WorldWideScience

Sample records for helium-cooled ceramic breeder

  1. Considerations on techniques for improving tritium confinement in helium-cooled ceramic breeder blankets

    International Nuclear Information System (INIS)

    Fuetterer, M.A.; Raepsaet, X.; Proust, E.; Leger, D.

    1994-01-01

    Tritium control issues such as the development of permeation barriers and the choice of the coolant and purge-gas chemistry are of crucial importance for solid breeder blankets. In order to quantify these problems for the helium-cooled ceramic breeder-inside-tube (BIT) blanket concept, the tritium leakage into the coolant was evaluated and the consequent tritium losses into the steam circuit were determined. The results indicate that under certain specified conditions the total tritium release from the coolant can be limited to approximately 10 Ci/d, but only on the assumption that experimental data for tritium permeation barriers can be attained under realistic operating conditions. An experimental study on the impact of the gas chemistry on tritium losses is proposed. (author) 8 refs.; 2 figs

  2. Conceptual design of two helium cooled fusion blankets (ceramic and liquid breeder) for INTOR

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Taczanowski, S.

    1983-08-01

    Neutronic and heat transfer calculations have been performed for two helium cooled blankets for the INTOR design. The neutronic calculations show that the local tritium breeding ratios, both for the ceramic blanket (Li 2 SiO 3 ) and for the liquid blanket (Li 17 Pb 83 ) solutions, are 1.34 for natural tritium and about 1.45 using 30% Li 6 enrichment. The heat transfer calculations show that it is possible to cool the divertor section of the torus (heat flux = 1.7 MW/m 2 ) with helium with an inlet pressure of 52 bar and an inlet temperature of 40 0 C. The temperature of the back face of the divertor can be kept at 130 0 C. With helium with the same inlet conditions it is possible to cool the first wall as well (heat flux = 0.136 MW/m 2 ) and keep the back-face of this wall at a temperature of 120 0 C. For the ceramic blanket we use helium with 52 bar inlet pressure and 400 0 C inlet temperature to ensure sufficiently high temperatures in the breeder material. The maximum temperature in the pressure tubes containing the blanket is 450 0 C, while the maximum breeder particle temperature is 476 0 C. (orig./RW) [de

  3. Thermal-hydraulic calculation and analysis on helium cooled ceramic breeder pebble bed assembly for in-pile irradiation and in-situ tritium extraction

    International Nuclear Information System (INIS)

    Guo Chunqiu; Xie Jiachun; Liu Xingmin

    2013-01-01

    In-pile irradiation and in-situ tritium extraction experiment is one of associated domestic research projects in ITER special program. According to the technical requirements of in-pile irradiation experiment of helium cooled ceramic breeder (ceramic) pebble bed assembly in a research reactor, the feasibility of the design for the in-pile irradiation and in-situ tritium extraction experiment of ceramic pebble bed assembly was evaluated. By conducting thermal-hydraulic design calculation with different in-pile irradiation channels, locations and structure parameters for ceramic pebble bed assembly, a reasonable design scheme of ceramic pebble bed assembly satisfying the design requirements for in-pile irradiation was obtained. (authors)

  4. Ceramic BOT type blanket with poloidal helium cooling

    International Nuclear Information System (INIS)

    Cardella, A.; Daenenr, W.; Iseli, M.; Ferrari, M.; Gallina, M.; Rado, V.; Simbolotti, G.; Violante, V.

    1989-01-01

    This paper briefly describes the work done and results achieved over the past two years on the ceramic breeder BOT blanket with poloidal helium cooling. A conclusive remark on the brick/plate option described previously is followed by short descriptions of the low and high performance pebble bed options elaborated as alternatives for both NET and DEMO. The results show, togethre with those about the poloidal cooling of the First Wall, good prospects for this blanket type provided that the questions connected wiht an extensive use of beryllium find a satisfactor answer. (author). 5 refs.; 7 figs.; 1 tab

  5. Neutronic performance of two European breeder-inside-tube (BIT) blankets for DEMO: the helium-cooled ceramic LiAlO2 with Be multiplier and the water-cooled liquid Li17Pb

    International Nuclear Information System (INIS)

    Petrizzi, L.; Rado, V.

    1995-01-01

    In support of ENEA activity in the European Community Test Programme, neutron analysis has been performed on the two latest blanket designs: helium-cooled ceramic breeder-inside-tube (BIT) (with LiAlO 2 and Be multiplier) and water-cooled liquid Li 17 Pb in cylindrical modules (CM). The powerful MCNP Monte Carlo code was used (version 4.2). A detailed and accurate description of the geometrical model has been performed by inserting the main reactor details and avoiding breeder material dilution inside the modules. The tritium breeding ratio (TBR) performance is low for the solid breeder BIT blanket (with 10 ports 1.011) due mainly to low blanket coverage near the exhaust duct, and this solution should be revised. The CM Li 17 Pb blanket reaches a sufficient TBR (1.059, with ports) to rely on tritium self-sufficiency. Shielding properties, with respect to the toroidal field coils, have been estimated in a simplified model by means of the ANISN code, supplied with a nuclear data library consistent with that used by MCNP. The analysis suggests that a careful shield thickness/composition design should be used to ensure the shielding capability of the whole blanket plus shield system. (orig.)

  6. Updated conceptual design of helium cooling ceramic blanket for HCCB-DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Suhao [University of Science and Technology of China, Hefei, Anhui (China); Southwestern Institute of Physics, Chengdu, Sichuan (China); Cao, Qixiang; Wu, Xinghua; Wang, Xiaoyu; Zhang, Guoshu [Southwestern Institute of Physics, Chengdu, Sichuan (China); Feng, Kaiming, E-mail: fengkm@swip.ac.cn [Southwestern Institute of Physics, Chengdu, Sichuan (China)

    2016-11-15

    Highlights: • An updated design of Helium Cooled Ceramic breeder Blanket (HCCB) for HCCB-DEMO is proposed in this paper. • The Breeder Unit is transformed to TBM-like sub-modules, with double “banana” shape tritium breeder. Each sub-module is inserted in space formed by Stiffen Grids (SGs). • The performance analysis is performed based on the R&D development of material, fabrication technology and safety assessment in CN ITER TBM program. • Hot spots will be located at the FW bend side. - Abstract: The basic definition of the HCCB-DEMO plant and preliminary blanket designed by Southwestern Institution of Physics was proposed in 2009. The DEMO fusion power is 2550 MW and electric power is 800 MW. Based on development of R&D in breeding blanket, a conceptual design of helium cooled blanket with ceramic breeder in HCCB-DEMO was presented. The main design features of the HCCB-DEMO blanket were: (1) CLF-1 structure materials, Be multiplier and Li{sub 4}SiO{sub 4} breeder; (2) neutronic wall load is 2.3 MW/m{sup 2} and surface heat flux is 0.43 MW/m{sup 2} (2) TBR ≈ 1.15; (3) geometry of breeding units is ITER TBM-like segmentation; (4)Pressure of helium is 8 MPa and inlet/outlet temperature is 300/500 °C. On the basis of these design, some important analytical results are presented in aspects of (i) neutronic behavior of the blanket; (ii) design of 3D structure and thermal-hydraulic lay-out for breeding blanket module; (iii) structural-mechanical behavior of the blanket under pressurization. All of these assessments proved current stucture fulfill the design requirements.

  7. Design and safety analysis of the helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuai; Zhou, Guangming; Lv, Zhongliang; Jin, Cheng; Chen, Hongli [University of Science and Technology of China, Anhui (China). School of Nuclear Science and Technology

    2016-05-15

    This paper reports the design and safety analysis results of the helium cooled solid breeder blanket of the Chinese Fusion Engineering Test Reactor (CFETR). Materials selection and basic structure of the blanket have been presented. Performance analysis including neutronics analysis and thermo-mechanical analysis has shown good results. And the safety analysis of the blanket under Loss Of Coolant Accident (LOCA) conditions has been described. Results showed the current design can deal well with the selected accident scenarios.

  8. Conceptual design and analysis of the helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Li, Min; Lv, Zhongliang; Zhou, Guangming; Liu, Qianwen; Wang, Shuai; Wang, Xiaoliang; Zheng, Jie; Ye, Minyou

    2015-10-15

    Highlights: • A helium cooled solid blanket was proposed as a candidate blanket concept for CFETR. • Material selection, basic structure and gas flow scheme of the blanket were introduced. • A series of performance analyses for the blanket were summarized. - Abstract: To bridge the gap between ITER and DEMO and to realize the fusion energy in China, a fusion device Chinese Fusion Engineering Test Reactor (CFETR) was proposed and is being designed mainly to demonstrate 50–200 MW fusion power, 30–50% duty time factor, tritium self-sustained. Because of the high demand of tritium production and the realistic engineering consideration, the design of tritium breeding blanket for CFETR is a challenging work and getting special attention. As a blanket candidate, a helium cooled solid breeder blanket has been designed with the emphasis on conservative design and realistic blanket technology. This paper introduces the basic blanket scheme, including the material selection, structural design, cooling scheme and purge gas flow path. In addition, some results of neutronics, thermal-hydraulic and stress analysis are presented.

  9. Activation analysis and waste management of China ITER helium cooled solid breeder test blanket module

    Energy Technology Data Exchange (ETDEWEB)

    Han, J.R., E-mail: hanjingru@163.co [North China Electric Power University, School of Nuclear Science and Engineering, Zhu-Xin-Zhuang, De-Wai, Beijing 102206 (China); Chen, Y.X.; Han, R. [North China Electric Power University, School of Nuclear Science and Engineering, Zhu-Xin-Zhuang, De-Wai, Beijing 102206 (China); Feng, K.M. [Southwestern Institute of Physics, P.O.Box 432, Chengdu 610041 (China); Forrest, R.A. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom)

    2010-08-15

    Activation characteristics have been assessed for the ITER China helium cooled solid breeder (CH-HCSB) 3 x 6 test blanket module (TBM). Taking a representative irradiation scenario, the activation calculations were performed by FISPACT code. Neutron fluxes distributions in the TBM were provided by a preceding MCNP calculation. These fluxes were passed to FISPACT for the activation calculation. The main activation parameters of the HCSB-TBM were calculated and discussed, such as activity, afterheat and contact dose rate. Meanwhile, the dominant radioactivity nuclides and reaction channel pathways have been identified. According to the Safety and Environmental Assessment of Fusion Power (SEAFP) waste management strategy, the activated materials can be re-used following the remote handling recycling options. The results will provide useful indications for further optimization design and waste management of the TBM.

  10. Design and analysis of breeding blanket with helium cooled solid breeder for ITER-TBM

    International Nuclear Information System (INIS)

    Yuan Tao; Feng Kaiming; Chen Zhi; Wang Xiaoyu

    2007-01-01

    Test blanket module (TBM) is one of important components in ITER. Some of related blanket technologies of future fusion, such as tritium self-sufficiency, the exaction of high-grade heat, design criteria and safety requirements and environmental impacts, will be demonstrated in ITER-TBM. In ITER device, the three equatorial ports have allocated for TBM testing. China had proposed to develop independently the ITER-TBM with helium cooled solid breeder in 12th meeting of test blanket workgroup (TBWG-12). In this work, the preliminary design and analysis for Chinese HCSB TBM will be carried out. The TBM must be contains the function of the first wall, breeding blanket, shield and structure. Finally, in the period of preliminary investigation, HCSB TBM design adopt modularization concept which is helium as coolant and tritium purge gas, ferritic/martensitic steel as structural material, Lithium orthosilicate (Li 4 SiO 4 ) as tritium breeder, beryllium pebble as neutron multiplier. TBM is allocated in standard vertical frame port. HCSB TBM consist of first wall, backplate, breeding sub-modules, caps, grid and support plate, and breeding sub-modules is arranged by layout of 2 x 6 in blanket box. In this paper, main components of HCSB TBM will be described in detail, also performance analysis of main components have been completed. (authors)

  11. Preliminary Analysis on Decay Heat Removal Capability of Helium Cooled Solid Breeder Test Blanket Module

    International Nuclear Information System (INIS)

    Ahn, Mu Young; Cho, Seung Yon; Kim, Duck Hoi; Lee, Eun Seok; Kim, Hyung Seok; Suh, Jae Seung; Yun, Sung Hwan; Cho, Nam Zin

    2007-01-01

    One of the main ITER goals is to test and validate design concepts of tritium breeding blankets relevant to DEMO or fusion power plants. Korea Helium-Cooled Solid Breeder (HCSB) Test Blanket Module (TBM) has been developed with overall objectives of achieving this goal. The TBM employs high pressure helium to cool down the First Wall (FW), Side Wall (SW) and Breeding Zone (BZ). Therefore, safety consideration is a part of the design process. Each ITER Party performing the TBM program is requested to reach a similar level of confidence in the TBM safety analysis. To meet ITER's request, Failure Mode and Effects Analysis (FMEA) studies have been performed on the TBM to identify the Postulated Initial Event (PIE). Although FMEA on the KO TBM has not been completed, in-vessel, in-box and ex-vessel Loss Of Coolant Accident (LOCA) are considered as enveloping cases of PIE in general. In this paper, accidental analyses for the three selected LOCA were performed to investigate the decay heat removal capability of the TBM. To simulate transient thermo-hydraulic behavior of the TBM for the selected scenarios, RELAP5/MOD3.2 code was used

  12. Activation analysis of Chinese ITER helium cooled solid breeder test blanket module

    International Nuclear Information System (INIS)

    Han Jingru; Chen Yixue; Ma Xubo; Wang Shouhai; Forrest, R.A.

    2009-01-01

    Based on the Chinese ITER helium cooled solid breeder(CH-HCSB) test blanket module (TBM) of the 3 x 6 sub-modules options, the activation characteristics of the TBM were calculated. Three-dimensional neutronic calculations were performed using the Monte-Carlo code MCNP and the nuclear data library FENDL/2. Furthermore, the activation calculations of HCSB-TBM were carried out with the European activation system EASY-2007. At shutdown the total activity is 1.29 x 10 16 Bq, and the total afterheat is 2.46 kW. They are both dominated by the Eurofer steel. The activity and afterheat are both in the safe range of TBM design, and will not have a great impact on the environment. Meanwhile,on basis of the calculated contact dose rate, the activated materials can be re-used following the remote handling recycling options. The activation results demonstrate that the current HCSB-TBM design can satisfy the ITER safety design requirements from the activation point of view. (authors)

  13. Manufacturing aspects in the design of the breeder unit for Helium Cooled Pebble Bed blankets

    International Nuclear Information System (INIS)

    Rey, J.; Ihli, T.; Filsinger, D.; Polixa, C.

    2007-01-01

    The breeding blanket programme has been in the focus of European fusion research for more than a decade. Recently, it has been driven by the EU Power Plant Conceptual Study (PPCS), investigating the potential of fusion energy in a future economic environment. On the way to the first commercial nuclear fusion reactor (DEMO) new studies for reactor in-vessel components have been initiated. One central focus is the design and manufacturing of the blankets that have to ensure the breeding process to maintain the fuel cycle and are also responsible for the extraction of the main part of the reactor heat for power generation. Two kinds are established: One is the Helium Cooled Pebble Bed (HCPB) and the other the Helium Cooled Liquid Lead (HCLL) blanket. Both designs employ three different cooling plate assemblies. The outer, cooled U-shaped shell, namely the First Wall (FW), with two caps builds the blanket box. The structural strength of the blanket box is realized by integrating Stiffening Grids (SG) that separate the equally spaced Breeder Unit (BU) and allow the box, in case of faulted conditions, to withstand an internal pressure of 8 MPa. The cooled SG constitute the side walls of the BU and are also cooled. The BU consists of a dedicated Cooling Plate (CP) assembly. In present studies about the fabrication of Cooling Plates two kinds of diffusion welding processes are focused on. One is based on a Hot Isostatic Gas Process (HIP). The second is a uni-axial Diffusion Welding Process (DWP). In both cases the bond between the two halves of the cooling plate structure is reached by controlled pressure and heat cycles. Approaching larger, realistic scaled components the uncertainty of ensuring uniform process parameters across the bonding zone increases the risk of defect sources and, therefore, makes it difficult to guarantee the required bonding penetration. This study presents an alternative manufacturing strategy. The premises for this strategy are the reduction of

  14. Engineering structure design and fabrication process of small sized China helium-cooled solid breeder test blanket module

    International Nuclear Information System (INIS)

    Wang Zeming; Chen Lu; Hu Gang

    2014-01-01

    Preliminary design and analysis for china helium-cooled solid breeder (CHHC-SB) test blanket module (TBM) have been carried out recently. As partial verification that the original size module was reasonable and the development process was feasible, fabrication work of a small sized module was to be carried out targetedly. In this paper, detailed design and structure analysis of small sized TBM was carried out based on preliminary design work, fabrication process and integrated assembly process was proposed, so a fabrication for the trial engineering of TBM was layed successfully. (authors)

  15. Coated ceramic breeder materials

    Science.gov (United States)

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  16. Composite beryllium-ceramics breeder pin elements for a gas cooled solid blanket

    International Nuclear Information System (INIS)

    Carre, F.; Chevreau, G.; Gervaise, F.; Proust, E.

    1986-06-01

    Helium coolant have main advantages compared to water for solid blankets. But limitations exist too and the development of attractive helium cooled blankets based on breeder pin assemblies has been essentially made possible by the derivation from recent CEA neutronic studies of an optimized composite beryllium/ceramics breeder arrangement. Description of the proposed toroidal blanket layout for Net is made together with the analysis of its main performance. Merits of the considered composite Be/ceramics breeder elements are discussed

  17. Status report. KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Pt. 2: BOT helium cooled solid breeder blanket. Vol. 1

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Boccaccini, L.V.; Bojarsky, E.; Deckers, H.; Dienst, W.; Doerr, L.; Fischer, U.; Giese, H.; Guenther, E.; Haefner, H.E.; Hofmann, P.; Kappler, F.; Knitter, R.; Kuechle, M.; Moellendorf, U. von; Norajitra, P.; Penzhorn, R.D.; Reimann, G.; Reiser, H.; Schulz, B.; Schumacher, G.; Schwenk-Ferrero, A.; Sordon, G.; Tsukiyama, T.; Wedemeyer, H.; Weimar, P.; Werle, H.; Wiegner, E.; Zimmermann, H.

    1991-10-01

    The BOT (Breeder Outside Tube) Helium Cooled Breeder Blanket for a fusion Demo reactor and the status of the R and D program is presented. This is the KfK contribution to the European Program for the Demo relevant test plankets to be irradiated in NET/ITER. Volume 1 (KfK 4928) contains the summary, volume 2 (KfK 4929) a more detailed version of the report. In both volumes are described the reasons for the selected design, the reference blanket design for the Demo reactor, the design of test blanket including the ancillary systems together with the present status of the relative R and D program in the fields of neutronic and thermohydraulic calculations, of the electromagnetic forces caused by disruptions, of the development and irradiation of the ceramic breeder material, of the tritium release and recovery, and of the technological investigations. An outlook is given on the required R and D program for the BOT Helium Cooled Solid Breeder Blanket prior to tests in NET/ITER and the proposed test program in NET/ITER. (orig.) [de

  18. Status report. KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Pt. 2: BOT helium cooled solid breeder blanket. Vol. 2

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Boccaccini, L.V.; Bojarsky, E.; Deckers, H.; Dienst, W.; Doerr, L.; Fischer, U.; Giese, H.; Guenther, E.; Haefner, H.E.; Hofmann, P.; Kappler, F.; Knitter, R.; Kuechle, M.; Moellendorf, U. von; Norajitra, P.; Penzhorn, R.D.; Reimann, G.; Reiser, H.; Schulz, B.; Schumacher, G.; Schwenk-Ferrero, A.; Sordon, G.; Tsukiyama, T.; Wedemeyer, H.; Weimar, P.; Werle, H.; Wiegner, E.; Zimmermann, H.

    1991-10-01

    The BOT (Breeder Outside Tube) Helium Cooled Solid Breeder Blanket for a fusion Demo reactor and the status of the R and D program is presented. This is the KfK contribution to the European Program for the Demo relevant test blankets to be irradiated in NET/ITER. Volume 1 (KfK 4928) contains the summary, volume 2 (KfK 4929) a more detailed version of the report. In both volumes are described the reasons for the selected design, the reference blanket design for the Demo reactor, the design of the test blanket including the ancillary systems together with the present status of the relative R and D program in the fields of neutronic and thermohydraulic calculations, of the electromagnetic forces caused by disruptions, of the development and irradiation of the ceramic breeder material, of the tritium release and recovery, and of the technological investigations. An outlook is given on the required R and D program for the BOT Helium Cooled Solid Breeder Blanket prior to tests in NET/ITER and the proposed test program in NET/ITER. (orig.) [de

  19. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab

  20. Electromagnetic analysis on Korean Helium Cooled Ceramic Reflector (HCCR) TBM during plasma major disruption

    International Nuclear Information System (INIS)

    Lee, Youngmin; Ku, Duck Young; Ahn, Mu-Young; Cho, Seungyon; Park, Yi-Hyun; Lee, Dong Won

    2015-01-01

    Korean Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) will be installed at the #18 equatorial port of the Vaccum Vessel in order to test the feasibility of the breeding blanket performance for forthcoming fusion power plant in the ITER TBM Program. Since ITER tokamak contains Vaccum Vessel and set of electromagnetic coils, the TBM as well as other components is greatly influenced by magnetic field generated by these coils. By the electromagnetic (EM) fast transient events such as major disruption (MD), vertical displacement event (VDE) or magnet fast discharge (MFD) occurred in tokamak system, the eddy current can be induced eventually in the conducting components. As a result, the magnetic field and induced eddy current produce extremely huge EM load (force and moment) on the TBM. Therefore, EM load calculation is one of the most important analyses for optimized design of TBM. In this study, a 20-degree sector model for tokamak system including central solenoid (CS) coil, poloidal field (PF) coil, toroidal field (TF) coil, vaccum vessel, shield blankets and TBM set (TBM, TBM key, TBM shield, TBM frame) is prepared for analysis by ANSYS-EMAG tool. Concerning the installation location of the TBM, a major disruption scenario is particularly applied for fast transient analysis. The final goal of this study is to evaluate the EM load on HCCR TBM during plasma major disruption.

  1. Electromagnetic analysis on Korean Helium Cooled Ceramic Reflector (HCCR) TBM during plasma major disruption

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin, E-mail: ymlee@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Ku, Duck Young; Ahn, Mu-Young; Cho, Seungyon; Park, Yi-Hyun [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Korean Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) will be installed at the #18 equatorial port of the Vaccum Vessel in order to test the feasibility of the breeding blanket performance for forthcoming fusion power plant in the ITER TBM Program. Since ITER tokamak contains Vaccum Vessel and set of electromagnetic coils, the TBM as well as other components is greatly influenced by magnetic field generated by these coils. By the electromagnetic (EM) fast transient events such as major disruption (MD), vertical displacement event (VDE) or magnet fast discharge (MFD) occurred in tokamak system, the eddy current can be induced eventually in the conducting components. As a result, the magnetic field and induced eddy current produce extremely huge EM load (force and moment) on the TBM. Therefore, EM load calculation is one of the most important analyses for optimized design of TBM. In this study, a 20-degree sector model for tokamak system including central solenoid (CS) coil, poloidal field (PF) coil, toroidal field (TF) coil, vaccum vessel, shield blankets and TBM set (TBM, TBM key, TBM shield, TBM frame) is prepared for analysis by ANSYS-EMAG tool. Concerning the installation location of the TBM, a major disruption scenario is particularly applied for fast transient analysis. The final goal of this study is to evaluate the EM load on HCCR TBM during plasma major disruption.

  2. Electromagnetic analysis of the Korean helium cooled ceramic reflector test blanket module set

    International Nuclear Information System (INIS)

    Lee, Youngmin; Ku, Duck Young; Lee, Dong Won; Ahn, Mu-Young; Park, Yi-Hyun; Cho, Seungyon

    2016-01-01

    Korean helium cooled ceramic reflector (HCCR) test blanket module set (TBM-set) will be installed at equatorial port #18 of Vacuum Vessel in ITER in order to test the breeding blanket performance for forthcoming fusion power plant. Since ITER tokamak has a set of electromagnetic coils (Central Solenoid, Poloidal Field and Toroidal Field coil set) around Vacuum Vessel, the HCCR TBM-set, the TBM and associated shield, is greatly influenced by magnetic field generated by these coils. In the case of fast transient electromagnetic events such as major disruption, vertical displacement event or magnet fast discharge, magnetic field and induced eddy current results in huge electromagnetic load, known as Lorentz load, on the HCCR TBM-set. In addition, the TBM-set experiences electromagnetic load due to magnetization of the structural material not only during the fast transient events but also during normal operation since the HCCR TBM adopts Reduced Activation Ferritic Martensitic (RAFM) steel as a structural material. This is known as Maxwell load which includes Lorentz load as well as load due to magnetization of structure material. This paper presents electromagnetic analysis results for the HCCR TBM-set. For analysis, a 20° sector finite model was constructed considering ITER configuration such as Vacuum Vessel, ITER shield blankets, Central Solenoid, Poloidal Field, Toroidal Field coil set as well as the HCCR TBM-set. Three major disruptions (operational event, likely event and highly unlikely event) were selected for analysis based on the load specifications. ANSYS-EMAG was used as a calculation tool. The results of EM analysis will be used as input data for the structural analysis.

  3. Electromagnetic analysis of the Korean helium cooled ceramic reflector test blanket module set

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin, E-mail: ymlee@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Ku, Duck Young [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young; Park, Yi-Hyun; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Korean helium cooled ceramic reflector (HCCR) test blanket module set (TBM-set) will be installed at equatorial port #18 of Vacuum Vessel in ITER in order to test the breeding blanket performance for forthcoming fusion power plant. Since ITER tokamak has a set of electromagnetic coils (Central Solenoid, Poloidal Field and Toroidal Field coil set) around Vacuum Vessel, the HCCR TBM-set, the TBM and associated shield, is greatly influenced by magnetic field generated by these coils. In the case of fast transient electromagnetic events such as major disruption, vertical displacement event or magnet fast discharge, magnetic field and induced eddy current results in huge electromagnetic load, known as Lorentz load, on the HCCR TBM-set. In addition, the TBM-set experiences electromagnetic load due to magnetization of the structural material not only during the fast transient events but also during normal operation since the HCCR TBM adopts Reduced Activation Ferritic Martensitic (RAFM) steel as a structural material. This is known as Maxwell load which includes Lorentz load as well as load due to magnetization of structure material. This paper presents electromagnetic analysis results for the HCCR TBM-set. For analysis, a 20° sector finite model was constructed considering ITER configuration such as Vacuum Vessel, ITER shield blankets, Central Solenoid, Poloidal Field, Toroidal Field coil set as well as the HCCR TBM-set. Three major disruptions (operational event, likely event and highly unlikely event) were selected for analysis based on the load specifications. ANSYS-EMAG was used as a calculation tool. The results of EM analysis will be used as input data for the structural analysis.

  4. RF DEMO ceramic helium cooled blanket, coolant and energy transformation systems

    International Nuclear Information System (INIS)

    Kovalenko, V.; Leshukov, A.; Poliksha, V.; Popov, A.; Strebkov, Yu.; Borisov, A.; Shatalov, G.; Demidov, V.; Kapyshev, V.

    2004-01-01

    RF DEMO-S reactor is a prototype of commercial fusion reactors for further generation. A blanket is the main element unit of the reactor design. The segment structure is the basis of the ceramic blanket. The segments mounting/dismounting operations are carried out through the vacuum vessel vertical port. The inboard/outboard blanket segment is the modules welded design, which are welded by back plate. The module contains the back plate, the first wall, lateral walls and breeding zone. The 9CrMoVNb steel is used as structural material. The module internal space formed by the first wall, lateral walls and back plate is used for breeding zone arrangement. The breeding zone design based upon the poloidal BIT (Breeder Inside Tube) concept. The beryllium is used as multiplier material and the lithium orthosilicate is used as breeder material. The helium at 0.1 MPa is used as purge gas. The cooling is provided by helium at 10 MPa. The coolant supply/return to the blanket modules are carrying out on the two independent circuits. The performed investigations of possible transformation schemes of DEMO-S blanket heat power into the electricity allowed to make a conclusion about the preferable using of traditional steam-turbine facility in the secondary circuit. (author)

  5. Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR

    International Nuclear Information System (INIS)

    Cui, Shijie; Zhang, Dalin; Cheng, Jie; Tian, Wenxi; Su, G.H.

    2017-01-01

    As one of the candidate tritium breeding blankets for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of the helium cooled solid breeder blanket has recently been proposed. The neutronic, thermal-hydraulic and mechanical characteristics of the blanket directly affect its tritium breeding and safety performance. Therefore, neutronic/thermal-hydraulic/mechanical coupling analyses are of vital importance for a reliable blanket design. In this work, first, three-dimensional neutronics analysis and optimization of the typical outboard equatorial blanket module (No. 12) were performed for the comprehensive optimal scheme. Then, thermal and fluid dynamic analyses of the scheme under both normal and critical conditions were performed and coupled with the previous neutronic calculation results. With thermal-hydraulic boundaries, thermo-mechanical analyses of the structure materials under normal, critical and blanket over-pressurization conditions were carried out. In addition, several parametric sensitivity studies were also conducted to investigate the influences of the main parameters on the blanket temperature distributions. In this paper, the coupled analyses verify the reasonability of the optimized conceptual design preliminarily and can provide an important reference for the further analysis and optimization design of the CFETR helium cooled solid breeder blanket.

  6. Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Shijie; Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn; Cheng, Jie; Tian, Wenxi; Su, G.H.

    2017-01-15

    As one of the candidate tritium breeding blankets for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of the helium cooled solid breeder blanket has recently been proposed. The neutronic, thermal-hydraulic and mechanical characteristics of the blanket directly affect its tritium breeding and safety performance. Therefore, neutronic/thermal-hydraulic/mechanical coupling analyses are of vital importance for a reliable blanket design. In this work, first, three-dimensional neutronics analysis and optimization of the typical outboard equatorial blanket module (No. 12) were performed for the comprehensive optimal scheme. Then, thermal and fluid dynamic analyses of the scheme under both normal and critical conditions were performed and coupled with the previous neutronic calculation results. With thermal-hydraulic boundaries, thermo-mechanical analyses of the structure materials under normal, critical and blanket over-pressurization conditions were carried out. In addition, several parametric sensitivity studies were also conducted to investigate the influences of the main parameters on the blanket temperature distributions. In this paper, the coupled analyses verify the reasonability of the optimized conceptual design preliminarily and can provide an important reference for the further analysis and optimization design of the CFETR helium cooled solid breeder blanket.

  7. A methodology for accident analysis of fusion breeder blankets and its application to helium-cooled lead–lithium blanket

    International Nuclear Information System (INIS)

    Panayotov, Dobromir; Poitevin, Yves; Grief, Andrew; Trow, Martin; Dillistone, Michael

    2016-01-01

    'Fusion for Energy' (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena while remaining consistent with the approach already applied to ITER accident analyses. Furthermore, the methodology phases are illustrated in the paper by its application to the EU HCLL TBS using both MELCOR and RELAP5 codes.

  8. Preliminary accident analysis of Loss of Off-Site Power and In-Box LOCA for the CFETR helium cooled solid breeder blanket

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Qiang; Cui, Shijie [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Tian, Wenxi, E-mail: wxtian@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Zhang, Jing; Zhang, Dalin; Su, G.H. [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China)

    2017-05-15

    Highlights: • The CFETR HCSB blanket has been investigated using RELAP5. • Loss of Off-Site Power is investigated. • The parametric analyses during In-Box LOCA are investigated. • The HCSB blanket for CFETR is designed with sufficient decay heat removal capability. - Abstract: As one of three candidate tritium breeding blanket concepts for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of helium cooled solid breeder (HCSB) blanket was recently proposed. In this paper, the preliminary thermal-hydraulic and safety analyses of the typical outboard equatorial blanket module (No.12) have been carried out using RELAP5/Mod3.4 code. Two design basis accidents are investigated based on the steady-state initialization, including Loss of Off-Site Power and In-Box Loss of Coolant Accident (LOCA). The differences between circulator coast down and circulator rotor locked under Loss of Off-Site Power are compared. Regarding the In-Box LOCA, the influences of different break sizes and locations are thoroughly analyzed based on a relatively accurate modeling method of the heat structures in sub-modules. The analysis results show that the blanket and the combined helium cooling system (HCS) are designed with sufficient decay heat removal capability for both accidents, which can preliminarily verify the feasibility of the conceptual design. The research work can also provide an important reference for parameter optimization of the blanket and its HCS in the next stage.

  9. Methodology for accident analyses of fusion breeder blankets and its application to helium-cooled pebble bed blanket

    International Nuclear Information System (INIS)

    Panayotov, Dobromir; Grief, Andrew; Merrill, Brad J.; Humrickhouse, Paul; Trow, Martin; Dillistone, Michael; Murgatroyd, Julian T.; Owen, Simon; Poitevin, Yves; Peers, Karen; Lyons, Alex; Heaton, Adam; Scott, Richard

    2016-01-01

    Graphical abstract: - Highlights: • Test Blanket Systems (TBS) DEMO breeding blankets (BB) safety demonstration. • Comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena. • Development of accident analysis specifications (AAS) via the use of phenomena identification and ranking tables (PIRT). • PIRT application to identify required physical models for BB accidents analysis, code assessment and selection. • Development of MELCOR and RELAP5 codes TBS models. • Qualification of the models via comparison with finite element calculations, code-tocode comparisons, and sensitivity studies. - Abstract: ‘Fusion for Energy’ (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena while remaining consistent with the approach already applied to ITER accident analyses. The methodology phases are illustrated in the paper by its application to the EU HCPB TBS using both MELCOR and RELAP5 codes.

  10. Methodology for accident analyses of fusion breeder blankets and its application to helium-cooled pebble bed blanket

    Energy Technology Data Exchange (ETDEWEB)

    Panayotov, Dobromir, E-mail: dobromir.panayotov@f4e.europa.eu [Fusion for Energy (F4E), Josep Pla, 2, Torres Diagonal Litoral B3, Barcelona E-08019 (Spain); Grief, Andrew [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom); Merrill, Brad J.; Humrickhouse, Paul [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID (United States); Trow, Martin; Dillistone, Michael; Murgatroyd, Julian T.; Owen, Simon [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom); Poitevin, Yves [Fusion for Energy (F4E), Josep Pla, 2, Torres Diagonal Litoral B3, Barcelona E-08019 (Spain); Peers, Karen; Lyons, Alex; Heaton, Adam; Scott, Richard [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom)

    2016-11-01

    Graphical abstract: - Highlights: • Test Blanket Systems (TBS) DEMO breeding blankets (BB) safety demonstration. • Comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena. • Development of accident analysis specifications (AAS) via the use of phenomena identification and ranking tables (PIRT). • PIRT application to identify required physical models for BB accidents analysis, code assessment and selection. • Development of MELCOR and RELAP5 codes TBS models. • Qualification of the models via comparison with finite element calculations, code-tocode comparisons, and sensitivity studies. - Abstract: ‘Fusion for Energy’ (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena while remaining consistent with the approach already applied to ITER accident analyses. The methodology phases are illustrated in the paper by its application to the EU HCPB TBS using both MELCOR and RELAP5 codes.

  11. Numerical Analysis for Heat transfer characteristic of Helium cooling system in Helium cooled ceramic reflector Test Module Blanket (HCCR-TBM)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Dae; Lee, Dong Won; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Kim, Suk Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The main objectives of ITER project can be summarized into three types as follows - Plasma operation for a long time - Large tokamak device technology - Test blanket module (TBM) installation and verification The thermal-hydraulic analysis was performed in the He cooling channel in the BZ region of the HCCR TBM. The maximum temperature in the breeder material is equal to the limit temperature in the present design cooling channel. Nuclear fusion energy has advantage in terms of safety, resource availability, cost and waste management. There is not enough experimental results about the fusion reactor due to the severe experiments restrictions like vacuum environment, plasma production and significant nuclear heating at the same time. Much research and time is required for the commercial fusion reactor. For technical verification against the commercialization of fusion reactor, 7 countries which are EU, USA, Japan, Russia, China, India, and South Korea are building an ITER in the south of France. New designed cooling channels were proposed to improve the cooling performance. The swirl flow accelerates the mixture flow in the channels.

  12. Assessment of tritiated activities in the radwaste generated from ITER Chinese helium cooled ceramic breeding test blanket module system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chang An, E-mail: chenchangan@caep.cn; Liu, Lingbo; Wang, Bo; Xiang, Xin; Yao, Yong; Song, Jiangfeng

    2016-11-15

    Highlights: • Approaches were developed for calculation/evaluation of tritium activities in the materials and components of a TBM system, with tritium permeation being considered for the first time. • Almost all tritiated materials and components were considered in CNHCCB TBM system including the TBM set, connection pipes, and the ancillary tritium handling systems. • Tritium activity data in HCCB TBM system were updated. Some of which in directly tritium contacted components are to be 2 or 4 magnitudes higher than the original neutron transmutation calculations. • The radwaste amount from both operation and decommission of HCCB TBM system was evaluated. - Abstract: Chinese Helium Cooled Ceramic Breeding Test blanket Module (CNHCCB TBM) will be tested in the ITER machine for the feasibility of in pile tritium production for a future magnetic confinement fusion reactor. The tritium inventories/retentions in the material/components were evaluated and updated mainly based on the tritium diffusion/permeation theory and the analysis of some reported data. Tritiated activities rank from less than 10 Bq g{sup −1} to 10{sup 9} Bq g{sup −1} for the different materials or components, which are generally higher than those from the previous neutron transmutation calculation. The amounts of tritiated radwaste were also estimated according to the operation, decommission, maintenance and replacement strategies, which vary from several tens of kilograms to tons in the different operation phases. The data can be used both for the tritium radiological safety evaluation and radwaste management of CNHCCB TBM set and its ancillary systems.

  13. Safety and environmental impact of the BOT helium cooled solid breeder blanket for DEMO. SEAL subtask 6.2, final report

    International Nuclear Information System (INIS)

    Kleefeldt, K.; Dammel, F.; Gabel, K.

    1996-03-01

    The European Union has been engaged since 1989 in a programme to develop tritium breeding blankets for application in a fusion power reactor. There are four concepts under development, namely two of the solid breeder type and two of the liquid breeder type. At the Forschungszentrum Karlsruhe one blanket concept of each line has been pursued so far with the so-called breeder outside tube (BOT) type representing the solid breeder line. In the BOT concept, Li 4 SiO 4 is used as ceramic breeding material in the form of pebble beds in combination with beryllium pebbles serving as neutron multiplier. Breeder and multiplier materials are arranged in radial-toroidal layers, separated by cooling plates. The coolant is high pressure helium which is circulated in series, at first through the first wall structure and subsequently through the cooling plates. The safety and environmental impact of the BOT blanket concept has been assessed as part of the blanket concept selection exercise, a European concerted action aiming at selecting the two most promising concepts for further development. The topics investigated are: (a) Blanket materials and toxic materials inventory, (b) energy sources for mobilisation, (c) fault tolerance, (d) tritium and activation product release, and (e) waste generation. No insurmountable safety problems have been identified for the BOT concept. The results of the assessment are described in this report. The information collected is also intended to serve as input to the EU 'Safety and Environmental Assessment of Fusion long-term Programme' (SEAL). The unresolved issues pertaining to the BOT blanket which need further investigations in future programmes are outlined herein. (orig.) [de

  14. Manufacturing pre-qualification of a Short Breeder Unit mockup (SHOBU) as part of the roadmap toward the out-of-pile validation of a full scale Helium Cooled Pebble Bed Breeder Unit

    International Nuclear Information System (INIS)

    Hernández, Francisco A.; Rey, Jorg; Neuberger, Heiko; Krasnorutskyi, Sergii; Niewöhner, Reinhard; Felde, Alexander

    2015-01-01

    Highlights: • A relevant mockup of a HCPB Breeder Unit for ITER (SHOBU) has been manufactured. • The manufacturing technologies used in SHOBU and its assembly sequence are reported. • Preliminary qualification of the welds has been successfully done after codes. • Future work foreseen to manufacture a feasibility mockup according to RCC-MRx code. - Abstract: The key components of the Helium Cooled Pebble Bed Test Blanket Module (HCPB TBM) in ITER are the Breeder Units (BU). These are the responsible for the tritium breeding and part of the heat extraction in the HCPB TBM. After a detailed design and engineering phase performed during the last years in the Karlsruhe Institute of Technology (KIT), a reference model for the manufacturing of a HCPB BU mock-up has been obtained. The mid-term is the out-of-pile qualification of the thermal and thermo-mechanical performance of a full-scale HCPB BU mock-up in a dedicated helium loop. Several key manufacturing technologies have been developed for the fabrication of the HCPB BU. In order to pre-qualify these techniques, a Short Breeder Unit mock-up (SHOBU) is under construction and to be tested. This paper aims at describing the relevance of SHOBU with a full-scale HCPB BU, the constitutive parts of SHOBU, the manufacturing and joining technologies involved, the assembly sequence (taking into consideration functional steps like its filling with Li_4SiO_4 pebbles or its assembly in the HCPB TBM) and the welding procedures studied. The paper concludes with a description of the required pre-qualification tests performed to SHOBU, i.e. pressure and leak tightness tests, according to the standards.

  15. Design and development of ceramic breeder demo blanket

    International Nuclear Information System (INIS)

    Enoeda, M.; Sato, S.; Hatano, T.

    2001-01-01

    Ceramic breeder blanket development has been widely conducted in Japan from fundamental researches to project-oriented engineering scaled development. A long term R and D program has been launched in JAERI since 1996 as a course of DEMO blanket development. The objectives of this program are to provide engineering data base and fabrication technologies of the DEMO blanket, aiming at module testing in ITER currently scheduled to start from the beginning of the ITER operation as a near-term target. Two types of DEMO blanket systems, water cooled blanket and helium cooled blanket, have been designed to be consistent with the SSTR (Steady State Tokamak Reactor) which is the reference DEMO reactor design in JAERI. Both of them utilize packed small pebbles of breeder Li 2 O or Li 2 TiO 3 as a candidate) and neutron multiplier (Be) and rely on the development of advanced structural materials (a reduced activation ferritic steel F82H) compatible with high temperature operation. (author)

  16. Thermohydraulics design and thermomechanics analysis of two European breeder blanket concepts for DEMO. Pt. 1 and Pt. 2. Pt. 1: BOT helium cooled solid breeding blanket. Pt. 2: Dual coolant self-cooled liquid metal blanket

    International Nuclear Information System (INIS)

    Norajitra, P.

    1995-06-01

    Two different breeding blanket concepts are being elaborated at Forschungszentrum Karlsruhe within the framework of the DEMO breeding blanket development, the concept of a helium cooled solid breeding blanket and the concept of a self-cooled liquid metal blanket. The breeder material used in the first concept is Li 4 SiO 4 as a pebble bed arranged separate from the beryllium pebble bed, which serves as multiplier. The breeder material zone is cooled by several toroidally-radially configurated helium cooling plates which, at the same time, act as reinforcements of the blanket structures. In the liquid metal blanket concept lead-lithium is used both as the breeder material and the coolant. It flows at low velocity in poloidal direction downwards and back in the blanket front zone. In both concepts the First Wall is cooled by helium gas. This report deals with the thermohydraulics design and thermomechanics analysis of the two blanket concepts. The performance data derived from the Monte-Carlo computations serve as a basis for the design calculations. The coolant inlet and outlet temperatures are chosen with the design criteria and the economics aspects taken into account. Uniform temperature distribution in the blanket structures can be achieved by suitable branching and routing of the coolant flows which contributes to reducing decisively the thermal stress. The computations were made using the ABAQUS computer code. The results obtained of the stresses have been evaluated using the ASME code. It can be demonstrated that all maximum values of temperature and stress are below the admissible limit. (orig.) [de

  17. Prospects of ceramic tritium breeder materials

    International Nuclear Information System (INIS)

    Roth, E.; Roux, N.; Conservatoire National des Arts et Metiers; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette

    1989-01-01

    In this paper the authors examine the prospects of the main ceramics proposed as breeder materials for fusion reactors, i.e. Li-2O, Li-2ZrO-3, LiAlO-2, Li-4SiO-4. To do so they review terms of reference of contemplated blankets for NET, ITER and DEMO, and the proposed blanket concepts and materials. Issues respective to the use of each breeder material are examined, and from this review it is concluded that ceramics are the most favorable breeder materials whose use can be contemplated as well for a driver blanket for NET or ITER and for a DEMO blanket. Ceramics are then compared between themselves and it is seen that, subject to the confirmation of recent experimental results, lithium zirconate could be used with advantage in any of the present blanket concepts, except in those employing lithium at its natural isotopic abundance, in which case only Li-2O can be used. However in specific cases, or in parts of a blanket, other ceramics may be profitably employed. As a general conclusion suggestions are made to further improve ceramic breeder performances, and it is recommended to intensify also work on problems that have to be solved in order to operate ceramic breeder blankets e.g. tritium extraction and recovery systems and conditions of beryllium use. (author). 37 refs.; 12 tabs

  18. Thermal-hydraulic investigations on the CEA-ENEA DEMO relevant helium cooled poloidal blanket

    International Nuclear Information System (INIS)

    Dell'Orco, G.; Polazzi, G.; Vallette, F.; Proust, E.; Eid, M.

    1994-01-01

    The CEA-ENEA design of an Helium Cooled Solid Breeder Blanket (HCSBB) for the DEMO reactor, with a breeder in tube (BIT) poloidal arrangement, is based on the use of lithium ceramic pellets, the ENEA γ-LiAlO 2 or the CEA Li 2 ZrO 3 . Due to the geometry of the DEMO reactor plasma chamber, these breeder bundles are adapted to the Vacuum Vessel with a strong poloidal curvature. This curvature influences the thermal-hydraulic behaviour of the coolant flowing inside the bundle. The paper presents the CEA-ENEA first results of the experimental and theoretical programme, aiming at optimizing the breeder module thermal hydraulic design. (author) 6 refs.; 7 figs.; 1 tab

  19. Electrical behaviour of ceramic breeder blankets in pebble form after γ-radiation

    Directory of Open Access Journals (Sweden)

    E. Carella

    2015-07-01

    Full Text Available Lithium orthosilicate (Li4SiO4 ceramics in from of pebble bed is the European candidate for ITER testing HCPB (Helium Cooled Pebble Bed breeding modules. The breeder function and the shielding role of this material, represent the areas upon which attention is focused. Electrical measurements are proposed for monitoring the modification created by ionizing radiation and at the same time provide information on lithium movement in this ceramic structure. The electrical tests are performed on pebbles fabricated by Spray-dryer method before and after gamma-irradiation through a 60Co source to a fluence of 4.8 Gy/s till a total dose of 5 ∗ 105 Gy. The introduction of thermal annealing treatments during the electrical impedance spectroscopy (EIS measurements points out the recombination effect of the temperature on the γ-induced defects.

  20. Tritium behaviour in ceramic breeder blankets

    International Nuclear Information System (INIS)

    Miller, J.M.

    1989-01-01

    Tritium release from the candidate ceramic materials, Li 2 O, LiA10 2 , Li 2 SiO 3 , Li 4 SiO 4 and Li 2 ZrO 3 , is being investigated in many blanket programs. Factors that affect tritium release from the ceramic into the helium sweep gas stream include operating temperature, ceramic microstructure, tritium transport and solubility in the solid. A review is presented of the material properties studied and of the irradiation programs and the results are summarized. The ceramic breeder blanket concept is briefly reviewed

  1. Experimental programme in support of the development of the European ceramic-breeder-inside-tube test-blanket: present status and future work

    International Nuclear Information System (INIS)

    Proust, E.; Roux, N.; Flament, T.; Anzidei, L.; ENEA, Frascati; Casadio, S.; Dell'orco, G.

    1992-01-01

    Four DEMO blanket classes are under investigation within the framework of the European Test-Blanket Development Programme. One of them is featured by the use of lithium ceramic breeder pellets contained inside externally helium cooled tubes. This paper summarizes the main achievements to date of the experimental programme supporting the development of this class of blanket. It also gives an outline of the areas of the breeder material, beryllium, tritium control, and thermomechanical tests, the future work envisaged for the 92-94 period. 53 refs

  2. First results of the post-irradiation examination of the Ceramic Breeder materials from the Pebble Bed Assemblies Irradiation for the HCPB Blanket concept

    International Nuclear Information System (INIS)

    Hegeman, J.; Magielsen, A.J.; Peeters, M.; Stijkel, M.P.; Fokkens, J.H.; Laan, J.G. van der

    2006-01-01

    In the framework of developing the European Helium Cooled Pebble-Bed (HCPB) blanket an irradiation test of pebble-bed assemblies is performed in the HFR Petten. The experiment is focused on the thermo-mechanical behavior of the HCPB type breeder pebble-bed at DEMO representative levels of temperature and defined thermal-mechanical loads. To achieve representative conditions a section of the HCPB is simulated by EUROFER-97 cylinders with a horizontal bed of ceramic breeder pebbles sandwiched between two beryllium beds. Floating Eurofer-97 steel plates separate the pebble-beds. The structural integrity of the ceramic breeder materials is an issue for the design of the Helium Cooled Pebble Bed concept. Therefore the objective of the post irradiation examination is to study deformation of pebbles and the pebble beds and to investigate the microstructure of the ceramic pebbles from the Pebble Bed Assemblies. This paper concentrates on the Post Irradiation Examination (PIE) of the four ceramic pebble beds that have been irradiated in the Pebble Bed Assembly experiment for the HCPB blanket concept. Two assemblies with Li 4 SiO 4 pebble-beds are operated at different maximum temperatures of approximately 600 o C and 800 o C. Post irradiation computational analysis has shown that both have different creep deformation. Two other assemblies have been loaded with a ceramic breeder bed of two types of Li 2 TiO 3 beds having different sintering temperatures and consequently different creep behavior. The irradiation maximum temperature of the Li 2 TiO 3 was 800 o C. To support the first PIE result, the post irradiation thermal analysis will be discussed because thermal gradients have influence on the pebble-bed thermo-mechanical behavior and as a result it may have impact on the structural integrity of the ceramic breeder materials. (author)

  3. Helium cooling of fusion reactors

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Baxi, C.; Bourque, R.; Dahms, C.; Inamati, S.; Ryder, R.; Sager, G.; Schleicher, R.

    1994-01-01

    On the basis of worldwide design experience and in coordination with the evolution of the International Thermonuclear Experimental Reactor (ITER) program, the application of helium as a coolant for fusion appears to be at the verge of a transition from conceptual design to engineering development. This paper presents a review of the use of helium as the coolant for fusion reactor blanket and divertor designs. The concept of a high-pressure helium cooling radial plate design was studied for both ITER and PULSAR. These designs can resolve many engineering issues, and can help with reaching the goals of low activation and high performance designs. The combination of helium cooling, advanced low-activation materials, and gas turbine technology may permit high thermal efficiency and reduced costs, resulting in the environmental advantages and competitive economics required to make fusion a 21st century power source. ((orig.))

  4. Evaluation of US demo helium-cooled blanket options

    International Nuclear Information System (INIS)

    Wong, C.P.C.; McQuillan, B.W.; Schleicher, R.W.

    1995-10-01

    A He-V-Li blanket design was developed as a candidate for the U.S. fusion demonstration power plant. This paper presents an 18 MPa helium-cooled, lithium breeder, V-alloy design that can be coupled to the Brayton cycle with a gross efficiency of 46%. The critical issue of designing to high gas pressure and the compatibility between helium impurities and V-alloy are addressed

  5. A ceramic breeder in a poloidal tube blanket for a tokamak reactor

    International Nuclear Information System (INIS)

    Amici, A.; Anzidei, L.; Gallina, M.; Rado, V.; Simbolotti, G.; Violante, V.; Zampaglione, V.; Petrizzi, L.

    1989-01-01

    A conceptual study of a helium-cooled solid breeder blanket for a tokamak reactor is presented. Tritium breeding capability together with system reliability are taken as the main design criteria. The blanket consists of tubular poloidal modules made of a central bundle of ceramic rods (γLiAlO 2 ) with a coaxial distribution of the inlet/outlet coolant flow (He) surrounded by a multiplier material (Be) in the form of bored bricks. The Be to γLiAlO 2 volume ratio is 4/1. The He inlet and outlet branches are cooling Be and γLiAlO 2 , respectively. A purge He flow running through small central holes of the ceramic rods is derived from the main flow. Under the typical conditions of a tokamak reactor (neutron wall load=2 MW/m 2 ), a full coverage tritium breeding ratio of 1.47 is achieved for the following design and operating parameters: outlet He temperature=570 0 C; inlet He temperature=250 0 ; total extracted power=2700 MW; He pumping power percentage=2%; minimum/maximum γLiAlO 2 temperature=400/900 0 C; maximum structural temperature=475 0 C; and maximum Be temperature=525 0 C. (orig.)

  6. Lithium mass transport in ceramic breeder materials

    International Nuclear Information System (INIS)

    Blackburn, P.E.; Johnson, C.E.

    1990-01-01

    The objective of this activity is to measure the lithium vaporization from lithium oxide breeder material under differing temperature and moisture partial pressure conditions. Lithium ceramics are being investigated for use as tritium breeding materials. The lithium is readily converted to tritium after reacting with a neutron. With the addition of 1000 ppM H 2 to the He purge gas, the bred tritium is readily recovered from the blanket as HT and HTO above 400 degree C. Within the solid, tritium may also be found as LiOT which may transport lithium to cooler parts of the blanket. The pressure of LiOT(g), HTO(g), or T 2 O(g) above Li 2 O(s) is the same as that for reactions involving hydrogen. In our experiments we were limited to the use of hydrogen. The purpose of this work is to investigate the transport of LiOH(g) from the blanket material. 8 refs., 1 fig., 3 tabs

  7. The evolution of US helium-cooled blankets

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Schultz, K.R.; Cheng, E.T.

    1991-01-01

    This paper reviews and compares four helium-cooled fusion reactor blanket designs. These designs represent generic configurations of using helium to cool fusion reactor blankets that were studied over the past 20 years in the United States of America (US). These configurations are the pressurized module design, the pressurized tube design, the solid particulate and gas mixture design, and the nested shell design. Among these four designs, the nested shell design, which was invented for the ARIES study, is the simplest in configuration and has the least number of critical issues. Both metallic and ceramic-composite structural materials can be used for this design. It is believed that the nested shell design can be the most suitable blanket configuration for helium-cooled fusion power and experimental reactors. (orig.)

  8. Helium-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Longton, P.B.; Cowen, H.C.

    1975-01-01

    In helium cooled HTR's there is a by-pass circuit for cleaning purposes in addition to the main cooling circuit. This is to remove such impurities as hydrogen, methane, carbon monoxide and water from the coolant. In this system, part of the coolant successively flows first through an oxidation bed of copper oxide and an absorption bed of silica gel, then through activated charcoal or a molecular sieve. The hydrogen and carbon monoxide impurities are absorbed and the dry gas is returned to the main cooling circuit. To lower the hydrogen/water ratio without increasing the hydrogen fraction in the main cooling circuit, some of the hydrogen fraction converted into water is added to the cooling circuit. This is done, inter alia, by bypassing the water produced in the oxidation bed before it enters the absorption bed. The rest of the by-pass circuit, however, also includes an absorption bed with a molecular sieve. This absorbs the oxidized carbon monoxide fraction. In this way, such side effects as the formation of additional methane, carburization of the materials of the by-pass circuit or loss of graphite are avoided. (DG/RF) [de

  9. Comparison of inventory of tritium in various ceramic breeder blankets

    International Nuclear Information System (INIS)

    Nishikawa, M.; Beloglazov, S.; Nakashima, N.; Hashimoto, K.; Enoeda, M.

    2002-01-01

    It has been pointed out by the present authors that it is essential to understand such mass transfer steps as diffusion of tritium in the grain of breeder material, absorption of water vapor into bulk of the grain, and adsorption of water on surface of the grain, together with the isotope exchange reaction between hydrogen in purge gas and tritium on surface of breeder material and the isotope exchange reaction between water vapor in purge gas and tritium on surface, for estimation of the tritium inventory in a uniform ceramic breeder blanket under the steady-state condition. It has been also pointed out by the present authors that the water formation reaction on the surface of ceramic breeder materials at introduction of hydrogen can give effect on behavior of bred tritium and lithium transfer in blanket. The tritium inventory for various ceramic breeder blankets are compared in this study basing on adsorption capacity, absorption capacity, isotope exchange capacity, and isotope exchange reactions on the Li 2 O, LiAlO 2 , Li 2 ZrO 3 , Li 4 SiO 4 and Li 2 TiO 3 surface experimentally obtained by the present authors. Effect of each mass transfer steps on the shape of release curve of bred tritium at change of the operational conditions is also discussed from the observation at out pile experiment in KUR. (orig.)

  10. Status of helium-cooled nuclear power systems. [Development potential

    Energy Technology Data Exchange (ETDEWEB)

    Melese-d' Hospital, G.; Simnad, M

    1977-09-01

    Helium-cooled nuclear power systems offer a great potential for electricity generation when their long-term economic, environmental, conservation and energy self-sufficiency features are examined. The high-temperature gas-cooled reactor (HTGR) has the unique capability of providing high-temperature steam for electric power and process heat uses and/or high-temperature heat for endothermic chemical reactions. A variation of the standard steam cycle HTGR is one in which the helium coolant flows directly from the core to one or more closed cycle gas turbines. The effective use of nuclear fuel resources for electric power and nuclear process heat will be greatly enhanced by the gas-cooled fast breeder reactor (GCFR) currently being developed. A GCFR using thorium in the radial blanket could generate sufficient U-233 to supply the fuel for three HTGRs, or enough plutonium from a depleted uranium blanket to fuel a breeder economy expanding at about 10% per year. The feasibility of utilizing helium to cool a fusion reactor is also discussed. The status of helium-cooled nuclear energy systems is summarized as a basis for assessing their prospects. 50 references.

