Sample records for helium thermal desorption

  1. Thermal desorption of deuterium from Be, and Be with helium bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, A.V.; Van Veen, A.; Busker, G.J. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.


    Deuterium desorption measurements carried out on a single-crystalline beryllium sample are presented. Deuterium ions were implanted at room temperature at the energy of 0.7 and 1.2 keV up to doses ranging from 10{sup 19} to 3.6 x 10{sup 21} m{sup -2}. In order to eliminate the influence of the beryllium-oxide surface layer, before the implantation the surface of the sample was cleaned by argon sputtering. After the implantation the sample was annealed up to 1200 K at a constant rate of 10 K/s. Deuterium released from the sample was monitored by a calibrated quadrupole mass-spectrometer. The desorption spectra revealed two different contributions. One is a well defined and very narrow peak centered around 450 K. This peak is observed only at high implantation doses > 7.8 x 10{sup 20} m{sup -2}, which is close to the deuterium saturation limit of 0.3 D/Be and is related to deuterium release from blisters or interconnected bubbles. The activation energy of 1.1 eV and the threshold implantation dose are consistent with the values reported in literature. The second contribution in the release spectra is found in the temperature range from 600 to 900 K and is present throughout the whole range of the implantation doses. The activation energies corresponding to this release lie in the range between 1.8 and 2.5 eV and are ascribed to the release from deuterium-vacancy type of defects. In a number of experiments the deuterium implantation was preceded by helium implantation followed by partial annealing to create helium bubbles. The resulting deuterium desorption spectra indicate that deuterium detrapping from helium bubbles is characterized by an activation energy of 2.7 eV. (author)


    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, K; Jeffrey Holder, J


    Six new samples of tritium-aged bulk titanium have been examined by thermal desorption and isotope exchange chemistry. The discovery of a lower temperature hydrogen desorption state in these materials, previously reported, has been confirmed in one of the new samples. The helium release of the samples shows the more severe effects obtained from longer aging periods, i.e. higher initial He/M ratios. Several of the more aged samples were spontaneously releasing helium. Part I will discuss the new results on the new lower temperature hydrogen desorption state found in one more extensively studied sample. Part II will discuss the hydrogen/helium release behavior of the remaining samples.

  3. Erbium hydride thermal desorption : controlling kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew


    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report show that hydride film processing parameters directly impact thermal stability. Issues to be addressed include desorption kinetics for dihydrides and trihydrides, and the effect of film growth parameters, loading parameters, and substrate selection on desorption kinetics.

  4. First-principles calculations of helium and neon desorption from cavities in silicon. (United States)

    Eddin, A Charaf; Pizzagalli, L


    Combining density functional theory, the nudged elastic band technique, and the ultradense fluid model, we investigated the desorption process of He and Ne in silicon. Our results show that the internal surfaces of gas-filled bubbles are not a limiting factor during desorption experiments, since the surface reconstruction opens diffusion paths easier than in the bulk. We show that the vibrational contribution to the energy of helium in the bulk has to be considered in order to determine realistic pressures in the bubbles, when comparing experiments and simulations. At the maximum of desorption, an average pressure of 1-2 GPa is computed. © 2012 IOP Publishing Ltd


    Energy Technology Data Exchange (ETDEWEB)

    WANG,L.; JIA,L.X.


    A liquid helium target for the high-energy physics was built and installed in the proton beam line at the Alternate Gradient Synchrotron of Brookhaven National Laboratory in 2001. The target flask has a liquid volume of 8.25 liters and is made of thin Mylar film. A G-M/J-T cryocooler of five-watts at 4.2K was used to produce liquid helium and refrigerate the target. A thermosyphon circuit for the target was connected to the J-T circuit by a liquid/gas separator. Because of the large heat load to the target and its long transfer lines, thermal oscillations were observed during the system tests. To eliminate the oscillation, a series of tests and analyses were carried out. This paper describes the phenomena and provides the understanding of the thermal oscillations in the target system.

  6. Thermal desorption of Au from W(001) surface

    CERN Document Server

    Blaszczyszyn, R; Godowski, P J


    Adsorption of Au on W(001) at 450 K up to multilayer structures was investigated. Temperature programmed desorption technique was used in determination of coverage dependent desorption energy (region up to one monolayer). Results were discussed in terms of competitive interactions of Au-Au and Au-W atoms. Simple procedure for prediction of faceting behavior on the interface, basing on the desorption data, was postulated. It was deduced that the Au/W(001) interface should not show faceting tendency after thermal treatment. (author)

  7. Thermal stability of helium-vacancy clusters in iron

    CERN Document Server

    Morishita, K; Wirth, B D; Díaz de la Rubia, T


    Molecular dynamics calculations were performed to evaluate the thermal stability of helium-vacancy clusters (He sub n V sub m) in Fe using the Ackland Finnis-Sinclair potential, the Wilson-Johnson potential and the Ziegler-Biersack-Littmark-Beck potential for describing the interactions of Fe-Fe, Fe-He and He-He, respectively. Both the calculated numbers of helium atoms, n, and vacancies, m, in clusters ranged from 0 to 20. The binding energies of an interstitial helium atom, an isolated vacancy and a self-interstitial iron atom to a helium-vacancy cluster were obtained from the calculated formation energies of clusters. All the binding energies do not depend much on cluster size, but they primarily depend on the helium-to-vacancy ratio (n/m) of clusters. The binding energy of a vacancy to a helium-vacancy cluster increases with the ratio, showing that helium increases cluster lifetime by dramatically reducing thermal vacancy emission. On the other hand, both the binding energies of a helium atom and an iron ...

  8. Some properties of solid helium and helium nanoclusters using the effective HFD-like interaction potential: Adsorption and desorption inside carbon nanotube (United States)

    Abbaspour, M.; Akbarzadeh, H.; Banihashemi, S. Z.; Sotoudeh, A.


    We have calculated the zero equation of state of solid helium using a two-body Hartree-Fock dispersion (HFD)-like potential from molecular dynamics (MD) simulation. To take many-body forces into account, our simple and accurate empirical expression is used with the HFD-like potential without requiring an expensive three-body calculation. This potential model also includes the quantum effects for helium at low temperatures. The results indicate that our effective HFD-like potential improves the prediction of the classical two-body results to get better agreement with experiment than many other two-body and three-body potentials of helium reported in the literature. We have also simulated the adsorption and desorption processes of the (He)55, (He)147, (He)309, (He)561, and (He)923 icosahedral nanoclusters confined into the different armchair and zigzag CNTs from 0 to 50 K using our effective model. We have observed an interesting phenomenon at 0 K for helium. The nanoclusters adsorb to the inner CNT wall as a melting process. But, the heavier noble gas clusters (such as Ne and Xe) show the different behavior than the He clusters. They form a multilayered solid structure into the CNT at zero temperature and adsorb into the inner wall of the CNT at higher temperatures. Our results for He clusters show that the absolute value of the adsorption energy increases as the size of the nanocluster increases. The desorption process begins at a certain temperature and represents itself by a jump in the configurational energy values. We have also investigated the structural and dynamical properties of the confined helium nanoclusters during the adsorption and desorption processes at different temperatures.

  9. The study of 'microsurfaces' using thermal desorption spectroscopy (United States)

    Thomas, M. E.; Poppa, H.; Pound, G. M.


    The use of a newly combined ultrahigh vacuum technique for studying continuous and particulate evaporated thin films using thermal desorption spectroscopy (TDS), transmission electron microscopy (TEM), and transmission electron diffraction (TED) is discussed. It is shown that (1) CO thermal desorption energies of epitaxially deposited (111) Ni and (111) Pd surfaces agree perfectly with previously published data on bulk (111) single crystal, (2) contamination and surface structural differences can be detected using TDS as a surface probe and TEM as a complementary technique, and (3) CO desorption signals from deposited metal coverages of one-thousandth of a monolayer should be detectable. These results indicate that the chemisorption properties of supported 'microsurfaces' of metals can now be investigated with very high sensitivity. The combined use of TDS and TEM-TED experimental methods is a very powerful technique for fundamental studies in basic thin film physics and in catalysis.

  10. Behavior of hydrogen atoms in boron films during H{sub 2} and He glow discharge and thermal desorption

    Energy Technology Data Exchange (ETDEWEB)

    Tsuzuki, K.; Natsir, M.; Inoue, N. [and others


    Hydrogen absorption and desorption characteristics in boron films deposited on a graphite liner have been studied. Number of hydrogen atoms absorbed in the films is estimated from a decrease in hydrogen pressure during a hydrogen glow discharge. It was 1.9 x 10{sup 17} atoms/cm{sup 2} in the 1 hour discharge after an evacuation of H atoms contained in the original boron films by thermal desorption. Hydrogen atoms were absorbed continuously without saturation for 3 hours during the discharge. Number of H atoms absorbed reached to 2.6 x 10{sup 17} atoms/cm{sup 2} at 3 hour. A discharge in helium was carried out to investigate H desorption characteristics from hydrogen implanted boron films. It was verified that reactivity for hydrogen absorption was recovered after the He discharge. Hydrogen atoms were accumulated in the films by repetition of alternate He and H{sub 2} discharge. Thermal desorption experiments have been carried out by raising the liner temperature up to 500degC for films after 1 hour, 3 hours hydrogen discharge and 6 times repetition of H{sub 2}/He discharges. Most of H atoms in the films were desorbed for all these cases. The slow absorption process was confirmed through the thermal desorption experiments. (author).

  11. The Design and Development of Enhanced Thermal Desorption Products

    Directory of Open Access Journals (Sweden)

    R. Humble


    Full Text Available This research study is based on a knowledge-transfer collaboration between The National Centre for Product Design and Development Research (PDR and Markes International Ltd. The aim of the two-year collaboration has been to implement design tools and techniques for the development of enhanced thermal desorption products. Thermal desorption is a highly-specialised technique for the analysis of trace-level volatile organic compounds. This technique allows minute quantities of these compounds to be measured; however, there is an increasing demand from customers for greater sensitivity over a wider range of applications, which means new design methodologies need to be evaluated. The thermal desorption process combines a number of disparate chemical, thermal and mechanical disciplines, and the major design constraints arise from the need to cycle the sample through extremes in temperature. Following the implementation of a comprehensive product design specification, detailed design solutions have been developed using the latest 3D CAD techniques. The impact of the advanced design techniques is assessed in terms of improved product performance and reduced development times, and the wider implications of new product development within small companies are highlighted.  

  12. Thermal desorption spectroscopy of palladium and copper on silica (United States)

    Pierce, Daniel E.; Burns, Richard P.; Gabriel, Kenneth A.

    Thermal desorption spectroscopy of palladium and copper films grown on clean silica substrates was performed using CO2 laser heating. After cleaning the surface by high temperature heating, a controlled, low coverage dose of metal atoms was deposited on the substrate. Temperature ramping was achieved using a constant laser power, the value of which depended on the nature of the metal and substrate as well as the substrate size. At high temperatures (above 1025 K for palladium and above 975 K for copper), metal films vaporize and desorption spectra provide information about the nature of the metal deposit and metal-support interaction. With increasing coverage of palladium on silica, a positive temperature shift in the leading edge of desorption was seen. At higher coverages, above about 2 x 10(exp 15) atoms/sq cm, a common leading edge appears and zero-order kinetic analysis gave E(sub act) values between 3.9 and 4.3 +/- 0.1 eV which can be compared with the value of 3.83 eV for Delta (H(sub vap)) (1200 K) for palladium metal. Similar coverage-dependent properties were not seen for copper on silica; instead, a common desorption leading edge appeared down to submonolayer coverages. Zero-order analysis at about 1 x 10(exp 15) atoms/sq cm gave an E(sub act) of 3.3 +/- 0.1 eV, which is comparable with the value of 3.44 eV for Delta (H(sub vap)) (1100 K) for copper metal.

  13. Helium desorption in EFDA iron materials for use in nuclear fusion reactors; Desorcion de helio en materiales de fierro EFDA para su aplicacion en los reactores de fusion nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Salazar R, A. R.; Pinedo V, J. L. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Sanchez, F. J.; Ibarra, A.; Vila, R., E-mail: [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Av. Complutense No. 40, 28040 Madrid (Spain)


    In this paper the implantation with monoenergetic ions (He{sup +}) was realized with an energy of 5 KeV in iron samples (99.9999 %) EFDA (European Fusion Development Agreement) using a collimated beam, after this a Thermal Desorption Spectrometry of Helium (THeDS) was made using a leak meter that detects amounts of helium of up to 10{sup -}- {sup 12} mbar l/s. Doses with which the implantation was carried out were 2 x 10{sup 15} He{sup +} /cm{sup 2}, 1 x 10{sup 16} He{sup +} /cm{sup 2}, 2 x 10{sup 16} He{sup +} /cm{sup 2}, 1 x 10{sup 17} He{sup +} /cm{sup 2} during times of 90 s, 450 s, 900 s and 4500 s, respectively. Also, using the SRIM program was calculated the depth at which the helium ions penetrate the sample of pure ion, finding that the maximum distance is 0.025μm in the sample. For this study, 11 samples of Fe EFDA were prepared to find defects that are caused after implantation of helium in order to provide valuable information to the manufacture of materials for future fusion reactors. However understand the effects of helium in the micro structural evolution and mechanical properties of structural materials are some of the most difficult questions to answer in materials research for nuclear fusion. When analyzing the spectra of THeDS was found that five different groups of desorption peaks existed, which are attributed to defects of He caused in the material, these defects are He{sub n} V (2≤n≤6), He{sub n} V{sub m}, He V for the groups I, II and IV respectively. These results are due to the comparison of the peaks presented in the desorption spectrum of He, with those of other authors who have made theoretical calculations. Is important to note that the thermal desorption spectrum of helium was different depending on the dose with which the implantation of He{sup +} was performed. (Author)

  14. Absolute number densities of helium metastable atoms determined by atomic absorption spectroscopy in helium plasma-based discharges used as ambient desorption/ionization sources for mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Reininger, Charlotte; Woodfield, Kellie [Brigham Young University, Department of Chemistry and Biochemistry, Provo, UT 84602 (United States); Keelor, Joel D.; Kaylor, Adam; Fernández, Facundo M. [Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA 30332 (United States); Farnsworth, Paul B., E-mail: [Brigham Young University, Department of Chemistry and Biochemistry, Provo, UT 84602 (United States)


    The absolute number densities of helium atoms in the 2s {sup 3}S{sub 1} metastable state were determined in four plasma-based ambient desorption/ionization sources by atomic absorption spectroscopy. The plasmas included a high-frequency dielectric barrier discharge (HF-DBD), a low temperature plasma (LTP), and two atmospheric-pressure glow discharges, one with AC excitation and the other with DC excitation. Peak densities in the luminous plumes downstream from the discharge capillaries of the HF-DBD and the LTP were 1.39 × 10{sup 12} cm{sup −3} and 0.011 × 10{sup 12} cm{sup −3}, respectively. Neither glow discharge produced a visible afterglow, and no metastable atoms were detected downstream from the capillary exits. However, densities of 0.58 × 10{sup 12} cm{sup −3} and 0.97 × 10{sup 12} cm{sup −3} were measured in the interelectrode regions of the AC and DC glow discharges, respectively. Time-resolved measurements of metastable atom densities revealed significant random variations in the timing of pulsed absorption signals with respect to the voltage waveforms applied to the discharges. - Highlights: • We determine He metastable number densities for four plasma types • The highest number densities were observed in a dielectric barrier discharge • No helium metastable atoms were observed downstream from the exits of glow discharges.

  15. Development of methods for thermal desorption of iodine from carbon sorbent (United States)

    Shapovalova, E. A.; Hlopotov, R. A.


    The paper studies and proposes four circuits of thermal iodine desorption from coal, which excludes the use of chemical reagents. The method allows for the sublimation of iodine from coal, avoiding the stage of pre-concentration and crystallization of crude iodine-concentrate. The proposed solution allows carrying out the process of thermal desorption of iodine without unloading it from the reactor.

  16. Thermal vacancies and phase separation in bcc mixtures of helium-3 and helium-4

    Energy Technology Data Exchange (ETDEWEB)

    Fraass, Benedick Andrew [Univ. of Illinois, Urbana-Champaign, IL (United States). Dept. of Physics


    Thermal vacancy concentrations in crystals of 3He-4He mixtures have been determined. A new x-ray diffractometer-position sensitive detector system is used to make measurements of the absolute lattice parameter of the helium crystals with an accuracy of 300 ppM, and measurements of changes in lattice parameters to better than 60 ppM. The phase separation of the concentrated3He-4He mixtures has been studied in detail with the x-ray measurements. Vacancy concentrations in crystals with 99%, 51%, 28%, 12%, and 0% 3He have been determined. Phase separation has been studied in mixed crystals with concentrations of 51%, 28%, and 12% 3He and melting pressures between 3.0 and 6.1 MPa. The phase separation temperatures determined in this work are in general agreement with previous work. The pressure dependence of Tc, the phase separation temperature for a 50% mixture, is found to be linear: dTc/dP = -34 mdeg/MPa. The x-ray measurements are used to make several comments on the low temperature phase diagram of the helium mixtures.

  17. Mercury speciation during in situ thermal desorption in soil

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Min, E-mail:; Katz, Lynn E.; Liljestrand, Howard M.


    Highlights: • Impact of soil conditions on distribution and phase transitions of Hg was identified. • Metallic Hg was slowly transformed to Hg{sup 0} gas until the temperature reached 358.15 K. • Phase change of HgCl{sub 2(s)} completely occurred without decomposition at 335.15 K. • HgS remained solid in dry soil sharply decreased in the narrow temperature range. • Hg gas can be easily captured with higher vapor pressures of soil compositions. - Abstract: Metallic mercury (Hg{sup 0}) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury.

  18. Effect of weld thermal cycle on helium bubble formation in stainless steel (United States)

    Kano, F.; Nakahigashi, S.; Nakamura, H.; Uesugi, N.; Mitamura, T.; Terasawa, M.; Irie, H.; Fukuya, K.


    Helium bubble structure was examined on a helium-implanted stainless steel after applying two kinds of heat input. Helium ions were implanted on Type 304 stainless steel at 573 K from 2 to 200 appm to a peak depth of 0.5 μm from the surface. After that, weld thermal history was applied by an electron beam. The cooling rates were selected to be 370 and 680 K/s from 1023 to 773 K. TEM observation revealed that nucleation and growth of helium bubbles were strongly dependent on the cooling rate after welding and the helium concentration.

  19. Deuterium thermal desorption and re-emission from RAFM steels (United States)

    Ryabtsev, S. A.; Gasparyan, Yu M.; Harutyunyan, Z. R.; Timofeev, I. M.; Ogorodnikova, O. V.; Pisarev, A. A.


    In the present work, deuterium (D) retention and release during and after ion irradiation of reduced-activation ferritic-marthensitic steels (Eurofer) in comparison with the D retention in pure iron (Fe) was studied. The irradiation was done with 5 keV {{{{D}}}3}+ ions at room temperature at the fluence varied in the range of 1 × 1020-1 × 1022 D m-2. Thermal desorption spectroscopy (TDS) was also performed in situ in 45 min after irradiation. The D release from both materials between the end of irradiation and the start of TDS was very intensive and the integral amount of D measured during outgassing exceeded the D retention measured by TDS. An influence of surface oxidation on the D release due to contact with an environmental air was also demonstrated by comparison of in situ and ex situ TDS. The integral D retention in Eurofer was 1-2 orders of magnitude higher than in pure iron (Fe) due to the initially high concentration of defects in Eurofer. However, pre-annealing of Eurofer at 800 K reduced the defect concentration in Eurofer and, therefore, reduced the difference in the D retention in Fe and Eurofer.

  20. Desorption of isopropyl alcohol from adsorbent with non-thermal plasma. (United States)

    Shiau, Chen Han; Pan, Kuan Lun; Yu, Sheng Jen; Yan, Shaw Yi; Chang, Moo Been


    Effective desorption of isopropyl alcohol (IPA) from adsorbents with non-thermal plasma is developed. In this system, IPA is effectively adsorbed with activated carbon while dielectric barrier discharge is applied to replace the conventional thermal desorption process to achieve good desorption efficiency, making the treatment equipment smaller in size. Various adsorbents including molecular sieves and activated carbon are evaluated for IPA adsorption capacity. The results indicate that BAC has the highest IPA adsorption capacity (280.31 mg IPA/g) under the operating conditions of room temperature, IPA of 400 ppm, and residence time of 0.283 s among 5 adsorbents tested. For the plasma desorption process, the IPA selectivity of 89% is achieved with BAC as N2 is used as desorbing gas. In addition, as air or O2 is used as desorbing gas, the IPA desorption concentration is reduced, because air and O2 plasmas generate active species to oxidize IPA to form acetone, CO2, and even CO. Furthermore, the results of the durability test indicate that the amount of IPA desorbed increases with increasing desorption times and plasma desorption process has a higher energy efficiency if compared with thermal desorption. Overall, this study indicates that non-thermal plasma is a viable process for removing VOCs to regenerate adsorbent.

  1. Decomposition kinetics study of zirconium hydride by interrupted thermal desorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Mingwang; Liang, Li; Tang, Binghua; Xiang, Wei; Wang, Yuan; Cheng, Yanlin; Tan, Xiaohua, E-mail:


    Highlights: • Interrupted TDS was applied to investigate the mechanism of ZrH{sub 2} decomposition. • The activation energies for the five desorption peaks were determined. • The origins of the five desorption peaks were identified. • The γZrH phase was observed at ambient conditions. - Abstract: Thermal desorption kinetics of zirconium hydride powder were studied using thermogravimetry and simultaneous thermal desorption spectroscopy. The activation energies for observed desorption peaks were estimated according to Kissinger relation. The intermediate phase composition was studied using X-ray diffraction by rapid cooling on different stages of heating. The origins of the peaks were described as the equilibrium hydrogen pressure of a number of consecutive phase regions that decomposition reaction passed through. The zirconium monohydride γZrH was observed for extended periods of time at ambient conditions, which has been supposed to be metastable for a long time.

  2. Measurements of hydrogen content in bulk niobium by Thermal Desorption Spectroscopy

    CERN Document Server

    Hakovirta, M


    The hydrogen content of bulk niobium has been studied by Thermal Desorption Spectroscopy. The work has been focussed initially on the influence of the vacuum firing and the surface chemical treatment. It is planned to extend the investigation to niobium samples of different quality and origin to ascertain the interest of using the Thermal Desorption Spectroscopy technique to qualify the raw niobium sheets to be used for cavity manufacturing

  3. Treating high-mercury-containing lamps using full-scale thermal desorption technology. (United States)

    Chang, T C; You, S J; Yu, B S; Chen, C M; Chiu, Y C


    The mercury content in high-mercury-containing lamps are always between 400 mg/kg and 200,000 mg/kg. This concentration is much higher than the 260 mg/kg lower boundary recommended for the thermal desorption process suggested by the US Resource Conservation and Recovery Act. According to a Taiwan EPA survey, about 4,833,000 cold cathode fluorescent lamps (CCFLs), 486,000 ultraviolet lamps and 25,000 super high pressure mercury lamps (SHPs) have been disposed of in the industrial waste treatment system, producing 80, 92 and 9 kg-mercury/year through domestic treatment, offshore treatment and air emissions, respectively. To deal with this problem we set up a full-scale thermal desorption process to treat and recover the mercury from SHPs, fluorescent tube tailpipes, fluorescent tubes containing mercury-fluorescent powder, and CCFLs containing mercury-fluorescent powder and monitor the use of different pre-heating temperatures and desorption times. The experimental results reveal that the average thermal desorption efficiency of SHPs and fluorescent tube tailpipe were both 99.95%, while the average thermal desorption efficiencies of fluorescent tubes containing mercury-fluorescent powder were between 97% and 99%. In addition, a thermal desorption efficiency of only 69.37-93.39% was obtained after treating the CCFLs containing mercury-fluorescent powder. These differences in thermal desorption efficiency might be due to the complexity of the mercury compounds contained in the lamps. In general, the thermal desorption efficiency of lamps containing mercury-complex compounds increased with higher temperatures.

  4. Functional differential equations of neutral type with integrable weak singularity: hydrogen thermal desorption model (United States)

    Zaika, Yury V.; Kostikova, Ekaterina K.


