WorldWideScience

Sample records for helium-cooled flibe-breeder blanket

  1. The evolution of US helium-cooled blankets

    Wong, C.P.C.; Schultz, K.R.; Cheng, E.T.

    1991-01-01

    This paper reviews and compares four helium-cooled fusion reactor blanket designs. These designs represent generic configurations of using helium to cool fusion reactor blankets that were studied over the past 20 years in the United States of America (US). These configurations are the pressurized module design, the pressurized tube design, the solid particulate and gas mixture design, and the nested shell design. Among these four designs, the nested shell design, which was invented for the ARIES study, is the simplest in configuration and has the least number of critical issues. Both metallic and ceramic-composite structural materials can be used for this design. It is believed that the nested shell design can be the most suitable blanket configuration for helium-cooled fusion power and experimental reactors. (orig.)

  2. Evaluation of US demo helium-cooled blanket options

    Wong, C.P.C.; McQuillan, B.W.; Schleicher, R.W.

    1995-10-01

    A He-V-Li blanket design was developed as a candidate for the U.S. fusion demonstration power plant. This paper presents an 18 MPa helium-cooled, lithium breeder, V-alloy design that can be coupled to the Brayton cycle with a gross efficiency of 46%. The critical issue of designing to high gas pressure and the compatibility between helium impurities and V-alloy are addressed

  3. Ceramic BOT type blanket with poloidal helium cooling

    Cardella, A.; Daenenr, W.; Iseli, M.; Ferrari, M.; Gallina, M.; Rado, V.; Simbolotti, G.; Violante, V.

    1989-01-01

    This paper briefly describes the work done and results achieved over the past two years on the ceramic breeder BOT blanket with poloidal helium cooling. A conclusive remark on the brick/plate option described previously is followed by short descriptions of the low and high performance pebble bed options elaborated as alternatives for both NET and DEMO. The results show, togethre with those about the poloidal cooling of the First Wall, good prospects for this blanket type provided that the questions connected wiht an extensive use of beryllium find a satisfactor answer. (author). 5 refs.; 7 figs.; 1 tab

  4. Helium-Cooled Refractory Alloys First Wall and Blanket Evaluation

    Wong, C.P.C.; Nygren, R.E.; Baxi, C.B.; Fogarty, P.; Ghoniem, N.; Khater, H.; McCarthy, K.; Merrill, B.; Nelson, B.; Reis, E.E.; Sharafat, S.; Schleicher, R.; Sze, D.K.; Ulrickson, M.; Willms, S.; Youssef, M.; Zinkel, S.

    1999-01-01

    Under the APEX program the He-cooled system design task is to evaluate and recommend high power density refractory alloy first wall and blanket designs and to recommend and initiate tests to address critical issues. We completed the preliminary design of a helium-cooled, W-5Re alloy, lithium breeder design and the results are reported in this paper. Many areas of the design were assessed, including material selection, helium impurity control, and mechanical, nuclear and thermal hydraulics design, and waste disposal, tritium and safety design. System study results show that at a closed cycle gas turbine (CCGT) gross thermal efficiency of 57.5%, a superconducting coil tokamak reactor, with an aspect ratio of 4, and an output power of 2 GWe, can be projected to have a cost of electricity at 54.6 mill/kWh. Critical issues were identified and we plan to continue the design on some of the critical issues during the next phase of the APEX design study

  5. Design and safety analysis of the helium cooled solid breeder blanket for CFETR

    Wang, Shuai; Zhou, Guangming; Lv, Zhongliang; Jin, Cheng; Chen, Hongli [University of Science and Technology of China, Anhui (China). School of Nuclear Science and Technology

    2016-05-15

    This paper reports the design and safety analysis results of the helium cooled solid breeder blanket of the Chinese Fusion Engineering Test Reactor (CFETR). Materials selection and basic structure of the blanket have been presented. Performance analysis including neutronics analysis and thermo-mechanical analysis has shown good results. And the safety analysis of the blanket under Loss Of Coolant Accident (LOCA) conditions has been described. Results showed the current design can deal well with the selected accident scenarios.

  6. Conceptual design and analysis of the helium cooled solid breeder blanket for CFETR

    Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Li, Min; Lv, Zhongliang; Zhou, Guangming; Liu, Qianwen; Wang, Shuai; Wang, Xiaoliang; Zheng, Jie; Ye, Minyou

    2015-10-15

    Highlights: • A helium cooled solid blanket was proposed as a candidate blanket concept for CFETR. • Material selection, basic structure and gas flow scheme of the blanket were introduced. • A series of performance analyses for the blanket were summarized. - Abstract: To bridge the gap between ITER and DEMO and to realize the fusion energy in China, a fusion device Chinese Fusion Engineering Test Reactor (CFETR) was proposed and is being designed mainly to demonstrate 50–200 MW fusion power, 30–50% duty time factor, tritium self-sustained. Because of the high demand of tritium production and the realistic engineering consideration, the design of tritium breeding blanket for CFETR is a challenging work and getting special attention. As a blanket candidate, a helium cooled solid breeder blanket has been designed with the emphasis on conservative design and realistic blanket technology. This paper introduces the basic blanket scheme, including the material selection, structural design, cooling scheme and purge gas flow path. In addition, some results of neutronics, thermal-hydraulic and stress analysis are presented.

  7. A methodology for accident analysis of fusion breeder blankets and its application to helium-cooled lead–lithium blanket

    Panayotov, Dobromir; Poitevin, Yves; Grief, Andrew; Trow, Martin; Dillistone, Michael

    2016-01-01

    'Fusion for Energy' (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena while remaining consistent with the approach already applied to ITER accident analyses. Furthermore, the methodology phases are illustrated in the paper by its application to the EU HCLL TBS using both MELCOR and RELAP5 codes.

  8. Updated conceptual design of helium cooling ceramic blanket for HCCB-DEMO

    Wang, Suhao [University of Science and Technology of China, Hefei, Anhui (China); Southwestern Institute of Physics, Chengdu, Sichuan (China); Cao, Qixiang; Wu, Xinghua; Wang, Xiaoyu; Zhang, Guoshu [Southwestern Institute of Physics, Chengdu, Sichuan (China); Feng, Kaiming, E-mail: fengkm@swip.ac.cn [Southwestern Institute of Physics, Chengdu, Sichuan (China)

    2016-11-15

    Highlights: • An updated design of Helium Cooled Ceramic breeder Blanket (HCCB) for HCCB-DEMO is proposed in this paper. • The Breeder Unit is transformed to TBM-like sub-modules, with double “banana” shape tritium breeder. Each sub-module is inserted in space formed by Stiffen Grids (SGs). • The performance analysis is performed based on the R&D development of material, fabrication technology and safety assessment in CN ITER TBM program. • Hot spots will be located at the FW bend side. - Abstract: The basic definition of the HCCB-DEMO plant and preliminary blanket designed by Southwestern Institution of Physics was proposed in 2009. The DEMO fusion power is 2550 MW and electric power is 800 MW. Based on development of R&D in breeding blanket, a conceptual design of helium cooled blanket with ceramic breeder in HCCB-DEMO was presented. The main design features of the HCCB-DEMO blanket were: (1) CLF-1 structure materials, Be multiplier and Li{sub 4}SiO{sub 4} breeder; (2) neutronic wall load is 2.3 MW/m{sup 2} and surface heat flux is 0.43 MW/m{sup 2} (2) TBR ≈ 1.15; (3) geometry of breeding units is ITER TBM-like segmentation; (4)Pressure of helium is 8 MPa and inlet/outlet temperature is 300/500 °C. On the basis of these design, some important analytical results are presented in aspects of (i) neutronic behavior of the blanket; (ii) design of 3D structure and thermal-hydraulic lay-out for breeding blanket module; (iii) structural-mechanical behavior of the blanket under pressurization. All of these assessments proved current stucture fulfill the design requirements.

  9. Methodology for accident analyses of fusion breeder blankets and its application to helium-cooled pebble bed blanket

    Panayotov, Dobromir; Grief, Andrew; Merrill, Brad J.; Humrickhouse, Paul; Trow, Martin; Dillistone, Michael; Murgatroyd, Julian T.; Owen, Simon; Poitevin, Yves; Peers, Karen; Lyons, Alex; Heaton, Adam; Scott, Richard

    2016-01-01

    Graphical abstract: - Highlights: • Test Blanket Systems (TBS) DEMO breeding blankets (BB) safety demonstration. • Comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena. • Development of accident analysis specifications (AAS) via the use of phenomena identification and ranking tables (PIRT). • PIRT application to identify required physical models for BB accidents analysis, code assessment and selection. • Development of MELCOR and RELAP5 codes TBS models. • Qualification of the models via comparison with finite element calculations, code-tocode comparisons, and sensitivity studies. - Abstract: ‘Fusion for Energy’ (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena while remaining consistent with the approach already applied to ITER accident analyses. The methodology phases are illustrated in the paper by its application to the EU HCPB TBS using both MELCOR and RELAP5 codes.

  10. Methodology for accident analyses of fusion breeder blankets and its application to helium-cooled pebble bed blanket

    Panayotov, Dobromir, E-mail: dobromir.panayotov@f4e.europa.eu [Fusion for Energy (F4E), Josep Pla, 2, Torres Diagonal Litoral B3, Barcelona E-08019 (Spain); Grief, Andrew [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom); Merrill, Brad J.; Humrickhouse, Paul [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID (United States); Trow, Martin; Dillistone, Michael; Murgatroyd, Julian T.; Owen, Simon [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom); Poitevin, Yves [Fusion for Energy (F4E), Josep Pla, 2, Torres Diagonal Litoral B3, Barcelona E-08019 (Spain); Peers, Karen; Lyons, Alex; Heaton, Adam; Scott, Richard [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom)

    2016-11-01

    Graphical abstract: - Highlights: • Test Blanket Systems (TBS) DEMO breeding blankets (BB) safety demonstration. • Comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena. • Development of accident analysis specifications (AAS) via the use of phenomena identification and ranking tables (PIRT). • PIRT application to identify required physical models for BB accidents analysis, code assessment and selection. • Development of MELCOR and RELAP5 codes TBS models. • Qualification of the models via comparison with finite element calculations, code-tocode comparisons, and sensitivity studies. - Abstract: ‘Fusion for Energy’ (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena while remaining consistent with the approach already applied to ITER accident analyses. The methodology phases are illustrated in the paper by its application to the EU HCPB TBS using both MELCOR and RELAP5 codes.

  11. Considerations on techniques for improving tritium confinement in helium-cooled ceramic breeder blankets

    Fuetterer, M.A.; Raepsaet, X.; Proust, E.; Leger, D.

    1994-01-01

    Tritium control issues such as the development of permeation barriers and the choice of the coolant and purge-gas chemistry are of crucial importance for solid breeder blankets. In order to quantify these problems for the helium-cooled ceramic breeder-inside-tube (BIT) blanket concept, the tritium leakage into the coolant was evaluated and the consequent tritium losses into the steam circuit were determined. The results indicate that under certain specified conditions the total tritium release from the coolant can be limited to approximately 10 Ci/d, but only on the assumption that experimental data for tritium permeation barriers can be attained under realistic operating conditions. An experimental study on the impact of the gas chemistry on tritium losses is proposed. (author) 8 refs.; 2 figs

  12. Design and analysis of breeding blanket with helium cooled solid breeder for ITER-TBM

    Yuan Tao; Feng Kaiming; Chen Zhi; Wang Xiaoyu

    2007-01-01

    Test blanket module (TBM) is one of important components in ITER. Some of related blanket technologies of future fusion, such as tritium self-sufficiency, the exaction of high-grade heat, design criteria and safety requirements and environmental impacts, will be demonstrated in ITER-TBM. In ITER device, the three equatorial ports have allocated for TBM testing. China had proposed to develop independently the ITER-TBM with helium cooled solid breeder in 12th meeting of test blanket workgroup (TBWG-12). In this work, the preliminary design and analysis for Chinese HCSB TBM will be carried out. The TBM must be contains the function of the first wall, breeding blanket, shield and structure. Finally, in the period of preliminary investigation, HCSB TBM design adopt modularization concept which is helium as coolant and tritium purge gas, ferritic/martensitic steel as structural material, Lithium orthosilicate (Li 4 SiO 4 ) as tritium breeder, beryllium pebble as neutron multiplier. TBM is allocated in standard vertical frame port. HCSB TBM consist of first wall, backplate, breeding sub-modules, caps, grid and support plate, and breeding sub-modules is arranged by layout of 2 x 6 in blanket box. In this paper, main components of HCSB TBM will be described in detail, also performance analysis of main components have been completed. (authors)

  13. Conceptual design of two helium cooled fusion blankets (ceramic and liquid breeder) for INTOR

    Dalle Donne, M.; Dorner, S.; Taczanowski, S.

    1983-08-01

    Neutronic and heat transfer calculations have been performed for two helium cooled blankets for the INTOR design. The neutronic calculations show that the local tritium breeding ratios, both for the ceramic blanket (Li 2 SiO 3 ) and for the liquid blanket (Li 17 Pb 83 ) solutions, are 1.34 for natural tritium and about 1.45 using 30% Li 6 enrichment. The heat transfer calculations show that it is possible to cool the divertor section of the torus (heat flux = 1.7 MW/m 2 ) with helium with an inlet pressure of 52 bar and an inlet temperature of 40 0 C. The temperature of the back face of the divertor can be kept at 130 0 C. With helium with the same inlet conditions it is possible to cool the first wall as well (heat flux = 0.136 MW/m 2 ) and keep the back-face of this wall at a temperature of 120 0 C. For the ceramic blanket we use helium with 52 bar inlet pressure and 400 0 C inlet temperature to ensure sufficiently high temperatures in the breeder material. The maximum temperature in the pressure tubes containing the blanket is 450 0 C, while the maximum breeder particle temperature is 476 0 C. (orig./RW) [de

  14. Conceptual design of the blanket mechanical attachment for the helium-cooled lithium-lead reactor

    Barrera, G.; Branas, B.; Lucas, J.; Doncel, J.; Medrano, M.; Garcia, A.; Giancarli, L.; Ibarra, A.; Li Puma, A.; Maisonnier, D.; Sardain, P.

    2008-01-01

    The conceptual design of a new type of fusion reactor based on the helium-cooled lithium-lead (HCLL) blanket has been performed within the European Power Plant Conceptual Studies. As part of this activity, a new attachment system suitable for the HCLL blanket modules had to be developed. This attachment is composed of two parts. The first one is the connection between module and the first part of a shield, called high temperature shield, which operates at a temperature around 500 deg. C, close to that of the blanket module. This connection must be made at the lateral walls, in order to avoid openings through the first wall and breeding zone thus avoiding complex design and fabrication issues of the module. The second connection is the one between the high temperature shield and a second shield called low temperature shield, which has a temperature during reactor operation around 150 deg. C. The design of this connection is complex because it must allow the large differential thermal expansion (up to 30 mm) between the two components. Design proposals for both connections are presented, together with the results of finite element mechanical analyses which demonstrate the feasibility to support the blanket and shield modules during normal and accidental operation conditions

  15. Activation analysis and waste management of China ITER helium cooled solid breeder test blanket module

    Han, J.R., E-mail: hanjingru@163.co [North China Electric Power University, School of Nuclear Science and Engineering, Zhu-Xin-Zhuang, De-Wai, Beijing 102206 (China); Chen, Y.X.; Han, R. [North China Electric Power University, School of Nuclear Science and Engineering, Zhu-Xin-Zhuang, De-Wai, Beijing 102206 (China); Feng, K.M. [Southwestern Institute of Physics, P.O.Box 432, Chengdu 610041 (China); Forrest, R.A. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom)

    2010-08-15

    Activation characteristics have been assessed for the ITER China helium cooled solid breeder (CH-HCSB) 3 x 6 test blanket module (TBM). Taking a representative irradiation scenario, the activation calculations were performed by FISPACT code. Neutron fluxes distributions in the TBM were provided by a preceding MCNP calculation. These fluxes were passed to FISPACT for the activation calculation. The main activation parameters of the HCSB-TBM were calculated and discussed, such as activity, afterheat and contact dose rate. Meanwhile, the dominant radioactivity nuclides and reaction channel pathways have been identified. According to the Safety and Environmental Assessment of Fusion Power (SEAFP) waste management strategy, the activated materials can be re-used following the remote handling recycling options. The results will provide useful indications for further optimization design and waste management of the TBM.

  16. Thermal-hydraulic investigations on the CEA-ENEA DEMO relevant helium cooled poloidal blanket

    Dell'Orco, G.; Polazzi, G.; Vallette, F.; Proust, E.; Eid, M.

    1994-01-01

    The CEA-ENEA design of an Helium Cooled Solid Breeder Blanket (HCSBB) for the DEMO reactor, with a breeder in tube (BIT) poloidal arrangement, is based on the use of lithium ceramic pellets, the ENEA γ-LiAlO 2 or the CEA Li 2 ZrO 3 . Due to the geometry of the DEMO reactor plasma chamber, these breeder bundles are adapted to the Vacuum Vessel with a strong poloidal curvature. This curvature influences the thermal-hydraulic behaviour of the coolant flowing inside the bundle. The paper presents the CEA-ENEA first results of the experimental and theoretical programme, aiming at optimizing the breeder module thermal hydraulic design. (author) 6 refs.; 7 figs.; 1 tab

  17. Manufacturing aspects in the design of the breeder unit for Helium Cooled Pebble Bed blankets

    Rey, J.; Ihli, T.; Filsinger, D.; Polixa, C.

    2007-01-01

    The breeding blanket programme has been in the focus of European fusion research for more than a decade. Recently, it has been driven by the EU Power Plant Conceptual Study (PPCS), investigating the potential of fusion energy in a future economic environment. On the way to the first commercial nuclear fusion reactor (DEMO) new studies for reactor in-vessel components have been initiated. One central focus is the design and manufacturing of the blankets that have to ensure the breeding process to maintain the fuel cycle and are also responsible for the extraction of the main part of the reactor heat for power generation. Two kinds are established: One is the Helium Cooled Pebble Bed (HCPB) and the other the Helium Cooled Liquid Lead (HCLL) blanket. Both designs employ three different cooling plate assemblies. The outer, cooled U-shaped shell, namely the First Wall (FW), with two caps builds the blanket box. The structural strength of the blanket box is realized by integrating Stiffening Grids (SG) that separate the equally spaced Breeder Unit (BU) and allow the box, in case of faulted conditions, to withstand an internal pressure of 8 MPa. The cooled SG constitute the side walls of the BU and are also cooled. The BU consists of a dedicated Cooling Plate (CP) assembly. In present studies about the fabrication of Cooling Plates two kinds of diffusion welding processes are focused on. One is based on a Hot Isostatic Gas Process (HIP). The second is a uni-axial Diffusion Welding Process (DWP). In both cases the bond between the two halves of the cooling plate structure is reached by controlled pressure and heat cycles. Approaching larger, realistic scaled components the uncertainty of ensuring uniform process parameters across the bonding zone increases the risk of defect sources and, therefore, makes it difficult to guarantee the required bonding penetration. This study presents an alternative manufacturing strategy. The premises for this strategy are the reduction of

  18. Status on DEMO Helium Cooled Lithium Lead breeding blanket thermo-mechanical analyses

    Aubert, J., E-mail: julien.aubert@cea.fr [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Aiello, G.; Jaboulay, J.-C. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Kiss, B. [Institute of Nuclear Techniques, Budapest University of Technology and Economics, Budapest (Hungary); Morin, A. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France)

    2016-11-01

    Highlights: • CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. The DEMO HCLL breeding blanket design capitalizes on the experience acquired on the HCLL Test Blanket Module designed for ITER. Design improvements are being implemented to adapt the design to DEMO specifications and performance objectives. • Thermal and mechanical analyses have been carried out in order to justify the design of the HCLL breeding blanket showing promising results for tie rods modules’ attachments system and relatively good behavior of the box in case of LOCA when comparing to RCC-MRx criteria. • CFD thermal analyses on generic breeding unit have enabled the consolidation of the results obtained with previous FEM design analyses. - Abstract: The EUROfusion Consortium develops a design of a fusion power demonstrator (DEMO) in the framework of the European “Horizon 2020” innovation and research program. One of the key components in the fusion reactor is the breeding blanket surrounding the plasma, ensuring tritium self-sufficiency, heat removal for conversion into electricity, and neutron shielding. The Helium Cooled Lithium Lead (HCLL) blanket is one of the concepts which is investigated for DEMO. It is made of a Eurofer structure and uses the eutectic liquid lithium–lead as tritium breeder and neutron multiplier, and helium gas as coolant. Within the EUROfusion organization, CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. This paper presents the status of the thermal and mechanical analyses carried out on the HCLL breeding blanket in order to justify the design. CFD thermal analyses on generic breeding unit including stiffening plates and cooling plates have been performed with ANSYS in order to consolidate results obtained with previous FEM design analyses. Moreover in order to expand the justification of the HCLL Breeding blanket design, the most loaded area of

  19. Preliminary electromagnetic analysis of Helium Cooled Solid Blanket for CFETR by MAXWELL

    Jin, Cheng; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-11-15

    Highlights: • A FEM model of the blanket and magnetic system was built. • Electromagnetic forces and moments of the typical blanket for ferromagnetic and non-ferromagnetic materials were computed and analyzed. • Maxwell forces and Lorentz forces were computed and compared. • Eddy current in the blanket was analyzed under MD condition. - Abstract: A Helium Cooled Solid Blanket (HCSB) for CFETR (Chinese Fusion Engineering Test Reactor) was designed by USTC. The structural and thermal-hydraulic analysis has been carried out, while electromagnetic analysis was not carefully researched. In this paper, a FEM (finite element method) model of the HCSB was developed and electromagnetic forces as well as moments was computed by a FEM software called MAXWELL integrated in ANSYS Workbench. In the geometrical model, flow channels and small connecting parts were neglected because of the extreme complication and the reasonable conservative assumption by neglecting these circumstantial details. As for electromagnetic (EM) analysis, Lorentz forces due to eddy currents caused by main disruption and Maxwell forces due to the magnetization of RAFM steel (i.e. EUROFER97) were computed. Since the unavailability of the details of the plasma in CFETR, when disruptions happen, the condition where a linear current quench of main disruption occurs was assumed. The maximum magnitude of the electromagnetic forces was 356.45 kN and the maximum value of the coupled electromagnetic moments was 1899.40 N m around the radial direction. It is feasible to couple electromagnetic analysis, structural analysis and thermal-hydraulic analysis in the future since MAXWELL has good channels to exchange data between different analytic parts.

  20. Preliminary Analysis on Decay Heat Removal Capability of Helium Cooled Solid Breeder Test Blanket Module

    Ahn, Mu Young; Cho, Seung Yon; Kim, Duck Hoi; Lee, Eun Seok; Kim, Hyung Seok; Suh, Jae Seung; Yun, Sung Hwan; Cho, Nam Zin

    2007-01-01

    One of the main ITER goals is to test and validate design concepts of tritium breeding blankets relevant to DEMO or fusion power plants. Korea Helium-Cooled Solid Breeder (HCSB) Test Blanket Module (TBM) has been developed with overall objectives of achieving this goal. The TBM employs high pressure helium to cool down the First Wall (FW), Side Wall (SW) and Breeding Zone (BZ). Therefore, safety consideration is a part of the design process. Each ITER Party performing the TBM program is requested to reach a similar level of confidence in the TBM safety analysis. To meet ITER's request, Failure Mode and Effects Analysis (FMEA) studies have been performed on the TBM to identify the Postulated Initial Event (PIE). Although FMEA on the KO TBM has not been completed, in-vessel, in-box and ex-vessel Loss Of Coolant Accident (LOCA) are considered as enveloping cases of PIE in general. In this paper, accidental analyses for the three selected LOCA were performed to investigate the decay heat removal capability of the TBM. To simulate transient thermo-hydraulic behavior of the TBM for the selected scenarios, RELAP5/MOD3.2 code was used

  1. Electromagnetic analysis of the Korean helium cooled ceramic reflector test blanket module set

    Lee, Youngmin; Ku, Duck Young; Lee, Dong Won; Ahn, Mu-Young; Park, Yi-Hyun; Cho, Seungyon

    2016-01-01

    Korean helium cooled ceramic reflector (HCCR) test blanket module set (TBM-set) will be installed at equatorial port #18 of Vacuum Vessel in ITER in order to test the breeding blanket performance for forthcoming fusion power plant. Since ITER tokamak has a set of electromagnetic coils (Central Solenoid, Poloidal Field and Toroidal Field coil set) around Vacuum Vessel, the HCCR TBM-set, the TBM and associated shield, is greatly influenced by magnetic field generated by these coils. In the case of fast transient electromagnetic events such as major disruption, vertical displacement event or magnet fast discharge, magnetic field and induced eddy current results in huge electromagnetic load, known as Lorentz load, on the HCCR TBM-set. In addition, the TBM-set experiences electromagnetic load due to magnetization of the structural material not only during the fast transient events but also during normal operation since the HCCR TBM adopts Reduced Activation Ferritic Martensitic (RAFM) steel as a structural material. This is known as Maxwell load which includes Lorentz load as well as load due to magnetization of structure material. This paper presents electromagnetic analysis results for the HCCR TBM-set. For analysis, a 20° sector finite model was constructed considering ITER configuration such as Vacuum Vessel, ITER shield blankets, Central Solenoid, Poloidal Field, Toroidal Field coil set as well as the HCCR TBM-set. Three major disruptions (operational event, likely event and highly unlikely event) were selected for analysis based on the load specifications. ANSYS-EMAG was used as a calculation tool. The results of EM analysis will be used as input data for the structural analysis.

  2. Electromagnetic analysis of the Korean helium cooled ceramic reflector test blanket module set

    Lee, Youngmin, E-mail: ymlee@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Ku, Duck Young [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young; Park, Yi-Hyun; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Korean helium cooled ceramic reflector (HCCR) test blanket module set (TBM-set) will be installed at equatorial port #18 of Vacuum Vessel in ITER in order to test the breeding blanket performance for forthcoming fusion power plant. Since ITER tokamak has a set of electromagnetic coils (Central Solenoid, Poloidal Field and Toroidal Field coil set) around Vacuum Vessel, the HCCR TBM-set, the TBM and associated shield, is greatly influenced by magnetic field generated by these coils. In the case of fast transient electromagnetic events such as major disruption, vertical displacement event or magnet fast discharge, magnetic field and induced eddy current results in huge electromagnetic load, known as Lorentz load, on the HCCR TBM-set. In addition, the TBM-set experiences electromagnetic load due to magnetization of the structural material not only during the fast transient events but also during normal operation since the HCCR TBM adopts Reduced Activation Ferritic Martensitic (RAFM) steel as a structural material. This is known as Maxwell load which includes Lorentz load as well as load due to magnetization of structure material. This paper presents electromagnetic analysis results for the HCCR TBM-set. For analysis, a 20° sector finite model was constructed considering ITER configuration such as Vacuum Vessel, ITER shield blankets, Central Solenoid, Poloidal Field, Toroidal Field coil set as well as the HCCR TBM-set. Three major disruptions (operational event, likely event and highly unlikely event) were selected for analysis based on the load specifications. ANSYS-EMAG was used as a calculation tool. The results of EM analysis will be used as input data for the structural analysis.

  3. A robust helium-cooled shield/blanket design for ITER

    Wong, C.P.C.; Bourque, R.F.; Baxi, C.B.

    1993-11-01

    General Atomics Fusion and Reactor Groups have completed a helium-cooled, conceptual shield/blanket design for ITER. The configuration selected is a pressurized tubes design embedded in radially oriented plates. This plate can be made from ferritic steel or from V-alloy. Helium leakage to the plasma chamber is eliminated by conservative, redundant design and proper quality control and inspection programs. High helium pressure at 18 MPa is used to reduce pressure drop and enhance heat transfer. This high gas pressure is believed practical when confined in small diameter tubes. Ample industrial experience exists for safe high gas pressure operations. Inboard shield design is highlighted in this study since the allowable void fraction is more limited. Lithium is used as the thermal contacting medium and for tritium breeding, its safety concerns are minimized by a modular, low inventory design that requires no circulation of the liquid metal for the purpose of heat removal. This design is robust, conservative, reliable, and meets all design goals and requirements. It can also be built with present-day technology

  4. Activation analysis of Chinese ITER helium cooled solid breeder test blanket module

    Han Jingru; Chen Yixue; Ma Xubo; Wang Shouhai; Forrest, R.A.

    2009-01-01

    Based on the Chinese ITER helium cooled solid breeder(CH-HCSB) test blanket module (TBM) of the 3 x 6 sub-modules options, the activation characteristics of the TBM were calculated. Three-dimensional neutronic calculations were performed using the Monte-Carlo code MCNP and the nuclear data library FENDL/2. Furthermore, the activation calculations of HCSB-TBM were carried out with the European activation system EASY-2007. At shutdown the total activity is 1.29 x 10 16 Bq, and the total afterheat is 2.46 kW. They are both dominated by the Eurofer steel. The activity and afterheat are both in the safe range of TBM design, and will not have a great impact on the environment. Meanwhile,on basis of the calculated contact dose rate, the activated materials can be re-used following the remote handling recycling options. The activation results demonstrate that the current HCSB-TBM design can satisfy the ITER safety design requirements from the activation point of view. (authors)

  5. Helium-cooled pebble bed test blanket module alternative design and fabrication routes

    Lux, M.

    2007-01-01

    According to first results of the recently started European DEMO study, a new blanket integration philosophy was developed applying so-called multi-module segments. These consist of a number of blanket modules flexibly mounted onto a common vertical manifold structure that can be used for replacing all modules in one segment at one time through vertical remote-handling ports. This principle gives new freedom in the design choices applied to the blanket modules itself. Based on the alternative design options considered for DEMO also the ITER test blanket module was newly analyzed. As a result of these activities it was decided to keep the major principles of the reference design like stiffening grid, breeder unit concept and perpendicular arrangement of pebble beds related to the First Wall because of the very positive results of thermo-mechanical and neutronics studies. The present paper gives an overview on possible further design optimization and alternative fabrication routes. One of the most significant improvements in terms of the hydraulic performance of the Helium cooled reactor can be reached with a new First Wall concept. That concept is based on an internal heat transfer enhancement technique and allows drastically reducing the flow velocity in the FW cooling channels. Small ribs perpendicular to the flow direction (transverse-rib roughness) are arranged on the inner surface of the First Wall cooling channels at the plasma side. In the breeder units cooling plates which are mostly parallel but bent into U-shape at the plasma-side are considered. In this design all flow channels are parallel and straight with the flow entering on one side of the parallel plate sections and exiting on the other side. The ceramic pebble beds are embedded between two pairs of such type of cooling plates. Different modifications could possibly be combined, whereby the most relevant discussed in this paper are (i) rib-cooled First Wall channels, (ii) U-bent cooling plates for

  6. A helium-cooled blanket design of the low aspect ratio reactor

    Wong, C.P.; Baxi, C.B.; Reis, E.E.; Cerbone, R.; Cheng, E.T.

    1998-03-01

    An aggressive low aspect ratio scoping fusion reactor design indicated that a 2 GW(e) reactor can have a major radius as small as 2.9 m resulting in a device with competitive cost of electricity at 49 mill/kWh. One of the technology requirements of this design is a high performance high power density first wall and blanket system. A 15 MPa helium-cooled, V-alloy and stagnant LiPb breeder first wall and blanket design was utilized. Due to the low solubility of tritium in LiPb, there is the concern of tritium migration and the formation of V-hydride. To address these issues, a lithium breeder system with high solubility of tritium has been evaluated. Due to the reduction of blanket energy multiplication to 1.2, to maintain a plant Q of > 4, the major radius of the reactor has to be increased to 3.05 m. The inlet helium coolant temperature is raised to 436 C in order to meet the minimum V-alloy temperature limit everywhere in the first wall and blanket system. To enhance the first wall heat transfer, a swirl tape coolant channel design is used. The corresponding increase in friction factor is also taken into consideration. To reduce the coolant system pressure drop, the helium pressure is increased from 15 to 18 MPa. Thermal structural analysis is performed for a simple tube design. With an inside tube diameter of 1 cm and a wall thickness of 1.5 mm, the lithium breeder can remove an average heat flux and neutron wall loading of 2 and 8 MW/m(2), respectively. This reference design can meet all the temperature and material structural design limits, as well as the coolant velocity limits. Maintaining an outlet coolant temperature of 650 C, one can expect a gross closed cycle gas turbine thermal efficiency of 45%. This study further supports the use of helium coolant for high power density reactor design. When used with the low aspect ratio reactor concept a competitive fusion reactor can be projected at 51.9 mill/kWh

  7. Engineering structure design and fabrication process of small sized China helium-cooled solid breeder test blanket module

    Wang Zeming; Chen Lu; Hu Gang

    2014-01-01

    Preliminary design and analysis for china helium-cooled solid breeder (CHHC-SB) test blanket module (TBM) have been carried out recently. As partial verification that the original size module was reasonable and the development process was feasible, fabrication work of a small sized module was to be carried out targetedly. In this paper, detailed design and structure analysis of small sized TBM was carried out based on preliminary design work, fabrication process and integrated assembly process was proposed, so a fabrication for the trial engineering of TBM was layed successfully. (authors)

  8. Sensisivity and Uncertainty analysis for the Tritium Breeding Ratio of a DEMO Fusion reactor with a Helium cooled pebble bed blanket

    Nunnenmann, Elena; Fischer, Ulrich; Stieglitz, Robert

    2016-01-01

    An uncertainty analysis was performed for the tritium breeding ratio (TBR) of a fusion power plant of the European DEMO type using the MCSEN patch to the MCNP Monte Carlo code. The breeding blanket was of the type Helium Cooled Pebble Bed (HCPB), currently under development in the European Power Plant Physics and Technology (PPPT) programme for a fusion power demonstration reactor (DEMO). A suitable 3D model of the DEMO reactor with HCPB blanket modules, as routinely used for blanket design c...

  9. European Helium Cooled Pebble Bed (HCPB) test blanket. ITER design description document. Status 1.12.1996

    Albrecht, H.; Boccaccini, L.V.; Dalle Donne, M.; Fischer, U.; Gordeev, S.; Hutter, E.; Kleefeldt, K.; Norajitra, P.; Reimann, G.; Ruatto, P.; Schleisiek, K.; Schnauder, H.

    1997-04-01

    The Helium Cooled Pebble Bed (HCPB) blanket is based on the use of separate small lithium orthosilicate and beryllium pebble beds placed between radial toroidal cooling plates. The cooling is provided by helium at 8 MPa. The tritium produced in the pebble beds is purged by the flow of helium at 0.1 MPa. The structural material is martensitic steel. It is foreseen, after an extended R and D work, to test in ITER a blanket module based on the HCPB design, which is one of the two European proposals for the ITER Test Blanket Programme. To facilitate the handling operation the Blanket Test Module (BTM) is bolted to a surrounding water cooled frame fixed to the ITER shield blanket back plate. For the design of the test module, three-dimensional Monte Carlo neutronic calculations and thermohydraulic and stress analyses for the operation during the Basic Performance Phase (BPP) and during the Extended Performance Phase (EPP) of ITER have been performed. The behaviour of the test module during LOCA and LOFA has been investigated. Conceptual designs of the required ancillary loops have been performed. The present report is the updated version of the Design Description Document (DDD) for the HCPB Test Module. It has been written in accordance with a scheme given by the ITER Joint Central Team (JCT) and accounts for the comments made by the JCT to the previous version of this report. This work has been performed in the framework of the Nuclear Fusion Project of the Forschungszentrum Karlsruhne and it is supported by the European Union within the European Fusion Technology Program. (orig.) [de

  10. RF DEMO ceramic helium cooled blanket, coolant and energy transformation systems

    Kovalenko, V.; Leshukov, A.; Poliksha, V.; Popov, A.; Strebkov, Yu.; Borisov, A.; Shatalov, G.; Demidov, V.; Kapyshev, V.

    2004-01-01

    RF DEMO-S reactor is a prototype of commercial fusion reactors for further generation. A blanket is the main element unit of the reactor design. The segment structure is the basis of the ceramic blanket. The segments mounting/dismounting operations are carried out through the vacuum vessel vertical port. The inboard/outboard blanket segment is the modules welded design, which are welded by back plate. The module contains the back plate, the first wall, lateral walls and breeding zone. The 9CrMoVNb steel is used as structural material. The module internal space formed by the first wall, lateral walls and back plate is used for breeding zone arrangement. The breeding zone design based upon the poloidal BIT (Breeder Inside Tube) concept. The beryllium is used as multiplier material and the lithium orthosilicate is used as breeder material. The helium at 0.1 MPa is used as purge gas. The cooling is provided by helium at 10 MPa. The coolant supply/return to the blanket modules are carrying out on the two independent circuits. The performed investigations of possible transformation schemes of DEMO-S blanket heat power into the electricity allowed to make a conclusion about the preferable using of traditional steam-turbine facility in the secondary circuit. (author)

  11. Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR

    Cui, Shijie; Zhang, Dalin; Cheng, Jie; Tian, Wenxi; Su, G.H.

    2017-01-01

    As one of the candidate tritium breeding blankets for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of the helium cooled solid breeder blanket has recently been proposed. The neutronic, thermal-hydraulic and mechanical characteristics of the blanket directly affect its tritium breeding and safety performance. Therefore, neutronic/thermal-hydraulic/mechanical coupling analyses are of vital importance for a reliable blanket design. In this work, first, three-dimensional neutronics analysis and optimization of the typical outboard equatorial blanket module (No. 12) were performed for the comprehensive optimal scheme. Then, thermal and fluid dynamic analyses of the scheme under both normal and critical conditions were performed and coupled with the previous neutronic calculation results. With thermal-hydraulic boundaries, thermo-mechanical analyses of the structure materials under normal, critical and blanket over-pressurization conditions were carried out. In addition, several parametric sensitivity studies were also conducted to investigate the influences of the main parameters on the blanket temperature distributions. In this paper, the coupled analyses verify the reasonability of the optimized conceptual design preliminarily and can provide an important reference for the further analysis and optimization design of the CFETR helium cooled solid breeder blanket.

  12. Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR

    Cui, Shijie; Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn; Cheng, Jie; Tian, Wenxi; Su, G.H.

    2017-01-15

    As one of the candidate tritium breeding blankets for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of the helium cooled solid breeder blanket has recently been proposed. The neutronic, thermal-hydraulic and mechanical characteristics of the blanket directly affect its tritium breeding and safety performance. Therefore, neutronic/thermal-hydraulic/mechanical coupling analyses are of vital importance for a reliable blanket design. In this work, first, three-dimensional neutronics analysis and optimization of the typical outboard equatorial blanket module (No. 12) were performed for the comprehensive optimal scheme. Then, thermal and fluid dynamic analyses of the scheme under both normal and critical conditions were performed and coupled with the previous neutronic calculation results. With thermal-hydraulic boundaries, thermo-mechanical analyses of the structure materials under normal, critical and blanket over-pressurization conditions were carried out. In addition, several parametric sensitivity studies were also conducted to investigate the influences of the main parameters on the blanket temperature distributions. In this paper, the coupled analyses verify the reasonability of the optimized conceptual design preliminarily and can provide an important reference for the further analysis and optimization design of the CFETR helium cooled solid breeder blanket.

  13. Reduction of circulation power for helium-cooled fusion reactor blanket using additive CO{sub 2} gas

    Lee, Yeon-Gun [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Department of Nuclear and Energy Engineering, Jeju National University, 102 Jejudaehakno, Jeju-si 690-756, Jeju (Korea, Republic of); Park, Il-Woong [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Lee, Dong Won [Nuclear Fusion Engineering Development Center, Korea Atomic Energy Research Institute, Daedeokdaero 989 beon-gil, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Kim, Eung-Soo, E-mail: kes7741@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2015-11-15

    Helium (He) cooling requires large circulation power to remove high heat from plasma side and nuclear heating by high energy neutron in fusion reactors due to its low density. Based on the recent findings that the heat transfer capability of the light gas can be enhanced by mixing another heavier gas, this study adds CO{sub 2} to a reference helium coolant and evaluates the cooling performance of the binary mixture for various compositions. To assess the cooling performance, computational fluid dynamic (CFD) analyses on the KO HCML (Korea Helium Cooled Molten Lithium) TBM are conducted. As a result, it is revealed that the binary mixing of helium, which has favorable thermophysical properties but the density, with a heavier noble gas or an unreactive gas significantly reduces the required circulation power by an order of magnitude with meeting the thermal design requirements. This is attributed to the fact that the density can be highly increased with small amount of a heavier gas while other gas properties are kept relatively comparable. The optimal CO{sub 2} mole fraction is estimated to be 0.4 and the circulation power, in this case, can be reduced to 13% of that of pure helium. This implies that the thermal efficiency of a He-cooled blanket system can be fairly enhanced by means of the proposed binary mixing.

  14. Preliminary accident analysis of Loss of Off-Site Power and In-Box LOCA for the CFETR helium cooled solid breeder blanket

    Lian, Qiang; Cui, Shijie [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Tian, Wenxi, E-mail: wxtian@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Zhang, Jing; Zhang, Dalin; Su, G.H. [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China)

    2017-05-15

    Highlights: • The CFETR HCSB blanket has been investigated using RELAP5. • Loss of Off-Site Power is investigated. • The parametric analyses during In-Box LOCA are investigated. • The HCSB blanket for CFETR is designed with sufficient decay heat removal capability. - Abstract: As one of three candidate tritium breeding blanket concepts for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of helium cooled solid breeder (HCSB) blanket was recently proposed. In this paper, the preliminary thermal-hydraulic and safety analyses of the typical outboard equatorial blanket module (No.12) have been carried out using RELAP5/Mod3.4 code. Two design basis accidents are investigated based on the steady-state initialization, including Loss of Off-Site Power and In-Box Loss of Coolant Accident (LOCA). The differences between circulator coast down and circulator rotor locked under Loss of Off-Site Power are compared. Regarding the In-Box LOCA, the influences of different break sizes and locations are thoroughly analyzed based on a relatively accurate modeling method of the heat structures in sub-modules. The analysis results show that the blanket and the combined helium cooling system (HCS) are designed with sufficient decay heat removal capability for both accidents, which can preliminarily verify the feasibility of the conceptual design. The research work can also provide an important reference for parameter optimization of the blanket and its HCS in the next stage.

  15. Assessment of tritiated activities in the radwaste generated from ITER Chinese helium cooled ceramic breeding test blanket module system

    Chen, Chang An, E-mail: chenchangan@caep.cn; Liu, Lingbo; Wang, Bo; Xiang, Xin; Yao, Yong; Song, Jiangfeng

    2016-11-15

    Highlights: • Approaches were developed for calculation/evaluation of tritium activities in the materials and components of a TBM system, with tritium permeation being considered for the first time. • Almost all tritiated materials and components were considered in CNHCCB TBM system including the TBM set, connection pipes, and the ancillary tritium handling systems. • Tritium activity data in HCCB TBM system were updated. Some of which in directly tritium contacted components are to be 2 or 4 magnitudes higher than the original neutron transmutation calculations. • The radwaste amount from both operation and decommission of HCCB TBM system was evaluated. - Abstract: Chinese Helium Cooled Ceramic Breeding Test blanket Module (CNHCCB TBM) will be tested in the ITER machine for the feasibility of in pile tritium production for a future magnetic confinement fusion reactor. The tritium inventories/retentions in the material/components were evaluated and updated mainly based on the tritium diffusion/permeation theory and the analysis of some reported data. Tritiated activities rank from less than 10 Bq g{sup −1} to 10{sup 9} Bq g{sup −1} for the different materials or components, which are generally higher than those from the previous neutron transmutation calculation. The amounts of tritiated radwaste were also estimated according to the operation, decommission, maintenance and replacement strategies, which vary from several tens of kilograms to tons in the different operation phases. The data can be used both for the tritium radiological safety evaluation and radwaste management of CNHCCB TBM set and its ancillary systems.

  16. Thermohydraulics design and thermomechanics analysis of two European breeder blanket concepts for DEMO. Pt. 1 and Pt. 2. Pt. 1: BOT helium cooled solid breeding blanket. Pt. 2: Dual coolant self-cooled liquid metal blanket

    Norajitra, P.

    1995-06-01

    Two different breeding blanket concepts are being elaborated at Forschungszentrum Karlsruhe within the framework of the DEMO breeding blanket development, the concept of a helium cooled solid breeding blanket and the concept of a self-cooled liquid metal blanket. The breeder material used in the first concept is Li 4 SiO 4 as a pebble bed arranged separate from the beryllium pebble bed, which serves as multiplier. The breeder material zone is cooled by several toroidally-radially configurated helium cooling plates which, at the same time, act as reinforcements of the blanket structures. In the liquid metal blanket concept lead-lithium is used both as the breeder material and the coolant. It flows at low velocity in poloidal direction downwards and back in the blanket front zone. In both concepts the First Wall is cooled by helium gas. This report deals with the thermohydraulics design and thermomechanics analysis of the two blanket concepts. The performance data derived from the Monte-Carlo computations serve as a basis for the design calculations. The coolant inlet and outlet temperatures are chosen with the design criteria and the economics aspects taken into account. Uniform temperature distribution in the blanket structures can be achieved by suitable branching and routing of the coolant flows which contributes to reducing decisively the thermal stress. The computations were made using the ABAQUS computer code. The results obtained of the stresses have been evaluated using the ASME code. It can be demonstrated that all maximum values of temperature and stress are below the admissible limit. (orig.) [de

  17. Numerical Analysis for Heat transfer characteristic of Helium cooling system in Helium cooled ceramic reflector Test Module Blanket (HCCR-TBM)

    Park, Seong Dae; Lee, Dong Won; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Kim, Suk Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The main objectives of ITER project can be summarized into three types as follows - Plasma operation for a long time - Large tokamak device technology - Test blanket module (TBM) installation and verification The thermal-hydraulic analysis was performed in the He cooling channel in the BZ region of the HCCR TBM. The maximum temperature in the breeder material is equal to the limit temperature in the present design cooling channel. Nuclear fusion energy has advantage in terms of safety, resource availability, cost and waste management. There is not enough experimental results about the fusion reactor due to the severe experiments restrictions like vacuum environment, plasma production and significant nuclear heating at the same time. Much research and time is required for the commercial fusion reactor. For technical verification against the commercialization of fusion reactor, 7 countries which are EU, USA, Japan, Russia, China, India, and South Korea are building an ITER in the south of France. New designed cooling channels were proposed to improve the cooling performance. The swirl flow accelerates the mixture flow in the channels.

  18. Experimental investigations of flow distribution in coolant system of Helium-Cooled-Pebble-Bed Test Blanket Module

    Ilić, M.; Schlindwein, G., E-mail: georg.schlindwein@kit.edu; Meyder, R.; Kuhn, T.; Albrecht, O.; Zinn, K.

    2016-02-15

    Highlights: • Experimental investigations of flow distribution in HCPB TBM are presented. • Flow rates in channels close to the first wall are lower than nominal ones. • Flow distribution in central chambers of manifold 2 is close to the nominal one. • Flow distribution in the whole manifold 3 agrees well with the nominal one. - Abstract: This paper deals with investigations of flow distribution in the coolant system of the Helium-Cooled-Pebble-Bed Test Blanket Module (HCPB TBM) for ITER. The investigations have been performed by manufacturing and testing of an experimental facility named GRICAMAN. The facility involves the upper poloidal half of HCPB TBM bounded at outlets of the first wall channels, at outlet of by-pass pipe and at outlets of cooling channels in breeding units. In this way, the focus is placed on the flow distribution in two mid manifolds of the 4-manifold system: (i) manifold 2 to which outlets of the first wall channels and inlet of by-pass pipe are attached and (ii) manifold 3 which supplies channels in breeding units with helium coolant. These two manifolds are connected with cooling channels in vertical/horizontal grids and caps. The experimental facility has been built keeping the internal structure of manifold 2 and manifold 3 exactly as designed in HCPB TBM. The cooling channels in stiffening grids, caps and breeding units are substituted by so-called equivalent channels which provide the same hydraulic resistance and inlet/outlet conditions, but have significantly simpler geometry than the real channels. Using the conditions of flow similarity, the air pressurized at 0.3 MPa and at ambient temperature has been used as working fluid instead of HCPB TBM helium coolant at 8 MPa and an average temperature of 370 °C. The flow distribution has been determined by flow rate measurements at each of 28 equivalent channels, while the pressure distribution has been obtained measuring differential pressure at more than 250 positions. The

  19. Status report. KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Pt. 2: BOT helium cooled solid breeder blanket. Vol. 2

    Dalle Donne, M.; Boccaccini, L.V.; Bojarsky, E.; Deckers, H.; Dienst, W.; Doerr, L.; Fischer, U.; Giese, H.; Guenther, E.; Haefner, H.E.; Hofmann, P.; Kappler, F.; Knitter, R.; Kuechle, M.; Moellendorf, U. von; Norajitra, P.; Penzhorn, R.D.; Reimann, G.; Reiser, H.; Schulz, B.; Schumacher, G.; Schwenk-Ferrero, A.; Sordon, G.; Tsukiyama, T.; Wedemeyer, H.; Weimar, P.; Werle, H.; Wiegner, E.; Zimmermann, H.

    1991-10-01

    The BOT (Breeder Outside Tube) Helium Cooled Solid Breeder Blanket for a fusion Demo reactor and the status of the R and D program is presented. This is the KfK contribution to the European Program for the Demo relevant test blankets to be irradiated in NET/ITER. Volume 1 (KfK 4928) contains the summary, volume 2 (KfK 4929) a more detailed version of the report. In both volumes are described the reasons for the selected design, the reference blanket design for the Demo reactor, the design of the test blanket including the ancillary systems together with the present status of the relative R and D program in the fields of neutronic and thermohydraulic calculations, of the electromagnetic forces caused by disruptions, of the development and irradiation of the ceramic breeder material, of the tritium release and recovery, and of the technological investigations. An outlook is given on the required R and D program for the BOT Helium Cooled Solid Breeder Blanket prior to tests in NET/ITER and the proposed test program in NET/ITER. (orig.) [de

  20. Status report. KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Pt. 2: BOT helium cooled solid breeder blanket. Vol. 1

    Dalle Donne, M.; Boccaccini, L.V.; Bojarsky, E.; Deckers, H.; Dienst, W.; Doerr, L.; Fischer, U.; Giese, H.; Guenther, E.; Haefner, H.E.; Hofmann, P.; Kappler, F.; Knitter, R.; Kuechle, M.; Moellendorf, U. von; Norajitra, P.; Penzhorn, R.D.; Reimann, G.; Reiser, H.; Schulz, B.; Schumacher, G.; Schwenk-Ferrero, A.; Sordon, G.; Tsukiyama, T.; Wedemeyer, H.; Weimar, P.; Werle, H.; Wiegner, E.; Zimmermann, H.

    1991-10-01

    The BOT (Breeder Outside Tube) Helium Cooled Breeder Blanket for a fusion Demo reactor and the status of the R and D program is presented. This is the KfK contribution to the European Program for the Demo relevant test plankets to be irradiated in NET/ITER. Volume 1 (KfK 4928) contains the summary, volume 2 (KfK 4929) a more detailed version of the report. In both volumes are described the reasons for the selected design, the reference blanket design for the Demo reactor, the design of test blanket including the ancillary systems together with the present status of the relative R and D program in the fields of neutronic and thermohydraulic calculations, of the electromagnetic forces caused by disruptions, of the development and irradiation of the ceramic breeder material, of the tritium release and recovery, and of the technological investigations. An outlook is given on the required R and D program for the BOT Helium Cooled Solid Breeder Blanket prior to tests in NET/ITER and the proposed test program in NET/ITER. (orig.) [de

  1. Thermal analysis of a helium-cooled, tube-bank blanket module for a tandem mirror fusion reactor

    Werner, R.W.

    1983-01-01

    A blanket module concept for the central cell of a tandem mirror reactor is described which takes advantage of the excellent heat transfer and low pressure drop characteristics of tube banks in cross-flow. The blanket employs solid Li 2 O as the tritium breeding material and helium as the coolant. The lithium oxide is contained in tubes arranged within the submodules as a two-pass, cross-flow heat exchanger. Primarily, the heat transfer and thermal-hydraulic aspects of the blanket design study are described in this paper. In particular, the analytical model used for selection of the best tube-bank design parameters is discussed in some detail

  2. Thermal analysis of a helium-cooled, tube-bank blanket module for a tandem-mirror fusion reactor

    Werner, R.W.; Hoffman, M.A.; Johnson, G.L.

    1983-01-01

    A blanket module concept for the central cell of a tandem mirror reactor is described which takes advantage of the excellent heat transfer and low pressure drop characteristics of tube banks in cross-flow. The blanket employs solid Li 2 O as the tritium breeding material and helium as the coolant. The lithium oxide is contained in tubes arranged within the submodules as a two-pass, cross-flow heat exchanger. Primarily, the heat transfer and thermal-hydraulic aspects of the blanket design study are described in this paper. In particular, the analytical model used for selection of the best tube-bank design parameters is discussed in some detail

  3. Sensitivity and uncertainty analysis for the tritium breeding ratio of a DEMO fusion reactor with a helium cooled pebble bed blanket

    Nunnenmann Elena

    2017-01-01

    Full Text Available An uncertainty analysis was performed for the tritium breeding ratio (TBR of a fusion power plant of the European DEMO type using the MCSEN patch to the MCNP Monte Carlo code. The breeding blanket was of the type Helium Cooled Pebble Bed (HCPB, currently under development in the European Power Plant Physics and Technology (PPPT programme for a fusion power demonstration reactor (DEMO. A suitable 3D model of the DEMO reactor with HCPB blanket modules, as routinely used for blanket design calculations, was employed. The nuclear cross-section data were taken from the JEFF-3.2 data library. For the uncertainty analysis, the isotopes H-1, Li-6, Li-7, Be-9, O-16, Si-28, Si-29, Si-30, Cr-52, Fe-54, Fe-56, Ni-58, W-182, W-183, W-184 and W-186 were considered. The covariance data were taken from JEFF-3.2 where available. Otherwise a combination of FENDL-2.1 for Li-7, EFF-3 for Be-9 and JENDL-3.2 for O-16 were compared with data from TENDL-2014. Another comparison was performed with covariance data from JEFF-3.3T1. The analyses show an overall uncertainty of ± 3.2% for the TBR when using JEFF-3.2 covariance data with the mentioned additions. When using TENDL-2014 covariance data as replacement, the uncertainty increases to ± 8.6%. For JEFF-3.3T1 the uncertainty result is ± 5.6%. The uncertainty is dominated by O-16, Li-6 and Li-7 cross-sections.

  4. Helium cooling of fusion reactors

    Wong, C.P.C.; Baxi, C.; Bourque, R.; Dahms, C.; Inamati, S.; Ryder, R.; Sager, G.; Schleicher, R.

    1994-01-01

    On the basis of worldwide design experience and in coordination with the evolution of the International Thermonuclear Experimental Reactor (ITER) program, the application of helium as a coolant for fusion appears to be at the verge of a transition from conceptual design to engineering development. This paper presents a review of the use of helium as the coolant for fusion reactor blanket and divertor designs. The concept of a high-pressure helium cooling radial plate design was studied for both ITER and PULSAR. These designs can resolve many engineering issues, and can help with reaching the goals of low activation and high performance designs. The combination of helium cooling, advanced low-activation materials, and gas turbine technology may permit high thermal efficiency and reduced costs, resulting in the environmental advantages and competitive economics required to make fusion a 21st century power source. ((orig.))

  5. System code assessment with thermal-hydraulic experiment to develop helium cooled breeding blanket for nuclear fusion reactor

    Yum, S. B.; Park, I. W.; Park, G. C.; Lee, D. W.

    2012-01-01

    By considering the requirements for a DEMO-relevant blanket concept, Korea (KO) has proposed a He Cooled Molten Lithium (HCML) Test Blanket Module (TBM) for testing in the International Thermonuclear Experimental Reactor (ITER). A performance analysis for the thermal-hydraulics and a safety analysis for an accident caused by a loss of coolant for the KO TBM have been carried out using a commercial CFD code, ANSYS-CFX, and a system code, GAMMA (GAs Multicomponent Mixture Analysis), which was developed by the Gas Cooled Reactor in Korea. To verify the codes, a preliminary study was performed by Lee using a single TBM First Wall (FW) mock-up made from the same material as tho KO TBM, ferritic martensitic steel, using a 6 MPa nitrogen gas loop. The test was performed at pressures of 11, 19, and 29 bar, and under various ranges of flow rate from 0.63 to 2.44kg/min with a constant wall temperature condition. In the present study, a thermal-hydraulic test was performed with the newly constructed helium supplying system, In which the design pressure and temperature were 9 MPa and 500 .deg. C, respectively. In the experiment, the same mock-up was used, and the test was performed under the conditions of 8 MPa pressure, 0.2 kg/s flow rate, which are almost same conditions of the KO TBM FW. One-side of the mock-up was heated with a constant heat flux of 0.5 MW/m 2 using a graphite heating system, KoHLT-2 (Korea Heat Load Test Facility-2). The wall temperatures were measured using installed thermocouples, and they show a strong parity with the code results simulated under the same test conditions

  6. Supercritical CO2 Brayton power cycles for DEMO fusion reactor based on Helium Cooled Lithium Lead blanket

    Linares, José Ignacio; Herranz, Luis Enrique; Fernández, Iván; Cantizano, Alexis; Moratilla, Beatriz Yolanda

    2015-01-01

    Fusion energy is one of the most promising solutions to the world energy supply. This paper presents an exploratory analysis of the suitability of supercritical CO 2 Brayton power cycles (S-CO 2 ) for low-temperature divertor fusion reactors cooled by helium (as defined by EFDA). Integration of three thermal sources (i.e., blanket, divertor and vacuum vessel) has been studied through proposing and analyzing a number of alternative layouts, achieving an improvement on power production higher than 5% over the baseline case, which entails to a gross efficiency (before self-consumptions) higher than 42%. In spite of this achievement, the assessment of power consumption for the circulating heat transfer fluids results in a penalty of 20% in the electricity production. Once the most suitable layout has been selected an optimization process has been conducted to adjust the key parameters to balance performance and size, achieving an electrical efficiency (electricity without taking into account auxiliary consumptions due to operation of the fusion reactor) higher than 33% and a reduction in overall size of heat exchangers of 1/3. Some relevant conclusions can be drawn from the present work: the potential of S-CO 2 cycles as suitable converters of thermal energy to power in fusion reactors; the significance of a suitable integration of thermal sources to maximize power output; the high penalty of pumping power; and the convenience of identifying the key components of the layout as a way to optimize the whole cycle performance. - Highlights: • Supercritical CO 2 Brayton cycles have been proposed for BoP of HCLL fusion reactor. • Low temperature sources have been successfully integrated with high temperature ones. • Optimization of thermal sources integration improves 5% the electricity production. • Assessment of pumping power with sources and sink loops results on 20% of gross power. • Matching of key parameters has conducted to 1/3 of reduction in heat

  7. Neutronic performance of two European breeder-inside-tube (BIT) blankets for DEMO: the helium-cooled ceramic LiAlO2 with Be multiplier and the water-cooled liquid Li17Pb

    Petrizzi, L.; Rado, V.

    1995-01-01

    In support of ENEA activity in the European Community Test Programme, neutron analysis has been performed on the two latest blanket designs: helium-cooled ceramic breeder-inside-tube (BIT) (with LiAlO 2 and Be multiplier) and water-cooled liquid Li 17 Pb in cylindrical modules (CM). The powerful MCNP Monte Carlo code was used (version 4.2). A detailed and accurate description of the geometrical model has been performed by inserting the main reactor details and avoiding breeder material dilution inside the modules. The tritium breeding ratio (TBR) performance is low for the solid breeder BIT blanket (with 10 ports 1.011) due mainly to low blanket coverage near the exhaust duct, and this solution should be revised. The CM Li 17 Pb blanket reaches a sufficient TBR (1.059, with ports) to rely on tritium self-sufficiency. Shielding properties, with respect to the toroidal field coils, have been estimated in a simplified model by means of the ANISN code, supplied with a nuclear data library consistent with that used by MCNP. The analysis suggests that a careful shield thickness/composition design should be used to ensure the shielding capability of the whole blanket plus shield system. (orig.)

  8. Safety and environmental impact of the BOT helium cooled solid breeder blanket for DEMO. SEAL subtask 6.2, final report

    Kleefeldt, K.; Dammel, F.; Gabel, K.

    1996-03-01

    The European Union has been engaged since 1989 in a programme to develop tritium breeding blankets for application in a fusion power reactor. There are four concepts under development, namely two of the solid breeder type and two of the liquid breeder type. At the Forschungszentrum Karlsruhe one blanket concept of each line has been pursued so far with the so-called breeder outside tube (BOT) type representing the solid breeder line. In the BOT concept, Li 4 SiO 4 is used as ceramic breeding material in the form of pebble beds in combination with beryllium pebbles serving as neutron multiplier. Breeder and multiplier materials are arranged in radial-toroidal layers, separated by cooling plates. The coolant is high pressure helium which is circulated in series, at first through the first wall structure and subsequently through the cooling plates. The safety and environmental impact of the BOT blanket concept has been assessed as part of the blanket concept selection exercise, a European concerted action aiming at selecting the two most promising concepts for further development. The topics investigated are: (a) Blanket materials and toxic materials inventory, (b) energy sources for mobilisation, (c) fault tolerance, (d) tritium and activation product release, and (e) waste generation. No insurmountable safety problems have been identified for the BOT concept. The results of the assessment are described in this report. The information collected is also intended to serve as input to the EU 'Safety and Environmental Assessment of Fusion long-term Programme' (SEAL). The unresolved issues pertaining to the BOT blanket which need further investigations in future programmes are outlined herein. (orig.) [de

  9. LOFA analyses for the water and helium cooled SEAFP reactors

    Sponton, L.; Sjoeberg, A.; Nordlinder, S.

    2001-01-01

    This study was performed in the frame of the European long-term fusion safety programme 1999 (SEAFP99). Loss of flow accidents (LOFA) have been studied for two cases, first for a helium cooled reactor with advanced dual-coolant (DUAL) blanket at 100% nominal power. The second case applies to a water-cooled reactor at 20% nominal power. Both transients were simulated with the code MELCOR 1.8.4. The results for the helium cooled reactor show that with a natural circulation flow of helium after the pump stops, the first wall temperature will stay below the temperature for excepted failure of the construction material. For the water cooled reactor, the results show that the pressurizer set point for its liquid volumetric inventory is reached before the plasma facing components attain a critical temperature. The pressurizer set point will induce a plasma shutdown

  10. Helium-cooled nuclear reactor

    Longton, P.B.; Cowen, H.C.

    1975-01-01

    In helium cooled HTR's there is a by-pass circuit for cleaning purposes in addition to the main cooling circuit. This is to remove such impurities as hydrogen, methane, carbon monoxide and water from the coolant. In this system, part of the coolant successively flows first through an oxidation bed of copper oxide and an absorption bed of silica gel, then through activated charcoal or a molecular sieve. The hydrogen and carbon monoxide impurities are absorbed and the dry gas is returned to the main cooling circuit. To lower the hydrogen/water ratio without increasing the hydrogen fraction in the main cooling circuit, some of the hydrogen fraction converted into water is added to the cooling circuit. This is done, inter alia, by bypassing the water produced in the oxidation bed before it enters the absorption bed. The rest of the by-pass circuit, however, also includes an absorption bed with a molecular sieve. This absorbs the oxidized carbon monoxide fraction. In this way, such side effects as the formation of additional methane, carburization of the materials of the by-pass circuit or loss of graphite are avoided. (DG/RF) [de

  11. Status of helium-cooled nuclear power systems. [Development potential

    Melese-d' Hospital, G.; Simnad, M

    1977-09-01

    Helium-cooled nuclear power systems offer a great potential for electricity generation when their long-term economic, environmental, conservation and energy self-sufficiency features are examined. The high-temperature gas-cooled reactor (HTGR) has the unique capability of providing high-temperature steam for electric power and process heat uses and/or high-temperature heat for endothermic chemical reactions. A variation of the standard steam cycle HTGR is one in which the helium coolant flows directly from the core to one or more closed cycle gas turbines. The effective use of nuclear fuel resources for electric power and nuclear process heat will be greatly enhanced by the gas-cooled fast breeder reactor (GCFR) currently being developed. A GCFR using thorium in the radial blanket could generate sufficient U-233 to supply the fuel for three HTGRs, or enough plutonium from a depleted uranium blanket to fuel a breeder economy expanding at about 10% per year. The feasibility of utilizing helium to cool a fusion reactor is also discussed. The status of helium-cooled nuclear energy systems is summarized as a basis for assessing their prospects. 50 references.

