healing of open skin wounds in rats. The wounds were irradiated daily with a helium-neon laser and an argon laser at a constant power density of 45 mW/sq cm. The rate of wound closure was followed by photographing the wounds in a standardized way. The collagen hydroxyproline concentration in the scar tissue was determined on the 18th postoperative day. Helium-neon laser radiation had a statistically significant stimulating effect on collagen synthesis in the wound, with a maximum effect at an energy density of 4 joules/sq cm. The rate of wound closure was enhanced significantly between the third and 12th postoperative days. The argon laser exposure produced a significant increase in collagen concentration both in irradiated and nonirradiated contralateral wounds. However, an acceleration of the healing rate was not registered in this case. The wound contraction up to the fourth day of the experiment was inhibited under helium-neon and argon laser exposure to 20 joules/sq cm. The described effects were not specific for the laser light. There may be a wavelength-selective influence of coherent light on the metabolic and proliferation processes in wound healing, with the associated problem of the possible carcinogenic effects of laser radiation.

  12. Orthogonal polarization in lasers physical phenomena and engineering applications

    Zhang, Shulian

    2013-01-01

    This practical book summarizes the latest research results of orthogonally polarized lasers, birefringence laser cavities, and their applications. Coverage ranges from basic principles and technologies to the characteristics of different cavities and lasers to various measurement techniques. A number of figures, experimental designs, and measurement curves are included, helping readers gain a thorough understanding of the many applications in modern engineering and start their own projects. Many types of relevant lasers (Helium/Neon lasers, Nd:YAG lasers, laser diodes, etc.) are also discussed

  13. GASP: A computer code for calculating the thermodynamic and transport properties for ten fluids: Parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. [enthalpy, entropy, thermal conductivity, and specific heat

    Hendricks, R. C.; Baron, A. K.; Peller, I. C.

    1975-01-01

    A FORTRAN IV subprogram called GASP is discussed which calculates the thermodynamic and transport properties for 10 pure fluids: parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. The pressure range is generally from 0.1 to 400 atmospheres (to 100 atm for helium and to 1000 atm for hydrogen). The temperature ranges are from the triple point to 300 K for neon; to 500 K for carbon monoxide, oxygen, and fluorine; to 600 K for methane and nitrogen; to 1000 K for argon and carbon dioxide; to 2000 K for hydrogen; and from 6 to 500 K for helium. GASP accepts any two of pressure, temperature and density as input conditions along with pressure, and either entropy or enthalpy. The properties available in any combination as output include temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, and surface tension. The subprogram design is modular so that the user can choose only those subroutines necessary to the calculations.

  14. Physiological characteristics of cucumber seed production plants by presowing laser and gamma irradiation

    Cholakov, D.; Petkova, V.

    1994-01-01

    Seeds from G-3 maternal line of hybrid cucumber cultivar Pobeda F 1 were treated with helium-neon 632.8 nm laser-exit power 20 mW and gamma-rays ( 60 Co) in a field experiment under conditions suitable for hybrid seed production. The irradiation was carried out a week before sowing and the following variants were investigated: 1. sevenfold laser irradiation; 2. 10 Gy gamma irradiation; 3. combined laser + gamma rays irradiation. Seeds from the parent line were not irradiated. A positive effect of irradiation on the photosynthetic intensity, content of plastid pigments in leaves and activity of catalase and peroxidase has been observed. (author)

  15. A laser optical method for detecting corn kernel defects

    Gunasekaran, S.; Paulsen, M. R.; Shove, G. C.

    1984-01-01

    An opto-electronic instrument was developed to examine individual corn kernels and detect various kernel defects according to reflectance differences. A low power helium-neon (He-Ne) laser (632.8 nm, red light) was used as the light source in the instrument. Reflectance from good and defective parts of corn kernel surfaces differed by approximately 40%. Broken, chipped, and starch-cracked kernels were detected with nearly 100% accuracy; while surface-split kernels were detected with about 80% accuracy. (author)

  16. Laser signals' nonlinear change in fatty acids

    Ghelmez-Dumitru, M; Piscureanu, M; Sterian, A

    2003-01-01

    Previous works showed that thin layers of fatty acids and fatty acid-cholesterol mixtures behaved as optical liquid crystals, even at low incident laser power. The paper presents an experimental and computer study of laser signals, emergent from such samples, in presence of fluctuations. The optical emergent laser beams' features at different incident parameters were experimentally determined for different type (c.w. and pulsed) lasers, as for example helium-neon and Nd sup 3 sup + glass lasers. The results were correlated with the amount of cholesterol in mixtures and with their response in external electric field. These measurements are in all cases affected by fluctuations. We developed some computer-based procedures, by using the TableCurve3D from Jandel Scientific software and equations Runge-Kutta in MATLAB for taking into account these fluctuations.

  17. Laser puncture therapy of nervous system disorders

    Anishchenko, G.; Kochetkov, V.

    1984-08-29

    The authors discuss experience with treatment of nervous system disorders by means of laser-puncture therapy. Commenting on the background of the selection of this type of treatment, they explain that once researchers determined the biological action of laser light on specific nerve receptors of the skin, development of laser apparatus capable of concentrating the beam in the millimeter band was undertaken. The devices that are being used for laser-puncture are said to operate in the red helium-neon band of light. The authors identify beam parameters that have been selected for different groups of acupuncture points of the skin, and the courses of treatment (in seconds of radiation) and their time intervals. They go on to discuss the results of treatment of over 800 patients categorized in a group with disorders of the peripheral nervous system and a second group with disorders of the central nervous system.

  18. Laser scanning of experimental solar cells

    Plunkett, B. C.; Lasswell, P. G.

    1980-01-01

    A description is presented of a laser scanning instrument which makes it possible to display and measure the spatial response of a solar cell. Examples are presented to illustrate the use of generated micrographs in the isolation of flaws and features of the cell. The laser scanner system uses a 4 mW, CW helium-neon laser, operating a wavelength of 0.633 micrometers. The beam is deflected by two mirror galvanometers arranged to scan in orthogonal directions. After being focused on the solar cell by the beam focusing lens, the moving light spot raster scans the specimen. The current output of the photovoltaic device under test, as a function of the scan dot position, can be displayed in several modes. The laser scanner has proved to be a very useful diagnostic tool in optimizing the process design of transparent metal film photovoltaic devices on Zn3P2, a relatively new photovoltaic material.

  19. Low-power-laser therapy used in tendon damage

    Strupinska, Ewa

    1996-03-01

    The following paper covers evaluation of low-power laser therapy results in chronic Achilles tendon damage and external Epicondylalia (tennis elbow). Fifty patients with Achilles damage (18 women and 32 men, age average 30, 24 plus or minus 10, 39 years) and fifty patients having external Epicondyalgiae (31 women and 19 men, age average 44, 36 plus or minus 10, 88 years) have been examined. The patients were irradiated by semiconductor infrared laser wavelength 904 nm separately or together with helium-neon laser wavelength 632.8 nm. The results of therapy have been based on the patient's interviews and examinations of patients as well as on the Laitinen pain questionnaire. The results prove analgesic effects in usage of low- power laser radiation therapy can be obtained.

  20. FROM THE HISTORY OF LASER CREATION

    I.M. Belousova

    2014-03-01

    Full Text Available The paper briefly describes the history of formation of a new science direction - quantum electronics, associated with the discovery of masers and lasers by scientists from the USA (Ch. Townes and the USSR (N.G. Basov and A. M. Prokhorov. The world's first ruby laser designed by T. Maiman is described. Some historical events devoted to creation and research of lasers are given in which the author of the paper as well as research workers from Vavilov State Optical Institute, ITMO University and LOMO have taken direct part in the development of solid-state and gas lasers (helium-neon, photodissociation, CO2-lasers and laser optical systems. Contribution of researchers from Vavilov State Optical Institute, LOMO and ITMO University to large-scale programs on development of lasers for laser nuclear fusion, laser weapons and “Phobos” program is shown. The paper deals in brief with new issues of development and application of lasers, mainly, within the project of laser orbital space station of the future, for the conversion of solar energy into laser radiation. Description of idea of solar energy transformation by fullerene-oxygen laser is presented. The patent for it has been taken out by Vavilov State Optical Institute. Developed fullerene-oxygen-iodine laser and laser structure models for industrial applications and solar energy conversion into laser radiation are described. Parameters for hypothetical laser-optical system of the future space station are given.

  1. Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode

    Rerucha, Simon; Yacoot, Andrew; Pham, Tuan M.; Cizek, Martin; Hucl, Vaclav; Lazar, Josef; Cip, Ondrej

    2017-04-01

    We demonstrated that an iodine stabilized distributed Bragg reflector (DBR) diode based laser system lasing at a wavelength in close proximity to λ =633 nm could be used as an alternative laser source to the helium-neon lasers in both scientific and industrial metrology. This yields additional advantages besides the optical frequency stability and coherence: inherent traceability, wider optical frequency tuning range, higher output power and high frequency modulation capability. We experimentally investigated the characteristics of the laser source in two major steps: first using a wavelength meter referenced to a frequency comb controlled with a hydrogen maser and then on an interferometric optical bench testbed where we compared the performance of the laser system with that of a traditional frequency stabilized He-Ne laser. The results indicate that DBR diode laser system provides a good laser source for applications in dimensional (nano)metrology, especially in conjunction with novel interferometric detection methods exploiting high frequency modulation or multiaxis measurement systems.

  2. Digital Communication System Based on Polarization Self-Modulation in Lasers

    Tabarin, V. A.; Ikonnikov, V. P.; Shatalov, A. N.

    2014-09-01

    Polarization self-modulation in lasers can be used to create instruments for generating optical pulses at very high repetition rates without using high-speed electronics. Self-oscillation is observed when part of the output of a laser is returned to the laser after a 90° polarization change. A practical scheme based on polarization self-modulation in a 3.39-μm helium-neon laser is proposed for pulsed code data transmission with an yttrium-iron garnet magnetooptical Q-switch. Highly efficient transmission of digital signals is implemented with a repetition rate of 75 MHz, equivalent to half the free spectral range of the laser.

  3. Influence of the He-Ne laser in different irradiation regimes on the cornea cells after ionizing irradiation

    Bulyakova, N.V.

    1984-01-01

    A study was made on epithelium cells of the eye cornea in mices entering the first postradiation mitosis. The influence of laser rays acting in the course of each exposure during one and the same period of time, or continuously, or by pulses was compared. The effect of laser radiation was evaluated from the frequency of occurrence of cells with chromosomal aberrations, mitotic index, coefficient of mitosis phases. It has been established that pulse radiation of a helium-neon laser in a certain operation regime produces a sanitating effect on cells of eye cornea epithelium in white mice damaged by ionizing radiation. Cells being killed in the interphase were not revealed in epithelium of the eye cornea. It enables to conclude that the amount of aberrant mitoses decreases as a result of postradiation repair of cells damaged by ionizing radiation, but not as a result of their elimination

  4. Laser and thermal bleaching of colour centres in sodium borate glasses

    Bukharaev, A A; Yafaev, N R [AN SSSR, Kazan. Fiziko-Tekhnicheskij Inst.

    1978-12-01

    The maximum of the additional absorption band in ..gamma..- or UV-irradiated sodium borate glasses shifts to higher energy when the low-energy side of the band is bleached by a helium-neon laser, ..lambda.. = 632.8 nm. Simultaneously the half-width of the additional absorption band decreases. This phenomenon is associated with the fact that because of structural disorder of glasses there is a distribution of ground-state energies of trapped electrons forming the light-sensitive absorption band. The distribution interval of the activation energy for trapped electrons is estimated using the decomposition of the initial thermal bleaching curves into components. For UV irradiated glasses it is aproximately 0.24 eV, and for ..gamma..-irradiated glasses only 0.12 eV. These values correlate with the relative shift maximum of the absorption band at laser bleaching.

  5. Induratio penis plastica (IPP) and laser: a review

    Longo, Leonardo; Mancini, S.; Postiglione, M. G.

    2002-10-01

    The first employments of Laser therapy for I.P.P. came from back to more than twenty years ago. At the beginning it was employed only in the acute forms as analgesic laser laser was used also as anti-inflammatory following the doses of Low Level Laser Therapy. Than the science tried to use the laser effect remodelling phase of the scars, to make the fibrosis regrade in the chronic forms. Tunable laser in small optical fiber was used for ablation of calcified zones with very good results. For the slight forms were used diode laser 660 and 904 nm, alone ir coupling with CO2 laser with large spot. At first some Author used helium-Neon laser 632. Some of these lasers were combined wtih microiontophoresis and ultrasounds therapy in teh same treatment. Now we use 810 nm surgical diode laser in almost all induratio forms. The immediate results and follow up will be discussed. Thanks to these results we could conclude that IPP laser therapy can be effective in most of the clinic forms. Although the used procedure is subject to improvement.

  6. Modification of genetic effects of gamma radiation by laser radiation

    Khotyljova, L.V.; Khokhlova, S.A.; Khokhlov, I.V.

    1988-01-01

    Full text: Mutants obtained by means of ionizing radiation and chemical mutagens often show low viability and productivity that makes their use in plant breeding difficult. Methods reducing the destructive mutagen action on important functions of plant organism and increasing quality and practical value of induced mutants would be interesting. We believe that one method for increasing efficiency of experimental mutagenesis in plants is the application of laser radiation as a modificator of genetic effects of ionizing radiation and chemical mutagens. Combined exposure of wheat seedlings to a gamma radiation dose of 2 kR and to laser radiation with the wave length of 632.8 nm (power density - 20 mVt/cm 2 , exposure - 30 min.) resulted in reducing the chromosomal aberration percentage from 30.5% in the gamma version to 16.3% in the combined treatment version. A radiosensibilizing effect was observed at additional exposure of gamma irradiated wheat seeds to laser light with the wave length of 441.6 nm where chromosomal aberration percentage increased from 22% in the gamma-irradiation version to 31% in the combined treatment version. By laser radiation it is also possible to normalize mitotic cell activity suppressed by gamma irradiation. Additional seedling irradiation with the light of helium-neon laser (632.8 nm) resulted in recovery of mitotic cell activity from 21% to 62% and increasing the average content of DNA per nucleus by 10%. The influence of only laser radiation on plant variability was also studied and it was shown that irradiation of wheat seeds and seedlings with pulsed and continuous laser light of visible spectrum resulted in phenotypically altered forms in M 2 . Their frequencies was dependent upon power density, dose and radiation wave length. Number of altered forms increased in going from long-wave to short-wave spectrum region. In comparing efficiency of different laser types of pulsed and continuous exposure (dose - 180 J/cm 2 ) 2% of altered

  7. Novel CO2 laser robotic controller outperforms experienced laser operators in tasks of accuracy and performance repeatability.

    Wong, Yu-Tung; Finley, Charles C; Giallo, Joseph F; Buckmire, Robert A

    2011-08-01

    To introduce a novel method of combining robotics and the CO(2) laser micromanipulator to provide excellent precision and performance repeatability designed for surgical applications. Pilot feasibility study. We developed a portable robotic controller that appends to a standard CO(2) laser micromanipulator. The robotic accuracy and laser beam path repeatability were compared to six experienced users of the industry standard micromanipulator performing the same simulated surgical tasks. Helium-neon laser beam video tracking techniques were employed. The robotic controller demonstrated superiority over experienced human manual micromanipulator control in accuracy (laser path within 1 mm of idealized centerline), 97.42% (standard deviation [SD] 2.65%), versus 85.11% (SD 14.51%), P = .018; and laser beam path repeatability (area of laser path divergence on successive trials), 21.42 mm(2) (SD 4.35 mm(2) ) versus 65.84 mm(2) (SD 11.93 mm(2) ), P = .006. Robotic micromanipulator control enhances accuracy and repeatability for specific laser tasks. Computerized control opens opportunity for alternative user interfaces and additional safety features. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  8. In vivo and in vitro HeNe laser effects on phagocyte functions

    Ricevuti, G.; Mazzone, A.; Monaia, C.; Fratino, P.; Degiulio, R.; Dell' Acqua, R.; Leonardi, G.; Jucci, A.; Sacchi, S. (Univ. of Pavia (Italy))

    1989-10-01

    The goal of this work was to evaluate the effect of helium-neon (HeNe) laser irradiation on immunocompetent cells. We used the in vivo skin window method and in vitro granulocyte function tests. The study of cellular migration showed a marked decrease in vitro and in vivo in a dose-independent manner. Superoxide release was not modified by laser irradiation. The granulocyte's aggregation, when using PHA and PMA, presented a reduction that was statistically very significant, not as a subordinate dose. An increase of the release of ATP was demonstrated only at 4 joules and precedes granulocyte aggregation. When using Ca2+ ionophore A23187 as stimulus, laser irradiation at 1, 2 or 4J did not show any modification of granulocyte aggregation. The monoclonal antibody 60.1, which identifies a membrane antigen fundamental for aggregation and chemotaxis, is expressed in normal amounts on granulocyte membranes both before and after irradiation with a HeNe laser. In fact, laser irradiation preferentially attacks the area of the cellular centrosome that determines a modification of cellular morphology. The electron microscope and immunofluorescence study with a monoclonal antibody have pointed out a disorganization of the microtubules. The alteration of some of the granulocyte functions is correlated to the damage in the centrioles. The granulocyte mitochondrial system and surface membrane remain intact, and this explains the normal production and release of free radicals. Further experiments are necessary to evaluate the clinical application of lasers in various diseases with immunophagocytic pathogenesis.

  9. Studies on the influence of laser beams on wound granulation

    Brunner, R.

    1982-01-01

    The influence of laser light of law energy on wound healing was tested on 204 rats in a blind study. The growth of granulation tissue in a polyvinylchloride cylinder implanted on the backs of the animals served as parameter for wound healing. Irradiation was carried out with a helium-neon laser (wavelength 632.8 nm) at daily doses of 0.5 J/cm 2 , 1.5 J/cm 2 , 4 J/cm 2 , 10 J/cm 2 and 20 J/cm 2 , and with incoherent non-linear polarized red light (wavelength 630 nm) with a daily dose of 4 J/cm 2 . This was repeated 8 times. Laser irradiation caused a statistically significant increase in wet and dry granulation tissue weight of 25% in the dose range 1.5 J/cm 2 to 20 J/cm 2 . At 0.5 J/cm 2 the effect was less, but the least effect was achieved by non-linear polarized incoherent red light. Bacteriological evaluation of wound germ counts revealed a marginally lower presence of high germ cell densities. In irradiated animals, histological and enzyme cytochemical findings revealed, in addition to a significant findings revealed, in addition to a significant increase in mast cells, a smaller increase in fibroblast count and a slight decrease in granulocytic and histiocytic elements. The biochemical evaluation of granulation tissue revealed no differences in collagen content between irradiated and unirradiated animals. (orig.) [de

  10. Laser application for nuclear reaction product detecting system alignment

    Grantsev, V.I.; Dryapachenko, I.P.; Kornilov, V.A.; Nemets, O.F.; Rudenko, B.A.; Sokolov, M.V.; Struzhko, B.G.; Gnatovskij, A.V.; Bojchuk, V.N.

    1982-01-01

    A method for optical alignment of nuclear particle detector system using a laser beam and hologram is described. The method permits to arrange detectors very precisely in accordance with any chosen space coordinate values. The results of modelling the geometry of an experiment based on using the suggested method on cyclotron beams are described. A gas helium-neon laser with wavelength of 0.63 μm radiation power of an order of 2 MW and angular beam divergence less than 10 angular minutes is used for modelling. It is concluded that the laser and hologram application provides large possibilities for the modelling the geometry of experiments on nuclear reaction investigation. When necessary it is possible to obtain small nonius scale of reference beams by means of multiplicating properties of the wave front modulator-hologram system. It is also possible to record holograms shaping the reference beams in two or several planes crossing along the central beam direction. Such holograms can be used for modelling the noncoplanar geometry of correlation experiments [ru

  11. Effect of maize seed laser irradiation on plant photosynthetic activity

    Antonov, M.; Stanev, V.; Velichkov, D.; Tsonev, Ts.

    1986-01-01

    Investigations were made with the two hybrids, H-708 and P x -20. The seeds were irradiated by a helium-neon quantum generator (L'vov-1 Electronica) with output power of 24 MW and 632.8 nm wave length. Once and twice irradiated seeds were sown on the 2nd, 5th and 10th day post irradiation. Changes in leaf area, chlorophyll content in the leaves, photosynthetic rate and its dependence on temperature and light, transpiration, stomatal resistance to CO 2 and total dry matter of the overground plant part were traced. Seed irradiation with laser rays did not affect the chlorophyll content of the leaves. The photosynthetic rate did not depend on the cultivar characteristics of the crop. Single and repeated irradiation of the hybrid H-708 in most case enhanced photosynthetic rate, but a similar effect was not observed in P x -20. Transpiration and CO 2 stomatal resistance were not equally affected by radiation. Laser rays enhanced the ability of the photosynthetic apparatus of the entire plants to use more efficiently high light intensities. The leaf area and the total plant dry matter increased in case of sowing on the 2nd and 5th day and a single irradiation and in case of sowing on the 5th and 10th day and twice repeated irradiations

  12. Studies on acute toxic effects to keratinocytes induced by hematoporphyrin derivatives and laser light.

    Artuc, M; Ramshad, M; Kappus, H

    1989-01-01

    Human epidermal keratinocytes were grown in culture and the uptake of hematoporphyrin derivatives (HPDs) used in photodynamic therapy was estimated. Keratinocytes loaded with HPDs were irradiated with laser light of 632 nm generated by a helium-neon laser and cell toxicity was determined by the trypan blue exclusion test and the measurement of enzyme release. With increasing intracellular concentration of HPDs and with increasing intensity of the laser light, an increasing number of cells took up trypan blue and released the cytosolic enzyme lactate dehydrogenase and the lysosomal enzyme acid phosphatase after 1 h incubation of the irradiated cells at 37 degrees C. Cytotoxicity was less pronounced when the irradiated cells were incubated at 0 degree C indicating the involvement of enzyme reactions in cell death. No lipid peroxidation as measured by malondialdehyde and ethane formation was detectable. Our results suggest that during photodynamic therapy with HPDs and laser light epidermal keratinocytes may be seriously damaged. The data indicate that not lipid peroxidation but rather the activation of lysosomal enzymes is responsible for the cytotoxicity observed.

  13. Changes in Cell Viability of Wounded Fibroblasts following Laser Irradiation in Broad-Spectrum or Infrared Light

    Hawkins, D.; Abrahamse, H.

    2007-01-01

    Objective. This study aimed to establish if broad-spectrum or infrared (IR) light in combination with laser therapy can assist phototherapy to improve the cell function of wounded cells. Background. The effect of laser light may be partly or completely reduced by broad-spectrum light. Methods. Wounded human skin fibroblasts were irradiated with 5 J/cm2 using a helium-neon laser, a diode laser, or an Nd:YAG laser in the dark, in the light, or in IR. Changes in cell viability were evaluated by cell morphology, ATP cell viability, LDH membrane integrity, and caspase 3/7 as an early marker of apoptosis. Results. Wounded cells exposed to 5 J/cm2 using 632.8 nm in the dark or 830 nm in the light or 1064 nm in the dark showed an increase in ATP viability, an increase in cytokine expression, and a decrease in LDH cytotoxicity indicating that the metabolic activity of the wounded cells was stimulated. Conclusion. Wounded cells irradiated in IR light showed an undesirable thermal effect that was proportional to the duration of exposure.

  14. A noncontact laser system for measuring soil surface topography

    Huang, C.; White, I.; Thwaite, E.G.; Bendeli, A.

    1988-01-01

    Soil surface topography profoundly influences runoff hydrodynamics, soil erosion, and surface retention of water. Here we describe an optical noncontact system for measuring soil surface topography. Soil elevation is measured by projecting a laser beam onto the surface and detecting the position of the interception point. The optical axis of the detection system is oriented at a small angle to the incident beam. A low-power HeNe (Helium-Neon) laser is used as the laser source, a photodiode array is used as the laser image detector and an ordinary 35-mm single lens reflex camera provides the optical system to focus the laser image onto the diode array. A wide spectrum of measurement ranges (R) and resolutions are selectable, from 1 mm to 1 m. These are determined by the laser-camera distance and angle, the focal length of the lens, and the sensing length of the diode array and the number of elements (N) contained in the array. The resolution of the system is approximately R/2N. We show for the system used here that this resolution is approximately 0.2%. In the configuration selected, elevation changes of 0.16 mm could be detected over a surface elevation range of 87 mm. The sampling rate of the system is 1000 Hz, which permits soil surfaces to be measured at speeds of up to 1 m s −1 with measurements taken at 1-mm spacing. Measurements of individual raindrop impacts on the soil and of soil surfaces before and after rain show the versatility of the laser surface profiler, which has applications in studies of erosion processes, surface storage and soil trafficability

  15. A laser scanner for imaging fluorophore labeled molecules in electrophoretic gels

    Fisk, D.J.; Sutherland, J.C. [Brookhaven National Lab., Upton, NY (United States). Biology Dept.

    1995-08-01

    A laser scanner for imaging electrophoretic gels was constructed and tested. The scanner incorporates a green helium-neon (HeNe) laser (543.5nm wavelength) and can achieve a spatial resolution of 19{micro}m. The instrument can function in two modes : snap-shot and finish-line. In snapshot mode, all samples are electrophoresed for the same time and the gel is scanned after completion of electrophoresis, while in finish-line mode, fluorophore labeled samples are electrophoresed for a constant distance and the image is formed as the samples pass under the detector. The resolving power of the finish-line mode of imaging is found to be greater than that of the snapshot mode of imaging. This laser scanner is also compared with a Charge Coupled Device (CCD) camera and in terms of resolving power is found to be superior. Sensitivity of the instrument is presented in terms of the minimum amount of DNA that can be detected verses its molecular length.

  16. Influence of low-energy laser radiation on normal skin and certain tumor tissues

    Pletnev, S.D.; Karpenko, O.M.

    For some years, the authors' Institute has studied the influence of various types of low-energy laser radiation on normal tissue and the growth of tumors. Radiation at 3 and 30 J/cm/sup 2/ causes an increase in biological activity of various cell elements, manifested as an increase in mitotic activity of the cells in the basal layer of the epidermis, conglomeration of chromatin in the cell nuclei and an increase in degranulation of fat cells in the process of their migration to the reticular layer. Also noted was an increase in content of fibroblastic and lymphohistocytic elements in the dermis, as well as an increase in collagenization of connective tissue. It was found that irradiation of the skin by helium-neon, cadmium-helium and nitrogen lasers before and after grafting of the cells of various tumors modifies the course of the tumor process. This effect is apparently related to the fact that systematic irradiation results in changes creating a favorable background for survival and proliferation of tumor cells in the skin tissue medium. The changes facilitate an increase in survival and growth of both pigmented and nonpigmented tumors. Low power radiation stimulates the activity of the cells or cell structures; medium power stimulates their activity; high power suppresses activity.

  17. Low-level laser therapy: An experimental design for wound management: A case-controlled study in rabbit model

    Hossein Hodjati

    2014-01-01

    Full Text Available Background: There is a wide array of articles in medical literature for and against the laser effect on wound healing but without discrete effect determination or conclusion. This experimental study aims to evaluate the efficacy of low-level laser therapy on wound healing. Materials and Methods: Thirty-four rabbits were randomly enrolled in two groups after creating a full thickness of 3 × 3 cm wound. The intervention group received low density laser exposure (4 J/cm 2 on days 0, 3 and 6 with diode helium-neon low-intensity laser device (wl = 808 nm and in control group moist wound dressing applied. Finally, wound-healing process was evaluated by both gross and pathological assessment. Results: Fibrin formation was the same in the two groups (P = 0.4 but epithelialisation was much more in laser group (P = 0.02. Wound inflammation of the laser group was smaller than that of the control groups but statistical significance was not shown (P = 0.09. Although more smooth muscle actin was found in the wounds of the laser group but it was not statistically significant (P = 0.3. Wound diameter showed significant decrease in wound area in laser group (P = 0.003. Conclusion: According to our study, it seems that low-level laser therapy accelerates wound healing at least in some phases of healing process. So, we can conclude that our study also shows some hopes for low level laser therapy effect on wound healing at least in animal model.

  18. Study of reverse Brayton cryocooler with Helium-Neon mixture for HTS cable

    Dhillon, A. K.; Ghosh, P.

    2017-12-01

    As observed in the earlier studies, helium is more efficient than neon as a refrigerant in a reverse Brayton cryocooler (RBC) from the thermodynamic point of view. However, the lower molecular weight of helium leads to higher refrigerant inventory as compared to neon. Thus, helium is suitable to realize the high thermodynamic efficiency of RBC whereas neon is appropriate for the compactness of the RBC. A binary mixture of helium and neon can be used to achieve high thermodynamic efficiency in the compact reverse Brayton cycle (RBC) based cryocooler. In this paper, an attempt has been made to analyze the thermodynamic performance of the RBC with a binary mixture of helium and neon as the working fluid to provide 1 kW cooling load for high temperature superconductor (HTS) power cables working with a temperature range of 50 K to 70 K. The basic RBC is simulated using Aspen HYSYS V8.6®, a commercial process simulator. Sizing of each component based on the optimized process parameters for each refrigerant is performed based on a computer code developed using Engineering Equation Solver (EES-V9.1). The recommendation is provided for the optimum mixture composition of the refrigerant based on the trade-off factors like thermodynamic efficiency such as the exergy efficiency and equipment considerations. The outcome of this study may be useful for recommending a suitable refrigerant for the RBC operating at a temperature level of 50 K to 70 K.

  19. Absolute differential cross sections for elastic scattering of electrons by helium, neon, argon and molecular nitrogen

    Jansen, R.H.J.; De Heer, F.J.; Luyken, H.J.; Van Wingerden, B.

    1976-01-01

    An electron spectrometer has been constructed for the study of elastic and inelastic electron scattering processes. Up to now the apparatus has been used to measure differential cross sections of electrons elastically scattered by He, Ne, Ar and N 2 . Direct absolute cross section measurements were performed on N 2 at 500 eV impact energy and at scattering angles between 5 0 and 9 0 . Relative cross section measurements were done on He, Ne, Ar and N 2 at impact energies between 100 and 3000 eV and scattering angles between 5 0 and 55 0 . The relative cross sections were put on an absolute scale by means of the apparatus calibration factor derived from the absolute measurements on N 2 . The experimental apparatus and procedure are described in detail. The results are discussed and compared with those of other experimental and theoretical groups. Analysis of the exponential behaviour of the differential cross section as a function of momentum transfer yielded apparent polarizabilities of the target. (author)

  20. An automated, noncontact laser profile meter for measuring soil roughness in situ

    Bertuzzi, P.; Caussignac, J.M.; Stengel, P.; Morel, G.; Lorendeau, J.Y.; Pelloux, G.

    1990-01-01

    This paper describes a new optical technique for measuring in situ soil surface roughness profiles using a laser profile meter. The described method uses a low-power HeNe (helium-neon) laser as a laser source and a matrix-array detector, as the laser image. The matrix-array detector gives a defect-of-focus laser image of the soil. Soil elevation is measured by projecting a laser beam normally onto the soil surface and measuring the ratio (Ir/It) on the matrix-array detector between the referenced intensity of the return Laser beam (Ir), measured by the central cell of the detector and the total intensity (It), measured by all the cells of the detector. The measured profile leads to 1001 sampled values (volt, range 0 to 10 V) of the surface height profile, at a constant increment of 0.002 m, registered automatically on a microcomputer. A calibration is made in the laboratory in order to convert the electrical measurements into elevation data. The method is universal and can be adapted to different scales of soil surface roughness. Changing the scale is done by changing the lens. Tests were carried out to improve this method for field use and to compare this technique with a method of reference. This technique is considerably quicker and causes no disturbance to the soil. The accuracy on height measurement depends on the choice of the lens. The small focal lens is convenient for smooth soil surfaces. The accuracy on height measurement is less than 0.75 mm. The wide focal lens is convenient for rough soil surfaces. The accuracy on height measurement is estimated at about 1.0 to 1.5 mm

  1. Soft-tissue injuries from sports activities and traffic accidents--treatment with low-level laser therapy: a multicenter double-blind placebo-controlled clinical study on 132 patients

    Simunovic, Zlatko; Trobonjaca, Tatjana

    2000-06-01

    The aim of current multicenter clinical study was to assess the efficacy of low energy-level laser therapy (LLLT) in the treatment of soft tissue injuries compared to the placebo and classical phyiotherapeutic procedures. This clinical study was conducted in two centers located in Locarno, Switzerland and Opatija, Croatia. Two types of irradiation techniques were used: (1) direct, skin contact technique for treatment of trigger points where IR diode laser 830 nm continuous wave was applied; and (2) scanning technique for irradiation of larger surface area with use of Helium Neon laser 632.8 nm combined with IR diode laser 904 nm pulsed wave. Results were evaluated according to clinical parameters like: hematoma, swelling, heat, pan and loss of function. The findings were statistically analyzed via chi- square test. Results have demonstrated that the recovery process was accelerated in 85 percent of patients treated with LLLT compared to the control group of patients. The results and advantages obtained proved once again the efficacy of LLLT as a new and successful way to treat soft tissue injuries.

  2. Effect of laser radiation on the cultivation rate of the microalga Chlorella sorokiniana as a source of biofuel

    Politaeva, N.; Smyatskaya, Y.; Slugin, V.; Toumi, A.; Bouabdelli, M.

    2018-01-01

    This article studies the influence of laser radiation on the growth of micro-algal biomass of Chlorella sorokiniana. The composition of nutrient medium and the effect the laser beam (2 and 5 cm diameter, 1, 5, 10, 15 and 20 minutes exposure time) for accelerated cultivation of microalgal biomass were studied. The source of laser radiation (LR) was a helium-neon laser with a nominal output power of 1.6 mW and a wavelength of 0.63 μm. The greatest increase in biomass was observed when LR was applied to a suspension of microalga Chlorella sorokiniana with a beam of 5 cm diameter for a time of 10, 15 and 20 minutes. The results of the microscopic study of the microalga cells show a significant increase in the number of cells after an exposure to LR with a beam diameter of 5 cm in diameter. These cells were characterized by a large vacuole, a thickened lipid shell and a large accumulation of metabolites prone to agglutination. This study proposed to obtain valuable components (lipids, carotenoids, and pectin) from the obtained biomass by extraction method and to use the residual biomass formed wastes, after the extraction of valuable components, as a co-substrate for anaerobic digestion to produce biogas. The composition of biogas consists mainly of methane and carbon dioxide. Methane is recommended to be used for economic needs in supplying the whole process with heat and electricity. The carbon dioxide formed during fermentation and after combustion of methane for energy production, is planned to be used as a carbon source in the cultivation of Chlorella sorokiniana for photoautotrophic biomass production.

  3. Biological behaviour of cucumbers depending on rhythm of seed irradiation with laser beam

    Cholakov, D.

    1997-01-01

    The aim of the study was to determine the optimal parameters of laser stimulation and obtained as a result resonance activation of phytohormones responsible for growth and formation of generative organs. The influence of the rhythm of irradiation on its effect was investigated. Cucumber seeds from the Bulgarian salad cultivar Gergana were irradiated with helium-neon laser of 632.8 nm wave length and exit power 20 mw. Besides control samples, the following irradiation groups were examined: 7-times on the 28th day before sowing (variant 7); 7-times in rhythm - 4-times on the 28th and 3-times on the 14th day before sowing (4+3); 7-times in rhythm - 3-times on the 28th and 3-times on the 14th and once on the day before sowing (3+3+1); 7-times in rhythm - 2-times on the 28th, the 21st and the 14th day and once on the day before sowing (2+2+2+1); 7-times in rhythm - once on the 28th, 24th, 20th, 16th, 12th, 8th and 4th day before sowing (1+1+1+1+1+1+1). There was the highest radiobiological effect at the rhythm of irradiation (2+2+2+1) and (1+1+1+1+1+1+1). The rhythmical application of radiation dose ensures better accumulation of the polarized light by the plant cells. The change of their electric vectors accelerates their growth and forces the physiological and biochemical processes. As a result the early yield has been increased respectively by 15.6% and 12% and the total standard yield - by 15.4% and 11.7%

  4. Lasers

    Milonni, Peter W

    1988-01-01

    A comprehensive introduction to the operating principles and applications of lasers. Explains basic principles, including the necessary elements of classical and quantum physics. Provides concise discussions of various laser types including gas, solid state, semiconductor, and free electron lasers, as well as of laser resonators, diffraction, optical coherence, and many applications including holography, phase conjugation, wave mixing, and nonlinear optics. Incorporates many intuitive explanations and practical examples. Discussions are self-contained in a consistent notation and in a style that should appeal to physicists, chemists, optical scientists and engineers.