    One of the technological challenges for hydrogen materials science (including the ITER project) is the currently active search for structural materials with various potential applications that will have predetermined limits of hydrogen permeability. One of the experimental methods is thermal desorption spectrometry (TDS). A hydrogen-saturated sample is degassed under vacuum and monotone heating. The desorption flux is measured by mass spectrometer to determine the character of interactions of hydrogen isotopes with the solid. We are interested in such transfer parameters as the coefficients of diffusion, dissolution, desorption. The paper presents a thermal desorption functional differential equations of neutral type with integrable weak singularity and a numerical method for TDS spectrum simulation, where only integration of a nonlinear system of low order ordinary differential equations (ODE) is required. This work is supported by the Russian Foundation for Basic Research (project 15-01-00744).

  5. In-injection port thermal desorption for explosives trace evidence analysis. (United States)

    Sigman, M E; Ma, C Y


    A gas chromatographic method utilizing thermal desorption of a dry surface wipe for the analysis of explosives trace chemical evidence has been developed and validated using electron capture and negative ion chemical ionization mass spectrometric detection. Thermal desorption was performed within a split/splitless injection port with minimal instrument modification. Surface-abraded Teflon tubing provided the solid support for sample collection and desorption. Performance was characterized by desorption efficiency, reproducibility, linearity of the calibration, and method detection and quantitation limits. Method validation was performed with a series of dinitrotoluenes, trinitrotoluene, two nitroester explosives, and one nitramine explosive. The method was applied to the sampling of a single piece of debris from an explosion containing trinitrotoluene.

  6. Modelling of hydrogen thermal desorption spectrum in nonlinear dynamical boundary-value problem (United States)

    Kostikova, E. K.; Zaika, Yu V.


    One of the technological challenges for hydrogen materials science (including the ITER project) is the currently active search for structural materials with various potential applications that will have predetermined limits of hydrogen permeability. One of the experimental methods is thermal desorption spectrometry (TDS). A hydrogen-saturated sample is degassed under vacuum and monotone heating. The desorption flux is measured by mass spectrometer to determine the character of interactions of hydrogen isotopes with the solid. We are interested in such transfer parameters as the coefficients of diffusion, dissolution, desorption. The paper presents a distributed boundary-value problem of thermal desorption and a numerical method for TDS spectrum simulation, where only integration of a nonlinear system of low order (compared with, e.g., the method of lines) ordinary differential equations (ODE) is required. This work is supported by the Russian Foundation for Basic Research (project 15-01-00744).

  7. Thermal desorption gas chromatography and positron annihilation spectroscopy, contribution to alpha decay studies in actinide-doped matrices

    Energy Technology Data Exchange (ETDEWEB)

    Roudil, D.; Jegou, C.; Vella, F.; Folch, B.; Broudic, V. [Commissariat a l' energie Atomique, Rhone Valley Research Center, 30200 Bagnols-sur-Ceze (France); Pik, R. [CNRS-CRPG, 54506 Vandoeuvre-les-Nancy (France); Barthe, M. F. [CNRS-CEMHTI, 45071 Orleans (France); Cuney, M. [Universite de Nancy, CNRS, CREGU, 54506 Vandoeuvre-les-Nancy (France); Pipon, Y. [IPNL CNRS, IN2P3 UMR 5822, 69622 Villeurbanne (France)


    A thermal desorption system coupled with a gas analyzer has been adapted and nuclearized to investigate He behavior in actinide-doped samples used to simulate alpha decay aging. This technique widely used in standard laboratories allows measurements of the helium balance and reduced diffusion coefficients, and a preliminary evaluation of helium locations (related to defects and thermal annealing). In our system implemented in a hot cell, small samples are annealed at up to 1100 C degrees in controlled atmosphere. They are inserted in a 10 to 20 cm{sup 3} vessel connected to a micro gas chromatography detector. Initial system calibration allowed concentration measurements within about 10%. Comparisons with the CNRS/CRPG rare gas analysis laboratory at Nancy (France) were applied on natural uranium oxides originating from Oklo (Gabon) and Mistamisk (Canada). The latest results obtained on Mistamisk samples are in good agreement, with a maximum relative deviation of 14%. The data were used to determine the activation energy of about 1{sup -1}. On (U,Pu)O{sub 2} and PuO{sub 2} samples the experiments highlight the impact of defects (up to 100 dpa) on He mobility. The defect population must now be characterized to improve our knowledge of He/defect interactions and mechanisms. In addition and synergy to the macroscopic release measurements by gas chromatography, positron annihilation spectroscopy, an effective nondestructive technique for vacancy defect investigation, was also developed and nuclearized in our hot cell laboratory as part of a project supported by the NOMADE and MATINEX research groups. Specific protocols for doped sample analysis were also developed and validated with UO{sub 2} and (U,Pu)O{sub 2} samples. (authors)

  8. Investigation of the interaction of benzene with vanadium-molybdenum oxide catalysts by programmed thermal desorption

    Energy Technology Data Exchange (ETDEWEB)

    Belokopytov, Yu.V.; Pyatnitskii, Yu.I.; Grebennikov, Yu.N.


    Programmed thermal desorption was used to investigate the interaction of benzene with vanadium-molybdenum oxide catalysts. It was established that the amount of maleic anhydride desorbed from the catalyst surface depends on the catalyst composition and that it varies with its activity and selectivity.

  9. Design and development of a leak tight helium II valve with low thermal impact (United States)

    Mills, G. L.


    The Lambda Point Experiment is a precision measurement of the specific heat of liquid helium near the lambda point phase transition, in the low gravity of the space shuttle. It requires a valve for the helium sample chamber that operates at helium II temperature, has minimal thermal disturbance to the rest of the instrument, and is leak tight to helium II. A valve meeting these and all of the other science and engineering requirements of the mission has been developed by Ball. Initially, both torque and pressure actuated valve concepts were considered; the final flight design is pressure actuated. The rational for this decision as well as the rest of the valve design are given. The paper also discusses the manufacturing and testing of the prototype and flight valves. Test data is presented and discussed.

  10. A soil-column gas chromatography (SCGC) approach to explore the thermal desorption behavior of hydrocarbons from soils. (United States)

    Yu, Ying; Liu, Liang; Shao, Ziying; Ju, Tianyu; Sun, Bing; Benadda, Belkacem


    A soil-column gas chromatography approach was developed to simulate the mass transfer process of hydrocarbons between gas and soil during thermally enhanced soil vapor extraction (T-SVE). Four kinds of hydrocarbons-methylbenzene, n-hexane, n-decane, and n-tetradecane-were flowed by nitrogen gas. The retention factor k' and the tailing factor T f were calculated to reflect the desorption velocities of fast and slow desorption fractions, respectively. The results clearly indicated two different mechanisms on the thermal desorption behaviors of fast and slow desorption fractions. The desorption velocity of fast desorption fraction was an exponential function of the reciprocal of soil absolute temperature and inversely correlated with hydrocarbon's boiling point, whereas the desorption velocity of slow desorption fraction was an inverse proportional function of soil absolute temperature, and inversely proportional to the log K OW value of the hydrocarbons. The higher activation energy of adsorption was found on loamy soil with higher organic content. The increase of carrier gas flow rate led to a reduction in the apparent activation energy of adsorption of slow desorption fraction, and thus desorption efficiency was significantly enhanced. The obtained results are of practical interest for the design of high-efficiency T-SVE system and may be used to predict the remediation time.

  11. PCDD/F formation during thermal desorption of p,p'-DDT contaminated soil. (United States)

    Zhao, Zhonghua; Ni, Mingjiang; Li, Xiaodong; Buekens, Alfons; Yan, Jianhua


    Thermal treatment of polychlorinated biphenyls (PCB) contaminated soil was shown in earlier work to generate polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). In this study, the PCDD/F were studied arising during the remediation of p,p'-DDT contaminated soil by thermal desorption. Three kinds of soil (sandy, clayey and lateritic soil) were tested to investigate the effect of soil texture on PCDD/F formation. Those soils were artificially polluted with p,p'-DDT, obtaining a concentration level of 100 mg/kg. Thermal desorption experiments were conducted for 10 min at 300 °C in an air atmosphere. The total concentration of PCDD/F generated for three soils were 331, 803 and 865 ng/kg, respectively, and TeCDD and TeCDF were dominant among all PCDD/F congeners. After thermal desorption, the total amount of PCDD/F generated both in soil and in off-gas correlated positively with the amount of DDT added to soil. In addition, a possible pathway of the formation of PCDD/F was presented.

  12. Characteristics of an activated carbon monolith for a helium adsorption compressor

    NARCIS (Netherlands)

    Lozano-Castello, D.; Jorda-Beneyto, M.; Cazorla-Amoros, D.; Linares-Solano, A.; Burger, Johannes Faas; ter Brake, Hermanus J.M.; Holland, Herman J.


    An activated carbon monolith (ACM) with a high helium adsorption/desorption capacity, high density, low pressure drop, low thermal expansion and good mechanical properties was prepared and applied successfully in a helium adsorption compressor as a part of a 4.5 K sorption cooler. The activated

  13. VAC*TRAX - thermal desorption for mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    McElwee, M.J.; Palmer, C.R. [RUST-Clemson Technical Center, Anderson, SC (United States)


    The patented VAC*TRAX process was designed in response to the need to remove organic constituents from mixed waste, waste that contains both a hazardous (RCRA or TSCA regulated) component and a radioactive component. Separation of the mixed waste into its hazardous and radioactive components allows for ultimate disposal of the material at existing, permitted facilities. The VAC*TRAX technology consists of a jacketed vacuum dryer followed by a condensing train. Solids are placed in the dryer and indirectly heated to temperatures as high as 2600{degrees}C, while a strong vacuum (down to 50 mm Hg absolute pressure) is applied to the system and the dryer is purged with a nitrogen carrier gas. The organic contaminants in the solids are thermally desorbed, swept up in the carrier gas and into the condensing train where they are cooled and recovered. The dryer is fitted with a filtration system that keeps the radioactive constituents from migrating to the condensate. As such, the waste is separated into hazardous liquid and radioactive solid components, allowing for disposal of these streams at a permitted incinerator or a radioactive materials landfill, respectively. The VAC*TRAX system is designed to be highly mobile, while minimizing the operational costs with a simple, robust process. These factors allow for treatment of small waste streams at a reasonable cost.

  14. Thermal Performance of a Dual-Channel, Helium-Cooled, Tungsten Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)



    Helium-cooled, refractory heat exchangers are now under consideration for first wall and divertor applications. These refractory devices take advantage of high temperature operation with large delta-Ts to effectively handle high heat fluxes. The high temperature helium can then be used in a gas turbine for high-efficiency power conversion. Over the last five years, heat removal with helium was shown to increase dramatically by using porous metal to provide a very large effective surface area for heat transfer in a small volume. Last year, the thermal performance of a bare-copper, dual-channel, helium-cooled, porous metal divertor mock-up was evaluated on the 30 kW Electron Beam Test System at Sandia National Laboratories. The module survived a maximum absorbed heat flux of 34.6 MW/m{sup 2} and reached a maximum surface temperature of 593 C for uniform power loading of 3 kW absorbed on a 2-cm{sup 2} area. An impressive 10 kW of power was absorbed on an area of 24 cm{sup 2}. Recently, a similar dual-module, helium-cooled heat exchanger made almost entirely of tungsten was designed and fabricated by Thermacore, Inc. and tested at Sandia. A complete flow test of each channel was performed to determine the actual pressure drop characteristics. Each channel was equipped with delta-P transducers and platinum RTDs for independent calorimetry. One mass flow meter monitored the total flow to the heat exchanger, while a second monitored flow in only one of the channels. The thermal response of each tungsten module was obtained for heat fluxes in excess of 5 MW/m{sup 2} using 50 C helium at 4 MPa. Fatigue cycles were also performed to assess the fracture toughness of the tungsten modules. A description of the module design and new results on flow instabilities are also presented.

  15. Comparison of a disposable sorptive sampler with thermal desorption in a gas chromatographic inlet, or in a dedicated thermal desorber, to conventional stir bar sorptive extraction-thermal desorption for the determination of micropollutants in water. (United States)

    Wooding, Madelien; Rohwer, Egmont R; Naudé, Yvette


    The presence of micropollutants in the aquatic environment is a worldwide environmental concern. The diversity of micropollutants and the low concentration levels at which they may occur in the aquatic environment have greatly complicated the analysis and detection of these chemicals. Two sorptive extraction samplers and two thermal desorption methods for the detection of micropollutants in water were compared. A low-cost, disposable, in-house made sorptive extraction sampler was compared to SBSE using a commercial Twister sorptive sampler. Both samplers consisted of polydimethylsiloxane (PDMS) as a sorptive medium to concentrate micropollutants. Direct thermal desorption of the disposable samplers in the inlet of a GC was compared to conventional thermal desorption using a commercial thermal desorber system (TDS). Comprehensive gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS) was used for compound separation and identification. Ten micropollutants, representing a range of heterogeneous compounds, were selected to evaluate the performance of the methods. The in-house constructed sampler, with its associated benefits of low-cost and disposability, gave results comparable to commercial SBSE. Direct thermal desorption of the disposable sampler in the inlet of a GC eliminated the need for expensive consumable cryogenics and total analysis time was greatly reduced as a lengthy desorption temperature programme was not required. Limits of detection for the methods ranged from 0.0010 ng L-1 to 0.19 ng L-1. For most compounds, the mean (n = 3) recoveries ranged from 85% to 129% and the % relative standard deviation (% RSD) ranged from 1% to 58% with the majority of the analytes having a %RSD of less than 30%. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Multivariate analysis of progressive thermal desorption coupled gas chromatography-mass spectrometry.

    Energy Technology Data Exchange (ETDEWEB)

    Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel; Borek, Theodore Thaddeus, III


    Thermal decomposition of poly dimethyl siloxane compounds, Sylgard{reg_sign} 184 and 186, were examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a method of producing multiway data using a stepped thermal desorption. The technique involves sequentially heating a sample of the material of interest with subsequent analysis in a commercial GC/MS system. The decomposition chromatograms were analyzed using multivariate analysis tools including principal component analysis (PCA), factor rotation employing the varimax criterion, and multivariate curve resolution. The results of the analysis show seven components related to offgassing of various fractions of siloxanes that vary as a function of temperature. Thermal desorption coupled with gas chromatography-mass spectrometry (TD/GC-MS) is a powerful analytical technique for analyzing chemical mixtures. It has great potential in numerous analytic areas including materials analysis, sports medicine, in the detection of designer drugs; and biological research for metabolomics. Data analysis is complicated, far from automated and can result in high false positive or false negative rates. We have demonstrated a step-wise TD/GC-MS technique that removes more volatile compounds from a sample before extracting the less volatile compounds. This creates an additional dimension of separation before the GC column, while simultaneously generating three-way data. Sandia's proven multivariate analysis methods, when applied to these data, have several advantages over current commercial options. It also has demonstrated potential for success in finding and enabling identification of trace compounds. Several challenges remain, however, including understanding the sources of noise in the data, outlier detection, improving the data pretreatment and analysis methods, developing a software tool for ease of use by the chemist, and demonstrating our belief

  17. Analysis of organic compounds in water by direct adsorption and thermal desorption. [Dissertation

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, J.P. Jr.


    An instrument was designed and constructed that makes it possible to thermally desorb organic compounds from wet adsorption traps to a gas chromatograph in an efficient and reproducible manner. Based on this device, a method of analyzing organics in water was developed that is rapid, sensitive, and of broader scope than previously published methods. The system was applied to the analysis of compounds with a wide range of volatilities. Temperature and flow parameters were investigated and specific procedures for quantitation were established. Real samples, including tap water and well water, were also analyzed with this system. Depending on the analysis requirements, the thermal desorption instrument can be used with either packed column or high resolution open-tubular column gas chromatography. The construction plans of normal and high-resolution systems are presented along with chromatograms and data produced by each. Finally, an improved thermal desorption instrument is described. Modifications to the basic system, including splitless injection onto a capillary column, automation, dual cryogenic trapping, reduction of scale, and effluent splitting to dual detection are discussed at length as they relate to the improved instrument.

  18. Energy spectrum of thermal counterflow turbulence in superfluid helium-4 (United States)

    Gao, J.; Varga, E.; Guo, W.; Vinen, W. F.


    Recent preliminary experiments [A. Marakov et al., Phys. Rev. B 91, 094503 (2015)., 10.1103/PhysRevB.91.094503] using triplet-state He2 excimer molecules as tracers of the motion of the normal fluid have shown that, in thermal counterflow turbulence in superfluid 4He, small-scale turbulence in the superfluid component is accompanied, above a critical heat flux, by partially coupled large-scale turbulence in both fluids, with an energy spectrum proportional to k-m, where m is greater than the Kolmogorov value of 5/3. Here we report the results of a more detailed study of this spectrum over a range of temperatures and heat fluxes using the same experimental technique. We show that the exponent m varies systematically with heat flux but is always greater than 5/3. We interpret this as arising from the steady counterflow, which causes large-scale eddies in the two fluids to be pulled in opposite directions, giving rise to dissipation by mutual friction at all wave numbers, mutual friction tending also to oppose the effect of the counterflow. Comparison of the experimental results with a simple theory suggests that this process may be more complicated than we might have hoped, but experiments covering a wider range of heat fluxes, which are technically very difficult, will probably be required before we can arrive at a convincing theory.

  19. Surface modification of Raw and Frit glazes by non-thermal helium plasma jet (United States)

    Ghasemi, M.; Sohbatzadeh, F.; Mirzanejhad, S.


    In this study, non-thermal atmospheric pressure plasma jet (APPJ) was utilized to improve the adhesion of Raw and Frit glazes. These glazes are widely used in industry to make chinaware, decorative dishes and tiles applied at wall and floor. As they should be painted before use, increasing their adhesive properties leads to a better paint durability. Electrical and optical characteristics of the plasma jet are investigated to optimize for efficient treatment. Contact angle measurement and surface energy calculation demonstrate a drastic increase after the plasma treatment indicating wettability and paintability enhancement. Moreover, atomic force microscopy and X-ray photoelectron spectroscopy analyses were performed on the specimens to explore the influence of helium plasma jet on the physical and chemical properties of the glazes, microscopically. AFM analysis reveals surface etching resulted from the bombardment of the solid surfaces by the APPJ using helium fed gas. The process aims to enhance adhesive properties of glaze surfaces.

  20. Determination of a Polymeric Hindered Amine Light Stabilizer in Polypropylene Formulated with Magnesium Hydroxide Flame Retardant by Reactive Thermal Desorption-Gas Chromatography

    National Research Council Canada - National Science Library

    TAGUCHI, Yoshihiko; ISHIDA, Yasuyuki; OHTANI, Hajime; BEKKU, Hiroyuki; SERA, Masaya


    A polymeric hindered amine light stabilizer (HALS), Tinuvin 622 (MW = 4000), in PP materials formulated with a magnesium hydroxide flame retardant was determined by reactive thermal desorption (RTD...

  1. Thermodynamic properties and transport coefficients of two-temperature helium thermal plasmas (United States)

    Guo, Xiaoxue; Murphy, Anthony B.; Li, Xingwen


    Helium thermal plasmas are in widespread use in arc welding and many other industrial applications. Simulation of these processes relies on accurate plasma property data, such as plasma composition, thermodynamic properties and transport coefficients. Departures from LTE (local thermodynamic equilibrium) generally occur in some regions of helium plasmas. In this paper, properties are calculated allowing for different values of the electron temperature, T e, and heavy-species temperature, T h, at atmospheric pressure from 300 K to 30 000 K. The plasma composition is first calculated using the mass action law, and the two-temperature thermodynamic properties are then derived. The viscosity, diffusion coefficients, electrical conductivity and thermal conductivity of the two-temperature helium thermal plasma are obtained using a recently-developed method that retains coupling between electrons and heavy species by including the electron-heavy-species collision term in the heavy-species Boltzmann equation. It is shown that the viscosity and the diffusion coefficients strongly depend on non-equilibrium ratio θ (θ ={{T}\\text{e}}/{{T}\\text{h}} ), through the plasma composition and the collision integrals. The electrical conductivity, which depends on the electron number density and ordinary diffusion coefficients, and the thermal conductivity have similar dependencies. The choice of definition of the Debye length is shown to affect the electrical conductivity significantly for θ  >  1. By comparing with literature data, it is shown that the coupling between electrons and heavy species has a significant influence on the electrical conductivity, but not on the viscosity. Plasma properties are tabulated in the supplementary data.

  2. Retention of hydrogen isotopes and helium in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Mitsumasa; Sato, Rikiya; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.


    In the present study, a thin foil of nickel was irradiated by H{sub 2}{sup +}, D{sub 2}{sup +} and He{sup +} to a fluence of 1.2-6.0x10{sup 20}/m{sup 2} using the TBTS (Tritium Beam Test System) apparatus. The thermal desorption spectroscopy (TDS) technique was employed to evaluate the total amount of retained hydrogen isotope and helium atoms in nickel. In the spectra, two peaks appeared at 440-585K and 720-735K for helium. Hydrogen isotopes irradiation after helium preirradiation were found to enhance the helium release and to decrease the peak temperatures. Helium irradiation after hydrogen isotopes preirradiation were found to enhance the helium release, but the peak temperature showed little difference from that without preirradiation. (author)

  3. Thermal desorption remediation in relation to landfill disposal at isolated sites in northern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Walker, G.; Henze, M. [ATCO Electric Ltd., Edmonton, AB (Canada); Fernuik, N.; MacKinnon, B. [Thurber Environmental Consultants Ltd., Edmonton, AB (Canada); Nelson, D. [Nelson Environmental Remediation Ltd., Spruce Grove, AB (Canada)


    Thermal desorption (TD) involves the application of heat to organic-contaminated soil to release and thermally destruct contaminants using high temperatures. An overview of the technique used in the remediation of diesel-contaminated sites was presented. The paper was divided into 2 parts, the first of which provided an overview of TD at 2 electric company sites with a total of 29,000 tonnes of diesel-contaminated soil. Site contamination occurred mainly through the loading, storage and dispensing of diesel fuel. Petroleum lubricants, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), glycols and metals were among the other contaminants. Remediation work was comprised of dig and dump (DD) or thermal desorption (TD) treatment of contaminated soils as well as the removal of underground facilities including concrete foundations, screw anchors, storage tanks, pipelines and grounding grids. The TD process, and productivity with both clay and sand soil types was reviewed, and an analysis of direct, indirect and total costs was presented. Issues concerning planning, production rates, practical field experience and quality control procedures were discussed, in addition to limitations such the treatment's inability to remediate metals, sensitivity to soil water content, and water demands for soil processing. The second section described the role of TD in a staged remediation for 46,000 tonnes of diesel-contaminated soil at Fox Lake, a remote northern community accessible by winter road and ice bridges. The challenges of ice bridge construction and maintenance, excavation backfilling and soil transport at low temperature were reviewed. An outline of consultation processes with First Nations was presented, as well as details of site operations and soil hauling, truck restrictions and coordination over the ice bridge, alternate backfill sources, and TD soil treatment of the contaminated soil. 2 tabs.

  4. Cool-down acceleration of G-M cryocoolers with thermal oscillations passively damped by helium (United States)

    Webber, R. J.; Delmas, J.


    4 K Gifford-McMahon cryocoolers suffer from inherent temperature oscillations which can be a problem for certain attached electronic instrumentation. Sumitomo Heavy Industries has exploited the high volumetric specific heat of super-critical He to quell these oscillations (approx. 10 dB) by strongly thermally linking a separate vessel of He to the second stage; no significant thermal resistance is added between the payload and the working gas of the cryocooler. A noticeable effect of the helium damper is to increase the cool-down time of the second stage below 10 K. For the operation of niobium-based superconducting electronics (NbSCE), a common practice is to warm the circuits above the critical temperature (∼9 K) and then cool to the operating point in order to redistribute trapped magnetic fluxons, so for NbSCE users, the time to cool from 10 K is important. The gas in the helium damper is shared between a room-temperature buffer tank and the 2nd stage vessel, which are connected by a capillary tube. We show that the total cool-down time below 10 K can be substantially reduced by introducing a combination of thermal linkages between the cryocooler and the capillary tube and in-line relief valves, which control the He mass distribution between the warm canister and cold vessel. The time to reach operating temperature from the superconducting transition has been reduced to <25% of the time needed without these low-cost modifications.

  5. Thermal conductivity and Kapitza resistance of epoxy resin fiberglass tape at superfluid helium temperature (United States)

    Baudouy, B.; Polinski, J.