  11. Ceramic sphere-pac breeder design for fusion blankets

    International Nuclear Information System (INIS)

    Gierszewski, P.J.; Sullivan, J.D.

    1991-01-01

    Randomly packed beds of ceramic spheres are a practical approach to surrounding fusion plasmas with tritium-breeding material. This paper examines the general properties of sphere-pac beds for application in fusion breeder blankets. The design considerations and models are reviewed for packing, tritium breeding and recovery, thermal conductivity, purge-gas pressure drop, mechanical behavior and fabrication. The design correlations are compared against available fusion ceramic data. Specific conclusions are that ternary (three-size) beds are not attractive for fusion blankets, and that the fusion spheres should be as large as possible subject primarily to packing constraints. (orig.)

  12. Progress in tritium retention and release modeling for ceramic breeders

    International Nuclear Information System (INIS)

    Raffray, A.R.; Federici, G.; Billone, M.C.; Tanaka, S.

    1994-01-01

    Tritium behavior in ceramic breeder blankets is a key design issue for this class of blanket because of its impact on safety and fuel self-sufficiency. Over the past 10-15 years, substantial theoretical and experimental efforts have been dedicated world-wide to develop a better understanding of tritium transport in ceramic breeders. Models that are available today seem to cover reasonably well all the key physical transport and trapping mechanisms. They have allowed for reasonable interpretation and reproduction of experimental data and have helped in pointing out deficiencies in material property data base, in providing guidance for future experiments, and in analyzing blanket tritium behavior. This paper highlights the progress in tritium modeling over the last decade. Key tritium transport mechanisms are briefly described along with the more recent and sophisticated models developed to help understand them. Recent experimental data are highlighted and model calibration and validation discussed. Finally, example applications to blanket cases are shown as illustration of progress in the prediction of ceramic breeder blanket tritium inventory

  13. Proceedings of the fifteenth international workshop on ceramic breeder blanket interactions

    International Nuclear Information System (INIS)

    Tanigawa, Hisashi; Enoeda, Mikio

    2010-03-01

    This report is the Proceedings of 'the Fifteenth International Workshop on Ceramic Breeder Blanket Interactions' which was held as a workshop on ceramic breeders Under the IEA Implementing Agreement on the Nuclear Technology of Fusion Reactors. This workshop was held in Sapporo, Japan on 3-4, Sept. 2009. Twenty six participants from EU, Japan, India, Russia and USA attended the workshop. The scope of the workshop included 1) evolutions in ceramic breeder blanket design, 2) progress in ceramic breeder material development, 3) irradiation testing, 4) breeder material properties, 5) out-of-pile pebble bed experiment, 6) modeling of the thermal, mechanical and tritium transfer behavior of pebble beds and 7) interfacing issues of solid breeder blanket development. By this workshop, advance of key technologies for solid breeder blanket development was shared among the participants. Also, desired direction of further investigation and development was recognized. The 20 of the presented papers are indexed individually. (J.P.N.)

  14. Proceedings of the fifteenth international workshop on ceramic breeder blanket interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Hisashi; Enoeda, Mikio [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki (Japan)

    2010-03-15

    This report is the Proceedings of 'the Fifteenth International Workshop on Ceramic Breeder Blanket Interactions' which was held as a workshop on ceramic breeders Under the IEA Implementing Agreement on the Nuclear Technology of Fusion Reactors. This workshop was held in Sapporo, Japan on 3-4, Sept. 2009. Twenty six participants from EU, Japan, India, Russia and USA attended the workshop. The scope of the workshop included 1) evolutions in ceramic breeder blanket design, 2) progress in ceramic breeder material development, 3) irradiation testing, 4) breeder material properties, 5) out-of-pile pebble bed experiment, 6) modeling of the thermal, mechanical and tritium transfer behavior of pebble beds and 7) interfacing issues of solid breeder blanket development. By this workshop, advance of key technologies for solid breeder blanket development was shared among the participants. Also, desired direction of further investigation and development was recognized. The 20 of the presented papers are indexed individually. (J.P.N.)

  15. Tritium transport and release from lithium ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.; Kopasz, J.P.; Tam, S.W.

    1994-01-01

    In an operating fusion reactor,, the tritium breeding blanket will reach a condition in which the tritium release rate equals the production rate. The tritium release rate must be fast enough that the tritium inventory in the blanket does not become excessive. Slow tritium release will result in a large tritium inventory, which is unacceptable from both economic and safety viewpoints As a consequence, considerable effort has been devoted to understanding the tritium release mechanism from ceramic breeders and beryllium neutron multipliers through theoretical, laboratory, and in-reactor studies. This information is being applied to the development of models for predicting tritium release for various blanket operating conditions

  16. Modeling of tritium behavior in ceramic breeder materials

    International Nuclear Information System (INIS)

    Kopasz, J.P.; Tam, S.W.; Johnson, C.E.

    1988-11-01

    Computer models are being developed to predict tritium release from candidate ceramic breeder materials for fusion reactors. Early models regarded the complex process of tritium release as being rate limited by a single slow step, usually taken to be tritium diffusion. These models were unable to explain much of the experimental data. We have developed a more comprehensive model which considers diffusion and desorption from the grain surface. In developing this model we found that it was necessary to include the details of the surface phenomena in order to explain the results from recent tritium release experiments. A diffusion-desorption model with a desorption activation energy which is dependent on the surface coverage was developed. This model provided excellent agreement with the results from the CRITIC tritium release experiment. Since evidence suggests that other ceramic breeder materials have desorption activation energies which are dependent on surface coverage, it is important that these variations in activation energy be included in a model for tritium release. 17 refs., 12 figs

  17. Evaluation of helium cooling for fusion divertors

    International Nuclear Information System (INIS)

    Baxi, C.B.

    1993-09-01

    The divertors of future fusion reactors will have a power throughput of several hundred MW. The peak heat flux on the diverter surface is estimated to be 5 to 15 MW/m 2 at an average heat flux of 2 MW/m 2 . The divertors have a requirement of both minimum temperature (100 degrees C) and maximum temperature. The minimum temperature is dictated by the requirement to reduce the absorption of plasma, and the maximum temperature is determined by the thermo-mechanical properties of the plasma facing materials. Coolants that have been considered for fusion reactors are water, liquid metals and helium. Helium cooling has been shown to be very attractive from safety and other considerations. Helium is chemically and neutronically inert and is suitable for power conversion. The challenges associated with helium cooling are: (1) Manifold sizes; (2) Pumping power; and (3) Leak prevention. In this paper the first two of the above design issues are addressed. A variety of heat transfer enhancement techniques are considered to demonstrate that the manifold sizes and the pumping power can be reduced to acceptable levels. A helium-cooled diverter module was designed and fabricated by GA for steady-state heat flux of 10 MW/m 2 . This module was recently tested at Sandia National Laboratories. At an inlet pressure of 4 MPa, the module was tested at a steady-state heat flux of 10 MW/m 2 . The pumping power required was less than 1% of the power removed. These results verified the design prediction

  18. Fast breeder reactors

    International Nuclear Information System (INIS)

    Heinzel, V.

    1975-01-01

    The author gives a survey of 'fast breeder reactors'. In detail the process of breeding, the reasons for the development of fast breeders, the possible breeder reactors, the design criteria, fuels, cladding, coolant, and safety aspects are reported on. Design data of some experimental reactors already in operation are summarized in stabular form. 300 MWe Prototype-Reactors SNR-300 and PFR are explained in detail and data of KWU helium-cooled fast breeder reactors are given. (HR) [de

  19. Effective thermal conductivity of advanced ceramic breeder pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Pupeschi, S., E-mail: simone.pupeschi@kit.edu; Knitter, R.; Kamlah, M.

    2017-03-15

    As the knowledge of the effective thermal conductivity of ceramic breeder pebble beds under fusion relevant conditions is essential for the development of solid breeder blanket concepts, the EU advanced and reference lithium orthosilicate material were investigated with a newly developed experimental setup based on the transient hot wire method. The effective thermal conductivity was investigated in the temperature range RT–700 °C. Experiments were performed in helium and air atmospheres in the pressure range 0.12–0.4 MPa (abs.) under a compressive load up to 6 MPa. Results show a negligible influence of the chemical composition of the solid material on the bed’s effective thermal conductivity. A severe reduction of the effective thermal conductivity was observed in air. In both atmospheres an increase of the effective thermal conductivity with the temperature was detected, while the influence of the compressive load was found to be small. A clear dependence of the effective thermal conductivity on the pressure of the filling gas was observed in helium in contrast to air, where the pressure dependence was drastically reduced.

  20. Helium-cooled pebble bed test blanket module alternative design and fabrication routes

    International Nuclear Information System (INIS)

    Lux, M.

    2007-01-01

    According to first results of the recently started European DEMO study, a new blanket integration philosophy was developed applying so-called multi-module segments. These consist of a number of blanket modules flexibly mounted onto a common vertical manifold structure that can be used for replacing all modules in one segment at one time through vertical remote-handling ports. This principle gives new freedom in the design choices applied to the blanket modules itself. Based on the alternative design options considered for DEMO also the ITER test blanket module was newly analyzed. As a result of these activities it was decided to keep the major principles of the reference design like stiffening grid, breeder unit concept and perpendicular arrangement of pebble beds related to the First Wall because of the very positive results of thermo-mechanical and neutronics studies. The present paper gives an overview on possible further design optimization and alternative fabrication routes. One of the most significant improvements in terms of the hydraulic performance of the Helium cooled reactor can be reached with a new First Wall concept. That concept is based on an internal heat transfer enhancement technique and allows drastically reducing the flow velocity in the FW cooling channels. Small ribs perpendicular to the flow direction (transverse-rib roughness) are arranged on the inner surface of the First Wall cooling channels at the plasma side. In the breeder units cooling plates which are mostly parallel but bent into U-shape at the plasma-side are considered. In this design all flow channels are parallel and straight with the flow entering on one side of the parallel plate sections and exiting on the other side. The ceramic pebble beds are embedded between two pairs of such type of cooling plates. Different modifications could possibly be combined, whereby the most relevant discussed in this paper are (i) rib-cooled First Wall channels, (ii) U-bent cooling plates for

  1. Helium-Cooled Refractory Alloys First Wall and Blanket Evaluation

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Nygren, R.E.; Baxi, C.B.; Fogarty, P.; Ghoniem, N.; Khater, H.; McCarthy, K.; Merrill, B.; Nelson, B.; Reis, E.E.; Sharafat, S.; Schleicher, R.; Sze, D.K.; Ulrickson, M.; Willms, S.; Youssef, M.; Zinkel, S.

    1999-01-01

    Under the APEX program the He-cooled system design task is to evaluate and recommend high power density refractory alloy first wall and blanket designs and to recommend and initiate tests to address critical issues. We completed the preliminary design of a helium-cooled, W-5Re alloy, lithium breeder design and the results are reported in this paper. Many areas of the design were assessed, including material selection, helium impurity control, and mechanical, nuclear and thermal hydraulics design, and waste disposal, tritium and safety design. System study results show that at a closed cycle gas turbine (CCGT) gross thermal efficiency of 57.5%, a superconducting coil tokamak reactor, with an aspect ratio of 4, and an output power of 2 GWe, can be projected to have a cost of electricity at 54.6 mill/kWh. Critical issues were identified and we plan to continue the design on some of the critical issues during the next phase of the APEX design study

  2. Proceedings of the sixth international workshop on ceramic breeder blanket interactions

    International Nuclear Information System (INIS)

    Noda, Kenji

    1998-03-01

    This report is the Proceedings of ''the Sixth International Workshop on Ceramic Breeder Blanket Interactions'' which was held as a workshop on ceramic breeders under Annex II of IEA Implementing Agreement on a Programme of Research and Development on Fusion Materials, and Japan-US Workshop 97FT4-01. This workshop was held in Mito city, Japan on October 22-24, 1997. About forty experts from EU, Japan, USA, and Chile attended the workshop. The scope of the workshop included the following: 1) fabrication and characterization of ceramic breeders, 2) properties data for ceramic breeders, 3) tritium release characteristics, 4) modeling of tritium behavior, 5) irradiation effects on performance behavior, 6) blanket design and R and D requirements, 7) hydrogen behavior in materials, and 8) blanket system technology and structural materials. In the workshop, information exchange was performed for fabrication technology of ceramic breeder pebbles in EU and Japan, data of various properties of Li 2 TiO 3 , tritium release behavior of Li 2 TiO 3 and Li 2 ZrO 3 including tritium diffusion, modeling of tritium release from Li 2 ZrO 3 in ITER condition, helium release behavior from Li 2 O, results of tritium release irradiation tests of Li 4 SiO 4 pebbles in EXOTIC-7, R and D issues for ceramic breeders for ITER and DEMO blankets, etc. The 23 of the papers are indexed individually. (J.P.N.)

  3. Application of discrete element method to study mechanical behaviors of ceramic breeder pebble beds

    International Nuclear Information System (INIS)

    An Zhiyong; Ying, Alice; Abdou, Mohamed

    2007-01-01

    In this paper, the discrete element method (DEM) approach has been applied to study mechanical behaviors of ceramic breeder pebble beds. Directly simulating the contact state of each individual particle by the physically based interaction laws, the DEM numerical program is capable of predicting the mechanical behaviors of non-standard packing structures. The program can also provide the data to trace the evolution of contact characteristics and forces as deformation proceeds, as well as the particle movement when the pebble bed is subjected to external loadings. Our numerical simulations focus on predicting the mechanical behaviors of ceramic breeder pebble beds, which include typical fusion breeder materials in solid breeder blankets. Current numerical results clearly show that the packing density and the bed geometry can have an impact on the mechanical stiffness of the pebble beds. Statistical data show that the contact forces are highly related to the contact status of the pebbles

  4. Proceedings of the sixth international workshop on ceramic breeder blanket interactions

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji [ed.

    1998-03-01

    This report is the Proceedings of `the Sixth International Workshop on Ceramic Breeder Blanket Interactions` which was held as a workshop on ceramic breeders under Annex II of IEA Implementing Agreement on a Programme of Research and Development on Fusion Materials, and Japan-US Workshop 97FT4-01. This workshop was held in Mito city, Japan on October 22-24, 1997. About forty experts from EU, Japan, USA, and Chile attended the workshop. The scope of the workshop included the following: (1) fabrication and characterization of ceramic breeders, (2) properties data for ceramic breeders, (3) tritium release characteristics, (4) modeling of tritium behavior, (5) irradiation effects on performance behavior, (6) blanket design and R and D requirements, (7) hydrogen behavior in materials, and (8) blanket system technology and structural materials. In the workshop, information exchange was performed for fabrication technology of ceramic breeder pebbles in EU and Japan, data of various properties of Li{sub 2}TiO{sub 3}, tritium release behavior of Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} including tritium diffusion, modeling of tritium release from Li{sub 2}ZrO{sub 3} in ITER condition, helium release behavior from Li{sub 2}O, results of tritium release irradiation tests of Li{sub 4}SiO{sub 4} pebbles in EXOTIC-7, R and D issues for ceramic breeders for ITER and DEMO blankets, etc. The 23 of the papers are indexed individually. (J.P.N.)

  5. Proceedings of the eleventh international workshop on ceramic breeder blanket interactions

    International Nuclear Information System (INIS)

    Enoeda, Mikio

    2004-07-01

    This report is the Proceedings of 'the Eleventh International Workshop on Ceramic Breeder Blanket Interactions' which was held as a workshop on ceramic breeders Under the IEA Implementing Agreement on the Nuclear Technology of Fusion Reactors, and the Japan-US Fusion Collaboration Framework. This workshop was held in Tokyo, Japan on December 15-17, 2003. About thirty experts from China, EU, Japan, Korea, Latvia, Russia and USA attended the workshop. The scope of the workshop included 1) evolutions in ceramic breeder blanket design, 2) progress in ceramic breeder material development, 3) irradiation testing, 4) breeder material properties, 5) out-of-pile pebble bed experiment, 6) modeling of the thermal, mechanical and tritium transfer behavior of pebble beds and 7) interfacing issues of solid breeder blanket. In the workshop, information exchange was performed for designs of solid breeder blankets and test blankets in EU, Russia and Japan, recent results of irradiation tests, HICU, EXOTIC-8 and the irradiation tests by IVV-2M, modeling study on tritium release behavior of Li 2 TiO 3 and so on, fabrication technology developments and characterization of the Li 2 TiO 3 and Li 4 SiO 4 pebbles, research on measurements and modeling of thermo-mechanical behaviors of Li 2 TiO 3 and Li 4 SiO 4 pebbles, and interfacing issues, such as, fabrication technology for blanket box structure, neutronics experiments of blanket mockups by fusion neutron source and tritium recovery system. The 26 of the presented papers are indexed individually. (J.P.N.)

  6. Design and R and D activities on ceramic breeder blanket for fusion experimental reactors in JAERI

    International Nuclear Information System (INIS)

    Kurasawa, T.; Takatsu, H.; Sato, S.; Nakahira, M.; Furuya, K.; Hashimoto, T.; Kawamura, H.; Kuroda, T.; Tsunematsu, T.; Seki, M.

    1995-01-01

    Design and R and D activities on ceramic breeder blanket of a fusion experimental reactor have been progressed in JAERI. A layered pebble bed type ceramic breeder blanket with water cooling is a prime candidate concept. Design activities have been concentrated on improvement of the design by conducting detailed analyses and also by fabrication procedure consideration based on the current technologies. A wide variety of R and Ds have also been conducted in accordance with the design activities. Development of fabrication technology of the blanket box structure and its mechanical testing, elementary testing on thermal performances of the pebble bed, and engineering-oriented material tests of breeder and beryllium pebbles are the main achievements during the last two years. (orig.)

  7. Recent research activities on functional ceramics for insulator, breeder and optical sensing systems in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, S., E-mail: nagata@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai (Japan); Katsui, H.; Hoshi, K. [Institute for Materials Research, Tohoku University, Sendai (Japan); Tsuchiya, B. [Meijo University, Faculty of Science and Technology, Nagoya (Japan); Toh, K. [J-PARC Center Japan Atomic Energy Agency, Tokai (Japan); Zhao, M.; Shikama, T. [Institute for Materials Research, Tohoku University, Sendai (Japan); Hodgson, E.R. [Euratom/CIEMAT Fusion Association, Madrid (Spain)

    2013-11-15

    The paper presents a brief overview of current research activities on functional ceramic materials for insulating components, tritium breeder and optical sensing systems, mainly carried out at Institute for Materials Research (IMR), Tohoku University. Topics include recent experimental results related to the electrical degradation and optical changes in typical oxide ceramics (e.g. Al{sub 2}O{sub 3} and SiO{sub 2}) concerning radiolytic effects. Hydrogen effects on the electrical conductivity in the Perovskite-type oxide ceramics and the interaction between hydrogen and irradiation induced defects in ternary Li oxides used as breeder materials, were dynamically observed under the irradiation environment. Further attention is focused on several challenging qualifications required for an advanced sensing system using optical characteristics (e.g., thermoluminescence in SiO{sub 2} core fiber, neutron-induced long lasting emission from oxides doped with rare-earth elements, and gasochromic coloration phenomenon of WO{sub 3})

  8. Lithium ceramics as the solid breeder material in fusion reactors

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Reuther, T.C.; Johnson, C.E.

    1982-03-01

    Fusion blanket designs have for almost a decade considered the use of a solid breeder relying on available data and assumed performance. The conclusion from these studies is that acceptable neutronic and thermal hydraulic performance can be achieved. In the future, it will be necessary to establish that a particular material can tolerate the thermal and irradiation environment of the fusion blanket while still providing the required functions of tritium recovery, power production and neutron shielding

  9. Study on ceramic breeder and related materials by means of work function measurement under irradiation

    International Nuclear Information System (INIS)

    Luo, G.N.; Terai, T.; Yamawaki, M.; Yamaguchi, K.

    2002-01-01

    Ceramic breeder materials, Li 2 O, LiAlO 2 and Li 4 SiO 4 , under irradiation have been studied using a Kelvin probe that measures work function changes of materials. Surface charging was observed to influence greatly the probe output, which can be explained qualitatively employing a model concerning induction electric field due to external field and free charges on ceramic surface. It is found that the insulating ceramics could not be studied properly with the Kelvin probe. A probable solution is to heat the ceramics, so as to raise their electric conductivities high enough to root out the surface charging. Also briefly discussed is the application of the probe to metals under ion irradiation. (orig.)

  10. LOFA analyses for the water and helium cooled SEAFP reactors

    International Nuclear Information System (INIS)

    Sponton, L.; Sjoeberg, A.; Nordlinder, S.

    2001-01-01

    This study was performed in the frame of the European long-term fusion safety programme 1999 (SEAFP99). Loss of flow accidents (LOFA) have been studied for two cases, first for a helium cooled reactor with advanced dual-coolant (DUAL) blanket at 100% nominal power. The second case applies to a water-cooled reactor at 20% nominal power. Both transients were simulated with the code MELCOR 1.8.4. The results for the helium cooled reactor show that with a natural circulation flow of helium after the pump stops, the first wall temperature will stay below the temperature for excepted failure of the construction material. For the water cooled reactor, the results show that the pressurizer set point for its liquid volumetric inventory is reached before the plasma facing components attain a critical temperature. The pressurizer set point will induce a plasma shutdown

  11. Thermodynamic considerations for the use of vanadium alloys with ceramic breeder materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.E.; Johnson, I.; Kopasz, J.P.

    1995-12-31

    Fusion energy is considered to be an attractive energy form because of its minimal environmental impact. In order to maintain this favorable status, every effort needs to be made to use low activation materials wherever possible. The tritium breeder blanket is a focal point of system design engineers who must design environmentally attractive blankets through the use of low activation materials. Of the several candidate lithium-containing ceramics being considered for use in the breeder blanket, Li{sub 2}O, Li{sub 2}TiO{sub 3}, are attractive choices because of their low activation. Also, low activation materials like the vanadium alloys are being considered for use as structural materials in the blanket. The suitability of vanadium alloys for containment of lithium ceramics is the subject of this study. Thermodynamic evaluations are being used to estimate the compatibility and stability of candidate ceramic breeder materials (Li{sub 2}O, Li{sub 2}TiO{sub 3}, and Li{sub 2}ZrO{sub 3}) with vanadium and vanadium alloys. This thermodynamic evaluation will focus first on solid-solid interactions. As a tritium breeding blanket will use a purge gas for tritium recovery, gas-solid systems will also receive attention.

  12. Thermodynamic considerations for the use of vanadium alloys with ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.; Johnson, I.; Kopasz, J.P.

    1995-01-01

    Fusion energy is considered to be an attractive energy form because of its minimal environmental impact. In order to maintain this favorable status, every effort needs to be made to use low activation materials wherever possible. The tritium breeder blanket is a focal point of system design engineers who must design environmentally attractive blankets through the use of low activation materials. Of the several candidate lithium-containing ceramics being considered for use in the breeder blanket, Li 2 O, Li 2 TiO 3 , are attractive choices because of their low activation. Also, low activation materials like the vanadium alloys are being considered for use as structural materials in the blanket. The suitability of vanadium alloys for containment of lithium ceramics is the subject of this study. Thermodynamic evaluations are being used to estimate the compatibility and stability of candidate ceramic breeder materials (Li 2 O, Li 2 TiO 3 , and Li 2 ZrO 3 ) with vanadium and vanadium alloys. This thermodynamic evaluation will focus first on solid-solid interactions. As a tritium breeding blanket will use a purge gas for tritium recovery, gas-solid systems will also receive attention

  13. Thermodynamics of ceramic breeder materials for fusion reactors

    International Nuclear Information System (INIS)

    Goetzmann, O.

    1989-05-01

    Based on known or deduced phase relationships in ternary lithium oxygen systems such as Li-Al-O, Li-Si-O and Li-Zr-O, the unknown free enthalpy of formation values of ternary compounds are calculated starting from the known data of the compounds of the binary border systems. Criterion for the data assessment is interconsistency of the data of all the compounds within a given multi-component system. With the help of these data the development of partial pressures during the breeding process can be calculated for all the compounds of interest. In order to facilitate a compatibility assessment the quaternary systems Cr-Li-Si-O, Fe-Li-Si-O and Be-Li-Si-O were also investigated and thermodynamic data of pertinent ternary and quaternary compounds determined. Both the partial pressure development and the compatibility behaviour of a lithium containing compound are criteria for its qualification as a breeder material for a fusion reactor. (orig.) [de

  14. Thermally induced outdiffusion studies of deuterium in ceramic breeder blanket materials after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    González, Maria, E-mail: maria.gonzalez@ciemat.es [LNF-CIEMAT, Materials for Fusion Group, Madrid (Spain); Carella, Elisabetta; Moroño, Alejandro [LNF-CIEMAT, Materials for Fusion Group, Madrid (Spain); Kolb, Matthias H.H.; Knitter, Regina [Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-WPT), Karlsruhe (Germany)

    2015-10-15

    Highlights: • Surface defects in Lithium-based ceramics are acting as trapping centres for deuterium. • Ionizing radiation affects the deuterium sorption and desorption processes. • By extension, the release of the tritium produced in a fusion breeder will be effective. - Abstract: Based on a KIT–CIEMAT collaboration on the radiation damage effects of light ions sorption/desorption in ceramic breeder materials, candidate materials for the ITER EU TBM were tested for their outgassing behavior as a function of temperature and radiation. Lithium orthosilicate based pebbles with different metatitanate contents and pellets of the individual oxide components were exposed to a deuterium atmosphere at room temperature. Then the thermally induced release of deuterium gas was registered up to 800 °C. This as-received behavior was studied in comparison with that after exposing the deuterium-treated samples to 4 MGy total dose of gamma radiation. The thermal desorption spectra reveal differences in deuterium sorption/desorption behavior depending on the composition and the induced ionizing damage. In these breeder candidates, strong desorption rate at approx. 300 °C takes place, which slightly increases with increasing amount of the titanate second phase. For all studied materials, ionizing radiation induces electronic changes disabling a number of trapping centers for D{sub 2} adsorption.

  15. Enhancement of isotope exchange reactions over ceramic breeder material by deposition of catalyst metal

    International Nuclear Information System (INIS)

    Narisato, Y.; Munakata, K.; Koga, A.; Yokoyama, Y.; Takata, T.; Okabe, H.

    2004-01-01

    The deposition of catalyst metals in ceramic breeders could enhance the release rate of tritium due to the promotion of isotope exchange reactions taking place at the interface of the breeder surface and the sweep gas. In this work, the authors examined the effects of catalytic active metal deposited on lithium titanate on the isotope exchange reactions. With respect to the virgin lithium titanate, it was found that the rate of the isotope exchange reactions taking place on the surface is quite low. However, the deposition of palladium greatly increased the exchange reaction rate. The effect of the amounts of deposited palladium on the isotope exchange reaction rate was also investigated. The results indicate that the exchange reactions are still enhanced even if the amounts of deposited palladium are as low as 0.04%

  16. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of ceramic material are investigated within the framework of developing solid breeder blankets for future fusion power plants. A thermo-mechanical characterisation of such pebble beds is mandatory for understanding the behaviour of pebble beds, and thus the overall blanket, under fusion environment conditions. The mechanical behaviour of pebble beds is typically explored with uni-axial, bi-axial and tri-axial compression experiments. The latter two types of experiment are particularly revealing since they contain explicitly, beyond a compression behaviour of the bed, information on the conditions for pebble flow, i.e. macroscopic relocation, in the pebble bed. (orig.)

  17. Radiolytic reactions in the coolant of helium cooled reactors

    International Nuclear Information System (INIS)

    Tingey, G.L.; Morgan, W.C.

    1975-01-01

    The success of helium cooled reactors is dependent upon the ability to prevent significant reaction between the coolant and the other components in the reactor primary circuit. Since the thermal reaction of graphite with oxidizing gases is rapid at temperatures of interest, the thermal reactions are limited primarily by the concentration of impurity gases in the helium coolant. On the other hand, the rates of radiolytic reactions in helium are shown to be independent of reactive gas concentration until that concentration reaches a very low level. Calculated steady-state concentrations of reactive species in the reactor coolant and core burnoff rates are presented for current U. S. designed, helium cooled reactors. Since precise base data are not currently available for radiolytic rates of some reactions and thermal reaction rate data are often variable, the accuracy of the predicted gas composition is being compared with the actual gas compositions measured during startup tests of the Fort Saint Vrain high temperature gas-cooled reactor. The current status of these confirmatory tests is discussed. 12 references

  18. Tritons and tritides as the solute and diffusing species in ceramic tritium breeders

    International Nuclear Information System (INIS)

    Fischer, A.K.; Johnson, C.E.

    1987-01-01

    Intragranular diffusion of tritium is an inherent participant in the process of releasing tritium from lithium-containing ceramics that are used to breed tritium in a fusion reactor. The nature of this transport is reviewed in terms of the understanding established for the mechanism of hydrogen migration in other oxides, namely, that the diffusing species is the proton and that it moves from oxide ion to oxide ion, thereby giving rise to apparent hydroxide migration. Analogously, the triton, transiently bonded to successive oxides and forming successive tritoxides, is taken to be the dominant migrating species in ceramic breeders. In addition, tritide becomes a significant participant at low oxygen activity. The relationship of tritons and tritides as the migrating species to the observed release of both reduced and oxidized forms can be understood in terms of the thermodynamic conditions that prevail. Mechanisms exist that can be proposed to rationalize the participation of these species

  19. Chemical compatibility study between ceramic breeder and EUROFER97 steel for HCPB-DEMO blanket

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Keisuke, E-mail: keisuke.mukai@kit.edu [Institute for Applied Materials (IAM), Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Sanchez, Fernando [National Fusion Laboratory, Division of Fusion Technology, CIEMAT, 28040 Madrid (Spain); Knitter, Regina [Institute for Applied Materials (IAM), Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany)

    2017-05-15

    Chemical compatibility between ceramic breeder (Li{sub 4}SiO{sub 4} + 20 mol% addition of Li{sub 2}TiO{sub 3}) and EUROFER97 steel was examined in this study. These materials were contacted and heated at 623, 823 and 1073 K under He + 0.1 vol.% H{sub 2} atmosphere for up to 12 weeks. Limited influence was found in the breeder specimens, although losses of the constituent elements appeared near the surface of the breeder pellets heated at 1073 K. For the EUROFER specimens with formation of a corrosion layer, element diffusivity was estimated based on diffusion kinetics. In the temperature range, effective diffusion coefficients of oxygen into EUROFER steel were in the range from 3.5 × 10{sup −134} to 2.5 × 10{sup −112} cm/s{sup 2} and found to be faster than that of Li. The coefficients yielded an activation energy of 0.93 eV for oxygen diffusion into EUROFER steel and predicted the possible thickness of the corrosion layer after operational periods.

  20. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of Tritium breeding ceramic material are investigated within the framework of developing solid breeder blankets for future nuclear fusion power plants. For the thermo-mechanical characterisation of such pebble beds, bed compression experiments are the standard tools. New bi-axial compression experiments on 20 and 30 mm high pebble beds show pebble flow effects much more pronounced than in previous 10 mm beds. Owing to the greater bed height, conditions are reached where the bed fails in cross direction and unhindered flow of the pebbles occurs. The paper presents measurements for the orthosilicate and metatitanate breeder materials that are envisaged to be used in a solid breeder blanket. The data are compared with calculations made with a Drucker-Prager soil model within the finite-element code ABAQUS, calibrated with data from other experiments. It is investigated empirically whether internal bed friction angles can be determined from pebble beds of the considered heights, which would simplify, and broaden the data base for, the calibration of the Drucker-Prager pebble bed models

  1. Cyclic loading tests on ceramic breeder pebble bed by discrete element modeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Guo, Haibing; Shi, Tao [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Huang, Hongwen, E-mail: hhw@caep.cn [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Zhenghong, E-mail: inpcnyb@sina.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); University of Science and Technology of China, Hefei 230027 (China)

    2017-05-15

    Highlights: • Methods of cyclic loading tests on the pebble beds were developed in DEM. • Size distribution and sphericity of the pebbles were considered for the specimen. • Mechanical responses of the pebble beds under cyclic loading tests were assessed. - Abstract: Complex mechanics and packing instability can be induced by loading operation on ceramic breeder pebble bed for its discrete nature. A numerical approach using discrete element method (DEM) is applied to study the mechanical performance of the ceramic breeder pebble bed under quasi-static and cyclic loads. A preloaded specimen can be made with servo-control mechanism, the quasi-static and dynamic stress-strain performances are studied during the tests. It is found that the normalized normal contact forces under quasi-static loads have the similar distributions, and increase with increasing loads. Furthermore, the relatively low volumetric strain can be absorbed by pebble bed after several loading and unloading cycles, but the peak normal contact force can be extremely high during the first cycle. Cyclic loading with target pressure is recommended for densely packing, irreversible volume reduction gradually increase with cycles, and the normal contact forces decrease with cycles.

  2. Cyclic loading tests on ceramic breeder pebble bed by discrete element modeling

    International Nuclear Information System (INIS)

    Zhang, Hao; Guo, Haibing; Shi, Tao; Ye, Minyou; Huang, Hongwen; Li, Zhenghong

    2017-01-01

    Highlights: • Methods of cyclic loading tests on the pebble beds were developed in DEM. • Size distribution and sphericity of the pebbles were considered for the specimen. • Mechanical responses of the pebble beds under cyclic loading tests were assessed. - Abstract: Complex mechanics and packing instability can be induced by loading operation on ceramic breeder pebble bed for its discrete nature. A numerical approach using discrete element method (DEM) is applied to study the mechanical performance of the ceramic breeder pebble bed under quasi-static and cyclic loads. A preloaded specimen can be made with servo-control mechanism, the quasi-static and dynamic stress-strain performances are studied during the tests. It is found that the normalized normal contact forces under quasi-static loads have the similar distributions, and increase with increasing loads. Furthermore, the relatively low volumetric strain can be absorbed by pebble bed after several loading and unloading cycles, but the peak normal contact force can be extremely high during the first cycle. Cyclic loading with target pressure is recommended for densely packing, irreversible volume reduction gradually increase with cycles, and the normal contact forces decrease with cycles.

  3. Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module

    Science.gov (United States)

    Deepak, SHARMA; Paritosh, CHAUDHURI

    2018-04-01

    The Indian test blanket module (TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the R&D activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices (ITER relevant and DEMO). The Indian Lead–Lithium Cooled Ceramic Breeder (LLCB) blanket concept is one of the Indian DEMO relevant TBM, to be tested in ITER as a part of the TBM program. Helium-Cooled Ceramic Breeder (HCCB) is an alternative blanket concept that consists of lithium titanate (Li2TiO3) as ceramic breeder (CB) material in the form of packed pebble beds and beryllium as the neutron multiplier. Specifically, attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions. These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.

  4. Canadian ceramic breeder sphere-pac technology: Capability and recent results

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Brayman, C.L.; Verrall, R.A.; Miller, J.M.; Gierszewski, P.J.; Londry, F.; Slavin, A.

    1991-01-01

    Sphere-pac ceramic breeders have been under development in Canada for several years. The goal is to fabricate and characterize these materials for use in engineering test reactors and subsequent fusion power reactors. Practical application of sphere-pac beds requires close consideration of both properties and fabrication. The present emphasis of the program is on 1-3 mm diameter Li 2 ZrO 3 spheres, with the future development of binary beds planned. Litre quantities have been produced by methods that are applicable to high production rates. These spheres are being tested for measurement of bulk properties (e.g., thermal conductivity, gas permeability, packing density, tritium release, specific heat) and long-term irradiation exposure. This paper summarizes the status of the work. (orig.)

  5. Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR

    Science.gov (United States)

    Gao, Fangfang; Zhang, Xiaokang; Pu, Yong; Zhu, Qingjun; Liu, Songlin

    2016-08-01

    Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor (CFETR) operating on a Deuterium-Tritium (D-T) fuel cycle. It is necessary to study the tritium breeding ratio (TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder (WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket, the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code (MCNP) and the fusion activation code FISPACT-2007. The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation. In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015GB108002, and 2014GB119000), and by National Natural Science Foundation of China (No. 11175207)

  6. R and D status on Water Cooled Ceramic Breeder Blanket Technology

    Energy Technology Data Exchange (ETDEWEB)

    Enoeda, Mikio, E-mail: enoeda.mikio@jaea.go.jp; Tanigawa, Hisashi; Hirose, Takanori; Nakajima, Motoki; Sato, Satoshi; Ochiai, Kentaro; Konno, Chikara; Kawamura, Yoshinori; Hayashi, Takumi; Yamanishi, Toshihiko; Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu; Nishi, Hiroshi; Suzuki, Satoshi; Ezato, Koichiro; Seki, Yohji; Yokoyama, Kenji

    2014-10-15

    Japan Atomic Energy Agency (JAEA) is performing the development of a Water Cooled Ceramic Breeder (WCCB) Test Blanket Module (TBM) as one of the most important steps toward DEMO blanket. Regarding the blanket module fabrication technology development using F82H, the fabrication of a real scale mockup of the back wall of TBM was completed. In the design activity of the TBM, electromagnetic analysis under plasma disruption events and thermo-mechanical analysis under steady state and transient state of tokamak operation have been performed and showed bright prospect toward design justification. Regarding the development of advanced breeder and multiplier pebbles for DEMO blanket, fabrication technology development of Li rich Li{sub 2}TiO{sub 3} pebble and BeTi pebble was performed. Regarding the research activity on the evaluation of tritium generation performance, the evaluation of tritium production and recovery test using D-T neutron in the Fusion Neutronics Source (FNS) facility has been performed. This paper overviews the recent achievements of the development of the WCCB Blanket in JAEA.

  7. Influence of gas pressure on the effective thermal conductivity of ceramic breeder pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weijing [School of Civil Engineering, The University of Sydney, Sydney (Australia); Pupeschi, Simone [Institute for Applied Materials, Karlsruhe Institute of Technology (KIT) (Germany); Hanaor, Dorian [School of Civil Engineering, The University of Sydney, Sydney (Australia); Institute for Materials Science and Technologies, Technical University of Berlin (Germany); Gan, Yixiang, E-mail: yixiang.gan@sydney.edu.au [School of Civil Engineering, The University of Sydney, Sydney (Australia)

    2017-05-15

    Highlights: • This study explicitly demonstrates the influence of the gas pressure on the effective thermal conductivity of pebble beds. • The gas pressure influence is shown to correlated to the pebble size. • The effective thermal conductivity is linked to thermal-mechanical properties of pebbles and packing structure. - Abstract: Lithium ceramics have been considered as tritium breeder materials in many proposed designs of fusion breeding blankets. Heat generated in breeder pebble beds due to nuclear breeding reaction must be removed by means of actively cooled plates while generated tritiums is recovered by purge gas slowly flowing through beds. Therefore, the effective thermal conductivity of pebble beds that is one of the governing parameters determining heat transport phenomenon needs to be addressed with respect to mechanical status of beds and purge gas pressure. In this study, a numerical framework combining finite element simulation and a semi-empirical correlation of gas gap conduction is proposed to predict the effective thermal conductivity. The purge gas pressure is found to vary the effective thermal conductivity, in particular with the presence of various sized gaps in pebble beds. Random packing of pebble beds is taken into account by an approximated correlation considering the packing factor and coordination number of pebble beds. The model prediction is compared with experimental observation from different sources showing a quantitative agreement with the measurement.

  8. Pre-conceptual design study on K-DEMO ceramic breeder blanket

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Sung, E-mail: jspark@nfri.re.kr [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kwon, Sungjin; Im, Kihak; Kim, Keeman [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Brown, Thomas; Neilson, George [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2015-11-15

    A pre-conceptual design study has been carried out for the Korean fusion demonstration reactor (K-DEMO) tokamak featured by high magnetic field (B{sub T0} = 7.4 T), R = 6.8 m, a = 2.1 m, and a steady-state operation. The design concepts of the K-DEMO blanket system considering the cooling in-vessel components with pressurized water and a solid pebble breeder are described herein. The structure of the K-DEMO blanket is toroidally subdivided into 16 inboard and 32 outboard sectors, in order to allow the vertical maintenance. Each blanket module is composed of plasma-facing first wall, layers of breeding parts, shielding and manifolds. A ceramic breeder using Li{sub 4}SiO{sub 4} pebbles with Be{sub 12}Ti as neuron multiplier is employed for study. MCNP neutronic simulations and thermo-hydraulic analyses are interactively performed in order to satisfy two key aspects: achieving a global Tritium Breeding Ratio (TBR) >1.05 and operating within the maximum allowable temperature ranges of materials.

  9. Influence of gas pressure on the effective thermal conductivity of ceramic breeder pebble beds

    International Nuclear Information System (INIS)

    Dai, Weijing; Pupeschi, Simone; Hanaor, Dorian; Gan, Yixiang

    2017-01-01

    Highlights: • This study explicitly demonstrates the influence of the gas pressure on the effective thermal conductivity of pebble beds. • The gas pressure influence is shown to correlated to the pebble size. • The effective thermal conductivity is linked to thermal-mechanical properties of pebbles and packing structure. - Abstract: Lithium ceramics have been considered as tritium breeder materials in many proposed designs of fusion breeding blankets. Heat generated in breeder pebble beds due to nuclear breeding reaction must be removed by means of actively cooled plates while generated tritiums is recovered by purge gas slowly flowing through beds. Therefore, the effective thermal conductivity of pebble beds that is one of the governing parameters determining heat transport phenomenon needs to be addressed with respect to mechanical status of beds and purge gas pressure. In this study, a numerical framework combining finite element simulation and a semi-empirical correlation of gas gap conduction is proposed to predict the effective thermal conductivity. The purge gas pressure is found to vary the effective thermal conductivity, in particular with the presence of various sized gaps in pebble beds. Random packing of pebble beds is taken into account by an approximated correlation considering the packing factor and coordination number of pebble beds. The model prediction is compared with experimental observation from different sources showing a quantitative agreement with the measurement.

  10. Manufacturing and joining technologies for helium cooled divertors

    International Nuclear Information System (INIS)

    Aktaa, J.; Basuki, W.W.; Weber, T.; Norajitra, P.; Krauss, W.; Konys, J.

    2014-01-01

    Highlights: • The manufacturing and joining technologies developed at KIT for helium cooled divertors are reviewed and critically discussed. • Various technologies have been pursued and further developed aiming divertor components with very high quality and sufficient reliability. • Very promising routes have been found for which however still R and D works are necessary. • Technologies developed are also useful for other divertor and even blanket concepts, particularly those with tungsten armor. - Abstract: In the helium cooled (HC) divertor, developed at KIT for a fusion power plant, tungsten has been selected as armor as well as structural material due to its crucial properties: high melting point, very low sputtering yield, good thermal conductivity, high temperature strength, low thermal expansion and low activation. Thereby the armor tungsten is attached to the structural tungsten by thermally conductive joint. Due to the brittleness of tungsten at low temperatures its use as structural material is limited to the high temperature part of the component and a structural joint to the reduced activation ferritic martensitic steel EUROFER97 is foreseen. Hence, to realize the selected hybrid material concept reliable tungsten–steel and tungsten–tungsten joints have been developed and will be reported in this paper. In addition, the modular design of the HC divertor requires tungsten armor tiles and tungsten structural thimbles to be manufactured in high numbers with very high quality. Due to the high strength and low temperature brittleness of tungsten special manufacturing techniques need to be developed for the production of parts with no cavities inside and/or surface flaws. The main achievement in developing the respective manufacturing technologies will be presented and discussed. To achieve the objectives mentioned above various manufacturing and joining technologies are pursued. Their later applicability depends on the level of development

  11. High temperature helium-cooled fast reactor (HTHFR)

    International Nuclear Information System (INIS)

    Karam, R.A.; Blaylock, Dwayne; Burgett, Eric; Mostafa Ghiaasiaan, S.; Hertel, Nolan

    2006-01-01

    Scoping calculations have been performed for a very high temperature (1000 o C) helium-cooled fast reactor involving two distinct options: (1) using graphite foam into which UC (12% enrichment) is embedded into a matrix comprising UC and graphite foam molded into hexagonal building blocks and encapsulated with a SiC shell covering all surfaces, and (2) using UC only (also 12% enrichment) molded into the same shape and size as the foam-UC matrix in option 1. Both options use the same basic hexagonal fuel matrix blocks to form the core and reflector. The reflector contains natural uranium only. Both options use 50 μm SiC as a containment shell for fission product retention within each hexagonal block. The calculations show that the option using foam (option 1) would produce a reactor that can operate continuously for at least 25 years without ever adding or removing any fuel from the reactor. The calculations show further that the UC only option (option 2) can operate continually for 50 years without ever adding or removing fuel from the reactor. Doppler and loss of coolant reactivity coefficients were calculated. The Doppler coefficient is negative and much larger than the loss of coolant coefficient, which was very small and positive. Additional progress on and development of the two concepts are continuing

  12. A helium-cooled blanket design of the low aspect ratio reactor

    International Nuclear Information System (INIS)

    Wong, C.P.; Baxi, C.B.; Reis, E.E.; Cerbone, R.; Cheng, E.T.

    1998-03-01

    An aggressive low aspect ratio scoping fusion reactor design indicated that a 2 GW(e) reactor can have a major radius as small as 2.9 m resulting in a device with competitive cost of electricity at 49 mill/kWh. One of the technology requirements of this design is a high performance high power density first wall and blanket system. A 15 MPa helium-cooled, V-alloy and stagnant LiPb breeder first wall and blanket design was utilized. Due to the low solubility of tritium in LiPb, there is the concern of tritium migration and the formation of V-hydride. To address these issues, a lithium breeder system with high solubility of tritium has been evaluated. Due to the reduction of blanket energy multiplication to 1.2, to maintain a plant Q of > 4, the major radius of the reactor has to be increased to 3.05 m. The inlet helium coolant temperature is raised to 436 C in order to meet the minimum V-alloy temperature limit everywhere in the first wall and blanket system. To enhance the first wall heat transfer, a swirl tape coolant channel design is used. The corresponding increase in friction factor is also taken into consideration. To reduce the coolant system pressure drop, the helium pressure is increased from 15 to 18 MPa. Thermal structural analysis is performed for a simple tube design. With an inside tube diameter of 1 cm and a wall thickness of 1.5 mm, the lithium breeder can remove an average heat flux and neutron wall loading of 2 and 8 MW/m(2), respectively. This reference design can meet all the temperature and material structural design limits, as well as the coolant velocity limits. Maintaining an outlet coolant temperature of 650 C, one can expect a gross closed cycle gas turbine thermal efficiency of 45%. This study further supports the use of helium coolant for high power density reactor design. When used with the low aspect ratio reactor concept a competitive fusion reactor can be projected at 51.9 mill/kWh

  13. Liquid helium-cooled MOSFET preamplifier for use with astronomical bolometer

    Science.gov (United States)

    Goebel, J. H.

    1977-01-01

    A liquid helium-cooled p-channel enhancement mode MOSFET, the 3N167, is found to have sufficiently low noise for use as a preamplifier with helium-cooled bolometers that are used in infrared astronomy. Its characteristics at 300, 77, and 4.2 K are presented. It is also shown to have useful application with certain photoconductive and photovoltaic infrared detectors.

  14. Updated neutronics analyses of a water cooled ceramic breeder blanket for the CFETR

    Science.gov (United States)

    Xiaokang, ZHANG; Songlin, LIU; Xia, LI; Qingjun, ZHU; Jia, LI

    2017-11-01

    The water cooled ceramic breeder (WCCB) blanket employing pressurized water as a coolant is one of the breeding blanket candidates for the China Fusion Engineering Test Reactor (CFETR). Some updating of neutronics analyses was needed, because there were changes in the neutronics performance of the blanket as several significant modifications and improvements have been adopted for the WCCB blanket, including the optimization of radial build-up and customized structure for each blanket module. A 22.5 degree toroidal symmetrical torus sector 3D neutronics model containing the updated design of the WCCB blanket modules was developed for the neutronics analyses. The tritium breeding capability, nuclear heating power, radiation damage, and decay heat were calculated by the MCNP and FISPACT code. The results show that the packing factor and 6Li enrichment of the breeder should both be no less than 0.8 to ensure tritium self-sufficiency. The nuclear heating power of the blanket under 200 MW fusion power reaches 201.23 MW. The displacement per atom per full power year (FPY) of the plasma-facing component and first wall reach 0.90 and 2.60, respectively. The peak H production rate reaches 150.79 appm/FPY and the peak He production reaches 29.09 appm/FPY in blanket module #3. The total decay heat of the blanket modules is 2.64 MW at 1 s after shutdown and the average decay heat density can reach 11.09 kW m-3 at that time. The decay heat density of the blanket modules slowly decreases to lower than 10 W m-3 in more than ten years.

  15. Isotope exchange reactions on ceramic breeder materials and their effect on tritium inventory

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, M; Baba, A [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Kawamura, Y; Nishi, M

    1998-03-01

    Though lithium ceramic materials such as Li{sub 2}O, LiAlO{sub 2}, Li{sub 2}ZrO{sub 3}, Li{sub 2}TiO{sub 3} and Li{sub 4}SiO{sub 4} are considered as breeding materials in the blanket of a D-T fusion reactor, the release behavior of the bred tritium in these solid breeder materials has not been fully understood. The isotope exchange reaction rate between hydrogen isotopes in the purge gas and tritium on the surface of breeding materials have not been quantified yet, although helium gas with hydrogen or deuterium is planned to be used as the blanket purge gas in the recent blanket designs. The mass transfer coefficient representing the isotope exchange reaction between H{sub 2} and D{sub 2}O or that between D{sub 2} and H{sub 2}O in the ceramic breeding materials bed is experimentally obtained in this study. Effects of isotope exchange reactions on the tritium inventory in the bleeding blanket is discussed based on data obtained in this study where effects of diffusion of tritium in the grain, absorption of water in the bulk of grain, and adsorption of water on the surface of grain, together with two types of isotope exchange reactions are considered. The way to estimate the tritium inventory in a Li{sub 2}ZrO{sub 3} blanket used in this study shows a good agreement with data obtained in such in-situ experiments as MOZART, EXOTIC-5, 6 and TRINE experiments. (author)

  16. Ceramics for fusion reactors: The role of the lithium orthosilicate as breeder

    Energy Technology Data Exchange (ETDEWEB)

    Carella, Elisabetta, E-mail: elisabetta.carella@ciemat.es [National Laboratory for Magnetic Fusion, CIEMAT, Madrid (Spain); Hernandez, Teresa [National Laboratory for Magnetic Fusion, CIEMAT, Madrid (Spain)

    2012-11-15

    Lithium-based oxide ceramics are studied as breeder blanket materials for the controlled thermonuclear reactors (CTR). Lithium orthosilicate (Li{sub 4}SiO{sub 4}) is one of the most promising candidates because of its lithium concentration (0.54 g/cm{sup 3}), its high melting temperature (1523 K) and its excellent tritium release behavior. It is reported that the diffusion of tritium is closely related to that of lithium, so it is possible to find an indirect measure of the trend of tritium studying the diffusivity of Li{sup +}. In the present work, the synthesis of the Li{sub 4}SiO{sub 4} is carried out by Spray drying followed by pyrolysis. The study of the Li{sup +} ion diffusion on the sintered bodies, is investigated by means of electrical conductivity measurements. The effect of the {gamma}-ray irradiation is evaluated by the impedance spectroscopy method (EIS) from room temperature to 1173 K. The results indicate that the sintesis process employed can produce Li{sub 4}SiO{sub 4} in the form of pebbles, finally the best ion species for the electrical conduction is the Li{sup +} and is shown that the g-irradiation to a dose of 5MGy, facilitate its mobility through the creation of defects, without change in its conduction process.

  17. Status of EC solid breeder blanket designs and R and D for demo fusion reactors

    International Nuclear Information System (INIS)

    Proust, E.; Anzidei, L.; Moons, F.

    1994-01-01

    Within the European Community Fusion Technology Program two solid breeder blankets for a DEMO reactor are being developed. The two blankets have various features in common: helium as coolant and as tritium purge gas, the martensitic steel MANET as structural material and beryllium as neutron multiplier. The configurations of the two blankets are however different: in the B.I.T. (Breeder Inside Tube) concept the breeder materials are LiAlO 2 or Li 2 ZrO 3 in the form of annular pellets contained in tubes surrounded by beryllium blocks, the coolant helium being outside the tubes, whereas in the B.O.T. (Breeder out of Tube) the breeder and multiplier material are Li 4 SiO 4 and beryllium pebbles forming a mixed bed placed outside the tubes containing the coolant helium. The main critical issues for both blankets are the behavior of the breeder ceramics and of beryllium under irradiation and the tritium control. Other issues are the low temperature irradiation induced embrittlement of MANET, the mechanical effects caused by major plasma disruptions, and safety and reliability. The R and D work concentrate on these issues. The development of martensitic steels including MANET is part of a separate program. Breeder ceramics and beryllium irradiations have been so far performed for conditions which do not cover the peak values injected in the DEMO blankets. Further irradiations in thermal reactors and in fast reactors, especially for beryllium, are required. An effective tritium control requires the development of permeation barriers and/or of methods of oxidation of the tritium in the main helium cooling systems. First promising results have been obtained also in field of mechanical effects from plasma disruptions and safety and reliability, however further work is required in the reliability field and to validate the codes for the calculations of the plasma disruption effects. (authors). 8 figs., 2 tabs., 53 refs

  18. Status on DEMO Helium Cooled Lithium Lead breeding blanket thermo-mechanical analyses

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J., E-mail: julien.aubert@cea.fr [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Aiello, G.; Jaboulay, J.-C. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Kiss, B. [Institute of Nuclear Techniques, Budapest University of Technology and Economics, Budapest (Hungary); Morin, A. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France)

    2016-11-01

    Highlights: • CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. The DEMO HCLL breeding blanket design capitalizes on the experience acquired on the HCLL Test Blanket Module designed for ITER. Design improvements are being implemented to adapt the design to DEMO specifications and performance objectives. • Thermal and mechanical analyses have been carried out in order to justify the design of the HCLL breeding blanket showing promising results for tie rods modules’ attachments system and relatively good behavior of the box in case of LOCA when comparing to RCC-MRx criteria. • CFD thermal analyses on generic breeding unit have enabled the consolidation of the results obtained with previous FEM design analyses. - Abstract: The EUROfusion Consortium develops a design of a fusion power demonstrator (DEMO) in the framework of the European “Horizon 2020” innovation and research program. One of the key components in the fusion reactor is the breeding blanket surrounding the plasma, ensuring tritium self-sufficiency, heat removal for conversion into electricity, and neutron shielding. The Helium Cooled Lithium Lead (HCLL) blanket is one of the concepts which is investigated for DEMO. It is made of a Eurofer structure and uses the eutectic liquid lithium–lead as tritium breeder and neutron multiplier, and helium gas as coolant. Within the EUROfusion organization, CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. This paper presents the status of the thermal and mechanical analyses carried out on the HCLL breeding blanket in order to justify the design. CFD thermal analyses on generic breeding unit including stiffening plates and cooling plates have been performed with ANSYS in order to consolidate results obtained with previous FEM design analyses. Moreover in order to expand the justification of the HCLL Breeding blanket design, the most loaded area of

  19. Thermal-hydraulic analysis on the whole module of water cooled ceramic breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng; Ma, Xuebin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Cheng, Xiaoman [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Lin, Shuang [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Huang, Kai [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China)

    2016-11-15

    Highlights: • The 3D thermal hydraulic analysis on the whole module of WCCB is performed by CFD method. • Temperature field and mass flow distribution have been obtained. • The design of WCCB is reasonable from the perspective of thermal-hydraulics. • The scheme for further optimization has been proposed. - Abstract: The Water Cooled Ceramic Breeder blanket (WCCB) is being researched for Chinese Fusion Engineering Test Reactor (CFETR). The thermal-hydraulic analysis is essential because the blanket should remove the high heat flux from the plasma and the volumetric heat generated by neutrons. In this paper, the detailed three dimensional (3D) thermal hydraulic analysis on the whole module of WCCB blanket has been performed by Computational Fluid Dynamics (CFD) method, which is capable of solving conjugate heat transfer between solid structure and fluid. The main results, including temperature field, distribution of mass flow rate and coolant pressure drop, have been calculated simultaneously. These provides beneficial guidance data for the further structural optimization and for the design arrangement of primary and secondary circuit. Under the total heat source of 1.23 MW, the coolant mass flow rate of 5.457 kg/s is required to make coolant water corresponding to the Pressurized Water Reactor (PWR) condition (15.5 MPa, 285 °C–325 °C), generating the total coolant pressure drop (△P) of 0.467 MPa. The results show that the present structural design can make all the materials effectively cooled to the allowable temperature range, except for a few small modifications on the both sides of FW. The main components, including the first wall (FW), cooling plates (CPs), side wall (SWs)&stiffening plates (SPs) and the manifold(1–4), dominate 4.7%/41.7%/13%/40.6% of the total pressure drop, respectively. Additionally, the mass flow rate of each channel has been obtained, showing the peak relative deviation of 3.4% and 2% from the average for the paratactic

  20. Safety analysis on tokamak helium cooling slab fuel fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie; Jian Hongbing

    1992-01-01

    The thermal analyses for steady state, depressurization and total loss of flow in the tokamak helium cooling slab fuel element fusion-fission hybrid reactor are presented. The design parameters, computed results of HYBRID program and safety evaluation for conception design are given. After all, it gives some recommendations for developing the design

  1. Progress of R&D on water cooled ceramic breeder for ITER test blanket system and DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshinori, E-mail: kawamura.yoshinori@jaea.go.jp [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Tanigawa, Hisashi; Hirose, Takanori; Enoeda, Mikio [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Sato, Satoshi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Ochiai, Kentaro [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan); Konno, Chikara; Edao, Yuki; Hayashi, Takumi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan); Nishi, Hiroshi; Suzuki, Satoshi; Ezato, Koichiro; Seki, Yohji [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Yamanishi, Toshihiko [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Thermo-hydraulic calculation in the TBM at the water ingress event has been done. • Shielding calculations for the ITER equatorial port #18 were conducted by using C-lite model. • Prototypic pebbles of Be{sub 17}Ti{sub 2} and Be{sub 12}V had a good oxidation property similar to Be{sub 12}Ti pebble. • Li rich Li{sub 2}TiO{sub 3} pebbles were successfully fabricated using the emulsion method by controlling sintering atmosphere. • New tritium production/recovery experiments at FNS have been started by using ionization chamber as on-line gas monitor. - Abstract: The development of a water cooled ceramic breeder (WCCB) test blanket module (TBM) is being performed as one of the most important steps toward DEMO blanket in Japan. For the TBM testing and development of DEMO blanket, R&D has been performed on the module fabrication technology, breeder and multiplier pebble fabrication technology, tritium production rate evaluation, as well as structural and safety design activities. The fabrication of full-scale first wall, side walls, breeder pebble bed box and back wall was completed, and assembly of TBM with box structure was successfully achieved. Development of advanced breeder and multiplier pebbles for higher chemical stability was continued for future DEMO blanket application. From the view point of TBM test result evaluation and DEMO blanket performance design, the development of the blanket tritium transport simulation technology, investigation of the TBM neutron measurement technology and the evaluation of the tritium production and recovery test using D-T neutron in the fusion neutron source (FNS) facility has been performed. This paper provides an overview of the recent achievements of the development of the WCCB Blanket in Japan.