  12. Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows

    He, Qingyun; Feng, Jingchao; Chen, Hongli

    2016-01-01

    Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.

  13. Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows

    He, Qingyun; Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-02-15

    Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.

  14. Evaluation of helium cooling for fusion divertors

    Baxi, C.B.

    1993-09-01

    The divertors of future fusion reactors will have a power throughput of several hundred MW. The peak heat flux on the diverter surface is estimated to be 5 to 15 MW/m 2 at an average heat flux of 2 MW/m 2 . The divertors have a requirement of both minimum temperature (100 degrees C) and maximum temperature. The minimum temperature is dictated by the requirement to reduce the absorption of plasma, and the maximum temperature is determined by the thermo-mechanical properties of the plasma facing materials. Coolants that have been considered for fusion reactors are water, liquid metals and helium. Helium cooling has been shown to be very attractive from safety and other considerations. Helium is chemically and neutronically inert and is suitable for power conversion. The challenges associated with helium cooling are: (1) Manifold sizes; (2) Pumping power; and (3) Leak prevention. In this paper the first two of the above design issues are addressed. A variety of heat transfer enhancement techniques are considered to demonstrate that the manifold sizes and the pumping power can be reduced to acceptable levels. A helium-cooled diverter module was designed and fabricated by GA for steady-state heat flux of 10 MW/m 2 . This module was recently tested at Sandia National Laboratories. At an inlet pressure of 4 MPa, the module was tested at a steady-state heat flux of 10 MW/m 2 . The pumping power required was less than 1% of the power removed. These results verified the design prediction

  15. Manufacturing and joining technologies for helium cooled divertors

    Aktaa, J.; Basuki, W.W.; Weber, T.; Norajitra, P.; Krauss, W.; Konys, J.

    2014-01-01

    Highlights: • The manufacturing and joining technologies developed at KIT for helium cooled divertors are reviewed and critically discussed. • Various technologies have been pursued and further developed aiming divertor components with very high quality and sufficient reliability. • Very promising routes have been found for which however still R and D works are necessary. • Technologies developed are also useful for other divertor and even blanket concepts, particularly those with tungsten armor. - Abstract: In the helium cooled (HC) divertor, developed at KIT for a fusion power plant, tungsten has been selected as armor as well as structural material due to its crucial properties: high melting point, very low sputtering yield, good thermal conductivity, high temperature strength, low thermal expansion and low activation. Thereby the armor tungsten is attached to the structural tungsten by thermally conductive joint. Due to the brittleness of tungsten at low temperatures its use as structural material is limited to the high temperature part of the component and a structural joint to the reduced activation ferritic martensitic steel EUROFER97 is foreseen. Hence, to realize the selected hybrid material concept reliable tungsten–steel and tungsten–tungsten joints have been developed and will be reported in this paper. In addition, the modular design of the HC divertor requires tungsten armor tiles and tungsten structural thimbles to be manufactured in high numbers with very high quality. Due to the high strength and low temperature brittleness of tungsten special manufacturing techniques need to be developed for the production of parts with no cavities inside and/or surface flaws. The main achievement in developing the respective manufacturing technologies will be presented and discussed. To achieve the objectives mentioned above various manufacturing and joining technologies are pursued. Their later applicability depends on the level of development

  16. Blanket comparison and selection study. Volume II

    1983-10-01

    This volume contains extensive data for the following chapters: (1) solid breeder tritium recovery, (2) solid breeder blanket designs, (3) alternate blanket concept screening, and (4) safety analysis. The following appendices are also included: (1) blanket design guidelines, (2) power conversion systems, (3) helium-cooled, vanadium alloy structure blanket design, (4) high wall loading study, and (5) molten salt safety studies

  17. Options for a high heat flux enabled helium cooled first wall for DEMO

    Arbeiter, Frederik, E-mail: f.arbe@kit.edu; Chen, Yuming; Ghidersa, Bradut-Eugen; Klein, Christine; Neuberger, Heiko; Ruck, Sebastian; Schlindwein, Georg; Schwab, Florian; Weth, Axel von der

    2017-06-15

    Highlights: • Design challenges for helium cooled first wall reviewed and otimization approaches explored. • Application of enhanced heat transfer surfaces to the First Wall cooling channels. • Demonstrated a design point for 1 MW/m{sup 2} with temperatures <550 °C and acceptable stresses. • Feasibility of several manufacturing processes for ribbed surfaces is shown. - Abstract: Helium is considered as coolant in the plasma facing first wall of several blanket concepts for DEMO fusion reactors, due to the favorable properties of flexible temperature range, chemical inertness, no activation, comparatively low effort to remove tritium from the gas and no chemical corrosion. Existing blanket designs have shown the ability to use helium cooled first walls with heat flux densities of 0.5 MW/m{sup 2}. Average steady state heat loads coming from the plasma for current EU DEMO concepts are expected in the range of 0.3 MW/m{sup 2}. The definition of peak values is still ongoing and depends on the chosen first wall shape, magnetic configuration and assumptions on the fraction of radiated power and power fall off lengths in the scrape off layer of the plasma. Peak steady state values could reach and excess 1 MW/m{sup 2}. Higher short-term transient loads are expected. Design optimization approaches including heat transfer enhancement, local heat transfer tuning and shape optimization of the channel cross section are discussed. Design points to enable a helium cooled first wall capable to sustain heat flux densities of 1 MW/m{sup 2} at an average shell temperature lower than 500 °C are developed based on experimentally validated heat transfer coefficients of structured channel surfaces. The required pumping power is in the range of 3–5% of the collected thermal power. The FEM stress analyses show code-acceptable stress intensities. Several manufacturing methods enabling the application of the suggested heat transfer enhanced first wall channels are explored. An

  18. Electromagnetic analysis on Korean Helium Cooled Ceramic Reflector (HCCR) TBM during plasma major disruption

    Lee, Youngmin; Ku, Duck Young; Ahn, Mu-Young; Cho, Seungyon; Park, Yi-Hyun; Lee, Dong Won

    2015-01-01

    Korean Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) will be installed at the #18 equatorial port of the Vaccum Vessel in order to test the feasibility of the breeding blanket performance for forthcoming fusion power plant in the ITER TBM Program. Since ITER tokamak contains Vaccum Vessel and set of electromagnetic coils, the TBM as well as other components is greatly influenced by magnetic field generated by these coils. By the electromagnetic (EM) fast transient events such as major disruption (MD), vertical displacement event (VDE) or magnet fast discharge (MFD) occurred in tokamak system, the eddy current can be induced eventually in the conducting components. As a result, the magnetic field and induced eddy current produce extremely huge EM load (force and moment) on the TBM. Therefore, EM load calculation is one of the most important analyses for optimized design of TBM. In this study, a 20-degree sector model for tokamak system including central solenoid (CS) coil, poloidal field (PF) coil, toroidal field (TF) coil, vaccum vessel, shield blankets and TBM set (TBM, TBM key, TBM shield, TBM frame) is prepared for analysis by ANSYS-EMAG tool. Concerning the installation location of the TBM, a major disruption scenario is particularly applied for fast transient analysis. The final goal of this study is to evaluate the EM load on HCCR TBM during plasma major disruption.

  19. Electromagnetic analysis on Korean Helium Cooled Ceramic Reflector (HCCR) TBM during plasma major disruption

    Lee, Youngmin, E-mail: ymlee@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Ku, Duck Young; Ahn, Mu-Young; Cho, Seungyon; Park, Yi-Hyun [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Korean Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) will be installed at the #18 equatorial port of the Vaccum Vessel in order to test the feasibility of the breeding blanket performance for forthcoming fusion power plant in the ITER TBM Program. Since ITER tokamak contains Vaccum Vessel and set of electromagnetic coils, the TBM as well as other components is greatly influenced by magnetic field generated by these coils. By the electromagnetic (EM) fast transient events such as major disruption (MD), vertical displacement event (VDE) or magnet fast discharge (MFD) occurred in tokamak system, the eddy current can be induced eventually in the conducting components. As a result, the magnetic field and induced eddy current produce extremely huge EM load (force and moment) on the TBM. Therefore, EM load calculation is one of the most important analyses for optimized design of TBM. In this study, a 20-degree sector model for tokamak system including central solenoid (CS) coil, poloidal field (PF) coil, toroidal field (TF) coil, vaccum vessel, shield blankets and TBM set (TBM, TBM key, TBM shield, TBM frame) is prepared for analysis by ANSYS-EMAG tool. Concerning the installation location of the TBM, a major disruption scenario is particularly applied for fast transient analysis. The final goal of this study is to evaluate the EM load on HCCR TBM during plasma major disruption.

  20. Radiolytic reactions in the coolant of helium cooled reactors

    Tingey, G.L.; Morgan, W.C.

    1975-01-01

    The success of helium cooled reactors is dependent upon the ability to prevent significant reaction between the coolant and the other components in the reactor primary circuit. Since the thermal reaction of graphite with oxidizing gases is rapid at temperatures of interest, the thermal reactions are limited primarily by the concentration of impurity gases in the helium coolant. On the other hand, the rates of radiolytic reactions in helium are shown to be independent of reactive gas concentration until that concentration reaches a very low level. Calculated steady-state concentrations of reactive species in the reactor coolant and core burnoff rates are presented for current U. S. designed, helium cooled reactors. Since precise base data are not currently available for radiolytic rates of some reactions and thermal reaction rate data are often variable, the accuracy of the predicted gas composition is being compared with the actual gas compositions measured during startup tests of the Fort Saint Vrain high temperature gas-cooled reactor. The current status of these confirmatory tests is discussed. 12 references

  1. Overview of the TFTB lithium blanket module program

    Jassby, D.L.

    1986-01-01

    The Lithium Blanket Module (LBM) is an ∼ 80-cm 3 module, representative of a helium-cooled lithium oxide fusion reactor blanket module. This paper summarizes the design, development, and construction of the LBM, and indicates the present status of the LBM program

  2. Dual coolant blanket concept

    Malang, S.; Schleisiek, K.

    1994-11-01

    A self-cooled liquid metal breeder blanket with helium-cooled first wall ('Dual Coolant Blanket Concept') for a fusion DEMO reactor is described. This is one of the four blanket concepts under development in the frame of the European fusion technology program with the aim to select in 1995 the two most promising ones for further development. Described are the design of the blankets including the ancillary loop system and the results of the theoretical and experimental work in the fields of neutronics, magnetohydrodynamics, thermohydraulics, mechanical stresses, compatibility and purification of lead-lithium, tritium control, safety, reliability, and electrically insulating coatings. The remaining open questions and the required R and D programme are identified. (orig.) [de

  3. High temperature helium-cooled fast reactor (HTHFR)

    Karam, R.A.; Blaylock, Dwayne; Burgett, Eric; Mostafa Ghiaasiaan, S.; Hertel, Nolan

    2006-01-01

    Scoping calculations have been performed for a very high temperature (1000 o C) helium-cooled fast reactor involving two distinct options: (1) using graphite foam into which UC (12% enrichment) is embedded into a matrix comprising UC and graphite foam molded into hexagonal building blocks and encapsulated with a SiC shell covering all surfaces, and (2) using UC only (also 12% enrichment) molded into the same shape and size as the foam-UC matrix in option 1. Both options use the same basic hexagonal fuel matrix blocks to form the core and reflector. The reflector contains natural uranium only. Both options use 50 μm SiC as a containment shell for fission product retention within each hexagonal block. The calculations show that the option using foam (option 1) would produce a reactor that can operate continuously for at least 25 years without ever adding or removing any fuel from the reactor. The calculations show further that the UC only option (option 2) can operate continually for 50 years without ever adding or removing fuel from the reactor. Doppler and loss of coolant reactivity coefficients were calculated. The Doppler coefficient is negative and much larger than the loss of coolant coefficient, which was very small and positive. Additional progress on and development of the two concepts are continuing

  4. Liquid helium-cooled MOSFET preamplifier for use with astronomical bolometer

    Goebel, J. H.

    1977-01-01

    A liquid helium-cooled p-channel enhancement mode MOSFET, the 3N167, is found to have sufficiently low noise for use as a preamplifier with helium-cooled bolometers that are used in infrared astronomy. Its characteristics at 300, 77, and 4.2 K are presented. It is also shown to have useful application with certain photoconductive and photovoltaic infrared detectors.

  5. Neutronic performance optimization study of Indian fusion demo reactor first wall and breeding blanket

    Swami, H.L.; Danani, C.

    2015-01-01

    In frame of design studies of Indian Nuclear Fusion DEMO Reactor, neutronic performance optimization of first wall and breeding blanket are carried out. The study mainly focuses on tritium breeding ratio (TBR) and power density responses estimation of breeding blanket. Apart from neutronic efficiency of existing breeding blanket concepts for Indian DEMO i.e. lead lithium ceramic breeder and helium cooled solid breeder concept other concepts like helium cooled lead lithium and helium-cooled Li_8PbO_6 with reflector are also explored. The aim of study is to establish a neutronically efficient breeding blanket concept for DEMO. Effect of first wall materials and thickness on breeding blanket neutronic performance is also evaluated. For this study 1 D cylindrical neutronic model of DEMO has been constructed according to the preliminary radial build up of Indian DEMO. The assessment is being done using Monte Carlo based radiation transport code and nuclear cross section data file ENDF/B- VII. (author)

  6. Benchmark calculations for fusion blanket development

    Sawan, M.E.; Cheng, E.T.

    1985-01-01

    Benchmark problems representing the leading fusion blanket concepts are presented. Benchmark calculations for self-cooled Li/sub 17/Pb/sub 83/ and helium-cooled blankets were performed. Multigroup data libraries generated from ENDF/B-IV and V files using the NJOY and AMPX processing codes with different weighting functions were used. The sensitivity of the TBR to group structure and weighting spectrum increases and Li enrichment decrease with up to 20% discrepancies for thin natural Li/sub 17/Pb/sub 83/ blankets

  7. Benchmark calculations for fusion blanket development

    Sawan, M.L.; Cheng, E.T.

    1986-01-01

    Benchmark problems representing the leading fusion blanket concepts are presented. Benchmark calculations for self-cooled Li 17 Pb 83 and helium-cooled blankets were performed. Multigroup data libraries generated from ENDF/B-IV and V files using the NJOY and AMPX processing codes with different weighting functions were used. The sensitivity of the tritium breeding ratio to group structure and weighting spectrum increases as the thickness and Li enrichment decrease with up to 20% discrepancies for thin natural Li 17 Pb 83 blankets. (author)

  8. Preliminary analyses of neutronics schemes for three kinds waste transmutation blankets of fusion-fission hybrid

    Zhang Mingchun; Feng Kaiming; Li Zaixin; Zhao Fengchao

    2012-01-01

    The neutronics schemes of the helium-cooled waste transmutation blanket, sodium-cooled waste transmutation blanket and FLiBe-cooled waste transmutation blanket were preliminarily calculated and analysed by using the spheroidal tokamak (ST) plasma configuration. The neutronics properties of these blankets' were compared and analyzed. The results show that for the transmutation of "2"3"7Np, FLiBe-cooled waste transmutation blanket has the most superior transmutation performance. The calculation results of the helium-cooled waste transmutation blanket show that this transmutation blanket can run on a steady effective multiplication factor (k_e_f_f), steady power (P), and steady tritium production rate (TBR) state for a long operating time (9.62 years) by change "2"3"7Np's initial loading rate of the minor actinides (MA). (authors)

  9. Safety analysis on tokamak helium cooling slab fuel fusion-fission hybrid reactor

    Wei Renjie; Jian Hongbing

    1992-01-01

    The thermal analyses for steady state, depressurization and total loss of flow in the tokamak helium cooling slab fuel element fusion-fission hybrid reactor are presented. The design parameters, computed results of HYBRID program and safety evaluation for conception design are given. After all, it gives some recommendations for developing the design

  10. Composite beryllium-ceramics breeder pin elements for a gas cooled solid blanket

    Carre, F.; Chevreau, G.; Gervaise, F.; Proust, E.

    1986-06-01

    Helium coolant have main advantages compared to water for solid blankets. But limitations exist too and the development of attractive helium cooled blankets based on breeder pin assemblies has been essentially made possible by the derivation from recent CEA neutronic studies of an optimized composite beryllium/ceramics breeder arrangement. Description of the proposed toroidal blanket layout for Net is made together with the analysis of its main performance. Merits of the considered composite Be/ceramics breeder elements are discussed

  11. Economic evaluation of the Blanket Comparison and Selection Study

    Waganer, L.M.

    1985-01-01

    The economic impact of employing the highly ranked blankets in the Blanket Comparison and Selection Study (BCSS) was evaluated in the context of both a tokamak and a tandem mirror power reactor (TMR). The economic evaluation criterion was determined to be the cost of electricity. The influencing factors that were considered are the direct cost of the blankets and related systems; the annual cost of blanket replacement; and the performance of the blanket, heat transfer, and energy conversion systems. The technical and cost bases for comparison were those of the STARFIRE and Mirror Advanced Reactor Study conceptual design power plants. The economic evaluation results indicated that the nitrate-salt-cooled blanket concept is an economically attractive concept for either reactor type. The water-cooled, solid breeder blanket is attractive for the tokamak and somewhat less attractive for the TMR. The helium-cooled, liquidlithium breeder blanket is the least economically desirable of higher ranked concepts. The remaining self-cooled liquid-metal and the helium-cooled blanket concepts represent moderately attractive concepts from an economic standpoint. These results are not in concert with those found in the other BCSS evaluation areas (engineering feasibility, safety, and research and development (R and D) requirements). The blankets faring well economically had generally lower cost components, lower pumping power requirements, and good power production capability. On the other hand, helium- and lithium-cooled systems were preferred from the standpoints of safety, engineering feasibility, and R and D requirements

  12. Design of a power conversion system for an indirect cycle, helium cooled pebble bed reactor system

    Wang, C.; Ballinger, R.G.; Stahle, P.W.; Demetri, E.; Koronowski, M.

    2002-01-01

    A design is presented for the turbomachinery for an indirect cycle, closed, helium cooled modular pebble bed reactor system. The design makes use of current technology and will operate with an overall efficiency of 45%. The design uses an intermediate heat exchanger which isolated the reactor cycle from the turbomachinery. This design excludes radioactive fission products from the turbomachinery. This minimizes the probability of an air ingress accident and greatly simplifies maintenance. (author)

  13. Thermal safety analysis for pebble bed blanket fusion-fission hybrid reactor

    Wei Renjie

    1998-01-01

    Pebble bed blanket hybrid reactor may have more advantages than slab element blanket hybrid reactor in nuclear fuel production and nuclear safety. The thermo-hydraulic calculations of the blanket in the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor developed in China are carried out using the Code THERMIX and auxiliary code. In the calculations different fuel pebble material and steady state, depressurization and total loss of flow accident conditions are included. The results demonstrate that the conceptual design of the Tokamak helium cooling pebble bed blanket fusion-fission hybrid reactor with dump tank is feasible and safe enough only if the suitable fuel pebble material is selected and the suitable control system and protection system are established. Some recommendations for due conceptual design are also presented

  14. Blanket design study for a Commercial Tokamak Hybrid Reactor (CTHR)

    Chapin, D.L.; Green, L.; Lee, A.Y.; Culbert, M.E.; Kelly, J.L.

    1979-09-01

    The results are presented of a study on two blanket design concepts for application in a Commercial Tokamak Hybrid Reactor (CTHR). Both blankets operate on the U-Pu cycle and are designed to achieve tritium self-sufficiency while maximizing the fissile fuel production within thermal and mechanical design constraints. The two blanket concepts that were evaluated were: (1) a UC fueled, stainless steel clad and structure, helium cooled blanket; and (2) a UO 2 fueled, zircaloy clad, stainless steel structure, boiling water cooled blanket. Two different tritium breeding media, Li 2 O and LiH, were evaluated for use in both blanket concepts. The use of lead as a neutron multiplier or reflector and graphite as a reflector was also considered for both blankets

  15. Thermal Performance of a Dual-Channel, Helium-Cooled, Tungsten Heat Exchanger

    Youchison, Dennis L.; North, Mart T.

    2000-01-01

    Helium-cooled, refractory heat exchangers are now under consideration for first wall and divertor applications. These refractory devices take advantage of high temperature operation with large delta-Ts to effectively handle high heat fluxes. The high temperature helium can then be used in a gas turbine for high-efficiency power conversion. Over the last five years, heat removal with helium was shown to increase dramatically by using porous metal to provide a very large effective surface area for heat transfer in a small volume. Last year, the thermal performance of a bare-copper, dual-channel, helium-cooled, porous metal divertor mock-up was evaluated on the 30 kW Electron Beam Test System at Sandia National Laboratories. The module survived a maximum absorbed heat flux of 34.6 MW/m 2 and reached a maximum surface temperature of 593 C for uniform power loading of 3 kW absorbed on a 2-cm 2 area. An impressive 10 kW of power was absorbed on an area of 24 cm 2 . Recently, a similar dual-module, helium-cooled heat exchanger made almost entirely of tungsten was designed and fabricated by Thermacore, Inc. and tested at Sandia. A complete flow test of each channel was performed to determine the actual pressure drop characteristics. Each channel was equipped with delta-P transducers and platinum RTDs for independent calorimetry. One mass flow meter monitored the total flow to the heat exchanger, while a second monitored flow in only one of the channels. The thermal response of each tungsten module was obtained for heat fluxes in excess of 5 MW/m 2 using 50 C helium at 4 MPa. Fatigue cycles were also performed to assess the fracture toughness of the tungsten modules. A description of the module design and new results on flow instabilities are also presented

  16. Magnetoconvection in HCLL blankets

    Mistrangelo, C.; Buehler, L.

    2014-01-01

    In the present work we consider magneto-convective flows in one of the proposed European liquid metal blankets that will be tested in the experimental fusion reactor ITER. Here the PbLi alloy is used as breeder material and helium as coolant. In order to finalize the design of the helium cooled lead lithium (HCLL) blanket, studies are still required to fully understand the behavior of the electrically conducting breeder under the influence of the intense magnetic field that confines the fusion plasma and in case of non-uniform thermal conditions. Liquid metal HCLL blanket flows are expected to be mainly driven by buoyancy forces caused by non-isothermal operating conditions due to neutron volumetric heating and cooling of walls, since only a weak forced ow is foreseen for tritium extraction in external ancillary systems. Buoyancy can therefore become very important and modify the velocity distribution and related heat transfer performance of the blanket. The present numerical study aims at clarifying the influence of electromagnetic and thermal coupling of neighboring fluid domains on magneto-convective flows in geometries relevant for the HCLL blanket concept. According to the last design review two internal cooling plates subdivide the fluid domain into three slender flow regions, which are thermally and electrically coupled through common walls. First a uniform volumetric heat source is considered to identify the basic convective patterns that establish in the liquid metal. Results are then compared with those obtained by applying a realistic radial distribution of the power density as obtained from a neutronic analysis. Velocity and temperature distributions are discussed for various volumetric heat sources and magnetic field strengths.

  17. Preliminary Overview of a Helium Cooling System for the Secondary Helium Loop in VHTR-based SI Hydrogen Production Facilities

    Shin, Youngjoon; Cho, Mintaek; Kim, Dahee; Lee, Taehoon; Lee, Kiyoung; Kim, Yongwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Nuclear hydrogen production facilities consist of a very high temperature gas-cooled nuclear reactor (VHTR) system, intermediate heat exchanger (IHX) system, and a sulfur-iodine (SI) thermochemical process. This study focuses on the coupling system between the IHX system and SI thermochemical process. To prevent the propagation of the thermal disturbance owing to the abnormal operation of the SI process components from the IHX system to the VHTR system, a helium cooling system for the secondary helium of the IHX is required. In this paper, the helium cooling system has been studied. The temperature fluctuation of the secondary helium owing to the abnormal operation of the SI process was then calculated based on the proposed coupling system model. Finally, the preliminary conceptual design of the helium cooling system with a steam generator and forced-draft air-cooled heat exchanger to mitigate the thermal disturbance has been carried out. A conceptual flow diagram of a helium cooling system between the IHX and SI thermochemical processes in VHTR-based SI hydrogen production facilities has been proposed. A helium cooling system for the secondary helium of the IHX in this flow diagram prevents the propagation of the thermal disturbance from the IHX system to the VHTR system, owing to the abnormal operation of the SI process components. As a result of a dynamic simulation to anticipate the fluctuations of the secondary helium temperature owing to the abnormal operation of the SI process components with a hydrogen production rate of 60 mol·H{sub 2}/s, it is recommended that the maximum helium cooling capacity to recover the normal operation temperature of 450 .deg. C is 31,933.4 kJ/s. To satisfy this helium cooling capacity, a U-type steam generator, which has a heat transfer area of 12 m{sup 2}, and a forced-draft air-cooled condenser, which has a heat transfer area of 12,388.67 m{sup 2}, are required for the secondary helium cooling system.

  18. Design, fabrication, and testing of a helium-cooled module for the ITER divertor

    Baxi, C.B.; Smith, J.P.; Youchison, D.

    1994-08-01

    The International Thermonuclear Reactor (ITER) will have a single-null divertor with total power flow of 200 MW and a peak heat flux of about 5 MW/m 2 . The reference coolant for the divertor is water. However, helium is a viable alternative and offers advantages from safety considerations, such as excellent radiation stability and chemical inertness. In order to prove the feasibility of helium cooling at ITER relevant heat flux conditions, General Atomics designed, fabricated, and tested a helium-cooled divertor module. The module was made from dispersion strengthened copper, with a heat flux surface 25 mm wide and 80 mm long, designed for twice the ITER divertor heat flux. Different techniques were examined to enhance the heat transfer, which in turn reduced the flow and pumping power required to cool the module. It was concluded that an extended surface was the most practical solution. An optimization study was performed to find the best extended surface parameters. The optimum extended surface geometry consisted of fins: 10 mm high, 0.4 mm thick with a 1 mm pitch. It was estimated to require a pumping power of 150 W to remove 20 kW of power. This is more than an order of magnitude reduction in pumping power requirement, compared to smooth surface. The module was fabricated by electric discharge machining (EDM) process. The testing was carried out at SNLA during August 1993. The testing confirmed the design calculations. The peak heat flux during the test was 10 MW/m 2 applied over a surface area of 20 cm 2 . The pumping power calculated from flow rate and pressure drop measurement was about 160 W, which was less than 1% of the power removed. It is planned to test the module to higher temperature limits and higher heat fluxes during coming months. As a result of this effort we conclude that helium cooling of the ITER divertor is feasible without requiring a very large helium pressure or a large pumping power

  19. Numerical benchmark for the deep-burn modular helium-cooled reactor (DB-MHR)

    Taiwo, T. A.; Kim, T. K.; Buiron, L.; Varaine, F.

    2006-01-01

    Numerical benchmark problems for the deep-burn concept based on the prismatic modular helium-cooled reactor design (a Very High Temperature Reactor (VHTR)) are specified for joint analysis by U.S. national laboratories and industry and the French CEA. The results obtained with deterministic and Monte Carlo codes have been inter-compared and used to confirm the underlying feature of the DB-MHR concept (high transuranics consumption). The results are also used to evaluate the impact of differences in code methodologies and nuclear data files on the code predictions for DB-MHR core physics parameters. The code packages of the participating organizations (ANL and CEA) are found to give very similar results. (authors)

  20. Is cold better ? - exploring the feasibility of liquid-helium-cooled optics

    Assoufid, L.; Mills, D.; Macrander, A.; Tajiri, G.

    1999-01-01

    Both simulations and recent experiments conducted at the Advanced Photon Source showed that the performance of liquid-nitrogen-cooled single-silicon crystal monochromators can degrade in a very rapid nonlinear fashion as the power and for power density is increased. As a further step towards improving the performance of silicon optics, we propose cooling with liquid helium, which dramatically improves the thermal properties of silicon beyond that of liquid nitrogen and brings the performance of single silicon-crystal-based synchrotrons radiation optics up to the ultimate limit. The benefits of liquid helium cooling as well as some of the associated technical challenges will be discussed, and results of thermal and structural finite elements simulations comparing the performance of silicon monochromators cooled with liquid nitrogen and helium will be given

  1. Cryogenic thermometer calibration system using a helium cooling loop and a temperature controller [for LHC magnets

    Chanzy, E; Thermeau, J P; Bühler, S; Joly, C; Casas-Cubillos, J; Balle, C

    1998-01-01

    The IPN-Orsay and CERN are designing in close collaboration a fully automated cryogenic thermometer calibration facility which will calibrate in 3 years 10,000 cryogenic thermometers required for the Large Hadron Collider (LHC) operation. A reduced-scale model of the calibration facility has been developed, which enables the calibration of ten thermometers by comparison with two rhodium-iron standard thermometers in the 1.8 K to 300 K temperature range under vacuum conditions. The particular design, based on a helium cooling loop and an electrical temperature controller, gives good dynamic performances. This paper describes the experimental set-up and the data acquisition system. Results of experimental runs are also presented along with the estimated global accuracy for the calibration. (3 refs).

  2. Supercritical helium cooled, cabled, superconducting hollow conductors for large high field magnets

    Hoenig, M.O.; Iwasa, Y.; Montgomery, D.B.; Bejan, A.

    1976-01-01

    Within the last two years a new concept of cabled superconducting hollow conductors has been developed which are able to recover from transient instabilities by virtue of on-going, single-phase helium cooling. It has been possible to correlate small scale experimental results with an iterative computer program. The latter has been recently upgraded to include axial as well as radial heat transfer and predict more closely the chances of recovery. Nearly 1 g/s of supercritical helium has been circulated in a closed loop using a high speed centrifugal fan and up to 10 g/s using a reciprocating single pulse bellows pump. The loop is now being adapted to a 3 m length of a tightly wound 5000 A cabled hollow conductor equipped with pulse coils designed to fit inside a water cooled Bitter magnet. The combination will allow for a steady background field of 7.5 t with a 2 t superimposed pulse. (author)

  3. High-heat-flux testing of helium-cooled heat exchangers for fusion applications

    Youchison, D.L.; Izenson, M.G.; Baxi, C.B.; Rosenfeld, J.H.

    1996-01-01

    High-heat-flux experiments on three types of helium-cooled divertor mock-ups were performed on the 30-kW electron beam test system and its associated helium flow loop at Sandia National Laboratories. A dispersion-strengthened copper alloy (DSCu) was used in the manufacture of all the mock-ups. The first heat exchanger provides for enhanced heat transfer at relatively low flow rates and much reduced pumping requirements. The Creare sample was tested to a maximum absorbed heat flux of 5.8 MW/m 2 . The second used low pressure drops and high mass flow rates to achieve good heat removal. The GA specimen was tested to a maximum absorbed heat flux of 9 MW/m 2 while maintaining a surface temperature below 400 degree C. A second experiment resulted in a maximum absorbed heat flux of 34 MW/m 2 and surface temperatures near 533 degree C. The third specimen was a DSCu, axial flow, helium-cooled divertor mock-up filled with a porous metal wick which effectively increases the available heat transfer area. Low mass flow and high pressure drop operation at 4.0 MPa were characteristic of this divertor module. It survived a maximum absorbed heat flux of 16 MW/m 2 and reached a surface temperature of 740 degree C. Thermacore also manufactured a follow-on, dual channel porous metal-type heat exchanger, which survived a maximum absorbed heat flux of 14 MW/m 2 and reached a maximum surface temperature of 690 degree C. 11refs., 20 figs., 3 tabs

  4. The Design of High Reliability Magnetic Bearing Systems for Helium Cooled Reactor Machinery

    Swann, M.; Davies, N.; Jayawant, R.; Leung, R.; Shultz, R.; Gao, R.; Guo, Z.

    2014-01-01

    The requirements for magnetic bearing equipped machinery used in high temperature, helium cooled, graphite moderated reactor applications present a set of design considerations that are unlike most other applications of magnetic bearing technology in large industrial rotating equipment, for example as used in the oil and gas or other power generation applications. In particular, the bearings are typically immersed directly in the process gas in order to take advantage of the design simplicity that comes about from the elimination of ancillary lubrication and cooling systems for bearings and seals. Such duty means that the bearings will usually see high temperatures and pressures in service and will also typically be subject to graphite particulate and attendant radioactive contamination over time. In addition, unlike most industrial applications, seismic loading events become of paramount importance for the magnetic bearings system, both for actuators and controls. The auxiliary bearing design requirements, in particular, become especially demanding when one considers that the whole mechanical structure of the magnetic bearing system is located inside an inaccessible pressure vessel that should be rarely, if ever, disassembled over the service life of the power plant. Lastly, many machinery designs for gas cooled nuclear power plants utilize vertical orientation. This circumstance presents its own unique requirements for the machinery dynamics and bearing loads. Based on the authors’ experience with machine design and supply on several helium cooled reactor projects including Ft. St. Vrain (US), GT-MHR (Russia), PBMR (South Africa), GTHTR (Japan), and most recently HTR-PM (China), this paper addresses many of the design considerations for such machinery and how the application of magnetic bearings directly affects machinery reliability and availability, operability, and maintainability. Remote inspection and diagnostics are a key focus of this paper. (author)

  5. Overview of the TFTR Lithium Blanket Module program

    Jassby, D.L.

    1986-01-01

    The LBM (Lithium Blanket Module) is an approximately cubic module, about 80 cm on each side, with construction representative of a helium-cooled lithium oxide fusion reactor blanket module. Measurements of neutron transport and tritium breeding in the LBM will be made in irradiation programs first with a point-neutron source, and subsequently with the D-D and D-T fusion-neutron sources of the TFTR. This paper summarizes the objectives of the LBM program, the design, development and construction of the LBM, and progress in the experimental tests

  6. Conceptual design on interface between ITER and tritium extraction system of Chinese helium-cooled solid breeder test blanket module

    Zhang Long; Luo Tianyong; Feng Kaiming

    2010-01-01

    Tritium extraction system is essential for CN HCSB TBM for safety and technical reasons. Based on the assessments of system functions, integration issues and safety considerations, two main modifications of the system from previous design (Feng et al., 2007 ; Chen et al., 2008 ) are adopted: a)the TES has been split to 2 parts with one in port cell and another in tritium building. Q 2 O in the purge gas is reduced to Q 2 in a hot metal bed located in port cell; Q 2 is separated from the stream by a pair of cryogenic molecular sieve beds and a Pd/Ag diffuser located in tritium building. b)isotope separation process has been excluded. TES components sizes are estimated and space allocations are estimated. Required services and where and when they are needed are preliminary defined. Fluids delivered towards ITER tritium system are analyzed.

  7. ARIES-IV Nested Shell Blanket Design

    Wong, C.P.C.; Redler, K.; Reis, E.E.; Will, R.; Cheng, E.; Hasan, C.M.; Sharafat, S.

    1993-11-01

    The ARIES-IV Nested Shell Blanket (NSB) Design is an alternate blanket concept of the ARIES-IV low activation helium-cooled reactor design. The reference design has the coolant routed in the poloidal direction and the inlet and outlet plena are located at the top and bottom of the torus. The NSB design has the high velocity coolant routed in the toroidal direction and the plena are located behind the blanket. This is of significance since the selected structural material is SiC-composite. The NSB is designed to have key high performance components with characteristic dimensions of no larger than 2 m. These components can be brazed to form the blanket module. For the diverter design, we eliminated the use of W as the divertor coating material by relying on the successful development of the gaseous divertor concept. The neutronics and thermal-hydraulic performance of both blanket concepts are similar. The selected blanket and divertor configurations can also meet all the projected structural, neutronics and thermal-hydraulics design limits and requirements. With the selected blanket and divertor materials, the design has a level of safety assurance rate of I (LSA-1), which indicates an inherently safe design

  8. Post-examination of helium-cooled tungsten components exposed to DEMO specific cyclic thermal loads

    Ritz, G.; Hirai, T.; Linke, J.; Norajitra, P.; Giniyatulin, R.; Singheiser, L.

    2009-01-01

    A concept of helium-cooled tungsten finger module was developed for the European DEMO divertor. The concept was realized and tested under DEMO specific cyclic thermal loads up to 10 MW/m 2 . The modules were examined carefully before and after loading by metallography and microstructural analyses. While before loading mainly discrete and shallow cracks were found on the tungsten surface due to the manufacturing process, dense crack networks were observed at the loaded surfaces due to the thermal stress. In addition, cracks occurred in the structural, heat sink part and propagated along the grains orientation of the deformed tungsten material. Facilitated by cracking, the molten brazing metal between the tungsten plasma facing material and the W-La 2 O 3 heat sink, that could not withstand the operational temperatures, infiltrated the tungsten components and, due to capillary forces, even reached the plasma facing surface through the cracks. The formed cavity in the brazed layer reduced the heat conduction and the modules were further damaged due to overheating during the applied heat loads. Based on this detailed characterization and possible improvements of the design and of the manufacturing routes are discussed.

  9. Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.

    Middleton, Bobby [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pasch, James Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kruizenga, Alan Michael [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Walker, Matthew [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation

  10. Integration of test modules in the main blanket and vacuum vessel design

    Nakahira, Masataka; Kurasawa, Toshimasa; Sato, Satoshi; Furuya, Kazuyuki; Togami, Ikuhide; Hashimoto, Toshiyuki; Takatsu, Hideyuki; Kuroda, Toshimasa.

    1995-07-01

    Typical test modules for water-cooled and helium-cooled ceramic breeder blankets have been designed, and their major design parameters are summarized. Among various candidates studied in Japan at present, BOT (Breeder Out of Tube) type of blanket is exemplified here. The integration scheme of the test module into ITER basic machine is also shown. Even with other type of blanket, the integration scheme won't be affected. The composition and space requirement of cooling and tritium recovery systems for the test module have also been studied. (author)

  11. Blanket Manufacturing Technologies : Thermomechanical Tests on HCLL Blanket Mocks Up

    Laffont, G.; Cachon, L.; Taraud, P.; Challet, F.; Rampal, G.; Salavy, J.F.

    2006-01-01

    In the Helium Cooled Lithium Lead (HCLL) Blanket concept, the lithium lead plays the double role of breeder and multiplier material, and the helium is used as coolant. The HCCL Blanket Module are made of steel boxes reinforced by stiffening plates. These stiffening plates form cells in which the breeder is slowly flowing. The power deposited in the breeder material is recovered by the breeder cooling units constituted by 5 parallel cooling plates. All the structures such as first wall, stiffening and cooling plates are cooled by helium. Due to the complex geometry of these parts and the high level of pressure and temperature loading, thermo-mechanical phenomena expected in the '' HCLL blanket concept '' have motivated the present study. The aim of this study, carried out in the frame of EFDA Work program, is to validate the manufacturing technologies of HCLL blanket module by testing small scale mock-up under breeder blanket representative operating conditions.The first step of this experimental program is the design and manufacturing of a relevant test section in the DIADEMO facility, which was recently upgraded with an He cooling loop (pressure of 80 bar, maximum temperature of 500 o C,flow rate of 30 g/s) taking the opportunity of synergies with the gas-cooled fission reactor R-and-D program. The second step will deal with the thermo-mechanical tests. This paper focuses on the program made to support the cooling plate mock up tests which will be carried out on the DIADEMO facility (CEA) by thermo-mechanical calculations in order to define the relevant test conditions and the experimental parameters to be monitored. (author)

  12. Feasibility study of fusion breeding blanket concept employing graphite reflector

    Cho, Seungyon; Ahn, Mu-Young; Lee, Cheol Woo; Kim, Eung Seon; Park, Yi-Hyun; Lee, Youngmin; Lee, Dong Won

    2015-01-01

    Highlights: • A Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept adopts graphite as a reflector material by reducing the amount of beryllium multiplier. • Its feasibility was investigated in view point of the nuclear performance as well as material-related issues. • A nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket. • Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions. • In conclusion, the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition. - Abstract: To obtain high tritium breeding performance with limited blanket thickness, most of solid breeder blanket concepts employ a combination of lithium ceramic as a breeder and beryllium as a multiplier. In this case, considering that huge amount of beryllium are needed in fusion power plants, its handling difficulty and cost can be a major factor to be accounted for commercial use. Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. Its feasibility has been investigated in view point of the nuclear performance as well as material-related issues. In this paper, a nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket, considering tritium breeding capability and neutron shielding and activation aspects. Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions, resulting in that the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition.

  13. Feasibility study of fusion breeding blanket concept employing graphite reflector

    Cho, Seungyon, E-mail: sycho@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Cheol Woo; Kim, Eung Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi-Hyun; Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Highlights: • A Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept adopts graphite as a reflector material by reducing the amount of beryllium multiplier. • Its feasibility was investigated in view point of the nuclear performance as well as material-related issues. • A nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket. • Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions. • In conclusion, the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition. - Abstract: To obtain high tritium breeding performance with limited blanket thickness, most of solid breeder blanket concepts employ a combination of lithium ceramic as a breeder and beryllium as a multiplier. In this case, considering that huge amount of beryllium are needed in fusion power plants, its handling difficulty and cost can be a major factor to be accounted for commercial use. Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. Its feasibility has been investigated in view point of the nuclear performance as well as material-related issues. In this paper, a nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket, considering tritium breeding capability and neutron shielding and activation aspects. Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions, resulting in that the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition.

  14. Neutronics - thermal-hydraulics coupling: application to the helium-cooled fast reactor

    Vaiana, F.

    2009-11-01

    This thesis focuses on the study of interactions between neutron-kinetics and thermal-hydraulics. Neutron-kinetics allow to calculate the power in a nuclear reactor and the temperature evolution of materials where this power is deposited is known thanks to thermal-hydraulics. Moreover, when the temperatures evolve, the densities and cross sections change. These two disciplines are thus coupled. The first part of this work corresponds to the study and development of a method which allows to simulate transients in nuclear reactors and especially with a Monte-Carlo code for neutron-kinetics. An algorithm for the resolution of the neutron transport equation has been established and validated with a benchmark. In thermal-hydraulics, a porous media approach, based on another thesis, is considered. This gives the opportunity to solve the equations on the whole core without unconscionable computation time. Finally, a theoretical study has been performed on the statistical uncertainties which result from the use of a Monte-Carlo code and which spread from the reactivity to the power and from the power to the temperatures. The second part deals with the study of a misplaced control rod withdrawing in a GFR (helium-cooled fast reactor), a fourth generation reactor. Some models allowing to calculate neutron-kinetics and thermal-hydraulics in the core (which contains assemblies built up with fuel plates) were defined. In thermal-hydraulics, a model for the core based on the porous media approach and a fuel plate homogenization model have been set up. A similar homogenization model has been studied for neutron-kinetics. Finally, the control rod withdrawing transient where we can observe the power raising and the stabilisation by thermal feedback has been performed with the Monte-Carlo code Tripoli for neutron-kinetics and the code Trio-U for thermal-hydraulics. (author)

  15. Development of welding technologies for the manufacturing of European Tritium Breeder blanket modules

    Poitevin, Y., E-mail: yves.poitevin@f4e.europa.eu [Fusion for Energy (F4E), Barcelona (Spain); Aubert, Ph. [CEA Saclay, DEN/DM2S and DEN/DMN, F-91191 Gif-sur-Yvette (France); Diegele, E. [Fusion for Energy (F4E), Barcelona (Spain); Dinechin, G. de [CEA Saclay, DEN/DM2S and DEN/DMN, F-91191 Gif-sur-Yvette (France); Rey, J. [Institut fuer Neutronenphysik und Reaktortechnik, FZK, Karlsruhe (Germany); Rieth, M. [Institut fuer Materialforschung I, FZK, Karlsruhe (Germany); Rigal, E. [CEA Grenoble, DRT/DTH, F-38000 Grenoble (France); Weth, A. von der [Institut fuer Neutronenphysik und Reaktortechnik, FZK, Karlsruhe (Germany); Boutard, J.-L. [European Fusion Development Agreement (EFDA), Garching (Germany); Tavassoli, F. [CEA Saclay, DEN/DM2S and DEN/DMN, F-91191 Gif-sur-Yvette (France)

    2011-10-01

    Europe has developed two reference Tritium Breeder Blankets concepts for a DEMO fusion reactor: the Helium-Cooled Lithium-Lead and the Helium-Cooled Pebble-Bed. Both are using the reduced-activation ferritic-martensitic EUROFER-97 steel as structural material and will be tested in ITER under the form of test blanket modules. The fabrication of their EUROFER structures requires developing welding processes like laser, TIG, EB and diffusion welding often beyond the state-of-the-art. The status of European achievements in this area is reviewed, illustrating the variety of processes and key issues behind retained options, in particular with respect to metallurgical aspects and mechanical properties. Fabrication of mock-ups is highlighted and their characterization and performances with respect to design requirements are reviewed.

  16. Tritium transport in the water cooled Pb-17Li blanket concept of DEMO

    Reiter, F.; Tominetti, S.; Perujo, A.

    1992-01-01

    The code TIRP has been used to calculate the time dependence of tritium inventory and tritium permeation into the coolant and into the first wall boxes in the water cooled Pb-17Li blanket concept of DEMO. The calculations have been performed for the martensitic steel MANET and the austenitic steel AISI 316L as blanket structure materials, for water or helium cooling and for convective or no motion of the liquid breeder in the blanket. Tritium inventories are rather low in blankets with MANET structure and higher in those with AISI 316L structure. Tritium permeation rates are too high in both blankets. Further calculations on tritium inventory and permeation are therefore presented for blankets with TiC permeation barriers of 1 μm thickness on various surfaces of the blanket structure and for blankets with any permeation barriers in function of their thickness, tritium diffusivities, tritium surface recombination rates and atomic densities. These last calculations have been performed for a blanket with coatings on the outer surfaces of the blanket and with a tritium residence time of 10 4 s and for a blanket with coatings on both sides of the cooling tubes and stagnant Pb-17Li in the blanket. The second case for a blanket with MANET structure presents a very interesting solution for tritium recovery by permeation into and pumping from the first wall boxes. (orig.)

  17. Status of fusion reactor blanket evaluation studies in France

    Carre, F.; Chevereau, G.; Gervaise, F.; Proust, E.

    1985-03-01

    In the frame of recent CEA studies aiming at the evaluation and at the comparison of various candidate blanket concepts in moderate power conditions (Psub(n) approximately 2 MW/m 2 ), the present work examines the neutronic and thermomechanical performances of a water cooled Li 17 Pb 83 tubular blanket and those of a helium cooled canister blanket taking advantage of the excellent breeding capability of composite Beryllium/LiAlO 2 (85/15%) breeder elements. The purpose of the following discussion is to justify the impetus for these reference concepts and to summarize the state of their evaluation studies updated by the continuous assimilation of calculations and experiments in progress

  18. Modeling and experiments on tritium permeation in fusion reactor blankets

    Holland, D. F.; Longhurst, G. R.

    The determination of tritium loss from helium-cooled fusion breeding blankets are discussed. The issues are: (1) applicability of present models to permeation at low tritium pressures; (2) effectiveness of oxide layers in reducing permeation; (3) effectiveness of hydrogen addition as a means to lower tritium permeation; and (4) effectiveness of conversion to tritiated water and subsequent trapping to reduce permeation. Theoretical models applicable to these issues are discussed, and results of experiments in two areas are presented; permeation of mixtures of hydrogen isotopes and conversion to tritiated water.

  19. Modeling and experiments on tritium permeation in fusion reactor blankets

    Holland, D.F.; Longhurst, G.R.

    1985-01-01

    Issues are discussed that are critical in determining tritium loss from helium-cooled fusion breeding blankets. These issues are: (a) applicability of present models to permeation at low tritium pressures, (b) effectiveness of oxide layers in reducing permeation, (c) effectiveness of hydrogen addition as a means to lower tritium permeation, and (d) effectiveness of conversion to tritiated water and subsequent trapping as a means to reduce permeation. The paper discusses theoretical models applicable to these issues, and presents results of experiments in two areas: permeation of mixtures of hydrogen isotopes and conversion to tritiated water

  20. Deep Burn: Development of Transuranic Fuel for High-Temperature Helium-Cooled Reactors- Monthly Highlights September 2010

    Snead, Lance Lewis; Besmann, Theodore M.; Collins, Emory D.; Bell, Gary L.

    2010-01-01

    The DB Program monthly highlights report for August 2010, ORNL/TM-2010/184, was distributed to program participants by email on September 17. This report discusses: (1) Core and Fuel Analysis - (a) Core Design Optimization in the HTR (high temperature helium-cooled reactor) Prismatic Design (Logos), (b) Core Design Optimization in the HTR Pebble Bed Design (INL), (c) Microfuel analysis for the DB HTR (INL, GA, Logos); (2) Spent Fuel Management - (a) TRISO (tri-structural isotropic) repository behavior (UNLV), (b) Repository performance of TRISO fuel (UCB); (3) Fuel Cycle Integration of the HTR (high temperature helium-cooled reactor) - Synergy with other reactor fuel cycles (GA, Logos); (4) TRU (transuranic elements) HTR Fuel Qualification - (a) Thermochemical Modeling, (b) Actinide and Fission Product Transport, (c) Radiation Damage and Properties; (5) HTR Spent Fuel Recycle - (a) TRU Kernel Development (ORNL), (b) Coating Development (ORNL), (c) Characterization Development and Support, (d) ZrC Properties and Handbook; and (6) HTR Fuel Recycle - (a) Graphite Recycle (ORNL), (b) Aqueous Reprocessing, (c) Pyrochemical Reprocessing METROX (metal recovery from oxide fuel) Process Development (ANL).

  1. Development and qualification of functional materials for the EU Test Blanket Modules: Strategy and R and D activities

    Zmitko, M., E-mail: milan.zmitko@f4e.europa.eu [Fusion for Energy (F4E), 08019 Barcelona (Spain); Poitevin, Y. [Fusion for Energy (F4E), 08019 Barcelona (Spain); Boccaccini, L., E-mail: lorenzo.boccaccini@inr.fzk.de [Institut Fuer Neutronenphysik und Reaktortechnik, FZK, D-76021 Karlsruhe (Germany); Salavy, J.-F., E-mail: jfsalavy@cea.fr [CEA/Saclay, DEN/DM2S, F-91191 Gif-sur-Yvette (France); Knitter, R., E-mail: regina.knitter@imf.fzk.de [Institut Fuer Materialforschung III, FZK, D-76021 Karlsruhe (Germany); Moeslang, A., E-mail: anton.moeslang@imf.fzk.de [Institut Fuer Materialforschung I, FZK, D-76021 Karlsruhe (Germany); Magielsen, A.J., E-mail: magielsen@nrg.eu [NRG Petten, 1755 ZG Petten (Netherlands); Hegeman, J.B.J. [NRG Petten, 1755 ZG Petten (Netherlands); Laesser, R. [Fusion for Energy (F4E), 08019 Barcelona (Spain)

    2011-10-01

    Europe has developed two reference tritium breeder blankets concepts for a DEMO fusion reactor: the Helium-Cooled Lithium-Lead and the Helium-Cooled Pebble-Bed. Both will be tested in ITER under the form of Test Blanket Modules (TBMs). The paper reviews the current status of development and qualification of the EU TBMs functional materials; i.e. ceramic solid breeder materials, beryllium/beryllides multiplier materials and Lithium-Lead liquid metal breeder material Pb-15.7Li. For each functional material the main functional/performance requirements with key qualification issues, current status of the R and D activities and the EU development strategy are presented. In the development strategy major steps considered are listed pointing out importance of the 'Development/qualification/procurement plan', currently under elaboration, for definition of a roadmap of further activities aiming at delivery of qualified functional materials to be used in the European TBMs in ITER.

  2. Progress on the Fabrication Methods Development for the Korean Test Blanket Module First Wall in the ITER

    Lee, Dong Won; Kim, Suk Kwon; Bae, Young Dug; Yoon, Jae Sung; Cho, Seung Yon

    2010-01-01

    A Korean helium cooled molten lithium (HCML) test blanket module (TBM) has been designed to be tested in the International Thermonuclear Experimental Reactor (ITER) TBM and related fabrication methods have been developed especially for the purpose of joining. Since the first wall (FW) of the HCML TBM is composed of a beryllium (Be) as an armor material and a FMS as a structural one, joining with Be to FMS and FMS to FMS should be developed in order to fabricate it

  3. Current design of the European TBM systems and implications on DEMO breeding blanket

    Ricapito; Calderoni, P. [Fusion for Energy, 08019 Barcelona (Spain); Aiello, A. [ENEA, Bacino del Brasimone, I-40032 Camugnano, Bo (Italy); Ghidersa, B. [Karlsruher Institut für Technologie, D-76021 Karlsruhe (Germany); Poitevin, Y.; Pacheco, J. [Fusion for Energy, 08019 Barcelona (Spain)

    2016-11-01

    Highlights: • Description of the Helium Cooling Systems of HCLL and HCPB-TBS after the Conceptual Design Review. • Description of the PbLi loop of HCLL-TBS after the Conceptual Design Review. • Description of the possible ROX (Return of Experience) from design and operation of the Test Blanket Systems. • Discussion on the DEBO relevancy of the main technologies adopted in the Helium Cooling Systems and PbLi loop. - Abstract: Europe is committed in developing the design of the two Test Blanket Systems (TBS) based on HCLL (Helium Cooled Lithium Lead) and HCPB (Helium Cooled Pebble Bed) breeding blanket (BB) concepts. The complexity of the TBS design comes not only from the innovative fabrication technologies and materials adopted for Test Blanket Modules (TBM) but also from the requirements and functions that the TBM ancillary systems have to satisfy and implement. Indeed, the main TBM ancillary systems, namely the Helium Cooling System, the Coolant Purification System and Tritium Extraction System, all belonging to the Safety Important Class (SIC), have to implement fundamental functions, like the transport of the surface and volumetric heat from the TBM to the heat sink, the extraction and processing of the tritium generated in the TBM, the confinement of radioactive inventory, the support to the investment protection and safety functions. On top of the full compliance with the ITER safety principles, the design of the TBM systems is focused on providing high operational reliability and availability not to jeopardize ITER program and, at the same time, also a good operational flexibility to make possible the achievement of the main TBM scientific objectives. This paper gives an overview of the design status of the HCLL and HCPB-TBM (ancillary) systems, updated to the conclusion of the conceptual design phase (CDR). The most relevant technologies, the still open points, the main issues related to the integration in ITER and last relevant results from the on

  4. A preliminary definition of the parameters of an experimental natural - uranium, graphite - moderated, helium - cooled power reactor

    Baltazar, O.

    1978-01-01

    A preliminary study of the technical characteristic of an experiment at 32 MWe power with a natural uconium, graphite-moderated, helium cooled reactor is described. The national participation and the use of reactor as an instrument for the technological development of future high temperature gas cooled reactor is considered in the choice of the reactor type. Considerations about nuclear power plants components based in extensive bibliography about similar english GCR reactor is presented. The main thermal, neutronic an static characteristic and in core management of the nuclear fuel is stablished. A simplified scheme of the secondary system and its thermodynamic performance is determined. A scheme of parameters calculation of the reactor type is defined based in the present capacity of calculation developed by Coordenadoria de Engenharia Nuclear and Centro de Processamento de Dados, IEA, Brazil [pt

  5. Preliminary piping layout and integration of European test blanket modules subsystems in ITER CVCS area

    Tarallo, Andrea, E-mail: andrea.tarallo@unina.it [CREATE, University of Naples Federico II, DII, P.le Tecchio, 80, 80125 Naples (Italy); Mozzillo, Rocco; Di Gironimo, Giuseppe [CREATE, University of Naples Federico II, DII, P.le Tecchio, 80, 80125 Naples (Italy); Aiello, Antonio; Utili, Marco [ENEA UTIS, C.R. Brasimone, Bacino del Brasimone, I-40032 Camugnano, BO (Italy); Ricapito, Italo [TBM& MD Project, Fusion for Energy, EU Commission, Carrer J. Pla, 2, Building B3, 08019 Barcelona (Spain)

    2015-04-15

    Highlights: • The use of human modeling tools for piping design in view of maintenance is discussed. • A possible preliminary layout for TBM subsystems in CVCS area has been designed with CATIA. • A DHM-based method to quickly check for maintainability of piping systems is suggested. - Abstract: This paper explores a possible integration of some ancillary systems of helium-cooled lithium lead (HCLL) and helium-cooled pebble-bed (HCPB) test blanket modules in ITER CVCS area. Computer-aided design and ergonomics simulation tools have been fundamental not only to define suitable routes for pipes, but also to quickly check for maintainability of equipment and in-line components. In particular, accessibility of equipment and systems has been investigated from the very first stages of the design using digital human models. In some cases, the digital simulations have resulted in changes in the initial space reservations.

  6. Experimental programme in support of the development of the European ceramic-breeder-inside-tube test-blanket: present status and future work

    Proust, E.; Roux, N.; Flament, T.; Anzidei, L.; ENEA, Frascati; Casadio, S.; Dell'orco, G.

    1992-01-01

    Four DEMO blanket classes are under investigation within the framework of the European Test-Blanket Development Programme. One of them is featured by the use of lithium ceramic breeder pellets contained inside externally helium cooled tubes. This paper summarizes the main achievements to date of the experimental programme supporting the development of this class of blanket. It also gives an outline of the areas of the breeder material, beryllium, tritium control, and thermomechanical tests, the future work envisaged for the 92-94 period. 53 refs

  7. Design and development of ceramic breeder demo blanket

    Enoeda, M.; Sato, S.; Hatano, T.

    2001-01-01

    Ceramic breeder blanket development has been widely conducted in Japan from fundamental researches to project-oriented engineering scaled development. A long term R and D program has been launched in JAERI since 1996 as a course of DEMO blanket development. The objectives of this program are to provide engineering data base and fabrication technologies of the DEMO blanket, aiming at module testing in ITER currently scheduled to start from the beginning of the ITER operation as a near-term target. Two types of DEMO blanket systems, water cooled blanket and helium cooled blanket, have been designed to be consistent with the SSTR (Steady State Tokamak Reactor) which is the reference DEMO reactor design in JAERI. Both of them utilize packed small pebbles of breeder Li 2 O or Li 2 TiO 3 as a candidate) and neutron multiplier (Be) and rely on the development of advanced structural materials (a reduced activation ferritic steel F82H) compatible with high temperature operation. (author)

  8. Japanese contributions to ITER testing program of solid breeder blankets for DEMO

    Kuroda, Toshimasa; Yoshida, Hiroshi; Takatsu, Hideyuki; Maki, Koichi; Mori, Seiji; Kobayashi, Takeshi; Suzuki, Tatsushi; Hirata, Shingo; Miura, Hidenori.

    1991-04-01

    ITER Conceptual Design Activity (CDA), which has been conducted by four parties (Japan, EC, USA and USSR) since May 1988, has been finished on December 1990 with a great achievement of international design work of the integrated fusion experimental reactor. Numerous issues of physics and technology have been clarified for providing a framework of the next phase of ITER (Engineering Design Activity; EDA). Establishment of an ITER testing program, which includes technical test issues of neutronics, solid breeder blankets, liquid breeder blankets, plasma facing components, and materials, has been one of the goals of the CDA. This report describes Japanese proposal for the testing program of DEMO/power reactor blanket development. For two concepts of solid breeder blanket (helium-cooled and water-cooled), identification of technical issues, scheduling of test program, and conceptual design of test modules including required test facility such as cooling and tritium recovery systems have been carried out as the Japanese contribution to the CDA. (author)

  9. The State of the Art Report on the Development and Manufacturing Technology of Test Blanket Module

    Lee, J. S.; Jeong, Y. H.; Park, S. Y.; Lee, M. H.; Choi, B. K.; Baek, J. H.; Park, J. Y.; Kim, J. H.; Kim, H. G.; Kim, K. H.

    2006-07-01

    The main objective of the present R and D on breeder blanket is the development of test blanket modules (TBMs) to be installed and tested in International Thermonuclear Experimental Reactor (ITER). In the program of the blanket development, a blanket module test in the ITER is scheduled from the beginning of the ITER operation, and the performance test of TBM in ITER is the most important milestone for the development of the DEMO blanket. The fabrication of TBMs has been required to test the basic performance of the DEMO blanket, i.e., tritium production/recovery, high-grade heat generation and radiation shielding. Therefore, the integration of the TBM systems into ITER has been investigated with the aim to check the safety, reliability and compatibility under nuclear fusion state. For this reason, in the Test Blanket Working Group (TBWG) as an activity of the International Energy Association (IEA), a variety of ITER TBMs have been proposed and investigated by each party: helium-cooled ceramic (WSG-1), helium-cooled LiPb (WSG-2), water-cooled ceramic (WSG-3), self-cooled lithium (WSG-4) and self-cooled molten salt (WSG-5) blanket systems. Because we are still deficient in investigation of TBM development, the need of development became pressing. In this report, for the development of TBM sub-module and mock-up, it is necessary to analyze and examine the state of the art on the development of manufacturing technology of TBM in other countries. And we will be applied as basic data to establish a manufacturing technology

  10. RAMI analysis for DEMO HCPB blanket concept cooling system

    Dongiovanni, Danilo N., E-mail: danilo.dongiovanni@enea.it [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Pinna, Tonio [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Carloni, Dario [KIT, Institute of Neutron Physics and Reactor Technology (INR) – KIT (Germany)

    2015-10-15

    Highlights: • RAMI (reliability, availability, maintainability and inspectability) preliminary assessment for HCPB blanket concept cooling system. • Reliability block diagram (RBD) modeling and analysis for HCPB primary heat transfer system (PHTS), coolant purification system (CPS), pressure control system (PCS), and secondary cooling system. • Sensitivity analysis on system availability performance. • Failure models and repair models estimated on the base of data from the ENEA fusion component failure rate database (FCFRDB). - Abstract: A preliminary RAMI (reliability, availability, maintainability and inspectability) assessment for the HCPB (helium cooled pebble bed) blanket cooling system based on currently available design for DEMO fusion power plant is presented. The following sub-systems were considered in the analysis: blanket modules, primary cooling loop including pipework and steam generators lines, pressure control system (PCS), coolant purification system (CPS) and secondary cooling system. For PCS and CPS systems an extrapolation from ITER Test Blanket Module corresponding systems was used as reference design in the analysis. Helium cooled pebble bed (HCPB) system reliability block diagrams (RBD) models were implemented taking into account: system reliability-wise configuration, operating schedule currently foreseen for DEMO, maintenance schedule and plant evolution schedule as well as failure and corrective maintenance models. A simulation of plant activity was then performed on implemented RBDs to estimate plant availability performance on a mission time of 30 calendar years. The resulting availability performance was finally compared to availability goals previously proposed for DEMO plant by a panel of experts. The study suggests that inherent availability goals proposed for DEMO PHTS system and Tokamak auxiliaries are potentially achievable for the primary loop of the HCPB concept cooling system, but not for the secondary loop. A

  11. Non-linear failure analysis of HCPB blanket for DEMO taking into account high dose irradiation

    Aktaa, J., E-mail: jarir.aktaa@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Kecskés, S.; Pereslavtsev, P.; Fischer, U.; Boccaccini, L.V. [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-15

    Highlights: • First non-linear structural analysis for the European Helium Cooled Pebble Bed Blanket Module taking into account high dose irradiation. • Most critical areas were identified and analyzed with regard to the effect of irradiation on predicted damage at these areas. • Despite the extensive computing time 100 cycles were simulated by using the sub-modelling technique investigating damage at most critical area. • The results show a positive effect of irradiation on calculated damage which is mainly attributed to the irradiation induced hardening. - Abstract: For the European helium cooled pebble bed (HCPB) blanket of DEMO the reduced activation ferritic martensitic steel EUROFER has been selected as structural material. During operation the HCPB blanket will be subjected to complex thermo-mechanical loadings and high irradiation doses. Taking into account the material and structural behaviour under these conditions is a precondition for a reliable blanket design. For considering high dose irradiation in structural analysis of the DEMO blanket, the coupled deformation damage model, extended recently taking into account the influence of high dose irradiation on the material behaviour of EUROFER and implemented in the finite element code ABAQUS, has been used. Non-linear finite element (FE) simulations of the DEMO HCPB blanket have been performed considering the design of the HCPB Test Blanket Module (TBM) as reference and the thermal and mechanical boundary conditions of previous analyses. The irradiation dose rate required at each position in the structure as an additional loading parameter is estimated by extrapolating the results available for the TBM in ITER scaling the value calculated in neutronics and activation analysis for ITER boundary conditions to the DEMO boundary conditions. The results of the FE simulations are evaluated considering damage at most critical highly loaded areas of the structure and discussed with regard to the impact of

  12. Non-linear failure analysis of HCPB blanket for DEMO taking into account high dose irradiation

    Aktaa, J.; Kecskés, S.; Pereslavtsev, P.; Fischer, U.; Boccaccini, L.V.