    The system of materials composed of fiberglass epoxy resin impregnated tape constitutes in many cases the electrical insulation for "dry"-type superconducting accelerator magnet such as Nb 3Sn magnets. Nb 3Sn magnet technology is still under development in a few programs to reach higher magnetic fields than what NbTi magnets can produce. The European program, Next European Dipole (NED), is one of such programs and it aims to develop and construct a 15 T class Nb 3Sn magnet mainly for upgrading the Large Hardron Collider. Superfluid helium is considered as one possible coolant and since the magnet has been designed with a "dry" insulation, the thermal conductivity and the Kapitza resistance of the electrical insulation are the key properties that must be know for the thermal design of such a magnet. Accordingly, property measurements of the epoxy resin fiberglass tape insulation system developed for the NED project was carried out in superfluid helium. Four sheets with thicknesses varying from 40 to 300 μm have been tested in a steady-state condition. The determined thermal conductivity, k, is [(25.8 ± 2.8) · T - (12.2 ± 4.9)] × 10 -3 W m -1 K -1 and the Kapitza resistance is given by R K = (1462 ± 345) · T(-1.86 ± 0.41) × 10 -6 Km 2 W -1 in the temperature range of 1.55-2.05 K.

  6. Thermal Shock test of Helium tank for HL-LHC crab cavities

    CERN Document Server


    Thermal shock test of the prototype of the helium tank for the HL-LHC crab cavities. We put the tank in a bath of liquid nitrogen so that it goes from 300 K to 77 K in ~1 hr. We had some sensors inside to make sure the loads and the deformations are not too big. The tank is then put back in the air and heated up. We do this cycle 5 times ato validate the design made for this device. Before this test we run a pressure test (we put a higher pressure inside).

  7. Sorbent Tube Sampling and an Automated Thermal Desorption System for Halocarbon Analysis

    Directory of Open Access Journals (Sweden)

    Md. Anwar Hossain Khan


    Full Text Available Development and deployment of the analytical sys tem, ATD-GC-ECD has been established to monitor a suite of halogenated com pounds found in the atmosphere at trace concentrations. The instrument has been used to monitor urban back ground emission flux levels in Bristol, UK as well as Yellow stone National Park, USA and an in door rain forest (Wild Walk@Bristol, UK. The newly established sorbent tube sampling system is small and easily portable and has been used for large volume sample collection from remote areas. Auto mated Thermal Desorption (ATD provides routine atmospheric measurements with out cryogenic pre-concentration. The instrument provides good precision where the detection limit was _T_n3 pptv for the species of interest and the reproducibility was within 4% for all of the selected halocarbons. The results from two field experiments have also pro vided insight about natural missing sources of some ozone depleting halocarbons.

  8. Quantification of Selected Vapour-Phase Compounds using Thermal Desorption-Gas Chromatography

    Directory of Open Access Journals (Sweden)

    McLaughlin DWJ


    Full Text Available A robust method for the analysis of selected vapour phase (VP compounds in mainstream smoke (MSS is described. Cigarettes are smoked on a rotary smoking machine and the VP that passes through the Cambridge filter pad collected in a TedlarA¯ bag. On completion of smoking, the bag contents are sampled onto an adsorption tube containing a mixed carbon bed. The tube is subsequently analysed on an automated thermal desorption (TD system coupled to a gas chromatography-flame ionization detector (GC-FID using a PoraPLOT-Q column. Quantification of 14 volatile compounds including the major carbonyls is achieved. Details of the method validation data are included in this paper. This method has been used to analyse the VP of cigarette MSS over a wide range of ‘tar’ deliveries and configurations with excellent repeatability. Results for the University of Kentucky reference cigarette 1R4F are in good agreement with reported values.

  9. Deuterium thermal desorption from Ni-rich deuterated Mg thin films

    Energy Technology Data Exchange (ETDEWEB)

    Patel, N.; Kale, A.; Mosaner, P.; Checchetto, R.; Miotello, A. [Dipartimento di Fisica dell' Universita di Trento, I-38050 Povo (Italy); Das, G. [Dipartimento di Medicina Sperimentale e Clinica, Universita degli Studi, Magna Grecia, I-88100 Catanzaro (Italy)


    Mg-Ni multilayers and Ni-rich Mg thin films were deposited by electron gun and pulsed laser deposition, respectively. Samples were submitted to thermal treatment in deuterium or hydrogen atmosphere at 423 K and {proportional_to}10{sup 5} Pa pressure to promote the metal to hydride phase transition. The H chemical bonding in the multilayer samples, after annealing in H{sub 2} atmosphere, was examined by Fourier transform infrared spectroscopy: the obtained spectra suggest that the samples with the Mg:Ni=2:1 atomic ratio contain the Mg{sub 2}NiH{sub 4} phase while the samples with lower Ni concentration contain both the MgH{sub 2} and the Mg{sub 2}NiH{sub 4} phases. The effect of the Ni additive on the stability of the deuteride phase was studied by thermal desorption spectroscopy (TDS). The TDS spectra of the single-phase Mg{sub 2}NiD{sub 4} samples show a TDS peak at 400 K. The TDS spectra of the two-phase samples show both the D{sub 2} desorption peak at 400 K and a second peak at higher temperature that we attributed to the dissociation of the MgD{sub 2} phase. The high-temperature peak shifts to lower temperatures by increasing the Ni content. It is suggested that in the two-phase samples, the lattice volumes having the Mg{sub 2}Ni structure resulting from the dissociation of the Mg{sub 2}NiD{sub 4} phase reduce the thermodynamic stability of the MgD{sub 2} phase. (author)

  10. Operable Unit 7-13/14 in situ thermal desorption treatability study work plan

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, P.; Nickelson, D.; Hyde, R.


    This Work Plan provides technical details for conducting a treatability study that will evaluate the application of in situ thermal desorption (ISTD) to landfill waste at the Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). ISTD is a form of thermally enhanced vapor vacuum extraction that heats contaminated soil and waste underground to raise its temperature and thereby vaporize and destroy most organics. An aboveground vapor vacuum collection and treatment system then destroys or absorbs the remaining organics and vents carbon dioxide and water to the atmosphere. The technology is a byproduct of an advanced oil-well thermal extraction program. The purpose of the ISTD treatability study is to fill performance-based data gaps relative to off-gas system performance, administrative feasibility, effects of the treatment on radioactive contaminants, worker safety during mobilization and demobilization, and effects of landfill type waste on the process (time to remediate, subsidence potential, underground fires, etc.). By performing this treatability study, uncertainties associated with ISTD as a selected remedy will be reduced, providing a better foundation of remedial recommendations and ultimate selection of remedial actions for the SDA.


    This treatability study report presents the results of laboratory and field tests on the effectiveness of a new decontamination process for soils containing 2,4-D/2,4,5-T and traces of dioxin. The process employs three operations, thermal desorption, condensation and absorp...

  12. An infrared measurement of chemical desorption from interstellar ice analogues (United States)

    Oba, Y.; Tomaru, T.; Lamberts, T.; Kouchi, A.; Watanabe, N.


    In molecular clouds at temperatures as low as 10 K, all species except hydrogen and helium should be locked in the heterogeneous ice on dust grain surfaces. Nevertheless, astronomical observations have detected over 150 different species in the gas phase in these clouds. The mechanism by which molecules are released from the dust surface below thermal desorption temperatures to be detectable in the gas phase is crucial for understanding the chemical evolution in such cold clouds. Chemical desorption, caused by the excess energy of an exothermic reaction, was first proposed as a key molecular release mechanism almost 50 years ago1. Chemical desorption can, in principle, take place at any temperature, even below the thermal desorption temperature. Therefore, astrochemical network models commonly include this process2,3. Although there have been a few previous experimental efforts4-6, no infrared measurement of the surface (which has a strong advantage to quantify chemical desorption) has been performed. Here, we report the first infrared in situ measurement of chemical desorption during the reactions H + H2S → HS + H2 (reaction 1) and HS + H → H2S (reaction 2), which are key to interstellar sulphur chemistry2,3. The present study clearly demonstrates that chemical desorption is a more efficient process for releasing H2S into the gas phase than was previously believed. The obtained effective cross-section for chemical desorption indicates that the chemical desorption rate exceeds the photodesorption rate in typical interstellar environments.

  13. Production of stable, non-thermal atmospheric pressure rf capacitive plasmas using gases other than helium or neon (United States)

    Park, Jaeyoung; Henins, Ivars


    The present invention enables the production of stable, steady state, non-thermal atmospheric pressure rf capacitive .alpha.-mode plasmas using gases other than helium and neon. In particular, the current invention generates and maintains stable, steady-state, non-thermal atmospheric pressure rf .alpha.-mode plasmas using pure argon or argon with reactive gas mixtures, pure oxygen or air. By replacing rare and expensive helium with more readily available gases, this invention makes it more economical to use atmospheric pressure rf .alpha.-mode plasmas for various materials processing applications.

  14. Non-isothermal kinetics of the thermal desorption of mercury from a contaminated soil

    Directory of Open Access Journals (Sweden)

    López, Félix A.


    Full Text Available The Almadén mining district (Ciudad Real, Spain was the largest cinnabar (mercury sulphide mine in the world. Its soils have high levels of mercury a consequence of its natural lithology, but often made much worse by its mining history. The present work examines the thermal desorption of two contaminated soils from the Almadén area under non-isothermal conditions in a N2 atmosphere, using differential scanning calorimetry (DSC. DSC was performed at different heating rates between room temperature and 600 °C. Desorption temperatures for different mercury species were determined. The Friedman, Flynn-Wall-Ozawa and Coasts–Redfern methods were employed to determine the reaction kinetics from the DSC data. The activation energy and pre-exponential factor for mercury desorption were calculated.El distrito minero de Almadén (Ciudad Real, España tiene la mayor mina de cinabrio (sulfuro de mercurio del mundo. Sus suelos tienen altos niveles de mercurio como consecuencia de su litología natural, pero a menudo su contenido en mercurio es mucho más alto debido a la historia minera de la zona. Este trabajo examina la desorción térmica de dos suelos contaminados procedentes de Almadén bajo condiciones isotérmicas en atmósfera de N2, empleando calorimetría diferencial de barrido (DSC. La calorimetría se llevó a cabo a diferentes velocidades de calentamiento desde temperatura ambiente hasta 600 °C. Se determinaron las diferentes temperaturas de desorción de las especies de mercurio presentes en los suelos. Para determinar la cinética de reacción a partir de los datos de DSC se utilizaron los métodos de Friedman, Flynn-Wall-Ozawa y Coasts–Redfern. Además se calcularon las energías de activación y los factores pre-exponenciales para la desorción del mercurio.

  15. Thermal desorption gas chromatography with mass spectrometry study of outgassing from polymethacrylimide foam (Rohacell®). (United States)

    Carrasco-Correa, Enrique J; Herrero-Martínez, José M; Consuegra, Lina; Ramis-Ramos, Guillermo; Sanz, Rafael Mata; Martínez, Benito Gimeno; Esbert, Vicente E Boria; García-Baquero, David Raboso


    Polymethacrylimide foams are used as light structural materials in outer-space devices; however, the foam closed cells contain volatile compounds that are outgassed even at low temperatures. These compounds ignite as plasmas under outer-space radiation and the intense radio-frequency fields used in communications. Since plasmas may cause spacecraft fatal events, the conditions in which they are ignited should be investigated. Therefore, qualitative and quantitative knowledge about polymethacrylimide foam outgassing should be established. Using thermogravimetric analysis, weight losses reached 3% at ca. 200°C. Thermal desorption gas chromatography with mass spectrometry detection was used to study the offgassed compounds. Using successive 4 min heating cycles at 125°C, each one corresponding to an injection, significant amounts of nitrogen (25.3%), water (2.6%), isobutylene (11.3%), tert-butanol (2.9%), 1-propanol (11.9%), hexane (25.3%), propyl methacrylate (1.4%), higher hydrocarbons (11.3%), fatty acids (2.2%) and their esters (1.3%), and other compounds were outgassed. Other compounds were observed during the main stage of thermal destruction (220-280°C). A similar study at 175°C revealed the extreme difficulty in fully outgassing polar compounds from polymethacrylimide foams by baking and showed the different compositions of the offgassed atmosphere that can be expected in the long term. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Broad spectrum infrared thermal desorption of wipe-based explosive and narcotic samples for trace mass spectrometric detection. (United States)

    Forbes, Thomas P; Staymates, Matthew; Sisco, Edward


    Wipe collected analytes were thermally desorbed using broad spectrum near infrared heating for mass spectrometric detection. Employing a twin tube filament-based infrared emitter, rapid and efficiently powered thermal desorption and detection of nanogram levels of explosives and narcotics was demonstrated. The infrared thermal desorption (IRTD) platform developed here used multi-mode heating (direct radiation and secondary conduction from substrate and subsequent convection from air) and a temperature ramp to efficiently desorb analytes with vapor pressures across eight orders of magnitude. The wipe substrate experienced heating rates up to (85 ± 2) °C s(-1) with a time constant of (3.9 ± 0.2) s for 100% power emission. The detection of trace analytes was also demonstrated from complex mixtures, including plastic-bonded explosives and exogenous narcotics, explosives, and metabolites from collected artificial latent fingerprints. Manipulation of the emission power and duration directly controlled the heating rate and maximum temperature, enabling differential thermal desorption and a level of upstream separation for enhanced specificity. Transitioning from 100% power and 5 s emission duration to 25% power and 30 s emission enabled an order of magnitude increase in the temporal separation (single seconds to tens of seconds) of the desorption of volatile and semi-volatile species within a collected fingerprint. This mode of operation reduced local gas-phase concentrations, reducing matrix effects experienced with high concentration mixtures. IRTD provides a unique platform for the desorption of trace analytes from wipe collections, an area of importance to the security sector, transportation agencies, and customs and border protection.

  17. Characterisation of Dissolved Organic Carbon by Thermal Desorption - Proton Transfer Reaction - Mass Spectrometry (United States)

    Materić, Dušan; Peacock, Mike; Kent, Matthew; Cook, Sarah; Gauci, Vincent; Röckmann, Thomas; Holzinger, Rupert


    Dissolved organic carbon (DOC) is an integral component of the global carbon cycle. DOC represents an important terrestrial carbon loss as it is broken down both biologically and photochemically, resulting in the release of carbon dioxide (CO2) to the atmosphere. The magnitude of this carbon loss can be affected by land management (e.g. drainage). Furthermore, DOC affects autotrophic and heterotrophic processes in aquatic ecosystems, and, when chlorinated during water treatment, can lead to the release of harmful trihalomethanes. Numerous methods have been used to characterise DOC. The most accessible of these use absorbance and fluorescence properties to make inferences about chemical composition, whilst high-performance size exclusion chromatography can be used to determine apparent molecular weight. XAD fractionation has been extensively used to separate out hydrophilic and hydrophobic components. Thermochemolysis or pyrolysis Gas Chromatography - Mass Spectrometry (GC-MS) give information on molecular properties of DOC, and 13C NMR spectroscopy can provide an insight into the degree of aromaticity. Proton Transfer Reaction - Mass Spectrometry (PTR-MS) is a sensitive, soft ionisation method suitable for qualitative and quantitative analysis of volatile and semi-volatile organic vapours. So far, PTR-MS has been used in various environmental applications such as real-time monitoring of volatile organic compounds (VOCs) emitted from natural and anthropogenic sources, chemical composition measurements of aerosols etc. However, as the method is not compatible with water, it has not been used for analysis of organic traces present in natural water samples. The aim of this work was to develop a method based on thermal desorption PTR-MS to analyse water samples in order to characterise chemical composition of dissolved organic carbon. We developed a clean low-pressure evaporation/sublimation system to remove water from samples and thermal desorption system to introduce

  18. Determination of the carbon isotopic composition of whole/intact biological specimens using at-line direct thermal desorption to effect thermally assisted hydrolysis/methylation

    NARCIS (Netherlands)

    Akoto, L.; Vreuls, R.J.J.; Irth, H.; Floris, V.; Hoogveld, H.L.; Pel, R.


    In this paper, we discuss the use of a direct thermal desorption (DTD) interface as an alternative to Curie-point flash pyrolysis system as an inlet technique in gas chromatography–combustion isotope-ratio mass spectrometry (GC/C-IRMS) analysis of whole/intact phytoplankton and zooplankton

  19. Determination of the carbon isotopic composition of whole/intact biological specimens using at-line direct thermal desorption to effect thermally assisted hydrolysis/methylation.

    NARCIS (Netherlands)

    Akoto, L.; Vreuls, J.J.; Irth, H.; Floris, V.; Hoogveld, H.L.; Pel, R.


    In this paper, we discuss the use of a direct thermal desorption (DTD) interface as an alternative to Curie-point flash pyrolysis system as an inlet technique in gas chromatography-combustion isotope-ratio mass spectrometry (GC/C-IRMS) analysis of whole/intact phytoplankton and zooplankton

  20. High throughput volatile fatty acid skin metabolite profiling by thermal desorption secondary electrospray ionisation mass spectrometry. (United States)

    Martin, Helen J; Reynolds, James C; Riazanskaia, Svetlana; Thomas, C L Paul


    The non-invasive nature of volatile organic compound (VOC) sampling from skin makes this a priority in the development of new screening and diagnostic assays. Evaluation of recent literature highlights the tension between the analytical utility of ambient ionisation approaches for skin profiling and the practicality of undertaking larger campaigns (higher statistical power), or undertaking research in remote locations. This study describes how VOC may be sampled from skin and recovered from a polydimethylsilicone sampling coupon and analysed by thermal desorption (TD) interfaced to secondary electrospray ionisation (SESI) time-of-flight mass spectrometry (MS) for the high throughput screening of volatile fatty acids (VFAs) from human skin. Analysis times were reduced by 79% compared to gas chromatography-mass spectrometry methods (GC-MS) and limits of detection in the range 300 to 900 pg cm(-2) for VFA skin concentrations were obtained. Using body odour as a surrogate model for clinical testing 10 Filipino participants, 5 high and 5 low odour, were sampled in Manilla and the samples returned to the UK and screened by TD-SESI-MS and TD-GC-MS for malodour precursors with greater than >95% agreement between the two analytical techniques. Eight additional VFAs were also identified by both techniques with chains 4 to 15 carbons long being observed. TD-SESI-MS appears to have significant potential for the high throughput targeted screening of volatile biomarkers in human skin.

  1. GoAmazon 2014/15 Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, JN [Univ. of California, Irvine, CA (United States)


    The Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) deployment to the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility T3 site in Manacapuru, Brazil, was motivated by two main scientific objectives of the Green Ocean Amazon (GoAmazon) 2014/15 field campaign. 1) Study the interactions between anthropogenic and biogenic emissions by determining important molecular species in ambient nanoparticles. To address this, TDCIMS data will be combined with coincident measurements such as gas-phase sulfuric acid to determine the contribution of sulfuric acid condensation to nucleation and growth. We can then compare that result to TDCIMS-derived nanoparticle composition to determine the fraction of growth that can be attributed to the uptake of organic compounds. The molecular composition of sampled particles will also be used to attribute specific chemical species and mechanisms to growth, such as the condensation of low-volatility species or the oligomerization of α-dicarbonyl compounds. 2) Determine the source of new ambient nanoparticles in the Amazon. The hypothesis prior to measurements was that potassium salts formed from the evaporation of primary particles emitted by fungal spores can provide a unique and important pathway for new particle production in the Amazon basin. To explore this hypothesis, the TDCIMS recorded the mass spectra of sampled ambient particles using a protonated water cluster Chemical Ionization Mass Spectrometer (CIMS). Laboratory tests performed using potassium salts show that the TDCIMS can detect potassium with high sensitivity with this technique.

  2. Inelastic scattering of OH radicals from organic liquids: isolating the thermal desorption channel. (United States)

    King, Kerry L; Paterson, Grant; Rossi, Giovanni E; Iljina, Marija; Westacott, Robin E; Costen, Matthew L; McKendrick, Kenneth G


    Inelastic scattering of OH radicals from liquid surfaces has been investigated experimentally. An initially translationally and rotationally hot distribution of OH was generated by 193 nm photolysis of allyl alcohol. These radicals were scattered from an inert reference liquid, perfluorinated polyether (PFPE), and from the potentially reactive hydrocarbon liquids squalane (C30H62, 2,6,10,15,19,23-hexamethyltetracosane) and squalene (C30H50, trans-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene). The scattered OH v = 0 products were detected by laser-induced fluorescence. Strong correlations were observed between the translational and rotational energies of the products. The high-N levels are translationally hot, consistent with a predominantly direct, impulsive scattering mechanism. Impulsive scattering also populates the lower-N levels, but a component of translationally relaxed OH, with thermal-desorption characteristics, can also be seen clearly for all three liquids. More of this translationally and rotationally relaxed OH survives from squalane than from squalene. Realistic molecular dynamics simulations confirm that double-bond sites are accessible at the squalene surface. This supports the proposition that relaxed OH may be lost on squalene via an addition mechanism.

  3. The viscosity and the thermal conductivity of normal liquid Helium 3 in the LOCV frame-work (United States)

    Modarres, M.; Rahmat, M.


    The lowest order constrained variational (LOCV) method is used to evaluate the transport properties of normal liquid Helium-3 (3 He) within the Landau-Abrikosov-Khalatnikov (LAK) formalism. The LOCV effective two-body interaction of the liquid Helium 3 is used to calculate the differential cross-section and the scattering probability, which is needed to solve the LAK equations. It is shown that, the choice of effective mass has crucial role on the resulting viscosity and thermal conductivity of normal liquid 3 He. Our LOCV-LAK calculations are compared with the other theoretical and experimental results.

  4. Removal of Persistent Organic Pollutants from a Solid Matrix by Thermal Desorption Technology Using Conventional and Microwave Heating

    Czech Academy of Sciences Publication Activity Database

    Mašín, P.; Hendrych, J.; Kroužek, J.; Kubal, M.; Kochánková, L.; Sobek, Jiří


    Roč. 22, č. 7A (2013), s. 2017-2021 ISSN 1018-4619. [International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE 2011) & SECOTOX Conference /3./. Skiathos Island, 19.06.2011-24.06.2011] Grant - others:GA MŽP(CZ) SP/2f3/133/08 Institutional support: RVO:67985858 Keywords : thermal desorption * microwave heating * remediation * persistent pollutants * pilot scale Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.527, year: 2013

  5. Effects of He, D interaction on thermal desorption of He and D2 and microstructural evolution in pure Fe (United States)

    Xu, Q.; Zhang, J.


    He and H atoms are produced in (n, α) and (n, p) nuclear reactions. In fusion reactors, energetic T and D, being isotopes of H, and He particles damage the surface materials. To investigate the He-D interaction, Fe, which is a model metal of choice in ferritic stainless steel that is used in fusion reactors, was irradiated separately by He or D2 ions and by combinations of He + D2 or D2 + He ions with the energy of 5 keV. The dose for single-species irradiation and each step of double-species irradiation was 1.0 × 1020 ions/m2. Thermal desorption analysis indicates that, in the case of single ion species irradiation, thermal desorption of D occurs at temperatures below 700 K, while the main thermal desorption of He occurs at 750 K and above 1200 K. The binding energy of He and defects is higher than that of D and defects. In the case of irradiation with combinations of ions species, however, the obtained thermal desorption spectra are the same, although the peak intensities are different, suggesting that the He-D interaction is weak. The sorption of D is more predominant for irradiations with He + D2. On the microstructure level, the irradiated samples exhibited larger voids following combined irradiations compared with those for irradiation with a single ion species after annealing to 1323 K. During the He + D2 irradiation, D atoms are effectively trapped owing to the defects induced by pre-irradiation with He.