  5. Performances of helium, neon and argon glow discharges for reduction of fuel hydrogen retention in tungsten, stainless steel and graphite

    Hino, T.; Yamauchi, Y.; Kimura, Y.; Matsumoto, A.; Nishimura, K.; Ueda, Y.

    2012-11-01

    It is quite important to investigate the performance of glow discharge conditionings for controls of in-vessel tritium (T) inventory and hydrogen recycling. For this purpose, first, the deuterium (D) retentions in tungsten (W), graphite (C) and stainless steel (SS) were measured. The retention in W was not small as expected, several times larger than that of SS, although the retention in SS was one order smaller than that of C. Such the large retention in W is owing to the growth of rough surface structure produced by plasma irradiations. For reduction of deuterium retention in W, SS and C, second, inert gas (He, Ne, Ar) glow discharges were conducted under the same condition, and these performances were compared. The removal ratio of deuterium retention was highest in He discharge, and lowest in Ar discharge. These values are well explained by the numerical analyses using SRIM code. The removal ratios for SS and C were significantly large, but quite small for W. This reason is again owing to the rough surface structure in W. For W, thirdly, the hydrogen isotope exchange and the wall baking experiments were conducted. It is found that the wall backing with a temperature higher than 700 K can well reduce the retention, and the hydrogen isotope exchange using deuterium glow discharge is also useful to reduce the tritium retention in the wall. The present results significantly contribute to control the fuel hydrogen retention and to reduce the in-vessel tritium inventory in fusion reactors. (author)

  6. Mutation breeding of Bacillus subtilis YTB4 with high yield of ...

    DR TONUKARI NYEROVWO

    2012-07-17

    Jul 17, 2012 ... Helium-neon (He-Ne) laser irradiation is a highly efficient mutation breeding technology and is widely applied to various fields of biological science. Using Bacillus subtilis YTB4 with high yield of multienzyme complex as original strain, mutation breeding was carried out by He-Ne laser irradiation in.

  7. Mutation breeding of Bacillus subtilis YTB4 with high yield of ...

    Helium-neon (He-Ne) laser irradiation is a highly efficient mutation breeding technology and is widely applied to various fields of biological science. Using Bacillus subtilis YTB4 with high yield of multienzyme complex as original strain, mutation breeding was carried out by He-Ne laser irradiation in this study. Based on the ...

  8. The Creation and Varied Applications of Educational Holograms.

    Layng, Jacqueline M.

    The potential of holograms has been left virtually untapped in the field of education. A hologram can be described as a three-dimensional photographic record of the interference pattern of two superimposed beams of coherent light. Holography requires: (1) high-resolution film; (2) a laser, often a red-beamed helium neon laser; (3) optical…

  9. Simple Ultra-Low-Cost Undergraduate Holography Using a Modified Michelson Interferometer.

    Rudmin, J. W.; And Others

    1980-01-01

    A technique is presented for producing holograms using equipment which is already in the possesion of the majority of college physics departments, which includes a slightly modified Michelson interferometer, a helium-neon laser, and a long focal-length lens. Production of high quality holograms has been achieved by inexperienced undergraduates…

  10. Disturbance of visual functions as a result of temporary blinding from low power lasers

    Reidenbach, Hans-Dieter

    2010-04-01

    Although it is well-known that dazzle, flash-blindness and afterimages may be caused by bright optical radiation, only sparse quantitative data are available with regard to the effects arising from low power laser products. Indirect effects like temporary blinding might result in serious incidents or even accidents due to the alteration of visual functions like visual acuity, contrast sensitivity and color discrimination. In order to determine the degree and duration of impairment resulting from dazzle, flash-blindness and afterimages, caused by a laser beam, an investigation has been performed with the goal to improve the current knowledge as far as especially the visual acuity recovery duration is concerned. Two different test set-ups were designed and applied in order to determine the afterimage duration and the recovery time for visual acuity after temporary blinding from a laser, respectively. In order to get the desired information a helium-neon laser was mounted on a movable assembly where the respective beam position and direction could be set up on a semicircle. In addition the mount could be inclined in a vertical plane in order to increase the variability of feasible settings. The power was adjusted in several steps in order to investigate the respective dependence of the afterimage. The investigations were relatively time consuming, since re-adaptation of about half an hour was necessary after every exposure in order not to falsify the results. The trials have been done with several volunteers in the laboratory. After the experimental mapping of the local afterimage duration for the various sites on the retina the foveal afterimage duration taf,fv produced by a red laser beam was determined. The investigations have shown a strong dependence on the angle between the line of sight and the beam direction. Besides a maximum of 300 s the dose relationship taf,fv/s ~ 50.6•ln[(P•texp)/μJ] - 13.4 for laser output powers P between 10 μW and 30 μW with

  11. Lasers '89

    Harris, D.G.; Shay, T.M.

    1990-01-01

    This book covers the following topics: XUV, X-Ray and Gamma-Ray Lasers, excimer lasers, chemical lasers, nuclear pumped lasers, high power gas lasers, solid state lasers, laser spectroscopy. The paper presented include: Development of KrF lasers for fusion and Nuclear driven solid-state lasers

  12. USSR and Eastern Scientific Abstracts, Biomedical and Behavioral Sciences, Number 62

    1977-01-18

    broilers ). They tested their bacterial preparation on 200 male White Plymouth Rock chickens . The animals, at the age of 3 days, 61-62 g, were...institute, employed a Soviet helium-neon laser apparatus LG-75, 10 mew power, which corresponded to a power flux density of about 0.2 w /cm. The course...A HIGH NUTRITIONAL VALUE PRODUCT Moscow RYBNOYE KHOZYAYSTVO (Fish Economy) in Russian No 4, Apr 76 pp 73-74 [Abstract] Nutritional and biological

  13. Laser Technology.

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  14. Beam experiments with state selected Ne (3P0, 3P2) metastable atoms

    Verheijen, M.J.

    1984-01-01

    Metastable rare gas atoms play an important role in all types of plasmas and gas discharges, e.g. in fluorescent lamps and in laser discharges (helium-neon laser or excimer lasers). In this thesis, the metastable states of NeI are studied. First, the theory of excited neon atoms and diatomic molecules is introduced, as well as Penning ionisation. Next, some experimental facilities are described (e.g. the dye laser system). With these instruments, natural lifetime measurements of the 2p fine structure states of NeI are carried out. Results are reported. Finally, total Penning ionisation cross sections are calculated using the optical potential model. (Auth.)

  15. The Newest Laser Processing

    Lee, Baek Yeon

    2007-01-01

    This book mentions laser processing with laser principle, laser history, laser beam property, laser kinds, foundation of laser processing such as laser oscillation, characteristic of laser processing, laser for processing and its characteristic, processing of laser hole including conception of processing of laser hole and each material, and hole processing of metal material, cut of laser, reality of cut, laser welding, laser surface hardening, application case of special processing and safety measurement of laser.

  16. The clinical effects observation of He-Ne laser combined with dryness itching capsules for treating herpes zoster%氦氖激光联合润燥止痒胶囊治疗带状疱疹的临床疗效观察

    聂丽; 单玉珍

    2015-01-01

    Objective To investigate the clinical effects of He-Ne laser combined with dryness itching capsules for treating herpes zoster.Methods 140 patients with herpes zoster based on the random lottery principle were equally divided into the treatment group of 70 patients and 70 patients in the control group.140 patients were given the acyclovir oral and helium-neon laser therapy,on the basis of these,the treatment group were added treated with oral dryness itching capsules therapy.Results The response rate was 98.6% in the treatment group and 90.0% in the control group.The response rate of the treatment group was significantly higher (P < 0.05) than that of the control group.The pain scores before treatment was not statistically significant between the two groups while the pain scores of the treatment group after treatment were significantly lower than the control group (P < 0.05).The analgesic immediately onset time,crusting time and pain began to ease time of the treatment group were significantly less than the control group (P < 0.05).Followed-up eight weeks after treatment,the recurrence rate in the treatment group was 4.3% and 20.0% in the control group,the recurrence rate in the treatment group was significantly lower than the control group (P < 0.05).Conclusions He-Ne laser combined with itching dryness capsule in the treatment of herpes zoster can effectively relieve pain,improve clinical symptoms,thus improve the overall efficacy and recurrence rate that should be widely applied.%目的 探讨氦氖激光联合润燥止痒胶囊治疗带状疱疹的临床疗效.方法 根据随机抽签原则,将带状疱疹患者140例分为治疗组70例与对照组70例,两组都选择阿昔洛韦口服与氦氖激光治疗,治疗组在此基础上加用口服润燥止痒胶囊治疗,都治疗14天.结果 治疗组的有效率为98.6%,对照组的有效率为90.0%,治疗组的有效率经明显高于对照组(P<0.05).两组治疗前的疼痛评分对比

  17. Laser Therapy

    ... for Every Season How to Choose the Best Skin Care Products In This Section Dermatologic Surgery What is dermatologic ... for Every Season How to Choose the Best Skin Care Products Laser Resurfacing Uses for Laser Resurfacing Learn more ...

  18. Lasers technology

    2014-01-01

    The Laser Technology Program of IPEN is developed by the Center for Lasers and Applications (CLA) and is committed to the development of new lasers based on the research of new optical materials and new resonator technologies. Laser applications and research occur within several areas such as Nuclear, Medicine, Dentistry, Industry, Environment and Advanced Research. Additional goals of the Program are human resource development and innovation, in association with Brazilian Universities and commercial partners

  19. YCOB lasers

    Richardson, Martin; Hammons, Dennis; Eichenholz, Jason; Chai, Bruce; Ye, Qing; Jang, Won; Shah, Lawrence

    1999-01-01

    We review new developments with a new laser host material, YCa 4 O(BO 3 ) 3 or YCOB. Lasers based on this host material will open new opportunities for the development of compact, high-power, frequency-agile visible and near IR laser sources, as well as sources for ultrashort pulses. Efficient diode-pumped laser action with both Nd-doped and Yb-doped YCOB has already been demonstrated. Moreover, since these materials are biaxial, and have high nonlinear optical coefficients, they have become the first laser materials available as efficient self-frequency-doubled lasers, capable of providing tunable laser emission in several regions of the visible spectrum. Self-frequency doubling eliminates the need for inclusion of a nonlinear optical element within or external to the laser resonator. These laser materials possess excellent thermal and optical properties, have high laser-damage thresholds, and can be grown to large sizes. In addition they are non-hygroscopic. They therefore possess all the characteristics necessary for laser materials required in rugged, compact systems. Here we summarize the rapid progress made in the development of this new class of lasers, and review their potential for a number of applications. (author)

  20. Laser sampling

    Gorbatenko, A A; Revina, E I

    2015-01-01

    The review is devoted to the major advances in laser sampling. The advantages and drawbacks of the technique are considered. Specific features of combinations of laser sampling with various instrumental analytical methods, primarily inductively coupled plasma mass spectrometry, are discussed. Examples of practical implementation of hybrid methods involving laser sampling as well as corresponding analytical characteristics are presented. The bibliography includes 78 references

  1. HF laser

    Suzuki, Kazuya; Iwasaki, Matae

    1977-01-01

    A review is made of the research and development of HF chemical laser and its related work. Many gaseous compounds are used as laser media successfully; reaction kinetics and technological problems are described. The hybrid chemical laser of HF-CO 2 system and the topics related to the isotope separation are also included. (auth.)

  2. Investigation of gas discharge by schlieren method and interferometry with automated processing of schlieren photographs and interferograms

    Gerasimova, V.I.; Dushin, L.A.; Privezentsev, V.S.; Taran, V.S.

    1974-01-01

    The principles are clarified of two optical plasma diagnostics techniques, viz., the interferometric method permitting the determination of electron density and the schlieren method determining the gradient of electron density. Both techniques in combination were used in investigating the plasma in a hydrogen hollow-cathode spark discharge. In the schlieren technique, a pulsed xenon laser, in the interference technique a helium-neon laser were used as the light sources. Schlieren photographs were processed automatically using an electronic computer. A detailed description is presented of the equipment for the automatic photograph evaluation. (A.K.)

  3. Laser fusion

    Eliezer, S.

    1982-02-01

    In this paper, the physics of laser fusion is described on an elementary level. The irradiated matter consists of a dense inner core surrounded by a less dense plasma corona. The laser radiation is mainly absorbed in the outer periphery of the plasma. The absorbed energy is transported inward to the ablation surface where plasma flow is created. Due to this plasma flow, a sequence of inward going shock waves and heat waves are created, resulting in the compression and heating of the core to high density and temperature. The interaction physics between laser and matter leading to thermonuclear burn is summarized by the following sequence of events: Laser absorption → Energy transport → Compression → Nuclear Fusion. This scenario is shown in particular for a Nd:laser with a wavelength of 1 μm. The wavelength scaling of the physical processes is also discussed. In addition to the laser-plasma physics, the Nd high power pulsed laser is described. We give a very brief description of the oscillator, the amplifiers, the spatial filters, the isolators and the diagnostics involved. Last, but not least, the concept of reactors for laser fusion and the necessary laser system are discussed. (author)

  4. Biocavity Lasers

    Gourley, P.L.; Gourley, M.F.

    2000-10-05

    Laser technology has advanced dramatically and is an integral part of today's healthcare delivery system. Lasers are used in the laboratory analysis of human blood samples and serve as surgical tools that kill, burn or cut tissue. Recent semiconductor microtechnology has reduced the size o f a laser to the size of a biological cell or even a virus particle. By integrating these ultra small lasers with biological systems, it is possible to create micro-electrical mechanical systems that may revolutionize health care delivery.

  5. High power lasers & systems

    Chatwin, Chris; Young, Rupert; Birch, Philip

    2015-01-01

    Some laser history;\\ud Airborne Laser Testbed & Chemical Oxygen Iodine Laser (COIL);\\ud Laser modes and beam propagation;\\ud Fibre lasers and applications;\\ud US Navy Laser system – NRL 33kW fibre laser;\\ud Lockheed Martin 30kW fibre laser;\\ud Conclusions

  6. Laser Dyes

    amplification or generation of coherent light waves in the UV,. VIS, and near IR region. .... ciency in most flashlamp pumped dye lasers. It is used as reference dye .... have led to superior laser dyes with increased photostabilities. For instance ...

  7. Free-solution, label-free molecular interactions studied by back-scattering interferometry

    Bornhop, D.J.; Latham, J.C.; Kussrow, A.

    2007-01-01

    Free-solution, label-free molecular interactions were investigated with back-scattering interferometry in a simple optical train composed of a helium-neon laser, a microfluidic channel, and a position sensor. Molecular binding interactions between proteins, ions and protein, and small molecules...... and protein, were determined with high dynamic range dissociation constants (K-d spanning six decades) and unmatched sensitivity (picomolar K-d's and detection limits of 10,000s of molecules). With this technique, equilibrium dissociation constants were quantified for protein A and immunoglobulin G...

  8. Laser spectroscopy

    Demtröder, Wolfgang

    2008-01-01

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

  9. Laser spectroscopy

    Demtröder, Wolfgang

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers) and parametric oscillators, coherent matter waves, Doppler-free Fourier spectroscopy with optical frequency combs, interference spectroscopy, quantum optics, the interferometric detection of gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.

  10. Il laser

    Smith, William V

    1974-01-01

    Verso il 1960, il laser era ancora "una soluzione alla ricerca di un problema", ma fin dagli anni immediatamente successivi si è rivelato uno strumento insostituibile per le applicazioni più svariate.

  11. Laser Refractography

    Rinkevichyus, B.S; Raskovskaya, I.L

    2010-01-01

    This book describes the basic principles of laser refractography, a flexible new diagnostic tool for measuring optically inhomogeneous media and flows. Laser refractography is based on digital imaging and computer processing of structured laser beam refraction (SLR) in inhomogeneous transparent media. Laser refractograms provide both qualitative and quantitative measurements and can be used for the study of fast and transient processes. In this book, the theoretical basis of refractography is explored in some detail, and experimental setups are described for measurement of transparent media using either 2D (passed radiation) or 3D (scattered radiation) refractograms. Specific examples and applications are discussed, including visualization of the boundary layer near a hot or cold metallic ball in water, and observation of edge effects and microlayers in liquids and gases. As the first book to describe this new and exciting technique, this monograph has broad cross-disciplinary appeal and will be of interest t...

  12. Laser fusion

    Ashby, D.E.T.F.

    1976-01-01

    A short survey is given on laser fusion its basic concepts and problems and the present theoretical and experimental methods. The future research program of the USA in this field is outlined. (WBU) [de

  13. Laser spectroscopy

    Letokhov, V.S.

    1981-01-01

    This article describes recent progress in the application of laser atomic spectroscopy to study parameters of nuclei available in very small quantities; radioactive nuclei, rare isotopes, nuclear isomers, etc, for which study by conventional spectroscopic methods is difficult. (author)

  14. Laser fusion

    Key, M.H.; Oxford Univ.

    1990-04-01

    The use of lasers to drive implosions for the purpose of inertially confined fusion is an area of intense activity where progress compares favourably with that made in magnetic fusion and there are significant prospects for future development. In this brief review the basic concept is summarised and the current status is outlined both in the area of laser technology and in the most recent results from implosion experiments. Prospects for the future are also considered. (author)

  15. Laser Resurfacing

    Janik, Joseph P.; Markus, Jodi L.; Al-Dujaili, Zeena; Markus, Ramsey F.

    2007-01-01

    In a society desiring images of beauty and youthfulness, the world of cutaneous surgery offers the gifts of facial rejuvenation for those determined to combat the signs of aging. With the development of novel laser and plasma technology, pigmentary changes, scarring, and wrinkles can be conquered providing smoother, healthier, younger-looking skin. This review highlights five of the most popular resurfacing technologies in practice today including the carbon dioxide (CO2) laser, the erbium:yt...

  16. Green lasers

    Jensen, Ole Bjarlin

    2010-01-01

    Well over a dozen papers at this year's Photonics West meeting in San Francisco boasted improvements in harmonic generation to produce visible laser beams, most of them in the green spectral range......Well over a dozen papers at this year's Photonics West meeting in San Francisco boasted improvements in harmonic generation to produce visible laser beams, most of them in the green spectral range...

  17. Laser material processing

    Steen, William

    2010-01-01

    This text moves from the basics of laser physics to detailed treatments of all major materials processing techniques for which lasers are now essential. New chapters cover laser physics, drilling, micro- and nanomanufacturing and biomedical laser processing.

  18. Laser therapy for cancer

    ... this page: //medlineplus.gov/ency/patientinstructions/000905.htm Laser therapy for cancer To use the sharing features ... Lasers are also used on the skin. How Laser Therapy is Used Laser therapy can be used ...

  19. Lasers in Cancer Treatment

    ... the advantages of laser therapy? What are the disadvantages of laser therapy? What does the future hold ... therapy is appropriate for them. What are the disadvantages of laser therapy? Laser therapy also has several ...

  20. Practical laser safety

    Winburn, D.C.

    1985-01-01

    This book includes discussions of the following topics: characteristics of lasers; eye components; skin damage thresholds; classification of lasers by ANSI Z136.1; selecting laser-protective eyewear; hazards associated with lasers; and, an index

  1. Laser acceleration

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  2. Laser acceleration

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-01-01

    The fundamental idea of LaserWakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wake fields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ∼ c and ultra fastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nano materials is also emerging.

  3. Laser Heterodyning

    Protopopov, Vladimir V

    2009-01-01

    Laser heterodyning is now a widespread optical technique, based on interference of two waves with slightly different frequencies within the sensitive area of a photo-detector. Its unique feature – preserving phase information about optical wave in the electrical signal of the photo-detector – finds numerous applications in various domains of applied optics and optoelectronics: in spectroscopy, polarimetry, radiometry, laser radars and Lidars, microscopy and other areas. The reader may be surprised by a variety of disciplines that this book covers and satisfied by detailed explanation of the phenomena. Very well illustrated, this book will be helpful for researches, postgraduates and students, working in applied optics.

  4. Laser polarimetry

    Goldstein, D.H.

    1989-01-01

    Polarimetry, or transmission ellipsometry, is an important experimental technique for the determination of polarization properties of bulk materials. In this technique, source radiation of known polarization is passed through bulk samples to determine, for example, natural or induced birefringence and dichroism. The laser is a particularly appropriate source for this technique because of its monochromaticity, collimation, and radiant intensity. Lasers of many different wavelengths in different spectral regions are now available. Laser polarimetry can be done in any of these wavelength regions where polarizing elements are available. In this paper, polarimetry is reviewed with respect to applications, sources used, and polarization state generator and analyzer configurations. Scattering ellipsometry is also discussed insofar as the forward scattering measurement is related to polarimetry. The authors then describe an infrared laser polarimeter which we have designed and constructed. This instrument can operate over large wavelength regions with only a change in source. Polarization elements of the polarimeter are in a dual rotating retarder configuration. Computer controlled rotary stages and computer monitored detectors automate the data collection. The Mueller formulation is used to process the polarization information. Issues and recent progress with this instrument are discussed

  5. excimer laser

    2014-01-07

    Jan 7, 2014 ... is necessary to deposit one order higher input electric power into gas medium than ... cross-sectional view of the laser system is shown in figure 2A. The system mainly consists ... Considering the simplicity and reliability of the.

  6. Laser device

    2013-01-01

    The present invention provides a light source for light circuits on a silicon platform. A vertical laser cavity is formed by a gain region arranged between a first mirror structure and a second mirror structure, both acting as mirrors, by forming a grating region including an active material...

  7. Nanowire Lasers

    Couteau C.

    2015-05-01

    Full Text Available We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs, solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.

  8. Excimer Laser Technology

    Basting, Dirk

    2005-01-01

    This comprehensive survey on Excimer Lasers investigates the current range of the technology, applications and devices of this commonly used laser source, as well as the future of new technologies, such as F2 laser technology. Additional chapters on optics, devices and laser systems complete this compact handbook. A must read for laser technology students, process application researchers, engineers or anyone interested in excimer laser technology. An effective and understandable introduction to the current and future status of excimer laser technology.

  9. Laser ion sources

    Bykovskij, Yu

    1979-02-01

    The characteristics a laser source of multiply-ionized ions are described with regard to the interaction of laser radiation and matter, ion energy spectrum, angular ion distribution. The amount of multiple-ionization ions is evaluated. Out of laser source applications a laser injector of multiple-ionization ions and nuclei, laser mass spectrometry, laser X-ray microradiography, and a laser neutron generators are described.

  10. Dermatological laser treatment

    Moerk, N.J.; Austad, J.; Helland, S.; Thune, P.; Volden, G.; Falk, E.

    1991-01-01

    The article reviews the different lasers used in dermatology. Special emphasis is placed on the treatment of naevus flammeus (''portwine stain'') where lasers are the treatment of choice. Argon laser and pulsed dye laser are the main lasers used in vascular skin diseases, and the article focuses on these two types. Copper-vapour laser, neodymium-YAG laser and CO 2 laser are also presented. Information is provided about the availability of laser technology in the different health regions in Norway. 5 refs., 2 figs

  11. CO2-laser fusion

    Stark, E.E. Jr.

    1978-01-01

    The basic concept of laser fusion is described, with a set of requirements on the laser system. Systems and applications concepts are presented and discussed. The CO 2 laser's characteristics and advantages for laser fusion are described. Finally, technological issues in the development of CO 2 laser systems for fusion applications are discussed

  12. Project LASER

    1990-01-01

    NASA formally launched Project LASER (Learning About Science, Engineering and Research) in March 1990, a program designed to help teachers improve science and mathematics education and to provide 'hands on' experiences. It featured the first LASER Mobile Teacher Resource Center (MTRC), is designed to reach educators all over the nation. NASA hopes to operate several MTRCs with funds provided by private industry. The mobile unit is a 22-ton tractor-trailer stocked with NASA educational publications and outfitted with six work stations. Each work station, which can accommodate two teachers at a time, has a computer providing access to NASA Spacelink. Each also has video recorders and photocopy/photographic equipment for the teacher's use. MTRC is only one of the five major elements within LASER. The others are: a Space Technology Course, to promote integration of space science studies with traditional courses; the Volunteer Databank, in which NASA employees are encouraged to volunteer as tutors, instructors, etc; Mobile Discovery Laboratories that will carry simple laboratory equipment and computers to provide hands-on activities for students and demonstrations of classroom activities for teachers; and the Public Library Science Program which will present library based science and math programs.

  13. Laser Research Lab

    Federal Laboratory Consortium — The Laser Research lab is thecenter for the development of new laser sources, nonlinear optical materials, frequency conversion processes and laser-based sensors for...

  14. Laser therapy (image)

    A laser is used for many medical purposes. Because the laser beam is so small and precise, it enables ... without injuring surrounding tissue. Some uses of the laser are retinal surgery, excision of lesions, and cauterization ...

  15. Laser fusion: an overview

    Boyer, K.

    1975-01-01

    The laser fusion concept is described along with developments in neodymium and carbon dioxide lasers. Fuel design and fabrication are reviewed. Some spin-offs of the laser fusion program are discussed. (U.S.)

  16. Laser power supply

    Bernstein, D.

    1975-01-01

    The laser power supply includes a regulator which has a high voltage control loop based on a linear approximation of a laser tube negative resistance characteristic. The regulator has independent control loops for laser current and power supply high voltage

  17. Bleaching Dengan Teknologi Laser

    Eliwaty

    2008-01-01

    Penulisan tentang bleaching dengan laser dimaksudkan untuk menambah wawasan serta pengetahuan dari pembaca di bidang kedokteran gigi. Macam-macam laser yang dipergunakan dalam bleaching yaitu argon, CO2 serta dioda laser. Contoh merek produk laser yaitu Blulaze, Dentcure untuk argonlaser, Novapulse untuk C02 serta Opus 5 untuk dioda laser. Laser bleaching hasilnya dapat dicapai dalam satu kunjungan saja, cepat, efisien namun biayanya relatif mahal, dapat menimbulkan burn, sensitivitas se...

  18. Laser safety at high profile laser facilities

    Barat, K.

    2010-01-01

    Complete text of publication follows. Laser safety has been an active concern of laser users since the invention of the laser. Formal standards were developed in the early 1970's and still continue to be developed and refined. The goal of these standards is to give users guidance on the use of laser and consistent safety guidance and requirements for laser manufacturers. Laser safety in the typical research setting (government laboratory or university) is the greatest challenge to the laser user and laser safety officer. This is due to two factors. First, the very nature of research can put the user at risk; consider active manipulation of laser optics and beam paths, and user work with energized systems. Second, a laser safety culture that seems to accept laser injuries as part of the graduate student educational process. The fact is, laser safety at research settings, laboratories and universities still has long way to go. Major laser facilities have taken a more rigid and serious view of laser safety, its controls and procedures. Part of the rationale for this is that these facilities draw users from all around the world presenting the facility with a work force of users coming from a wide mix of laser safety cultures. Another factor is funding sources do not like bad publicity which can come from laser accidents and a poor safety record. The fact is that injuries, equipment damage and lost staff time slow down progress. Hence high profile/large laser projects need to adapt a higher safety regimen both from an engineering and administrative point of view. This presentation will discuss all these points and present examples. Acknowledgement. This work has been supported by the University of California, Director, Office of Science.

  19. Semiconductor Laser Measurements Laboratory

    Federal Laboratory Consortium — The Semiconductor Laser Measurements Laboratory is equipped to investigate and characterize the lasing properties of semiconductor diode lasers. Lasing features such...

  20. Laser Protection TIL

    Federal Laboratory Consortium — The Laser Protection TIL conducts research and analysis of laser protection materials along with integration schemes. The lab's objectives are to limit energy coming...

  1. Laser Photochemistry.

    1981-07-01

    inverted by the first, i.e., at the moment of time t = T, such that i = (2n+)lT, where 0 is the Rabi frequency (Oraevski et al., 1976). . classical... anisotropic molecule present. CW HeNe, Ar+ and Kr+ lasers are used, and the filter method is necessary because of time-scales lo8 - 10ll Hz. Some general...e.g., truncated harmonic oscillator, square well, spherically symmetric Morse or Lennard-Jones, anisotropic (angle-dependent) Morse or Lennard-Jones

  2. Studies on the separation of hydrogen isotopes and spin isomers by gas chromatography

    Pushpa, K.K.; Annaji Rao, K.

    2000-08-01

    Separation and analysis of mixture of hydrogen isotopes has gained considerable importance because of various applications needing different isotopes in lasers, nuclear reactions and tracer or labelled compounds. In the literature gas chromatographic methods are reported using columns packed with partly dehydrated or thoroughly dehydrated alumina/molecular sieve stationary phase at 77 deg K with helium, neon and even hydrogen or deuterium as carrier gas. In the present study an attempt is made to compare the chromatographic behaviour of these two stationary phases using virgin and Fe doped form in partly dehydrated and thoroughly dehydrated state, using helium, neon, hydrogen and deuterium as carrier gas. The results of this study show that helium or neon carrier gas behave similarly broad peaks with some tailing. Sharp symmetric peaks are obtained with hydrogen or deuterium carrier gas. This is attributed to large hold up capacity for H 2 or D 2 at 77 deg K in these materials as compared to helium or neon. Spin isomers of H 2 or D 2 are separated on Fe free stationary phases, though ortho H 2 and HD are not resolved. Using a combination of Fe doped short column and plain alumina column, both maintained in dehydrated form, the effect of Fe doping on thermal equilibrium of ortho/para forms at 77 deg K is clearly demonstrated. (author)

  3. Laser Propulsion - Quo Vadis

    Bohn, Willy L.

    2008-01-01

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community

  4. Laser safety and practice

    Low, K.S.

    1995-01-01

    Lasers are finding increasing routine applications in many areas of science, medicine and industry. Though laser radiation is non-ionizing in nature, the usage of high power lasers requires specific safety procedures. This paper briefly outlines the properties of laser beams and various safety procedures necessary in their handling and usage. (author)

  5. Diode lasers and arrays

    Streifer, W.

    1988-01-01

    This paper discusses the principles of operation of III-V semiconductor diode lasers, the use of distributed feedback, and high power laser arrays. The semiconductor laser is a robust, miniature, versatile device, which directly converts electricity to light with very high efficiency. Applications to pumping solid-state lasers and to fiber optic and point-to-point communications are reviewed

  6. Laser cladding with powder

    Schneider, M.F.; Schneider, Marcel Fredrik

    1998-01-01

    This thesis is directed to laser cladding with powder and a CO2 laser as heat source. The laser beam intensity profile turned out to be an important pa6 Summary rameter in laser cladding. A numerical model was developed that allows the prediction of the surface temperature distribution that is

  7. Semiconductor laser shearing interferometer

    Ming Hai; Li Ming; Chen Nong; Xie Jiaping

    1988-03-01

    The application of semiconductor laser on grating shearing interferometry is studied experimentally in the present paper. The method measuring the coherence of semiconductor laser beam by ion etching double frequency grating is proposed. The experimental result of lens aberration with semiconductor laser shearing interferometer is given. Talbot shearing interferometry of semiconductor laser is also described. (author). 2 refs, 9 figs

  8. Visible Solid State Lasers

    Hikmet, R.A.M.

    2007-01-01

    Diode lasers can be found in various applications most notably in optical communication and optical storage. Visible lasers were until recently were all based on IR diode lasers. Using GaN, directly blue and violet emitting lasers have also been introduced to the market mainly in the area of optical

  9. Laser Microdissection.

    Frost, Andra R; Eltoum, Isam-Eldin; Siegal, Gene P; Emmert-Buck, Michael R; Tangrea, Michael A

    2015-10-01

    Laser microdissection (LM) offers a relatively rapid and precise method of isolating and removing specified cells from complex tissues for subsequent analysis of their RNA, DNA, protein or metabolite content, thereby allowing assessment of the role of different cell types in the normal physiological or disease processes being studied. In this unit, protocols for the preparation of mammalian frozen tissues, fixed tissues, and cytologic specimens for LM, including tissue freezing, tissue processing and paraffin embedding, histologic sectioning, cell processing, hematoxylin and eosin staining, immunohistochemistry, and image-guided cell targeting are presented. Also provided are recipes for generating lysis buffers for the recovery of nucleic acids and proteins. The Commentary section addresses the types of specimens that can be utilized for LM and approaches to staining of specimens for cell visualization. Emphasis is placed on the preparation of tissue or cytologic specimens as this is critical to effective LM. Copyright © 2015 John Wiley & Sons, Inc.

  10. Laser EXAFS

    Mallozzi, P.J.; Epstein, H.M.; Schwenzel, R.E.; Campbell, B.E.

    1983-01-01

    Apparatus for obtaining EXAFS data of a material, comprising means for directing radiant energy from a laser onto a target in such manner as to produce X-rays at the target of a selected spectrum and intensity, suitable for obtaining the EXAFS spectrum of the material, means for directing X-rays from the target onto spectral dispersive means so located as to direct the spectrally resolved X-rays therefrom onto recording means, and means for positioning a sample of material in the optical path of the X-rays, the recording means providing a reference spectrum of X-rays not affected by the sample and absorption spectrum of X-rays modified by transmission through the sample

  11. Multibeam Fibre Laser Cutting

    Olsen, Flemming Ove

    The appearance of the high power high brilliance fibre laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating cutting laser, the CO2-laser. However, quality problems in fibre......-laser cutting have until now limited its application in metal cutting. In this paper the first results of proof-of-principle studies applying a new approach (patent pending) for laser cutting with high brightness short wavelength lasers will be presented. In the approach, multi beam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from 2 single mode fibre lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W of single...

  12. Multibeam fiber laser cutting

    Olsen, Flemming Ove; Hansen, Klaus Schütt; Nielsen, Jakob Skov

    2009-01-01

    The appearance of the high power high brilliance fiber laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating Cutting laser, the CO2 laser. However, quality problems in fiber......-laser cutting have until now limited its application to metal cutting. In this paper the first results of proof-of-principle Studies applying a new approach (patent pending) for laser cutting with high brightness and short wavelength lasers will be presented. In the approach, multibeam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from two single mode fiber lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W...

  13. History and principle of lasers

    Townes, Ch.H.; Schwob, C.; Julien, J.; Forget, S.; Robert-Philip, I.; Balcou, Ph.

    2010-01-01

    In the first article C.H. Townes, the inventor of the maser, describes the work and ideas that led to the invention of the laser. The second article explains how a laser operate and the third article reviews the main different types of laser: solid lasers, gas lasers, diode lasers and dye lasers

  14. Technological laser application

    Shia, D.O.; Kollen, R.; Rods, U.

    1980-01-01

    Problems of the technological applications of lasers are stated in the popular form. Main requirements to a technological laser as well as problems arising in designing any system using lasers have been considered. Areas of the laser applications are described generally: laser treatment of materials, thermal treatment, welding, broach and drilling of holes, scribing, microtreatment and adjustment of resistors, material cutting, investigations into controlled thermonuclear fussion

  15. Laser ablation principles and applications

    1994-01-01

    Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.

  16. New power lasers

    Yamanaka, Masanobu; Daido, Hiroyuki; Imasaki, Kazuo.

    1989-01-01

    As the new power lasers which are expected to exert large extending effect to the fields of advanced science and technology including precision engineering as well as laser nuclear fusion, LD-excited solid laser, X-ray laser and free electron laser are taken up and outlined. Recently, the solid laser using high power output, high efficiency semiconductor laser as the exciting beam source has been developed. This is called laser diode (LD)-excited solid laser, and the heightening of power output and efficiency and the extension of life are planned. Its present status and application to medical use, laser machining, laser soldering and so on are described. In 1960, the laser in visible region appeared, however in 1985, the result of observing induced emission beam by electron collision exciting method was reported in USA. In the wavelength range of 200 A, holography and contact X-ray microscope applications were verified. The various types of soft X-ray laser and the perspective hereafter are shown. The principle of free electron laser is explained. In the free electron laser, wavelength can be changed by varying electron beam energy, the period of wiggler magnetic field and the intensity of magnetic field. Further, high efficiency and large power output are possible. Its present status, application and the perspective hereafter are reported. (K.I.)

  17. Laser applications in materials processing

    Ready, J.F.

    1980-01-01

    The seminar focused on laser annealing of semiconductors, laser processing of semiconductor devices and formation of coatings and powders, surface modification with lasers, and specialized laser processing methods. Papers were presented on the theoretical analysis of thermal and mass transport during laser annealing, applications of scanning continuous-wave and pulsed lasers in silicon technology, laser techniques in photovoltaic applications, and the synthesis of ceramic powders from laser-heated gas-phase reactants. Other papers included: reflectance changes of metals during laser irradiation, surface-alloying using high-power continuous lasers, laser growth of silicon ribbon, and commercial laser-shock processes

  18. Raman fiber lasers

    2017-01-01

    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  19. Ceramic Laser Materials

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  20. Infrared laser system

    Cantrell, C.D.; Carbone, R.J.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture

  1. Ceramic Laser Materials

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  2. Spectroscopic and imaging diagnostics of pulsed laser deposition laser plasmas

    Thareja, Raj K.