    2014-01-01

    Highlights: • First non-linear structural analysis for the European Helium Cooled Pebble Bed Blanket Module taking into account high dose irradiation. • Most critical areas were identified and analyzed with regard to the effect of irradiation on predicted damage at these areas. • Despite the extensive computing time 100 cycles were simulated by using the sub-modelling technique investigating damage at most critical area. • The results show a positive effect of irradiation on calculated damage which is mainly attributed to the irradiation induced hardening. - Abstract: For the European helium cooled pebble bed (HCPB) blanket of DEMO the reduced activation ferritic martensitic steel EUROFER has been selected as structural material. During operation the HCPB blanket will be subjected to complex thermo-mechanical loadings and high irradiation doses. Taking into account the material and structural behaviour under these conditions is a precondition for a reliable blanket design. For considering high dose irradiation in structural analysis of the DEMO blanket, the coupled deformation damage model, extended recently taking into account the influence of high dose irradiation on the material behaviour of EUROFER and implemented in the finite element code ABAQUS, has been used. Non-linear finite element (FE) simulations of the DEMO HCPB blanket have been performed considering the design of the HCPB Test Blanket Module (TBM) as reference and the thermal and mechanical boundary conditions of previous analyses. The irradiation dose rate required at each position in the structure as an additional loading parameter is estimated by extrapolating the results available for the TBM in ITER scaling the value calculated in neutronics and activation analysis for ITER boundary conditions to the DEMO boundary conditions. The results of the FE simulations are evaluated considering damage at most critical highly loaded areas of the structure and discussed with regard to the impact of

  13. The TFTR lithium blanket module program

    Jassby, D.L.; Bertone, P.C.; Creedon, R.L.; File, J.; Graumann, D.W.

    1985-01-01

    The Lithium Blanket Module (LBM) is an approximately 80X80X80 cm cubic module, representative of a helium-cooled lithium oxide fusion reactor blanket module, that will be installed on the TFTR (Tokamak Fusion Test Reactor) in late 1986. The principal objective of the LBM Program is to perform a series of neutron transport and tritium-breeding measurements throughout the LBM when it is exposed to the TFTR toroidal fusion neutron source, and to compare these data with the predictions of Monte Carlo (MCNP) neutronics codes. The LBM consists of 920 2.5-cm diameter breeder rods constructed of lithium oxide (Li 2 O) pellets housed in thin-walled stainless steel tubes. Procedures for mass-producing 25,000 Li 2 O pellets with satisfactory reproducibility were developed using purified Li 2 O powder, and fabrication of all the breeder rods was completed in early 1985. Tritium assay methods were investigated experimentally using both small lithium metal samples and LBM-type pellets. This work demonstrated that the thermal extraction method will be satisfactory for accurate evaluation of the minute concentrations of tritium expected in the LBM pellets (0.1-1nCi/g)

  14. Thermal response of a pin-type fusion reactor blanket during steady and transient reactor operation

    Grotz, S.; Ghoniem, N.M.

    1986-02-01

    The thermal analysis of the blanket examines both the steady-state and transient reactor operations. The steady-state analysis covers full power and fractional power operation whereas the transient analysis examines the effects of power ramps and blanket preheat. The blanket configuration chosen for this study is a helium cooled solid breeder design. We first discuss the full power, steady-state temperature fields in the first wall, beryllium rods, and breeder rods. Next we examine the effects of fractional power on coolant flow and temperature field distributions. This includes power plateaus of 10%, 20%, 50%, 80%, and 100% of full power. Also examined are the restrictions on the rates of power ramping between plateaus. Finally we discuss the power and time requirements for pre-heating the primary from cold iron conditions up to startup temperature (250 0 C)

  15. System engineering approach in the EU Test Blanket Systems Design Integration

    Panayotov, D.; Sardain, P.; Boccaccini, L.V.; Salavy, J.-F.; Cismondi, F.; Jourd'Heuil, L.

    2011-01-01

    The complexity of the Test Blanket Systems demands diverse and comprehensive integration activities. Test Blanket Modules - Consortia of Associates (TBM-CA) applies the system engineering methods in all stages of the Test Blanket System (TBS) design integration. Completed so far integration engineering tasks cover among others status and initial set of TBS operating parameters; list of codes, standards and regulations related to TBS; planning of the TBS interfaces and baseline documentation. Most of the attention is devoted to the establishment the Helium-Cooled Lithium Lead (HCLL) and Helium-Cooled Pebble Bed Lead (HCPB) TBS configuration baseline, TBS break down into sub-systems, identification, definition and management of the internal and external interfaces, development of the TBS plant break down structure (PBS), establishment and management of the required TBS baseline documentation infrastructure. Break down of the TBS into sub-systems that is crucial for the further design and interfaces' management has been selected considering several options and using specific evaluation criteria. Process of the TBS interfaces management covers the planning, definition and description, verification and review, non-conformances and deviations, and modification and improvement processes. Process of interfaces review is developed, identifying the actors, input, activities and output of the review. Finally the relations and interactions of system engineering processes with TBM configuration management and TBM-CA Quality Management System are discussed.

  16. Status of the EU test blanket systems safety studies

    Panayotov, Dobromir; Poitevin, Yves; Ricapito, Italo; Zmitko, Milan

    2015-01-01

    Highlights: • TBS safety demonstration files. • Safety functions and related design features – detailed TBS components classifications. • Nuclear analyses, radiation shielding and protection. • TBS radiological waste management strategy and categorization. • Selection and definition of reference accidents scenarios and accidents analyses. - Abstract: The European joint undertaking for ITER and the development of fusion energy (‘Fusion for Energy’ – F4E) provides the European contributions to the ITER international fusion energy research project. Among others it includes also the development, design, technological demonstration and implementation of the European test blanket systems (TBS) in ITER. Currently two EU TBS designs are in the phase of conceptual design – helium-cooled lithium-lead (HCLL) and helium-cooled pebble-bed (HCPB). Safety demonstration is an important part of the work devoted to the achievement of the next key project milestone the conceptual design review. The paper reveals the details of the work on EU TBS safety performed in the last couple of years: update of the TBS safety demonstration files; safety functions and related design features; detailed TBS components classifications; nuclear analyses, radiation shielding and protection; TBS radiological waste management strategy and categorization; selection and definition of reference accidents scenarios, and accidents analyses. Finally the authors share the information on on-going and planned future EU TBS safety activities.

  17. Status of the EU test blanket systems safety studies

    Panayotov, Dobromir, E-mail: dobromir.panayotov@f4e.europa.eu; Poitevin, Yves; Ricapito, Italo; Zmitko, Milan

    2015-10-15

    Highlights: • TBS safety demonstration files. • Safety functions and related design features – detailed TBS components classifications. • Nuclear analyses, radiation shielding and protection. • TBS radiological waste management strategy and categorization. • Selection and definition of reference accidents scenarios and accidents analyses. - Abstract: The European joint undertaking for ITER and the development of fusion energy (‘Fusion for Energy’ – F4E) provides the European contributions to the ITER international fusion energy research project. Among others it includes also the development, design, technological demonstration and implementation of the European test blanket systems (TBS) in ITER. Currently two EU TBS designs are in the phase of conceptual design – helium-cooled lithium-lead (HCLL) and helium-cooled pebble-bed (HCPB). Safety demonstration is an important part of the work devoted to the achievement of the next key project milestone the conceptual design review. The paper reveals the details of the work on EU TBS safety performed in the last couple of years: update of the TBS safety demonstration files; safety functions and related design features; detailed TBS components classifications; nuclear analyses, radiation shielding and protection; TBS radiological waste management strategy and categorization; selection and definition of reference accidents scenarios, and accidents analyses. Finally the authors share the information on on-going and planned future EU TBS safety activities.

  18. Initial assessment of environmental effects on SiC/SiC composites in helium-cooled nuclear systems

    Contescu, Cristian I [ORNL

    2013-09-01

    This report summarized the information available in the literature on the chemical reactivity of SiC/SiC composites and of their components in contact with the helium coolant used in HTGR, VHTR and GFR designs. In normal operation conditions, ultra-high purity helium will have chemically controlled impurities (water, oxygen, carbon dioxide, carbon monoxide, methane, hydrogen) that will create a slightly oxidizing gas environment. Little is known from direct experiments on the reactivity of third generation (nuclear grade) SiC/SiC composites in contact with low concentrations of water or oxygen in inert gas, at high temperature. However, there is ample information about the oxidation in dry and moist air of SiC/SiC composites at high temperatures. This information is reviewed first in the next chapters. The emphasis is places on the improvement in material oxidation, thermal, and mechanical properties during three stages of development of SiC fibers and at least two stages of development of the fiber/matrix interphase. The chemical stability of SiC/SiC composites in contact with oxygen or steam at temperatures that may develop in off-normal reactor conditions supports the conclusion that most advanced composites (also known as nuclear grade SiC/SiC composites) have the chemical resistance that would allow them maintain mechanical properties at temperatures up to 1200 1300 oC in the extreme conditions of an air or water ingress accident scenario. Further research is needed to assess the long-term stability of advanced SiC/SiC composites in inert gas (helium) in presence of very low concentrations (traces) of water and oxygen at the temperatures of normal operation of helium-cooled reactors. Another aspect that needs to be investigated is the effect of fast neutron irradiation on the oxidation stability of advanced SiC/SiC composites in normal operation conditions.

  19. Manufacturing pre-qualification of a Short Breeder Unit mockup (SHOBU) as part of the roadmap toward the out-of-pile validation of a full scale Helium Cooled Pebble Bed Breeder Unit

    Hernández, Francisco A.; Rey, Jorg; Neuberger, Heiko; Krasnorutskyi, Sergii; Niewöhner, Reinhard; Felde, Alexander

    2015-01-01

    Highlights: • A relevant mockup of a HCPB Breeder Unit for ITER (SHOBU) has been manufactured. • The manufacturing technologies used in SHOBU and its assembly sequence are reported. • Preliminary qualification of the welds has been successfully done after codes. • Future work foreseen to manufacture a feasibility mockup according to RCC-MRx code. - Abstract: The key components of the Helium Cooled Pebble Bed Test Blanket Module (HCPB TBM) in ITER are the Breeder Units (BU). These are the responsible for the tritium breeding and part of the heat extraction in the HCPB TBM. After a detailed design and engineering phase performed during the last years in the Karlsruhe Institute of Technology (KIT), a reference model for the manufacturing of a HCPB BU mock-up has been obtained. The mid-term is the out-of-pile qualification of the thermal and thermo-mechanical performance of a full-scale HCPB BU mock-up in a dedicated helium loop. Several key manufacturing technologies have been developed for the fabrication of the HCPB BU. In order to pre-qualify these techniques, a Short Breeder Unit mock-up (SHOBU) is under construction and to be tested. This paper aims at describing the relevance of SHOBU with a full-scale HCPB BU, the constitutive parts of SHOBU, the manufacturing and joining technologies involved, the assembly sequence (taking into consideration functional steps like its filling with Li_4SiO_4 pebbles or its assembly in the HCPB TBM) and the welding procedures studied. The paper concludes with a description of the required pre-qualification tests performed to SHOBU, i.e. pressure and leak tightness tests, according to the standards.

  20. An overview of dual coolant Pb-17Li breeder first wall and blanket concept development for the US ITER-TBM design

    Wong, Clement; Malang, S.; Sawan, M.; Dagher, Mohamad; Smolentsev, S.; Merrill, Brad; Youssef, M.; Reyes, Susanna; Sze, Dai Kai; Morley, Neil B.; Sharafat, Shahran; Calderoni, P.; Sviatoslavsky, G.; Kurtz, Richard J.; Fogarty, Paul J.; Zinkle, Steven J.; Abdou, Mohamed A.

    2006-02-01

    An attractive blanket concept for the fusion reactor is the dual coolant Pb-17Li liquid (DCLL) breeder design. Reduced activation ferritic steel (RAFS) is used as the structural material. Helium is used to cool the first wall and blanket structure, and the self-cooled breeder Pb-17LI is circulated for power conversion and for tritium breeding. A SiCf/SiC composite insert is used as the magnetohydrodynamic (MHD) insulation to reduce the impact from the MHD pressure drop of the circulating Ph-17Li and as the thermal insulator to separate the high temperature Pb-17Li from the helium cooled RAFS structure.

  1. Progress in blanket designs using SiCf/SiC composites

    Giancarli, L.; Golfier, H.; Nishio, S.; Raffray, R.; Wong, C.; Yamada, R.

    2002-01-01

    This paper summarizes the most recent design activities concerning the use of SiC f /SiC composite as structural material for fusion power reactor breeding blanket. Several studies have been performed in the past. The most recent proposals are the TAURO blanket concept in the European Union, the ARIES-AT concept in the US, and DREAM concept in Japan. The first two concepts are self-cooled lithium-lead blankets, while DREAM is an helium-cooled beryllium/ceramic blanket. Both TAURO and ARIES-AT blankets are essentially formed by a SiC f /SiC box acting as a container for the lithium-lead which has the simultaneous functions of coolant, tritium breeder, neutron multiplier and, finally, tritium carrier. The DREAM blanket is characterized by small modules using pebble beds of Be as neutron multiplier material, of Li 2 O (or other lithium ceramics) as breeder material and of SiC as shielding material. The He coolant path includes a flow through the pebble beds and a porous partition wall. For each blanket, this paper describes the main design features and performances, the most recent design improvements, and the proposed manufacturing routes in order to identify specific issues and requirements for the future R and D on SiC f /SiC

  2. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Jolodosky, A. [Univ. of California, Berkeley, CA (United States); Fratoni, M. [Univ. of California, Berkeley, CA (United States)

    2015-09-22

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers excellent heat transfer and corrosion properties, and most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. For this reason, over the years numerous blanket concepts have been proposed with the scope of reducing concerns associated with lithium. The European helium cooled pebble bed breeding blanket (HCPB) physically confines lithium within ceramic pebbles. The pebbles reside within a low activation martensitic ferritic steel structure and are cooled by helium. The blanket is composed of the tritium breeding lithium ceramic pebbles and neutron multiplying beryllium pebbles. Other blanket designs utilize lead to lower chemical reactivity; LiPb alone can serve as a breeder, coolant, neutron multiplier, and tritium carrier. Blankets employing LiPb coolants alongside silicon carbide structural components can achieve high plant efficiency, low afterheat, and low operation pressures. This alloy can also be used alongside of helium such as in the dual-coolant lead-lithium concept (DCLL); helium is utilized to cool the first wall and structural components made up of low-activation ferritic steel, whereas lithium-lead (LiPb) acts as a self-cooled breeder in the inner channels of the blanket. The helium-cooled steel and lead-lithium alloy are separated by flow channel inserts (usually made out of silicon carbide) which thermally insulate the self-cooled breeder region from the helium cooled steel walls. This creates a LiPb breeder with a much higher exit temperature than the steel which increases the power cycle efficiency and also lowers the magnetohydrodynamic (MHD) pressure drop [6]. Molten salt blankets with a mixture of lithium, beryllium, and fluorides (FLiBe) offer good tritium breeding

  3. Adaptation of the HCPB DEMO TBM as breeding blanket for ITER : Neutronic and thermal analyses

    Aquaro, D.; Morellini, D.; Cerullo, N.

    2006-01-01

    Two breeding blanket are presently developed in Europe for the DEMO reactor: the first one, the Helium Cooled Lithium Lead (HCLL) uses a liquid breeder while the other , the Helium Cooled Pebble Bed (HCPB), uses a solid breeder in form of pebble bed. The modules of these blankets, called Test Blanket Modules (TBM) will be located in correspondence of the equatorial ports of ITER in order to be tested. ITER FEAT was designed with shielding blankets, therefore in the final stage of the experiment, in the foreseen tritium -deuterium operation phase, the tritium will be supplied to the reactor and not produced inside it. Since the production of tritium is of main importance for the feasibility of a nuclear fusion reactor, perhaps in the ITER final stage, the shielding blanket could be substituted by means of a breeding blanket. The geometry and composition of this breeding blanket would be, of course, similar to that of TBM which demonstrated to have the best performances. This paper illustrates a neutronic and thermal analysis of an hypothetical triziogen blanket for ITER FEAT made similar to a HCPB test module. The main aims of the performed analyses are to determine the Tritium Breeding Ratio (TBR) considering different solid breeders (Li 4 SiO 4 and Li 2 TiO 3 ) with different enrichment in 6 Li and different structural materials (a 9%CRWVTa reduced activation ferritic martensitic steel (EUROFER) or ceramic matrix composites like SiCf/SiC). The breeding blanket design is compared considering the highest value of TBR and the verification of the temperature constraints ( 550 o C for the steel, 950 o C for the breeder and 650 o C for the Beryllium). The neutronic analyses have been performed by means of MCNP-4C code and the thermal analyses using the MSC-MARC code. A TBR about equal 1 was obtained with a SiCf/SiC structural material and a Li 4 SiO 4 breeder. The performed analyses have to be considered preliminary and an academic exercise, nevertheless they could give

  4. Present development status of EUROFER and ODS-EUROFER for application in blanket concepts

    Lindau, R. [Forschungszentrum Karlsruhe, Institute for Materials Research I, P.O. Box 3640, 76021 Karlsruhe (Germany)]. E-mail: rainer.lindau@imf.fzk.de; Moeslang, A. [Forschungszentrum Karlsruhe, Institute for Materials Research I, P.O. Box 3640, 76021 Karlsruhe (Germany); Rieth, M. [Forschungszentrum Karlsruhe, Institute for Materials Research I, P.O. Box 3640, 76021 Karlsruhe (Germany); Klimiankou, M. [Forschungszentrum Karlsruhe, Institute for Materials Research I, P.O. Box 3640, 76021 Karlsruhe (Germany); Materna-Morris, E. [Forschungszentrum Karlsruhe, Institute for Materials Research I, P.O. Box 3640, 76021 Karlsruhe (Germany); Alamo, A. [CEA-Saclay, SRMA/SMPX, 91191 Gif-sur-Yvette Cedex (France); Tavassoli, A.-A. F. [CEA-Saclay, SRMA/SMPX, 91191 Gif-sur-Yvette Cedex (France); Cayron, C. [CEA-Grenoble, DRT/DTEN/SMP/LS2M, 17, rue des Martyrs, 38054 Grenoble Cedex 9 (France); Lancha, A.-M. [CIEMAT, Avda. Complutense no. 22, 28040 Madrid (Spain); Fernandez, P. [CIEMAT, Avda. Complutense no. 22, 28040 Madrid (Spain); Baluc, N. [CRPP-EPFL, 5232 Villigen PSI (Switzerland); Schaeublin, R. [CRPP-EPFL, 5232 Villigen PSI (Switzerland); Diegele, E. [EFDA Close Support Unit, Boltzmannstr. 2, 85748 Garching (Germany); Filacchioni, G. [ENEA CR Casaccia, Via Anguillarese 301, 00100 S. Maria di Galeria, Rome (Italy); Rensman, J.W. [NRG, MM and I, Westerduinweg 3, P.O. Box 25, 1755 ZG Petten (Netherlands); Schaaf, B. van der [NRG, MM and I, Westerduinweg 3, P.O. Box 25, 1755 ZG Petten (Netherlands); Lucon, E. [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Dietz, W. [MECS, Schoenenborner Weg 15, 51789 Lindlar (Germany)

    2005-11-15

    Within the European Union, the two major breeding blanket concepts presently being developed are the helium cooled pebble bed (HCPB), and the helium cooled lithium lead (HCLL) blankets. For both concepts, different conceptual designs are being discussed with temperature windows in the range 250-550 deg. C for conservative approaches based on reduced activation ferritic-martensitic (RAFM) steels, and in the range 250-650 deg. C for more advanced versions, taking into account oxide dispersion strengthened (ODS) steels. As a final result of a systematic development of RAFM-steels in Europe, the 9% CrWVTa alloy EUROFER was specified and produced in an industrial scale with a variety of product forms. A large characterisation program is being performed including irradiation in materials test reactors between 60 and 450 deg. C ({<=}15 dpa), and in a fast breeder reactor at 330 deg. C up to 30 dpa. EUROFER is resistant to high temperature ageing, and the existing creep-rupture data ({approx}30,000 h, 450-600 deg. C) indicate long-term stability and predictability. The ODS variant of EUROFER shows superior tensile and creep properties compared to EUROFER. Applying a new production route has diminished the problem of lower ductility and inferior impact properties. A reliable joining technique for ODS and RAFM steels employing diffusion welding was successfully developed.

  5. Feasibility study of a neutron activation system for EU test blanket systems

    Tian, Kuo, E-mail: kuo.tian@kit.edu [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Calderoni, Pattrick [Fusion for Energy(F4E), Barcelona (Spain); Ghidersa, Bradut-Eugen; Klix, Axel [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2016-11-01

    Highlights: • This paper summarizes the technical baseline and preliminary design of EU TBM Neutron Activation System, briefly describes the key components, and outlines the major integration challenges. - Abstract: The Neutron Activation System (NAS) for the EU Helium Cooled Lithium Lead (HCLL) and Helium Cooled Pebble Bed (HCPB) Test Blanket Systems (TBSs) is an instrument that is proposed to determine the absolute neutron fluence and absolute neutron flux with information on the neutron spectrum in selected positions of the corresponding Test Blanket Modules (TBMs). In the NAS activation probes are exposed to the ITER neutron flux for periods ranging from several tens of seconds up to a full plasma pulse length, and the induced gamma activities are subsequently measured. The NAS is composed of a pneumatic transfer system and a counting station. The pneumatic transfer system includes irradiation ends in TBMs, transfer pipes, return gas pipes, a transfer station with a distributor (carousel), and a pressurized gas driving system, while the counting station consists of gamma ray detectors, signal processing electronic devices, and data analyzing software for neutron source strength evaluation. In this paper, a brief description on the proposed TBM NAS as well as the key components is presented, and the integration challenges of TBM NAS are outlined.

  6. Conceptual design of Tritium Extraction System for the European HCPB Test Blanket Module

    Ciampichetti, A.; Nitti, F.S.; Aiello, A.; Ricapito, I.; Liger, K.; Demange, D.; Sedano, L.; Moreno, C.; Succi, M.

    2012-01-01

    Highlights: ► HCPB (Helium Cooled Pebble Bed) Test Blanket Module (TBM) to be tested in ITER. ► Tritium extraction by gas purging, removal and transfer to the Tritium Plant. ► Conceptual design of TES and revision of the previous configuration. ► Main components: adsorption column, ZrCo getter beds and PERMCAT reactor. - Abstract: The HCPB (Helium Cooled Pebble Bed) Test Blanket Module (TBM), developed in EU to be tested in ITER, adopts a ceramic containing lithium as breeder material, beryllium as neutron multiplier and helium at 80 bar as primary coolant. In HCPB-TBM the main function of Tritium Extraction System (TES) is to extract tritium from the breeder by gas purging, to remove it from the purge gas and to route it to the ITER Tritium Plant for the final tritium processing. In this paper, starting from a revision of the so far reference process considered for HCPB-TES and considering a new modeling activity aimed to evaluate tritium concentration in purge gas, an updated conceptual design of TES is reported.

  7. Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module

    Deepak, SHARMA; Paritosh, CHAUDHURI

    2018-04-01

    The Indian test blanket module (TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the R&D activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices (ITER relevant and DEMO). The Indian Lead–Lithium Cooled Ceramic Breeder (LLCB) blanket concept is one of the Indian DEMO relevant TBM, to be tested in ITER as a part of the TBM program. Helium-Cooled Ceramic Breeder (HCCB) is an alternative blanket concept that consists of lithium titanate (Li2TiO3) as ceramic breeder (CB) material in the form of packed pebble beds and beryllium as the neutron multiplier. Specifically, attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions. These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.

  8. Neutronic investigation and activation calculation for CFETR HCCB blankets

    Shuling, XU; Mingzhun, LEI; Sumei, LIU; Kun, LU; Kun, XU; Kun, PEI

    2017-12-01

    The neutronic calculations and activation behavior of the proposed helium cooled ceramic breeder (HCCB) blanket were predicted for the Chinese Fusion Engineering Testing Reactor (CFETR) design model using the MCNP multi-particle transport code and its associated data library. The tritium self-sufficiency behavior of the HCCB blanket was assessed, addressing several important breeding-related arrangements inside the blankets. Two candidate first wall armor materials were considered to obtain a proper tritium breeding ratio (TBR). Presentations of other neutronic characteristics, including neutron flux, neutron-induced damages in terms of the accumulated dpa and helium production were also conducted. Activation, decay heat levels and contact dose rates of the components were calculated to estimate the neutron-induced radioactivity and personnel safety. The results indicate that neutron radiation is efficiently attenuated and slowed down by components placed between the plasma and toroidal field coil. The dominant nuclides and corresponding isotopes in the structural steel were discussed. A radioactivity comparison between pure beryllium and beryllium with specific impurities was also performed. After a millennium cooling time, the decay heat of all the concerned components and materials is less than 1 × 10-4 kW, and most associated in-vessel components qualify for recycling by remote handling. The results demonstrate that acceptable hands-on recycling and operation still require a further long waiting period to allow the activated products to decay.

  9. Progress in fusion reactors blanket analysis and evaluation at CEA

    Proust, E.; Gervaise, F.; Carre, F.; Chevereau, G.; Doutriaux, D.

    1986-09-01

    In the frame of the recent CEA studies aiming at the development, evaluation and comparison of solid breeder blanket concepts in view of their adaptation to NET, the evaluation of specific questions related to the first wall design, the present paper examines first the performances of a helium cooled toroidal blanket design for NET, based on innovative Beryllium/Ceramics breeder rod elements. Neutronic and thermo-mechanical optimisation converges on a concept featured by a breeding capability in excess of 1.2, a reasonnable pumping power of 1% and a narrow breeder temperature range (470+-30 deg C of the breeder), the latter being largely independent of the power level. This design proves naturally adapted to ceramic breeder assigned to very strict working conditions, and provides for any change in the thermal and heat transfer characteristics over the blanket lifetime. The final section of the paper is devoted to the evaluation of the heat load poloidal distribution and to the irradiation effects on first wall structural materials

  10. Thermo-mechanical characterization of ceramic pebbles for breeding blanket

    Lo Frano, Rosa, E-mail: rosa.lofrano@ing.unipi.it; Aquaro, Donato; Scaletti, Luca

    2016-11-01

    Highlights: • Experimental activities to characterize the Li{sub 4}SiO{sub 4}. • Compression tests of pebbles. • Experimental evaluation of thermal conductivity of pebbles bed at different temperatures. • Experimental test with/without compression load. - Abstract: An open issue for fusion power reactor is to design a suitable breeding blanket capable to produce the necessary quantity of the tritium and to transfer the energy of the nuclear fusion reaction to the coolant. The envisaged solution called Helium-Cooled Pebble Bed (HCPB) breeding blanket foresees the use of lithium orthosilicate (Li{sub 4}SiO{sub 4}) or lithium metatitanate (Li{sub 2}TiO{sub 3}) pebble beds. The thermal mechanical properties of the candidate pebble bed materials are presently extensively investigated because they are critical for the feasibility and performances of the numerous conceptual designs which use a solid breeder. This study is aimed at the investigation of mechanical properties of the lithium orthosilicate and at the characterization of the main chemical, physical and thermo-mechanical properties taking into account the production technology. In doing that at the Department of Civil and Industrial Engineering (DICI) of the University of Pisa adequate experiments were carried out. The obtained results may contribute to characterize the material of the pebbles and to optimize the design of the envisaged fusion breeding blankets.

  11. Applicability of tungsten/EUROFER blanket module for the DEMO first wall

    Igitkhanov, Yu.; Bazylev, B.; Landman, I.; Boccaccini, L.

    2013-01-01

    In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ∼14 MW/m 2 . It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface

  12. Applicability of tungsten/EUROFER blanket module for the DEMO first wall

    Igitkhanov, Yu.; Bazylev, B.; Landman, I.; Boccaccini, L.

    2013-07-01

    In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ˜14 MW/m2. It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface.

  13. Applicability of tungsten/EUROFER blanket module for the DEMO first wall

    Igitkhanov, Yu., E-mail: juri.igitkhanov@lhm.fzk.de [Karlsruhe Institute of Technology, IHM, Karlsruhe (Germany); Bazylev, B.; Landman, I. [Karlsruhe Institute of Technology, IHM, Karlsruhe (Germany); Boccaccini, L. [Karlsruhe Institute of Technology, INR, Karlsruhe (Germany)

    2013-07-15

    In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ∼14 MW/m{sup 2}. It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface.

  14. Conceptual design and testing strategy of a dual functional lithium-lead test blanket module in ITER and EAST

    Wu, Y.

    2007-01-01

    A dual functional lithium-lead (DFLL) test blanket module (TBM) concept has been proposed for testing in the International Thermonuclear Experimental Reactor (ITER) and the Experimental Advanced Superconducting Tokamak (EAST) in China to demonstrate the technologies of the liquid lithium-lead breeder blankets with emphasis on the balance between the risks and the potential attractiveness of blanket technology development. The design of DFLL-TBM concept has the flexibility of testing both the helium-cooled quasi-static lithium-lead (SLL) blanket concept and the He/PbLi dual-cooled lithium-lead (DLL) blanket concept. This paper presents an effective testing strategy proposed to achieve the testing target of SLL and DLL DEMO blankets relevant conditions, which includes three parts: materials R and D and small-scale out-of-pile mockups testing in loops, middle-scale TBMs pre-testing in EAST and full-scale consecutive TBMs testing corresponding to different operation phases of ITER during the first 10 years. The design of the DFLL-TBM concept and the testing strategy ability to test TBMs for both blanket concepts in sequence and or in parallel for both ITER and EAST are discussed

  15. Assessing the feasibility of a high-temperature, helium-cooled vacuum vessel and first wall for the Vulcan tokamak conceptual design

    Barnard, H.S.; Hartwig, Z.S.; Olynyk, G.M.; Payne, J.E.

    2012-01-01

    The Vulcan conceptual design (R = 1.2 m, a = 0.3 m, B 0 = 7 T), a compact, steady-state tokamak for plasma–material interaction (PMI) science, must incorporate a vacuum vessel capable of operating at 1000 K in order to replicate the temperature-dependent physical chemistry that will govern PMI in a reactor. In addition, the Vulcan divertor must be capable of handling steady-state heat fluxes up to 10 MW m −2 so that integrated materials testing can be performed under reactor-relevant conditions. A conceptual design scoping study has been performed to assess the challenges involved in achieving such a configuration. The Vulcan vacuum system comprises an inner, primary vacuum vessel that is thermally and mechanically isolated from the outer, secondary vacuum vessel by a 10 cm vacuum gap. The thermal isolation minimizes heat conduction between the high-temperature helium-cooled primary vessel and the water-cooled secondary vessel. The mechanical isolation allows for thermal expansion and enables vertical removal of the primary vessel for maintenance or replacement. Access to the primary vessel for diagnostics, lower hybrid waveguides, and helium coolant is achieved through ∼1 m long intra-vessel pipes to minimize temperature gradients and is shown to be commensurate with the available port space in Vulcan. The isolated primary vacuum vessel is shown to be mechanically feasible and robust to plasma disruptions with analytic calculations and finite element analyses. Heat removal in the first wall and divertor, coupled with the ability to perform in situ maintenance and replacement of divertor components for scientific purposes, is achieved by combining existing helium-cooled techniques with innovative mechanical attachments of plasma facing components, either in plate-type helium-cooled modules or independently bolted, helium-jet impingement-cooled tiles. The vacuum vessel and first wall design enables a wide range of potential PFC materials and configurations to

  16. Overview of the Last Progresses for the European Test Blanket Modules Projects

    Salavy, J.-F.; Rampal, G.; Boccaccini, L.V.; Meyder, R.; Neuberger, H.; Laesser, R.; Poitevin, Y.; Zmitko, M.; Rigal, E.

    2006-01-01

    The long-term objective of the EU Breeding Blankets programme is the development of DEMO breeding blankets, which shall assure tritium self-sufficiency, an economically attractive use of the heat produced inside the blankets for electricity generation and a sufficiently high shielding of the superconducting magnets for long time operation. In the short-term so-called DEMO relevant Test Blanket Modules (TBMs) of these breeder blanket concepts shall be designed, manufactured, tested, installed, commissioned and operated in ITER for first tests in a fusion environment. The Helium Cooled Lithium-Lead (HCLL) breeder blanket and the Helium Cooled Pebble Bed (HCPB) concepts are the two breeder blanket lines presently developed by the EU. The main objective of the EU test strategy related to TBMs in ITER is to provide the necessary information for the design and fabrication of breeding blankets for a future DEMO reactor. EU TBMs shall therefore use the same structural and functional materials, apply similar fabrication technologies, and test adequate processes and components. This paper gives an overview of the last progresses in terms of system design, calculations, test program, safety and R-and-D done these last two years in order to cope with the ambitious objective to introduce two EU TBM systems for day-1 of ITER operation. The engineering design of the two systems is mostly concluded and the priority is now on the development and qualification of the fabrication technologies. From calculations point of view, the last modelling efforts related to the thermal-hydraulic of the first wall, the tritium behaviour, and the box thermal and mechanical resistance in accidental conditions are presented. Last features of the TBM and cooling system designs and integration in ITER reactor are highlighted. In particular, this paper also describes the safety and licensing analyses performed for each concept to be able to include the TBM systems in the ITER preliminary safety report

  17. Thermal-hydraulic calculation and analysis on helium cooled ceramic breeder pebble bed assembly for in-pile irradiation and in-situ tritium extraction

    Guo Chunqiu; Xie Jiachun; Liu Xingmin

    2013-01-01

    In-pile irradiation and in-situ tritium extraction experiment is one of associated domestic research projects in ITER special program. According to the technical requirements of in-pile irradiation experiment of helium cooled ceramic breeder (ceramic) pebble bed assembly in a research reactor, the feasibility of the design for the in-pile irradiation and in-situ tritium extraction experiment of ceramic pebble bed assembly was evaluated. By conducting thermal-hydraulic design calculation with different in-pile irradiation channels, locations and structure parameters for ceramic pebble bed assembly, a reasonable design scheme of ceramic pebble bed assembly satisfying the design requirements for in-pile irradiation was obtained. (authors)

  18. Failure study of helium-cooled tungsten divertor plasma-facing units tested at DEMO relevant steady-state heat loads

    Ritz, G; Pintsuk, G; Linke, J; Hirai, T; Norajitra, P; Reiser, J; Giniyatulin, R; Makhankov, A; Mazul, I

    2009-01-01

    Tungsten was selected as armor material for the helium-cooled divertor in future DEMO-type fusion reactors and fusion power plants. After realizing the design and testing of them under cyclic thermal loads of up to ∼14 MW m -2 , the tungsten divertor plasma-facing units were examined by metallography; they revealed failures such as cracks at the thermal loaded and as-machined surfaces, as well as degradation of the brazing layers. Furthermore, in order to optimize the machining processes, the quality of tungsten surfaces prepared by turning, milling and using a diamond cutting wheel were examined. This paper presents a metallographic examination of the tungsten plasma-facing units as well as technical studies and the characterization on machining of tungsten and alternative brazing joints.

  19. Failure study of helium-cooled tungsten divertor plasma-facing units tested at DEMO relevant steady-state heat loads

    Ritz, G.; Hirai, T.; Norajitra, P.; Reiser, J.; Giniyatulin, R.; Makhankov, A.; Mazul, I.; Pintsuk, G.; Linke, J.

    2009-12-01

    Tungsten was selected as armor material for the helium-cooled divertor in future DEMO-type fusion reactors and fusion power plants. After realizing the design and testing of them under cyclic thermal loads of up to ~14 MW m-2, the tungsten divertor plasma-facing units were examined by metallography; they revealed failures such as cracks at the thermal loaded and as-machined surfaces, as well as degradation of the brazing layers. Furthermore, in order to optimize the machining processes, the quality of tungsten surfaces prepared by turning, milling and using a diamond cutting wheel were examined. This paper presents a metallographic examination of the tungsten plasma-facing units as well as technical studies and the characterization on machining of tungsten and alternative brazing joints.

  20. Upgrading the data acquisition and control systems of the European Breeding Blanket Test Facility

    Mannori, Simone; Sermenghi, Valerio; Utili, Marco; Malavasi, Andrea; Gianotti, Daniel

    2013-01-01

    Highlights: • Data Acquisition and Control Systems (DACS) upgrading of experimental plant for full size thermo hydraulic testing of nuclear subsystems. • DACS development using integrated hardware/software platform with graphical programming (LabVIEW). • Development of simplified models for real-time simulation. • Rapid prototyping with real time simulation of the complete plant. • Using the code developed for the real time simulator for the real plant DACS. -- Abstract: The EBBTF (European Breeding Blanket Test Facility) experimental plant is a key component for the development of the breeding blankets (TBMs test blanket modules, HCLL helium cooled lithium lead and HCPB helium cooled pebble bed types) used by ITER. EBBTF is an experimental plant which provides the double breeding/cooling loops (liquid metal and gas) required for HCLL testing. EBBTF is composed of four subsystems (TBM, IELLLO integrated European lead lithium loop, HE-FUS3 helium fusion loop, version 3 and helium compressor build by ATEKO) with dedicated control systems realized with hardware/software combinations covering 15 years (1995–2010) time span. At the end of 2010 we began to upgrade the HE-FUS3 data acquisition control systems (DACS) replacing the obsolete PLC Siemens S5 with National Instruments Compact FieldPoint and LabVIEW. The control room has been completely reorganized using high resolution monitors and workstations linked with standard Ethernet interfaces. The data acquisition, control, safety and SCADA software has been completely developed in ENEA using LabVIEW. In this paper we are going to discuss the technical difficulties and the solutions that we have used to accomplish the upgrade

  1. Re-analysis of HCPB/HCLL Blanket Mock-up Experiments Using Recent Nuclear Data Libraries

    Kondo, K.; Fischer, U.; Klix, A.; Pereslavtsev, P.; Serikov, A.; Villari, R.

    2014-01-01

    We have re-analysed the two breeding blankets experiments performed previously in the frame of the European fusion program on two mock-ups of the European Helium-Cooled-Lithiium Lead (HCLL) and Helium-Cooled-Pebble-Bed (HCPB) test blanket modules for ITER. The tritium production rate and the neutron and photon spectra measured in these mock-ups were compared with calculations using FENDL-3 Starter Library, release 4 and state-of-the-art nuclear data evaluations, JEFF-3.1.2, JENDL-4.0 and ENDF/B-VII.0. The tritium production calculated for the HCPB mock-up underestimates the experimental result by about 10%. The result calculated with FENDL-3/SLIB4 gives slightly smaller tritium production by 2% than the one with FENDL-2.1. The difference attributes to the slight modification of the total and elastic scattering cross section of Be. For the HCLL experiment, all libraries reproduce the experimental results well. FENDL-3/SLIB4 gives better result both for the measured spectra and the tritium production compared to FENDL-2.1

  2. Breeding blanket for Demo

    Proust, E.; Giancarli, L.

    1992-01-01

    This paper presents the main design features, their rationale, and the main critical issues for the development, of the four DEMO-relevant blanket concepts presently investigated within the framework of the European Test-Blanket Development Programme

  3. ITER convertible blanket evaluation

    Wong, C.P.C.; Cheng, E.

    1995-01-01

    Proposed International Thermonuclear Experimental Reactor (ITER) convertible blankets were reviewed. Key design difficulties were identified. A new particle filter concept is introduced and key performance parameters estimated. Results show that this particle filter concept can satisfy all of the convertible blanket design requirements except the generic issue of Be blanket lifetime. If the convertible blanket is an acceptable approach for ITER operation, this particle filter option should be a strong candidate

  4. Nuclear maintenance strategy and first steps for preliminary maintenance plan of the EU HCLL & HCPB Test Blanket Systems

    Galabert, Jose, E-mail: jose.galabert@f4e.europa.eu [F4E Fusion for Energy, EU Domestic Agency, c/Josep Pla, 2. B3, 08019, Barcelona (Spain); Hopper, Dave [AMEC Foster Wheeler, Faraday Street, Birchwood Park, WA3 6GN (United Kingdom); Neviere, Jean-Cristophe [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, 13067, St. Paul Lez Durance Cedex (France); Nodwell, David [CCFE, Culham Science Centre, Abingdon, OX14 3DB, Oxfordshire (United Kingdom); Pascal, Romain [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, 13067, St. Paul Lez Durance Cedex (France); Poitevin, Yves; Ricapito, Italo [F4E Fusion for Energy, EU Domestic Agency, c/Josep Pla, 2. B3, 08019, Barcelona (Spain); White, Gareth [AMEC Foster Wheeler, Faraday Street, Birchwood Park, WA3 6GN (United Kingdom)

    2017-03-15

    Highlights: • Nuclear maintenance strategy for the two European (EU) Test Blanket Systems (TBS): i/. Helium Cooled Lead Lithium (HCLL) and ii/. Helium Cooled Pebble Bed (HCPB). • Preliminary identification of maintenance tasks for most relevant components of the EU HCLL & HCPB TBS. • Preliminary feasibility analysis for hands-on maintenance tasks of some relevant components of the European Test Blanket Systems. • Design recommendations for enhancement of the European Test Blanket Systems maintainability. - Abstract: This paper gives an overview of nuclear maintenance strategy to be followed for the European HCLL & HCPB Test Blanket Systems (TBS) to be installed in ITER. One of the several core documents to prepare in view of their licensing is their respective ‘Maintenance Plan’. This document is fundamental for ensuring sound performance and safety of the TBS during ITER’s operational phase and shall include, amongst others, relevant information on: maintenance organization, preventive and corrective maintenance task procedures, condition monitoring for key components, maintenance work planning, and a spare parts plan, just to mention some of the key topics. In compliance with the ITER Plant Maintenance policy, first steps have been taken aimed at defining nuclear maintenance strategy for some of the most relevant HCLL & HCPB TBS components, conducted by F4E in collaboration with industry. After a brief recall of maintenance strategy of the TBM Program (PBS-56), this paper analyses main features of EU HCLL & HCPB TBS maintainability and identifies, at their conceptual design phase, a preliminary list of maintenance tasks to be developed for their most representative components. In addition, the paper also presents the first nuclear maintenance studies conducted for replacement of the Q{sub 2} Getter Beds, identifying some design recommendations for their sound maintainability.

  5. Nuclear maintenance strategy and first steps for preliminary maintenance plan of the EU HCLL & HCPB Test Blanket Systems

    Galabert, Jose; Hopper, Dave; Neviere, Jean-Cristophe; Nodwell, David; Pascal, Romain; Poitevin, Yves; Ricapito, Italo; White, Gareth

    2017-01-01

    Highlights: • Nuclear maintenance strategy for the two European (EU) Test Blanket Systems (TBS): i/. Helium Cooled Lead Lithium (HCLL) and ii/. Helium Cooled Pebble Bed (HCPB). • Preliminary identification of maintenance tasks for most relevant components of the EU HCLL & HCPB TBS. • Preliminary feasibility analysis for hands-on maintenance tasks of some relevant components of the European Test Blanket Systems. • Design recommendations for enhancement of the European Test Blanket Systems maintainability. - Abstract: This paper gives an overview of nuclear maintenance strategy to be followed for the European HCLL & HCPB Test Blanket Systems (TBS) to be installed in ITER. One of the several core documents to prepare in view of their licensing is their respective ‘Maintenance Plan’. This document is fundamental for ensuring sound performance and safety of the TBS during ITER’s operational phase and shall include, amongst others, relevant information on: maintenance organization, preventive and corrective maintenance task procedures, condition monitoring for key components, maintenance work planning, and a spare parts plan, just to mention some of the key topics. In compliance with the ITER Plant Maintenance policy, first steps have been taken aimed at defining nuclear maintenance strategy for some of the most relevant HCLL & HCPB TBS components, conducted by F4E in collaboration with industry. After a brief recall of maintenance strategy of the TBM Program (PBS-56), this paper analyses main features of EU HCLL & HCPB TBS maintainability and identifies, at their conceptual design phase, a preliminary list of maintenance tasks to be developed for their most representative components. In addition, the paper also presents the first nuclear maintenance studies conducted for replacement of the Q_2 Getter Beds, identifying some design recommendations for their sound maintainability.

  6. Comprehensive structural analysis of the HCPB demo blanket under thermal, mechanical, electromagnetic and radiation induced loads

    Boccaccini, L.V.; Norajitra, P.; Ruatto, P.; Scaffidi-Argentina, F.

    1998-01-01

    For the helium-cooled pebble bed (HCPB) blanket, which is one of the two reference concepts studied within the European Demo Development Program, a comprehensive finite element (FEM) structural analysis has been performed. The analysis refers to the steady-state operating conditions of an outboard blanket segment. On the basis of a three-dimensional model of radial-toroidal sections of the segment box, thermal stresses caused by the temperature gradients in the blanket structure have been calculated. Furthermore, the mechanical loads due to coolant pressure in normal operating conditions as well as an accidental over-pressurization of the blanket box have been accounted for. The stresses caused by a central plasma major disruption from an initial current of 20 MA to zero in 20 ms have been also taken into account. Radiation-induced dimensional changes of breeder and multiplier material caused by both helium production and neutron damage, have also been evaluated and discussed. All the above loads have been combined as input for a FEM stress analysis and the resulting stress distribution has been evaluated according to the American Society of Mechanical Engineers (ASME) norms. (orig.)

  7. Experimental investigation of MHD pressure losses in a mock-up of a liquid metal blanket

    Mistrangelo, C.; Bühler, L.; Brinkmann, H.-J.

    2018-03-01

    Experiments have been performed to investigate the influence of a magnetic field on liquid metal flows in a scaled mock-up of a helium cooled lead lithium (HCLL) blanket. During the experiments pressure differences between points on the mock-up have been recorded for various values of flow rate and magnitude of the imposed magnetic field. The main contributions to the total pressure drop in the test-section have been identified as a function of characteristic flow parameters. For sufficiently strong magnetic fields the non-dimensional pressure losses are practically independent on the flow rate, namely inertia forces become negligible. Previous experiments on MHD flows in a simplified test-section for a HCLL blanket showed that the main contributions to the total pressure drop in a blanket module originate from the flow in the distributing and collecting manifolds. The new experiments confirm that the largest pressure drops occur along manifolds and near the first wall of the blanket module, where the liquid metal passes through small openings in the stiffening plates separating two breeder units. Moreover, the experimental data shows that with the present manifold design the flow does not distribute homogeneously among the 8 stacked boxes that form the breeding zone.

  8. A passively-safe fusion reactor blanket with helium coolant and steel structure

    Crosswait, Kenneth Mitchell [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1994-04-01

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.

  9. Materials for breeding blankets

    Mattas, R.F.; Billone, M.C.

    1995-09-01

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified

  10. Materials for breeding blankets

    Mattas, R.F.; Billone, M.C.

    1996-01-01

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as primary blanket materials, which have the greatest influence in determining the overall design and performance, and secondary blanket materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified. (orig.)

  11. The Test Blanket Modules project in Europe: From the strategy to the technical plan over next ten years

    Poitevin, Y.; Zmitko, M.; Orco, G. dell; Laesser, R.; Diegele, E.; Sundstroem, J.; Boccaccini, L.; Salavy, J.-F.

    2006-01-01

    The testing of Breeding Blanket concepts in ITER is recognized as an essential milestone in the development of a future reactor ensuring tritium self-sufficiency, extraction of high grade heat and electricity production. Europe is currently developing two reference breeding blankets for DEMO reactor specifications that will be tested in ITER: the Helium-Cooled Lithium-Lead (HCLL) blanket which uses the eutectic Pb-15. 7 Li as both breeder and neutron multiplier, and the Helium-Cooled Pebble-Bed (HCPB) blanket which features lithiated ceramic pebbles (Li 4 SiO 4 or Li 2 TiO 3 ) as breeder and beryllium pebbles as neutron multiplier. Both blankets are using the pressurized He technology for heat extraction (8 MPa, inlet/outlet temperature 300/500 o C) and a 9% CrWVTa Reduced Activation Ferritic Martensitic (RAFM) steel as structural material, the EUROFER. Referring to the so called '' fast-track '' EU scenario, those concepts are intended to be tested in ITER, getting the maximum of information required for launching the DEMO blanket design and construction after the first 10 years of ITER operation. For that, the EU has adopted a blanket testing strategy based on the development of Test Blanket Modules (TBMs) that are expected to use DEMO relevant technologies and are designed for each ITER plasma phase to optimize the feedback and to avoid any impact on ITER availability. Following the decision on ITER construction, the EU has reviewed and detailed the fundamental elements for an implementation of the future EU TBMs Project aimed at delivering TBMs Systems to ITER under suitable schedule and acceptance standards. For that the following items have been analyzed in detail and are reported in the present paper: · Impact of the ITER environment (design, standards, schedule, operational scheme) on the TBM systems design and development plan · Project technical plan with focus on the next ten years up to the installation of the first TBMs in ITER · Project risk

  12. Thermal-hydraulics of helium cooled First Wall channels and scoping investigations on performance improvement by application of ribs and mixing devices

    Arbeiter, Frederik, E-mail: frederik.arbeiter@kit.edu [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, Christian [EUROfusion – Programme Management Unit, Garching (Germany); Chen, Yuming; Ilić, Milica; Schwab, Florian [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Sieglin, Bernhard [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Wenninger, Ronald [EUROfusion – Programme Management Unit, Garching (Germany)

    2016-11-01

    Highlights: • Existing first wall designs and expected plasma heat loads are reviewed. • Heat transfer enhancement methods are investigated by CFD. • The results for heat transfer and friction are given, compared and explained. • Relations for needed pumping power and gained thermal heat are shown. • A range for the maximum permissible heat loads from the plasma is estimated. - Abstract: The first wall (FW) of DEMO is a component with high thermal loads. The cooling of the FW has to comply with the material's upper and lower temperature limits and requirements from stress assessment, like low temperature gradients. Also, the cooling has to be integrated into the balance-of-plant, in a sense to deliver exergy to the power cycle and require a limited pumping power for coolant circulation. This paper deals with the basics of FW cooling and proposes optimization approaches. The effectiveness of several heat transfer enhancement techniques is investigated for the use in helium cooled FW designs for DEMO. Among these are wall-mounted ribs, large scale mixing devices and modified hydraulic diameter. Their performance is assessed by computational fluid dynamics (CFD), and heat transfer coefficients and pressure drop are compared. Based on the results, an extrapolation to high heat fluxes is tried to estimate the higher limits of cooling capabilities.

  13. Design of the segment structure and coolant ducts for a fusion reactor blanket and shield

    Briaris, D.A.; Stanbridge, J.R.

    1978-05-01

    An outline design and analysis of a support structure for the replaceable first wall of a helium cooled fusion reactor blanket has been undertaken. The proposed structure supports all the segment gravitational loads with maximum deflections limited to < 10 mm, and is itself supported off the outer shield by a simple vee-in-groove arrangement. It is a feature of the design that the coaxial coolant pipes and the segment structure operate at the same temperature, making it possible for them to be integrated, thereby avoiding the necessity for pipe bellows. The requirements of cooling the inner arm of the structure and increasing the major radius of the torus by approximately = 0.5 m, have been identified as problems associated with the 'horseshoe' shaped structure applicable to the reactor with divertor. For a ring structure, i.e. reactor without divertor, these problems do not arise. (author)

  14. Status of the European R and D on beryllium as multiplier material for breeder blankets

    Moeslang, A.; Boccaccini, L.V.; Rabaglino, E.; Piazza, G.; Cardella, A.; Sannen, L.; Scibetta, M.; Laan, J. van der; Hegeman, J.B.J.W.

    2004-01-01

    Within the international fusion community a variety of breeding blanket concepts are being considered, ranging from more conservative concepts to higher-risk concepts for fusion power reactors. In Europe, the Helium Cooled Pebble Bed (HCPB) blanket is one of the two reference concepts which will also be tested as Test Blanket Module (TBM) in ITER. In addition to the R and D for structural parts of the HCPB blanket, a considerable effort is devoted to the production and qualification of ceramic breeder and neutron multiplier (beryllium or beryllide) pebble beds. Since in the HCPB blanket pebbles made of lithium ceramics are foreseen, a high volume fraction of beryllium as a neutron multiplier to Li-based ceramic of about 4: l is needed. The typical loading conditions for beryllium are, with a neutron wall load of ∼12.5 MWa/m 2 and in ∼5 years lifetime: T min ∼300degC, T max ∼600-900degC, displacement damage ∼80 dpa, peak 4 He production ∼26000 appm and peak 3 H production ∼700 appm at the End-Of-Life. The behaviour of beryllium under irradiation is considered to be a key issue of the HCPB blanket, because of swelling due to helium bubbles and tritium retention. A large R and D programme on beryllium has been implemented in Europe, aimed at characterising and predicting the material behaviour before and under irradiation. An overview on experimental and modelling activities performed during the past 2 years is given with typical results on non-irradiated and irradiated Beryllium materials and pebble beds and the relevance of major results on future beryllium R and D is addressed. (author)

  15. Neutronics experiments for uncertainty assessment of tritium breeding in HCPB and HCLL blanket mock-ups irradiated with 14 MeV neutrons

    Batistoni, P.; Angelone, M.; Pillon, M.; Villari, R.; Fischer, U.; Klix, A.; Leichtle, D.; Kodeli, I.; Pohorecki, W.

    2012-01-01

    Two neutronics experiments have been carried out at 14 MeV neutron sources on mock-ups of the helium cooled pebble bed (HCBP) and the helium cooled lithium lead (HCLL) variants of ITER test blanket modules (TBMs). These experiments have provided an experimental validation of the calculations of the tritium production rate (TPR) in the two blanket concepts and an assessment of the uncertainties due to the uncertainties on nuclear data. This paper provides a brief summary of the HCPB experiment and then focuses in particular on the final results of the HCLL experiment. The TPR has been measured in the HCLL mock-up irradiated for long times at the Frascati 14 MeV Neutron Generator (FNG). Redundant and well-assessed experimental techniques have been used to measure the TPR by different teams for inter-comparison. Measurements of the neutron and gamma-ray spectra have also been performed. The analysis of the experiment, carried out by the MCNP code with FENDL-2.1 and JEFF-3.1.1 nuclear data libraries, and also including sensitivity/uncertainty analysis, shows good agreement between measurements and calculations, within the total uncertainty of 5.9% at 1σ level. (paper)

  16. Tritium management and anti-permeation strategies for three different breeding blanket options foreseen for the European Power Plant Physics and Technology Demonstration reactor study

    Demange, D., E-mail: david.demange@kit.edu [Karlsruhe Institute of Technology, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Boccaccini, L.V.; Franza, F. [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Santucci, A.; Tosti, S. [Associazione ENEA-Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, 00044 Frascati (RM) (Italy); Wagner, R. [Karlsruhe Institute of Technology, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-15

    In DT fusion reactors like DEMO, the commonly accepted tritium (T) losses through the steam generator (SG) shall not exceed about 2 mg/d that are more than 5 orders of magnitude lower than the T production rate of about 360 g/d in the breeding blanket (BB). A very effective mitigation strategy is required balancing the size and efficiency of the processes in the breeding and cooling loops, and the availability and efficiency of anti-permeation barriers. A numerical study is presented using the T permeation code FUS-TPC that computes all T flows and inventories considering the design and operation of the BB, the SG, and the T systems. Many scenarios are numerically analyzed for three breeding blankets concepts – helium cooled pebbles bed (HCPB), helium cooled lithium lead (HCLL), and water cooled lithium lead (WCLL) – varying the T processes throughput and efficiency, and the permeation regimes through the BB and SG to be either surface-limited or diffusion-limited with possible permeation reduction factor. For each BB concept, we discuss workable operation scenarios and suggest specific anti-permeation strategies.

  17. Analysis of multi-scale spatial separation in a block-type thorium-loaded helium-cooled high-temperature reactor

    Huang, Jie; Ding, Ming

    2017-01-01

    Highlights: • Four-level of spatial separation is described in a block-type thorium-loaded HTR. • A traditional two-step calculation scheme is used to get the neutronic performance. • Fuel cycle cost is calculated by the levelised lifetime cost method. • Fuel cycle cost decreases with the increase of separation level or thorium content. • Effective enrichment basically determines the fuel cycle cost. - Abstract: With nuclear energy’s rapid development in recent years, supply of nuclear fuel has become increasingly important. Thorium has re-gained attention because of its abundant reserves and excellent physical properties. Compared to the homogeneous Th/U MOX fuel, separation of thorium and uranium in space is a better use of thorium. Therefore, this paper describes four-level spatial separation – no separation, tristructural-isotropic (TRISO) level, channel level and block level – in a block-type thorium-loaded helium-cooled high-temperature reactor (HTR). A traditional two-step calculation scheme, lattice calculation followed by core calculation, is used to get the neutronic performance of the equilibrium cycle, including uranium enrichment, mass of fuel, effective multiplication factor, and average conversion ratio. Based on these data, the fuel cycle cost of different-scale spatial separation can be calculated by the levelised lifetime cost method as a function of thorium content. As the separation level increases from no separation to channel level, the effective enrichment decreases 15% due to the increase of resonance escape probability. So there is a 13% drop for the fuel cycle cost. For TRISO-level separation, as the thorium content increases from 9 to 57%, the effective enrichment decreases 14% because of the superior breeding capacity of U-233. As a result, the fuel cycle cost also has about a 12% decrease. From the perspective of fuel cycle economics, channel-level separation with 60% thorium content is suggested.

  18. Effect of graphite reflector on activation of fusion breeding blanket

    Lee, Cheol Woo; Lee, Young-Ouk; Lee, Dong Won; Cho, Seungyon; Ahn, Mu-Young

    2016-01-01

    Highlights: • The graphite reflector concept has been applied in the design of the Korea HCCR TBM for ITER and this concept is also a candidate design option for Korea Demo. • In the graphite reflector, C-14, B-11 and Be-10 are produced after an irradiation. Impurities in both case of beryllium and graphite is dominant in the shutdown dose after an irradiation. • Based on the evaluation, the graphite reflector is a good alternative of the beryllium multiplier in the view of induced activity and shutdown dose. But C-14 produced in the graphite reflector should be considered carefully in the view of radwaste management. - Abstract: Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. In this paper, activity analysis was performed and the effect of graphite reflector in the view of activation was compared to the beryllium multiplier. As a result, it is expected that using the graphite reflector instead of the beryllium multiplier decreases total activity very effectively. But the graphite reflector produces C-14 about 17.2 times than the beryllium multiplier. Therefore, C-14 produced in the graphite reflector is expected as a significant nuclide in the view of radwaste management.

  19. Manufacturing Technology of Ceramic Pebbles for Breeding Blanket

    Rosa Lo Frano

    2018-05-01

    Full Text Available An open issue for the fusion power reactor is the choice of breeding blanket material. The possible use of Helium-Cooled Pebble Breeder ceramic material in the form of pebble beds is of great interest worldwide as demonstrated by the numerous studies and research on this subject. Lithium orthosilicate (Li4SiO4 is a promising breeding material investigated in this present study because the neutron capture of Li-6 allows the production of tritium, 6Li (n, t 4He. Furthermore, lithium orthosilicate has the advantages of low activation characteristics, low thermal expansion coefficient, high thermal conductivity, high density and stability. Even if they are far from the industrial standard, a variety of industrial processes have been proposed for making orthosilicate pebbles with diameters of 0.1–1 mm. However, some manufacturing problems have been observed, such as in the chemical stability (agglomeration phenomena. The aim of this study is to provide a new methodology for the production of pebbles based on the drip casting method, which was jointly developed by the DICI-University of Pisa and Industrie Bitossi. Using this new (and alternative manufacturing technology, in the field of fusion reactors, appropriately sized ceramic pebbles could be produced for use as tritium breeders.

  20. Mirror reactor blankets

    Lee, J.D.; Barmore, W.L.; Bender, D.J.; Doggett, J.N.; Galloway, T.R.

    1976-01-01

    The general requirements of a breeding blanket for a mirror reactor are described. The following areas are discussed: (1) facility layout and blanket maintenance, (2) heat transfer and thermal conversion system, (3) materials, (4) tritium containment and removal, and (5) nuclear performance

  1. Fusion fuel blanket technology

    Hastings, I.J.; Gierszewski, P.

    1987-05-01

    The fusion blanket surrounds the burning hydrogen core of a fusion reactor. It is in this blanket that most of the energy released by the nuclear fusion of deuterium-tritium is converted into useful product, and where tritium fuel is produced to enable further operation of the reactor. As fusion research turns from present short-pulse physics experiments to long-burn engineering tests in the 1990's, energy removal and tritium production capabilities become important. This technology will involve new materials, conditions and processes with applications both to fusion and beyond. In this paper, we introduce features of proposed blanket designs and update and status of international research. In focusing on the Canadian blanket technology program, we discuss the aqueous lithium salt blanket concept, and the in-reactor tritium recovery test program

  2. Blanket testing in NET

    Chazalon, M.; Daenner, W.; Libin, B.

    1989-01-01

    The testing stages in NET for the performance assessment of the various breeding blanket concepts developed at the present time in Europe for DEMO (LiPb and ceramic blankets) and the requirements upon NET to perform these tests are reviewed. Typical locations available in NET for blanket testing are the central outboard segments and the horizontal ports of in-vessel sectors. These test positions will be connectable with external test loops. The number of test loops (helium, water, liquid metal) will be such that each major class of blankets can be tested in NET. The test positions, the boundary conditions and the external test loops are identified and the requirements for test blankets are summarized (author). 6

  3. Impact analysis of the time trend of TBR and irradiation damage assessment of HCSB blanket for CFETR

    Zeng, Qin, E-mail: zengqin@ustc.edu.cn; Chen, Hongli; Lv, Zhongliang; Pan, Lei; Zhang, Haoran; Shi, Wei

    2017-01-15

    Chinese Fusion Engineering Testing Reactor (CFETR) is a test tokamak reactor to bridge the gap between ITER and future fusion power plants and to demonstrate generation of fusion power in China. In fusion power plants, tritium is generated from the reaction of neutron and Lithium. One of the missions of CFETR is the full cycle of tritium self-sufficiency. For the mission, a Helium Cooled Solid Breeder blanket (HCSB) was proposed for CFETR and its conceptual design has been carried out. In order to assess the capacity of the tritium breeding and irradiation damage of first wall of the HCSB blanket during the 8 years’ engineering test stage, this paper presents the time trend of TBR analysis and irradiation damage assessment of HCSB blanket based on the three-dimensional (3D) neutronics model which is created by McCad. In the 3D neutronics model, the outboard blanket on equatorial plane is described based on the detailed 3D engineering model. The calculations were performed by MCNP and FISPACT with FENDL/2.1 data library. The impact analysis of the thickness of coolant plates (CP) and the structural material content in CPs to the TBR is assessment.