  6. Direct analysis of anabolic steroids in urine using Leidenfrost phenomenon assisted thermal desorption-dielectric barrier discharge ionization mass spectrometry. (United States)

    Saha, Subhrakanti; Mandal, Mridul Kanti; Nonami, Hiroshi; Hiraoka, Kenzo


    Rapid detection of trace level anabolic steroids in urine is highly desirable to monitor the consumption of performance enhancing anabolic steroids by athletes. The present article describes a novel strategy for identifying the trace anabolic steroids in urine using Leidenfrost phenomenon assisted thermal desorption (LPTD) coupled to dielectric barrier discharge (DBD) ionization mass spectrometry. Using this method the steroid molecules are enriched within a liquid droplet during the thermal desorption process and desorbed all-together at the last moment of droplet evaporation in a short time domain. The desorbed molecules were ionized using a dielectric barrier discharge ion-source in front of the mass spectrometer inlet at open atmosphere. This process facilitates the sensitivity enhancement with several orders of magnitude compared to the thermal desorption at a lower temperature. The limits of detection (LODs) of various steroid molecules were found to be in the range of 0.05-0.1 ng mL(-1) for standard solutions and around two orders of magnitude higher for synthetic urine samples. The detection limits of urinary anabolic steroids could be lowered by using a simple and rapid dichloromethane extraction technique. The analytical figures of merit of this technique were evaluated at open atmosphere using suitable internal standards. The technique is simple and rapid for high sensitivity and high throughput screening of anabolic steroids in urine. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Filtration efficiency validation of glass wool during thermal desorption-gas chromatography-mass spectrometer analysis of fine atmospheric particles. (United States)

    Hao, Liang; Wu, Dapeng; Ding, Kun; Meng, Hu; Yan, Xiaohui; Guan, Yafeng


    Thermal desorption-gas chromatography-mass spectrometer (TD-GC-MS) technique has been widely used for analysis of semi-violate organic compounds on atmospheric aerosol. To prevent GC column from being damaged by fine solid particles during thermal desorption process, glass wool as filter mat is indispensible. However, the filtration efficiency has never been validated. In this paper, the most penetrating particle size and the minimum packing thickness of glass wool were calculated based on classical filtration theory. According to the calculation results, packing parameters of glass wool were optimized experimentally using silica particles. It is demonstrated that glass wool with a packing thickness of 30 mm, solidity of 0.039 can effectively block these fine solid particles from penetrating at normal thermal desorption conditions (T=300°C, u=0.4-4 cm/s). Finally, the filtration efficiency of glass wool was further confirmed with real PM2.5 samples. Under the validated filtration condition, TD-GC-MS was applied for the analysis of non-polar organic compounds on real PM2.5 samples, and very good results were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry. (United States)

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao


    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  9. Laser diode thermal desorption mass spectrometry for the analysis of quinolone antibiotic residues in aquacultured seafood. (United States)

    Lohne, Jack J; Andersen, Wendy C; Clark, Susan B; Turnipseed, Sherri B; Madson, Mark R


    Veterinary drug residue analysis of meat and seafood products is an important part of national regulatory agency food safety programs to ensure that consumers are not exposed to potentially dangerous substances. Complex tissue matrices often require lengthy extraction and analysis procedures to identify improper animal drug treatment. Direct and rapid analysis mass spectrometry techniques have the potential to increase regulatory sample analysis speed by eliminating liquid chromatographic separation. Flumequine, oxolinic acid, and nalidixic acid were extracted from catfish, shrimp, and salmon using acidified acetonitrile. Extracts were concentrated, dried onto metal sample wells, then rapidly desorbed (6 s) with an infrared diode laser for analysis by laser diode thermal desorption atmospheric pressure chemical ionization with tandem mass spectrometry (LDTD-MS/MS). Analysis was conducted in selected reaction monitoring mode using piromidic acid as internal standard. Six-point calibration curves for each compound in extracted matrix were linear with r(2) correlation greater than 0.99. The method was validated by analyzing 23 negative samples and 116 fortified samples at concentrations of 10, 20, 50, 100, and 600 ng/g. Average recoveries of fortified samples were greater than 77% with method detection levels ranging from 2 to 7 /g. Three product ion transitions were acquired per analyte to identify each residue. A rapid method for quinolone analysis in fish muscle was developed using LDTD-MS/MS. The total analysis time was less than 30 s per sample; quinolone residues were detected below 10 ng/g and in most cases residue identity was confirmed. This represents the first application of LDTD to tissue extract analysis. Published 2012. This article is a US Government work and is in the public domain in the USA. Published 2012. This article is a US Government work and is in the public domain in the USA.

  10. Neutronics - thermal-hydraulics coupling: application to the helium-cooled fast reactor; Couplage neutronique - thermohydraulique: application au reacteur a neutrons rapides refroidi a l'helium

    Energy Technology Data Exchange (ETDEWEB)

    Vaiana, F.


    This thesis focuses on the study of interactions between neutron-kinetics and thermal-hydraulics. Neutron-kinetics allow to calculate the power in a nuclear reactor and the temperature evolution of materials where this power is deposited is known thanks to thermal-hydraulics. Moreover, when the temperatures evolve, the densities and cross sections change. These two disciplines are thus coupled. The first part of this work corresponds to the study and development of a method which allows to simulate transients in nuclear reactors and especially with a Monte-Carlo code for neutron-kinetics. An algorithm for the resolution of the neutron transport equation has been established and validated with a benchmark. In thermal-hydraulics, a porous media approach, based on another thesis, is considered. This gives the opportunity to solve the equations on the whole core without unconscionable computation time. Finally, a theoretical study has been performed on the statistical uncertainties which result from the use of a Monte-Carlo code and which spread from the reactivity to the power and from the power to the temperatures. The second part deals with the study of a misplaced control rod withdrawing in a GFR (helium-cooled fast reactor), a fourth generation reactor. Some models allowing to calculate neutron-kinetics and thermal-hydraulics in the core (which contains assemblies built up with fuel plates) were defined. In thermal-hydraulics, a model for the core based on the porous media approach and a fuel plate homogenization model have been set up. A similar homogenization model has been studied for neutron-kinetics. Finally, the control rod withdrawing transient where we can observe the power raising and the stabilisation by thermal feedback has been performed with the Monte-Carlo code Tripoli for neutron-kinetics and the code Trio-U for thermal-hydraulics. (author)

  11. The use of thermal desorption in monitoring for the chemical weapons demilitarization program. (United States)

    Harper, Martin


    Under international treaty, the United States and Russia are disposing of their aging stockpile of chemical weapons. Incineration and chemical neutralization are options for sites in the United States, although Russia prefers the latter. The storage and disposal of bulk and chemical agents and weapons involve unique hazards of handling extremely toxic materials. There are three major areas of concern--the storage stockpile, the disposal area, and the discovery and destruction of "found" material not considered part of the stockpile. Methods have been developed to detect the presence of chemical agents in the air, and these are used to help assure worker protection and the safety of the local population. Exposure limits for all chemical agents are low, sometimes nanograms per cubic meter for worker control limits and picograms per cubic meter for general population limits. There are three types of monitoring used in the USA: alarm, confirmation, and historical. Alarm monitors are required to give relatively immediate real-time responses to agent leaks. They are simple to operate and rugged, and provide an alarm in near real-time (generally a few minutes). Alarm monitors for the demilitarization program are based on sorbent pre-concentration followed by thermal desorption and simple gas chromatography. Alarms may need to be confirmed by another method, such as sample tubes collocated with the alarm monitor and analyzed in a laboratory by more sophisticated chromatography. Sample tubes are also used for historical perimeter monitoring, with sample periods typically of 12 h. The most common detector is the flame photometric detector, in sulfur or phosphorous mode, although others, such as mass-selective detectors, also have been used. All agents have specific problems with collection, chromatography and detection. Monitoring is not made easier by interferences from pesticide spraying, busy roadways or military firing ranges. Exposure limits drive the requirements for

  12. Simultaneous differential scanning calorimetry and thermal desorption spectroscopy measurements for the study of the decomposition of metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.F.; Cuevas, F.; Sanchez, C. [Univ. Autonoma, Madrid (Spain). Dept de Fisica de Materiales C-IV


    An innovative experimental method to investigate the thermal decomposition of metal hydrides is presented. The method is based on an experimental setup composed of a differential scanning calorimeter connected through a capillary tube to a mass spectrometer. The experimental system allows the simultaneous determination of the heat absorbed and the hydrogen evolved from a metal hydride during thermal decomposition. This arrangement constitutes a coupled differential scanning calorimetry (DSC) and thermal desorption spectroscopy (TDS) technique. It has been applied to metal hydride materials to demonstrate the capability of the experimental system. A method to obtain the heat of decomposition of metal hydrides is described. It involves the measurement of an apparent decomposition heat as a function of the carrier gas flow. (orig.)

  13. Thermal desorption of methanol in hot cores. Study with a quartz crystal microbalance (United States)

    Luna, Ramón; Satorre, Miguel Ángel; Domingo, Manuel; Millán, Carlos; Luna-Ferrándiz, Ramón; Gisbert, Georgina; Santonja, Carmina


    The desorption process of methanol in the hot cores of massive young stars is addressed in this work. The study of pure methanol ice and when it is mixed or layered with water allows a better understanding of the physical and chemical processes which could have occurred during the formation of methanol and it is possible to infer the range of temperatures within which methanol can be found in the gas phase in these scenarios. The goal of this study was to model the desorption process of methanol as pure ice and mixed or layered with water under the conditions present in the early stages of hot cores whichcharacterize young star formation. The simulations of desorption of methanol, when it stands alone, performed in this work were compared to the values obtained by other authors to validate the method presented. In this work, the desorption of a water:methanol mixture under astrophysical conditions is also simulated. The theoretical results obtained for layered mixtures match with the temperatures at which an increase of the presence of methanol in the gas phase is detected when young massive mass stars are observed. This study has been performed using the frequency variation of a quartz crystal microbalance which provides a direct measure of the desorbing molecules during the experiments. This process was modelled using the Polanyi-Wigner equation and applied to astrophysical scenarios.

  14. At-line gas chromatographic-mass spectrometric analysis of fatty acid profiles of green microalgae using a direct thermal desorption interface

    NARCIS (Netherlands)

    Blokker, P.; Pel, R.; Akoto, L.; Udo, A.; Brinkman, U.A.Th.; Vreuls, R.J.J.


    Thermally assisted hydrolysis and methylation¯gas chromatography (THM¯GC) is an important tool to analyse fatty acid in complex matrices. Since THM¯GC has major drawbacks such as isomerisation when applied to fatty acids in natural matrices, a direct thermal desorption (DTD) interface and an

  15. At-line gas chromatographic-mass spectrometric analysis of fatty acid profiles of green microalgae using a direct thermal desorption interface

    NARCIS (Netherlands)

    Blokker, P.; Pel, R.; Akoto, L.; Brinkman, U.A.T.; Vreuls, R.J.J.


    Thermally assisted hydrolysis and methylation-gas chromatography (THM-GC) is an important tool to analyse fatty acid in complex matrices. Since THM-GC has major drawbacks such as isomerisation when applied to fatty acids in natural matrices, a direct thermal desorption (DTD) interface and an

  16. Trace determination of airborne polyfluorinated iodine alkanes using multisorbent thermal desorption/gas chromatography/high resolution mass spectrometry. (United States)

    Ruan, Ting; Wang, Yawei; Zhang, Qinghua; Ding, Lei; Wang, Pu; Qu, Guangbo; Wang, Chang; Wang, Thanh; Jiang, Guibin


    A novel gas chromatography/high resolution mass spectrometry method coupled with multisorbent thermal desorption cartridges has been developed for the determination of volatile neutral polyfluorinated iodine alkanes (PFIs) in airborne samples. It allows, for the first time, simultaneous analysis of four mono-iodized perfluorinated alkanes, three diiodized perfluorinated alkanes and four mono-iodized polyfluorinated telomers in ambient air samples. 3.75 L air sample was passed through a sorbent tube packed with 150 mg of Tenax TA and 200mg of Carbograph 1 TD for analyte adsorption. Important factors during the analysis procedures, such as safe sampling volume, air sampling rate, analyte desorption and transfer strategies, were optimized and good thermal desorption efficiencies were obtained. The method detection limit (MDL) concentration ranged from 0.04 pg/L for 1H,1H,2H,2H-perfluorododecyl iodide to 1.2 pg/L for perfluorohexyl iodide, and instrument response of a seven-point calibration was linear in the range of 10-1000 pg. Travel spike recoveries ranged from 83% to 116%. Small variabilities of less than 36% were obtained near the MDLs and the differences between triplicates were even smaller (2.1-7.3%) at 200 pg spiked level. The method was successfully applied to analyze ambient air samples collected near a point source, and five PFIs were identified (10.8-85.0 pg/L), with none of the analytes detectable at the background site. Copyright 2010. Published by Elsevier B.V.

  17. Biological functioning of PAH-polluted and thermal desorption-treated soils assessed by fauna and microbial bioindicators. (United States)

    Cébron, Aurélie; Cortet, Jérôme; Criquet, Stéven; Biaz, Asmaa; Calvert, Virgile; Caupert, Cécile; Pernin, Céline; Leyval, Corinne


    A large number of soil bioindicators were used to assess biological diversity and activity in soil polluted with polycyclic aromatic hydrocarbons (PAHs) and the same soil after thermal desorption (TD) treatment. Abundance and biodiversity of bacteria, fungi, protozoa, nematodes and microarthropods, as well as functional parameters such as enzymatic activities and soil respiration, were assessed during a two year period of in situ monitoring. We investigated the influence of vegetation (spontaneous vegetation and Medicago sativa) and TD treatment on biological functioning. Multivariate analysis was performed to analyze the whole data set. A principal response curve (PRC) technique was used to evaluate the different treatments (various vegetation and contaminated vs. TD soil) contrasted with control (bare) soil over time. Our results indicated the value of using a number of complementary bioindicators, describing both diversity and functions, to assess the influence of vegetation on soil and discriminate polluted from thermal desorption (TD)-treated soil. Plants had an influence on the abundance and activity of all organisms examined in our study, favoring the whole trophic chain development. However, although TD-treated soil had a high abundance and diversity of microorganisms and fauna, enzymatic activities were weak because of the strong physical and chemical modifications of this soil. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Application of Thermal Desorption Unit (TDU) to treat low-toxicity mineral oil base cuttings in Barinas District, Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Rendon, Ruben [Petroleos de Venezuela, Caracas (Venezuela); Luzardo, Janeth; Alcoba, Alcides [M-I SWACO, Houston, TX (United States)


    The potential environmental impact of oil-based drill cuttings is generating increased scrutiny in the oil and gas industry. If left untreated, oil-based cuttings not only increase the risk of environmental liabilities, but also affect revenue, as drilling generates wastes that in most cases require special treatment before disposal. Consequently, the oil industry is looking for technologies to help minimize environmental liabilities. Accordingly, the Barinas District of PDVSA has started a pilot trial to treat oil-based drilling cuttings by applying thermal desorption technology. The main objective of this technology is recovering trapped hydrocarbons, while minimizing wastes and preparing solids to be disposed of through a mobile treatment plant. This novel technology has been used worldwide to treat organic pollutants in soil. Thermal desorption is a technology based on the application of heat in soils polluted with organic compounds. With this technology, target temperatures vary according to the type and concentration of detected pollutants along with its characterization, in such a way that compounds are disposed of by volatilization. As part of the integral waste management development along with the pilot trial for hydrocarbon-contaminated solid waste treatment, trials on soils were undertaken by applying process-generated ashes in equally-sized bins, with different mixtures (ashes, ashes organic material, ashes-organic material-sand, ashes-land). The resulting process offers an immediate soil remediation and final disposal solution for toxic and dangerous waste. (author)

  19. Cloud point extraction and gas chromatography with direct microvial insert thermal desorption for the determination of haloanisoles in alcoholic beverages. (United States)

    Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M


    A sensitive analytical procedure for the determination of four haloanisoles (2,4,6 trichloroanisole, 2,4,6-tribromoanisole, 2,3,4,6-tetrachloroanisole and pentachloroanisole) related with cork taint defects in wines, in different types of alcoholic beverages has been developed. The analytes were extracted from the matrix samples by cloud point extraction (CPE) using Triton X-114 heated to 75°C, and the surfactant rich phase was separated by centrifugation. By means of direct microvial insert thermal desorption, 20µL of the CPE obtained extract was submitted to gas chromatography-mass spectrometry (GC-MS) analysis. The parameters affecting the CPE and microvial insert thermal desorption were optimized. Quantification was carried by matrix-matched calibration using an internal standard. Detection limits ranged between 12.9 and 20.8ngL(-1), depending on the compound, for beer and wine samples, whereas for whiskies values in the 46.3-48ngL(-1) range were obtained, since these samples were diluted for analysis. Recoveries for alcoholic beverages were in the 89-111% range, depending on the analyte and the sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Rapid characterization of chemical compounds in liquid and solid states using thermal desorption electrospray ionization mass spectrometry. (United States)

    Huang, Min-Zong; Zhou, Chi-Chang; Liu, De-Lin; Jhang, Siou-Sian; Cheng, Sy-Chyi; Shiea, Jentaie


    Rapid characterization of thermally stable chemical compounds in solid or liquid states is achieved through thermal desorption electrospray ionization mass spectrometry (TD-ESI/MS). A feature of this technique is that sampling, desorption, ionization, and mass spectrometric detection are four separate events with respect to time and location. A metal probe was used to sample analytes in their solid or liquid states. The probe was then inserted in a preheated oven to thermally desorb the analytes on the probe. The desorbed analytes were carried by a nitrogen gas stream into an ESI plume, where analyte ions were formed via interactions with charged solvent species generated in the ESI plume. The analyte ions were subsequently detected by a mass analyzer attached to the TD-ESI source. Quantification of acetaminophen in aqueous solutions using TD-ESI/MS was also performed in which a linear response for acetaminophen was obtained between 25 and 500 ppb (R(2) = 0.9978). The standard deviation for a reproducibility test for ten liquid samples was 9.6%. Since sample preparation for TD-ESI/MS is unnecessary, a typical analysis can be completed in less than 10 s. Analytes such as the active ingredients in over-the-counter drugs were rapidly characterized regardless of the different physical properties of said drugs, which included liquid eye drops, viscous cold syrup solution, ointment cream, and a drug tablet. This approach was also used to detect trace chemical compounds in illicit drugs and explosives, in which samples were obtained from the surfaces of a cell phone, piece of luggage made from hard plastic, business card, and wooden desk.

  1. Thermal instabilities and Rayleigh breakup of ultrathin silver nanowires grown in helium nanodroplets. (United States)

    Volk, Alexander; Knez, Daniel; Thaler, Philipp; Hauser, Andreas W; Grogger, Werner; Hofer, Ferdinand; Ernst, Wolfgang E


    Ag nanowires with diameters below 6 nm are grown within vortex containing superfluid helium nanodroplets and deposited onto a heatable substrate at cryogenic temperatures. The experimental setup allows an unbiased investigation of the inherent stability of pristine silver nanowires, which is virtually impossible with other methods due to chemical processes or templates involved in standard production routes. We demonstrate by experiment and by adaption of a theoretical model that initially continuous wires disintegrate into chains of spheres. This phenomenon is well described by a Rayleigh-like breakup mechanism when the substrate is heated to room temperature. Our findings clarify the recent discussions on the cause of the observed segmented patterns, where a breakup during deposition [Gomez et al., Phys. Rev. Lett., 2012, 108, 155302] or mechanisms intrinsic to the helium droplet mediated growth process [Spence et al., Phys. Chem. Chem. Phys., 2014, 16, 6903] have been proposed. The experimental setup confirms the validity of previous suggestions derived from bulk superfluid helium experiments [Gordon et al., Phys. Chem. Chem. Phys., 2014, 16, 25229] for the helium droplet system, and further allows a much more accurate determination of the breakup temperature.

  2. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS) Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes. (United States)

    Lobo, Rui F M; Santos, Diogo M F; Sequeira, Cesar A C; Ribeiro, Jorge H F


    Different types of experimental studies are performed using the hydrogen storage alloy (HSA) MlNi3.6Co0.85Al0.3Mn0.3 (Ml: La-rich mischmetal), chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC). The recently developed molecular beam-thermal desorption spectrometry (MB-TDS) technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA), and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA) using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption.

  3. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes

    Directory of Open Access Journals (Sweden)

    Jorge H. F. Ribeiro


    Full Text Available Different types of experimental studies are performed using the hydrogen storage alloy (HSA MlNi3.6Co0.85Al0.3Mn0.3 (Ml: La-rich mischmetal, chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC. The recently developed molecular beam—thermal desorption spectrometry (MB-TDS technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA, and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption.

  4. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS) Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes (United States)

    Lobo, Rui F. M.; Santos, Diogo M. F.; Sequeira, Cesar A. C.; Ribeiro, Jorge H. F.


    Different types of experimental studies are performed using the hydrogen storage alloy (HSA) MlNi3.6Co0.85Al0.3Mn0.3 (Ml: La-rich mischmetal), chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC). The recently developed molecular beam—thermal desorption spectrometry (MB-TDS) technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA), and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA) using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption. PMID:28817043

  5. Kinetics of thermal desorption of asymmetric dimethylhydrazine and products of its partial oxidation from soil by purging producer gas

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, T.B.; Laskin, B.M.; Pimkin, V.G.; Artamonov, D.G.; Luk`yanov, S.N. [Russian Scientific Center Applied Chemistry, St. Petersburg (Russian Federation)


    A study has been made of desorption of asymmetric dimethylhydrazine and nitrosodimethyl-amine from various types of soil by purging producer gas. The feasibility of the desorptive removal of these toxic compounds from soils has been demonstrated experimentally.

  6. Thermal desorption mass spectrometric and x-ray photoelectron studies of etched surfaces of polytetrafluoroethylene (United States)

    Rye, R. R.; Kelber, J. A.


    The etching of polytetrafluoroethylene (PTFE) with Na solutions is known to lead to a loss of F, a loss which is correlated with enhanced adhesion. Subsequent heating partially restores surface F with a concurrent loss of adhesion strength. We have combined X-ray photoelectron spectroscopy (XPS) and gas phase mass spectroscopy for in situ measurements of the processes that occur as the fluorocarbon is heated. An array of volatile products, which vary with the specific treatment, desorb from etched PTFE. Among these are: N 2 and low molecular weight fluorocarbons, the amounts of which monotonically decrease with increasing exposure to the etching solution (and probably result from the bulk); species such as CO and CO 2, which in part result from surface impurities; and water and acetone which result from the rinse steps following the etching process. XPS measurements show that etching produces a major loss of surface F and a gain of surface O. The latter probably results from the subsequent rinse steps. Heating produces a substantial recovery in surface F with only a small decrease in the surface O, and the gain in surface F is shown to occur at a higher temperature than the desorption of any species from the surface. Thus, desorption of products from the surface is decoupled, in terms of both the distribution of products and their relative temperatures, from the surface changes as monitored by XPS. This decoupling suggests that the increase in surface F results from diffusion of low molecular weight fluorocarbons from the bulk or a transition region, or from a rearrangement of the sponge-like surface region produced in the etching process.

  7. Thin-layer chromatography and mass spectrometry coupled using proximal probe thermal desorption with electrospray or atmospheric pressure chemica lionization

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikova, Olga S [ORNL; Van Berkel, Gary J [ORNL


    An atmospheric pressure proximal probe thermal desorption sampling method coupled with secondary ionization by electrospray or atmospheric pressure chemical ionization was demonstrated for the mass spectrometric analysis of a diverse set of compounds (dyestuffs, pharmaceuticals, explosives and pesticides) separated on various high-performance thin-layer chromatography plates. Line scans along or through development lanes on the plates were carried out by moving the plate relative to a stationary heated probe positioned close to or just touching the stationary phase surface. Vapors of the compounds thermally desorbed from the surface were drawn into the ionization region of a combined electrospray ionization/atmospheric pressure chemical ionization source where they merged with reagent ions and/or charged droplets from a corona discharge or an electrospray emitter and were ionized. The ionized components were then drawn through the atmospheric pressure sampling orifice into the vacuum region of a triple quadrupole mass spectrometer and detected using full scan, single ion monitoring, or selected reaction monitoring mode. Studies of variable parameters and performance metrics including the proximal probe temperature, gas flow rate into the ionization region, surface scan speed, read-out resolution, detection limits, and surface type are discussed.

  8. Cavitation in flowing superfluid helium (United States)

    Daney, D. E.


    Flowing superfluid helium cavitates much more readily than normal liquid helium, and there is a marked difference in the cavitation behavior of the two fluids as the lambda point is traversed. Examples of cavitation in a turbine meter and centrifugal pump are given, together with measurements of the cavitation strength of flowing superfluid helium. The unusual cavitation behavior of superfluid helium is attributed to its immense thermal conductivity .

  9. Rapid Quantification of N-Methyl-2-pyrrolidone in Polymer Matrices by Thermal Desorption-GC/MS. (United States)

    Kim, Young-Min; Kim, Jae Woo; Moon, Hye Mi; Lee, Min-Jin; Hosaka, Akihiko; Watanabe, Atsushi; Teramae, Norio; Park, Young-Kwon; Myung, Seung-Woon


    Analysis of a residual solvent in polymeric materials has become an important issue due to the increased regulations and standards for its use. N-Methyl-2-pyrrolidone (NMP) is a solvent widely used in many industries and restricted as one of the chemicals under EU REACH regulations due to its potential harmful effects. In this study, thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) is applied for the quantitative analysis of NMP with the use of a polymer-coated sample cup. By using the polymer-coated sample cup, the vaporization of NMP was prevented during waiting time before TD-GC/MS analysis. The calibration curve for the TD method showed good linearity (correlation coefficient, r2 = 0.9998) and precision values (below 5.3% RSD). NMP recovery rates in different polymer matrices (PS, PMMA and PVC) were in the range of 98.8 to 106.6% with RSD values below 5.0%. The quantification result (600 mg NMP/kg PVC) for the blind NMP carrying sample in a PVC matrix by TD-GC/MS was higher than that (532 mg NMP/kg PVC) by solvent extraction-GC/MS method.