  2. Overview of design and R and D of solid breeder TBM in China

    International Nuclear Information System (INIS)

    Feng, K.M.; Pan, C.H.; Zhang, G.S.; Yuan, T.; Chen, Z.; Zhao, Z.; Liu, H.B.; Li, Z.Q.; Hu, G.; Wang, X.Y.; Ye, X.F.; Luo, D.L.; Wang, H.Y.; Zhou, Z.W.; Gao, C.M.; Chen, Y.J.; Wang, P.H.; Cao, Q.X.; Wang, Q.J.

    2008-01-01

    Testing of breeding blanket module (TBM) is one of ITER's important objectives. China is performing design and technology development of ITER TBMs based on the development strategy of fusion DEMO in China. Solid breeder with helium-cooled test blanket module concept for test in ITER should be the basic option in China. The progress and status of China helium-cooled solid breeder (CH HCSB) TBM since 2004 are introduced briefly. Concept designs of HCSB TBM and ancillary systems, test strategy for their tests in ITER, key R and D issues are summarized in this paper. An international collaboration in R and D, development and testing of TBMs are proposed

  3. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    Science.gov (United States)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  4. Design of a power conversion system for an indirect cycle, helium cooled pebble bed reactor system

    International Nuclear Information System (INIS)

    Wang, C.; Ballinger, R.G.; Stahle, P.W.; Demetri, E.; Koronowski, M.

    2002-01-01

    A design is presented for the turbomachinery for an indirect cycle, closed, helium cooled modular pebble bed reactor system. The design makes use of current technology and will operate with an overall efficiency of 45%. The design uses an intermediate heat exchanger which isolated the reactor cycle from the turbomachinery. This design excludes radioactive fission products from the turbomachinery. This minimizes the probability of an air ingress accident and greatly simplifies maintenance. (author)

  5. Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows

    International Nuclear Information System (INIS)

    He, Qingyun; Feng, Jingchao; Chen, Hongli

    2016-01-01

    Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.

  6. Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows

    Energy Technology Data Exchange (ETDEWEB)

    He, Qingyun; Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-02-15

    Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.

  7. Thermal Performance of a Dual-Channel, Helium-Cooled, Tungsten Heat Exchanger

    International Nuclear Information System (INIS)

    Youchison, Dennis L.; North, Mart T.

    2000-01-01

    Helium-cooled, refractory heat exchangers are now under consideration for first wall and divertor applications. These refractory devices take advantage of high temperature operation with large delta-Ts to effectively handle high heat fluxes. The high temperature helium can then be used in a gas turbine for high-efficiency power conversion. Over the last five years, heat removal with helium was shown to increase dramatically by using porous metal to provide a very large effective surface area for heat transfer in a small volume. Last year, the thermal performance of a bare-copper, dual-channel, helium-cooled, porous metal divertor mock-up was evaluated on the 30 kW Electron Beam Test System at Sandia National Laboratories. The module survived a maximum absorbed heat flux of 34.6 MW/m 2 and reached a maximum surface temperature of 593 C for uniform power loading of 3 kW absorbed on a 2-cm 2 area. An impressive 10 kW of power was absorbed on an area of 24 cm 2 . Recently, a similar dual-module, helium-cooled heat exchanger made almost entirely of tungsten was designed and fabricated by Thermacore, Inc. and tested at Sandia. A complete flow test of each channel was performed to determine the actual pressure drop characteristics. Each channel was equipped with delta-P transducers and platinum RTDs for independent calorimetry. One mass flow meter monitored the total flow to the heat exchanger, while a second monitored flow in only one of the channels. The thermal response of each tungsten module was obtained for heat fluxes in excess of 5 MW/m 2 using 50 C helium at 4 MPa. Fatigue cycles were also performed to assess the fracture toughness of the tungsten modules. A description of the module design and new results on flow instabilities are also presented

  8. Surface condition effects on tritium permeation through the first wall of a water-cooled ceramic breeder blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H.-S. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Xu, Y.-P.; Liu, H.-D. [Science Island Branch of Graduate School, University of Science and Technology of China, P.O. Box 1126, Hefei (China); Liu, F.; Li, X.-C.; Zhao, M.-Z.; Qi, Q.; Ding, F. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Luo, G.-N., E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Science Island Branch of Graduate School, University of Science and Technology of China, P.O. Box 1126, Hefei (China); Hefei Center for Physical Science and Technology, P.O. Box 1126, Hefei (China); Hefei Science Center of Chinese Academy of Science, P.O. Box 1126, Hefei (China)

    2016-11-01

    Highlights: • We investigate surface effects on T transport through the first wall. • We solve transport equations with various surface conditions. • The RAFMs walls w/and w/o W exhibit different T permeation behavior. • Diffusion in W has been found to be the rate-limiting step. - Abstract: Plasma-driven permeation of tritium (T) through the first wall of a water-cooled ceramic breeder (WCCB) blanket may raise safety and other issues. In the present work, surface effects on T transport through the first wall of a WCCB blanket have been investigated by theoretical calculation. Two types of wall structures, i.e., reduced activation ferritic/martensitic steels (RAFMs) walls with and without tungsten (W) armor, have been analyzed. Surface recombination is assumed to be the boundary condition for both the plasma-facing side and the coolant side. It has been found that surface conditions at both sides can affect T permeation flux and inventory. For the first wall using W as armor material, T permeation is not sensitive to the plasma-facing surface conditions. Contamination of the surfaces will lead to higher T inventory inside the first wall.

  9. The behaviour of ceramic breeder materials with respect to tritium release and pellet/pebble mechanical integrity

    Science.gov (United States)

    Kwast, H.; Conrad, R.; May, R.; Casadio, S.; Roux, N.; Werle, H.

    1994-09-01

    In situ tritium release experiments from several candidate fusion blanket ceramic breeder materials have been performed in the High Flux Reactor (HFR) at Petten over the last few years. The sixth experiment, EXOTIC-6, contained pellets of LiAlO 2, Li 2XrO 3, Li 6Xr 2O 7 and Li 8ZrO 6 and pebbles of Li 4SiO 4 and Li 2ZrO 3 which were irradiated up to a lithium burnup of 3%. A large number of temperature transients and purge gas composition changes were performed. From the temperature transients tritium residence times have been determined. Some preliminary results were presented at the 17th Symposium on Fusion Technology (SOFT) held in Rome in 1992. In the present paper results of a further analysis of the residence times are presented together with some postirradiation examination results. The LiAlO 2 pellets showed a better mechanical stability than the Li-zirconates pellets. The pebbels remained intact. The tritium residence times determined from the tritium inventories were in good agreement with those previously determined from temperature transients. The tritium release characteristics of the materials investigated remain substantially unchanged up to the maximum lithium burnup achieved in this experiment.

  10. Preliminary Overview of a Helium Cooling System for the Secondary Helium Loop in VHTR-based SI Hydrogen Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Cho, Mintaek; Kim, Dahee; Lee, Taehoon; Lee, Kiyoung; Kim, Yongwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Nuclear hydrogen production facilities consist of a very high temperature gas-cooled nuclear reactor (VHTR) system, intermediate heat exchanger (IHX) system, and a sulfur-iodine (SI) thermochemical process. This study focuses on the coupling system between the IHX system and SI thermochemical process. To prevent the propagation of the thermal disturbance owing to the abnormal operation of the SI process components from the IHX system to the VHTR system, a helium cooling system for the secondary helium of the IHX is required. In this paper, the helium cooling system has been studied. The temperature fluctuation of the secondary helium owing to the abnormal operation of the SI process was then calculated based on the proposed coupling system model. Finally, the preliminary conceptual design of the helium cooling system with a steam generator and forced-draft air-cooled heat exchanger to mitigate the thermal disturbance has been carried out. A conceptual flow diagram of a helium cooling system between the IHX and SI thermochemical processes in VHTR-based SI hydrogen production facilities has been proposed. A helium cooling system for the secondary helium of the IHX in this flow diagram prevents the propagation of the thermal disturbance from the IHX system to the VHTR system, owing to the abnormal operation of the SI process components. As a result of a dynamic simulation to anticipate the fluctuations of the secondary helium temperature owing to the abnormal operation of the SI process components with a hydrogen production rate of 60 mol·H{sub 2}/s, it is recommended that the maximum helium cooling capacity to recover the normal operation temperature of 450 .deg. C is 31,933.4 kJ/s. To satisfy this helium cooling capacity, a U-type steam generator, which has a heat transfer area of 12 m{sup 2}, and a forced-draft air-cooled condenser, which has a heat transfer area of 12,388.67 m{sup 2}, are required for the secondary helium cooling system.

  11. Design, fabrication, and testing of a helium-cooled module for the ITER divertor

    International Nuclear Information System (INIS)

    Baxi, C.B.; Smith, J.P.; Youchison, D.

    1994-08-01

    The International Thermonuclear Reactor (ITER) will have a single-null divertor with total power flow of 200 MW and a peak heat flux of about 5 MW/m 2 . The reference coolant for the divertor is water. However, helium is a viable alternative and offers advantages from safety considerations, such as excellent radiation stability and chemical inertness. In order to prove the feasibility of helium cooling at ITER relevant heat flux conditions, General Atomics designed, fabricated, and tested a helium-cooled divertor module. The module was made from dispersion strengthened copper, with a heat flux surface 25 mm wide and 80 mm long, designed for twice the ITER divertor heat flux. Different techniques were examined to enhance the heat transfer, which in turn reduced the flow and pumping power required to cool the module. It was concluded that an extended surface was the most practical solution. An optimization study was performed to find the best extended surface parameters. The optimum extended surface geometry consisted of fins: 10 mm high, 0.4 mm thick with a 1 mm pitch. It was estimated to require a pumping power of 150 W to remove 20 kW of power. This is more than an order of magnitude reduction in pumping power requirement, compared to smooth surface. The module was fabricated by electric discharge machining (EDM) process. The testing was carried out at SNLA during August 1993. The testing confirmed the design calculations. The peak heat flux during the test was 10 MW/m 2 applied over a surface area of 20 cm 2 . The pumping power calculated from flow rate and pressure drop measurement was about 160 W, which was less than 1% of the power removed. It is planned to test the module to higher temperature limits and higher heat fluxes during coming months. As a result of this effort we conclude that helium cooling of the ITER divertor is feasible without requiring a very large helium pressure or a large pumping power

  12. Options for a high heat flux enabled helium cooled first wall for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, Frederik, E-mail: f.arbe@kit.edu; Chen, Yuming; Ghidersa, Bradut-Eugen; Klein, Christine; Neuberger, Heiko; Ruck, Sebastian; Schlindwein, Georg; Schwab, Florian; Weth, Axel von der

    2017-06-15

    Highlights: • Design challenges for helium cooled first wall reviewed and otimization approaches explored. • Application of enhanced heat transfer surfaces to the First Wall cooling channels. • Demonstrated a design point for 1 MW/m{sup 2} with temperatures <550 °C and acceptable stresses. • Feasibility of several manufacturing processes for ribbed surfaces is shown. - Abstract: Helium is considered as coolant in the plasma facing first wall of several blanket concepts for DEMO fusion reactors, due to the favorable properties of flexible temperature range, chemical inertness, no activation, comparatively low effort to remove tritium from the gas and no chemical corrosion. Existing blanket designs have shown the ability to use helium cooled first walls with heat flux densities of 0.5 MW/m{sup 2}. Average steady state heat loads coming from the plasma for current EU DEMO concepts are expected in the range of 0.3 MW/m{sup 2}. The definition of peak values is still ongoing and depends on the chosen first wall shape, magnetic configuration and assumptions on the fraction of radiated power and power fall off lengths in the scrape off layer of the plasma. Peak steady state values could reach and excess 1 MW/m{sup 2}. Higher short-term transient loads are expected. Design optimization approaches including heat transfer enhancement, local heat transfer tuning and shape optimization of the channel cross section are discussed. Design points to enable a helium cooled first wall capable to sustain heat flux densities of 1 MW/m{sup 2} at an average shell temperature lower than 500 °C are developed based on experimentally validated heat transfer coefficients of structured channel surfaces. The required pumping power is in the range of 3–5% of the collected thermal power. The FEM stress analyses show code-acceptable stress intensities. Several manufacturing methods enabling the application of the suggested heat transfer enhanced first wall channels are explored. An

  13. Manufacturing Technology of Ceramic Pebbles for Breeding Blanket

    Directory of Open Access Journals (Sweden)

    Rosa Lo Frano

    2018-05-01

    Full Text Available An open issue for the fusion power reactor is the choice of breeding blanket material. The possible use of Helium-Cooled Pebble Breeder ceramic material in the form of pebble beds is of great interest worldwide as demonstrated by the numerous studies and research on this subject. Lithium orthosilicate (Li4SiO4 is a promising breeding material investigated in this present study because the neutron capture of Li-6 allows the production of tritium, 6Li (n, t 4He. Furthermore, lithium orthosilicate has the advantages of low activation characteristics, low thermal expansion coefficient, high thermal conductivity, high density and stability. Even if they are far from the industrial standard, a variety of industrial processes have been proposed for making orthosilicate pebbles with diameters of 0.1–1 mm. However, some manufacturing problems have been observed, such as in the chemical stability (agglomeration phenomena. The aim of this study is to provide a new methodology for the production of pebbles based on the drip casting method, which was jointly developed by the DICI-University of Pisa and Industrie Bitossi. Using this new (and alternative manufacturing technology, in the field of fusion reactors, appropriately sized ceramic pebbles could be produced for use as tritium breeders.

  14. Numerical benchmark for the deep-burn modular helium-cooled reactor (DB-MHR)

    International Nuclear Information System (INIS)

    Taiwo, T. A.; Kim, T. K.; Buiron, L.; Varaine, F.

    2006-01-01

    Numerical benchmark problems for the deep-burn concept based on the prismatic modular helium-cooled reactor design (a Very High Temperature Reactor (VHTR)) are specified for joint analysis by U.S. national laboratories and industry and the French CEA. The results obtained with deterministic and Monte Carlo codes have been inter-compared and used to confirm the underlying feature of the DB-MHR concept (high transuranics consumption). The results are also used to evaluate the impact of differences in code methodologies and nuclear data files on the code predictions for DB-MHR core physics parameters. The code packages of the participating organizations (ANL and CEA) are found to give very similar results. (authors)

  15. Is cold better ? - exploring the feasibility of liquid-helium-cooled optics

    International Nuclear Information System (INIS)

    Assoufid, L.; Mills, D.; Macrander, A.; Tajiri, G.

    1999-01-01

    Both simulations and recent experiments conducted at the Advanced Photon Source showed that the performance of liquid-nitrogen-cooled single-silicon crystal monochromators can degrade in a very rapid nonlinear fashion as the power and for power density is increased. As a further step towards improving the performance of silicon optics, we propose cooling with liquid helium, which dramatically improves the thermal properties of silicon beyond that of liquid nitrogen and brings the performance of single silicon-crystal-based synchrotrons radiation optics up to the ultimate limit. The benefits of liquid helium cooling as well as some of the associated technical challenges will be discussed, and results of thermal and structural finite elements simulations comparing the performance of silicon monochromators cooled with liquid nitrogen and helium will be given

  16. Cryogenic thermometer calibration system using a helium cooling loop and a temperature controller [for LHC magnets

    CERN Document Server

    Chanzy, E; Thermeau, J P; Bühler, S; Joly, C; Casas-Cubillos, J; Balle, C

    1998-01-01

    The IPN-Orsay and CERN are designing in close collaboration a fully automated cryogenic thermometer calibration facility which will calibrate in 3 years 10,000 cryogenic thermometers required for the Large Hadron Collider (LHC) operation. A reduced-scale model of the calibration facility has been developed, which enables the calibration of ten thermometers by comparison with two rhodium-iron standard thermometers in the 1.8 K to 300 K temperature range under vacuum conditions. The particular design, based on a helium cooling loop and an electrical temperature controller, gives good dynamic performances. This paper describes the experimental set-up and the data acquisition system. Results of experimental runs are also presented along with the estimated global accuracy for the calibration. (3 refs).

  17. Supercritical helium cooled, cabled, superconducting hollow conductors for large high field magnets

    International Nuclear Information System (INIS)

    Hoenig, M.O.; Iwasa, Y.; Montgomery, D.B.; Bejan, A.

    1976-01-01

    Within the last two years a new concept of cabled superconducting hollow conductors has been developed which are able to recover from transient instabilities by virtue of on-going, single-phase helium cooling. It has been possible to correlate small scale experimental results with an iterative computer program. The latter has been recently upgraded to include axial as well as radial heat transfer and predict more closely the chances of recovery. Nearly 1 g/s of supercritical helium has been circulated in a closed loop using a high speed centrifugal fan and up to 10 g/s using a reciprocating single pulse bellows pump. The loop is now being adapted to a 3 m length of a tightly wound 5000 A cabled hollow conductor equipped with pulse coils designed to fit inside a water cooled Bitter magnet. The combination will allow for a steady background field of 7.5 t with a 2 t superimposed pulse. (author)

  18. High-heat-flux testing of helium-cooled heat exchangers for fusion applications

    International Nuclear Information System (INIS)

    Youchison, D.L.; Izenson, M.G.; Baxi, C.B.; Rosenfeld, J.H.

    1996-01-01

    High-heat-flux experiments on three types of helium-cooled divertor mock-ups were performed on the 30-kW electron beam test system and its associated helium flow loop at Sandia National Laboratories. A dispersion-strengthened copper alloy (DSCu) was used in the manufacture of all the mock-ups. The first heat exchanger provides for enhanced heat transfer at relatively low flow rates and much reduced pumping requirements. The Creare sample was tested to a maximum absorbed heat flux of 5.8 MW/m 2 . The second used low pressure drops and high mass flow rates to achieve good heat removal. The GA specimen was tested to a maximum absorbed heat flux of 9 MW/m 2 while maintaining a surface temperature below 400 degree C. A second experiment resulted in a maximum absorbed heat flux of 34 MW/m 2 and surface temperatures near 533 degree C. The third specimen was a DSCu, axial flow, helium-cooled divertor mock-up filled with a porous metal wick which effectively increases the available heat transfer area. Low mass flow and high pressure drop operation at 4.0 MPa were characteristic of this divertor module. It survived a maximum absorbed heat flux of 16 MW/m 2 and reached a surface temperature of 740 degree C. Thermacore also manufactured a follow-on, dual channel porous metal-type heat exchanger, which survived a maximum absorbed heat flux of 14 MW/m 2 and reached a maximum surface temperature of 690 degree C. 11refs., 20 figs., 3 tabs

  19. The Design of High Reliability Magnetic Bearing Systems for Helium Cooled Reactor Machinery

    International Nuclear Information System (INIS)

    Swann, M.; Davies, N.; Jayawant, R.; Leung, R.; Shultz, R.; Gao, R.; Guo, Z.

    2014-01-01

    The requirements for magnetic bearing equipped machinery used in high temperature, helium cooled, graphite moderated reactor applications present a set of design considerations that are unlike most other applications of magnetic bearing technology in large industrial rotating equipment, for example as used in the oil and gas or other power generation applications. In particular, the bearings are typically immersed directly in the process gas in order to take advantage of the design simplicity that comes about from the elimination of ancillary lubrication and cooling systems for bearings and seals. Such duty means that the bearings will usually see high temperatures and pressures in service and will also typically be subject to graphite particulate and attendant radioactive contamination over time. In addition, unlike most industrial applications, seismic loading events become of paramount importance for the magnetic bearings system, both for actuators and controls. The auxiliary bearing design requirements, in particular, become especially demanding when one considers that the whole mechanical structure of the magnetic bearing system is located inside an inaccessible pressure vessel that should be rarely, if ever, disassembled over the service life of the power plant. Lastly, many machinery designs for gas cooled nuclear power plants utilize vertical orientation. This circumstance presents its own unique requirements for the machinery dynamics and bearing loads. Based on the authors’ experience with machine design and supply on several helium cooled reactor projects including Ft. St. Vrain (US), GT-MHR (Russia), PBMR (South Africa), GTHTR (Japan), and most recently HTR-PM (China), this paper addresses many of the design considerations for such machinery and how the application of magnetic bearings directly affects machinery reliability and availability, operability, and maintainability. Remote inspection and diagnostics are a key focus of this paper. (author)

  20. Conceptual design on interface between ITER and tritium extraction system of Chinese helium-cooled solid breeder test blanket module

    International Nuclear Information System (INIS)

    Zhang Long; Luo Tianyong; Feng Kaiming

    2010-01-01

    Tritium extraction system is essential for CN HCSB TBM for safety and technical reasons. Based on the assessments of system functions, integration issues and safety considerations, two main modifications of the system from previous design (Feng et al., 2007 ; Chen et al., 2008 ) are adopted: a)the TES has been split to 2 parts with one in port cell and another in tritium building. Q 2 O in the purge gas is reduced to Q 2 in a hot metal bed located in port cell; Q 2 is separated from the stream by a pair of cryogenic molecular sieve beds and a Pd/Ag diffuser located in tritium building. b)isotope separation process has been excluded. TES components sizes are estimated and space allocations are estimated. Required services and where and when they are needed are preliminary defined. Fluids delivered towards ITER tritium system are analyzed.

  1. Progress on solid breeder TBM at SWIP

    International Nuclear Information System (INIS)

    Feng, K.M.; Pan, C.H.; Zhang, G.S.; Luo, T.Y.; Zhao, Z.; Chen, Y.J.; Ye, X.F.; Hu, G.; Wang, P.H.; Yuan, T.; Feng, Y.J.; Xiang, B.; Zhang, L.; Wang, Q.J.; Cao, Q.X.; Li, Z.X.; Wang, F.

    2010-01-01

    Current progress on the design and R and D of Chinese helium-cooled solid breeder test blanket module, CN HCSB TBM is presented. The updated design on structural, neutronics, thermal-hydraulics and safety analysis has been completed. In order to accommodate the HCSB TBM ancillary system, the design and necessary R and Ds corresponding sub-systems have being developed. Current status on the development of function materials, structure material and the helium test loop are also presented. The Chinese low-activation ferritic/martensitic steels CLF-1, which is the structural material for the HCSB TBM is being manufactured by industry. The neutron multiplier Be and tritium breeder Li 4 SiO 4 pebbles are being prepared in laboratory scale.

  2. A robust helium-cooled shield/blanket design for ITER

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Bourque, R.F.; Baxi, C.B.

    1993-11-01

    General Atomics Fusion and Reactor Groups have completed a helium-cooled, conceptual shield/blanket design for ITER. The configuration selected is a pressurized tubes design embedded in radially oriented plates. This plate can be made from ferritic steel or from V-alloy. Helium leakage to the plasma chamber is eliminated by conservative, redundant design and proper quality control and inspection programs. High helium pressure at 18 MPa is used to reduce pressure drop and enhance heat transfer. This high gas pressure is believed practical when confined in small diameter tubes. Ample industrial experience exists for safe high gas pressure operations. Inboard shield design is highlighted in this study since the allowable void fraction is more limited. Lithium is used as the thermal contacting medium and for tritium breeding, its safety concerns are minimized by a modular, low inventory design that requires no circulation of the liquid metal for the purpose of heat removal. This design is robust, conservative, reliable, and meets all design goals and requirements. It can also be built with present-day technology

  3. Post-examination of helium-cooled tungsten components exposed to DEMO specific cyclic thermal loads

    International Nuclear Information System (INIS)

    Ritz, G.; Hirai, T.; Linke, J.; Norajitra, P.; Giniyatulin, R.; Singheiser, L.

    2009-01-01

    A concept of helium-cooled tungsten finger module was developed for the European DEMO divertor. The concept was realized and tested under DEMO specific cyclic thermal loads up to 10 MW/m 2 . The modules were examined carefully before and after loading by metallography and microstructural analyses. While before loading mainly discrete and shallow cracks were found on the tungsten surface due to the manufacturing process, dense crack networks were observed at the loaded surfaces due to the thermal stress. In addition, cracks occurred in the structural, heat sink part and propagated along the grains orientation of the deformed tungsten material. Facilitated by cracking, the molten brazing metal between the tungsten plasma facing material and the W-La 2 O 3 heat sink, that could not withstand the operational temperatures, infiltrated the tungsten components and, due to capillary forces, even reached the plasma facing surface through the cracks. The formed cavity in the brazed layer reduced the heat conduction and the modules were further damaged due to overheating during the applied heat loads. Based on this detailed characterization and possible improvements of the design and of the manufacturing routes are discussed.

  4. Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, Bobby [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pasch, James Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kruizenga, Alan Michael [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Walker, Matthew [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation

  5. Conceptual design of the blanket mechanical attachment for the helium-cooled lithium-lead reactor

    International Nuclear Information System (INIS)

    Barrera, G.; Branas, B.; Lucas, J.; Doncel, J.; Medrano, M.; Garcia, A.; Giancarli, L.; Ibarra, A.; Li Puma, A.; Maisonnier, D.; Sardain, P.

    2008-01-01

    The conceptual design of a new type of fusion reactor based on the helium-cooled lithium-lead (HCLL) blanket has been performed within the European Power Plant Conceptual Studies. As part of this activity, a new attachment system suitable for the HCLL blanket modules had to be developed. This attachment is composed of two parts. The first one is the connection between module and the first part of a shield, called high temperature shield, which operates at a temperature around 500 deg. C, close to that of the blanket module. This connection must be made at the lateral walls, in order to avoid openings through the first wall and breeding zone thus avoiding complex design and fabrication issues of the module. The second connection is the one between the high temperature shield and a second shield called low temperature shield, which has a temperature during reactor operation around 150 deg. C. The design of this connection is complex because it must allow the large differential thermal expansion (up to 30 mm) between the two components. Design proposals for both connections are presented, together with the results of finite element mechanical analyses which demonstrate the feasibility to support the blanket and shield modules during normal and accidental operation conditions

  6. Neutronics Experiment on A HCPB Breeder Blanket Mock-Up

    International Nuclear Information System (INIS)

    Paola Batistoni, P.; Angelone, M.; Bettinali, L.

    2006-01-01

    A neutronics experiment has been performed in the frame of European Fusion Technology Program on a mock-up of the EU Test Blanket Module (TBM), Helium Cooled Pebble Bed (HCPB) concept, with the objective to validate the capability of nuclear data to predict nuclear responses, such as the tritium production rate (TPR), with qualified uncertainties. The experiment has been carried out at the FNG 14-MeV neutron source in collaboration between ENEA, Technische Universitaet Dresden, Forschungszentrum Karlsruhe, J. Stefan Institute Ljubljana and with the participation of JAEA. The mock-up, designed in such a way to replicate all relevant nuclear features of the TBM-HCPB, consisted of a steel box containing beryllium block and two intermediate steel cassettes, filled with of Li 2 CO 3 powder, replicating the breeder insert main characteristics: radial thickness, distance between ceramic layers, thickness of ceramic layers and of steel walls. In the experiment, the TPR has been measured using Li 2 CO 3 pellets at various depths at two symmetrical positions at each depth, one in the upper and one in the lower cassette. Twelve pellets were used at each position to determine the TPR profile through the cassette. Three independent measurements were performed by ENEA, TUD/VKTA and JAEA. The neutron flux in the beryllium layer was measured as well using activation foils. The measured tritium production in the TBM (E) was compared with the same quantity (C) calculated by the MCNP.4c using a very detailed model of the experimental set up, and using neutron cross sections from the European Fusion File (EFF ver.3.1) and from the Fusion Evaluated Nuclear Data Library (FENDL ver. 2.1, ITER reference neutron library). C/E ratios were obtained with a total uncertainty on the C/E comparison less than 9% (2 s). A sensitivity and uncertainty analysis has also been performed to evaluate the calculation uncertainty due to the uncertainty on neutron cross sections. The results of such

  7. Status of the European R and D on beryllium as multiplier material for breeder blankets

    International Nuclear Information System (INIS)

    Moeslang, A.; Boccaccini, L.V.; Rabaglino, E.; Piazza, G.; Cardella, A.; Sannen, L.; Scibetta, M.; Laan, J. van der; Hegeman, J.B.J.W.

    2004-01-01

    Within the international fusion community a variety of breeding blanket concepts are being considered, ranging from more conservative concepts to higher-risk concepts for fusion power reactors. In Europe, the Helium Cooled Pebble Bed (HCPB) blanket is one of the two reference concepts which will also be tested as Test Blanket Module (TBM) in ITER. In addition to the R and D for structural parts of the HCPB blanket, a considerable effort is devoted to the production and qualification of ceramic breeder and neutron multiplier (beryllium or beryllide) pebble beds. Since in the HCPB blanket pebbles made of lithium ceramics are foreseen, a high volume fraction of beryllium as a neutron multiplier to Li-based ceramic of about 4: l is needed. The typical loading conditions for beryllium are, with a neutron wall load of ∼12.5 MWa/m 2 and in ∼5 years lifetime: T min ∼300degC, T max ∼600-900degC, displacement damage ∼80 dpa, peak 4 He production ∼26000 appm and peak 3 H production ∼700 appm at the End-Of-Life. The behaviour of beryllium under irradiation is considered to be a key issue of the HCPB blanket, because of swelling due to helium bubbles and tritium retention. A large R and D programme on beryllium has been implemented in Europe, aimed at characterising and predicting the material behaviour before and under irradiation. An overview on experimental and modelling activities performed during the past 2 years is given with typical results on non-irradiated and irradiated Beryllium materials and pebble beds and the relevance of major results on future beryllium R and D is addressed. (author)

  8. Neutronics - thermal-hydraulics coupling: application to the helium-cooled fast reactor

    International Nuclear Information System (INIS)

    Vaiana, F.

    2009-11-01

    This thesis focuses on the study of interactions between neutron-kinetics and thermal-hydraulics. Neutron-kinetics allow to calculate the power in a nuclear reactor and the temperature evolution of materials where this power is deposited is known thanks to thermal-hydraulics. Moreover, when the temperatures evolve, the densities and cross sections change. These two disciplines are thus coupled. The first part of this work corresponds to the study and development of a method which allows to simulate transients in nuclear reactors and especially with a Monte-Carlo code for neutron-kinetics. An algorithm for the resolution of the neutron transport equation has been established and validated with a benchmark. In thermal-hydraulics, a porous media approach, based on another thesis, is considered. This gives the opportunity to solve the equations on the whole core without unconscionable computation time. Finally, a theoretical study has been performed on the statistical uncertainties which result from the use of a Monte-Carlo code and which spread from the reactivity to the power and from the power to the temperatures. The second part deals with the study of a misplaced control rod withdrawing in a GFR (helium-cooled fast reactor), a fourth generation reactor. Some models allowing to calculate neutron-kinetics and thermal-hydraulics in the core (which contains assemblies built up with fuel plates) were defined. In thermal-hydraulics, a model for the core based on the porous media approach and a fuel plate homogenization model have been set up. A similar homogenization model has been studied for neutron-kinetics. Finally, the control rod withdrawing transient where we can observe the power raising and the stabilisation by thermal feedback has been performed with the Monte-Carlo code Tripoli for neutron-kinetics and the code Trio-U for thermal-hydraulics. (author)

  9. Preliminary electromagnetic analysis of Helium Cooled Solid Blanket for CFETR by MAXWELL

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Cheng; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-11-15

    Highlights: • A FEM model of the blanket and magnetic system was built. • Electromagnetic forces and moments of the typical blanket for ferromagnetic and non-ferromagnetic materials were computed and analyzed. • Maxwell forces and Lorentz forces were computed and compared. • Eddy current in the blanket was analyzed under MD condition. - Abstract: A Helium Cooled Solid Blanket (HCSB) for CFETR (Chinese Fusion Engineering Test Reactor) was designed by USTC. The structural and thermal-hydraulic analysis has been carried out, while electromagnetic analysis was not carefully researched. In this paper, a FEM (finite element method) model of the HCSB was developed and electromagnetic forces as well as moments was computed by a FEM software called MAXWELL integrated in ANSYS Workbench. In the geometrical model, flow channels and small connecting parts were neglected because of the extreme complication and the reasonable conservative assumption by neglecting these circumstantial details. As for electromagnetic (EM) analysis, Lorentz forces due to eddy currents caused by main disruption and Maxwell forces due to the magnetization of RAFM steel (i.e. EUROFER97) were computed. Since the unavailability of the details of the plasma in CFETR, when disruptions happen, the condition where a linear current quench of main disruption occurs was assumed. The maximum magnitude of the electromagnetic forces was 356.45 kN and the maximum value of the coupled electromagnetic moments was 1899.40 N m around the radial direction. It is feasible to couple electromagnetic analysis, structural analysis and thermal-hydraulic analysis in the future since MAXWELL has good channels to exchange data between different analytic parts.

  10. Lay-out of the He-cooled solid breeder model B in the European power plant conceptual study

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Malang, S.; Fischer, U.; Gordeev, S.

    2003-01-01

    The European helium cooled pebble bed (HCPB) blanket concept is the basis for one of two limited-extrapolation plant models that are being elaborated within the European power plant conceptual study (PPCS). In addition to addressing the case for fusion safety and environmental compatibility, following earlier studies like SEAFP or SEAL, this reactor study puts emphasis on plant availability and economic viability, which are closely related to specific plant models and require a detailed lay-out of the fusion power core and a consideration of the overall plant (balance of plant). Within the development of in-vessel components for the plant model, the major tasks to be carried out were: (i) adaptation of the HCPB concept--featuring separate pebble beds of ceramic breeder and Beryllium neutron multiplier and reduced-activation ferritic-martensitic steel EUROFER as structural material--to the large module segmentation chosen for reasons of plant availability in part II of the PPCS; (ii) proposal of a concept for a Helium cooled divertor compatible with a maximum of 10 MW/m 2 heat flux to satisfy the requirements of reasonably extrapolated plasma physics; (iii) lay-out of the major plant model components and integration into the in-vessel dimensions found from system code calculations for a power plant of 1500 MW electrical output and iterated data on the plant model performance. The paper defines all major in-vessel components of plant model B, as it is called in the PPCS, namely (i) the unit of FW, blanket and high temperature shield that is to be replaced regularly; (ii) the low temperature shield that is laid out as a lifetime component of the reactor; (iii) the divertor; and (iv) the in-vessel manifolding. Results are presented for the thermal-hydraulic performance of the components and for the thermal-mechanical behaviour of the blanket and the divertor target plate. These results suggest, together with results from the wider exploration of the plant model within

  11. Deep Burn: Development of Transuranic Fuel for High-Temperature Helium-Cooled Reactors- Monthly Highlights September 2010

    International Nuclear Information System (INIS)

    Snead, Lance Lewis; Besmann, Theodore M.; Collins, Emory D.; Bell, Gary L.

    2010-01-01

    The DB Program monthly highlights report for August 2010, ORNL/TM-2010/184, was distributed to program participants by email on September 17. This report discusses: (1) Core and Fuel Analysis - (a) Core Design Optimization in the HTR (high temperature helium-cooled reactor) Prismatic Design (Logos), (b) Core Design Optimization in the HTR Pebble Bed Design (INL), (c) Microfuel analysis for the DB HTR (INL, GA, Logos); (2) Spent Fuel Management - (a) TRISO (tri-structural isotropic) repository behavior (UNLV), (b) Repository performance of TRISO fuel (UCB); (3) Fuel Cycle Integration of the HTR (high temperature helium-cooled reactor) - Synergy with other reactor fuel cycles (GA, Logos); (4) TRU (transuranic elements) HTR Fuel Qualification - (a) Thermochemical Modeling, (b) Actinide and Fission Product Transport, (c) Radiation Damage and Properties; (5) HTR Spent Fuel Recycle - (a) TRU Kernel Development (ORNL), (b) Coating Development (ORNL), (c) Characterization Development and Support, (d) ZrC Properties and Handbook; and (6) HTR Fuel Recycle - (a) Graphite Recycle (ORNL), (b) Aqueous Reprocessing, (c) Pyrochemical Reprocessing METROX (metal recovery from oxide fuel) Process Development (ANL).

  12. Structure and short time degradation studies of sodium zirconium phosphate ceramics loaded with simulated fast breeder (FBR) waste

    Energy Technology Data Exchange (ETDEWEB)

    Ananthanarayanan, A., E-mail: arvinda@barc.gov.in [Process Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ambashta, R.D., E-mail: aritu@barc.gov.in [Process Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sudarsan, V. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ajithkumar, T. [Applied Catalysis Unit, National Chemical Laboratory, Pune 411008 (India); Sen, D.; Mazumder, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Wattal, P.K. [Process Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2017-04-15

    Sodium zirconium phosphate (NZP) ceramics have been prepared using conventional sintering and hot isostatic pressing (HIP) routes. The structure of NZP ceramics, prepared using the HIP route, has been compared with conventionally sintered NZP using a combination of X-ray diffraction (XRD) and ({sup 31}P and {sup 23}Na) nuclear magnetic resonance (NMR) spectroscopy techniques. It is observed that NZP with no waste loading is aggressive toward the steel HIP-can during hot isostatic compaction and significant fraction of cations from the steel enter the ceramic material. Waste loaded NZP samples (10 wt% simulated FBR waste) show significantly low can-interaction and primary NZP phase is evident in this material. Upon exposure of can-interacted and waste loaded NZP to boiling water and steam, {sup 31}P NMR does not detect any major modifications in the network structure. However, the {sup 23}Na NMR spectra indicate migration of Na{sup +} ions from the surface and possible re-crystallization. This is corroborated by Small-Angle Neutron Scattering (SANS) data and Scanning Electron Microscopy (SEM) measurements carried out on these samples.

  13. Deterministic 3D transport, sensitivity and uncertainty analysis of TPR and reaction rate measurements in HCPB Breeder Blanket mock-up benchmark

    International Nuclear Information System (INIS)

    Kodeli, I.

    2006-01-01

    The Helium-Cooled Pebble Bed (HCPB) Breeder Blanket mock-up benchmark experiment was analysed using the deterministic transport, sensitivity and uncertainty code system in order to determine the Tritium Production Rate (TPR) in the ceramic breeder and the neutron reaction rates in beryllium, both nominal values and the corresponding uncertainties. The experiment, performed in 2005 to validate the HCPB concept, consists of a metallic beryllium set-up with two double layers of breeder material (Li 2 CO 3 powder). The reaction rate measurements include the Li 2 CO 3 pellets for the tritium breeding monitoring and activation foils, inserted at several axial and lateral locations in the block. In addition to the well established and validated procedure based on the 2-dimensional (2D) code DORT, a new approach for the 3D modelling was validated based on the TORT/GRTUNCL3D transport codes. The SUSD3D code, also in 3D geometry, was used for the cross-section sensitivity and uncertainty calculations. These studies are useful for the interpretation of the experimental measurements, in particular to assess the uncertainties linked to the basic nuclear data. The TPR, the neutron activation rates and the associated uncertainties were determined using the EFF-3.0 9 Be nuclear cross section and covariance data, and compared with those from other evaluations, like FENDL-2.1. Sensitivity profiles and nuclear data uncertainties of the TPR and detector reaction rates with respect to the cross-sections of 9 Be, 6 Li, 7 Li, O and C were determined at different positions in the experimental block. (author)

  14. Development of welding technologies for the manufacturing of European Tritium Breeder blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Poitevin, Y., E-mail: yves.poitevin@f4e.europa.eu [Fusion for Energy (F4E), Barcelona (Spain); Aubert, Ph. [CEA Saclay, DEN/DM2S and DEN/DMN, F-91191 Gif-sur-Yvette (France); Diegele, E. [Fusion for Energy (F4E), Barcelona (Spain); Dinechin, G. de [CEA Saclay, DEN/DM2S and DEN/DMN, F-91191 Gif-sur-Yvette (France); Rey, J. [Institut fuer Neutronenphysik und Reaktortechnik, FZK, Karlsruhe (Germany); Rieth, M. [Institut fuer Materialforschung I, FZK, Karlsruhe (Germany); Rigal, E. [CEA Grenoble, DRT/DTH, F-38000 Grenoble (France); Weth, A. von der [Institut fuer Neutronenphysik und Reaktortechnik, FZK, Karlsruhe (Germany); Boutard, J.-L. [European Fusion Development Agreement (EFDA), Garching (Germany); Tavassoli, F. [CEA Saclay, DEN/DM2S and DEN/DMN, F-91191 Gif-sur-Yvette (France)

    2011-10-01

    Europe has developed two reference Tritium Breeder Blankets concepts for a DEMO fusion reactor: the Helium-Cooled Lithium-Lead and the Helium-Cooled Pebble-Bed. Both are using the reduced-activation ferritic-martensitic EUROFER-97 steel as structural material and will be tested in ITER under the form of test blanket modules. The fabrication of their EUROFER structures requires developing welding processes like laser, TIG, EB and diffusion welding often beyond the state-of-the-art. The status of European achievements in this area is reviewed, illustrating the variety of processes and key issues behind retained options, in particular with respect to metallurgical aspects and mechanical properties. Fabrication of mock-ups is highlighted and their characterization and performances with respect to design requirements are reviewed.

  15. Comparison of the tritium residence times of various ceramic breeder materials irradiated in EXOTIC experiments 4 and 5

    International Nuclear Information System (INIS)

    Kwast, H.; Elen, J.D.; Conrad, R.; Casadio, S.; Werle, H.; Verstappen, G.

    1990-09-01

    Tritium residence times have been determined for various ceramic tritium breeding materials from in-situ release measurements. The irradiations, codenamed EXOTIC (EXtraction Of Tritium In Ceramics), were carried out in the High Flux Reactor (HFR) Petten. During the irradiation more than 450 transients were performed and the corresponding tritium release measured. Materials supplied by SCK/CEN (Li 2 ZrO 3 ), CEA (Li 2 ZrO 3 and LiAlO 2 ), ENEA (LiAlO 2 ), KfK (Li 4 SiO 4 ), NRL (Li 6 Zr 2 O 7 ) and ECN (Li 8 ZrO 6 ) were irradiated in EXOTIC-5 to compare the tritium residence times obtained under equal conditions. Apart from differences in density, grain size, pore size and OPV it appeared that the tritium residence times of the lithium zirconates (pellets) were shorter than those of the Li 4 SiO 4 pebbles. The tritium residence times of the Li 4 SiO 4 pebbles were shorter than those of the LiAlO 2 pellets. (author). 7 refs.; 5 figs.; 3 tabs

  16. A preliminary definition of the parameters of an experimental natural - uranium, graphite - moderated, helium - cooled power reactor

    International Nuclear Information System (INIS)

    Baltazar, O.

    1978-01-01

    A preliminary study of the technical characteristic of an experiment at 32 MWe power with a natural uconium, graphite-moderated, helium cooled reactor is described. The national participation and the use of reactor as an instrument for the technological development of future high temperature gas cooled reactor is considered in the choice of the reactor type. Considerations about nuclear power plants components based in extensive bibliography about similar english GCR reactor is presented. The main thermal, neutronic an static characteristic and in core management of the nuclear fuel is stablished. A simplified scheme of the secondary system and its thermodynamic performance is determined. A scheme of parameters calculation of the reactor type is defined based in the present capacity of calculation developed by Coordenadoria de Engenharia Nuclear and Centro de Processamento de Dados, IEA, Brazil [pt

  17. Reflections on the introduction of fast breeder reactors in the DeBeNeLux states

    International Nuclear Information System (INIS)

    Schroeder, R.; Wagner, J.

    1975-06-01

    This report gives a survey of the impact of introducing sodium-cooled fast breeder reactors in the Federal Republic of Germany and the BeNeLux countries (DeBeNeLux region). The supply situation with respect to electric and thermal energy is studied in particular, together with aspects of economy and environmental impact. The potential and consequences of a breeder economy, the present status and future r+d work are discussed. In addition to sodium-cooled fast breeder reactors with oxide or carbide fuel, alternative solutions are touched: 1) light water and high temperature reactors, 2) helium-cooled fast breeder reactors, 3) geothermal energy, solar energy and fusion energy. (orig.) [de

  18. Thermal conductivity of fusion solid breeder materials

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tam, S.W.

    1986-06-01

    Several simple and useful formulae for estimating the thermal conductivity of lithium-containing ceramic tritium breeder materials for fusion reactor blankets are given. These formulae account for the effects of irradiation, as well as solid breeder configuration, i.e., monolith or a packed bed. In the latter case, a coated-sphere concept is found more attractive in incorporating beryllia (a neutron multiplier) into the blanket than a random mixture of solid breeder and beryllia spheres

  19. Optimization of mass-production conditions for tritium breeder pebbles based on slurry droplet wetting method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yi-Hyun, E-mail: yhpark@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Min, Kyung-Mi; Ahn, Mu-Young; Cho, Seungyon; Lee, Young-Min [National Fusion Research Institute, Daejeon (Korea, Republic of); Park, Sang-Jin; Danish, Rehan; Lim, Chul-Hwan; Jo, Yong-Dae [IVT Co., Ltd., Daegu (Korea, Republic of)

    2016-11-01

    Highlights: • An automatic dispensing system was developed to improve uniformity and production rate of breeder pebbles. • The production rate of this system for Li{sub 2}TiO{sub 3} pebble was estimated at 50 kg/year. • The optimization of dispensing and sintering conditions for the mass-production of Li{sub 2}TiO{sub 3} pebble was conducted. • Integrity of Li{sub 2}TiO{sub 3} pebble was able to be ensured during mass-production process, especially during batch process. - Abstract: Lithium metatitanate (Li{sub 2}TiO{sub 3}) is being considered as tritium breeding material for solid-type breeding blanket, which are used in pebble-bed form. The total amount of Li{sub 2}TiO{sub 3} pebbles in Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) is approximately 80 kg. Furthermore, DEMO reactor requires a great deal of breeder pebbles. Therefore, the development of mass-production system for breeder pebbles is necessary. The slurry droplet wetting method was adopted in the mass-production process for Li{sub 2}TiO{sub 3} pebbles, which had been developed in Korea. In this method, an automatic slurry dispensing system is one of the key apparatuses because the uniformity of pebbles and production rate are able to be improved. The system was successfully manufactured, which was consisted of a dispensing unit for instillation of Li{sub 2}TiO{sub 3} slurry, a glycerin bath for hardening of droplets, and an automatic maintaining unit for constant distance between syringe needle and glycerin surface. The production rate of this system for Li{sub 2}TiO{sub 3} pebble was estimated at 50 kg/year. In this study, it was investigated that the effect of dispensing and sintering conditions on the mass-production of Li{sub 2}TiO{sub 3} pebbles.

  20. Numerical studies on the heat transfer and friction characteristics of the first wall inserted with the screw blade for water cooled ceramic breeder blanket of CFETR

    International Nuclear Information System (INIS)

    Jiang, Kecheng; Ma, Xuebin; Cheng, Xiaoman; Liu, Songlin

    2016-01-01

    Highlights: • Enhanced heat transfer and friction characteristics of the FW inserted with screw blade is investigated. • The screw blade structure optimization was done on the screw pitch and diameter. • Decreasing screw pitch and increasing screw diameter could further enhance heat transfer accompanied with increasing flow resistance. • Evaluate the overall enhanced heat performance by using the PEC value. - Abstract: The Water Cooled Ceramic Breeder (WCCB) blanket based on Pressurized Water Reactor (PWR) condition is one of the blanket candidates for Chinese Fusion Engineering Test Reactor (CFETR). The first wall (FW) which plays an important part in the blanket design must remove the high heat flux radiated from plasma and nuclear heat deposition on the structure in any operating conditions. In this paper, the characteristics of enhanced heat transfer and friction for the FW with the inserted screw blade are studied by the numerical method. After the comparison between the numerical and experimental results, the standard k–ε turbulent model is selected to do the numerical calculation. The numerical results show that the peak temperature of RAFM steel could be reduced by decreasing screw pitch or increasing screw diameter, while accompanied with ascending flow resistance. Besides, among all of the chosen calculation cases compared with the smooth channel, the maximum value of temperature reduction is 10 °C under the conditions of heat flux of 0.5 MW/m"2 as well as screw pitch of 18 mm and screw diameter of 6 mm. The maximum increment ratio of the friction factor is 257% under the conditions of screw pitch of 10 mm and screw diameter of 4 mm. Furthermore, screw blade of 74 mm pitch and 4 mm diameter presents the highest overall performance evaluation criterion (PEC) value of 0.93 under Reynolds number of 270 000 conditions, and shows the best overall heat transfer enhancement performance.

  1. Numerical studies on the heat transfer and friction characteristics of the first wall inserted with the screw blade for water cooled ceramic breeder blanket of CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230037 (China); Ma, Xuebin; Cheng, Xiaoman [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2016-03-15

    Highlights: • Enhanced heat transfer and friction characteristics of the FW inserted with screw blade is investigated. • The screw blade structure optimization was done on the screw pitch and diameter. • Decreasing screw pitch and increasing screw diameter could further enhance heat transfer accompanied with increasing flow resistance. • Evaluate the overall enhanced heat performance by using the PEC value. - Abstract: The Water Cooled Ceramic Breeder (WCCB) blanket based on Pressurized Water Reactor (PWR) condition is one of the blanket candidates for Chinese Fusion Engineering Test Reactor (CFETR). The first wall (FW) which plays an important part in the blanket design must remove the high heat flux radiated from plasma and nuclear heat deposition on the structure in any operating conditions. In this paper, the characteristics of enhanced heat transfer and friction for the FW with the inserted screw blade are studied by the numerical method. After the comparison between the numerical and experimental results, the standard k–ε turbulent model is selected to do the numerical calculation. The numerical results show that the peak temperature of RAFM steel could be reduced by decreasing screw pitch or increasing screw diameter, while accompanied with ascending flow resistance. Besides, among all of the chosen calculation cases compared with the smooth channel, the maximum value of temperature reduction is 10 °C under the conditions of heat flux of 0.5 MW/m{sup 2} as well as screw pitch of 18 mm and screw diameter of 6 mm. The maximum increment ratio of the friction factor is 257% under the conditions of screw pitch of 10 mm and screw diameter of 4 mm. Furthermore, screw blade of 74 mm pitch and 4 mm diameter presents the highest overall performance evaluation criterion (PEC) value of 0.93 under Reynolds number of 270 000 conditions, and shows the best overall heat transfer enhancement performance.

  2. Fusion breeder

    International Nuclear Information System (INIS)

    Moir, R.W.

    1982-01-01

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs

  3. Reduction of circulation power for helium-cooled fusion reactor blanket using additive CO{sub 2} gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeon-Gun [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Department of Nuclear and Energy Engineering, Jeju National University, 102 Jejudaehakno, Jeju-si 690-756, Jeju (Korea, Republic of); Park, Il-Woong [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Lee, Dong Won [Nuclear Fusion Engineering Development Center, Korea Atomic Energy Research Institute, Daedeokdaero 989 beon-gil, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Kim, Eung-Soo, E-mail: kes7741@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2015-11-15

    Helium (He) cooling requires large circulation power to remove high heat from plasma side and nuclear heating by high energy neutron in fusion reactors due to its low density. Based on the recent findings that the heat transfer capability of the light gas can be enhanced by mixing another heavier gas, this study adds CO{sub 2} to a reference helium coolant and evaluates the cooling performance of the binary mixture for various compositions. To assess the cooling performance, computational fluid dynamic (CFD) analyses on the KO HCML (Korea Helium Cooled Molten Lithium) TBM are conducted. As a result, it is revealed that the binary mixing of helium, which has favorable thermophysical properties but the density, with a heavier noble gas or an unreactive gas significantly reduces the required circulation power by an order of magnitude with meeting the thermal design requirements. This is attributed to the fact that the density can be highly increased with small amount of a heavier gas while other gas properties are kept relatively comparable. The optimal CO{sub 2} mole fraction is estimated to be 0.4 and the circulation power, in this case, can be reduced to 13% of that of pure helium. This implies that the thermal efficiency of a He-cooled blanket system can be fairly enhanced by means of the proposed binary mixing.

  4. Japanese contributions to ITER testing program of solid breeder blankets for DEMO

    International Nuclear Information System (INIS)

    Kuroda, Toshimasa; Yoshida, Hiroshi; Takatsu, Hideyuki; Maki, Koichi; Mori, Seiji; Kobayashi, Takeshi; Suzuki, Tatsushi; Hirata, Shingo; Miura, Hidenori.

    1991-04-01

    ITER Conceptual Design Activity (CDA), which has been conducted by four parties (Japan, EC, USA and USSR) since May 1988, has been finished on December 1990 with a great achievement of international design work of the integrated fusion experimental reactor. Numerous issues of physics and technology have been clarified for providing a framework of the next phase of ITER (Engineering Design Activity; EDA). Establishment of an ITER testing program, which includes technical test issues of neutronics, solid breeder blankets, liquid breeder blankets, plasma facing components, and materials, has been one of the goals of the CDA. This report describes Japanese proposal for the testing program of DEMO/power reactor blanket development. For two concepts of solid breeder blanket (helium-cooled and water-cooled), identification of technical issues, scheduling of test program, and conceptual design of test modules including required test facility such as cooling and tritium recovery systems have been carried out as the Japanese contribution to the CDA. (author)

  5. Sensisivity and Uncertainty analysis for the Tritium Breeding Ratio of a DEMO Fusion reactor with a Helium cooled pebble bed blanket

    OpenAIRE

    Nunnenmann, Elena; Fischer, Ulrich; Stieglitz, Robert

    2016-01-01

    An uncertainty analysis was performed for the tritium breeding ratio (TBR) of a fusion power plant of the European DEMO type using the MCSEN patch to the MCNP Monte Carlo code. The breeding blanket was of the type Helium Cooled Pebble Bed (HCPB), currently under development in the European Power Plant Physics and Technology (PPPT) programme for a fusion power demonstration reactor (DEMO). A suitable 3D model of the DEMO reactor with HCPB blanket modules, as routinely used for blanket design c...

  6. An overview of dual coolant Pb-17Li breeder first wall and blanket concept development for the US ITER-TBM design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Clement; Malang, S.; Sawan, M.; Dagher, Mohamad; Smolentsev, S.; Merrill, Brad; Youssef, M.; Reyes, Susanna; Sze, Dai Kai; Morley, Neil B.; Sharafat, Shahran; Calderoni, P.; Sviatoslavsky, G.; Kurtz, Richard J.; Fogarty, Paul J.; Zinkle, Steven J.; Abdou, Mohamed A.

    2006-02-01

    An attractive blanket concept for the fusion reactor is the dual coolant Pb-17Li liquid (DCLL) breeder design. Reduced activation ferritic steel (RAFS) is used as the structural material. Helium is used to cool the first wall and blanket structure, and the self-cooled breeder Pb-17LI is circulated for power conversion and for tritium breeding. A SiCf/SiC composite insert is used as the magnetohydrodynamic (MHD) insulation to reduce the impact from the MHD pressure drop of the circulating Ph-17Li and as the thermal insulator to separate the high temperature Pb-17Li from the helium cooled RAFS structure.

  7. European Helium Cooled Pebble Bed (HCPB) test blanket. ITER design description document. Status 1.12.1996

    International Nuclear Information System (INIS)

    Albrecht, H.; Boccaccini, L.V.; Dalle Donne, M.; Fischer, U.; Gordeev, S.; Hutter, E.; Kleefeldt, K.; Norajitra, P.; Reimann, G.; Ruatto, P.; Schleisiek, K.; Schnauder, H.