  4. Status of EC solid breeder blanket designs and R and D for demo fusion reactors

    Proust, E.; Anzidei, L.; Moons, F.

    1994-01-01

    Within the European Community Fusion Technology Program two solid breeder blankets for a DEMO reactor are being developed. The two blankets have various features in common: helium as coolant and as tritium purge gas, the martensitic steel MANET as structural material and beryllium as neutron multiplier. The configurations of the two blankets are however different: in the B.I.T. (Breeder Inside Tube) concept the breeder materials are LiAlO 2 or Li 2 ZrO 3 in the form of annular pellets contained in tubes surrounded by beryllium blocks, the coolant helium being outside the tubes, whereas in the B.O.T. (Breeder out of Tube) the breeder and multiplier material are Li 4 SiO 4 and beryllium pebbles forming a mixed bed placed outside the tubes containing the coolant helium. The main critical issues for both blankets are the behavior of the breeder ceramics and of beryllium under irradiation and the tritium control. Other issues are the low temperature irradiation induced embrittlement of MANET, the mechanical effects caused by major plasma disruptions, and safety and reliability. The R and D work concentrate on these issues. The development of martensitic steels including MANET is part of a separate program. Breeder ceramics and beryllium irradiations have been so far performed for conditions which do not cover the peak values injected in the DEMO blankets. Further irradiations in thermal reactors and in fast reactors, especially for beryllium, are required. An effective tritium control requires the development of permeation barriers and/or of methods of oxidation of the tritium in the main helium cooling systems. First promising results have been obtained also in field of mechanical effects from plasma disruptions and safety and reliability, however further work is required in the reliability field and to validate the codes for the calculations of the plasma disruption effects. (authors). 8 figs., 2 tabs., 53 refs

  5. Limitations on blanket performance

    Malang, S.

    1999-01-01

    The limitations on the performance of breeding blankets in a fusion power plant are evaluated. The breeding blankets will be key components of a plant and their limitations with regard to power density, thermal efficiency and lifetime could determine to a large degree the attractiveness of a power plant. The performance of two rather well known blanket concepts under development in the frame of the European Blanket Programme is assessed and their limitations are compared with more advanced (and more speculative) concepts. An important issue is the question of which material (structure, breeder, multiplier, coatings) will limit the performance and what improvement would be possible with a 'better' structural material. This evaluation is based on the premise that the performance of the power plant will be limited by the blankets (including first wall) and not by other components, e.g. divertors, or the plasma itself. However, the justness of this premise remains to be seen. It is shown that the different blanket concepts cover a large range of allowable power densities and achievable thermal efficiencies, and it is concluded that there is a high incentive to go for better performance in spite of possibly higher blanket cost. However, such high performance blankets are usually based on materials and technologies not yet developed and there is a rather high risk that the development could fail. Therefore, it is explained that a part of the development effort should be devoted to concepts where the materials and technologies are more or less in hand in order to ensure that blankets for a DEMO reactor can be developed and tested in a given time frame. (orig.)

  6. Tritium Management In HCLL-PPCS Model AB Blanket

    Ricapito, I.; Aiello, A.; Benamati, G.; Utili, M.; Ciampichetti, A.; Zucchetti, M.

    2006-01-01

    One the main issues in the HCLL blanket development for a prototype fusion reactor is the technical feasibility of the bred tritium processing system. The basis of such concern lies in the very low tritium-Pb17Li Sieverts' constant, as measured by different scientists in the past years. In the PPCS reactor 650 g/d of tritium must be generated in the breeding blanket while less than 1 g/y of tritium has to be released to the environment through the secondary cooling circuit. As a consequence, CPS (Coolant Purification System) plays a fundamental role because it has to keep at an acceptable level the tritium partial pressure in the primary HCS (Helium Cooling Circuit) limiting, therefore, the tritium environmental release through leakage and permeation into the secondary cooling circuit. On the other hand, the He mass flow-rate to be processed by CPS is linear with the tritium permeation rate from the breeder into HCS. Therefore, with the above mentioned low Sieverts' constant values and the consequent high tritium partial pressure in the liquid metal, the possibility to keep acceptable the CPS capacity depends on a highly efficient and stable performance of tritium permeation barriers, to be applied not only on the blanket cooling plates but also on the steam generator walls. However, the experimental results on the tritium permeation barriers under relevant operative conditions were so far quite disappointing. The new data on the Sieverts' constant achieved at ENEA CR Brasimone, one order of magnitude higher than those founding the past, have a big impact in relaxing the above mentioned requirements for the tritium management in PPCS model AB reactor. Besides presenting and discussing these recent experimental results, an updated assessment of the tritium permeation rate from the liquid breeder into HCS through the cooling plates and from HCS into the environment through the steam generators is given in this paper. The consequent new constraints in terms of tritium

  7. Tritium transport in HCLL and WCLL DEMO blankets

    Candido, Luigi [DENERG, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Utili, Marco [ENEA UTIS- C.R. Brasimone, Bacino del Brasimone, Camugnano, BO (Italy); Nicolotti, Iuri [DENERG, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Zucchetti, Massimo, E-mail: massimo.zucchetti@polito.it [DENERG, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2016-11-01

    Highlights: • Tritium inventories and tritium losses are the main output of the presented model for HCLL and WCLL. • A parametric study has been performed, to show the behavior of the two systems when certain parameters are changed, in order to minimize inventories and/or losses. • An improved design is needed, in order to reduce the radiological hazard related to tritium activity. According to test number 7, HCLL-BB could be able to have a tritium inventory of 33.05 g and losses of 19.55 Ci/d. • WCLL-BB shows a very low radiological risk, much lower than that suggested (inventory: 17.48 g, losses: 3.2 Ci/d). An ptimization study has been performed aiming to minimize the water flow rate for an upgraded design. • Both for HCLL and WCLL, the most critical parameters able to produce relevant variations in inventories and losses are the helium/water fraction, the CPS/WDS and the permeation reduction factors. - Abstract: The Helium-Cooled Lithium Lead (HCLL) and Water-Cooled Lithium Lead (WCLL) Breeding Blankets are two of the four blanket designs proposed for DEMO reactor. The study of tritium transport inside the blankets is fundamental to assess their preliminary design and safety features. A mathematical model has been derived, in a new form making makes easier to determine the most critical components as far as tritium losses and tritium inventories are concerned, and to model the tritium performance of the whole system. Two cases have been studied, the former with tritium generation rate constant in time and the latter considering a typical pulsed operation for a time span of 100 h. Tritium inventories and tritium losses are the main output of the model. Tritium concentrations, inventories and losses are initially calculated and compared for the two blankets, in a reference case without permeation barriers or cold traps. A parametric study to show the behavior of the two systems when certain parameters are changed, in order to minimize inventories and

  8. Activation and afterheat analyses for the HCPB test blanket

    Pereslavtsev, P.; Fischer, U.

    2007-01-01

    The Helium-Cooled Pebble Bed (HCPB) blanket is one of two breeder blanket concepts developed in the framework of the European Fusion Technology Programme for performance tests in ITER. The recent development programme focussed on the detailed engineering design of the Test Blanket Module (TBM) and associated systems including the assessment of safety and licensing related issues with the objective to prepare for a preliminary Safety Report. To provide a sound data basis for the safety analyses of the HCPB TBM system in ITER, the afterheat and activity inventories were assessed making use of a code system that allows performing 3D activation calculations by linking the Monte Carlo transport code MCNP and the fusion inventory code FISPACT through an appropriate interface. A suitable MCNP model of a 20 degree ITER torus sector with an integrated TBM of the HCPB PI (Plant Integration) type in the horizontal test blanket port was developed and adapted to the requirements for coupled 3D neutron transport and activation calculations. Two different irradiation scenarios were considered in the coupled 3D neutron transport and activation calculations. The first one is representative for the TBM irradiation in ITER with a total of 9000 neutron pulses over a three (calendar) years period. It was simulated by a continuous irradiation for 3 years minus the last month and a discontinuous irradiation with 250 pulses (420 s pulse length, 1200 s power-off in between) over the last month. The second (conservative) irradiation scenario assumes an extended irradiation time over the full anticipated lifetime of ITER according to the M-DRG-1 irradiation scenario with a total first wall fluence of 0.3 MWa/m 2 . For both irradiation scenarios the radioactivity inventories, the afterheat and the contact gamma dose were calculated as function of the decay time. Data were processed for the total activity and afterheat of the TBM, its constituting components and materials including their

  9. ITER shielding blanket

    Strebkov, Yu [ENTEK, Moscow (Russian Federation); Avsjannikov, A [ENTEK, Moscow (Russian Federation); Baryshev, M [NIAT, Moscow (Russian Federation); Blinov, Yu [ENTEK, Moscow (Russian Federation); Shatalov, G [KIAE, Moscow (Russian Federation); Vasiliev, N [KIAE, Moscow (Russian Federation); Vinnikov, A [ENTEK, Moscow (Russian Federation); Chernjagin, A [DYNAMICA, Moscow (Russian Federation)

    1995-03-01

    A reference non-breeding blanket is under development now for the ITER Basic Performance Phase for the purpose of high reliability during the first stage of ITER operation. More severe operation modes are expected in this stage with first wall (FW) local heat loads up to 100-300Wcm{sup -2}. Integration of a blanket design with protective and start limiters requires new solutions to achieve high reliability, and possible use of beryllium as a protective material leads to technologies. The rigid shielding blanket concept was developed in Russia to satisfy the above-mentioned requirements. The concept is based on a copper alloy FW, austenitic stainless steel blanket structure, water cooling. Beryllium protection is integrated in the FW design. Fabrication technology and assembly procedure are described in parallel with the equipment used. (orig.).

  10. Tritium breeding blanket

    Smith, D.; Billone, M.; Gohar, Y.; Baker, C.; Mori, S.; Kuroda, T.; Maki, K.; Takatsu, H.; Yoshida, H.; Raffray, A.; Sviatoslavsky, I.; Simbolotti, G.; Shatalov, G.

    1991-01-01

    The terms of reference for ITER provide for incorporation of a tritium breeding blanket with a breeding ratio as close to unity as practical. A breeding blanket is required to assure an adequate supply of tritium to meet the program objectives. Based on specified design criteria, a ceramic breeder concept with water coolant and an austenitic steel structure has been selected as the first option and lithium-lead blanket concept has been chosen as an alternate option. The first wall, blanket, and shield are integrated into a single unit with separate cooling systems. The design makes extensive use of beryllium to enhance the tritium breeding ratio. The design goals with a tritium breeding ratio of 0.8--0.9 have been achieved and the R ampersand D requirements to qualify the design have been identified. 4 refs., 8 figs., 2 tabs

  11. Blankets for thermonuclear device

    Maki, Koichi; Fukumoto, Hideshi.

    1986-01-01

    Purpose: To produce tritium more than consumed, through thermonuclear reaction. Constitution: The energy spectrum of neutron generated by neutron multiplying reaction in a neutron multiplying blanket and moderated neutrons has a large ratio in a low energy section. In the low-energy absorption region of stainless steel which is a material of cooling pipes constituting a neutron multiplying blanket cooling channel, the neutrons are absorbed, lessening the neutron multiplying effect. To prevent this, the neutron multiplying blanket cooling channel is covered with tritium breeding blankets, thereby enabling the production of a substantially great amount of tritium more than the amount of tritium to be consumed by the thermonuclear reaction by preventing neutron absorption by the component materials of the cooling channel, improving the tritium breeding ratio by 20 to 25 %, and increasing the efficiency of use of neutrons for tritium generation. (Horiuchi, T.)

  12. ITER blanket designs

    Gohar, Y.; Parker, R.; Rebut, P.H.

    1995-01-01

    The ITER first wall, blanket, and shield system is being designed to handle 1.5±0.3 GW of fusion power and 3 MWa m -2 average neutron fluence. In the basic performance phase of ITER operation, the shielding blanket uses austenitic steel structural material and water coolant. The first wall is made of bimetallic structure, austenitic steel and copper alloy, coated with beryllium and it is protected by beryllium bumper limiters. The choice of copper first wall is dictated by the surface heat flux values anticipated during ITER operation. The water coolant is used at low pressure and low temperature. A breeding blanket has been designed to satisfy the technical objectives of the Enhanced Performance Phase of ITER operation for the Test Program. The breeding blanket design is geometrically similar to the shielding blanket design except it is a self-cooled liquid lithium system with vanadium structural material. Self-healing electrical insulator (aluminum nitride) is used to reduce the MHD pressure drop in the system. Reactor relevancy, low tritium inventory, low activation material, low decay heat, and a tritium self-sufficiency goal are the main features of the breeding blanket design. (orig.)

  13. Pressurizing Behavior on Ingress of Coolant into Pebble Bed of Blanket of Fusion DEMO Reactor

    Daigo Tsuru; Mikio Enoeda; Masato Akiba

    2006-01-01

    Solid breeder blankets are being developed as candidate blankets for the Fusion DEMO reactor in Japan. JAEA is performing the development of the water cooled and helium cooled solid breeder blankets. The blanket utilizes ceramic breeder pebbles and multiplier pebbles beds cooled by high pressure water or high pressure helium in the cooling tubes placed in the blanket box structure. In the development of the blanket, it is very important to incorporate the safety technology as well as the performance improvement on tritium production and energy conversion. In the safety design and technology, coolant ingress in the blanket box structure is one of the most important events as the initiators. Especially the thermal hydraulics in the pebble bed in the case of the high pressure coolant ingress is very important to evaluate the pressure propagation and coolant flow behavior. This paper presents the preliminary results of the pressure loss characteristics by the coolant ingress in the pebble bed. Experiments have been performed by using alumina pebble bed (4 litter maximum volume of the pebble bed) and nitrogen gas to simulate the helium coolant ingress into breeder and multiplier pebble beds. Reservoir tank of 10 liter is filled with 1.0 MPa nitrogen. The nitrogen gas is released at the bottom part of the alumina pebble bed whose upper part is open to the atmosphere. The pressure change in the pebble bed is measured to identify the pressure loss. The measured values are compared with the predicted values by Ergun's equation, which is the correlation equation on pressure loss of the flow through porous medium. By the results of the experiments with no constraint on the alumina pebble bed, it was clarified that the measured value agreed in the lower flow rate. However, in the higher flow rate where the pressure loss is high, the measured value is about half of the predicted value. The differences between the measured values and the predicted values will be discussed from

  14. Shutdown dose rate analysis of European test blanket modules shields in ITER Equatorial Port #16

    Juárez, Rafael, E-mail: rjuarez@ind.uned.es [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain); Sauvan, Patrick; Perez, Lucia [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain); Panayotov, Dobromir; Vallory, Joelle; Zmitko, Milan; Poitevin, Yves [Fusion for Energy (F4E), Torres Diagonal Litoral B3, Josep Pla 2, Barcelona 08019 (Spain); Sanz, Javier [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain)

    2016-11-01

    Highlights: • Nuclear analysis for European TBMs and shields, in ITER Equatorial Port #16, has been conducted in support of the ‘Concept Design Review’ from ITER. • The objective of the work is the characterization of the Shutdown Dose Rates at Equatorial Port #16 interspace. • The role played by the TBM and TBM shields, the equatorial port gaps and the vacuum vessel permeation, in terms of neutron flux transmission is assessed. • The role played by the TBM, TBM shields, Port Plug Frame, Pipe Forest and the machine in terms of activation is also investigated. - Abstract: ‘Fusion for Energy’ (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). An essential element of the Conceptual Design Review (CDR) of these TBSs is the demonstration of capability of Test Blanket Modules (TBM) and their shields to fulfil their function and comply with the design requirements. One of the TBM shields highly relevant design aspects is the project target for shutdown dose rates (SDDR) in the interspace. We investigated two functions of the TBMs and TBM shields—the neutron flux attenuation along the shields, and the reduction of the activation of the components contributing to SDDR. It is shown that TBMs and TBM shields reduce significantly the neutron flux in the port plug (PP). In terms of neutron flux attenuation, the TBM shield provides sufficient neutron flux reduction, being responsible for 5 × 10{sup 6} n/cm{sup 2} s at port interspace, while the EPP gaps and BSM gaps are responsible for 5 × 10{sup 7} n/cm{sup 2} s each. When considering closed upper, lower and lateral neighbour equatorial ports (thus, excluding the cross-talk between ports), a SDDR of 121 μSv/h averaged near the port closure flange was obtained, out of which, only 4 μSv/h are due to the activation of TBMs and TBM shields. Maximum SDDR in the range

  15. Octalithium plumbate as breeding blanket ceramic: Neutronic performances, synthesis and partial characterization

    Colominas, S.; Palermo, I.; Abellà, J.; Gómez-Ros, J.M.; Sanz, J.; Sedano, L.

    2012-01-01

    Highlights: ► Definition of a suitable configuration for the Li 8 PbO 6 breeding blanket design. ► Demonstration of the feasibility of Li 8 PbO 6 as a breeding material. ► Synthesis optimization in the Li 8 PbO 6 production. ► Characterization of Li 8 PbO 6 by X-ray phase analysis is discussed. - Abstract: A neutronic assessment of the performances of a helium-cooled Li 8 PbO 6 breeding blanket (BB) for the conceptual design of a DEMO fusion reactor is given. Different BB configurations have been considered in order to minimize the amount of beryllium required for neutron multiplication, including the use of graphite as reflector material. The calculated neutronic responses: tritium breeding ratio (TBR), power deposition in TF coils and power amplification factor, indicate the feasibility of Li 8 PbO 6 as breeding material. Furthermore, the synthesis and characterization of Li 8 PbO 6 by X-ray phase analysis are also discussed.

  16. A ceramic breeder in a poloidal tube blanket for a tokamak reactor

    Amici, A.; Anzidei, L.; Gallina, M.; Rado, V.; Simbolotti, G.; Violante, V.; Zampaglione, V.; Petrizzi, L.

    1989-01-01

    A conceptual study of a helium-cooled solid breeder blanket for a tokamak reactor is presented. Tritium breeding capability together with system reliability are taken as the main design criteria. The blanket consists of tubular poloidal modules made of a central bundle of ceramic rods (γLiAlO 2 ) with a coaxial distribution of the inlet/outlet coolant flow (He) surrounded by a multiplier material (Be) in the form of bored bricks. The Be to γLiAlO 2 volume ratio is 4/1. The He inlet and outlet branches are cooling Be and γLiAlO 2 , respectively. A purge He flow running through small central holes of the ceramic rods is derived from the main flow. Under the typical conditions of a tokamak reactor (neutron wall load=2 MW/m 2 ), a full coverage tritium breeding ratio of 1.47 is achieved for the following design and operating parameters: outlet He temperature=570 0 C; inlet He temperature=250 0 ; total extracted power=2700 MW; He pumping power percentage=2%; minimum/maximum γLiAlO 2 temperature=400/900 0 C; maximum structural temperature=475 0 C; and maximum Be temperature=525 0 C. (orig.)

  17. Failure initiation and propagation of Li4SiO4 pebbles in fusion blankets

    Zhao Shuo; Gan Yixiang; Kamlah, Marc

    2013-01-01

    Lithium orthosilicate (Li 4 SiO 4 ) pebbles are considered to be a candidate as solid tritium breeder in the helium cooled pebble bed (HCPB) blanket. These ceramic pebbles might be crushed during thermomechanical loading in the blanket. In this work, the failure initiation and propagation of pebbles in pebble beds is investigated using the discrete element method (DEM). Pebbles are simplified as mono-sized elastic spheres. Every pebble has a contact strength in terms of critical strain energy, which is derived from a validated strength model and crush test data for pebbles from a specific batch of Li 4 SiO 4 pebbles. Pebble beds are compressed uniaxially and triaxially in DEM simulations. When the strain energy absorbed by a pebble exceeds its critical energy it fails. The failure initiation is defined as a given small fraction of pebbles crushed. It is found that the load level for failure initiation can be very low. For example, if failure initiation is defined as soon as 0.02% of the pebbles have been crushed, the pressure required for uniaxial loading is about 2.5 MPa. Therefore, it is essential to study the influence of failure propagation on the macroscopic response of pebble beds. Thus a reduction ratio defined as the size ratio of a pebble before and after its failure is introduced. The macroscopic stress–strain relation is investigated with different reduction ratios. A typical stress plateau is found for a small reduction ratio.

  18. Transient analyses on the cooling channels of the DEMO HCPB blanket concept under accidental conditions

    Chen, Yuming; Ghidersa, Bradut-Eugen; Jin, Xue Zhou

    2016-01-01

    Highlights: • This paper presents transient CFD analyses on the cooling channels of the DEMO HCPB FW for accidental scenarios LOCA and LOFA. • In both LOCA & LOFA, the wall temperature increases quickly to an unacceptable level within seconds. • If the coolant flow rate is maintained at a half of nominal value in case of LOFA (partial LOFA), the wall temperature rises much slower, but will still leads to a damage of structure within minutes. • The simulated heat transfer coefficients were compared with empirical correlations. - Abstract: Helium Cooled Pebble Bed (HCPB) blanket concept is one of the DEMO (Demonstration Power Plant) blanket concepts running for the final DEMO design selection. In this paper, transient analyses on the cooling channels of the FW are carried out by means of CFD simulations for the selected accidental scenarios loss-of-coolant-accident (LOCA) and loss-of-flow-accident (LOFA). ANSYS-CFX is used for the simulations. The simulation results help to understand how fast the temperature of the FW can increase and what is the time window that is available until the temperature of the structural material reaches the design limit in order to be able to define a suitable protection strategy for the system. In view of later developments of the models, the heat transfer coefficients calculated with CFD are compared with the values predicted by two widely used correlations for turbulent pipe flows.

  19. Transient analyses on the cooling channels of the DEMO HCPB blanket concept under accidental conditions

    Chen, Yuming, E-mail: Yuming.chen@kit.edu; Ghidersa, Bradut-Eugen; Jin, Xue Zhou

    2016-11-01

    Highlights: • This paper presents transient CFD analyses on the cooling channels of the DEMO HCPB FW for accidental scenarios LOCA and LOFA. • In both LOCA & LOFA, the wall temperature increases quickly to an unacceptable level within seconds. • If the coolant flow rate is maintained at a half of nominal value in case of LOFA (partial LOFA), the wall temperature rises much slower, but will still leads to a damage of structure within minutes. • The simulated heat transfer coefficients were compared with empirical correlations. - Abstract: Helium Cooled Pebble Bed (HCPB) blanket concept is one of the DEMO (Demonstration Power Plant) blanket concepts running for the final DEMO design selection. In this paper, transient analyses on the cooling channels of the FW are carried out by means of CFD simulations for the selected accidental scenarios loss-of-coolant-accident (LOCA) and loss-of-flow-accident (LOFA). ANSYS-CFX is used for the simulations. The simulation results help to understand how fast the temperature of the FW can increase and what is the time window that is available until the temperature of the structural material reaches the design limit in order to be able to define a suitable protection strategy for the system. In view of later developments of the models, the heat transfer coefficients calculated with CFD are compared with the values predicted by two widely used correlations for turbulent pipe flows.

  20. Analysis of the WCLL European demo blanket concept in terms of activation and decay heat after exposure to neutron irradiation

    Stankunas Gediminas

    2017-01-01

    Full Text Available This comparative paper describes the activation and decay heat calculations for water-cooled lithium-lead performed part of the EURO fusion WPSAE programme and specifications in comparison to other European DEMO blanket concepts on the basis of using a three-dimensional neutronics calculation model. Results are provided for a range of decay times of interest for maintenance activities, safety and waste management assessments. The study revealed that water-cooled lithium-lead has the highest total decay heat at longer decay times in comparison to the helium-cooled design which has the lowest total decay heat. In addition, major nuclides were identified for water-cooled lithium-lead in W armour, Eurofer, and LiPb. In addition, great attention has been dedicated to the analysis of the decay heat and activity both from the different water-cooled lithium-lead blanket modules for the entire reactor and from each water-cooled lithium-lead blanket module separately. The neutron induced activation and decay heat at shutdown were calculated by the FISPACT code, using the neutron flux densities and spectra that were provided by the preceding MCNP neutron transport calculations.

  1. Helium Loop for the HCPB Test Blanket Module

    Neuberger, H.; Boccaccini, L.V.; Ghidersa, B. E.; Jin, X.; Meyder, R.

    2006-01-01

    In the frame of the activities of the EU Breeder Blanket Programme and of the Test Blanket Working Group, the Helium loop for the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) in ITER has been investigated with regard to the layout definition, selection of components, control, dimensioning and integration. This paper presents the status of development. The loop design for the HCPB-TBM in ITER will mainly base on the experience gained from Helium Loop Karlsruhe (HELOKA) which is currently developed at the FZK for experiments under ITER relevant conditions. The ITER loop will be equipped with similar components like HELOKA and will mainly consist of a circulator with variable speed drive, a recuperator, an electric heater, a cooler, a dust filter and auxilary components e.g. pipework and valves. A Coolant Purification System (CPS) and a Pressure Control System (PCS) are foreseen to meet the requirements on coolant conditioning. To prepare a TBM for a new experimental campaign, a succession of operational states like '' cold maintenance '', '' baking '' and '' cold standby '' is required. Before a pulse operation, a '' hot stand-by '' state should be achieved providing the TBM with inlet coolant at nominal conditions. This operation modus is continued in the dwell time waiting for the successive pulse. A '' tritium out-gassing '' will be also required after several TBM-campaigns to remove the inventory rest of T in the beds for measurement purpose. The dynamic circuit behaviour during pulses, transition between different operational states as well as the behaviour in accident situations are investigated with RELAP. The main components of the loop will be accommodated inside the Tokamak Cooling Water System(TCWS)- vault from where the pipes require connection to the TBM which is attached to port 16 of the vacuum vessel. Therefore pipes across the ITER- building of about 110 m in length (each) are required. Additional equipment is also located in the port cell

  2. Assessment of the integration of a He-cooled divertor system in the power conversion system for the dual-coolant blanket concept (TW2-TRP-PPCS12D8)

    Norajitra, P.; Kruessmann, R.; Malang, S.; Reimann, G.

    2002-12-01

    Application of a helium-cooled divertor together with the dual-coolant blanket concept is considered favourable for achieving a high thermal efficiency of the power plant due to its relatively high coolant outlet temperature. A new FZK He-cooled modular divertor concept with integrated pin arrays (HEMP) is introduced. Its main features and function are described in detail. The result of the thermalhydraulic analysis shows that the HEMP divertor concept has the potential of resisting, a heat flow density of at least 10-15 MW/m 2 at a reachable heat transfer coefficient of approx. 60 kW/m 2 K and a reasonable pumping power. Integration of this divertor concept into the power conversion system using a closed Brayton gas turbine system with three-stage compression leads to a net efficiency of the blanket/divertor cycle of about 43%. (orig.)

  3. Novel blanket design for ICTR's

    Abdel-Khalik, S.I.; Conn, R.W.; Wolfer, W.G.; Larsen, E.N.; Sviatoslavsky, I.N.

    1978-01-01

    A novel blanket design for ICTRs is described. This blanket is used in SOLASE, the conceptual laser fusion reactor of the University of Wisconsin. The blanket to be described offers numerous advantages, including low cost, low weight, low induced radioactivity levels, the potential for hands-on maintenance, modular construction, low pressure, ability to decouple first wall and blanket coolant temperatures, adequate breeding, low tritium inventory and leakage, and sufficiently long life

  4. An overview of dual coolant Pb-17Li breeder first wall and blanket concept development for the US ITER-TBM design

    Wong, C.P.C. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)]. E-mail: wongc@fusion.gat.com; Malang, S. [Fusion Nuclear Technology Consulting, Linkenheim (Germany); Sawan, M. [University of Wisconsin, Madison, WI (United States); Dagher, M. [University of California, Los Angeles, CA (United States); Smolentsev, S. [University of California, Los Angeles, CA (United States); Merrill, B. [INEEL, Idaho Falls, ID (United States); Youssef, M. [University of California, Los Angeles, CA (United States); Reyes, S. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Sze, D.K. [University of California, San Diego, CA (United States); Morley, N.B. [University of California, Los Angeles, CA (United States); Sharafat, S. [University of California, Los Angeles, CA (United States); Calderoni, P. [University of California, Los Angeles, CA (United States); Sviatoslavsky, G. [University of Wisconsin, Madison, WI (United States); Kurtz, R. [Pacific Northwest Laboratory, Richland, WA (United States); Fogarty, P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Zinkle, S. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Abdou, M. [University of California, Los Angeles, CA (United States)

    2006-02-15

    An attractive blanket concept for the fusion reactor is the dual coolant Pb-17Li liquid (DCLL) breeder design. Reduced activation ferritic steel (RAFS) is used as the structural material. Helium is used to cool the first wall and blanket structure, and the self-cooled breeder Pb-17Li is circulated for power conversion and for tritium breeding. A SiC{sub f}/SiC composite insert is used as the magnetohydrodynamic (MHD) insulation to reduce the impact from the MHD pressure drop of the circulating Pb-17Li and as the thermal insulator to separate the high temperature Pb-17Li from the helium cooled RAFS structure. For the reference tokamak power reactor design, this blanket concept has the potential of satisfying the design limits of RAFS while allowing the feasibility of having a high Pb-17Li outlet temperature of 700 deg. C. We have identified critical issues for the concept, some of which include the first wall design, the assessment of MHD effects with the SiC-composite flow coolant insert, and the extraction and control of the bred tritium from the Pb-17Li breeder. R and D programs have been proposed to address these issues. At the same time we have proposed a test plan for the DCLL ITER-Test Blanket Module program.

  5. An overview of dual coolant Pb-17Li breeder first wall and blanket concept development for the US ITER-TBM design

    Wong, Clement; Malang, S.; Sawan, M.; Dagher, Mohamad; Smolentsev, S.; Merrill, Brad; Youssef, M.; Reyes, Susanna; Sze, Dai Kai; Morley, Neil B.; Sharafat, Shahran; Calderoni, P.; Sviatoslavsky, G.; Kurtz, Richard J.; Fogarty, Paul J.; Zinkle, Steven J.; Abdou, Mohamed A.

    2006-07-05

    An attractive blanket concept for the fusion reactor is the dual coolant Pb-17Li liquid (DCLL) breeder design. Reduced activation ferritic steel (RAFS) is used as the structural material. Helium is used to cool the first wall and blanket structure, and the self-cooled breeder Pb-17Li is circulated for power conversion and for tritium breeding. A SiCf/SiC composite insert is used as the magnetohydrodynamic (MHD) insulation to reduce the impact from the MHD pressure drop of the circulating Pb-17Li and as the thermal insulator to separate the high temperature Pb-17Li from the helium cooled RAFS structure. For the reference tokamak power reactor design, this blanket concept has the potential of satisfying the design limits of RAFS while allowing the feasibility of having a high Pb-17Li outlet temperture of 700C. We have identified critical issues for the concept, some of which inlude the first wall design, the assessment of MHD effectrs with the SiC-composite flow coolant insert, and the extraction and control of the bred tritium from the Pb-17Li breeder. R&D programs have been proposed to address these issues. At the same time, we have proposed a test plan for the DCLL ITER-Test Blanket Module program.

  6. First results of the post-irradiation examination of the Ceramic Breeder materials from the Pebble Bed Assemblies Irradiation for the HCPB Blanket concept

    Hegeman, J.; Magielsen, A.J.; Peeters, M.; Stijkel, M.P.; Fokkens, J.H.; Laan, J.G. van der

    2006-01-01

    In the framework of developing the European Helium Cooled Pebble-Bed (HCPB) blanket an irradiation test of pebble-bed assemblies is performed in the HFR Petten. The experiment is focused on the thermo-mechanical behavior of the HCPB type breeder pebble-bed at DEMO representative levels of temperature and defined thermal-mechanical loads. To achieve representative conditions a section of the HCPB is simulated by EUROFER-97 cylinders with a horizontal bed of ceramic breeder pebbles sandwiched between two beryllium beds. Floating Eurofer-97 steel plates separate the pebble-beds. The structural integrity of the ceramic breeder materials is an issue for the design of the Helium Cooled Pebble Bed concept. Therefore the objective of the post irradiation examination is to study deformation of pebbles and the pebble beds and to investigate the microstructure of the ceramic pebbles from the Pebble Bed Assemblies. This paper concentrates on the Post Irradiation Examination (PIE) of the four ceramic pebble beds that have been irradiated in the Pebble Bed Assembly experiment for the HCPB blanket concept. Two assemblies with Li 4 SiO 4 pebble-beds are operated at different maximum temperatures of approximately 600 o C and 800 o C. Post irradiation computational analysis has shown that both have different creep deformation. Two other assemblies have been loaded with a ceramic breeder bed of two types of Li 2 TiO 3 beds having different sintering temperatures and consequently different creep behavior. The irradiation maximum temperature of the Li 2 TiO 3 was 800 o C. To support the first PIE result, the post irradiation thermal analysis will be discussed because thermal gradients have influence on the pebble-bed thermo-mechanical behavior and as a result it may have impact on the structural integrity of the ceramic breeder materials. (author)

  7. Neutronics Experiment on A HCPB Breeder Blanket Mock-Up

    Paola Batistoni, P.; Angelone, M.; Bettinali, L.

    2006-01-01

    A neutronics experiment has been performed in the frame of European Fusion Technology Program on a mock-up of the EU Test Blanket Module (TBM), Helium Cooled Pebble Bed (HCPB) concept, with the objective to validate the capability of nuclear data to predict nuclear responses, such as the tritium production rate (TPR), with qualified uncertainties. The experiment has been carried out at the FNG 14-MeV neutron source in collaboration between ENEA, Technische Universitaet Dresden, Forschungszentrum Karlsruhe, J. Stefan Institute Ljubljana and with the participation of JAEA. The mock-up, designed in such a way to replicate all relevant nuclear features of the TBM-HCPB, consisted of a steel box containing beryllium block and two intermediate steel cassettes, filled with of Li 2 CO 3 powder, replicating the breeder insert main characteristics: radial thickness, distance between ceramic layers, thickness of ceramic layers and of steel walls. In the experiment, the TPR has been measured using Li 2 CO 3 pellets at various depths at two symmetrical positions at each depth, one in the upper and one in the lower cassette. Twelve pellets were used at each position to determine the TPR profile through the cassette. Three independent measurements were performed by ENEA, TUD/VKTA and JAEA. The neutron flux in the beryllium layer was measured as well using activation foils. The measured tritium production in the TBM (E) was compared with the same quantity (C) calculated by the MCNP.4c using a very detailed model of the experimental set up, and using neutron cross sections from the European Fusion File (EFF ver.3.1) and from the Fusion Evaluated Nuclear Data Library (FENDL ver. 2.1, ITER reference neutron library). C/E ratios were obtained with a total uncertainty on the C/E comparison less than 9% (2 s). A sensitivity and uncertainty analysis has also been performed to evaluate the calculation uncertainty due to the uncertainty on neutron cross sections. The results of such

  8. Analysis of the HCPB breeder blanket bock-up experiment for ITER using SUSD3D code

    Kodeli, I.

    2005-01-01

    In order to validate new nuclear cross-section evaluations, method development and design of the helium-cooled pebble bed (HCPB) test blanket module of ITER a benchmark experiment was performed this year at the Frascati Neutron Generator (FNG) in the scope of the EFF (European Fusion File) project in Europe. The objective of this experiment is to study the tritium breeding ratio and other nuclear quantities in a breeder blanket in order to establish and improve the quality of related JEFF nuclear data. The experiment consists of a metallic beryllium set-up with two double layers of breeder material (Li 2 CO 3 powder). The reaction rate measurements include the Li 2 CO 3 pellets (tritium breeding ratio), activation foils, and neutron and gamma spectrometers inserted at several axial and lateral locations in the block. Our task is to perform the deterministic transport, and cross section sensitivity and uncertainty analysis. The role of the cross-section sensitivity and uncertainty analysis is to optimise the design of the benchmark, and to assist in the interpretation of the measurement results. The paper presents the pre- and post- analysis of the benchmark experiment. (author)

  9. Conceptual design of a First Wall mock-up experiment in preparation for the qualification of breeding blanket technologies in the Helium Loop Karlsruhe (HELOKA) facility

    Zeile, C., E-mail: christian.zeile@kit.edu [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Abou-Sena, A.; Boccaccini, L.V.; Ghidersa, B.E.; Kang, Q.; Kunze, A. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Lamberti, L. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Dipartimento Energia, Politecnico di Torino (Italy); Maione, I.A.; Rey, J.; Weth, A. von der [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-01

    Highlights: • Experiment in preparation for the qualification of Breeding Blanket technologies in HELOKA facility is proposed. • Experimental capabilities, instrumentation of the mock-up and experimental program are presented. • Design and manufacturing of the mock-up is described. • Design of modular attachment system to obtain different stress levels and distributions on the mock-up is discussed. - Abstract: An experimental program based on a First Wall mock-up is presented as preparation for the qualification of breeding blanket mock-ups at high heat flux in the Helium Loop Karlsruhe (HELOKA) facility. Two objectives of the experimental program have been defined: testing of the experimental setup and a first validation of FE models. The design and manufacturing of mock-up representing about 1/3 of the heated zone of an ITER Test Blanket Module (TBM) First Wall is discussed. A modular attachment system concept has been developed for the fixation of the mock-up in order to be able to generate different stress distributions and levels on the plate, which is confirmed by thermo-mechanical analyses. The HELOKA facility is able to provide a TBM relevant helium cooling system and to generate the required surface heat flux by an electron beam gun. An installed IR camera can be used to measure the temperature distribution on the surface.

  10. Al-based anti-corrosion and T-permeation barrier development for future DEMO blankets

    Krauss, W.; Konys, J.; Holstein, N.; Zimmermann, H.

    2011-01-01

    In the Helium-Cooled-Liquid-Lead (HCLL) design of Test-Blanket-Modules (TBM's) for a future fusion power plant Pb-15.7Li is used as liquid breeder which is in direct contact with the structure material, e.g. EUROFER steel. Compatibility testing showed that high corrosion attack appears and that the dissolved steel components form precipitates with a high risk of system blockages. A reliable operation needs coatings as corrosion barriers. The earlier developed Hot-Dip Aluminisation (HDA) process has shown that Al-based scales can act as anti-corrosion as well as T-permeation barriers. Meanwhile two advanced electro-chemically based processes for deposition of Al-scales were successfully developed. The first (ECA = Electro-Chemical Al-deposition) is working with an organic electrolyte and the second one (ECX = Electro-Chemical-X-metal-deposition) is based on ionic liquids. Coatings in the μm-range were deposited homogeneously with exact controllable thicknesses. Metallurgical investigations showed the successful generation of protective scales and compatibility testing demonstrated the barrier function.

  11. Al-based anti-corrosion and T-permeation barrier development for future DEMO blankets

    Krauss, W., E-mail: wolfgang.krauss@kit.edu [Karlsruhe Institute of Technology, Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Konys, J.; Holstein, N.; Zimmermann, H. [Karlsruhe Institute of Technology, Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2011-10-01

    In the Helium-Cooled-Liquid-Lead (HCLL) design of Test-Blanket-Modules (TBM's) for a future fusion power plant Pb-15.7Li is used as liquid breeder which is in direct contact with the structure material, e.g. EUROFER steel. Compatibility testing showed that high corrosion attack appears and that the dissolved steel components form precipitates with a high risk of system blockages. A reliable operation needs coatings as corrosion barriers. The earlier developed Hot-Dip Aluminisation (HDA) process has shown that Al-based scales can act as anti-corrosion as well as T-permeation barriers. Meanwhile two advanced electro-chemically based processes for deposition of Al-scales were successfully developed. The first (ECA = Electro-Chemical Al-deposition) is working with an organic electrolyte and the second one (ECX = Electro-Chemical-X-metal-deposition) is based on ionic liquids. Coatings in the {mu}m-range were deposited homogeneously with exact controllable thicknesses. Metallurgical investigations showed the successful generation of protective scales and compatibility testing demonstrated the barrier function.

  12. Current Status on the Korean Test Blanket Module Development for testing in the ITER

    Lee, Dong Won; Kim, Suk Kwon; Bae, Young Dug; Yoon, Jae Sung; Jung, Ki Sok

    2010-01-01

    Korea has proposed and designed a Helium Cooled Molten Lithium (HCML) Test Blanket Module (TBM) to be tested in the International Thermonuclear Experimental Reactor (ITER). Ferrite Martensitic (FM) steel is used as the structural material and helium (He) is used as a coolant to cool the first wall (FW) and breeding zone. Liquid lithium (Li) is circulated for a tritium breeding, not for a cooling purpose. Main purpose for developing the TBM is to develop the design technology for DEMO and fusion reactor and it should be proved through the experiment in the ITER with TBM. Therefore, we have developed the design scheme and related codes including the safety analysis for obtain the license to be tested in the ITER. In order to develop and install at the ITER, several technologies were developed in parallel; fabrication, breeder, He cooling, tritium extraction and so on. Figure 1 shows the overall TBM development scheme. In Korea, official strategy for developing the TBM is to participate to other parties' concept such as US and EU ones, in which PbLi (lead lithium eutectic), He, and FM steel were used for liquid breeder, coolant, and structural material, respectively

  13. Blanket for thermonuclear device

    Ozawa, Yoshihiro; Uda, Tatsuhiko; Maki, Koichi.

    1993-01-01

    The present invention provides a blanket of a thermonuclear device which produces tritium fuels consumed in plasmas while converting neutrons generated in the plasmas into heat energy. That is, zirconium is coated to at least one of neutron breeder pebbles and breeder pebbles, to suppress reaction between them by being in direct contact with each other at a high temperature. Further, fins are attached to a cooling pipe at a pitch smaller than the diameter of both of the pebbles, to prevent direct contact at whole surface of the pebbles and the cooling pipe, which would lower a temperature excessively. The length of the fin is controlled to control the thickness of a helium gas gap. With such constitution, direct contact of neutron breeder pebbles and the breeder pebble which are to be filled and mixed, and tend to react at a high temperature, can be prevented. The temperature of the breeding blanket is reliably prevented from lowering below a tritium emitting temperature. The structure is simplified and the production is facilitated. (I.S.)

  14. Multiscale simulation of neutron induced damage in tritium breeding blankets with different spectral shifters

    Choi, Yong Hee; Joo, Han Gyu, E-mail: joohan@snu.ac.kr

    2013-10-15

    Highlights: • A multiscale defect simulation system tailored for neutron damage estimation is introduced. • The new recoil spectrum code can use the most recent ENDF-B/VII nuclear data. • The high energy cascades are broken into subcascades using the INCAS model. • OKMC simulation provides data for shear stress estimation using dislocation dynamics formula. • Demonstration is made with a fusion blanket design having different spectral shifters. -- Abstract: A multiscale material defect simulation established to evaluate neutron induced damages on metals is applied to an estimation of material degradation in helium cooled molten lithium blankets in which four different spectral shifter materials are examined as a means of maximizing the tritium breeding ratio through proper shaping of the neutron spectrum. The multiscale system consists of a Monte Carlo neutron transport code, a recoil spectrum generation code, a molecular dynamics code, a high energy cascade breakup model, an object kinetic Monte Carlo code, and a simple formula as the shear stress estimator. The average recoil energy of the primary knock-on atoms, the total concentration of the defects, average defect sizes, and the increase in shear stress after a certain irradiation time are calculated for each spectral shifter. Among the four proposed materials of B4C, Be, Graphite and TiC, B4C reveals the best shielding performance in terms of neutron radiation hardening. The result for the increase in shear stress after 100 days of irradiation indicates that the increased shear stress is 1.5 GPa for B4C which is about 40% less than that of the worst one, the graphite spectral shifter. The other damage indicators show consistent trends.

  15. Feasibility analysis of vacuum sieve tray for tritium extraction in the HCLL test blanket system

    Okino, Fumito, E-mail: fumito.okino@iae.kyoto-u.ac.jp [Kyoto University Institute of Advanced Energy, 611-0011 Gokasho, Uji, Kyoto (Japan); Calderoni, Pattrick [Fusion For Energy, 08019 Barcelona (Spain); Kasada, Ryuta; Konishi, Satoshi [Kyoto University Institute of Advanced Energy, 611-0011 Gokasho, Uji, Kyoto (Japan)

    2016-11-01

    Highlights: • The authors discovered faster mass transport on a droplet falling in a vacuum. • Primary cause of the hydrogen release from droplet is by the oscillation of a droplet. • The spherical oscillation induces the internal advection and enhances mass transfer. • This assumption agreed with previous experimental results. - Abstract: This paper describes the quantitative analysis for the design of a tritium extraction system that uses liquid PbLi droplets in vacuum (Vacuum Sieve Tray, VST), for application to the ITER helium-cooled lithium lead (HCLL) test blanket system (TBS). The parametric dependences of tritium extraction efficiency from the main geometrical features such as initial droplet velocity, nozzle head height, nozzle diameter, and flow rate are discussed. With nozzle diameters between 0.4 and 0.6 mm, extraction efficiency is estimated from 0.77 to 0.96 at the falling height of 0.5 m, with flow rate between 0.2 and 1.0 kg/s. The device has a height of 1.6 m, within the external dimensions of the HCLL Test Blanket Module (TBM), and no additional pumping power is required. The attained results are considered attractive not only for ITER, but also in view of the application of the VST concept as a candidate tritium extraction system for the European Union's demonstration fusion reactor (DEMO). The extraction efficiency of a single droplet column, which is the basis of the design analysis presented, has been validated experimentally with hydrogen. However, further experiments are required on an integrated system with size relevant to the proposed HCLL-TBS design to validate system-level effects, particularly regarding the desorption process in an array of multiple droplets.

  16. An evaluation of fast reactor blankets

    Oosterkamp, W.J.

    1974-01-01

    A comparative study of different types of fast reactor radial blankets is presented. Included are blankets of fertile material UO 2 , THO 2 and Th-metal blankets of pure reflectors C, BeO, Ni and combinations of reflecting and fertile blankets. The results for 1000MWe cores indicate that there is no incentive to use other than fertile blankets. The most favorable fertile material is thorium due to the prospective higher price of U-233

  17. Fusion blanket design and optimization techniques

    Gohar, Y.

    2005-01-01

    In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to define the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design techniques of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art techniques and tools for performing blanket design and analysis. This report describes some of the BSDOS techniques and demonstrates its use. In addition, the use of the optimization technique of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this report, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design techniques

  18. Analysis of mechanical effects caused by plasma disruptions in the European BOT solid breeder blanket design with MANET as structural material

    Boccaccini, L.V.; Ruatto, P.

    1994-01-01

    The Karlsruhe Nuclear Center is developing, through design and experimental work, a BOT (Breeder Out of Tube) Helium Cooled Solid Breeder Blanket for a DEMO application. One of the crucial problems in the blanket design is to demonstrate the capability of the structure to withstand the mechanical effects of a major plasma disruption as extrapolated to DEMO from the experience of present machines. In this paper the results of the assessment work are presented; the acceptability of the design is discussed on the basis of a stress analysis of the structure under combined thermal and electromagnetic loads. The martensitic steel MANET has been chosen as structural material, because it is able to withstand the high neutron fluence in Demo (70 dpa) without appreciably swelling and has good thermal-mechanical properties - lower thermal expansion and higher strength - in comparison to AISI 316L steel. As far as it concerns the mechanical effects of plasma disruptions, MANET presents two important features which have been carefully investigated in the assessment: the magnetic properties of the material and the degradation of the fracture toughness behavior under irradiation

  19. Numeric implementation of a nucleation, growth and transport model for helium bubbles in lead-lithium HCLL breeding blanket channels: Theory and code development

    Batet, L., E-mail: lluis.batet@upc.edu [Technical University of Catalonia (UPC), Energy and Radiation Studies Research Group (GREENER), Technology for Fusion T4F, Barcelona (Spain); UPC, Department of Physics and Nuclear Engineering (DFEN), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Fradera, J. [Technical University of Catalonia (UPC), Energy and Radiation Studies Research Group (GREENER), Technology for Fusion T4F, Barcelona (Spain); UPC, Department of Physics and Nuclear Engineering (DFEN), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Valls, E. Mas de les [Technical University of Catalonia (UPC), Energy and Radiation Studies Research Group (GREENER), Technology for Fusion T4F, Barcelona (Spain); UPC, Department of Heat Engines (DMMT), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Sedano, L.A. [EURATOM-CIEMAT Association, Fusion Technology Division, Av. Complutense 22, 28040 Madrid (Spain)

    2011-06-15

    Large helium (He) production rates in liquid metal breeding blankets of a DT fusion reactor might have a significant influence in the system design. Low He solubility together with high local concentrations may create the conditions for He cavitation, which would have an impact in the components performance. The paper states that such a possibility is not remote in a helium cooled lithium-lead breeding blanket design. A model based on the Classical Nucleation Theory (CNT) has been developed and implemented in order to have a specific tool able to simulate HCLL systems and identify the key parameters and sensitivities. The nucleation and growth model has been implemented in the open source CFD code OpenFOAM so that transport of dissolved atomic He and nucleated He bubbles can be simulated. At the current level of development it is assumed that void fraction is small enough not to affect either the hydrodynamics or the properties of the liquid metal; thus, bubbles can be represented by means of a passive scalar. He growth and transport has been implemented using the mean radius approach in order to save computational time. Limitations and capabilities of the model are shown by means of zero-dimensional simulation and sensitivity analysis under HCLL breeding unit conditions.

  20. Status of fusion reactor blanket design

    Smith, D.L.; Sze, D.K.

    1986-02-01

    The recent Blanket Comparison and Selection Study (BCSS), which was a comprehensive evaluation of fusion reactor blanket design and the status of blanket technology, serves as an excellent basis for further development of blanket technology. This study provided an evaluation of over 130 blanket concepts for the reference case of electric power producing, DT fueled reactors in both Tokamak and Tandem Mirror (TMR) configurations. Based on a specific set of reactor operating parameters, the current understanding of materials and blanket technology, and a uniform evaluation methodology developed as part of the study, a limited number of concepts were identified that offer the greatest potential for making fusion an attractive energy source

  1. A 2D Finite Element Modelling of Tritium Permeation Through Cooling Plates for The HCLL DEMO Blanket Module

    Gabriel, F.; Escuriol, Y.; Dabbene, F.; Salavy, J.F.; Giancarli, L.; Gastaldi, O.

    2006-01-01

    As the Tritium self sufficiency is one of the major challenges for fusion reactor, breeding blankets represent one of the major technological breakthroughs required from passing from ITER to the next step reactor, usually called DEMO. One of the two blanket concepts developed in the EU is the Helium Cooled Lithium Lead (HCLL) blanket which uses the eutectic Pb-15.7Li metal liquid as both breeder and neutron multiplier. The structures, made of EUROFER, a low activation ferritic martensitic steel, are cooled by pressurized helium at 8 MPa and inlet/outlet temperature 300/500 o C. In this concept, the LiPb is fed from the top of the blanket and distributed in parallel vertical channels among pairs of cells (one cell for the radial movement towards the plasma, the other for the return). The liquid metal fills the in-box volume and is slowly re-circulated (few mm per seconds) to remove the produced tritium. In this paper, a local finite element modelling of the tritium permeation rate through the HCLL breeder unit cooling plates is presented. The tritium concentration in the helium circuit and remaining in the lithium lead circuit are evaluated by solving partial differential equations governing the tritium concentration balance, the thermal field and the lithium lead velocity field for a simplified 2D geometrical representation of the breeder unit. This allows estimating the sensitivity effect of coupling these different equations in order to deduce a relevant but simplified modelling for tritium permeation. This is to compare with tritium inventories studies, were the tritium permeation rate is estimated using simplified analytical modelling which generally leads to over estimate the tritium permeation rate to the coolant and so has strong influence on the coolant purification plant design. The finite element modelling performed shows that the Tritium permeation is considerable lower than the one obtained in previous estimations where nominal values of the governing

  2. Fusion blanket inherent safety assessment

    Sze, D.K.; Jung, J.; Cheng, E.T.

    1986-01-01

    Fusion has significant potential safety advantages. There is a strong incentive for designing fusion plants to ensure that inherent safety will be achieved. Accordingly, both the Tokamak Power Systems Studies and MINIMARS have identified inherent safety as a design goal. A necessary condition is for the blanket to maintain its configuration and integrity under all credible accident conditions. A main problem is caused by afterheat removal in an accident condition. In this regard, it is highly desirable to achieve the required level of protection of the plant capital investment and limitation of radioactivity release by systems that rely only on inherent properties of matter (e.g., thermal conductivity, specific heat, etc.) and without the use of active safety equipment. This paper assesses the conditions under which inherent safety is feasible. Three types of accident conditions are evaluated for two blankets. The blankets evaluated are a self cooled vanadium/lithium blanket and a self-cooled vanadium/Flibe blanket. The accident conditions evaluated are: (1) loss-of-flow accident; (2) loss-of-coolant accident (LOCA); and (3) partial loss-of-coolant accident

  3. The blanket interface to TSTA

    Clemmer, R.G.; Finn, P.A.; Grimm, T.L.; Sze, D.K.; Anderson, J.L.; Bartlit, J.R.; Naruse, Y.; Yoshida, H.

    1988-01-01

    The requirements of tritium technology are centered in three main areas, (1) fuel processing, (2) breeder tritium extraction, and (3) tritium containment. The Tritium Systems Test Assembly (TSTA) now in operation at Los Alamos National Laboratory (LANL) is dedicated to developing and demonstrating the tritium technology for fuel processing and containment. TSTA is the only fusion fuel processing facility that can operate in a continuous closed-loop mode. The tritium throughput of TSTA is 1000 g/d. However, TSTA does not have a blanket interface system. The authors have initiated a study to define a Breeder Blanket Interface (BBIO) for TSTA. The first step of the work is to define the condition of the gaseous tritium stream from the blanket tritium recovery system. This report summarizes this part of the work for one particular blanket concept, i.e., a self-cooled lithium blanket. The total gas throughput, the hydrogen to tritium ratio, the corrosive chemicals, and the radionuclides are defined. Various methods of tritium recovery from liquid lithium were assessed: yttrium gettering, permeation windows, and molten salt extraction. The authors' evaluation concluded that the best method was molten salt extraction

  4. Blanket maintenance by remote means using the cassette blanket approach

    Werner, R.W.

    1978-01-01

    Induced radioactivity in the blanket and other parts of a fusion reactor close to the plasma zone will dictate remote assembly, disassembly, and maintenance procedures. Time will be of the essence in these procedures. They must be practicable and certain. This paper discusses the reduction of a complicated Tokamak reactor to a simpler assembly via the use of a vacuum building in which to house the reactor and the introduction in this new model of cassette blanket modules. The cassettes significantly simplify remote handling

  5. Measurement and analysis of neutron flux spectra in a neutronics mock-up of the HCLL test blanket module

    Klix, A.; Batistoni, P.; Boettger, R.; Lebrun-Grandie, D.; Fischer, U.; Henniger, J.; Leichtle, D.; Villari, R.

    2010-01-01

    Fast neutron and gamma-ray flux spectra and time-of-arrival spectra of slow neutrons have been measured in a neutronics mock-up of the European Helium-Cooled Lithium-Lead Test Blanket Module with the aim to validate nuclear cross-section data. The mock-up was irradiated with fusion peak neutrons from the DT neutron generator of the Technical University of Dresden. A well characterized cylindrical NE-213 scintillator was inserted into two positions in the LiPb/EUROFER assembly. Pulse height spectra from neutrons and gamma-rays were recorded from the NE-213 output. The spectra were then unfolded with experimentally obtained response matrices of the NE-213 detector. Time-of-arrival spectra of slow neutrons were measured with a 3 He counter placed in the mock-up, and the neutron generator was operated in pulsed mode. Monte Carlo calculations using the MCNP code and nuclear cross-section data from the JEFF-3.1.1 and FENDL-2.1 libraries were performed and the results are compared with the experimental results. A good agreement of measurement and calculation was found with some deviations in certain energy intervals.

  6. Blanket safety by GEMSAFE methodology

    Sawada, Tetsuo; Saito, Masaki

    2001-01-01

    General Methodology of Safety Analysis and Evaluation for Fusion Energy Systems (GEMSAFE) has been applied to a number of fusion system designs, such as R-tokamak, Fusion Experimental Reactor (FER), and the International Thermonuclear Experimental Reactor (ITER) designs in the both stages of Conceptual Design Activities (CDA) and Engineering Design Activities (EDA). Though the major objective of GEMSAFE is to reasonably select design basis events (DBEs) it is also useful to elucidate related safety functions as well as requirements to ensure its safety. In this paper, we apply the methodology to fusion systems with future tritium breeding blankets and make clear which points of the system should be of concern from safety ensuring point of view. In this context, we have obtained five DBEs that are related to the blanket system. We have also clarified the safety functions required to prevent accident propagations initiated by those blanket-specific DBEs. The outline of the methodology is also reviewed. (author)

  7. Liquid-helium-cooled Michelson interferometer

    Augason, G. C.; Young, N.

    1972-01-01

    Interferometer serves as a rocket-flight spectrometer for examination of the far infrared emission spectra of astronomical objects. The double beam interferometer is readily adapted to make spectral scans and for use as a detector of discrete line emissions.

  8. Development of blanket remote maintenance system

    Kakudate, Satoshi; Nakahira, Masataka; Oka, Kiyoshi; Taguchi, Kou

    1998-01-01

    ITER in-vessel components such as blankets are scheduled maintenance components, including complete shield blanket replacement for breeding blankets. In-vessel components are activated by 14 MeV neutrons, so blanket maintenance requires remote handling equipment and tools able to handle heavy payloads of about 4 tons within a positioning accuracy of 2 mm under intense gamma radiation. To facilitate remote maintenance, blankets are segmented into 730 modules and rail-mounted vehicle remote maintenance was developed. According to the ITER R and D program, critical technology related to blanket maintenance was developed extensively through joint efforts of the Japan, EU, and U.S. home teams. This paper summarizes current blanket maintenance technology conducted by the Japan Home Team, including development of full-scale remote handling equipment and tools for blanket maintenance. (author)

  9. Development of blanket remote maintenance system

    Kakudate, Satoshi; Nakahira, Masataka; Oka, Kiyoshi; Taguchi, Kou [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    ITER in-vessel components such as blankets are scheduled maintenance components, including complete shield blanket replacement for breeding blankets. In-vessel components are activated by 14 MeV neutrons, so blanket maintenance requires remote handling equipment and tools able to handle heavy payloads of about 4 tons within a positioning accuracy of 2 mm under intense gamma radiation. To facilitate remote maintenance, blankets are segmented into 730 modules and rail-mounted vehicle remote maintenance was developed. According to the ITER R and D program, critical technology related to blanket maintenance was developed extensively through joint efforts of the Japan, EU, and U.S. home teams. This paper summarizes current blanket maintenance technology conducted by the Japan Home Team, including development of full-scale remote handling equipment and tools for blanket maintenance. (author)

  10. Concepts for fusion fuel production blankets

    Gierszewski, P.

    1986-06-01

    The fusion blanket surrounds the burning hydrogen core of the fusion reactor. It is in this blanket that most of the energy released by the DT fusion reaction is converted into useable product, and where tritium fuel is produced to enable further operation of the reactor. Blankets will involve new materials, conditions and processes. Several recent fusion blanket concepts are presented to illustrate the range of ideas

  11. The TBM-CA configuration management approach for the ITER test blanket module - application to the HCLL TBS

    Jourd'Heuil, L.; Panayotov, D.; Salavy, J.-F.; Storto, C.; Colombo, M.; Sardain, P.

    2011-01-01

    The European Test Blanket Modules (EU-TBM) are first prototypes of a fusion reactor breeding blanket. They will be tested in dedicated equatorial ports n o 16 of ITER. Technical developments are performed by a Consortium of European Associates (TBM-CA) and supported within the framework of F4E agency. Designing a complex nuclear system like TBM for ITER necessitates an organizational structure inside the consortium to manage in permanence the coherence between requirements (F4E technical and management specifications) and the TBM development through their life time. At the present stage, evolutionary nature of the design from the different teams is important. Highest priority is assigned to the Management support and Design Integration Team (MDIT) to perform an efficient control of the Configuration Management (CM). The TBM-CA CM comprises 4 main processes: a) identifying configuration of a product characteristics, including its interfaces (Configuration identification), b) controlling the evolution from agreed baseline (Configuration Control), c) creating the knowledge database in order to manage the information all along the lifecycle of the items (Configuration status accounting) and d) verifying the current configuration status of the items (Audits). CM is then a powerful tool to link the requirements for engineering, safety, quality assurance and test and acceptance activities. The application of the CM approach is illustrated through the case of TBM-HCLL (Helium Cooled Lithium Lead). The result shows that the proposed methodology and tools are suitable and provide quality solution for the items with a complex configuration such as TBM HCLL.

  12. Breeding blankets for thermonuclear reactors

    Rocaboy, Alain.

    1982-06-01

    Materials with structures suitable for this purpose are studied. A bibliographic review of the main solid and liquid lithiated compounds is then presented. Erosion, dimensioning and maintenance problems associated with the limiter and the first wall of the reactor are studied from the point of view of the constraints they impose on the design of the blankets. Detailed studies of the main solid and liquid blanket concepts enable the best technological compromises to be determined for the indispensable functions of the blanket to be assured under acceptable conditions. Our analysis leads to four classes of solution, which cannot at this stage be considered as final recommendations, but which indicate what sort of solutions it is worthwhile exploring and comparing in order to be in a position to suggest a realistic blanket at the time when plasma control is sufficiently good for power reactors to be envisaged. Some considerations on the general architecture of the reactor are indicated. Energy storage with pulsed reactors is discussed in the appendix, and a first approach made to minimizing the total tritium recovery [fr

  13. Disruption problematics in segmented blanket concepts

    Crutzen, Y.; Fantechi, S.; Farfaletti-Casali, F.

    1994-01-01

    In Tokamaks, the hostile operating environment originated by plasma disruption events requires that the first wall/blanket/shield components sustain the large induced electromagnetic (EM) forces without significant structural deformation and within allowable material stresses. As a consequence there is a need to improve the safety features of the blanket design concepts satisfying the disruption problematics and to formulate guidelines on the required internal reinforcements of the blanket components. The present paper describes the recent investigations on blanket reinforcement systems needed in order to optimize the first-wall/blanket/shield structural design for next step and commercial fusion reactors in the context of ITER, DEMO and SEAFP activities

  14. Fusion reactor blanket-main design aspects

    Strebkov, Yu.; Sidorov, A.; Danilov, I.