  10. An Optimized Adsorbent Sampling Combined to Thermal Desorption GC-MS Method for Trimethylsilanol in Industrial Environments

    Directory of Open Access Journals (Sweden)

    Jae Hwan Lee


    Full Text Available Trimethylsilanol (TMSOH can cause damage to surfaces of scanner lenses in the semiconductor industry, and there is a critical need to measure and control airborne TMSOH concentrations. This study develops a thermal desorption (TD-gas chromatography (GC-mass spectrometry (MS method for measuring trace-level TMSOH in occupational indoor air. Laboratory method optimization obtained best performance when using dual-bed tube configuration (100 mg of Tenax TA followed by 100 mg of Carboxen 569, n-decane as a solvent, and a TD temperature of 300°C. The optimized method demonstrated high recovery (87%, satisfactory precision (<15% for spiked amounts exceeding 1 ng, good linearity (R2=0.9999, a wide dynamic mass range (up to 500 ng, low method detection limit (2.8 ng m−3 for a 20-L sample, and negligible losses for 3-4-day storage. The field study showed performance comparable to that in laboratory and yielded first measurements of TMSOH, ranging from 1.02 to 27.30 μg/m3, in the semiconductor industry. We suggested future development of real-time monitoring techniques for TMSOH and other siloxanes for better maintenance and control of scanner lens in semiconductor wafer manufacturing.

  11. Distinguishing chinese star anise from Japanese star anise using thermal desorption-gas chromatography-mass spectrometry. (United States)

    Howes, Melanie-Jayne R; Kite, Geoffrey C; Simmonds, Monique S J


    The volatile compounds from the pericarps of Illicium anisatum L., Illicium brevistylum A.C.Sm., Illicium griffithii Hook.f. & Thomson, Illicium henryi Diels, Illicium lanceolatum A.C.Sm., Illicium majus Hook.f. & Thomson, Illicium micranthum Dunn, and Illicium verum Hook.f. were examined by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). The volatiles desorbed from the pericarps of I. verum (Chinese star anise), the species traded for culinary purposes, were generally characterized by a high proportion of (E)-anethole (57.6-77.1%) and the presence of foeniculin; the latter was otherwise only detected in the pericarps of I. lanceolatum. In the pericarps of all other species analyzed, the percentage composition of (E)-anethole was comparatively lower (toxic I. anisatum (Japanese star anise) were characterized by the presence of asaricin, methoxyeugenol, and two other eugenol derivatives, none of which were detected in any of the other species examined. TD-GC-MS enables the direct analysis of the volatile components from the pericarps of Illicium and can assist with differentiating the fruits of I. verum from other species of Illicium, particularly the more toxic I. anisatum.

  12. Determination of Volatile Organic Compounds in Fourty Five Salvia Species by Thermal Desorption-GC-MS Technique

    Directory of Open Access Journals (Sweden)

    Seda Damla Hatipoglu


    Full Text Available Volatile organic compounds (VOC from dried aerial parts (flowers, leafs, leafy branches and stems of fourty five Salvia species, harvested from different regions of Turkey, were determined using thermal desorption technique coupled to gas chromatography-mass spectrometer (TD-GC-MS. Total percentages of the detected volatile organic compounds of the Salvia species ranged from 70.30 to 99.65% . Total yield of VOC was found to be highly variable among Salvia species, and the percentage of each component also exhibited high variation. While sesquiterpene hydrocarbons represented 0.90-45.02% of the volatile organic compounds, the others were found to be monoterpene hydrocarbons 0.00-32.25%, monoterpenoids 0.94- 53.60%, sesquiterpenoids 0.00- 31.45% and hydrocarbons and derivatives 2.99-46.87%. The rest of the composition consisted of diterpene alcohols, fatty acids, phenolics and triterpenes. In total, 108 volatile compounds were identified from studied 45 Anatolian Salvia species.

  13. Perdeuterated n-alkanes for improved data processing in thermal desorption gas chromatography/mass spectrometry I. Retention indices for identification. (United States)

    Massold, Emilie


    The identification of organic compounds by GC/MS is useful in various areas such as fuel, indoor and outdoor air and flavour and fragrance applications. Multi-compound mixtures often contain isomeric compounds which have similar mass spectra and sometimes cannot be unambiguously identified by library search alone. Retention indices can help with confirmation of identification if they are reproducible. Using perdeuterated n-alkanes as a reference series for calculation of retention indices in GC/MS has a clear benefit because of the distinctive ion trace of m/z 34. Thermal desorption is useful for analysis of volatile organic compounds (VOCs) in air after sampling on appropriate sorbent cartridges. Comparison of indices between three systems, consisting of a thermal desorption unit, a gas chromatograph and a mass spectrometer, showed good agreement for compounds with well-defined peaks, whereas retention times varied.

  14. Comparison of two common adsorption materials for thermal desorption gas chromatography - mass spectrometry of biogenic volatile organic compounds. (United States)

    Marcillo, Andrea; Jakimovska, Viktorija; Widdig, Anja; Birkemeyer, Claudia


    Volatile organic compounds (VOCs) are commonly collected from gaseous samples by adsorption to materials such as the porous polymer Tenax TA. Adsorbed compounds are subsequently released from these materials by thermal desorption (TD) and separated then by gas chromatography (GC) with flame ionization (FID) or mass spectrometry (MS) detection. Tenax TA is known to be particularly suitable for non-polar to semipolar volatiles, however, many volatiles from environmental and biological samples possess a rather polar character. Therefore, we tested if the polymer XAD-2, which so far is widely used to adsorb organic compounds from aqueous and organic solvents, could provide a broader coverage for (semi)polar VOCs during gas-phase sampling. Mixtures of volatile compounds covering a wide range of volatility (bp. 20-256°C) and different chemical classes were introduced by liquid spiking into sorbent tubes with one of the two porous polymers, Tenax TA or XAD-2, and analyzed by TD/GC-MS. At first, an internal standard mixture composed of 17 authentic standards was used to optimize desorption temperature with respect to sorbent degradation and loading time for calibration. Secondly, we tested the detectability of a complex standard mixture composed of 57 volatiles, most of them common constituents of the body odor of mammals. Moreover, the performance of XAD-2 compared with Tenax TA was assessed as limit of quantitation and linearity for the internal standard mixture and 33 compounds from the complex standard mixture. Volatiles were analyzed in a range between 0.01-∼250ng/tube depending on the compound and material. Lower limits of quantitation were between 0.01 and 3 ng±0.9). Interestingly, we found different kinetics for compound adsorption with XAD-2, and a partially better sensitivity in comparison with Tenax TA. For these analytes, XAD-2 might be recommended as an alternative of Tenax TA for TD/GC-MS analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Determination of a Polymeric Hindered Amine Light Stabilizer in Polypropylene Formulated with Magnesium Hydroxide Flame Retardant by Reactive Thermal Desorption-Gas Chromatography


    Yoshihiko, Taguchi; Yasuyuki, Ishida; Hajime, Ohtani; Hiroyuki, Bekku; Masaya, Sera


    A polymeric hindered amine light stabilizer (HALS), Tinuvin 622 (MW = 4000), in PP materials formulated with a magnesium hydroxide flame retardant was determined by reactive thermal desorption (RTD) gas chromatography (GC). Two kinds of the HALS components that were formed through the RTD in the presence of tetramethylammonium hydroxide [(CH3)4NOH, TMAH] were clearly observed in the chromatograms of the PP samples, with negligible interference from the other additives and the PP substrate. He...

  16. Deuterium thermal desorption from carbon based materials: A comparison of plasma exposure, ion implantation, gas loading, and C-D codeposition

    Energy Technology Data Exchange (ETDEWEB)

    Pisarev, A., E-mail: [National Research Nuclear University ' MEPHI' , Kashirskoe sh., 31, Moscow 115409 (Russian Federation); Gasparyan, Yu. [National Research Nuclear University ' MEPHI' , Kashirskoe sh., 31, Moscow 115409 (Russian Federation); Rusinov, A. [Kyushu University, Interdisciplinary Graduate School of Engineering Sciences, Kasuga Koen, 6-1, Kasuga, Fukuoka 816-8580 (Japan); Trifonov, N.; Kurnaev, V. [National Research Nuclear University ' MEPHI' , Kashirskoe sh., 31, Moscow 115409 (Russian Federation); Spitsyn, A.; Khripunov, B. [RRC Kurchatov Institute, Ac. Kurchatov sq., 1/1, Moscow 123182 (Russian Federation); Schwarz-Selinger, T. [Max-Plank-Institut fuer Plasmaphysik, EURATOM Association, Boltzmanstr.2, D-85748 Garching (Germany); Rasinski, M. [Warsaw University of Technology, Faculty of Material Science and Engineering, Woloska 141, 02-507 (Poland); Sugiyama, K. [Max-Plank-Institut fuer Plasmaphysik, EURATOM Association, Boltzmanstr.2, D-85748 Garching (Germany)


    Thermal desorption spectra from fine grain graphite and carbon fiber composite exposed in different plasma installations have been compared with those obtained after ion implantation, absorption from gas, and those from soft and hard C-D films. Features of the spectra were analysed and led to the conclusion that ion implantation, absorption from gas, and amorphous C:D layer formed on the surface contribute to trapping during plasma irradiation.

  17. Development of a short path thermal desorption-gas chromatography/mass spectrometry method for the determination of polycyclic aromatic hydrocarbons in indoor air. (United States)

    Li, Yingjie; Xian, Qiming; Li, Li


    Polycyclic aromatic hydrocarbons (PAHs) are present in petroleum based products and are combustion by-products of organic matters. Determination of levels of PAHs in the indoor environment is important for assessing human exposure to these chemicals. A new short path thermal desorption (SPTD) gas chromatography/mass spectrometry (GC/MS) method for determining levels of PAHs in indoor air was developed. Thermal desorption (TD) tubes packed with glass beads, Carbopack C, and Carbopack B in sequence, were used for sample collection. Indoor air was sampled using a small portable pump over 7 days at 100ml/min. Target PAHs were thermally released and introduced into the GC/MS for analysis through the SPTD unit. During tube desorption, PAHs were cold trapped (-20°C) at the front end of the GC column. Thermal desorption efficiencies were 100% for PAHs with 2 and 3 rings, and 99-97% for PAHs with 4-6 rings. Relative standard deviation (RSD) values among replicate samples spiked at three different levels were around 10-20%. The detection limit of this method was at or below 0.1μg/m3 except for naphthalene (0.61μg/m3), fluorene (0.28μg/m3) and phenanthrene (0.35μg/m3). This method was applied to measure PAHs in indoor air in nine residential homes. The levels of PAHs in indoor air found in these nine homes are similar to indoor air values reported by others. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Large-scale volumetric flow measurement in a pure thermal plume by dense tracking of helium-filled soap bubbles (United States)

    Huhn, Florian; Schanz, Daniel; Gesemann, Sebastian; Dierksheide, Uwe; van de Meerendonk, Remco; Schröder, Andreas


    We present a spatially and temporally highly resolved flow measurement covering a large volume ( 0.6 m3) in a pure thermal plume in air. The thermal plume develops above an extended heat source and is characterized by moderate velocities ( U 0.35 m/s) with a Reynolds number of Re ˜ 500 and a Rayleigh number of {Ra}˜ 106. We demonstrate the requirements and capabilities of the measurement equipment and the particle tracking approach to be able to probe measurement volumes up to and beyond one cubic meter. The use of large tracer particles (300 μm), helium-filled soap bubbles (HFSBs), is crucial and yields high particle image quality over large-volume depths when illuminated with arrays of pulsed high-power LEDs. The experimental limitations of the HFSBs—their limited lifetime and their intensity loss over time—are quantified. The HFSBs' uniform particle images allows an accurate reconstruction of the flow using Shake-The-Box particle tracking with high particle concentrations up to 0.1 particles per pixel. This enables tracking of up to 275,000 HFSBs simultaneously. After interpolating the scattered data onto a regular grid with a Navier-Stokes regularization, the velocity field of the thermal plume reveals a multitude of vortices with a smooth temporal evolution and a remarkable coherence in time (see animation, supplementary data). Acceleration fields are also derived from interpolated particle tracks and complement the flow measurement. Additionally, the flow map, the basis of a large class of Lagrangian coherent structures, is computed directly from observed particle tracks. We show entrainment regions and coherent vortices of the thermal plume in the flow map and compute fields of the finite-time Lyapunov exponent.

  19. Analysis of mercury species present during coal combustion by thermal desorption

    Energy Technology Data Exchange (ETDEWEB)

    M. Antonia Lopez-Anton; Yang Yuan; Ron Perry; M. Mercedes Maroto-Valer [University of Nottingham, Nottingham (United Kingdom). United Kingdom Fuels and Power Technology Research Division


    Mercury in coal and its emissions from coal-fired boilers is a topic of primary environmental concern in the United States and Europe. The predominant forms of mercury in coal-fired flue gas are elemental (Hg{sup 0) and oxidized (Hg{sup 2+}, primarily as HgCl{sub 2}). Because Hg{sup 2+} is more condensable and far more water soluble than Hg{sup 0}, the wide variability in mercury speciation in coal-fired flue gases undermines the total mercury removal efficiency of most mercury emission control technologies. It is important therefore to have an understanding of the behaviour of mercury during coal combustion and the mechanisms of mercury oxidation along the flue gas path. In this study, a temperature programmed decomposition technique was applied in order to acquire an understanding of the mode of decomposition of mercury species during coal combustion. A series of mercury model compounds were used for qualitative calibration. The temperature appearance range of the main mercury species can be arranged in increasing order as HgCl{sub 2} < HgS < HgO < HgSO{sub 4}. Different fly ashes with certified and reference values for mercury concentration were used to evaluate the method. This study has shown that the thermal decomposition test is a newly developed efficient method for identifying and quantifying mercury species from coal combustion products. 30 refs., 8 figs., 3 tabs.

  20. Analysis of the volatile organic matter of engine piston deposits by direct sample introduction thermal desorption gas chromatography/mass spectrometry. (United States)

    Diaby, M; Kinani, S; Genty, C; Bouchonnet, S; Sablier, M; Le Negrate, A; El Fassi, M


    This article establishes an alternative method for the characterization of volatiles organic matter (VOM) contained in deposits of the piston first ring grooves of diesel engines using a ChromatoProbe direct sample introduction (DSI) device coupled to gas chromatography/mass spectrometry (GC/MS) analysis. The addition of an organic solvent during thermal desorption leads to an efficient extraction and a good chromatographic separation of extracted products. The method was optimized investigating the effects of several solvents, the volume added to the solid sample, and temperature programming of the ChromatoProbe DSI device. The best results for thermal desorption were found using toluene as an extraction solvent and heating the programmable temperature injector from room temperature to 300 degrees C with a temperature step of 105 degrees C. With the use of the optimized thermal desorption conditions, several components have been positively identified in the volatile fraction of the deposits: aromatics, antioxidants, and antioxidant degradation products. Moreover, this work highlighted the presence of diesel fuel in the VOM of the piston deposits and gave new facts on the absence of the role of diesel fuel in the deposit formation process. Most importantly, it opens the possibility of quickly performing the analysis of deposits with small amounts of samples while having a good separation of the volatiles.

  1. Ultra high vacuum high precision low background setup with temperature control for thermal desorption mass spectroscopy (TDA-MS) of hydrogen in metals. (United States)

    Merzlikin, Sergiy V; Borodin, S; Vogel, D; Rohwerder, M


    In this work, a newly developed UHV-based high precision low background setup for hydrogen thermal desorption analysis (TDA) of metallic samples is presented. Using an infrared heating with a low thermal capacity enables a precise control of the temperature and rapid cool down of the measurement chamber. This novel TDA-set up is superior in sensitivity to almost every standard hydrogen analyzer available commercially due to the special design of the measurement chamber, resulting in a very low hydrogen background. No effects of background drift characteristic as for carrier gas based TDA instruments were observed, ensuring linearity and reproducibility of the analysis. This setup will prove to be valuable for detailed investigations of hydrogen trapping sites in steels and other alloys. With a determined limit of detection of 5.9×10(-3)µg g(-1) hydrogen the developed instrument is able to determine extremely low hydrogen amounts even at very low hydrogen desorption rates. This work clearly demonstrates the great potential of ultra-high vacuum thermal desorption mass spectroscopy instrumentation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Adsorption, desorption, and film formation of quinacridone and its thermal cracking product indigo on clean and carbon-covered silicon dioxide surfaces (United States)

    Scherwitzl, Boris; Lassnig, Roman; Truger, Magdalena; Resel, Roland; Leising, Günther; Winkler, Adolf


    The evaporation of quinacridone from a stainless steel Knudsen cell leads to the partial decomposition of this molecule in the cell, due to its comparably high sublimation temperature. At least one additional type of molecules, namely indigo, could be detected in the effusion flux. Thermal desorption spectroscopy and atomic force microscopy have been used to study the co-deposition of these molecules on sputter-cleaned and carbon-covered silicon dioxide surfaces. Desorption of indigo appears at temperatures of about 400 K, while quinacridone desorbs at around 510 K. For quinacridone, a desorption energy of 2.1 eV and a frequency factor for desorption of 1 × 1019 s-1 were calculated, which in this magnitude is typical for large organic molecules. A fraction of the adsorbed quinacridone molecules (˜5%) decomposes during heating, nearly independent of the adsorbed amount, resulting in a surface composed of small carbon islands. The sticking coefficients of indigo and quinacridone were found to be close to unity on a carbon covered SiO2 surface but significantly smaller on a sputter-cleaned substrate. The reason for the latter can be attributed to insufficient energy dissipation for unfavorably oriented impinging molecules. However, due to adsorption via a hot-precursor state, the sticking probability is increased on the surface covered with carbon islands, which act as accommodation centers.

  3. A technique for rapid source apportionment applied to ambient organic aerosol measurements from a thermal desorption aerosol gas chromatograph (TAG

    Directory of Open Access Journals (Sweden)

    Y. Zhang


    Full Text Available We present a rapid method for apportioning the sources of atmospheric organic aerosol composition measured by gas chromatography–mass spectrometry methods. Here, we specifically apply this new analysis method to data acquired on a thermal desorption aerosol gas chromatograph (TAG system. Gas chromatograms are divided by retention time into evenly spaced bins, within which the mass spectra are summed. A previous chromatogram binning method was introduced for the purpose of chromatogram structure deconvolution (e.g., major compound classes (Zhang et al., 2014. Here we extend the method development for the specific purpose of determining aerosol samples' sources. Chromatogram bins are arranged into an input data matrix for positive matrix factorization (PMF, where the sample number is the row dimension and the mass-spectra-resolved eluting time intervals (bins are the column dimension. Then two-dimensional PMF can effectively do three-dimensional factorization on the three-dimensional TAG mass spectra data. The retention time shift of the chromatogram is corrected by applying the median values of the different peaks' shifts. Bin width affects chemical resolution but does not affect PMF retrieval of the sources' time variations for low-factor solutions. A bin width smaller than the maximum retention shift among all samples requires retention time shift correction. A six-factor PMF comparison among aerosol mass spectrometry (AMS, TAG binning, and conventional TAG compound integration methods shows that the TAG binning method performs similarly to the integration method. However, the new binning method incorporates the entirety of the data set and requires significantly less pre-processing of the data than conventional single compound identification and integration. In addition, while a fraction of the most oxygenated aerosol does not elute through an underivatized TAG analysis, the TAG binning method does have the ability to achieve molecular level

  4. Rectangular nanovoids in helium-implanted and thermally annealed MgO(100)

    NARCIS (Netherlands)

    Kooi, B.J.; Veen, A. van; Hosson, J.Th.M. De; Schut, H.; Fedorov, A.V.; Labohm, F.


    Cleaved MgO(100) single crystals were implanted with 30 keV 3He ions with doses varying from 1×10^19 to 1×10^20 m-2 and subsequently thermally annealed from 100 to 1100 °C. Transmission electron microscopy observations revealed the existence of sharply rectangular nanosize voids at a depth slightly

  5. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods. (United States)

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina


    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Synthesis of Defect Perovskites (He2-x□x)(CaZr)F6 by Inserting Helium into the Negative Thermal Expansion Material CaZrF6. (United States)

    Hester, Brett R; Dos Santos, António M; Molaison, Jamie J; Hancock, Justin C; Wilkinson, Angus P


    Defect perovskites (He2-x□x)(CaZr)F6 can be prepared by inserting helium into CaZrF6 at high pressure. They can be recovered to ambient pressure at low temperature. There are no prior examples of perovskites with noble gases on the A-sites. The insertion of helium gas into CaZrF6 both elastically stiffens the material and reduces the magnitude of its negative thermal expansion. It also suppresses the onset of structural disorder, which is seen on compression in other media. Measurements of the gas released on warming to room temperature and Rietveld analyses of neutron diffraction data at low temperature indicate that exposure to helium gas at 500 MPa leads to a stoichiometry close to (He1□1)(CaZr)F6. Helium has a much higher solubility in CaZrF6 than silica glass or crystobalite. An analogue with composition (H2)2(CaZr)F6 would have a volumetric hydrogen storage capacity greater than current US DOE targets. We anticipate that other hybrid perovskites with small neutral molecules on the A-site can also be prepared and that they will display a rich structural chemistry.

  7. Models of low-mass helium white dwarfs including gravitational settling, thermal and chemical diffusion, and rotational mixing (United States)

    Istrate, A. G.; Marchant, P.; Tauris, T. M.; Langer, N.; Stancliffe, R. J.; Grassitelli, L.


    A large number of extremely low-mass helium white dwarfs (ELM WDs) have been discovered in recent years. The majority of them are found in close binary systems suggesting they are formed either through a common-envelope phase or via stable mass transfer in a low-mass X-ray binary (LMXB) or a cataclysmic variable (CV) system. Here, we investigate the formation of these objects through the LMXB channel with emphasis on the proto-WD evolution in environments with different metallicities. We study for the first time the combined effects of rotational mixing and element diffusion (e.g. gravitational settling, thermal and chemical diffusion) on the evolution of proto-WDs and on the cooling properties of the resulting WDs. We present state-of-the-art binary stellar evolution models computed with MESA for metallicities of Z = 0.02, 0.01, 0.001 and 0.0002, producing WDs with masses between 0.16-0.45 M⊙. Our results confirm that element diffusion plays a significant role in the evolution of proto-WDs that experience hydrogen shell flashes. The occurrence of these flashes produces a clear dichotomy in the cooling timescales of ELM WDs, which has important consequences e.g. for the age determination of binary millisecond pulsars. In addition, we confirm that the threshold mass at which this dichotomy occurs depends on metallicity. Rotational mixing is found to counteract the effect of gravitational settling in the surface layers of young, bloated ELM proto-WDs and therefore plays a key role in determining their surface chemical abundances, I.e. the observed presence of metals in their atmospheres. We predict that these proto-WDs have helium-rich envelopes through a significant part of their lifetime. This is of great importance as helium is a crucial ingredient in the driving of the κ-mechanism suggested for the newly observed ELM proto-WD pulsators. However, we find that the number of hydrogen shell flashes and, as a result, the hydrogen envelope mass at the beginning of

  8. Thermal desorption GC-MS as a tool to provide PAH certified standard reference material on particulate matter quartz filters. (United States)

    Grandesso, Emanuela; Pérez Ballesta, Pascual; Kowalewski, Konrad


    Reference materials for particulate matter (PM) on filter media are not available for the quantification of polycyclic aromatic hydrocarbons (PAHs) in ambient air. This is due to the difficulty of obtaining reference material that has a homogeneous distribution on a filter surface that is large enough for characterization and distribution. High volume sample filters from different locations and seasons were considered to validate the feasibility of the use of quartz filters as reference material for PAH concentrations. A rapid thermal desorption (TD) technique coupled with gas chromatography/mass spectroscopy was applied to characterise the material for the content of fifteen different PAHs. TD technique allowed for rapid and accurate analysis of small sections of filter (5mm diameter), leaving enough material for the production of twenty sub-filter cuts (42 mm diameter) that could be used for distribution and control. Stability and homogeneity tests required for material certification were performed as indicated by the ISO guide 34:2009 and ISO 35:2006. The contribution of the heterogeneous distribution of PAHs on the filter surface resulted generally lower than 10% and higher for more volatile PAHs. One year of storage at -18°C indicated no significant variation in PAH concentrations. Nevertheless, a methodology for shipping and storing of the filter material at ambient temperature in especially designed plastic envelopes, was also shown to allow for stabile concentrations within twenty days. The method accuracy was confirmed by the analysis of NIST SRM 1649a (urban dust) and PAH concentrations were validated against the reference values obtained from an inter-laboratory exercise. In the case of benzo[a]pyrene for masses quantified between 100 pg and 10 ng the TD method provided expanded uncertainties of circa 10%, while the inter-laboratory reference value uncertainties ranged between 15 and 20%. The evaluation of these results supports the use of the presented

  9. The role of radiation damage on retention and temperature intervals of helium and hydrogen detrapping in structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Tolstolutskaya, G.D., E-mail: [National Science Center “Kharkov Institute of Physics and Technology”, 1, Akademicheskaya St., 61108 Kharkov (Ukraine); Ruzhytskyi, V.V.; Voyevodin, V.N.; Kopanets, I.E.; Karpov, S.A.; Nikitin, A.V. [National Science Center “Kharkov Institute of Physics and Technology”, 1, Akademicheskaya St., 61108 Kharkov (Ukraine)


    An experimental study of hydrogen/deuterium behavior in ferritic–martensitic stainless steels EP-450 (Cr13Mo2NbVB), EP-852 (Cr13Mo2VS), and RUSFER-EK-181 (Fe12Cr2WVTaB) is presented. The effect of displacement damage (dpa) resulting from irradiation with helium, hydrogen, and argon ions on features of deuterium detrapping and retention in steels was studied using ion implantation, nuclear reaction depth profiling, and thermal desorption spectrometry techniques. Numerical simulation on the basis of the continuum rate theory was applied for obtaining thermodynamic parameters of deuterium trapping and desorption in steels.