    2002-01-01

    An overview of laser spectroscopic techniques used in the diagnostics of laser ablated plumes used for thin film deposition is given. An emerging laser spectroscopic imaging technique for the laser ablation material processing is discussed. (author)

  3. Lasers in periodontics.

    Elavarasu, Sugumari; Naveen, Devisree; Thangavelu, Arthiie

    2012-08-01

    Laser is one of the most captivating technologies in dental practice since Theodore Maiman in 1960 invented the ruby laser. Lasers in dentistry have revolutionized several areas of treatment in the last three and a half decades of the 20(th) century. Introduced as an alternative to mechanical cutting device, laser has now become an instrument of choice in many dental applications. Evidence suggests its use in initial periodontal therapy, surgery, and more recently, its utility in salvaging implant opens up a wide range of applications. More research with better designs are a necessity before lasers can become a part of dental armamentarium. This paper gives an insight to laser in periodontics.

  4. Excimer laser applications

    Fantoni, R.

    1988-01-01

    This lecture deals with laser induced material photoprocessing, especially concerning those processes which are initiated by u.v. lasers (mostly excimer laser). Advantages of using the u.v. radiation emitted by excimer lasers, both in photophysical and photochemical processes of different materials, are discussed in detail. Applications concerning microelectronics are stressed with respect to other applications in different fields (organic chemistry, medicine). As further applications of excimer lasers, main spectroscopic techniques for ''on line'' diagnostics which employ excimer pumped dye lasers, emitting tunable radiation in the visible and near u.v. are reviewed

  5. Lasers in chemical processing

    Davis, J.I.

    1982-01-01

    The high cost of laser energy is the crucial issue in any potential laser-processing application. It is expensive relative to other forms of energy and to most bulk chemicals. We show those factors that have previously frustrated attempts to find commercially viable laser-induced processes for the production of materials. Having identified the general criteria to be satisfied by an economically successful laser process and shown how these imply the laser-system requirements, we present a status report on the uranium laser isotope separation (LIS) program at the Lawrence Livermore National Laboratory

  6. Laser in urology. Laser i urologien

    Breisland, H.O. (Aker Sykehus, Oslo (Norway))

    1991-09-01

    The neodymium YAG laser is particularly suited for endoscopic urologic surgery because the YAG laser light can be conducted in flexible fibers. Superficial bladder tumours can be treated under local anaesthesia in the outpatient department. The frequency of local recurrences is low, significantly lower than after electrosection or electrocoagulation. Selected cases of T2-muscle invasive bladder tumours can be cured with laser coagulation applied subsequently to transurethral resection. Combined treatment with electrosection and laser coagulation of localized prostatic cancer is a promising method which compares favourably with results obtained by other treatment modalities. Tumours in the upper urinary tract can be laser-treated through ureteroscopes or nephroscopes, but the treatment should be limited to low stage, low grade tumours. Laser is the treatment of choice for intraurethral condylomatas. Laser treatment of penil carcinoma gives excellent cosmetic and functional results and few local recurrences. Laser lithotripsy is a new technique for treatment of ureteric stones and photodynamic laser therapy is a promising tecnique for treatment of carcinoma in situ in the bladder empithelium. However, neither of these techniques are available for clinical use in Norway as yet. 17 refs., 3 figs., 1 tabs.

  7. Laser materials processing with diode lasers

    Li, Lin; Lawrence, Jonathan; Spencer, Julian T.

    1996-01-01

    Laser materials processing is currently dominated by CO2, Nd-YAG and Excimer lasers. Continuous advances in semiconductor laser technology over the last decade have increased the average power output of the devices annualy by two fold, resulting in the commercial availability of the diode lasers today with delivery output powers in excess of 60W in CW mode and 5kW in qasi-CW mode. The advantages of compactness, high reliability, high efficiency and potential low cost, due to the mass producti...

  8. 1982 laser program annual report

    Hendricks, C.D.; Grow, G.R.

    1983-08-01

    This annual report covers the following eight sections: (1) laser program review, (2) laser systems and operation, (3) target design, (4) target fabrication, (5) fusion experiments program, (6) Zeus laser project, (7) laser research and development, and (8) energy applications

  9. Photonic bandgap fiber lasers and multicore fiber lasers for next generation high power lasers

    Shirakawa, A.; Chen, M.; Suzuki, Y.

    2014-01-01

    Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA....

  10. Laser in operative dentistry

    E. Yasini

    1994-06-01

    Full Text Available Today laser has a lot of usage in medicine and dentistry. In the field of dentistry, laser is used in soft tissue surgery, sterilization of canals (in root canal therapy and in restorative dentistry laser is used for cavity preparation, caries removal, sealing the grooves (in preventive dentistry, etching enamel and dentin, composite polymerization and removal of tooth sensitivity. The use of Co2 lasers and Nd: YAG for cavity preparation, due to creating high heat causes darkness and cracks around the region of laser radiation. Also due to high temperature of these lasers, pulp damage is inevitable. So today, by using the Excimer laser especially the argon floride type with a wavelength of 193 nm, the problem of heat stress have been solved, but the use of lasers in dentistry, especially for cavity preparation needs more researches and evaluations.

  11. Laser for fusion energy

    Holzrichter, J.F.

    1995-01-01

    Solid state lasers have proven to be very versatile tools for the study and demonstration of inertial confinement fusion principles. When lasers were first contemplated to be used for the compression of fusion fuel in the late 1950s, the laser output energy levels were nominally one joule and the power levels were 10 3 watts (pulse duration's of 10 -3 sec). During the last 25 years, lasers optimized for fusion research have been increased in power to typically 100,000 joules with power levels approaching 10 14 watts. As a result of experiments with such lasers at many locations, DT target performance has been shown to be consistent with high gain target output. However, the demonstration of ignition and gain requires laser energies of several megajoules. Laser technology improvements demonstrated over the past decade appear to make possible the construction of such multimegajoule lasers at affordable costs. (author)

  12. Radiological protection against lasers

    Ballereau, P

    1974-04-01

    A brief description of the biological effects of laser beams is followed by a review of the factors involved in eye and skin damage (factors linked with the nature of lasers and those linked with the organ affected) and a discussion of the problems involved in the determination of threshold exposure levels. Preventive measures are recommended, according to the type of laser (high-energy pulse laser, continuous laser, gas laser). No legislation on the subject exists in France or in Europe. Types of lasers marketed, threshold exposure levels for eye and skin, variations of admissible exposure levels according to wavelength, etc. are presented in tabular form. Nomogram for determination of safe distance for direct vision of a laser is included.

  13. Advances in Fiber Lasers

    Morse, T

    1999-01-01

    Most of the time of this contract has been devoted toward improvements in optical fiber lasers and toward gathering experience to improve our program in high power, cladding pumped optical fiber lasers...

  14. Laser Processing and Chemistry

    Bäuerle, Dieter

    2011-01-01

    This book gives an overview of the fundamentals and applications of laser-matter interactions, in particular with regard to laser material processing. Special attention is given to laser-induced physical and chemical processes at gas-solid, liquid-solid, and solid-solid interfaces. Starting with the background physics, the book proceeds to examine applications of lasers in “standard” laser machining and laser chemical processing (LCP), including the patterning, coating, and modification of material surfaces. This fourth edition has been enlarged to cover the rapid advances in the understanding of the dynamics of materials under the action of ultrashort laser pulses, and to include a number of new topics, in particular the increasing importance of lasers in various different fields of surface functionalizations and nanotechnology. In two additional chapters, recent developments in biotechnology, medicine, art conservation and restoration are summarized. Graduate students, physicists, chemists, engineers, a...

  15. Fiber Laser Array

    Simpson, Thomas

    2002-01-01

    ...., field-dependent, loss within the coupled laser array. During this program, Jaycor focused on the construction and use of an experimental apparatus that can be used to investigate the coherent combination of an array of fiber lasers...

  16. ISTEF Laser Radar Program

    Stryjewski, John

    1998-01-01

    The BMDO Innovative Science and Technology Experimentation Facility (BMDO/ISTEF) laser radar program is engaged in an ongoing program to develop and demonstrate advanced laser radar concepts for Ballistic Missile Defense (BMD...

  17. Wavelength sweepable laser source

    2014-01-01

    Wavelength sweepable laser source is disclosed, wherein the laser source is a semiconductor laser source adapted for generating laser light at a lasing wavelength. The laser source comprises a substrate, a first reflector, and a second reflector. The first and second reflector together defines...... and having a rest position, the second reflector and suspension together defining a microelectromechanical MEMS oscillator. The MEMS oscillator has a resonance frequency and is adapted for oscillating the second reflector on either side of the rest position.; The laser source further comprises electrical...... connections adapted for applying an electric field to the MEMS oscillator. Furthermore, a laser source system and a method of use of the laser source are disclosed....

  18. Laser surgery - skin

    ... Bleeding Problem not going away Infection Pain Scarring Skin color changes Some laser surgery is done when you are asleep and ... TG, Elston DM, eds. Andrews' Diseases of the Skin: Clinical ... lasers, lights, and tissue interactions. In: Hruza GJ, Avram ...

  19. Laser in operative dentistry

    E. Yasini; Gh. Rahbari; A. Matorian

    1994-01-01

    Today laser has a lot of usage in medicine and dentistry. In the field of dentistry, laser is used in soft tissue surgery, sterilization of canals (in root canal therapy) and in restorative dentistry laser is used for cavity preparation, caries removal, sealing the grooves (in preventive dentistry), etching enamel and dentin, composite polymerization and removal of tooth sensitivity. The use of Co2 lasers and Nd: YAG for cavity preparation, due to creating high heat causes darkness and cracks...

  20. Tunable laser optics

    Duarte, FJ

    2015-01-01

    This Second Edition of a bestselling book describes the optics and optical principles needed to build lasers. It also highlights the optics instrumentation necessary to characterize laser emissions and focuses on laser-based optical instrumentation. The book emphasizes practical and utilitarian aspects of relevant optics including the essential theory. This revised, expanded, and improved edition contains new material on tunable lasers and discusses relevant topics in quantum optics.

  1. Laser cutting system

    Dougherty, Thomas J

    2015-03-03

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  2. Application of Various Lasers to Laser Trimming Resistance System

    SUN Ji-feng

    2007-01-01

    Though the laser trimming resistance has been an old laser machining industry for over 30 years, the development of technology brings new alternative lasers which can be used for the traditional machining. The paper describes application of various lasers to laser trimming resistance system including early traditional krypton arc lamp pumped Nd:YAG to laser, modern popular diode pumped solid state laser and the present advanced harmonic diode pumped solid state laser. Using the new alternative lasers in the laser trimming resistance system can dramatically improve the yields and equipment performance.

  3. Laser technologies for laser accelerators. Annual report

    1985-01-01

    The primary result of the work reported is the determination of laser system architectures that satsify the requirements of high luminosity, high energy (about 1 TeV), electron accelerators. It has been found that high laser efficiency is a very hard driver for these accelerators as the total average laser output optical power is likely to fall above 10 MW. The luminosity requires rep rates in the kHz range, and individual pulse lengths in the 1-10 psec range are required to satisfy acceleration gradient goals. CO 2 and KrF lasers were chosen for study because of their potential to simultaneously satisfy the given requirements. Accelerator luminosity is reviewed, and requirements on laser system average power and rep rate are determined as a function of electron beam bunch parameters. Laser technologies are reviewed, including CO 2 , excimers, solid state, and free electron lasers. The proposed accelerator mechanisms are summarized briefly. Work on optical transport geometries for near and far field accelerators are presented. Possible exploitation of the CO 2 and DrF laser technology to generate the required pulse lengths, rep rates, and projected efficiencies is illustrated and needed development work is suggested. Initial efforts at developing a 50 GeV benchmark conceptual design and a 100 MeV demonstration experiment conceptual design are presented

  4. Laser induced pyrolysis techniques

    Vanderborgh, N.E.

    1976-01-01

    The application of laser pyrolysis techniques to the problems of chemical analysis is discussed. The processes occurring during laser pyrolysis are first briefly reviewed. The problems encountered in laser pyrolysis gas chromatography are discussed using the analysis of phenanthrene and binary hydrocarbons. The application of this technique to the characterization of naturally occurring carbonaceous material such as oil shales and coal is illustrated

  5. Solar pumped laser

    Lee, J. H.; Hohl, F.; Weaver, W. R. (Inventor)

    1984-01-01

    A solar pumped laser is described in which the lasant is a gas that will photodissociate and lase when subjected to sunrays. Sunrays are collected and directed onto the gas lasant to cause it to lase. Applications to laser propulsion and laser power transmission are discussed.

  6. Introducing the Yellow Laser

    Lincoln, James

    2018-01-01

    The author has acquired a yellow laser with the specific wavelength of 589 nm. Because this is the first time such a laser has been discussed in this journal, I feel it is appropriate to provide a discussion of its function and capabilities. Normal laser safety should be employed, such as not pointing it into eyes or at people, and using eye…

  7. Coatings for laser fusion

    Lowdermilk, W.H.

    1981-01-01

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors

  8. uv dye lasers

    Abakumov, G.A.; Fadeev, V.V.; Khokhlov, R.V.; Simonov, A.P.

    1975-01-01

    The most important property of visible dye lasers, that is, continuous wavelength tuning, stimulated the search for dyes capable to lase in uv. They were found in 1968. Now the need for tunable uv lasers for applications in spectroscopy, photochemistry, isotope separation, remote air and sea probing, etc. is clearly seen. A review of some recent advances in uv dye lasers is reviewed

  9. LaserFest Celebration

    Dr. Alan Chodos; Elizabeth A. Rogan

    2011-08-25

    LaserFest was the yearlong celebration, during 2010, of the 50th anniversary of the demonstration of the first working laser. The goals of LaserFest were: to highlight the impact of the laser in its manifold commercial, industrial and medical applications, and as a tool for ongoing scientific research; to use the laser as one example that illustrates, more generally, the route from scientific innovation to technological application; to use the laser as a vehicle for outreach, to stimulate interest among students and the public in aspects of physical science; to recognize and honor the pioneers who developed the laser and its many applications; to increase awareness among policymakers of the importance of R&D funding as evidenced by such technology as lasers. One way in which LaserFest sought to meet its goals was to encourage relevant activities at a local level all across the country -- and also abroad -- that would be identified with the larger purposes of the celebration and would carry the LaserFest name. Organizers were encouraged to record and advertise these events through a continually updated web-based calendar. Four projects were explicitly detailed in the proposals: 1) LaserFest on the Road; 2) Videos; 3) Educational material; and 4) Laser Days.

  10. Laser beam cutting method. Laser ko ni yoru kaitai koho

    Kutsumizu, A. (Obayashi Corp., Osaka (Japan))

    1991-07-01

    In this special issue paper concerning the demolition of concrete structures, was introduced a demolition of concrete structures using laser, of which practical application is expected due to the remarkable progress of generating power and efficiency of laser radiator. The characteristics of laser beam which can give a temperature of one million centigrade at the irradiated spot, the laser radiator consisting of laser medium, laser resonator and pumping apparatus, and the laser kinds for working, such as CO{sub 2} laser, YAG laser and CO laser, were described. The basic constitution of laser cutting equipment consisting of large generating power radiator, beam transmitter, beam condenser, and nozzle for working was also illustrated. Furthermore, strong and weak points in the laser cutting for concrete and reinforcement were enumerated. Applications of laser to cutting of reinforced and unreinforced concrete constructions were shown, and the concept and safety measure for application of laser to practical demolition was discussed. 5 refs., 8 figs.

  11. Introduction to laser technology

    Hitz, C Breck; Hecht, Jeff; Hitz, C Breck; John Wiley & Sons

    2001-01-01

    Electrical Engineering Introduction to Laser Technology , Third Edition. Would you like to know how a laser works, and how it can be modified for your own specific tasks? This intuitive third edition-previously published as Understanding Laser Technology , First and Second Editions-introduces engineers, scientists, technicians, and novices alike to the world of modern lasers, without delving into the mathematical details of quantum electronics. It is the only introductory text on the market today that explains the underlying physics and engineering applicable to all lasers. A unique combinatio.

  12. Quantum well lasers

    Zory, Jr, Peter S; Kelley, Paul

    1993-01-01

    This book provides the information necessary for the reader to achieve a thorough understanding of all aspects of QW lasers - from the basic mechanism of optical gain, through the current technolgoical state of the art, to the future technologies of quantum wires and quantum dots. In view of the growing importance of QW lasers, this book should be read by all those with an active interest in laser science and technology, from the advanced student to the experienced laser scientist.* The first comprehensive book-length treatment of quantum well lasers* Provides a detailed treatment

  13. Coherent laser beam combining

    Brignon, Arnaud

    2013-01-01

    Recently, the improvement of diode pumping in solid state lasers and the development of double clad fiber lasers have allowed to maintain excellent laser beam quality with single mode fibers. However, the fiber output power if often limited below a power damage threshold. Coherent laser beam combining (CLBC) brings a solution to these limitations by identifying the most efficient architectures and allowing for excellent spectral and spatial quality. This knowledge will become critical for the design of the next generation high-power lasers and is of major interest to many industrial, environme

  14. The laser thermonuclear fusion

    Coutant, J.; Dautray, R.; Decroisette, M.; Watteau, J.P.

    1987-01-01

    Principle of the thermonuclear fusion by inertial confinement: required characteristics of the deuterium-tritium plasma and of the high power lasers to be used Development of high power lasers: active media used; amplifiers; frequency conversion; beam quality; pulse conditioning; existing large systems. The laser-matter interaction: collision and collective interaction of the laser radiation with matter; transport of the absorbed energy; heating and compression of deuterium-tritium; diagnoses and their comparison with the numerical simulation of the experiment; performances. Conclusions: difficulties to overcome; megajoule lasers; other energy source: particles beams [fr

  15. Laser Cutting, Development Trends

    Olsen, Flemming Ove

    1999-01-01

    In this paper a short review of the development trends in laser cutting will be given.The technology, which is the fastest expanding industrial production technology will develop in both its core market segment: Flat bed cutting of sheet metal, as it will expand in heavy industry and in cutting...... of 3-dimensional shapes.The CO2-laser will also in the near future be the dominating laser source in the market, although the new developments in ND-YAG-lasers opens for new possibilities for this laser type....

  16. Lasers in space.

    Michaelis, MM

    2008-04-01

    Full Text Available cube, laser beam reflectors, placed on the Moon half a century ago. These early achievements will soon be followed by a plethora of experiments involving lasers in low earth orbit (LEO) or at Lagrange points. And not much later, laser communications... will stretch out as far as Mars and beyond. One important low Earth orbit (LEO) application is the removal of space debris by Earth based or LEO relayed lasers as promoted by Phipps et al.3. Another is military communication. The prominent L1 laser space...

  17. Tunable laser applications

    Duarte, FJ

    2008-01-01

    Introduction F. J. Duarte Spectroscopic Applications of Tunable Optical Parametric Oscillators B. J. Orr, R. T. White, and Y. He Solid-State Dye Lasers Costela, I. García-Moreno, and R. Sastre Tunable Lasers Based on Dye-Doped Polymer Gain Media Incorporating Homogeneous Distributions of Functional Nanoparticles F. J. Duarte and R. O. James Broadly Tunable External-Cavity Semiconductor Lasers F. J. Duarte Tunable Fiber Lasers T. M. Shay and F. J. Duarte Fiber Laser Overview and Medical Applications

  18. Jefferson Lab IR demo FEL photocathode quantum efficiency scanner

    Gubeli, J; Grippo, A; Jordan, K; Shinn, M; Siggins, T

    2001-01-01

    Jefferson Laboratory's Free Electron Laser (FEL) incorporates a cesiated gallium arsenide (GaAs) DC photocathode gun as its electron source. By using a set of scanning mirrors, the surface of the GaAs wafer is illuminated with a 543.5nm helium-neon laser. Measuring the current flow across the biased photocathode generates a quantum efficiency (QE) map of the 1-in. diameter wafer surface. The resulting QE map provides a very detailed picture of the efficiency of the wafer surface. By generating a QE map in a matter of minutes, the photocathode scanner has proven to be an exceptional tool in quickly determining sensitivity and availability of the photocathode for operation.

  19. Effects of a precursor plasma on a coaxial-to-radial transition discharge

    Enloe, C.L.; Reinovsky, R.E.

    1985-01-01

    The Quick-Fire series of experiments on the AFWL SHIVA-Star 9.6 megajoule capacitor bank utilizes a coaxial plasma gun as a power conditioning and switching element driving an imploding plasma liner in what is essentially a hollow z-pinch. Initially, the liner is a thin, cylindrical plastic-and-metal foil. Ideally, the foil remains undisturbed until switching action occurs, and steps have been taken to minimize the amount of hot material that is accelerated into the plasma region ahead of the main coaxial discharge. The condition of the foil and the surrounding region prior to switching has been studied both with nitrogen laser shadowgraphy and with a technique which measures the deflection of a helium-neon laser beam due to the presence of density gradients in the switching region. Estimates of the density of precursor plasmas and their effects on foil condition are presented

  20. New solid laser: Ceramic laser. From ultra stable laser to ultra high output laser

    Ueda, Kenichi

    2006-01-01

    An epoch-making solid laser is developed. It is ceramic laser, polycrystal, which is produced as same as glass and shows ultra high output. Ti 3+ :Al 2 O 3 laser crystal and the CPA (chirped pulse amplification) technique realized new ultra high output lasers. Japan has developed various kinds of ceramic lasers, from 10 -2 to 67 x 10 3 w average output, since 1995. These ceramic lasers were studied by gravitational radiation astronomy. The scattering coefficient of ceramic laser is smaller than single crystals. The new fast ignition method is proposed by Institute of Laser Engineering of Osaka University, Japan. Ultra-intense short pulse laser can inject the required energy to the high-density imploded core plasma within the core disassembling time. Ti 3+ :Al 2 O 3 crystal for laser, ceramic YAG of large caliber for 100 kW, transparent laser ceramic from nano-crystals, crystal grain and boundary layer between grains, the scattering coefficient of single crystal and ceramic, and the derived release cross section of Yb:YAG ceramic are described. (S.Y.)

  1. Advanced lasers for fusion

    Krupke, W.F.; George, E.V.; Haas, R.A.

    1979-01-01

    Laser drive systems' performance requirements for fusion reactors are developed following a review of the principles of inertial confinement fusion and of the technical status of fusion research lasers (Nd:glass; CO 2 , iodine). These requirements are analyzed in the context of energy-storing laser media with respect to laser systems design issues: optical damage and breakdown, medium excitation, parasitics and superfluorescence depumping, energy extraction physics, medium optical quality, and gas flow. Three types of energy-storing laser media of potential utility are identified and singled out for detailed review: (1) Group VI atomic lasers, (2) rare earth solid state hybrid lasers, and (3) rare earth molecular vapor lasers. The use of highly-radiative laser media, particularly the rare-gas monohalide excimers, are discussed in the context of short pulse fusion applications. The concept of backward wave Raman pulse compression is considered as an attractive technique for this purpose. The basic physics and device parameters of these four laser systems are reviewed and conceptual designs for high energy laser systems are presented. Preliminary estimates for systems efficiencies are given. (Auth.)

  2. Micromachining with copper lasers

    Knowles, Martyn R. H.; Bell, Andy; Foster-Turner, Gideon; Rutterford, Graham; Chudzicki, J.; Kearsley, Andrew J.

    1997-04-01

    In recent years the copper laser has undergone extensive development and has emerged as a leading and unique laser for micromachining. The copper laser is a high average power (10 - 250 W), high pulse repetition rate (2 - 32 kHz), visible laser (511 nm and 578 nm) that produces high peak power (typically 200 kW), short pulses (30 ns) and very good beam quality (diffraction limited). This unique set of laser parameters results in exceptional micro-machining in a wide variety of materials. Typical examples of the capabilities of the copper laser include the drilling of small holes (10 - 200 micrometer diameter) in materials as diverse as steel, ceramic, diamond and polyimide with micron precision and low taper (less than 1 degree) cutting and profiling of diamond. Application of the copper laser covers the electronic, aerospace, automotive, nuclear, medical and precision engineering industries.

  3. Laser Applications in Orthodontics

    Heidari, Somayeh; Torkan, Sepideh

    2013-01-01

    A laser is a collimated single wavelength of light which delivers a concentrated source of energy. Soon after different types of lasers were invented, investigators began to examine the effects of different wavelengths of laser energy on oral tissues, routine dental procedures and experimental applications. Orthodontists, along with other specialist in different fields of dentistry, can now benefit from several different advantages that lasers provide during the treatment process, from the beginning of the treatment, when separators are placed, to the time of resin residues removal from the tooth surface at the end of orthodontic treatment. This article outlines some of the most common usages of laser beam in orthodontics and also provides a comparison between laser and other conventional method that were the standard of care prior to the advent of laser in this field. PMID:25606324

  4. ORION laser target diagnostics

    Bentley, C. D.; Edwards, R. D.; Andrew, J. E.; James, S. F.; Gardner, M. D.; Comley, A. J.; Vaughan, K.; Horsfield, C. J.; Rubery, M. S.; Rothman, S. D.; Daykin, S.; Masoero, S. J.; Palmer, J. B.; Meadowcroft, A. L.; Williams, B. M.; Gumbrell, E. T.; Fyrth, J. D.; Brown, C. R. D.; Hill, M. P.; Oades, K.

    2012-01-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  5. ORION laser target diagnostics.

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  6. Robot-laser system

    Akeel, H.A.

    1987-01-01

    A robot-laser system is described for providing a laser beam at a desired location, the system comprising: a laser beam source; a robot including a plurality of movable parts including a hollow robot arm having a central axis along which the laser source directs the laser beam; at least one mirror for reflecting the laser beam from the source to the desired location, the mirror being mounted within the robot arm to move therewith and relative thereto to about a transverse axis that extends angularly to the central axis of the robot arm; and an automatic programmable control system for automatically moving the mirror about the transverse axis relative to and in synchronization with movement of the robot arm to thereby direct the laser beam to the desired location as the arm is moved

  7. Laser safety in dentistry

    Wigdor, Harvey A.

    1997-05-01

    One of the major causes of anxiety in the dental clinic is the dental handpiece. Because dentists wish to provide a method which can replace the drill there has often been a premature use of the laser in dentistry. Various lasers have been introduced into the clinic before research has shown the laser used is of clinical benefit. Any new treatment method must not compromise the health of the patient being treated. Thus a method of evaluating the clinical abilities of dentists and their understanding the limitations of the laser used must be developed. Dentist must be trained in the basic interaction of the laser on oral tissues. The training has to concentrate on the variation of the laser wavelength absorption in the different tissues of the oral cavity. Because of the differences in the optical properties of these tissues great care must be exercised by practitioners using lasers on patients.

  8. Lasers in materials science

    Ossi, Paolo; Zhigilei, Leonid

    2014-01-01

    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications.  Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  9. Alternate laser fusion drivers

    Pleasance, L.D.

    1979-11-01

    One objective of research on inertial confinement fusion is the development of a power generating system based on this concept. Realization of this goal will depend on the availability of a suitable laser or other system to drive the power plant. The primary laser systems used for laser fusion research, Nd 3+ : Glass and CO 2 , have characteristics which may preclude their use for this application. Glass lasers are presently perceived to be incapable of sufficiently high average power operation and the CO 2 laser may be limited by and issues associated with target coupling. These general perceptions have encouraged a search for alternatives to the present systems. The search for new lasers has been directed generally towards shorter wavelengths; most of the new lasers discovered in the past few years have been in the visible and ultraviolet region of the spectrum. Virtually all of them have been advocated as the most promising candidate for a fusion driver at one time or another

  10. Flexible Laser Metal Cutting

    Villumsen, Sigurd; Jørgensen, Steffen Nordahl; Kristiansen, Morten

    2014-01-01

    This paper describes a new flexible and fast approach to laser cutting called ROBOCUT. Combined with CAD/CAM technology, laser cutting of metal provides the flexibility to perform one-of-a-kind cutting and hereby realises mass production of customised products. Today’s laser cutting techniques...... possess, despite their wide use in industry, limitations regarding speed and geometry. Research trends point towards remote laser cutting techniques which can improve speed and geometrical freedom and hereby the competitiveness of laser cutting compared to fixed-tool-based cutting technology...... such as punching. This paper presents the concepts and preliminary test results of the ROBOCUT laser cutting technology, a technology which potentially can revolutionise laser cutting....

  11. Lasers: principles, applications and energetic measures

    Subran, C.; Sagaut, J.; Lapointe, S.

    2009-01-01

    After having recalled the principles of a laser and the properties of the laser beam, the authors describe the following different types of lasers: solid state lasers, fiber lasers, semiconductor lasers, dye lasers and gas lasers. Then, their applications are given. Very high energy lasers can reproduce the phenomenon of nuclear fusion of hydrogen atoms. (O.M.)

  12. Lasers in space

    Michaelis, M. M.; Forbes, A.; Bingham, R.; Kellett, B. J.; Mathye, A.

    2008-05-01

    A variety of laser applications in space, past, present, future and far future are reviewed together with the contributions of some of the scientists and engineers involved, especially those that happen to have South African connections. Historically, two of the earliest laser applications in space, were atmospheric LIDAR and lunar ranging. These applications involved atmospheric physicists, several astronauts and many of the staff recruited into the Soviet and North American lunar exploration programmes. There is a strong interest in South Africa in both LIDAR and lunar ranging. Shortly after the birth of the laser (and even just prior) theoretical work on photonic propulsion and space propulsion by laser ablation was initiated by Georgii Marx, Arthur Kantrowitz and Eugen Saenger. Present or near future experimental programs are developing in the following fields: laser ablation propulsion, possibly coupled with rail gun or gas gun propulsion; interplanetary laser transmission; laser altimetry; gravity wave detection by space based Michelson interferometry; the de-orbiting of space debris by high power lasers; atom laser interferometry in space. Far future applications of laser-photonic space-propulsion were also pioneered by Carl Sagan and Robert Forward. They envisaged means of putting Saenger's ideas into practice. Forward also invented a laser based method for manufacturing solid antimatter or SANTIM, well before the ongoing experiments at CERN with anti-hydrogen production and laser-trapping. SANTIM would be an ideal propellant for interstellar missions if it could be manufactured in sufficient quantities. It would be equally useful as a power source for the transmission of information over light year distances. We briefly mention military lasers. Last but not least, we address naturally occurring lasers in space and pose the question: "did the Big Bang lase?"

  13. Laser system using ultra-short laser pulses

    Dantus, Marcos [Okemos, MI; Lozovoy, Vadim V [Okemos, MI; Comstock, Matthew [Milford, MI

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  14. Designing of Raman laser

    Zidan, M. D.; Al-Awad, F.; Alsous, M. B.

    2005-01-01

    In this work, we describe the design of the Raman laser pumped by Frequency doubled Nd-YAG laser (λ=532 nm) to generate new laser wavelengths by shifting the frequency of the Nd-YAG laser to Stokes region (λ 1 =683 nm, λ 2 =953.6 nm, λ 3 =1579.5 nm) and Antistokes region (λ ' 1 =435 nm, λ ' 2 =369.9 nm, λ ' 3=319.8 nm). Laser resonator has been designed to increase the laser gain. It consists of two mirrors, the back mirror transmits the pump laser beam (λ=532 nm) through the Raman tube and reflects all other generated Raman laser lines. Four special front mirrors were made to be used for the four laser lines λ 1 =683 nm, λ 2 =953.6 nm and λ ' 1 = 435 nm, λ ' 2 =369.9 nm. The output energy for the lines υ 1 s, υ 2 s, υ 1 as,υ 2 as was measured. The output energy of the Raman laser was characterized for different H 2 pressure inside the tube. (Author)

  15. Laser program overview

    Storm, E.; Coleman, L.W.

    1985-01-01

    The objectives of the Lawrence Livermore National Laboratory Laser Fusion program are to understand and develop the science and technology of inertial confinement fusion (ICF), and to utilize ICF in short- and long-term military applications, and, in the long-term, as a candidate for central-station civilian power generation. In 1984, using the Novette laser system, the authors completed experiments showing the very favorable scaling of laser-plama interactions with short-wavelength laser light. Their Novette experiments have unequivocally shown that short laser wavelength, i.e., less than 1 μm, is required to provide the drive necessary for efficient compression, ignition, and burn of DT fusion fuel. In other experiments with Novette, the authors made the first unambiguous observation of amplified spontaneous emission in the soft x-ray regime. The authors also conducted military applications and weapons physics experiments, which they discuss in detail in the classified volume of our Laser Program Annual Report. In the second thrust, advanced laser studies, they develop and test the concepts, components, and materials for present and future laser systems. Over the years, this has meant providing the technology base and scientific advances necessary to construct and operate a succession of six evermore-powerful laser systems. The latest of these, Nova, a 100-TW/100-kJ-class laser system, was completed in 1984. The Nd:glass laser continues to be the most effective and versatile tool for ICF and weapons physics because of its scalability in energy, the ability to efficiently convert its 1=μm output to shorter wavelengths, its ability to provide flexible, controlled pulse shaping, and its capability to adapt to a variety of irradiation and focusing geometries. For these reasons, many of our advanced laser studies are in areas appropriate to solid state laser technologies

  16. Laser pumped lasers for isotope separation

    Fry, S.M.

    1976-01-01

    A study of the isotope separation laser requirements reveals that high pressure polyatomic molecular gas laser pumped lasers can attain the necessary characteristics including tunability, energy output, pulse width, and repetition rate. The results of a search, made for molecules meeting the appropriate requirements for one of several pump schemes utilizing a CO 2 laser and with output in the 12 μm or 16μm wavelength range, are presented. Several methods of pumping are reviewed and two novel pump schemes are presented. A laser pumped laser device design is given, and operation of this device and associated diagnostic equipment is confirmed by repeating experiments in OCS and NH 3 . The results of OCS laser experiments show that an improvement in pump rate and output per unit length is obtained with the device, using a wedged transverse pumping scheme. A new multi-line laser system in NH 3 pumped by a TEA CO 2 laser is reported. More than forty transitions spanning the wavelength range of 9.2 to 13.8 μm are observed and identified. A strong output at 12.08 μm is one of the closest lines yet found to the required laser isotope separation wavelength. Far infrared emission near 65 μm is observed and is responsible for populating levels which lase in pure ammonia near 12.3 μm. Buffer gas (e.g., N 2 or He) pressures of approximately 40--800 torr cause energy transfer by collision-induced rotationaltransitions from the pumped antisymmetric to the lasing symmetric levels in the nu 2 = 1 band of ammonia. Most of the observed lines are aP(J,K) transitions which originate from the nu 2 /sup s/ band. Measurements of the pressure dependence of the laser output shows that some lines lase at pressures greater than one atmosphere. Transient behavior of the 12.08 μm line is calculated from a simplified analytic model and these calculations are compared to the experimental results

  17. Pattern Laser Annealing by a Pulsed Laser

    Komiya, Yoshio; Hoh, Koichiro; Murakami, Koichi; Takahashi, Tetsuo; Tarui, Yasuo

    1981-10-01

    Preliminary experiments with contact-type pattern laser annealing were made for local polycrystallization of a-Si, local evaporation of a-Si and local formation of Ni-Si alloy. These experiments showed that the mask patterns can be replicated as annealed regions with a resolution of a few microns on substrates. To overcome shortcomings due to the contact type pattern annealing, a projection type reduction pattern laser annealing system is proposed for resistless low temperature pattern forming processes.

  18. High energy HF pulsed lasers

    Patterson, E.L.; Gerber, R.A.