    1997-04-01

    The Helium Cooled Pebble Bed (HCPB) blanket is based on the use of separate small lithium orthosilicate and beryllium pebble beds placed between radial toroidal cooling plates. The cooling is provided by helium at 8 MPa. The tritium produced in the pebble beds is purged by the flow of helium at 0.1 MPa. The structural material is martensitic steel. It is foreseen, after an extended R and D work, to test in ITER a blanket module based on the HCPB design, which is one of the two European proposals for the ITER Test Blanket Programme. To facilitate the handling operation the Blanket Test Module (BTM) is bolted to a surrounding water cooled frame fixed to the ITER shield blanket back plate. For the design of the test module, three-dimensional Monte Carlo neutronic calculations and thermohydraulic and stress analyses for the operation during the Basic Performance Phase (BPP) and during the Extended Performance Phase (EPP) of ITER have been performed. The behaviour of the test module during LOCA and LOFA has been investigated. Conceptual designs of the required ancillary loops have been performed. The present report is the updated version of the Design Description Document (DDD) for the HCPB Test Module. It has been written in accordance with a scheme given by the ITER Joint Central Team (JCT) and accounts for the comments made by the JCT to the previous version of this report. This work has been performed in the framework of the Nuclear Fusion Project of the Forschungszentrum Karlsruhne and it is supported by the European Union within the European Fusion Technology Program. (orig.) [de

  8. Initial assessment of environmental effects on SiC/SiC composites in helium-cooled nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL

    2013-09-01

    This report summarized the information available in the literature on the chemical reactivity of SiC/SiC composites and of their components in contact with the helium coolant used in HTGR, VHTR and GFR designs. In normal operation conditions, ultra-high purity helium will have chemically controlled impurities (water, oxygen, carbon dioxide, carbon monoxide, methane, hydrogen) that will create a slightly oxidizing gas environment. Little is known from direct experiments on the reactivity of third generation (nuclear grade) SiC/SiC composites in contact with low concentrations of water or oxygen in inert gas, at high temperature. However, there is ample information about the oxidation in dry and moist air of SiC/SiC composites at high temperatures. This information is reviewed first in the next chapters. The emphasis is places on the improvement in material oxidation, thermal, and mechanical properties during three stages of development of SiC fibers and at least two stages of development of the fiber/matrix interphase. The chemical stability of SiC/SiC composites in contact with oxygen or steam at temperatures that may develop in off-normal reactor conditions supports the conclusion that most advanced composites (also known as nuclear grade SiC/SiC composites) have the chemical resistance that would allow them maintain mechanical properties at temperatures up to 1200 1300 oC in the extreme conditions of an air or water ingress accident scenario. Further research is needed to assess the long-term stability of advanced SiC/SiC composites in inert gas (helium) in presence of very low concentrations (traces) of water and oxygen at the temperatures of normal operation of helium-cooled reactors. Another aspect that needs to be investigated is the effect of fast neutron irradiation on the oxidation stability of advanced SiC/SiC composites in normal operation conditions.

  9. Alternative breeder reactor technologies

    International Nuclear Information System (INIS)

    Spinrad, B.I.

    1978-01-01

    The significance of employing breeder reactors to stretch the world resources of nuclear fuels is briefly discussed, and the various types of breeder concepts are described. General descriptions, advantages, and disadvantages of the liquid metal cooled fast breeder, gas cooled fast breeder, molten salt breeder, thermal breeders, and spectral-shift control reactors are presented. Aspects of safeguarding fissile material connected with breeder operation are examined. 31 references

  10. Present status of the Liquid Breeder Validation Module for IFMIF

    International Nuclear Information System (INIS)

    Casal, Natalia; Mas, Avelino; Mota, Fernando; García, Ángela; Rapisarda, David; Nomen, Oriol; Arroyo, Jose Manuel; Abal, Javier; Mollá, Joaquín; Ibarra, Ángel

    2013-01-01

    Highlights: • The LBVM will be used to perform irradiation experiments on functional materials for fusion reactors. • It houses 16 experimental rigs, each one containing a EUROFER capsule partially filled with lithium lead, at 300–550 °C. • A helium purge gas will sweep the tritium permeated through the capsule walls to a tritium measuring station. • A helium cooling system will keep tritium diffusion within safe margins and guarantee its mechanical integrity. • Thermal hydraulic and mechanical calculations, the module instrumentation and aspects as safety or RAMI are presented. -- Abstract: One of the objectives of IFMIF (International Fusion Materials Irradiation Facility), as stated in its specifications, is the validation of breeder blanket concepts for DEMO design. The so-called Liquid Breeder Validation Module (LBVM) will be used in IFMIF to perform experiments under irradiation on functional materials related to liquid breeder concepts for future fusion reactors. This module, not considered in previous IFMIF design phases, is currently under design by CIEMAT in the framework of the IFMIF/EVEDA project. In this paper, the present status of the design of the LBVM is presented

  11. Present status of the Liquid Breeder Validation Module for IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Casal, Natalia, E-mail: natalia.casal@ciemat.es [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, 28040 Madrid (Spain); Mas, Avelino; Mota, Fernando; García, Ángela; Rapisarda, David [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, 28040 Madrid (Spain); Nomen, Oriol [Institut de Recerca en Energia de Catalunya (IREC), Barcelona (Spain); Centre de Disseny d’Equips Industrials (CDEI), Technical University of Catalonia (UPC), Barcelona (Spain); Arroyo, Jose Manuel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, 28040 Madrid (Spain); Abal, Javier [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Mollá, Joaquín; Ibarra, Ángel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, 28040 Madrid (Spain)

    2013-10-15

    Highlights: • The LBVM will be used to perform irradiation experiments on functional materials for fusion reactors. • It houses 16 experimental rigs, each one containing a EUROFER capsule partially filled with lithium lead, at 300–550 °C. • A helium purge gas will sweep the tritium permeated through the capsule walls to a tritium measuring station. • A helium cooling system will keep tritium diffusion within safe margins and guarantee its mechanical integrity. • Thermal hydraulic and mechanical calculations, the module instrumentation and aspects as safety or RAMI are presented. -- Abstract: One of the objectives of IFMIF (International Fusion Materials Irradiation Facility), as stated in its specifications, is the validation of breeder blanket concepts for DEMO design. The so-called Liquid Breeder Validation Module (LBVM) will be used in IFMIF to perform experiments under irradiation on functional materials related to liquid breeder concepts for future fusion reactors. This module, not considered in previous IFMIF design phases, is currently under design by CIEMAT in the framework of the IFMIF/EVEDA project. In this paper, the present status of the design of the LBVM is presented.

  12. Experimental investigations of flow distribution in coolant system of Helium-Cooled-Pebble-Bed Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Ilić, M.; Schlindwein, G., E-mail: georg.schlindwein@kit.edu; Meyder, R.; Kuhn, T.; Albrecht, O.; Zinn, K.

    2016-02-15

    Highlights: • Experimental investigations of flow distribution in HCPB TBM are presented. • Flow rates in channels close to the first wall are lower than nominal ones. • Flow distribution in central chambers of manifold 2 is close to the nominal one. • Flow distribution in the whole manifold 3 agrees well with the nominal one. - Abstract: This paper deals with investigations of flow distribution in the coolant system of the Helium-Cooled-Pebble-Bed Test Blanket Module (HCPB TBM) for ITER. The investigations have been performed by manufacturing and testing of an experimental facility named GRICAMAN. The facility involves the upper poloidal half of HCPB TBM bounded at outlets of the first wall channels, at outlet of by-pass pipe and at outlets of cooling channels in breeding units. In this way, the focus is placed on the flow distribution in two mid manifolds of the 4-manifold system: (i) manifold 2 to which outlets of the first wall channels and inlet of by-pass pipe are attached and (ii) manifold 3 which supplies channels in breeding units with helium coolant. These two manifolds are connected with cooling channels in vertical/horizontal grids and caps. The experimental facility has been built keeping the internal structure of manifold 2 and manifold 3 exactly as designed in HCPB TBM. The cooling channels in stiffening grids, caps and breeding units are substituted by so-called equivalent channels which provide the same hydraulic resistance and inlet/outlet conditions, but have significantly simpler geometry than the real channels. Using the conditions of flow similarity, the air pressurized at 0.3 MPa and at ambient temperature has been used as working fluid instead of HCPB TBM helium coolant at 8 MPa and an average temperature of 370 °C. The flow distribution has been determined by flow rate measurements at each of 28 equivalent channels, while the pressure distribution has been obtained measuring differential pressure at more than 250 positions. The

  13. Assessing the feasibility of a high-temperature, helium-cooled vacuum vessel and first wall for the Vulcan tokamak conceptual design

    International Nuclear Information System (INIS)

    Barnard, H.S.; Hartwig, Z.S.; Olynyk, G.M.; Payne, J.E.

    2012-01-01

    The Vulcan conceptual design (R = 1.2 m, a = 0.3 m, B 0 = 7 T), a compact, steady-state tokamak for plasma–material interaction (PMI) science, must incorporate a vacuum vessel capable of operating at 1000 K in order to replicate the temperature-dependent physical chemistry that will govern PMI in a reactor. In addition, the Vulcan divertor must be capable of handling steady-state heat fluxes up to 10 MW m −2 so that integrated materials testing can be performed under reactor-relevant conditions. A conceptual design scoping study has been performed to assess the challenges involved in achieving such a configuration. The Vulcan vacuum system comprises an inner, primary vacuum vessel that is thermally and mechanically isolated from the outer, secondary vacuum vessel by a 10 cm vacuum gap. The thermal isolation minimizes heat conduction between the high-temperature helium-cooled primary vessel and the water-cooled secondary vessel. The mechanical isolation allows for thermal expansion and enables vertical removal of the primary vessel for maintenance or replacement. Access to the primary vessel for diagnostics, lower hybrid waveguides, and helium coolant is achieved through ∼1 m long intra-vessel pipes to minimize temperature gradients and is shown to be commensurate with the available port space in Vulcan. The isolated primary vacuum vessel is shown to be mechanically feasible and robust to plasma disruptions with analytic calculations and finite element analyses. Heat removal in the first wall and divertor, coupled with the ability to perform in situ maintenance and replacement of divertor components for scientific purposes, is achieved by combining existing helium-cooled techniques with innovative mechanical attachments of plasma facing components, either in plate-type helium-cooled modules or independently bolted, helium-jet impingement-cooled tiles. The vacuum vessel and first wall design enables a wide range of potential PFC materials and configurations to

  14. Failure study of helium-cooled tungsten divertor plasma-facing units tested at DEMO relevant steady-state heat loads

    International Nuclear Information System (INIS)

    Ritz, G; Pintsuk, G; Linke, J; Hirai, T; Norajitra, P; Reiser, J; Giniyatulin, R; Makhankov, A; Mazul, I

    2009-01-01

    Tungsten was selected as armor material for the helium-cooled divertor in future DEMO-type fusion reactors and fusion power plants. After realizing the design and testing of them under cyclic thermal loads of up to ∼14 MW m -2 , the tungsten divertor plasma-facing units were examined by metallography; they revealed failures such as cracks at the thermal loaded and as-machined surfaces, as well as degradation of the brazing layers. Furthermore, in order to optimize the machining processes, the quality of tungsten surfaces prepared by turning, milling and using a diamond cutting wheel were examined. This paper presents a metallographic examination of the tungsten plasma-facing units as well as technical studies and the characterization on machining of tungsten and alternative brazing joints.

  15. Failure study of helium-cooled tungsten divertor plasma-facing units tested at DEMO relevant steady-state heat loads

    Science.gov (United States)

    Ritz, G.; Hirai, T.; Norajitra, P.; Reiser, J.; Giniyatulin, R.; Makhankov, A.; Mazul, I.; Pintsuk, G.; Linke, J.

    2009-12-01

    Tungsten was selected as armor material for the helium-cooled divertor in future DEMO-type fusion reactors and fusion power plants. After realizing the design and testing of them under cyclic thermal loads of up to ~14 MW m-2, the tungsten divertor plasma-facing units were examined by metallography; they revealed failures such as cracks at the thermal loaded and as-machined surfaces, as well as degradation of the brazing layers. Furthermore, in order to optimize the machining processes, the quality of tungsten surfaces prepared by turning, milling and using a diamond cutting wheel were examined. This paper presents a metallographic examination of the tungsten plasma-facing units as well as technical studies and the characterization on machining of tungsten and alternative brazing joints.

  16. European DEMO BOT solid breeder blanket

    International Nuclear Information System (INIS)

    Dalle Donne, M.

    1994-11-01

    The BOT (Breeder Outside Tube) Solid Breeder Blanket for a fusion DEMO reactor is presented. This is one of the four blanket concepts under development in the frame of the European fusion technology program with the aim to select in 1995 the two most promising ones for further development. In the paper the reference blanket design and external loops are described as well as the results of the theoretical and experimental work in the fields of neutronics, thermohydraulics, mechanical stresses, tritium control and extraction, development and irradiation of the ceramic breeder material, beryllium development, ferromagnetic forces caused by disruptions, safety and reliability. An outlook is given on the remaining open questions and on the required R and D program. (orig.) [de

  17. Tritium breeders and tritium permeation barrier coatings for fusion reactor

    International Nuclear Information System (INIS)

    Yamawaki, Michio; Kawamura, Hiroshi; Tsuchiya, Kunihiko

    2004-01-01

    A state of R and D of tritium breeders and tritium permeation barrier coatings for fusion reactor is explained. A list of candidate for tritium breeders consists of ceramics containing lithium, for examples, Li 2 O, Li 2 TiO 3 , Li 2 ZrO 3 , Li 4 SiO 4 and LiAlO 2 . The characteristics and form are described. The optimum particle size is from 1 to 10 μm. The production technologies of tritium breeders in the world are stated. Characteristics of ceramics with lithium as tritium breeders are compared. TiC, TiN/TiC, Al 2 O 3 and Cr 2 O 3 -SiO 2 -P 2 O 5 are tritium permeation barrier coating materials. These production methods and evaluation of characteristics are explained. (S.Y.)

  18. Thermal-hydraulics of helium cooled First Wall channels and scoping investigations on performance improvement by application of ribs and mixing devices

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, Frederik, E-mail: frederik.arbeiter@kit.edu [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, Christian [EUROfusion – Programme Management Unit, Garching (Germany); Chen, Yuming; Ilić, Milica; Schwab, Florian [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Sieglin, Bernhard [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Wenninger, Ronald [EUROfusion – Programme Management Unit, Garching (Germany)

    2016-11-01

    Highlights: • Existing first wall designs and expected plasma heat loads are reviewed. • Heat transfer enhancement methods are investigated by CFD. • The results for heat transfer and friction are given, compared and explained. • Relations for needed pumping power and gained thermal heat are shown. • A range for the maximum permissible heat loads from the plasma is estimated. - Abstract: The first wall (FW) of DEMO is a component with high thermal loads. The cooling of the FW has to comply with the material's upper and lower temperature limits and requirements from stress assessment, like low temperature gradients. Also, the cooling has to be integrated into the balance-of-plant, in a sense to deliver exergy to the power cycle and require a limited pumping power for coolant circulation. This paper deals with the basics of FW cooling and proposes optimization approaches. The effectiveness of several heat transfer enhancement techniques is investigated for the use in helium cooled FW designs for DEMO. Among these are wall-mounted ribs, large scale mixing devices and modified hydraulic diameter. Their performance is assessed by computational fluid dynamics (CFD), and heat transfer coefficients and pressure drop are compared. Based on the results, an extrapolation to high heat fluxes is tried to estimate the higher limits of cooling capabilities.

  19. Accelerator breeder concept

    International Nuclear Information System (INIS)

    Bartholomew, G.A.; Fraser, J.S.; Garvey, P.M.

    1978-10-01

    The principal components and functions of an accelerator breeder are described. The role of the accelerator breeder as a possible long-term fissile production support facility for CANDU (Canada Deuterium Uranium) thorium advanced fuel cycles and the Canadian research and development program leading to such a facility are outlined. (author)

  20. Sensitivity and uncertainty analysis for the tritium breeding ratio of a DEMO fusion reactor with a helium cooled pebble bed blanket

    Directory of Open Access Journals (Sweden)

    Nunnenmann Elena

    2017-01-01

    Full Text Available An uncertainty analysis was performed for the tritium breeding ratio (TBR of a fusion power plant of the European DEMO type using the MCSEN patch to the MCNP Monte Carlo code. The breeding blanket was of the type Helium Cooled Pebble Bed (HCPB, currently under development in the European Power Plant Physics and Technology (PPPT programme for a fusion power demonstration reactor (DEMO. A suitable 3D model of the DEMO reactor with HCPB blanket modules, as routinely used for blanket design calculations, was employed. The nuclear cross-section data were taken from the JEFF-3.2 data library. For the uncertainty analysis, the isotopes H-1, Li-6, Li-7, Be-9, O-16, Si-28, Si-29, Si-30, Cr-52, Fe-54, Fe-56, Ni-58, W-182, W-183, W-184 and W-186 were considered. The covariance data were taken from JEFF-3.2 where available. Otherwise a combination of FENDL-2.1 for Li-7, EFF-3 for Be-9 and JENDL-3.2 for O-16 were compared with data from TENDL-2014. Another comparison was performed with covariance data from JEFF-3.3T1. The analyses show an overall uncertainty of ± 3.2% for the TBR when using JEFF-3.2 covariance data with the mentioned additions. When using TENDL-2014 covariance data as replacement, the uncertainty increases to ± 8.6%. For JEFF-3.3T1 the uncertainty result is ± 5.6%. The uncertainty is dominated by O-16, Li-6 and Li-7 cross-sections.

  1. Analysis of multi-scale spatial separation in a block-type thorium-loaded helium-cooled high-temperature reactor

    International Nuclear Information System (INIS)

    Huang, Jie; Ding, Ming

    2017-01-01

    Highlights: • Four-level of spatial separation is described in a block-type thorium-loaded HTR. • A traditional two-step calculation scheme is used to get the neutronic performance. • Fuel cycle cost is calculated by the levelised lifetime cost method. • Fuel cycle cost decreases with the increase of separation level or thorium content. • Effective enrichment basically determines the fuel cycle cost. - Abstract: With nuclear energy’s rapid development in recent years, supply of nuclear fuel has become increasingly important. Thorium has re-gained attention because of its abundant reserves and excellent physical properties. Compared to the homogeneous Th/U MOX fuel, separation of thorium and uranium in space is a better use of thorium. Therefore, this paper describes four-level spatial separation – no separation, tristructural-isotropic (TRISO) level, channel level and block level – in a block-type thorium-loaded helium-cooled high-temperature reactor (HTR). A traditional two-step calculation scheme, lattice calculation followed by core calculation, is used to get the neutronic performance of the equilibrium cycle, including uranium enrichment, mass of fuel, effective multiplication factor, and average conversion ratio. Based on these data, the fuel cycle cost of different-scale spatial separation can be calculated by the levelised lifetime cost method as a function of thorium content. As the separation level increases from no separation to channel level, the effective enrichment decreases 15% due to the increase of resonance escape probability. So there is a 13% drop for the fuel cycle cost. For TRISO-level separation, as the thorium content increases from 9 to 57%, the effective enrichment decreases 14% because of the superior breeding capacity of U-233. As a result, the fuel cycle cost also has about a 12% decrease. From the perspective of fuel cycle economics, channel-level separation with 60% thorium content is suggested.

  2. Fusion breeder sphere - PAC blanket design

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Palmer, B.J.F.

    1987-11-01

    There is a considerable world-wide effort directed toward the production of materials for fusion reactors. Many ceramic fabrication groups are working on making lithium ceramics in a variety of forms, to be incorporated into the tritium breeding blanket which will surround the fusion reactor. Current blanket designs include ceramic in either monolithic or packed sphere bed (sphere-pac) forms. The major thrust at AECL is the production of lithium aluminate spheres to be incorporated in a sphere-pac bed. Contemporary studies on breeder blanket design offer little insight into the requirements on the sizes of the spheres. This study examined the parameters which determine the properties of pressure drop and coolant requirements. It was determined that an optimised sphere-pac bed would be composed of two diameters of spheres: 75 weight % at 3 mm and 25 weight % at 0.3 mm

  3. Fast Breeder Reactor studies

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts

  4. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  5. Alternative breeder and near-breeder systems

    International Nuclear Information System (INIS)

    Critoph, E.

    1983-01-01

    Nuclear power reactor systems have been developed over the last three decades to the point where they are economically competitive, safe and reliable sources of electrical energy. However, with our present knowledge of fissile resources, there is no assurance that the commercially proven reactor systems, using their current fuel cycles, could play a major role in supplying the total world energy needs of the next, and subsequent, centuries. There is a wide consensus that such assurance requires development of reactor systems with very significantly improved fuel resource utilization. The best known of these, and the one currently receiving the lion's share of attention and effort, is the fast breeder reactor (FBR). This paper reviews the characteristics, development status and planned programmes for alternative concepts to the FBR that meet the requirement for large improvement in fuel resource utilization, i.e. alternative breeder and near-breeder systems. These include: heavy-water reactors operating on thorium fuel cycles, light-water high-conversion and breeder reactors, high-temperature gas-cooled reactors operating on thorium fuel cycles, molten salt reactors and heavy-water suspension reactors. Any attempt to make a logical choice for exploitation among these various alternatives involves a consideration of the interplay between reactor system characteristics on the one hand and a forecast of political and economic environments on the other. The reactor breeding (or conversion) ratio has received a great deal of emphasis, but an optimum choice depends also on a consideration of several other factors, including out- and in-reactor specific fuel inventories, fuel fabrication and reprocessing costs, reactor capital cost and load factor, fuel resources and demand growth rate of capacity. Possible variations in this optimum choice with time and regional location are discussed

  6. Tritium dynamics in fusion reactor solid breeder

    International Nuclear Information System (INIS)

    Violante, V.

    1986-01-01

    In the field of the NET research progrm, the chemical and diffusive processes involved in solid ceramic breeder materials have been analysed. A mathematical model describing the phenomena has been developed to obtain a quantitative evaluation for a first design approach. The data obtained by means of the above mentioned model are in good agreement with the data obtained by other research groups working in Europe and in United States. The computer codes BLANKET2, MC2, FWBC, have been developed to simulate the phenomena

  7. ITER solid breeder blanket materials database

    International Nuclear Information System (INIS)

    Billone, M.C.; Dienst, W.; Noda, K.; Roux, N.

    1993-11-01

    The databases for solid breeder ceramics (Li 2 ,O, Li 4 SiO 4 , Li 2 ZrO 3 and LiAlO 2 ) and beryllium multiplier material are critically reviewed and evaluated. Emphasis is placed on physical, thermal, mechanical, chemical stability/compatibility, tritium, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Correlations are selected for design analysis and compared to the database. Areas for future research and development in blanket materials technology are highlighted and prioritized

  8. Test-element assembly and loading parameters for the in-pile test of HCPB ceramic pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Laan, J.G. van der E-mail: vanderlaan@nrg-nl.com; Boccaccini, L.V.; Conrad, R.; Fokkens, J.H.; Jong, M.; Magielsen, A.J.; Pijlgroms, B.J.; Reimann, J.; Stijkel, M.P.; Malang, S

    2002-11-01

    In the framework of developing the helium cooled pebble-bed (HCPB) blanket an irradiation test of pebble-bed assemblies is prepared at the HFR Petten. The test objective is to concentrate on the effect of neutron irradiation on the thermal-mechanical behaviour of the HCPB breeder pebble-bed at DEMO representative levels of temperature and defined thermal-mechanical loads. The paper reports on the project status, and presents the results of pre-tests, material characteristics, the manufacturing of the pebble-bed assemblies, and the nuclear and thermo-mechanical loading parameters.

  9. The fast breeder reactor

    International Nuclear Information System (INIS)

    Patterson, W.

    1990-01-01

    The author criticises the United Kingdom Atomic Energy Authority's fast breeder reactor programme in his evidence to the House of Commons Select Committee on Energy in January 1990. He argues for power generation by renewable means and greater efficiency in the use rather than in the generation of electricity. He refutes the arguments for nuclear power on the basis of reduced global warming as he claims support technology produces significant amounts of carbon dioxide in any case. Serious doubts are raised about the costs of a fast breeder reactor programme compared to, say, generation by pressurised water reactors. The idea of a uranium scarcity in several decades is also refuted. The reliability of fast breeder reactor technology is called into question. He argues against reprocessing plutonium for economic, health and safety reasons. (UK)

  10. Breeder: now or never

    International Nuclear Information System (INIS)

    Murphy, P.M.

    1978-01-01

    The timing of the commercial introduction of the liquid metal fast breeder reactor (LMFBR) will be an important factor in its ability to supply a significant fraction of the nation's future electrical needs. The number of breeders we can build initially will be limited by the size of our low-cost uranium resources and by the rate at which light water reactors (LWRs) are placed in service. Since this uranium resource is fixed in size while electrical demand will grow geometrically, it is clear that the sooner the breeder is introduced commercially the larger will be the fraction of electrical demand it can supply. An early commercial introduction on an adequate scale requires full-scale resumption of LWR construction and redirection of LMFBR development programs toward a near-term commercial prototype

  11. The fast breeder reactor

    International Nuclear Information System (INIS)

    Keck, O.

    1984-01-01

    Nowadays the fast-breeder reactor is a negative symbol of advanced technology which is getting out of control and, due to its complexity, is incomprehensible for politicians and therefore by-passes the established order. The author lists the most important decisions over state aid to the fast-breeder-reactors up until the mid-seventies and uses documents from the appropriate advisory bodies as reference. He was also aided by interviews with those directly involved with the project. The empirical facts forces us to discard our traditional view of the relationship between state and industry with regard to advanced technology. The author explains that it is impossible to find any economic value in the fast-breeder reactor. The insight gained through this project allows him to draw conclusions which apply to all aspects of state aid to advanced technology. (orig.) [de

  12. Breeders. Les surregenerateurs

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The interest lying in the nuclear energy as a source of electric power is recalled with a view to the consumption of primary energy and electric power; the position of France is particularly discussed. The fast breeder reactor is presented and the state of development of this type of reactor in France is discussed with the planning of the Creys-Malville power plant. The problems successively examined are concerned with: fuel cycle, radioactivity and effluents, breeder safety, licensing procedures, sodium coolant, plutonium, fuel reprocessing, environmental impact and waste management.

  13. Fast breeder project (PSB)

    International Nuclear Information System (INIS)

    1976-07-01

    Activities performed during the 1st quarter of 1976 at or on behalf of the Gesellschaft fuer Kernforschung mbH, Karlsruhe, within the framework of the Fast Breeder Project are given a survey. The following project subdivisions are dealt with: Fuel rod development; materials testing and developments; corrosion studies and coolant analyses; physical experiments; reactor theory; safety of fast breeders; instrumentation and signal processing for core monitoring; effects on the environment; sodium technology tests; thermodynamic and fluid flow tests in gas. (HR) [de

  14. Competitive breeder power plants

    International Nuclear Information System (INIS)

    Winkleblack, R.K.

    1984-01-01

    To utilize the fissile material that is accumulating in the utilities' spent fuel pools, breeder plants must be less expensive than current LWR costs (or utilities will not buy nuclear plants in the near future) and also be highly reliable. The fundamental differences between LWRs and LMFBRs are discussed and recommendations are made for making the most of these differences to design a superior breeder plant that can sell in the future, opening the way to U.S. utilities becoming self-sufficient for fuel supply for centuries

  15. Project fast breeder (PSB)

    International Nuclear Information System (INIS)

    1978-01-01

    The annual report of the fast breeder project (PSB) contains contributions of the participating institutes on the four subjects: 1) Development of oxidic fuel rods and materials for the SNR line, 2) Physics and safety investigations for the SNR line, 3) Carbidic fuel elements, and 4) Back-up solution with gaseous coolant. (HK) [de

  16. Plasma focus breeder

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1981-09-01

    Instead of using linear accelerators, it is possible to breed fissile fuels with the help of high current plasma focus device. A mechanism of accelerating proton beam in plasma focus device to high energy would be a change of inductance in plasma column because of rapid growth of plasma instability. A possible scheme of plasma focus breeder is also proposed. (author)

  17. The accelerator breeder

    International Nuclear Information System (INIS)

    Johansson, E.

    1986-01-01

    Interactions of high-energy particles with atomic nuclei, in particular heavy ones, leads to a strong emission of neutrons. Preferably these high-energy particles are protons or deuterons obtained from a linear accelerator. The neutrons emitted are utilized in the conversion of U238 to Pu239 or of Th232 to U233. The above is the basis of the accelerator breeder, a concept studied abroad in many variants. No such breeder has, however, so far been built, but there exists vast practical experience on the neutron production and on the linear accelerator. Some of the variants mentioned are described in the report, after a presentation of general characteristics for the particle-nucleus interaction and for the linear accelerator. (author)

  18. Breeder reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1983-01-01

    The time cycle for breeder reactor development and deployment is longer than the planning horizons for most private industry and governments. The potential advantage and possible desperate need for widely deployed breeder reactors in the future seems to dictate that suitable long-term development and deployment programs be established to provide an adequate base of technology and in time to meet the need. The problems of failing to do so and being confronted with a major requirement for nuclear energy could result in very serious economic and social disruption. The cost of maintaining the needed program, although substantial, is certainly modest compared with the potential problems which could ensue should we fail to proceed

  19. Molten salt breeder reactor

    International Nuclear Information System (INIS)

    1977-01-01

    MSBR Study Group formed in October 1974 has studied molten salt breeder reactor and its various aspects. Usage of a molten salt fuel, extremely interesting as reactor chemistry, is a great feature to MSBR; there is no need for separate fuel making, reprocessing, waste storage facilities. The group studied the following, and these results are presented: molten salt technology, molten salt fuel chemistry and reprocessing, reactor characteristics, economy, reactor structural materials, etc. (Mori, K.)

  20. Fast breeder reactors

    International Nuclear Information System (INIS)

    Waltar, A.E.; Reynolds, A.B.

    1981-01-01

    This book describes the major design features of fast breeder reactors and the methods used for their design and analysis. The foremost objective of this book is to fulfill the need for a textbook on Fast Breeder Reactor (FBR) technology at the graduate level or the advanced undergraduate level. It is assumed that the reader has an introductory understanding of reactor theory, heat transfer, and fluid mechanics. The book is expected to be used most widely for a one-semester general course on fast breeder reactors, with the extent of material covered to vary according to the interest of the instructor. The book could also be used effectively for a two-quarter or a two-semester course. In addition, the book could serve as a text for a course on fast reactor safety since many topics other than those appearing in the safety chapters relate to FBR safety. Methodology in fast reactor design and analysis, together with physical descriptions of systems, is emphasized in this text more than numerical results. Analytical and design results continue to change with the ongoing evolution of FBR design whereas many design methods have remained fundamentally unchanged for a considerable time

  1. International breeder reactor development

    International Nuclear Information System (INIS)

    Traube, K.

    1976-01-01

    For more than a decade, sodium cooled breeder reactors have now been in the focus of advanced nuclear power development in the major industrialized countries. In the sixties, a total of seven small experimental nuclear power stations were commissioned. Two of these have been shut down in the meantime, the others continue to work satisfactorily, their main purpose being the development of fuel elements. The years 1972-1974 saw the commissioning of the prototype power stations in the 300 MWe power category in France, the United Kingdom and the Soviet Union. Presently, other experimental reactors are under construction in the Federal Republic of Germany, Italy, Japan, the United States, plus another Soviet 600 MWe prototype reactor and the SNR 300 DeBeNeLux prototype at Kalkar. A comparison of the technological features either implemented or planned in the prototype and experimental power plants and of their fuel elements reveals a remarkable similarity in the basic concepts pursued in different countries. The two types of breeder reactors, viz. the loop and the pool types, show a closer resemblance to each other than do pressurized and boilling water reactors. The growing awareness of administrative problems emerging in the approaching phase of the introduction of large breeder power stations in a number of European countries has recently led to a streamlining effort in the structure of industries and to tentative steps towards international cooperation on a broad basis. (orig.) [de

  2. Swiss breeder research programme

    International Nuclear Information System (INIS)

    1992-01-01

    A new initiative for a Swiss Fast Breeder Research Program has been started during 1991. This was partly the consequence of a vote in Fall 1990, when the Swiss public voted for maintaining nuclear reactors in operation, but also for a moratorium of 10 years, within which period no new reactor project should be proposed. On the other hand the Swiss government decided to keep the option 'atomic reactors' open and therefore it was essential to have programmes which guaranteed that the knowledge of reactor technology could be maintained in the industry and the relevant research organisations. There is also motivation to support a Swiss Breeder Research Program on the part of the utilities, the licensing authorities and the Paul Scherrer Institute (PSI). The utilities recognise the breeder reactor as an advanced reactor system which has to be developed further and might be a candidate, somewhere in the future, for electricity production. In so far they have great interest that a know-how base is maintained in our country, with easy access for technical questions and close attention to the development of this reactor type. The licensing authorities have a legitimate interest that an adequate knowledge of the breeder reactor type and its functions is kept at their disposal. PSI and the former EIR have had for many years a very successful basic research programme concerning breeder reactors, and were in close cooperation with EFR. The activities within this programme had to be terminated owing to limitations in personnel and financial resources. The new PSI research programme is based upon two main areas, reactor physics and reactor thermal hydraulics. In both areas relatively small but valuable basic research tasks, the results of which are of interest to the breeder community, will be carried out. The lack of support of the former Breeder Programme led to capacity problems and finally to a total termination. Therefore one of the problems which had to be solved first was

  3. Compatibility of 316L stainless steel with tritium breeders for fusion reactors

    International Nuclear Information System (INIS)

    Broc, M.; Fauvet, P.; Flament, T.; Sannier, J.

    1986-06-01

    Compatibility problems with structural materials are a concern for the choice of the tritium breeder for fusion reactors. In the frame of the European Programme on Fusion Technology, two types of blankets are considered: liquid (eutectic lithium-lead alloy at 0.68 wt % Li: 17Li83Pb) and solid (lithium aluminate or silicate) breeders. This paper is devoted to compatibility studies of 316L stainless steel with 17Li83Pb alloy and γ-LiA10 2 ceramic

  4. Fast breeder reactors

    International Nuclear Information System (INIS)

    Ollier, J.L.

    1987-01-01

    The first industrial-scale fast breeder reactor (FBR) is the Superphenix I at Crays-Melville. It was designed and built by Novatome, a French company, and Ansaldo, an Italian company. The advantages of FBRs are summarized. The status of Superphenix and the testing schedule is given. The stages in its power escalation in 1986 are given. The article is optimistic about the future for FBRs and expects FBRs to take over from PWRs at the beginning of the 21st Century. To achieve economic viability, European financial cooperation for the research and development programme is advocated. (UK)

  5. Analysis of the HCPB breeder blanket bock-up experiment for ITER using SUSD3D code

    International Nuclear Information System (INIS)

    Kodeli, I.

    2005-01-01

    In order to validate new nuclear cross-section evaluations, method development and design of the helium-cooled pebble bed (HCPB) test blanket module of ITER a benchmark experiment was performed this year at the Frascati Neutron Generator (FNG) in the scope of the EFF (European Fusion File) project in Europe. The objective of this experiment is to study the tritium breeding ratio and other nuclear quantities in a breeder blanket in order to establish and improve the quality of related JEFF nuclear data. The experiment consists of a metallic beryllium set-up with two double layers of breeder material (Li 2 CO 3 powder). The reaction rate measurements include the Li 2 CO 3 pellets (tritium breeding ratio), activation foils, and neutron and gamma spectrometers inserted at several axial and lateral locations in the block. Our task is to perform the deterministic transport, and cross section sensitivity and uncertainty analysis. The role of the cross-section sensitivity and uncertainty analysis is to optimise the design of the benchmark, and to assist in the interpretation of the measurement results. The paper presents the pre- and post- analysis of the benchmark experiment. (author)

  6. An overview of dual coolant Pb-17Li breeder first wall and blanket concept development for the US ITER-TBM design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States)]. E-mail: wongc@fusion.gat.com; Malang, S. [Fusion Nuclear Technology Consulting, Linkenheim (Germany); Sawan, M. [University of Wisconsin, Madison, WI (United States); Dagher, M. [University of California, Los Angeles, CA (United States); Smolentsev, S. [University of California, Los Angeles, CA (United States); Merrill, B. [INEEL, Idaho Falls, ID (United States); Youssef, M. [University of California, Los Angeles, CA (United States); Reyes, S. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Sze, D.K. [University of California, San Diego, CA (United States); Morley, N.B. [University of California, Los Angeles, CA (United States); Sharafat, S. [University of California, Los Angeles, CA (United States); Calderoni, P. [University of California, Los Angeles, CA (United States); Sviatoslavsky, G. [University of Wisconsin, Madison, WI (United States); Kurtz, R. [Pacific Northwest Laboratory, Richland, WA (United States); Fogarty, P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Zinkle, S. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Abdou, M. [University of California, Los Angeles, CA (United States)

    2006-02-15

    An attractive blanket concept for the fusion reactor is the dual coolant Pb-17Li liquid (DCLL) breeder design. Reduced activation ferritic steel (RAFS) is used as the structural material. Helium is used to cool the first wall and blanket structure, and the self-cooled breeder Pb-17Li is circulated for power conversion and for tritium breeding. A SiC{sub f}/SiC composite insert is used as the magnetohydrodynamic (MHD) insulation to reduce the impact from the MHD pressure drop of the circulating Pb-17Li and as the thermal insulator to separate the high temperature Pb-17Li from the helium cooled RAFS structure. For the reference tokamak power reactor design, this blanket concept has the potential of satisfying the design limits of RAFS while allowing the feasibility of having a high Pb-17Li outlet temperature of 700 deg. C. We have identified critical issues for the concept, some of which include the first wall design, the assessment of MHD effects with the SiC-composite flow coolant insert, and the extraction and control of the bred tritium from the Pb-17Li breeder. R and D programs have been proposed to address these issues. At the same time we have proposed a test plan for the DCLL ITER-Test Blanket Module program.

  7. An overview of dual coolant Pb-17Li breeder first wall and blanket concept development for the US ITER-TBM design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Clement; Malang, S.; Sawan, M.; Dagher, Mohamad; Smolentsev, S.; Merrill, Brad; Youssef, M.; Reyes, Susanna; Sze, Dai Kai; Morley, Neil B.; Sharafat, Shahran; Calderoni, P.; Sviatoslavsky, G.; Kurtz, Richard J.; Fogarty, Paul J.; Zinkle, Steven J.; Abdou, Mohamed A.

    2006-07-05

    An attractive blanket concept for the fusion reactor is the dual coolant Pb-17Li liquid (DCLL) breeder design. Reduced activation ferritic steel (RAFS) is used as the structural material. Helium is used to cool the first wall and blanket structure, and the self-cooled breeder Pb-17Li is circulated for power conversion and for tritium breeding. A SiCf/SiC composite insert is used as the magnetohydrodynamic (MHD) insulation to reduce the impact from the MHD pressure drop of the circulating Pb-17Li and as the thermal insulator to separate the high temperature Pb-17Li from the helium cooled RAFS structure. For the reference tokamak power reactor design, this blanket concept has the potential of satisfying the design limits of RAFS while allowing the feasibility of having a high Pb-17Li outlet temperture of 700C. We have identified critical issues for the concept, some of which inlude the first wall design, the assessment of MHD effectrs with the SiC-composite flow coolant insert, and the extraction and control of the bred tritium from the Pb-17Li breeder. R&D programs have been proposed to address these issues. At the same time, we have proposed a test plan for the DCLL ITER-Test Blanket Module program.

  8. The fast breeder reactor

    International Nuclear Information System (INIS)

    Collier, J.

    1990-01-01

    The arguments for and against the fast breeder reactor are debated. The case for the fast reactor is that the world energy demand will increase due to increasing population over the next forty years and that the damage to the global environment from burning fossil fuels which contribute to the greenhouse effect. Nuclear fission is the only large scale energy source which can achieve a cut in the use of carbon based fuels although energy conservation and renewable sources will also be important. Fast reactors produce more energy from uranium than other types of (thermal) reactors such as AGRs and PWRs. Fast reactors would be important from about 2020 onwards especially as by then many thermal reactors will need to be replaced. Fast reactors are also safer than normal reactors. The arguments against fast reactors are largely economic. The cost, especially the capital cost is very high. The viability of the technology is also questioned. (UK)

  9. The fast breeder reactor

    International Nuclear Information System (INIS)

    Davis, D.A.; Baker, M.A.W.; Hall, R.S.

    1990-01-01

    Following submission of written evidence, the Energy Committee members asked questions of three witnesses from the Central Electricity Generating Board and Nuclear Electric (which will be the government owned company running nuclear power stations after privatisation). Both questions and answers are reported verbatim. The points raised include where the responsibility for the future fast reactor programme should lie, with government only or with private enterprise or both and the viability of fast breeder reactors in the future. The case for the fast reactor was stated as essentially strategic not economic. This raised the issue of nuclear cost which has both a construction and a decommissioning element. There was considerable discussion as to the cost of building a European Fast reactor and the cost of the electricity it would generate compared with PWR type reactors. The likely demand for fast reactors will not arrive for 20-30 years and the need to build a fast reactor now is questioned. (UK)

  10. Automated breeder fuel fabrication

    International Nuclear Information System (INIS)

    Goldmann, L.H.; Frederickson, J.R.

    1983-01-01

    The objective of the Secure Automated Fabrication (SAF) Project is to develop remotely operated equipment for the processing and manufacturing of breeder reactor fuel pins. The SAF line will be installed in the Fuels and Materials Examination Facility (FMEF). The FMEF is presently under construction at the Department of Energy's (DOE) Hanford site near Richland, Washington, and is operated by the Westinghouse Hanford Company (WHC). The fabrication and support systems of the SAF line are designed for computer-controlled operation from a centralized control room. Remote and automated fuel fabriction operations will result in: reduced radiation exposure to workers; enhanced safeguards; improved product quality; near real-time accountability, and increased productivity. The present schedule calls for installation of SAF line equipment in the FMEF beginning in 1984, with qualifying runs starting in 1986 and production commencing in 1987. 5 figures

  11. Progress in the development of Li{sub 2}ZrO{sub 3} and Li{sub 2}TiO{sub 3} pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Lulewicz, J D; Roux, N [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1998-03-01

    Li{sub 2}ZrO{sub 3} and Li{sub 2}TiO{sub 3} pebbles are being developed as ceramic breeder for the European Helium-cooled pebble bed DEMO blanket concept. Status is given of the fabrication work, and of the properties characteristics determination. (author)

  12. Development of a new cellular solid breeder for enhanced tritium production

    International Nuclear Information System (INIS)

    Sharafat, Shahram; Williams, Brian; Ghoniem, Nasr; Ghoniem, Adam; Shimada, Masashi; Ying, Alice

    2016-01-01

    Highlights: • A new cellular solid breeder is presented with 2 to 3× the thermal conductivity and substantially higher density (∼90%) compared with pebble beds. • The cellular solid breeder contains an internal network of interconnected open micro-channels (∼50 –100 μm diam.) for efficient tritium release. • Cellular breeders are made by melt-infiltrating Li-based ceramic materials into an open-cell carbon foam followed by removal of the foam. • High temperature (750 °C and 40 °C/mm) cyclic compression tests demonstrated good structural integrity (no cracking) and low Young’s modulus of of <5 GPa. • Deuterium absorption–desorption release rates were comparable with those from pebble beds with similar characteristic T-diffusion lengths. - Abstract: A new high-performance cellular solid breeder is presented that has several times the thermal conductivity and is substantially denser compared with sphere-packed breeder beds. The cellular breeder is fabricated using a patented process of melt-infiltrating ceramic breeder material into an open-cell carbon foam. Following solidification the carbon foam is removed by oxidation. This process results in a near 90% dense robust freestanding breeder in a block configuration with an internal network of open interconnected micro-channels for tritium release. The network of interconnected micro-channels was investigated using X-ray tomography. Aside from increased density and thermal conductivity relative to pebble beds, high temperature sintering is eliminated and thermal durability is increased. Cellular breeder morphology, thermal conductivity, specific heat, porosity levels, high temperature mechanical properties, and deuterium charging-desorption rates are presented.

  13. Development of a new cellular solid breeder for enhanced tritium production

    Energy Technology Data Exchange (ETDEWEB)

    Sharafat, Shahram, E-mail: sharams@gmail.com [University of California Los Angeles, 420 Westwood Pl., Los Angeles, CA 90095-1587 (United States); Williams, Brian [Ultramet, Pacoima, CA 91331-2210 (United States); Ghoniem, Nasr [University of California Los Angeles, 420 Westwood Pl., Los Angeles, CA 90095-1587 (United States); Ghoniem, Adam [Digital Materials Solutions, Inc., Westwood, CA 90024 (United States); Shimada, Masashi [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Ying, Alice [University of California Los Angeles, 420 Westwood Pl., Los Angeles, CA 90095-1587 (United States)

    2016-11-01

    Highlights: • A new cellular solid breeder is presented with 2 to 3× the thermal conductivity and substantially higher density (∼90%) compared with pebble beds. • The cellular solid breeder contains an internal network of interconnected open micro-channels (∼50 –100 μm diam.) for efficient tritium release. • Cellular breeders are made by melt-infiltrating Li-based ceramic materials into an open-cell carbon foam followed by removal of the foam. • High temperature (750 °C and 40 °C/mm) cyclic compression tests demonstrated good structural integrity (no cracking) and low Young’s modulus of of <5 GPa. • Deuterium absorption–desorption release rates were comparable with those from pebble beds with similar characteristic T-diffusion lengths. - Abstract: A new high-performance cellular solid breeder is presented that has several times the thermal conductivity and is substantially denser compared with sphere-packed breeder beds. The cellular breeder is fabricated using a patented process of melt-infiltrating ceramic breeder material into an open-cell carbon foam. Following solidification the carbon foam is removed by oxidation. This process results in a near 90% dense robust freestanding breeder in a block configuration with an internal network of open interconnected micro-channels for tritium release. The network of interconnected micro-channels was investigated using X-ray tomography. Aside from increased density and thermal conductivity relative to pebble beds, high temperature sintering is eliminated and thermal durability is increased. Cellular breeder morphology, thermal conductivity, specific heat, porosity levels, high temperature mechanical properties, and deuterium charging-desorption rates are presented.

  14. Economic analysis of fusion breeders

    International Nuclear Information System (INIS)

    Delene, J.G.

    1985-01-01

    This paper presents a study of the economic performance of Fission/Fusion Hybrid devices. This work takes fusion breeder cost estimates and applies methodology and cost factors used in the fission reactor programs to compare fusion breeders with Liquid Metal Fast Breeder Reactors (LMFBR). The results of the analysis indicate that the Hybrid will be in the same competitive range as proposed LMFBRs and have the potential to provide economically competitive power in a future of rising uranium prices. The sensitivity of the results to variations in key parameters is included

  15. International strategies for breeder development

    International Nuclear Information System (INIS)

    Zaleski, C.P.; Zebroski, E.L.

    1992-01-01

    This paper studies the perspectives of breeder reactors development. The near term context has led some experts to the conclusion that breeder reactor technology is too far ahead of its time. Some have compared breeders to the supersonic airplane, Concorde: good technical performance but failure in its economic dimensions. In this paper, the author points out the major shortcomings of such an assessment which may be valid in the short time. However, with a short-term market-dominated perspective that uses an 8% discount rate, one can neglect every thing that is going to happen in 50 years. 6 refs., 11 figs

  16. Canadian accelerator breeder system development

    International Nuclear Information System (INIS)

    Schriber, S.O.

    1982-11-01

    A shortage of fissile material at a reasonable price is expected to occur in the early part of the twenty-first century. Converting fertile material to fissile material by electronuclar methods is an option that can extend th world's resources of fissionable material, supplying fuel for nuclear power stations. This paper presents the rationale for electronuclear breeders and describes the Canadian development program for an accelerator breeder facility that could produce 1 Mg of fissile material per year

  17. Fast breeder fuel cycle

    International Nuclear Information System (INIS)

    1978-07-01

    This contribution is prepared for the answer to the questionnaire of working group 5, subgroup B. B.1. is the short review of the fast breeder fuel cycles based on the reference large commercial Japanese LMFBR. The LMFBRs are devided into two types. FBR-A is the reactor to be used before 2000, and its burnup and breeding ratio are relatively low. The reference fuel cycle requirement is calculated based on the FBR-A. FBR-B is the one to be used after 2000, and its burnup and breeding ratio are relatively high. B.2. is basic FBR fuel reprocessing scheme emphasizing the differences with LWR reprocessing. This scheme is based on the conceptual design and research and development work on the small scale LMFBR reprocessing facility of Japan. The facility adopts a conventional PUREX process except head end portions. The report also describes the effects of technical modifications of conventional reprocessing flow sheets, and the problems to be solved before the adoption of these alternatives

  18. Tritium-assisted fusion breeders

    International Nuclear Information System (INIS)

    Greenspan, E.; Miley, G.H.

    1983-08-01

    This report undertakes a preliminary assessment of the prospects of tritium-assisted D-D fuel cycle fusion breeders. Two well documented fusion power reactor designs - the STARFIRE (D-T fuel cycle) and the WILDCAT (Cat-D fuel cycle) tokamaks - are converted into fusion breeders by replacing the fusion electric blankets with 233 U producing fission suppressed blankets; changing the Cat-D fuel cycle mode of operation by one of the several tritium-assisted D-D-based modes of operation considered; adjusting the reactor power level; and modifying the resulting plant cost to account for the design changes. Three sources of tritium are considered for assisting the D-D fuel cycle: tritium produced in the blankets from lithium or from 3 He and tritium produced in the client fission reactors. The D-D-based fusion breeders using tritium assistance are found to be the most promising economically, especially the Tritium Catalyzed Deuterium mode of operation in which the 3 He exhausted from the plasma is converted, by neutron capture in the blanket, into tritium which is in turn fed back to the plasma. The number of fission reactors of equal thermal power supported by Tritium Catalyzed Deuterium fusion breeders is about 50% higher than that of D-T fusion breeders, and the profitability is found to be slightly lower than that of the D-T fusion breeders

  19. Materials data base and design equations for the UCLA solid breeder blanket

    International Nuclear Information System (INIS)

    Sharafat, S.; Amodeo, R.; Ghoniem, N.M.

    1986-02-01

    The materials and properties investigated for this blanket study are listed. The phenomenological equations and mathematical fits for all materials and properties considered are given. Efforts to develop a swelling equation based on the few experimental data points available for breeder materials are described. The sintering phenomena for ceramics is investigated

  20. Status of the solid breeder materials database

    International Nuclear Information System (INIS)

    Billone, M.C.; Dienst, W.; Lorenzetto, P.; Noda, K.; Roux, N.

    1995-01-01

    The databases for solid breeder ceramics (Li 2 O, Li 4 SiO 4 , Li 2 ZrO 3 , and LiAlO 2 ) and beryllium multiplier material were critically reviewed and evaluated as part of the ITER/CDA design effort (1988-1990). The results have been documented in a detailed technical report. Emphasis was placed on the physical, thermal, mechanical, chemical stability/compatibility, tritium retention/release, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Materials properties correlations were selected for use in design analysis, and ranges for input parameters (e.g., temperature, porosity, etc.) were established. Also, areas for future research and development in blanket materials technology were highlighted and prioritized. For Li 2 O, the most significant increase in the database has come in the area of tritium retention as a function of operating temperature and purge flow composition. The database for postirradiation inventory from purged in-reactor samples has increased from four points to 20 points. These new data have allowed an improvement in understanding and modeling, as well as better interpretation of the results of laboratory annealing studies on unirradiated and irradiated material. In the case of Li 2 ZrO 3 , relatively little data were available on the sensitivity of the mechanical properties of this ternary ceramic to microstructure and moisture content. The increase in the database for this material has allowed not only better characterization of its properties, but also optimization of fabrication parameters to improve its performance. Some additional data are also available for the other two ternary ceramics to aid in the characterization of their performance. In particular, the thermal performance of these materials, as well as beryllium, in packed-bed form has been measured and characterized

  1. Comparison of lithium and the eutectic lead lithium alloy, two candidate liquid metal breeder materials for self-cooled blankets

    International Nuclear Information System (INIS)

    Malang, S.; Mattas, R.

    1994-06-01

    Liquid metals are attractive candidates for both near-term and long-term fusion applications. The subjects of this comparison are the differences between the two candidate liquid metal breeder materials Li and LiPb for use in breeding blankets in the areas of neutronics, magnetohydrodynamics, tritium control, compatibility with structural materials, heat extraction system, safety, and required R ampersand D program. Both candidates appear to be promising for use in self-cooled breeding blankets which have inherent simplicity with the liquid metal serving as both breeders and coolant. The remaining feasibility question for both breeder materials is the electrical insulation between liquid metal and duct walls. Different ceramic coatings are required for the two breeders, and their crucial issues, namely self-healing of insulator cracks and radiation induced electrical degradation are not yet demonstrated. Each liquid metal breeder has advantages and concerns associated with it, and further development is needed to resolve these concerns

  2. Reprocessing in breeder fuel cycles

    International Nuclear Information System (INIS)

    Burch, W.D.; Groenier, W.S.

    1982-01-01

    Over the past decade, the United States has developed plans and carried out programs directed toward the demonstration of breeder fuel reprocessing in connection with the first breeder demonstration reactor. A renewed commitment to moving forward with the construction of the Clinch River Breeder Reactor (CRBR) has been made, with startup anticipated near the end of this decade. While plans for the CRBR and its associated fuel cycle are still being firmed up, the basic research and development programs required to carry out the demonstrations have continued. This paper updates the status of the reprocessing plans and programs. Policies call for breeder recycle to begin in the early to mid-1990's. Contents of this paper are: (1) evolving plans for breeder reprocessing (demonstration reprocessing plant, reprocessing head-end colocated at an existing facility); (2) relationship to LWR reprocessing; (3) integrated equipment test (IET) facility and related hardware development activities (mechanical considerations in shearing and dissolving, remote operations and maintenance demonstration phase of IET, integrated process demonstration phase of IET, separate component development activities); and (4) supporting process R and D

  3. International cooperation on breeder reactors

    International Nuclear Information System (INIS)

    Gray, J.E.; Kratzer, M.B.; Leslie, K.E.; Paige, H.W.; Shantzis, S.B.

    1978-01-01

    In March 1977, as the result of discussions which began in the fall of 1976, the Rockefeller Foundation requested International Energy Associates Limited (IEAL) to undertake a study of the role of international cooperation in the development and application of the breeder reactor. While there had been considerable international exchange in the development of breeder technology, the existence of at least seven major national breeder development programs raised a prima facie issue of the adequacy of international cooperation. The final product of the study was to be the identification of options for international cooperation which merited further consideration and which might become the subject of subsequent, more detailed analysis. During the course of the study, modifications in U.S. breeder policy led to an expansion of the analysis to embrace the pros and cons of the major breeder-related policy issues, as well as the respective views of national governments on those issues. The resulting examination of views and patterns of international collaboration emphasizes what was implicit from the outset: Options for international cooperation cannot be fashioned independently of national objectives, policies and programs. Moreover, while similarity of views can stimulate cooperation, this cannot of itself provide compelling justification for cooperative undertakings. Such undertakings are influenced by an array of other national factors, including technological development, industrial infrastructure, economic strength, existing international ties, and historic experience

  4. Production behavior of irradiation defects in solid breeder materials

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Hirotake; Moritani, Kimikazu [Kyoto Univ. (Japan)

    1998-03-01

    The irradiation effects in solid breeder materials are important for the performance assessment of fusion reactor blanket systems. For a clearer understanding of such effects, we have studied the production behavior of irradiation defects in some lithium ceramics by an in-situ luminescence measurement technique under ion beam irradiation. The luminescence spectra were measured at different temperatures, and the temperature-transient behaviors of luminescence intensity were also measured. The production mechanisms of irradiation defects were discussed on the basis of the observations. (author)

  5. Breeder--now or never

    International Nuclear Information System (INIS)

    Murphy, P.M.

    1978-01-01

    The timing of the commercial introduction of the LMFBR (Liquid Metal Fast Breeder Reactor) will be an important factor in its ability to supply a significant fraction of the nation's future electrical needs. The number of breeders we can build initially will be limited by the size of our low-cost urnium resources and by the rate at which LWR's (Light Water Reactors) are placed in service. Since this uranium resource is fixed in size while electrical demand will grow geometrically, it is clear that the sooner the breeder is introduced commercially the larger will be the fraction of electrical demand that it can supply. An early commercial introduction on an adequate scale requires full-scale resumption of LWR construction and redirection of LMFBR development programs toward a near-term commercial prototype

  6. The breeder reactor and Europe

    International Nuclear Information System (INIS)

    Daglish, J.

    1979-01-01

    A report is given of a conference on the breeder reactor and Europe held in Lucerne, Switzerland from 14 - 17 October 1979 sponsored by the Swiss Association for Atomic Energy and the Association of European Atomic Forums. The underlying theme of the conference was the question that if nuclear power is to play a major role in meeting world energy needs in the long term, thermal reactors must in time be complemented with more advanced reactor systems that conserve uranium resources which are huge but not unlimited. This is not questioned; disagreement begins with discussion of the desirability of the breeder, and how fast and how far the introduction of such reactors should go. Aspects considered at the conference which are especially dealt with in this review are; why breed, commercial aspects, alternatives to the LMFBR, how to build a fast reactor, the breeder programmes in Europe, Britain, the Soviet Union, Japan and the United States. (U.K.)

  7. Analysis of mechanical effects caused by plasma disruptions in the European BOT solid breeder blanket design with MANET as structural material

    International Nuclear Information System (INIS)

    Boccaccini, L.V.; Ruatto, P.

    1994-01-01

    The Karlsruhe Nuclear Center is developing, through design and experimental work, a BOT (Breeder Out of Tube) Helium Cooled Solid Breeder Blanket for a DEMO application. One of the crucial problems in the blanket design is to demonstrate the capability of the structure to withstand the mechanical effects of a major plasma disruption as extrapolated to DEMO from the experience of present machines. In this paper the results of the assessment work are presented; the acceptability of the design is discussed on the basis of a stress analysis of the structure under combined thermal and electromagnetic loads. The martensitic steel MANET has been chosen as structural material, because it is able to withstand the high neutron fluence in Demo (70 dpa) without appreciably swelling and has good thermal-mechanical properties - lower thermal expansion and higher strength - in comparison to AISI 316L steel. As far as it concerns the mechanical effects of plasma disruptions, MANET presents two important features which have been carefully investigated in the assessment: the magnetic properties of the material and the degradation of the fracture toughness behavior under irradiation

  8. Neutronic performance optimization study of Indian fusion demo reactor first wall and breeding blanket

    International Nuclear Information System (INIS)

    Swami, H.L.; Danani, C.