  10. In-injection port thermal desorption and subsequent gas chromatography-mass spectrometric analysis of polycyclic aromatic hydrocarbons and n-alkanes in atmospheric aerosol samples. (United States)

    Ho, Steven Sai Hang; Yu, Jian Zhen


    The traditional approach for analysis of aerosol organics is to extract aerosol materials collected on filter substrates with organic solvents followed by solvent evaporation and analytical separation and detection. This approach has the weaknesses of being labor intensive and being prone to contamination from the extracting solvents. We describe here an alternative approach for the analysis of aerosol alkanes and polycyclic aromatic hydrocarbons (PAHs) that obviates the use of solvents. In our approach, small strips of aerosol-laden filter materials are packed into a GC split/splitless injector liner. Alkanes and PAHs on the filter are thermally desorbed in the injection port and focused onto the head of a GC column for subsequent separation and detection. No instrument modification is necessary to accommodate the introduction of the aerosol organics into the GC-MS system. Comparison studies were carried out on a set of 16 ambient aerosol samples using our in-injection port thermal desorption (TD) method and the traditional solvent extraction method. Reasonably good agreement of individual alkanes and PAHs by the two methods was demonstrated for the ambient samples. The in-injection port thermal desorption method requires much less filter material for detecting the same air concentrations of alkanes and PAHs.

  11. Direct determination of a polymeric hindered amine light stabilizer in polypropylene by thermal desorption-gas chromatography assisted by in-line chemical reaction


    Keiichiro, Kimura; Toshio, Yoshikawa; Yoshihiko, Taguchi; Yasuyuki, Ishida; Hajime, Ohtani; Shin, Tsuge


    A method to determine a polymeric hindered amine light stabilizer (HALS), Adekastab LA-68LD, in polypropylene (PP) was developed on the basis of reactive thermal desorption-gas chromatography (RTD-GC) in the presence of an organic alkali, tetramethylammonium hydroxide [(CH3)4NOH, TMAH]. RTD-GC using 25% TMAH methanol solution allowed the sensitive determination of HALS in PP as methylated fragments on the resulting chromatogram with a 4.8% relative standard deviation without the need for an...

  12. Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Shijie; Zhang, Dalin, E-mail:; Cheng, Jie; Tian, Wenxi; Su, G.H.


    As one of the candidate tritium breeding blankets for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of the helium cooled solid breeder blanket has recently been proposed. The neutronic, thermal-hydraulic and mechanical characteristics of the blanket directly affect its tritium breeding and safety performance. Therefore, neutronic/thermal-hydraulic/mechanical coupling analyses are of vital importance for a reliable blanket design. In this work, first, three-dimensional neutronics analysis and optimization of the typical outboard equatorial blanket module (No. 12) were performed for the comprehensive optimal scheme. Then, thermal and fluid dynamic analyses of the scheme under both normal and critical conditions were performed and coupled with the previous neutronic calculation results. With thermal-hydraulic boundaries, thermo-mechanical analyses of the structure materials under normal, critical and blanket over-pressurization conditions were carried out. In addition, several parametric sensitivity studies were also conducted to investigate the influences of the main parameters on the blanket temperature distributions. In this paper, the coupled analyses verify the reasonability of the optimized conceptual design preliminarily and can provide an important reference for the further analysis and optimization design of the CFETR helium cooled solid breeder blanket.

  13. Afterheat removal from a helium reactor under accident conditions. CFD calculations for the code-to-code benchmark analyses on the thermal behavior for the gas turbine modular helium reactor

    Energy Technology Data Exchange (ETDEWEB)

    Siccama, N.B.; Koning, H


    The International Atomic Energy Agency (IAEA) Co-ordinated Research Programme (CRP) on `Heat Transport and Afterheat Removal for Gas Cooled Reactors under Accident Conditions` has organised benchmark analyses to support verification and validation of analytical tools used by the participants to predict the thermal behaviour of advanced gas cooled reactors during accidents. One of thew benchmark analyses concerns the code-to-code analysis of the Gas Turbine Modular Helium Reactor (GT-MHR) plutonium burner accidents. The GT-MHR is a passive safe, helium cooled, graphite moderated, advanced reactor system with a thermal power of 600 MW that is based on existing technology. The GT-MHR can also be fuelled with plutonium. If the main helium cooling and the auxiliary shut-down cooling systems fail or become unavailable, the core afterheat is removed by radiation and convection inside the reactor vessel and the reactor cavity to the Reactor Cavity Cooling System (RCCS). The objective of the RCCS is to serve as an ultimate heat sink, ensuring the thermal integrity of the core, vessel and critical equipment within the reactor cavity for the entire spectrum of postulated accident sequences. This paper describes the heat transport inside the reactor core to the RCCS. For this purpose, the heat transfer mechanisms as well as the flow patterns inside the core, the reactor pressure vessel, and the cavity have been calculated by the Computational Fluid Dynamics (CFD) code CFX-F3D. The behaviour of the RCCS itself is not described. One calculation considers the full power operation, while two calculations consider Loss Of Forced Convection (LOFC) accidents, one at pressurised conditions and the other depressurised conditions. The heat transfer from the reactor vessel to the environment under normal operation conditions is 2.64 MW. The highest temperature in the core is 1222K, and the average core temperature is 1075K. The highest reactor vessel temperature is 679K. The highest

  14. Determination of Teucrium chamaedrys volatiles by using direct thermal desorption-comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. (United States)

    Ozel, Mustafa Z; Göğüş, Fahrettin; Lewis, Alastair C


    The direct qualification and quantification of the volatile components of Teucrium chamaedrys was studied using a direct thermal desorption (DTD) technique with comprehensive two-dimensional (2D) gas chromatography-time-of-flight mass spectrometry (GC x GC-TOF/MS). The GC x GC separation chromatographically resolved hundreds of components within this sample, and with the separation coupled with TOF/MS for detection, high probability identifications were made for 68 compounds. The quantitative results were determined through the use of internal standards and the desorption of differing amounts of raw material in the injector. The highest yield of volatile compounds (0.39%, w/w) was obtained at 150 degrees C thermal desorption temperature using 1.0mg of dried sample placed in a glass injector liner when studied over the range 1.0-7.0mg. Lowest yield of 0.33% (w/w) was found for the largest sample size of 7.0mg. Relative standard deviation (RSD) for 10 replicates at each size sample were in the range 3.9-21.6%. The major compounds identified were beta-pinene, germacrene D, alpha-pinene, alpha-farnesene, alpha-gurjunene, gamma-elemene and gamma-cadinene. All identified compounds were quantified using total ion chromatogram (TIC) peak areas. DTD is a promising method for quantitative analysis of complex mixtures, and in particular for quantitative analysis of plant samples, which can yield data without the traditional obligation for costly and time-consuming extraction techniques.

  15. Liquid helium

    CERN Document Server

    Atkins, K R


    Originally published in 1959 as part of the Cambridge Monographs on Physics series, this book addresses liquid helium from the dual perspectives of statistical mechanics and hydrodynamics. Atkins looks at both Helium Three and Helium Four, as well as the properties of a combination of the two isotopes. This book will be of value to anyone with an interest in the history of science and the study of one of the universe's most fundamental elements.

  16. A Study on Thermal Desorption of Deuterium in D-loaded SS316LN for ITER Tritium Removal System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Myungchul; Kim, Heemoon; Ahn, Sangbok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Jaeyong; Lee, Sanghwa; LanAhn, Nguyen Thi [Hanyang University, Seoul (Korea, Republic of)


    Because Type B radwaste includes tritium on its inside, especially at vicinity of surface, tritium removal from the radwaste is a matter of concern in terms of the radwaste processes. Tritium behavior in materials is related with temperature. Considering a diffusion process, it is expected that tritium removal efficiency is enhanced with increasing baking temperature. However, there is a limitation about temperature due to facility capacity and economic aspect. Therefore, it is necessary to investigate the effect of temperature on the desorption behavior of Tritium in ITER materials. TDS analysis was performed in SS316LN loaded at 120, 240 and 350 °C. D2 concentration and the desorption peak temperature increased with increasing loading temperature. Using peak shift method with three ramp rates of 0.166, 0.332, and 0.5 °C/sec, trap activation energy of D in SS316LN loaded at 350 °C was 56 kJ/mol.

  17. Gas porosity evolution and ion-implanted helium behavior in reactor ferritic/martensitic and austenitic steels (United States)

    Chernov, I. I.; Kalin, B. A.; Staltsov, M. S.; Oo, Kyi Zin; Binyukova, S. Yu.; Staltsova, O. S.; Polyansky, A. A.; Ageev, V. S.; Nikitina, A. A.


    The peculiarities of gas porosity formation and helium retention and release in reactor ferritic/martensitic EP-450 and EP-450-ODS and austenitic ChS-68 steels are investigated by transmission electron microscopy and helium thermal desorption spectrometry (HTDS). The samples were irradiated by 40 keV He+ ions up to a fluence of 5 · 1020 m-2 at 293 and 923 K. An nonuniform distribution of helium bubbles and high-level gas swelling in ferritic/martensitic steels were found at high-temperature helium implantation. The same irradiation conditions result in formation of uniformly distributed helium bubbles and low-level swelling in ChS-68 steel. Temperature range of helium release from EP-450-ODS steel was considerably wider in comparison to HTDS-spectra of the EP-450 steel. A considerable quantity of helium is released from ODS steel in the high-temperature range after the main peak of the HTDS-spectrum.

  18. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W


    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  19. Radon, helium and uranium survey in some thermal springs located in NW Himalayas, India: mobilization by tectonic features or by geochemical barriers? (United States)

    Walia, V; Quattrocchi, F; Virk, H S; Yang, T F; Pizzino, L; Bajwa, B S


    Radon, helium and uranium measurements have been carried out in hot water springs in the Parbati and Beas valleys of Himachal Himalaya. Most of these hot springs are known as famous pilgrimage centers. The activity of dissolved radon in the liquid phase is found to vary widely, by an order of magnitude, between 10 and 750 Bq L(-1), whereas, the dissolved helium content in these thermal springs varies between 10 and 100 ppm. The uranium contents are low and vary from geochemical barriers cause the mobilization of uranile ions in solution (UO2+); the most plausible hypothesis is when the conditions are oxidising, confirming the importance of physico-chemical conditions up to the supergenic environment, to control the fluid geochemistry of the U-He-222Rn system. Some evidence is available from both geothermometric considerations and geochemical data which will be reported elsewhere, whereas the present study is focused on U decay series-noble gas geochemistry. The first analysis of collected 3He/4He data is consistent with a crustal signature at the studied thermal springs.

  20. Analyses of the wood preservative component N-cyclohexyl-diazeniumdioxide in impregnated pine sapwood by direct thermal desorption-gas chromatography-mass spectrometry. (United States)

    Jüngel, Peter; de Koning, Sjaak; Brinkman, Udo A Th; Melcher, Eckhard


    Investigations concerning the qualitative and quantitative determination of the organic wood preservative component N-cyclohexyl-diazeniumdioxide (HDO) in treated timber were carried out by means of direct thermal desorption-gas chromatography-mass spectrometry (DTD-GC-MS). It could be shown that the identification of HDO in treated pine sapwood (Pinus sylyestris L.) is relatively simple using this analytical technique. Quantification of this active ingredient can be carried out using the peak area of the specific mass fragment m/z 114. A calibration curve with a high correlation coefficient was obtained in the range from 40 to 550 mg HDO per kg timber. Furthermore it can be deduced that the results obtained are characterised by an excellent reproducibility with standard deviations ranging from 5 to 10% in general. For the chosen experimental set up a detection limit of 4 mg HDO per kg treated pine sapwood was calculated, although merely 20% of the active ingredient was desorbed.

  1. Use of thermal desorption gas chromatography-olfactometry/mass spectrometry for the comparison of identified and unidentified odor active compounds emitted from building products containing linseed oil

    DEFF Research Database (Denmark)

    Clausen, P. A.; Knudsen, Henrik Nellemose; Larsen, K.


    The emission of odor active volatile organic compounds (VOCs) from a floor oil based on linseed oil, the linseed oil itself and a low-odor linseed oil was investigated by thermal desorption gas chromatography combined with olfactometry and mass spectrometry (TD-GC-O/MS). The oils were applied...... identified by GC-MS. While 92 VOCs were detected from the oil used in the floor oil, only 13 were detected in the low-odor linseed oil. The major odor active VOCs were aldehydes and carboxylic acids. Spearmen rank correlation of the GC-O profiles showed that the odor profile of the linseed oil likely...... influenced the odor profile of the floor oil based on this linseed oil....

  2. Measurement of Passive Uptake Rates for Volatile Organic Compounds on Commercial Thermal Desorption Tubes and the Effect of Ozone on Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Randy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Parra, Amanda [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Russell, Marion [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lee, Wen-Yee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    Diffusive or passive sampling methods using commercially filled axial-sampling thermal desorption tubes are widely used for measuring volatile organic compounds (VOCs) in air. The passive sampling method provides a robust, cost effective way to measure air quality with time-averaged concentrations spanning up to a week or more. Sampling rates for VOCs can be calculated using tube geometry and Fick’s Law for ideal diffusion behavior or measured experimentally. There is evidence that uptake rates deviate from ideal and may not be constant over time. Therefore, experimentally measured sampling rates are preferred. In this project, a calibration chamber with a continuous stirred tank reactor design and constant VOC source was combined with active sampling to generate a controlled dynamic calibration environment for passive samplers. The chamber air was augmented with a continuous source of 45 VOCs ranging from pentane to diethyl phthalate representing a variety of chemical classes and physiochemical properties. Both passive and active samples were collected on commercially filled Tenax TA thermal desorption tubes over an 11-day period and used to calculate passive sampling rates. A second experiment was designed to determine the impact of ozone on passive sampling by using the calibration chamber to passively load five terpenes on a set of Tenax tubes and then exposing the tubes to different ozone environments with and without ozone scrubbers attached to the tube inlet. During the sampling rate experiment, the measured diffusive uptake was constant for up to seven days for most of the VOCs tested but deviated from linearity for some of the more volatile compounds between seven and eleven days. In the ozone experiment, both exposed and unexposed tubes showed a similar decline in terpene mass over time indicating back diffusion when uncapped tubes were transferred to a clean environment but there was no indication of significant loss by ozone reaction.

  3. Antiprotonic helium

    CERN Multimedia

    Eades, John


    An exotic atom in w hich an electron and an antiproton orbit a helium nucleus could reveal if there are any differences between matter and antimatter. The author describes this unusual mirror on the antiworld (5 pages)

  4. Thermal conductivity and Kapitza resistance of cyanate ester epoxy mix and tri-functional epoxy electrical insulations at superfluid helium temperature

    CERN Document Server

    Pietrowicz, S; Jones, S; Canfer, S; Baudouy, B


    In the framework of the European Union FP7 project EuCARD, two composite insulation systems made of cyanate ester epoxy mix and tri-functional epoxy (TGPAP-DETDA) with S-glass fiber have been thermally tested as possible candidates to be the electrical insulation of 13 T Nb3Sn high field magnets under development for this program. Since it is expected to be operated in pressurized superfluid helium at 1.9 K and 1 atm, the thermal conductivity and the Kapitza resistance are the most important input parameters for the thermal design of this type of magnet and have been determined in this study. For determining these thermal properties, three sheets of each material with different thicknesses varying from 245 μm to 598 μm have been tested in steady-state condition in the temperature range of 1.6 K - 2.0 K. The thermal conductivity for the tri-functional epoxy (TGPAP-DETDA) epoxy resin insulation is found to be k=[(34.2±5.5).T-(16.4±8.2)]×10-3 Wm-1K-1 and for the cyanate ester epoxy k=[(26.8±4.8).T- (9.6±5...

  5. A revaluation of helium/dpa ratios for fast reactor and thermal reactor data in fission-fusion correlations

    Energy Technology Data Exchange (ETDEWEB)

    Garner, F.A.; Greenwood, L.R. [Pacific Northwest National Lab., Richland, WA (United States); Oliver, B.M.


    For many years it has been accepted that significant differences exist in the helium/dpa ratios produced in fast reactors and various proposed fusion energy devices. In general, the differences arise from the much larger rate of (n,{alpha}) threshold reactions occurring in fusion devices, reactions which occur for energies {ge} 6 MeV. It now appears, however, that for nickel-containing alloys in fast reactors the difference may not have been as large as was originally anticipated. In stainless steels that have a very long incubation period for swelling, for instance, the average helium concentration over the duration of the transient regime have been demonstrated in an earlier paper to be much larger in the FFTF out-of-core regions than first calculated. The helium/dpa ratios in some experiments conducted near the core edge or just outside of the FFTF core actually increase strongly throughout the irradiation, as {sup 59}Ni slowly forms by transmutation of {sup 58}Ni. This highly exothermic {sup 59}Ni(n,{alpha}) reaction occurs in all fast reactors, but is stronger in the softer spectra of oxide-fueled cores such as FFTF and weaker in the harder spectra of metal-fueled cores such as EBR-II. The formation of {sup 59}Ni also increases strongly in out-of-core unfueled regions where the reactor spectra softens with distance from the core.

  6. Influence of displacement damage on deuterium and helium retention in austenitic and ferritic-martensitic alloys considered for ADS service

    Energy Technology Data Exchange (ETDEWEB)

    Voyevodin, V.N.; Karpov, S.A.; Kopanets, I.E.; Ruzhytskyi, V.V. [National Science Center “Kharkov Institute of Physics and Technology” Kharkov, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Tolstolutskaya, G.D., E-mail: [National Science Center “Kharkov Institute of Physics and Technology” Kharkov, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Garner, F.A. [Radiation Effects Consulting, Richland, WA (United States)


    The behavior of ion-implanted hydrogen (deuterium) and helium in austenitic 18Cr10NiTi stainless steel, EI-852 ferritic steel and ferritic/martensitic steel EP-450 and their interaction with displacement damage were investigated. Energetic argon irradiation was used to produce displacement damage and bubble formation to simulate nuclear power environments. The influence of damage morphology and the features of radiation-induced defects on deuterium and helium trapping in structural alloys was studied using ion implantation, the nuclear reaction D({sup 3}He,p){sup 4}He, thermal desorption spectrometry and transmission electron microscopy. It was found in the case of helium irradiation that various kinds of helium-radiation defect complexes are formed in the implanted layer that lead to a more complicated spectra of thermal desorption. Additional small changes in the helium spectra after irradiation with argon ions to a dose of ≤25 dpa show that the binding energy of helium with these traps is weakly dependent on the displacement damage. It was established that retention of deuterium in ferritic and ferritic-martensitic alloys is three times less than in austenitic steel at damage of ∼1 dpa. The retention of deuterium in steels is strongly enhanced by presence of radiation damages created by argon ion irradiation, with a shift in the hydrogen release temperature interval of 200 K to higher temperature. At elevated temperatures of irradiation the efficiency of deuterium trapping is reduced by two orders of magnitude.

  7. Helium behaviour in UO{sub 2} through low fluence ion implantation studies

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, P., E-mail: [CEA – DEN/DEC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Gilabert, E. [Centre d’Et' udes Nucleáires de Bordeaux-Gradignan, Le Haut Vigneau, 33175 Gradignan (France); Martin, G.; Carlot, G.; Sabathier, C. [CEA – DEN/DEC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Sauvage, T.; Desgardin, P.; Barthe, M.-F. [CNRS-CEMHTI, UPR3079, 45071 Orleáns (France)


    In this work we focus on experiments involving implantation of 500 keV {sup 3}He ions in sintered polycrystalline material. Samples are implanted at low fluences (∼2 ×10{sup 13} ions/cm{sup 2}) and subsequently isothermally annealed in a highly sensitive thermal desorption spectrometry (TDS) device PIAGARA (Plateforme Interdisciplinaire pour l’Analyse des GAz Rares en Aquitaine). The helium fluencies studied are two to three orders of magnitude lower than previous Nuclear Reaction Analysis (NRA) experiments carried out on identical samples implanted at identical energies. The fractional release of helium obtained in the TDS experiments is interpreted using a three-dimensional axisymmetric diffusion model which enables results to be quantitatively compared to previous NRA data. The analysis shows that helium behaviour is qualitatively independent of ion fluency over three orders of magnitude: helium diffusion appears to be strongly inhibited below 1273 K within the centre of the grains presumably as a result of helium bubble precipitation. The scenario involving diffusion at grain boundaries and in regions adjacent to them observed at higher fluencies is quantitatively confirmed at much lower doses. The main difference lies in the average width of the region in which uninhibited diffusion occurs.

  8. Permeability of Hollow Microspherical Membranes to Helium (United States)

    Zinoviev, V. N.; Kazanin, I. V.; Pak, A. Yu.; Vereshchagin, A. S.; Lebiga, V. A.; Fomin, V. M.


    This work is devoted to the study of the sorption characteristics of various hollow microspherical membranes to reveal particles most suitable for application in the membrane-sorption technologies of helium extraction from a natural gas. The permeability of the investigated sorbents to helium and their impermeability to air and methane are shown experimentally. The sorption-desorption dependences of the studied sorbents have been obtained, from which the parameters of their specific permeability to helium are calculated. It has been established that the physicochemical modification of the original particles exerts a great influence on the coefficient of the permeability of a sorbent to helium. Specially treated cenospheres have displayed high efficiency as membranes for selective extraction of helium.

  9. Interstitial oxygen molecules in amorphous SiO2. I. Quantitative concentration analysis by thermal desorption, infrared photoluminescence, and vacuum-ultraviolet optical absorption (United States)

    Kajihara, Koichi; Hirano, Masahiro; Uramoto, Motoko; Morimoto, Yukihiro; Skuja, Linards; Hosono, Hideo


    The amount of oxygen molecules (O2) in amorphous SiO2(a-SiO2), also called interstitial O2, was quantitatively measured by combining thermal-desorption spectroscopy (TDS) with infrared photoluminescence (PL) measurements of interstitial O2 at 1272 nm while exciting with 1064-nm Nd: yttrium aluminum garnet laser light. It was found that the amount of O2 released by the TDS measurement is proportional to the intensity decrease of the PL band, demonstrating that a-SiO2 easily emits interstitial O2 during thermal annealing in vacuum. This correlation yielded the proportionality coefficient between the absolute concentration of interstitial O2 and its PL intensity normalized against the intensity of the fundamental Raman bands of a-SiO2. This relationship was further used to determine the optical-absorption cross section of the Schumann-Runge band of the interstitial O2 located at photon energies ≳6.5eV. This band is significantly redshifted and has a larger cross section compared to that of O2 in the gas phase.