    1976-01-01

    Recent experiments show that pulsed HF lasers are capable of producing high energy with good efficiency. Preliminary experiments show that the laser radiation from the high-gain medium can be controlled with a low-power probe laser beam or with low-level feedback. These results indicate that the HF laser may have potential for second-generation laser fusion experiments

  19. Laser Safety Inspection Criteria

    Barat, K

    2005-01-01

    A responsibility of the Laser Safety Officer (LSO) is to perform laser safety audits. The American National Standard Z136.1 Safe use of Lasers references this requirement in several sections: (1) Section 1.3.2 LSO Specific Responsibilities states under Hazard Evaluation, ''The LSO shall be responsible for hazards evaluation of laser work areas''; (2) Section 1.3.2.8, Safety Features Audits, ''The LSO shall ensure that the safety features of the laser installation facilities and laser equipment are audited periodically to assure proper operation''; and (3) Appendix D, under Survey and Inspections, it states, ''the LSO will survey by inspection, as considered necessary, all areas where laser equipment is used''. Therefore, for facilities using Class 3B and or Class 4 lasers, audits for laser safety compliance are expected to be conducted. The composition, frequency and rigueur of that inspection/audit rests in the hands of the LSO. A common practice for institutions is to develop laser audit checklists or survey forms. In many institutions, a sole Laser Safety Officer (LSO) or a number of Deputy LSO's perform these audits. For that matter, there are institutions that request users to perform a self-assessment audit. Many items on the common audit list and the associated findings are subjective because they are based on the experience and interest of the LSO or auditor in particular items on the checklist. Beam block usage is an example; to one set of eyes a particular arrangement might be completely adequate, while to another the installation may be inadequate. In order to provide more consistency, the National Ignition Facility Directorate at Lawrence Livermore National Laboratory (NIF-LLNL) has established criteria for a number of items found on the typical laser safety audit form. These criteria are distributed to laser users, and they serve two broad purposes: first, it gives the user an expectation of what will be reviewed by an auditor, and second, it is an

  20. Single frequency semiconductor lasers

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui

    2017-01-01

    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  1. Nuclear-pumped lasers

    Prelas, Mark

    2016-01-01

    This book focuses on Nuclear-Pumped Laser (NPL) technology and provides the reader with a fundamental understanding of NPLs, a review of research in the field, and exploration of large scale NPL system design and applications. Early chapters look at the fundamental properties of lasers, nuclear-pumping and nuclear reactions that may be used as drivers for nuclear-pumped lasers. The book goes on to explore the efficient transport of energy from the ionizing radiation to the laser medium and then the operational characteristics of existing nuclear-pumped lasers. Models based on Mathematica, explanations and a tutorial all assist the reader’s understanding of this technology. Later chapters consider the integration of the various systems involved in NPLs and the ways in which they can be used, including beyond the military agenda. As readers will discover, there are significant humanitarian applications for high energy/power lasers, such as deflecting asteroids, space propulsion, power transmission and mining....

  2. Power Laser Ablation Symposia

    Phipps, Claude

    2007-01-01

    Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. The field of laser ablation physics is advancing so rapidly that its principal results are seen only in specialized journals and conferences. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction. Many practical applications exist, ranging from inertial confinement fusion to propulsion of aerostats for pollution monitoring to laser ignition of hypersonic engines to laser cleaning nanoscale contaminants in high-volume computer hard drive manufacture to direct observation of the electronic or dissociative states in atoms and molecules, to studying the properties of materials during 200kbar shocks developed in 200fs. Selecting topics which are representative of such a broad field is difficu...

  3. Laser induced nuclear reactions

    Ledingham, Ken; McCanny, Tom; Graham, Paul; Fang Xiao; Singhal, Ravi; Magill, Joe; Creswell, Alan; Sanderson, David; Allott, Ric; Neely, David; Norreys, Peter; Santala, Marko; Zepf, Matthew; Watts, Ian; Clark, Eugene; Krushelnick, Karl; Tatarakis, Michael; Dangor, Bucker; Machecek, Antonin; Wark, Justin

    1998-01-01

    Dramatic improvements in laser technology since 1984 have revolutionised high power laser technology. Application of chirped-pulse amplification techniques has resulted in laser intensities in excess of 10 19 W/cm 2 . In the mid to late eighties, C. K. Rhodes and K. Boyer discussed the possibility of shining laser light of this intensity onto solid surfaces and to cause nuclear transitions. In particular, irradiation of a uranium target could induce electro- and photofission in the focal region of the laser. In this paper it is shown that μCi of 62 Cu can be generated via the (γ,n) reaction by a laser with an intensity of about 10 19 Wcm -2

  4. Lasers for isotope separation

    O'Hair, E.A.; Piltch, M.S.

    1976-01-01

    The Los Alamos Scientific Laboratory is conducting research on uranium enrichment. All processes being studied employ uranium molecules and use lasers to provide isotopic selectivity and enrichment. There are four well-defined infrared frequencies and two ultraviolet frequency bands of interest. The infrared frequencies are outside the range of the available lasers and an extensive research and development activity is currently underway. Lasers are available in the uv bands, however, much development work remains. The specification for the commercial uranium enrichment plant lasers will depend upon the results of the current enrichment experiments, the laser capital cost, reliability, and maintenance cost. For the processes under investigation there are specific photon requirements but latitude in how these requirements can be met. The final laser selections for the pilot plant need not be made until the mid-1980's. Between now and that time as extensive as possible a research and development effort will be maintained

  5. Inertial fusion by laser

    Dautray, R.; Watteau, J.-P.

    1980-01-01

    Following a brief historical survey of research into the effects of interaction of laser with matter, the principles of fusion by inertial confinement are described and the main parameters and possible levels given. The development of power lasers is then discussed with details of performances of the main lasers used in various laboratories, and with an assessment of the respective merits of neodymium glass, carbon dioxide or iodine lasers. The phenomena of laser radiation and its interaction with matter is then described, with emphasis on the results of experiments concerned with target implosion with the object of compressing and heating the mixture of heavy hydrogen and tritium to be ignited. Finally, a review is made of future possibilities opened up by the use of large power lasers which have recently become operational or are being constructed, and the ground still to be covered before a reactor can be produced [fr

  6. Principles of Lasers

    Svelto, Orazio

    2010-01-01

    This new Fifth Edition of Principles of Lasers incorporates corrections to the previous edition. The text’s essential mission remains the same: to provide a wide-ranging yet unified description of laser behavior, physics, technology, and current applications. Dr. Svelto emphasizes the physical rather than the mathematical aspects of lasers, and presents the subject in the simplest terms compatible with a correct physical understanding. Praise for earlier editions: "Professor Svelto is himself a longtime laser pioneer and his text shows the breadth of his broad acquaintance with all aspects of the field … Anyone mastering the contents of this book will be well prepared to understand advanced treatises and research papers in laser science and technology." (Arthur L. Schawlow, 1981 Nobel Laureate in Physics) "Already well established as a self-contained introduction to the physics and technology of lasers … Professor Svelto’s book, in this lucid translation by David Hanna, can be strongly recommended for...

  7. Atomic iodine laser

    Fisk, G.A.; Gusinow, M.A.; Hays, A.K.; Padrick, T.D.; Palmer, R.E.; Rice, J.K.; Truby, F.K.; Riley, M.E.

    1978-05-01

    The atomic iodine photodissociation laser has been under intensive study for a number of years. The physics associated with this system is now well understood and it is possible to produce a 0.1 nsec (or longer) near-diffraction-limited laser pulse which can be amplified with negligible temporal distortion and little spatial deformation. The output of either a saturated or unsaturated amplifier consists of a high-fidelity near-diffraction-limited, energetic laser pulse. The report is divided into three chapters. Chapter 1 is a survey of the important areas affecting efficient laser operation and summarizes the findings of Chap. 2. Chapter 2 presents detailed discussions and evaluations pertinent to pumps, chemical regeneration, and other elements in the overall laser system. Chapter 3 briefly discusses those areas that require further work and the nature of the work required to complete the full-scale evaluation of the applicability of the iodine photodissociation laser to the inertial confinement program

  8. Strong field laser physics

    2008-01-01

    Since the invention of the laser in the 1960s, people have strived to reach higher intensities and shorter pulse durations. High intensities and ultrashort pulse durations are intimately related. Recent developments have shown that high intensity lasers also open the way to realize pulses with the shortest durations to date, giving birth to the field of attosecond science (1 asec = 10-18s). This book is about high-intensity lasers and their applications. The goal is to give an up to date introduction to the technology behind these laser systems and to the broad range of intense laser applications. These applications include AMO (atomic molecular and optical) physics, x-ray science, attosecond science, plasma physics and particle acceleration, condensed matter science and laser micromachining, and finally even high-energy physics.

  9. Arduino based laser control

    Bernal Muñoz, Ferran

    2015-01-01

    ARDUINO is a vey usefull platform for prototypes. In this project ARDUINO will be used for controling a Semiconductor Tuneable Laser. [ANGLÈS] Diode laser for communications control based on an Arduino board. Temperature control implementation. Software and hardware protection for the laser implementation. [CASTELLÀ] Control de un láser de comunicaciones ópticas desde el ordenador utilizando una placa Arduino. Implementación de un control de temperatura y protección software y hardware ...

  10. Shiva laser system performance

    Glaze, J.; Godwin, R.O.; Holzrichter, J.F.

    1978-01-01

    On November 18, 1977, after four years of experimentation, innovation, and construction, the Shiva High Energy Laser facility produced 10.2 kJ of focusable laser energy delivered in a 0.95 ns pulse. The Shiva laser, with its computer control system and delta amplifiers, demonstrated its versatility on May 18, 1978, when the first 20-beam target shot with delta amplifiers focused 26 TW on a target and produced a yield of 7.5 x 10 9 neutrons

  11. Lasers in Ophthalmology

    1992-01-01

    In recent years,lasers have entered every fieldof medicine and especially so in ophthalmol-ogy.The scientific basis of lasers in ophthal-mology is based on three mechanisms:1.Photothermal effectLasers:argon,krypton,dye and diodeA thermal effect is generated when laserenergy is absorbed by pigment leading to in-creased vibration and therefore heat content.A

  12. Laser Journal (Selected Articles),

    1982-09-10

    laser is described. The apparatus structure and some experimental results are reported. MATERIAL AND ELEMENT MAGNETO -OPTIC PROPERTIES OF Pr dYb),(1oAI...with a magneto -optical modulator. The measuring system is simple and sensitive, with reading accuracy of ±0.0050 and error 45%. STUDY ON EXPERIMENTAL...laser radiation therapy . He Fang de East Chiia Hospital APPLICATION OF N4d,:Y q LASER TO TREAT INTERNAL HEMERRHOID Zhuo Ruilin Zu Songlin (Shanghai

  13. Laser precision microfabrication

    Sugioka, Koji; Pique, Alberto

    2010-01-01

    Miniaturization and high precision are rapidly becoming a requirement for many industrial processes and products. As a result, there is greater interest in the use of laser microfabrication technology to achieve these goals. This book composed of 16 chapters covers all the topics of laser precision processing from fundamental aspects to industrial applications to both inorganic and biological materials. It reviews the sate of the art of research and technological development in the area of laser processing.

  14. Lasers for the SILVA laser isotope separation process

    Lapierre, Y.

    1997-01-01

    The main principles of the laser isotope separation process for the production of enriched uranium at lower cost, are reviewed and the corresponding optimal laser characteristics are described. The development of the SILVA laser isotope separation process involved researches in the various domains of pump lasers, dye lasers, laser and optics systems and two test facilities for the feasibility studies which are expected for 1997

  15. High power lasers

    Niku-Lari, A

    1989-01-01

    The use of lasers for the working and treatment of materials is becoming increasingly common in industry. However, certain laser applications, for example, in welding, cutting and drilling, are more widely exploited than others. Whilst the potential of lasers for the surface treatment of metals is well recognised, in practice, this particular application is a relative newcomer. The 24 papers in this volume present the latest research and engineering developments in the use of lasers for processes such as surface melting, surface alloying and cladding, and machining, as well as discussing th

  16. Degenerate band edge laser

    Veysi, Mehdi; Othman, Mohamed A. K.; Figotin, Alexander; Capolino, Filippo

    2018-05-01

    We propose a class of lasers based on a fourth-order exceptional point of degeneracy (EPD) referred to as the degenerate band edge (DBE). EPDs have been found in parity-time-symmetric photonic structures that require loss and/or gain; here we show that the DBE is a different kind of EPD since it occurs in periodic structures that are lossless and gainless. Because of this property, a small level of gain is sufficient to induce single-frequency lasing based on a synchronous operation of four degenerate Floquet-Bloch eigenwaves. This lasing scheme constitutes a light-matter interaction mechanism that leads also to a unique scaling law of the laser threshold with the inverse of the fifth power of the laser-cavity length. The DBE laser has the lowest lasing threshold in comparison to a regular band edge laser and to a conventional laser in cavities with the same loaded quality (Q ) factor and length. In particular, even without mirror reflectors the DBE laser exhibits a lasing threshold which is an order of magnitude lower than that of a uniform cavity laser of the same length and with very high mirror reflectivity. Importantly, this novel DBE lasing regime enforces mode selectivity and coherent single-frequency operation even for pumping rates well beyond the lasing threshold, in contrast to the multifrequency nature of conventional uniform cavity lasers.

  17. Gigashot Optical Laser Demonstrator

    Deri, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-13

    The Gigashot Optical Laser Demonstrator (GOLD) project has demonstrated a novel optical amplifier for high energy pulsed lasers operating at high repetition rates. The amplifier stores enough pump energy to support >10 J of laser output, and employs conduction cooling for thermal management to avoid the need for expensive and bulky high-pressure helium subsystems. A prototype amplifier was fabricated, pumped with diode light at 885 nm, and characterized. Experimental results show that the amplifier provides sufficient small-signal gain and sufficiently low wavefront and birefringence impairments to prove useful in laser systems, at repetition rates up to 60 Hz.

  18. Notes on Laser Acceleration

    Tajima, T.

    2008-01-01

    This note intends to motivate our effort toward the advent of new methods of particle acceleration, utilizing the fast rising laser technology. By illustrating the underlying principles in an intuitive manner and thus less jargon-clad fashion, we seek a direction in which we shall be able to properly control and harness the promise of laser acceleration. First we review the idea behind the laser wakefield. We then go on to examine ion acceleration by laser. We examine the sheath acceleration in particular and look for the future direction that allows orderly acceleration of ions in high energies

  19. X-ray lasers

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  20. Lasers in materials processing

    Davis, J.I.; Rockower, E.B.

    1981-01-01

    A status report on the uranium Laser Isotope Separation (LIS) Program at the Lawrence Livermore National Laboratory is presented. Prior to this status report, process economic analysis is presented so as to understand how the unique properties of laser photons can be best utilized in the production of materials and components despite the high cost of laser energy. The characteristics of potential applications that are necessary for success are identified, and those factors that have up to now frustrated attempts to find commercially viable laser induced chemical and physical process for the production of new or existing materials are pointed out

  1. Mid-Infrared Lasers

    National Aeronautics and Space Administration — Mid infrared solid state lasers for Differential Absorption Lidar (DIAL) systems required for understanding atmospheric chemistry are not available. This program...

  2. Laser fusion program overview

    Emmett, J.L.

    1977-01-01

    This program is structured to proceed through a series of well defined fusion milestones to proof of the scientific feasibility, of laser fusion with the Shiva Nova system. Concurrently, those key technical areas, such as advanced lasers, which are required to progress beyond proof of feasibility, are being studied. We have identified and quantified the opportunities and key technical issues in military applications, such as weapons effects simulations, and in civilian applications, such as central-station electric power production. We summarize the current status and future plans for the laser fusion program at LLL, emphasizing the civilian applications of laser fusion

  3. Physics of semiconductor lasers

    Mroziewicz, B; Nakwaski, W

    2013-01-01

    Written for readers who have some background in solid state physics but do not necessarily possess any knowledge of semiconductor lasers, this book provides a comprehensive and concise account of fundamental semiconductor laser physics, technology and properties. The principles of operation of these lasers are therefore discussed in detail with the interrelations between their design and optical, electrical and thermal properties. The relative merits of a large number of laser structures and their parameters are described to acquaint the reader with the various aspects of the semiconductor l

  4. Principles of laser dynamics

    Khanin, YI

    1995-01-01

    This monograph summarizes major achievements in laser dynamics over the past three decades. The book begins with two introductory Chapters. Chapter 1 offers general considerations on quantum oscillators, formulates the requirements for the laser key elements and shows how these requirements are met in different laser systems. The second Chapter proposes the mathematical models used in semiclassical laser theory, discusses the approximations and simplifications in particular cases, and specifies the range of applicability of these models. In Chapters 3-5 attention is given primarily to the stea

  5. Laser transmitter system

    Dye, R.A.

    1975-01-01

    A laser transmitter system is disclosed which utilizes mechanical energy for generating an output pulse. The laser system includes a current developing device such as a piezoelectric crystal which charges a storage device such as a capacitor in response to a mechanical input signal. The capacitor is coupled to a switching device, such as a silicon controlled rectifier (SCR). The switching device is coupled to a laser transmitter such as a GaAs laser diode, which provides an output signal in response to the capacitor being discharged

  6. Laser in urology

    Breisland, H.O.

    1991-01-01

    The neodymium YAG laser is particularly suited for endoscopic urologic surgery because the YAG laser light can be conducted in flexible fibers. Superficial bladder tumours can be treated under local anaesthesia in the outpatient department. The frequency of local recurrences is low, significantly lower than after electrosection or electrocoagulation. Selected cases of T2-muscle invasive bladder tumours can be cured with laser coagulation applied subsequently to transurethral resection. Combined treatment with electrosection and laser coagulation of localized prostatic cancer is a promising method which compares favourably with results obtained by other treatment modalities. Tumours in the upper urinary tract can be laser-treated through ureteroscopes or nephroscopes, but the treatment should be limited to low stage, low grade tumours. Laser is the treatment of choice for intraurethral condylomatas. Laser treatment of penil carcinoma gives excellent cosmetic and functional results and few local recurrences. Laser lithotripsy is a new technique for treatment of ureteric stones and photodynamic laser therapy is a promising tecnique for treatment of carcinoma in situ in the bladder empithelium. However, neither of these techniques are available for clinical use in Norway as yet. 17 refs., 3 figs., 1 tabs

  7. Tunable Microfluidic Dye Laser

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  8. Trends in laser micromachining

    Gaebler, Frank; van Nunen, Joris; Held, Andrew

    2016-03-01

    Laser Micromachining is well established in industry. Depending on the application lasers with pulse length from μseconds to femtoseconds and wavelengths from 1064nm and its harmonics up to 5μm or 10.6μm are used. Ultrafast laser machining using pulses with pico or femtosecond duration pulses is gaining traction, as it offers very precise processing of materials with low thermal impact. Large-scale industrial ultrafast laser applications show that the market can be divided into various sub segments. One set of applications demand low power around 10W, compact footprint and are extremely sensitive to the laser price whilst still demanding 10ps or shorter laser pulses. A second set of applications are very power hungry and only become economically feasible for large scale deployments at power levels in the 100+W class. There is also a growing demand for applications requiring fs-laser pulses. In our presentation we would like to describe these sub segments by using selected applications from the automotive and electronics industry e.g. drilling of gas/diesel injection nozzles, dicing of LED substrates. We close the presentation with an outlook to micromachining applications e.g. glass cutting and foil processing with unique new CO lasers emitting 5μm laser wavelength.

  9. Scanning Color Laser Microscope

    Awamura, D.; Ode, T.; Yonezawa, M.

    1988-01-01

    A confocal color laser microscope which utilizes a three color laser light source (Red: He-Ne, Green: Ar, Blue: Ar) has been developed and is finding useful applications in the semiconductor field. The color laser microscope, when compared to a conventional microscope, offers superior color separation, higher resolution, and sharper contrast. Recently some new functions including a Focus Scan Memory, a Surface Profile Measurement System, a Critical Dimension Measurement system (CD) and an Optical Beam Induced Current Function (OBIC) have been developed for the color laser microscope. This paper will discuss these new features.

  10. High Power Vanadate lasers

    Strauss

    2006-07-01

    Full Text Available stream_source_info Strauss1_2006.pdf.txt stream_content_type text/plain stream_size 3151 Content-Encoding UTF-8 stream_name Strauss1_2006.pdf.txt Content-Type text/plain; charset=UTF-8 Laser Research Institute... University of Stellenbosch www.laser-research.co.za High Power Vanadate lasers H.J.Strauss, Dr. C. Bollig, R.C. Botha, Prof. H.M. von Bergmann, Dr. J.P. Burger Aims 1) To develop new techniques to mount laser crystals, 2) compare the lasing properties...

  11. Laser adaptive holographic hydrophone

    Romashko, R V; Kulchin, Yu N; Bezruk, M N; Ermolaev, S A [Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok (Russian Federation)

    2016-03-31

    A new type of a laser hydrophone based on dynamic holograms, formed in a photorefractive crystal, is proposed and studied. It is shown that the use of dynamic holograms makes it unnecessary to use complex optical schemes and systems for electronic stabilisation of the interferometer operating point. This essentially simplifies the scheme of the laser hydrophone preserving its high sensitivity, which offers the possibility to use it under a strong variation of the environment parameters. The laser adaptive holographic hydrophone implemented at present possesses the sensitivity at a level of 3.3 mV Pa{sup -1} in the frequency range from 1 to 30 kHz. (laser hydrophones)

  12. Introduction to laser technology

    Hitz, C Breck; Hecht, Jeff

    2012-01-01

    The only introductory text on the market today that explains the underlying physics and engineering applicable to all lasersAlthough lasers are becoming increasingly important in our high-tech environment, many of the technicians and engineers who install, operate, and maintain them have had little, if any, formal training in the field of electro-optics. This can result in less efficient usage of these important tools. Introduction to Laser Technology, Fourth Edition provides readers with a good understanding of what a laser is and what it can and cannot do. The book explains what types of las.

  13. Laser-induced interactions

    Green, W.R.

    1979-01-01

    This dissertation discusses some of the new ways that lasers can be used to control the energy flow in a medium. Experimental and theoretical considerations of the laser-induced collision are discussed. The laser-induced collision is a process in which a laser is used to selectively transfer energy from a state in one atomic or molecular species to another state in a different species. The first experimental demonstration of this process is described, along with later experiments in which lasers were used to create collisional cross sections as large as 10 - 13 cm 2 . Laser-induced collisions utilizing both a dipole-dipole interaction and dipole-quadrupole interaction have been experimentally demonstrated. The theoretical aspects of other related processes such as laser-induced spin-exchange, collision induced Raman emission, and laser-induced charge transfer are discussed. Experimental systems that could be used to demonstrate these various processes are presented. An experiment which produced an inversion of the resonance line of an ion by optical pumping of the neutral atom is described. This type of scheme has been proposed as a possible method for constructing VUV and x-ray lasers

  14. Jet laser ion source

    Dem'yanov, A.V.; Sidorov, S.V.

    1994-01-01

    External laser injector of multicharged ions (MCI) is developed in which wide-aperture aberration-free wire gauze spherical shape electrodes are applied for effective MCI extraction from laser plasma and beam focusing. Axial plasma compression by solenoid magnetic field is used to reduce ion losses due to transverse movement of the scattering laser plasma. Transverse magnetic field created by another solenoid facilitates the effective laser plasma braking and consequently, leads to the narrowing of energy spectrum of plasma ions and its shift towards lower energies. 2 refs.; 3 figs

  15. Free electron laser

    Ortega, J.M.; Billardon, M.

    1986-01-01

    Operation principle of a laser and an oscillator are recalled together with the klystron one. In the free electron laser, electrons go through an undulator or an optical klystron. Principles of the last one are given. The two distinct ways of producing coherent radiation with an undulator and an optical klystron are presented. The first one is the use of the free electron laser, the second is to make use of the spontaneous emission generation (harmonics generation). The different current types of free electron lasers are presented (Stanford, Los Alamos, Aco at Orsay). Prospects and applications are given in conclusion [fr

  16. Laser cooling of solids

    Petrushkin, S V

    2009-01-01

    Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors. Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling Particular attention is given to the physics of cooling processes and the mathematical description of these processes Reviews p...

  17. Laser beam diagnostics for kilowatt power pulsed YAG laser

    Liu, Yi; Leong, Keng H.

    1992-01-01

    There is a growing need for high power YAG laser beam diagnostics with the recent introduction of such lasers in laser material processing. In this paper, we will describe the use of a commercially available laser beam analyzer (Prometec) to profile the laser beam from a 1600 W pulsed Nd:YAG laser that has a 1 mm fiber optic beam delivery system. The selection of laser pulse frequency and pulse width for the measurement is discussed. Laser beam propagation parameters by various optical components such as fibers and lenses can be determined from measurements using this device. The importance of such measurements will be discussed

  18. Laser Program annual report 1987

    O' Neal, E.M.; Murphy, P.W.; Canada, J.A.; Kirvel, R.D.; Peck, T.; Price, M.E.; Prono, J.K.; Reid, S.G.; Wallerstein, L.; Wright, T.W. (eds.)

    1989-07-01

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies.

  19. Laser Program annual report 1987

    O'Neal, E.M.; Murphy, P.W.; Canada, J.A.; Kirvel, R.D.; Peck, T.; Price, M.E.; Prono, J.K.; Reid, S.G.; Wallerstein, L.; Wright, T.W.

    1989-07-01

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies

  20. Temperature controller of semiconductor laser

    Matoušek, Vít; Číp, Ondřej

    2003-01-01

    Roč. 73, č. 3 (2003), s. 10 - 12 ISSN 0928-5008 Institutional research plan: CEZ:AV0Z2065902 Keywords : temperature controller * semiconductor laser * laser diode Subject RIV: BH - Optics, Masers, Lasers

  1. LASERS: A cryogenic slab CO laser

    Ionin, Andrei A.; Kozlov, A. Yu; Seleznev, L. V.; Sinitsyn, D. V.

    2009-03-01

    A compact capacitive transverse RF-discharge-pumped slab CO laser with cryogenically cooled electrodes, which operates both in the cw and repetitively pulsed regimes, is fabricated. The laser operation is studied in the free running multifrequency regime at the vibrational - rotational transitions of the fundamental (V + 1 → V) vibrational bands of the CO molecule in the spectral region from 5.1 to 5.4 μm. Optimal operation conditions (gas mixture composition and pressure, RF pump parameters) are determined. It is shown that only gas mixtures with a high content of oxygen (up to 20% with respect to the concentration of CO molecules) can be used as an active medium of this laser. It is demonstrated that repetitively pulsed pumping is more efficient compared to cw pumping. In this case, quasi-cw lasing regime can be obtained. The maximum average output power of ~12 W was obtained for this laser operating on fundamental bands and its efficiency achieved ~14 %. The frequency-selective operation regime of the slab RF-discharge-pumped CO laser was realised at ~ 100 laser lines in the spectral region from 5.0 to 6.5 μm with the average output power of up to several tens of milliwatts in each line. Lasing at the transitions of the first vibrational overtone (V + 2 → V) of the CO molecule is obtained in the spectral region from 2.5 to 3.9 μm. The average output power of the overtone laser achieved 0.3 W. All the results were obtained without the forced gas mixture exchange in the discharge chamber. Under fixed experimental conditions, repetitively pulsed lasing (with fluctuations of the output characteristics no more than ±10 %) was stable for more than an hour.

  2. Power balancing of multibeam laser fusion lasers

    Seka, W.; Morse, S.; Letzring, S.; Kremens, R.; Kessler, T.J.; Jaanimagi, P.; Keck, R.; Verdon, C.; Brown, D.

    1989-01-01

    The success of laser fusion depends to a good degree on the ability to compress the target to very high densities of ≥1000 times liquid DT. To achieve such compressions require that the irradiation nonuniformity must not exceed ∼1% rms over the whole time of the compression, particularly during the early phases of irradiation. The stringent requirements for the irradiation uniformity for laser fusion have been known for quite some time but until recently the energy balance was mistakenly equated to power balance. The authors describe their effort on energy balance and irradiation patterns on the target. They significantly improved the laser performance with respect to overall intensity distributions on target including the implementation of distributed (random) phase plates in each high power beam. However, the slightly varying performance of the third harmonic conversion crystals in the twenty-four beams of their laser system was generally compensated for by appropriately adjusted 1.054μm input laser energy. Computational analysis of the results of the recent high density campaign are shown

  3. Laser Stabilization with Laser Cooled Strontium

    Christensen, Bjarke Takashi Røjle

    The frequency stability of current state-of-the-art stabilized clock lasers are limited by thermal fluctuations of the ultra-stable optical reference cavities used for their frequency stabilization. In this work, we study the possibilities for surpassing this thermal limit by exploiting the nonli......The frequency stability of current state-of-the-art stabilized clock lasers are limited by thermal fluctuations of the ultra-stable optical reference cavities used for their frequency stabilization. In this work, we study the possibilities for surpassing this thermal limit by exploiting...... the nonlinear effects from coupling of an optical cavity to laser cooled atoms having a narrow transition linewidth. Here, we have realized such a system where a thermal sample of laser cooled strontium-88 atoms are coupled to an optical cavity. The strontium-88 atoms were probed on the narrow 1S0-3P1 inter......-combination line at 689 nm in a strongly saturated regime. The dynamics of the atomic induced phase shift and absorption of the probe light were experimentally studied in details with the purpose of applications to laser stabilization. The atomic sample temperature was in the mK range which brought this system out...

  4. High-power pulsed lasers

    Holzrichter, J.F.

    1980-01-01

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization

  5. Laser safety tools and training

    Barat, Ken

    2008-01-01

    Lasers perform many unique functions in a plethora of applications, but there are many inherent risks with this continually burgeoning technology. Laser Safety: Tools and Training presents simple, effective ways for users in a variety of facilities to evaluate the hazards of any laser procedure and ensure they are following documented laser safety standards.Designed for use as either a stand-alone volume or a supplement to Laser Safety Management, this text includes fundamental laser and laser safety information and critical laser use information rarely found in a single source. The first lase

  6. Laser biostimulation in pediatrics

    Utz, Irina A.; Lagutina, L. E.; Tuchin, Valery V.

    1995-01-01

    In the present paper the method and apparatus for percutaneous laser irradiation of blood (PLIB) in vessels (veins) are described. Results of clinical investigations of biostimulating effects under PLIB by red laser light (633 nm) in Cubiti and Saphena Magna veins are presented.

  7. Metallic DFB lasers

    Marell, M.J.H.; Nötzel, R.; Smit, M.K.; Hill, M.T.; Pozo, J.; Mortensen, M.; Urbach, P.; Leijtens, X.; Yousefi, M.

    2010-01-01

    In this paper we present our latest results on the design, fabrication and characterization of metal coated DFB lasers. These devices are based on a specialform of the metal-insulator-metal waveguides, which support plasmon gap modes. The distributed feedback provides control over the laser ~

  8. Laser processing of materials

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    The initial foundation of laser theory was laid by Einstein [11]. ..... general definition and scope of the processes as understood in conventional practice, but is ..... [54]. Laser welding of Ti-alloys. Welding. 2001 TiNi shape memory alloys. CW–CO2. Study corrosion, mechanical and shape memory properties of weldments.

  9. Microfluidic Dye Lasers

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  10. Laser trabeculotomy versus trabeculoplasty

    Ticho, U.; Frucht, J.

    1984-01-01

    Although laser trabeculotomy has failed in glaucoma management, the laser trabeculoplasty (LTP) procedure has proved to be helpful. LTP was found to improve glaucoma control in 80-90% of open angle glaucoma patients, and less in secondary glaucoma and low tension glaucoma (50%). The procedure is more successful in dark iris eyes and complications are transient. (Auth.)

  11. 5. Laser plasma interaction

    Labaune, C.; Fuchs, J.; Bandulet, H.

    2002-01-01

    Imprint elimination, smoothing and preheat control are considerable problems in inertial fusion and their possible solution can be achieved by using low-density porous materials as a buffer in target design. The articles gathered in this document present various aspects of the laser-plasma interaction, among which we have noticed: -) numerical algorithmic improvements of the Vlasov solver toward the simulation of the laser-plasma interaction are proposed, -) the dependence of radiation temperatures and X-ray conversion efficiencies of hohlraum on the target structures and laser irradiation conditions are investigated, -) a study of laser interaction with ultra low-density (0,5 - 20 mg/cm 3 ) porous media analyzing backscattered light at incident laser frequency ω 0 and its harmonics 3*ω 0 /2 and 2*ω 0 is presented, -) investigations of laser interaction with solid targets and crater formation are carried out with the objective to determine the ablation loading efficiency, -) a self organization in an intense laser-driven plasma and the measure of the relative degree of order of the states in an open system based on the S-theorem are investigated, and -) the existence and stability of electromagnetic solitons generated in a relativistic interaction of an intense laser light with uniform under-dense cold plasma are studied

  12. Laser Interference Lithography

    van Wolferen, Hendricus A.G.M.; Abelmann, Leon; Hennessy, Theodore C.

    In this chapter we explain how submicron gratings can be prepared by Laser Interference Lithography (LIL). In this maskless lithography technique, the standing wave pattern that exists at the intersection of two coherent laser beams is used to expose a photosensitive layer. We show how to build the

  13. Levitated droplet dye laser

    Azzouz, H.; Alkafadiji, L.; Balslev, Søren

    2006-01-01

    a high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine 6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser, and the dye laser emission is analyzed by a fixed grating...

  14. Laser induced energy transfer

    Falcone, R.W.

    1979-01-01

    Two related methods of rapidly transferring stored energy from one excited chemical species to another are described. The first of these, called a laser induced collision, involves a reaction in which the energy balance is met by photons from an intense laser beam. A collision cross section of ca 10 - 17 cm 2 was induced in an experiment which demonstrated the predicted dependence of the cross section on wavelength and power density of the applied laser. A second type of laser induced energy transfer involves the inelastic scattering of laser radiation from energetically excited atoms, and subsequent absorption of the scattered light by a second species. The technique of producing the light, ''anti-Stokes Raman'' scattering of visible and infrared wavelength laser photons, is shown to be an efficient source of narrow bandwidth, high brightness, tunable radiation at vacuum ultraviolet wavelengths by using it to excite a rare gas transition at 583.7 A. In addition, this light source was used to make the first measurement of the isotopic shift of the helium metastable level at 601 A. Applications in laser controlled chemistry and spectroscopy, and proposals for new types of lasers using these two energy transfer methods are discussed

  15. Coaxial short pulsed laser

    Nelson, M.A.; Davies, T.J.

    1975-08-01

    This invention relates to a laser system of rugged design suitable for use in a field environment. The laser itself is of coaxial design with a solid potting material filling the space between components. A reservoir is employed to provide a gas lasing medium between an electrode pair, each of which is connected to one of the coaxial conductors. (auth)

  16. LASER EN LARYNGOLOGIE

    9 mai 2013 ... permettant selon les besoins, coagulation, section ou vaporisation. ... tés par laser au service d'ORL et de chirurgie cervico-. LASER EN .... nose était de siège glottique pur à type de palmure dans. 3 cas et supra glottique ...

  17. Lasers in nuclear physics

    Inamura, T.T.

    1988-01-01

    The hyperfine interaction has been reviewed from a point of view of nuclear physics. Recent progress of nuclear spectroscopy with lasers is presented as one of laser studies of fundamental physics currently pursued in Japan. Especially, the hyperfine anomaly is discussed in connection with the origin of nuclear magnetism. (author)

  18. for aqueous dye lasers

    2014-02-12

    Feb 12, 2014 ... inclusion complex of RhB with the container molecule cucurbit[7]uril (CB[7]). Keywords. Temperature-dependent fluorescence; Rhodamine B; cucurbit[7]uril; host–guest complex; dye laser. PACS Nos 36.20.kd; 83.60.pq; 87.64.kv. 1. Introduction. Rhodamine B (RhB) is an efficient and photostable laser dye ...

  19. Electrodeless excimer laser

    Lisi, N.

    2001-01-01

    In this paper it is proposed how to build an excimer laser based on an electrodeless discharge (or Dielectric Barrier Discharge). Such laser could operate with a low energy per pulse ( 2 excimer molecule, whose emission wavelength in the VUV range (157 nm) at high reprate is particularly interesting in the micro-lithography field [it

  20. Difference Raman spectroscopy of DNA molecules

    Anokhin, Andrey S; Yuzyuk, Yury I; Gorelik, Vladimir S; Dovbeshko, Galina I; Pyatyshev, Alexander Yu

    2015-01-01

    In this paper the micro-Raman spectra of calf DNA for different points of DNA sample have been recorded. The Raman spectra were made with help of difference Raman spectroscopy technique. Raman spectra were recorded with high spatial resolution from different points of the wet and dry samples in different spectral range (100÷4000cm −1 ) using two lasers: argon (514.5 nm) and helium -neon (632.8 nm). The significant differences in the Raman spectra for dry and wet DNA and for different points of DNA molecules were observed. The obtained data on difference Raman scattering spectra of DNA molecules may be used for identification of DNA types and for analysis of genetic information associated with the molecular structure of this molecule

  1. Effects of read-out light sources and ambient light on radiochromic film

    Butson, Martin J.; Yu, Peter K.N.; Metcalfe, Peter E.

    1998-01-01

    Both read-out light sources and ambient light sources can produce a marked effect on coloration of radiochromic film. Fluorescent, helium neon laser, light emitting diode (LED) and incandescent read-out light sources produce an equivalent dose coloration of 660 cGy h -1 , 4.3 cGy h -1 , 1.7 cGy h -1 and 2.6 cGy h -1 respectively. Direct sunlight, fluorescent light and incandescent ambient light produce an equivalent dose coloration of 30 cGy h -1 , 18 cGy h -1 and 0 cGy h -1 respectively. Continuously on, fluorescent light sources should not be used for film optical density evaluation and minimal exposure to any light source will increase the accuracy of results. (author)

  2. Birefringent coherent diffraction imaging

    Karpov, Dmitry; dos Santos Rolo, Tomy; Rich, Hannah; Kryuchkov, Yuriy; Kiefer, Boris; Fohtung, E.