    2015-01-01

    In frame of design studies of Indian Nuclear Fusion DEMO Reactor, neutronic performance optimization of first wall and breeding blanket are carried out. The study mainly focuses on tritium breeding ratio (TBR) and power density responses estimation of breeding blanket. Apart from neutronic efficiency of existing breeding blanket concepts for Indian DEMO i.e. lead lithium ceramic breeder and helium cooled solid breeder concept other concepts like helium cooled lead lithium and helium-cooled Li_8PbO_6 with reflector are also explored. The aim of study is to establish a neutronically efficient breeding blanket concept for DEMO. Effect of first wall materials and thickness on breeding blanket neutronic performance is also evaluated. For this study 1 D cylindrical neutronic model of DEMO has been constructed according to the preliminary radial build up of Indian DEMO. The assessment is being done using Monte Carlo based radiation transport code and nuclear cross section data file ENDF/B- VII. (author)

  9. Fusion Breeder Program interim report

    International Nuclear Information System (INIS)

    Moir, R.; Lee, J.D.; Neef, W.

    1982-01-01

    This interim report for the FY82 Fusion Breeder Program covers work performed during the scoping phase of the study, December, 1981-February 1982. The goals for the FY82 study are the identification and development of a reference blanket concept using the fission suppression concept and the definition of a development plan to further the fusion breeder application. The context of the study is the tandem mirror reactor, but emphasis is placed upon blanket engineering. A tokamak driver and blanket concept will be selected and studied in more detail during FY83

  10. Breeder reactors over the world

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    After a short recall on the development of research programs, this paper reviews the fast breeder reactor operating, in construction or in project over the world (USA, France, Italy, RFG, India, Japan and U.K.). Thermal and electrical power output, and operation data are given [fr

  11. Astrid (fast breeder nuclear reactor)

    International Nuclear Information System (INIS)

    2014-01-01

    This document presents ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), a French project of sodium-cooled fast breeder reactor, fourth generation reactor which should be fuelled by uranium 238 rather than uranium 235, and should therefore need less extracted natural uranium to produce electricity. The operation principle of fast breeder reactors is described. They notably directly consume plutonium, allow an easier radioactive waste management as they transform long life radioactive elements into shorter life elements by transmutation. The regeneration process is briefly described, and the various operation modes are evoked (iso-generator, sub-generator, and breeder). Some peculiarities of sodium-cooled reactors are outlined. The Astrid operation principle is described, its main design innovations outlined. Various challenges are discussed regarding safety of supply and waste processing, and the safety of future reactors. Major actors are indicated: CEA, Areva, EDF, SEIV Alcen, Toshiba, Rolls Royce, and Comex. Some key data are indicated: expected lifetime, expected availability rate, cost. The projected site is Marcoule and fast breeder reactors operated or under construction in the world are indicated. The document also proposes an overview of the background and evolution of reactors of 4. generation

  12. Status of advanced tritium breeder development for DEMO in the broader approach activities in Japan

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi; Oikawa, Fumiaki; Nishitani, Takeo

    2010-01-01

    DEMO reactors require ' 6 Li-enriched ceramic tritium breeders' which have high tritium breeding ratios (TBRs) in the blanket designs of both EU and JA. Both parties have been promoting the development of fabrication technologies of Li 2 TiO 3 pebbles and of Li 4 SiO 4 pebbles including the reprocessing. However, the fabrication techniques of tritium breeders pebbles have not been established for large quantities. Therefore, these parties launch a collaborative project on scaleable and reliable production routes of advanced tritium breeders. In addition, this project aims to develop fabrication techniques allowing effective reprocessing of 6 Li. The development of the production and 6 Li reprocessing techniques includes preliminary fabrication tests of breeder pebbles, reprocessing of lithium, and suitable out-of-pile characterizations. The R and D on the fabrication technologies of the advanced tritium breeders and the characterization of developed materials has been started between the EU and Japan in the DEMO R and D of the International Fusion Energy Research Centre (IFERC) project as a part of the Broader Approach activities from 2007 to 2016. The equipment for production of advanced breeder pebbles is planned will be installed in the DEMO R and D building at Rokkasho, Japan. The design work in this facility was carried out. The specifications of the pebble production apparatuses and related equipment in this facility were fixed, and the basic data of these apparatuses was obtained. In this design work, the preliminary investigations of the dissolution and purification process of tritium breeders were carried out. From the results of the preliminary investigations, lithium resources of 90% above were recovered by the aqueous dissolving methods using HNO 3 and H 2 O 2 . The removal efficiency of 60 Co by the addition in the dissolved solutions of lithium ceramics were 97-99.9% above using activated carbon impregnated with 8-hydroxyquinolinol. In this report

  13. Fast breeder reactor research

    International Nuclear Information System (INIS)

    1975-01-01

    , Italy, in April or May 1977. Recognizing the importance of international co-ope ration within the framework of IWGFR for preparing surveys, proposals and recommendations concerning sodium cooled fast breeder reactors, the Working Group prepared a number of joint documents with the help of experts from the participating countries, discussed them at the Eighth Annual Meeting and made recommendations on the preparation of subsequent joint documents. (author)

  14. Breeder development and breeder strategies worldwide; Brueterentwicklung und Brueterstrategien weltweit

    Energy Technology Data Exchange (ETDEWEB)

    Marth, W. [Stabsabteilung Finanzen/Controlling, Bereich Stillegung Nuklearer Anlagen, Forschungszentrum Karlsruhe GmbH (Germany)

    1997-05-01

    Fast breeders are currently operated in six countries. In addition, a breeder power plant is under construction in China. The largest plant in operation is the 1250 MWe Superphenix in France. After considerable commissioning problems, it has meanwhile attained a good availability. However, its operating license was revoked on legal grounds; one of the main reasons for that decision was the absence of a public inquiry. The operation of several fast breeders in Russia and Kazakhstan has been almost entirely devoid of problems for years. In contrast, the situation in Japan is somewhat confused at the moment, as the Japanese prototype breeder, MONJU, suffered a sodium leakage accident in 1995 and has since been down. The Indian FBTR experimental breeder is troubled by many technical problems in its commissioning phase. The American FFTR fast reactor has been kept in a hot, but non-nuclear, state for years because the politicians cannot agree on its destiny. The fate of the German SNR-300 prototype breeder is well known: For six years, no operating permit was granted to the Kalkar Nuclear Power Station. After the plant had been decommissioned in 1991 for political reasons, it was dismantled in part and has recently been converted into a fun park. (orig.) [Deutsch] In sechs Laendern werden derzeit Schnelle Brueter betrieben; in China ist darueber hinaus ein Brueterkraftwerk im Bau. Die groesste betriebene Anlage ist der 1250-MWe-Superphenix in Frankreich. Nach betraechtlichen Inbetriebsnahmeproblemen hat er inzwischen eine gute Verfuegbarkeit erreicht; aus juristischen Gruenden wurde im jedoch die Betriebsgenehmigung entzogen, wobei das Fehlen einer oeffentlichen Anhoerung die wesentliche Rolle spielt. Ziemlich problemlos ist seit Jahren der Betrieb mehrerer Schneller Brueter in Russland und Kasachstan. Demgegenueber ist die Situation in Japan derzeit etwas verworren: Der dortige Prototyp Monju erlitt 1995 einen Natriumleckagestoerfall und ist seitdem abgeschaltet. Der

  15. Liquid-helium-cooled Michelson interferometer

    Science.gov (United States)

    Augason, G. C.; Young, N.

    1972-01-01

    Interferometer serves as a rocket-flight spectrometer for examination of the far infrared emission spectra of astronomical objects. The double beam interferometer is readily adapted to make spectral scans and for use as a detector of discrete line emissions.

  16. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  17. Fast breeder fuel element development

    International Nuclear Information System (INIS)

    Marth, W.; Muehling, G.

    1983-08-01

    This report is a compilation of the papers which have been presented during a seminar ''Fast Breeder Fuel Element Development'' held on November 15/16, 1982 at KfK. The papers give a survey of the status, of the obtained results and of the necessary work, which still has to be done in the frame of various development programmes for fast breeder fuel elements. In detail the following items were covered by the presentations: - the requirements and boundary conditions for the design of fuel pins and elements both for the reference concept of the SNR 300 core and for the large, commercial breeder type of the future (presentation 1,2 and 6); - the fabrication, properties and characterization of various mixed oxide fuel types (presentations 3,4 and 5); - the operational fuel pin behaviour, limits of different design concepts and possible mechanism for fuel pin failures (presentations (7 and 8); - the situation of cladding- and wrapper materials development especially with respect to the high burn-up values of commercial reactors (presentations 9 and 10); - the results of the irradiation experiments performed under steady-state and non-stationary operational conditions and with failed fuel pins (presentations 11, 12, 13 and 14). (orig./RW) [de

  18. Numerical characterization of thermo-mechanical performance of breeder pebble beds

    International Nuclear Information System (INIS)

    An, Zhiyong; Ying, Alice; Abdou, Mohamed

    2008-01-01

    A numerical approach using the discrete element method (DEM) has been applied to study the thermo-mechanical properties of ceramic breeder pebble beds. This numerical scheme is able to predict the inelastic behavior observed in a loading and unloading operation. In addition, it demonstrates that the average value of contact force increases linearly with overall pressure, but at a much faster rate, about 3.4 times the overall pressure increase rate. In this paper, the thermal creep properties of two different ceramic breeder pebble materials, Li 4 SiO 4 and Li 2 O, are also examined by the current numerical code. The difference found in the properties of candidate materials is reflected numerically in the overall strain in the pebble bed when the stress magnitude becomes smaller. (author)

  19. Numerical characterization of thermo-mechanical performance of breeder pebble beds

    International Nuclear Information System (INIS)

    An, Zhiyong; Ying, Alice; Abdou, Mohamed

    2007-01-01

    A numerical approach using the discrete element method (DEM) has been applied to study the thermo-mechanical properties of ceramic breeder pebble beds. This numerical scheme is able to predict the inelastic behavior observed in a loading and unloading operation. In addition, it demonstrates that the average value of contact force increases linearly with overall pressure, but at a much faster rate, about 3.4 times the overall pressure increase rate. In this paper, the thermal creep properties of two different ceramic breeder pebble materials, Li 4 SiO 4 and Li 2 O, are also examined by the current numerical code. The difference found in the properties of candidate materials is reflected numerically in the overall strain in the pebble bed when the stress magnitude becomes smaller

  20. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Gatley, J.A.

    1979-01-01

    Breeder fuel sub-assemblies with electromagnetic brakes and fluidic valves for liquid metal cooled fast breeder reactors are described. The electromagnetic brakes are of relatively small proportions and the valves are of the controlled vortex type. The outlet coolant temperature of at least some of the breeder sub-assemblies are maintained by these means substantially constant throughout the life of the fuel assembly without severely pressurising the sub-assembly. (UK)

  1. Status and prospects of thermal breeders

    International Nuclear Information System (INIS)

    1978-08-01

    The main objective of this cooperative study and of this report is to evaluate the extent to which thermal breeders might complement or serve as an alternative to fast breeders in solving the long-term nuclear fuel supply problem. A secondary objective is to consider in a general way issues such as proliferation, safety, environmental impacts, economics, power plant availability, and fuel cycle versatility to determine whether thermal breeder reactors offer advantages or disadvantages with respect to such issues

  2. Ceramic breeder pebble bed packing stability under cyclic loads

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunbo, E-mail: chunbozhang@fusion.ucla.edu [Fusion Science and Technology Center, University of California, Los Angeles, CA 90095-1597 (United States); Ying, Alice; Abdou, Mohamed A. [Fusion Science and Technology Center, University of California, Los Angeles, CA 90095-1597 (United States); Park, Yi-Hyun [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • The feasibility of obtaining packing stability for pebble beds is studied. • The responses of pebble bed to cyclic loads have been presented and analyzed in details. • Pebble bed packing saturation and its applications are discussed. • A suggestion is made regarding the improvement of pebbles filling technique. - Abstract: Considering the optimization of blanket performance, it is desired that the bed morphology and packing state during reactor operation are stable and predictable. Both experimental and numerical work are performed to explore the stability of pebble beds, in particular under pulsed loading conditions. Uniaxial compaction tests have been performed for both KIT’s Li{sub 4}SiO{sub 4} and NFRI’s Li{sub 2}TiO{sub 3} pebble beds at elevated temperatures (up to 750 °C) under cyclic loads (up to 6 MPa). The obtained data shows the stress-strain loop initially moves towards the larger strain and nearly saturates after a certain number of cyclic loading cycles. The characterized FEM CAP material models for a Li{sub 4}SiO{sub 4} pebble bed with an edge-on configuration are used to simulate the thermomechanical behavior of pebble bed under ITER pulsed operations. Simulation results have shown the cyclic variation of temperature/stress/strain/gap and also the same saturation trend with experiments under cyclic loads. Therefore, it is feasible for pebble bed to maintain its packing stability during operation when disregarding pebbles’ breakage and irradiation.

  3. Pd based ultrathin membranes for the tritiated water gas shift reaction in the ITER breeder recovery system

    International Nuclear Information System (INIS)

    Tosti, S.; Bettinali, L.; Violante, V.; Basile, A.; Chiappetta, M.; Criscuoli, A.; Drioli, E.; Rizzelo, C.

    1998-01-01

    A mathematical model of a catalytic membrane reactor (CMR) for the water gas shift reaction has been carried out. Based on the model, a new closed loop process for the tritium removal system for the ITER test module of helium cooled pebble bed blanket concept has been studied. A CMR is the main equipment of the proposed process. The main advantages of the closed loop process are related to the absence of secondary wastes, low tritium inventories, moderate operating temperatures and pressures, low dilution of the stream to be processed by isotopic separation. As permeating membranes in the CMR ultra-thin metallic membranes of Pd and PdAg (50-70 μm thick) have been studied. A ceramic porous tube, containing the catalyst in the lumen, has been put in the metallic tube to obtain the CMR for the water gas shifting. Experimental tests, carried out both on ultra-thin membranes and CMRs for the water gas shift reaction, confirmed the behavior studied by the theoretical model and showed a long live of the membrane. (authors)

  4. Ceramics as nuclear reactor fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    1975-01-01

    Ceramics are widely accepted as nuclear reactor fuel materials, for both metal clad ceramic and all-ceramic fuel designs. Metal clad UO 2 is used commercially in large tonnages in five different power reactor designs. UO 2 pellets are made by familiar ceramic techniques but in a reactor they undergo complex thermal and chemical changes which must be thoroughly understood. Metal clad uranium-plutonium dioxide is used in present day fast breeder reactors, but may eventually be replaced by uranium-plutonium carbide or nitride. All-ceramic fuels, which are necessary for reactors operating above about 750 0 C, must incorporate one or more fission product retentive ceramic coatings. BeO-coated BeO matrix dispersion fuels and silicate glaze coated UO 2 -SiO 2 have been studied for specialised applications, but the only commercial high temperature fuel is based on graphite in which small fuel particles, each coated with vapour deposited carbon and silicon carbide, are dispersed. Ceramists have much to contribute to many aspects of fuel science and technology. (author)

  5. Thermo-mechanical characterization of ceramic pebbles for breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Lo Frano, Rosa, E-mail: rosa.lofrano@ing.unipi.it; Aquaro, Donato; Scaletti, Luca

    2016-11-01

    Highlights: • Experimental activities to characterize the Li{sub 4}SiO{sub 4}. • Compression tests of pebbles. • Experimental evaluation of thermal conductivity of pebbles bed at different temperatures. • Experimental test with/without compression load. - Abstract: An open issue for fusion power reactor is to design a suitable breeding blanket capable to produce the necessary quantity of the tritium and to transfer the energy of the nuclear fusion reaction to the coolant. The envisaged solution called Helium-Cooled Pebble Bed (HCPB) breeding blanket foresees the use of lithium orthosilicate (Li{sub 4}SiO{sub 4}) or lithium metatitanate (Li{sub 2}TiO{sub 3}) pebble beds. The thermal mechanical properties of the candidate pebble bed materials are presently extensively investigated because they are critical for the feasibility and performances of the numerous conceptual designs which use a solid breeder. This study is aimed at the investigation of mechanical properties of the lithium orthosilicate and at the characterization of the main chemical, physical and thermo-mechanical properties taking into account the production technology. In doing that at the Department of Civil and Industrial Engineering (DICI) of the University of Pisa adequate experiments were carried out. The obtained results may contribute to characterize the material of the pebbles and to optimize the design of the envisaged fusion breeding blankets.

  6. The GBR reactor an economically competitive Breeder

    International Nuclear Information System (INIS)

    Chermanne, J.

    1974-01-01

    In this article the design is described of a 1200 MWe fast breeder, gas-cooled reactor (GBR-4), prepared by a group of experts of the Gas Breeder Reactor Association and used as a reference system for economical and safety evaluations, as well as for defining the research and development program focussed on such concept and the specifications of the prospective demonstrative plant

  7. in meat production III. Feeder - breeder dimorphism

    African Journals Online (AJOL)

    Feeder- breeder dimorphism is advantageous when large offspring for slaughter is obtained from small breeding animals. The effect of feeder- breeder dimorphism on herd efficiency is evaluated for terminal crossbreeding and growth modification by biotechnological or dietary means. Selection criteria for breeds or lines in ...

  8. Clinch River breeder project gets boost

    International Nuclear Information System (INIS)

    Hill, W.H.

    1982-01-01

    Progress on the Clinch River Breeder Reactor Plant project, the United States' next step in developing liquid metal fast breeder technology is examined including consideration of Plant design, component fabrication and testing, construction schedule, funding, fuel cycle development and licensing. (U.K.)

  9. Construction of PREMUX and preliminary experimental results, as preparation for the HCPB breeder unit mock-up testing

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, F., E-mail: francisco.hernandez@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (INR) (Germany); Kolb, M. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-WPT) (Germany); Annabattula, R. [Indian Institute of Technology Madras (IITM), Department of Mechanical Engineering (India); Weth, A. von der [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (INR) (Germany)

    2014-10-15

    Highlights: • PREMUX has been constructed as preparation for a future out-of-pile thermo-mechanical qualification of a HCPB breeder unit mock-up. • The rationale and constructive details of PREMUX are reported in this paper. • PREMUX serves as a test rig for the new heater system developed for the HCPB-BU mock-up. • PREMUX will be used as benchmark for the thermal and thermo-mechanical models developed in ANSYS for the pebble beds of the HCPB-BU. • Preliminary results show the functionality of PREMUX and the good agreement of the measured temperatures with the thermal model developed in ANSYS. - Abstract: One of the European blanket designs for ITER is the Helium Cooled Pebble Bed (HCPB) blanket. The core of the HCPB-TBM consists of so-called breeder units (BUs), which encloses beryllium as neutron multiplier and lithium orthosilicate (Li{sub 4}SiO{sub 4}) as tritium breeder in form of pebble beds. After the design phase of the HCPB-BU, a non-nuclear thermal and thermo-mechanical qualification program for this device is running at the Karlsruhe Institute of Technology. Before the complex full scale BU testing, a pre-test mock-up experiment (PREMUX) has been constructed, which consists of a slice of the BU containing the Li{sub 4}SiO{sub 4} pebble bed. PREMUX is going to be operated under highly ITER-relevant conditions and has the following goals: (1) as a testing rig of new heater concept based on a matrix of wire heaters, (2) as benchmark for the existing finite element method (FEM) codes used for the thermo-mechanical assessment of the Li{sub 4}SiO{sub 4} pebble bed, and (3) in situ measurement of thermal conductivity of the Li{sub 4}SiO{sub 4} pebble bed during the tests. This paper describes the construction of PREMUX, its rationale and the experimental campaign planned with the device. Preliminary results testing the algorithm used for the temperature reconstruction of the pebble bed are reported and compared qualitatively with first analyses

  10. U.S. and foreign breeder reactors

    International Nuclear Information System (INIS)

    Hill, E.H.

    1977-01-01

    The running battle between Congress and the Administration over the Clinch River Breeder Reactor Plant (CRBRP) Project has provoked an increased interest in domestic and foreign breeder reactor programs. Perhaps an understanding of the history of breeders here and abroad will serve to place the CRBRP in perspective and allow some analysis of how the U.S. appears on the global canvas. Breeder reactor technology has, for the most part, settled down to concentration on the liquid metal fast breeder reactor (LMFBR). This is the result of 32 years of experience with reactors employing a fast neutron flux and even longer experience with liquid metal coolants. However, a number of U.S. utilities are sponsoring a gas cooled fast reactor program as an alternative technology to the LMFBR. This development program is supported by the U.S. Department of Energy

  11. Tritium adsorption/release behaviour of advanced EU breeder pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, Matthias H.H., E-mail: matthias.kolb@kit.edu; Rolli, Rolf; Knitter, Regina

    2017-06-15

    The tritium loading of current grades of advanced ceramic breeder pebbles with three different lithium orthosilicate (LOS)/lithium metatitanate (LMT) compositions (20–30 mol% LMT in LOS) and pebbles of EU reference material, was performed in a consistent way. The temperature dependent release of the introduced tritium was subsequently investigated by temperature programmed desorption (TPD) experiments to gain insight into the desorption characteristics. The obtained TPD data was decomposed into individual release mechanisms according to well-established desorption kinetics. The analysis showed that the pebble composition of the tested samples does not severely change the release behaviour. Yet, an increased content of lithium metatitanate leads to additional desorption peaks at medium temperatures. The majority of tritium is released by high temperature release mechanisms of chemisorbed tritium, while the release of physisorbed tritium is marginal in comparison. The results allow valuable projections for the tritium release behaviour in a fusion blanket.

  12. Tritium adsorption/release behaviour of advanced EU breeder pebbles

    Science.gov (United States)

    Kolb, Matthias H. H.; Rolli, Rolf; Knitter, Regina

    2017-06-01

    The tritium loading of current grades of advanced ceramic breeder pebbles with three different lithium orthosilicate (LOS)/lithium metatitanate (LMT) compositions (20-30 mol% LMT in LOS) and pebbles of EU reference material, was performed in a consistent way. The temperature dependent release of the introduced tritium was subsequently investigated by temperature programmed desorption (TPD) experiments to gain insight into the desorption characteristics. The obtained TPD data was decomposed into individual release mechanisms according to well-established desorption kinetics. The analysis showed that the pebble composition of the tested samples does not severely change the release behaviour. Yet, an increased content of lithium metatitanate leads to additional desorption peaks at medium temperatures. The majority of tritium is released by high temperature release mechanisms of chemisorbed tritium, while the release of physisorbed tritium is marginal in comparison. The results allow valuable projections for the tritium release behaviour in a fusion blanket.

  13. New ceramics for nuclear industry. Case of fission and fusion reactors

    International Nuclear Information System (INIS)

    Yvars, M.

    1979-10-01

    The ceramics used in the nuclear field are described as is their behaviour under radiation. 1) Power reactors - nuclear fission. Ceramics enter into the fabrication of nuclear fuels: oxides, carbides, uranium or plutonium nitrides or oxy-nitrides. Silicon carbide SiC is used for preparing the fuels of helium cooled high temperature reactors. Its use is foreseen in the design of gas high temperature gas thermal exchangers, as is silicon nitride (Si 3 N 4 ). In the materials for safety or control rods, the intense neutron flows induce nuclear reactions which increase the temperature of the neutron absorbing material. Boron carbide B 4 C, rare earth oxides Ln 2 O 3 , or B 4 C-Cu or B 4 C-Al cermets are employed. Burnable poison materials are formed of Al 2 O 3 -B 4 C or Al 2 O 3 -Ln 2 O 3 cermets. The moderators of thermal neutron reactors are in high purety polycrystalline graphite. For the thermal insulation of reactor vessels and jackets, honeycomb ceramics are used as well as ceramic fibres on an increasing scale (kaolin, alumina and other fibres). 2) fusion reactors (Tokomak). These require refractory materials with a low atomic number. Carbon fibres, boron carbide, some borons (Al B 12 ), silicon nitrides and oxy-nitrides and high density alumina are the substances considered [fr

  14. Thermal breeder fuel enrichment zoning

    International Nuclear Information System (INIS)

    Capossela, H.J.; Dwyer, J.R.; Luce, R.G.; McCoy, D.F.; Merriman, F.C.

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect. 1 figure

  15. Breeder nutrition and offspring performance

    Directory of Open Access Journals (Sweden)

    F Calini

    2007-06-01

    Full Text Available Vertical integration in poultry industry strongly emphasizes the importance of cost control at all levels. In the usual broiler production operations, the costs involved with the production of the hatching egg or the day old chick are negligible if seen in the perspective of the cost per kg of live bird. From a research point of view, anyway, the greatest attention is usually given to the performance of broiler breeders, and most of the research in the field is focused on the improvement of their relative performance, mainly in terms of saleable chicks produced per hen, while less attention has been given to the quality of the chick and to the improvement of its growth performances, even if these last parameters have an effective impact on the overall economics of the poultry growing business. Most of the data available is quite dated, as can be seen from some recent reviews, and in general little attention is given to the impact of parental nutrition on the subsequent broiler performance. It is in fact more usual to find data about dam nutrition influence on egg fertility and hatchability than on subsequent progeny performance. The objectives of this review were to assess, on the basis of published reports, the effects of selected nutrients and anti-nutrients normally prevailing in commercial broiler breeder feeds - vitamins, micro-minerals, mycotoxins, - trying to pinpoint which could be the positive and the negative effects of both on the subsequent broiler performance, with a particular attention to the impact on immune function and carcass yield.

  16. Development and qualification of functional materials for the EU Test Blanket Modules: Strategy and R and D activities

    Energy Technology Data Exchange (ETDEWEB)

    Zmitko, M., E-mail: milan.zmitko@f4e.europa.eu [Fusion for Energy (F4E), 08019 Barcelona (Spain); Poitevin, Y. [Fusion for Energy (F4E), 08019 Barcelona (Spain); Boccaccini, L., E-mail: lorenzo.boccaccini@inr.fzk.de [Institut Fuer Neutronenphysik und Reaktortechnik, FZK, D-76021 Karlsruhe (Germany); Salavy, J.-F., E-mail: jfsalavy@cea.fr [CEA/Saclay, DEN/DM2S, F-91191 Gif-sur-Yvette (France); Knitter, R., E-mail: regina.knitter@imf.fzk.de [Institut Fuer Materialforschung III, FZK, D-76021 Karlsruhe (Germany); Moeslang, A., E-mail: anton.moeslang@imf.fzk.de [Institut Fuer Materialforschung I, FZK, D-76021 Karlsruhe (Germany); Magielsen, A.J., E-mail: magielsen@nrg.eu [NRG Petten, 1755 ZG Petten (Netherlands); Hegeman, J.B.J. [NRG Petten, 1755 ZG Petten (Netherlands); Laesser, R. [Fusion for Energy (F4E), 08019 Barcelona (Spain)

    2011-10-01

    Europe has developed two reference tritium breeder blankets concepts for a DEMO fusion reactor: the Helium-Cooled Lithium-Lead and the Helium-Cooled Pebble-Bed. Both will be tested in ITER under the form of Test Blanket Modules (TBMs). The paper reviews the current status of development and qualification of the EU TBMs functional materials; i.e. ceramic solid breeder materials, beryllium/beryllides multiplier materials and Lithium-Lead liquid metal breeder material Pb-15.7Li. For each functional material the main functional/performance requirements with key qualification issues, current status of the R and D activities and the EU development strategy are presented. In the development strategy major steps considered are listed pointing out importance of the 'Development/qualification/procurement plan', currently under elaboration, for definition of a roadmap of further activities aiming at delivery of qualified functional materials to be used in the European TBMs in ITER.

  17. Burnup effects on criticality, breeding and safety of 1,000 MWe gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Ohta, Fumio

    1977-12-01

    Burnup characteristics of 1,000 MWe, PuO 2 - UO 2 fuelled helium-cooled fast breeder reactor have been studied concerning criticality, breeding and safety. A 26-energy group cross-section set produced from ENDF/B-3 was used. Criticality and breeding were studied with two-dimensional burnup code APOLLO and 4-energy group cross-section set generated by collapsing the mentioned cross-section set. Safety aspects such as Doppler reactivity effect, coolant-depressurisation and steam-ingression reactivity effect were studied with multi-dimensional diffusion theory code CITATION and perturbation theory code PERKY, as well as the 26-energy group cross-section set. The following were revealed: (1) The reactivity swing over a year's irradiation is merely 1.5% ΔK/K. This small swing may permit relatively long fuel dwelling in GCFR and , thus, the frequency of outages for refuelling can be minimised. (2) The surplus fissile plutonium over a year's irradiation is about 360 Kg, and the system doubling time is about 9 years. The GCFR studied has excellent breeding, compared with those in PuO 2 -UO 2 fuelled LMFBR and other GCFRs. (3) The coolant-depressurisation reactivity effect becomes more positive with burnup. This is not so serious as the sodium-void reactivity effect of LMFBR. (4) In the start-up core, the steam-ingression reactivity effect due to steam ingression to the core and blanket from the secondary coolant system becomes positive at certain steam density (0.02gr/cc) and this positive effect increases with steam density. With advance of burnup, however, the effect becomes negative, this increasing with steam density. After all, the steam ingression is no hazard in operation of GCFR since the reactivity effect is negative in the equilibrium state. (auth.)

  18. Comparison of early socialization practices used for litters of small-scale registered dog breeders and nonregistered dog breeders.

    Science.gov (United States)

    Korbelik, Juraj; Rand, Jacquie S; Morton, John M

    2011-10-15

    OBJECTIVE-To compare early socialization practices between litters of breeders registered with the Canine Control Council (CCC) and litters of nonregistered breeders advertising puppies for sale in a local newspaper. DESIGN-Retrospective cohort study. Animals-80 litters of purebred and mixed-breed dogs from registered (n = 40) and non-registered (40) breeders. PROCEDURES-Registered breeders were randomly selected from the CCC website, and nonregistered breeders were randomly selected from a weekly advertising newspaper. The litter sold most recently by each breeder was then enrolled in the study. Information pertaining to socialization practices for each litter was obtained through a questionnaire administered over the telephone. RESULTS-Registered breeders generally had more breeding bitches and had more litters than did nonregistered breeders. Litters of registered breeders were more likely to have been socialized with adult dogs, people of different appearances, and various environmental stimuli, compared with litters of nonregistered breeders. Litters from registered breeders were also much less likely to have been the result of an unplanned pregnancy. CONCLUSIONS AND CLINICAL RELEVANCE-Among those breeders represented, litters of registered breeders received more socialization experience, compared with litters of nonregistered breeders. People purchasing puppies from nonregistered breeders should focus on socializing their puppies between the time of purchase and 14 weeks of age. Additional research is required to determine whether puppies from nonregistered breeders are at increased risk of behavioral problems and are therefore more likely to be relinquished to animal shelters or euthanized, relative to puppies from registered breeders.

  19. Fast breeder reactors--lecture 4

    International Nuclear Information System (INIS)

    Marshall, W.; Davies, L.M.

    1986-01-01

    This paper discusses the economics of fast breeder reactors. An algebraic background is presented which represents the various views expressed by different nations regarding the cost of fast breeder reactors and their associated fuel cycle services, the timescale by which they might be available, and the simultaneous variations in the price of uranium. Actual presentations made by individual countries in recent discussions serve to verify the general nature of this present discussion. It is assumed that if nuclear power is to make a long term contribution to the needs of the world, the introduction of fast breeder reactors is both essential and necessary

  20. On the economics of fusion breeders

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    The potential for improving the economics of tandem mirror fusion breeders by assisting them with tritium produced in the control of the client light water reactors and/or by operating them with polarized plasma is assessed. Also assessed is the promise of a Starfire tokamak and a compact reversed field pinch fusion driver for fusion breeder applications. All three approaches are found to promise a significant reduction in the cost of fusion breeder produced fissile fuel, potentially making the FB-LWR system economically competitive with conventional nuclear energy systems. (orig.) [de

  1. On fusion and fission breeder reactors

    International Nuclear Information System (INIS)

    Brandt, B.; Schuurman, W.; Klippel, H.Th.

    1981-02-01

    Fast breeder reactors and fusion reactors are suitable candidates for centralized, long-term energy production, their fuel reserves being practically unlimited. The technology of a durable and economical fusion reactor is still to be developed. Such a development parallel with the fast breeder is valuable by reasons of safety, proliferation, new fuel reserves, and by the very broad potential of the development of the fusion reactor. In order to facilitate a discussion of these aspects, the fusion reactor and the fast breeder reactor were compared in the IIASA-report. Aspects of both reactor systems are compared

  2. Study on tritium recovery from breeder materials

    International Nuclear Information System (INIS)

    Moriyama, H.; Moritani, K.

    1997-01-01

    For the development of fusion reactor blanket systems, some of the key issues on the tritium recovery performance of solid and liquid breeder materials were studied. In the case of solid breeder materials, a special attention was focussed on the effects of irradiation on the tritium recovery performance, and tritium release experiments, luminescence measurements of irradiation defects and modeling studies were systematically performed. For liquid breeder materials, tritium recovery experiments from molten salt and liquid lithium were performed, and the technical feasibility of tritium recovery methods was discussed. (author)

  3. Tritium transport in lithium ceramics porous media

    International Nuclear Information System (INIS)

    Tam, S.W.; Ambrose, V.

    1991-01-01

    A random network model has been utilized to analyze the problem of tritium percolation through porous Li ceramic breeders. Local transport in each pore channel is described by a set of convection-diffusion-reaction equations. Long range transport is described by a matrix technique. The heterogeneous structure of the porous medium is accounted for via Monte Carlo methods. The model was then applied to an analysis of the relative contribution of diffusion and convective flow to tritium transport in porous lithium ceramics. 15 refs., 4 figs

  4. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  5. Reasons for opposition to the breeder reactor

    International Nuclear Information System (INIS)

    Timbal-Duclaux, Louis

    1979-01-01

    The author gives a sociological analysis of the opposition to breeder reactors in France, stressing that the antinuclear groups main thrust of protest against the Super-Phenix has dimished since its apex two years ago [fr

  6. Major welfare issues in broiler breeders

    NARCIS (Netherlands)

    Jong, de I.C.; Guemene, D.

    2011-01-01

    Under current practices, broiler parent stock (broiler breeders) encounter several welfare problems, such as feed restriction and injury during mating. Intensive selection for production traits, especially growth rate, is associated with increased nutritious requirement and thus feed consumption,

  7. Compatibility of sodium with ceramic oxides employed in nuclear reactors

    International Nuclear Information System (INIS)

    Acena, V.

    1981-01-01

    A review of experiments carried out up to the present time on the corrosion and compatibility of ceramic oxides with liquid sodium at temperatures corresponding to those in fast breeder reactors, is presented. The results of a thermo-dynamic/liquid sodium reactions are included. The exercise has been conducted with a view to effecting experimental studies in the future. (author) [es

  8. Compatibility of sodium with ceramic oxides employed in nuclear reactors

    International Nuclear Information System (INIS)

    Acena Moreno, V.

    1981-01-01

    This work is a review of experiments carried out up to the present time on the corrosion and compatibility of ceramic oxides with liquid sodium at temperatures corresponding to those in fast breeder reactors. The review also includes the results of a thermo-dynamic/liquid sodium reactions. The exercise has been conducted with a view to effecting experimental studies in the future. (Author)

  9. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Thatcher, G.; Mitchell, A.J.

    1981-01-01

    Fuel sub-assemblies for liquid metal-cooled fast breeder reactors are described which each incorporate a fluid flow control valve for regulating the rate of flow through the sub-assembly. These small electro-magnetic valves seek to maintain the outlet coolant temperature of at least some of the breeder sub-assemblies substantially constant throughout the life of the fuel assembly without severely pressurising the sub-assembly. (U.K.)

  10. Breeder reactor fuel fabrication system development

    International Nuclear Information System (INIS)

    Bennett, D.W.; Fritz, R.L.; McLemore, D.R.; Yatabe, J.M.

    1981-01-01

    Significant progress has been made in the design and development of remotely operated breeder reactor fuel fabrication and support systems (e.g., analytical chemistry). These activities are focused by the Secure Automated Fabrication (SAF) Program sponsored by the Department of Energy to provide: a reliable supply of fuel pins to support US liquid metal cooled breeder reactors and at the same time demonstrate the fabrication of mixed uranium/plutonium fuel by remotely operated and automated methods

  11. Universal Fast Breeder Reactor Subassembly Counter manual

    International Nuclear Information System (INIS)

    Menlove, H.O.; Eccleston, G.W.; Swansen, J.E.; Goris, P.; Abedin-Zadeh, R.; Ramalho, A.

    1984-08-01

    A neutron coincidence counter has been designed for the measurement of fast breeder reactor fuel assemblies. This assay system can accommodate the full range of geometries and masses found in fast breeder subassemblies under IAEA safeguards. The system's high-performance capability accommodates high plutonium loadings of up to 16 kg. This manual describes the system and its operation and gives performance and calibration parameters for typical applications

  12. Universal Fast Breeder Reactor Subassembly Counter manual

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, H.O.; Eccleston, G.W.; Swansen, J.E.; Goris, P.; Abedin-Zadeh, R.; Ramalho, A.

    1984-08-01

    A neutron coincidence counter has been designed for the measurement of fast breeder reactor fuel assemblies. This assay system can accommodate the full range of geometries and masses found in fast breeder subassemblies under IAEA safeguards. The system's high-performance capability accommodates high plutonium loadings of up to 16 kg. This manual describes the system and its operation and gives performance and calibration parameters for typical applications.

  13. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  14. Reducing beryllium content in mixed bed solid-type breeder blankets

    Energy Technology Data Exchange (ETDEWEB)

    Shimwell, J., E-mail: mail@jshimwell.com [Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Lilley, S.; Morgan, L.; Packer, L.; Kovari, M.; Zheng, S. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); McMillan, J. [Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2016-11-01

    Highlights: • The ratio of breeder ceramic to neutron multiplier of breeder blankets was varied linearly with depth. • Blankets with varying composition were found to perform better than uniform composition breeder blankets. • It was also possible to reduce the amount of beryllium required by the blanket. - Abstract: Beryllium (Be) is a precious resource with many high value uses, the low energy threshold (n,2n) reaction makes Be an excellent neutron multiplier for use in fusion breeder blankets. Estimates of Be requirements and available resources suggest that this could represent a major supply difficulty for solid-type blanket concepts. Reducing the quantity of Be required by breeder blankets would help to alleviate the problem to some extent. In addition, it is important that the reduction in the Be quantity does not diminish the blanket's performance in key aspects such as the tritium breeding ratio (TBR), energy multiplication and peak nuclear heating. Mixed pebble bed designs allow for the multiplier fraction to be varied throughout the blanket. This neutronics study used MCNP 6 to investigate linear variations of the multiplier fraction in relation to blanket depth, in order to better utilise the important multiplying Be(n,2n) and breeding reactions. Blankets with a uniform multiplier fraction showed little scope for reduction in Be mass. Blankets with varying multiplier fractions were able to simultaneously use 10% less Be, increase the energy amplification by 1%, reduce the peak heating by 7% and maintaining a sufficient TBR when compared to the performance achievable using a uniform composition.

  15. Sensitive Ceramics

    DEFF Research Database (Denmark)

    2014-01-01

    Sensitive Ceramics is showing an interactive digital design tool for designing wall like composition with 3d ceramics. The experiment is working on two levels. One which has to do with designing compositions and patterns in a virtual 3d universe based on a digital dynamic system that responds on ...... with realizing the modules in ceramics by 3d printing directly in porcelain with a RapMan printer that coils up the 3d shape in layers. Finally the ceramic modules are mounted in a laser cut board that reflects the captured composition of the movement of the hands....

  16. A worldwide survey of fast breeder reactors

    International Nuclear Information System (INIS)

    Hennies, H.H.

    1986-01-01

    While the completion of the SNR 300 was accompanied by manifold discussions on questions relevant to safety and energy policies in the Federal Republic of Germany and as a result considerable scheduling delays and exceeding of budgets were recorded, breeder reactor technology has been progressing worldwide. The transition from the development phase with small trial reactors to the construction and operation of large performance reactors was completed systematically, in particular in France and the Soviet Union. Even though the uranium supply situation does not make a short-term and comprehensive employment of fast breeder reactors essential, technology has meanwhile been advanced to such a level and extensive operating experience is on hand to enable the construction and safe operation of fast breeder reactors. A positive answer has long been found to the question of the realization of a breeding rate to guarantee the breeding effect. There remain now the endeavors to achieve a reduction in investment and fuel cycle costs. (orig.) [de

  17. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Duncombe, E.; Thatcher, G.

    1979-01-01

    The invention described relates to a liquid metal cooled fast breeder nuclear reactor in which the fuel assembly has an inner zone comprised mainly of fissile material and a surrounding outer zone comprised mainly of breeder material. According to the invention the sub-assemblies in the outer zone include electro-magnetic braking devices (magnets, pole pieces and armature) for regulating the flow of coolant through the sub-assemblies. The magnetic fields of the electro-magnetic breaking devices are temperature sensitive so that as the power output of the breeder sub-assemblies increases the electro-magnetic resistance to coolant flow is reduced thereby maintaining the temperature of the coolant outlets from the sub-assemblies substantially constant. (UK)

  18. Fast breeder reactors an engineering introduction

    CERN Document Server

    Judd, A M

    1981-01-01

    Fast Breeder Reactors: An Engineering Introduction is an introductory text to fast breeder reactors and covers topics ranging from reactor physics and design to engineering and safety considerations. Reactor fuels, coolant circuits, steam plants, and control systems are also discussed. This book is comprised of five chapters and opens with a brief summary of the history of fast reactors, with emphasis on international and the prospect of making accessible enormous reserves of energy. The next chapter deals with the physics of fast reactors and considers calculation methods, flux distribution,

  19. Coatings for fast breeder reactor components

    International Nuclear Information System (INIS)

    Johnson, R.N.

    1984-04-01

    Several types of metallurgical coatings are used in the unique environments of the fast breeder reactor. Most of the coatings have been developed for tribological applications, but some also serve as corrosion barriers, diffusion barriers, or radionuclide traps. The materials that have consistently given the best performance as tribological coatings in the breeder reactor environments have been coatings based on chromium carbide, nickel aluminide, or Tribaloy 700 (a nickel-base hard-facing alloy). Other coatings that have been qualified for limited applications include chromium plating for low temperature galling protection and nickel plating for radionuclide trapping

  20. Set-up of a pre-test mock-up experiment in preparation for the HCPB Breeder Unit mock-up experimental campaign

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, F., E-mail: francisco.hernandez@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (INR) (Germany); Kolb, M. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-WPT) (Germany); Ilić, M.; Kunze, A. [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (INR) (Germany); Németh, J. [KFKI Research Institute for Particle and Nuclear Physics (Hungary); Weth, A. von der [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (INR) (Germany)

    2013-10-15

    Highlights: ► As preparation for the HCPB-TBM Breeder Unit out-of-pile testing campaign, a pre-test experiment (PREMUX) has been prepared and described. ► A new heater system based on a wire heater matrix has been developed for imitating the neutronic volumetric heating and it is compared with the conventional plate heaters. ► The test section is described and preliminary thermal results with the available models are presented and are to be benchmarked with PREMUX. ► The PREMUX integration in the air cooling loop L-STAR/LL in the Karlsruhe Institute for Technology is shown and future steps are discussed. -- Abstract: The complexity of the experimental set-up for testing a full-scaled Breeder Unit (BU) mock-up for the European Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) has motivated to build a pre-test mock-up experiment (PREMUX) consisting of a slice of the BU in the Li{sub 4}SiO{sub 4} region. This pre-test aims at verifying the feasibility of the methods to be used for the subsequent testing of the full-scaled BU mock-up. Key parameters needed for the modeling of the breeder material is also to be determined by the Hot Wire Method (HWM). The modeling tools for the thermo-mechanics of the pebble beds and for the mock-up structure are to be calibrated and validated as well. This paper presents the setting-up of PREMUX in the L-STAR/LL facility at the Karlsruhe Institute of Technology. A key requirement of the experiments is to mimic the neutronic volumetric heating. A new heater concept is discussed and compared to several conventional heater configurations with respect to the estimated temperature distribution in the pebble beds. The design and integration of the thermocouple system in the heater matrix and pebble beds is also described, as well as other key aspects of the mock-up (dimensions, layout, cooling system, purge gas line, boundary conditions and integration in the test facility). The adequacy of these methods for the full-scaled BU

  1. [Ceramic posts].

    Science.gov (United States)

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  2. Alternative nuclear fuel cycles and gas-cooled breeders

    International Nuclear Information System (INIS)

    Pellaud, B.; Dahlberg, R.C.

    1979-01-01

    The authors assert that it is prudent to concurrently develop more than one breeder system and to develop advanced converter reactors along with breeders. They provide arguments to support these assertions. (Auth.)

  3. Status and prospects of advanced fissile fuel breeders

    International Nuclear Information System (INIS)

    Kostoff, R.N.

    1979-01-01

    Fusion--fission hybrid systems, fast breeder systems, and accelerator breeder systems were compared on a common basis using a simple economic model. Electricity prices based on system capital costs only were computed, and were plotted as functions of five key breeder system parameters. Nominally, hybrid system electricity costs were about twenty-five percent lower than fast breeder system electricity costs, and fast breeder system electricity costs were about forty percent lower than accelerator breeder system electricity costs. In addition, hybrid system electricity costs were very insensitive to key parameter variations on the average, fast breeder system electricity costs were moderately sensitive to key parameter variations on the average, and accelerator breeder system electricity costs were the most sensitive to key parameter variations on the average

  4. A review of fusion breeder blanket technology, part 1

    International Nuclear Information System (INIS)

    Jackson, D.P.; Selander, W.N.; Townes, B.M.

    1985-01-01

    This report presents the results of a study of fusion breeder blanket technology. It reviews the role of the breeder blanket, the current understanding of the scientific and engineering bases of liquid metal and solid breeder blankets and the programs now underway internationally to resolve the uncertainities in current knowledge. In view of existing national expertise and experience, a solid breeder R and D program for Canada is recommended

  5. In-situ ionic conductivity measurement of lithium ceramics under high energy heavy ion irradiation

    International Nuclear Information System (INIS)

    Nakazawa, Tetsuya; Noda, Kenji; Ishii, Yoshinobu; Ohno, Hideo; Watanabe, Hitoshi; Matsui, Hisayuki.

    1992-01-01

    To obtain fundamental information regarding the radiation damage in some lithium ceramics, e.g. Li 2 O, Li 4 SiO 4 etc., candidate of breeder materials exposed to severe irradiation environment, an in-situ experiment technique for the ionic conductivity measurement, which allows the specimen temperature control and the beam current monitoring, have been developed. This paper describes the features of an apparatus to measure in situ the ionic conductivity under the irradiation environment and presents some results of ionic conductivity measured for typical ceramic breeders using this apparatus. (J.P.N.)

  6. Advanced liquid metal fast breeder reactor designs

    International Nuclear Information System (INIS)

    Sayles, C.W.

    1978-01-01

    Fast Breeder reactor power plants in the 1000-1200 MW(e) range are being built overseas and are being designed in this country. While these reactors have many characteristics in common, a variety of different approaches have been adopted for some of the major features. Some of those alternatives are discussed

  7. Possible types of breeders with thorium cycle

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Gouveia, A.S. de

    1981-01-01

    Neutronics calculations of simplified homogeneous reactor models show the possibility that metal-fueled LMFBRs and coated particle fueled gas cooled reactors achieve doubling times of around 10 years with the thorium cycle. Three concepts of gas-cooled thorium cycle breeders are discussed. (Author) [pt

  8. Possible types of breeders with thorium cycle

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Gouveia, A.S. de.

    1981-02-01

    Neutronics calculations of simplified homogeneous reactor models show the possibility that metal-fueled LMFBRs and coated particle fueled gas cooled reactors achieve reactor doubling times of around 10 years with the thorium cycle. Three concepts of gas-cooled thorium cycle breeders are discused. (Author) [pt

  9. Fast breeder reactor at Kalkar. Pt. 2

    International Nuclear Information System (INIS)

    Degen, G.

    1979-02-01

    After a brief description of the previous development of the case the legal decisions are documented and commented on. The concept of the then FDP-Minister of Economy of North Rhine Westphalia (Riemer, Pu-combustion plant) is presented and the prospects and risk for the fast breeder reactor after the 3. partial construction license are discussed. (orig./HP) [de

  10. Modelling energy utilisation in broiler breeder hens.

    Science.gov (United States)

    Rabello, C B V; Sakomura, N K; Longo, F A; Couto, H P; Pacheco, C R; Fernandes, J B K

    2006-10-01

    1. The objective of this study was to determine a metabolisable energy (ME) requirement model for broiler breeder hens. The influence of temperature on ME requirements for maintenance was determined in experiments conducted in three environmental rooms with temperatures kept constant at 13, 21 and 30 degrees C using a comparative slaughter technique. The energy requirements for weight gain were determined based upon body energy content and efficiency of energy utilisation for weight gain. The energy requirements for egg production were determined on the basis of egg energy content and efficiency of energy deposition in the eggs. 2. The following model was developed using these results: ME = kgW0.75(806.53-26.45T + 0.50T2) + 31.90G + 10.04EM, where kgW0.75 is body weight (kg) raised to the power 0.75, T is temperature ( degrees C), G is weight gain (g) and EM is egg mass (g). 3. A feeding trial was conducted using 400 Hubbard Hi-Yield broiler breeder hens and 40 Peterson males from 31 to 46 weeks of age in order to compare use of the model with a recommended feeding programme for this strain of bird. The application of the model in breeder hens provided good productive and reproductive performance and better results in feed and energy conversion than in hens fed according to strain recommendation. In conclusion, the model evaluated predicted an ME intake which matched breeder hens' requirements.

  11. Convertible shielding to ceramic breeding blanket

    International Nuclear Information System (INIS)

    Furuya, Kazuyuki; Kurasawa, Toshimasa; Sato, Satoshi; Nakahira, Masataka; Togami, Ikuhide; Hashimoto, Toshiyuki; Takatsu, Hideyuki; Kuroda, Toshimasa.

    1995-05-01

    Four concepts have been studied for the ITER convertible blanket: 1)Layered concept 2)BIT(Breeder-Inside-Tube)concept 3)BOT(Breeder-Out of-Tube)concept 4)BOT/mixed concept. All concepts use ceramic breeder and beryllium neutron multiplier, both in the shape of small spherical pebbles, 316SS structure, and H 2 O coolant (inlet/outlet temperatures : 100/150degC, pressure : 2 MPa). During the BPP, only beryllium pebbles (the primary pebble in case of BOT/mixed concept) are filled in the blanket for shielding purpose. Then, before the EPP operation, breeder pebbles will be additionally inserted into the blanket. Among possible conversion methods, wet method by liquid flow seems expecting for high and homogeneous pebble packing. Preliminary 1-D neutronics calculation shows that the BOT/mixed concept has the highest breeding and shielding performance. However, final selection should be done by R and D's and more detail investigation on blanket characteristics and fabricability. Required R and D's are also listed. With these efforts, the convertible blanket can be developed. However, the following should be noted. Though many of above R and D's are also necessary even for non-convertible blanket, R and D's on convertibility will be one of the most difficult parts and need significant efforts. Besides the installation of convertible blanket with required structures and lines for conversion will make the ITER basic machine more complicated. (author)

  12. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  13. The reprocessing of advanced mixed lithium orthosilicate/metatitanate tritium breeder pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Leys, Oliver, E-mail: oliver.leys@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Eggenstein-Leopoldshafen, 76344 (Germany); Bergfeldt, Thomas; Kolb, Matthias H.H.; Knitter, Regina [Karlsruhe Institute of Technology, Institute for Applied Materials, Eggenstein-Leopoldshafen, 76344 (Germany); Goraieb, Aniceto A. [Karlsruhe Beryllium Handling Facility, Eggenstein-Leopoldshafen, 76344 (Germany)

    2016-06-15

    Highlights: • The recycling of advanced breeder pebbles without a deterioration of the material properties is possible using a melt-based process. • The only accumulation of impurities upon reprocessing, results from the platinum crucible alloy used for processing. • It is possible to replenish burnt-up lithium by additions of LiOH·H{sub 2}O to the melt during reprocessing. - Abstract: The recycling of tritium breeding materials will be necessary for any future use of nuclear fusion energy due to economical as well as ecological considerations. In the case of the solid breeder blanket concept, the ceramic pebble beds that are intended for the generation of tritium will eventually need to be restored due to depleted lithium levels as well as due to fractured pebbles, which will cause a deterioration of the pebble bed properties. It is proposed that the pebbles, which are fabricated using a melt-based process, are recycled using the same initial process, by replenishing the lithium levels and reforming the pebbles at the same time. To prove this recycling scheme, advanced ceramic pebbles were fabricated and then re-melted multiple times to prove that the reprocessing did not have any negative effect on the pebble properties and secondly, pebbles were produced with a simulated lithium burn-up and subsequently replenished by additions of LiOH to the melt. It was shown that the re-melting and lithium re-enrichment had no effect on the pebble properties, demonstrating that a melt-based process is suitable for recycling used breeder pebbles.

  14. Alternative reproductive tactics in female striped mice: Solitary breeders have lower corticosterone levels than communal breeders.

    Science.gov (United States)

    Hill, Davina L; Pillay, Neville; Schradin, Carsten

    2015-05-01

    Alternative reproductive tactics (ARTs), where members of the same sex and population show distinct reproductive phenotypes governed by decision-rules, have been well-documented in males of many species, but are less well understood in females. The relative plasticity hypothesis (RPH) predicts that switches between plastic ARTs are mediated by changes in steroid hormones. This has received much support in males, but little is known about the endocrine control of female ARTs. Here, using a free-living population of African striped mice (Rhabdomys pumilio) over five breeding seasons, we tested whether females following different tactics differed in corticosterone and testosterone levels, as reported for male striped mice using ARTs, and in progesterone and oestrogen, which are important in female reproduction. Female striped mice employ three ARTs: communal breeders give birth in a shared nest and provide alloparental care, returners leave the group temporarily to give birth, and solitary breeders leave to give birth and do not return. We expected communal breeders and returners to have higher corticosterone, owing to the social stress of group-living, and lower testosterone than solitary breeders, which must defend territories alone. Solitary breeders had lower corticosterone than returners and communal breeders, as predicted, but testosterone and progesterone did not differ between ARTs. Oestrogen levels were higher in returners (measured before leaving the group) than in communal and solitary breeders, consistent with a modulatory role. Our study demonstrates hormonal differences between females following (or about to follow) different tactics, and provides the first support for the RPH in females. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Integration of test modules in the main blanket and vacuum vessel design

    International Nuclear Information System (INIS)

    Nakahira, Masataka; Kurasawa, Toshimasa; Sato, Satoshi; Furuya, Kazuyuki; Togami, Ikuhide; Hashimoto, Toshiyuki; Takatsu, Hideyuki; Kuroda, Toshimasa.

    1995-07-01

    Typical test modules for water-cooled and helium-cooled ceramic breeder blankets have been designed, and their major design parameters are summarized. Among various candidates studied in Japan at present, BOT (Breeder Out of Tube) type of blanket is exemplified here. The integration scheme of the test module into ITER basic machine is also shown. Even with other type of blanket, the integration scheme won't be affected. The composition and space requirement of cooling and tritium recovery systems for the test module have also been studied. (author)

  16. Optimized materials for the future breeder line

    International Nuclear Information System (INIS)

    Ohrt, E.; Heesen, E. te

    1991-01-01

    This paper presents a survey of developments which form part of ongoing activities for the construction of breeder plants. Following a brief introduction it describes the history of an internationally coordinated material for the major components of a European breeder. Some material properties which are of importance for the design are discussed. The task of finding a suitable filler metal for steel 316L(N) (1.4909) is considered in greater detail. In this case too, selection criteria are the mechanical properties of the weld metal, its chemical and thermal resistance and its behaviour during welding. Finally, processes which are absolutely necessary in the construction phase of a power plant are discussed in the outlook. These have not been optimized to date and will therefore be the subject of internationally distributed activities in the subsequent phase. (orig.)

  17. Safeguards challenges of Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Ko, H. S.

    2010-01-01

    Although the safeguards system of Sodium Fast Reactor (SFR) seems similar to that of Light Water Reactor (LWR), it was raised safeguards challenges of SFR that resulted from the visual opacity of liquid sodium, chemical reactivity of sodium and other characteristics of fast reactor. As it is the basic concept stage of the safeguards of SFR in Korea, this study tried to analyze the latest similar study of safeguards issues of the Fast Breeder Reactor (FBR) at Joyo and Monju in Japan. For this reason, this study is to introduce some potential safeguards challenges of Fast Breeder Reactor. With this analysis, future study could be to address the safeguards challenges of SFR in Korea

  18. Nuclear data needs for plutonium breeders

    International Nuclear Information System (INIS)

    Hammer, P.