    1994-01-01

    The main function of the fusion reactor blanket is ensuring tritium breeding and radiation shield. The blanket version depends on the reactor type (experimental, DEMO, commercial) and its parameters. Blanket operation conditions are defined with the heat flux, neutron load/fluence, cyclic operation, dynamic heating/force loading, MHD effects etc. DEMO/commercial blanket design is distinguished e.g. by rather high heat load and neutron fluence - up to 100 W/cm 2 and 7 MWa/m 2 accordingly. This conditions impose specific requirements for the materials, structure, maintenance of the blanket and its most loaded components - FW and limiter. The liquid Li-Pb eutectic is one of the possible breeder for different kinds of blanket in view of its advantages one of which is the blanket convertibility that allow to have shielding blanket (borated water) or breeding one (Li-Pb eutectic). Using Li-Pb eutectic for both ITER and DEMO blankets have been considered. In the conceptual ITER design the solid eutectic blanket was carried out. The liquid eutectic breeder/coolant is suggested also for the advanced (high parameter) blanket

  15. Design study of blanket structure for tokamak experimental fusion reactor

    1979-11-01

    Design study of the blanket structure for JAERI Experimental Fusion Reactor (JXFR) has been carried out. Studied here were fabrication and testing of the blanket structure (blanket cells, blanket rings, piping and blanket modules), assembly and disassembly of the blanket module, and monitering and testing technique. Problems in design and fabrication of the blanket structure could be revealed. Research and development problems for the future were also disclosed. (author)

  16. Liquid blanket MHD effects experimental results from LMEL facility at SWIP

    Xu Zengyu; Pan Chuanjie; Liu Yong; Pan Chuanhong; Reed, C.B.

    2007-01-01

    The self-cooled /helium-cooled liquid metal blanket concept is an attractive ITER and DEMO blanket candidate as it has low operating pressure, simplicity, and a convenient tritium breeding cycle. But MHD pressure drop remains a key issue, especially in ducts with flow channel inserts (FCI), where the reduction in MHD pressure drop is difficult to predict with existing tools, and there are no available experimental data to check current predictions. To understand well various kinds of MHD effects, it is important for us to analyze and understand FCI effects. In this paper, we present measurements of the MHD effects due to off normal power shutdown, two-dimensional effects due to channel velocity profiles, three-dimensional effects caused by manifolds, and surface/bulk instability effects as a result of insulator coating imperfections. These results were collected from the Liquid Metal Experimental Loop (LMEL) facility at Southwestern Institute of Physics, China and in collaboration with Argonne National Laboratory, US under an umbrella of the People's Republic of China/United States program of cooperation in magnetic fusion. Some results were observed for the first time, such as two dimensional effects and instabilities due to insulator coating imperfections. The experiments were conducted under the following conditions: a uniform magnetic field volume of 80 x 170 x 740 mm and a maximum value of magnetic field, B 0 , of 2 Tesla. The mean flow velocity v 0 was measured with an electromagnetic (EM) flow meter (error of 1.2%); a Liquid-metal Electro-magnetic Velocity Instrument (LEVI) was provided by Argonne National Laboratory. The flow was driven by two Electro-magnetic (EM) pumps (6.5+11.6 m3/h); the operating temperature was 85 centigrade degree due to self-heating by the EM pump and friction of the fluid against the loop piping. Experimental parameters were: Hartmann number, M, up to 3500, velocity v 0 up to 1.2 m/s under magnetic field, and B 0 =1.95 Tesla

  17. Blanket comparison and selection study. Volume I

    1983-10-01

    The objectives of the Blanket Comparison and Selection Study (BCSS) can be stated as follows: (1) Define a small number (approx. 3) of blanket design concepts that should be the focus of the blanket R and D program. A design concept is defined by the selection of all materials (e.g., breeder, coolant, structure and multiplier) and other major characteristics that significantly influence the R and D requirements. (2) Identify and prioritize the critical issues for the leading blanket concepts. (3) Provide the technical input necessary to develop a blanket R and D program plan. Guidelines for prioritizing the R and D requirements include: (a) critical feasibility issues for the leading blanket concepts will receive the highest priority, and (b) for equally important feasibility issues, higher R and D priority will be given to those that require minimum cost and short time

  18. Design requirement on HYPER blanket fuel assembly

    Hwang, Woan; Lee, B. O.; Nam, C.; Ryu, W. S.; Lee, B. S.; Park, W. S.

    2000-07-01

    This document describes design requirements which are needed for designing the blanket assembly of the HYPER as design guidance. The blanket assembly of the HYPER consists of blanket fuel rods, mounting rail, spacer, upper nozzle with handling socket, bottom nozzle with mounting rail and skeleton structure. The blanket fuel rod consists of top end plug, bottom end plug with key way, blanket fuel slug, and cladding. In the assembly, the rods are in a triangular pitch array. This report contains functional requirements, performance and operational requirements, interfacing systems requirements, core restraint and interface requirements, design limits and strength requirements, system configuration and essential feature requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements for the blanket fuel assembly of the HYPER

  19. Liquid metal cooled blanket concept for NET

    Malang, S.; Casal, V.; Arheidt, K.; Fischer, U.; Link, W.; Rust, K.

    1986-01-01

    A blanket concept for NET using liquid lithium-lead both as breeder material and as coolant is described. The need for inboard breeding is avoided by using beryllium as neutron multiplier in the outboard blanket. Novel flow channel inserts are employed in all poloidal ducts to reduce the MHD pressure drop. The concept offers a simple mechanical design and a higher tritium breeding ratio compared to water- and gas-cooled blankets. (author)

  20. Fusion blankets for high efficiency power cycles

    Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Usher, J.L.

    1980-04-01

    Definitions are given of 10 generic blanket types and the specific blanket chosen to be analyzed in detail from each of the 10 types. Dimensions, compositions, energy depositions and breeding ratios (where applicable) are presented for each of the 10 designs. Ultimately, based largely on neutronics and thermal hyraulics results, breeding an nonbreeding blanket options are selected for further design analysis and integration with a suitable power conversion subsystem

  1. Low technology high tritium breeding blanket concept

    Gohar, Y.; Baker, C.C.; Smith, D.L.

    1987-10-01

    The main function of this low technology blanket is to produce the necessary tritium for INTOR operation with minimum first wall coverage. The INTOR first wall, blanket, and shield are constrained by the dimensions of the reference design and the protection criteria required for different reactor components and dose equivalent after shutdown in the reactor hall. It is assumed that the blanket operation at commercial power reactor conditions and the proper temperature for power generation can be sacrificed to achieve the highest possible tritium breeding ratio with minimum additional research and developments and minimal impact on reactor design and operation. A set of blanket evaluation criteria has been used to compare possible blanket concepts. Six areas: performance, operating requirements, impact on reactor design and operation, safety and environmental impact, technology assessment, and cost have been defined for the evaluation process. A water-cooled blanket was developed to operate with a low temperature and pressure. The developed blanket contains a 24 cm of beryllium and 6 cm of solid breeder both with a 0.8 density factor. This blanket provides a local tritium breeding ratio of ∼2.0. The water coolant is isolated from the breeder material by several zones which eliminates the tritium buildup in the water by permeation and reduces the changes for water-breeder interaction. This improves the safety and environmental aspects of the blanket and eliminates the costly process of the tritium recovery from the water. 12 refs., 13 tabs

  2. Use of nuclear data sensitivity and uncertainty analysis for the design preparation of the HCLL breeder blanket mock-up experiment for ITER

    Kodeli, I.

    2007-01-01

    An experiment on a mock-up of the Test Blanket module based on Helium Cooled Lithium Lead (HCLL) concept will be performed in 2007 in the FNG utility in Frascati in order to study neutronics characteristics of the module and the performance of the computational tools in the accurate prediction of the neutron transport. With the objective to prepare and optimise the design of the mock-up in the sense to provide maximum information on the state-of-the-art of the cross section data the mock-up was pre-analysed using the deterministic codes for the sensitivity/uncertainty analysis. The neutron fluxes and tritium production rate (TPR), their sensitivity to the underlying basic cross sections, as well as the corresponding uncertainty estimations were calculated using the deterministic transport codes (DOORS package), the sensitivity/uncertainty code package SUSD3D and the VITAMIN-J/COVA covariance matrix libraries. The cross section reactions with largest contribution to the uncertainty in the calculation of the TPR were identified to be (n,2n) and (n,3n) reactions on plumb. The conclusions of this work support the main benchmark design and suggest some modifications and improvements. In particular this study recommends the use, as far as possible, of both natural and enriched lithium pellets for the TRP measurements. The combined use is expected to provide additional and complementary information on the sensitive cross sections. (author)

  3. Use of Nuclear Data Sensitivity and Uncertainty Analysis for the Design Preparation of the HCLL Breeder Blanket Mockup Experiment for ITER

    I. Kodeli

    2008-01-01

    Full Text Available An experiment on a mockup of the test blanket module based on helium-cooled lithium lead (HCLL concept will be performed in 2008 in the Frascati Neutron Generator (FNG in order to study neutronics characteristics of the module and the accuracy of the computational tools. With the objective to prepare and optimise the design of the mockup in the sense to provide maximum information on the state-of-the-art of the cross-section data the mockup was pre-analysed using the deterministic codes for the sensitivity/uncertainty analysis. The neutron fluxes and tritium production rate (TPR, their sensitivity to the underlying basic cross-sections, as well as the corresponding uncertainties were calculated using the deterministic transport codes (DOORS package, the sensitivity/uncertainty code package SUSD3D, and the VITAMINJ/ COVA covariance matrix libraries. The cross-section reactions with largest contribution to the uncertainty of the calculated TPR were identified to be (n,2n and (n,3n reactions on lead. The conclusions of this work support the main benchmark design and suggest some modifications and improvements. In particular this study recommends the use, as far as possible, of both natural and enriched lithium pellets for the TRP measurements. The combined use is expected to provide additional and complementary information on the sensitive cross-sections.

  4. (D,T) Driven thorium hybrid blankets

    Al-Kusayer, T.A.; Khan, S.; Sahin, S.

    1983-01-01

    Recently, a project has started, with the aim to establish the neutronic performance and the basic design of an experimental fusionfission (hybrid) reactor facility, called AYMAN, in cylinderical geometry. The fusion reactor will have to be simulated by a (D,T) neutron generator. Fissile and fertile fuel will have to surround the neutron generator as a cylinderical blanket to simulate the boundary conditions of the hybrid blanket in a proper way. This geometry is consistent with Tandem Mirror Hybrid Blanket design and with most of the ICF blanket designs. A similar experimental installation will become operational around 1984 at the Swiss Federal Institute of Technology in Lausanne, Switzerland known under the project LOTUS. Due to the limited dimensions of the experimental cavity of the LOTUS-hybrid reactor, the LOTUS blankets have to be designed in plane geometry. Also, the bulky form of the Haefely neutron generator of the LOTUS facility obliges one to design a blanket in the plane geometry. This results in a vacuum left boundary conditions for the LOTUS blanket. The importance of a reflecting left boundary condition on the overall neutronic performance of a hybrid blanket has been analyzed in previous work in detail

  5. Design and analysis of ITER shield blanket

    Ohmori, Junji; Hatano, Toshihisa; Ezato, Kouichiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1998-12-01

    This report includes electromagnetic analyses for ITER shielding blanket modules, fabrication methods for the blanket modules and the back plate, the design and the fabrication methods for port limiter have been investigated. Studies on the runaway electron impact for Be armor have been also performed. (J.P.N.)

  6. Methods to enhance blanket power density

    Hsu, P.Y.; Miller, L.G.; Bohn, T.S.; Deis, G.A.; Longhurst, G.R.; Masson, L.S.; Wessol, D.E.; Abdou, M.A.

    1982-06-01

    The overall objective of this task is to investigate the extent to which the power density in the FED/INTOR breeder blanket test modules can be enhanced by artificial means. Assuming a viable approach can be developed, it will allow advanced reactor blanket modules to be tested on FED/INTOR under representative conditions

  7. Design of ITER shielding blanket

    Furuya, Kazuyuki; Sato, Satoshi; Hatano, Toshihisa; Tokami, Ikuhide; Kitamura, Kazunori; Miura, Hidenori; Ito, Yutaka; Kuroda, Toshimasa; Takatsu, Hideyuki

    1997-05-01

    A mechanical configuration of ITER integrated primary first wall/shield blanket module were developed focusing on the welded attachment of its support leg to the back plate. A 100 mm x 150 mm space between the legs of adjacent modules was incorporated for the working space of welding/cutting tools. A concept of coolant branch pipe connection to accommodate deformation due to the leg welding and differential displacement of the module and the manifold/back plate during operation was introduced. Two-dimensional FEM analyses showed that thermal stresses in Cu-alloy (first wall) and stainless steel (first wall coolant tube and shield block) satisfied the stress criteria following ASME code for ITER BPP operation. On the other hand, three-dimensional FEM analyses for overall in-vessel structures exhibited excessive primary stresses in the back plate and its support structure to the vacuum vessel under VDE disruption load and marginal stresses in the support leg of module No.4. Fabrication procedure of the integrated primary first wall/shield blanket module was developed based on single step solid HIP for the joining of Cu-alloy/Cu-alloy, Cu-alloy/stainless steel, and stainless steel/stainless steel. (author)

  8. NET test blanket design and remote maintenance

    Holloway, C.; Hubert, P.

    1991-01-01

    The NET machine has three horizontal ports reserved for testing tritium breeding blanket designs during the physics phase and possibly five during the technology phase. The design of the ports and test blankets are modular to accept a range of blanket options, provide radiation shielding and allow routine replacement. Radiation levels during replacement or maintenance require that all operations must be carried out remotely. The paper describes the problems overcome in providing a port design which includes attachment to the vacuum vessel with double vacuum seals, an integrated cooled first wall and support guides for the test blanket module. The method selected to remotely replace the test module whilst controlling the spread of contamination is also adressed. The paper concludes that the provisions of a test blanket facility based on the NET machine design is feasible. (orig.)

  9. Classification Using Markov Blanket for Feature Selection

    Zeng, Yifeng; Luo, Jian

    2009-01-01

    Selecting relevant features is in demand when a large data set is of interest in a classification task. It produces a tractable number of features that are sufficient and possibly improve the classification performance. This paper studies a statistical method of Markov blanket induction algorithm...... for filtering features and then applies a classifier using the Markov blanket predictors. The Markov blanket contains a minimal subset of relevant features that yields optimal classification performance. We experimentally demonstrate the improved performance of several classifiers using a Markov blanket...... induction as a feature selection method. In addition, we point out an important assumption behind the Markov blanket induction algorithm and show its effect on the classification performance....

  10. Blanket materials for DT fusion reactors

    Smith, D.L.

    1981-01-01

    This paper presents an overview of the critical materials issues that must be considered in the development of a tritium breeding blanket for a tokamak fusion reactor that operates on the D-T-Li fuel cycle. The primary requirements of the blanket system are identified and the important criteria that must be considered in the development of blanket technology are summarized. The candidate materials are listed for the different blanket components, e.g., breeder, coolant, structure and neutron multiplier. Three blanket concepts that appear to offer the most potential are: (1) liquid-metal breeder/coolant, (2) liquid-metal breeder/separate coolant, and (3) solid breeder/separate coolant. The major uncertainties associated with each of the design concepts are discussed and the key materials R and D requirements for each concept are identified

  11. Convertible shielding to ceramic breeding blanket

    Furuya, Kazuyuki; Kurasawa, Toshimasa; Sato, Satoshi; Nakahira, Masataka; Togami, Ikuhide; Hashimoto, Toshiyuki; Takatsu, Hideyuki; Kuroda, Toshimasa.

    1995-05-01

    Four concepts have been studied for the ITER convertible blanket: 1)Layered concept 2)BIT(Breeder-Inside-Tube)concept 3)BOT(Breeder-Out of-Tube)concept 4)BOT/mixed concept. All concepts use ceramic breeder and beryllium neutron multiplier, both in the shape of small spherical pebbles, 316SS structure, and H 2 O coolant (inlet/outlet temperatures : 100/150degC, pressure : 2 MPa). During the BPP, only beryllium pebbles (the primary pebble in case of BOT/mixed concept) are filled in the blanket for shielding purpose. Then, before the EPP operation, breeder pebbles will be additionally inserted into the blanket. Among possible conversion methods, wet method by liquid flow seems expecting for high and homogeneous pebble packing. Preliminary 1-D neutronics calculation shows that the BOT/mixed concept has the highest breeding and shielding performance. However, final selection should be done by R and D's and more detail investigation on blanket characteristics and fabricability. Required R and D's are also listed. With these efforts, the convertible blanket can be developed. However, the following should be noted. Though many of above R and D's are also necessary even for non-convertible blanket, R and D's on convertibility will be one of the most difficult parts and need significant efforts. Besides the installation of convertible blanket with required structures and lines for conversion will make the ITER basic machine more complicated. (author)

  12. On blanket concepts of the Helias reactor

    Wobig, H.; Harmeyer, E.; Herrnegger, F.; Kisslinger, J.

    1999-07-01

    The paper discusses various options for a blanket of the Helias reactor HSR22. The Helias reactor is an upgrade version of the Wendelstein 7-X device. The dimensions of the Helias reactor are: major radius 22 m, average plasma radius 1.8 m, magnetic field on axis 4.75 T, maximum field 10 T, number of field periods 5, fusion power 3000 MW. The minimum distance between plasma and coils is 1.5 m, leaving sufficient space for a blanket and shield. Three options of a breeding blanket are discussed taking into account the specific properties of the Helias configuration. Due to the large area of the first wall (2600 m 2 ) the average neutron power load on the first wall is below 1 MWm .2 , which has a strong impact on the blanket performance with respect to lifetime and cooling requirements. A comparison with a tokamak reactor shows that the lifetime of first wall components and blanket components in the Helias reactor is expected to be at least two times longer. The blanket concepts being discussed in the following are: the solid breeder concept (HCPB), the dual-coolant Pb-17Li blanket concept and the water-cooled Pb-17Li concept (WCLL). (orig.)

  13. Tritium transport analysis for CFETR WCSB blanket

    Zhao, Pinghui, E-mail: phzhao@mail.ustc.edu.cn; Yang, Wanli; Li, Yuanjie; Ge, Zhihao; Nie, Xingchen; Gao, Zhongping

    2017-01-15

    Highlights: • A simplified tritium transport model for CFETR WCSB blanket was developed. • Tritium transport process in CFETR WCSB blanket was analyzed. • Sensitivity analyses of tritium transport parameters were carried out. - Abstract: Water Cooled Solid Breeder (WCSB) blanket was put forward as one of the breeding blanket candidate schemes for Chinese Fusion Engineering Test Reactor (CFETR). In this study, a simplified tritium transport model was developed. Based on the conceptual engineering design, neutronics and thermal-hydraulic analyses of CFETR WCSB blanket, tritium transport process was analyzed. The results show that high tritium concentration and inventory exist in primary water loop and total tritium losses exceed CFETR limits under current conditions. Conducted were sensitivity analyses of influential parameters, including tritium source, temperature, flow-rate capacity and surface condition. Tritium performance of WCSB blanket can be significantly improved under a smaller tritium impinging rate, a larger flow-rate capacity or a better surface condition. This work provides valuable reference for the enhancement of tritium transport behavior in CFETR WCSB blanket.

  14. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-01-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  15. ITER breeding blanket module design and analysis

    Kuroda, Toshimasa; Enoeda, Mikio; Kikuchi, Shigeto [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1998-11-01

    The ITER breeding blanket employs a ceramic breeder and Be neutron multiplier both in small spherical pebble form. Radial-poloidal cooling panels are arranged in the blanket box to remove the nuclear heating in these materials and to reinforce the blanket structure. At the first wall, Be armor is bonded onto the stainless steel (SS) structure to provide a low Z plasma-compatible surface and to protect the first wall/blanket structure from the direct contact with the plasma during off-normal events. Thermo-mechanical analyses and investigation of fabrication procedure have been performed for this breeding blanket. To evaluate thermo-mechanical behavior of the pebble beds including the dependency of the effective thermal conductivity on stress, analysis methods have been preliminary established by the use of special calculation option of ABAQUS code, which are briefly summarized in this report. The structural response of the breeding blanket module under internal pressure of 4 MPa (in case of in-blanket LOCA) resulted in rather high stress in the blanket side (toroidal end) wall, thus addition of a stiffening rib or increase of the wall thickness will be needed. Two-dimensional elasto-plastic analyses have been performed for the Be/SS bonded interface at the first wall taking a fabrication process based on HIP bonding and thermal cycle due to pulsed plasma operation into account. The stress-strain hysteresis during these process and operation was clarified, and a procedure to assess and/or confirm the bonding integrity was also proposed. Fabrication sequence of the breeding blanket module was preliminarily developed based on the procedure to fabricate part by part and to assemble them one by one. (author)

  16. Beryllium R and D for blanket application

    Dalle Donne, M.; Scaffidi-Argentina, F. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik; Longhurst, G.R. [Idaho National Engineering Lab., Idaho Falls (United States); Kawamura, H. [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-10-01

    The paper describes the main problems and the R and D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point. (orig.) 29 refs.

  17. Beryllium R and D for blanket application

    Dalle Donne, M.; Scaffidi-Argentina, F.; Kawamura, H.

    1998-01-01

    The paper describes the main problems and the R and D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point. (orig.)

  18. Beryllium R&D for blanket application

    Donne, M. Dalle; Longhurst, G. R.; Kawamura, H.; Scaffidi-Argentina, F.

    1998-10-01

    The paper describes the main problems and the R&D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point.

  19. Mechanical and thermal design of hybrid blankets

    Schultz, K.R.

    1978-01-01

    The thermal and mechanical aspects of hybrid reactor blanket design considerations are discussed. This paper is intended as a companion to that of J. D. Lee of Lawrence Livermore Laboratory on the nuclear aspects of hybrid reactor blanket design. The major design characteristics of hybrid reactor blankets are discussed with emphasis on the areas of difference between hybrid reactors and standard fusion or fission reactors. Specific examples are used to illustrate the design tradeoffs and choices that must be made in hybrid reactor design. These examples are drawn from the work on the Mirror Hybrid Reactor

  20. Environmental considerations for alternative fusion reactor blankets

    Johnson, A.B. Jr.; Young, J.R.

    1975-01-01

    Comparisons of alternative fusion reactor blanket/coolant systems suggest that environmental considerations will enter strongly into selection of design and materials. Liquid blankets and coolants tend to maximize transport of radioactive corrosion products. Liquid lithium interacts strongly with tritium, minimizing permeation and escape of gaseous tritium in accidents. However, liquid lithium coolants tend to create large tritium inventories and have a large fire potential compared to flibe and solid blankets. Helium coolants minimize radiation transport, but do not have ability to bind the tritium in case of accidental releases. (auth)

  1. Review: BNL Tokamak graphite blanket design concepts

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    The BNL minimum activity graphite blanket designs are reviewed, and three are discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a 30 cm or thicker graphite screen. Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy, which is then radiated to a secondary blanket with coolant tubes, as in types A and B, or removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma. (Auth.)

  2. Blanket design for imploding liner systems

    Schaffer, M. J.

    1980-01-01

    The blanket design comprises hot, molten, rotating liquid vortex systems suitable for rapidly compressing confined plasmas, in which stratified immiscible liquid layers having successively greater mass densities outwardly of the axis of rotation are provided

  3. APT target-blanket fabrication development

    Fisher, D.L.

    1997-06-13

    Concepts for producing tritium in an accelerator were translated into hardware for engineering studies of tritium generation, heat transfer, and effects of proton-neutron flux on materials. Small-scale target- blanket assemblies were fabricated and material samples prepared for these performance tests. Blanket assemblies utilize composite aluminum-lead modules, the two primary materials of the blanket. Several approaches are being investigated to produce large-scale assemblies, developing fabrication and assembly methods for their commercial manufacture. Small-scale target-blanket assemblies, designed and fabricated at the Savannah River Site, were place in Los Alamos Neutron Science Center (LANSCE) for irradiation. They were subjected to neutron flux for nine months during 1996-97. Coincident with this test was the development of production methods for large- scale modules. Increasing module size presented challenges that required new methods to be developed for fabrication and assembly. After development, these methods were demonstrated by fabricating and assembling two production-scale modules.

  4. Stress analysis of the tokamak engineering test breeder blanket

    Huang Zhongqi

    1992-01-01

    The design features of the hybrid reactor blanket and main parameters are presented. The stress analysis is performed by using computer codes SAP5p and SAP6 with the three kinds of blanket module loadings, i.e, the pressure of coolant, the blanket weight and the thermal loading. Numerical calculation results indicate that the stresses of the blanket are smaller than the allowable ones of the material, the blanket design is therefore reasonable

  5. The fusion blanket program at Chalk River

    Hastings, I.J.

    1986-03-01

    Work on the Fusion Blanket Program commenced at Chalk River in 1984 June. Co-funded by Canadian Fusion Fuels Technology Project and Atomic Energy of Canada Limited, the Program utilizes Chalk River expertise in instrumented irradiation testing, ceramics, tritium technology, materials testing and compound chemistry. This paper gives highlights of studies to date on lithium-based ceramics, leading contenders for the fusion blanket

  6. Advanced high performance solid wall blanket concepts

    Wong, C.P.C.; Malang, S.; Nishio, S.; Raffray, R.; Sagara, A.

    2002-01-01

    First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  7. Workshop on cold-blanket research

    1977-05-01

    The objective of the workshop was to identify and discuss cold-plasma blanket systems. In order to minimize the bombardment of the walls by hot neutrals the plasma should be impermeable. This requires a density edge-thickness product of nΔ > 10 15 cm -2 . An impermeable cold plasma-gas blanket surrounding a hot plasma core reduces the plasma wall/limiter interaction. Accumulation of impurities in this blanket can be expected. Fuelling from a blanket may be possible as shown by experimental results, though not fully explained by classical transport of neutrals. Refuelling of a reacting plasma had to be ensured by inward diffusion. Experimental studies of a cold impermeable plasma have been done on the tokamak-like Ringboog device. Simulation calculations for the next generation of large tokamaks using a particular transport model, indicate that the plasma edge profile can be controlled to reduce the production of sputtered impurities to an acceptable level. Impurity control requires a small fraction of the radial space to accomodate the cold-plasma layer. The problem of exhaust is, however, more complicated. If the cold-blanket scheme works as predicted in the model calculations, then α-particles generated by fusion will be transported to the cold outside layer. The Communities' experimental programme of research has been discussed in terms of the tokamaks which are available and planned. Two options present themselves for the continuation of cold-blanket research

  8. Liquid lithium blanket processing studies

    Talbot, J.B.; Clinton, S.D.

    1979-01-01

    The sorption of tritium on yttrium from flowing molten lithium and the subsequent release of tritium from yttrium for regeneration of the metal sorbent were investigated to evaluate the feasibility of such a tritium-recovery process for a fusion reactor blanket of liquid lithium. In initial experiments with the forced convection loop, yttrium samples were contacted with lithium at 300 0 C. A mass transfer coefficient of 2.5 x 10 - cm/sec, which is more than an order of magnitude less than the value measured in earlier static experiments, was determined for the flowing lithium system. Rates of tritium release from yttrium samples were measured to evaluate possible thermal regeneration of the sorbent. Values for diffusion coefficients at 505, 800, and 900 0 C were estimated to be 1.1 x 10 -13 , 4.9 x 10 -12 , and 9.3 x 10 -10 cm 2 /sec, respectively. Tritium release from yttrium was investigated at higher temperatures and with hydrogen added to the argon sweep gas to provide a reducing atmosphere

  9. Test Blanket Working Group's recent activities

    Vetter, J.E.

    2001-01-01

    The ITER Test Blanket Working Group (TBWG) has continued its activities during the period of extension of the EDA with a revised charter on the co-ordination of the development work performed by the Parties and by the JCT leading to a co-ordinated test programme on ITER for a DEMO-relevant tritium breeding blanket. This follows earlier work carried out until July 1998, which formed part of the ITER Final Design Report (FDR), completed in 1998. Whilst the machine parameters for ITER-FEAT have been significantly revised compared to the FDR, testing of breeding blanket modules remains a main objective of the test programme and the development of a reactor-relevant breeding blanket to ensure tritium fuel self-sufficiency is recognized a key issue for fusion. Design work and R and D on breeding blanket concepts, including co-operation with the other Contacting Parties of the ITER-EDA for testing these concepts in ITER, are included in the work plans of the Parties

  10. First Wall, Blanket, Shield Engineering Technology Program

    Nygren, R.E.

    1982-01-01

    The First Wall/Blanket/Shield Engineering Technology Program sponsored by the Office of Fusion Energy of DOE has the overall objective of providing engineering data that will define performance parameters for nuclear systems in advanced fusion reactors. The program comprises testing and the development of computational tools in four areas: (1) thermomechanical and thermal-hydraulic performance of first-wall component facsimiles with emphasis on surface heat loads; (2) thermomechanical and thermal-hydraulic performance of blanket and shield component facsimiles with emphasis on bulk heating; (3) electromagnetic effects in first wall, blanket, and shield component facsimiles with emphasis on transient field penetration and eddy-current effects; (4) assembly, maintenance and repair with emphasis on remote-handling techniques. This paper will focus on elements 2 and 4 above and, in keeping with the conference participation from both fusion and fission programs, will emphasize potential interfaces between fusion technology and experience in the fission industry

  11. European DEMO BOT solid breeder blanket

    Dalle Donne, M.

    1994-11-01

    The BOT (Breeder Outside Tube) Solid Breeder Blanket for a fusion DEMO reactor is presented. This is one of the four blanket concepts under development in the frame of the European fusion technology program with the aim to select in 1995 the two most promising ones for further development. In the paper the reference blanket design and external loops are described as well as the results of the theoretical and experimental work in the fields of neutronics, thermohydraulics, mechanical stresses, tritium control and extraction, development and irradiation of the ceramic breeder material, beryllium development, ferromagnetic forces caused by disruptions, safety and reliability. An outlook is given on the remaining open questions and on the required R and D program. (orig.) [de

  12. Fusion breeder sphere - PAC blanket design

    Sullivan, J.D.; Palmer, B.J.F.

    1987-11-01

    There is a considerable world-wide effort directed toward the production of materials for fusion reactors. Many ceramic fabrication groups are working on making lithium ceramics in a variety of forms, to be incorporated into the tritium breeding blanket which will surround the fusion reactor. Current blanket designs include ceramic in either monolithic or packed sphere bed (sphere-pac) forms. The major thrust at AECL is the production of lithium aluminate spheres to be incorporated in a sphere-pac bed. Contemporary studies on breeder blanket design offer little insight into the requirements on the sizes of the spheres. This study examined the parameters which determine the properties of pressure drop and coolant requirements. It was determined that an optimised sphere-pac bed would be composed of two diameters of spheres: 75 weight % at 3 mm and 25 weight % at 0.3 mm

  13. The requirements for processing tritium recovered from liquid lithium blankets: The blanket interface

    Clemmer, R.G.; Finn, P.A.; Greenwood, L.R.; Grimm, T.L.; Sze, D.K.; Bartlit, J.R.; Anderson, J.L.; Yoshida, H.; Naruse.

    1988-03-01

    We have initiated a study to define a blanket processing mockup for Tritium Systems Test Assembly. Initial evaluation of the requirements of the blanket processing system have been started. The first step of the work is to define the condition of the gaseous tritium stream from the blanket tritium recovery system. This report summarizes this part of the work for one particular blanket concept, i.e., a self-cooled lithium blanket. The total gas throughput, the hydrogen to tritium ratio, the corrosive chemicals, and the radionuclides are defined. The key discoveries are: the throughput of the blanket gas stream (including the helium carrier gas) is about two orders of magnitude higher than the plasma exhaust stream;the protium to tritium ratio is about 1, the deuterium to tritium ratio is about 0.003;the corrosion chemicals are dominated by halides;the radionuclides are dominated by C-14, P-32, and S-35;their is high level of nitrogen contamination in the blanket stream. 77 refs., 6 figs., 13 tabs

  14. LMFBR blanket physics project progress report No. 4

    Driscoll, M.J.; Lanning, D.D.; Kaplan, I.; Supple, A.T.

    1973-01-01

    During the period covered by the report, July 1, 1972, through June 30, 1973, work was devoted to completion of experimental measurements and data analysis on Blanket Mockup No. 3, a graphite-reflected blanket, and to initiation of experimental work on Blanket Mockup No. 4, a steel-reflected assembly designed to mock up a demonstration plant blanket. Work was also carried out on the analysis of a number of advanced blanket concepts, including the use of high-albedo reflectors, the use of thorium in place of uranium in the blanket region, and the ''parfait'' or completely internal blanket concept. Finally, methods development work was initiated to develop the capability for making gamma heating measurements in the blanket mockups. (U.S.)

  15. Epoxy blanket protects milled part during explosive forming

    1966-01-01

    Epoxy blanket protects chemically milled or machined sections of large, complex structural parts during explosive forming. The blanket uniformly covers all exposed surfaces and fills any voids to support and protect the entire part.

  16. Some new ideas for Tandem Mirror blankets

    Neef, W.S. Jr.

    1981-01-01

    The Tandem Mirror Reactor, with its cylindrical central cell, has led to numerous blanket designs taking advantage of the simple geometry. Also many new applications for fusion neutrons are now being considered. To the pure fusion electricity producers and hybrids producing fissile fuel, we are adding studies of synthetic fuel producers and fission-suppressed hybrids. The three blanket concepts presented are new ideas and should be considered illustrative of the breadth of Livermore's application studies. They are not meant to imply fully analyzed designs

  17. Fusion blanket high-temperature heat transfer

    Fillo, J.A.

    1983-01-01

    Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300 0 C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000 0 C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency

  18. Tritium behaviour in ceramic breeder blankets

    Miller, J.M.

    1989-01-01

    Tritium release from the candidate ceramic materials, Li 2 O, LiA10 2 , Li 2 SiO 3 , Li 4 SiO 4 and Li 2 ZrO 3 , is being investigated in many blanket programs. Factors that affect tritium release from the ceramic into the helium sweep gas stream include operating temperature, ceramic microstructure, tritium transport and solubility in the solid. A review is presented of the material properties studied and of the irradiation programs and the results are summarized. The ceramic breeder blanket concept is briefly reviewed

  19. Fusion-reactor blanket and coolant material compatibility

    Jeppson, D.W.; Keough, R.F.

    1981-01-01

    Fusion reactor blanket and coolant compatibility tests are being conducted to aid in the selection and design of safe blanket and coolant systems for future fusion reactors. Results of scoping compatibility tests to date are reported for blanket material and water interactions at near operating temperatures. These tests indicate the quantitative hydrogen release, the maximum temperature and pressures produced and the rates of interactions for selected blanket materials

  20. Processing and waste disposal needs for fusion breeder blankets system

    Finn, P.A.; Vogler, S.

    1988-01-01

    We evaluated the waste disposal and recycling requirements for two types of fusion breeder blanket (solid and liquid). The goal was to determine if breeder blanket waste can be disposed of in shallow land burial, the least restrictive method under U.S. Nuclear Regulatory Commission regulations. Described in this paper are the radionuclides expected in fusion blanket materials, plans for reprocessing and disposal of blanket components, and estimates for the operating costs involved in waste disposal. (orig.)

  1. Tritium inventory and permeation in liquid breeder blankets

    Reiter, F.

    1990-01-01

    This report reviews studies of the transport of hydrogen isotopes in the DEMO relevant water-cooled Pb-17Li blanket to be tested in NET and in a self-cooled blanket which uses Pb-17Li or Flibe as a liquid breeder material and V or Fe as a first wall material. The time dependences of tritium inventory and permeation in these blankets and of deuterium and tritium recycling in the self-cooled blanket are presented and discussed

  2. Deterministic 3D transport, sensitivity and uncertainty analysis of TPR and reaction rate measurements in HCPB Breeder Blanket mock-up benchmark

    Kodeli, I.

    2006-01-01

    The Helium-Cooled Pebble Bed (HCPB) Breeder Blanket mock-up benchmark experiment was analysed using the deterministic transport, sensitivity and uncertainty code system in order to determine the Tritium Production Rate (TPR) in the ceramic breeder and the neutron reaction rates in beryllium, both nominal values and the corresponding uncertainties. The experiment, performed in 2005 to validate the HCPB concept, consists of a metallic beryllium set-up with two double layers of breeder material (Li 2 CO 3 powder). The reaction rate measurements include the Li 2 CO 3 pellets for the tritium breeding monitoring and activation foils, inserted at several axial and lateral locations in the block. In addition to the well established and validated procedure based on the 2-dimensional (2D) code DORT, a new approach for the 3D modelling was validated based on the TORT/GRTUNCL3D transport codes. The SUSD3D code, also in 3D geometry, was used for the cross-section sensitivity and uncertainty calculations. These studies are useful for the interpretation of the experimental measurements, in particular to assess the uncertainties linked to the basic nuclear data. The TPR, the neutron activation rates and the associated uncertainties were determined using the EFF-3.0 9 Be nuclear cross section and covariance data, and compared with those from other evaluations, like FENDL-2.1. Sensitivity profiles and nuclear data uncertainties of the TPR and detector reaction rates with respect to the cross-sections of 9 Be, 6 Li, 7 Li, O and C were determined at different positions in the experimental block. (author)

  3. INTOR first wall/blanket/shield activity

    Gohar, Y.; Billone, M.C.; Cha, Y.S.; Finn, P.A.; Hassanein, A.M.; Liu, Y.Y.; Majumdar, S.; Picologlou, B.F.; Smith, D.L.

    1986-01-01

    The main emphasis of the INTOR first wall/blanket/shield (FWBS) during this period has been upon the tritium breeding issues. The objective is to develop a FWBS concept which produces the tritium requirement for INTOR operation and uses a small fraction of the first wall surface area. The FWBS is constrained by the dimensions of the reference design and the protection criteria required for different reactor components. The blanket extrapolation to commercial power reactor conditions and the proper temperature for power extraction have been sacrificed to achieve the highest possible local tritium breeding ratio (TBR). In addition, several other factors that have been considered in the blanket survey study include safety, reliability, lifetime fluence, number of burn cycles, simplicity, cost, and development issues. The implications of different tritium supply scenarios were discussed from the cost and availability for INTOR conditions. A wide variety of blanket options was explored in a preliminary way to determine feasibility and to see if they can satisfy the INTOR conditions. This survey and related issues are summarized in this report. Also discussed are material design requirements, thermal hydraulic considerations, structure analyses, tritium permeation through the first wall into the coolant, and tritium inventory

  4. Optimization of beryllium for fusion blanket applications

    Billone, M.C.

    1993-01-01

    The primary function of beryllium in a fusion reactor blanket is neutron multiplication to enhance tritium breeding. However, because heat, tritium and helium will be generated in and/or transported through beryllium and because the beryllium is in contact with other blanket materials, the thermal, mechanical, tritium/helium and compatibility properties of beryllium are important in blanket design. In particular, tritium retention during normal operation and release during overheating events are safety concerns. Accommodating beryllium thermal expansion and helium-induced swelling are important issues in ensuring adequate lifetime of the structural components adjacent to the beryllium. Likewise, chemical/metallurgical interactions between beryllium and structural components need to be considered in lifetime analysis. Under accident conditions the chemical interaction between beryllium and coolant and breeding materials may also become important. The performance of beryllium in fusion blanket applications depends on fabrication variables and operational parameters. First the properties database is reviewed to determine the state of knowledge of beryllium performance as a function of these variables. Several design calculations are then performed to indicate ranges of fabrication and operation variables that lead to optimum beryllium performance. Finally, areas for database expansion and improvement are highlighted based on the properties survey and the design sensitivity studies

  5. ITER driver blanket, European Community design

    Simbolotti, G.; Zampaglione, V.; Ferrari, M.; Gallina, M.; Mazzone, G.; Nardi, C.; Petrizzi, L.; Rado, V.; Violante, V.; Daenner, W.; Lorenzetto, P.; Gierszewski, P.; Grattarola, M.; Rosatelli, F.; Secolo, F.; Zacchia, F.; Caira, M.; Sorabella, L.

    1993-01-01

    Depending on the final decision on the operation time of ITER (International Thermonuclear Experimental Reactor), the Driver Blanket might become a basic component of the machine with the main function of producing a significant fraction (close to 0.8) of the tritium required for the ITER operation, the remaining fraction being available from external supplies. The Driver Blanket is not required to provide reactor relevant performance in terms of tritium self-sufficiency. However, reactor relevant reliability and safety are mandatory requirements for this component in order not to significantly afftect the overall plant availability and to allow the ITER experimental program to be safely and successfully carried out. With the framework of the ITER Conceptual Design Activities (CDA, 1988-1990), a conceptual design of the ITER Driver Blanket has been carried out by ENEA Fusion Dept., in collaboration with ANSALDO S.p.A. and SRS S.r.l., and in close consultation with the NET Team and CFFTP (Canadian Fusion Fuels Technology Project). Such a design has been selected as EC (European Community) reference design for the ITER Driver Blanket. The status of the design at the end of CDA is reported in the present paper. (orig.)

  6. European blanket development for a demo reactor

    Giancarli, L.; Proust, E.; Anzidei, L.

    1994-01-01

    There are four breeding blanket concepts for a fusion DEMO reactor under development within the framework of the fusion technology programme of the European Union (EU). This paper describes the design of these concepts, the accompanying R + D programme and the status of the development. (authors). 8 figs., 1 tab

  7. A blanket design, apparatus, and fabrication techniques for the mass production of multilayer insulation blankets for the Superconducting Super Collider

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.; Otavka, J.G.; Ruschman, M.K.; Schoo, C.J.

    1989-09-01

    The multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) consists of full cryostat length assemblies of aluminized polyester film fabricated in the form of blankets and installed as blankets to the 4.5K cold mass and the 20K and 80K thermal radiation shields. Approximately 40,000 MLI blankets will be required in the 10,000 cryogenic devices comprising the SSC accelerator. Each blanket is nearly 17 meters long and 1.8 meters wide. This paper reports the blanket design, an apparatus, and the fabrication method used to mass produce pre-fabricated MLI blankets. Incorporated in the blanket design are techniques which automate quality control during installation of the MLI blankets in the SSC cryostat. The apparatus and blanket fabrication method insure consistency in the mass produced blankets by providing positive control of the dimensional parameters which contribute to the thermal performance of the MLI blanket. By virtue of the fabrication process, the MLI blankets have inherent features of dimensional stability three-dimensional uniformity, controlled layer density, layer-to-layer registration, interlayer cleanliness, and interlayer material to accommodate thermal contraction differences. 11 refs., 6 figs., 1 tab

  8. Packed-fluidized-bed blanket concept for a thorium-fueled commercial tokamak hybrid reactor

    Chi, J.W.H.; Miller, J.W.; Karbowski, J.S.; Chapin, D.L.; Kelly, J.L.

    1980-09-01

    A preliminary design of a thorium blanket was carried out as a part of the Commercial Tokamak Hybrid Reactor (CTHR) study. A fixed fuel blanket concept was developed as the reference CTHR blanket with uranium carbide fuel and helium coolant. A fixed fuel blanket was initially evaluated for the thorium blanket study. Subsequently, a new type of hybrid blanket, a packed-fluidized bed (PFB), was conceived. The PFB blanket concept has a number of unique features that may solve some of the problems encountered in the design of tokamak hybrid reactor blankets. This report documents the thorium blanket study and describes the feasibility assessment of the PFB blanket concept

  9. Thermomechanical analysis of the DFLL test blanket module for ITER

    Chen Hongli; Wu Yican; Bai Yunqing

    2006-01-01

    The finite element code is used to simulate two kinds of blanket design structure, which are SLL (Quasi-Static Lithium Lead) and DLL (Dual-cooled Lithium Lead) blanket concepts for the Dual Functional Lithium Lead-Test Blanket Module (DFLL-TBM) submitted to the ITER test blanket working group. The temperature and stress distributions have been presented for the two kinds of blanket structure on the basis of the structural design, thermal-hydraulic design and neutronics analysis. Also the mechanical performance is presented for the high temperature component of blanket structure according to the ITER Structural Design Criteria (ISDC). The rationality and feasibility of the two kinds of blanket structure design of DFLL-TBM have been analyzed based on the above results which also acted as the theoretical base for further optimized analysis. (authors)

  10. HIP technologies for fusion reactor blankets fabrication

    Le Marois, G.; Federzoni, L.; Bucci, P.; Revirand, P.

    2000-01-01

    The benefit of HIP techniques applied to the fabrication of fusion internal components for higher performances, reliability and cost savings are emphasized. To demonstrate the potential of the techniques, design of new blankets concepts and mock-ups fabrication are currently performed by CEA. A coiled tube concept that allows cooling arrangement flexibility, strong reduction of the machining and number of welds is proposed for ITER IAM. Medium size mock-ups according to the WCLL breeding blanket concept have been manufactured. The fabrication of a large size mock-up is under progress. These activities are supported by numerical calculations to predict the deformations of the parts during HIP'ing. Finally, several HIP techniques issues have been identified and are discussed

  11. Blankets for fusion reactors : materials and neutronics

    Carvalho, S.H. de.

    1980-03-01

    The studies about Fusion Reactors have lead to several problems for which there is no general agreement about the best solution. Nevertheless, several points seem to be well defined, at least for the first generation of reactors. The fuel, for example, should be a mixture of deuterium and tritium. Therefore, the reactor should be able to generate the tritium to be burned and also to transform kinetic energy of the fusion neutrons into heat in a process similar to the fission reactors. The best materials for the composition of the blanket were first selected and then the neutronics for the proposed system was developed. The neutron flux in the blanket was calculated using the discrete ordinates transport code, ANISN. All the nuclides cross sections came from the DLC-28/CTR library, that processed the ENDF/B data, using the SUPERTOG Program. (Author) [pt

  12. Conceptual design of ITER shielding blanket

    Sato, Satoshi; Takatsu, Hideyuki; Kurasawa, Toshimasa

    1995-03-01

    The present report summarizes the design activities of the ITER first wall and shielding blanket conducted by the JA Home Team during this year (1994) in close contact with the JCT, and reported during the four Technical Meetings held at Garching ITER Co-center. These activities are based on the Task Agreement between the JCT and the JA Home Team. In the present report, a layered configuration composed of separate first walls, modular-type blanket modules and separate back plates has been proposed to realize reliable assembly and maintenance schemes as well as to realize reliable component designs under high surface heat loads, high neutron wall loading and electromagnetic loads during disruptions. Outline of the structural design, consideration on fabricability and maintainability, and the results of thermal, mechanical and electromagnetic analyses are described. (author)

  13. Flow balancing in liquid metal blankets

    Tillack, M.S.; Morley, N.B.

    1995-01-01

    Non-uniform flow distribution between parallel channels is one of the most serious concerns for self-cooled liquid metal blankets with electrically insulated walls. We show that uncertainties in flow distribution can be dramatically reduced by relatively simple design modifications. Several design features which impose flow uniformity by electrically coupling parallel channels are surveyed. Basic mechanisms for ''flow balancing'' are described, and a particular self-regulating concept using discrete passive electrodes is proposed for the US ITER advanced blanket concept. Scoping calculations suggest that this simple technique can be very powerful in equalizing the flow, even with massive insulator failures in individual channels. More detailed analyses and experimental verification will be required to demonstrate this concept for ITER. (orig.)

  14. Recent designs for advanced fusion reactor blankets

    Sze, D.K.

    1994-01-01

    A series of reactor design studies based on the Tokamak configuration have been carried out under the direction of Professor Robert Conn of UCLA. They are called ARIES-I through IV. The key mission of these studies is to evaluate the attractiveness of fusion assuming different degrees of advancement in either physics or engineering development. This paper discusses the directions and conclusions of the blanket and related engineering systems for those design studies. ARIES-1 investigated the use of SiC composite as the structural material to increase the blanket temperature and reduce the blanket activation. Li 2 ZrO 3 was used as the breeding material due to its high temperature stability and good tritium recovery characteristics. The ARIES-IV is a modification of ARIES-1. The plasma was in the second stability regime. Li 2 O was used as the breeding material to remove Zr. A gaseous divertor was used to replace the conventional divertor so that high Z divertor target is not required. The physics of ARIES-II was the same as ARIES-IV. The engineering design of the ARIES-II was based on a self-cooled lithium blanket with a V-alloy as the structural material. Even though it was assumed that the plasma was in the second stability regime, the plasma beta was still rather low (3.4%). The ARIES-III is an advanced fuel (D- 3 He) tokamak reactor. The reactor design assumed major advancement on the physics, with a plasma beta of 23.9%. A conventional structural material is acceptable due to the low neutron wall loading. From the radiation damage point of view, the first wall can last the life of the reactor, which is expected to be a major advantage from the engineering design and waste disposal point of view

  15. Heating facility for blanket and performance test

    Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Sato, Satoshi; Hatano, Toshihisa; Takatsu, Hideyuki; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Hara, Shigemitsu

    1999-03-01

    A design and a fabrication of heating test facility for a mock-up of the blanket module to be installed in International Thermonuclear Experimental Reactor (ITER) have been conducted to evaluate/demonstrate its heat removal performance and structural soundness under cyclic heat loads. To simulate surface heat flux to the blanket module, infrared heating method is adopted so as to heat large surface area uniformly. The infrared heater is used in vacuum environment (10{sup -4} Torr{approx}), and the lamps are cooled by air flowing through an annulus between the lamp and a cover tube made of quartz glass. Elastomer O rings (available to be used up to {approx}300degC) and used for vacuum seal at outer surface of the cover tube. To prevent excessive heating of the O ring, the end part of the cover tube is specially designed including the tube shape, flow path of air and gold coating on the surface of the cover tube to protect the O ring against thermal radiation from glowing tungsten filament. To examine the performance of the facility, steady state and cyclic operation of the infrared heater were conducted using a small-scaled shielding blanket mock-up as a test specimen. The important results are as follows: (1) Heat flux at the surface of the small-scaled mock-up measured by a calorimeter was {approx}0.2 MW/m{sup 2}. (2) A comparison of thermal analysis results and measured temperature responses showed that the small-scaled mock-up had good heat removal performance. (3) Steady state operation and cyclic operation with step response between the rated and zero powers of the infrared heater were successfully performed, and it was confirmed that this heating facility was well-prepared and available for the thermal cyclic test of a blanket module. (author)

  16. Conceptual design of Blanket Remote Handling System for CFETR

    Wei, Jianghua; Song, Yuntao; Pei, Kun; Zhao, Wenlong; Zhang, Yu; Cheng, Yong

    2015-01-01

    Highlights: • The concept for the blanket maintenance is carried out, including three sub-systems. • The basic maintenance procedure for blanket between VV and hot cell is carried out. • The primary kinematics study is used to verify the feasibility of BRHS. • Virtual reality is adopted as another approach to verify the concept design. - Abstract: The China Fusion Engineering Testing Reactor (CFETR), which is a new superconducting tokamak device being designed by China, has a mission to achieve a high duty time (0.3–0.5). To accomplish this great mission, the big modular blanket option has been adopted to achieve the high efficiency of the blanket maintenance. Considering this mission and the large and heavy blanket module, a novel conceptual blanket maintenance system for CFETR has been carried out by us over the past year. This paper presents the conceptual design of the Blanket Remote Handling System (BRHS), which mainly comprises the In-Vessel-Maintenance-System (IVMS), Lifting System and Blanket-Tool-Manipulator System (BTMS). The BRHS implements the extraction and replacement between in-vessel (the blanket module operation configuration location) and ex-vessel (inside of the vertical maintenance cask) by the collaboration of these three sub systems. What is more, this paper represents the blanket maintenance procedure between the docking station (between hot cell building and tokamak building) and inside the vacuum vessel, in tokamak building. Virtual reality technology is also used to verify and optimize our concept design.

  17. Conceptual design of Blanket Remote Handling System for CFETR

    Wei, Jianghua, E-mail: weijh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Song, Yuntao, E-mail: songyt@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science and Technology of China, Hefei (China); Pei, Kun; Zhao, Wenlong; Zhang, Yu; Cheng, Yong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2015-11-15

    Highlights: • The concept for the blanket maintenance is carried out, including three sub-systems. • The basic maintenance procedure for blanket between VV and hot cell is carried out. • The primary kinematics study is used to verify the feasibility of BRHS. • Virtual reality is adopted as another approach to verify the concept design. - Abstract: The China Fusion Engineering Testing Reactor (CFETR), which is a new superconducting tokamak device being designed by China, has a mission to achieve a high duty time (0.3–0.5). To accomplish this great mission, the big modular blanket option has been adopted to achieve the high efficiency of the blanket maintenance. Considering this mission and the large and heavy blanket module, a novel conceptual blanket maintenance system for CFETR has been carried out by us over the past year. This paper presents the conceptual design of the Blanket Remote Handling System (BRHS), which mainly comprises the In-Vessel-Maintenance-System (IVMS), Lifting System and Blanket-Tool-Manipulator System (BTMS). The BRHS implements the extraction and replacement between in-vessel (the blanket module operation configuration location) and ex-vessel (inside of the vertical maintenance cask) by the collaboration of these three sub systems. What is more, this paper represents the blanket maintenance procedure between the docking station (between hot cell building and tokamak building) and inside the vacuum vessel, in tokamak building. Virtual reality technology is also used to verify and optimize our concept design.

  18. Measurement and Analysis of the Neutron and Gamma-Ray Flux Spectra in a Neutronics Mock-Up of the HCPB Test Blanket Module

    Seidel, K.; Freiesleben, H.; Poenitz, E.; Klix, A.; Unholzer, S.; Batistoni, P.; Fischer, U.; Leichtle, D.

    2006-01-01

    The nuclear parameters of a breeding blanket, such as tritium production rate, nuclear heating, activation and dose rate, are calculated by integral folding of an energy dependent cross section (or coefficient) with the neutron (or gamma-ray) flux energy spectra. The uncertainties of the designed parameters are determined by the uncertainties of both the cross section data and the flux spectra obtained by transport calculations. Also the analysis of possible discrepancies between measured and calculated integral nuclear parameter represents a two-step procedure. First, the energy region and the amount of flux discrepancies has to be found out and second, the cross section data have to be checked. To this end, neutron and gamma-ray flux spectra in a mock-up of the EU Helium-Cooled Pebble Bed (HCPB) breeder Test Blanket Module (TBM), irradiated with 14 MeV neutrons, were measured and analysed by means of Monte Carlo transport calculations. The flux spectra were determined for the energy ranges that are relevant for the most important nuclear parameters of the TBM, which are the tritium production rate and the shielding capability. The fast neutron flux which determines the tritium production on 7 Li and dominates the shield design was measured by the pulse-height distribution obtained from an organic liquid scintillation detector. Simultaneously, the gamma-ray flux spectra were measured. The neutron flux at lower energies, down to thermal, which determines the tritium production on 6 Li, was measured with time-of-arrival spectroscopy. For this purpose, the TUD neutron generator was operated in pulsed mode (pulse width 10 μs, frequency 1 kHz) and the neutrons arriving at a 3 He proportional counter in the mock-up were recorded as a function of time after the source neutron pulse. The spectral distributions for the two positions in the mock-up, where measurements were carried out, were calculated with the Monte Carlo code MCNP, version 5, and nuclear data from the

  19. Tokamak blanket design study, final report

    1980-08-01

    A cylindrical module concept was developed, analyzed, and incorporated in a tokamak blanket system that includes piping systems, vacuum boundary sealing, and support structures. The design is based on the use of state-of-the-art structural materials (20% cold-worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders (with an outer diameter of 10 cm) and features direct wall cooling by helium flowing between the outer (first-wall) cylinder and the inner (lithium-containing) cylinder. Each cylinder can withstand full coolant pressure, thus enhancing reliability. Results show that stainless steel is a viable material for a first wall subjected to a neutron wall loading of 4 MW/m 2 and a particle heat flux of 1 MW/m 2 . Lifetime analysis shows that the first-wall design meets the goal of operating at 20-min cycles with 95% duty for 100,000 cycles. To reduce system complexity, a larger 20-cm-diam module also was analyzed for incorporation in the blanket assembly. Reliability assessment indicates that it may be possible to double the module in size from 10 to 20 cm in diameter. With a modest increase in coolant pumping power, a blanket assembly comprising 20-cm-diam modules can still achieve 100,000 operating cycles - equivalent to a 3.6-year design lifetime - with only one or two helium coolant leaks into the plasma

  20. Nuclear Analysis of an ITER Blanket Module

    Chiovaro, P.; Di Maio, P. A.; Parrinello, V.

    2013-08-01

    ITER blanket system is the reactor's plasma-facing component, it is mainly devoted to provide the thermal and nuclear shielding of the Vacuum Vessel and external ITER components, being intended also to act as plasma limiter. It consists of 440 individual modules which are located in the inboard, upper and outboard regions of the reactor. In this paper attention has been focused on to a single outboard blanket module located in the equatorial zone, whose nuclear response under irradiation has been investigated following a numerical approach based on the Monte Carlo method and adopting the MCNP5 code. The main features of this blanket module nuclear behaviour have been determined, paying particular attention to energy and spatial distribution of the neutron flux and deposited nuclear power together with the spatial distribution of its volumetric density. Moreover, the neutronic damage of the structural material has also been investigated through the evaluation of displacement per atom and helium and hydrogen production rates. Finally, an activation analysis has been performed with FISPACT inventory code using, as input, the evaluated neutron spectrum to assess the module specific activity and contact dose rate after irradiation under a specific operating scenario.

  1. Tokamak blanket design study, final report

    1980-08-01

    A cylindrical module concept was developed, analyzed, and incorporated in a tokamak blanket system that includes piping systems, vacuum boundary sealing, and support structures. The design is based on the use of state-of-the-art structural materials (20% cold-worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders (with an outer diameter of 10 cm) and features direct wall cooling by helium flowing between the outer (first-wall) cylinder and the inner (lithium-containing) cylinder. Each cylinder can withstand full coolant pressure, thus enhancing reliability. Results show that stainless steel is a viable material for a first wall subjected to a neutron wall loading of 4 MW/m/sup 2/ and a particle heat flux of 1 MW/m/sup 2/. Lifetime analysis shows that the first-wall design meets the goal of operating at 20-min cycles with 95% duty for 100,000 cycles. To reduce system complexity, a larger 20-cm-diam module also was analyzed for incorporation in the blanket assembly. Reliability assessment indicates that it may be possible to double the module in size from 10 to 20 cm in diameter. With a modest increase in coolant pumping power, a blanket assembly comprising 20-cm-diam modules can still achieve 100,000 operating cycles - equivalent to a 3.6-year design lifetime - with only one or two helium coolant leaks into the plasma.

  2. Nuclear characteristics of D-D fusion reactor blankets

    Nakashima, Hideki; Ohta, Masao

    1978-01-01

    Fusion reactors operating on deuterium (D-D) cycle are considered to be of long range interest for their freedom from tritium breeding in the blanket. The present paper discusses the various possibilities of D-D fusion reactor blanket designs mainly from the standpoint of the nuclear characteristics. Neutronic and photonic calculations are based on presently available data to provide a basis of the optimal blanket design in D-D fusion reactors. It is found that it appears desirable to design a blanket with blanket/shield (BS) concept in D-D fusion reactors. The BS concept is designed to obtain reasonable shielding characteristics for superconducting magnet (SCM) by using shielding materials in the compact blanket. This concept will open the possibility of compact radiation shield design based on assured technology, and offer the advantage from the system economics point of view. (auth.)

  3. Neutronic optimization of solid breeder blankets for STARFIRE design

    Gohar, Y.; Abdou, M.A.

    1980-01-01

    Extensive neutronic tradeoff studies were carried out to define and optimize the neutronic performance of the different solid breeder options for the STARFIRE blanket design. A set of criteria were employed to select the potential blanket materials. The basic criteria include the neutronic performance, tritium-release characteristics, material compatibility, and chemical stability. Three blanket options were analyzed. The first option is based on separate zones for each basic blanket function where the neutron multiplier is kept in a separate zone. The second option is a heterogeneous blanket type with two tritium breeder zones. In the first zone the tritium breeder is assembled in a neutron multiplier matrix behind the first wall while the second zone has a neutron moderator matrix instead of the neutron multiplier. The third blanket option is similar to the second concept except the tritium breeder and the neutron multiplier form a homogeneous mixture

  4. Processing and waste disposal representative for fusion breeder blanket systems

    Finn, P.A.; Vogler, S.

    1987-01-01

    This study is an evaluation of the waste handling concepts applicable to fusion breeder systems. Its goal is to determine if breeder blanket waste can be disposed of in shallow land burial, the least restrictive method under US Nuclear Regulatory regulations. The radionuclides expected in the materials used in fusion reactor blankets are described, as are plans for reprocessing and disposal of the components of different breeder blankets. An estimate of the operating costs involved in waste disposal is made

  5. A review of fusion breeder blanket technology, part 1

    Jackson, D.P.; Selander, W.N.; Townes, B.M.

    1985-01-01

    This report presents the results of a study of fusion breeder blanket technology. It reviews the role of the breeder blanket, the current understanding of the scientific and engineering bases of liquid metal and solid breeder blankets and the programs now underway internationally to resolve the uncertainities in current knowledge. In view of existing national expertise and experience, a solid breeder R and D program for Canada is recommended

  6. Electromagnetic analysis of ITER shield blanket under VDE

    Kang Weishan; Chen Jiming; Wu Jihong; Wang Mingxu

    2010-01-01

    Electromagnetic force and torque of ITER shield blanket system and their surrounding major component under vertical displacement event (VDE) were calculated with finite element method. ANSYS APDL was used to simulate the shape and magnitude of plasmas current dynamically in the VDE course, and external magnetic field was imposed, then the induced current distribution inside the all conductor including the blanket was obtained from the calculation. The force and torque for every blanket module was obtained to assess the safety of blanket system under VDE. (authors)

  7. Minimum thickness blanket-shield for fusion reactors

    Karni, Y.; Greenspan, E.

    1989-01-01

    A lower bound on the minimum thickness fusion reactor blankets can be designed to have, if they are to breed 1.267 tritons per fusion neutron, is identified by performing a systematic nucleonic optimization of over a dozen different blanket concepts which use either Be, Li 17 Pb 83 , W or Zr for neutron multiplication. It is found that Be offers minimum thickness blankets; that the blanket and shield (B/S) thickness of Li 17 Pb 83 based blankets which are supplemented by Li 2 O and/or TiH 2 are comparable to the thickness of Be based B/S; that of the Be based blankets, the aqueous self-cooled one offers one of the most compact B/S; and that a number of blanket concepts might enable the design of B/S which is approximately 12 cm and 39 cm thinner than the B/S thickness of, respectively, conventional self-cooled Li 17 Pb 83 and Li blankets. Aqueous self-cooled tungsten blankets could be useful for experimental fusion devices provided they are designed to be heterogeneous. (orig.)

  8. Cryogenic recovery analysis of forced flow supercritical helium cooled superconductors

    Lee, A.Y.

    1977-08-01

    A coupled heat conduction and fluid flow method of solution was presented for cryogenic stability analysis of cabled composite superconductors of large scale magnetic coils. The coils are cooled by forced flow supercritical helium in parallel flow channels. The coolant flow reduction in one of the channels during the spontaneous recovery transient, after the conductor undergoes a transition from superconducting to resistive, necessitates a parallel channel analysis. A way to simulate the parallel channel analysis is described to calculate the initial channel inlet flow rate required for recovery after a given amount of heat is deposited. The recovery capability of a NbTi plus copper composite superconductor design is analyzed and the results presented. If the hydraulics of the coolant flow is neglected in the recovery analysis, the recovery capability of the superconductor will be over-predicted

  9. Steady state heat transfer of helium cooled cable bundles

    Khalil, A.

    1982-01-01

    In the present study nucleate and film boiling heat transfer characteristics of horizontal conductor bundles are investigated at steady state conditions. The effect of gaps between wires, number of wires, wire position, wire size and bundle orientation on the departure from nucleate boiling and transition to film boiling is studied. For gaps close to the bubble departure diameter, the critical heat flux can approach up to 90% of the single wire value. Consequently, the maximum stable current for a given bundle can be significantly increased above the single conductor value for the same cross-sectional area. (author)

  10. An efficient continuous flow helium cooling unit for Moessbauer experiments

    Herbert, I.R.; Campbell, S.J.