  10. Determination of short chain chlorinated paraffins in water by stir bar sorptive extraction-thermal desorption-gas chromatography-triple quadrupole tandem mass spectrometry. (United States)

    Tölgyessy, P; Nagyová, S; Sládkovičová, M


    A simple, robust, sensitive and environment friendly method for the determination of short chain chlorinated paraffins (SCCPs) in water using stir bar sorptive extraction (SBSE) coupled to thermal desorption-gas chromatography-triple quadrupole tandem mass spectrometry (TD-GC-QqQ-MS/MS) was developed. SBSE was performed using 100mL of water sample, 20mL of methanol as a modifier, and a commercial sorptive stir bar (with 10mm×0.5mm PDMS layer) during extraction period of 16h. After extraction, the sorptive stir bar was thermally desorbed and online analysed by GC-MS/MS. Method performance was evaluated for MilliQ and surface water spiked samples. For both types of matrices, a linear dynamic range of 0.5-3.0μgL -1 with correlation coefficients >0.999 and relative standard deviations (RSDs) of the relative response factors (RRFs) <12% was established. The limits of quantification (LOQs) of 0.06 and 0.08μgL -1 , and the precision (repeatability) of 6.4 and 7.7% (RSDs) were achieved for MilliQ and surface water, respectively. The method also showed good robustness, recovery and accuracy. The obtained performance characteristics indicate that the method is suitable for screening and monitoring and compliance checking with environmental quality standards (EQS, set by the EU) for SCCPs in surface waters. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Hydrophilic magnetic ionic liquid for magnetic headspace single-drop microextraction of chlorobenzenes prior to thermal desorption-gas chromatography-mass spectrometry. (United States)

    Fernández, Elena; Vidal, Lorena; Canals, Antonio


    A new, fast, easy to handle, and environmentally friendly magnetic headspace single-drop microextraction (Mag-HS-SDME) based on a magnetic ionic liquid (MIL) as an extractant solvent is presented. A small drop of the MIL 1-ethyl-3-methylimidazolium tetraisothiocyanatocobaltate(II) ([Emim]2[Co(NCS)4]) is located on one end of a small neodymium magnet to extract nine chlorobenzenes (1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, 1,2,3,4-tetrachlorobenzene, 1,2,4,5-tetrachlorobenzene, and pentachlorobenzene) as model analytes from water samples prior to thermal desorption-gas chromatography-mass spectrometry determination. A multivariate optimization strategy was employed to optimize experimental parameters affecting Mag-HS-SDME. The method was evaluated under optimized extraction conditions (i.e., sample volume, 20 mL; MIL volume, 1 μL; extraction time, 10 min; stirring speed, 1500 rpm; and ionic strength, 15% NaCl (w/v)), obtaining a linear response from 0.05 to 5 μg L-1 for all analytes. The repeatability of the proposed method was evaluated at 0.7 and 3 μg L-1 spiking levels and coefficients of variation ranged between 3 and 18% (n = 3). Limits of detection were in the order of nanograms per liter ranging from 4 ng L-1 for 1,4-dichlorobenzene and 1,2,3,4-tetrachlorobenzene to 8 ng L-1 for 1,2,4,5-tetrachlorobenzene. Finally, tap water, pond water, and wastewater were selected as real water samples to assess the applicability of the method. Relative recoveries varied between 82 and 114% showing negligible matrix effects. Graphical abstract Magnetic headspace single-drop microextraction followed by thermal desorption-gas chromatography-mass spectrometry.

  12. Experimental and theoretical investigation of Fe-catalysis phenomenon in hydrogen thermal desorption from hydrocarbon plasma-discharge films from T-10 tokama (United States)

    Stankevich, Vladimir G.; Sukhanov, Leonid P.; Svechnikov, Nicolay Yu.; Lebedev, Alexey M.; Menshikov, Kostantin A.; Kolbasov, Boris N.


    Investigations of the effect of Fe impurities on D2 thermal desorption (TD) from homogeneous CDx films (x ˜ 0.5) formed in the D-plasma discharge of the T-10 tokamak were carried out. The experimental TD spectra of the films showed two groups of peaks at 650-850 K and 900-1000 K for two adsorption states. The main result of the iron catalysis effect consists in the shift of the high-temperature peak by -24 K and in the increase in the fraction of the weakly bonded adsorption states. To describe the effect of iron impurities on TD of hydrogen isotopes, a structural cluster model based on the interaction of the Fe+ ion with the 1,3-C6H8 molecule was proposed. The potential energy surfaces of chemical reactions with the H2 elimination were calculated using ab initio methods of quantum chemistry. It was established that the activation barrier of hydrogen TD is reduced by about 1 eV due to the interaction of the Fe+ ion with the π-subsystem of the 1,3-C6H8 molecule leading to a redistribution of the double bonds along the carbon system. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)"", edited by Luis Lemos Alves, Thierry Belmonte and Tiberiu Minea

  13. Thermal desorption/tunable vacuum-ultraviolet time-of-flight photoionization aerosol mass spectrometry for investigating secondary organic aerosols in chamber experiments. (United States)

    Fang, Wenzheng; Gong, Lei; Shan, Xiaobin; Liu, Fuyi; Wang, Zhenya; Sheng, Liusi


    This paper describes thermal desorption/tunable vacuum-ultraviolet photoionization time-of-flight aerosol mass spectrometry (TD-VUV-TOF-PIAMS) for the real-time analysis of secondary organic aerosols (SOAs) in smog chamber experiments. SOAs are sampled directly from atmospheric pressure and are focused through an aerodynamic lens assembly into the mass spectrometer. Once the particles have entered the source region, they impact on a heater and are vaporized. The nascent vapor is then softly ionized by tunable VUV synchrotron radiation. TD-VUV-TOF-PIAMS was used in conjunction with the smog chamber to study SOA formation from the photooxidation of toluene with hydroxyl radicals. The ionization energies (IEs) of these SOA products are sometimes very different with each other. As the ideal photon source is tunable, its energy can be adjusted for each molecular to be ionized. The mass spectra obtained at different photon energies are then to be useful for molecular identification. Real-time analysis of the mass spectra of SOAs is compared with previous off-line measurements. These results illustrate the potential of TD-VUV-TOF-PIAMS for direct molecular characterization of SOAs in smog chamber experiments.

  14. Time-dependent categorization of volatile aroma compound formation in stewed Chinese spicy beef using electron nose profile coupled with thermal desorption GC–MS detection

    Directory of Open Access Journals (Sweden)

    Hui Gong


    Full Text Available In the present study, flavor profiles of Chinese spiced beef in the cooking process were comparatively analyzed by electronic nose, gas chromatography–mass spectrometry (GC–MS with a thermal desorption system (TDS, and solid-phase microextraction (SPME. A total of 82 volatile compounds were identified, and 3-methyl-butanal, pentanal, hexanal, ρ-xylene, heptanal, limonene, terpinene, octanal, linalool, 4-terpinenol, α-terpineol, and (E-anethole were identified as the characteristic flavor compounds in Chinese spiced beef. Variation in the content of volatile components produced by different cooking processes was observed. In general, a cooking time of 4 h resulted in optimal flavor quality and stability. Results indicated that the electronic nose could profile and rapidly distinguish variation among different cooking time. The volatile profiling by TDS-GC–MS and responses from the electronic nose, in combination with multivariate statistical analysis, are a promising tool for control the cooking process of spiced beef.

  15. China action of "Cleanup Plan for Polychlorinated Biphenyls Burial Sites": emissions during excavation and thermal desorption of a capacitor-burial site. (United States)

    Yang, Bing; Zhou, Lingli; Xue, Nandong; Li, Fasheng; Wu, Guanglong; Ding, Qiong; Yan, Yunzhong; Liu, Bo


    Scarce data are available so far on emissions in a given scenario for excavation and thermal desorption, a common practice, of soils contaminated with polychlorinated biphenyls (PCBs). As part of China action of "Cleanup Plan for PCBs Burial Sites", this study roughly estimated PCBs emissions in the scenario for a capacitor-burial site. The concentrations of total PCBs (22 congeners) in soils were in the range of 2.1-16,000μg/g with a mean of 2300μg/g, among the same order of magnitude as the highest values obtained in various PCBs-contaminated sites. Only six congeners belonging to Di-, Tri-, and Tetra-CBs were observed above limits of detection in air samples in the scenario, partially which can be estimated by the USEPA air emission model. Comparing concentrations and composition profiles of PCBs in the soil and air samples further indicated a leaked source of commercial PCBs formulations of trichlorobiphenyl (China PCB no. 1). The measures taken if any to mitigate the volatilization and movement of PCBs and to minimize worker exposure were discussed for improvements of the excavation practice. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Hydrogen retention studies on lithiated tungsten exposed to glow discharge plasmas under varying lithiation environments using Thermal Desorption Spectroscopy and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A. de, E-mail: [Fusion National Laboratory-CIEMAT, Av Complutense 40, 28040 Madrid (Spain); Valson, P. [Max-Planck-Institut für Plasmaphysik, Wendelsteinstraße 1, 17491 Greifswald (Germany); Tabarés, F.L. [Fusion National Laboratory-CIEMAT, Av Complutense 40, 28040 Madrid (Spain)


    For the design of a Fusion Reactor based on a liquid lithium divertor target and a tungsten first wall at high temperature, the interaction of the wall material with plasmas of significant lithium content must be assessed, as issues like fuel retention, tungsten embrittlement and enhanced sputtering may represent a showstopper for the selection of the first wall material compatible with the presence of liquid metal divertor. In this work we address this topic for the first time at the laboratory level, hot W samples (100 °C) have been exposed to Glow Discharges of H{sub 2} or Li-seeded H{sub 2} followed by in situ thermal desorption studies (TDS) of the uptake of H{sub 2} on the samples. Pure and pre-lithiated tungsten was investigated in order to evaluate the differential effect of Li ion implantation on H retention. Global particle balance was also used for the determination of trapped H into the full W wall of the plasma chamber. A factor of 3-4 lower retention was deduced for samples and main W wall exposed to H/Li plasma than that measured on pre-lithiated W.

  17. Trace analysis of phenolic xenoestrogens in water samples by stir bar sorptive extraction with in situ derivatization and thermal desorption-gas chromatography-mass spectrometry. (United States)

    Kawaguchi, Migaku; Inoue, Koichi; Yoshimura, Mariko; Sakui, Norihiro; Okanouchi, Noriya; Ito, Rie; Yoshimura, Yoshihiro; Nakazawa, Hiroyuki


    A method for the simultaneous measurement of trace amounts of phenolic xenoestrogens, such as 2,4-dichlorophenol (2,4-DCP), 4-tert-butyl-phenol (BP), 4-tert-octylphenol (OP), 4-nonylphenol (NP), pentachlorophenol (PCP) and bisphenol A (BPA), in water samples was developed using stir bar sorptive extraction (SBSE) with in situ derivatization followed by thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS) analysis. The conditions for derivatization with acetic acid anhydride were investigated. A polydimethylsiloxane (PDMS)-coated stir bar and derivatization reagents were added to 10 ml of water sample and stirring was commenced for 10-180 min at room temperature (25 degrees C) in a headspace vial. Then, the extract was analyzed by TD-GC-MS. The optimum time for SBSE with in situ derivatization was 90 min. The detection limits of 2,4-DCP, BP, OP, NP, PCP and BPA were 2, 1, 0.5, 5, 2 and 2 pg ml(-1), respectively. The method showed good linearity over the concentration ranges of 10, 5, 2, 20, 10 and 10-1000 pg ml(-1) for 2,4-DCP, BP, OP, NP, PCP and BPA, respectively, and the correlation coefficients were higher than 0.99. The average recoveries of those compounds in river water samples were equal to or higher than 93.9% (R.S.D. river water samples.

  18. Separation and analysis of trace volatile formaldehyde in aquatic products by a MoO₃/polypyrrole intercalative sampling adsorbent with thermal desorption gas chromatography and mass spectrometry. (United States)

    Ma, Yunjian; Zhao, Cheng; Zhan, Yisen; Li, Jianbin; Zhang, Zhuomin; Li, Gongke


    An in situ embedded synthesis strategy was developed for the preparation of a MoO3 /polypyrrole intercalative sampling adsorbent for the separation and analysis of trace volatile formaldehyde in aquatic products. Structural and morphological characteristics of the MoO3 /polypyrrole intercalative adsorbent were investigated by a series of characterization methods. The MoO3 /polypyrrole sampling adsorbent possessed a higher sampling capacity and selectivity for polar formaldehyde than commonly used commercial adsorbent Tenax TA. Finally, the MoO3 /polypyrrole adsorbent was packed in the thermal desorption tube that was directly coupled to gas chromatography with mass spectrometry for the analysis of trace volatile formaldehyde in aquatic products. Trace volatile formaldehyde from real aquatic products could be selectively sampled and quantified to be 0.43-6.6 mg/kg. The detection limit was achieved as 0.004 μg/L by this method. Good recoveries for spiked aquatic products were achieved in range of 75.0-108% with relative standard deviations of 1.2-9.0%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Thermal-hydraulics of helium cooled First Wall channels and scoping investigations on performance improvement by application of ribs and mixing devices

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, Frederik, E-mail: [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, Christian [EUROfusion – Programme Management Unit, Garching (Germany); Chen, Yuming; Ilić, Milica; Schwab, Florian [Karlsruhe Institute of Technology, Institute of Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Sieglin, Bernhard [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Wenninger, Ronald [EUROfusion – Programme Management Unit, Garching (Germany)


    Highlights: • Existing first wall designs and expected plasma heat loads are reviewed. • Heat transfer enhancement methods are investigated by CFD. • The results for heat transfer and friction are given, compared and explained. • Relations for needed pumping power and gained thermal heat are shown. • A range for the maximum permissible heat loads from the plasma is estimated. - Abstract: The first wall (FW) of DEMO is a component with high thermal loads. The cooling of the FW has to comply with the material's upper and lower temperature limits and requirements from stress assessment, like low temperature gradients. Also, the cooling has to be integrated into the balance-of-plant, in a sense to deliver exergy to the power cycle and require a limited pumping power for coolant circulation. This paper deals with the basics of FW cooling and proposes optimization approaches. The effectiveness of several heat transfer enhancement techniques is investigated for the use in helium cooled FW designs for DEMO. Among these are wall-mounted ribs, large scale mixing devices and modified hydraulic diameter. Their performance is assessed by computational fluid dynamics (CFD), and heat transfer coefficients and pressure drop are compared. Based on the results, an extrapolation to high heat fluxes is tried to estimate the higher limits of cooling capabilities.

  20. The effect of helium irradiation on the thermal evolution of the microstructure of nc-ZrN

    Energy Technology Data Exchange (ETDEWEB)

    Van Vuuren, Arno Janse [Centre for HRTEM, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Sohatsky, Alexander; Skuratov, Vladimir [Flerov Laboratory for Nuclear Reaction, Joint Institute for Nuclear Research, Dubna (Russian Federation); Uglov, Vladimir [Physics Department, Belarusian State University, Minsk (Belarus); Volkov, Alexey [Nazarbayev University, Astana (Kazakhstan)


    ZrN is a candidate material for use as inert matrix fuel host for the burn-up of plutonium and other minor actinides, waste products commonly present in spent nuclear fuel. These materials will operate within the nuclear reactor core and will therefore be subject to various types of radiation, high temperatures and a corrosive environment. Ceramics employed in the nuclear reactor environment will accumulate helium via (n, α) reactions. Nanocrystalline ZrN irradiated with 30 keV He to fluences between 10{sup 16} and 5 x 10{sup 16} cm{sup -2}to simulate the effects of alpha particle irradiation. The He irradiated sam- ples were annealed at temperatures between 600 and 1000 C and were analysed using TEM and selected area diffraction. The results indicated that post irradiation heat treatment induces exfoliation at a depth that corresponds to the end-of-range of 30 keV He ions. TEM analysis of He suggests that nanocrystalline ZrN is prone to the formation of He blisters which may ultimately lead material failure. The results also suggest that the doping of nc-ZrN with He aids the transformation from a nanocrystalline to microcrystalline state during heat treatment. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Characterization of volatile organic compounds from human analogue decomposition using thermal desorption coupled to comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. (United States)

    Stadler, Sonja; Stefanuto, Pierre-Hugues; Brokl, Michał; Forbes, Shari L; Focant, Jean-François


    Complex processes of decomposition produce a variety of chemicals as soft tissues, and their component parts are broken down. Among others, these decomposition byproducts include volatile organic compounds (VOCs) responsible for the odor of decomposition. Human remains detection (HRD) canines utilize this odor signature to locate human remains during police investigations and recovery missions in the event of a mass disaster. Currently, it is unknown what compounds or combinations of compounds are recognized by the HRD canines. Furthermore, a comprehensive decomposition VOC profile remains elusive. This is likely due to difficulties associated with the nontarget analysis of complex samples. In this study, cadaveric VOCs were collected from the decomposition headspace of pig carcasses and were further analyzed using thermal desorption coupled to comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (TD-GC × GC-TOFMS). Along with an advanced data handling methodology, this approach allowed for enhanced characterization of these complex samples. The additional peak capacity of GC × GC, the spectral deconvolution algorithms applied to unskewed mass spectral data, and the use of a robust data mining strategy generated a characteristic profile of decomposition VOCs across the various stages of soft-tissue decomposition. The profile was comprised of numerous chemical families, particularly alcohols, carboxylic acids, aromatics, and sulfides. Characteristic compounds identified in this study, e.g., 1-butanol, 1-octen-3-ol, 2-and 3-methyl butanoic acid, hexanoic acid, octanal, indole, phenol, benzaldehyde, dimethyl disulfide, and trisulfide, are potential target compounds of decomposition odor. This approach will facilitate the comparison of complex odor profiles and produce a comprehensive VOC profile for decomposition.

  2. Green Ocean Amazon (GoAmazon) 2014/15. Semi-Volatile Thermal Desorption Aerosol Gas Chromatograph (SVTAG) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, A. H. [Univ. of California, Berkeley, CA (United States); Yee, L. D. [Univ. of California, Berkeley, CA (United States); Issacman-VanWertz, G. [Univ. of California, Berkeley, CA (United States); Wernis, R. A. [Univ. of California, Berkeley, CA (United States)


    In areas where biogenic emissions are oxidized in the presence of anthropogenic pollutants such as SO2, NOx, and black carbon, it has become increasingly apparent that secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (VOCs) is substantially enhanced. Research is urgently needed to elucidate fundamental processes of natural and anthropogenically influenced VOC oxidation and the contribution of these processes to SOA formation. GoAmazon 2014/15 afforded study of the chemical transformations in the region downwind of Manaus, Brazil, where local biogenic VOC emissions are high, and their chemical oxidation can be studied both inside and outside of the urban plume to differentiate the role of anthropogenic influence on secondary aerosol formation during oxidation of these natural VOC emissions. To understand the connection between primary biogenic VOC emissions and their secondary products that form aerosols, we made time-resolved molecular level measurements by deploying a Semi-Volatile Thermal Desorption Aerosol Gas Chromatograph (SV-TAG) and a sequential filter sampler during two intensive operational periods (IOPs) of the GoAmazon 2014/15 field campaign. The SV-TAG measured semi-volatile organic compounds in both the gas and particle phases and the sequential filter sampler collected aerosols on quartz fiber filters in four-hour increments used for offline analysis. SV-TAG employed novel online derivatization that provided chemical speciation of highly oxygenated or functionalized compounds that comprise a substantial fraction of secondary organic aerosols, yet are poorly characterized. It also provided partitioning of these compounds between the vapor and particle phases at sufficient time resolution to define the importance of competing atmospheric processes. These measurements were supported by offline analysis of the filters using two-dimensional gas chromatography (GC x GC) with high-resolution time-of-flight mass spectrometry

  3. Survival and growth of Alfalfa (Medicago sativa l.) inoculated with an am fungus (Glomus intraradices) in contaminated soils treated with two different remediation technologies (bio-pile and thermal desorption)

    Energy Technology Data Exchange (ETDEWEB)

    Norini, M.P.; Beguiristain, Th.; Leyval, C. [LIMOS UMR 7137 CNRS-UHP Nancy - Faculty of Sciences, 54 - Vandoeuvre-les-Nancy (France)


    Polycyclic aromatic hydrocarbons (PAHs) represent a group of persistent and toxic soil pollutants that are of major public concern due to their mutagenic and carcinogenic property. Phyto-remediation is the use of plants and their associated microorganisms for remediation of polluted soils. Phyto-remediation could be used in conjunction with other remediation technologies to reduce the contamination to safe levels and maintain or restore soil physico-chemical and biological properties. Most plant species form mycorrhizas with symbiotic fungi. It was shown that AM fungi enhance survival and plant growth in PAH contaminated soils. Mycorrhizal fungi also enhance the biotransformation or biodegradation of PAH, although the effect differed between soils. A rhizosphere and myco-rhizosphere gradient of PAH concentrations was observed, with decreased PAH concentration with decreased distance to roots. Different microbial communities were found in the rhizosphere of AM and non-mycorrhizal plants in comparison to bulk soil, suggesting that AM could affect PAH degradation by changing microbial communities. We investigated the effect of mycorrhizal fungi and nutrients on the ability of alfalfa to grow on soil contaminated with PAHs before and after two remediation treatments. We used soil from an industrial site (Homecourt, North East part of France) highly contaminated with PAH (2000 mg kg{sup -1}), which has been partially treated by two different remediation technologies (bio-pile and thermal desorption). The bio-pile treatment consisted of piling the contaminated soil with stimulation of aerobic microbial activity by aeration and addition of nutrient solution, and reduced PAH concentration to around 300 mg kg-1. With the thermal desorption treatment the soil was heated to around 500 deg. C so that PAH vaporized and were separated from the soil. The residual PAH concentration in soil was 40 mg kg{sup -1}. Treated and non-treated contaminated soil was planted with alfalfa

  4. GASP: A computer code for calculating the thermodynamic and transport properties for ten fluids: Parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. [enthalpy, entropy, thermal conductivity, and specific heat (United States)

    Hendricks, R. C.; Baron, A. K.; Peller, I. C.


    A FORTRAN IV subprogram called GASP is discussed which calculates the thermodynamic and transport properties for 10 pure fluids: parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. The pressure range is generally from 0.1 to 400 atmospheres (to 100 atm for helium and to 1000 atm for hydrogen). The temperature ranges are from the triple point to 300 K for neon; to 500 K for carbon monoxide, oxygen, and fluorine; to 600 K for methane and nitrogen; to 1000 K for argon and carbon dioxide; to 2000 K for hydrogen; and from 6 to 500 K for helium. GASP accepts any two of pressure, temperature and density as input conditions along with pressure, and either entropy or enthalpy. The properties available in any combination as output include temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, and surface tension. The subprogram design is modular so that the user can choose only those subroutines necessary to the calculations.