    1979-01-01

    This paper aims at summarizing the present major nuclear data needs for fast breeders. The corresponding requirements are deduced from the target accuracies which are associated to the design, operation and safety related parameters. Due to the fact that these target accuracies may somewhat change from one country to another the requirements quoted here must be considered more as the present order of magnitudes than as precise figures. The maximum admissible uncertainties which are asked presently for the nuclear data are due in particular to: the necessity of reducing the supplementary investment costs which account the present neutronic uncertainties; the necessity of improving the optimization studies devoted to the future commercial fast breeders: these studies involve the comparison of neutronics performances of new concepts, such as the heterogeneous core concept, to the classical one

  19. Fabrication of lithium ceramic pellets, rings and single crystals for irradiation in BEATRIX-II

    International Nuclear Information System (INIS)

    Slagle, O.D.; Noda, K.; Takahashi, T.

    1989-04-01

    BEATRIX-II is an IEA sponsored experiment of lithium ceramic solid breeder materials in the FFTF/MOTA. Li 2 O solid pellets and annular ring specimens were fabricated for in-situ tritium release tests. In addition, a series of single crystal and polycrystalline lithium ceramic samples were fabricated to determine the irradiation behavior and beryllium compatibility. 6 refs., 10 figs., 4 tabs

  20. The fast breeder reactor Rapsodie (1962)

    International Nuclear Information System (INIS)

    Vautrey, L.; Zaleski, C.P.

    1962-01-01

    In this report, the authors describe the Rapsodie project, the French fast breeder reactor, as it stands at construction actual start-up. The paper provides informations about: the principal neutronic and thermal characteristics, the reactor and its cooling circuits, the main handling devices of radioactive or contaminated assemblies, the principles and means governing reactor operation, the purposes and locations of miscellaneous buildings. Rapsodie is expected to be critical by 1964. (authors) [fr

  1. Experimental Breeder Reactor I Preservation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun

    2006-10-01

    Experimental Breeder Reactor I (EBR I) is a National Historic Landmark located at the Idaho National Laboratory, a Department of Energy laboratory in southeastern Idaho. The facility is significant for its association and contributions to the development of nuclear reactor testing and development. This Plan includes a structural assessment of the interior and exterior of the EBR I Reactor Building from a preservation, rather than an engineering stand point and recommendations for maintenance to ensure its continued protection.

  2. Pool type liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Guthrie, B.M.

    1978-08-01

    Various technical aspects of the liquid metal fast breeder reactor (LMFBR), specifically pool type LMFBR's, are summarized. The information presented, for the most part, draws upon existing data. Special sections are devoted to design, technical feasibility (normal operating conditions), and safety (accident conditions). A survey of world fast reactors is presented in tabular form, as are two sets of reference reactor parameters based on available data from present and conceptual LMFBR's. (auth)

  3. BREEDER: a microcomputer program for financial analysis of a large-scale prototype breeder reactor

    International Nuclear Information System (INIS)

    Giese, R.F.

    1984-04-01

    This report describes a microcomputer-based, single-project financial analysis program: BREEDER. BREEDER is a user-friendly model designed to facilitate frequent and rapid analyses of the financial implications associated with alternative design and financing strategies for electric generating plants and large-scale prototype breeder (LSPB) reactors in particular. The model has proved to be a useful tool in establishing cost goals for LSPB reactors. The program is available on floppy disks for use on an IBM personal computer (or IBM look-a-like) running under PC-DOS or a Kaypro II transportable computer running under CP/M (and many other CP/M machines). The report documents version 1.5 of BREEDER and contains a user's guide. The report also includes a general overview of BREEDER, a summary of hardware requirements, a definition of all required program inputs, a description of all algorithms used in performing the construction-period and operation-period analyses, and a summary of all available reports. The appendixes contain a complete source-code listing, a cross-reference table, a sample interactive session, several sample runs, and additional documentation of the net-equity program option

  4. History and evolution of the breeder reactor

    International Nuclear Information System (INIS)

    Carle, R.

    1989-01-01

    The concept of the breeder reactor is almost as old as the idea of the nuclear reactor itself. From the very first years following the discovery of nuclear fission, scientists and technicians tried to turn mankind's eternal dream into reality; that is, enjoy an abundant source of energy without using up our raw material reserves. Nuclear energy offered several solutions to realize this dream. One of them, fusion, seemed out of our grasp in the near future. But fission of 235 U was possible, and the Manhattan Project soon furnished ample proof of this theory. However, everyone working in this field was conscious of the fact that thermal neutron reactors make very inefficient use of the energy potential contained in natural uranium. The solution was to use in a core sufficiently rich in fissile matter, the excess neutrons to convert the 238 U, so poorly used by other types of reactors, into fissile 239 Pu. Regeneration, or 'breeding' of fuel, can multiply the energy drawn from a ton of uranium by a factor of 50 to 100. This would enable us to ward off the specter of an energy shortage and the rapid depletion of uranium mines. As early as 1945 in Los Alamos, Enrico Fermi stated: 'The country which first develops a breeder reactor will have a great competitive edge in atomic energy.' The development of the breeder reactor in the USA and around the world is discussed

  5. Gas-cooled breeder reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Chermanne, J.; Burgsmueller, P. [Societe Belge pour l' Industrie Nucleaire, Brussels

    1981-01-15

    The European Association for the Gas-cooled Breeder Reactor (G B R A), set-up in 1969 prepared between 1972 and 1974 a 1200 MWe Gas-cooled Breeder Reactor (G B R) commercial reference design G B R 4. It was then found necessary that a sound and neutral appraisal of the G B R licenseability be carried out. The Commission of the European Communities (C E C) accepted to sponsor this exercise. At the beginning of 1974, the C E C convened a group of experts to examine on a Community level, the safety documents prepared by the G B R A. A working party was set-up for that purpose. The experts examined a ''Preliminary Safety Working Document'' on which written questions and comments were presented. A ''Supplement'' containing the answers to all the questions plus a detailed fault tree and reliability analysis was then prepared. After a final study of this document and a last series of discussions with G B R A representatives, the experts concluded that on the basis of the evidence presented to the Working Party, no fundamental reasons were identified which would prevent a Gas-cooled Breeder Reactor of the kind proposed by the G B R A achieving a satisfactory safety status. Further work carried out on ultimate accident have confirmed this conclusion. One can therefore claim that the overall safety risk associated with G B R s compares favourably with that of any other reactor system.

  6. Li{sub 4}SiO{sub 4} based breeder ceramics with Li{sub 2}TiO{sub 3}, LiAlO{sub 2} and Li{sub X}La{sub Y}TiO{sub 3} additions, part II: Pebble properties

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, M.H.H., E-mail: Matthias.kolb@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, PO Box 3640, 76021, Karlsruhe (Germany); Knitter, R. [Karlsruhe Institute of Technology, Institute for Applied Materials, PO Box 3640, 76021, Karlsruhe (Germany); Hoshino, T. [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Fusion Energy Research and Development Directorate, National Institutes for Quantum and Radiological Science and Technology (QST) (Japan)

    2017-02-15

    Highlights: • The mechanical strength of Li{sub 4}SiO{sub 4}-based breeder pebbles can be improved by adding either LMT, LAO or LLTO as second phase. • The increase in strength is closely linked to a reduction of the open porosity of the pebbles. • All fabricated pebbles show a highly homogenous microstructure with mostly low closed porosity. • Adding LLTO, although it decomposes during sintering, greatly improves the strength of the pebbles. - Abstract: The pebble properties of novel two-phase Li{sub 4}SiO{sub 4} pebbles of 1 mm diameter with additions of Li{sub 2}TiO{sub 3}, LiAlO{sub 2} or Li{sub x}La{sub y}TiO{sub 3} are evaluated in this work as a function of the second phase concentration and the microstructure of the pebbles. The characterization focused on the mechanical strength, microstructure and open as well as closed porosity. Therefore crush load tests, SEM analyses as well as helium pycnometry and optical image analysis were performed, respectively. This work shows that generally additions of a second phase to Li{sub 4}SiO{sub 4} considerably improve the mechanical strength. It also shows that the fabrication processes have to be well-controlled to achieve high mechanical strengths. When Li{sub 2}TiO{sub 3} is added in different concentrations, the determinant for the crush load seems to be the open porosity of the pebbles. The strengthening effect of LiAlO{sub 2} compared to Li{sub 2}TiO{sub 3} is similar, while additions of Li{sub x}La{sub y}TiO{sub 3} increase the mechanical strength much more. Yet, Li{sub 4}SiO{sub 4} and Li{sub x}La{sub y}TiO{sub 3} react with each other to a number of different phases upon sintering. In general the pebble properties of all samples are favorable for use within a fusion breeder blanket.

  7. A manufacturer's view of the US breeder program

    International Nuclear Information System (INIS)

    Arnold, W.H.

    1982-01-01

    A liquid metal fast breeder reactor (LMFBR) was selected for development in a program to develop breeder reactors in general. The LMFBR is a sodium-cooled fast reactor which operates at a high conversion ratio of fertile-to-fissile material while generating electricity at a high thermal efficiency. The breeder has the added capacity to operate on the plutonium in Light Water Reactor spent fuel, and on U-238. A governmental/industrial infrastructure must be developed. Criteria for breeder deployment are listed. Construction of the Clinch River Breeder reactor is a necessary step in the progression to a mature breeder. Then the large prototype LMFBR should be built. Foreign collaboration is considered. Finally, a capital cost analysis indicates LMFBR cost-effectiveness

  8. Processing and waste disposal representative for fusion breeder blanket systems

    International Nuclear Information System (INIS)

    Finn, P.A.; Vogler, S.

    1987-01-01

    This study is an evaluation of the waste handling concepts applicable to fusion breeder systems. Its goal is to determine if breeder blanket waste can be disposed of in shallow land burial, the least restrictive method under US Nuclear Regulatory regulations. The radionuclides expected in the materials used in fusion reactor blankets are described, as are plans for reprocessing and disposal of the components of different breeder blankets. An estimate of the operating costs involved in waste disposal is made

  9. Ceramic Seal.

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  10. Ceramic Seal

    International Nuclear Information System (INIS)

    Smartt, Heidi A.; Romero, Juan A.; Custer, Joyce Olsen; Hymel, Ross W.; Krementz, Dan; Gobin, Derek; Harpring, Larry; Martinez-Rodriguez, Michael; Varble, Don; DiMaio, Jeff; Hudson, Stephen

    2016-01-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  11. Design activities of a fusion experimental breeder

    International Nuclear Information System (INIS)

    Huang, J.; Feng, K.; Sheng, G.

    1999-01-01

    The fusion reactor design studies in China are under the support of a fusion-fission hybrid reactor research Program. The purpose of this program is to explore the potential near-term application of fusion energy to support the long-term fusion energy on the one hand and the fission energy development on the other. During 1992-1996 a detailed consistent and integral conceptual design of a Fusion Experimental Breeder, FEB was completed. Beginning from 1996, a further design study towards an Engineering Outline Design of the FEB, FEB-E, has started. The design activities are briefly given. (author)

  12. Burnup characteristics of binary breeder reactors

    International Nuclear Information System (INIS)

    Dias, A.F.; Nascimento, J.A. do; Ishiguro, Y.

    1983-01-01

    Burnup calculations of a binary breeder reactor have been done for two cases of fueling. In one case the U 233 /TH fueled inner core and the Pu/U-fueled outer core have the same number of fuel assemblies. In the other case two outermost rings in the inner core are Pu/U-fueled. The second case is considered for an initial phase of thorim cycle introduction when the supply of U 233 could be limited. Results show an efficient breeding on the thorium cycle in both cases. (Author) [pt

  13. Automated manufacturing of breeder reactor fuels

    International Nuclear Information System (INIS)

    Nyman, D.H.; Benson, E.M.; Bennett, D.W.

    1983-09-01

    The Secure Automated Fabrication (SAF) line is an automated, remotely controlled breeder fuel pin fabrication process which is to be installed in the Fuels and Materials Examination Facility (FMEF). The FMEF is presently under construction at Hanford and is scheduled for completion in 1984. The SAF line is scheduled for startup in 1987 and will produce mixed uranium-plutonium oxide fuel pins for the Fast Flux Test Facility (FFTF). Radiological protection requirements, computer control equipment, use of robotics, and the fabrication process is described

  14. Liquid metal cooled fast breeder nuclear reactor

    International Nuclear Information System (INIS)

    Scott, D.

    1979-01-01

    A liquid metal cooled fast breeder nuclear reactor has a core comprising a plurality of fuel assemblies supported on a diagrid and submerged in a pool of liquid metal coolant within a containment vessel, the diagrid being of triple component construction and formed of a short cylindrical plenum mounted on a conical undershell and loosely embraced by a fuel store carrier. The plenum merely distributes coolant through the fuel assemblies, the load of the assemblies being carried by the undershell by means of struts which penetrate the plenum. The reactor core, fuel store carrier and undershell provide secondary containment for the plenum. (UK)

  15. Gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki

    1982-07-01

    Almost all the R D works of gas-cooled fast breeder reactor in the world were terminated at the end of the year 1980. In order to show that the R D termination was not due to technical difficulties of the reactor itself, the present paper describes the reactor plant concept, reactor performances, safety, economics and fuel cycle characteristics of the reactor, and also describes the reactor technologies developed so far, technological problems remained to be solved and planned development schedules of the reactor. (author)

  16. Advanced breeder cycle uses metallic fuel

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1991-01-01

    Scientists from Argonne National Laboratory have been developing a concept called the Integral fast Reactor (IFR). This fast breeder reactor could effectively increase Uranium resources a hundred fold making nuclear power essentially an inexhaustible energy source. The IFR is outlined. In the IFR, the inherent properties of liquid metal cooling are combined with a new metallic fuel which is allowed to swell and gives an improved burnup level and a radically different refining process to allow breakthroughs in passive safety, fuel cycle economics and waste management. (author)

  17. Utilizing FFTF: the keystone for breeder development

    International Nuclear Information System (INIS)

    Ziff, J.J.; Arneson, S.O.

    1981-05-01

    This paper describes the role of the Fast Flux Test Facility (FFTF) in the US Department of Energy sponsored Liquid Metal Fast Breeder Reactor (LMFBR) Program. The programs that are in place to ensure that the FFTF fulfills its role as an essential key to the development of LMFBR technology are delineated. A detailed FFTF Operating Plan has been developed to present in integrated form the strategy for gaining maximum useful information from the planned FFTF operations. The three principal areas of FFTF Utilization: Plant Utilization, Irradiation Testing, and Safety, combine to form the overall FFTF Operating Plan. Primary areas where FFTF is already making major contributions to LMFBR development are described

  18. Design activities of a fusion experimental breeder

    International Nuclear Information System (INIS)

    Huang, J.; Feng, K.; Sheng, G.

    2001-01-01

    The fusion reactor design studies in China are under the support of a fusion-fission hybrid reactor research Program. The purpose of this program is to explore the potential near-term application of fusion energy to support the long-term fusion energy on the one hand and the fission energy development on the other. During 1992-1996 a detailed consistent and integral conceptual design of a Fusion Experimental Breeder, FEB was completed. Beginning from 1996, a further design study towards an Engineering Outline Design of the FEB, FEB-E, has started. The design activities are briefly given. (author)

  19. Basic characteristics of an efficient fusion breeder

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, C W; Harms, A A [McMaster Univ., Hamilton, Ontario (Canada). Dept. of Physics

    1977-01-01

    Some reactor physics characteristics of an efficient fusion breeder, consisting of an integrated fusion-fission reactor system with fissile and fusile fuel linkages, are examined. Core parameters of existing fission reactors and proposed fusion reactors are used to determine the system fissile fuel breeding gain, the fissile fuel doubling time, the nuclear fuel production capacity and the ratio of fusion-to-fission thermal power. It is concluded that such a symbiotic reactor configuration possesses considerable merit from the standpoint of long-term supply of fissile fuel and provides new options for the development of the next generation of nuclear energy systems.

  20. The development of breeder reactors in Japan

    International Nuclear Information System (INIS)

    Segawa, M.

    1984-01-01

    In the framework of a global analysis of the various available sources of energy, Japan has reserved a prominent place to the nuclear energy and, in the long-term view, to the breeder reactor which will be due for commercial deployment in 20)10. To achieve these objectives, three stages are envisaged, one of the experimental reactor Joyo (in service), one of the demonstration reactor Monju (its construction has been decided), and one of the pre-commercial reactor (due to be taken in hand at the beginning of the Nineties). Efforts will be made in parallel concerning the fuel cycle [fr

  1. Fast Breeder Project status report, 1974

    International Nuclear Information System (INIS)

    Hueper, R.

    A compilation of the papers read at the Status Report of the Fast Breeder Project at the Karlsruhe Nuclear Research Center on March 26, 1974 is presented. The first papers present a general survey of the present state of research and development work performed by the German, Belgian, and Netherlands research centers on the SNR 300 Prototype Fast Breeder Reactor (Kalkar Nuclear Power Station), on the SNR follow-on program, alternative fuels and coolants and basic problems, on work performed by industry with respect to the licensing procedure and construction of the SNR 300, and on commissioning and the planned conversion of KNK, the Compact Sodium Cooled Nuclear Reactor. The detailed papers deal with results elaborated at the institutes of GfK Karlsruhe, SCK/CEN Mol, RCN Petten, and TNO Apeldoorn. Most of these efforts have been concentrated upon fuel pin and materials development and on the physics and safety of fast reactors. The status report concludes with a reference to the future program under the Project. (U.S.)

  2. Chemical surveillance of commercial fast breeder reactors

    International Nuclear Information System (INIS)

    Stamm, H.H.; Stade, K.Ch.

    1988-01-01

    After BN-600 (USSR) and SUPERPHENIX (France) were started succesfully, the international development of LMFBRs is standing at the doorstep of commercial use. For commercial use of LMFBRs cost reductions for construction and operation are highly desirable and necessary. Several nations developing breeder reactors have joined in a common effort in order to reach this aim by standardization and harmonization. On the base of more than 20 years of operation experience of experimental reactors (EBR-II, FFTF, RAPSODIE, DFR, BR-5/BR-10, BOR-60, JOYO, KNK-II) and demonstration plants (PHENIX, PFR, BN-350), possibilities for standardization in chemical surveillance of commercial breeder reactors without any loss of availability, reliability and reactor safety will be discussed in the following chapters. Loop-type reactors will be considered as well as pool-type reactors, although all commercial plants under consideration so far (SUPERPHENIX II, BN-800, BN-1600, CFBR, SNR-2, EFR) include pool-type reactors only. Table 1 gives a comparison of the Na inventories of test reactors, prototype plants and commercial LMFBRs

  3. Prototype fast breeder reactor main options

    International Nuclear Information System (INIS)

    Bhoje, S.B.; Chellapandi, P.

    1996-01-01

    Fast reactor programme gets importance in the Indian energy market because of continuous growing demand of electricity and resources limited to only coal and FBR. India started its fast reactor programme with the construction of 40 MWt Fast Breeder Test Reactor (FBTR). The reactor attained its first criticality in October 1985. The reactor power will be raised to 40 MWt in near future. As a logical follow-up of FBTR, it was decided to build a prototype fast breeder reactor, PFBR. Considering significant effects of capital cost and construction period on economy, systematic efforts are made to reduce the same. The number of primary and secondary sodium loops and components have been reduced. Sodium coolant, pool type concept, oxide fuel, 20% CW D9, SS 316 LN and modified 9Cr-1Mo steel (T91) materials have been selected for PFBR. Based on the operating experience, the integrity of the high temperature components including fuel and cost optimization aspects, the plant temperatures are recommended. Steam temperature of 763 K at 16.6 MPa and a single TG of 500 MWe gross output have been decided. PFBR will be located at Kalpakkam site on the coast of Bay of Bengal. The plant life is designed for 30 y and 75% load factor. In this paper the justifications for the main options chosen are given in brief. (author). 2 figs, 2 tabs

  4. Coincidence measurements of FFTF breeder fuel subassemblies

    International Nuclear Information System (INIS)

    Eccleston, G.W.; Foley, J.E.; Krick, M.; Menlove, H.O.; Goris, P.; Ramalho, A.

    1984-04-01

    A prototype coincidence counter developed to assay fast breeder reactor fuel was used to measure four fast-flux test facility subassemblies at the Hanford Engineering Development Laboratory in Richland, Washington. Plutonium contents in the four subassemblies ranged between 7.4 and 9.7 kg with corresponding 240 Pu-effective contents between 0.9 and 1.2 kg. Large count rates were observed from the measurements, and plots of the data showed significant multiplication in the fuel. The measured data were corrected for deadtime and multiplication effects using established formulas. These corrections require accurate knowledge of the plutonium isotopics and 241 Am content in the fuel. Multiplication-corrected coincidence count rates agreed with the expected count rates based on spontaneous fission-neutron emission rates. These measurements indicate that breeder fuel subassemblies with 240 Pu-effective contents up to 1.2 kg can be nondestructively assayed using the shift-register electronics with the prototype counters. Measurements using the standard Los Alamos National Laboratory shift-register coincidence electronics unit can produce an assay value accurate to +-1% in 1000 s. The uncertainty results from counting statistics and deadtime-correction errors. 3 references, 8 figures, 8 tables

  5. Fast breeder reactor fuel reprocessing in France

    International Nuclear Information System (INIS)

    Bourgeois, M.; Le Bouhellec, J.; Eymery, R.; Viala, M.

    1984-08-01

    Simultaneous with the effort on fast breeder reactors launched several years ago in France, equivalent investigations have been conducted on the fuel cycle, and in particular on reprocessing, which is an indispensable operation for this reactor. The Rapsodie experimental reactor was associated with the La Hague reprocessing plant AT1 (1 kg/day), which has reprocessed about one ton of fuel. The fuel from the Phenix demonstration reactor is reprocessed partly at the La Hague UP2 plant and partly at the Marcoule pilot facility, undergoing transformation to reprocess all the fuel (TOR project, 5 t/y). The fuel from the Creys Malville prototype power plant will be reprocessed in a specific plant, which is in the design stage. The preliminary project, named MAR 600 (50 t/y), will mobilize a growing share of the CEA's R and D resources, as the engineering needs of the UP3 ''light water'' plant begins to decline. Nearly 20 tonnes of heavy metals irradiated in fast breeder reactors have been processed in France, 17 of which came from Phenix. The plutonium recovered during this reprocessing allowed the power plant cycle to be closed. This power plant now contains approximately 140 fuel asemblies made up with recycled plutonium, that is, more than 75% of the fuel assemblies in the Phenix core

  6. Breeding blanket development. Tritium release from breeder

    International Nuclear Information System (INIS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi; Nagao, Yoshiharu

    2006-01-01

    Engineering data on neutron irradiation performance of tritium breeders are needed to design the breeding blanket of fusion reactor. In this study, tritium release experiments of the breeders were carried out to examine the effects of various parameters (such as sweep gas flow rate, hydrogen content in sweep gas, irradiation temperature and thermal neutron flux) on tritium generation and release behavior. Lithium titanate (Li 2 TiO 3 ) is considered as a candidate tritium breeder in the blanket design of International Thermonuclear Experimental Reactor (ITER). As for the shape of the breeder material, a small spherical form is preferred to reduce the thermal stress induced in the breeder. Li 2 TiO 3 pebbles of about 170g in total weight and with 0.3 and 2 mm in diameter were manufactured by a wet process, and an assembly packed with the binary Li 2 TiO 3 pebbles was irradiated in Japan Materials Testing Reactor (JMTR). The tritium was generated in the Li 2 TiO 3 pebble bed and released from the pebble bed, and was swept downstream using the sweep gas for on-line analysis of tritium content. Concentration of total tritium and gaseous tritium (HT or T 2 gas) released from the Li 2 TiO 3 pebble bed were measured by ionization chambers, and the ratio of (gaseous tritium)/(total tritium) was evaluated. The sweep gas flow rate was changed from 100 to 900cm 3 /min, and hydrogen content in the sweep gas was changed from 100 to 10000 ppm. Furthermore, thermal neutron flux was changed using a window made of hafnium (Hf) neutron absorber. The irradiation temperature at an outer region of the Li 2 TiO 3 pebble bed was held between 200 and 400degC. The main results of this experiment are summarized as follows. 1) When the temperature at the outside edge of the Li 2 TiO 3 pebble bed exceeded 100degC, the tritium release from the Li 2 TiO 3 pebble bed started. The ratio of the tritium release rate and the tritium generation rate (normalized tritium release rate: R/G) reached

  7. Li{sub 4}SiO{sub 4} based breeder ceramics with Li{sub 2}TiO{sub 3}, LiAlO{sub 2} and Li{sub X}La{sub Y}TiO{sub 3} additions, part I: Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, M.H.H., E-mail: Matthias.kolb@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, PO Box 3640, 76021 Karlsruhe (Germany); Mukai, K.; Knitter, R. [Karlsruhe Institute of Technology, Institute for Applied Materials, PO Box 3640, 76021 Karlsruhe (Germany); Hoshino, T. [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Fusion Energy Research and Development Directorate, National Institutes for Quantum and Radiological Science and Technology (QST) (Japan)

    2017-02-15

    Highlights: • This study shows that the emulsion method can easily be adapted to add different phases into Li4SiO4 breeder pebbles. • Slurries with various compositions to form LOS + LMT, LOS + LAO and LOS + LLTO were processed.The calculated activation behavior shows that samples with added LAO or LLTO qualify as low activation material. • Yet, the long-term activation of the LAO containing samples is problematic as hands-on level activity is not reached quickly. - Abstract: Wet-chemical fabrication processes are highly adaptable to a wide range of raw materials and are therefore well suited for evaluating new material compositions. Here the established emulsion method was modified to fabricate novel two-phase Li{sub 4}SiO{sub 4} pebbles of 1 mm diameter with additions of Li{sub 2}TiO{sub 3}, LiAlO{sub 2} or Li{sub x}La{sub y}TiO{sub 3}. As the lithium density of the latter two compounds is relatively low, only moderate contents were added. The Li{sub 2}TiO{sub 3} additions, however, cover the full compositional range. The fabrication process was characterized with regard to its constancy and aptness for the anticipated pebble compositions by optical pebble size measurements. Also the phase content and the elemental composition of the fabricated pebbles were analyzed by XRD and ICP-OES combined with XRF, respectively. This work shows that the emulsion method is an appropriate method to produce pebbles with the anticipated Li{sub 2}TiO{sub 3} and LiAlO{sub 2} concentrations in a Li{sub 4}SiO{sub 4} matrix. However, Li{sub 4}SiO{sub 4} and Li{sub x}La{sub y}TiO{sub 3} react with each other to a number of different phases. To evaluate the activation properties of the pebbles, FISPACT calculations with a DEMO relevant neutron source are applied as well. The addition of aluminum seems to be unfavorable for a fusion application, but moderate concentrations of lanthanum can be tolerated.

  8. Superphenix: Is the fast breeder dream over -- or over yonder?

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    A detailed history of France's Superphenix commercial fast breeder reactor project is presented. Important project milestones are discussed from the project's conception in 1971 to its current status. Recommendations of the Castaing Commission on the project and future plans for use of the reactor are outlined. In addition, world wide fast breeder projects are listed and discussed

  9. Management of Waste from the Fusion Experimental Breeder

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    <正> Fusion breeder might be an essential intermediate application of fusion energy at earlier term, which has the potential to provide plenty of commercial fissile fuel. Based on fusion physics and technologies available at present and in near future, the realistic Fusion Experimental Breeder, FEB-E was designed. The obiectives of the FEB-E are to demonstrate the engineering feasibility of

  10. Industrial ceramics

    International Nuclear Information System (INIS)

    Mengelle, Ch.

    1999-04-01

    After having given the definition of the term 'ceramics', the author describes the different manufacturing processes of these compounds. These materials are particularly used in the fields of 1)petroleum industry (in primary and secondary reforming units, in carbon black reactors and ethylene furnaces). 2)nuclear industry (for instance UO 2 and PuO 2 as fuels; SiC for encapsulation; boron carbides for control systems..)

  11. Cryogenic recovery analysis of forced flow supercritical helium cooled superconductors

    International Nuclear Information System (INIS)

    Lee, A.Y.

    1977-08-01

    A coupled heat conduction and fluid flow method of solution was presented for cryogenic stability analysis of cabled composite superconductors of large scale magnetic coils. The coils are cooled by forced flow supercritical helium in parallel flow channels. The coolant flow reduction in one of the channels during the spontaneous recovery transient, after the conductor undergoes a transition from superconducting to resistive, necessitates a parallel channel analysis. A way to simulate the parallel channel analysis is described to calculate the initial channel inlet flow rate required for recovery after a given amount of heat is deposited. The recovery capability of a NbTi plus copper composite superconductor design is analyzed and the results presented. If the hydraulics of the coolant flow is neglected in the recovery analysis, the recovery capability of the superconductor will be over-predicted

  12. Steady state heat transfer of helium cooled cable bundles

    International Nuclear Information System (INIS)

    Khalil, A.

    1982-01-01

    In the present study nucleate and film boiling heat transfer characteristics of horizontal conductor bundles are investigated at steady state conditions. The effect of gaps between wires, number of wires, wire position, wire size and bundle orientation on the departure from nucleate boiling and transition to film boiling is studied. For gaps close to the bubble departure diameter, the critical heat flux can approach up to 90% of the single wire value. Consequently, the maximum stable current for a given bundle can be significantly increased above the single conductor value for the same cross-sectional area. (author)

  13. An efficient continuous flow helium cooling unit for Moessbauer experiments

    International Nuclear Information System (INIS)

    Herbert, I.R.; Campbell, S.J.

    1976-01-01

    A Moessbauer continuous flow cooling unit for use with liquid helium over the temperature range 4.2 to 300K is described. The cooling unit can be used for either absorber or source studies in the horizontal plane and it is positioned directly on top of a helium storage vessel. The helium transfer line forms an integral part of the cooling unit and feeds directly into the storage vessel so that helium losses are kept to the minimum. The helium consumption is 0.12 l h -1 at 4.2 K decreasing to 0.055 l h -1 at 40 K. The unit is top loading and the exchange gas cooled samples can be changed easily and quickly. (author)

  14. Optimal thermal-hydraulic performance for helium-cooled divertors

    International Nuclear Information System (INIS)

    Izenson, M.G.; Martin, J.L.

    1996-01-01

    Normal flow heat exchanger (NFHX) technology offers the potential for cooling divertor panels with reduced pressure drops (<0.5% Δp/p), reduced pumping power (<0.75% pumping/thermal power), and smaller duct sizes than conventional helium heat exchangers. Furthermore, the NFHX can easily be fabricated in the large sizes required for divertors in large tokamaks. Recent experimental and computational results from a program to develop NFHX technology for divertor coolings using porous metal heat transfer media are described. We have tested the thermal and flow characteristics of porous metals and identified the optimal heat transfer material for the divertor heat exchanger. Methods have been developed to create highly conductive thermal bonds between the porous material and a solid substrate. Computational fluid dynamics calculations of flow and heat transfer in the porous metal layer have shown the capability of high thermal effectiveness. An 18-kW NFHX, designed to meet specifications for the international Thermonuclear Experimental Reactor divertor, has been fabricated and tested for thermal and flow performance. Preliminary results confirm design and fabrication methods. 11 refs., 12 figs., 1 tab

  15. Thermal and flow design of helium-cooled reactors

    International Nuclear Information System (INIS)

    Melese, G.; Katz, R.

    1984-01-01

    This book continues the American Nuclear Society's series of monographs on nuclear science and technology. Chapters of the book include information on the first-generation gas-cooled reactors; HTGR reactor developments; reactor core heat transfer; mechanical problems related to the primary coolant circuit; HTGR design bases; core thermal design; gas turbines; process heat HTGR reactors; GCFR reactor thermal hydraulics; and gas cooling of fusion reactors

  16. Forced two phase helium cooling of large superconducting magnets

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Taylor, J.D.

    1979-08-01

    A major problem shared by all large superconducting magnets is the cryogenic cooling system. Most large magnets are cooled by some variation of the helium bath. Helium bath cooling becomes more and more troublesome as the size of the magnet grows and as geometric constraints come into play. An alternative approach to cooling large magnet systems is the forced flow, two phase helium system. The advantages of two phase cooling in many magnet systems are shown. The design of a two phase helium system, with its control dewar, is presented. The paper discusses pressure drop of a two phase system, stability of a two phase system and the method of cool down of a two phase system. The results of experimental measurements at LBL are discussed. Included are the results of cool down and operation of superconducting solenoids

  17. Liquid helium cooling of the MFTF superconducting magnets

    International Nuclear Information System (INIS)

    VanSant, J.H.; Zbasnik, J.P.

    1986-09-01

    During acceptance testing of the Mirror Fusion Test Facility (MFTF), we measured these tests: liquid helium heat loads and flow rates in selected magnets. We used the data from these tests to estimate helium vapor quality in the magnets so that we could determine if adequate conductor cooling conditions had occurred. We compared the measured quality and flow with estimates from a theoretical model developed for the MFTF magnets. The comparison is reasonably good, considering influences that can greatly affect these values. This paper describes the methods employed in making the measurements and developing the theoretical estimates. It also describes the helium system that maintained the magnets at required operating conditions

  18. The cryogenic helium cooling system for the Tokamak physics experiment

    International Nuclear Information System (INIS)

    Felker, B.; Slack, D.S.; Wendland, C.R.

    1995-01-01

    The Tokamak Physics Experiment (TPX) will use supercritical helium to cool all the magnets and supply helium to the Vacuum cryopumping subsystem. The heat loads will come from the standard steady state conduction and thermal radiation sources and from the pulsed loads of the nuclear and eddy currents caused by the Central Solenoid Coils and the plasma positioning coils. The operations of the TPX will begin with pulses of up to 1000 seconds in duration every 75 minutes. The helium system utilizes a pulse load leveling scheme to buffer out the effects of the pulse load and maintain a constant cryogenic plant operation. The pulse load leveling scheme utilizes the thermal mass of liquid and gaseous helium stored in a remote dewar to absorb the pulses of the tokamak loads. The mass of the stored helium will buffer out the temperature pulses allowing 5 K helium to be delivered to the magnets throughout the length of the pulse. The temperature of the dewar will remain below 5 K with all the energy of the pulse absorbed. This paper will present the details of the heat load sources, of the pulse load leveling scheme operations, a partial helium schematic, dewar temperature as a function of time, the heat load sources as a function of time and the helium temperature as a function of length along the various components that will be cooled

  19. Supercritical Helium Cooling of the LHC Beam Screens

    CERN Document Server

    Hatchadourian, E; Tavian, L

    1998-01-01

    The cold mass of the LHC superconducting magnets, operating in pressurised superfluid helium at 1.9 K, must be shielded from the dynamic heat loads induced by the circulating particle beams, by means of beam screens maintained at higher temperature. The beam screens are cooled between 5 and 20 K by forced flow of weakly supercritical helium, a solution which avoids two-phase flow in the long, narr ow cooling channels, but still presents a potential risk of thermohydraulic instabilities. This problem has been studied by theoretical modelling and experiments performed on a full-scale dedicated te st loop.

  20. The need for high performance breeder reactors

    International Nuclear Information System (INIS)

    Vaughan, R.D.; Chermanne, J.

    1977-01-01

    It can be easily demonstrated, on the basis of realistic estimates of continued high oil costs, that an increasing portion of the growth in energy demand must be supplied by nuclear power and that this one might account for 20% of all the energy production by the end of the century. Such assumptions lead very quickly to the conclusion that the discovery, extraction and processing of the uranium will not be able to follow the demand; the bottleneck will essentially be related to the rate at which the ore can be discovered and extracted, and not to the existing quantities nor their grade. Figures as high as 150.000 T/annum and more would be quickly reached, and it is necessary to wonder already now if enough capital can be attracted to meet these requirements. There is only one solution to this problem: improve the conversion ratio of the nuclear system and quickly reach the breeding; this would lead to the reduction of the natural uranium consumption by a factor of about 50. However, this condition is not sufficient; the commercial breeder must have a breeding gain as high as possible because the Pu out-of-pile time and the Pu losses in the cycle could lead to an unacceptable doubling time for the system, if the breeding gain is too low. That is the reason why it is vital to develop high performance breeder reactors. The present paper indicates how the Gas-cooled Breeder Reactor [GBR] can meet the problems mentioned above, on the basis of recent and realistic studies. It briefly describes the present status of GBR development, from the predecessors in the gas cooled reactor line, particularly the AGR. It shows how the GBR fuel takes mostly profit from the LMFBR fuel irradiation experience. It compares the GBR performance on a consistent basis with that of the LMFBR. The GBR capital and fuel cycle costs are compared with those of thermal and fast reactors respectively. The conclusion is, based on a cost-benefit study, that the GBR must be quickly developed in order

  1. Conceptual design of solid breeder blanket system cooled by supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Enoeda, Mikio; Akiba, Masato [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment] [and others

    2001-12-01

    This report is a summary of the design works, which was discussed in the design workshop held in 2000 for the demonstration (DEMO) blanket aimed to strengthen the commercial competitiveness and technical feasibility simultaneously. The discussion of the Fusion Council in 1999 updated the assessment of the mission of DEMO blanket. Updated mission of the DEMO blanket is to be the prototype of the commercially competitive power plant. The DEMO blanket must supply the feasibility and experience of the total design of the power plant and the materials. From such standing point, the conceptual design study was performed to determine the updated strategy and goal of the R and D of the DEMO blanket which applies the supercritical water cooling proposed in A-SSTR, taking into account the recent progress of the plasma research and reactor engineering technology. The DEMO blanket applies the solid breeder materials and supercritical water cooling. The product tritium is purged out by helium gas stream in the breeder region. In the breeder region, the pebble bed concept was applied to withstand instable cracking of the breeder and multiplier materials in high neutron irradiation and high temperature operation. Inlet temperature of the coolant is planned to be 280degC and final outlet temperature is 510degC to obtain high energy conversion efficiency up to 43%. Reduced activation ferritic steel, F82H and ODS ferritic steel were selected as the structural material. Lithium ceramics, Li{sub 2}TiO{sub 3} or Li{sub 2}O were selected as the breeder materials. Beryllium or its inter-metallic compound Be12Ti was selected as the neutron multiplier materials. Basic module structure was selected as the box type structure which enables the remote handling replacement of the module from in-vessel access. Dimension of the box is limited to 2 m x 2 m, or smaller, due to the dimension of the replacement port. In the supercritical water cooling, the high coolant temperature is the merit for

  2. Conceptual design of solid breeder blanket system cooled by supercritical water

    International Nuclear Information System (INIS)

    Enoeda, Mikio; Akiba, Masato; Ohara, Yoshihiro

    2001-12-01

    This report is a summary of the design works, which was discussed in the design workshop held in 2000 for the demonstration (DEMO) blanket aimed to strengthen the commercial competitiveness and technical feasibility simultaneously. The discussion of the Fusion Council in 1999 updated the assessment of the mission of DEMO blanket. Updated mission of the DEMO blanket is to be the prototype of the commercially competitive power plant. The DEMO blanket must supply the feasibility and experience of the total design of the power plant and the materials. From such standing point, the conceptual design study was performed to determine the updated strategy and goal of the R and D of the DEMO blanket which applies the supercritical water cooling proposed in A-SSTR, taking into account the recent progress of the plasma research and reactor engineering technology. The DEMO blanket applies the solid breeder materials and supercritical water cooling. The product tritium is purged out by helium gas stream in the breeder region. In the breeder region, the pebble bed concept was applied to withstand instable cracking of the breeder and multiplier materials in high neutron irradiation and high temperature operation. Inlet temperature of the coolant is planned to be 280degC and final outlet temperature is 510degC to obtain high energy conversion efficiency up to 43%. Reduced activation ferritic steel, F82H and ODS ferritic steel were selected as the structural material. Lithium ceramics, Li 2 TiO 3 or Li 2 O were selected as the breeder materials. Beryllium or its inter-metallic compound Be12Ti was selected as the neutron multiplier materials. Basic module structure was selected as the box type structure which enables the remote handling replacement of the module from in-vessel access. Dimension of the box is limited to 2 m x 2 m, or smaller, due to the dimension of the replacement port. In the supercritical water cooling, the high coolant temperature is the merit for the energy

  3. Method for cooling a breeder reactor and breeder reactor for applying the method

    International Nuclear Information System (INIS)

    Gast, K.

    1977-01-01

    The fuel assemblies of the fission zone and the breeder subassemblies in the radial breeding blanket are supported on a double bottom. The coolant gets into the interspace of the double bottom below the blanket. This part of the space is separated from the interspace of the double bottom below the fission zone. Each breeder subassembly consists of a twin tube. The coolant enters the inner tube, flows through it upwards in axial direction, is then deflected on the upper end, and afterwards, in the annulus of the twin tube, flows down again in axial direction into the inlet region, below the double bottom. From there on it flows upwards through the fuel assemblies of the fission zone from below. Thereby a uniformly high coolant outlet temperature is obtained. (DG) [de

  4. Scenario for commercialization of fast breeder reactors

    International Nuclear Information System (INIS)

    Kumaoka, Yoshio; Sato, Morihiko

    1989-01-01

    To realize the commercialization of fast breeder reactors (FBRs), it is essential to reduce construction costs to the same level as those for the current light water reactors. For this target to be attained, a highly important factor is to reduce to the lowest-levels possible the quantities of materials and volume of the buildings required for the primary and secondary sodium loops of the FBR. In this direction, an innovative compact FBR plant concept which holds promise for commercialization has been developed by introducing the pooltype reactor concept with the shortest possible secondary sodium loops, realized by coupling electromagnetic pumps with the steam generators. In comparison with the French Super Phenix reactor, for example, the construction of this 1,300-MWe FBR plant could be achieved with half the material quantities and plant volume required by the former type. (author)

  5. Superalloy applications in the fast breeder reactor

    International Nuclear Information System (INIS)

    Powell, R.W.

    1976-01-01

    The economics of the LMFBR are dependent on the breeding of new fuel in the reactor core and this can be improved by the use of advanced alloys as core structural components. The environment of the core makes superalloys a natural choice for these components, but phenomena related directly to neutron irradiation necessitate extensive testing. Consequently, commercially-available superalloys, together with a number of developmental alloys are being tested in existing LMFBR's and by simulation techniques to determine the best alloy for use in the LMFBR core. It presently appears that such materials will indeed be capable of the performance required, and will greatly facilitate the commercial realization of the fast breeder reactor

  6. Steam explosions in sodium cooled breeder reactors

    International Nuclear Information System (INIS)

    Lundell, B.

    1982-01-01

    Steam explosion is considered a physical process which transport heat from molten fuel to liquid coolant so fast that the coolant starts boiling in an explosion-like manner. The arising pressure waves transform part of the thermal energy to mechanical energy. This can stress the reactor tank and threaten its hightness. The course of the explosion has not been theoretical explained. Experimental results indicate that the probability of steam explosions in a breeder reactor is small. The efficiency of the transformation of the heat of fusion into mechanical energy in substantially lower than the theoretical maximum value. The mechanical stress from the steam explosion on the reactor tank does not seem to jeopardize its tightness. (G.B.)

  7. Thermal baffle for fast-breeder reactor

    International Nuclear Information System (INIS)

    Rylatt, J.A.

    1977-01-01

    A liquid-metal-cooled fast-breeder reactor includes a bridge structure for separating hot outlet coolant from relatively cool inlet coolant consisting of an annular stainless steel baffle plate extending between the core barrel surrounding the core and the thermal liner associated with the reactor vessel and resting on ledges thereon, there being inner and outer circumferential webs on the lower surface of the baffle plate and radial webs extending between the circumferential webs, a stainless steel insulating plate completely covering the upper surface of the baffle plate and flex seals between the baffle plate and the ledges on which the baffle plate rests to prevent coolant from washing through the gaps therebetween. The baffle plate is keyed to the core barrel for movement therewith and floating with respect to the thermal liner and reactor vessel. 3 claims, 2 figures

  8. Neutronic studies of a 233U breeder

    International Nuclear Information System (INIS)

    Hansen, L.F.; Maniscalco, J.A.

    1978-09-01

    Neutronic calculations have been carried out to design a laser fusion driven hybrid blanket which maximizes 233 U production per unit of thermal energy (>1 kg/MW/sub T/-year) with acceptable fusion energy multiplication (M/sub F/ approx. 4). Two hybrid blankets, a thorium and a uranium--thorium blanket, are discussed in detail and their performance is evaluated by incorporating them into an existing hybrid design (the LLL/Bechtel design). The performance of these two blankets is discussed in terms of their energy multiplication, tritium breeding and fissile fuel production. The neutronic calculations have been done for two neutron libraries, the ENDF/B-IV and the ENDL with differences no larger than 10% in the results. An estimate is given of the number of equivalent thermal power fission reactors (LWR, HWR, SSCR, and HTGR) that these fusion breeders can fuel

  9. The economics of fast breeder reactors

    International Nuclear Information System (INIS)

    Rapin, M.

    1990-01-01

    The overall status of the fast breeder reactor (FBR) system is periodically reviewed in France. In 1983, a report was prepared on the status and prospects of the FBR system at the request of the then Minister of Industry. Five years later, Electricite de France (EdF) and the French Atomic Energy Commission (CEA) jointly updated this report. The FBR reactor system economic considerations mentioned here are taken from the work performed in 1987-88 for this updating. The position in 1983 is reviewed to highlight concrete developments. Developments that have occurred since then are presented, along with the prospects that today enable us to define better the technical and economic potential of the FBR system. In conclusion, the effects of these findings on desirable directions are discussed, in particular with regard to European FBR cooperation. (author)

  10. Breeder control fusion reactor. Topical interview

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, A [Max-Planck-Institut fuer Plasmaphysik, Garching/Muenchen (Germany, F.R.)

    1977-09-01

    The energy sources of the future are extremely controversial. The consumption of fossil fuel shall decrease during the next decades, because exhaustion of the resources, pollution, increase of CO/sub 2/ in the atmosphere and other reasons. But at present the question it not yet settled which alternative energy system should replace the fossil fuel. First of all nuclear energy in the form of fission reactions seems to come into operation to a larger extent. The next step may be the controlled thermonuclear fusion reaction. Furthermore, a comparison between fusion and fission is given which shows that fusion would bring about less risks than the breeders. An advantage of the fusion reactor would be the fact that the fuel cycle is closed. Unfortunately, the physical questions are not as yet satisfactorily clarified so that one cannot be sure whether a fusion reactor can really be built.

  11. Fast breeder reactor safety : a perspective

    International Nuclear Information System (INIS)

    Kale, R.D.

    1992-01-01

    Taking into consideration India's limited reserves of natural and vast reserves of thorium, the fast reactor route holds a great promise for India's energy supply in future. The fast reactor fueled with 239 Pu/ 238 U (unused or depleted) produces (breeds) more fissionable fuel material 239 Pu than it consumes. Calculations show that a fast breeder reactor (FBR) increases energy potential of natural uranium by about 60 times. As the fast reactor can also convert 232 Th into 233 U which is a fissionable material, it can make India's thorium reserves a source of almost inexhaustible energy supply for a long time to come. Significant advantage of FBR plants cooled by sodium and their world-wide operating experience are reviewed. There are two main safety issues of FBR, one nuclear and the other non-nuclear. The nuclear issue concerns core disruptive accident and the non-nuclear one concerns the high chemical energy potential of sodium. These two issues are analysed and it is pointed that they are manageable by current design, construction and operational practices. Main findings of safety research during the last six to eight years in West European Countries and United States of America (US) are summarised. Three stage engineered safety provision incorporated into the design of the sodium cooled Fast Breeder Test Reactor (FBTR) commissioned at Kalpakkam are explained. The important design safety features of FBTR such as primary system containment, emergency core cooling, plant protection system, inherent safety features achieved through reactivity coefficients, and natural convection cooling are discussed. Theoretical analysis and experimental research in fast reactor safety carried out at the Indira Gandhi Centre for Atomic Research during the past some years are reviewed. (M.G.B.)

  12. Heat transfer characteristics of breeding zone in TBM of KOREA

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Dae; Lee, Dong Won; Kim, Dong Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In South Korea, lithium, Helium cooled ceramic reflector (HCCR) test blanket module (TBM) has been designed to install in ITER and verify the tritium production and the heat extraction. Helium cooled ceramic reflector (HCCR) test blanket module (TBM) is composed of four sub-modules and a common back manifold (BM). The HCCR TBM is cooled by a high temperature helium coolant of 300 .deg. C. The breeder, a neutron multiplier and reflector are included in the HCCR TBM. TBM is essential device to verify the tritium production and the heat extraction. The continuous deuterium-tritium (D-T) reaction should occur in order to generate heat and neutrons. The generated neutrons will react with lithium which is breeder. The margin to the allowable temperature for the breeder have a little with the conceptual design model of HCCR-TBM. Some feasible methods was discussed to lower the temperature of the breeding zone. The contact resistance between the wall and pebble beds was main factor to determine the breeder temperature. The installation of the cooling fins was considered to reduce the heat transfer resistance between the wall and the pebble beds. Thermal-hydraulic analysis was performed.

  13. Status of the in-pile test of HCPB pebble-bed assemblies in the HFR Petten

    Energy Technology Data Exchange (ETDEWEB)

    Laan, J.G. van der; Fokkens, J.H.; Hofmans, H.E.; Jong, M.; Magielsen, A.J.; Pijlgroms, B.J.; Stijkel, M.P. [NRG, Petten (Netherlands); Conrad, R. [JRC, Inst. for Energy, Petten (Netherlands); Malang, S.; Reimann, J. [FZK, Karlsruhe (Germany); Roux, N. [CEA Saclay (France)

    2002-06-01

    In the framework of developing the helium cooled pebble-bed (HCPB) blanket an irradiation test of pebble-bed assemblies is prepared at the HFR Petten. The test objective is to concentrate on the effect of neutron irradiation on the thermal-mechanical behaviour of the HCPB breeder pebble-bed at DEMO representative levels of temperature and defined thermal-mechanical loads. The basic test elements are EUROFER-97 cylinders with a horizontal bed of ceramic breeder pebbles sandwiched between two beryllium beds. The pebble beds are separated by EUROFER-97 steel plates. The heat flow is managed such as to have a radial temperature distribution in the ceramic breeder pebble-bed as flat as reasonably possible. The paper reports on the project status, and presents the results of pre-tests, material characteristics, the manufacturing of the pebble-bed assemblies, and the nuclear and thermo-mechanical loading parameters. (orig.)

  14. Chemical form of tritium released from solid breeder materials and the influences of it on a bred tritium recovery systems

    International Nuclear Information System (INIS)

    Furukubo, Y.; Nishikawa, M.; Nishida, Y.; Kinjyo, T.; Tanifuji, Takaaki; Kawamura, Yoshinori; Enoeda, Mikio

    2004-01-01

    The ratio of HTO in total tritium was measured at release of the bred tritium to the purge gas with hydrogen using the thermal release after irradiation method, where neutron irradiation was performed at JRR-3 reactor in JAERI or KUR reactor in Kyoto University. It is experimentally confirmed in this study that not a small portion of bred tritium is released to the purge gas in the form of HTO form ceramic breeder materials even when hydrogen is added to the purge gas. The chemical composition is to be decided by the competitive reaction at the grain surface of a ceramic breeder material where desorption reaction, isotope exchange reaction 1, isotope exchange reaction 2 and water formation reaction are considered to take part. Observation in this study implies that it is necessary to have a bred tritium recovery system applicable for both HT and HTO form to recover whole bred tritium. The chemical composition also decides the amount of tritium transferable to the cooling water of the electricity generation system through the structural material in the blanket system. Permeation behavior of tritium through some structural materials at various conditions are also discussed. (author)

  15. Compatibility of sodium with ceramic oxides employed in nuclear reactors; Compatibilidad del sodio con oxidos ceramicos utilizados en reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Acena Moreno, V

    1981-07-01

    This work is a review of experiments carried out up to the present time on the corrosion and compatibility of ceramic oxides with liquid sodium at temperatures corresponding to those in fast breeder reactors. The review also includes the results of a thermo-dynamic/liquid sodium reactions. The exercise has been conducted with a view to effecting experimental studies in the future. (Author)

  16. Carter's breeder policy has failed, claims Westinghouse manager

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Nuclear nations developing liquid metal fast breeder reactor (LMFBR) technology have not been dissuaded by President Carter's efforts to stop the breeder program as a way to control the proliferation of nuclear weapons. There is no evidence that Carter's policy of moral persuasion has had any impact on their efforts. A review of the eight leading countries cites their extensive progress in the areas of breeder technology and fuel reprocessing, while the US has made only slight gains. The Fast Flux Test Facility at Hanford is near completion, but the Clinch River project has been slowed to a minimum

  17. 3rd quarterly report 1976 of the Fast Breeder Project

    International Nuclear Information System (INIS)

    1976-12-01

    The report describes activities which were performed within the framework of the Fast Breeder Project at the Gesellschaft fuer Kernforschung mbH Karlsruhe (GfK) or on behalf of the GfK during the third quarter. It contains contributions on the following subjects: Fuel rod development, material studies and development, corrosion tests and coolant analyses, physical experiments, reactor theory, safety of fast breeders, instrumentation and signal processing for core monitoring, environmental impacts, sodium technology tests, thermo- and fluid-dynamic tests in gas, tests concerning gas-cooled breeders. (HR) [de

  18. Uranium utilization of light water cooled reactors and fast breeders

    International Nuclear Information System (INIS)

    Stojadinovic, Timm

    1991-08-01

    The better uranium utilization of fast breeder reactors as compared with water cooled reactors is one argument in favour of the breeder introduction. This report tries to quantify this difference. It gives a generally valid formalism for the uranium utilization as a function of the fuel burnup, the conversion rate, fuel cycle losses and the fuel enrichment. On the basis of realistic assumptions, the ratio between the utilizations of breeder reactors to that of light water cooled reactors (LWR) amounts to 180 for the open LWR cycle and 100 in case of plutonium recycling in LWRs

  19. Alternative cycles and fast breeders, a look to the future

    International Nuclear Information System (INIS)

    Dahlberg, R.C.

    1979-01-01

    The various nuclear strategies that have been proposed to eke out available uranium are briefly summarised. A recent approach is to develop the concept of a 'transitional symbiosis strategy' which accepts the principle of the fast breeder/advanced converter for the long-range future, and to suggest that advanced converters be designed to be near-breeders. Some of the issues affecting strategic planning in the transitional period are reviewed further. The need for the thorium cycle in both advanced converters (or near breeders) and fast reactors is emphasised. This type of high temperature gas-cooled reactor appears to be the technology most suited for symbiosis with FBRs. (UK)

  20. Symbiosis of near breeder HTR's with hybrid fusion reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1978-07-01

    In this contribution to INFCE a symbiotic fusion/fission reactor system, consisting of a hybrid beam-driven micro-explosion fusion reactor (HMER) and associated high-temperature gas-cooled reactors (HTR) with a coupled fuel cycle, is proposed. This system is similar to the well known Fast Breeder/Near Breeder HTR symbiosis except that the fast fission breeder - running on the U/Pu-cycle in the core and the axial blankets and breeding the surplus fissile material as U-233 in its radial thorium metal or thorium oxide blankets - is replaced by a hybrid micro-explosion DT fusion reactor

  1. A comparison of fusion breeder/fission client and fission breeder/fission client systems for electrical energy production

    International Nuclear Information System (INIS)

    Land, R.J.; Parish, T.A.

    1983-01-01

    A parametric study that evaluated the economic performance of breeder/client systems is described. The linkage of the breeders to the clients was modelled using the stockpile approach to determine the system doubling time. Since the actual capital costs of the breeders are uncertain, a precise prediction of the cost of a breeder was not attempted. Instead, the breakeven capital cost of a breeder relative to the capital cost of a client reactor was established by equating the cost of electricity from the breeder/client system to the cost of a system consisting of clients alone. Specific results are presented for two breeder/client systems. The first consisted of an LMFBR with LWR clients. The second consisted of a DT fusion reactor (with a 238 U fission suppressed blanket) with LWR clients. The economics of each system was studied as a function of the cost of fissile fuel from a conventional source. Generally, the LMFBR/LWR system achieved relatively small breakeven capital cost ratios; the maximum ratio computed was 2.2 (achieved at approximately triple current conventional fissile material cost). The DTFR/LWR system attained a maximum breakeven capital cost ratio of 4.5 (achieved at the highest plasma quality (ignited device) and triple conventional fissile cost)

  2. A review of prospects for an accelerator breeder

    International Nuclear Information System (INIS)

    Fraser, J.S.; Hoffman, C.R.; Schriber, S.O.; Garvey, P.M.; Townes, B.M.

    1981-12-01

    The scientific feasibility, engineering practicability and economic prospects for an Accelerator Breeder are reviewed. The scientific feasibiliity of high power accelerator components rests on a firm basis as a result of technical advances made in recent years but there is a need to combine all components in a demonstration model working under realistic conditions. The engineering practicability of Accelerator Breeder components should be tested in a staged development culminating in a full-scale demonstration plant. The economic assessment depends on calculations of allowed and estimated capital costs of an Accelerator Breeder for a CANDU system operating on the Th-U fuel cycle. The results indicate that the ratio of estimated to allowed capital cost is approximately 3.5 for a breeder with a 2% enriched uranium metal blanket and for separated U235 valued at 48 $/g

  3. Staphylococcus agnetis, a potential pathogen in broiler breeders

    DEFF Research Database (Denmark)

    Poulsen, Louise Ladefoged; Thøfner, Ida; Bisgaard, Magne

    2017-01-01

    In this study, four broiler parent flocks have been followed from the onset of the production period (week 20) until slaughter (week 60). Every week, approximately ten dead broiler breeders, randomly selected among birds dead on their own, were collected and subjected to a full post mortem analysis...... including bacteriological examination. In total 997 breeders were investigated and for the first time Staphylococcus agnetis was isolated in pure culture from cases of endocarditis and septicemia from 16 broiler breeders. In addition, the cloacal flora from newly hatched chickens originating from the same...... from both broiler breeders and broilers. Three isolates were whole genome sequenced to obtain knowledge on virulence genes. The isolates harbored a number of genes encoding different fibrinogen binding proteins and toxins which might be important for virulence. The present findings demonstrate that S...