    2016-10-01

    Directional dependence of the index of refraction contains a wealth of information about anisotropic optical properties in semiconducting and insulating materials. Here we present a novel high-resolution lens-less technique that uses birefringence as a contrast mechanism to map the index of refraction and dielectric permittivity in optically anisotropic materials. We applied this approach successfully to a liquid crystal polymer film using polarized light from helium neon laser. This approach is scalable to imaging with diffraction-limited resolution, a prospect rapidly becoming a reality in view of emergent brilliant X-ray sources. Applications of this novel imaging technique are in disruptive technologies, including novel electronic devices, in which both charge and spin carry information as in multiferroic materials and photonic materials such as light modulators and optical storage.

  3. Seasonal variation in the structure of red reflectance of leaves from yellow poplar, red oak, and red maple

    Brakke, Thomas W.; Wergin, William P.; Erbe, Eric F.; Harnden, Joann M.

    1993-01-01

    The light scattered from leaves was measured as a function of view angle in the principal plane for yellow poplar, red oak, and red maple. The source was a parallel-polarized helium-neon laser. Yellow poplar leaves had the highest reflectance of the three species, which may have been due to its shorter palisade cells and more extensive spongy mesophyll. Prior to senescence, there was a significant decrease, but not total extinction, in the reflectance of the beam incident at 60 deg from nadir on the adaxial side of the leaves of all three species. Low-temperature SEM observations showed differences in the surface wax patterns among the three species but did not indicate a cause of the reflectance changes other than possibly the accumulation and aging of the wax.

  4. Measurement of the Clausius-Mossotti second virial coefficients of noable gases

    Woo, J.C.; Kromhout, R.A.

    1980-01-01

    The second virial coefficient of the Clausius-Mossotti function has been measured by means of consecutive expansions with a high resolution Fabry-Perot interferometer and a highly stable, single frequency He-Ne laser. The second virial coefficients are obtained for three gases, helium, neon and argon with values of -0.15, 2.5 and 0.2, respectively. The results obtained in this work agree closely with the dc measurements made by Cole and coworker. Both of these experimental results, however, show large inconsistencies with theoretical values. For helium in particular, a negative value is observed both in this work and Cole's, while the careful theoretical approaches call for a larger positive value. (author)

  5. Auricular Acupuncture with Laser

    Bahr, Frank

    2013-01-01

    Auricular acupuncture is a method which has been successfully used in various fields of medicine especially in the treatment of pain relief. The introduction of lasers especially low-level lasers into medicine brought besides the already existing stimulation with needles and electricity an additional technique to auricular acupuncture. This literature research looks at the historical background, the development and the anatomical and neurological aspects of auricular acupuncture in general and auricular laser acupuncture in detail. Preliminary scientific findings on auricular acupuncture with laser have been described in detail and discussed critically in this review article. The results of the studies have shown evidence of the effect of auricular laser acupuncture. However, a comparison of these studies was impossible due to their different study designs. The most important technical as well as study parameters were described in detail in order to give more sufficient evidence and to improve the quality of future studies. PMID:23935695

  6. Powering laser diode systems

    Trestman, Grigoriy A

    2017-01-01

    This Tutorial Text discusses the competent design and skilled use of laser diode drivers (LDDs) and power supplies (PSs) for the electrical components of laser diode systems. It is intended to help power-electronic design engineers during the initial design stages: the choice of the best PS topology, the calculation of parameters and components of the PS circuit, and the computer simulation of the circuit. Readers who use laser diode systems for research, production, and other purposes will also benefit. The book will help readers avoid errors when creating laser systems from ready-made blocks, as well as understand the nature of the "mystical failures" of laser diodes (and possibly prevent them).

  7. Laser Beam Focus Analyser

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove

    2007-01-01

    the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating......The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  8. Introducing the yellow laser

    Lincoln, James

    2018-02-01

    The author has acquired a yellow laser with the specific wavelength of 589 nm. Because this is the first time such a laser has been discussed in this journal, I feel it is appropriate to provide a discussion of its function and capabilities. Normal laser safety should be employed, such as not pointing it into eyes or at people, and using eye protection for the young and inexperienced. It is important to note that 589 nm is the same wavelength as the Sodium-D line (doublet). This allows for the laser to serve as a replacement for sodium lamps, and, considering its rather high price, this added value should be balanced against its cost. What follows is a list of activities that showcase the yellow laser's unique promise as an engaging piece of technology that can be used in the teaching of physics.

  9. Regenerative similariton laser

    Thibault North

    2016-05-01

    Full Text Available Self-pulsating lasers based on cascaded reshaping and reamplification (2R are capable of initiating ultrashort pulses despite the accumulation of large amounts of nonlinearities in all-fiber resonators. The spectral properties of pulses in self-similar propagation are compatible with cascaded 2R regeneration by offset filtering, making parabolic pulses suitable for the design of a laser of this recently introduced class. A new type of regenerative laser giving birth to similaritons is numerically investigated and shows that this laser is the analog of regenerative sources based solely on self-phase modulation and offset filtering. The regenerative similariton laser does not suffer from instabilities due to excessive nonlinearities and enables ultrashort pulse generation in a simple cavity configuration.

  10. Femtosecond Laser Filamentation

    Chin, See Leang

    2010-01-01

    Femtosecond Laser Filamentation gives a comprehensive review of the physics of propagation of intense femtosecond laser pulses in optical media (principally air) and the applications and challenges of this new technique. This book presents the modern understanding of the physics of femtosecond laser pulse propagation, including unusual new effects such as the self-transformation of the pulse into a white light laser pulse, intensity clamping, the physics of multiple filamentation and competition, and how filaments’ ability to melt glass leads to wave guide writing. The potential applications of laser filamentation in atmospheric sensing and the generation of other electromagnetic pulses from the UV to the radio frequency are treated, together with possible future challenges in the excitation of super-excited states of molecules. Exciting new phenomena such as filament induced ultrafast birefringence and the excitation of molecular rotational wave packets and their multiple revivals in air (gases) will also ...

  11. NASA Space Laser Technology

    Krainak, Michael A.

    2015-01-01

    Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.

  12. Laser-diode pumped Nd:YAG lasers; Laser diode reiki Nd:YAG lasear

    Yuasa, H.; Akiyama, Y.; Nakayama, M. [Toshiba Corp., Tokyo (Japan)

    2000-04-01

    Laser-diode pumped Nd:YAG lasers are expected to be applied to laser processing fields such as welding, cutting, drilling, and marking due to their potential for high efficiency and compactness. We are designing and developing laser-diode pumped Nd:YAG lasers using numerical analysis simulation techniques such as ray tracing and thermal analysis. We have succeeded in achieving a laser power of more than 3 kW with 20% efficiency, which is the best ever obtained. In addition, we have developed a laser-diode pumped green laser by second harmonic generation, for precision machining on silicon wafers. (author)

  13. Laser Safety Inspection Criteria

    Barat, K.

    2005-01-01

    A responsibility of the Laser Safety Officer (LSO) is to perform laser audits. The American National Standard Z136.1 Safe Use of Lasers references this requirement through several sections. One such reference is Section 1.3.2.8, Safety Features Audits, ''The LSO shall ensure that the safety features of the laser installation facilities and laser equipment are audited periodically to assure proper operation''. The composition, frequency and rigor of that inspection/audit rests in the hands of the LSO. A common practice for institutions is to develop laser audit checklists or survey forms It is common for audit findings from one inspector or inspection to the next to vary even when reviewing the same material. How often has one heard a comment, ''well this area has been inspected several times over the years and no one ever said this or that was a problem before''. A great number of audit items, and therefore findings, are subjective because they are based on the experience and interest of the auditor to particular items on the checklist. Beam block usage, to one set of eyes might be completely adequate, while to another, inadequate. In order to provide consistency, the Laser Safety Office of the National Ignition Facility Directorate has established criteria for a number of items found on the typical laser safety audit form. The criteria are distributed to laser users. It serves two broad purposes; first, it gives the user an expectation of what will be reviewed by an auditor. Second, it is an opportunity to explain audit items to the laser user and thus the reasons for some of these items, such as labelling of beam blocks

  14. Laser requirements for a laser fusion energy power plant

    Stephen; E.Bodner; Andrew; J.Schmitt; John; D.Sethian

    2013-01-01

    We will review some of the requirements for a laser that would be used with a laser fusion energy power plant, including frequency, spatial beam smoothing, bandwidth, temporal pulse shaping, efficiency, repetition rate, and reliability. The lowest risk and optimum approach uses a krypton fluoride gas laser. A diode-pumped solid-state laser is a possible contender.

  15. Measurements of laser parameters for the Shiva laser fusion facility

    Ozarski, R.G.

    1979-01-01

    Large laser systems require numerous laser diagnostics to provide configuration, performance and maintenance data to permit efficient operation. The following diagnostics for a large laser system named Shiva are discussed: (1) description of Shiva laser system, (2) what measurements are desired and or required and why, (3) what measurement techniques and packages are employed and a brief description of the operating principles of the sensors employed, and (4) the laser diagnostic data acquisition and display system

  16. LASER PROCESSING ON SINGLE CRYSTALS BY UV PULSE LASER

    龍見, 雅美; 佐々木, 徹; 高山, 恭宜

    2009-01-01

    Laser processing by using UV pulsed laser was carried out on single crystal such as sapphire and diamond in order to understand the fundamental laser processing on single crystal. The absorption edges of diamond and sapphire are longer and shorter than the wave length of UV laser, respectively. The processed regions by laser with near threshold power of processing show quite different state in each crystal.

  17. Laser diode technology and applications

    Figueroa, L.

    1989-01-01

    This book covers a wide range of semiconductor laser technology, from new laser structures and laser design to applications in communications, remote sensing, and optoelectronics. The authors report on new laser diode physics and applications and present a survey of the state of the art as well as progress in new developments

  18. 1982 laser program annual report

    Hendricks, C.D.; Grow, G.R. (eds.)

    1983-08-01

    This annual report covers the following eight sections: (1) laser program review, (2) laser systems and operation, (3) target design, (4) target fabrication, (5) fusion experiments program, (6) Zeus laser project, (7) laser research and development, and (8) energy applications. (MOW)

  19. Fractional laser skin resurfacing.

    Alexiades-Armenakas, Macrene R; Dover, Jeffrey S; Arndt, Kenneth A

    2012-11-01

    Laser skin resurfacing (LSR) has evolved over the past 2 decades from traditional ablative to fractional nonablative and fractional ablative resurfacing. Traditional ablative LSR was highly effective in reducing rhytides, photoaging, and acne scarring but was associated with significant side effects and complications. In contrast, nonablative LSR was very safe but failed to deliver consistent clinical improvement. Fractional LSR has achieved the middle ground; it combined the efficacy of traditional LSR with the safety of nonablative modalities. The first fractional laser was a nonablative erbium-doped yttrium aluminum garnet (Er:YAG) laser that produced microscopic columns of thermal injury in the epidermis and upper dermis. Heralding an entirely new concept of laser energy delivery, it delivered the laser beam in microarrays. It resulted in microscopic columns of treated tissue and intervening areas of untreated skin, which yielded rapid reepithelialization. Fractional delivery was quickly applied to ablative wavelengths such as carbon dioxide, Er:YAG, and yttrium scandium gallium garnet (2,790 nm), providing more significant clinical outcomes. Adjustable laser parameters, including power, pitch, dwell time, and spot density, allowed for precise determination of percent surface area, affected penetration depth, and clinical recovery time and efficacy. Fractional LSR has been a significant advance to the laser field, striking the balance between safety and efficacy.

  20. The argon excimer laser

    Wrobel, W.G.

    1981-02-01

    The electron-beam-pumped argon eximer laser is investigated and tuned for the first time. The electron beam is generated by means of an improved coaxial field emmision diode in which argon gas is excited with power densities of 0.3 GW/cm 3 for 18 ns. The processes in the excited gas of 20 to 65 bar are described in the context of a kinetic model as a sequence of stationary states. Investigations of the amplified spontaneous emission (superfluorescence) confirm the predictions of this model. Only the absorption due to the excited Ar atoms is anomalously high. Reproducible operation of the argon eximer laser was achieved in a wide pressure range with various resonator arrangements. The wavelength of this shortest wavelength of this shortest wavelength excimer laser is 126 nm, the laser line width approx. 1.7 nm, the pulse length 7 to 13 ns, and the laser power 250 kW. The laser emission is tuned from 123.2 nm to 128.4 nm by two different methods (diffraction grating and prism). This tunable laser is thus the one with the shortest wavelength at present. Its line width is 0.25 to 0.4 nm, and the power ue 1.7 kW. (orig.)

  1. Laser wakefield acceleration

    Esarey, E.; Ting, A.; Sprangle, P.

    1989-01-01

    The laser wakefield accelerator (LWFA) is a novel plasma based electron acceleration scheme which utilizes a relativistic optical guiding mechanism for laser pulse propagation. In the LWFA, a short, high power, single frequency laser pulse is propagated through a plasma. As the laser pulse propagates, its radial and axial ponderomotive forces nonresonantly generate large amplitude plasma waves (wakefields) with a phase velocity equal to the group velocity of the pulse. A properly phased electron bunch may then be accelerated by the axial wakefield and focused by the transverse wakefield. Optical guiding of the laser pulse in the plasma is necessary in order to achieve high energies in a single stage of acceleration. At sufficiently high laser powers, optical guiding may be achieved through relativistic effects associated with the plasma electrons. Preliminary analysis indicates that this scheme may overcome some of the difficulties present in the plasma beat wave accelerator and in the plasma wakefield accelerator. Analytical and numerical calculations are presented which study both laser pulse propagation within a plasma as well as the subsequent generation of large amplitude plasma waves. In addition, the generation of large amplitude plasma waves in regimes where the plasma waves become highly nonlinear is examined

  2. Excimer laser decontamination

    Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir; Uteza, Olivier P.

    2000-04-01

    The application of excimer laser ablation process to the decontamination of radioactive surfaces is discussed. This technology is very attractive because it allows to efficiently remove the contaminated particles without secondary waste production. To demonstrate the capability of such technology to efficiently decontaminate large area, we studied and developed a prototype which include a XeCl laser, an optical fiber delivery system and an ablated particles collection cell. The main physical processes taking place during UV laser ablation will be explained. The influence of laser wavelength, pulse duration and absorption coefficient of material will be discussed. Special studies have been performed to understand the processes which limit the transmission of high average power excimer laser through optical fiber, and to determine the laser conditions to optimize the value of this transmission. An in-situ spectroscopic analysis of laser ablation plasma allows the real time control of the decontamination. The results obtained for painting or metallic oxides removal from stainless steel surfaces will be presented.

  3. Color Laser Microscope

    Awamura, D.; Ode, T.; Yonezawa, M.

    1987-04-01

    A color laser microscope utilizing a new color laser imaging system has been developed for the visual inspection of semiconductors. The light source, produced by three lasers (Red; He-Ne, Green; Ar, Blue; He-Cd), is deflected horizontally by an AOD (Acoustic Optical Deflector) and vertically by a vibration mirror. The laser beam is focused in a small spot which is scanned over the sample at high speed. The light reflected back from the sample is reformed to contain linear information by returning to the original vibration mirror. The linear light is guided to the CCD image sensor where it is converted into a video signal. Individual CCD image sensors are used for each of the three R, G, or B color image signals. The confocal optical system with its laser light source yields a color TV monitor image with no flaring and a much sharper resolution than that of the conventional optical microscope. The AOD makes possible a high speed laser scan and a NTSC or PAL TV video signal is produced in real time without any video memory. Since the light source is composed of R, G, and B laser beams, color separation superior to that of white light illumination is achieved. Because of the photometric linearity of the image detector, the R, G, and B outputs of the system are most suitably used for hue analysis. The CCD linear image sensors in the optical system produce no geometrical distortion, and good color registration is available principally. The output signal can be used for high accuracy line width measuring. The many features of the color laser microscope make it ideally suited for the visual inspection of semiconductor processing. A number of these systems have already been installed in such a capacity. The Color Laser Microscope can also be a very useful tool for the fields of material engineering and biotechnology.

  4. Dye laser principles with applications

    Duarte, Frank J; Liao, Peter F; Kelley, Paul

    1990-01-01

    A tutorial introduction to the field of dye lasers, Dye Laser Principles also serves as an up-to-date overview for those using dye lasers as research and industrial tools. A number of the issues discussed in this book are pertinent not only to dye lasers but also to lasers in general. Most of the chapters in the book contain problem sets that expand on the material covered in the chapter.Key Features* Dye lasers are among the most versatile and successful laser sources currently available in use Offering both pulsed and continuous-wave operation and tunable from the near ultraviole

  5. Temperature stabilization of injection lasers

    Albanese, A.

    1987-01-01

    Apparatus which stabilizes the temperature, and thereby the output wavelength, of an injection laser. Means monitor the laser terminal voltage across a laser and derive a voltage therefrom which is proportional to the junction voltage of the laser. Means compares the voltage to a reference value from source and a temperature controller adjusts the laser temperature in response to the results of the comparison. Further embodiments of the present invention vary the output wavelength of the laser by varying the reference value from source against which the laser junction voltage is compared. (author)

  6. Latest development of laser cutting

    Wetzig, Andreas; Herwig, Patrick; Hauptmann, Jan; Goppold, Cindy; Baumann, Robert; Fürst, Andreas; Rose, Michael; Pinder, Thomas; Mahrle, Achim; Beyer, Eckhard

    2016-01-01

    Laser cutting was one of the first applications of laser material processing. Today, laser cutting is the most widespread application among laser material processing besides laser marking. Meanwhile, nearly each material can be cut by means of a laser, in particular since ultra short pulse lasers are available in the power range of up to 100 W. The to be cut material can come with thicknesses from a few microns till tens of millimeters as flat stock or as free form shapes. The paper will conc...

  7. Color speckle in laser displays

    Kuroda, Kazuo

    2015-07-01

    At the beginning of this century, lighting technology has been shifted from discharge lamps, fluorescent lamps and electric bulbs to solid-state lighting. Current solid-state lighting is based on the light emitting diodes (LED) technology, but the laser lighting technology is developing rapidly, such as, laser cinema projectors, laser TVs, laser head-up displays, laser head mounted displays, and laser headlamps for motor vehicles. One of the main issues of laser displays is the reduction of speckle noise1). For the monochromatic laser light, speckle is random interference pattern on the image plane (retina for human observer). For laser displays, RGB (red-green-blue) lasers form speckle patterns independently, which results in random distribution of chromaticity, called color speckle2).

  8. Teradiode's high brightness semiconductor lasers

    Huang, Robin K.; Chann, Bien; Burgess, James; Lochman, Bryan; Zhou, Wang; Cruz, Mike; Cook, Rob; Dugmore, Dan; Shattuck, Jeff; Tayebati, Parviz

    2016-03-01

    TeraDiode is manufacturing multi-kW-class ultra-high brightness fiber-coupled direct diode lasers for industrial applications. A fiber-coupled direct diode laser with a power level of 4,680 W from a 100 μm core diameter, BPP) of 3.5 mm-mrad and is the lowest BPP multi-kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 4-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers. We have also demonstrated novel high peak power lasers and high brightness Mid-Infrared Lasers.

  9. Organic solid-state lasers

    Forget, Sébastien

    2013-01-01

    Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60’s as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.

  10. Laser Hazards Bibliography

    1989-10-31

    light on mandibular fracture healing, Stomatologiia, 57(5): 5-9 (1978). 42 Laser Hazards Bibliography 177. Van Gemert, M.J.C., Schets, G.A.C.M., Bishop...U., Laser-coagulation of ruptured fixation suture after lens implantation, J Am Intraocul Implant Soc, 4(2): 54 (1978). 49. Federman, J. L., Ando, F...laser in pediatric surgery, J Ped Surg, 3: 263-270 (April 1968). 82. Hennessy, R. T., and Leibowitz, H., Subjective measurement of accommodation with

  11. Optimising laser tattoo removal

    Kabir Sardana

    2015-01-01

    Full Text Available Lasers are the standard modality for tattoo removal. Though there are various factors that determine the results, we have divided them into three logical headings, laser dependant factors such as type of laser and beam modifications, tattoo dependent factors like size and depth, colour of pigment and lastly host dependent factors, which includes primarily the presence of a robust immune response. Modifications in the existing techniques may help in better clinical outcome with minimal risk of complications. This article provides an insight into some of these techniques along with a detailed account of the factors involved in tattoo removal.

  12. Ultrashort Laser Pulse Phenomena

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  13. Laser-driven accelerators

    Anon.

    1982-01-01

    Several devices for using laser fields have been proposed and they can be classified in three broad categories - 'far-field' accelerators (such as the principle of inverse free electron lasers), 'media' accelerators (which, for example, use the inverse Cherenkov effect or laser-controlled plasma waves), and 'near-field' accelerators (using a loaded guiding structure such as cavities or gratings). These different approaches come from the fact that a particle cannot be accelerated by the absorption of single photons (because of momentum conservation) and thus some other element has to intervene. (orig./HSI).

  14. Regenerative laser system

    Biancardi, F.R.; Landerman, A.; Melikian, G.

    1975-01-01

    Regenerative apparatus for exhausting the working medium from the optical cavity of a laser and for supplying preheated diluent to the reaction chamber of a laser is disclosed. In an aftercooler thermal energy is exchanged between the working medium exhausted from the optical cavity and a cryogenic coolant which is subsequently utilized as the motive fluid for an ejector and as a diluent in the production of laser gas. Highly toxic and corrosive gases are condensed out of the working medium as the cryogenic coolant is evaporated and superheated. A preheater transfers additional heat to the diluent before the diluent enters the reaction chamber. (U.S.)

  15. Tunable excimer lasers

    Sze, R.C.

    1990-01-01

    The wide bandwidth nature of the rare-gas halide excimer transitions allow reasonable tuning of the laser oscillation wavelength that makes it useful for a number of applications. At the same time this wide bandwidth makes narrow band operation difficult and special techniques are needed to insure narrow frequency lasing as well as absolute frequency resettability. The author discusses briefly some of the classical frequency narrowing techniques and then goes on to some recent work that require lasers of special frequency characteristics for special applications including KrF laser fusion

  16. Diatomic gasdynamic lasers.

    Mckenzie, R. L.

    1972-01-01

    Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant overpopulations of upper vibrational states. When mixtures of CO and N2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N2 expansions. The resulting CO-N2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO2 lasers.

  17. Gas dynamic lasers

    Hill, R.J.; Jewell, N.T.

    1975-01-01

    In a high powered laser system it is proposed that combustion gases be bled off from a gas turbine engine and their composition adjusted by burning extra fuel in the bleed gases or adding extra substances. Suitable aerodynamic expansion produces a population inversion resulting in laser action in the CO 2 species. Alternatively, bleed gases may be taken from the high pressure compressor of the gas turbine engine and an appropriate fuel burned therein. If required, other adjustments may also be made to the composition and the resulting gaseous mixture subjected to aerodynamic expansion to induce laser action as before. (auth)

  18. Monoenergetic laser wakefield acceleration

    N. E. Andreev

    2000-02-01

    Full Text Available Three dimensional test particle simulations are applied to optimization of the plasma-channeled laser wakefield accelerator (LWFA operating in a weakly nonlinear regime. Electron beam energy spread, emittance, and luminosity depend upon the proportion of the electron bunch size to the plasma wavelength. This proportion tends to improve with the laser wavelength increase. We simulate a prospective two-stage ∼1GeV LWFA with controlled energy spread and emittance. The input parameters correspond to realistic capabilities of the BNL Accelerator Test Facility that features a picosecond-terawatt CO_{2} laser and a high-brightness electron gun.

  19. Simulations of laser undulators

    Milton, S. V.; Biedron, S. B.; Einstein, J. E.

    2016-09-01

    We perform a series of single-pass, one-D free-electron laser simulations based on an electron beam from a standard linear accelerator coupled with a so-called laser undulator, a specialized device that is more compact than a standard undulator based on magnetic materials. The longitudinal field profiles of such lasers undulators are intriguing as one must and can tailor the profile for the needs of creating the virtual undulator. We present and discuss several results of recent simulations and our future steps.

  20. Diatomic gasdynamic lasers

    McKenzie, R.L.

    1971-12-01

    Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant over-populations of upper vibrational states. When mixtures of CO and N 2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N 2 expansions. The resulting CO-N 2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO 2 lasers

  1. High power excimer laser

    Oesterlin, P.; Muckenheim, W.; Basting, D.

    1988-01-01

    Excimer lasers emitting more than 200 W output power are not commercially available. A significant increase requires new technological efforts with respect to both the gas circulation and the discharge system. The authors report how a research project has yielded a laser which emits 0.5 kW at 308 nm when being UV preionized and operated at a repetition rate of 300 Hz. The laser, which is capable of operating at 500 Hz, can be equipped with an x-ray preionization module. After completing this project 1 kW output power will be available

  2. Plasmonic colour laser printing

    Zhu, Xiaolong; Vannahme, Christoph; Højlund-Nielsen, Emil

    2016-01-01

    -beam lithography (EBL) or focused ion beam (FIB), both expensive and not scalable processes that are not suitable for post-processing customization. Here we show a method of colour printing on nanoimprinted plasmonic metasurfaces using laser post-writing. Laser pulses induce transient local heat generation...... that leads to melting and reshaping of the imprinted nanostructures. Depending on the laser pulse energy density, different surface morphologies that support different plasmonic resonances leading to different colour appearances can be created. Using this technique we can print all primary colours...

  3. Optimising Laser Tattoo Removal

    Sardana, Kabir; Ranjan, Rashmi; Ghunawat, Sneha

    2015-01-01

    Lasers are the standard modality for tattoo removal. Though there are various factors that determine the results, we have divided them into three logical headings, laser dependant factors such as type of laser and beam modifications, tattoo dependent factors like size and depth, colour of pigment and lastly host dependent factors, which includes primarily the presence of a robust immune response. Modifications in the existing techniques may help in better clinical outcome with minimal risk of complications. This article provides an insight into some of these techniques along with a detailed account of the factors involved in tattoo removal. PMID:25949018

  4. Laser welding engineering

    Bhieh, N. M.; El Eesawi, M. E.; Hashkel, A. E.

    2007-01-01

    Laser welding was in its early life used mainly for unusual applications where no other welding process would be suitable that was twenty five years ago. Today, laser welding is a fully developed part of the metal working industry, routinely producing welds for common items such as cigarette lighters, which springs, motor/transformer lamination, hermetic seals, battery and pacemaker cans and hybrid circuit packages. Yet very few manufacturing engineering have seriously considers employing lasers in their own operations. Why? There are many reasons, but a main one must be not acquainted with the operation and capabilities of a laser system. Other reasons, such as a relatively high initial cost and a concern about using lasers in the manufacturing environment, also are frequently cited, and the complexity of the component and flexibility of the light delivery system. Laser welding could be used in place of many different standard processes, such as resistance (spot or seam), submerged arc, RF induction, high-frequency resistance, ultrasonic and electronic and electron-beam. while each of these techniques has established an independent function in the manufacturing world, the flexible laser welding approach will operate efficiently and economically in many different applications. Its flexibility will even permit the welding system to be used for other machining function, such as drilling, scribing, sealing and serializing. In this article, we will look at how laser welding works and what benefits it can offer to manufacturing engineers. Some industry observers state that there are already 2,000 laser machine tools being used for cutting, welding and drilling and that the number could reach 30,000 over the next 15 years as manufacturing engineers become more aware of the capabilities of lasers [1). While most laser applications are dedicated to one product or process that involves high-volume, long-run manufacturing, the flexibility of a laser to supply energy to hard

  5. Laser Megajoule synchronization system

    Luttmann, M.; Pastor, J.F; Drouet, V.; Prat, M.; Raimbourg, J.; Adolf, A.

    2011-01-01

    This paper describes the synchronisation system under development on the Laser Megajoule (LMJ) in order to synchronize the laser quads on the target to better than 40 ps rms. Our architecture is based on a Timing System (TS) which delivers trigger signals with jitter down to 15 ps rms coupled with an ultra precision timing system with 5 ps rms jitter. In addition to TS, a sensor placed at the target chamber center measures the arrival times of the 3 omega nano joule laser pulses generated by front end shots. (authors)

  6. Laser applications in neurosurgery

    Cerullo, Leonard J.

    1985-09-01

    The "false start" of the laser in neurosurgery should not be misconstrued as a denial of the inherent advantages of precision and gentleness in dealing with neural tissue. Rather, early investigators were frustrated by unrealistic expectations, cumbersome equipment, and a general ignorance of microtechnique. By the early 70s, microneurosurgery was well established, surgical laser equipment for free hand and microlinked application had been developed, and a more realistic view of the limitations of the laser had been established. Consequently, the late 70s really heralded the renaissance of the laser in neurosurgery. Since then, there has been an overwhelming acceptance of the tool in a variety of clinical situations, broadly categorized in five groups. 1)|Perhaps the most generally accepted area is in the removal of extra-axial tumors of the brain and spinal cord. These tumors, benign by histology but treacherous by location, do not present until a significant amount of neurological compensation has already occurred. The application of additional trauma to the neural tissue, whether by further tumor growth or surgical manipulation, frequently results in irreversible damage. Here, the ability of the laser to vaporize tissue, in a fairly hemostatic fashion, without mechanical or thermal damage to sensitive surrounding tissues, is essential. 2)|The ability to incise delicate neural tissue with minimal spread of thermal destruction to adjacent functioning tissue makes the laser the ideal instrument when tumors deep under the surface are encountered in the brain or spinal cord. Thus, the second group of applications is in the transgression of normal neural structures to arrive at deeper pathological tissue. 3)|The third area of benefit for the laser in neurosurgery has been in the performance of neuroablative procedures, calling for deliberate destruction of functioning neural tissue in a controlled fashion. Again, the precision and shape confinement of the destructive

  7. Laser tests of silicon detectors

    Dolezal, Zdenek; Escobar, Carlos; Gadomski, Szymon; Garcia, Carmen; Gonzalez, Sergio; Kodys, Peter; Kubik, Petr; Lacasta, Carlos; Marti, Salvador; Mitsou, Vasiliki A.; Moorhead, Gareth F.; Phillips, Peter W.; Reznicek, Pavel; Slavik, Radan

    2007-01-01

    This paper collects experiences from the development of a silicon sensor laser testing setup and from tests of silicon strip modules (ATLAS End-cap SCT), pixel modules (DEPFET) and large-area diodes using semiconductor lasers. Lasers of 1060 and 680 nm wavelengths were used. A sophisticated method of focusing the laser was developed. Timing and interstrip properties of modules were measured. Analysis of optical effects involved and detailed discussion about the usability of laser testing for particle detectors are presented

  8. Multispot fiber laser welding

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  9. Lasers and holography

    Kock, Winston E

    1981-01-01

    Accessible, illustrated introduction covers wave patterns and coherence, summarizes the development of lasers and the phenomenon of wave diffraction, and describes zone plates and properties of holograms. 1981 edition.

  10. Jupiter Laser Facility

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  11. Blackbody metamaterial lasers

    Liu, Changxu

    2015-01-01

    We investigate both theoretically and experimentally a new type of laser, which exploits a broadband light "condensation" process sustained by the stimulated amplification of an optical blackbody metamaterial. © 2014 Optical Society of America.

  12. Electra Laser Facility

    Federal Laboratory Consortium — FUNCTION: The Electra Laser Facility is used to develop the science and technology needed to develop a reliable, efficient, high-energy, repetitively pulsed krypton...

  13. Airclad fiber laser technology

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... require reliable fibers with large cores, stable mode quality, and good power handling capabilities-requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...

  14. Laser fusion overview

    Nuckolls, J.

    1976-01-01

    Because of recent breakthroughs in the target area, and in the glass laser area, the scientific feasibility of laser fusion--and of inertial fusion--may be demonstrated in the early 1980's. Then the development in that time period of a suitable laser (or storage ring or other driving source) would make possible an operational inertial fusion reactor in this century. These are roughly the same time scales as projected by the Tokamak magnetic confinement approach. It thus appears that the 15-20 year earlier start by magnetic confinement fusion may be overcome. Because inertial confinement has been demonstrated, and inertial fusion reactors may operate on smaller scales than Tokamaks, laser fusion may have important technical and economic advantages

  15. Laser therapy for periodontitis

    Efanov, O. I.

    2001-04-01

    An investigation was made of applying pulsed (lambda) equals 0.89 micrometers laser radiation in the treatment for early diagnosed periodontitis. The investigation was made on 65 patients (47 patients constituted the experimental group and 18 patients constituted a control group) affected by periodontitis. Clinical and functional tests revealed that laser therapy produced a string effect on the course of the illness. It reduced bleeding, inflammation, and pruritus. However, it did not produce an affect on electroexcitation. Biomicroscopic examinations and periodontium rheography revealed that the gingival blood flow became normal after the course of laser therapy. The capillary permeability and venous congestion decreased, which was confirmed by the increased time of vacuum tests, raised gingival temperature, reduced tissue clearance, and increased oxygen tension. Apart from that, laser therapy subsided fibrinolysis, proteolytic tissue activity, and decreased the exudative inflammation of periodontium.

  16. Laser Guidance Analysis Facility

    Federal Laboratory Consortium — This facility, which provides for real time, closed loop evaluation of semi-active laser guidance hardware, has and continues to be instrumental in the development...

  17. Airclad fiber laser technology

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  18. Improved Laser Vibration Radar

    Hilaire, Pierre

    1998-01-01

    .... This thesis reconfigured an existing CO2 laboratory laser radar system that is capable of measuring the frequencies of vibration of a simulated target into a more compact and rugged form for field testing...

  19. Physics of laser plasma

    Rubenchik, A.; Witkowski, S.

    1991-01-01

    This book provides a comprehensive review of laser fusion plasma physics and contains the most up-to-date information on high density plasma physics and radiation transport, useful for astrophysicists and high density physicists

  20. Fusion reactor pumped laser

    Jassby, D.L.

    1988-01-01

    A nuclear pumped laser is described comprising: a toroidal fusion reactor, the reactor generating energetic neutrons; an annular gas cell disposed around the outer periphery of the reactor, the cell including an annular reflecting mirror disposed at the bottom of the cell and an annular output window disposed at the top of the cell; a gas lasing medium disposed within the annular cell for generating output laser radiation; neutron reflector material means disposed around the annular cell for reflecting neutrons incident thereon back into the gas cell; neutron moderator material means disposed between the reactor and the gas cell and between the gas cell and the neutron reflector material for moderating the energy of energetic neutrons from the reactor; converting means for converting energy from the moderated neutrons to energy pumping means for pumping the gas lasing medium; and beam compactor means for receiving output laser radiation from the annular output window and generating a single output laser beam therefrom

  1. Compact semiconductor lasers

    Yu, Siyuan; Lourtioz, Jean-Michel

    2014-01-01

    This book brings together in a single volume a unique contribution by the top experts around the world in the field of compact semiconductor lasers to provide a comprehensive description and analysis of the current status as well as future directions in the field of micro- and nano-scale semiconductor lasers. It is organized according to the various forms of micro- or nano-laser cavity configurations with each chapter discussing key technical issues, including semiconductor carrier recombination processes and optical gain dynamics, photonic confinement behavior and output coupling mechanisms, carrier transport considerations relevant to the injection process, and emission mode control. Required reading for those working in and researching the area of semiconductors lasers and micro-electronics.

  2. YAG Laser or bur

    2018-02-23

    Feb 23, 2018 ... for the clinical durability of resin-based dental restorations.[1]. Microleakage ... studies evaluating the use of laser systems in primary teeth for cavity ... sealed with glass ionomer restorative material (Fuji. II LC, GC Corporation ...

  3. Foundations of laser spectroscopy

    Stenholm, Stig

    2005-01-01

    A simple presentation of the theoretical foundations of steady-state laser spectroscopy, this text helps students to apply theory to calculations with a systematic series of examples and exercises. 1984 edition.

  4. Thermonuclear fusion by laser

    Delpech, J.-F.; Fabre, Edouard.

    1978-01-01

    This paper is intended to describe the principle of inetia containment by laser and the research effort undertaken for this purpose. After having enumerated the principal thermonuclear reactions useful for fusion, the authors derive the rhoR criterion that characterizes inertia containment, as well as the Lawson criterion in the case of magnetic containment. The main physics problems involved in inertia containment by laser are enunciated and the article ends with a review of means resorted to in France and abroad for studying this problem. This review also reports C.N.R.S. bustling in this field, within the scope of competence of G.I.L.M. (Groupement de Recherches Coordonnees sur l'Interaction Laser-Matiere = Group for coordinated investigation of matter-laser interaction) established in Paris at the Ecole Polytechnique [fr

  5. DIFFRACTION SYNCHRONIZATION OF LASERS,

    semiconductor lasers while suppressing parasitic generation in the plane of the mirror. The diffraction coupling coefficient of open resonators is calculated, and the stability conditions of the synchronized system is determined.