    1976-01-01

    A Moessbauer continuous flow cooling unit for use with liquid helium over the temperature range 4.2 to 300K is described. The cooling unit can be used for either absorber or source studies in the horizontal plane and it is positioned directly on top of a helium storage vessel. The helium transfer line forms an integral part of the cooling unit and feeds directly into the storage vessel so that helium losses are kept to the minimum. The helium consumption is 0.12 l h -1 at 4.2 K decreasing to 0.055 l h -1 at 40 K. The unit is top loading and the exchange gas cooled samples can be changed easily and quickly. (author)

  11. Optimal thermal-hydraulic performance for helium-cooled divertors

    Izenson, M.G.; Martin, J.L.

    1996-01-01

    Normal flow heat exchanger (NFHX) technology offers the potential for cooling divertor panels with reduced pressure drops (<0.5% Δp/p), reduced pumping power (<0.75% pumping/thermal power), and smaller duct sizes than conventional helium heat exchangers. Furthermore, the NFHX can easily be fabricated in the large sizes required for divertors in large tokamaks. Recent experimental and computational results from a program to develop NFHX technology for divertor coolings using porous metal heat transfer media are described. We have tested the thermal and flow characteristics of porous metals and identified the optimal heat transfer material for the divertor heat exchanger. Methods have been developed to create highly conductive thermal bonds between the porous material and a solid substrate. Computational fluid dynamics calculations of flow and heat transfer in the porous metal layer have shown the capability of high thermal effectiveness. An 18-kW NFHX, designed to meet specifications for the international Thermonuclear Experimental Reactor divertor, has been fabricated and tested for thermal and flow performance. Preliminary results confirm design and fabrication methods. 11 refs., 12 figs., 1 tab

  12. Thermal and flow design of helium-cooled reactors

    Melese, G.; Katz, R.

    1984-01-01

    This book continues the American Nuclear Society's series of monographs on nuclear science and technology. Chapters of the book include information on the first-generation gas-cooled reactors; HTGR reactor developments; reactor core heat transfer; mechanical problems related to the primary coolant circuit; HTGR design bases; core thermal design; gas turbines; process heat HTGR reactors; GCFR reactor thermal hydraulics; and gas cooling of fusion reactors

  13. Forced two phase helium cooling of large superconducting magnets

    Green, M.A.; Burns, W.A.; Taylor, J.D.

    1979-08-01

    A major problem shared by all large superconducting magnets is the cryogenic cooling system. Most large magnets are cooled by some variation of the helium bath. Helium bath cooling becomes more and more troublesome as the size of the magnet grows and as geometric constraints come into play. An alternative approach to cooling large magnet systems is the forced flow, two phase helium system. The advantages of two phase cooling in many magnet systems are shown. The design of a two phase helium system, with its control dewar, is presented. The paper discusses pressure drop of a two phase system, stability of a two phase system and the method of cool down of a two phase system. The results of experimental measurements at LBL are discussed. Included are the results of cool down and operation of superconducting solenoids

  14. Liquid helium cooling of the MFTF superconducting magnets

    VanSant, J.H.; Zbasnik, J.P.

    1986-09-01

    During acceptance testing of the Mirror Fusion Test Facility (MFTF), we measured these tests: liquid helium heat loads and flow rates in selected magnets. We used the data from these tests to estimate helium vapor quality in the magnets so that we could determine if adequate conductor cooling conditions had occurred. We compared the measured quality and flow with estimates from a theoretical model developed for the MFTF magnets. The comparison is reasonably good, considering influences that can greatly affect these values. This paper describes the methods employed in making the measurements and developing the theoretical estimates. It also describes the helium system that maintained the magnets at required operating conditions

  15. The cryogenic helium cooling system for the Tokamak physics experiment

    Felker, B.; Slack, D.S.; Wendland, C.R.

    1995-01-01

    The Tokamak Physics Experiment (TPX) will use supercritical helium to cool all the magnets and supply helium to the Vacuum cryopumping subsystem. The heat loads will come from the standard steady state conduction and thermal radiation sources and from the pulsed loads of the nuclear and eddy currents caused by the Central Solenoid Coils and the plasma positioning coils. The operations of the TPX will begin with pulses of up to 1000 seconds in duration every 75 minutes. The helium system utilizes a pulse load leveling scheme to buffer out the effects of the pulse load and maintain a constant cryogenic plant operation. The pulse load leveling scheme utilizes the thermal mass of liquid and gaseous helium stored in a remote dewar to absorb the pulses of the tokamak loads. The mass of the stored helium will buffer out the temperature pulses allowing 5 K helium to be delivered to the magnets throughout the length of the pulse. The temperature of the dewar will remain below 5 K with all the energy of the pulse absorbed. This paper will present the details of the heat load sources, of the pulse load leveling scheme operations, a partial helium schematic, dewar temperature as a function of time, the heat load sources as a function of time and the helium temperature as a function of length along the various components that will be cooled

  16. Supercritical Helium Cooling of the LHC Beam Screens

    Hatchadourian, E; Tavian, L

    1998-01-01

    The cold mass of the LHC superconducting magnets, operating in pressurised superfluid helium at 1.9 K, must be shielded from the dynamic heat loads induced by the circulating particle beams, by means of beam screens maintained at higher temperature. The beam screens are cooled between 5 and 20 K by forced flow of weakly supercritical helium, a solution which avoids two-phase flow in the long, narr ow cooling channels, but still presents a potential risk of thermohydraulic instabilities. This problem has been studied by theoretical modelling and experiments performed on a full-scale dedicated te st loop.

  17. Systematic methodology for estimating direct capital costs for blanket tritium processing systems

    Finn, P.A.

    1985-01-01

    This paper describes the methodology developed for estimating the relative capital costs of blanket processing systems. The capital costs of the nine blanket concepts selected in the Blanket Comparison and Selection Study are presented and compared

  18. Beryllium research on FFHR molten salt blanket

    Terai, T.; Tanaka, S.; Sze, D.-K.

    2000-01-01

    Force-free helical reactor, FFHR, is a demo-relevant heliotron-type D-T fusion reactor based on the great amount of R and D results obtained in the LHD project. Since 1993, collaboration works have made great progress in design studies of FFHR with standing on the major advantage of current-less steady operation with no dangerous plasma disruptions. There are two types of reference designs, FFHR-1 and FFHR-2, where molten Flibe (LiF-BeF2) is utilized as tritium breeder and coolant. In this paper, we present the outline of FFHR blanket design and some related R and D topics focusing on Be utilization. Beryllium is used as a neutron multiplier in the design and Be pebbles are placed in the front part of the tritium breeding zone. In a Flibe blanket, HF (TF) generated due to nuclear transmutation will be a problem because of its corrosive property. Though nickel-based alloys are thought to be intact in such a corrosive environment, FFHR blanket design does not adopt the alloys because of their induced radioactivity. The present candidate materials for the structure are low-activated ferritic steel (JLF-1), V-4Cr-4Ti, etc. They are capable to be corroded by HF in the operation condition, and Be is expected to work as a reducing agent in the system as well. Whether Be pebbles placed in a Flibe flow can work well or not is a very important matter. From this point, Be solubility in Flibe, reaction rate of the Redox reaction with TF in the liquid and on the surface of Be pebbles under irradiation, flowing behavior of Flibe through a Be pebble bed, etc. should be investigated. In 1997, in order to establish more practical and new data bases for advanced design works, we started a collaboration work of R and D on blanket engineering, where the Be research above mentioned is included. Preliminary dipping-test of Be sheets and in-situ tritium release experiment from Flibe with Be sheets have got started. (orig.)

  19. Structural materials for fusion reactor blanket systems

    Bloom, E.E.; Smith, D.L.

    1984-01-01

    Consideration of the required functions of the blanket and the general chemical, mechanical, and physical properties of candidate tritium breeding materials, coolants, structural materials, etc., leads to acceptable or compatible combinations of materials. The presently favored candidate structural materials are the austenitic stainless steels, martensitic steels, and vanadium alloys. The characteristics of these alloy systems which limit their application and potential performance as well as approaches to alloy development aimed at improving performance (temperature capability and lifetime) will be described. Progress towards understanding and improving the performance of structural materials has been substantial. It is possible to develop materials with acceptable properties for fusion applications

  20. About possible technologies of creation nanostructures blankets

    Blednova, Zh.M.; Chaevskij, M.I.; Rusinov, P.O.

    2008-01-01

    Possible technologies of formation nanostructures blankets are considered: a method of thermal carrying over of weights in the conditions of a high gradient of temperatures; the combined method including cathode-plasma nitriding in the conditions of low pressure and drawing of nitride of the titan in a uniform work cycle; the combined method including high-frequency ionic nitriding and drawing of carbide of chrome by pyrolysis chrome and organic of connections in plasma of the decaying category. Possibility of formation layered nanostructures layers is shown.

  1. ITER solid breeder blanket materials database

    Billone, M.C.; Dienst, W.; Noda, K.; Roux, N.

    1993-11-01

    The databases for solid breeder ceramics (Li 2 ,O, Li 4 SiO 4 , Li 2 ZrO 3 and LiAlO 2 ) and beryllium multiplier material are critically reviewed and evaluated. Emphasis is placed on physical, thermal, mechanical, chemical stability/compatibility, tritium, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Correlations are selected for design analysis and compared to the database. Areas for future research and development in blanket materials technology are highlighted and prioritized

  2. Recent designs for advanced fusion reactor blankets

    Sze, D.K.

    1994-06-01

    A series of reactor design studies based on the Tokamak configuration have been carried out under the direction of Professor Robert Conn of UCLA. They are called ARIES-1 through 4 and PULSAR 1 and 2. The key mission of these studies is to evaluate the attractiveness of fusion assuming different degrees of advancement in either physics or engineering development. Also, the requirements of engineering and physics systems for a pulsed reactor were evaluated by the PULSAR design studies. This paper discusses the directions and conclusions of the blanket and related engineering systems for those design studies

  3. Two-phase-flow cooling concept for fusion reactor blankets

    Bender, D.J.; Hoffman, M.A.

    1977-01-01

    The new two-phase heat transfer medium proposed is a mixture of potassium droplets and helium which permits blanket operation at hih temperature and low pressure, while maintaining acceptable pumping power requirements, coolant ducting size, and blanket structure fractions. A two-phase flow model is described. The helium pumping power and the primary heat transfer loop are discussed

  4. Remote handling demonstration of ITER blanket module replacement

    Kakudate, S.; Nakahira, M.; Oka, K.; Taguchi, K.; Obara, K.; Tada, E.; Shibanuma, K.; Tesini, A.; Haange, R.; Maisonnier, D.

    2001-01-01

    In ITER, the in-vessel components such as blanket are to be maintained or replaced remotely since they will be activated by 14 MeV neutrons, and a complete exchange of shielding blanket with breeding blanket is foreseen after the Basic Performance Phase. The blanket is segmented into about seven hundred modules to facilitate remote maintainability and allow individual module replacement. For this, the remote handing equipment for blanket maintenance is required to handle a module with a dead weight of about 4 tonne within a positioning accuracy of a few mm under intense gamma radiation. According to the ITER R and D program, a rail-mounted vehicle manipulator system was developed and the basic feasibility of this system was verified through prototype testing. Following this, development of full-scale remote handling equipment has been conducted as one of the ITER Seven R and D Projects aiming at a remote handling demonstration of the ITER blanket. As a result, the Blanket Test Platform (BTP) composed of the full-scale remote handling equipment has been completed and the first integrated performance test in March 1998 has shown that the fabricate remote handling equipment satisfies the main requirements of ITER blanket maintenance. (author)

  5. Accelerator driven heavy water blanket on circulating fuel

    Kazaritsky, V.D.; Blagovolin, P.P.; Mladov, V.R.; Okhlopkov, M.L.; Batyaev, V.F.; Stepanov, N.V.; Seliverstov, V.V.

    1997-01-01

    A conceptual design of a heavy water blanket with circulating fuel for an accelerator driven transmutation system is described. The hybrid system consists of a high-current linear accelerator of protons and 4 targets, each placed inside a subcritical blanket

  6. Achievements of element technology development for breeding blanket

    Enoeda, Mikio

    2005-03-01

    Japan Atomic Energy Research Institute (JAERI) has been performing the development of breeding blanket for fusion power plant, as a leading institute of the development of solid breeder blankets, according to the long-term R and D program of the blanket development established by the Fusion Council of Japan in 1999. This report is an overview of development plan, achievements of element technology development and future prospect and plan of the development of the solid breeding blanket in JAERI. In this report, the mission of the blanket development activity in JAERI, key issues and roadmap of the blanket development have been clarified. Then, achievements of the element technology development were summarized and showed that the development has progressed to enter the engineering testing phase. The specific development target and plan were clarified with bright prospect. Realization of the engineering test phase R and D and completion of ITER test blanket module testing program, with universities/NIFS cooperation, are most important steps in the development of breeding blanket of fusion power demonstration plant. (author)

  7. An assessment of the base blanket for ITER

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-01-01

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored

  8. Objectives and status of EUROfusion DEMO blanket studies

    Boccaccini, L.V., E-mail: lorenzo.boccaccini@kit.edu [Karlsruhe Institute of Technology (KIT) (Germany); Aiello, G.; Aubert, J. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Bachmann, C. [EUROfusion, PPPT, Garching (Germany); Barrett, T. [CCFE, Abingdon OX14 3DB (United Kingdom); Del Nevo, A. [ENEA CR Brasimone, 40032 Camugnano, BO (Italy); Demange, D. [Karlsruhe Institute of Technology (KIT) (Germany); Forest, L. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Hernandez, F.; Norajitra, P. [Karlsruhe Institute of Technology (KIT) (Germany); Porempovic, G. [Fuziotech Engineering Ltd (Hungary); Rapisarda, D. [CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Sardain, P. [CEA/IRFM, 13115 Saint-Paul-lès-Durance (France); Utili, M. [ENEA CR Brasimone, 40032 Camugnano, BO (Italy); Vala, L. [Centrum výzkumu Řež, 250 68 Husinec-Řež (Czech Republic)

    2016-11-01

    Highlights: • Short description of the new Breeding Blanket Project in the EUROfusion consortium for the design of the EU PPPT DEMO: objectives. • Presentation of the design approach used in the development of the Breeding Blanket design: requirements. • Breeding Blanket design; in particular the four blanket concepts included in the study are presented, recent results highlighted and the status discussed. • Auxiliary systems and related R&D programme: in particular the work areas addressed in the Project (Tritium Technology, Pb-Li and Solid Breeders Technology, First Wall Design and R&D, Manufacturing) are presented, recent results highlighted and the status discussed. - Abstract: The design of a DEMO reactor requires the design of a blanket system suitable of reliable T production and heat extraction for electricity production. In the frame of the EUROfusion Consortium activities, the Breeding Blanket Project has been constituted in 2014 with the goal to develop concepts of Breeding Blankets for the EU PPPT DEMO; this includes an integrated design and R&D programme with the goal to select after 2020 concepts on fusion plants for the engineering phase. The design activities are presently focalized around a pool of solid and liquid breeder blanket with helium, water and PbLi cooling. Development of tritium extraction and control technology, as well manufacturing and development of solid and PbLi breeders are part of the programme.

  9. 18 CFR 284.303 - OCS blanket certificates.

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false OCS blanket certificates. 284.303 Section 284.303 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Pipelines on Behalf of Others § 284.303 OCS blanket certificates. Every OCS pipeline [as that term is...

  10. Neutronic design for the TFTR lithium blanket module

    Cheng, E.T.; Engholm, B.A.; Su, S.D.

    1981-01-01

    The preliminary design of a lithium blanket module (LBM) to be installed and tested in the TFTR has been performed under subcontract to PPPL and EPRI. The objectives of the LBM program are calculation and measurement of neutron fluences and tritium production in a breeding blanket module using state of art techniques, comparison of calculations with measurements, and acquisition of operational experience with a fusion reactor blanket module. The neutronic design of the LBM is one of the key areas of this program in which the LBM composition and geometry are optimized and the boundary material effects on the tritium production in the blanket module are explored. The concept of employing sintered Li/sub 2/O pellets in tubes is proposed for the blanket design

  11. MIT LMFBR blanket research project. Final summary report

    Driscoll, M.J.

    1983-08-01

    This is a final summary report on an experimental and analytical program for the investigation of LMFBR blanket characteristics carried out at MIT in the period 1969 to 1983. During this span of time, work was carried out on a wide range of subtasks, ranging from neutronic and photonic measurements in mockups of blankets using the Blanket Test Facility at the MIT Research Reactor, to analytic/numerical investigations of blanket design and economics. The main function of this report is to serve as a resource document which will permit ready reference to the more detailed topical reports and theses issued over the years on the various aspects of project activities. In addition, one aspect of work completed during the final year of the project, on doubly-heterogeneous blanket configurations, is documented for the record

  12. Axial blanket enrichment optimization of the NPP Krsko fuel

    Kromar, M.; Kurincic, B.

    2001-01-01

    In this paper optimal axial blanket enrichment of the NPP Krsko fuel is investigated. Since the optimization is dictated by economic categories that can significantly vary in time, two step approach is applied. In the first step simple relationship between the equivalent change in enrichment of axial blankets and central fuel region is established. The relationship is afterwards processed with economic criteria and constraints to obtain optimal axial blanket enrichment. In the analysis realistic NPP Krsko conditions are considered. Except for the fuel enrichment all other fuel characteristics are the same as in the fuel used in the few most recent cycles. A typical reload cycle after the plant power uprate is examined. Analysis has shown that the current blanket enrichment is close to the optimal. Blanket enrichment reduction results in an approximately 100 000 US$ savings per fuel cycle.(author)

  13. Neutron dosimetry for the TFTR Lithium-Blanket-Module program

    Harker, Y.D.; Tsang, F.Y.; Caffrey, A.J.; Homeyer, W.G.; Engholm, B.A.

    1981-01-01

    The Tokamak Fusion Test Reactor (TFTR) Lithium Blanket Module (LBM) program is a first-of-a-kind neutronics experiment involving a prototypical fusion reactor blanket module with a distributed neutron source from the plasma of the TFTR at Princeton Plasma Physics Laboratory. The objectives of the LBM program are: (1) to test the capabilities of neutron transport codes when applied to fusion test reactor blanket conditions, and (2) to obtain tritium breeding performance data on a typical design concept of a fusion-reactor blanket. This paper addresses the issues relative to the measurement of neutron fields in the LBM, presents the results of preliminary design studies concerning neutron measurements and also presents the results of blanket mockup experiments performed at the Idaho National Engineering Laboratory

  14. LMFBR Blanket Physics Project progress report No. 2

    Forbes, I.A.; Driscoll, M.J.; Rasmussen, N.C.; Lanning, D.D.; Kaplan, I.

    1971-01-01

    This is the second annual report of an experimental program for the investigation of the neutronics of benchmark mock-ups of LMFBR blankets. Work was devoted primarily to measurements on Blanket Mock-Up No. 2, a simulation of a typical large LMFBR radial blanket and its steel reflector. Activation traverses and neutron spectra were measured in the blanket; calculations of activities and spectra were made for comparison with the measured data. The heterogeneous self-shielding effect for 238 U capture was found to be the most important factor affecting the comparison. Optimization and economic studies were made which indicate that the use of a high-albedo reflector material such as BeO or graphite may improve blanket neutronics and economics

  15. Self-cooled liquid-metal blanket concept

    Malang, S.; Arheidt, K.; Barleon, L.

    1988-01-01

    A blanket concept for the Next European Torus (NET) where 83Pb-17Li serves both as breeder material and as coolant is described. The concept is based on the use of novel flow channel inserts for a decisive reduction of the magnetohydrodynamic (MHD) pressure drop and employs beryllium as neutron multiplier in order to avoid the need for breeding blankets at the inboard side of the torus. This study includes the design, neutronics, thermal hydraulics, stresses, MHDs, corrosion, tritium recovery, and safety of a self-cooled liquid-metal blanket. The results of the investigations indicate that the self-cooled blanket is an attractive alternative to other driver blanket concepts for NET and that it can be extrapolated to the conditions of a DEMO reactor

  16. U.S. technical report for the ITER blanket/shield: A. blanket: Topical report, July 1990--November 1990

    1995-01-01

    Three solid-breeder water-cooled blanket concepts have been developed for ITER based on a multilayer configuration. The primary difference among the concepts is in the fabricated form of breeder and multiplier. All the concepts have beryllium for neutron multiplication and solid-breeder temperature control. The blanket design does not use helium gaps or insulator material to control the solid breeder temperature. Lithium oxide (Li{sub 2}O) and lithium zirconate (Li{sub 2}ZrO{sub 3}) are the primary and the backup breeder materials, respectively. The lithium-6 enrichment is 95%. The use of high lithium-6 enrichment reduces the solid breeder volume required in the blanket and consequently the total tritium inventory in the solid breeder material. Also, it increases the blanket capability to accommodate power variation. The multilayer blanket configuration can accommodate up to a factor of two change in the neutron wall loading without violating the different design guidelines. The blanket material forms are sintered products and packed bed of small pebbles. The first concept has a sintered product material (blocks) for both the beryllium multiplier and the solid breeder. The second concept, the common ITER blanket, uses a packed bed breeder and beryllium blocks. The last concept is similar to the first except for the first and the last beryllium zones. Two small layers of beryllium pebbles are located behind the first wall and the back of the last beryllium zone to reduce the total inventory of the beryllium material and to improve the blanket performance. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Also, the reliability and the safety aspects of the blanket are enhanced by using low-pressure water coolant and the separation of the tritium purge flow from the coolant system by several barriers.

  17. U.S. technical report for the ITER blanket/shield: A. blanket: Topical report, July 1990--November 1990

    1995-01-01

    Three solid-breeder water-cooled blanket concepts have been developed for ITER based on a multilayer configuration. The primary difference among the concepts is in the fabricated form of breeder and multiplier. All the concepts have beryllium for neutron multiplication and solid-breeder temperature control. The blanket design does not use helium gaps or insulator material to control the solid breeder temperature. Lithium oxide (Li 2 O) and lithium zirconate (Li 2 ZrO 3 ) are the primary and the backup breeder materials, respectively. The lithium-6 enrichment is 95%. The use of high lithium-6 enrichment reduces the solid breeder volume required in the blanket and consequently the total tritium inventory in the solid breeder material. Also, it increases the blanket capability to accommodate power variation. The multilayer blanket configuration can accommodate up to a factor of two change in the neutron wall loading without violating the different design guidelines. The blanket material forms are sintered products and packed bed of small pebbles. The first concept has a sintered product material (blocks) for both the beryllium multiplier and the solid breeder. The second concept, the common ITER blanket, uses a packed bed breeder and beryllium blocks. The last concept is similar to the first except for the first and the last beryllium zones. Two small layers of beryllium pebbles are located behind the first wall and the back of the last beryllium zone to reduce the total inventory of the beryllium material and to improve the blanket performance. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Also, the reliability and the safety aspects of the blanket are enhanced by using low-pressure water coolant and the separation of the tritium purge flow from the coolant system by several barriers

  18. Neutronic study of fusion reactor blanket

    Barre, F.

    1983-06-01

    The problem of effective regeneration is a crucial issue for the fusion reactor, specially for the power reactor because of the conflicting requirements of heat removal and tritium breeding. For that, calculations are performed to evaluate blanket materials. Precise techniques are herein developed to improve the accuracy of the tritium production and the neutron and gamma transport calculations. Many configurations are studied with realistic breeder, structure, and coolant proportions. Accuracy of the results are evaluated from the sensitivity theory and uncertainty study using covariance matrices. At the end of this work, we presented the needs of nuclear data for fusion reactors and we give some advices for improving our knowledge of these data [fr

  19. Neutronic study of fusion reactor blanket

    Barre, F.

    1984-02-01

    The problem of effective regeneration is a crucial issue for the fusion reactor, specially for the power reactor because of the conflicting requirements of heat removal and tritium breeding. For that, calculations are performed to evaluate blanket materials. Precise techniques are herein developed to improve the accuracy of the tritium production and the neutron and gamma transport calculations. Many configurations are studied with realistic breeder, structure, and coolant proportions. Accuracy of the results are evaluated from the sensitivity theory and uncertainty study using covariance matricies. At the end of this work, we presented the needs of nuclear data for fusion reactors and we give some advices for improving our knowledge of these data [fr

  20. Development of advanced blanket materials for solid breeder blanket of fusion reactor

    Ishitsuka, E.

    2002-01-01

    Advanced solid breeding blanket design in the DEMO reactor requires the tritium breeder and neutron multiplier that can withstand the high temperature and high dose of neutron irradiation. Therefore, the development of such advanced blanket materials is indispensable. In this paper, the cooperation activities among JAERI, universities and industries in Japan on the development of these advanced materials are reported. Advanced tritium breeding material to prevent the grain growth in high temperature had to be developed because the tritium release behavior degraded by the grain growth. As one of such materials, TiO 2 -doped Li 2 TiO 3 has been studied, and TiO 2 -doped Li 2 TiO 3 pebbles was successfully fabricated. For the advanced neutron multiplier, the beryllium intermetallic compounds that have high melting point and good chemical stability have been studied. Some characterization of Be 12 Ti was studied. The pebble fabrication study for Be 12 Ti was also performed and Be 12 Ti pebbles were successfully fabricated. From these activities, the bright prospect to realize the DEMO blanket by the application of TiO 2 -doped Li 2 TiO 3 and beryllium intermetallic compounds was obtained. (author)

  1. Design analyses of self-cooled liquid metal blankets

    Gohar, Y.

    1986-12-01

    A trade-off study of liquid metal self-cooled blankets was carried out to define the performance of these blankets and to determine the potential to operate at the maximum possible values of the performance parameters. The main parameters considered during the course of the study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the lithium-6 enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. Also, a study was carried out to assess the impact of different reactor design choices on the reactor performance parameters. The design choices include the impurity control system (limiter or divertor), the material choice for the limiter, the elimination of tritium breeding from the inboard section of tokamak reactors, and the coolant choice for the nonbreeding inboard blanket. In addition, tritium breeding benchmark calculations were performed using different transport codes and nuclear data libraries. The importance of the TBR in the blanket design motivated the benchmark calculations

  2. Heat transfer problems in gas-cooled solid blankets

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    In all fusion reactors using the deuterium-tritium fuel cycle, a large fraction approximately 80 percent of the fusion energy will be released as approximately 14 MeV neutrons which must be slowed down in a relatively thick blanket surrounding the plasma, thereby, converting their kinetic energy to high temperature heat which can be continuously removed by a coolant stream and converted in part to electricity in a conventional power turbine. Because of the primary goal of achieving minimum radioactivity, to date Brookhaven blanket concepts have been restricted to the use of some form of solid lithium, with inert gas-cooling and in some design cases, water-cooling of the shell structure. Aluminum and graphite have been identified as very promising structural materials for fusion blankets, and conceptual designs based on these materials have been made. Depending on the thermal loading on the ''first'' wall which surrounds the plasma as well as blanket design, heat transfer problems may be noticeably different in gas-cooled solid blankets. Approaches to solution of heat removal problems as well as explanation of: (a) the after-heat problems in blankets; (b) tritium breeding in solids; and (c) materials selection for radiation shields relative to the minimum activity blanket efforts at Brookhaven are discussed

  3. Neutronics analysis for aqueous self-cooled fusion reactor blankets

    Varsamis, G.; Embrechts, M.J.; Jaffa, R.; Steiner, D.; Deutsch, L.; Gierszewski, P.

    1986-06-01

    The tritium breeding performance of several Aqueous Self-Cooled Blanket (ASCB) configurations for fusion reactors has been evaluated. The ASCB concept employs small amounts of lithium compound dissolved in light or heavy water to serve as both coolant and breeding medium. The inherent simplicity of this concept allows the development of blankets with minimal technological risk. The tritium breeding performance of the ASCB concept is a critical issue for this family of blankets. Contrary to conventional blanket designs there will be a significant contribution to the tritium breeding ratio (TBR) in the water coolant/breeder of duct shields, and the 3-D TBR will therefore be similar to the 1-D TBR. The tritium breeding performance of an ASCB for a MARS-like-tandem reactor and an ASCB based breeding-shield for the Next European Torus (NET) are assessed. Two design options for the MARS-like blanket are discussed. One design employs a vanadium first wall, and zircaloy for the structural material. The trade-offs between light water and heavy water cooling options for this zircaloy blanket are discussed. The second design option for MARS relies on the use of a vanadium alloy as the stuctural material, and heavy water as the coolant. It is demonstrated that both design options lead to low-activation blankets that allow class C burial. The breeder-shield for NET consists of a water-cooled stainless steel shield

  4. Preliminary study on lithium-salt aqueous solution blanket

    Yoshida, Hiroshi; Naruse, Yuji; Yamaoka, Mitsuaki; Ohara, Atsushi; Ono, Kiyoshi; Kobayashi, Shigetada.

    1992-06-01

    Aqueous solution blanket using lithium salts such as LiNO 3 and LiOH have been studied in the US-TIBER program and ITER conceptual design activity. In the JAERI/LANL collaboration program for the joint operation of TSTA (Tritium Systems Test Assembly), preliminary design work of blanket tritium system for lithium ceramic blanket, aqueous solution blanket and liquid metal blanket, have been performed to investigate technical feasibility of tritium demonstration tests using the TSTA. Detail study of the aqueous solution blanket concept have not been performed in the Japanese fusion program, so that this study was carried out to investigate features of its concept and to evaluated its technical problems. The following are the major items studied in the present work: (i) Neutronics of tritium breeding ratio and shielding performance Lithium concentration, Li-60 enrichment, beryllium or lead, composition of structural material/beryllium/solution, heavy water, different lithium-salts (ii) Physicochemical properties of salts Solubility, corrosion characteristics and compatibility with structural materials, radiolysis (iii) Estimation of radiolysis in ITER aqueous solution blanket. (author)

  5. Overview of EU activities on DEMO liquid metal breeder blanket

    Giancarli, L.; Proust, E.; Malang, S.; Reimann, J.; Perujo, A.

    1994-01-01

    The present paper gives an overview of both design and experimental activities within the European Union (EU) concerning the development of liquid metal breeder blankets for DEMO. After several years of studies on breeding blankets, two blanket concepts are presently considered, both using the eutectic Pb-17Li: the dual-coolant concept and the water-cooled concept. The analysis of such concepts has permitted to identify the experimental areas where further data are required. Tritium control and MHD-issues are, at present, the activities on which is devoted the greatest effort within the EU. (authors). 4 figs., 4 tabs., 39 refs

  6. Availability analysis of the ITER blanket remote handling system

    Maruyama, Takahito; Noguchi, Yuto; Takeda, Nobukazu; Kakudate, Satoshi

    2015-01-01

    The ITER blanket remote handling system (BRHS) is required to replace 440 blanket first wall panels in a two-year maintenance period. To investigate this capability, an availability analysis of the system was carried out. Following the analysis procedure defined by the ITER organization, the availability analysis consists of a functional analysis and a reliability block diagram analysis. In addition, three measures to improve availability were implemented: procurement of spare parts, in-vessel replacement of cameras, and simultaneous replacement of umbilical cables. The availability analysis confirmed those measures improve the availability and capability of the BRHS to replace 440 blanket first wall panels in two years. (author)

  7. Molten salt cooling/17Li-83Pb breeding blanket concept

    Sze, D.K.; Cheng, E.T.

    1985-02-01

    A description of a fusion breeding blanket concept using draw salt coolant and static 17 Li- 83 Pb is presented. 17 Li- 83 Pb has high breeding capability and low tritium solubility. Draw salt operates at low pressure and is inert to water. Corrosion, MHD, and tritium containment problems associated with the MARS design are alleviated because of the use of a static LiPb blanket. Blanket tritium recovery is by permeation toward the plasma. A direct contact steam generator is proposed to eliminate some generic problems associated with a tube shell steam generator

  8. Conceptual design of blanket structures for fusion experimental reactor (FER)

    1984-03-01

    Conceptual design study for in-vessel components including tritium breeding blanket of FER has been carried out. The objective of this study is to obtain the engineering and technological data for selecting the reactor concept and for its construction by investigating fully and broadly. The design work covers in-vessel components (such as tritium breeding blanket, first wall, shield, divertor and blanket test module), remote handling system and tritium system. The designs of those components and systems are accomplished in consideration of their accomodation to whole reactor system and problems for furthur study are clarified. (author)

  9. Demonstration Tokamak Hybrid Reactor (DTHR) blanket design study, December 1978

    1978-01-01

    This work represents only the second iteration of the conceptual design of a DTHR blanket; consequently, a number of issues important to a detailed blanket design have not yet been evaluated. The most critical issues identified are those of two-phase flow maldistribution, flow instabilities, flow stratification for horizontal radial inflow of boiling water, fuel rod vibrations, corrosion of clad and structural materials by high quality steam, fretting and cyclic loads. Approaches to minimizing these problems are discussed and experimental testing with flow mock-ups is recommended. These implications on a commercial blanket design are discussed and critical data needs are identified

  10. A Li-particulate blanket concept for ITER

    Wong, C.P.C.; Cheng, E.T.; Creedon, R.L.

    1989-01-01

    The Li-particulate blanket design concept the authors proposed for the International Thermonuclear Experimental Reactor (ITER) uses a dilute suspension of fine solid breeder particles in a carrier gas as the combined coolant and lithium breeder stream. This blanket concept has a simple mechanical and hydraulic configuration, low inventory of bred tritium, and simple tritium extraction system. Existing technology can be used to implement the design for ITER. The concept has the potential to be a highly reliable shield and blanket design for ITER with relatively low development and capital costs

  11. Cassette blanket and vacuum building: key elements in fusion reactor maintenance

    Werner, R.W.

    1977-01-01

    The integration of two concepts important to fusion power reactors is discussed. The first concept is the vacuum building which improves upon the current fusion reactor designs. The second concept, the use of the cassette blanket within the vacuum building environment, introduces four major improvements in blanket design: cassette blanket module, zoning concept, rectangular blanket concept, and internal tritium recovery

  12. Optimization of up-flow anaerobic sludge blanket reactor for ...

    Optimization of up-flow anaerobic sludge blanket reactor for treatment of composite ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... Granules grown in the bottom part of UASB reactor were more compact and tense ...

  13. Electromagnetic effects involving a tokamak reactor first wall and blanket

    Turner, L.R.; Evans, K. Jr.; Gelbard, E.; Prater, R.

    1980-01-01

    Four electromagnetic effects experienced by the first wall and blanket of a tokamak reactor are considered. First, the first wall provides reduction of the growth rate of vertical axisymmetric instability and stabilization of low mode number interval kink modes. Second, if a rapid plasma disruption occurs, a current will be induced on the first wall, tending to maintain the field formerly produced by the plasma. Third, correction of plasma movement can begin on a time scale much faster than the L/R time of the first wall and blanket. Fourth, field changes, especially those from plasma disruption or from rapid discharge of a toroidal field coil, can cause substantial eddy current forces on elements of the first wall and blanket. These effects are considered specifically for the first wall and blanket of the STARFIRE commercial reactor design study

  14. Blanket options for high-efficiency fusion power

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  15. Fusion blankets for high-efficiency power cycles

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  16. Fusion blanket for high-efficiency power cycles

    Usher, J.L.; Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Taussig, R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperature (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by Ar) utilizing Li 2 O for tritium breeding. In this design, approx. 60% of the fusion energy is deposited in the high-temperature interior. The maximum Ar temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  17. Fusion blankets for high-efficiency power cycles

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1981-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 deg C) of conventional structural materials such as stainless steels. In this project 'two-zone' blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 deg C leading to an overall efficiency estimate of 55 to 60% for this reference case. (author)

  18. Fusion-reactor blanket-material safety-compatibility studies

    Jeppson, D.W.; Muhlestein, L.D.; Keough, R.F.; Cohen, S.

    1982-11-01

    Blanket material selection for fusion reactors is strongly influenced by the desire to minimize safety and environmental concerns. Blanket material safety compatibility studies are being conducted to identify and characterize blanket-coolant-material interactions under postulated reactor accident conditions. Recently completed scoping compatibility tests indicate that : (1) ternary oxides (LiAlO 2 , Li 2 ZrO 3 , Li 2 SiO 3 , Li 4 SiO 4 and LiTiO 3 ) at postulated blanket operating temperatures are compatible with water coolant, while liquid lithium and Li 7 Pb 2 alloy reactions with water generate heat, aerosol and hydrogen; (2) lithium oxide and Li 17 Pb 83 alloy react mildly with water requiring special precautions to control hydrogen release; (3) liquid lithium reacts substantially, while Li 17 Pb 83 alloy reacts mildly with concrete to produce hydrogen; and (4) liquid lithium-air reactions present some major safety concerns

  19. Nuclear characteristics of D-D fusion reactor blankets, (1)

    Nakashima, Hideki; Ohta, Masao; Seki, Yasushi.

    1977-01-01

    Fusion reactors operating on the deuterium (D-D) cycle are considered promising for their freedom from tritium breeding in the blanket. In this paper, neutronic and photonic calculations are undertaken covering several blanket models of the D-D fusion reactor, using presently available data, with a view to comparing the nuclear characteristics of these models, in particular, the nuclear heating rates and their spatial distributions. Nine models are taken up for the study, embodying various combinations of coolant, blanket, structural and reflector materials. About 10 MeV is found to be a typical value for the total nuclear energy deposition per source neutron in the models considered here. The realization of high energy gain is contingent upon finding a favorable combination of blanket composition and configuration. The resulting implications on the thermal design aspect are briefly discussed. (auth.)

  20. Aqueous self-cooled blanket concepts for fusion reactors

    Varsamis, G.; Embrechts, M.J.; Steiner, D.; Deutsch, L.; Gierszewski, P.

    1987-01-01

    A novel aqueous self-cooled blanket (ASCB) concept has been proposed. The water coolant also serves as the tritium breeding medium by dissolving small amounts of lithium compound in the water. The tritium recovery requirements of the ASCB concept may be facilitated by the novel in-situ radiolytic tritium separation technique in development at Chalk River Nuclear Laboratories. In this separation process deuterium gas is bubbled through the blanket coolant. Due to radiation induced processes, the equilibrium constant favors tritium migration to the deuterium gas stream. It is expected that the inherent simplicity of this design will result in a highly reliable, safe and economically attractive breeding blanket for fusion reactors. The available base of relevant information accumulated through water-cooled fission reactor programs should greatly facilitate the R and D effort required to validate the proposed blanket concept. Tests for tritium separation and corrosion compatibility show encouraging results for the feasibility of this concept

  1. Blast venting through blanket material in the HYLIFE ICF reactor

    Liu, J.C.; Peterson, P.F.; Schrock, V.E.

    1992-01-01

    This work presents a numerical study of blast venting through various blanket configurations in the HYLIFE ICF reactor design. The study uses TSUNAMI -- a multi-dimensional, high-resolution, shock capturing code -- to predict the momentum exchange and gas dynamics for blast venting in complex geometries. In addition, the study presents conservative predictions of wall loading by gas shock and impulse delivered to the protective liquid blanket. Configurations used in the study include both 2700 MJ and 350 MJ fusion yields per pulse for 5 meter and 3 meter radius reactor chambers. For the former, an annular jet array is used for the blanket geometry, while in the latter, both annular jet array as well as slab geometries are used. Results of the study indicate that blast venting and wall loading may be manageable in the HYLIFE-II design by a judicious choice of blanket configuration

  2. Imploding-liner reactor nucleonic studies: the LINUS blanket

    Dudziak, D.J.

    1977-09-01

    Scoping nucleonic studies have been performed for a small imploding-liner fusion reactor concept. Tritium breeding ratio and time-dependent energy deposition rates were the primary parameters of interest in the study. Alloys of Pb and LiPb were considered for the liquid liner (blanket), and tritium breeding was found to be more than adequate with blankets less than 1 m thick. However, neutron leakages into the solid cylinder block surrounding the liquid liner are generally quite high, so considerable effort was concentrated on minimizing these values. Time-dependent calculations reveal that 89% of the energy is deposited in the blanket within 2 μs. Thus, LINUS's blanket should remain intact for the requisite neutron and gamma-ray lifetimes

  3. Application of vanadium alloys to a fusion reactor blanket

    Bethin, J.; Tobin, A. (Grumman Aerospace Corp., Bethpage, NY (USA). Research and Development Center)

    1984-05-01

    Vanadium and vanadium alloys are of interest in fusion reactor blanket applications due to their low induced radioactivity and outstanding elevated temperature mechanical properties during neutron irradiation. The major limitation to the use of vanadium is its sensitivity to oxygen impurities in the blanket environment, leading to oxygen embrittlement. A quantitative analysis was performed of the interaction of gaseous impurities in a helium coolant with vanadium and the V-15Cr-5Ti alloy under conditions expected in a fusion reactor blanket. It was shown that the use of unalloyed V would impose severe restrictions on the helium gas cleanup system due to excessive oxygen buildup and embrittlement of the metal. However, internal oxidation effects and the possibly lower terminal oxygen solubility in the alloy would impose much less severe cleanup constraints. It is suggested that V-15Cr-5Ti is a promising candidate for certain blanket applications and deserves further consideration.

  4. Blanket of a hybrid thermonuclear reactor with liquid- metal cooling

    Terent'ev, I.K.; Fedorovich, E.P.; Paramonov, P.M.; Zhokhov, K.A.

    1982-01-01

    Blanket design of a hybrid thermopuclear reactor with a liquid metal coolant is described. To decrease MHD-resistance for uranium zone fuel elements a cylindrical shape is suggested and movement of liquid-metal coolant in fuel element packets is presumed to be in perpendicular to the magnetic field and fuel element axes direction. The first wall is cooled by water, blanket-by lithium-lead alloy

  5. Recent developments in fusion first wall, blanket, and shield technology

    Nygren, R.E.

    1983-01-01

    This brief overview of first wall, blanket and shield technology reviews the changes and trends in important design issues in first wall, blanket and shield design and related technology from the 1970's to the 1980's. The emphasis is on base technology rather than either systems engineering or materials development. The review is limited to the two primary confinement systems, tokamaks and mirrors, and production of electricity as the primary goal for development

  6. Evaluation of organic moderator/coolants for fusion breeder blankets

    Romero, J.B.

    1980-03-01

    Organic coolants have several attractive features for fusion breeder blanket design. Their apparent compatibility with lithium and their ideal physical and nuclear properties allows straight-forward, high performance designs. Radiolytic damage can be reduced to about the same order as comparable fission systems by using multiplier/stripper blanket designs. Tritium recovery from the organic should be straightforward, but additional data is needed to make a better assessment of the economics of the process

  7. Main features and potentialities of gas-blanket systems

    Lehnert, B.

    1977-02-01

    A review is given of the features and potentialities of cold-blanket systems, with respect to plasma equilibrium, stability, and reactor technology. The treatment is concentrated on quasi-steady magnetized plasmas confined at moderately high beta values. The cold-blanket concept has specific potentialities as a fusion reactor, e.g. in connection with the desired densities and dimensions of full-scale systems, refuelling, as well as ash and impurity removal, and stability. (author)

  8. Overview of first wall/blanket/shield technology

    Nygren, R.E.

    1983-04-01

    This brief overview of first wall, blanket, and shield technology focuses first on changes and trends in important design issues from the 1970's to the 1980's, then on current perceptions of critical issues in first wall, blanket, and shield design and related technology. The emphasis is on base technology rather than either systems engineering or materials development, on the two primary confinement systems, tokamaks and mirrors, and on production of electricity as the primary goal for development

  9. Applications of the Aqueous Self-Cooled Blanket concept

    Steiner, D.; Embrechts, M.J.; Varsamis, G.; Wrisley, K.; Deutch, L.; Gierszewski, P.

    1986-01-01

    In this paper a novel water-cooled blanket concept is examined. This concept, designated the Aqueous Self-Cooled Blanket (ASCB), employs water with small amounts of dissolved fertile compounds as both the coolant and the breeding medium. The ASCB concept is reviewed and its application in three different contexts is examined: (1) power reactors; (2) near-term devices such as NET; and (3) fusion-fission hybrids

  10. Progress on DEMO blanket attachment concept with keys and pins

    Vizvary, Zsolt; Iglesias, Daniel; Cooper, David; Crowe, Robert; Riccardo, Valeria

    2015-01-01

    Highlights: • DEMO blanket attachment system with keys and pins (without using bolts). • Blanket segments are preloaded by progressively designed springs. • Blanket back plate flexibility has a major impact on spring design. • Mechanical analysis of other components indicates no unresolvable issues. • Thermal analysis indicates acceptable temperatures for the support system. - Abstract: The blanket attachment has to cope with gravity, thermal and electromagnetic loads, also it has to be installed and serviced by remote handling. Pre-stressed components suffer from stress relaxation in irradiated environments such as DEMO. To circumvent this problem pre-stressed component should be either avoided or shielded, and where possible keys and pins should be used. This strategy has been proposed for the DEMO multi-module segments (MMS). The blanket segments are held by two tapered keys each, designed to allow thermal expansions while providing contact with the vacuum vessel and to resist the poloidal and radial moments the latter being dominant at 9.1 MNm inboard and 15 MNm outboard. On the top of the blanket segment there is a pin which provides vertical support. At the bottom another vertical support has to lock them in position after installation and manage the pre-load on the segments. The pre-load is required to deal with the electromagnetic loads during disruption. This is provided by a set of springs, which require shielding as they are preloaded. These are sized to cope with the force (3 MN inboard, 1.4 MN outboard) due to halo currents and the toroidal moment which can reverse. Calculations show that the flexibility of the blanket segment itself plays a significant role in defining the required support system. The blanket segment acts as a preloaded spring and it has to be part of the attachment design as well.

  11. Electrical connectors for blanket modules in ITER

    Poddubnyi, I., E-mail: poddubnyyii@nikiet.ru [Open Joint-Stock Company “N.A. Dollezhal Research and Development Institute of Power Engineering”, 107140, Malaya Krasnoselskaya Street 2/8, Moscow (Russian Federation); Khomiakov, S.; Kolganov, V. [Open Joint-Stock Company “N.A. Dollezhal Research and Development Institute of Power Engineering”, 107140, Malaya Krasnoselskaya Street 2/8, Moscow (Russian Federation); Sadakov, S.; Calcagno, B.; Chappuis, Ph.; Roccella, R.; Raffray, R. [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul-Lez-Durance (France); Danilov, I.; Leshukov, A.; Strebkov, Y. [Open Joint-Stock Company “N.A. Dollezhal Research and Development Institute of Power Engineering”, 107140, Malaya Krasnoselskaya Street 2/8, Moscow (Russian Federation); Ulrickson, M. [Sandia National Laboratories MS-1129, PO Box 5800, Albuquerque, NM 87185 (United States)

    2014-10-15

    Highlights: • Analysis of static and cyclic strength for L-shaped and Z-shaped ES has been performed. • Analysis results do show that for L-shaped ES static and cyclic strength criteria are not satisfied. • Static and cyclic strength criteria are met well by ES with Z-shaped elastic elements. • ES with Z-shaped elastic elements has been adopted as a new baseline design for ITER. - Abstract: Blanket electrical connectors (E-straps, ES) are low-impedance electrical bridges crossing gaps between blanket modules (BMs) and vacuum vessel (VV). Similar ES are used between two parts on each BM: the first wall panel (FW) and shield block (SB). The main functions of E-straps are to: (a) conduct halo currents intercepting some rows of BM, (b) provide grounding paths for all BMs, and (c) operate as electrical shunts which protect water cooling pipes (branch pipes) from excessive halo and eddy currents. E-straps should be elastic enough to absorb 3-D imposed displacements of BM relative VV in a scale of ±2 mm and at the same time strong enough to not be damaged by EM loads. Each electrical strap is a package of flexible conductive sheets made of CuCrZr bronze. Halo current up to 137 kA and some components of eddy currents do pass through one E-strap for a few tens or hundreds milliseconds during the plasma vertical displacement events (VDE) and disruptions. These currents deposit Joule heat and cause rather high electromagnetic loads in a strong external magnetic field, reaching 9 T. A gradual failure of ES to conduct Halo and Eddy currents with low enough impedance gradually redistributes these currents into branch pipes and cause excessive EM loads. When branch pipes will be bent so much that will touch surrounding structures, the Joule heating in accidental electrical contact spots will cause local melting and may lead to a water leak. The paper presents and compares two design options of E-straps: with L-shaped and Z-shaped elastic elements. The latter option was

  12. Design, Manufacture, and Experimental Serviceability Validation of ITER Blanket Components

    Leshukov, A. Yu.; Strebkov, Yu. S.; Sviridenko, M. N.; Safronov, V. M.; Putrik, A. B.

    2017-12-01

    In 2014, the Russian Federation and the ITER International Organization signed two Procurement Arrangements (PAs) for ITER blanket components: 1.6.P1ARF.01 "Blanket First Wall" of February 14, 2014, and 1.6.P3.RF.01 "Blanket Module Connections" of December 19, 2014. The first PA stipulates development, manufacture, testing, and delivery to the ITER site of 179 Enhanced Heat Flux (EHF) First Wall (FW) Panels intended for withstanding the heat flux from the plasma up to 4.7MW/m2. Two Russian institutions, NIIEFA (Efremov Institute) and NIKIET, are responsible for the implementation of this PA. NIIEFA manufactures plasma-facing components (PFCs) of the EHF FW panels and performs the final assembly and testing of the panels, and NIKIET manufactures FW beam structures, load-bearing structures of PFCs, and all elements of the panel attachment system. As for the second PA, NIKIET is the sole official supplier of flexible blanket supports, electrical insulation key pads (EIKPs), and blanket module/vacuum vessel electrical connectors. Joint activities of NIKIET and NIIEFA for implementing PA 1.6.P1ARF.01 are briefly described, and information on implementation of PA 1.6.P3.RF.01 is given. Results of the engineering design and research efforts in the scope of the above PAs in 2015-2016 are reported, and results of developing the technology for manufacturing ITER blanket components are presented.

  13. Stress analysis of blanket vessel for JAERI experimental fusion reactor

    Sako, K.; Minato, A.

    1979-01-01

    A blanket structure of JAERI Experimental Fusion Reactor (JXFR) consists of about 2,300 blanket cells with round cornered rectangular cross sections (twelve slightly different shapes) and is placed in a vacuum vessel. Each blanket vessel is a double-walled thin-shell structure made of Type 316 stainless steel with a spherical domed surface at the plasma side. Ribs for coolant channel are provided between inner and outer walls. The blanket cell contains Li 2 O pebbles and blocks for tritium breeding and stainless steel blocks for neutron reflection. A coolant is helium gas at 10 kgf/cm 2 (0.98 MPa) and its inlet and outlet temperatures are 300 0 C and 500 0 C. The maxima of heat flux and nuclear heating rate at the first wall are 12 W/cm 2 and 2 W/cc. A design philosophy of the blanket structure is based on high tritium breeding ratio and more effective shielding performance. The thin-shell vessel with a rectangular cross section satisfies the design philosophy. We have designed the blanket structure so that the adjacent vessels are mutually supporting in order to decrease the large deformation and stress due to internal pressure in case of the thin-shell vessel. (orig.)

  14. Studies on steps affecting tritium residence time in solid blanket

    Tanaka, Satoru

    1987-01-01

    For the self sustaining of CTR fuel cycle, the effective tritium recovery from blankets is essential. This means that not only tritium breeding ratio must be larger than 1.0, but also high recovering speed is required for the short residence time of tritium in blankets. Short residence time means that the tritium inventory in blankets is small. In this paper, the tritium residence time and tritium inventory in a solid blanket are modeled by considering the steps constituting tritium release. Some of these tritium migration processes were experimentally evaluated. The tritium migration steps in a solid blanket using sintered breeding materials consist of diffusion in grains, desorption at grain edges, diffusion and permeation through grain boundaries, desorption at particle edges, diffusion and percolation through interconnected pores to purging stream, and convective mass transfer to stream. Corresponding to these steps, diffusive, soluble, adsorbed and trapped tritium inventories and the tritium in gas phase are conceivable. The code named TTT was made for calculating these tritium inventories and the residence time of tritium. An example of the results of calculation is shown. The blanket is REPUTER-1, which is the conceptual design of a commercial reversed field pinch fusion reactor studied at the University of Tokyo. The experimental studies on the migration steps of tritium are reported. (Kako, I.)

  15. Transmutation blanket design for a Tokamak system

    Velasquez, Carlos E.; Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria A. Fortini; Costa, Antonella L.

    2011-01-01

    Sub-critical advanced reactor with a D-T fusion neutron source based on Tokamak technology is an innovative type of nuclear system. Due to the high quantity of neutrons produced by fusion reactions, it could be well spent in the transmutation process of the transuranic elements. Nevertheless, to achieve a successful transmutation, it is necessary to know the neutron fluence along the radial axis and its characteristics. In this work, it evaluated the neutron flux and interaction frequency along the radial axis changing the material of the first wall. W-alloy, beryllium and the combination of both were studied and regions more suitable to transmutation were determined. The results demonstrated that the better zone to place a transmutation blanket is limited by the heat sink and the shield block. Material arrangements W-alloy/W-alloy and W-alloy/Beryllium would be able to hold the requirements of high fluence and hardening spectrum needed to transuranic transmutation. The system was simulated using the MCNP5 code, the ITER Final Design Report, 2001, and the FENDL/MC-2.1 nuclear data library. (author)

  16. Trade-off study of liquid metal self-cooled blankets

    Gohar, Y.

    1986-01-01

    A trade-off study of liquid metal self-cooled blankets was carried out to define the performance of these blankets and to determine the potential to operate at the maximum possible values of the performance parameters. The main parameters considered during the course of this study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the lithium-6 enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. The primary results of the study are as follows: a) the lithium-lead blanket achieves a higher TBR with a smaller blanket thickness relative to the lithium blanket; b) the lithium blanket generates more energy per fusion neutron relative to the lithium-lead blanket; c) among the possible reflector materials, the carbon reflector produces the highest TBR; d) the high-Z reflector materials (Mo, Cu, W, or steel) generate more energy per fusion neutron and produce smaller TBRs relative to the carbon reflector; e) lithium-6 enrichment is required for the lithium-lead blanket to reduce the total blanket thickness; and f) the energy deposition per fusion neutron reaches a saturation as the blanket thickness, the fraction of the high-Z material in the reflector, or the reflector zone thickness increases (this allows one to design the blanket for a specific TBR without reducing the energy production)

  17. Breeding blanket development. Tritium release from breeder

    Tsuchiya, Kunihiko; Kawamura, Hiroshi; Nagao, Yoshiharu

    2006-01-01

    Engineering data on neutron irradiation performance of tritium breeders are needed to design the breeding blanket of fusion reactor. In this study, tritium release experiments of the breeders were carried out to examine the effects of various parameters (such as sweep gas flow rate, hydrogen content in sweep gas, irradiation temperature and thermal neutron flux) on tritium generation and release behavior. Lithium titanate (Li 2 TiO 3 ) is considered as a candidate tritium breeder in the blanket design of International Thermonuclear Experimental Reactor (ITER). As for the shape of the breeder material, a small spherical form is preferred to reduce the thermal stress induced in the breeder. Li 2 TiO 3 pebbles of about 170g in total weight and with 0.3 and 2 mm in diameter were manufactured by a wet process, and an assembly packed with the binary Li 2 TiO 3 pebbles was irradiated in Japan Materials Testing Reactor (JMTR). The tritium was generated in the Li 2 TiO 3 pebble bed and released from the pebble bed, and was swept downstream using the sweep gas for on-line analysis of tritium content. Concentration of total tritium and gaseous tritium (HT or T 2 gas) released from the Li 2 TiO 3 pebble bed were measured by ionization chambers, and the ratio of (gaseous tritium)/(total tritium) was evaluated. The sweep gas flow rate was changed from 100 to 900cm 3 /min, and hydrogen content in the sweep gas was changed from 100 to 10000 ppm. Furthermore, thermal neutron flux was changed using a window made of hafnium (Hf) neutron absorber. The irradiation temperature at an outer region of the Li 2 TiO 3 pebble bed was held between 200 and 400degC. The main results of this experiment are summarized as follows. 1) When the temperature at the outside edge of the Li 2 TiO 3 pebble bed exceeded 100degC, the tritium release from the Li 2 TiO 3 pebble bed started. The ratio of the tritium release rate and the tritium generation rate (normalized tritium release rate: R/G) reached

  18. Nuclear Analyses of Indian LLCB Test Blanket System in ITER

    Swami, H. L.; Shaw, A. K.; Danani, C.; Chaudhuri, Paritosh

    2017-04-01

    Heading towards the Nuclear Fusion Reactor Program, India is developing Lead Lithium Ceramic Breeder (LLCB) tritium breeding blanket for its future fusion Reactor. A mock-up of the LLCB blanket is proposed to be tested in ITER equatorial port no.2, to ensure the overall performance of blanket in reactor relevant nuclear fusion environment. Nuclear analyses play an important role in LLCB Test Blanket System design & development. It is required for tritium breeding estimation, thermal-hydraulic design, coolants process design, radioactive waste management, equipment maintenance & replacement strategies and nuclear safety. The nuclear behaviour of LLCB test blanket module in ITER is predicated in terms of nuclear responses such as tritium production, nuclear heating, neutron fluxes and radiation damages. Radiation shielding capability of LLCB TBS inside and outside bio-shield was also assessed to fulfill ITER shielding requirements. In order to supports the rad-waste and safety assessment, nuclear activation analyses were carried out and radioactivity data were generated for LLCB TBS components. Nuclear analyses of LLCB TBS are performed using ITER recommended nuclear analyses codes (i.e. MCNP, EASY), nuclear cross section data libraries (i.e. FENDL 2.1, EAF) and neutronic model (ITER C-lite v.l). The paper describes a comprehensive nuclear performance of LLCB TBS in ITER.

  19. The transpiration cooled first wall and blanket concept

    Barleon, Leopold; Wong, Clement

    2002-01-01

    To achieve high thermal performance at high power density the EVOLVE concept was investigated under the APEX program. The EVOLVE W-alloy first wall and blanket concept proposes to use transpiration cooling of the first wall and boiling or vaporizing lithium (Li) in the blanket zone. Critical issues of this concept are: the Magnetohydrodynamic (MHD) pressure losses of the Li circuit, the evaporation through a capillary structure and the needed superheating of the Li at the first wall and blanket zones. Application of the transpiration concept to the blanket region results in the integrated transpiration cooling concept (ITCC) with either toroidal or poloidal first wall channels. For both orientations the routing of the liquid Li and the Li vapor has been modeled and the corresponding pressure losses have been calculated by varying the width of the supplying slot and the capillary diameter. The concept works when the sum of the active and passive pumping head is higher than the total system pressure losses and when the temperature at the inner side of the first wall does not override the superheating limit of the coolant. This cooling concept has been extended to the divertor design, and the removal of a surface heat flux of up to 10 MW/m 2 appears to be possible, but this paper will focus on the transpiration cooled first wall and blanket concept assessment

  20. Assessment of alkali metal coolants for the ITER blanket

    Natesan, K.; Reed, C.B.; Mattas, R.F.

    1994-01-01

    The blanket system is one of the most important components of a fusion reactor because it has a major impact on both the economics and safety of fusion energy. The primary functions of the blanket in a deuterium/tritium-fueled fusion reactor are to convert the fusion energy into sensible heat and to breed tritium for the fuel cycle. The Blanket Comparison and Selection Study, conducted earlier, described the overall comparative performance of different blanket concepts, including liquid metal, molten salt, water, and helium. This paper will discuss the ITER requirements for a self-cooled blanket concept with liquid lithium and for indirectly cooled concepts that use other alkali metals such as NaK. The paper will address the thermodynamics of interactions between the liquid metals (i.e., lithium and NaK) and structural materials (e.g., V-base alloys), together with associated corrosion/compatibility issues. Available experimental data will be used to assess the long-term performance of the first wall in a liquid metal environment

  1. Status of blanket design for RTO/RC ITER

    Yamada, M.; Ioki, K.; Cardella, A.; Elio, F.; Miki, N.

    2000-01-01

    Design has progressed on the FW/blanket for the RTO/RC (reduced technical objective/ reduced cost) ITER. The basic functions and structures are the same as for the 1998 ITER design. However, design and fabrication methods of the FW/blanket have been improved to achieve ∝ 50% reduction of the construction cost compared to that for the 1998 ITER design. Detailed blanket module designs with flat separable FW panels have been developed to reduce the fabrication cost and the future radioactive waste. Most of the R and D performed so far during the EDA (engineering design activity) is still applicable. Further cost reduction methods are also being investigated and additional R and D is being performed. (orig.)

  2. Computation Method Comparison for Th Based Seed-Blanket Cores

    Kolesnikov, S.; Galperin, A.; Shwageraus, E.

    2004-01-01

    This work compares two methods for calculating a given nuclear fuel cycle in the WASB configuration. Both methods use the ELCOS Code System (2-D transport code BOXER and 3-D nodal code SILWER) [4] are compared. In the first method, the cross-sections of the Seed and Blanket, needed for the 3-D nodal code are generated separately for each region by the 2-D transport code. In the second method, the cross-sections of the Seed and Blanket, needed for the 3-D nodal code are generated from Seed-Blanket Colorsets (Fig.1) calculated by the 2-D transport code. The evaluation of the error introduced by the first method is the main objective of the present study

  3. Neutronics design aspects of reference ARIES-I fusion blanket

    Cheng, E.T.

    1990-12-01

    A SiC composite blanket concept was recently conceived for a deuterium-tritium burning, 1000 MW(e) tokamak fusion reactor design, ARIES-I. SiC composite structural material was chosen due to its very low activation features. High blanket nuclear performance and thermal efficiency, adequate tritium breeding, and a low level of activation are important design requirements for the ARIES-I reactor. The major approaches, other than using SiC as structural material, in meeting these design requirements, are to employ beryllium, the only low activation neutron multiplying material, and isotopically tailored Li 2 ZrO 3 , a tritium breeding material stable at high temperature, as blanket materials. 5 refs., 4 figs., 2 tabs

  4. Direct LiT Electrolysis in a Metallic Fusion Blanket

    Olson, Luke [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-30

    A process that simplifies the extraction of tritium from molten lithium-based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium for the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.

  5. High temperature blankets for the production of synthetic fuels

    Powell, J.R.; Steinberg, M.; Fillo, J.; Makowitz, H.

    1977-01-01

    The application of very high temperature blankets to improved efficiency of electric power generation and production of H 2 and H 2 based synthetic fuels is described. The blanket modules have a low temperature (300 to 400 0 C) structure (SS, V, Al, etc.) which serves as the vacuum/coolant pressure boundary, and a hot (>1000 0 C) thermally insulated interior. Approximately 50 to 70% of the fusion energy is deposited in the hot interior because of deep penetration by high energy neutrons. Separate coolant circuits are used for the two temperature zones: water for the low temperature structure, and steam or He for the hot interior. Electric generation efficiencies of approximately 60% and H 2 production efficiencies of approximately 50 to 70%, depending on design, are projected for fusion reactors using these high temperature blankets

  6. Heating an aquaculture pond with a solar pool blanket

    Wisely, B; Holliday, J E; MacDonald, R E

    1982-01-01

    A floating solar blanket of laminated bubble plastic was used to heat a 0.11 ha seawater pond of 1.3 m depth. The covered pond maintained daily temperatures 6 to 9/sup 0/C above two controls. Local air temperatures averaged 14 to 19/sup 0/C. Oysters, prawns, seasquirts, and fish in the covered pond all survived. After three weeks, the blanket separated. This was the result of pond temperatures exceeding 30/sup 0/C, the maximum manufacturer's specification. Floating blankets fabricated to higher specifications would be useful for maintaining above-ambient temperatures in small ponds or tanks in temporary situations during cold winter months and might have a more permanent use.