  4. Neutronic optimization of solid breeder blankets for STARFIRE design

    International Nuclear Information System (INIS)

    Gohar, Y.; Abdou, M.A.

    1980-01-01

    Extensive neutronic tradeoff studies were carried out to define and optimize the neutronic performance of the different solid breeder options for the STARFIRE blanket design. A set of criteria were employed to select the potential blanket materials. The basic criteria include the neutronic performance, tritium-release characteristics, material compatibility, and chemical stability. Three blanket options were analyzed. The first option is based on separate zones for each basic blanket function where the neutron multiplier is kept in a separate zone. The second option is a heterogeneous blanket type with two tritium breeder zones. In the first zone the tritium breeder is assembled in a neutron multiplier matrix behind the first wall while the second zone has a neutron moderator matrix instead of the neutron multiplier. The third blanket option is similar to the second concept except the tritium breeder and the neutron multiplier form a homogeneous mixture

  5. Plant dynamics and safety analysis of fast breeder reactors

    International Nuclear Information System (INIS)

    Ertel, V.

    1982-01-01

    Some general features of sodium cooled fast breeders which influence the thermohydraulics and differ from LWR'S are discussed. Using the SNR-300 as a reference, some thermohydraulic transients from normal operation and from design accidents are presented. (orig.)

  6. Overview of pool hydraulic design of Indian prototype fast breeder ...

    Indian Academy of Sciences (India)

    Flow sheet of prototype fast breeder reactor. ... over, the main vessel that houses radioactive primary sodium is free of any ..... with superficial velocity components in porous media. ..... The attenuation within thermal boundary layer was found.

  7. Irradiaiton facilities for testing solid and liquid blanket breeder materials with in-situ tritium release measurements in the HFR Petten

    International Nuclear Information System (INIS)

    Conrad, R.; Debarberis, L.

    1991-01-01

    Lithium-based tritium breeder materials for solid and liquid fusion reactor blanket concepts are being tested in the High Flux Reactor (HFR) Petten with in-situ tritium release measurements since 1985, within the European Fusion Technology Programme and the BEATRIX-I programme. Ceramic breeder materials are being tested in the EXOTIC and COMPLIMENT experimental programmes and the liquid breeder material, Pb-17Li, is being tested in the LIBRETTO experimental programme. The in-pile experiments are performed with irradiation facilities developed by the Joint Research Centre (JRC) Petten. The irradiation vehicles are multi-channel rigs. The sample holders consist of independent, fully instrumented and triple contained capsules. The out-of-pile experimental equipment consist of twelve independent circuits for on-line tritium release and tritium permeation measurements and eight independent circuits for temperature control. The experimental achievements obtained so far contribute to the selection of candidate tritium breeder materials for blanket concepts of near future machines like NET, ITER and DEMO. (orig.)

  8. Design of the breeder units in the new HCPB modular blanket concept and material requirements

    International Nuclear Information System (INIS)

    Boccaccini, L.V.; Fischer, U.; Hermsmeyer, S.; Reimann, J.; Xu, Z.; Koehly, C.

    2004-01-01

    A major revision of the DEMO HCPB blanket concept took place in 2002-2003 as consequence of the results of the EU Power Plant Conceptual Study. In particular, it was decided to give up the previous maintenance schema based on segments in favour of a large module concept extrapolated from ITER. The adaptation of the HCPB concept to these modules (typical dimension at the FW of 2.0 x 2.0 m) required a complete revision of the box. The coolant flow scheme is based on a radial He flow (at 8 MPa) in order to have the entire manifold system in the rear part of the box. Furthermore, the requirement of a box capable of withstanding the coolant pressure of 8 MPa in case of an in-box LOCA led to a design of modules with an internal stiffening grid in toroidal and poloidal direction This grid results in cells open in the rear radial direction with toroidal-poloidal dimensions of about 20 cm x 20 cm that accommodate the breeder units. These units contain the ceramic breeder (CB) and the Beryllium in form of pebble beds and have to assure the main functions of the blanket, namely, a tritium breeding ratio significantly above one, heat removal with a temperature control in the beds and in the structure, mechanical stability of the beds and extraction of the produced tritium. Due to the relatively high quantity of steel necessary to assure the mechanical stability of the box, a strong requirement for the design of these units is to minimise the amount of steel to improve the neutronic performance. A satisfactory design has been achieved with a radial-toroidal bed configuration similar to the old DEMO design reaching the Tritium self-sufficiency with a radial depth of 47 cm, using monosized Beryllium and CB beds and, using Li 4 SiO 4 , a 6 Li enrichment of about 40%. This design allows a satisfactory control of the maximum acceptable temperatures in the CB and Be beds and the steel structure. The design of the breeder units has not been yet analysed thermo-mechanically in detail

  9. Status of the breeder fuel cycle in the United States

    International Nuclear Information System (INIS)

    Burch, W.D.

    1985-01-01

    This paper reviews the status and plans for the fast reactor fuel cycle in the United States. The United States is undertaking a complete reexamination of its entire breeder program strategy, and the direction of the new program is not yet clear. Studies in progress to examine the associated fuel cycle strategies as they relate to the overall emerging breeder strategy are described. The present status of and recent developments in the fuel cycle R and D programs are summarized

  10. Development of Liquid Type Breeder Technology for ITER-TBM

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ki Sok; Hong, Bong Geun; Lee, Dong Won

    2008-07-15

    In relation to liquid type TBM technology development, various works are performed. We established a test loop concept to test the MHD effects and materials compatibility for the Pb-17Li breeder material. For the loop construction, electromagnetic pump and storage tank for the Pb-17Li loop was manufactured and some technical requirements are summarised. As a reference, technical literatures relevant to the liquid type TBM materials and the tritium extraction from breeder materials are also surveyed.

  11. Processing and waste disposal needs for fusion breeder blankets system

    International Nuclear Information System (INIS)

    Finn, P.A.; Vogler, S.

    1988-01-01

    We evaluated the waste disposal and recycling requirements for two types of fusion breeder blanket (solid and liquid). The goal was to determine if breeder blanket waste can be disposed of in shallow land burial, the least restrictive method under U.S. Nuclear Regulatory Commission regulations. Described in this paper are the radionuclides expected in fusion blanket materials, plans for reprocessing and disposal of blanket components, and estimates for the operating costs involved in waste disposal. (orig.)

  12. Growth rates of breeder reactor fuel. Final report

    International Nuclear Information System (INIS)

    Ott, K.O.

    1979-01-01

    During the contract period, a consistent formalism for the definition of the growth rates (and thus the doubling time) of breeder reactor fuel has been developed. This formalism was then extended to symbiotic operation of breeder and converter reactors. Further, an estimation prescription for the growth rate has been developed which is based upon the breeding worth factors. The characteristics of this definition have been investigated, which led to an additional integral concept, the breeding bonus

  13. Exploding the myths about the fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Burns, S.

    1979-01-01

    This paper discusses the facts and figures about the effects of conservation policies, the benefits of the Clinch River Breeder Reactor demonstration plant, the feasibility of nuclear weapons manufacture from reactor-grade plutonium, diversion of plutonium from nuclear plants, radioactive waste disposal, and the toxicity of plutonium. The paper concludes that the U.S. is not proceeding with a high confidence strategy for breeder development because of a variety of false assumptions.

  14. The development of the gas cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Kernforschungszentrum Karlsruhe

    1975-01-01

    A survey of the present technological state is given on the basis of the developments made so far. Some milestones of development - e.g. the German gas breeder memorandum, the Gas Breeder Reactor Association the results of the BR-2 radiation experiments and of GfK-KWU design and safety studies - are described. The problems connected with a large store of plutonium are also discussed. (UA/AK) [de

  15. Accelerator breeders, will they replace liquid metal fast breeders (question mark)

    International Nuclear Information System (INIS)

    Grand, P.; Powell, J.R.; Steinberg, M.; Takahashi, H.

    1983-01-01

    Advances in accelerator technology make accelerator breeding of fissile fuel more and more attractive. Brookhaven studies indicate that accelerator breeders could be implemented commercially within twenty years and that the resulting AB-LWR fuel cycle cost is competitive with that of the LMFBR. This cost competitiveness would be greatly enhanced with more advanced converters. Feasibility studies carried out at Brookhaven over the last few years addressed principally the question of neutronics and engineering feasibility of the target system, technical issues of accelerator technology and cost/benefit analysis

  16. Accelerator molten-salt breeder reactor

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Kuroi, Hideo; Kato, Yoshio; Oomichi, Toshihiko.

    1979-01-01

    Purpose: To obtain fission products and to transmute transuranium elements and other radioactive wastes by the use of Accelerator Molten-Salt Breeder Reactor. Constitution: Beams from an accelerator pipe at one end of a target vessel is injected through a window into target molten salts filled inside of the target vessel. The target molten salts are subjected to pump recycling or spontaneous convection while forcively cooled by blanket molten salts in an outer vessel. Then, energy is recovered from the blanket molten salts or the target molten salts at high temperatures through electric power generation or the like. Those salts containing such as thorium 232 and uranium 238 are used as the blanket molten salts so that fission products may be produced by neutrons generated in the target molten salts. PbCl 2 -PbF 2 and LiF-BeF 2 -ThF 4 can be used as the target molten salts and as the blanket molten salts respectively. (Seki, T.)

  17. Role of fast breeders in Japan

    International Nuclear Information System (INIS)

    Oyama, A.; Tomabechi, K.

    1978-09-01

    To meet increasing future energy demand in Japan utilization of fission energy should be promoted. In particular it is of vital importance to develop and utilize FBRs as soon as possible in order to save the natural uranium needed. If one considers the commercial introduction of FBRs in the mid-1990s in Japan, a delay of only one year will eventually result in an additional demand for natural uranium of more than 20,000 tons, because several LWRs will have to be installed instead. Ten years have passed since the development of FBRs in Japan was initiated as a national project with the highest priority and now the experimental fast reactor JOYO is successfully being operated at 50MW and the prototype fast breeder reactor MONJU has reached the stage of proceeding to construction with a schedule of operation in the mid-1980s. Following operation of MONJU, construction of a large demonstration reactor of 1000 - 15000 MW(e) will be undertaken. Some 2 - 3 years after the construction of the demonstration reactor, a series of reactors will be constructed similar in size and design to promote commercialization of LMFBRs. Strong efforts will be made to put this programme into practice. It is expected that LMFBRs will play an important role in mitigating the serious problem of energy supply in Japan foreseeable around the turn of the century

  18. Breeder reactor program in the USA

    International Nuclear Information System (INIS)

    Brewer, S.

    1978-01-01

    In the United States, commercial fuel reprocessing and demonstration test of plutonium breeder reactors were now postponed. LMFBR project and schedule of FFTF and afterwards await the results of INFCE. However, this is not discarding the development of LMFBRs. With the existing energy resources, the United States can have the opportunity to make careful and thorough study. Emphasis is placed on the research and development on new alternative types of fuel. FFTF going to be operated soon should provide effective means for the developments of FBR fuel and materials. High priority is to be retained for the test and development of sodium system hardwares. The nuclear proliferation problem is not related to heat transfer and secondary systems; it is associated with the selection of fuel and fuel cycle. The whole program is centered around LMFBR design and development. The target output will be 600 x 10 3 -- 700 x 10 3 MW. In the United States, now is the time to develop excellent products and to study the nuclear proliferation problem more carefully. (Mori, K.)

  19. Liquid metal tribology in fast breeder reactors

    International Nuclear Information System (INIS)

    Wild, E.; Mack, K.J.; Gegenheimer, M.

    1984-11-01

    Liquid Metal Cooled Fast Breeder Reactors (LMFBR) require mechanisms operating in various sodium liquid and sodium vapor environments for extended periods of time up to temperatures of 900 K under different chemical properties of the fluid. The design of tribological systems in those reactors cannot be based on data and past experience of so-called conventional tribology. Although basic tribological phenomena and their scientific interpretation apply in this field, operating conditions specific to nuclear reactors and prevailing especially in the nuclear part of such facilities pose special problems. Therefore, in the framework of the R and D-program accompanying the construction phase of SNR 300 experiments were carried out to provide data and knowledge necessary for the lay-out of friction systems between mating surfaces of contacting components. Initially, screening tests isolated material pairs with good slipping properties and maximum wear resistance. Those materials were subjected to comprehensive parameter investigations. A multitude of laboratory scale tests have been performed under largely reactor specific conditions. Unusual superimpositions of parameters were analyzed and separated to find their individual influence on the friction process. The results of these experiments were made available to the reactor industry as well as to factories producing special tribo-materials. (orig.) [de

  20. The future of the Fast Breeder

    International Nuclear Information System (INIS)

    Lefevre, J.C.

    1990-01-01

    Fast Breeder Reactors (FBRs) can produce more fissile nuclei than they consume whilst, at the same time, generating energy using fast neutrons. By conversion of uranium isotope 238 into a fissionable fuel, FBRs provide over 60 times more energy than can be extracted from the uranium reserves by thermal reactors. Their development is therefore an essential objective in the next century, particularly for those industrialised countries that have little or no energy resources of their own. The European countries which have been engaged in the development of FBRs for more than 25 years have decided to collaborate in an advanced design, the European Fast Reactor (EFR) which uses the best of previous national projects and draws on extensive operating experience from FBR plants in Europe. The naturally safe characteristics and technological features of sodium-cooled Fast Reactors will be fully utilised in an EFR design which meets the same safety level as the Light Water Reactors (LWRs). Owing to technical progress and series construction effect, the EFR is expected to achieve competitiveness with contemporary LWRs with the higher capital cost of the Fast Reactor offset by its markedly lower fuel cycle cost. (author)

  1. Preliminary design of a Binary Breeder Reactor

    International Nuclear Information System (INIS)

    Garcia C, E. Y.; Francois, J. L.; Lopez S, R. C.

    2014-10-01

    A binary breeder reactor (BBR) is a reactor that by means of the transmutation and fission process can operates through the depleted uranium burning with a small quantity of fissile material. The advantages of a BBR with relation to other nuclear reactor types are numerous, taking into account their capacity to operate for a long time without requiring fuel reload or re-arrangement. In this work four different simulations are shown carried out with the MCNPX code with libraries Jeff-3.1 to 1200 K. The objective of this study is to compare two different models of BBR: a spherical reactor and a cylindrical one, using two fuel cycles for each one of them (U-Pu and Th-U) and different reflectors for the two different geometries. For all the models a super-criticality state was obtained at least 10.9 years without carrying out some fuel re-arrangement or reload. The plutonium-239 production was achieved in the models where natural uranium was used in the breeding area, while the production of uranium-233 was observed in the cases where thorium was used in the fertile area. Finally, a behavior of stationary wave reactor was observed inside the models of spherical reactor when contemplating the power uniform increment in the breeding area, while inside the cylindrical models was observed the behavior of a traveling wave reactor when registering the displacement of the burnt wave along the cylindrical model. (Author)

  2. Fusion breeder: its potential role and prospects

    International Nuclear Information System (INIS)

    Lee, J.D.

    1981-01-01

    The fusion breeder is a concept that utilizes 14 MeV neutrons from D + T → n(14.1 MeV) + α(3.5 MeV) fusion reactions to produce more fuel than the tritium (T) needed to sustain the fusion process. This excess fuel production capacity is used to produce fissile material (Pu-239 or U-233) for subsequent use in fission reactors. We are concentrating on a class of blankets we call fission suppressed. The blanket is the region surrounding the fusion plasma in which fusion neutrons interact to produce fuel and heat. The fission-suppressed blanket uses non-fission reactions (mainly (n,2n) or (n,n't)) to generate excess neutrons for the production of net fuel. This is in contrast to the fast fission class of blankets which use (n,fiss) reactions to generate excess neutrons. Fusion reactors with fast fission blankets are commony known as fusion-fission hybrids because they combine fusion and fission in the same device

  3. Environmental Enrichment for Broiler Breeders: An Undeveloped Field

    Directory of Open Access Journals (Sweden)

    Anja B. Riber

    2017-06-01

    Full Text Available Welfare problems, such as hunger, frustration, aggression, and abnormal sexual behavior, are commonly found in broiler breeder production. To prevent or reduce these welfare problems, it has been suggested to provide stimulating enriched environments. We review the effect of the different types of environmental enrichment for broiler breeders, which have been described in the scientific literature, on behavior and welfare. Environmental enrichment is defined as an improvement of the environment of captive animals, which increases the behavioral opportunities of the animal and leads to improvements in biological function. This definition has been broadened to include practical and economic aspects as any enrichment strategy that adversely affects the health of animals (e.g., environmental hygiene, or that has too many economic or practical constraints will never be implemented on commercial farms and thus never benefit animals. Environmental enrichment for broiler breeders often has the purpose of satisfying the behavioral motivations for feeding and foraging, resting, and/or encouraging normal sexual behavior. Potentially successful enrichments for broiler breeders are elevated resting places, cover panels, and substrate (for broiler breeders housed in cage systems. However, most of the ideas for environmental enrichment for broiler breeders need to be further developed and studied with respect to the use, the effect on behavior and welfare, and the interaction with genotype and production system. In addition, information on practical use and the economics of the production system is often lacking although it is important for application in practice.

  4. Status of fast breeder reactor development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S

    1979-07-01

    This document was prepared by the Office of the Program Director for Nuclear Energy, U.S. Department of Energy (USDOE). It sets forth the status and current activities for the development of fast breeder technology in the United States. In April 1977 the United States announced a change in its nuclear energy policy. Concern about the potential for the proliferation of nuclear weapons capability emerged as a major issue in considering whether to proceed with the development, demonstration and eventual deployment of breeder reactor energy systems. Plutonium recycle and the commercialization of the fast breeder were deferred indefinitely. This led to a reorientation of the nuclear fuel cycle program which was previously directed toward the commercialization of fuel reprocessing and plutonium recycle to the investigation of a full range of alternative fuel cycle technologies. Two major system evaluation programs, the Nonproliferation Alternative Systems Assessment Program (NASAP), which is domestic, and the International Nuclear Fuel Cycle Evaluation (INFCE), which is international, are assessing the nonproliferation advantages and other characteristics of advanced reactor concepts and fuel cycles. These evaluations will allow a decision in 1981 on the future direction of the breeder program. In the interim, the technologies of two fast breeder reactor concepts are being developed: the Liquid Metal Fast Breeder Reactor (LMFBR) and the Gas Cooled Fast Reactor (CFR). The principal goals of the fast breeder program are: LMFBR - through a strong R and D program, consistent with US nonproliferation objectives and anticipated national electric energy requirements, maintain the capability to commit to a breeder option; investigate alternative fuels and fuel cycles that might offer nonproliferation advantages; GCFR - provide a viable alternative to the LMFBR that will be consistent with the developing U.S. nonproliferation policy; provide GCFR technology and other needed

  5. Influence of start up and pulsed operation on tritium release and inventory of NET ceramic blanket

    International Nuclear Information System (INIS)

    Iseli, M.; Esser, B.

    1989-01-01

    A first estimate for the tritium release behaviour of a ceramic breeder blanket in pulsed operation is obtained by assuming a linear steady state temperature distribution and taking into account the time constant of the thermal behaviour. The release behaviour of the breeder exposed to consecutive periods of tritium generation is described with an analytical solution of the diffusion equation. The results are compared with a simple exponential approach valid for surfacte desorption controlled release. The exponential model is used to simulate a blanket with aluminate as breeder material, which takes longest to reach steady state. The simulation demonstrates that a significant fraction (>67%) of steady state can be achieved after a testing time of about one day. (author). 7 refs.; 8 figs.; 3 tabs

  6. Fast breeder physics and nuclear core design

    International Nuclear Information System (INIS)

    Marth, W.; Schroeder, R.

    1983-07-01

    This report gathers the papers that have been presented on January 18/19, 1983 at a seminar ''Fast breeder physics and nuclear core design'' held at KfK. These papers cover the results obtained within about the last five years in the r+d program and give some indication, what still has to be done. To begin with, the ''tools'' of the core designer, i.e. nuclear data and neutronics codes are covered in a comprehensive way, the seminar emphasized the applications, however. First of all the accuracies obtained for the most important parameters are presented for the design of homogeneous and heterogeneous cores of about 1000 MWe, they are based on the results of critical experiments. This is followed by a survey on activities related to the KNK II reactor, i.e. calculations concerning a modification of the core as well as critical experiments done with respect to re-loads. Finally, work concerning reactivity worths of accident configurations is presented: the generation of reactivity worths for the input of safety-related calculations of a SNR 2 design, and critical experiments to investigate the requirements for the codes to be used for these calculations. These papers are accompanied by two contributions from the industrial partners. The first one deals with the requirements to nuclear design methods as seen by the reactor designer and then shows what has been achieved. The latter one presents state, trends, and methods of the SNR 2 design. The concluding remarks compare the state of the art reached within DeBeNe with international achievements. (orig.) [de

  7. Status of fast breeder development in Germany

    International Nuclear Information System (INIS)

    Heusener, G.

    1992-01-01

    The German Minister for Research and Technology (BMFT), Dr. Heinz Riesenhuber, announced on March 20, 1991 that SNR 300, the fast breeder power plant at Kalkar, shall be abandoned. This message followed a top level meeting between BMFT officials and senior managers of Siemens, RWE, PreuBenElektra und Bayernwerk. BMFT, vendor Siemens and the three utilities had carried the interim finance costs of DM 105 million yearly since 1989. The licensing procedure had been obstructed during a long time by the responsible authorities. For several years the licensing process for the last permits on nuclear operation of KKW Kalkar had been held up by the government of the state of North Rhine-Westphalia (NWR). Licensing of nuclear power plants is the responsibility of the states, according to the German Atomic Act. The state of NRW turned against the SNR 300 project when the Social Democratic Party (SPD) started questioning nuclear power in 1985. Until then 17 partial licenses for SNR 300 had been granted, each time including an overall project approval. One of the consequences of the demise of SNR-300 was that Interatom GmbH, a subsidiary of Siemens AG, has been integrated into the division KWU of the Siemens AG on 1 October, 1991. For SNR 300 the turn-key contracts to the supplier company were cancelled by the operator on April 10, 1991 following the political termination of the SNR-300 Project. On August 23, 1991 after the termination of the SNR project, KfK decided to shutdown the KNK II reactor for final decommissioning

  8. Status of fast breeder development in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Heusener, G [Kernforschungszentrum Karlsruhe, Karlsruhe (Germany)

    1992-07-01

    The German Minister for Research and Technology (BMFT), Dr. Heinz Riesenhuber, announced on March 20, 1991 that SNR 300, the fast breeder power plant at Kalkar, shall be abandoned. This message followed a top level meeting between BMFT officials and senior managers of Siemens, RWE, PreuBenElektra und Bayernwerk. BMFT, vendor Siemens and the three utilities had carried the interim finance costs of DM 105 million yearly since 1989. The licensing procedure had been obstructed during a long time by the responsible authorities. For several years the licensing process for the last permits on nuclear operation of KKW Kalkar had been held up by the government of the state of North Rhine-Westphalia (NWR). Licensing of nuclear power plants is the responsibility of the states, according to the German Atomic Act. The state of NRW turned against the SNR 300 project when the Social Democratic Party (SPD) started questioning nuclear power in 1985. Until then 17 partial licenses for SNR 300 had been granted, each time including an overall project approval. One of the consequences of the demise of SNR-300 was that Interatom GmbH, a subsidiary of Siemens AG, has been integrated into the division KWU of the Siemens AG on 1 October, 1991. For SNR 300 the turn-key contracts to the supplier company were cancelled by the operator on April 10, 1991 following the political termination of the SNR-300 Project. On August 23, 1991 after the termination of the SNR project, KfK decided to shutdown the KNK II reactor for final decommissioning.

  9. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Durston, J.G.

    1976-01-01

    It is stated that in a liquid metal cooled fast breeder reactor wherein the core, intermediate heat exchangers and liquid metal pumps are immersed in a pool of coolant such as Na, the intermediate heat exchangers are suspended from the roof, and ducting is provided in the form of a core tank or shroud interconnected with 'pods' housing the intermediate exchangers for directing coolant from the core over the heat exchanger tubes and thence back to the main pool of liquid metal. Seals are provided between the intermediate heat exchanger shells and the walls of their 'pods' to prevent liquid metal flow by-passing the heat exchanger tube bundles. As the heat exchangers must be withdrawable for servicing, and because linear differential thermal expansion of the heat exchanger and its 'pod' must be accommodated the seals hitherto have been of the sliding kind, generally known as 'piston ring type seals'. These present several disadvantages; for example sealing is not absolute, and the metal to metal seal gives rise to wear and fretting by rubbing and vibration. This could lead to seizure or jamming by the deposition of impurities in the coolant. Another difficulty arises in the need to accommodate lateral thermal expansion of the ducting, including the core tank and 'pods'. Hitherto some expansion has been allowed for by the use of expansible bellow pairs in the interconnections, or alternatively by allowing local deformations of the core tank 'pods'. Such bellows must be very flexible and hence constitute a weak section of the ducting, and local deformations give rise to high stress levels that could lead to premature failure. The arrangement described seeks to overcome these difficulties by use of a gas pocket trapping means to effect a seal against vertical liquid flow between the heat exchanger shell and the wall of the heat exchanger housing. Full details of the arrangement are described. (U.K.)

  10. Effect of vaccinating breeder chickens with a killed Salmonella vaccine on Salmonella prevalences and loads in breeder and broiler chicken flocks.

    Science.gov (United States)

    Berghaus, R D; Thayer, S G; Maurer, J J; Hofacre, C L

    2011-05-01

    The objective of this study was to evaluate the effect of vaccination of breeder chickens on Salmonella prevalences and loads in breeder and broiler chicken flocks. Chickens housed on six commercial breeder farms were vaccinated with a killed Salmonella vaccine containing Salmonella Typhimurium, Salmonella Enteritidis, and Salmonella Kentucky. Unvaccinated breeders placed on six additional farms served as controls. Eggs from vaccinated and unvaccinated breeder flocks were kept separately in the hatchery, and the resulting chicks were used to populate 58 commercial broiler flock houses by using a pair-matched design. Vaccinated breeder flocks had significantly higher Salmonella-specific antibody titers than did the unvaccinated breeder flocks, although they did not differ significantly with respect to environmental Salmonella prevalences or loads. Broiler flocks that were the progeny of vaccinated breeders had significantly lower Salmonella prevalences and loads than broiler flocks that were the progeny of unvaccinated breeders. After adjusting for sample type and clustering at the farm level, the odds of detecting Salmonella in samples collected from broiler flocks originating from vaccinated breeders were 62% lower (odds ratio [95% confidence interval] = 0.38 [0.21, 0.68]) than in flocks from unvaccinated breeders. In addition, the mean load of culture-positive samples was lower in broilers from vaccinated breeders by 0.30 log most probable number per sample (95% confidence interval of -0.51, -0.09; P = 0.004), corresponding to a 50% decrease in Salmonella loads. In summary, vaccination of broiler breeder pullets increased humoral immunity in the breeders and reduced Salmonella prevalences and loads in their broiler progeny, but did not significantly decrease Salmonella in the breeder farm environment.

  11. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  12. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  13. Electronic properties of lithium titanate ceramic

    International Nuclear Information System (INIS)

    Padilla-Campos, Luis; Buljan, Antonio

    2001-01-01

    Research on tritium breeder material is fundamental to the development of deuterium-tritium type fusion reactors for producing clean, non contaminating, electrical energy, since only energy and helium, a harmless gas, are produced from the fusion reaction. Lithium titanate ceramic is one of the possible candidates for the tritium breeder material. This last material is thought to form part of the first wall of the nucleus of the reactor which will provide the necessary tritium for the fusion and will also serve as a shield. Lithium titanate has advantageous characteristics compared to other materials. Some of these are low activation under the irradiation of neutrons, good thermal stability, high density of lithium atoms and relatively fast tritium release at low temperatures. However, there are still several physical and chemical properties with respect to the tritium release mechanism and mechanical properties that have not been studied at all. This work presents a theoretical study of the electronic properties of lithium titanate ceramic and the corresponding tritiated material. Band calculations using the Extended H kel Tight-Binding approach were carried out. Results show that after substituting lithium for tritium atoms, the electronic states for the latter appear in the middle of prohibited band gap which it is an indication that the tritiated material should behave as a semiconductor, contrary to Li 2 TiO 3 which is a dielectric isolator. A study was also carried out to determine the energetically most favorable sites for the substitution of lithium for tritium atoms. Additionally, we analyzed possible pathways for the diffusion of a tritium atom within the crystalline structure of the Li 2 TiO 3

  14. Optimal reactor strategy for commercializing fast breeder reactors

    International Nuclear Information System (INIS)

    Yamaji, Kenji; Nagano, Koji

    1988-01-01

    In this paper, a fuel cycle optimization model developed for analyzing the condition of selecting fast breeder reactors in the optimal reactor strategy is described. By dividing the period of planning, 1966-2055, into nine ten-year periods, the model was formulated as a compact linear programming model. With the model, the best mix of reactor types as well as the optimal timing of reprocessing spent fuel from LWRs to minimize the total cost were found. The results of the analysis are summarized as follows. Fast breeder reactors could be introduced in the optimal strategy when they can economically compete with LWRs with 30 year storage of spent fuel. In order that fast breeder reactors monopolize the new reactor market after the achievement of their technical availability, their capital cost should be less than 0.9 times as much as that of LWRs. When a certain amount of reprocessing commitment is assumed, the condition of employing fast breeder reactors in the optimal strategy is mitigated. In the optimal strategy, reprocessing is done just to meet plutonium demand, and the storage of spent fuel is selected to adjust the mismatch of plutonium production and utilization. The price hike of uranium ore facilitates the commercial adoption of fast breeder reactors. (Kako, I.)

  15. Optimization of binary breeder reactor VI - An acceptable project of binary breeder reactor

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Dias, A.F.

    1986-05-01

    A binary breeder reactor that achieves desired characteristics reasonably well has been developed. Its design and characteristics are reported. Previous models showed several complications that result from introduction of 233 U/Th fuel in the core of a LMFBR, compared to purely Pu/U fueled ones. In this new model, the core is made larger to achieve higher breeding ratios and longer refueling intervals, the number of fuel assemblies is increased to accomodate a larger number of control rod assemblies required to compensate for reactivity losses and to control oscillations of the power densities, and, consequently, the fuel inventories are higher. High fuel burnups are achieved without too much complications in the refueling schedule and the power densities can be maintained reasonably constant over an operational cycle. Low sodium void reactivity reduce the potential for severe accidents and a reasonably efficient utilization of thorium can be realized. (Author) [pt

  16. Unusual occurrences in fast breeder test reactor

    International Nuclear Information System (INIS)

    Kapoor, R.P.; Srinivasan, G.; Ellappan, T.R.; Ramalingam, P.V.; Vasudevan, A.T.; Iyer, M.A.K.; Lee, S.M.; Bhoje, S.B.

    2000-01-01

    Fast Breeder Test Reactor (FBTR) is a 40 MWt/13.2 MWe sodium cooled mixed carbide fuelled reactor. Its main aim is to generate experience in the design, construction and operation of fast reactors including sodium systems and to serve as an irradiation facility for the development of fuel and structural materials for future fast reactors. It achieved first criticality in Oct 85 with Mark I core (70% PuC - 30% UC). Steam generator was put in service in Jan 93 and power was raised to 10.5 MWt in Dec 93. Turbine generator was synchronised to the grid in Jul 97. The indigenously developed mixed carbide fuel has achieved a burnup of 44,000 MW-d/t max at a linear heat rating of 320 W/cm max without any fuel clad failure. The commissioning and operation of sodium systems and components have been smooth and performance of major components, viz., sodium pumps, intermediate heat exchangers and once through sodium heated steam generators (SG) have been excellent. There have been three minor incidents of Na/NaK leaks during the past 14 years, which are described in the paper. There have been no incident of a tube leak in SG. However, three incidents of water leaks from water / steam headers have been detailed. The plant has encountered some unusual occurrences, which were critically analysed and remedial measures, in terms of system and procedural modifications, incorporated to prevent recurrence. This paper describes unusual occurrences of fuel handling incident of May 1987, main boiler feed pump seizure in Apr 1992, reactivity transients in Nov 1994 and Apr 1995, and malfunctioning of the core cover plate mechanism in Jul 1995. These incidents have resulted in long plant shutdowns. During the course of investigation, various theoretical and experimental studies were carried out for better understanding of the phenomena and several inspection techniques and tools were developed resulting in enriching the technology of sodium cooled reactors. FBTR has 36 neutronic and process

  17. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Barnes, S.

    1976-01-01

    Reference is made to liquid metal cooled fast breeder reactors of the 'pool' kind. In this type of reactor the irradiated fuel is lowered into a transfer rotor for removal to storage facilities, this rotor normally having provision for the temporary storage of 20 irradiated fuel assemblies, each within a stainless steel bucket. For insertion or withdrawal of a fuel assembly the rotor is rotated to bring the fuel assembly to a loading or discharging station. The irradiated fuel assembly is withdrawn from the rotor within its bucket and the total weight is approximately 1000 kg, which is lifted about 27 m. In the event of malfunction the combination falls back into the rotor with considerable force. In order to prevent damage to the rotor fracture pins are provided, and to prevent damage to the reactor vessel and other parts of the reactor structure deformable energy absorbing devices are provided. After a malfunction the fractured pins and the energy absorbing devices must be replaced by remote control means operated from outside the reactor vault - a complex operation. The object of the arrangement described is to provide improved energy absorbing means for fuel assemblies falling into a fuel transfer rotor. The fuel assemblies are supported in the rotor by elastic means during transfer to storage and a hydraulic dash pot is provided in at least one position below the rotor for absorbing the energy of a falling fuel assembly. It is preferable to provide dash pots immediately below a receiving station for irradiated fuel assemblies and immediately below a discharge station. Each bucket is carried in a container that is elastically supported in the transfer rotor on a helical coil compression spring, so that, in the event of a malfunction the container and bucket are returned to their normal operating position after the force of the falling load has been absorbed by the dash pot. The transfer rotor may also be provided with recoil springs to absorb the recoil energy

  18. Dynamics and control of molten-salt breeder reactor

    Directory of Open Access Journals (Sweden)

    Vikram Singh

    2017-08-01

    Full Text Available Preliminary results of the dynamic analysis of a two-fluid molten-salt breeder reactor (MSBR system are presented. Based on an earlier work on the preliminary dynamic model of the concept, the model presented here is nonlinear and has been revised to accurately reflect the design exemplified in ORNL-4528. A brief overview of the model followed by results from simulations performed to validate the model is presented. Simulations illustrate stable behavior of the reactor dynamics and temperature feedback effects to reactivity excursions. Stable and smooth changes at various nodal temperatures are also observed. Control strategies for molten-salt reactor operation are discussed, followed by an illustration of the open-loop load-following capability of the molten-salt breeder reactor system. It is observed that the molten-salt breeder reactor system exhibits “self-regulating” behavior, minimizing the need for external controller action for load-following maneuvers.

  19. Dynamics and control of molten-salt breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sing, Vikram; Lish, Matthew R.; Chvala, Ondrej; Upadhyaya, Belle R. [Dept. of Nuclear Engineering, University of Tennessee, Knoxville (United States)

    2017-08-15

    Preliminary results of the dynamic analysis of a two-fluid molten-salt breeder reactor (MSBR) system are presented. Based on an earlier work on the preliminary dynamic model of the concept, the model presented here is nonlinear and has been revised to accurately reflect the design exemplified in ORNL-4528. A brief overview of the model followed by results from simulations performed to validate the model is presented. Simulations illustrate stable behavior of the reactor dynamics and temperature feedback effects to reactivity excursions. Stable and smooth changes at various nodal temperatures are also observed. Control strategies for molten-salt reactor operation are discussed, followed by an illustration of the open-loop load-following capability of the molten-salt breeder reactor system. It is observed that the molten-salt breeder reactor system exhibits “self-regulating” behavior, minimizing the need for external controller action for load-following maneuvers.

  20. Light water breeder reactor using a uranium-plutonium cycle

    International Nuclear Information System (INIS)

    Radkowsky, A.; Chen, R.

    1990-01-01

    This patent describes a light water receptor (LWR) for breeding fissile material using a uranium-plutonium cycle. It comprises: a prebreeder section having plutonium fuel containing a Pu-241 component, the prebreeder section being operable to produce enriched plutonium having an increased Pu-241 component; and a breeder section for receiving the enriched plutonium from the prebreeder section, the breeder section being operable for breeding fissile material from the enriched plutonium fuel. This patent describes a method of operating a light water nuclear reactor (LWR) for breeding fissile material using a uranium-plutonium cycle. It comprises: operating the prebreeder to produce enriched plutonium fuel having an increased Pu-241 component; fueling a breeder section with the enriched plutonium fuel to breed the fissile material

  1. The uranium market and its relevance for the fast breeder

    International Nuclear Information System (INIS)

    Marth, W.

    1982-01-01

    Uranium is a very particular element: the technology of light water nuclear power plants is based on its existence, and the doubts with respect to the long-term availability form the basis for the development of fast breeder reactor. At the same time uranium is a merchandise obedient to the laws of the market, which are based on offer and demand, which are however also affected by influences outside the market, particularly in the last time. Here an attempt is made to describe these peculiarities of the uranium market for the past, the presence and the visual future, and to give some insight into the economic field around the breeder reactor, as the uranium market is of great relevance for the introduction of the breeder as an electric power producing system. (orig.) [de

  2. Environmental assessment for Breeder Reprocessing Engineering Test (BRET): Revision 1

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1989-03-01

    This Environmental Assessment (EA) is for the proposed installation and operation of an integrated breeder fuel reprocessing test system in the shielded cells of the Fuels and Materials Examination Facility (FMEF) at Hanford and the associated modifications to the FMEF to accommodate BRET. These modifications would begin in FY-1986 subject to Congressional authorization. Hot operations would be scheduled to start in the early 1990's. The system, called the Breeder Reprocessing Engineering Test (BRET), is being designed to provide a test capability for developing the demonstrating fuel reprocessing, remote maintenance, and safeguards technologies for breeder reactor fuels. This EA describes (1) the action being proposed, (2) the existing environment which would be affected, (3) the potential environmental impacts from normal operations and severe accidents from the proposed action, (4) potential conflicts with federal, state, regional, and/or local plans for the area, and (5) environmental implications of alternatives considered to the proposed action. 41 refs., 10 figs., 31 tabs

  3. Feeding broiler breeders to improve their welfare whilst maintaining productivity

    DEFF Research Database (Denmark)

    Steenfeldt, Sanna; Nielsen, Birte Lindstrøm

    of their litter may have affected their thermoregulation. This experiment indicates that high fibre diets can alleviate the feeling of hunger currently experienced by broiler breeders, and a high ratio of insoluble fibre can reduce stereotypies and may improve the well-being of the birds.......In the present experiment different types of fibre sources were used in high fibre diets to increase feeding quantity whilst limiting the growth of broiler breeders to industry recommended levels. Using scatter feeding, three diets (CON, commercial control diet; INF, high insoluble fibre content......; and SOF, high soluble fibre content) were each fed to 10 groups of 12 broiler breeder chickens (age: 2 to 15 weeks). Similar growth rates were obtained on different quantities of food (e.g. food allocation in week 14: approx. 80, 100, and 130 g/d for CON, INF, and SOF, respectively) with all birds...

  4. Comparative economics of the breeder and light water reactor

    International Nuclear Information System (INIS)

    Chow, B.G.

    1980-01-01

    The issue of breeder timing is studied in this article via a breakeven analysis in which the key driving variables are conveniently segregated into two groups, with uranium price providing the linkage. In one group, the technical and cost characteristics of reactors and fuel cycles determine the uranium breakeven price. In the other group, nuclear demand projections and the uranium supply schedule determine the time paths of uranium price for a given composition of reactor types. The author finds that, even if proliferation risk is ignored, the breeder is not economically competitive with a 30%-improved once-through light water reactor before the year 2030 in the USA and in the world outside communist areas as a whole in 90% of the cases examined. In the exceptional cases, the penalty of delaying commercial breeder introduction to 2030 is small and well within the noise level of long-term energy planning. (author)

  5. R + D work on gas-cooled breeder development

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Jacobs, G.; Meyer, L.; Rehme, K.; Schumacher, G.; Wilhelm, D.

    1978-01-01

    The development work for the gas-cooled breeder in the Karlsruhe Nuclear Research Center may be assigned to two different groups: a) Investigations on fuel elements. b) Studies concerning the safety of gas-cooled fast breeder reactors. To the first group there belongs the work related to the: - heat transfer between fuel elements and coolant gas, - influence of increased content of water vapor in helium or the fuel rods. The second group concerns: - establishing a computer code for transient calculations in the primary and secondary circuit of a gas-cooled fast breeder reactor, - steam reactivity coefficients, - the core destruction phase of hypothetical accidents, - the core-catcher using borax. (orig./RW) [de

  6. On the history of the Fast Breeder Project

    International Nuclear Information System (INIS)

    Marth, W.

    1981-07-01

    The evolution of the Fast Breeder Project from its beginning at the Karlsruhe Nuclear Research Center to the present cooperation of various organisations especially in the Federal Republic of Germany, the Netherlands, Belgium and France is described in its historical context. Where as the emphasis was on physical studies of fast neutron cores in the early phase, technological and safety problems gained importance in the subsequent development. The increasing collaboration with industry and the support by government funds resulted in the design and start of construction of the prototype SNR 300. The objectives and the reasoning underlying important intermediate decisions are described. In the meantime, licensing and funding problems have become decisive for the project schedule. The present report also gives an account of the international and national political aspects which influence the breeder reactor development. In the annex all fast breeder publications of the Karlsruhe Nuclear Research Center are listed. (orig.) [de

  7. Isotope exchange reaction on solid breeder materials

    International Nuclear Information System (INIS)

    Baba, A.; Nishikawa, M.; Eguchi, T.; Kawagoe, T.

    2000-01-01

    Lithium ceramic materials such as Li 2 O, LiAlO 2 , Li 2 ZrO 3 , Li 2 TiO 3 and Li 4 SiO 4 are considered to be as candidate for the tritium breeding material in a deuterium-tritium (D-T) fusion reactor. In the recent blanket designs, helium gas with hydrogen or deuterium is planned to be used as the blanket purge gas to reduce tritium inventory and promote tritium release from the breeding material. In addition, the rate of isotope exchange reaction between hydrogen isotopes in the purge gas and tritium on the surface of the breeding material is necessary to analyze the tritium release behavior from the breeding materials. However, the rate of isotope exchange reactions between hydrogen isotopes in the purge gas and tritium on the surface of those materials has not been quantified until recently. Recently, the present authors quantified the rate of isotope exchange reaction on Li 2 O and Li 2 ZrO 3 . The overall mass transfer coefficients representing the isotope exchange reaction between H 2 and D 2 O on breeding materials or the same between D 2 and H 2 O are experimentally obtained in this study. Comparison to isotope exchange reaction rates on various breeding materials is also performed in this study. Discussions about the effects of temperature, concentration of hydrogen in the purge gas or flow rate of the purge gas on the conversion of tritiated water to tritium gas are also performed

  8. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  9. Ceramic Parts for Turbines

    Science.gov (United States)

    Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry

    1987-01-01

    Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.

  10. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  11. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  12. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  13. Uranium alloys for using in fast breeder reactors

    International Nuclear Information System (INIS)

    Moura Neto, C.; Pires, O.S.

    1988-08-01

    The U-Zr and U-Ti alloys are studied, given emphasis to the high solute solubility in gamma phase of uranium, which is suitable for using as metal fuel in fast breeder reactors. The alloys were prepared in electron beam furnaces and submitted to X-ray diffraction, X-ray fluorescence, microhardness, optical metallography, and chemical analysis. The obtained values are good agreements with the literature data. The study shows that the U-Zr presents better characteristics than the U-Ti for using as fuel in fast breeder reactors. (M.C.K.) [pt

  14. Inherent safe fast breeder reactors and actinide burners, metallic fuel

    International Nuclear Information System (INIS)

    Dorner, S.; Schumacher, G.

    1991-04-01

    Nuclear power without breeder strategy uses the possibilities for the energy supply only to a small extend compared to the possibilities of fast breeder reactors, which offer an energy supply for thousands of years. Moreover, a fast neutron device offers the opportunity to run an actinide-burner that could improve the situation of waste management. Within this concept metallic fuel could play a key role. The present report shows some important aspects of the concept like the pyrometallic reprocessing, the behaviour of metallic fuel during a core meltdown accident and others. The report should contribute to the discussion of these problems and initialize further work

  15. Modeling delayed neutron monitoring systems for fast breeder reactors

    International Nuclear Information System (INIS)

    Bunch, W.L.; Tang, E.L.

    1983-10-01

    The purpose of the present work was to develop a general expression relating the count rate of a delayed neutron monitoring system to the introduction rate of fission fragments into the sodium coolant of a fast breeder reactor. Most fast breeder reactors include a system for detecting the presence of breached fuel that permits contact between the sodium coolant and the mixed oxide fuel. These systems monitor for the presence of fission fragments in the sodium that emit delayed neutrons. For operational reasons, the goal is to relate the count rate of the delayed neutron monitor to the condition of the breach in order that appropriate action might be taken

  16. Secure Automated Fabrication: an overview of remote breeder fuel fabrication

    International Nuclear Information System (INIS)

    Nyman, D.H.; Graham, R.A.

    1983-10-01

    The Secure Automated Fabrication (SAF) line is an automated, remotely controlled breeder fuel pin fabrication process which is to be installed in the Fuels and Materials Examination Facility (FMEF). The FMEF is presently under construction at Hanford and is scheduled for completion in 1984. The SAF line is scheduled for startup in 1987 and will produce mixed uranium-plutonium fuel pins for the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor Plant (CRBRP). The fabrication line and support systems are described

  17. Prevalence of Campylobacter jejuni in poultry breeder flocks

    Directory of Open Access Journals (Sweden)

    Ludovico Dipineto

    2010-01-01

    Full Text Available The aim of this work is to present the preliminary results of a study about the prevalence of Campylobacter jejuni in poultry breeder flocks. It was examined three different breeder flocks of Bojano in Molise region. A total of 360 cloacal swabs and 80 enviromental swabs was collected. Of the 3 flocks studied, 6.9% tested were positive for Campylobacter spp. The most-prevalent isolated species is C. jejuni (8.2%. Only 3 of the 360 cloacal swabs samples examined were associated with C. coli. The environmental swabs resulted negative. This results confirms again that poultry is a reservoir of this germ.

  18. Simulation and design of an electron beam ion source charge breeder for the californium rare isotope breeder upgrade

    Directory of Open Access Journals (Sweden)

    Clayton Dickerson

    2013-02-01

    Full Text Available An electron beam ion source (EBIS will be constructed and used to charge breed ions from the californium rare isotope breeder upgrade (CARIBU for postacceleration into the Argonne tandem linear accelerator system (ATLAS. Simulations of the EBIS charge breeder performance and the related ion transport systems are reported. Propagation of the electron beam through the EBIS was verified, and the anticipated incident power density within the electron collector was identified. The full normalized acceptance of the charge breeder with a 2 A electron beam, 0.024π  mm mrad for nominal operating parameters, was determined by simulating ion injection into the EBIS. The optics of the ion transport lines were carefully optimized to achieve well-matched ion injection, to minimize emittance growth of the injected and extracted ion beams, and to enable adequate testing of the charge bred ions prior to installation in ATLAS.

  19. U.S. reference paper on national decisions on breeder development and deployment

    International Nuclear Information System (INIS)

    1978-10-01

    Factors involved in making national decisions on the deployment of breeder reactor systems are identified in terms of a nation's potential for electrification, capital resources, the available industrial and manpower infrastructure and importance attached to energy independence and the degree to which a breeder program can help realize this objective in the time scale of interest. The specific factors analysed are: the high capital cost of the breeder and the one-time transition costs to bring the breeder to maturity the high breeder research, development and demonstration costs, the impact of discount rate, and the fuel cycle costs, e.g. indigeneous facilities or purchase of services. A principal conclusion of this paper is that nations may find it more economical to continue to deploy LWRs for a number of years rather than to consider the breeder option because of the initial high breeder capital cost and high breeder R and D costs

  20. Tritium permeation through helium-heated steam generators of ceramic breeder blankets for DEMO

    International Nuclear Information System (INIS)

    Fuetterer, M.A.; Raepsaet, X.; Proust, E.

    1994-01-01

    The specifications of permeation barriers, tritium recovery process maintaining a very low tritium activity in the coolant, and control of the coolant chemistry, required the evaluation of the tritium losses through the steam generators and include the definition of its operating conditions by thermodynamic cycle calculations and its thermal-hydraulic design. For both tasks specific computer tools were developed. The obtained geometry, surface area, and temperature profiles along the heat exchanger tubes were then used to estimate the daily tritium permeation into the steam cycle. Steam oxidized Incoloy 800 austenitic stainless steel was identified as the best suited existing material; in nominal steady-state operation, the tritium escape into the steam cycle could be restricted to less than 10 Ci/d. Tritium permeation during temperature and pressure transients in the steam generator (destruction and possible self-healing of the permeation barrier) is identified to bear a large tritium release potential. Solutions are proposed. (from authors). 4 figs., 1 tab

  1. Tritium permeation through helium-heated steam generators of ceramic breeder blankets for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Fuetterer, M A; Raepsaet, X; Proust, E

    1994-12-31

    The specifications of permeation barriers, tritium recovery process maintaining a very low tritium activity in the coolant, and control of the coolant chemistry, required the evaluation of the tritium losses through the steam generators and include the definition of its operating conditions by thermodynamic cycle calculations and its thermal-hydraulic design. For both tasks specific computer tools were developed. The obtained geometry, surface area, and temperature profiles along the heat exchanger tubes were then used to estimate the daily tritium permeation into the steam cycle. Steam oxidized Incoloy 800 austenitic stainless steel was identified as the best suited existing material; in nominal steady-state operation, the tritium escape into the steam cycle could be restricted to less than 10 Ci/d. Tritium permeation during temperature and pressure transients in the steam generator (destruction and possible self-healing of the permeation barrier) is identified to bear a large tritium release potential. Solutions are proposed. (from authors). 4 figs., 1 tab.

  2. Status and prospects of thermal breeders and their effect on fuel utilization

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The report evaluates the extent to which thermal breeders and near-breeders might complement fast breeders or serve as an alternative in solving the long-term nuclear fuel supply problem. It considers in a general way issues such as proliferation, safety, environmental impacts, economics, power plant availability and fuel cycle versatility in order to determine whether thermal breeder reactors offer advantages or disadvantages with respect to such issues.

  3. Status and prospects of thermal breeders and their effect on fuel utilization

    International Nuclear Information System (INIS)

    1979-01-01

    The report evaluates the extent to which thermal breeders and near-breeders might complement fast breeders or serve as an alternative in solving the long-term nuclear fuel supply problem. It considers in a general way issues such as proliferation, safety, environmental impacts, economics, power plant availability and fuel cycle versatility in order to determine whether thermal breeder reactors offer advantages or disadvantages with respect to such issues

  4. Fast breeder fuel cycle, worldwide and French prospects

    International Nuclear Information System (INIS)

    Rapin, M.

    1982-01-01

    A review is given of fast breeder fuel cycle development from both the technological and the economical points of view. LMFBR fuel fabrication, reactor operation, spent fuel storage and transportation, reprocessing and fuel cycle economics are topics considered. (U.K.)

  5. Feeding broiler breeder flocks in relation to bird welfare aspects

    NARCIS (Netherlands)

    Jong, de I.C.; Krimpen, van M.M.

    2011-01-01

    To ensure health and reproductive capacity of the birds, broiler breeders are fed restricted during the rearing period, and to a lesser extent also during the production period. Although restricted feeding improves health and thereby bird welfare, on the other hand the birds are chronically hungry

  6. Impact of nutrition on welfare aspects of broiler breeder flocks

    NARCIS (Netherlands)

    Krimpen, van M.M.; Jong, de I.C.

    2014-01-01

    To ensure health and reproductive performance, broiler breeders are feed restricted during the rearing period and, to a lesser extent, during the production period. Although restricted feeding improves health and bird welfare, on the other hand the birds are chronically hungry and suffer from

  7. Levels of safety satisfactory for commercialization of the breeder

    International Nuclear Information System (INIS)

    Ferguson, R.L.

    1979-01-01

    A brief discussion is presented of the Department of Energy's LMFBR safety program and the safety levels which DOE believes would be satisfactory for the commercialization of the breeder are indicated. Some observations are offered on the Three Mile Island accident and some of its implications are discussed for the LMFBR program

  8. Utilization of large electromagnetic pumps in the fast breeder reactors

    International Nuclear Information System (INIS)

    Deverge, C.; Lefrere, J.P.; Peturaud, P.; Sauvage, M.

    1984-04-01

    After an overview concerning the induction annular electromagnetic pumps and the dimensioning methods usually utilized, development of these components for a fast breeder integrated reactor is considered: - utilization of cooled EMP in the intermediate circuit, - utilization of immersed pumps, coupled with the intermediate exchanger, for the primary pumping; dimensioning, energetic aspects, and effects on the power plant geometrical configurations [fr

  9. Multiple recycling of fuel in prototype fast breeder reactor

    Indian Academy of Sciences (India)

    In the FBR closed fuel cycle, possibility of multi-recycle has been recognized. In the present study, Pu-239 equivalence approach is used to demonstrate the feasibility of achieving near constant input inventory of Pu and near stable Pu isotopic composition after a few recycles of the same fuel of the prototype fast breeder ...

  10. Symposium on key questions about the fast breeder reactor

    International Nuclear Information System (INIS)

    1975-01-01

    Except for several introductions on various aspects of the fast breeder reactor development this paper contains the full texts of the discussions held in the sub-groups panels on resp. technical matters, environment and health, society, politics and economics. The main issues of each discussion are summarized

  11. Conceptual design study for a mirror fusion breeder

    International Nuclear Information System (INIS)

    Huang Jinhua; Deng Boquan; Li Guiqing

    1986-01-01

    A mirror fusion breeder, CHD, has been designed for providing plenty of nuclear fuel for light water reactors to meet the needs for rapid development of nuclear power in the first half of next century. The breeder is able to support the nuclear fuel needs for more than 10 LWRs of equal scale in power with fuel enriched directly in CHD without reprocessing. Measures are taken to flatten the power density distribution in the blanket so that fission is suppressed in the region close to the plasma, and by this way fuel production is enhanced for this direct enriched fusion breeder. In order to reduce the MHD pressure drop, LiPb flows in the blanket axially. Though the tritium inventory in the reactor is very low, special material and design have to be developed to reduce the permeation of tritium through the coolant pipes. The cost of electricity from the system, consisting of 11 LWR plants and one fusion breeder is predicted to be 1.05 times of that from a traditional LWR plant. This figure is insensitive both to the cost of CHD and its support ratio

  12. Environmental Enrichment for Broiler Breeders: An Undeveloped Field

    NARCIS (Netherlands)

    Riber, Anja B.; Jong, de Ingrid; Weerd, van de Heleen A.; Steenfeldt, Sanna

    2017-01-01

    Welfare problems, such as hunger, frustration, aggression, and abnormal sexual behavior, are commonly found in broiler breeder production. To prevent or reduce these welfare problems, it has been suggested to provide stimulating enriched environments. We review the effect of the different types of

  13. Technology of the production of breeder fuel elements

    International Nuclear Information System (INIS)

    Funke, P.

    1976-01-01

    A survey is presented of the fabrication of oxide and carbide fuels and of the fuel rod for fast breeders (KNK, SNR-300). The advantages of the chosen methods are explained. The main points of development concerning the oxide fuel rod are gone into. The process sequence for plutonium oxide and plutonium carbide processing is presented in a flow chart. (HR) [de

  14. The German fast breeder programme and fuel cycle activities

    International Nuclear Information System (INIS)

    Marth, W.; Lahr, H.

    1982-01-01

    After a review of the German experimental power plant KNK II, the present status of the prototype SNR 300 project is described, including its political and licensing aspects. Breeder cooperation with France is gaining momentum. Research and development in core physics and fuel development and implications for the reprocessing of spent fuel are discussed. (author)

  15. Methodology for estimating sodium aerosol concentrations during breeder reactor fires

    International Nuclear Information System (INIS)

    Fields, D.E.; Miller, C.W.

    1985-01-01

    We have devised and applied a methodology for estimating the concentration of aerosols released at building surfaces and monitored at other building surface points. We have used this methodology to make calculations that suggest, for one air-cooled breeder reactor design, cooling will not be compromised by severe liquid-metal fires

  16. Utilisation of synthetic amino acids by broiler breeder hens | Nonis ...

    African Journals Online (AJOL)

    This study was conducted to examine the response of broiler breeder hens to feeds supplemented with synthetic lysine and methionine when fed once or twice daily during peak production. Replacing intact protein with increasing amounts of free lysine and methionine, up to 2.3 g/kg feed, had no effect on feed intake, ...

  17. Core catcher cooling for a gas-cooled fast breeder

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Schretzmann, K.

    1976-01-01

    Water, molten salts, and liquid metals are under discussion as coolants for the core catcher of a gas-cooled fast breeder. The authors state that there is still no technically mature method of cooling a core melt. However, the investigations carried out so far suggest that there is a solution to this problem. (RW/AK) [de

  18. the contrasting attitudes of plant breeders and molecular biologists ...

    Indian Academy of Sciences (India)

    Socialization into disciplinary cultures, organizational factors and individual anxieties seem to inhibit inter-disciplinary collaboration. The majority of rice breeders and a small group of molecular biologists emphasize the relative merits of marker-assisted selection (MAS) in the near term vis-à-vis the currently controversial ...