  6. Efficiencies of laser dyes for atomic vapor laser isotope separation

    Maeda, Mitsuo; Oki, Yuji; Uchiumi, Michihiro; Takao, Takayuki; Igarashi, Kaoru; Shimamoto, Kojiro.

    1995-01-01

    Efficiencies of 30 laser dyes for the atomic vapor laser isotope separation (AVLIS) are experimentally evaluated with a dye laser pumped by a frequency-doubled Nd:YAG laser. On the other hand, a simulation code is developed to describe the laser action of Rhodamine 6G, and the dependence of the laser efficiency on the pump wavelength is calculated. Following conclusions are obtained by these considerations:space: 1) Pyrromethene 567 showed 16% higher laser efficiency than Rhodamine 6G by 532 nm pumping, and Pyrromethene 556 has an ability to provide better efficiency by green light pumping with a Cu vapor laser; 2) Kiton red 620 and Rhodamine 640, whose efficiencies were almost the same as Rhodamine 6G by 532 nm pumping, will show better efficiencies by two-wavelength pumping with a Cu vapor laser. (author)

  7. Future prospects of laser diodes and fiber lasers

    Ueda, Ken-ichi

    2000-01-01

    For the next century we should develop new concepts for coherent control of light generation and propagation. Owing to the recent development of ultra fine structures in semiconductor lasers, fiber lasers, and various kinds of waveguide structure, we can make optical devices which control the light propagation artificially. But, the phase locking and phase control of multiple laser oscillators are one of the most important directions of laser science and technology. The coherent summation has been a dream of laser since 1960. Is it possible to solve this old and quite challenging problem for laser science? This is also a very basic concept because the laser action based on the stimulated emission is the process of coherent summation of huge number of photons emitted from individual atoms. In this paper, I discuss the fundamental direction of laser research in the next ten or twenty years. The active optics and laser technology should be combined intrinsically in near future. (author)

  8. High-energy molecular lasers self-controlled volume-discharge lasers and applications

    Apollonov, V V

    2016-01-01

    This book displays the physics and design of high-power molecular lasers. The lasers described are self-controlled volume-discharge lasers. The book explains self-sustained discharge lasers, self-initiated discharge lasers and technical approaches to laser design. Important topics discussed are laser efficiency, laser beam quality and electric field homogeneity. The book contains many new innovative applications.

  9. Transurethral vaporesection of prostate: diode laser or thulium laser?

    Tan, Xinji; Zhang, Xiaobo; Li, Dongjie; Chen, Xiong; Dai, Yuanqing; Gu, Jie; Chen, Mingquan; Hu, Sheng; Bai, Yao; Ning, Yu

    2018-05-01

    This study compared the safety and effectiveness of the diode laser and thulium laser during prostate transurethral vaporesection for treating benign prostate hyperplasia (BPH). We retrospectively analyzed 205 patients with BPH who underwent a diode laser or thulium laser technique for prostate transurethral vaporesection from June 2016 to June 2017 and who were followed up for 3 months. Baseline characteristics of the patients, perioperative data, postoperative outcomes, and complications were compared. We also assessed the International Prostate Symptom Score (IPSS), quality of life (QoL), maximum flow rate (Q max ), average flow rate (AFR), and postvoid residual volume (PVR) at 1 and 3 months postoperatively to evaluate the functional improvement of each group. There were no significant differences between the diode laser and thulium laser groups related to age, prostate volume, operative time, postoperative hospital stays, hospitalization costs, or perioperative data. The catheterization time was 3.5 ± 0.8 days for the diode laser group and 4.7 ± 1.8 days for the thulium laser group (p diode laser and thulium laser contributes to safe, effective transurethral vaporesection in patients with symptomatic BPH. Diode laser, however, is better than thulium laser for prostate transurethral vaporesection because of its shorter catheterization time. The choice of surgical approach is more important than the choice of laser types during clinical decision making for transurethral laser prostatectomy.

  10. Pulsed chemical laser

    Jacobson, T.V.; Kimbell, G.H.

    1975-01-01

    A hydrogen fluoride laser capable of operating super radiantly and at atmospheric pressure is described. A transverse electrical discharge is utilized to energize the reaction of a hydrogen donor to provide hydrogen fluoride in a metastable energy state which reverts to a stable state by laser action. A large range of hydrogen and fluorine donors is disclosed. A preferred pair of donors is sulphur hexafluoride and propane. Helium is frequently added to the gas mix to act as a buffer. (U.S.)

  11. Hybrid vertical cavity laser

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  12. Laser Resurfacing Pearls

    Shah, Sonia; Alam, Murad

    2012-01-01

    Ablative skin resurfacing using the carbon dioxide laser was long considered the gold standard for treatment of photoaging, acne scars, and rhytids. However, conventional full-face carbon dioxide resurfacing is associated with significant risk of side effects and a prolonged postoperative recovery period. Fractional resurfacing has recently revolutionized laser surgery by offering close to comparable results with minimal side effects and a more rapid recovery. Although fractional devices have...

  13. Laser cooling of solids

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  14. Laser radiation protection

    Pantelic, D.; Muric, B.; Vasiljevic, D.

    2011-01-01

    We have presented the effects of laser radiation on human organism, with special emphasize on eye as the most sensitive organ. It was pointed-out that there are many parameters that should be taken into account when determining the level of protection from laser light. In that respect it is important to be aware of international standards that regulate this area. In addition, we have described a new material which efficiently protects human eye, by formation of microlens and carbonization. [sr

  15. SHIVA laser: nearing completion

    Glaze, J.A.; Godwin, R.O.

    1977-01-01

    Construction of the Shiva laser system is nearing completion. This laser will be operating in fall 1977 and will produce over 20 terawatts of focusable power in a subnanosecond pulse. Fusion experiments will begin early in 1978. It is anticipated that thermonuclear energy release equal to one percent that of the incident light energy will be achieved with sub-millimeter deuterium-tritium targets. From other experiments densities in excess of a thousand times that of liquid are also expected

  16. Laser Scanning in Forests

    Håkan Olsson

    2012-09-01

    Full Text Available The introduction of Airborne Laser Scanning (ALS to forests has been revolutionary during the last decade. This development was facilitated by combining earlier ranging lidar discoveries [1–5], with experience obtained from full-waveform ranging radar [6,7] to new airborne laser scanning systems which had components such as a GNSS receiver (Global Navigation Satellite System, IMU (Inertial Measurement Unit and a scanning mechanism. Since the first commercial ALS in 1994, new ALS-based forest inventory approaches have been reported feasible for operational activities [8–12]. ALS is currently operationally applied for stand level forest inventories, for example, in Nordic countries. In Finland alone, the adoption of ALS for forest data collection has led to an annual savings of around 20 M€/year, and the work is mainly done by companies instead of governmental organizations. In spite of the long implementation times and there being a limited tradition of making changes in the forest sector, laser scanning was commercially and operationally applied after about only one decade of research. When analyzing high-ranked journal papers from ISI Web of Science, the topic of laser scanning of forests has been the driving force for the whole laser scanning research society over the last decade. Thus, the topic “laser scanning in forests” has provided a significant industrial, societal and scientific impact. [...

  17. CO2 laser cutting

    Powell, John

    1998-01-01

    The laser has given manufacturing industry a new tool. When the laser beam is focused it can generate one of the world's most intense energy sources, more intense than flames and arcs, though similar to an electron beam. In fact the intensity is such that it can vaporise most known materials. The laser material processing industry has been growing swiftly as the quality, speed and new manufacturing possibilities become better understood. In the fore of these new technologies is the process of laser cutting. Laser cutting leads because it is a direct process substitu­ tion and the laser can usually do the job with greater flexibility, speed and quality than its competitors. However, to achieve these high speeds with high quality con­ siderable know how and experience is required. This information is usually carefully guarded by the businesses concerned and has to be gained by hard experience and technical understanding. Yet in this book John Powell explains in lucid and almost non­ technical language many o...

  18. Reverse spontaneous laser line sweeping in ytterbium fiber laser

    Navrátil, Petr; Peterka, Pavel; Honzátko, Pavel; Kubeček, V.

    2017-01-01

    Roč. 14, č. 3 (2017), č. článku 035102. ISSN 1612-2011 R&D Projects: GA ČR(CZ) GA16-13306S Institutional support: RVO:67985882 ; RVO:68378271 Keywords : laser line sweeping * ytterbium * fiber lasers Subject RIV: BH - Optics, Masers, Lasers; BH - Optics, Masers, Lasers (FZU-D) OBOR OECD: Optics (including laser optics and quantum optics); Optics (including laser optics and quantum optics) (FZU-D) Impact factor: 2.537, year: 2016

  19. Laser Diode Pumped Solid State Lasers

    1987-01-01

    Report N66001-83-C-0071, 17 April 1986, prepared for NOSC. 4.6 W.T. Welford, R. Winston , "The Option of Nonimaging Concentrators ," Academic Press, 1978...by non-imac optics such as reflective or refractive flux concentrators . Simple considerations regarding the optimum pumping configuration, high marks...reduced if the arrays can stand-off from the Nd:YAG laser. As mentioned before, compound parabolic concentrators or refractive optics cat employed to

  20. Greco Laser-matter interaction

    1986-01-01

    Research program in 1985 at GRECO ILM (Group of Coordinated Research: Interaction Laser Matter) continued with its principal direction in fundamental physics of laser inertial confinement; also researches on X-ray lasers hare been undergone and new high power laser application fields with particle acceleration, material processing and X-ray sources. A six beam laser was operated. Wavelength effects were studied. Atomic physics was deeply stressed as dense medium diagnostics from multicharged ions. Research development in ultra-dense medium was also important X-ray laser research gave outstanding results. New research fields were developed this year: laser acceleration of particles by wave beating or Raman instability; dense laser produced plasma use as X-ray source; material processing by laser shocks [fr

  1. Ultracompact Pseudowedge Plasmonic Lasers and Laser Arrays.

    Chou, Yu-Hsun; Hong, Kuo-Bin; Chang, Chun-Tse; Chang, Tsu-Chi; Huang, Zhen-Ting; Cheng, Pi-Ju; Yang, Jhen-Hong; Lin, Meng-Hsien; Lin, Tzy-Rong; Chen, Kuo-Ping; Gwo, Shangjr; Lu, Tien-Chang

    2018-02-14

    Concentrating light at the deep subwavelength scale by utilizing plasmonic effects has been reported in various optoelectronic devices with intriguing phenomena and functionality. Plasmonic waveguides with a planar structure exhibit a two-dimensional degree of freedom for the surface plasmon; the degree of freedom can be further reduced by utilizing metallic nanostructures or nanoparticles for surface plasmon resonance. Reduction leads to different lightwave confinement capabilities, which can be utilized to construct plasmonic nanolaser cavities. However, most theoretical and experimental research efforts have focused on planar surface plasmon polariton (SPP) nanolasers. In this study, we combined nanometallic structures intersecting with ZnO nanowires and realized the first laser emission based on pseudowedge SPP waveguides. Relative to current plasmonic nanolasers, the pseudowedge plasmonic lasers reported in our study exhibit extremely small mode volumes, high group indices, high spontaneous emission factors, and high Purell factors beneficial for the strong interaction between light and matter. Furthermore, we demonstrated that compact plasmonic laser arrays can be constructed, which could benefit integrated plasmonic circuits.

  2. Lasers in endodontics: an overview

    Frentzen, Matthias; Braun, Andreas; Koort, Hans J.

    2002-06-01

    The interest in endodontic use of dental laser systems is increasing. Developing laser technology and a better understanding of laser effects widened the spectrum of possible endodontic indications. Various laser systems including excimer-, argon+-, diode-, Nd:YAG-, Er:YAG- and CO2-lasers are used in pulp diagnosis, treatment of hypersensitivity, pulp capping, sterilization of root canals, root canal shaping and obturation or apicoectomy. With the development of new delivery systems - thin and flexible fibers - for many different wavelengths laser applications in endodontics may increase. Since laser devices are still relatively costly, access to them is limited. Most of the clinical applications are laser assisted procedures such as the removing of pulp remnants and debris or disinfection of infected root canals. The essential question is whether a laser can provide improved treatment over conventional care. To perform laser therapy in endodontics today different laser types with adopted wavelengths and pulse widths are needed, each specific to a particular application. Looking into the future we will need endodontic laser equipment providing optimal laser parameters for different treatment modalities. Nevertheless, the quantity of research reports from the last decade promises a genuine future for lasers in endodontics.

  3. Development of frequency tunable Ti:sapphire laser and dye laser pumped by a pulsed Nd:YAG laser

    Yi, Jong Hoon; Horn, Roland; Wendt, K.

    2001-01-01

    We investigated lasing characteristics of two kinds of tunable laser, liquid dye laser and solid Ti:sapphire crystal laser, pumped by high pulse repetition rate Nd:YAG laser. Dye laser showed drastically reduced pulsewidth compared with that of pump laser and it also contained large amount of amplified spontaneous emission. Ti:sapphire laser showed also reduced pulsewidth. But, the laser conversion pump laser and Ti:sapphire laser pulse, we used a Brewster-cut Pockel's cell for Q-switching. The laser was frequency doubled by a type I BBO crystal outside of the cavity.

  4. Femtosecond Fiber Lasers

    Bock, Katherine J.

    This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third

  5. Lasers '90: Proceedings of the 13th International Conference on Lasers and Applications, San Diego, CA, Dec. 10-14, 1990

    Harris, D.G.; Herbelin, J.

    1991-01-01

    The general topics considered are: x-ray lasers; FELs; solid state lasers; techniques and phenomena of ultrafast lasers; optical filters and free space laser communications; discharge lasers; tunable lasers; applications of lasers in medicine and surgery; lasers in materials processing; high power lasers; dynamics gratings, wave mixing, and holography; up-conversion lasers; lidar and laser radar; laser resonators; excimer lasers; laser propagation; nonlinear and quantum optics; blue-green technology; imaging; laser spectroscopy; chemical lasers; dye lasers; and lasers in chemistry

  6. High power ultrashort pulse lasers

    Perry, M.D.

    1994-01-01

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced

  7. Injection-controlled laser resonator

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  8. Laser safety in the lab

    Barat, Ken L

    2012-01-01

    There is no more challenging setting for laser use than a research environment. In almost every other setting the laser controls count on engineering controls, and human exposure is kept to a minimum. In research, however, the user often manipulates the optical layout and thereby places him or herself in peril, but this does not mean that accidents and injury are unavoidable. On the contrary, laser accidents can be avoided by following a number of simple approaches. [i]Laser Safety in the Lab[/i] provides the laser user and laser safety officer with practical guidelines from housekeeping to ey

  9. NTES laser facility for physics experiments

    Christie, D.J.; Foley, R.J.; Frank, D.N.

    1989-01-01

    This paper discusses the following topics on the NTES laser facility: Mission Statement and Project Description; Experiment Area; High-Energy, Double-Pass Laser; Facilities; Laser Control and Data Acquisition; and Auxiliary Lasers

  10. Theoretical studies of solar-pumped lasers

    Harries, W. L.

    1983-01-01

    Possible types of lasers were surveyed for solar power conversion. The types considered were (1) liquid dye lasers, (2) vapor dye lasers, and (3) nondissociative molecular lasers. These are discussed.

  11. Laser-based additive manufacturing of metals

    Kumar, S

    2010-11-01

    Full Text Available For making metallic products through Additive Manufacturing (AM) processes, laser-based systems play very significant roles. Laser-based processes such as Selective Laser Melting (SLM) and Laser Engineered Net Shaping (LENS) are dominating processes...

  12. Ultrashort pulse laser technology laser sources and applications

    Schrempel, Frank; Dausinger, Friedrich

    2016-01-01

    Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

  13. Transcanalicular laser dacryocystorhinostomy using low energy 810 nm diode laser

    Sanjiv K Gupta

    2012-01-01

    Conclusions: Transcanalicular Laser DCR can be safely performed using a low power 810 nm diode laser. The surgery is elegant, minimally invasive, allows fast rehabilitation, and has an excellent success rate.

  14. Laser spectroscopy and laser isotope separation of atomic gadolinium

    Chen, Y. W.; Yamanaka, C.; Nomaru, K.; Kou, K.; Niki, H.; Izawa, Y.; Nakai, S.

    1994-01-01

    Atomic vapor laser isotope separation (AVLIS) is a process which uses intense pulsed lasers to selectively photoionize one isotopic species of a chemical element, after which these ions are extracted electromagnetically. The AVLIS has several advantages over the traditional methods based on the mass difference, such as high selectivity, low energy consumption, short starting time and versatility to any atoms. The efforts for atomic vapor laser isotope separation at ILT and ILE, Osaka University have been concentrated into the following items: 1) studies on laser spectroscopy and laser isotope separation of atomic gadolinium, 2) studies on interaction processes including coherent dynamics, propagation effects and atom-ion collision in AVLIS system, 3) development of laser systems for AVLIS. In this paper, we present experimental results on the laser spectroscopy and laser isotope separation of atomic gadolinium.

  15. Laser marking method and device

    Okazaki, Yuki; Aoki, Nobutada; Mukai, Narihiko; Sano, Yuji; Yamamoto, Seiji.

    1997-01-01

    An object is disposed in laser beam permeating liquid or gaseous medium. Laser beams such as CW laser or pulse laser oscillated from a laser device are emitted to the object to apply laser markings with less degradation of identification and excellent corrosion resistance on the surface of the object simply and easily. Upon applying the laser markings, a liquid or gas as a laser beam permeating medium is blown onto the surface of the object, or the liquid or gas in the vicinity of the object is sucked, the laser beam-irradiated portion on the surface can be cooled positively. Accordingly, the laser marking can be formed on the surface of the object with less heat affection to the object. In addition, if the content of a nitrogen gas in the laser beam permeating liquid medium is reduced by degassing to lower than a predetermined value, or the laser beam permeating gaseous medium is formed by an inert gas, a laser marking having high corrosion resistance and reliability can be formed on the surface of the objective member. (N.H.)

  16. Proceedings of national laser symposium (NLS-2000)

    Mallik, Amitav; Srivastava, K.N.; Pal, Suranjan

    2000-01-01

    This proceedings comprise of a series of invited talks on selected topics in lasers and wide range of contributed papers. The main topics are laser physics and research, laser devices and technology, laser materials and spectroscopy, quantum optics, non-linear optics ultra-fast phenomenon, laser produced plasma, high power lasers, laser instrumentation, medical applications and industrial applications of lasers and fiber optics. The papers relevant to INIS Database are indexed separately

  17. Laser tissue interactions: an update for otolaryngology

    Reinisch, Lou

    2000-05-01

    We review the laser, characteristics of laser light, the delivery of laser light, pulse lengths and laser tissue interactions. We review these parameters and how they have changed over the history of the laser and how we expect them to change in the future. This survey of laser use is targeted to the otolaryngologist. Very little background in lasers is necessary to follow the discussion. This is intended to introduce and reintroduce laser technology.

  18. Photonic Molecule Lasers Revisited

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.

    2014-05-01

    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  19. HF-laser program

    Anon.

    1978-01-01

    Sandia's HF-laser program for FY 77 and FY 78 was revised in June 1977 in order to meet several new program milestones. Research progress is reported on: objective of HF oscillator-amplifier studies using H 2 -F 2 gas mixtures; characteristics of large-volume oscillator using H 2 -F 2 mixtures; characteristics of large-volume amplifier using H 2 -F 2 mixtures; experimental results of the oscillator-amplifier study; objective of high-quality discharge-initiated SF 6 -HI oscillator-preamplifier system; pin-discharge-initiated oscillator and first beam expander; fast-discharge-initiated preamplifiers; reflecting beam expanders for oscillator-preamplifier system; beam quality of discharge-initiated oscillator-preamplifier system; short pulse option for discharge initiated SF 6 -HI system; H 2 -F 2 electron-beam-initiated oscillator-preamplifier system; chamber for HF-laser focusing experiments; computer study of parasitic oscillations in HF amplifiers and oscillators; kinetics upgrade of HF-laser code; repetitivey ignited flowing H 2 -F 2 -O 2 mixtures; spontaneous detonations in multiatmosphere H 2 -F 2 -O 2 mixtures; high-pressure H 2 -F 2 laser studies; and time sequenced energy extraction on the high xenon laser

  20. Pulsed inductive HF laser

    Razhev, A M; Kargapol' tsev, E S [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); Churkin, D S; Demchuk, S V [Novosibirsk State University, Novosibirsk (Russian Federation)

    2016-03-31

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H{sub 2} – F{sub 2}(NF{sub 3} or SF6{sub 6}) and He(Ne) – H{sub 2} – F{sub 2}(NF{sub 3} or SF{sub 6}) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%. (lasers)

  1. Industrial lasers in Japan

    Karube, Norio

    1991-03-01

    I am to report on some aspects of industrial lasers in Japan. Mostly centering on the market. In Japan, the history of laser developnent is rather profound. And long. Ever since the first invention of the laser in this country in 1960. This is partly because of the fact that in Japan the spectroscopic studies of the ruby was very popular in the late 1950's. Ever since niost of the work has been done in the research laboratories of the industry, not in the universities or not in the governmental laboratories. And since that time our first activity was mainly centering on the basic research, but after that time we have the evolution of the technology. One of the features in Japan is that the activity of developement and research of laser technology from the very basic phase up to the present commercialization has been done by the same group of people, including ine. We had a national project which ended about six years ago which was sponsored by MITI. MITI is Ministry of International Trade and Industry in Japan. And because of this national project, the effect of this project had a very enlightening effect in Japan. And after that our Japanese laser market became very flourishing.

  2. Laser power sources and laser technology for accelerators

    Lowenthal, D.

    1986-01-01

    The requirements on laser power sources for advanced accelerator concepts are formidable. These requirements are driven by the need to deliver 5 TeV particles at luminosities of 10/sup 33/ - 10/sup 34/ cm/sup -2/ sec/sup -1/. Given that optical power can be transferred efficiently to the particles these accelerator parameters translate into single pulse laser output energies of several kilojoules and rep rates of 1-10 kHz. The average laser output power is then 10-20 MW. Larger average powers will be needed if efficient transfer proves not to be possible. A laser plant of this magnitude underscores the importance of high wall plug efficiency and reasonable cost in $/Watt. The interface between the laser output pulse format and the accelerator structure is another area that drives the laser requirements. Laser accelerators break up into two general architectures depending on the strength of the laser coupling. For strong coupling mechanisms, the architecture requires many ''small'' lasers powering the accelerator in a staged arrangement. For the weak coupling mechanisms, the architecture must feature a single large laser system whose power must be transported along the entire accelerator length. Both of these arrangements have demanding optical constraints in terms of phase matching sequential stages, beam combining arrays of laser outputs and optimizing coupling of laser power in a single accelerating stage

  3. Laser Ablation of Biological Tissue Using Pulsed CO2 Laser

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-01-01

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. We simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO 2 laser (wavelength: 10.6 μm; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.

  4. Lasers in atomic, molecular and nuclear physics

    Letokhov, V.S.

    1986-01-01

    This book presents papers on laser applications in atomic, molecular and nuclear physics. Specifically discussed are: laser isotope separation; laser spectroscopy of chlorophyll; laser spectroscopy of molecules and cell membranes; laser detection of atom-molecule collisions and lasers in astrophysics

  5. The application of laser plasma in ophthalmology

    He Yujiang; Luo Le; Sun Yabing

    2000-01-01

    The production and development of laser plasma are introduced, and the contribution of laser biomedicine and laser plasma technology to ophthalmology is analyzed. The latest three progresses (laser photocoagulation, photo-refractive keratotomy and laser iridectomy) of laser plasma applications in ophthalmology are presented

  6. Novel plasmon nano-lasers

    Hill, M.T.; Marell, M.J.H.

    2010-01-01

    We will discuss some of the latest developments in metallic and plasmonic nano-lasers. Furthermore we will present our latest results on further miniaturization of electrically pumped plasmonic nano-lasers and also DFB Plasmon mode devices.

  7. Coupled optical resonance laser locking.

    Burd, S C; du Toit, P J W; Uys, H

    2014-10-20

    We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to coupled transitions of ions in the same spectroscopic sample, by detecting only the absorption of the UV laser. Separate signals for locking the different lasers are obtained by modulating each laser at a different frequency and using lock-in detection of a single photodiode signal. Experimentally, we simultaneously lock a 369 nm and a 935 nm laser to the (2)S(1/2) → (2)(P(1/2) and (2)D(3/2) → (3)D([3/2]1/2) transitions, respectively, of Yb(+) ions generated in a hollow cathode discharge lamp. Stabilized lasers at these frequencies are required for cooling and trapping Yb(+) ions, used in quantum information and in high precision metrology experiments. This technique should be readily applicable to other ion and neutral atom systems requiring multiple stabilized lasers.

  8. Laser cladding of turbine blades

    Shepeleva, L.; Medres, B.; Kaplan, W.D.; Bamberger, M.

    2000-01-01

    A comparative study of two different techniques for the application of wear-resistant coatings for contact surfaces of shroud shelves of gas turbine engine blades (GTE) has been conducted. Wear-resistant coatings were applied on In713 by laser cladding with direct injection of the cladding powder into the melt pool. Laser cladding was conducted with a TRUMPF-2500, CW-CO 2 laser. The laser cladding was compared with commercially available plasma cladding with wire. Both plasma and laser cladded zones were characterized by optical and scanning electron microscopy. It was found that the laser cladded zone has a higher microhardness value (650-820 HV) compared with that of the plasma treated material (420-440 HV). This is a result of the significant reduction in grain size in the case of laser cladding. Unlike the plasma cladded zones, the laser treated material is free of micropores and microcracks. (orig.)

  9. Nano lasers in photonic VLSI

    Hill, M.T.; Oei, Y.S.; Smit, M.K.

    2007-01-01

    We examine the use of micro and nano lasers to form digital photonic VLSI building blocks. Problems such as isolation and cascading of building blocks are addressed, and the potential of future nano lasers explored.

  10. Laser sources for object illumination

    Albrecht, G.F. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The considerations which formulate the specifications for a laser illuminator are explained, using the example of an underwater object. Depending on the parameters which define the scenario, widely varying laser requirements result.

  11. Polarisation effects in fibre lasers

    Lin, J.T.; Morkel, P.R.; Reekie, L.; Payne, D.N.

    1987-01-01

    Two orthogonal polarisation eigenmodes have been observed in a single-mode fibre laser. Experimental investigation shows good agreement with theoretical analysis. Both Nd3+ and Er3+-doped single-polarisation single-mode fibre lasers have been demonstrated

  12. Flashlamp excited fluid laser amplified

    1976-01-01

    The patent describes a laser amplifier with chambers for containing and amplifying an intensifier medium. It serves the need for a large impulse repetition rate and high intensities as required e.g. for laser isotope separation

  13. XeBr exciplex laser

    Searles, S.K.

    1976-01-01

    Laser emission from the recently discovered XeBr exciplex laser was investigated as a function of the partial pressures of Xe and Br 2 . An optical loss process appears to limit high-pressure operation

  14. Polymer laser bio-sensors

    Kristensen, Anders; Vannahme, Christoph; Hermannsson, Pétur Gordon

    2014-01-01

    Organic dye based distributed feed-back lasers, featuring narrow linewidth and thus high quality spectral resolution, are used as highly sensitive refractive index sensors. The design, fabrication and application of the laser intra-cavity sensors are discussed....

  15. Laser Diagnostics for Reacting Flows

    Hanson, Ronald K

    2007-01-01

    ... (UV) or infrared (IR) wavelengths. The cw lasers were spectrally narrow, allowing study of innovative diagnostics based on spectral lineshapes, while the pulsed lasers provided intense bursts of photons needed for techniques based on LIF...

  16. Primer on laser scattering diagnostics

    Jahoda, F.C.

    1978-07-01

    The theory of laser scattering is presented in abbreviated format, with emphasis on physical interpretation, followed by sections on laser sources, practical considerations in designing experiments, and current developments in extending the techniques to multispace and multitime point measurements

  17. Femtosecond laser spectroscopy

    Hannaford, Peter

    2005-01-01

    As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. The field has recently exploded with the announcement of a series of remarkable new developments and advances. This volume surveys this recent growth in eleven chapters written by leading international researchers in the field. It includes sections on femtosecond optical frequency combs, soft x-ray femtosecond laser sources, and attosecond laser sources. In addition, the contributors address real-time spectroscopy of molecular vibrations with sub-5-fs pulses and multidimensional femtosecond coherent spectroscopies for studying molecular and electron dynamics. Novel methods for measuring and characterizing ultrashort laser pulses and ultrashort pulses of light are also described. The topics covered are revolutionizing the field...

  18. Laser facilitates vaccination

    Ji Wang

    2016-01-01

    Full Text Available Development of novel vaccine deliveries and vaccine adjuvants is of great importance to address the dilemma that the vaccine field faces: to improve vaccine efficacy without compromising safety. Harnessing the specific effects of laser on biological systems, a number of novel concepts have been proposed and proved in recent years to facilitate vaccination in a safer and more efficient way. The key advantage of using laser technology in vaccine delivery and adjuvantation is that all processes are initiated by physical effects with no foreign chemicals administered into the body. Here, we review the recent advances in using laser technology to facilitate vaccine delivery and augment vaccine efficacy as well as the underlying mechanisms.

  19. Fundamentals of semiconductor lasers

    Numai, Takahiro

    2015-01-01

    This book explains physics under the operating principles of semiconductor lasers in detail based on the experience of the author, dealing with the first manufacturing of phase-shifted DFB-LDs and recent research on transverse modes.   The book also bridges a wide gap between journal papers and textbooks, requiring only an undergraduate-level knowledge of electromagnetism and quantum mechanics, and helps readers to understand journal papers where definitions of some technical terms vary, depending on the paper. Two definitions of the photon density in the rate equations and two definitions of the phase-shift in the phase-shifted DFB-LD are explained, and differences in the calculated results are indicated, depending on the definitions.    Readers can understand the physics of semiconductor lasers and analytical tools for Fabry-Perot LDs, DFB-LDs, and VCSELs and will be stimulated to develop semiconductor lasers themselves.

  20. Excimer laser technology

    Mace, P.N.

    1980-01-01

    Scaling presently available excimer laser systems to lasers designed to operate at high average power and high pulse repetition rates for long periods of time requires advances in many areas of engineering technology. For economical application to industrial processes, the efficiency must be increased. This leads to more stringent requirements on preionization techniques, energy delivery systems, and system chemistry. Long life operation (> 10 9 to 10 10 pulses) requires development of new pulse power components, optical elements and flow system components. A broad-based program underway at the Los Alamos Scientific Laboratory is addressing these key technology issues, with the help of advanced component and systems development programs in industry. A prototype XeCl laser meeting all requirements for efficiency, system performance and life is scheduled for completion in 1984

  1. Laser cooling at resonance

    Yudkin, Yaakov; Khaykovich, Lev

    2018-05-01

    We show experimentally that three-dimensional laser cooling of lithium atoms on the D2 line is possible when the laser light is tuned exactly to resonance with the dominant atomic transition. Qualitatively, it can be understood by applying simple Doppler cooling arguments to the specific hyperfine structure of the excited state of lithium atoms, which is both dense and inverted. However, to build a quantitative theory, we must resolve to a full model which takes into account both the entire atomic structure of all 24 Zeeman sublevels and the laser light polarization. Moreover, by means of Monte Carlo simulations, we show that coherent processes play an important role in showing consistency between the theory and the experimental results.

  2. Antares laser power amplifier

    Stine, R.D.; Ross, G.F.; Silvernail, C.

    1979-01-01

    The overall design of the Antares laser power amplifier is discussed. The power amplifier is the last stage of amplification in the 100-kJ Antares laser. In the power amplifier a single, cylindrical, grid-controlle, cold-cathode electron gun is surrounded by 12 large-aperture CO 2 electron-beam sustained laser discharge sectors. Each power amplifier will deliver 18 kJ and the six modules used in Antares will produce the required 100 kJ for delivery to the target. A large-scale interaction between optical, mechanical, and electrical disciplines is required to meet the design objectives. Significant component advances required by the power amplifier design are discussed

  3. Integrated Broadband Quantum Cascade Laser

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  4. Broad band exciplex dye lasers

    Dienes, A.; Shank, C.V.; Trozzolo, A.M.

    1975-01-01

    The disclosure is concerned with exciplex dye lasers, i.e., lasers in which the emitting species is a complex formed only from a constituent in an electronically excited state. Noting that an exciplex laser, favorable from the standpoint of broad tunability, results from a broad shift in the peak emission wavelength for the exciplex relative to the unreacted species, a desirable class resulting in such broad shift is described. Preferred classes of laser media utilizing specified resonant molecules are set forth. (auth)

  5. Study on laser atomic spectroscopy

    Lee, Jong Min; Song, Kyu Seok; Jeong, Do Young; Kim, Chul Joong; Han, Phil Soon

    1992-01-01

    Electric discharge type atomic vaporizer is developed for the spectroscopic study on actinide elements. Laser induced fluorescence study on actinide elements is performed by using this high temperature type atomizer. For the effective photoionization of elements, copper vapor laser pumped dye laser and electron beam heating type atomic vaporizer are built and their characteristics are measured. In addition, resonance ionization mass spectroscopic analysis for lead sample as well as laser induced fluorescence study on uranium sample in solution phase is made. (Author)

  6. Lasers probe the atomic nucleus

    Eastham, D.

    1986-01-01

    The article is contained in a booklet on the Revised Nuffield Advanced Physics Course, and concentrates on two techniques to illustrate how lasers probe the atomic nucleus. Both techniques employ resonance fluorescence spectroscopy for obtaining atomic transition energies. The first uses lasers to determine the change in the nuclear charge radius with isotope, the second concerns the use of lasers for ultrasensitive detection of isotopes and elements. The application of lasers in resonance ionization spectroscopy and proton decay is also described. (UK)

  7. Parameters in fractional laser assisted delivery of topical anesthetics: Role of laser type and laser settings.

    Meesters, Arne A; Nieboer, Marilin J; Kezic, Sanja; de Rie, Menno A; Wolkerstorfer, Albert

    2018-05-07

    Efficacy of topical anesthetics can be enhanced by pretreatment of the skin with ablative fractional lasers. However, little is known about the role of parameters such as laser modality and laser density settings in this technique. Aims of this study were to compare the efficacy of pretreatment with two different ablative fractional laser modalities, a CO 2 laser and an Er:YAG laser, and to assess the role of laser density in ablative fractional laser assisted topical anesthesia. In each of 15 healthy subjects, four 10 × 10 mm test regions on the back were randomized to pretreatment (70-75 μm ablation depth) with CO 2 laser at 5% density, CO 2 laser at 15% density, Er:YAG laser at 5% density or Er:YAG laser at 15% density. Articaine hydrochloride 40 mg/ml + epinephrine 10 μg/ml solution was applied under occlusion to all four test regions. After 15 minutes, a pass with the CO 2 laser (1,500 μm ablation depth) was administered as pain stimulus to each test region. A reference pain stimulus was given on unanesthetized skin. The main outcome parameter, pain, was scored on a 0-10 visual analogue scale (VAS) after each pain stimulus. Median VAS scores were 1.50 [CO 2 5%], 0.50 [CO 2 15%], 1.50 [Er:YAG 5%], 0.43 [Er:YAG 15%], and 4.50 [unanesthetized reference]. VAS scores for all pretreated test regions were significantly lower compared to the untreated reference region (P laser pretreated regions. However, VAS scores were significantly lower at 15% density compared to 5% density for both for the CO 2 laser (P laser (P laser was considered slightly more painful than pretreatment with Er:YAG laser by the subjects. Fractional laser assisted topical anesthesia is effective even with very low energy settings and an occlusion time of only 15 minutes. Both the CO 2 laser and the Er:YAG laser can be used to assist topical anesthesia although the CO 2 laser pretreatment is experienced as more painful. In our study settings, using articaine

  8. Laser vaccine adjuvants

    Kashiwagi, Satoshi; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C

    2014-01-01

    Immunologic adjuvants are essential for current vaccines to maximize their efficacy. Unfortunately, few have been found to be sufficiently effective and safe for regulatory authorities to permit their use in vaccines for humans and none have been approved for use with intradermal vaccines. The development of new adjuvants with the potential to be both efficacious and safe constitutes a significant need in modern vaccine practice. The use of non-damaging laser light represents a markedly different approach to enhancing immune responses to a vaccine antigen, particularly with intradermal vaccination. This approach, which was initially explored in Russia and further developed in the US, appears to significantly improve responses to both prophylactic and therapeutic vaccines administered to the laser-exposed tissue, particularly the skin. Although different types of lasers have been used for this purpose and the precise molecular mechanism(s) of action remain unknown, several approaches appear to modulate dendritic cell trafficking and/or activation at the irradiation site via the release of specific signaling molecules from epithelial cells. The most recent study, performed by the authors of this review, utilized a continuous wave near-infrared laser that may open the path for the development of a safe, effective, low-cost, simple-to-use laser vaccine adjuvant that could be used in lieu of conventional adjuvants, particularly with intradermal vaccines. In this review, we summarize the initial Russian studies that have given rise to this approach and comment upon recent advances in the use of non-tissue damaging lasers as novel physical adjuvants for vaccines. PMID:25424797

  9. Diode laser pumping

    Skagerlund, L.E.