  7. Solid breeder test blanket module design and analysis

    Ying, A. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States)]. E-mail: ying@fusion.ucla.edu; Abdou, M. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Calderoni, P. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Sharafat, S. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Youssef, M. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); An, Z. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Abou-Sena, A. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Kim, E. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Reyes, S. [LANL, Livermore, CA (United States); Willms, S. [LANL, Los Alamos, NM (United States); Kurtz, R. [PNNL, Richland, WA (United States)

    2006-02-15

    This paper presents the design and analysis for the US ITER solid breeder blanket test articles. Objectives of solid breeder blanket testing during the first phase of the ITER operation focus on exploration of fusion break-in phenomena and configuration scoping. Specific emphasis is placed on first wall structural response, evaluation of neutronic parameters, assessment of thermomechanical behavior and characterization of tritium release. The tests will be conducted with three unit cell arrays/sub-modules. The development approach includes: (1) design the unit cell/sub-module for low temperature operations and (2) refer to a reactor blanket design and use engineering scaling to reproduce key parameters under ITER wall loading conditions, so that phenomena under investigation can be measured at a reactor-like level.

  8. Direct LiT Electrolysis in a Metallic Fusion Blanket

    Olson, Luke

    2016-01-01

    A process that simplifies the extraction of tritium from molten lithium-based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium for the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.

  9. EU DEMO blanket concepts safety assessment. Final report of Working Group 6a of the Blanket Concept Selection Exercise

    Kleefeldt, K.; Porfiri, T.

    1996-06-01

    The European Union has been engaged since 1989 in a programme to develop tritium breeding blankets for application in a fusion power reactor. There are four blanket concepts under development. Two of them use lithium ceramics, the other two concepts employ an eutectic lead-lithium alloy (Pb-17Li) as breeder material. The two most promising concepts were to select in 1995 for further development. In order to prepare the selection, a Blanket Concept Selection Exercise (BCSE) has been inititated by the participating associations under the auspices of the European Commission. This BCSE has been performed in 14 working groups which, in a comparative evaluation of the four blanket concepts, addressed specific fields. The working group safety addressed the safety implications. This report describes the methodology adopted, the safety issues identified, their comparative evaluation for the four concepts, and the results and conclusions of the working group to be entered into the overall evaluation. There, the results from all 14 working groups have been combined to yield a final ranking as a basis for the selection. In summary, the safety assessment showed that the four European blanket concepts can be considered as equivalent in terms of the safety rating adopted, each concept, however, rendering safety concerns of different quality in different areas which are substantiated in this report. (orig.) [de

  10. ITER blanket module shield block design and analysis

    Mitin, D.; Khomyakov, S.; Razmerov, A.; Strebkov, Yu.

    2008-01-01

    This paper presents the alternative design of the shield block cooling path for a typical ITER blanket module with a predominantly sequential flow circuit. A number of serious disadvantages have been observed for the reference design, where the parallel flow circuit is used, which is inherent in the majority of blanket modules. The paper discusses these disadvantages and demonstrates the benefit of the alternative design based on the detailed design and the technological, hydraulic, thermal, structural and strength analyses, conducted for module no. 17

  11. Progress and achievements of the ITER L-4 blanket project

    Daenner, W.; Toschi, R.; Cardella, A.

    1999-01-01

    The L-4 Blanket Project embraces the R and D of the ITER Shielding Blanket, and its main objective is the fabrication of prototype components. This paper summarises the main conclusions from the materials R and D and the development of technologies which were required for the prototype specifications and manufacturing. The main results of the ongoing testing activities, and of the component manufacture are outlined.The main objectives of the project have been achieved including improvements of the material properties and of joining technologies, which resulted in good component quality and high performance in qualification tests. (author)

  12. Progress and achievements of the ITER L-4 blanket project

    Daenner, W.; Toschi, R.; Cardella, A.

    2001-01-01

    The L-4 Blanket Project embraces the R and D of the ITER Shielding Blanket, and its main objective is the fabrication of prototype components. This paper summarises the main conclusions from the materials R and D and the development of technologies which were required for the prototype specifications and manufacturing. The main results of the ongoing testing activities, and of the component manufacture are outlined. The main objectives of the project have been achieved including improvements of the material properties and of joining technologies, which resulted in good component quality and high performance in qualification tests. (author)

  13. Limiter and first wall of the fusion reactor blanket

    Danilov, I.; Skladnov, K.; Kolganov, V.

    1994-01-01

    Previous designing of the first wall and limiter has allowed to determine their possible embodiment depending on the parameters and operation conditions of the blanket. As a rule limiter is a separate structure located on the plasma facing surface of the blanket assembly. Possible versions of the limiter/FW which may be considered: (1) limiters with mechanical attachment of the protective part; (2) limiters with the attachment with brazing; (3) limiters with common/separate cooling system; (4) limiter as a substitute of the FW. Generally the FW/limiter structure includes protective shield and its cooling system which consist of protective coating, heat accumulator, conductive layer and attachment locks

  14. Ceramic sphere-pac breeder design for fusion blankets

    Gierszewski, P.J.; Sullivan, J.D.

    1991-01-01

    Randomly packed beds of ceramic spheres are a practical approach to surrounding fusion plasmas with tritium-breeding material. This paper examines the general properties of sphere-pac beds for application in fusion breeder blankets. The design considerations and models are reviewed for packing, tritium breeding and recovery, thermal conductivity, purge-gas pressure drop, mechanical behavior and fabrication. The design correlations are compared against available fusion ceramic data. Specific conclusions are that ternary (three-size) beds are not attractive for fusion blankets, and that the fusion spheres should be as large as possible subject primarily to packing constraints. (orig.)

  15. An aqueous lithium salt blanket option for fusion power reactors

    Steiner, D.; Varsamis, G. (Rensselaer Polytechnic Inst., Troy, NY (USA). Dept. of Nuclear Engineering and Engineering Physics); Deutsch, L.; Rathke, J. (Grumman Corp., Bethpage, NY (USA). Advanced Energy Systems); Gierszewski, P. (Canadian Fusion Fuels Technology Project (CFFTP), Mississauga, ON (Canada))

    1989-04-01

    An aqueous lithium salt blanket (ALSB) concept is proposed which could be the basis for either a power reactor blanket or a test module in an engineering test reactor. The design is based on an austenitic stainless steel structure, a beryllium multiplier, and a salt breeder concentration of about 32 g LiNO/sub 3/ per 100 cm/sup 3/ of H/sub 2/O. To limit tritium release rates, the salt breeder solution is separated from the water coolant circuit. The overall tritium system cost for a 2400 MW (fusion power) reactor is estimated to be 180 million Dollar US87 installed. (orig.).

  16. Pulsed activation analyses of the ITER blanket design options considered in the blanket trade-off study

    Wang, Q.; Henderson, D.L.

    1995-01-01

    Pulsed activation calculations have been performed on two blanket options considered as part of the ITER home team blanket trade-off study. The objective was to compare the activity, afterheat and waste disposal rating (WDR) results of a composite blanket-shield design for the continuous operation approximation to a pulsed operation case to determine whether the differences are at most the duty factor as predicted by the two nuclide chain model. Up to a cooling period of 100 years, the pulsed activity and afterheat values were below the continuous oepration results and well within (except for one afterheat value) the maximum deviation predicted by the two nuclide chain model. No differences in the WDR values were noted as they are, to a large extent, based on long-lived nuclides which are insensitive to short-term changes in the operation history. (orig.)

  17. Japanese contributions to the Japan-US workshop on blanket design/technology

    Tone, Tatsuzo; Seki, Yasushi; Minato, Akio; Kobayashi, Takeshi; Mori, Seiji; Kawasaki, Hiromitsu; Sumita, Kenji.

    1983-02-01

    This report describes Japanese papers presented at the Japan-US Workshop on Blanket Design/Technology which was held at Argonne National Laboratory, November 10 - 11, 1982. Overview of Fusion Experimental Reactor (FER), JAERI's activities related to first wall/blanket/shield, summary of FER blanket and its technology development issues and summary of activities at universities on fusion reactor blanket engineering are covered. (author)

  18. Design requirement on KALIMER blanket fuel assembly duct

    Hwang, Woan; Kang, H. Y.; Nam, C.; Kim, J. O.

    1998-03-01

    This document describes design requirements which are needed for designing the blanket fuel assembly duct of the KALIMER as design guidance. The blanket fuel assembly duct of the KALIMER consists of fuel rods, mounting rail, nosepiece, duct with pad, handling socket with pad. Blanket fuel rod consists of top end plug, bottom end plug with solid ferritic-martensitic steel rod and key way blanket fuel slug, cladding, and wire wrap. In the assembly, the rods are in a triangular pitch array, and the rod bundle is attached to the nosepiece with mounting rails. The bottom end of the assembly duct is formed by a long nosepiece which provides the lower restraint function and the paths for coolant inlet. This report contains functional requirements, performance and operational requirements, interfacing systems requirements, core restraint and interface requirements, design limits and strength requirements, system configuration and essential feature requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements. (author). 20 refs., 4 figs

  19. Summary of the target-blanket breakout group

    Capiello, M.; Bell, C. [Los Alamos National Laboratory, NM (United States); Barthold, W.

    1995-10-01

    This breakout group discussed a number of topics and issues pertaining to target and blanket concepts for accelerator-driven systems. This major component area is one marked by a broad spectrum of technical approaches. It is therefore less defined than other major component areas such as the accelerator and is at an earlier stage of technical needs and task specification. The working group did reach a number of general conclusions and recommendations that are summarized. The Conference and the Target/Blanket Breakout Group provided a first opportunity for people working on a variety of missions and concepts to get together and exchange information. A number of subcritical systems applicable for a spectrum of missions were proposed at the Conference and discussed in the Breakout Group. Missions included plutonium disposition, energy production, waste destruction, isotope production, and neutron scattering. The Target/Blanket Breakout Group also defined areas where parameters and data should be addressed as target/blanket design activities become more detailed and sophisticated.

  20. Technical issues for beryllium use in fusion blanket applications

    McCarville, T.J.; Berwald, D.H.; Wolfer, W.; Fulton, F.J.; Lee, J.D.; Maninger, R.C.; Moir, R.W.; Beeston, J.M.; Miller, L.G.

    1985-01-01

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented

  1. First-wall/blanket materials selection for STARFIRE tokamak reactor

    Smith, D.L.; Mattas, R.F.; Clemmer, R.G.; Davis, J.W.

    1980-01-01

    The development of the reference STARFIRE first-wall/blanket design involved numerous trade-offs in the materials selection process for the breeding material, coolant structure, neutron multiplier, and reflector. The major parameters and properties that impact materials selection and design criteria are reviewed

  2. Thermal-hydraulic analysis of low activity fusion blanket designs

    Fillo, J.A.; Powell, J.; Yu, W.S.

    1977-01-01

    The heat transfer aspects of fusion blankets are considered where: (a) conduction and (b) boiling and condensation are the dominant heat transfer mechanisms. In some cases, unique heat transfer problems arise and additional heat transfer data and analyses may be required

  3. Fusion blanket testing in MFTF-α + T

    Kleefeldt, K.

    1985-01-01

    The Mirror Fusion Test Facility-α + T (MFTF-α + T) is an upgraded version of the current MFTF-B test facility at Lawrence Livermore National Laboratory, and is designed for near-term fusion-technology-integrated tests at a neutron flux of 2 MW/m 2 . Currently, the fusion community is screening blanket and related issues to determine which ones can be addressed using MFTF-α + T. In this work, the minimum testing needs to address these issues are identified for the liquid-metal-cooled blanket and the solid-breeder blanket. Based on the testing needs and on the MFTF-α + T capability, a test plan is proposed for three options; each option covers a six to seven year testing phase. The options reflect the unresolved question of whether to place the research and development (R and D) emphasis on liquid-metal or solid-breeder blankets. In each case, most of the issues discussed can be addressed to a reasonable extent in MFTF-α+T

  4. On the conditions of existence of cold-blanket systems

    Lehnert, B.

    1977-12-01

    An extende analysis of the partially ionized boundary layer of a magnetized plasma has been performed, leading to the following results: (i) In a first approximation the ion density at the inner ''edge'' of the layer becomes related to the wall-near neutral gas density, in a way being independent of the spatial distribution of the ionization rate. (ii) The particle and momentum balance equations, and the associated impermeability condition of the plasma with respect to neutral gas penetration, are not sufficient to specify a cold-blanket state, but have to be combined with considerations of the heat blance. This leads to lower and upper power input limits, thus defining conditions for the existence of a cold-blanket state. At decreasing beta values , or increasing radiation losses, there are situations where such a state cannot exist at all. (iii) It should become possible to fulfill the cold-blanket conditions in full-scale reactors as well as in certain model experiments. Probably these conditions can also be satisfied in large tokamaks like JET, and by fast gas injection in devices such as Alcator, but not in medium-size tokamaks being operated at moderately high ion densities. (iv) A strong ''boundary layer stabilization'' mechanism due to the joint viscosity-resistivity-pressure effects is available under cold-blanket conditions. (author)

  5. Performance evaluation on force control for ITER blanket installation

    Aburadani, A., E-mail: aburadani.atsushi@jaea.go.jp [Japan Atomic Energy Agency, Mukouyama 801-1, Naka, Ibaraki 311-0193 (Japan); Takeda, N.; Shigematsu, S.; Murakami, S.; Tanigawa, H.; Kakudate, S. [Japan Atomic Energy Agency, Mukouyama 801-1, Naka, Ibaraki 311-0193 (Japan); Nakahira, M.; Hamilton, D.; Tesini, A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► It is crucial issues to avoid any jamming between the blanket modules and the keys. ► Force control for AC servo motor was developed to reduce excessive loads. ► This jam prevention force control method is directly measured and controlled by AC servo motor controllers. ► In the recent test, the module was passively positioned onto keys using the torque control method. -- Abstract: The most critical issue for the ITER blanket installation is to avoid any jamming between the blanket modules and the keys as a result of excessive loading during the module installation process. This is complicated by the limited clearance of 0.5 mm between the modules and the keys. To solve these technical issues, force control, such as controlling the torque for the AC servo motors, was developed to reduce excessive loads which may have an impact on the end-effector and to defer the forces acting on the groove of the blanket. This jam prevention force control method is directly measured and controlled by AC servo motor controllers. The AC servo motors are equipped to move the manipulator and end-effector during module installation.

  6. Performance evaluation on force control for ITER blanket installation

    Aburadani, A.; Takeda, N.; Shigematsu, S.; Murakami, S.; Tanigawa, H.; Kakudate, S.; Nakahira, M.; Hamilton, D.; Tesini, A.

    2013-01-01

    Highlights: ► It is crucial issues to avoid any jamming between the blanket modules and the keys. ► Force control for AC servo motor was developed to reduce excessive loads. ► This jam prevention force control method is directly measured and controlled by AC servo motor controllers. ► In the recent test, the module was passively positioned onto keys using the torque control method. -- Abstract: The most critical issue for the ITER blanket installation is to avoid any jamming between the blanket modules and the keys as a result of excessive loading during the module installation process. This is complicated by the limited clearance of 0.5 mm between the modules and the keys. To solve these technical issues, force control, such as controlling the torque for the AC servo motors, was developed to reduce excessive loads which may have an impact on the end-effector and to defer the forces acting on the groove of the blanket. This jam prevention force control method is directly measured and controlled by AC servo motor controllers. The AC servo motors are equipped to move the manipulator and end-effector during module installation

  7. Tritium inventory in Li2ZrO3 blanket

    Nishikawa, M.; Baba, A.

    1998-01-01

    Recently, we have presented the way to estimate the tritium inventory in a solid breeder blanket considering effects of diffusion of tritium in the grain, absorption of water in the bulk of grain, and adsorption of water on the surface of grain, together with two types of isotope exchange reactions. It is reported in our previous paper that the estimated tritium inventory for a LiAlO 2 blanket agrees well with data observed in various in situ experiments when the effective diffusivity of tritium from the EXOTIC-6 experiment is used and that the better agreement is obtained when existence of some water vapor is assumed in the purge gas. The same way as used for a LiAlO 2 blanket is applied to a Li 2 ZrO 3 blanket in this study and the estimated tritium inventory shows a good agreement with data obtained in such in situ experiments as MOZART, EXOTIC-6 and TRINE experiments. (orig.)

  8. Examination of compression and resilience characteristics of fibrous insulation blankets

    Brislin, R.J.; Middleton, A.

    1979-08-01

    Load-deflection characteristics of alumina and alumino-silicate fibrous blankets were experimentally determined. Load retention and springback capability of combinations of these materials were measured in a 10,000-hour test at surface temperatures of 650 to 1000 0 C (1200 to 1832 0 F). Experimental results are presented and future testing plans are discussed

  9. Effects of buffer thickness on ATW blanket performances

    Yang, Won Sik

    2001-01-01

    This paper presents the preliminary results of target and buffer design studies for a lead-bismuth eutectic (LBE) cooled accelerator transmutation of waste (ATW) system, aimed at maximizing the source importance while simultaneously reducing the irradiation damage to fuel. Using an 840 MWt LBE cooled ATW design, the effects of buffer thickness on the blanket performances have been studied. Varying the buffer thickness for a given blanket configuration, system performances have been estimated by a series of calculations using MCNPX and REBUS-3 codes. The effects of source importance change are studied by investigating the low-energy (< 20 MeV) neutron source distribution and the equilibrium cycle blanket performance parameters such as fuel inventory, discharge burnup, burnup reactivity loss, and peak fast fluence. As the irradiation damage to fuel, the displacements per atom (dpa), hydrogen production, and helium production rates are evaluated at the buffer and blanket interface where the peak fast fluence occurs. The results show that the damage rates and the source importance increase monotonically as the buffer thickness decreases. Based on a compromise between the competing objectives of increasing the source importance and reducing the damage rates, a buffer thickness of around 20 cm appears to be reasonable

  10. Development of simulator for remote handling system of ITER blanket

    Takeda, Nobukazu; Kakudate, Satoshi; Nakanhira, Masataka; Matsumoto, Yasuhiro; Shibanuma, K.

    2007-01-01

    The maintenance activity in the ITER has to be performed remotely because 14 MeV neutron caused by fusion reaction induces activation of structural material and emission of gamma ray. In general, it is one of the most critical issues to avoid collision between the remote maintenance system and in-vessel components. Therefore, the visual information in the vacuum vessel is required strongly to understand arrangement of these devices and components. However, there is a limitation of arrangement of viewing cameras in the vessel because of high intensity of gamma ray. It is expected that enough numbers of cameras and lights are not available because of arrangement restriction. Furthermore, visibility of the interested area such as the contacting part is frequently disturbed by the devices and components, thus it is difficult to recognize relative position between the devices and components only by visual information even if enough cameras and lights are equipped. From these reasons, the simulator to recognize the positions of each devices and components is indispensable for remote handling systems in fusion reactors. The authors have been developed a simulator for the remote maintenance system of the ITER blanket using a general 3D robot simulation software ''ENVISION''. The simulator is connected to the control system of the manipulator which was developed as a part of the blanket maintenance system in the EDA and can reconstruct the positions of the manipulator and the blanket module using the position data of the motors through the LAN. In addition, it can provide virtual visual information, such as the connecting operation behind the blanket module with making the module transparent on the screen. It can be used also for checking the maintenance sequence before the actual operation. The developed simulator will be modified further adding other necessary functions and finally completed as a prototype of the actual simulator for the blanket remote handling system

  11. Remote handling assessment of attachment concepts for DEMO blanket segments

    Iglesias, Daniel, E-mail: daniel.iglesias@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Bastow, Roger; Cooper, Dave; Crowe, Robert; Middleton-Gear, Dave [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Sibois, Romain [VTT, Technical Research Centre of Finland, Industrial Systems, ROViR, Tampere (Finland); Carloni, Dario [Institute of Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT) (Germany); Vizvary, Zsolt; Crofts, Oliver [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Harman, Jon [EFDA Close Support Unit Garching, Boltzmannstaße 2, D-85748 Garching bei München (Germany); Loving, Antony [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2015-10-15

    Highlights: • Challenges are identified for the remote handling of blanket segments’ attachments. • Two attachment design approaches are assessed for remote handling (RH) feasibility. • An alternative is proposed, which potentially simplifies and speeds-up RH operations. • Up to three different assemblies are proposed for the remote handling of the attachments. • Proposed integrated design of upper port is compatible with the attachment systems. - Abstract: The replacement strategy of the massive Multi-Module Blanket Segments (MMS) is a key driver in the design of several DEMO systems. These include the blankets themselves, the vacuum vessel (VV) and its ports and the Remote Maintenance System (RMS). Common challenges to any blanket attachment system have been identified, such as the need for applying a preload to the MMS manifold, the effects of the decay heat and several uncertainties related to permanent deformations when removing the blanket segments after service. The WP12 kinematics of the MMS in-vessel transportation was adapted to the requirements of each of the supports during 2013 and 2014 design activities. The RM equipment envisaged for handling attachments and earth connections may be composed of up to three different assemblies. An In-Vessel Mover at the divertor level handles the lower support and earth bonding, and could stabilize the MMS during transportation. A Shield Plug crane with a 6 DoF manipulator operates the upper attachment and earth straps. And a Vertical Maintenance Crane is responsible for the in-vessel MMS transportation and can handle the removable upper support pins. A final proposal is presented which can potentially reduce the number of required systems, at the same time that speeds-up the RMS global operations.

  12. Effects of buffer thickness on ATW blanket performance

    Yang, W. S.; Mercatali, L.; Taiwo, T. A.; Hill, R. N.

    2001-01-01

    This paper presents preliminary results of target and buffer design studies for liquid metal cooled accelerator transmutation of waste (ATW) systems, aimed at maximizing the source importance while simultaneously reducing the irradiation damage to fuel. Using 840 MWt liquid metal cooled ATW designs, the effects of buffer thickness on the blanket performance have been studied. Varying the buffer thickness for a given blanket configuration, system performance parameters have been estimated by a series of calculations using the MCNPX and REBUS-3 codes. The effects of source importance variation are studied by investigating the low-energy ( and lt; 20 MeV) neutron source distribution and the equilibrium cycle blanket performance parameters such as fuel inventory, discharge burnup, burnup reactivity loss, and peak fast fluence. For investigating irradiation damage to fuel, the displacements per atom (dpa), hydrogen production, and helium production rates are evaluated at the buffer and blanket interface where the peak fast fluence occurs. Results for the liquid-metal-cooled designs show that the damage rates and the source importance increase monotonically as the buffer thickness decreases. Based on a compromise between the competing objectives of increasing the source importance and reducing the damage rates, a buffer thickness of around 20 cm appears to be reasonable. Investigation of the impact of the proton beam energy on the target and buffer design shows that for a given blanket power level, a lower beam energy (0.6 GeV versus 1 GeV) results in a higher irradiation damage to the beam window. This trend occurs because of the increase in the beam intensity required to maintain the power level

  13. Evaluation of compost blankets for erosion control from disturbed lands.

    Bhattarai, Rabin; Kalita, Prasanta K; Yatsu, Shotaro; Howard, Heidi R; Svendsen, Niels G

    2011-03-01

    Soil erosion due to water and wind results in the loss of valuable top soil and causes land degradation and environmental quality problems. Site specific best management practices (BMP) are needed to curb erosion and sediment control and in turn, increase productivity of lands and sustain environmental quality. The aim of this study was to investigate the effectiveness of three different types of biodegradable erosion control blankets- fine compost, mulch, and 50-50 mixture of compost and mulch, for soil erosion control under field and laboratory-scale experiments. Quantitative analysis was conducted by comparing the sediment load in the runoff collected from sloped and tilled plots in the field and in the laboratory with the erosion control blankets. The field plots had an average slope of 3.5% and experiments were conducted under natural rainfall conditions, while the laboratory experiments were conducted at 4, 8 and 16% slopes under simulated rainfall conditions. Results obtained from the field experiments indicated that the 50-50 mixture of compost and mulch provides the best erosion control measures as compared to using either the compost or the mulch blanket alone. Laboratory results under simulated rains indicated that both mulch cover and the 50-50 mixture of mulch and compost cover provided better erosion control measures compared to using the compost alone. Although these results indicate that the 50-50 mixtures and the mulch in laboratory experiments are the best measures among the three erosion control blankets, all three types of blankets provide very effective erosion control measures from bare-soil surface. Results of this study can be used in controlling erosion and sediment from disturbed lands with compost mulch application. Testing different mixture ratios and types of mulch and composts, and their efficiencies in retaining various soil nutrients may provide more quantitative data for developing erosion control plans. Copyright © 2010 Elsevier

  14. Structural analysis under the Blanket Comparison and Selection Study

    Majumdar, S.

    1985-01-01

    Structural design procedures followed in the Blanket Comparison and Selection Study are briefly reviewed. The American Society of Mechanical Engineers Boilers and Pressure Vessels Code, Section III, Code Case N47 has been used as a design guide. Its relevance to fusion reactor applications, however, is open to question and needs to be evaluated in the future. The primary structural problem encountered in tokamak blanket designs is the high thermal stress due to surface heat flux, with fatigue being an additional concern for pulsed systems. The conflicting requirements of long erosion life and high surface heat flux capability imply that some form of stress relief in the first-wall region will be necessary. Simplified stress and fatigue crack growth analyses are presented to show that the use of orthogonally grooved first wall may be a potential solution for mitigating the thermal stress problem. A comparison of three structural alloys on the basis of both grooved and nongrooved first-wall designs is also presented. Other structural problems encountered in tokamak designs include stresses due to plasma disruptions, and magnetohydrodynamic (MHD) pressure drop in liquid-metal-cooled systems. In particular, it is shown that the maximum stress in the side wall of a uniform duct generated by MHD pressure drop cannot be reduced by increasing the wall thickness or by decreasing the span. In contract to tokamak blankets, tandem mirror blankets are far less severely stressed because of a much lower surface heat flux, coolant pressure, and also because of their axisymmetric geometry. Both blankets, however, will require detailed structural dynamics analysis to verify their ability to withstand seismic loadings if the heavy 17Li-83Pb is used as a coolant

  15. Effects of Buffer Thickness on ATW Blanket Performance

    Yang, W.S.; Mercatali, L.; Taiwo, T.A.; Hill, R.N.

    2002-01-01

    This paper presents preliminary results of target and buffer design studies for liquid metal cooled accelerator transmutation of waste (ATW) systems, aimed at maximizing the source importance while simultaneously reducing the irradiation damage to fuel. Using 840 MWt liquid metal cooled ATW designs, the effects of buffer thickness on the blanket performance have been studied. Varying the buffer thickness for a given blanket configuration, system performance parameters have been estimated by a series of calculations using the MCNPX and REBUS-3 codes. The effects of source importance variation are studied by investigating the low-energy (< 20 MeV) neutron source distribution and the equilibrium cycle blanket performance parameters such as fuel inventory, discharge burnup, burnup reactivity loss, and peak fast fluence. For investigating irradiation damage to fuel, the displacements per atom (dpa), hydrogen production, and helium production rates are evaluated at the buffer and blanket interface where the peak fast fluence occurs. Results for the liquid-metal-cooled designs show that the damage rates and the source importance increase monotonically as the buffer thickness decreases. Based on a compromise between the competing objectives of increasing the source importance and reducing the damage rates, a buffer thickness of around 20 cm appears to be reasonable. Investigation of the impact of the proton beam energy on the target and buffer design shows that for a given blanket power level, a lower beam energy (0.6 GeV versus 1 GeV) results in a higher irradiation damage to the beam window. This trend occurs because of the increase in the beam intensity required to maintain the power level. (authors)

  16. Study on the temperature control mechanism of the tritium breeding blanket for CFETR

    Liu, Changle; Qiu, Yang; Zhang, Jie; Zhang, Jianzhong; Li, Lei; Yao, Damao; Li, Guoqiang; Gao, Xiang; Wu, Songtao; Wan, Yuanxi

    2017-12-01

    The Chinese fusion engineering testing reactor (CFETR) will demonstrate tritium self- sufficiency using a tritium breeding blanket for the tritium fuel cycle. The temperature control mechanism (TCM) involves the tritium production of the breeding blanket and has an impact on tritium self-sufficiency. In this letter, the CFETR tritium target is addressed according to its missions. TCM research on the neutronics and thermal hydraulics issues for the CFETR blanket is presented. The key concerns regarding the blanket design for tritium production under temperature field control are depicted. A systematic theory on the TCM is established based on a multiplier blanket model. In particular, a closed-loop method is developed for the mechanism with universal function solutions, which is employed in the CFETR blanket design activity for tritium production. A tritium accumulation phenomenon is found close to the coolant in the blanket interior, which has a very important impact on current blanket concepts using water coolant inside the blanket. In addition, an optimal tritium breeding ratio (TBR) method based on the TCM is proposed, combined with thermal hydraulics and finite element technology. Meanwhile, the energy gain factor is adopted to estimate neutron heat deposition, which is a key parameter relating to the blanket TBR calculations, considering the structural factors. This work will benefit breeding blanket engineering for the CFETR reactor in the future.

  17. Self-shielding characteristics of aqueous self-cooled blankets for next generation fusion devices

    Pelloni, S.; Cheng, E.T.; Embrechts, M.J.

    1987-11-01

    The present study examines self-shielding characteristics for two aqueous self-cooled tritium producing driver blankets for next generation fusion devices. The aqueous Self-Cooled Blanket concept (ASCB) is a very simple blanket concept that relies on just structural material and coolant. Lithium compounds are dissolved in water to provide for tritium production. An ASCB driver blanket would provide a low technology and low temperature environment for blanket test modules in a next generation fusion reactor. The primary functions of such a blanket would be shielding, energy removal and tritium production. One driver blanket considered in this study concept relates to the one proposed for the Next European Torus (NET), while the second concept is indicative for the inboard shield design for the Engineering Test Reactor proposed by the USA (TIBER II/ETR). The driver blanket for NET is based on stainless steel for the structural material and aqueous solution, while the inboard shielding blanket for TIBER II/ETR is based on a tungsten/aqueous solution combination. The purpose of this study is to investigate self-shielding and heterogeneity effects in aqueous self-cooled blankets. It is found that no significant gains in tritium breeding can be achieved in the stainless steel blanket if spatial and energy self-shielding effects are considered, and the heterogeneity effects are also insignificant. The tungsten blanket shows a 5 percent increase in tritium production in the shielding blanket when energy and spatial self-shielding effects are accounted for. However, the tungsten blanket shows a drastic increase in the tritium breeding ratio due to heterogeneity effects. (author) 17 refs., 9 figs., 9 tabs

  18. Electrical behaviour of ceramic breeder blankets in pebble form after γ-radiation

    E. Carella

    2015-07-01

    Full Text Available Lithium orthosilicate (Li4SiO4 ceramics in from of pebble bed is the European candidate for ITER testing HCPB (Helium Cooled Pebble Bed breeding modules. The breeder function and the shielding role of this material, represent the areas upon which attention is focused. Electrical measurements are proposed for monitoring the modification created by ionizing radiation and at the same time provide information on lithium movement in this ceramic structure. The electrical tests are performed on pebbles fabricated by Spray-dryer method before and after gamma-irradiation through a 60Co source to a fluence of 4.8 Gy/s till a total dose of 5 ∗ 105 Gy. The introduction of thermal annealing treatments during the electrical impedance spectroscopy (EIS measurements points out the recombination effect of the temperature on the γ-induced defects.

  19. APT 3He target/blanket. Topical report

    1995-03-01

    The 3 He target/blanket (T/B) preconceptual design for the 3/8-Goal facility is based on a 1000-MeV, 200-mA accelerator to produce a high-intensity proton beam that is expanded and then strikes one of two T/B modules. Each module consists of a centralized neutron source made of tungsten and lead, a proton beam backstop region made of zirconium and lead, and a moderator made of D 2 O. Helium-3 gas is circulated through the neutron source region and the blanket to create tritium through neutron capture. The gas is continually processed to extract the tritium with an online separation process

  20. Improved modules for the blanket of RTO/RC ITER

    Elio, F.; Ioki, K.; Cardella, A.

    2000-01-01

    This paper describes innovative design aspects that are considered to optimise the blanket modules for the reduced technical objective/reduced cost international thermonuclear experimental reactor. The blanket modules have a vertical straight profile facing the plasma, and the first wall is built in small and flat panels. Copper may be applied only in front of the first row of cooling passages. The radial cooling of the shield block avoids a complex by-pass at the back and opens up the possibility to use cast instead of forged steel. Slits in the shield block and in the first wall reduce the electromagnetic forces enough to allow the support of the modules on the vessel and the mechanical attachment of the first wall panels

  1. Experimental program for the Fast Breeder Blanket Facility, FBBF

    Ott, K.O.; Clikeman, F.M.; Johnson, R.H.; Borg, R.C.

    1976-01-01

    The work performed in the reporting period was primarily concerned with the development of the experimental program (Task A) and with the pre-analysis of future loadings and the impact upon the permanent loading of the two converter regions, which contain 4.8 percent enriched UO 2 rods. It appears necessary that a neutron poison (B 4 C) be placed in the converter (transformer) regions in order to hold, also for future loadings, the k/sub eff/ of a hypothetically flooded FBBF well below 1. Since it is planned to use the same welded converter regions for all experiments, the required B 4 C loading needs to be determined prior to the first blanket loading. Further the equipment needs have been identified (Task D), the 252 Cf-source has been requested on a loan basis (Task E). First discussions with ANL on blanket experiments have been initiated

  2. Blanket handling concepts for future fusion power plants

    Bogusch, E.; Gottfried, R.; Maisonnier, D.

    2003-01-01

    In the frame of the power plant conceptual studies (PPCS) launched by the European Commission, two main blanket handling concepts have been investigated with respect to engineering feasibility and the impact on the plant availability and on cost: the large module handling concept (LMHC) and the large sector handling concept (LSHC). The LMHC has been considered as the reference handling concept while the LSHC has been considered as an attractive alternative to the LMHC due to its potential of smaller replacement times and hence increasing the plant availability. Although no principle feasibility issue has been identified, a number of engineering issues have been highlighted for the LSHC that would require considerable efforts for their resolution. Since its availability of about 77% based on a replacement time for all the internals of about 4.2 months is slightly lower than for the LMHC, the LMHC remains the reference blanket replacement concept for a conceptual reactor

  3. Rapid thermal cycling of new technology solar array blanket coupons

    Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.

    1990-01-01

    NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.

  4. Structural performance of a graphite blanket in fusion reactors

    Wolfer, W.G.; Watson, R.D.

    1978-01-01

    Irradiation of graphite in a fusion reactor causes dimensional changes, enhanced creep, and changes in elastic properties and fracture strength. Temperature and flux gradients through the graphite blanket structure produce differential distortions and stress gradients. An inelastic stress analysis procedure is described which treats these variations of the graphite properties in a consistent manner as dictated by physical models for the radiation effects. Furthermore, the procedure follows the evolution of the stress and fracture strength distributions during the reactor operation as well as for possible shutdowns at any time. The lifetime of the graphite structure can be determined based on the failure criterion that the stress at any location exceeds one-half of the fracture strength. This procedure is applied to the most critical component of the blanket module in the SOLASE design

  5. Stability properties of cold blanket systems for current driven modes

    Ohlsson, D.

    1977-12-01

    The stability problem of the boundary regions of cold blanket systems with induced currents parallel to the lines of force is formulated. Particular interest is focused on two types of modes: first electrostatic modes driven by the combined effects of a transverse resistivity gradient due to a spatially non-uniform electron temperature and a longitudinal current, second electromagnetic kink like modes driven by the torque arising from a transverse current density gradient and magnetic field perturbations. It is found that the combination of various dissipative and neutral gas effects introduces strong stabilizing effects within specific parameter ranges. For particular steady-state models investigated it is shown that these effects become of importance in laboratory plasmas at relatively high densities, low temperatures and moderate magnetic field strengths. Stability diagrams based on specific steady-state cold plasma blanket models will be presented

  6. APT {sup 3}He target/blanket. Topical report

    NONE

    1995-03-01

    The {sup 3}He target/blanket (T/B) preconceptual design for the 3/8-Goal facility is based on a 1000-MeV, 200-mA accelerator to produce a high-intensity proton beam that is expanded and then strikes one of two T/B modules. Each module consists of a centralized neutron source made of tungsten and lead, a proton beam backstop region made of zirconium and lead, and a moderator made of D{sub 2}O. Helium-3 gas is circulated through the neutron source region and the blanket to create tritium through neutron capture. The gas is continually processed to extract the tritium with an online separation process.

  7. Engineering test station for TFTR blanket module experiments

    Jassby, D.L.; Leinoff, S.

    1979-12-01

    A conceptual design has been carried out for an Engineering Test Station (ETS) which will provide structural support and utilities/instrumentation services for blanket modules positioned adjacent to the vacuum vessel of the TFTR (Tokamak Fusion Test Reactor). The ETS is supported independently from the Test Cell floor. The ETS module support platform is constructed of fiberglass to eliminate electromagnetic interaction with the pulsed tokamak fields. The ETS can hold blanket modules with dimensions up to 78 cm in width, 85 cm in height, and 105 cm in depth, and with a weight up to 4000 kg. Interfaces for all utility and instrumentation requirements are made via a shield plug in the TFTR igloo shielding. The modules are readily installed or removed by means of TFTR remote handling equipment

  8. Blanket comparison and selection study. Final report. Volume 2

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concepts are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.

  9. Tritium breeding blanket device of D-T reactors

    Chevereau, G.

    1984-01-01

    This blanket device uses solid tritium breeding materials as those which include, in a known manner, near a neutron breeding plasma, a neutron multiplier medium and a tritium breeding medium, cooled by a cooling fluid circulation. This device is characterized by the fact that the association of the multiplier media and the tritium breeding media is realized by pellet alternated piling up of each of those both media, help in close contact on all their lateral surfaces [fr

  10. Blanket comparison and selection study. Final report. Volume 3

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li 2 O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N 2 ) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concept are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li 2 O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concepts are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue

  11. Blanket comparison and selection study. Final report. Volume 1

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li 2 O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N 2 ) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concept are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li 2 O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue

  12. Heat Loads Due To Small Penetrations In Multilayer Insulation Blankets

    Johnson, W. L.; Heckle, K. W.; E Fesmire, J.

    2017-12-01

    The main penetrations (supports and piping) through multilayer insulation systems for cryogenic tanks have been previously addressed by heat flow measurements. Smaller penetrations due to fasteners and attachments are now experimentally investigated. The use of small pins or plastic garment tag fasteners to ease the handling and construction of multilayer insulation (MLI) blankets goes back many years. While it has long been understood that penetrations and other discontinuities degrade the performance of the MLI blanket, quantification of this degradation has generally been lumped into gross performance multipliers (often called degradation factors or scale factors). Small penetrations contribute both solid conduction and radiation heat transfer paths through the blanket. The conduction is down the stem of the structural element itself while the radiation is through the hole formed during installation of the pin or fastener. Analytical models were developed in conjunction with MLI perforation theory and Fourier’s Law. Results of the analytical models are compared to experimental testing performed on a 10 layer MLI blanket with approximately 50 small plastic pins penetrating the test specimen. The pins were installed at ∼76-mm spacing inches in both directions to minimize the compounding of thermal effects due to localized compression or lateral heat transfer. The testing was performed using a liquid nitrogen boil-off calorimeter (Cryostat-100) with the standard boundary temperatures of 293 K and 78 K. Results show that the added radiation through the holes is much more significant than the conduction down the fastener. The results are shown to be in agreement with radiation theory for perforated films.

  13. New concepts for controlled fusion reactor blanket design

    Conn, R.W.; Kulcinski, G.L.; Avci, H.; El-Maghrabi, M.

    1975-01-01

    Several new concepts for fusion reactor blanket design based on the idea of shifting, or tailoring, the neutron spectrum incident on the first structural wall are presented. The spectral shifter is a nonstructural element which can be made of graphite, silicon carbide, or three dimensionally woven carbon fibers (and containing other materials as appropriate) placed between the neutron source and the first structural wall. The softened neutron spectrum incident on the structural components leads to lower gas production and atom displacement rates than in more standard fusion blanket designs. In turn, this results in longer anticipated lifetimes for the structural materials and can significantly reduce radioactivity and afterheat levels. In addition, the neutron spectrum in the first structural wall can be made to approach the flux shape in fast breeder reactors. Such spectral softening means that existing radiation facilities may be more profitably used to provide relevant materials radiation damage data for the structural materials in these fusion blanket designs. This general class of blanket concepts are referred to as internal spectral shifter and energy converter, or ISSEC concepts. These specific design concepts fall into three main categories: ISSEC/EB concepts based on utilizing existing designs which breed tritium behind the first structural wall; ISSEC/IB concepts based on breeding tritium inside the first vacuum wall; and ISSEC/Bu concepts based on using boron, carbon, and perhaps, beryllium to obtain an energy multiplier and converter design that does not attempt to breed tritium or utilize lithium. The detailed analyses relate specifically to the nuclear performance of ISSEC systems and to a discussion of materials radiation damage problems in the structural material.(U.S.)

  14. Blanket comparison and selection study. Final report. Volume 2

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li 2 O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N 2 ) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concepts are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li 2 O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue

  15. Choice of economical optimum blanket of hybrid reactors

    Blinkin, V L; Novikov, V M

    1981-01-01

    The economical effectiveness of symbiotic power systems depends on the choice of the correlation between energy production and fissile fuel production in blankets of controlled thermonuclear fusion reactor (CTR), what is investigated here. It is shown that the optimum value of this correlation essentially depends on the ratio between the specific costs for energy production in hybrid thermonuclear reactors and that in fission reactors as part of the symbiotic system.

  16. Development of insulating coatings for liquid metal blankets

    Malang, S.; Borgstedt, H.U.; Farnum, E.H.; Natesan, K.; Vitkovski, I.V.

    1994-07-01

    It is shown that self-cooled liquid metal blankets are feasible only with electrically insulating coatings at the duct walls. The requirements on the insulation properties are estimated by simple analytical models. Candidate insulator materials are selected based on insulating properties and thermodynamic consideration. Different fabrication technologies for insulating coatings are described. The status of the knowledge on the most crucial feasibility issue, the degradation of the resisivity under irradiation, is reviewed

  17. Li2O-pebble type tritium breeding blanket for fusion experimental reactor, 1

    Tone, Tatsuzo; Iida, Hiromasa; Tanaka, Yoshihisa

    1984-01-01

    The fusion experimental reactor is the next stage device in Japan, which is planned to be constructed following the critical plasma experimental device JT-60 being constructed at present. The breeding blanket installed in nuclear fusion reactors is one of most important structures, and it is required to satisfy the fundamental performance of producing and continuously recovering tritium as the nuclear fusion fuel, and other requirement in good coordination. The Li 2 O pebble type breeding blanket that Kawasaki Heavy Industries Ltd. has examined is the concept for resolving the problems of the mass transfer and thermal stress cracking of Li 2 O, which are important in blanket design. In this paper, the concept and characteristics of this breeding blanket are discussed from the viewpoint of the breeding and continuous recovery of tritium, the ease of manufacture and the maintenance of soundness. The breeding blanket is composed of breeding region, tritium purge region, cooling region, plasma stabilizing conductors and blanket container. Li 2 O is excellent in its tritium breeding performance and heat conductivity. The functions required for the breeding blanket, the fundamental structure, the examples of breeding blanket concept, the selection of breeding blanket concept, the characteristics of Li 2 O pebble type blanket and its future prospect are described. (Kako, I.)

  18. Neutronic performance issues of the breeding blanket options for the European DEMO fusion power plant

    Fischer, U., E-mail: ulrich.fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, C. [EUROfusion—Programme Management Unit, Boltzmannstr. 2, 85748 Garching (Germany); Jaboulay, J.-C. [CEA-Saclay, DEN, DM2S, SERMA, LPEC, 91191 Gif-sur-Yvette (France); Moro, F. [ENEA, Dipartimento Fusione e tecnologie per la Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Rome (Italy); Palermo, I. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Pereslavtsev, P. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Villari, R. [ENEA, Dipartimento Fusione e tecnologie per la Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Rome (Italy)

    2016-11-01

    Highlights: • Breeder blanket concepts for DEMO—design features. • Neutronic characteristics of breeder blankets. • Evaluation of Tritium breeding potential. • Evaluation of shielding performance. - Abstract: This paper presents nuclear performance issues of the HCPB, HCLL, DCLL and WCLL breeder blankets, which are under development within the PPPT (Power Plant Physics and Technology) programme of EUROfusion, with the objective to assess the potential and suitability of the blankets for the application to DEMO. The assessment is based on the initial design versions of the blankets developed in 2014. The Tritium breeding potential is considered sufficient for all breeder blankets although the initial design versions of the HCPB, HCLL and DCLL blankets were shown to require further design improvements. Suitable measures have been proposed and proven to be sufficient to achieve the required Tritium Breeding Ratio (TBR) ≥ 1.10. The shielding performance was shown to be sufficient to protect the super-conducting toroidal field coil provided that efficient shielding material mixtures including WC or borated water are utilized. The WCLL blanket does not require the use of such shielding materials due to a very compact blanket support structure/manifold configuration which yet requires design verification. The vacuum vessel can be safely operated over the full anticipated DEMO lifetime of 6 full power years for all blanket concepts considered.

  19. Analysis of ER string test thermally instrumented interconnect 80-K MLI blanket

    Daly, E.; Pletzer, R.

    1992-04-01

    An 80-K Multi Layer Insulation (MLI) blanket in the interconnect region between magnets DD0019 and DD0027 in the Fermi National Accelerator Laboratory (FNAL) ER string was instrumented with temperature sensors to obtain the steady-state temperature gradient through the blanket after string cooldown. A thermal model of the 80-K blanket assembly was constructed to analyze the steady-state temperature gradient data. Estimates of the heat flux through the 80-K MLI blanket assembly and predicted temperature gradients were calculated. The thermal behavior of the heavy polyethylene terapthalate (PET) cover layers separating the shield and inner blanket and inner and outer blankets was derived empirically from the data. The results of the analysis predict a heat flux of 0.363--0.453 W/m 2 based on the 11 sets of data. These flux values are 33--46% below the 80-K MLI blanket heat leak budget of 0.676 W/m 2 . The effective thermal resistance of the two heavy PET cover layers between the shield and inner blanket was found to be 2.1 times that of a single PET spacer layer, and the effective resistance of the two heavy PET cover layers between the inner blanket and outer blanket was found to be 7 times that of a single PET spacer layer. Based on these results, the 80-K MLI blanket assembly appears to be performing more than adequately to meet the 80-K static IR heat leak budget. However, these results should not be construed as a verification of the 80-K static IR heat leak, since no actual heat leak was measured. The results have been used to improve the empirically based model data in the 80-K MLI blanket thermal model, which has previously not included the effects of heavy PET cover layers on 80-K MLI blanket thermal performance

  20. Moving ring field-reversed mirror blanket design considerations

    Wong, C.P.C.; Cheng, E.T.; Creedon, L.; Kessel, C.; Norman, J.; Schultz, K.R.

    1981-01-01

    A blanket design for the Moving Ring Field-Reversed Mirror Reactor (MRFRM) is presented in this paper. The design emphasis is placed on minimizing the induced radioactivities in the first-wall, blanket and shield. To this end, aluminum-alloy was selected as the reference structural material, giving dose rates two weeks after shutdown that are 3 to 4 orders of magnitude lower than comparable steel structures. The aluminum first-wall is water-cooled and thermally insulated from the high temperature SiC-clad Li 2 O tritium breeding zone. A local tritium breeding ratio of 1.05 was obtained for the design. The tritium is extracted from the Li 2 O by the use of a small dry helium purge stream through the SiC tubes. About 1 ppM hydrogen is added to the helium purge stream to enhance the tritium recovery rate. Helium at 28 atmospheres pressure is circulated through the blanket and shield, with an outlet temperature of 850 0 C, which is coupled with an existing small size closed-cycle gas turbine (CCGT) power conversion system. The spatial and temporal variations of the first-wall temperature caused by the translational movement of the plasma rings along the axis of the cylindrical reactor were evaluated. The after-heat cooling problems of the first-wall were also considered

  1. Low cost, high yield IFE reactors: Revisiting Velikhov's vaporizing blankets

    Logan, B.G.

    1992-01-01

    The performance (efficiency and cost) of IFE reactors using MHD conversion is explored for target blanket shells of various materials vaporized and ionized by high fusion yields (5 to 500 GJ). A magnetized, prestressed reactor chamber concept is modeled together with previously developed models for the Compact Fusion Advanced Rankine II (CFARII) MHD Balance-of-Plant (BoP). Using conservative 1-D neutronics models, high fusion yields (20 to 80 GJ) are found necessary to heat Flibe, lithium, and lead-lithium blankets to MHD plasma temperatures, at initial solid thicknesses sufficient to capture most of the fusion yield. Advanced drivers/targets would need to be developed to achieve a ''Bang per Buck'' figure-of-merit approx-gt 20 to 40 joules yield per driver $ for this scheme to be competitive with these blanket materials. Alternatively, more realistic neutronics models and better materials such as lithium hydride may lower the minimum required yields substantially. The very low CFARII BoP costs (contributing only 3 mills/kWehr to CoE) allows this type of reactor, given sufficient advances that non-driver costs dominate, to ultimately produce electricity at a much lower cost than any current nuclear plant

  2. Comparison of inventory of tritium in various ceramic breeder blankets

    Nishikawa, M.; Beloglazov, S.; Nakashima, N.; Hashimoto, K.; Enoeda, M.

    2002-01-01

    It has been pointed out by the present authors that it is essential to understand such mass transfer steps as diffusion of tritium in the grain of breeder material, absorption of water vapor into bulk of the grain, and adsorption of water on surface of the grain, together with the isotope exchange reaction between hydrogen in purge gas and tritium on surface of breeder material and the isotope exchange reaction between water vapor in purge gas and tritium on surface, for estimation of the tritium inventory in a uniform ceramic breeder blanket under the steady-state condition. It has been also pointed out by the present authors that the water formation reaction on the surface of ceramic breeder materials at introduction of hydrogen can give effect on behavior of bred tritium and lithium transfer in blanket. The tritium inventory for various ceramic breeder blankets are compared in this study basing on adsorption capacity, absorption capacity, isotope exchange capacity, and isotope exchange reactions on the Li 2 O, LiAlO 2 , Li 2 ZrO 3 , Li 4 SiO 4 and Li 2 TiO 3 surface experimentally obtained by the present authors. Effect of each mass transfer steps on the shape of release curve of bred tritium at change of the operational conditions is also discussed from the observation at out pile experiment in KUR. (orig.)

  3. Space environment durability of beta cloth in LDEF thermal blankets

    Linton, Roger C.; Whitaker, Ann F.; Finckenor, Miria M.

    1993-01-01

    Beta cloth performance for use on long-term space vehicles such as Space Station Freedom (S.S. Freedom) requires resistance to the degrading effects of the space environment. The major issues are retention of thermal insulating properties through maintaining optical properties, preserving mechanical integrity, and generating minimal particulates for contamination-sensitive spacecraft surfaces and payloads. The longest in-flight test of beta cloth's durability was on the Long Duration Exposure Facility (LDEF), where it was exposed to the space environment for 68 months. The LDEF contained 57 experiments which further defined the space environment and its effects on spacecraft materials. It was deployed into low-Earth orbit (LEO) in Apr. 1984 and retrieved Jan. 1990 by the space shuttle. Among the 10,000 plus material constituents and samples onboard were thermal control blankets of multilayer insulation with a beta cloth outer cover and Velcro attachments. These blankets were exposed to hard vacuum, thermal cycling, charged particles, meteoroid/debris impacts, ultraviolet (UV) radiation, and atomic oxygen (AO). Of these space environmental exposure elements, AO appears to have had the greatest effect on the beta cloth. The beta cloth analyzed in this report came from the MSFC Experiment S1005 (Transverse Flat-Plate Heat Pipe) tray oriented approximately 22 deg from the leading edge vector of the LDEF satellite. The location of the tray on LDEF and the placement of the beta cloth thermal blankets are shown. The specific space environment exposure conditions for this material are listed.

  4. Effect of blanket assembly shuffling on LMR neutronic performance

    Khalil, H.; Fujita, E.K.

    1987-01-01

    Neutronic analyses of advanced liquid-metal reactors (LMRs) have generally been performed with assemblies in different batches scatter-loaded but not shuffled among the core lattice positions between cycles. While this refueling approach minimizes refueling time, significant improvements in thermal performance are believed to be achievable by blanket assembly shuffling. These improvements, attributable to mitigation of the early-life overcooling of the blankets, include reductions in peak clad temperatures and in the temperature gradients responsible for thermal striping. Here the authors summarize results of a study performed to: (1) assess whether the anticipated gains in thermal performance can be realized without sacrificing core neutronic performance, particularly the burnup reactivity swing rho/sub bu/, which determines the rod ejection worth; (2) determine the effect of various blanket shuffling operations on reactor performance; and (3) determine whether shuffling strategies developed for an equilibrium (plutonium-fueled) core can be applied during the transition from an initial uranium-fueled core as is being considered in the US advanced LMR program

  5. Investigation of aqueous slurries as fusion reactor blankets

    Schuller, M.J.

    1985-01-01

    Numerical and experimental studies were carried out to assess the feasibility of using an aqueous slurry, with lithium in its solid component, to meet the tritium breeding, cooling, and shielding requirements of a controlled thermonuclear reactor (CTR). The numerical studies were designed to demonstrate the theoretical ability of a conceptual slurry blanket to breed adequate tritium to sustain the CTR. The experimental studies were designed to show that the tritium retention characteristics of likely solid components for the slurry were conducive to adequate tritium recovery without the need for isotopic separation. The numerical portion of this work consisted in part of using ANISN, a one-dimensional finite difference neutron transport code, to model the neutronic performance of the slurry blanket concept. The parameters governing tritium production and retention in a slurry were computed and used to modify the results of the ANISN computer runs. The numerical work demonstrated that the slurry blanket was only marginally capable of breeding sufficient tritium without the aid of a neutron multiplying region. The experimental portion of this work consisted of several neutron irradiation experiments, which were designed to determine the retention abilities of LiF particles

  6. NOEL: a no-leak fusion blanket concept

    Powell, J.R.; Yu, W.S.; Fillo, J.A.; Horn, F.L.; Makowitz, H.

    1980-01-01

    Analysis and tests of a no-leak fusion blanket concept (NOEL-NO External Leak) are described. Coolant cannot leak into the plasma chamber even if large through-cracks develop in the first wall. Blanket modules contain a two-phase material, A, that is solid (several cm thick) on the inside of the module shell, and liquid in the interior. The solid layer is maintained by imbedded tubes carrying a coolant, B, below the freezing point of A. Most of the 14-MeV neutron energy is deposited as heat in the module interior. The thermal energy flow from the module interior to the shell keeps the interior liquid. Pressure on the liquid A interior is greater than the pressure on B, so that B cannot leak out if failures occur in coolant tubes. Liquid A cannot leak into the plasma chamber through first wall cracks because of the intervening frozen layer. The thermal hydraulics and neutronics of NOEL blankets have been investigated for various metallic (e.g., Li, Pb 2 , LiPb, Pb) and fused salt choices for material A

  7. Measurements relevant to simulating subcriticality in ADS facilities with blanket

    Titarenko, Yu. E.; Batyaev, V.F.; Borovlev, S.P.; Gladkikh, N.G.; Igumnov, M.M.; Legostaev, V.O.; Karpikhin, E.I.; Konev, V.N.; Kushnerev, Yu.T.; Popkov, V.N.; Ryazhsky, V.I.; Spiridonov, V.G.; Chernyavsky, E.V.; Shvedov, O.V.

    2009-10-01

    The work presents the results of determining the blanket subcriticality for a zero-power heavy water reactor MAKET at the Institute for Theoretical and Experimental Physics, Moscow. The blanket is hexagonal lattice made of 36 90%-enriched 235U fuel rods spaced 173mm apart. The subcriticality was varied from ∼0.3% to 5% by adjusting the heavy water level. The subcriticality values were calibrated using the dependence of reactivity on heavy water level. The pulsed neutron source technique was used to measure the temporal dependence of neutron field at different blanket points for the calibrated subcriticality values. The subciticality values obtained in terms of the 'inverse clock' formulae using the decay constants of the measured dependences proved to differ from the calibrated subcriticalities by not more than 7% at the average. The MCNP code-aided simulations of the experiment made has given the calibrated keff values at prescribed heavy water levels and led to the neutron field decay constants at given points, which differ on the average from their experimental values by not more than 7% too. (author)

  8. Mirror hybrid reactor blanket and power conversion system conceptual design

    Schultz, K.R.; Backus, G.A.; Baxi, C.B.; Dee, J.B.; Estrine, E.A.; Rao, R.; Veca, A.R.

    1976-01-01

    The conceptual design of the blanket and power conversion system for a gas-cooled mirror hybrid fusion-fission reactor is presented. The designs of the fuel, blanket module and power conversion system are based on existing gas-cooled fission reactor technology that has been developed at General Atomic Company. The uranium silicide fuel is contained in Inconel-clad rods and is cooled by helium gas. The fuel is contained in 16 spherical segment modules which surround the fusion plasma. The hot helium is used to raise steam for a conventional steam cycle turbine generator. The details of the method of support for the massive blanket modules and helium ducts remain to be determined. Nevertheless, the conceptual design appears to be technically feasible with existing gas-cooled technology. A preliminary safety analysis shows that with the development of a satisfactory method of primary coolant circuit containment and support, the hybrid reactor could be licensed under existing Nuclear Regulatory Commission regulations

  9. Corrosion characteristics of an aqueous self-cooled fusion blanket

    Bogaerts, W.F.; Embrechts, M.J.; Steiner, D.; Deutsch, L.; Jackson, D.

    1986-01-01

    A novel aqueous self-cooled blanket concept (ASCB) has recently been proposed. This blanket concept, as applied to a MARS-like tandem mirror reactor, consists of disks of spiraling tubes of Zircaloy-4 housed in a structural container of vanadium alloy (V-15 Ti-5 Cr). The Zircaloy tubes are cooled by a mixture of light and heavy water with 9 g of LiOH per 100 cm 3 of water dissolved in the coolant. A major issue for the feasibility of the integrated blanket coil concept is the chemical compatibility of the coolant and Zircaloy. Initial corrosion tests have been undertaken in order to resolve this question. Results clearly show that successful alloy heats can be prepared, for which corrosion problems will probably not be the limiting factor of the ASCB design concept. As is quite well known from fission engineering studies, small variations in the alloy compositions or in the metallurgical structure may, however, be able to cause significant alterations in the oxidation or corrosion rates. Further tests will be necessary to resolve the remaining uncertainties and to determine the behavior of successful alloy heats in the presence of trace impurities in order to address the sensitivity to localized corrosion phenomena such as pitting, stress corrosion cracking, and intergranular attack

  10. Method of operating water cooled reactor with blanket

    Suzuki, Katsuo.

    1988-01-01

    Purpose: To increase the production amount of fissionable plutonium by increasing the burnup degree of blanket fuels in a water cooled reactor with blanket. Method: Incore insertion assemblies comprising water elimination rods, fertile material rods or burnable poison rods are inserted to those fuel assemblies at the central portion of the reactor core that are situated at the positions not inserted with control rods in the earlier half of the operation cycle, while the incore reactor insertion assemblies are withdrawn at the latter half of the operation cycle of a nuclear reactor. As a result, it is possible to increase the power share of the blanket fuels and increase the fuel burnup degree to thereby increase the production amount of fissionable plutonium. Furthermore, at the initial stage of the cycle, the excess reactivity of the reactor can be suppressed to decrease the reactivity control share on the control rod. At the final stage of the cycle, the excess reactivity of the reactor core can be increased to improve the cycle life. (Kamimura, M.)

  11. DEMO relevance of the test blanket modules in ITER-Application to the European test blanket modules

    Magnani, E.; Gabriel, F.; Boccaccini, L.V.; Li-Puma, A.

    2010-01-01

    Test blanket module (TBM) testing programme in ITER as a support to DEMO design is a very important step on the road map to commercial fusion reactors although it is an ambitious task. Finding as much as possible DEMO relevant tests in view of the future DEMO blanket design is therefore a major goal since ITER and DEMO environment and loading conditions are different. To clarify and quantify the meaning of the DEMO relevance, criteria using a structural, functional and behavioural representation of the breeding blanket acting as a system are investigated. Then, a three-step strategy is proposed to carry out TBM DEMO relevant tests associated with a TBM design modification strategy. Key parameters should intensively be used as target for TBM characterization and numerical code validation. When assessing the relevance, on the other hand, not only the actual difference between DEMO and ITER values should be considered, but also whether the analyzed phenomena have a threshold and a range of applicability, as numerical simulations are usually permitted within these limits. The proposed methodology is at the end applied to the design of the HCLL TBM breeding unit configuration.

  12. Continuous fine pattern formation by screen-offset printing using a silicone blanket

    Nomura, Ken-ichi; Kusaka, Yasuyuki; Ushijima, Hirobumi; Nagase, Kazuro; Ikedo, Hiroaki; Mitsui, Ryosuke; Takahashi, Seiya; Nakajima, Shin-ichiro; Iwata, Shiro

    2014-09-01

    Screen-offset printing combines screen-printing on a silicone blanket with transference of the print from the blanket to a substrate. The blanket absorbs organic solvents in the ink, and therefore, the ink does not disperse through the material. This prevents blurring and allows fine patterns with widths of a few tens of micrometres to be produced. However, continuous printing deteriorates the pattern’s shape, which may be a result of decay in the absorption abilities of the blanket. Thus, we have developed a new technique for refreshing the blanket by substituting high-boiling-point solvents present on the blanket surface with low-boiling-point solvents. We analyse the efficacy of this technique, and demonstrate continuous fine pattern formation for 100 screen-offset printing processes.

  13. Continuous fine pattern formation by screen-offset printing using a silicone blanket

    Nomura, Ken-ichi; Kusaka, Yasuyuki; Ushijima, Hirobumi; Nagase, Kazuro; Ikedo, Hiroaki; Mitsui, Ryosuke; Takahashi, Seiya; Nakajima, Shin-ichiro; Iwata, Shiro

    2014-01-01

    Screen-offset printing combines screen-printing on a silicone blanket with transference of the print from the blanket to a substrate. The blanket absorbs organic solvents in the ink, and therefore, the ink does not disperse through the material. This prevents blurring and allows fine patterns with widths of a few tens of micrometres to be produced. However, continuous printing deteriorates the pattern’s shape, which may be a result of decay in the absorption abilities of the blanket. Thus, we have developed a new technique for refreshing the blanket by substituting high-boiling-point solvents present on the blanket surface with low-boiling-point solvents. We analyse the efficacy of this technique, and demonstrate continuous fine pattern formation for 100 screen-offset printing processes. (paper)

  14. Applications of the aqueous self-cooled blanket (ASCB) concept to the Next European Torus (NET)

    Embrechts, M.J.; Bogaerts, W.; Cardella, A.; Chazalon, M.; Danner, W.; Dinner, P.; Libin, B.

    1987-01-01

    The Aqueous Self-Cooled Blanket Concept (ASCB) leads to a low-technology blanket design that relies on just structural material and coolant with small amounts of lithium compound dissolved in the coolant to provide for tritium production. The application of the ASCB concept in NET is being considered as a driver blanket that would operate at low temperature and low pressure and provide a reliable environment for machine operation during the technology phase. Shielding and tritium production are the primary objectives for such a low-technology blanket. Net tritium breeding is not a design requirement per se for a driver blanket for NET. A DEMO relevant ASCB based blanket test module with (local) tritium self-sufficiency and energy recovery as primary objectives might also be tested in NET if future developments confirm their viability

  15. Reducing beryllium content in mixed bed solid-type breeder blankets

    Shimwell, J., E-mail: mail@jshimwell.com [Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Lilley, S.; Morgan, L.; Packer, L.; Kovari, M.; Zheng, S. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); McMillan, J. [Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2016-11-01

    Highlights: • The ratio of breeder ceramic to neutron multiplier of breeder blankets was varied linearly with depth. • Blankets with varying composition were found to perform better than uniform composition breeder blankets. • It was also possible to reduce the amount of beryllium required by the blanket. - Abstract: Beryllium (Be) is a precious resource with many high value uses, the low energy threshold (n,2n) reaction makes Be an excellent neutron multiplier for use in fusion breeder blankets. Estimates of Be requirements and available resources suggest that this could represent a major supply difficulty for solid-type blanket concepts. Reducing the quantity of Be required by breeder blankets would help to alleviate the problem to some extent. In addition, it is important that the reduction in the Be quantity does not diminish the blanket's performance in key aspects such as the tritium breeding ratio (TBR), energy multiplication and peak nuclear heating. Mixed pebble bed designs allow for the multiplier fraction to be varied throughout the blanket. This neutronics study used MCNP 6 to investigate linear variations of the multiplier fraction in relation to blanket depth, in order to better utilise the important multiplying Be(n,2n) and breeding reactions. Blankets with a uniform multiplier fraction showed little scope for reduction in Be mass. Blankets with varying multiplier fractions were able to simultaneously use 10% less Be, increase the energy amplification by 1%, reduce the peak heating by 7% and maintaining a sufficient TBR when compared to the performance achievable using a uniform composition.