  19. Semen bacterial flora of Rhode Island Breeder cocks in Zaria ...

    African Journals Online (AJOL)

    The semen used in this study was collected from 77 Rhode Island Breeder cocks reared in battery cages under intensive management from a private farm in Zaria, Kaduna State, Nigeria using the back massage procedure, 27 of the 77 semen samples (35.1%) contained bacterial isolates. None of the samples grew fungi.

  20. Clinch River Breeder Reactor Plant Project: construction schedule

    International Nuclear Information System (INIS)

    Purcell, W.J.; Martin, E.M.; Shivley, J.M.

    1982-01-01

    The construction schedule for the Clinch River Breeder Reactor Plant and its evolution are described. The initial schedule basis, changes necessitated by the evaluation of the overall plant design, and constructability improvements that have been effected to assure adherence to the schedule are presented. The schedule structure and hierarchy are discussed, as are tools used to define, develop, and evaluate the schedule

  1. Fission-suppressed hybrid reactor: the fusion breeder

    International Nuclear Information System (INIS)

    Moir, R.W.; Lee, J.D.; Coops, M.S.

    1982-12-01

    Results of a conceptual design study of a 233 U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed

  2. Rough passage in USA for first breeder reactor

    International Nuclear Information System (INIS)

    Norman, C.

    1975-01-01

    The present status of the liquid metal fast breeder reactor (LMFBR) programme in the USA is reviewed, including administrative and technical problems. This programme is stated to be the highest priority energy research and development project supported by public funds, estimated at present to cost more than 10,000 million dollars, but it is beset by difficulties and criticism. (U.K.)

  3. DeBeNe Test Facilities for Fast Breeder Development

    International Nuclear Information System (INIS)

    Storz, R.

    1980-10-01

    This report gives an overview and a short description of the test facilities constructed and operated within the collaboration for fast breeder development in Germany, Belgium and the Netherlands. The facilities are grouped into Sodium Loops (Large Facilities and Laboratory Loops), Special Equipment including Hot Cells and Reprocessing, Test Facilities without Sodium, Zero Power Facilities and In-pile Loops including Irradiation Facilities

  4. Towards commercial fast breeder reactors the first 1200 MWe unit

    International Nuclear Information System (INIS)

    Banal, M.; Carle, R.

    The public probably thinks of these fast breeder reactors in terms of their rising unit capacity: RAPSODIE 20 MW (thermal), raised to 40 MW, PHENIX 25 MWe, and now 1200 MWe. However, the purposes of the project and the framework of construction have been fundamentally different in each case. Design parameters and the development program of the LMFBR are presented. (auth)

  5. Broiler breeders should not be reared on long photoperiods | Lewis ...

    African Journals Online (AJOL)

    This trial compared the responses of four broiler breeder genotypes to a typical lighting programme advocated for birds in lightproof housing with the provision of 14-h photoperiods to 20 weeks and 16 h in lay. The long-day rearing resulted in a 26-d delay in sexual maturation, seven fewer eggs to 60 weeks, a 2.5-g ...

  6. Status of fast breeder reactor development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Horton, K [U.S. Department of Energy, Washington, DC (United States)

    1981-05-01

    The energy policy of the United States is aimed at shifting as rapidly as practicable from an oil dependent economy to one that relies heavily on other fuels and energy sources. Nuclear power Is now and is expected to continue to be an important factor in achieving this goal. If nuclear power is to contribute to a solution of future energy needs, demonstration of the breeder reactor as a viable source of essentially inexhaustible energy supply is essential. The US DOE program for development of the fast breeder reactor has witnessed some notable events in the past year. Foremost among these Is the successful operational testing of the Fast Flux Test Facility (FFTF), located at.the Hanford Engineering Development Laboratory. The reactor reached full design power of 400 MW(t) on December 21, 1980, and has performed remarkably close to design specifications. Design of the Clinch River Breeder Reactor Plant (CRBRP), a 375 MW(e) LMFBR, is now over 80 percent complete. About $530 million in components have been ordered; component deliveries total approximately $124 million; work-in-process totals another $204 million. Construction of the plant, however, has been suspended since 1977. With the concurrence of the U.S. Congress and approvals from the appropriate authorities work on the safety review and site clearing for construction can resume. The Conceptual Design Study for a large, 1000 MW(e) LMFBR Large Developmental Plant was recently completed on a schedule commensurate with submission of a full report to the Congress at the end of March, 1981. This report is the culmination of a study which began in October, 1978 and involved contributions from U.S. reactor manufacturers and US DOE laboratories. The US DOE is carrying forward a comprehensive technology development program. This effort provides direct support to the FFTF and CRBRP projects and to the LDP. It also supports technology development which is generic to the overall LMFBR program. Funding for breeder

  7. Status of fast breeder reactor development in the United States

    International Nuclear Information System (INIS)

    Horton, K.

    1981-01-01

    The energy policy of the United States is aimed at shifting as rapidly as practicable from an oil dependent economy to one that relies heavily on other fuels and energy sources. Nuclear power Is now and is expected to continue to be an important factor in achieving this goal. If nuclear power is to contribute to a solution of future energy needs, demonstration of the breeder reactor as a viable source of essentially inexhaustible energy supply is essential. The US DOE program for development of the fast breeder reactor has witnessed some notable events in the past year. Foremost among these Is the successful operational testing of the Fast Flux Test Facility (FFTF), located at.the Hanford Engineering Development Laboratory. The reactor reached full design power of 400 MW(t) on December 21, 1980, and has performed remarkably close to design specifications. Design of the Clinch River Breeder Reactor Plant (CRBRP), a 375 MW(e) LMFBR, is now over 80 percent complete. About $530 million in components have been ordered; component deliveries total approximately $124 million; work-in-process totals another $204 million. Construction of the plant, however, has been suspended since 1977. With the concurrence of the U.S. Congress and approvals from the appropriate authorities work on the safety review and site clearing for construction can resume. The Conceptual Design Study for a large, 1000 MW(e) LMFBR Large Developmental Plant was recently completed on a schedule commensurate with submission of a full report to the Congress at the end of March, 1981. This report is the culmination of a study which began in October, 1978 and involved contributions from U.S. reactor manufacturers and US DOE laboratories. The US DOE is carrying forward a comprehensive technology development program. This effort provides direct support to the FFTF and CRBRP projects and to the LDP. It also supports technology development which is generic to the overall LMFBR program. Funding for breeder

  8. Linear accelerator-breeder (LAB): a preliminary analysis and proposal

    International Nuclear Information System (INIS)

    1976-01-01

    The development and demonstration of a Linear Accelerator-Breeder (LAB) is proposed. This would be a machine which would use a powerful linear accelerator to produce an intense beam of protons or deuterons impinging on a target of a heavy element, to produce spallation neutrons. These neutrons would in turn be absorbed in fertile 238 U or 232 Th to produce fissile 239 Pu or 233 U. Though a Linear Accelerator-Breeder is not visualized as competitive to a fast breeder such as the LMFBR, it would offer definite benefits in improved flexibility of options, and it could probably be developed more rapidly than the LMFBR if fuel cycle problems made this desirable. It is estimated that at a beam power of 300 MW a Linear Accelerator-Breeder could produce about 1100 kg/year of fissile 239 Pu or 233 U, which would be adequate to fuel from 2,650 to 15,000 MW(e) of fission reactor capacity depending on the fuel cycle used. A two-year design study is proposed, and various cost estimates are presented. The concept of the Linear Accelerator-Breeder is not new, having been the basis for a major AEC project (MTA) a number of years ago. It has also been pursued in Canada starting from the proposal for an Intense Neutron Generator (ING) several years ago. The technical basis for a reasonable design has only recently been achieved. The concept offers an opportunity to fill an important gap that may develop between the short-term and long-term energy options for energy security of the nation

  9. Development of hi-tech ceramics fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Park, Ji Yeon; Kim, Sun Jai; Hwan, Jung Choong; Oh, Seok Jin

    1997-07-01

    There are some ceramic materials being used in the nuclear energy such as nuclear fuel, coolant pump seals, tritium breeder materials, a high temperature absorber, and the solid electrolyte for recovering tritium. In addition, lots of researches recently have been conducted on the development of highly functional ceramics such as highly efficient shielding materials, functional graded materials and radioactive isotopes-separating materials. Therefore, one of the objectives of this project is to develop ultra-fine and pure powder manufacturing technology. Tritium breeder materials, LiAlO{sub 2}, Li{sub 2}ZrO{sub 3} and Li{sub 2}TiO{sub 3} were made with a combustion process of mixed fuels that is developed indigenously in this project. Additionally, this study also focused on the development of promising low temperature electrolytes of ceria. By using the ceria powder made by the combustion process of GNP was investigated their sinterability and the electrolytic characteristics. (author). 167 refs., 74 tabs., 91 figs

  10. Pebble fabrication of super advanced tritium breeders using a solid solution of Li2+xTiO3+y with Li2ZrO3

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hoshino

    2016-12-01

    Full Text Available Lithium titanate with excess lithium (Li2+xTiO3+y is one of the most promising candidates among advanced tritium breeders for demonstration power plant reactors because of its good tritium release characteristics. However, the tritium breeding ratio (TBR of Li2+xTiO3+y is smaller than that of e.g., Li2O or Li8TiO6 because of its lower Li density. Therefore, new Li-containing ceramic composites with both high stability and high Li density have been developed. Thus, this study focused on the development of a solid solution with a new characteristic. The solid-solution pebbles of Li2+xTiO3+y with Li2ZrO3 (Li2+x(Ti,ZrO3+y, designated as LTZO, were fabricated by an emulsion method. The X-ray diffraction patterns of sintered LTZO pebbles are approximately the same as those of Li2+xTiO3+y pebbles, and no peaks attributable to Li2ZrO3 are observed. These results demonstrate that LTZO pebbles are not a two-phase material but rather a solid solution. Furthermore, LTZO pebbles were easily sintered under air. Thus, the LTZO solid solution is a candidate breeder material for super advanced (SA tritium breeders.

  11. Materials data base and design equations for the UCLA solid breeder blanket

    International Nuclear Information System (INIS)

    Sharafat, S.; Amodeo, R.; Ghoniem, N.M.

    1986-01-01

    The need for a complete and coherent material data base for fusion reactor systems has been an important issue for some time now. Since the choices for materials used in fusion reactors are becoming more apparent, it is important to be able to quickly access this data to facilitate reactor design. The philosophy of a data base is one of expansion and modification. This will lead to a constantly growing collection of most recently acquired information. Based on this philosophy special care has been given to the structure, the accessibility and ease of modification. The data base is developed primarily for use on Personal Computers (PC's). In Section 10.2. materials and properties investigated for this blanket study are listed. Section 10.3. is a list of phenomenological equations and mathematical fits for all materials and properties considered. Section 10.4. describes the authors efforts to develop a swelling equations based on the few experimental data points available for breeder materials. In Section 10.5. the sintering phenomena for ceramics is investigated

  12. Analyses of fine paste ceramics

    International Nuclear Information System (INIS)

    Sabloff, J.A.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics

  13. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 2. Science and Technology of Ceramics - Advanced Ceramics: Structural Ceramics and Glasses. Sheela K Ramasesha. Series Article Volume 5 Issue 2 February 2000 pp 4-11 ...

  14. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  15. [Ceramic inlays and onlays].

    Science.gov (United States)

    van Pelt, A W; de Kloet, H J; van der Kuy, P

    1996-11-01

    Large direct composite restorations can induce shrinkage related postoperative sensitivity. Indirect resin-bonded (tooth colored) restorations may perhaps prevent these complaints. Indirect bonded ceramics are especially attractive because of their biocompatibility and esthetic performance. Several procedures and techniques are currently available for the fabrication of ceramic restorations: firing, casting, heat-pressing and milling. In this article the different systems are described. Advantages, disadvantages and clinical performance of ceramic inlays are compared and discussed.

  16. Ceramic Electron Multiplier

    International Nuclear Information System (INIS)

    Comby, G.

    1996-01-01

    The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)

  17. Displacive Transformation in Ceramics

    Science.gov (United States)

    1994-02-28

    PZT ), ceramics have attracted natural abundance. much attention for use in nonvolatile semiconductor mem- We attribute the observed spectra in Fig. I to...near a crack tip in piezoelectric ceramics of lead zirconate titanate ( PZT ) and barium titanate. They reasoned that the poling of ferroelectric... Texture in Ferroelastic Tetragonal Zirconia," J. Am. Ceram . Soc., 73 (1990) no. 6: 1777-1779. 27. J. F. Jue and A. Virkar, "Fabrication, Microstructural

  18. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fareed, Ali [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States); Craig, Phillip A. [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States)

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  19. Piezo-electrostrictive ceramics

    International Nuclear Information System (INIS)

    Kim, Ho Gi; Shin, Byeong Cheol

    1991-09-01

    This book deals with principle and the case of application of piezo-electrostrictive ceramics, which includes definition of piezoelectric materials and production and development of piezoelectric materials, coexistence of Pb(zr, Ti)O 3 ceramics on cause of coexistence in MPB PZT ceramics, electrostrictive effect of oxide type perovskite, practical piezo-electrostrictive materials, and breaking strength, evaluation technique of piezoelectric characteristic, and piezoelectric accelerometer sensor like printer head, ink jet and piezoelectric relay.

  20. The nuclear question at the start of the '80s: the breeder reactor

    International Nuclear Information System (INIS)

    Owen, R.; Svensson, B.

    1980-01-01

    The four newspaper articles and the letter cover the following matters: general introduction about breeder reactors and the situation in Swedish politics; visit to Dounreay to discuss breeder reactors (breeding, safety, plutonium production, radiation protection); PuO 2 -UO 2 mixed fuel; description of breeder reactors; efficiency in use of U-235; DFR and PFR; breeder reactors in Swedish politics (arguments for and against nuclear power in general, breeder reactors in particular); discussion of the future of nuclear power in Sweden. (U.K.)

  1. Symbiotic molten-salt systems coupled with accelerator molten-salt breeder (AMSB) or inertial-confined fusion hybrid molten-salt breeder (IHMSB) and their comparison

    International Nuclear Information System (INIS)

    Furukawa, K.

    1984-01-01

    Two types of breeder systems are proposed. One is the combined system of Accelerator Molten-Salt Breeder (AMSB) and Molten-Salt Converter Reactor (MSCR), and the other is the combined system of Inertial-confined Fusion Hybrid Molten-Salt Breeder (IHMSB) and modified MSCR. Both apply the molten-fluorides and have technically deep relations. AMSB would be much simpler and have already high technical feasibility. This will become economical the Th breeder system having a doubling time shorter than ten years and distributing any size of power stations MSCR. (orig.) [de

  2. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  3. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  4. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  5. Corrosion of Ceramic Materials

    Science.gov (United States)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  6. Lithium ceramics: sol-gel preparation and tritium release

    International Nuclear Information System (INIS)

    Renoult, O.

    1994-04-01

    Ceramics based on lithium aluminate (LiA1O 2 ), lithium zirconate (Li 2 ZrO 3 ) and lithium titanate (Li 2 TiO 3 ) are candidates as tritium breeder blanket materials for forthcoming nuclear fusion reactors. Lithium silico-aluminate Li 4+x A1 4-3x Si 2x O 8 (0 ≤ x ≤ 0,25) powders were synthetized from alkoxyde-hydroxyde sol-gel route. By direct sintering at 850-1100 deg C (without prior calcination), ceramics with controlled stoichiometry and homogenous microstructure were obtained. We have also prepared, using a comparable method, Li 2 Zr 1-x Ti x O 3 (x = 0, x = 0,1 et x = 1) materials. All these ceramics, with different microstructures and compositions, have been tested in out-of-reactor experiments. Concerning lithium aluminate microporous ceramics, the silicon substitution leads to a significant improvement of the tritrium release. Classical models taking into account independent surface mechanisms are not able to describe correctly the observed tritium release kinetics. We show, using a simple model, that the release kinetics is in fact limited by an intergranular diffusion followed by a desorption. The delay in tritium release, which occurs when the ceramic compacity increases, is explained in terms of an enhancement of the ionic T + diffusion path length. The energy required for desorption includes a leading term independent of hydrogen contained in the sweep gas. This term is attributed to the limiting recombination step of T + in molecular species HTO. For similar microstructures, the facility of tritium release for the different studied materials is explained by three properties: the crystal structure of the ceramic, the acidity of oxides and finally the presence of electronic non-stoichiometric defects. (author). 89 refs., 50 figs., 2 tabs., 1 annexe

  7. Corrosion behaviors of ceramics against liquid sodium. Sodium corrosion characteristics of sintering additives

    International Nuclear Information System (INIS)

    Tachi, Yoshiaki; Kano, Shigeki; Hirakawa, Yasushi; Yoshida, Eiichi

    1998-01-01

    It has been progressed as the Frontier Materials Research to research and develop ceramics to apply for several components of fast breeder reactor using liquid sodium as coolant instead of metallic materials. Grain boundary of ceramics has peculiar properties compared with matrix because most of ceramics are produced by hardening and firing their raw powders. Some previous researchers indicated that ceramics were mainly corroded at grain boundaries by liquid sodium, and ceramics could not be used under corrosive environment. Thus, it is the most important for the usage of ceramics in liquid sodium to improve corrosion resistance of grain boundaries. In order to develop the advanced ceramics having good sodium corrosion resistance among fine ceramics, which have recently been progressed in quality and characteristics remarkably, sodium corrosion behaviors of typical sintering additives such as MgO, Y 2 O 3 and AlN etc. have been examined and evaluated. As a result, the followings have been clarified and some useful knowledge about developing advanced ceramics having good corrosion resistance against liquid sodium has been obtained. (1) Sodium corrosion behavior of MgO depended on Si content. Samples containing large amount of Si were corroded severely by liquid sodium, whereas others with low Si contents showed good corrosion resistance. (2) Both Y 2 O 3 and AlN, which contained little Si, showed good sodium corrosion resistance. (3) MgO, Y 2 O 3 and AlN are thought to be corroded by liquid sodium, if they contain some SiO 2 . Therefore, in order to improve sodium corrosion resistance, it is very important for these ceramics to prevent the contamination of matrix with SiO 2 through purity control of their raw powders. (author)

  8. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  9. Parameters governing tritium extraction rates from lithiated ceramics. The case of lithium aluminate

    International Nuclear Information System (INIS)

    Roth, E.; Botter, F.; Briec, M.; Rasneur, B.; Roux, N.

    1986-10-01

    Significant discrepancies between results of authors comparing tritium extraction rates from different lithiated ceramics are found in the literature. Recent results obtained at C.E.A., principally on lithium aluminates, show that, for a given ceramic, parameters other than textural (grain size, porosity, etc...) may play a predominant role. Enhancements of extraction rates have been induced by adding MgO to the solid or H 2 and CO to the sweep gas, but other factors, probably related to the surface condition of samples, may produce even greater effects. Results of investigations of the influence of exposure to air at given partial pressures of water vapor or of CO 2 show that strict preirradiation procedures must be adopted for preparation, storage and handling of ceramic tritium breeders

  10. New ceramic materials

    International Nuclear Information System (INIS)

    Moreno, R.; Dominguez-Rodriguez, A.

    2010-01-01

    This article is to provide a new ceramic materials in which, with a control of their processing and thus their microstructural properties, you can get ceramic approaching ever closer to a metal, both in its structural behavior at low as at high temperatures. (Author) 30 refs.

  11. Real time simulation method for fast breeder reactors dynamics

    International Nuclear Information System (INIS)

    Miki, Tetsushi; Mineo, Yoshiyuki; Ogino, Takamichi; Kishida, Koji; Furuichi, Kenji.

    1985-01-01

    The development of multi-purpose real time simulator models with suitable plant dynamics was made; these models can be used not only in training operators but also in designing control systems, operation sequences and many other items which must be studied for the development of new type reactors. The prototype fast breeder reactor ''Monju'' is taken as an example. Analysis is made on various factors affecting the accuracy and computer load of its dynamic simulation. A method is presented which determines the optimum number of nodes in distributed systems and time steps. The oscillations due to the numerical instability are observed in the dynamic simulation of evaporators with a small number of nodes, and a method to cancel these oscillations is proposed. It has been verified through the development of plant dynamics simulation codes that these methods can provide efficient real time dynamics models of fast breeder reactors. (author)

  12. The tripartite fast breeder programme: a utility/industry view

    International Nuclear Information System (INIS)

    Brandstetter, A.; Eitz, A.W.

    1976-01-01

    The first phase of fast breeder development in Europe was conducted mainly on an independent basis but from the size of major national RandD programmes the desirability of broadening the basis of participation became evident. In 1968 inter-governmental agreements between Germany, Belgium and Holland led the research centres to enter into cooperation agreements, and utilities and industries to form organisation structures for building and operating breeder power stations with the SNR 300 as prototype. The SNR 300 is a turnkey contract incorporating many commercial features and requiring a firm basis of cooperation between the utility and the manufacturer. It is also subject to very strict licensing procedure. The unique contractual and licensing aspects, and the important consequences of both, are examined. Costs are discussed. The importance of increased collaborate efforts for demonstration plants is stressed and participation agreements relative to Superphenix and SNR-2 are illustrated. (U.K.)

  13. Consideration on risk reduction of future breeder reactors

    International Nuclear Information System (INIS)

    Vossebrecker, H.

    1990-09-01

    An overall concept of risk minimization of future sodium-cooled fast breeder reactors is presented in this report. Since shutdown reliability is of vital importance for the breeder safety, a so-called third shutdown level is proposed in addition to the two independent fast shutdown systems. It is basically a group of passive and active measures, which are capable to bring the reactor to safe conditions in all conceivable accident-initiating events and in case of total failure of the two actual shutdown systems. Core disruptions as a result of shutdown failure are therefore beyond the scope of technical imagination. Measures are also foreseen to combat other conceivable causes of core disruption, in particular to achieve residual heat removal with essentially passive systems by making use of the good natural circulation capacity of sodium. On top of that, since absolute safety can never be claimed, damage-limiting containment measures are discussed

  14. Test reactor: basic to U.S. breeder reactor development

    International Nuclear Information System (INIS)

    Miller, B.J.; Harness, A.J.

    1975-01-01

    Long-range energy planning in the U. S. includes development of a national commercial breeder reactor program. U. S. development of the LMFBR is following a conservative sequence of extensive technology development through use of test reactors and demonstration plants prior to construction of commercial plants. Because materials and fuel technology development is considered the first vital step in this sequence, initial U. S. efforts have been directed to the design and construction of a unique test reactor. The Fast Flux Test Facility, FFTF, is a 400 MW(t) reactor with driver fuel locations, open test locations, and closed loops for higher risk experiments. The FFTF will provide a prototypic LMFBR core environment with sufficient instrumentation for detailed core environmental characterization and a testing capability substituted for breeder capability. The unique comprehensive fuel and materials testing capability of the FFTF will be key to achieving long-range objectives of increased power density, improved breeding gain and shorter doubling times. (auth)

  15. Past and present role of fast breeder reactors in Italy

    International Nuclear Information System (INIS)

    Castelli, G.; Cicognani, G.; Ghilardotti, G.; Musso, B.

    1978-01-01

    The paper describes the programme that is under development in Italy for fast breeder reactors. The Italian engagement in the construction of the Creys-Malville plant is discussed as well as the work at present under way in R and D activities and on the PEC reactor. The roles of the different organizations involved in the fast breeder reactor programme are also considered with particular attention to the activities carried out by AGIP NUCLEARE, CNEN, ENEL, NIRA and by the manufacturing companies. An overall picture of the different agreements between European countries is also given with reference to the construction of the Creys-Malville plant and to research and industrial development activities. (author)

  16. Conceptual design of Indian molten salt breeder reactor

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Basak, A.; Dulera, I.V.; Vaze, K.K.; Basu, S.; Sinha, R.K.

    2014-01-01

    The fuel in a molten salt breeder reactor is in the form of a continuously circulating molten salt. Fluoride based salts have been almost universally proposed. A crucial part for achieving reasonable breeding in such reactors is the need to reprocess the salt continuously, either online or in batch mode. This constitutes a major technological challenge for this type of reactors. India has recently started carrying out fundamental studies so as to arrive at a conceptual design of Indian Molten Salt Breeder Reactor (IMSBR). Presently various design options and possibilities are being studied from the point of view of reactor physics and thermal hydraulic design. In parallel fundamental studies as regards various molten salts have also been initiated. This paper would discuss conceptual design of these reactors, as well as associated issues and technologies

  17. Role of the breeder in long-term energy economics

    International Nuclear Information System (INIS)

    Kosobud, R.F.; Daly, T.A.; Chang, Y.I.

    1982-01-01

    Private and public decisions affecting the use of nuclear and other energy technologies over a long-run time horizon were studied using the ETA-MACRO model which provides for economic- and energy-sector interactions. The impact on the use of competing energy technologies of a public decision to apply benefit-cost analysis to the production of carbon dioxide that enters the atmosphere is considered. Assuming the public choice is to impose an appropriate penalty tax on those technologies which generate CO 2 and to allow decentralized private decisions to choose the optimal mix of energy technologies that maximize a nonlinear objective function subject to constraints, the study showed that breeder technology provides a much-larger share of domestically consumed energy. Having the breeder technology available as a substitute permits control of CO 2 without significant reductions in consumption or gross national product growth paths

  18. The French liquid metal fast breeder reactor programme

    International Nuclear Information System (INIS)

    Rapin, M.

    1980-01-01

    The strong French LMFBR development and the corresponding success obtained up to now show that there is no technical insuperable barrier to fast breeder construction. This satisfactory evolution is in fact the conjunction of a strong incentive due to the lack of other resources, a firm and permanent stand of the government, and an obstinate effort of all the teams involved in the LMFBR field. The changeover to industrial level should be helped by the simplicity of the French organization for fast breeder. Finally, the development of LMFBR on a larger scale is helped by international agreements through which the present French know-how can be put at the disposal of other partners, and the general knowledge can be improved by setting common R and D programmes. A quite successful example of such agreements is given by the German-French agreement, and we hope that new partners will join us soon. (orig.) [de

  19. Filbe molten salt research for tritium breeder applications

    International Nuclear Information System (INIS)

    Anderl, R.A.; Petti, D.A.; Smolik, G.R.

    2004-01-01

    This paper presents an overview of Flibe (2Lif·BeF 2 ) molten salt research activities conducted at the INEEL as part of the Japan-US JUPITER-II joint research program. The research focuses on tritium/chemistry issues for self-cooled Flibe tritium breeder applications and includes the following activities: (1) Flibe preparation, purification, characterization and handling, (2) development and testing of REDOX strategies for containment material corrosion control, (3) tritium behavior and management in Flibe breeder systems, and (4) safety testing (e.g., mobilization of Flibe during accident scenarios). This paper describes the laboratory systems developed to support these research activities and summarizes key results of this work to date. (author)

  20. Environmental Enrichment for Broiler Breeders: An Undeveloped Field

    DEFF Research Database (Denmark)

    Riber, Anja Brinch; Jong, Ingrid de; van de Werd, Heleen A.

    2017-01-01

    Welfare problems, such as hunger, frustration, aggression, and abnormal sexual behavior, are commonly found in broiler breeder production. To prevent or reduce these welfare problems, it has been suggested to provide stimulating enriched environments. We review the effect of the different types...... of environmental enrichment for broiler breeders, which have been described in the scientific literature, on behavior and welfare. Environmental enrichment is defined as an improvement of the environment of captive animals, which increases the behavioral opportunities of the animal and leads to improvements...... in biological function. This definition has been broadened to include practical and economic aspects as any enrichment strategy that adversely affects the health of animals (e.g., environmental hygiene), or that has too many economic or practical constraints will never be implemented on commercial farms...

  1. Solid breeder test blanket module design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ying, A. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States)]. E-mail: ying@fusion.ucla.edu; Abdou, M. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Calderoni, P. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Sharafat, S. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Youssef, M. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); An, Z. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Abou-Sena, A. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Kim, E. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Reyes, S. [LANL, Livermore, CA (United States); Willms, S. [LANL, Los Alamos, NM (United States); Kurtz, R. [PNNL, Richland, WA (United States)

    2006-02-15

    This paper presents the design and analysis for the US ITER solid breeder blanket test articles. Objectives of solid breeder blanket testing during the first phase of the ITER operation focus on exploration of fusion break-in phenomena and configuration scoping. Specific emphasis is placed on first wall structural response, evaluation of neutronic parameters, assessment of thermomechanical behavior and characterization of tritium release. The tests will be conducted with three unit cell arrays/sub-modules. The development approach includes: (1) design the unit cell/sub-module for low temperature operations and (2) refer to a reactor blanket design and use engineering scaling to reproduce key parameters under ITER wall loading conditions, so that phenomena under investigation can be measured at a reactor-like level.

  2. Fast breeder reactors: Experience and trends. V. 2

    International Nuclear Information System (INIS)

    1986-01-01

    The IAEA Symposium on ''Fast Breeder Reactors: Experience and Future Trends'' was held, at the invitation of the Government of France, in Lyons, France, on 22-26 July 1985. It was hosted by the French Commissariat a l'energie atomique and Electricite de France. The purpose of the Symposium was to review the experience gained so far in the field of LMFBRs, taking into account the constructional, operational, technological, economic and fuel cycle aspects, and to consider the developmental trends as well as the international co-operation in fast breeder reactor design and utilization. The Symposium was attended by almost 400 participants (340 participants, 35 observers and 20 journalists) from 25 countries and five international organizations. More than 80 papers were presented and discussed during six regular sessions and four poster sessions. A separate abstract was prepared for each of these papers

  3. Project of a binary breeder reactor and its inherent safety

    International Nuclear Information System (INIS)

    Nascimento, J.A. do; Dias, A.F.; Ishiguro, Y.

    1983-01-01

    A core layout for the binary breeder reactor (BBR) is developed based on the results of preliminary burnup calculations. The apparent breeding ratio, in the U 233 /Th fueled inner core, is low due to the accumulation of Pa-233 in the first few months of operation. The loss of reactivity during this time is around 3%. The BBR requires more reactivity control than Pu/U-fueled LMFBRs and the core layout developed has 19 control rod assemblies in the inner core. Three aspects related to the inherent safety of the Binary Breeder Reactor have been studied: the radial distribution of the sodium-void reactivity zone-wise Doppler reactivity and the fractions of delayed neutrons. The results show excellent characteristics for the BRB safety. (Author) [pt

  4. Radioactive waste management at a Liquid Metal Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Abrams, C.S.; Fryer, R.H.; Witbeck, L.C.

    1979-01-01

    This paper presents the radioactive waste production and management at a Liquid Metal Fast Breeder Reactor-II (EBR-II), which is operated for the US Department of Energy by the Argonne National Laboratory at the Idaho National Engineering Laboratory (INEL). Since this facility, in addition to supplying power has been used to demonstrate the breeder, fuel cycling, and recently operations with defective fuel elements, various categories of waste have been handled safely over some 14 years of operation. Liquid wastes are processed such that the resulting effluent can be discharged to an uncontrolled area. Solid wastes up to 10,000 R/hr are packaged and shipped contamination-free to a disposal site or interim storage with exposures to personnel approximately 10 mrem. Gaseous waste discharges are low such as 143 Ci of noble gases in 1978 and do not have a significant effect on the environment even with operations with breached fuel

  5. Feasibility study on the thorium fueled boiling water breeder reactor

    International Nuclear Information System (INIS)

    PetrusTakaki, N.

    2012-01-01

    The feasibility of (Th,U)O 2 fueled, boiling water breeder reactor based on conventional BWR technology has been studied. In order to determine the potential use of water cooled thorium reactor as a competitive breeder, this study evaluated criticality, breeding and void reactivity coefficient in response to changes made in MFR and fissile enrichments. The result of the study shows that while using light water as moderator, low moderator to fuel volume ratio (MFR=0.5), it was possible to breed fissile fuel in negative void reactivity condition. However the burnup value was lower than the value of the current LWR. On the other hand, heavy water cooled reactor shows relatively wider feasible breeding region, which lead into possibility of designing a core having better neutronic and economic performance than light water with negative void reactivity coefficient. (authors)

  6. Thermal diffusivity measurement of molten fluoride salt containing ThF4 (improvement of the simple ceramic cell)

    International Nuclear Information System (INIS)

    Kato, Y.; Araki, N.; Kobayashi, K.; Makino, A.

    1985-01-01

    Design conditions of a cylindrical ceramic cell are estimated which can be used to measure the absolute value of thermal diffusivity of molten salts by applying the stepwise heating method. Molten salt is expected to be used in nuclear systems such as the Molten-Salt Reactor, the Accelerator Molten-Salt Breeder, the Fusion Reactor Blanket Coolant, the Fuel Reprocessing System, and so on

  7. Status of national programmes on fast breeder reactors

    International Nuclear Information System (INIS)

    1991-09-01

    The present document contains information on the status of fast breeder reactor development and on worldwide activities in this advanced nuclear power technology during 1990 as reported at the 24th meeting of the IWGFR in Tsuruga, Japan, 15-18 April 1991. The publication is intended to provide information regarding the current status of LMFBR development in IAEA Member States and CEC. Figs and tabs

  8. Status of national programmes on fast breeder reactors

    International Nuclear Information System (INIS)

    1990-09-01

    The present document contains information on the status of fast breeder reactor development and on worldwide activities in this advanced nuclear power technology during 1989 as reported at the 23rd meeting of the IWGFR in Vienna, April 1990. The publication is intended to provide information regarding the current status of LMFBR development in IAEA Member States. A separate abstract was prepared for each of the 11 papers presented by the participants of this meeting. Refs, figs and tabs

  9. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Gunther, E.

    1987-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and ''Li 6 SiO 5 '' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented

  10. Thermal properties and application of potential lithium silicate breeder materials

    International Nuclear Information System (INIS)

    Skokan, A.; Wedemeyer, H.; Vollath, D.; Guenther, E.

    1986-01-01

    Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and 'Li 6 SiO 5 ' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented. (author)

  11. Evaluation of organic moderator/coolants for fusion breeder blankets

    International Nuclear Information System (INIS)

    Romero, J.B.

    1980-03-01

    Organic coolants have several attractive features for fusion breeder blanket design. Their apparent compatibility with lithium and their ideal physical and nuclear properties allows straight-forward, high performance designs. Radiolytic damage can be reduced to about the same order as comparable fission systems by using multiplier/stripper blanket designs. Tritium recovery from the organic should be straightforward, but additional data is needed to make a better assessment of the economics of the process

  12. Some basic concepts of fast breeder reactor safeguards

    International Nuclear Information System (INIS)

    Tkharev, E.; Walford, F.J.

    1987-04-01

    The range of discussion topics of this report is restricted to a few key areas of safeguards importance at Fast Breeder Reactors (FBR) only. The differences between thermal and fast reactors that may have safeguards significance in the case of FBRs are listed. The FBR principles of design are mentioned. The relevant safeguards objectives and criteria are given. The fundamental issues for safeguarding FBR are treated. An outline safeguards approach is presented. Model inspection activities are mentioned. 4 figs

  13. Haemorrhagic enteritis seroconversion in turkey breeders: field observations

    Directory of Open Access Journals (Sweden)

    Raffaella Ceruti

    2010-01-01

    Full Text Available Seroconversion to viral haemorrhagic enteritis (HE was studied in seven flocks of turkey breeders (17.974 birds in total, after 20 weeks of the onset of egg production. They showed no clinical signs, and mortality rate was normal. However, the infection caused a drop in egg production lasting about five weeks (-2.32 eggs laid during this period, but had no effect on hatching parameters.

  14. Apparatus for power and breeding distribution measurements in breeder reactors

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Sun, K.H.

    1975-01-01

    A detection system is disclosed herein for the measurement of power and breeding distribution inside a breeder reactor. Small diameter BeO balls comprising oxides of 235 U and 238 U are inserted into the reactor for activation and withdrawn to be counted in a Ge(Li) counter. Measurements of the activated fission and 239 Np gamma rays yield the desired distributions. (Official Gazette)

  15. Tritium inventory and permeation in liquid breeder blankets

    International Nuclear Information System (INIS)

    Reiter, F.

    1990-01-01

    This report reviews studies of the transport of hydrogen isotopes in the DEMO relevant water-cooled Pb-17Li blanket to be tested in NET and in a self-cooled blanket which uses Pb-17Li or Flibe as a liquid breeder material and V or Fe as a first wall material. The time dependences of tritium inventory and permeation in these blankets and of deuterium and tritium recycling in the self-cooled blanket are presented and discussed

  16. Status of national programmes on fast breeder reactors

    International Nuclear Information System (INIS)

    1989-07-01

    The twenty-second Annual Meeting of the International Working Group on Fast Reactors took place in Vienna, 18-21 April 1989. Nineteen representatives from twelve Member States and International Organizations attended the Meeting. This publication is a collection of presentations in which the participants reported the status of their national programmes on fast breeder reactors. A separate abstract was prepared for each of the twelve papers from this collections. Refs, figs, tabs and 1 graph

  17. Fast breeder reactors: can we learn from experience

    International Nuclear Information System (INIS)

    Keck, O.

    1981-01-01

    An economic analysis of FBRs, in particular the long-term benefits to be expected, with reference to the experience of the West German fast breeder reactor programme suggests ways of bringing more realism into governmental decisions on the development of new reactor types. It is suggested that if reactor manufacturers and utilities financed commercial-size demonstration plants from their own funds, then the government would get more realistic advice. (U.K.)

  18. Mounting for ceramic scroll

    Science.gov (United States)

    Petty, Jack D.

    1993-01-01

    A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.

  19. Ceramic heat exchanger

    Science.gov (United States)

    LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.

    1998-01-01

    A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

  20. Breeding nuclear fuels with accelerators: replacement for breeder reactors

    International Nuclear Information System (INIS)

    Grand, P.; Takahashi, H.

    1984-01-01

    One application of high energy particle accelerators has been, and still is, the production of nuclear fuel for the nuclear energy industry; tantalizing because it would create a whole new industry. This approach to producing fissile from fertile material was first considered in the early 1950's in the context of the nuclear weapons program. A considerable development effort was expended before discovery of uranium ore in New Mexico put an end to the project. Later, US commitment to the Liquid Metal Fast Breeder Reactors (LMFBR) killed any further interest in pursuing accelerator breeder technology. Interest in the application of accelerators to breed nuclear fuels, and possibly burn nuclear wastes, revived in the late 1970's, when the LMFBR came under attack during the Carter administration. This period gave the opportunity to revisit the concept in view of the present state of the technology. This evaluation and the extensive calculational modeling of target designs that have been carried out are promising. In fact, a nuclear fuel cycle of Light Water Reactors and Accelerator Breeders is competitive to that of the LMFBR. At this time, however, the relative abundance of uranium reserves vs electricity demand and projected growth rate render this study purely academic. It will be for the next generation of accelerator builders to demonstate the competitiveness of this technology versus that of other nuclear fuel cycles, such as LMFBR's or Fusion Hybrid systems. 22 references, 1 figure, 5 tables

  1. Philosophy of safety evaluation on fast breeder reactor

    International Nuclear Information System (INIS)

    1981-01-01

    This is the report submitted from the special subcommittee on reactor safety standard to the Nuclear Safety Commission on October 14, 1980, and it was decided to temporarily apply this concept to the safety examination on fast breeder reactors. The examination and discussion of this report were performed by taking the prototype reactor ''Monju'' into consideration, which is to be the present target, referring to the philosophy of the safety evaluation on fast breeder reactors in foreign countries and based on the experiences in the fast experimental reactor ''Joyo''. The items applicable to the safety evaluation for liquid metal-cooled fast breeder reactors (LMFBR) as they are among the existing safety examination guidelines are applied. In addition to the existing guidelines, the report describes the matters to be considered specifically for core, fuel, sodium, sodium void, reactor shut-down system, reactor coolant boundary, cover gas boundary and others, intermediate cooling system, removal of decay heat, containment vessels, high temperature structures, and aseismatic property in the safety design of LMFBR's. For the safety evaluation for LMFBR's, the abnormal transient changes in operation and the phenomena to be evaluated as accidents are enumerated. In order to judge the propriety of the criteria of locating LMFBR facilities, the serious and hypothetical accidents are decided to be evaluated in accordance with the guideline for reactor location investigation. (Wakatsuki, Y.)

  2. Dounreay: more is at stake than just the fast breeder

    International Nuclear Information System (INIS)

    Holmes, A.

    1988-01-01

    The British government's policy on nuclear power is to support and encourage an expansion of the nuclear energy programme. However, the Conservative government has said it will withdraw its funding from the fast breeder reactor research programme based at Dounreay in Scotland. Once the Electricity supply industry has been privatised it will not finance the fast breeder reactor programme either. So it seems likely that the research will be discontinued after 5 years and the reprocessing plant planned for Dounreay will never be built. This highlights the basic ambiguity that has existed for a long time over the fast breeder programme and has forced a decision. A similar problem exists generally with the United Kingdom Atomic Energy Authority which has continued to thrive despite many failures. The reasons for this are explained. Privatisation may be the spur to the demise of the UKAEA so it no longer enjoys such a favoured position. The decision to kill off the FBR is just one consequence of this. Others may be a change of attitude to the decommissioning of the Windscale prototype advanced gas cooled reactor, and the fusion project, including JET. (U.K.)

  3. Production aspects of broiler breeders submitted to different drinker types

    Directory of Open Access Journals (Sweden)

    LP Colvero

    2014-03-01

    Full Text Available The objective of this study was of evaluate the influence of different drinker types on the egg production, water intake, mortality, poultry litter relative humidity, egg weight, eggshell percentage, and egg specific gravity of broiler breeders. The experiment was carried out in a commercial farm with 37- to 44-wk-old broiler breeders. A randomized block experimental design, consisting of two treatments (bell or nipple drinkers with four replicates of 4.000 females each, was applied. Data were submitted to analysis of variance, and means were compared by the test of Student-Newman-Keuls at 5% significance level. Birds submitted to nipple drinkers presented lower water intake (p0.05 of drinker type on egg production or mortality. Poultry litter relative humidity was lower (p<0.05 under the nipple-drinker system. Birds drinking from bell drinkers produced heavier eggs (p<0.05 between weeks 39 and 40. Hens drinking from bell drinkers laid eggs with higher specific gravity and eggshell percentage. It was concluded that nipple drinkers can be used for broiler breeders during lay.

  4. Numerical and experimental characterization of ceramic pebble beds under cycling mechanical loading

    Energy Technology Data Exchange (ETDEWEB)

    Pupeschi, S., E-mail: pupeschi.simone@hotmail.it [Institute for Applied Materials, Karlsruhe Institute of Technology (KIT) (Germany); Knitter, R.; Kamlah, M. [Institute for Applied Materials, Karlsruhe Institute of Technology (KIT) (Germany); Gan, Y. [School of Civil Engineering, The University of Sydney, Sydney, NSW, 2006 (Australia)

    2016-11-15

    Highlights: • The effect of cyclic loading on the mechanical response of pebble beds was assessed. • Numerical simulations were performed with KIT-DEM code. • The numerical simulations were compared with the experimental outcomes. • A good qualitative agreement between experimental and simulation results was found. • The pebble size distribution affects the mechanical response of the assemblies. - Abstract: All solid breeder concepts considered to be tested in ITER (International Thermonuclear Experimental Reactor), make use of lithium-based ceramics in the form of pebble-packed beds as tritium breeder. A thorough understanding of the thermal and mechanical properties of the ceramic pebble beds under fusion relevant conditions is essential for the design of the breeder blanket modules of future fusion reactors. In this study, the effect of cyclic loading on the mechanical behaviour of pebble bed assemblies was investigated using a Discrete Element Method (DEM) code. The numerical simulations were compared with the experimental outcomes. The results of numerical simulations show that the pebble size distribution affects noticeably the stress-strain behaviour of the assemblies. A good qualitative agreement between experimental and simulation results was found in terms of difference between residual strains of consecutive cycles. An increase of the oedometric modulus with the compressive load was observed for all investigated compositions in both experimental and DEM simulations. The numerical results show an increase of the oedometric modulus (E) with progressive compaction of the assemblies due to the cycling loading, while no significant influence of the pebbles size distribution was observed.

  5. Industrial ceramics - Properties, forming and applications

    International Nuclear Information System (INIS)

    Fantozzi, Gilbert; Niepce, Jean-Claude; Bonnefont, Guillaume; Alary, J.A.; Allard, B.; Ayral, A.; Bassat, J.M.; Elissalde, C.; Maglione, M.; Beauvy, M.; Bertrand, G.; Bignon, A.; Billieres, D.; Blanc, J.J.; Blumenfeld, P.; Bonnet, J.P.; Bougoin, M.; Bourgeon, M.; Boussuge, M.; Thorel, A.; Bruzek, C.E.; Cambier, F.; Carrerot, H.; Casabonne, J.M.; Chaix, J.M.; Chevalier, J.; Chopinet, M.H.; Couque, H.; Courtois, C.; Leriche, A.; Dhaler, D.; Denape, J.; Euzen, P.; Ganne, J.P.; Gauffinet, S.; Girard, A.; Gonon, M.; Guizard, C.; Hampshire, S.; Joulin, J.P.; Julbe, A.; Ferrato, M.; Fontaine, M.L.; Lebourgeois, R.; Lopez, J.; Maquet, M.; Marinel, S.; Marrony, M.; Martin, J.F.; Mougin, J.; Pailler, R.; Pate, M.; Petitpas, E.; Pijolat, C.; Pires-Franco, P.; Poirier, C.; Poirier, J.; Pourcel, F.; Potier, A.; Tulliani, J.M.; Viricelle, J.P.; Beauger, A.

    2013-01-01

    After a general introduction to ceramics (definition, general properties, elaboration, applications, market data), this book address conventional ceramics (elaboration, material types), thermo-structural ceramics (oxide based ceramics, non-oxide ceramics, fields of application, functional coatings), refractory ceramics, long fibre and ceramic matrix composites, carbonaceous materials, ceramics used for filtration, catalysis and the environment, ceramics for biomedical applications, ceramics for electronics and electrical engineering (for capacitors, magnetic, piezoelectric, dielectric ceramics, ceramics for hyper-frequency resonators), electrochemical ceramics, transparent ceramics (forming and sintering), glasses, mineral binders. The last chapter addresses ceramics used in the nuclear energy sector: in nuclear fuels and fissile material, absorbing ceramics and shields, in the management of nuclear wastes, new ceramics for reactors under construction or for future nuclear energy

  6. Examination of the use of the breeder reactor to enhance security of energy supply. Final report

    International Nuclear Information System (INIS)

    Jones, G.S.; Chow, B.G.

    1980-01-01

    Early commercialization of the breeder reactor has been justified in terms of its promise for lessening a nation's dependence on imported uranium. The relationship between breeder timing (assuming a vigorous but not instantaneous breeder penetration rate) and the reduction in uranium requirements is examined using Japan as an example. Comparing early and delayed breeder introductions (2006 and 2026 respectively in the high growth projections), the difference in cumulative uranium requirements is slight through the year 2045; for both scenarious, annual requirements remain high. The early breeder introduction strategy is more attractive when it incorporates a 30 percent improved LWR. However, given the unlikelihood of sufficient funding for the development of both designs, the optimal strategy for Japan is stockpiling uranium for an improved LWR and delaying introduction of the breeder

  7. Selection of Breeding Stock among Australian Purebred Dog Breeders, with Particular Emphasis on the Dam

    Directory of Open Access Journals (Sweden)

    Veronika Czerwinski

    2016-11-01

    Full Text Available Every year, thousands of purebred domestic dogs are bred by registered dog breeders. Yet, little is known about the rearing environment of these dogs, or the attitudes and priorities surrounding breeding practices of these dog breeders. The objective of this study was to explore some of the factors that dog breeders consider important for stock selection, with a particular emphasis on issues relating to the dam. Two-hundred and seventy-four Australian purebred dog breeders, covering 91 breeds across all Australian National Kennel Club breed groups, completed an online survey relating to breeding practices. Most breeders surveyed (76% reported specialising in one breed of dog, the median number of dogs and bitches per breeder was two and three respectively, and most breeders bred two litters or less a year. We identified four components, relating to the dam, that were considered important to breeders. These were defined as Maternal Care, Offspring Potential, Dam Temperament, and Dam Genetics and Health. Overall, differences were observed in attitudes and beliefs across these components, showing that there is variation according to breed/breed groups. In particular, the importance of Maternal Care varied according to dog breed group. Breeders of brachycephalic breeds tended to differ the most in relation to Offspring Potential and Dam Genetics and Health. The number of breeding dogs/bitches influenced breeding priority, especially in relation to Dam Temperament, however no effect was found relating to the number of puppies bred each year. Only 24% of breeders used their own sire for breeding. The finding that some breeders did not test for diseases relevant to their breed, such as hip dysplasia in Labrador Retrievers and German Shepherds, provides important information on the need to educate some breeders, and also buyers of purebred puppies, that screening for significant diseases should occur. Further research into the selection of breeding dams

  8. Experiences with fast breeder reactor education in laboratory and short course settings

    International Nuclear Information System (INIS)

    Waltar, A.E.

    1983-01-01

    The breeder reactor industry throughout the world has grown impressively over the last two decades. Despite the uncertainties in some national programs, breeder reactor technology is well established on a global scale. Given the magnitude of this technological undertaking, there has been surprisingly little emphasis on general breeder reactor education - either at the university or laboratory level. Many universities assume the topic too specialized for including appropriate courses in their curriculum - thus leaving students entering the breeder reactor industry to learn almost exclusively from on-the-job experience. The evaluation of four course presentations utilizing visual aids is presented

  9. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  10. Ceramic injection molding

    International Nuclear Information System (INIS)

    Agueda, Horacio; Russo, Diego

    1988-01-01

    Interest in making complex net-shape ceramic parts with good surface finishing and sharp tolerances without machining is a driving force for studying the injection molding technique. This method consists of softhening the ceramic material by means of adding some plastic and heating in order to inject the mixture under pressure into a relatively cold mold where solidification takes place. Essentially, it is the same process used in thermoplastic industry but, in the present case, the ceramic powder load ranges between 80 to 90 wt.%. This work shows results obtained from the fabrication of pieces of different ceramic materials (alumina, barium titanate ferrites, etc.) in a small scale, using equipments developed and constructed in the laboratory. (Author) [es

  11. Applications of Piezoelectric Ceramics

    Indian Academy of Sciences (India)

    Applications of Piezoelectric Ceramics. Piezoelectric Actuators. Nano and Micropositioners. Vibration Control Systems. Computer Printers. Piezoelectric Transformers,Voltage Generators, Spark Plugs, Ultrasonic Motors,. Ultrasonic Generators and Sensors. Sonars, Medical Diagnostic. Computer Memories. NVFRAM ...

  12. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  13. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  14. Selecting Ceramics - Introduction

    OpenAIRE

    Cassidy, M.

    2002-01-01

    AIM OF PRESENTATION: To compare a number of materials for extracoronal restoration of teeth with particular reference to CAD-CAM ceramics. CASE DESCRIPTION AND TREATMENT CARRIED OUT: This paper will be illustrated using clinical examples of patients treated using different ceramic restorations to present the advantages and disadvantages and each technique. The different requirements of tooth preparation, impression taking and technical procedures of each system will be presented and compar...

  15. Cavitation damage of ceramics

    International Nuclear Information System (INIS)

    Kovalenko, V.I.; Marinin, V.G.

    1988-01-01

    Consideration is given to results of investigation of ceramic material damage under the effect of cavitation field on their surface, formed in water under the face of exponential concentrator, connected with ultrasonic generator UZY-3-0.4. Amplitude of vibrations of concentrator face (30+-2)x10 -6 m, frequency-21 kHz. It was established that ceramics resistance to cavitation effect correlated with the product of critical of stress intensity factor and material hardness

  16. Status of French breeder development and German-French cooperation

    International Nuclear Information System (INIS)

    Vendryes, G.

    1978-01-01

    The development of fast breeder reactors in France is at present characterized by the successful operation of the 250 MW reactor, Phenix, and the speedy progress made in construction of the 1200 MW Superphenix plant. The technical concept of Superphenix is a logical extension of the Phenix concept, i.e., the pool type sodium cooled breeder reactor. While the only change in the primary system has been an increase in capacity, the main modification over Phenix is the change from small modular steam generators to four large units. The development of the work to date does not cast any doubt upon the envisaged date of first criticality in the second half of 1982. The basis of German-French cooperation is a joint declaration by the then Ministers for Research of the two countries on February 13, 1976 in which the Ministers had expressed themselves in favor of close cooperation between both countries in the development of safe, reliable and economic fast breeder reactors. On this basis, the two governments, the research centers and the industrial partners in the two countries, including the previous partners in Belgium, the Netherlands and Italy, agreed on the general principles of this cooperation. Meanwhile, the cooperation formalized in 1977 has been activated. Both in research and development and among planning and building industries the exchange of know-how and cooperation is in full swing. The joint company, SERENA, is the pool for the know-how introduced by the partners and the sole representative of the partners in the scheme. (orig.) 891 UA [de

  17. Ochratoxicosis in White Leghorn breeder hens: Production and breeding performance

    Directory of Open Access Journals (Sweden)

    Zahoor Ul Hassan*, Muhammad Zargham Khan, Ahrar Khan, Ijaz Javed1, Umer Sadique2 and Aisha Khatoon

    2012-10-01

    Full Text Available This study was designed to evaluate the effect of Ochratoxin A (OTA upon production and breeding parameters in White Leghorn (WL breeder hens. For this purpose, 84 WL breeder hens were divided into seven groups (A-G. The hens in these groups were maintained on feed contaminated with OTA @ 0.0 (control, 0.1, 0.5, 1.0, 3.0, 5.0 and 10.0 mg/Kg, respectively for 21 days. These hens were artificially inseminated with semen obtained from healthy roosters kept on OTA free feed. Egg production and their quality parameters were recorded. Fertile eggs obtained from each group were set for incubation on weekly basis. At the end of the experiment, hens in each group were killed to determined gross and microscopic lesions in different organs. OTA residue concentrations were determined in extracts of liver, kidneys and breast muscles by immunoaffinity column elution and HPLC-Fluorescent detection techniques. Feeing OTA contaminated diet resulted in a significant decrease in egg mass and egg quality parameters. Liver and kidneys showed characteristic lesions of ochratoxicosis. Residue concentration (ng/g of OTA in the hens fed 10 mg/kg OTA, was the highest in liver (26.336±1.16 followed by kidney (8.223±0.85 and were least in breast muscles (1.235±0.21. Embryonic mortalites were higher, while hatachabilites of the chicks were lower in the groups fed higher doses of OTA. Feeding OTA contaminated diets to breeder hen resulted in residues accumulation in their tissues along with significantly reduced production and breeding performance.

  18. Test measurements on the RF charge breeder device BRIC

    International Nuclear Information System (INIS)

    Variale, Vincenzo; Boggia, Antonio; Clauser, Tarcisio; Raino, Antonio; Valentino, Vincenzo; Verrone, Grazia; Bak, Petr; Kustenzov, Gennady; Skarbo, Boris; Tiunov, Michael

    2004-01-01

    The 'charge state breeder' BRIC (BReeding Ion Charge) is based on an EBIS source and it is designed to accept Radioactive Ion Beam (RIB) with charge state +1, in a slow injection mode, to increase their charge state up to +n. BRIC has been developed at the INFN section of Bari (Italy) during these last 3 years with very limited funds. Now, it has been assembled at the LNL (Italy) where are in progress the first tests as stand alone source and where, in the future, with some implementation, it will be tested as charge breeder at ISOL/TS facility of that laboratory. BRIC could be considered as a solution for the charge state breeder of the SPES project under study also at the LNL. The new feature of BRIC, with respect to the classical EBIS, is given by the insertion, in the ion drift chamber, of a radio frequency (RF) - quadrupole aiming to filter the unwanted masses and then making a more efficient containment of the wanted ions. In this paper, the first ion charge state measurements and analysis and the effect of the RF field applied on the ion chamber will be reported and discussed. The first RF test measurements seem confirm, as foreseen by simulation results carried out previously, that a selective containment can be obtained. However, most accurate measurements needed to study with more details the effect. For this reason, few implementations of the system are in order to improve the accuracy of the measurements. The proposed modifications of the BRIC device, then, will be also presented and shortly discussed

  19. 04 - Sodium cooled fast breeder fourth-generation reactors - The experimental reactor ALLEGRO, the other ways for fast breeder fourth-generation reactors

    International Nuclear Information System (INIS)

    2012-12-01

    The authors first present the technology of gas-cooled fast breeder reactors (basic principles, specific innovations, feasibility studies, fuel element, safety) and notably the ALLEGRO project (design options and expected performances, preliminary safety demonstration). Then, they present the lead-cooled fast-breeder reactor technology: interests and obstacles, return on experience, the issue of lead density, neutron assessment, transmutation potential, dosimetry, safety chemical properties and compatibility with the fuel, water, air and steels. The next part addresses the technology of molten-salt fast-breeder reactors: choice of the liquid fuel and geometry, reactor concept (difficulties, lack of past R and D), demonstration and demonstrators, international context

  20. Optimization of binary breeder reactor V - Binary breeder reactors with two and four zones and a conventional LMFBR - (Pu/U) of two zones

    International Nuclear Information System (INIS)

    Dias, A.F.; Ishiguro, Y.

    1986-04-01

    Comparative analyses of a commercial-size Pu/U-fueled liquid metal fast breeder reactor and two binary breeder reactors with different numbers of enrichment zones have been done. Principal parameters of comparison are safety and breeding characteristics and reactivity losses during an operational cycle. The comparison shows that in a binary breeder reactor, good breeding characteristics in both cycles, Pu/U and U/Th, in addition to a possibility of an efficient utilization of thorium, and superior inherent safety than current LMFBRs can be achieved. (Author) [pt