    1975-01-01

    A diode laser is pumped or pulsed by a repeated capacitive discharge. A capacitor is periodically charged from a dc voltage source via a transformer, the capacitor being discharged through the diode laser via a controlled switching means after one or more charging periods. During a first interval of each charging period the transformer, while unloaded, stores a specific amount of energy supplied from the dc voltage source. During a subsequent interval of the charging period said specific amount of energy is transmitted from the transformer to the capacitor. The discharging of the capacitor takes place during a first interval of a charging period. (auth)

  10. Power Play, Laser Style

    1998-01-01

    Under a NASA SBIR (Small Business Innovation Research) SDL, Inc., has developed the TC40 Single-Frequency Continuously Tunable 500 mw Laser Diode System. This is the first commercially available single frequency diode laser system that offers the broad tunability and the high powers needed for atomic cooling and trapping as well as a variety of atomic spectroscopy techniques. By greatly decreasing both the equipment and the costs of entry, the TC40 enables researchers to pursue some of the most interesting areas of physical chemistry, biochemistry, and atomic physics.

  11. Optics, light and lasers

    Meschede, Dieter

    2008-01-01

    Starting from the concepts of classical optics, Optics, Light and Lasers introduces in detail the phenomena of linear and nonlinear light matter interaction, the properties of modern laser sources, and the concepts of quantum optics. Several examples taken from the scope of modern research are provided to emphasize the relevance of optics in current developments within science and technology. The text has been written for newcomers to the topic and benefits from the author's ability to explain difficult sequences and effects in a straightforward and easily comprehensible way. To this second, c

  12. Mode selection laser

    2014-01-01

    spatial reflector variations, may be combined to generate a laser beam containing a plurality of orthogonal modes. The laser beam may be injected into a few- mode optical fiber, e.g. for the purpose of optical communication. The VCSEL may have intra-cavity contacts (31,37) and a Tunnel junction (33......) for current confinement into the active layer (34). An air-gap layer (102) may be provided between the upper reflector (15) and the SOI wafer (50) acting as a substrate. The lower reflector may be designed as a high-contrast grating (51) by etching....

  13. Traveling wave laser system

    Gregg, D.W.; Kidder, R.E.; Biehl, A.T.

    1975-01-01

    The invention broadly involves a method and means for generating a traveling wave laser pulse and is basically analogous to a single pass light amplifier system. However, the invention provides a traveling wave laser pulse of almost unlimited energy content, wherein a gain medium is pumped in a traveling wave mode, the traveling wave moving at essentially the velocity of light to generate an amplifying region or zone which moves through the medium at the velocity of light in the presence of directed stimulating radiation, thereby generating a traveling coherent, directed radiation pulse moving with the amplification zone through the gain medium. (U.S.)

  14. Laser pulse stacking method

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  15. Direct solar-pumped lasers

    Lee, J. H.; Shiu, Y. J.; Weaver, W. R.

    1980-01-01

    The feasibility of direct solar pumping of an iodine photodissociation laser at lambda = 1.315 microns was investigated. Threshold inversion density and effect of elevated temperature (up to 670 K) on the laser output were measured. These results and the concentration of solar radiation required for the solar pumped iodine laser are discussed.

  16. Laser-induced nuclear fusion

    Jablon, Claude

    1977-01-01

    Research programs on laser-induced thermonuclear fusion in the United States, in Europe and in USSR are reviewed. The principle of the fusion reactions induced is explained, together with the theoretical effects of the following phenomena: power and type of laser beams, shape and size of the solid target, shock waves, and laser-hydrodynamics coupling problems [fr

  17. New laser research and development

    Anon.

    1976-01-01

    New types of lasers must be developed to provide the desired energy per pulse, pulse length, pulse shape, wavelength, and efficiency for laser-fusion applications. This advanced laser research has focused on rare-gas oxides and on Hg 2 excimers

  18. Coupled optical resonance laser locking

    Burd, CC

    2014-10-01

    Full Text Available We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to coupled transitions of ions in the same spectroscopic sample, by detecting only the absorption of the UV laser. Separate signals for locking the different...

  19. Soft x-ray lasers

    Matthews, D.L.; Rosen, M.D.

    1988-01-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs

  20. Laser Physics and Physics with Lasers - Recent Advances

    Marowsky, G.

    2008-01-01

    This contribution reviews the development as well as recent technological advances in the field of optics with lasers and laser-related applications. Topics ranging from 'attoscience' to 'zero-modes' shall be dealt with in this presentation. Further reading in the following references is suggested: Springer Handbook of Lasers and Optics (F. Trager, ed.), 2007, ISBN-13: 978-0-387-95579-7; Chapter 11.7, Part C: Ultraviolet Lasers: Excimers, Fluorine (F2), Nitrogen (N2), pp. 764-776; Excimer Laser Technology (D. Basting, G. Marowsky, eds.) 2005, Springer, ISBN-13 978-3-540-20056-7

  1. Tapered diode laser pumped 946 nm Nd:YAG laser

    Cheng, Haynes Pak Hay; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2009-01-01

    We successfully implemented a 946 nm Nd:YAG laser based on a 808 nm tapered diode pump laser. The tapered diode is developed at the Ferdinand-Braun-Institute fur Hochstfrequenztechnik in Germany. Figure 2 shows the experimental setup and results of each pump source coupled into a 1.5 mm crystal...... laser, we show that tapered diode laser pumping potentially increase the power of 946 nm lasers by a factor of two and reduce the threshold by a factor of three....

  2. Laser solenoid: an alternate use of lasers in fusion power

    Rose, P.H.

    1977-01-01

    A unique laser assisted fusion approach is under development at Mathematical Sciences Northwest, Inc. (MSNW). This approach captures one of the most developed aspects of high energy laser technology, the efficient, large, scalable, pulsed electron beam initiated, electric discharge, CO 2 infrared laser. This advanced technology is then combined with the simple geometry of a linear magnetic confinement system. The laser solenoid concept will be described, current work and experimental progress will be discussed, and the technological problems of building such a system will be assessed. Finally a comparison will be made of the technology and economics for the laser solenoid and alternative fusion approaches

  3. Laser propulsion for orbit transfer - Laser technology issues

    Horvath, J. C.; Frisbee, R. H.

    1985-01-01

    Using reasonable near-term mission traffic models (1991-2000 being the assumed operational time of the system) and the most current unclassified laser and laser thruster information available, it was found that space-based laser propulsion orbit transfer vehicles (OTVs) can outperform the aerobraked chemical OTV over a 10-year life-cycle. The conservative traffic models used resulted in an optimum laser power of about 1 MW per laser. This is significantly lower than the power levels considered in other studies. Trip time was taken into account only to the extent that the system was sized to accomplish the mission schedule.

  4. Laser technologies. KrF laser

    Owadano, Yoshiro; Okuda, Isao; Matsushima, Isao; Yashiro, Hidehiko; Matsumoto, Yuji

    1994-01-01

    Krypton-fluoride (KrF) laser is one of the promising driver for inertial confinement fusion because of its short wavelength, broad band width, high efficiency and capability of high repetition-rate operation. A high gain double-pass amplifier can yield a high, heavily saturated output intensity (5 to 6 times saturation intensity, > 10MW/cm 2 ) with nearly maximum efficiency (> 10%) and high stage gain (> 50) at the same time. The high gain can be achieved by cylindrical electron-beam pumping configuration without external magnetic field. Angular pulse multiplexing enables efficient pulse compression and amplification of beams with broad spectral width. The broad band width is required for irradiation smoothing methods, BRP (broad-band Random Phase Irradiation) or ISI (Induced Spatial Incoherence). Multi-kJ KrF laser, Super-ASHURA (Electrotechnical Laboratory, 8kJ), NIKE (at Naval Research Laboratory, 3kJ) and TITANIA (Rutherford Appleton Laboratory, 2kJ) are being developed and close to completion. (author)

  5. Joint Laser Interoperability, Tomorrow's Answer to Precision Engagement

    Neuenswander, David

    2001-01-01

    .... This includes a brief discussion of how a laser works and what constitutes the basic parts of a laser system, laser range finders, laser designators, laser spot trackers, and laser guided weapons...

  6. Proceedings of the conference on lasers and electro-optics

    Anon.

    1988-01-01

    This book presents the papers discussed at a conference on the subject of electro-optics and lasers. Some of the topics discussed were: laser fusion and interactions; implosion experiments; tunable integrated Bragg lasers, CO 2 lasers; present status of integrated lasers; DFB lasers; transition metal lasers-solid state lasers, mirror laser resonators, multiquantumwell lasers; fusion laser technology; and dynamics and characteristics of diode lasers

  7. Laser etching as an alternative

    Dreyfus, R.W.; Kelly, R.

    1989-01-01

    Atoms and molecules are removed from surfaces by intense laser beams. This fact has been known almost since the discovery of the laser. Within the present overall area of interest, namely understanding ion-beam-induced sputtering, it is equally important both to contrast laser etching to ion sputtering and to understand the underlying physics taking place during laser etching. Beyond some initial broad observations, the specific discussion is limited to, and aimed at, two areas: (i) short wavelength, UV, laser-pulse effects and (ii) energy fluences sufficiently small that only monolayers (and not microns) of material are removed per pulse. 38 refs.; 13 figs.; 5 tabs

  8. Laser Program annual report 1984

    Rufer, M.L.; Murphy, P.W.

    1985-06-01

    The Laser Program Annual Report is part of the continuing series of reports documenting the progress of the unclassified Laser Fusion Program at the Lawrence Livermore National Laboratory (LLNL). As in previous years, the report is organized programmatically. The first section is an overview of the basic goals and directions of the LLNL Inertial Confinement Fusion (ICF) Program, and highlights the year's important accomplishments. Sections 2 through 7 provide the detailed information on the various program elements: Laser Systems and Operations, Target Design, Target Fabrication, Laser Experiments and Advanced Diagnostics, Advanced Laser Development, and Applications of Inertial Confinement Fusion. Individual sections will be indexed separately. 589 refs., 333 figs., 25 tabs

  9. Lasers and uranium isotope separation

    Gilles, L

    1987-12-01

    The use of lasers by the electronuclear industry to enrich uranium is discussed, particularly economic aspects. The SILMO and SILVA processes (chosen by France for industrial development) are presented. Criteria which lead to the choice of lasers and to their set-up (architecture of the chain) are described. For electricity - consumption linked to the use of lasers of 40 kWh/STU, a laser uranium enrichment plant with 10 STU/yr capacity requires 50kW of light from copper vapor lasers, i.e., 500 units each having 100W capacity, compared with the 40W units currently marketed.

  10. Aurora laser optical system

    Hanlon, J.A.; McLeod, J.

    1987-01-01

    Aurora is the Los Alamos short-pulse high-power krypton fluoride laser system. It is primarily an end-to-end technology demonstration prototype for large-scale UV laser systems of interest for short-wavelength inertial confinement fusion (ICF) investigations. The system is designed to employ optical angular multiplexing and aerial amplification by electron-beam-driven KrF laser amplifiers to deliver to ICF targets a stack of pulses with a duration of 5 ns containing several kilojoules at a wavelength of 248 nm. A program of high-energy density plasma physics investigations is now planned, and a sophisticated target chamber was constructed. The authors describe the design of the optical system for Aurora and report its status. This optical system was designed and is being constructed in two phases. The first phase carries only through the amplifier train and does not include a target chamber or any demultiplexing. Installation should be complete, and some performance results should be available. The second phase provides demultiplexing and carries the laser light to target. The complete design is reported

  11. Coherent laser vision system

    Sebastion, R.L.

    1995-01-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system

  12. Laser driven particle acceleration

    Faure, J.

    2009-06-01

    This dissertation summarizes the last ten years of research at the Laboratory of Applied Optics on laser-plasma based electron acceleration. The main result consists of the development and study of a relativistic electron source with unique properties: high energy (100-300 MeV) in short distances (few millimeters), mono-energetic, ultra-short (few fs), stable and tunable. The manuscript describes the steps that led to understanding the physics, and then mastering it in order to produce this new electron source. Non linear propagation of the laser pulse in the plasma is first presented, with phenomena such as non linear wakefield excitation, relativistic and ponderomotive self-focusing in the short pulse regime, self-compression. Acceleration and injection of electrons are then reviewed from a theoretical perspective. Experimental demonstrations of self-injection in the bubble regime and then colliding pulse injection are then presented. These experiments were among the first to produce monoenergetic, high quality, stable and tunable electron beams from a laser-plasma accelerator. The last two chapters are dedicated to the characterization of the electron beam using transition radiation and to its applications to gamma radiography and radiotherapy. Finally, the perspectives of this research are presented in the conclusion. Scaling laws are used to determine the parameters that the electron beams will reach using peta-watt laser systems currently under construction. (author)

  13. Fiber Lasers V

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  14. Vertical cavity laser

    2016-01-01

    The present invention provides a vertical cavity laser comprising a grating layer comprising an in-plane grating, the grating layer having a first side and having a second side opposite the first side and comprising a contiguous core grating region having a grating structure, wherein an index...

  15. Infrared diode laser spectroscopy

    Civiš, Svatopluk; Cihelka, Jaroslav; Matulková, Irena

    2010-01-01

    Roč. 18, č. 4 (2010), s. 408-420 ISSN 1230-3402 R&D Projects: GA AV ČR IAA400400705 Institutional research plan: CEZ:AV0Z40400503 Keywords : FTIR spectroscopy * absorption spectroscopy * laser diodes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.027, year: 2010

  16. Laser Soap Fountain

    Foley, Tyler; Pegram, Matthew; Jenkins, Zachary; Hester, Brooke C.; Burris, Jennifer L.

    2015-01-01

    We have developed an eye-catching demonstration that showcases a variety of physics topics from total internal reflection to electrostatics to non-Newtonian fluid dynamics, including the Kaye effect. The essential components of the demonstration include a vertical stream of liquid soap in which a laser pointer is internally reflected, and which…

  17. Laser microirradiation of cells

    Berns, M.W.; Kitzes, M.; Rattner, J.B.; Burt, J.; Meredith, S.

    1979-01-01

    The brief review outlines the technique of laser microbeam irradiation (260 - 700 nm) of cells to study ultrastructural changes. In combination with other techniques such as optical microscopy, electron microscopy and autoradiography structure and organization of chromosomes and nucleoli, chromosome stability, mechanisms of mitosis, gene mapping, cytoplasmic functions, and structure of nucleic acids are investigated

  18. Laser surveillance system (LASSY)

    Boeck, H.; Hammer, J.

    1988-01-01

    The development progress during the reporting period 1988 of the laser surveillance system of spent fuel pools is summarized. The present engineered system comes close to a final version for field application as all technical questions have been solved in 1988. 14 figs., 1 tab. (Author)

  19. LASIK - Laser Eye Surgery

    ... Refractive Surgery Procedures What Is Photorefractive Keratectomy (PRK)? LASIK — Laser Eye Surgery Leer en Español: LASIK—Cirugía ocular con láser ... loss of close-up focusing power. How the LASIK procedure works LASIK is performed while the patient ...

  20. Laser particulate spectrometer

    Boyd, B. A.; Linford, R. M. F.; Schmitt, R. J.

    1977-01-01

    Hybrid laser scattering and extinction technique measures particle diameters from 0.8 to 2.75 micrometers and speeds from 0.2 to 20 m/s. Operating pressures range from ambient to ultra-high vacuum, and temperatures range from 77 to 300 K. Potential applications include air pollution, clean room, and particle size monitoring.

  1. Laser therapy in sinusitis

    Hernandez Diaz, Adel; Orellana Molina, Alina; Larrea Cox, Pedro; Combarro Romero, Andres; Corcho Corcho, Carlos; Morales Valdes, Omar; Gonzalez Mendez, Bianka M.

    2009-01-01

    The sinusitis is an inflammation of one or more breasts peri-nasals. It is common in the months of winter and it can last months or years if it is not treat. At the moment we have several means that try to offer our patients a better treatment. One of these instruments is the low power laser that for their properties to the interaction with the biological tissues offers therapeutic effects on the alive tissues, achieving at the level cellular important changes for a quick answer of the damaged tissue. We intended to demonstrate the effectiveness of the treatment with low power laser in patient with sinusitis. It was carried out an explanatory and retrospective study, where it was applied as treatment the low power laser, for that which a team of model Cuban production Fisser 21. The feminine sex, the affected age group prevailed it was among 36 to 50 years for both groups, the maxillary sinusitis prevailed regarding the frontal. The migraine, the nasal obstruction and the sensation of congestion of the head were present in most of the cases. 75% of the patients' treaties noticed improvement of the symptoms between the 1st and 3rd sessions. At the end 80% cured without necessity of a second treatment cycle. The accompanying symptoms almost disappeared in their entirety. We recommend using the treatment of low power laser, as therapy of first line for the treatment of sinusitis of infectious cause. (Author)

  2. Laser surveillance system (LASSY)

    Boeck, H.

    1991-09-01

    Laser Surveillance System (LASSY) is a beam of laser light which scans a plane above the water or under-water in a spent-fuel pond. The system can detect different objects and estimates its coordinates and distance as well. LASSY can operate in stand-alone configuration or in combination with a video surveillance to trigger signal to a videorecorder. The recorded information on LASSY computer's disk comprises date, time, start and stop angle of detected alarm, the size of the disturbance indicated in number of deviated points and some other information. The information given by the laser system cannot be fully substituted by TV camera pictures since the scanning beam creates a horizontal surveillance plan. The engineered prototype laser system long-term field test has been carried out in Soluggia (Italy) and has shown its feasibility and reliability under the conditions of real spent fuel storage pond. The verification of the alarm table on the LASSY computer with the recorded video pictures of TV surveillance system confirmed that all alarm situations have been detected. 5 refs

  3. CO2 laser development

    Anon.

    1976-01-01

    The research and development programs on high-energy, short-pulse CO 2 lasers were begun at LASL in 1969. Three large systems are now either operating or are being installed. The Single-Beam System (SBS), a four-stage prototype, was designed in 1971 and has been in operation since 1973 with an output energy of 250 J in a 1-ns pulse with an on-target intensity of 3.5 x 10 14 W/cm 2 . The Dual-Beam System (DBS), now in the final stages of electrical and optical checkout, will provide about ten times more power for two-beam target irradiation experiments. Four such dual-beam modules are being installed in the Laser-Fusion Laboratory to provide an Eight-Beam System (EBS) scheduled for operation at the 5- to 10-TW level in 1977. A fourth system, a 100- to 200-TW CO 2 laser, is being designed for the High-Energy Gas Laser Facility (HEGLF) program

  4. Coherent laser vision system

    Sebastion, R.L. [Coleman Research Corp., Springfield, VA (United States)

    1995-10-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  5. Scanning laser Doppler vibrometry

    Brøns, Marie; Thomsen, Jon Juel

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from...

  6. Confocal laser endomicroscopy

    Karstensen, John Gásdal; Săftoiu, Adrian; Brynskov, Jørn

    2016-01-01

    BACKGROUND AND STUDY AIMS: Confocal laser endomicroscopy (CLE) has been shown to predict relapse in ulcerative colitis in remission, but little is currently known about its role in Crohn's disease. The aim of this study was to identify reproducible CLE features in patients with Crohn's disease...

  7. Laser magnetic resonance spectroscopy

    Ferrari, C.A.

    1985-01-01

    The technique of laser resonance magnetic resonance allows one to study the high-resolution spectroscopy of transient paramagnetic species, viz, atoms, radicals, and molecular ions. This article is a brief exposition of the method, describing the principles, instrumentation and applicability of the IR and FIR-LMR and shows results of HF + . (Author) [pt

  8. Laser therapy of muscle injuries.

    Dawood, Munqith S; Al-Salihi, Anam Rasheed; Qasim, Amenah Wala'a

    2013-05-01

    Low-level lasers are used in general therapy and healing process due to their good photo-bio-stimulation effects. In this paper, the effects of diode laser and Nd:YAG laser on the healing process of practically managed skeletal muscle trauma has been successfully studied. Standard impact trauma was induced by using a specially designed mechanical device. The impacted muscle was left for 3 days for complete development of blunt trauma. After that it was irradiated by five laser sessions for 5 days. Two types of lasers were used; 785-nm diode laser and 1.064-nm Nd:YAG laser, both in continuous and pulsed modes. A special electronic circuit was designed and implemented to modulate the diode laser for this purpose. Tissue samples of crushed skeletal muscle have been dissected from the injured irradiated muscle then bio-chemically analyzed for the regeneration of contractile and collagenous proteins using Lowry assay for protein determination and Reddy and Enwemeka assay for hydroxyproline determination. The results showed that both lasers stimulate the regeneration capability of traumatized skeletal muscle. The diode laser in CW and pulsed modes showed better results than the Nd:YAG in accelerating the preservation of the normal tissue content of collagenous and contractile proteins beside controlling the regeneration of non-functional fibrous tissue. This study proved that the healing achieved by the laser treatment was faster than the control group by 15-20 days.

  9. Endoscopic laser-urethroplasty

    Gilbert, Peter

    2006-02-01

    The objective was to prove the advantage of endoscopic laser-urethroplasty over internal urethrotomy in acquired urethral strictures. Patients and Method: From January, 1996 to June, 2005, 35 patients with a mean age of 66 years were submitted to endoscopic laser-urethroplasty for strictures of either the bulbar (30) or membranous (5) urethra. The operations were carried out under general anesthesia. First of all, the strictures were incised at the 4, 8 and 12 o'clock position by means of a Sachse-urethrotom. Then the scar flap between the 4 and 8 o'clock position was vaporized using a Nd:YAG laser, wavelength 1060 nm and a 600 pm bare fiber, the latter always being in contact with the tissue. The laser worked at 40W power in continuous mode. The total energy averaged 2574 J. An indwelling catheter was kept in place overnight and the patients were discharged the following day. Urinalysis, uroflowmetry and clinical examination were performed at two months after surgery and from then on every six months. Results: No serious complications were encountered. Considering a mean follow-up of 18 months, the average peak flow improved from 7.3 ml/s preoperatively to 18.7 mVs postoperatively. The treatment faded in 5 patients ( 14.3% ) who finally underwent open urethroplasty. Conclusions: Endoscopic laser-urethroplasty yields better short-term results than internal visual urethrotomy. Long-term follow-up has yet to confirm its superiority in the treatment of acquired urethral strictures.

  10. Interband cascade lasers

    Vurgaftman, I; Meyer, J R; Canedy, C L; Kim, C S; Bewley, W W; Merritt, C D; Abell, J; Weih, R; Kamp, M; Kim, M; Höfling, S

    2015-01-01

    We review the current status of interband cascade lasers (ICLs) emitting in the midwave infrared (IR). The ICL may be considered the hybrid of a conventional diode laser that generates photons via electron–hole recombination, and an intersubband-based quantum cascade laser (QCL) that stacks multiple stages for enhanced current efficiency. Following a brief historical overview, we discuss theoretical aspects of the active region and core designs, growth by molecular beam epitaxy, and the processing of broad-area, narrow-ridge, and distributed feedback (DFB) devices. We then review the experimental performance of pulsed broad area ICLs, as well as the continuous-wave (cw) characteristics of narrow ridges having good beam quality and DFBs producing output in a single spectral mode. Because the threshold drive powers are far lower than those of QCLs throughout the λ = 3–6 µm spectral band, ICLs are increasingly viewed as the laser of choice for mid-IR laser spectroscopy applications that do not require high output power but need to be hand-portable and/or battery operated. Demonstrated ICL performance characteristics to date include threshold current densities as low as 106 A cm −2 at room temperature (RT), cw threshold drive powers as low as 29 mW at RT, maximum cw operating temperatures as high as 118 °C, maximum cw output powers exceeding 400 mW at RT, maximum cw wallplug efficiencies as high as 18% at RT, maximum cw single-mode output powers as high as 55 mW at RT, and single-mode output at λ = 5.2 µm with a cw drive power of only 138 mW at RT. (topical review)

  11. Laser doppler perfusion imaging

    Waardell, K.

    1992-01-01

    Recording of tissue perfusion is important in assessing the influence of peripheral vascular diseases on the microcirculation. This thesis reports on a laser doppler perfusion imager based on dynamic light scattering in tissue. When a low power He-Ne laser beam sequentally scans the tissue, moving blood cells generate doppler components in the back-scattered light. A fraction of this light is detected by a photodetector and converted into an electrical signal. In the processor, a signal proportional to the tissue perfusion at each measurement site is calculated and stored. When the scanning procedure is completed, a color-coded perfusion image is presented on a monitor. To convert important aspects of the perfusion image into more quantitative parameters, data analysis functions are implemented in the software. A theory describing the dependence of the distance between individual measurement points and detector on the system amplification factor is proposed and correction algorithms are presented. The performance of the laser doppler perfusion imager was evaluated using a flow simulator. A linear relationship between processor output signal and flow through the simulator was demonstrated for blood cell concentrations below 0.2%. The median sampling depth of the laser beam was simulated by a Monte Carlo technique and estimated to 235 μm. The perfusion imager has been used in the clinic to study perfusion changes in port wine stains treated with argon laser and to investigate the intensity and extension of the cutaneous axon reflex response after electrical nerve stimulation. The fact that perfusion can be visualized without touching the tissue implies elimination of sterilization problems, thus simplifying clinical investigations of perfusion in association with diagnosis and treatment of peripheral vascular diseases. 22 refs

  12. Laser-powered lunar base

    Costen, R.; Humes, D.H.; Walker, G.H.; Williams, M.D.; Deyoung, R.J.

    1989-01-01

    The objective was to compare a nuclear reactor-driven Sterling engine lunar base power source to a laser-to-electric converter with orbiting laser power station, each providing 1 MW of electricity to the lunar base. The comparison was made on the basis of total mass required in low-Earth-orbit for each system. This total mass includes transportation mass required to place systems in low-lunar orbit or on the lunar surface. The nuclear reactor with Sterling engines is considered the reference mission for lunar base power and is described first. The details of the laser-to-electric converter and mass are discussed. The next two solar-driven high-power laser concepts, the diode array laser or the iodine laser system, are discussed with associated masses in low-lunar-orbit. Finally, the payoff for laser-power beaming is summarized

  13. Histologic effects of resurfacing lasers.

    Freedman, Joshua R; Greene, Ryan M; Green, Jeremy B

    2014-02-01

    By utilizing resurfacing lasers, physicians can significantly improve the appearance of sun-damaged skin, scars, and more. The carbon dioxide and erbium:yttrium-aluminum-garnet lasers were the first ablative resurfacing lasers to offer impressive results although these earlier treatments were associated with significant downtime. Later, nonablative resurfacing lasers such as the neodymium:yttrium-aluminum-garnet laser proved effective, after a series of treatments with less downtime, but with more modest results. The theory of fractional photothermolysis has revolutionized resurfacing laser technology by increasing the safety profile of the devices while delivering clinical efficacy. A review of the histologic and molecular consequences of the resurfacing laser-tissue interaction allows for a better understanding of the devices and their clinical effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. 2 micron femtosecond fiber laser

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  15. Semiconductor processing with excimer lasers

    Young, R.T.; Narayan, J.; Christie, W.H.; van der Leeden, G.A.; Rothe, D.E.; Cheng, L.J.

    1983-01-01

    The advantages of pulsed excimer lasers for semiconductor processing are reviewed. Extensive comparisons of the quality of annealing of ion-implanted Si obtained with XeCl and ruby lasers have been made. The results indicate that irrespective of the large differences in the optical properties of Si at uv and visible wavelengths, the efficiency of usage of the incident energy for annealing is comparable for the two lasers. However, because of the excellent optical beam quality, the XeCl laser can provide superior control of the surface melting and the resulting junction depth. Furthermore, the concentrations of electrically active point defects in the XeCl laser annealed region are 2 to 3 orders of magnitude lower than that obtained from ruby or Nd:YAG lasers. All these results seem to suggest that XeCl lasers should be suitable for fabricating not only solar cells but also the more advanced device structures required for VLSI or VHSIC applications

  16. Laser engineering of microbial systems

    Yusupov, V. I.; Gorlenko, M. V.; Cheptsov, V. S.; Minaev, N. V.; Churbanova, E. S.; Zhigarkov, V. S.; Chutko, E. A.; Evlashin, S. A.; Chichkov, B. N.; Bagratashvili, V. N.

    2018-06-01

    A technology of laser engineering of microbial systems (LEMS) based on the method of laser-induced transfer of heterogeneous mixtures containing microorganisms (laser bioprinting) is described. This technology involves laser printing of soil microparticles by focusing near-infrared laser pulses on a specially prepared gel/soil mixture spread onto a gold-coated glass plate. The optimal range of laser energies from the point of view of the formation of stable jets and droplets with minimal negative impact on living systems of giant accelerations, laser pulse irradiation, and Au nanoparticles was found. Microsamples of soil were printed on glucose-peptone-yeast agar plates to estimate the LEMS process influence on structural and morphological microbial diversity. The obtained results were compared with traditionally treated soil samples. It was shown that LEMS technology allows significantly increasing the biodiversity of printed organisms and is effective for isolating rare or unculturable microorganisms.

  17. Solid-State Random Lasers

    Noginov, Mikhail A

    2005-01-01

    Random lasers are the simplest sources of stimulated emission without cavity, with the feedback provided by scattering in a gain medium. First proposed in the late 60’s, random lasers have grown to a large research field. This book reviews the history and the state of the art of random lasers, provides an outline of the basic models describing their behavior, and describes the recent advances in the field. The major focus of the book is on solid-state random lasers. However, it also briefly describes random lasers based on liquid dyes with scatterers. The chapters of the book are almost independent of each other. So, the scientists or engineers interested in any particular aspect of random lasers can read directly the relevant section. Researchers entering the field of random lasers will find in the book an overview of the field of study. Scientists working in the field can use the book as a reference source.

  18. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    Alrefae, Majed Abdullah

    2013-05-01

    Laser diagnostics are fast-response, non-intrusive and species-specific tools perfectly applicable for studying combustion processes. Quantitative measurements of species concentration and temperature require spectroscopic data to be well-known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform Infrared (FTIR) spectrometer, tunable Difference Frequency Generation laser and fixed wavelength helium-neon laser. The studied species are methane, methanol, acetylene, ethylene, ethane, ethanol, propylene, propane, 1-butene, n-butane, n-pentane, n-hexane, and n-heptane. The Fourier Transform Infrared (FTIR) spectrometer is used for the measurements of the absorption cross-sections and the integrated band intensities of the 13 hydrocarbons. The spectral region of the spectra is 2800 – 3400 cm-1 (2.9 – 3.6 μm) and the temperature range is 673 – 1100 K. These valuable data provide huge opportunities to select interference-free wavelengths for measuring time-histories of a specific species in a shock tube or other combustion systems. Such measurements can allow developing/improving chemical kinetics mechanisms by experimentally determining reaction rates. The Difference Frequency Generation (DFG) laser is a narrow line-width, tunable laser in the 3.35 – 3.53 μm wavelength region which contains strong absorption features for most hydrocarbons due to the fundamental C-H vibrating stretch. The absorption cross-sections of propylene are measured at seven different wavelengths using the DFG laser. The temperature range is 296 – 460 K which is reached using a Reflex Cell. The DFG laser is very attractive for kinetic studies in the shock tube because of its fast time response and the potential possibility of making species-specific measurements. The Fixed wavelength

  19. Selective weed control using laser techniques

    Marx, Christian; Pastrana-Perez, Julio; Hustedt, Michael; Barcikowski, Stephan; Haferkamp, Heinz; Rath, Thomas

    2012-01-01

    This contribution discusses technical and growth relevant aspects of using laser techniques for weed control. The research on thermal weed control via laser first focused on the interaction of laser beams and weed plants. Due to preliminary studies, a CO2-laser was selected for further studies with regard to the process factors laser energy, laser spot area, coverage of the weeds meristem, weed species (Amaranthus retroflexus), and weed growth stage. Thereby, the laser damage was modeled in o...

  20. Laser modulator for LISA pathfinder

    Voland, C.; Lund, G.; Coppoolse, W.; Crosby, P.; Stadler, M.; Kudielka, K.; Özkan, C.

    2017-11-01

    LISA Pathfinder is an ESA experiment to demonstrate the key technologies needed for the LISA mission to detect gravitational waves in space. The LISA Pathfinder spacecraft represents one arm of the LISA interferometer, containing an optical metrology system and two proof masses as inertial references for the drag-free control system. The LISA Pathfinder payload consists of two drag-free floating test masses located in the inertial sensors with their control electronics and an optical metrology subsystem. The optical metrology subsystem monitors the movement of both test masses relative to each other and to the spacecraft with very high sensitivity and resolution. This is achieved with a heterodyne Mach- Zehnder interferometer. This interferometer requires as input two coherent laser beams with a heterodyne frequency difference of a few kHz. To generate the two laser beams with a heterodyne frequency difference a Nd:YAG laser is used together with the Laser Modulator. The Nd:YAG laser generates a single coherent laser signal at a wavelength of 1064nm which is fibre coupled to the Laser Modulator. The Laser Modulator then generates the two optical beams with the required heterodyne frequency offset. In addition, the Laser Modulator is required to perform laser amplitude stabilization and optical path difference control for the two optical signals. The Laser Modulator consists of an optical unit - the LMU - and RF synthesiser, power amplification and control electronics. These electronics are all housed in the Laser Modulator Electronics (LME). The LMU has four primary functions: • Splitting of the input laser beam into two paths for later superposition in the interferometer. • Applying different frequency shifts to each of the beams. • Providing amplitude modulation control to each of the beams. • Providing active control of the optical path length difference between the two optical paths. The present paper describes the design and performance of the LMU

  1. Electrodeless excimer laser; Laser a eccimeri senza elettrodi

    Lisi, N. [ENEA, Divisione Nuovi Materiali, Centro Ricerche Casaccia, Rome (Italy)

    2001-07-01

    In this paper it is proposed how to build an excimer laser based on an electrodeless discharge (or Dielectric Barrier Discharge). Such laser could operate with a low energy per pulse (<100 mJ) and a high repetition rate (<100 kHz). The most relevant advantage an electrodeless DBD laser is the much longer gas mixture lifetime. This feature could allow the operation of a sealed laser emitting higher average power with respect to commercially available excimer lasers. Such discharge scheme could be advantageous in order to excite the F{sub 2} excimer molecule, whose emission wavelength in the VUV range (157 nm) at high reprate is particularly interesting in the micro-lithography field. [Italian] In questo documento viene proposto come costruire un laser a eccimeri basato su una scarica priva di elettrodi, o Dielectric Barrier Discharge. Tale laser puo' funzionare con una bassa energia per impulso (<100 mJ) ad alta frequenza di ripetizione (<100 kHz). Il vantaggio fondamentale di un laser a DBD e quindi privo di elettrodi e' la vita media della miscela gassosa molto piu' alta che potrebbe permettere alla camera laser di operare sigillata ad una potenza media superiore a quella dei laser a eccimeri attuali. Tale schema di pompaggio potrebbe essere particolarmente vantaggioso per eccitare la molecola eccimero F{sub 2} la cui lunghezza di emissione nel VUV (157 nm) ad elevata frequenza di ripetizione presenta un notevole interesse nel campo della produzione di microcircuiti.

  2. Random distributed feedback fibre lasers

    Turitsyn, Sergei K., E-mail: s.k.turitsyn@aston.ac.uk [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Babin, Sergey A. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Churkin, Dmitry V. [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Vatnik, Ilya D.; Nikulin, Maxim [Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Podivilov, Evgenii V. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation)

    2014-09-10

    The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with “negative absorption” of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors–random distributed feedback fibre laser–was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100 km. Although an effective reflection due to the Rayleigh scattering is extremely small (∼0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the

  3. Random distributed feedback fibre lasers

    Turitsyn, Sergei K.; Babin, Sergey A.; Churkin, Dmitry V.; Vatnik, Ilya D.; Nikulin, Maxim; Podivilov, Evgenii V.