  16. Structural design study of tritium breeding blanket with a lead layer as a neutron multiplier

    Iida, Hiromasa; Kitamura, Kazunori; Minato, Akio; Sakamoto, Hiroki; Yamamoto, Takashi

    1980-12-01

    Thermal and structural design study of a tritium breeding blanket with a lead layer for a International Tokamak Reactor (INTOR) is carried out. Tube in shell type blanket with a lead layer is found to be promising. The volume fraction of structural material in the lead layer can be small enough to keep the neutron multiplication effect of lead. Reasonable value of shell effect is attainable due to lead layer in the front part of the blanket. (author)

  17. Preliminary conceptual design of the blanket and power conversion system for the Mirror Hybrid Reactor

    Schultz, K.R.; Culver, D.W.; Rao, S.B.; Rao, S.R.

    1978-01-01

    A conceptual design of a commercial Mirror Hybrid Reactor, optimized for 239 Pu production, has been completed. This design is the product of a joint effort by Lawrence Livermore Laboratory and General Atomic Company, and follows directly from earlier work on the Mirror Hybrid. This paper describes the blanket and power conversion system of the reactor design. Included are descriptions of the prestressed concrete reactor vessel that supports the magnets and contains the blanket and power conversion system components, the blanket module design, the blanket fuel design, and the power conversion system

  18. A Feasible DEMO Blanket Concept Based on Water Cooled Solid Breeder

    Someya, Y.; Tobita, K.; Utoh, H.; Hoshino, K.; Asakura, N.; Nakamura, M.; Tanigawa, H.; Mikio, E.; Tanigawa, H.; Nakamichi, M.; Hoshino, T., E-mail: someya.yoji@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho (Japan)

    2012-09-15

    Full text: JAEA has conducted the conceptual design study of blanket for a fusion DEMO reactor SlimCS. Considering DEMO specific requirements, we place emphasis on a blanket concept with durability to severe irradiation, ease of fabrication for mass production, operation temperature of blanket materials, and maintainability using remote handling equipment. This paper present a promising concept satisfying these requirements, which is characterized by minimized welding lines near the front, a simplified blanket interior consisting of cooling tubes and a mixed pebble bed of breeder and neutron multiplier, and approximately the same outlet temperature for all blanket modules. Neutronics calculation indicated that the blanket satisfies a self-sufficient production of tritium. An important finding is that little decrease is seen in tritium breeding ratio even when the gap between neighboring blanket modules is as wide as 0.03 m. This means that blanket modules can be arranged with such a significant clearance gap without sacrifice of tritium production, which will facilitate the access of remote handling equipment for replacement of the blanket modules and improve the access of diagnostics. (author)

  19. Structural effects on fusion reactor blankets due to liquid metals in magnetic fields

    Lehner, J.R.; Reich, M.; Powell, J.R.

    1976-01-01

    The transient stress distribution caused in the blanket structure when the plasma current suddenly switches off in a time short compared to the L/R decay time of the liquid metal blanket was studied. Poloidal field of the plasma will induce a current to flow in the liquid metal and blanket walls. Since the resistance of the liquid lithium will be much less than that of the metal walls, the current can be considered as flowing around the blanket near the cross section perimeter, but in the lithium

  20. Conceptual study on high performance blanket in a spherical tokamak fusion-driven transmuter

    Chen Yixue; Wu Yican

    2000-01-01

    A preliminary conceptual design on high performance dual-cooled blanket of fusion-driven transmuter is presented based on neutronic calculation. The dual-cooled system has some attractive advantages when utilized in transmutation of HLW (High Level Wastes). The calculation results show that this kind of blanket could safely transmute about 6 ton minor actinides (produced by 170 GW(e) Year PWRs approximately) and 0.4 ton fission products per year, and output 12 GW thermal power. In addition, the variation of power and critical factor of this blanket is relatively little during its 1-year operation period. This blanket is also tritium self-sustainable

  1. Design and fabrication methods of FW/blanket and vessel for ITER-FEAT

    Ioki, K. E-mail: iokik@itereu.de; Barabash, V.; Cardella, A.; Elio, F.; Kalinin, G.; Miki, N.; Onozuka, M.; Osaki, T.; Rozov, V.; Sannazzaro, G.; Utin, Y.; Yamada, M.; Yoshimura, H

    2001-11-01

    Design has progressed on the vacuum vessel and FW/blanket for ITER-FEAT. The basic functions and structures are the same as for the 1998 ITER design. Detailed blanket module designs of the radially cooled shield block with flat separable FW panels have been developed. The ITER blanket R and D program covers different materials and fabrication methods in order make a final selection based on the results. Separate manifolds have been designed and analysed for the blanket cooling. The vessel design with flexible support housings has been improved to minimise the number of continuous poloidal ribs. Most of the R and D performed so far during EDA are still applicable.

  2. Design and fabrication methods of FW/blanket and vessel for ITER-FEAT

    Ioki, K.; Barabash, V.; Cardella, A.; Elio, F.; Kalinin, G.; Miki, N.; Onozuka, M.; Osaki, T.; Rozov, V.; Sannazzaro, G.; Utin, Y.; Yamada, M.; Yoshimura, H.

    2001-01-01

    Design has progressed on the vacuum vessel and FW/blanket for ITER-FEAT. The basic functions and structures are the same as for the 1998 ITER design. Detailed blanket module designs of the radially cooled shield block with flat separable FW panels have been developed. The ITER blanket R and D program covers different materials and fabrication methods in order make a final selection based on the results. Separate manifolds have been designed and analysed for the blanket cooling. The vessel design with flexible support housings has been improved to minimise the number of continuous poloidal ribs. Most of the R and D performed so far during EDA are still applicable

  3. Breeding blanket design for ITER and prototype (DEMO) fusion reactors and breeding materials issues

    Takatsu, H; Enoeda, M [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-03-01

    Current status of the designs of the ITER breeding blanket and DEMO blankets is introduced placing emphasis on the breeding materials selection and related issues. The former design is based on the up-to-date design activities, as of October 1997, being performed jointly by Joint Central Team (JCT) and Home Teams (HT`s), while the latter is based on the DEMO blanket test module designs being proposed by each Party at the TBWG (Test Blanket Working Group) meetings. (J.P.N.)

  4. Calculations of tritium breeding ratio and inventory distributions of FEB blanket

    Deng Baiquan

    2001-01-01

    Based on the design features of FEB reactor blanket, the tritium breeding ratio and tritium concentrations in liquid lithium of each breeding zone have been calculated after 10 days full power operation for outboard blanket and one day operation for inboard blanket. The comparisons with the results calculated by Monte-Carlo code MORSE-CGT are made. Meanwhile the inventory in beryllium multiplier after one-year full power operation has also been estimated. An important conclusion has been drew the thermal hydraulic design should be careful to guarantee the blanket temperature should not rise as high as 680 degree C

  5. Pebble bed blanket design for deuterium burning tandem mirror reactors

    Grotz, S.P.; Dhir, V.K.

    1983-01-01

    The UCLA tandem mirror reactor, SATYR, was developed around the capability of tandem mirrors with thermal barriers to burn deuterium at reasonable efficiency levels. The pebble bed concept has been incorporated into our blanket design for the following reasons: 1) Large area-to-volume ratio for purposes of heat removal; 2) Large volume of structure for high thermal capacity thus increasing the safety margin during off-normal incidents; 3) Relatively inexpensive manufacturing costs because of large acceptable tolerances and lack of exotic materials (i.e., lithium). A simplified stress analysis of the blanket module was performed to optimize and simplify the design. The pre-specified stress intensity limitations used were based upon a 30-year predicted lifetime for each module. Along with stress analysis of the vessel a detailed thermal hydraulic analysis of the pebble bed has been completed. Parameters affecting the pebble bed design are fluidization velocity, pressure drop, heat transfer coefficient, thermally induced stress in the spheres and spatial variation of the power density. Although reasonable gross thermal efficiencies of the 2 designs has been achieved (28% for H 2 O and 39% for He) the high net recirculating power fraction for heating and neutral beams results in relatively low net plant efficiencies (21% and 27%). The results show that a blanket can be designed with good thermal efficiency and a relative-ly simple configuration. However, application of this concept to the high Q deuterium-tritium fuel cycle would have difficulties resulting from the need for continuous removal of the tritium. (orig./HP)

  6. Tritium inventory and permeation in the ITER breeding blanket

    Violante, V.; Tosti, S.; Sibilia, C.; Felli, F.; Casadio, S.; Alvani, C.

    2000-01-01

    A model has allowed us to perform the analysis of the tritium inventory and permeation in the international thermonuclear experimental reactor (ITER) breeding blanket under the hypothesis of steady state conditions. Li 2 ZrO 3 (reference) and Li 2 TiO 3 (alternative) have been studied as breeding materials. The total breeder inventory assessed is 7.64 g for the Li 2 ZrO 3 at reference temperature. The model has also been used for a parametric analysis of the tritium permeation. At reference temperature and purge helium velocity of 0.01 m/s, the HT partial pressure is ranging from 10 to 30 Pa in the breeder and 1.5x10 -3 Pa in the beryllium. At 0.1 m/s of purge helium velocity, the HT partial pressure is reduced of one order by magnitude in the breeder and becomes 5x10 -5 Pa in the beryllium. The tritium permeation into the coolant for the whole blanket is ranging from 100 to 250 mCi per day for purge helium velocity of 0.01 m/s. The analysis of the tritium inventory and permeation for the alternative Li 2 TiO 3 breeding material has been carried out too. The tritium inventory in the breeder is in the range from 6 to 375 g larger than in Li 2 ZrO 3 by about a factor 5; the tritium permeation into coolant is comparable to the Li 2 ZrO 3 one. This analysis provides indications on the influence of the operating parameters on the tritium control in the ITER breeding blanket; particularly the control of the tritium inventory by the temperature and the tritium permeation by the purge gas velocity

  7. The current status of fusion reactor blanket thermodynamics

    Veleckis, E.; Yonco, R.M.; Maroni, V.A.

    1980-01-01

    The available thermodynamic information is reviewed for three categories of materials that meet essential criteria for use as breeding blankets in D-T fuelled fusion reactors: liquid lithium, solid lithium alloys, and lithium-containing ceramics. The leading candidate, liquid lithium, which also has potential for use as a coolant, has been studied more extensively than have the solid alloys or ceramics. Recent studies of liquid lithium have concentrated on its sorption characteristics for hydrogen isotopes and its interaction with common impurity elements. Hydrogen isotope sorption data (P-C-T relations, activity coefficients, Sieverts' constants, plateau pressures, isotope effects, free energies of formation, phase boundaries, etc.) are presented in a tabular form that can be conveniently used to extract thermodynamic information for the α-phases of the Li-LiH, Li-LiD and Li-LiT systems and to construct complete phase diagrams. Recent solubility data for Li 3 N, Li 2 O, and Li 2 C 2 in liquid lithium are discussed with emphasis on the prospects for removing these species by cold-trapping methods. Current studies on the sorption of hydrogen in solid lithium alloys (e.g. Li-Al and Li-Pb), made using a new technique (the hydrogen titration method), have shown that these alloys should lead to smaller blanket-tritium inventories than are attainable with liquid lithium and that the P-C-T relationships for hydrogen in Li-M alloys can be estimated from lithium activity data for these alloys. There is essentially no refined thermodynamic information on the prospective ceramic blanket materials. The kinetics of tritium release from these materials is briefly discussed. Research areas are pointed out where additional thermodynamic information is needed for all three material categories. (author)

  8. Detailed 3-D nuclear analysis of ITER outboard blanket modules

    Bohm, Tim; Davis, Andrew; Sawan, Mohamed; Marriott, Edward; Wilson, Paul; Ulrickson, Michael; Bullock, James

    2015-01-01

    Highlights: • Nuclear analysis was performed on detailed CAD models placed in a 40 degree model of ITER. • The regions examined include BM09, the upper ELM coil region (BM11–13), the neutral beam (NB) region (BM13–16), and BM18. • The results show that VV nuclear heating exceeds limits in the NB and upper ELM coil regions. • The results also show that the level of He production in parts of BM18 exceeds limits. • These calculations are being used to modify the design of the ITER blanket modules. - Abstract: In the ITER design, the blanket modules (BM) provide thermal and nuclear shielding for the vacuum vessel (VV), magnets, and other components. We used the CAD based DAG-MCNP5 transport code to analyze detailed models inserted into a 40 degree partially homogenized ITER global model. The regions analyzed include BM09, BM16 near the heating neutral beam injection (HNB) region, BM11–13 near the upper ELM coil region, and BM18. For the BM16 HNB region, the VV nuclear heating behind the NB region exceeds the design limit by up to 80%. For the BM11–13 region, the nuclear heating of the VV exceeds the design limit by up to 45%. For BM18, the results show that He production does not meet the limit necessary for re-welding. The results presented in this work are being used by the ITER Organization Blanket and Tokamak Integration groups to modify the BM design in the cases where limits are exceeded.

  9. Detailed 3-D nuclear analysis of ITER outboard blanket modules

    Bohm, Tim, E-mail: tdbohm@wisc.edu [Fusion Technology Institute, University of Wisconsin-Madison, Madison, WI (United States); Davis, Andrew; Sawan, Mohamed; Marriott, Edward; Wilson, Paul [Fusion Technology Institute, University of Wisconsin-Madison, Madison, WI (United States); Ulrickson, Michael; Bullock, James [Formerly, Fusion Technology, Sandia National Laboratories, Albuquerque, NM (United States)

    2015-10-15

    Highlights: • Nuclear analysis was performed on detailed CAD models placed in a 40 degree model of ITER. • The regions examined include BM09, the upper ELM coil region (BM11–13), the neutral beam (NB) region (BM13–16), and BM18. • The results show that VV nuclear heating exceeds limits in the NB and upper ELM coil regions. • The results also show that the level of He production in parts of BM18 exceeds limits. • These calculations are being used to modify the design of the ITER blanket modules. - Abstract: In the ITER design, the blanket modules (BM) provide thermal and nuclear shielding for the vacuum vessel (VV), magnets, and other components. We used the CAD based DAG-MCNP5 transport code to analyze detailed models inserted into a 40 degree partially homogenized ITER global model. The regions analyzed include BM09, BM16 near the heating neutral beam injection (HNB) region, BM11–13 near the upper ELM coil region, and BM18. For the BM16 HNB region, the VV nuclear heating behind the NB region exceeds the design limit by up to 80%. For the BM11–13 region, the nuclear heating of the VV exceeds the design limit by up to 45%. For BM18, the results show that He production does not meet the limit necessary for re-welding. The results presented in this work are being used by the ITER Organization Blanket and Tokamak Integration groups to modify the BM design in the cases where limits are exceeded.

  10. First wall fusion blanket temperature variation - slab geometry

    Fillo, J.A.

    1978-01-01

    The first wall of a fusion blanket is approximated by a slab, with the surface facing the plasma subjected to an applied heat flux, while the rear surface is convectively cooled. The relevant parameters affecting the heat transfer during the early phases of heating as well as for large times are established. Analytical solutions for the temperature variation with time and space are derived. Numerical calculations for an aluminum and stainless steel slab are performed for a wall loading of 1 MW(th)/m 2 . Both helium and water cooling are considered. (Auth.)

  11. Accelerator-driven molten-salt blankets: Physics issues

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Durkee, J.W.; Perry, R.T.; Poston, D.I.

    1994-01-01

    A number of nuclear physics issues concerning the Los Alamos molten-salt, accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external, moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m 3 per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics

  12. Thermalhydraulics of flowing particle-bed-type fusion reactor blankets

    Nietert, R.E.; Abdelk-Khalik, S.I.

    1982-01-01

    An experimental investigation has been conducted to determine the heat transfer characteristics of gravity-flowing particle beds using a special heat transfer loop. Glass microspheres were allowed to flow by gravity at controlled rates through an electrically heated stainless steel tubular test section. Values of the local and average convective heat transfer coefficient as a function of the average bed velocity, particle size and heat flux were determined. Such information is necessary for the design of gravity-flowing particle-bed type fusion reactor-blankets and associated tritium recovery systems. (orig.)

  13. Reddening and blanketing of RR-Lyrae stars, ch. 3

    Lub, J.

    1977-01-01

    The effects of metal line blanketing and interstellar reddening upon the colours of the RR-Lyrae Stars are discussed. Due to the faintness of these stars in the ultraviolet W channel (at lambda 3720 A) the photometry is in most cases reduced to a four-colour VBLU photometry, i.e. there are only three colour indices available for the determination of the four quantities: interstellar reddening, effective temperature, atmospheric pressure (or effective gravity), and metal line strength which determine the energy distribution that was measured

  14. Accelerator-driven molten-salt blankets: Physics issues

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Durkee, J.W.; Perry, R.T.; Poston, D.I.

    1994-01-01

    A number of nuclear physics issues concerning the Los Alamos molten-salt accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m 3 per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics

  15. Conception of divertorless tokamak reactor with turbulent plasma blanket

    Nedospasov, A.V.; Tokar, M.Z.

    1980-01-01

    The results of the calculations presented here demonstrate that, with technically reasonable degree of the magnetic field stochastisation, the turbulent plasma blanket can take the place of a divertor. It performs the three main functions of the divertor: (a) the exhaust of the helium and unburned fuel; (b) weakening of the fast particle flux to the wall surface; and (c) essential reduction of the impurity content in the active zone of the reactor. Taking into account that plasma flows to the first wall along field lines, we may figuratively say that the first wall plays the role of a divertor in our conception. (orig.)

  16. Magnetohydrodynamic research in fusion blanket engineering and metallurgical processing

    Tokuhiro, A.

    1991-11-01

    A review of recent research activities in liquid metal magnetohydrodynamics (LM-MHDs) is presented in this article. Two major reserach areas are discussed. The first topic involves the thermomechanical design issues in a proposed tokamak fusion reactor. The primary concerns are in the magneto-thermal-hydraulic performance of a self-cooled liquid metal blanket. The second topic involves the application of MHD in material processing in the metallurgical and semiconductor industries. The two representative applications are electromagnetic stirring (EMS) of continuously cast steel and the Czochralski (CZ) method of crystal growth in the presence of a magnetic field. (author) 24 figs., 10 tabs., 136 refs

  17. Thermal and mechanical design of WITAMIR-I blanket

    Sze, D.K.; Sviatoslavsky, I.N.

    1980-10-01

    The design philosophy of WITAMIR-I, a Wisconsin Tandem Mirror Reactor design study, uses the experience obtained from our previous tokamak studies and combines it with the unique features of the tandem mirror to obtain an attractive design of a TM power reactor. It is aimed at maximizing the strengths of the tandem mirror while mitigating its weaknesses. The end product should be a safe, reliable, maintainable and a relatively economic power reactor. The general description of the reactor, the plasma calculations, the magnet design, the neutronic calculations and the maintenance considerations are presented elsewhere. This paper presents the blanket design of this reactor study

  18. Sensitivity and uncertainty analysis of NET/ITER shielding blankets

    Hogenbirk, A.; Gruppelaar, H.; Verschuur, K.A.

    1990-09-01

    Results are presented of sensitivity and uncertainty calculations based upon the European fusion file (EFF-1). The effect of uncertainties in Fe, Cr and Ni cross sections on the nuclear heating in the coils of a NET/ITER shielding blanket has been studied. The analysis has been performed for the total cross section as well as partial cross sections. The correct expression for the sensitivity profile was used, including the gain term. The resulting uncertainty in the nuclear heating lies between 10 and 20 per cent. (author). 18 refs.; 2 figs.; 2 tabs

  19. Evaluation of the activity levels in fusion reactor blankets

    Gruber, J.

    1977-05-01

    The activation of a fusion reactor blanket (316 SS or V-10Cr-10Ti as structure) with a minimum lithium inventory has been calculated for 0.83 MW/m 2 wall load. The resulting radiation levels and waste problems are discussed. The dose rate near the steel structure will always be higher than 0.1 rem/h due to its niobium content. After 200 to 100,000 years of decay the potential biological hazard originating from this high level fusion reactor waste (with plutonium recyclation). (orig.) [de

  20. Optimization of seed-blanket type fuel assembly for reduced-moderation water reactor

    Shelley, Afroza; Shimada, Shoichiro; Kugo, Teruhiko; Okubo, Tsutomu E-mail: okubo@hems.jaeri.go.jp; Iwamura, Takamichi

    2003-10-01

    Parametric studies have been performed for a PWR-type reduced-moderation water reactor (RMWR) with the seed-blanket type fuel assembles to achieve a high conversion ratio, negative void reactivity coefficient and a high burnup by using MOX fuel. From the viewpoint of reactor safety analysis, the fuel temperature coefficients were also studied. From the result of the burnup calculation, it has been seen that ratio of 40-50% of outer blanket in a seed-blanket assembly gives higher conversion ratio compared to the other combination of seed-blanket assembly. And the recommended number of (seed+blanket) layers is 20, in which the number of seed (S) layers is 15 (S15) and blanket (B) layers is 5 (B5). It was found that the conversion ratio of seed-blanket assembly decreases, when they are arranged looks like a flower shape (Hanagara). By the optimization of different parameters, S15B5 fuel assembly with the height of seed of 1000 mmx2, internal blanket of 150 mm and axial blanket of 400 mmx2 is recommended for a reactor of high conversion ratio. In this assembly, the gap of seed fuel rod is 1.0 mm and blanket fuel rod is 0.4 mm. In S15B5 assembly, the conversion ratio is 1.0 and the burnup is 38.18 GWd/t in (seed+internal blanket+outer blanket) region. However, the burnup is 57.45 GWd/t in (seed+internal blanket) region. The cycle length of the core is 16.46 effective full power in month (EFPM) by six batches and the enrichment of fissile Pu is 14.64 wt.%. The void coefficient is +21.82 pcm/%void, however, it is expected that the void coefficient will be negative if the radial neutron leakage is taken into account in the calculation. It is also possible to use S15B5 fuel assembly as a high burnup reactor 45 GWd/t in (seed+internal blanket+outer blanket) region, however, it is necessary to decrease the height of seed to 500 mmx2 to improve the void coefficient. In this reactor, the conversion ratio is 0.97 and void coefficient is +20.81 pcm/%void. The fuel temperature

  1. Design of self-cooled, liquid-metal blankets for tokamak and tandem mirror reactors

    Cha, Y.S.; Gohar, Y.; Hassanein, A.M.; Majumdar, S.; Picologlou, B.F.; Smith, D.L.; Szo, D.K.

    1985-01-01

    Results of the self-cooled, liquid-metal blanket design from the Blanket Comparison and Selection Study (BCSS) are summarized. The objectives of the BCSS project are to define a small number (about three) of blanket concepts that should be the focus of the blanket research and development (RandD) program, identify and prioritize the critical issues for the leading blanket concepts, and provide technical input necessary to develop a blanket RandD program plan. Two liquid metals (lithium and lithium-lead (17Li-83Pb)) and three structural materials (primary candidate alloy (PCA), ferritic steel (FS) (HT-9), and vanadium alloy (V-15 Cr-5 Ti)) are included in the evaluations for both tokamaks and tandem mirror reactors (TMRs). TMR is of the tube configuration similar to the Mirror Advanced Reactor Study design. Analyses were performed in the following generic areas for each blanket concept: MHD, thermal hydraulics, stress, neutronics, and tritium recovery. Integral analyses were performed to determine the design window for each blanket design. The Li/Li/V blanket for tokamak and the Li/Li/V, LiPb/LiPb/V, and Li/Li/HT-9 blankets for the TMR are judged to be top-rated concepts. Because of its better thermophysical properties and more uniform nuclear heating profile, liquid lithium is a better coolant than liquid 17Li83Pb. From an engineering point of view, vanadium alloy is a better structural material than either FS or PCA since the former has both a higher allowable structural temperature and a higher allowable coolant/structure interface temperature than the latter. Critical feasibility issues and design constraints for the self-cooled, liquid-metal blanket concepts are identified and discussed

  2. Comparative analysis of a fusion reactor blanket in cylindrical and toroidal geometry using Monte Carlo

    Chapin, D.L.

    1976-03-01

    Differences in neutron fluxes and nuclear reaction rates in a noncircular fusion reactor blanket when analyzed in cylindrical and toroidal geometry are studied using Monte Carlo. The investigation consists of three phases--a one-dimensional calculation using a circular approximation to a hexagonal shaped blanket; a two-dimensional calculation of a hexagonal blanket in an infinite cylinder; and a three-dimensional calculation of the blanket in tori of aspect ratios 3 and 5. The total blanket reaction rate in the two-dimensional model is found to be in good agreement with the circular model. The toroidal calculations reveal large variations in reaction rates at different blanket locations as compared to the hexagonal cylinder model, although the total reaction rate is nearly the same for both models. It is shown that the local perturbations in the toroidal blanket are due mainly to volumetric effects, and can be predicted by modifying the results of the infinite cylinder calculation by simple volume factors dependent on the blanket location and the torus major radius

  3. Annual report of the CTR Blanket Engineering research facility in 1996

    1998-02-01

    This is an annual report of the studies on Controlled Thermo-nuclear Reactor (CTR) Blanket Engineering which have been carried out in the Faculty of Engineering, the University of Tokyo, in FY 1996. This research facility on the CTR Blanket Engineering is located in the Nuclear Engineering Research Laboratory, the Tokai-mura branch of the Faculty of Engineering. (J.P.N.)

  4. Conceptual design of an electricity generating tritium breeding blanket sector for INTOR/NET

    Bond, A.

    1984-01-01

    A study is made of a fusion reactor power blanket and its associated equipment with the objective of producing a conceptual design for a blanket sector of INTOR, or one of its national variants (e.g. NET), from which electricity could be generated simultaneously with the breeding of tritium. (author)

  5. 75 FR 46911 - Certain Woven Electric Blankets from the People's Republic of China: Amended Final Determination...

    2010-08-04

    ... Blankets from the People's Republic of China: Amended Final Determination of Sales at Less Than Fair Value... than fair value (``LTFV'') in the antidumping investigation of certain woven electric blankets (``woven... From the People's Republic of China: Final Determination of Sales at Less Than Fair Value, 75 FR 38459...

  6. Annual report of the CTR Blanket Engineering research facility in 1992

    1993-08-01

    This is an annual report of the studies on Controlled Thermo-nuclear Reactor (CTR) Blanket Engineering which have been carried out in the Faculty of Engineering, the University of Tokyo, in FY 1992. This research facility on the CTR Blanket Engineering is located in the Nuclear Engineering Research Laboratory, the Tokai-mura branch of the Faculty of Engineering. (J.P.N.)

  7. Annual report of the CTR Blanket Engineering research facility in 1994

    1995-09-01

    This is an annual report of the studies on Controlled Thermo-nuclear Reactor(CTR) Blanket Engineering which have been carried out in the Faculty of Engineering, the University of Tokyo, in FY 1994. This research facility on the CTR Blanket Engineering is located in the Nuclear Engineering Research Laboratory, the Tokai-mura branch of the Faculty of Engineering. (author)

  8. 77 FR 76013 - Sempra LNG Marketing, LLC; Application for Blanket Authorization To Export Previously Imported...

    2012-12-26

    ... marketing supplies of LNG. Sempra is a customer of the Cameron Terminal. On June 22, 2012, FE issued DOE/FE... DEPARTMENT OF ENERGY [FE Docket No. 12-155-LNG] Sempra LNG Marketing, LLC; Application for Blanket..., by Sempra LNG Marketing, LLC (Sempra LNG Marketing), requesting blanket authorization to export...

  9. 78 FR 4400 - Eni USA Gas Marketing LLC; Application for Blanket Authorization To Export Previously Imported...

    2013-01-22

    ... in the business of purchasing and marketing supplies of LNG, and is a customer of the Cameron... DEPARTMENT OF ENERGY [FE Docket No. 12-161-LNG] Eni USA Gas Marketing LLC; Application for Blanket..., by Eni USA Gas Marketing LLC (Eni USA Gas Marketing), requesting blanket authorization to export...

  10. Annual report of the CTR blanket engineering research facility in 1993

    1994-08-01

    This is an annual report of the studies on Controlled Thermo-nuclear Reactor (CTR) Blanket Engineering which have been carried out in the Faculty of Engineering, the University of Tokyo, in FY 1993. This research facility on the CTR Blanket Engineering is located in the Nuclear Engineering Research Laboratory, the Tokai-mura branch of the Faculty of Engineering. (author)

  11. Heat-pipe liquid-pool-blanket concept for the Tandem Mirror Reactor

    Hoffman, M.A.; Werner, R.W.; Johnson, G.L.

    1981-01-01

    The blanket concept for the tandem mirror reactor described in this paper was developed to produce the medium temperature heat (approx. 850 to 950 K) for the General Atomic sulfur-iodine thermochemical process for producing hydrogen. This medium temperature heat from the blanket constitutes about 81% of the total power output of the fusion reactor

  12. 77 FR 31004 - Southern Natural Gas Company; Notice of Request Under Blanket Authorization

    2012-05-24

    ... Natural Gas Company; Notice of Request Under Blanket Authorization Take notice that on May 9, 2012, Southern Natural Gas Company (Southern), 569 Brookwood Village, Suite 501, Birmingham, Alabama 35209, filed... Commission's regulations under the Natural Gas Act (NGA), and Southern's blanket certificate issued in Docket...

  13. Effect of reactor size on the breeding economics of LMFBR blankets

    Tagishi, A.; Driscoll, M.J.

    1975-02-01

    The effect of reactor size on the neutronic and economic performance of LMFBR blankets driven by radially-power-flattened cores has been investigated using both simple models and state-of-the-art computer methods. Reactor power ratings in the range 250 to 3000 MW(e) were considered. Correlations for economic breakeven and optimum irradiation times and blanket thicknesses have been developed for batch-irradiated blankets. It is shown that a given distance from the core-blanket interface the fissile buildup rate per unit volume remains very nearly constant in the radial blanket as (radially-power-flattened, constant-height) core size increases. As a consequence, annual revenue per blanket assembly, and breakeven and optimum irradiation times and optimum blanket dimensions, are the same for all reactor sizes. It is also shown that the peripheral core fissile enrichment, hence neutron leakage spectra, of the (radially-power-flattened, constant-height) cores remains essentially constant as core size increases. Coupled with the preceding observations, this insures that radial blanket breeding performance in demonstration-size LMFBR units will be a good measure of that in much larger commercial LMFBR's

  14. Design study of blanket structure based on a water-cooled solid breeder for DEMO

    Someya, Youji; Tobita, Kenji; Utoh, Hiroyasu; Tokunaga, Shinji; Hoshino, Kazuo; Asakura, Nobuyuki; Nakamura, Makoto; Sakamoto, Yoshiteru

    2015-10-15

    Highlights: • Neutronics design of a water-cooled solid mixed breeder blanket was presented. • The blanket concept achieves a self-sufficient supply of tritium by neutronics analysis. • The overall outlet coolant temperature was 321 °C, which is in the acceptable range. - Abstract: Blanket concept with a simplified interior for mass production has been developed using a mixed bed of Li{sub 2}TiO{sub 3} and Be{sub 12}Ti pebbles, coolant conditions of 15.5 MPa and 290–325 °C and cooling pipes without any partitions. Considering the continuity with the ITER test blanket module option of Japan and the engineering feasibility in its fabrication, our design study focused on a water-cooled solid breeding blanket using the mixed pebbles bed. Herein, we propose blanket segmentation corresponding to the shape and dimension of the blanket and routing of the coolant flow. Moreover, we estimate the overall tritium breeding ratio (TBR) with a torus configuration, based on the segmentation using three-dimensional (3D) Monte Carlo N-particle calculations. As a result, the overall TBR is 1.15. Our 3D neutronics analysis for TBR ensures that the blanket concept can achieve a self-sufficient supply of tritium.

  15. Potential and problems of an aqueous lithium salt solution blanket for NET

    Kuechle, M.; Bojarsky, E.; Dorner, S.; Fischer, U.; Reimann, J.; Reiser, H.

    1987-07-01

    The report describes design studies on a water cooled in-vessel shield blanket for NET and its modification into an aqueous lithium salt blanket. The shield blankets are exchangable against breeding blankets and fulfill their shielding and heat removal functions. Emphasis is on simplicity and reliability. The water cooled shield is a large steel container in the shape of the blanket segment which is filled by water and containes a grid structure of poloidally arranged steel plates. The water flows several times in poloidal direction through the channels formed by the steel plates and is thereby heated up from 40degC to 70degC. When the water is replaced by an aqueous lithium salt solution the shield can be converted into a tritium breeding blanket without any design modification or invessel component replacement. When compared with other concepts this blanket has the advantage that the solution can replace water cooling also in the divertor and in segments dedicated to plasma heating and diagnostics, what increases the coverage considerably. Extensive three-dimensional neutronics calculations were done which, together with literature studies on candidate materials, corrosion, and tritium recovery led to a first assessment of the concept. There is an indication that no major corrosion problems are to be expected in the low temperature region envisaged. Tritium recovery capital costs were estimated to be in the 20 MECU to 50 MECU range and tritium breeding ratio is comparable to the best breeding blanket. (orig./GG) [de

  16. 18 CFR 284.284 - Blanket certificates for unbundled sales services.

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Blanket certificates for unbundled sales services. 284.284 Section 284.284 Conservation of Power and Water Resources... Sales by Interstate Pipelines § 284.284 Blanket certificates for unbundled sales services. (a...

  17. Rotating liquid blanket for a toroidal fusion reator

    Moir, R.W.

    1987-01-01

    A novel blanket concept is presented for toroidal geometry in which many of the limitations imposed by a first wall are avoided by not having a first wall in the usual sense. The blanket consists of a rapidly rotating, low-vapor-pressure liquid that has a sharp boundary with the vacuum region. Nozzles inject ja continuous layer of cool liquid on the inner surface. The noncentricity of the plasma is maintained so that the plasma scrape-off region intersects the rotating liqid in a localized region. This noncentricity allows sufficient space so that the scrape-off plasma layer will not bombard the nozzles, whch penetrate through the rotating liquid. This liquid ''first wall'' is bombarded by the plasma, resulting in heat deposition, sputtering, and evaporation during the short time before the exposed liquid is covered by fresh, cool liquid from the nozzles. The advantages of this reactor concept appear to be very high wall loadings (speculated to be over 10 MW/m 2 ) and long component lifetime, both crucial economic factors. The nozzles are designed for easy replacement. The reactor's disatvantage is its enormous potential for plasma contamination by impurities. (orig.)

  18. Performance of silvered Teflon (trademark) thermal control blankets on spacecraft

    Pippin, Gary; Stuckey, Wayne; Hemminger, Carol

    1993-01-01

    Silverized Teflon (Ag/FEP) is a widely used passive thermal control material for space applications. The material has a very low alpha/e ratio (less than 0.1) for low operating temperatures and is fabricated with various FEP thicknesses (as the Teflon thickness increases, the emittance increases). It is low outgassing and, because of its flexibility, can be applied around complex, curved shapes. Ag/FEP has achieved multiyear lifetimes under a variety of exposure conditions. This has been demonstrated by the Long Duration Exposure Facility (LDEF), Solar Max, Spacecraft Charging at High Altitudes (SCATHA), and other flight experiments. Ag/FEP material has been held in place on spacecraft by a variety of methods: mechanical clamping, direct adhesive bonding of tapes and sheets, and by Velcro(TM) tape adhesively bonded to back surfaces. On LDEF, for example, 5-mil blankets held by Velcro(TM) and clamping were used for thermal control over 3- by 4-ft areas on each of 17 trays. Adhesively bonded 2- and 5-mil sheets were used on other LDEF experiments, both for thermal control and as tape to hold other thermal control blankets in place. Performance data over extended time periods are available from a number of flights. The observed effects on optical properties, mechanical properties, and surface chemistry will be summarized in this paper. This leads to a discussion of performance life estimates and other design lessons for Ag/FEP thermal control material.

  19. Strategy for the development of EU Test Blanket Systems instrumentation

    Calderoni, P., E-mail: Pattrick.Calderoni@f4e.europa.eu; Ricapito, I.; Poitevin, Y.

    2013-10-15

    Highlights: • We developed a strategy for the development of instrumentation for EU ITER TBSs. • TBSs instrumentation functions: safety, operation and scientific mission. • Described activities are in support of ITER design review process. -- Abstract: The instrumentation of the HCLL and HCPB Test Blanket System is fundamental in ensuring that ITER safety and operational requirements are satisfied as well as in enabling the scientific mission of the TBM program. It carries out three essential functions: (i) safety, intended as compliance with ITER requirements toward public and workers protection; (ii) system control, intended as compliance with ITER operational requirements and investment protection; and (iii) scientific mission, intended as validating technology and predictive tools for blanket concepts relevant to fusion energy systems. This paper describes the strategy for instrumentation development by providing details of the following five steps to be implemented in procured activities in the short to mid-term (3–4 years): (i) provide mapping of sensors requirements based on critical review of preliminary design data; (ii) develop functional specifications for TBS sensors based on the analysis of operative conditions in the various ITER buildings in which they are located; (iii) assess availability of commercial sensors against developed specifications; (iv) develop prototypes when no available solution is identified; and (v) perform single effect tests for the most critical solicitations and post-test examination of commercial products and prototypes. Examples of technology assessment in two technical areas are included to reinforce and complement the strategy description.

  20. Uranium self-shielding in fast reactor blankets

    Kadiroglu, O.K.; Driscoll, M.J.

    1976-03-01

    The effects of heterogeneity on resonance self-shielding are examined with particular emphasis on the blanket region of the fast breeder reactor and on its dominant reaction--capture in /sup 238/U. The results, however, apply equally well to scattering resonances, to other isotopes (fertile, fissile and structural species) and to other environments, so long as the underlying assumptions of narrow resonance theory apply. The heterogeneous resonance integral is first cast into a modified homogeneous form involving the ratio of coolant-to-fuel fluxes. A generalized correlation (useful in its own right in many other applications) is developed for this ratio, using both integral transport and collision probability theory to infer the form of correlation, and then relying upon Monte Carlo calculations to establish absolute values of the correlation coefficients. It is shown that a simple linear prescription can be developed for the flux ratio as a function of only fuel optical thickness and the fraction of the slowing-down source generated by the coolant. This in turn permitted derivation of a new equivalence theorem relating the heterogeneous self-shielding factor to the homogeneous self-shielding factor at a modified value of the background scattering cross section per absorber nucleus. A simple version of this relation is developed and used to show that heterogeneity has a negligible effect on the calculated blanket breeding ratio in fast reactors.

  1. Radwaste management aspects of the test blanket systems in ITER

    Laan, J.G. van der, E-mail: JaapG.vanderLaan@iter.org [ITER Organization, Route de Vinon sur Verdon, F-13067 Saint Paul Lez Durance (France); Canas, D. [CEA, DEN/DADN, centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Chaudhari, V. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Iseli, M. [ITER Organization, Route de Vinon sur Verdon, F-13067 Saint Paul Lez Durance (France); Kawamura, Y. [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan); Lee, D.W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Petit, P. [European Commission, DG ENER, Brussels (Belgium); Pitcher, C.S.; Torcy, D. [ITER Organization, Route de Vinon sur Verdon, F-13067 Saint Paul Lez Durance (France); Ugolini, D. [Fusion for Energy, Barcelona (Spain); Zhang, H. [China Nuclear Energy Industry Corporation, Beijing 100032 (China)

    2016-11-01

    Highlights: • Test Blanket Systems are operated in ITER to test tritium breeding technologies. • The in-vessel parts of TBS become radio-active during the ITER nuclear phase. • For each TBM campaign the TBM, its shield and the Pipe Forests are removed. • High tritium contents and novel materials are specific TBS radwaste features. • A preliminary assessment confirmed RW routing, provided its proper conditioning. - Abstract: Test Blanket Systems (TBS) will be operated in ITER in order to prepare the next steps towards fusion power generation. After the initial operation in H/He plasmas, the introduction of D and T in ITER will mark the transition to nuclear operation. The significant fusion neutron production will give rise to nuclear heating and tritium breeding in the in-vessel part of the TBS. The management of the activated and tritiated structures of the TBS from operation in ITER is described. The TBS specific features like tritium breeding and power conversion at elevated temperatures, and the use of novel materials require a dedicated approach, which could be different to that needed for the other ITER equipment.

  2. Ferritic steels for the first generation of breeder blankets

    Diegele, E.

    2009-01-01

    Materials development in nuclear fusion for in-vessel components, i.e. for breeder blankets and divertors, has a history of more than two decades. It is the specific in-service and loading conditions and the consequentially required properties in combination with safety standards and social-economic demands that create a unique set of specifications. Objectives of Fusion for Energy (F4E) include: 1) To provide Europe's contribution to the ITER international fusion energy project; 2) To implement the Broader Approach agreement between Euratom and Japan; 3) To prepare for the construction and demonstration of fusion reactors (DEMO). Consequently, activities in F4E focus on structural materials for the first generations of breeder blankets, i.e. ITER Test Blanket Modules (TBM) and DEMO, whereas a Fusion Materials Topical Group implemented under EFDA coordinates R and D on physically based modelling of irradiation effects and R and D in the longer term (new and /or higher risk materials). The paper focuses on martensitic-ferritic steels and (i) reviews briefly the challenges and the rationales for the decisions taken in the past, (ii) analyses the status of the main activities of development and qualification, (iii) indicates unresolved issues, and (iv) outlines future strategies and needs and their implications. Due to the exposure to intense high energy neutron flux, the main issue for breeder materials is high radiation resistance. The First Wall of a breeder blanket should survive 3-5 full power years or, respectively in terms of irradiation damage, typically 50-70 dpa for DEMO and double figures for a power plant. Even though the objective is to have the materials and key fabrication technologies needed for DEMO fully developed and qualified within the next two decades, a major part of the task has to be completed much earlier. Tritium breeding test blanket modules will be installed in ITER with the objective to test DEMO relevant technologies in fusion

  3. Development of a virtual reality simulator for the ITER blanket remote handling system

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Shibanuma, Kiyoshi; Tesini, Alessandro

    2008-01-01

    The authors developed a simulator for the remote maintenance system of the ITER blanket using a general 3D robotic simulation software, ENVISION. The simulator is connected to the control system of the manipulator, which was developed as part of the blanket maintenance system during the Engineering Design Activity (EDA), and can reconstruct the positions of the manipulator and blanket module using position data transmitted from motors through a LAN. In addition, it can provide virtual visual information (e.g., about the interface structures behind the blanket module) by making the module transparent on the screen. It can also be used for confirming a maintenance sequence before the actual operation. The simulator will be modified further, with addition of other necessary functions, and will finally serve as a prototype of the actual simulator for the blanket remote handling system, which will be procured as part of an in-kind contribution

  4. Evaluation of potential blanket concepts for a Demonstration Tokamak Hybrid Reactor

    Chapin, D.L.; Chi, J.W.H.; Kelly, J.L.

    1978-01-01

    An evaluation has been made of several different blanket concepts for use in a near-term Demonstration Tokamak Hybrid Reactor (DTHR), whose main objective would be to produce a significant amount of fissile fuel while demonstrating the feasibility of the tokamak hybrid reactor concept. The desirability of a simple design using proven technology plus a proliferation resistant fuel cycle led to the selection of a low temperature and pressure water-cooled, zircaloy clad ThO 2 blanket concept to breed 233 U. The nuclear performance and thermal-hydraulics characteristics of the blanket were evaluated to arrive at a consistent design. The blanket was found to be feasible for producing a significant amount of fissile fuel even with the limited operating conditions and blanket coverage in the DTHR

  5. MIT LMFBR blanket physics project progress report No. 7, July 1, 1975--September 30, 1976

    Driscoll, M.J.

    1976-01-01

    Work during the period was devoted primarily to a range of analytical/numerical investigations, including evaluation of means to improve external blanket designs, beneficial attributes of the use of internal blankets, improved methods for the calculation of heterogeneous self-shielding and parametric studies of calculated spectral indices. Experimental work included measurements of the ratio of U-238 captures to U-235 fissions in a standard blanket mockup, and completion of development work on the radiophotoluminescent readout of LiF thermoluminescent detectors. The most significant findings were that there is very little prospect for substantial improvement in the breeding performance of external blankets, but internal blankets continue to show promise, particularly if they are used in such a way as to increase the volume fraction of fuel inside the core envelope. An improved equivalence theorem was developed which may allow use of fast reactor methods to calculate heterogeneously self-shielded cross sections in both fast and thermal reactors

  6. The impact of tritium solubility and diffusivity on inventory and permeation in liquid breeder blankets

    Caorlin, M.; Gervasini, G.; Reiter, F.

    1988-01-01

    The authors reviewed hydrogen solubility and diffusivity data for liquid lithium-based compounds which are potential breeding blanket materials in NET-type fusion devices. These data have been used to assess tritium permeation and inventory in separately cooled NET blankets and in self cooled blankets with a vanadium first wall. The results for the separately cooled NET-liquid breeder show that tritium permeation is negligible for lithium, a serious problem for Pb-17Li and a critical one for Flibe. The total tritium inventory is lowest in lithium, high in Pb-17Li and very high in Flibe. The high tritium partial pressure for Flibe or Pb-17Li can be reduced in a self cooled blanket with a vanadium first wall. Permeation into the plasma reduces the blanket tritium inventory and permeation. Tritium recovery can be combined with the plasma exhaust

  7. Updated neutronics analyses of a water cooled ceramic breeder blanket for the CFETR

    Xiaokang, ZHANG; Songlin, LIU; Xia, LI; Qingjun, ZHU; Jia, LI

    2017-11-01

    The water cooled ceramic breeder (WCCB) blanket employing pressurized water as a coolant is one of the breeding blanket candidates for the China Fusion Engineering Test Reactor (CFETR). Some updating of neutronics analyses was needed, because there were changes in the neutronics performance of the blanket as several significant modifications and improvements have been adopted for the WCCB blanket, including the optimization of radial build-up and customized structure for each blanket module. A 22.5 degree toroidal symmetrical torus sector 3D neutronics model containing the updated design of the WCCB blanket modules was developed for the neutronics analyses. The tritium breeding capability, nuclear heating power, radiation damage, and decay heat were calculated by the MCNP and FISPACT code. The results show that the packing factor and 6Li enrichment of the breeder should both be no less than 0.8 to ensure tritium self-sufficiency. The nuclear heating power of the blanket under 200 MW fusion power reaches 201.23 MW. The displacement per atom per full power year (FPY) of the plasma-facing component and first wall reach 0.90 and 2.60, respectively. The peak H production rate reaches 150.79 appm/FPY and the peak He production reaches 29.09 appm/FPY in blanket module #3. The total decay heat of the blanket modules is 2.64 MW at 1 s after shutdown and the average decay heat density can reach 11.09 kW m-3 at that time. The decay heat density of the blanket modules slowly decreases to lower than 10 W m-3 in more than ten years.

  8. Cross-section uncertainty study of the NET shielding blanket

    Jaeger, J.F.

    1990-11-01

    The Next European Torus (NET) is foreseen as the next step in the European development towards the controlled use of thermonuclear fusion. Detail design of the shielding blanket protecting the peripherals, more especially the super-conducting coils, is well advanced. A cross-section uncertainty, i.e. a study of the expected inaccuracy due to the nuclear cross-section data, has been done for the neutron-gamma reactions in the insulation of the coils for such a design. As an extension of previous work on the NET shielding blanket (e.g. MCNP calculations), it was deemed necessary to estimate the accuracy attainable with transport codes in view of the uncertainties in microscopic cross-sections. The code used, SENSIBL, is based on perturbation theory and uses covariance files, COVFILS-2, for the cross-section data. This necessitates forward and adjoint flux calculations with a transport code (e.g. ONEDANT, TRISM) and folding the information contained in these coupled fluxes with the accuracy estimates of the evaluators of the ENDF/B-V files. Transport, P 5 S 12 , calculations were done with the ONEDANT code, for a shielding blanket design with 714 MW plasma fusion power. Several runs were done to obtain well converged forward and adjoint fluxes (ca. 1%). The forward and adjoint integral responses agree to 2%, which is consistent with the above accuracy. The n-γ response was chosen as it is typical of the general accuracy and is available for all materials considered. The present version of SENSIBL allows direct use of the geometric files of ONEDANT (or TRISM) which simplifies the input. Covariance data is not available at present in COVFILS-2 for all of the materials considered. Only H, C, N, O, Al, Si, Fe, Ni, and Pb could be considered, the big absentee being copper. The resulting uncertainty for the neutron-gamma reactions in the insulation of the coil was found to be 17%. Simulating copper by aluminium produces a negligible increase in the uncertainty, mainly

  9. Preliminary Analysis for K-DEMO Water Cooled Breeding Blanket Using MARS-KS

    Lee, Jeong-Hun; Kim, Geon-Woo; Park, Goon-Cherl; Cho, Hyoung-Kyu; Im, Kihak

    2014-01-01

    In the present study, thermal-hydraulic analyses for the blanket concept are being conducted using the Multidimensional Analysis of Reactor Safety (MARSKS) code, which has been used for the safety analysis of a pressurized water reactor. The purposes of the analyses are to verify the applicability of the code for the proposed blanket system, to investigate the departure of nucleate boiling (DNB) occurrence during the normal and transient conditions, and to extend the capability of MARS-KS to the entire blanket system which includes a few hundreds of single blanket modules. In this paper, the thermal analysis results of the proposed blanket design using the MARS-KS code are presented for the normal operation and an accident condition of a reduced coolant flow rate. Afterwards, the plan for the whole blanket system analysis using MARSKS is introduced and the result of the first trial for the multiple blanket module analysis is summarized. In the present study, thermal-hydraulic analyses for the blanket concept were conducted using the MARS-KS code for a single blanket module. By comparing the MARS calculation results with the CFD analysis results, it was found that MARS-KS can be applied for the blanket thermal analysis with less number of computational meshes. Moreover, due to its capability on the two-phase flow analysis, it can be used for the transient or accident simulation where a phase change may be resulted in. In the future, the MARS-KS code will be applied for the anticipated transient and design based accident analyses. The investigation of the DNB occurrence during the normal and transient conditions will be of special interest of the analysis using it. After that, a methodology to simulate the entire blanket system was proposed by using the DLL version of MARS-KS. A supervisor program, which controls the multiple DLL files, was developed for the common header modelling. The program explicitly determines the flow rates of each module which can equalize

  10. The lithium blanket program at the LOTUS facility

    File, J.; Haldy, P.A.; Quanci, J.

    1987-01-01

    An experimental program of neutron transport studies of the lithium Blanket Module (LBM) carried out with the LOTUS point-neutron source at the Ecole Polytechnique Federale de Lausanne (EPTL), Switzerland has been concluded. The major objectives of this program are to perform a series of neutron transport and tritium breeding experiments to qualify the LBM for future experiments on toroidal fusion devices such as TFTR to perform neutron multiplier experiments on the LBM employing various materials in a removable slab geometry; and, to compare the experimental results of radiation dosimetry and tritium breeding with the calculations of two and three dimensional neutron transport codes. An overview of the results from the radiation dosimetry and tritium assay are presented and compared to the two and three dimensional neutron transport codes

  11. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    Choi, B. William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chiu, Ing L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  12. Development of packagings for 'MONJU' blanket fuel assemblies

    Shibata, Kan; Ouchi, Yuichiro; Matsuzaki, Masaaki; Okuda, Yoshihisa

    1995-01-01

    Blanket assemblies for prototype Fast Breeder Reactor 'MONJU' are made at commercial fuel fabrication plants capable of handling deplete Uranium in Japan. For the purpose of transport the assemblies are inserted into a packaging that is set horizontally at the fabrication plants because of compatibility with equipment installed at the plants. On the other hand, the assemblies must be taken out from the packaging set vertically at 'MONJU' due to compatibility. For this reason development of a new packaging, which makes it possible to take assemblies in and out both horizontally and vertically, is needed to carry out transport of assemblies for reload. The development and fabrication of the packagings, taking about two years, were completed in March 1995. The packagings were used in transport of assemblies in June 1995 for the first change. This report introduces the outline of the packaging and confirmation tests done in the process of development. (author)

  13. Heating performances of a IC in-blanket ring array

    Bosia, G., E-mail: gbosia@to.infn.it [Department of Physics, University of Turin (Italy); Ragona, R. [Laboratory for Plasma Physics-LPP-ERM/KMS, Brussels (Belgium)

    2015-12-10

    An important limiting factor to the use of ICRF as candidate heating method in a commercial reactor is due to the evanescence of the fast wave in vacuum and in most of the SOL layer, imposing proximity of the launching structure to the plasma boundary and causing, at the highest power level, high RF standing and DC rectified voltages at the plasma periphery, with frequent voltage breakdowns and enhanced local wall loading. In a previous work [1] the concept for an Ion Cyclotron Heating & Current Drive array (and using a different wave guide technology, a Lower Hybrid array) based on the use of periodic ring structure, integrated in the reactor blanket first wall and operating at high input power and low power density, was introduced. Based on the above concept, the heating performance of such array operating on a commercial fusion reactor is estimated.

  14. Welding techniques development of CLAM steel for Test Blanket Module

    Li Chunjing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China)], E-mail: lcj@ipp.ac.cn; Huang Qunying; Wu Qingsheng; Liu Shaojun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China); Lei Yucheng [Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Muroga, Takeo; Nagasaka, Takuya [National Institute for Fusion Science, Toki, Jifu, 509-5292 (Japan); Zhang Jianxun [Xi' an Jiaotong University, Xi' an, Shanxi, 710049 (China); Li Jinglong [Northwestern Polytechnical University, Xi' an, Shanxi, 710072 (China)

    2009-06-15

    Fabrication techniques for Test Blanket Module (TBM) with CLAM are being under development. Effect of surface preparation on the HIP diffusion bonding joints was studied and good joints with Charpy impact absorbed energy close to that of base metal have been obtained. The mechanical properties test showed that effect of HIP process on the mechanical properties of base metal was little. Uniaxial diffusion bonding experiments were carried out to study the effect of temperature on microstructure and mechanical properties. And preliminary experiments on Electron Beam Welding (EBW), Tungsten Inert Gas (TIG) Welding and Laser Beam Welding (LBW) were performed to find proper welding techniques to assemble the TBM. In addition, the thermal processes assessed with a Gleeble thermal-mechanical machine were carried out as well to assist the fusion welding research.

  15. Fusion Blanket Coolant Section Criteria, Methodology, and Results

    DeMuth, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meier, W. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jolodosky, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frantoni, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reyes, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-02

    The focus of this LDRD was to explore potential Li alloys that would meet the tritium breeding and blanket cooling requirements but with reduced chemical reactivity, while maintaining the other attractive features of pure Li breeder/coolant. In other fusion approaches (magnetic fusion energy or MFE), 17Li- 83Pb alloy is used leveraging Pb’s ability to maintain high TBR while lowering the levels of lithium in the system. Unfortunately this alloy has a number of potential draw-backs. Due to the high Pb content, this alloy suffers from very high average density, low tritium solubility, low system energy, and produces undesirable activation products in particular polonium. The criteria considered in the selection of a tritium breeding alloy are described in the following section.

  16. Possible association of mucous blanket integrity with postirradiation colonization resistance

    Walker, R.I.; Brook, I.; Costerton, J.W.; MacVittie, T.; Myhal, M.L.

    1985-01-01

    Radiation-induced infections can be associated with changes in colonization potential of the intestine. Since the mucous blanket, which overlays the epithelium, is a major mucosal structure and is heavily colonized by microorganisms, we examined the status of the mucus after radiation and evaluated susceptibility to intestinal challenge with bacteria. A downward shift (2.5 X 10(8) cells/g to 5.3 X 10(5)) of total facultatively anaerobic bacteria of the ileum of C3HeB/FeJ mice was detected by 3 days post exposure to 10 Gy 60Co. Numbers of flora returned to normal by 11 days after radiation. Scanning electron microscopy was used to show that the loss of bacteria could be associated with major disruptions of the continuity of the mucous blanket. The pathogen Pseudomonas aeruginosa adhered to mouse mucous films used in in vitro assays. When irradiated mice were challenged orally with 1 X 10(5) P. aeruginosa on days 1, 2, or 3 after irradiation, a progressive increase in susceptibility was seen, but no animals died before Day 4 postirradiation. Sensitivity to subcutaneous (sc) challenge with Pseudomonas also increased by Day 3 and was probably due largely to the profound neutropenia observed. Immunoglobulin G (Gamimmune), which protected burned mice infected with Pseudomonas, was ineffectual in treatment of 7 or 10 Gy irradiated mice challenged either orally or sc with the organism. The ileal mucosal barrier was compromised after radiation in ways which could facilitate epithelial colonization, an event which combined with other immunological and physiological decrements in this model can compromise the effectiveness of therapeutic modalities

  17. Vibration damage testing of thermal barrier fibrous blanket insulation

    Black, W.E.; Betts, W.S.

    1984-01-01

    GA Technologies is engaged in a long-term, multiphase program to determine the vibration characteristics of thermal barrier components leading to qualification of assemblies for High Temperature Gas-Cooled Reactor (HTGR) service. The phase of primary emphasis described herein is the third in a series of acoustic tests and uses as background the more elemental tests preceding it. Two sizes of thermal barrier coverplates with one fibrous blanket insulation type were tested in an acoustic environment at sound pressure levels up to 160 dB. Three tests were conducted using sinusoidal and random noise for up to 200 h duration at room temperature. Frequent inspections were made to determine the progression of degradation using definition of stages from a prior test program. Initially the insulation surface adjacent to the metallic seal sheets (noise side) assumed a chafed or polished appearance. This was followed by flattening of the as-received pillowed surface. This stage was followed by a depression being formed in the vicinity of the free edge of the coverplate. Next, loose powder from within the blanket and from fiber erosion accumulated in the depression. Prior experience showed that the next stage of deterioration exhibited a consolidation of the powder to form a local crust. In this test series, this last stage generally failed to materialize. Instead, surface holes generated by solid ceramic particulates (commonly referred to as 'shot') constituted the stage following powdering. With the exception of some manufacturing-induced anomalies, the final stage, namely, gross fiber breakup, did not occur. It is this last stage that must be prevented for the thermal barrier to maintain its integrity. (orig./GL)

  18. Assessing impact of blanket interventions for MAM prevention

    Grais, Rebecca F.; Isanaka, I; Langendorf, C; Roederer, T

    2014-01-01

    Full text: Blanket interventions for MAM prevention (Blanket supplementary feeding programming (BSFP)) provide a supplementary food ration often accompanied by a basic medical treatment and prevention package to a vulnerable population for a defined period in a defined geographic location. There is little strong evidence on the impact of BSFP on rates of malnutrition and mortality, and scare guidance on program monitoring and evaluation to improve the implementation of specific programs. Assessing the impact of BSFP has been fraught with difficulty. Their isolated impact is difficult, if not often impossible to disentangle from larger care and prevention packages, the objectives of BSFP may vary by context, implementing agency, time and geography. Various and often multiple co-morbidities among children in the targeted group complicate matters further with respect to impact assessment. This leads to difficulties in generalizing results from one context to another and the need for more complex metrics to guide operational decision-making. Ideally, impact or effectiveness of BSFP should be addressed in a research framework where appropriate and complete data is collected in order to address specific questions. The gold standard is the conduct of randomized studies including a control group. These studies have been scarce as they may be perceived as either rarely feasible or not ethical or both. However, as generating evidence on impact of BSFP is essential to provide operational guidance, these studies should be encouraged through a diversity of robust, yet creative and pragmatic, methodological approaches. As a case study, a series of studies conducted over the past decade are reviewed in the same location in Niger highlighting the lessons learned. (author)

  19. JAERI/U.S. collaborative program on fusion blanket neutronics

    Nakagawa, Masayuki; Mori, Takamasa; Kosako, Kazuaki; Oyama, Yukio; Nakamura, Tomoo

    1989-10-01

    Phase IIa and IIb experiments of JAERI/U.S. Collaborative Program on Fusion Blanket Neutronics have been performed using the FNS facility at JAERI. The phase IIa experimental systems consist of the Li 2 O test region, the rotating neutron target and the Li 2 CO 3 container. In phase IIb, a beryllium layer is added to the inner wall to investigate a multiplier effect. Measured parameters are source characteristics by a foil activation method and spectrum measurements using both NE-213 and proton recoil counters. The measurements inside the Li 2 O region included tritium production rates, reaction rate by foil activation and neutron spectrum measurements. Analysis for these parameters was performed by using two dimensional discrete ordinate codes DOT3.5 and DOT-DD, and a Monte Carlo code MORSE-DD. The nuclear data used were based on JENDL3/PR1 and PR2. ENDF/B-IV, V and the FNS file were used as activation cross sections. The configurations analysed for the test region were a reference, a beryllium front and a beryllium sandwiched systems in phase IIa, and a reference and a beryllium front with first wall systems in phase IIb. This document describes the results of analysis and comparison between the calculations and the measurements. The prediction accuracy of key parameters in a fusion reactor blanket are examined. The tritium production rates can be well predicted in the reference systems but are fairly underestimated in the system with a beryllium multiplier. Details of experiments and the experimental techniques are described separately in the another report. (author)

  20. Neutronics experiments for DEMO blanket at JAERI/FNS

    Sato, Satoshi; Ochiai, K.; Hori, J.; Verzilov, Y.; Klix, A.; Wada, M.; Terada, Y.; Yamauchi, M.; Morimoto, Y.; Nishitani, T.

    2003-01-01

    In order to verify the accuracy of the tritium production rate (TPR), neutron irradiation experiments have been performed with a mockup relevant to the fusion DEMO blanket consisting of F82H blocks, Li 2 TiO 3 blocks with a 6 Li enrichment of 40 and 95%, and beryllium blocks. Sample pellets of Li 2 TiO 3 were irradiated and the TPR was measured by a liquid scintillation counter. The TPR was also calculated using the Monte Carlo code MCNP-4B with the nuclear data library JENDL-3.2 and ENDF-B/VI. The results agreed with experimental values within the statistical error (10%) of the experiment. Accordingly, it was clarified that the TPR could be evaluated within 10% uncertainty by the calculation code and the nuclear data. In order to estimate the induced activity caused by sequential reactions in cooling water pipes in the DEMO blanket, neutron irradiation experiments have been performed using test speciments simulating the pipes. Sample metals of Fe, W, Ti, Pb, Cu, V and reduced activation ferritic steels F82H were irradiated as typical fusion materials. The effective cross-sections for incident neutron flux to calculate the radioactive nuclei ( 56 Co, 184 Re, 48 V, 206 Bi, 65 Zn and 51 Cr) due to sequential reactions were measured. From the experimental results, it was found that the effective cross-sections remarkably increases with coming closer to polyethylene board that was a substitute of water. As a result of the present study, it has become clear that the sequential reaction rates are important factors to accurately evaluate the induced activity in fusion reactors design. (author)