    2014-01-01

    The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with “negative absorption” of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors–random distributed feedback fibre laser–was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100 km. Although an effective reflection due to the Rayleigh scattering is extremely small (∼0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the

  4. Laser spectroscopy on organic molecules.

    Imasaka, T

    1996-06-01

    Various laser spectrometric methods have been developed until now. Especially, laser fluorometry is most sensitive and is frequently combined with a separation technique such as capillary electrophoresis. For non-fluorescent compounds, photothermal spectrometry may be used instead. A diode laser is potentially useful for practical trace analysis, because of its low cost and long-term trouble-free operation. On the other hand, monochromaticity of the laser is essential in high-resolution spectrometry, e.g. in low temperature spectrometry providing a very sharp spectral feature. Closely-related compounds such as isomers can easily be differentiated, and information for assignment is obtained from the spectrum. Multiphoton ionization mass spectrometry is useful for soft ionization, providing additional information concerned with molecular weight and chemical structure. A short laser pulse with a sufficient energy is suitable for rapid heating of the solid surface. A matrix-assisted laser desorption/ion-ization technique is recently employed for introduction of a large biological molecule into a vacuum for mass analysis. In the future, laser spectrometry will be developed by a combination with state-of-the-art laser technology. In the 21st century, new laser spectrometry will be developed, which may be based on revolutionary ideas or unexpected discoveries. Such studies will open new frontiers in analytical laser spectroscopy.

  5. Improving the laser brightness of a commercial laser system

    Naidoo, Darryl; Litvin, Igor; Forbes, Andrew

    2016-02-01

    We investigate the selection of a flat-top beam and a Gaussian beam inside a laser cavity on opposing mirrors. The concept is tested external to the laser cavity in a single pass and double pass regime where the latter mimics a single round trip in the laser. We implement this intra-cavity selection through the use of two 16 level diffractive optical elements. We consider a solid-state diode side-pumped laser resonator in a typical commercial laser configuration that consists of two planar mirrors where the DOEs are positioned at the mirrors. We out couple the Gaussian and flat-top distributions and we show that we improve the brightness of the laser with active mode control. We also demonstrate that the quality of the beam transformations determine the brightness improvement.

  6. Laser frequency modulator for modulating a laser cavity

    Erbert, Gaylen V.

    1992-01-01

    The present invention relates to a laser frequency modulator for modulating a laser cavity. It is known in the prior art to utilize a PZT (piezoelectric transducer) element in combination with a mirror to change the cavity length of a laser cavity (which changes the laser frequency). Using a PZT element to drive the mirror directly is adequate at frequencies below 10 kHz. However, in high frequency applications (100 kHz and higher) PZT elements alone do not provide a sufficient change in the cavity length. The present invention utilizes an ultrasonic concentrator with a PZT element and mirror to provide modulation of the laser cavity. With an ultrasonic concentrator, the mirror element at the end of a laser cavity can move at larger amplitudes and higher frequencies.

  7. Laser systems for on-line laser ion sources

    Geppert, Christopher

    2008-01-01

    Since its initiation in the middle of the 1980s, the resonant ionization laser ion source has been established as a reliable and efficient on-line ion source for radioactive ion beams. In comparison to other on-line ion sources it comprises the advantages of high versatility for the elements to be ionized and of high selectivity and purity for the ion beam generated by resonant laser radiation. Dye laser systems have been the predominant and pioneering working horses for laser ion source applications up to recently, but the development of all-solid-state titanium:sapphire laser systems has nowadays initiated a significant evolution within this field. In this paper an overview of the ongoing developments will be given, which have contributed to the establishment of a number of new laser ion source facilities worldwide during the last five years.

  8. Development of laser technology in Research Center of Laser Fusion

    Zheng Wanguo; Deng Ying; Zhou Wei

    2013-01-01

    This paper reviews the progress in the construction of SG-Ⅲ laser facility, integrated Testbed and XG-Ⅲ laser facility and that in the upgrade of the prototype of SG-Ⅲ, and the development in assembling and installing technology, and the achievements in maintaining cleanliness project and metrology in Laser Fusion Research Center, China Academy of Engineering Physics in China in 2012. (authors)

  9. Laser activated superconducting switch

    Wolf, A.A.

    1976-01-01

    A superconducting switch or bistable device is described consisting of a superconductor in a cryogen maintaining a temperature just below the transition temperature, having a window of the proper optical frequency band for passing a laser beam which may impinge on the superconductor when desired. The frequency of the laser is equal to or greater than the optical absorption frequency of the superconducting material and is consistent with the ratio of the gap energy of the switch material to Planck's constant, to cause depairing of electrons, and thereby normalize the superconductor. Some embodiments comprise first and second superconducting metals. Other embodiments feature the two superconducting metals separated by a thin film insulator through which the superconducting electrons tunnel during superconductivity

  10. An Organic Vortex Laser.

    Stellinga, Daan; Pietrzyk, Monika E; Glackin, James M E; Wang, Yue; Bansal, Ashu K; Turnbull, Graham A; Dholakia, Kishan; Samuel, Ifor D W; Krauss, Thomas F

    2018-03-27

    Optical vortex beams are at the heart of a number of novel research directions, both as carriers of information and for the investigation of optical activity and chiral molecules. Optical vortex beams are beams of light with a helical wavefront and associated orbital angular momentum. They are typically generated using bulk optics methods or by a passive element such as a forked grating or a metasurface to imprint the required phase distribution onto an incident beam. Since many applications benefit from further miniaturization, a more integrated yet scalable method is highly desirable. Here, we demonstrate the generation of an azimuthally polarized vortex beam directly by an organic semiconductor laser that meets these requirements. The organic vortex laser uses a spiral grating as a feedback element that gives control over phase, handedness, and degree of helicity of the emitted beam. We demonstrate vortex beams up to an azimuthal index l = 3 that can be readily multiplexed into an array configuration.

  11. CO2 Laser Market

    Simonsson, Samuel

    1989-03-01

    It gives me a great deal of pleasure to introduce our final speaker of this morning's session for two reasons: First of all, his company has been very much in the news not only in our own community but in the pages of Wall Street Journal and in the world economic press. And, secondly, we would like to welcome him to our shores. He is a temporary resident of the United States, for a few months, forsaking his home in Germany to come here and help with the start up of a new company which we believe, probably, ranks #1 as the world supplier of CO2 lasers now, through the combination of former Spectra Physics Industrial Laser Division and Rofin-Sinar GMBH. Samuel Simonsson is the Chairman of the Board of Rofin-Sinar, Inc., here in the U.S. and managing director of Rofin-Sinar GMBH. It is a pleasure to welcome him.

  12. Transluminal laser angioplasty

    Otto, Wlodzimierz

    1996-03-01

    Twenty seven patients with femoral artery occlusion were treated by transluminal Nd:YAG laser angioplasty, in 16 patients the procedure was combined with intraarterial infusion of rTPA (actilyse-Boehringer Ing). In 5 out of 11 patients from the initial group recanalization was not successful. In 16 patients from the rTPA group satisfactory immediate results were achieved in all cases. In long time observations ranging from 9 to 24 months all patients remained free from symptoms, although in 4 of them angiography and Doppler ultrasound examination reveal no flow in the femoral artery. In the remaining 12 patients (75%), the previously occluded artery is patent. No complications of laser angioplasty nor intraarterial infusion of rTPA were noted in this series.

  13. PEP Laser Surveying System

    Lauritzen, T.; Sah, R.C.

    1979-03-01

    A Laser Surveying System has been developed to survey the beam elements of the PEP storage ring. This system provides automatic data acquisition and analysis in order to increase survey speed and to minimize operator error. Two special instruments, the Automatic Readout Micrometer and the Small Automatic Micrometer, have been built for measuring the locations of fiducial points on beam elements with respect to the light beam from a laser. These instruments automatically encode offset distances and read them into the memory of an on-line computer. Distances along the beam line are automatically encoded with a third instrument, the Automatic Readout Tape Unit. When measurements of several beam elements have been taken, the on-line computer analyzes the measured data, compared them with desired parameters, and calculates the required adjustments to beam element support stands

  14. Laser resurfacing pearls.

    Shah, Sonia; Alam, Murad

    2012-08-01

    Ablative skin resurfacing using the carbon dioxide laser was long considered the gold standard for treatment of photoaging, acne scars, and rhytids. However, conventional full-face carbon dioxide resurfacing is associated with significant risk of side effects and a prolonged postoperative recovery period. Fractional resurfacing has recently revolutionized laser surgery by offering close to comparable results with minimal side effects and a more rapid recovery. Although fractional devices have grown in popularity, and have essentially replaced traditional resurfacing, fractional resurfacing can still be a challenging modality to control precisely due to hardware variations across comparable devices, the range of settings that can be used, and patient-specific considerations. Certain precautions and rules of thumb can reduce the risk associated with fractional resurfacing, and increase the likelihood of a good outcome.

  15. Fusion pumped laser

    Pappas, D.S.

    1987-07-31

    The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

  16. Laser color recording unit

    Jung, E.

    1984-05-01

    A color recording unit was designed for output and control of digitized picture data within computer controlled reproduction and picture processing systems. In order to get a color proof picture of high quality similar to a color print, together with reduced time and material consumption, a photographic color film material was exposed pixelwise by modulated laser beams of three wavelengths for red, green and blue light. Components of different manufacturers for lasers, acousto-optic modulators and polygon mirrors were tested, also different recording methods as (continuous tone mode or screened mode and with a drum or flatbed recording principle). Besides the application for the graphic arts - the proof recorder CPR 403 with continuous tone color recording with a drum scanner - such a color hardcopy peripheral unit with large picture formats and high resolution can be used in medicine, communication, and satellite picture processing.

  17. Laser device and method

    Myers, J.D.

    1986-01-01

    A method is described of treatment of opacity of the lens of an eye resulting from foreign matter at the back surface of the eye lens within the vitreous fluid body of the eye with a passively Q-switched laser device. The method consists of: (a) generating a single lasing pulse emitted from the laser device focused within the eye vitreous fluid body, spaced from the lens back surface, creating a microplasma dot in the vitreous fluid body (b) then increasing the frequency of the lasing pulses emitted from the lasing device having a frequency greater than the life of the microplasma to generate an elongated lasing plasma within the eye vitreous fluid moving toward the lens back surface, until the elongated lasing plasma contacts and destroys the foreign matter

  18. Electric motor for laser-mechanical drilling

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  19. Electric motor for laser-mechanical drilling

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2017-10-10

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for performing a laser operation. A system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam having a wavelength less than 1060 nm through the electrical motor.

  20. The use of lasers in manufacturing

    Anon.

    1989-01-01

    This book contains the proceedings of a conference on the use of lasers in manufacturing, topics covered include: An introduction to industrial lasers; Production laser hardening for aerospace; The role of fiber optics in laser material processing; and Light-material interactions in laser material processing

  1. Traveling wave laser system

    Gregg, D.W.; Kidder, R.E.; Biehl, A.T.

    1975-01-01

    A method is described for generating a traveling wave laser pulse of almost unlimited energy content wherein a gain medium is pumped into a traveling wave mode, the traveling wave moving at essentially the velocity of light to generate an amplifying region or zone which moves through the medium at the velocity of light in the presence of directed stimulating radiation, thereby generating a traveling coherent, directed radiation pulse moving with the amplification zone through the gain medium. (U.S.)

  2. Optically pumped laser systems

    DeMaria, A.J.; Mack, M.E.

    1975-01-01

    Laser systems which are pumped by an electric discharge formed in a gas are disclosed. The discharge is in the form of a vortex stabilized electric arc which is triggered with an auxiliary energy source. At high enough repetition rates residual ionization between successive pulses contributes to the pulse stabilization. The arc and the gain medium are positioned inside an optical pumping cavity where light from the arc is coupled directly into the gain medium

  3. Metal atom oxidation laser

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-01-01

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides

  4. Laser power supply

    Whitehouse, D.R.; Hartshorn, D.W.

    1975-01-01

    A method of energizing a laser source stimulating flash lamp directly from an ac power line is presented. Uncontrolled diodes couple the anode and cathode of the flash lamp directly to the ac line. The lamp is triggered by a separate triggering circuit which produces its trigger pulse at a predetermined phase of the ac power source. The use of high current carrying controlled rectifiers and large energy storage devices is thereby eliminated. (U.S.)

  5. Laser Light Fiber Communication,

    1980-10-14

    001 068 C)LASER FIGT3IBER OMNICATION BICICJ-,HuanN/CAnIOu Country off origin: China Translated by: :F3 -8D01SCITRAN A~s---qnrt / Requester: FTD/TQTA...TXS ’ -’- Approved ffor public release; distribution DTIC T:’’w fBy _ Conty f riin. Codes Trans ated by: CITRA Accssio THIS TRANSLATION IS A REI

  6. Gallium arsenide injection lasers

    Thompson, G.H.B.

    1975-01-01

    The semiconductor injection laser includes a thin inner GaAs p-n junction layer between two outer GaAlAs layers which are backed by further thin outer GaAlAs layers with a heavier doping of AlAs. This reduces optical losses. Optical energy is further confined within the inner layers and the lasing threshold reduced by added outer GaAs layers of low electrical and thermal resistivity

  7. Gas dynamic laser device

    Born, G.

    1975-01-01

    The gas dynamic laser device is provided with an expansion chamber arranged between a heating chamber for the CO-gas and the resonance chamber. The expansion chamber is initially evacuated for producing a rarefaction wave. Between the heating chamber and the expansion chamber there are arranged rapid release means such as a valve or a diaphragm. Pressure recovering means are connected to the other side of the resonance chamber

  8. Laser plasma LINAC

    Palmer, R.B.; Baggett, N.; Claus, J.; Fernow, R.; Ghosh, A.; Giordano, S.; Radeka, V.; Stumer, I.; Takacs, P.; Warren, J.

    1985-01-01

    The grating accelerator concept is reviewed. The use of a double row of conducting droplets instead of a conventional grating constrains the fields to a narrow band. The use of droplets also allows fields that will destroy the structure. RF modelling results are presented together with a simple theory of the fields. Coupling to incoming radiation is described. A possible laser specification is also given. (orig.)

  9. Laser plasma LINAC

    Palmer, R.B.; Baggett, N.; Claus, J.

    1984-01-01

    The grating accelerator concept is reviewed. The use of a double row of conducting droplets instead of a conventional grating constrains the fields to a narrow band. The use of droplets also allows fields that will destroy the structure. The rf modeling results are presented together with a simple theory of the fields. Coupling to incoming radiation is described. A possible laser specification is also given. 9 references, 8 figures

  10. Applications of Gunn lasers

    Balkan, N.; Chung, S. H.

    2008-04-01

    The principle of the operation of a Gunn laser is based on the band to band recombination of impact ionized non-equilibrium electron-hole pairs in propagating high field space-charge domains in a Gunn diode, which is biased above the negative differential resistance threshold and placed in a Fabry-Perot or a vertical micro cavity (VCSEL). In conventional VCSEL structures, unless specific measures such as the addition of oxide apertures and use of small windows are employed, the lack of uniformity in the density of current injected into the active region can reduce the efficiency and delay the lasing threshold. In a vertical-cavity structured Gunn device, however, the current is uniformly injected into the active region independently of the distributed Bragg reflector (DBR) layers. Therefore, lasing occurs from the entire surface of the device. The light emission from Gunn domains is an electric field induced effect. Therefore, the operation of Gunn-VCSEL or F-P laser is independent of the polarity of the applied voltage. Red-NIR VCSELs emitting in the range of 630-850 nm are also possible when Ga 1-xAl xAs (x communications. Furthermore the device may find applications as an optical clock and cross link between microwave and NIR communications. The operation of a both Gunn-Fabry-Perot laser and Gunn-VCSEL has been demonstrated by us recently. In the current work we present the potential results of experimental and theoretical studies concerning the applications together with the gain and emission characteristics of Gunn-Lasers.

  11. Laser-cutting pneumatics

    Groenhuis, Vincent; Stramigioli, Stefano

    2016-01-01

    Pneumatic devices require tight tolerances to keep them leak-free. Specialized companies offer various off-the-shelf devices, while these work well for many applications, there are also situations where custom design and production of pneumatic parts are desired. Cost efficiency, design flexibility, rapid prototyping, and MRI compatibility requirements are reasons why we investigated a method to design and produce different pneumatic devices using a laser cutter from acrylic, acetal, and rubb...

  12. Diode laser-pumped Ho:YLF laser

    Hemmati, H.

    1987-01-01

    The author reports laser action in Ho:YLF at 2.06 μm following optical pumping with a cw diode laser array. Diode laser-pumped Nd-YAG and Ho:YAG have been reported recently. Lasers with a wavelength of 2 μm have medical and optical communication applications. The diode laser light is focused with a 60-mm focal length lens onto the YLF crystal. A high-reflectivity mirror with 100-mm radius of curvature was used as the output coupler. The lasing threshold was at 5 mWof incident power. This is higher than expected considering that a high reflector was used as the output coupler. However, a more uniform cooling of the crystal is expected to lower the lasing threshold. With 100 mW of pump power coupled into the crystal, --20 mW of 2-μm radiation was observed from this unoptimized setup. The 2-μm laser output is highly sensitive to output coupler alignment, YLF crystal temperature, and pump laser wavelength. The 20% optical conversion efficiency achieved in his preliminary measurements is expected to be improved by better crystal cooling, proper matching of laser wavelength to crystal absorption, variations in the concentration of Ho and sensitizers and use of a proper output coupler. A study of the parameters mentioned above and the effect of crystal temperature on the laser output is under way

  13. Laser optically pumped by laser-produced plasma

    Silfvast, W.T.; Wood, O.R. II.

    1975-01-01

    Laser solids, liquids and gases are pumped by a new technique in which the output from an efficient molecular laser, such as a CO 2 laser, ionizes a medium, such as xenon, into a generally cylindrical plasma volume, in proximity to the pumped laser body. Breakdown yields a visible and ultraviolet-radiation-emitting plasma in that volume to pump the laser body. The spectral radiance of the plasma is significantly higher than that produced by a dc-discharge-heated plasma at nearly all wavelengths in the plasma spectrum. The risetime of radiation from the laser-produced plasma can also be significantly shorter than that of a dc heated plasma. A further advantage resides in the fact that in some applications the attenuating walls needed by flashlamps may be eliminated with the result that laser threshold is more readily reached. Traveling wave excitation may be provided by oblique incidence of the pumping laser beam through the ionizable medium to create sequential ionization of portions of that medium along the length of the pumped laser body. (auth)

  14. Multimegajoule laser project: new compact multipass laser design

    Holzrichter, J.F.

    1985-01-01

    A simple laser design that has the fewest laser components of all fusion systems that the authors have studied and that packs closely, thus minimizing space requirements is shown. The Advanced Laser Program objectives are determined by the requirements of the subsystems. The requirements consists of the following elements: high damage thresholds on reflectors; AR layers and dichroic coatings; high-efficiency amplifiers; low-cost production of laser glass, pulse power, and optical elements; and special optical elements, such as an effective phase conjugator and isolator. The combination of a compact architecture and lower-cost, higher-performance components can lead to significant reduction in overall system cost

  15. Improvements of the ruby laser oscillator system for laser scattering

    Yamauchi, Toshihiko; Kumagai, Katsuaki; Kawakami, Tomohide; Matoba, Tohru; Funahashi, Akimasa

    1978-10-01

    A ruby laser oscillator system is used to measure electron temperatures of the Tokamak plasmas(JFT-2 and JFT-2a). Improvements have been made of the laser oscillator to obtain the correct values. Described are the improvements and the damages of a ruby rod and a KD*P crystal for Q-switching by laser beam. Improvement are the linear Xe lamp replaced by a helical Xe lamp and in the electrical circuit for Q-switching. The damage of an optical component by a laser beam should be clarified from the damage data; the cause is not found yet. (author)

  16. Development of laser materials processing and laser metrology techniques

    Kim, Cheol Jung; Chung, Chin Man; Kim, Jeong Mook; Kim, Min Suk; Kim, Kwang Suk; Baik, Sung Hoon; Kim, Seong Ouk; Park, Seung Kyu

    1997-09-01

    The applications of remote laser materials processing and metrology have been investigated in nuclear industry from the beginning of laser invention because they can reduce the risks of workers in the hostile environment by remote operation. The objective of this project is the development of laser material processing and metrology techniques for repairing and inspection to improve the safety of nuclear power plants. As to repairing, we developed our own laser sleeve welding head and innovative optical laser weld monitoring techniques to control the sleeve welding process. Furthermore, we designed and fabricated a 800 W Nd:YAG and a 150 W Excimer laser systems for high power laser materials processing in nuclear industry such as cladding and decontamination. As to inspection, we developed an ESPI and a laser triangulation 3-D profile measurement system for defect detection which can complement ECT and UT inspections. We also developed a scanning laser vibrometer for remote vibration measurement of large structures and tested its performance. (author). 58 refs., 16 tabs., 137 figs

  17. Influence of laser parameters on laser ultrasonic efficiency

    Forbes, A

    2007-01-01

    Full Text Available , TEA CO2 lasers, laser chemistry, short pulses 1. INTRODUCTION Polymer-matrix composites are increasingly used in the aerospace industry, particularly in the manufacture of modern fighter planes1-3. The number and complexity of such composites... efficiency can be improved by utilising short pulses in the 3–4 µm and 10 µm spectral regions1. Short pulse 10 µm radiation can be produced by transversely excited, atmospheric CO2 (TEA CO2) lasers. Due to the technological maturity of these lasers...

  18. Proceedings of the twenty fifth national laser symposium

    2016-01-01

    The topics covered in this symposium are: laser materials, devices and components, nonlinear, quantum optics and atomic optics, ultrafast lasers and applications, physics and technology of lasers, lasers in nuclear science and technology, lasers in material science, laser plasma interaction, lasers in industry and defence, lasers in spectroscopy and applications, lasers in chemistry, biology and medicine, laser based instrumentation and electronics and instrumentation for lasers. Papers relevant to INIS are indexed separately

  19. Argus Laser Fusion Facility

    Speck, D.R.; Simmons, W.W.

    1976-01-01

    ARGUS is a two-beam Nd: glass laser system built for laser fusion irradiation experiments. It is the first glass laser system planned and built with the understanding that small-scale beam break-up is the dominant performance limiting factor in obtaining high output power. Accordingly, five vacuum spatial filters are located at strategic intervals along each chain to eliminate the accumulated small-scale filamentation. This strategy permits cascading of amplifiers to obtain a focusable output of more than one terawatt per arm in a spatially clean beam of 20 centimeter diameter. Beam diagnostics which characterize each shot include the time-integrated spatial profile and the time resolved intensity/power at the target. Demonstrated performance to date includes: (1) Peak power in excess of 2 TW at the target is achieved with regularity. (2) Maximum system brightness is in excess of 10 17 watts/cm 2 ster. (3) Shot-to-shot pointing stability within 50 μ radians is achieved over periods of days. (4) Successful target experiments have been performed with pulses of from 30 to 500 ps duration

  20. Laser Digital Cinema

    Takeuchi, Eric B.; Flint, Graham W.; Bergstedt, Robert; Solone, Paul J.; Lee, Dicky; Moulton, Peter F.

    2001-03-01

    Electronic cinema projectors are being developed that use a digital micromirror device (DMDTM) to produce the image. Photera Technologies has developed a new architecture that produces truly digital imagery using discrete pulse trains of red, green, and blue light in combination with a DMDTM where in the number of pulses that are delivered to the screen during a given frame can be defined in a purely digital fashion. To achieve this, a pulsed RGB laser technology pioneered by Q-Peak is combined with a novel projection architecture that we refer to as Laser Digital CameraTM. This architecture provides imagery wherein, during the time interval of each frame, individual pixels on the screen receive between zero and 255 discrete pulses of each color; a circumstance which yields 24-bit color. Greater color depth, or increased frame rate is achievable by increasing the pulse rate of the laser. Additionally, in the context of multi-screen theaters, a similar architecture permits our synchronously pulsed RGB source to simultaneously power three screens in a color sequential manner; thereby providing an efficient use of photons, together with the simplifications which derive from using a single DMDTM chip in each projector.

  1. Modeling Quantum Well Lasers

    Dan Alexandru Anghel

    2012-01-01

    Full Text Available In semiconductor laser modeling, a good mathematical model gives near-reality results. Three methods of modeling solutions from the rate equations are presented and analyzed. A method based on the rate equations modeled in Simulink to describe quantum well lasers was presented. For different signal types like step function, saw tooth and sinus used as input, a good response of the used equations is obtained. Circuit model resulting from one of the rate equations models is presented and simulated in SPICE. Results show a good modeling behavior. Numerical simulation in MathCad gives satisfactory results for the study of the transitory and dynamic operation at small level of the injection current. The obtained numerical results show the specific limits of each model, according to theoretical analysis. Based on these results, software can be built that integrates circuit simulation and other modeling methods for quantum well lasers to have a tool that model and analysis these devices from all points of view.

  2. Laser working device

    Shibanuma, Kiyoshi; Kakudate, Satoshi; Oka, Kiyoshi; Terakado, Takuya; Kondo, Mitsunori; Munakata, Tadashi; Makino, Yoshinobu; Honda, Keizo.

    1995-01-01

    A transmission pipe transmits laser beams along an axis thereof, and is inserted at the top end to a pipeline to be fabricated. A flat mirror is secured to the top end of the transmission pipe, and laser beams are reflected by the mirror, passed through a fabrication nozzle and focused to a fabrication point in the pipeline to be fabricated. A lens-type light focusing system is guided to the fabrication point by a plurality of rollers rotatable in the axial direction disposed in circumferential direction each at an equal pitch at the outer circumference of the transmission pipe. A centering mechanism is disposed for keeping the transmission pipe coaxially with the pipeline to be fabricated. Further, there are also disposed a mirror-type light focusing optical system for focusing light by a paraboloidal mirror and a spherical vehicle rotatable in all directions. A laser fabrication device can be reduced in the size, and it can be used in a high temperature and highly radioactive circumstance. (N.H.)

  3. Environmental monitoring using lasers

    Iqbal, M.; Ahmed, N.

    1997-01-01

    Activities of human beings are creating slow and long term changes in the Earth's atmosphere. As the sun provides the driving force for earth's ecosystem, therefore earth's radiation budget is an important parameter. Composition of the atmosphere is of basic importance in determining this radiation budget. Out of the atmospheric species, ozone is of special importance because it filters out much of the solar UV, while certain other molecular species, such as SO/sub 2/ , NO/sub 2/, benzene, toluene and aerosols have very harmful effects on life. Depletion of ozone layer over Antarctic and addition of chemical species to atmosphere and oceans have disturbed our ecosystem seriously. Thorough monitoring of distribution and dynamics of these species is essential for devising any countermeasure for their control. Conventional method of atmospheric monitoring (balloon, rocket or satellite borne sensors) are limited either in range or type of measurement apart from being complex and somewhat expensive. LASER based 'light detection and ranging (LIDAR) technique, on the other hand, enjoys a number of advantages over others. Due to recent developments in LASER technique, on the other hand, enjoys a number of advantages over other. Due to recent developments in LASER technology, LIDARS are economical and very flexible in range and type of measurement. This paper presents an overview of the technique. It includes principle of LIDAR, highlights its applications to the monitoring of atmosphere, biosphere and hydrosphere. (author)

  4. Hybrid laser-arc welding

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  5. Spatiotemporal control of laser intensity

    Froula, Dustin H.; Turnbull, David; Davies, Andrew S.; Kessler, Terrance J.; Haberberger, Dan; Palastro, John P.; Bahk, Seung-Whan; Begishev, Ildar A.; Boni, Robert; Bucht, Sara; Katz, Joseph; Shaw, Jessica L.

    2018-05-01

    The controlled coupling of a laser to plasma has the potential to address grand scientific challenges1-6, but many applications have limited flexibility and poor control over the laser focal volume. Here, we present an advanced focusing scheme called a `flying focus', where a chromatic focusing system combined with chirped laser pulses enables a small-diameter laser focus to propagate nearly 100 times its Rayleigh length. Furthermore, the speed at which the focus moves (and hence the peak intensity) is decoupled from the group velocity of the laser. It can co- or counter-propagate along the laser axis at any velocity. Experiments validating the concept measured subluminal (-0.09c) to superluminal (39c) focal-spot velocities, generating a nearly constant peak intensity over 4.5 mm. Among possible applications, the flying focus could be applied to a photon accelerator7 to mitigate dephasing, facilitating the production of tunable XUV sources.

  6. Powerful lasers for thermonuclear fusion

    Basov, N.; Krokhin, O.; Sklizkov, G.; Fedotov, S.

    1977-01-01

    The parameters are discussed of the radiation of powerful lasers (internal energy of the plasma determined by the volume, density and temperature of the plasma, duration of the heating pulse, focusing of the laser pulse energy in a small volume of matter, radiation contrast) for attaining an effective thermonuclear fusion at minimum microexplosion energy. A survey is given of the methods of shaping laser pulses with limit parameters, and the principle of the construction of powerful laser systems is described. The general diagram and parameters are given of the Delfin thermonuclear apparatus and a diagram is presented of the focusing system of high luminosity for spherical plasma heating using spherical mirrors. A diagram is presented of the vacuum chamber and of the complex diagnostic apparatus for determining the basic parameters of thermonuclear plasma in the Delfin apparatus. The prospects are indicated of the further development of thermonuclear laser apparatus with neodymium and CO 2 lasers. (B.S.)

  7. Solid-state laser engineering

    Koechner, Walter

    1999-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, laser materials, and nonlinear crystals. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  8. Lasers in medicine and dentistry.

    Lehnert, M W

    1996-01-01

    Since their introduction, great enthusiasm has greeted the application of lasers to medicine and dentistry. The future is exciting. Research will someday take us to the days of the "Star Trek" laser-scan tooth or bone repair procedures. Lasers are very specific in their application. Choose this new technology carefully, making choices and purchases based on quality scientific research and ongoing analysis and review.

  9. Anesthesia Methods in Laser Resurfacing

    Gaitan, Sergio; Markus, Ramsey

    2012-01-01

    Laser resurfacing technology offers the ability to treat skin changes that are the result of the aging process. One of the major drawbacks of laser resurfacing technologies is the pain associated with the procedure. The methods of anesthesia used in laser resurfacing to help minimize the pain include both noninvasive and invasive procedures. The noninvasive procedures can be divided into topical, cryoanesthesia, and a combination of both. The invasive methods of anesthesia include injected fo...

  10. Lasers for RF guns: Proceedings

    Srinivasan-Rao, T.

    1994-01-01

    In the past decade, laser driven RF guns have matured from a device under development to a proven source for high brightness and low emittance electron beams. The reliability of the electron beam from these sources is dictated by the laser system that drives it. In addition, capabilities of the laser systems play a vital role in the design of the electron source for future machines such as the TESLA and NLC. The purpose of this workshop was to provide a forum for discussing the design criteria for the laser systems so that the reliability of the existing sources could be improved and the future machines could be serviced. The Workshop brought together experts in RF Guns, accelerators, and lasers, from both the commercial and academic community. Most of the presentations, discussions and conclusions at the workshop are included in these proceedings. The contents are divided into three sections, Section I contains the invited talks that outline the requirements of the RF Guns and the capabilities of the laser systems to meet these requirements. Section II includes most of the papers presented in the poster session. These papers describe various laser systems used with electron guns, schemes to modify the laser beam profile to optimize the electron bunch, and computer simulations of electron trajectories. Section III contains the summaries of the working groups. As the summary section indicates, with sufficient feed back systems, the electron gun could be made to operate reliably with minimum downtime, using commercial lasers currently available. The design of laser systems for future colliders depend critically on the choice of the cathode m the gun and its efficiency. Tentative designs of laser systems for the TESLA test facility and LCLS had been drawn assuming a copper cathode. Using a more efficient cathode will ease the energy requirement of the laser and simplify the design. The individual papers have been cataloged separately elsewhere

  11. A Guide to Laser Safety

    Davies, W M

    1998-09-01

    In one of the few volumes dedicated to laser safety to appear since the 'bible' of Sliney and Wolbarsht, Roy Henderson sets out to provide the reader with a practical account of both the philosophy and practice across contemporary application of lasers. The book is split into three sections. The first section is essentially a non-mathematical review of lasers, optical hazards and laser safety. It is intended as an easily digestible introduction to the subject, conveying the primary concepts of laser safety without the camouflage of equations. This piece of text is manifestly readable by all who have interest in the topic. The second section introduces more meat onto the bones introduced in the first section and some of the practical mathematics necessary to determine optical irradiance in simple laser beams. The book is not intended as a scientific treatise and rigorous treatment of laser physics is left (for the better) to other texts. Laser hazard assessment and safety management are covered in sufficient detail to allow the reader to understand what precautions are necessary to mitigate the risks of laser use. The final section takes a brief look at laser safety in a number of specific industrial applications. These include industrial processing, medicine, telecommunications and entertainment. These should be taken in the context of the second section and are not stand-alone text. With few typographical errors, and packed with practical hints, this book serves as an excellent text for any educational course on laser safety and provides a quick and easy reference for laser safety officers. (book review: A Roy Henderson - ISBN: 0 412 72940 7)

  12. Lens Coupled Quantum Cascade Laser

    Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor)

    2013-01-01

    Terahertz quantum cascade (QC) devices are disclosed that can operate, e.g., in a range of about 1 THz to about 10 THz. In some embodiments, QC lasers are disclosed in which an optical element (e.g., a lens) is coupled to an output facet of the laser's active region to enhance coupling of the lasing radiation from the active region to an external environment. In other embodiments, terahertz amplifier and tunable terahertz QC lasers are disclosed.

  13. Tunable femtosecond Cherenkov fiber laser

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  14. Laser fabrication of beryllium components

    Hanafee, J.E.; Ramos, T.J.

    1995-08-01

    Working with the beryllium industry on commercial applications and using prototype parts, the authors have found that the use of lasers provides a high-speed, low-cost method of cutting beryllium metal, beryllium alloys, and beryllium-beryllium oxide composites. In addition, they have developed laser welding processes for commercial structural grades of beryllium that do not need a filler metal; i.e., autogenous welds were made in commercial structural grades of beryllium by using lasers

  15. Laser Cutting of Different Materials

    Kadir ÇAVDAR

    2013-08-01

    Full Text Available In this paper; in general potential developments and trends of a particular machining field by extensively evaluating present studies of laser beam machining have been discussed. As it is indicated below, technical literatures have been subsumed under five major headlines: Experimental studies, reviews, optimization researches of the cutting parameters, theoretical modelling studies of laser beam cutting and academic studies relating to laser cutting

  16. Lasers: present and future research

    Philippe, P.

    1981-01-01

    Recent advances in the field of lasers are reviewed in particular in the French laboratories. Different lasers are briefly described related to their applications: rare gas halide, iodine, metal vapor, color center, transition-metal solid state, CO 2 , chemical, blue-green and free electron lasers. Among applications researches on thermonuclear fusion are given p. 125 and researches concerning isotope separation are given p. 126 and 127 [fr

  17. Hybrid fiber-rod laser

    Beach, Raymond J.; Dawson, Jay W.; Messerly, Michael J.; Barty, Christopher P. J.

    2012-12-18

    Single, or near single transverse mode waveguide definition is produced using a single homogeneous medium to transport both the pump excitation light and generated laser light. By properly configuring the pump deposition and resulting thermal power generation in the waveguide device, a thermal focusing power is established that supports perturbation-stable guided wave propagation of an appropriately configured single or near single transverse mode laser beam and/or laser pulse.

  18. High-energy glass lasers

    Glaze, J.A.

    1975-01-01

    In order to investigate intense pulse propagation phenomena, as well as problems in laser and system design, a prototype single chain laser called CYCLOPS was constructed. This laser employs a 20-cm clear aperture disk amplifier in its final stage and produces a terawatt pulse whose brightness exceeds 10 18 watts/cm 2 -ster. The CYCLOPS system is summarized and aspects of nonlinear propagation phenomena that are currently being addressed are discussed. (MOW)

  19. Eye safe laser range finders

    Snir, M.; Margaliot, M.; Amitzi, A.

    2004-01-01

    During the 1970's, Ruby (Q switched) laser based range finders with a wavelength of 694nm were first used. These lasers operated in a pulse mode within the visible light range and produced a risk for the eye retina. The laser beam striking the macula could damage the eye and might cause blindness. Over the years, Nd:YAG (Q switched) lasers were developed (operating at 1064nm) for range finding and designation uses. The wavelength of these lasers, operating in the near Infra-Red range (invisible), is also focused tightly on the retina. The human eye does not respond to the invisible light so there is no natural protection (eye blink reflex) as in the visible light. The operation of these lasers worldwide, especially when the laser beam is exposed, causes occasional eye accidents. Another risk is stemming from the use of observation systems with a high optical gain, in the laser operation areas, which enlarge the range of risk quite significantly. Therefore, research and development efforts were invested in order to introduce eye safe lasers. One of the solutions for this problem is presented in following document

  20. Advances in laser isotope separation

    Herman, I.P.; Bernhardt, A.F.

    1988-01-01

    The physical and chemical concepts required to understand laser isotope separation are presented and discussed. The numerous successful demonstrations of separating isotopes using lasers are reviewed to 1983. Emphasis is placed on the separation of 235-U from 238-U by multi-step selective ioniation of uranium atomic vapor, and on the separation of D and H and of T from D, by pulsed infrared laser multiple-photon dissociation of fluoroform and chloroform, respectively, because they are among the most successful and important examples of laser isotope separation to date. 161 refs.; 7 figs