  5. First field application of a thermal desorption resonance-enhanced multiphoton-ionisation single particle time-of-flight mass spectrometer for the on-line detection of particle-bound polycyclic aromatic hydrocarbons. (United States)

    Oster, Markus; Elsasser, Michael; Schnelle-Kreis, Jürgen; Zimmermann, Ralf


    The on-line analysis of single aerosol particles with mass spectrometrical methods is an important tool for the investigation of aerosols. Often, a single laser pulse is used for one-step laser desorption/ionisation of aerosol particles. Resulting ions are detected with time-of-flight mass spectrometry. With this method, the detection of inorganic compounds is possible. The detection of more fragile organic compounds and carbon clusters can be accomplished by separating the desorption and the ionisation in two steps, e.g. by using two laser pulses. A further method is, using a heated metal surface for thermal desorption of aerosol particles. If an ultraviolet laser is used for ionisation, a selective ionisation of polycyclic aromatic hydrocarbons (PAH) and alkylated PAH is possible via a resonance-enhanced multiphoton-ionisation process. Laser velocimetry allows individual laser triggering for single particles and additionally delivers information on aerodynamic particle diameters. It was shown that particles deriving from different combustion sources can be differentiated according to their PAH patterns. For example, retene, a C(4)-alkylated phenanthrene derivative, is a marker for the combustion of coniferous wood. In this paper, the first field application of a thermal desorption resonance-enhanced multiphoton-ionisation single particle time-of-flight mass spectrometer during a measurement campaign in Augsburg, Germany in winter 2010 is presented. Larger PAH-containing particles (i.e. with aerodynamic diameters larger than 1 μm), which are suspected to be originated by re-suspension processes of agglomerated material, were in the focus of the investigation. Due to the low concentration of these particles, an on-line virtual impactor enrichment system was used. The detection of particle-bound PAH in ambient particles in this larger size region was possible and in addition, retene could be detected on several particles, which allows to identify wood combustion as

  6. Thermal fluid dynamic behavior of coolant helium gas in a typical reactor VHTGR channel of prismatic core; Comportamento termofluidodinamico do gas refrigerante helio em um canal topico de reator VHTGR de nucleo prismatico

    Energy Technology Data Exchange (ETDEWEB)

    Belo, Allan Cavalcante


    The current studies about the thermal fluid dynamic behavior of the VHTGR core reactors of 4{sup th} generation are commonly developed in 3-D analysis in CFD (computational fluid dynamics), which often requires considerable time and complex mathematical calculations for carrying out these analysis. The purpose of this project is to achieve thermal fluid dynamic analysis of flow of gas helium refrigerant in a typical channel of VHTGR prismatic core reactor evaluating magnitudes of interest such as temperature, pressure and fluid velocity and temperature distribution in the wall of the coolant channel from the development of a computer code in MATLAB considering the flow on one-dimensional channel, thereby significantly reducing the processing time of calculations. The model uses three different references to the physical properties of helium: expressions given by the KTA (German committee of nuclear safety standards), the computational tool REFPROP and a set of constant values for the entire channel. With the use of these three references it is possible to simulate the flow treating the gas both compressible and incompressible. The results showed very close values for the interest quantities and revealed that there are no significant differences in the use of different references used in the project. Another important conclusion to be observed is the independence of helium in the gas compressibility effects on thermal fluid dynamic behavior. The study also indicated that the gas undergoes no severe effects due to high temperature variations in the channel, since this goes in the channel at 914 K and exits at approximately 1263 K, which shows the excellent use of helium as a refrigerant fluid in reactor channels VHTGR. The comparison of results obtained in this work with others in the literature served to confirm the effectiveness of the one-dimensional consideration of method of gas flow in the coolant channel to replace the models made in 3-D for the pressure range

  7. Characterization of the potential sites in the Brazilian semi-arid region for implantation of helium thermal pilot system of electric power generation; Caracterizacao dos sitios potenciais na regiao do semi-arido brasileiro para implantacao de sistema piloto heliotermico de geracao eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Ana Paula Cardoso; Nascimento, Marcos Vinicius Gusmao; Menezes, Paulo Cesar Pires; Cheroto, Silvia [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)]. E-mails:;


    This work contains studies an analyses related to the characterization of the potential sites for application of helium thermal technology at the brazilian semi-arid, with the mapping of the solar resource from the estimative of direct solar radiation data, the mapping of the hydraulic resources indicating the importance of the Sao Francisco basin in the study context, the mapping of the local electric power network, and a survey of the environmental impacts attributed to power plants with solar concentrators. The general objective is to identify the more adequate sites in Brazil for the implantation of a helium thermal pilot system for electric power generation.

  8. The helium question. (United States)

    Cook, E


    Helium appears indispensable for certain energy-related uses that may be important 50 years from now, when helium-bearing natural gas, a much cheaper source than air, may be exhausted. Present demand, however, is lower than productive capacity, and much helium is being dissipated into the atmosphere as natural gas is burned for fuel. Controversy over the need for a government-directed helium-conservation program reflects fundamental differences in viewpoints on the economic future of industrial society, on the limits of substitution of labor and capital for a depleting resource, and on intergenerational equity and risk-bearing.

  9. Determination of 1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene and related compounds in marine pore water by automated thermal desorption-gas chromatography/mass spectrometry using disposable optical fiber (United States)

    Eganhouse, Robert P.; DiFilippo, Erica L


    A method is described for determination of ten DDT-related compounds in marine pore water based on equilibrium solid-phase microextraction (SPME) using commercial polydimethylsiloxane-coated optical fiber with analysis by automated thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Thermally cleaned fiber was directly exposed to sediments and allowed to reach equilibrium under static conditions at the in situ field temperature. Following removal, fibers were rinsed, dried and cut into appropriate lengths for storage in leak-tight containers at -20°C. Analysis by TD-GC/MS under full scan (FS) and selected ion monitoring (SIM) modes was then performed. Pore-water method detection limits in FS and SIM modes were estimated at 0.05-2.4ng/L and 0.7-16pg/L, respectively. Precision of the method, including contributions from fiber handling, was less than 10%. Analysis of independently prepared solutions containing eight DDT compounds yielded concentrations that were within 6.9±5.5% and 0.1±14% of the actual concentrations in FS and SIM modes, respectively. The use of optical fiber with automated analysis allows for studies at high temporal and/or spatial resolution as well as for monitoring programs over large spatial and/or long temporal scales with adequate sample replication. This greatly enhances the flexibility of the technique and improves the ability to meet quality control objectives at significantly lower cost.

  10. Helium release from radioisotope heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.E.; Early, J.W.; Starzynski, J.S.; Land, C.C.


    Diffusion of helium in /sup 238/PuO/sub 2/ fuel was characterized as a function of the heating rate and the fuel microstructure. The samples were thermally ramped in an induction furnace and the helium release rates measured with an automated mass spectrometer. The diffusion constants and activation energies were obtained from the data using a simple diffusion model. The release rates of helium were correlated with the fuel microstructure by metallographic examination of fuel samples. The release mechanism consists of four regimes, which are dependent upon the temperature. Initially, the release is controlled by movement of point defects combined with trapping along grain boundaries. This regime is followed by a process dominated by formation and growth of helium bubbles along grain boundaries. The third regime involves volume diffusion controlled by movement of oxygen vacancies. Finally, the release at the highest temperatures follows the diffusion rate of intragranular bubbles. The tendency for helium to be trapped within the grain boundaries diminishes with small grain sizes, slow thermal pulses, and older fuel.

  11. Deuterium desorption from tungsten using laser heating

    Directory of Open Access Journals (Sweden)

    J.H. Yu


    Full Text Available Retention and desorption of hydrogenic species need to be accurately modeled to predict the tritium inventory of next generation fusion devices, which is needed both for tritium fuel recovery and for tritium safety concerns. In this paper, experiments on thermal desorption of deuterium from intrinsic polycrystalline tungsten defects using laser heating are compared to TMAP-7 modeling. The samples during deuterium plasma exposure were at a temperature of 373K for this benchmark study with ion fluence of 0.7–1.0 ×1024Dm−2. Following plasma exposure, a fiber laser (λ= 1100nm heated the samples to peak surface temperatures ranging from ∼500 to 1400K with pulse widths from 10ms to 1s, and 1 to 10 pulses applied to each sample. The remaining deuterium retention was measured using temperature programmed desorption (TPD. Results show that > 95% of deuterium is desorbed when the peak surface temperature reached ∼950K for > 1s. TMAP-7 is used to predict deuterium desorption from tungsten for a range of surface temperatures and heating durations, and is compared to previous work on desorption from beryllium codeposits.

  12. Helium the disappearing element

    CERN Document Server

    Sears, Wheeler M


    The subject of the book is helium, the element, and its use in myriad applications including MRI machines, particle accelerators, space telescopes, and of course balloons and blimps. It was at the birth of our Universe, or the Big Bang, where the majority of cosmic helium was created; and stellar helium production continues. Although helium is the second most abundant element in the Universe, it is actually quite rare here on Earth and only exists because of radioactive elements deep within the Earth. This book includes a detailed history of the discovery of helium, of the commercial industry built around it, how the helium we actually encounter is produced within the Earth, and the state of the helium industry today. The gas that most people associate with birthday party balloons is running out. “Who cares?” you might ask. Well, without helium, MRI machines could not function, rockets could not go into space, particle accelerators such as those used by CERN could not operate, fiber optic cables would not...

  13. Fatty acid profiling of raw human plasma and whole blood using direct thermal desorption combined with gas chromatography–mass spectrometry

    NARCIS (Netherlands)

    Akoto, L.; Vreuls, R.J.J.; Irth, H.; Pel, R.; Stellaard, F.


    Gas chromatography (GC) has in recent times become an important tool for the fatty acid profiling of human blood and plasma. An at-line procedure used in the fatty acid profiling of whole/intact aquatic micro-organisms without any sample preparation was adapted for this work. A direct thermal

  14. Fatty acid profiling of raw human plasma and whole blood using direct thermal desorption combined with gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Akoto, Lawrence; Vreuls, Rene J. J.; Irth, Hubertus; Pel, Roel; Stellaard, Frans


    Gas chromatography (GC) has in recent times become an important tool for the fatty acid profiling of human blood and plasma. An at-line procedure used in the fatty acid profiling of whole/intact aquatic micro-organisms without any sample preparation was adapted for this work. A direct thermal


    In this study, the unresolved complex mixture (UCM) in size resolved fine aerosol emissions from residential wood combustion (RWC) is examined. The aerosols are sorted by size in an electrical low-pressure impactor (ELPI) and subsequently analyzed by thermal desorbtion/gas chroma...

  16. Studies of organic residues from ancient Egyptian mummies using high temperature-gas chromatography-mass spectrometry and sequential thermal desorption-gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry. (United States)

    Buckley, S A; Stott, A W; Evershed, R P


    The techniques of gas chromatography-mass spectrometry (GC-MS) and sequential thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) have been utilised to characterise the constituents of tissue-derived or applied organic material from two Pharaonic Egyptian mummies with a view to identifying embalming practices/substances. The results obtained using TD-GC-MS revealed a series of monocarboxylic acids with the C16:0, C18:1 and C18:0 components dominating in both mummies. The thermal desorption products related to cholesterol, i.e., cholesta-3,5,7-triene and cholesta-3,5-diene (only in Khnum Nakht), were detected in both mummies. Khnum Nakht also contained a number of straight chain alkyl amides (C16-C18) and an alkyl nitrile (C18). Other products included the 2,5-diketopiperazine derivative (DKP) of proline-glycine (pro-gly) which was a major component (7.9%) in Khnum Nakht but only a very minor component in Horemkenesi. Py-GC-MS of samples of both specimens yielded a series of alkene/alkane doublets (Horemkenesi C6-C18, Khnum Nakht C6-C24) which dominated their chromatograms. Series of methyl ketones in the C9-C19 chain length range were also present, with C5-C7 cyclic ketones occurring in Horemkenesi only. These ketones are indicative of covalent bond cleavage, probably of polymerised acyl lipids. Nitrogenous products included nitriles (C9-C18) which were significant in both samples, and amides which were only detected in Khnum Nakht. Also present amongst the pyrolysis products were three steroidal hydrocarbons, cholest-(?)-ene, cholesta-3,5,7-triene and cholesta-3,5-diene. High temperature-GC-MS of trimethylsilylated lipid extracts yielded similar monocarboxylic acids to that obtained using TD-GC-MS, while a series of alpha, omega-dicarboxylic acids and a number of mono- and di-hydroxy carboxylic acids not seen in the thermal desorption or pyrolysis GC-MS analyses were significant

  17. The desorption of condensed noble gases and gas mixtures from cryogenic surfaces

    CERN Document Server

    Tratnik, H; Störi, H


    In accelerators, operating at liquid-helium temperature, cold surfaces are exposed to intense synchrotron radiation and bombardment by energetic electrons and ions. Molecular desorption yield and secondary electron yield can strongly influence the performance of the accelerator. In order to predict the gas density during the operation, the knowledge of electron-induced desorption yields of condensed gases and of its variation with the gas coverage is necessary. Desorption yields under electron impact of various noble gases and gas mixtures condensed on a copper surface cooled at 4.2 K have been measured.

  18. Desorption of Lipases Immobilized on Octyl-Agarose Beads and Coated with Ionic Polymers after Thermal Inactivation. Stronger Adsorption of Polymers/Unfolded Protein Composites

    Directory of Open Access Journals (Sweden)

    Jose J. Virgen-Ortíz


    Full Text Available Lipases from Candida antarctica (isoform B and Rhizomucor miehei (CALB and RML have been immobilized on octyl-agarose (OC and further coated with polyethylenimine (PEI and dextran sulfate (DS. The enzymes just immobilized on OC supports could be easily released from the support using 2% SDS at pH 7, both intact or after thermal inactivation (in fact, after inactivation most enzyme molecules were already desorbed. The coating with PEI and DS greatly reduced the enzyme release during thermal inactivation and improved enzyme stability. However, using OC-CALB/RML-PEI-DS, the full release of the immobilized enzyme to reuse the support required more drastic conditions: a pH value of 3, a buffer concentration over 2 M, and temperatures above 45 °C. However, even these conditions were not able to fully release the thermally inactivated enzyme molecules from the support, being necessary to increase the buffer concentration to 4 M sodium phosphate and decrease the pH to 2.5. The formation of unfolded protein/polymers composites seems to be responsible for this strong interaction between the octyl and some anionic groups of OC supports. The support could be reused five cycles using these conditions with similar loading capacity of the support and stability of the immobilized enzyme.

  19. Insight to the Thermal Decomposition and Hydrogen Desorption Behaviors of NaNH2-NaBH4 Hydrogen Storage Composite. (United States)

    Pei, Ziwei; Bai, Ying; Wang, Yue; Wu, Feng; Wu, Chuan


    The lightweight compound material NaNH2-NaBH4 is regarded as a promising hydrogen storage composite due to the high hydrogen density. Mechanical ball milling was employed to synthesize the composite NaNH2-NaBH4 (2/1 molar ratio), and the samples were investigated utilizing thermogravimetric-differential thermal analysis-mass spectroscopy (TG-DTA-MS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. The full-spectrum test (range of the ratio of mass to charge: 0-200) shows that the released gaseous species contain H2, NH3, B2H6, and N2 in the heating process from room temperature to 400 °C, and possibly the impurity gas B6H12 also exists. The TG/DTA analyses show that the composite NaNH2-NaBH4 (2/1 molar ratio) is conductive to generate hydrogen so that the dehydrogenation process can be finished before 400 °C. Moreover, the thermal decomposition process from 200 to 400 °C involves two-step dehydrogenation reactions: (1) Na3(NH2)2BH4 hydride decomposes into Na3BN2 and H2 (200-350 °C); (2) remaining Na3(NH2)2BH4 reacts with NaBH4 and Na3BN2, generating Na, BN, NH3, N2, and H2 (350-400 °C). The better mechanism understanding of the thermal decomposition pathway lays a foundation for tailoring the hydrogen storage performance of the composite complex hydrides system.

  20. The core helium flash (United States)

    Cole, P. W.; Deupree, R. G.


    The role of convection in the core helium flash is simulated by two-dimensional eddies interacting with the thermonuclear runaway. These eddies are followed by the explicit solution of the two-dimensional conservation laws with a two-dimensional finite difference hydrodynamics code. Thus, no phenomenological theory of convection such as the local mixing length theory is required. The core helium flash is violent, producing a deflagration wave. This differs from the detonation wave (and subsequent disruption of the entire star) produced in previous spherically symmetric violent core helium flashes as the second dimension provides a degree of relief which allows the expansion wave to decouple itself from the burning front. The results predict that a considerable amount of helium in the core will be burned before the horizontal branch is reached and that some envelope mass loss is likely.

  1. The Descending Helium Balloon (United States)

    Helseth, Lars Egil


    I describe a simple and fascinating experiment wherein helium leaks out of a rubber balloon, thereby causing it to descend. An estimate of the volumetric leakage rate is made by measuring its rate of descent.

  2. Improved fatty acid detection in micro-algae and aquatic meiofauna species using a direct thermal desorption interface combined with comprehensive gas chromatography-time-of-flight mass spectrometry. (United States)

    Akoto, Lawrence; Stellaard, Frans; Irth, Hubertus; Vreuls, René J J; Pel, Roel


    Comprehensive two-dimensional gas chromatography (GC x GC) with time-of-flight mass spectrometry detection is used to profile the fatty acid composition of whole/intact aquatic microorganisms such as the common fresh water green algae Scenedesmus acutus and the filamentous cyanobacterium Limnothrix sp. strain MRI without any sample preparation steps. It is shown that the technique can be useful in the identification of lipid markers in food-web as well as environmental studies. For instance, new mono- and diunsaturated fatty acids were found in the C(16) and C(18) regions of the green algae S. acutus and the filamentous cyanobacterium Limnothrix sp. strain MRI samples. These fatty acids have not, to our knowledge, been detected in the conventional one-dimensional (1D) GC analysis of these species due to either co-elution and/or their presence in low amounts in the sample matrix. In GC x GC, all congeners of the fatty acids in these microorganisms could be detected and identified due to the increased analyte detectability and ordered structures in the two-dimensional separation space. The combination of direct thermal desorption (DTD)-GC x GC-time-of-flight mass spectrometry (ToF-MS) promises to be an excellent tool for a more accurate profiling of biological samples and can therefore be very useful in lipid biomarker research as well as food-web and ecological studies.

  3. Evaluation of the solid-phase extraction (SPE) cartridge method in combination with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) for the analysis of different VOCs in liquid matrices in varying pH conditions. (United States)

    Pandey, Sudhir Kumar; Kim, Ki-Hyun


    In this study, the solid-phase extraction (SPE) method combined with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method is evaluated for the analysis of liquid-phase volatile organic compounds (LVOCs). Calibration experiments were performed on a number of polar and nonpolar LVOCs (including aromatic compounds, ester, ketones, and alcohol) as a function of solution pH. If the relative sensitivity of the SPE-TD-GC-MS method is compared between different VOCs across a wide range of pH (1, 4, 7, 10, and 13), optimum sensitivities for most VOCs are derived at the neutral pH. However, there were some exceptions to the general trend with the maximum sensitivity occurring either at a moderately basic pH (methyl isobutyl ketone and butyl acetate) or extremely acidic conditions (isobutyl alcohol). It was also noticed that the relative ordering of sensitivity was changed, as the pH conditions of the solution vary. The use of internal standard (IS: chlorobenzene) resulted in a notable improvement in both relative sensitivity and reproducibility for most compounds. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Comprehensive investigation and optimisation of the main experimental variables in stir-bar sorptive extraction (SBSE)-thermal desorption-capillary gas chromatography (TD-CGC). (United States)

    Macnamara, Kevin; Leardi, Riccardo; McGuigan, Frank


    A chemometric study has been completed in order to investigate the relative contributions and interactions between the many experimental variables involved in SBSE-TD-CGC. The study was centered on data after extraction and analysis of important organophosphorous pesticides from water under different controlled conditions. An enhanced flame photometric detector was used for target compound area response. The seemingly independent operations of extraction with the stir bar followed by thermal transfer of the absorbed compounds to the chromatographic system are usually studied by independent designs for the corresponding blocks of variables. In this work all variables are treated at the same time in a single design to study the interactions and give a more robust model while requiring a lower number of experiments. The relative importance of contributing variables was clearly established and an optimum set of conditions was established for more uniform enrichment in a single analysis for a test mix of compounds with wide ranging polarities.

  5. Development of a Method for the Quantitation of Three Thiols in Beer, Hop, and Wort Samples by Stir Bar Sorptive Extraction with in Situ Derivatization and Thermal Desorption-Gas Chromatography-Tandem Mass Spectrometry. (United States)

    Ochiai, Nobuo; Sasamoto, Kikuo; Kishimoto, Toru


    A method for analysis of hop-derived polyfunctional thiols, such as 4-sulfanyl-4-methylpentan-2-one (4S4M2Pone), 3-sulfanylhexan-1-ol (3SHol), and 3-sulfanylhexyl acetate (3SHA), in beer, hop water extract, and wort at nanogram per liter levels was developed. The method employed stir bar sorptive extraction with in situ derivatization (der-SBSE) using ethyl propiolate (ETP), followed by thermal desorption and gas chromatography-tandem mass spectrometry (TD-GC-MS/MS) with selected reaction monitoring (SRM) mode. A prior step involved structural identification of the ETP derivatives of the thiols by TD-GC-quadrupole-time-of-flight mass spectrometry with parallel sulfur chemiluminescence detection (Q-TOF-MS/SCD) after similar der-SBSE. The der-SBSE conditions of the ETP concentration, buffer concentration, salt addition, and extraction time profiles were investigated, and the performance of the method was demonstrated with spiked beer samples. The limits of detection (LODs) (0.19-27 ng/L) are below the odor threshold levels of all analytes. The apparent recoveries at 10-100 ng/L (99-101%) and the repeatabilities [relative standard deviation (RSD) of 1.3-7.2%; n = 6] are also good. The method was successfully applied to the determination of target thiols at nanogram per liter levels in three kinds of beer samples (hopped with Cascade, Citra, and Nelson Sauvin) and the corresponding hop water extracts and wort samples. There was a clear correlation between the determined values and the characteristics of citrus hop aroma for each sample.

  6. Evaluation of the stability of a mixture of volatile organic compounds on sorbents for the determination of emissions from indoor materials and products using thermal desorption/gas chromatography/mass spectrometry. (United States)

    Brown, Veronica M; Crump, Derrick R; Plant, Neil T; Pengelly, Ian


    The standard method for the determination of volatile organic compounds (VOCs) in indoor and test chamber air (ISO 16000-6:2011) specifies sampling onto the sorbent Tenax TA followed by analysis using thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS). The informative Annex D to the standard suggests the use of multi-sorbent samplers to extend the volatility range of compounds which can be determined. The aim of this study was to investigate the storage performance of Tenax TA and two multi-sorbent tubes loaded with a mixture of nine VOCs of relevance for material emissions testing. The sorbent combinations tested were quartz wool/Tenax TA/Carbograph™ 5TD and quartz wool/Tenax TA/Carbopack™ X. A range of loading levels, loading conditions (humidities and air volume), storage times (1-4 weeks) and storage conditions (refrigerated and ambient) were investigated. Longer term storage trials (up to 1 year) were conducted with Tenax TA tubes to evaluate the stability of tubes used for proficiency testing (PT) of material emissions analyses. The storage performance of the multi-sorbent tubes tested was found to be equal to that for Tenax TA, with recoveries after 4 weeks storage of within about 10% of the amounts loaded. No consistent differences in recoveries were found for the different loading or storage conditions. The longer term storage trials also showed good recovery for these compounds, although two other compounds, hexanal and BHT, were found to be unstable when stored on Tenax TA. The results of this study provide confidence in the stability of nine analytes for up to 4 weeks on two multi-sorbent tubes for material emissions testing and the same compounds loaded on Tenax TA sorbent for a recently introduced PT scheme for material emissions testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Recent advances in thermal desorption-gas chromatography-mass spectrometery method to eliminate the matrix effect between air and water samples: application to the accurate determination of Henry's law constant. (United States)

    Kim, Yong-Hyun; Kim, Ki-Hyun


    Accurate values for the Henry's law constants are essential to describe the environmental dynamics of a solute, but substantial errors are recognized in many reported data due to practical difficulties in measuring solubility and/or vapor pressure. Despite such awareness, validation of experimental approaches has scarcely been made. An experimental approach based on thermal desorption-gas chromatography-mass spectrometery (TD-GC-MS) method was developed to concurrently allow the accurate determination of target compounds from the headspace and aqueous samples in closed equilibrated system. The analysis of six aromatics and eight non-aromatic oxygenates was then carried out in a static headspace mode. An estimation of the potential bias and mass balance (i.e., sum of mass measured individually from gas and liquid phases vs. the mass initially added to the system) demonstrates compound-specific phase dependency so that the best results are obtained by aqueous (less soluble aromatics) and headspace analysis (more soluble non-aromatics). Accordingly, we were able to point to the possible sources of biases in previous studies and provide the best estimates for the Henry's constants (Matm(-1)): benzene (0.17), toluene (0.15), p-xylene (0.13), m-xylene (0.13), o-xylene (0.19), styrene (0.27); propionaldehyde (9.26), butyraldehyde (6.19), isovaleraldehyde (2.14), n-valeraldehyde (3.98), methyl ethyl ketone (10.5), methyl isobutyl ketone (3.93), n-butyl acetate (2.41), and isobutyl alcohol (22.2). Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Broken symmetry makes helium

    CERN Multimedia

    Gray, P L


    "The subatomic pion particle breaks the charge symmetry rule that governs both fusion and decay. In experiments performed at the Indiana University Cyclotron Laboratory, physicists forced heavy hydrogen (1 proton + 1 neutron) to fuse into helium in a controlled, measurable environment" (1 paragraph).

  9. Study of the mechanisms of heavy-ion induced desorption on accelerator-relevant materials; Untersuchung der Mechanismen schwerioneninduzierter Desorption an beschleunigerrelevanten Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Markus


    The ion beam loss induced desorption is a performance limitation for low charge state heavy ion accelerators. If charge exchanged projectile ions get lost onto the beam pipe, desorption of gas is stimulated resulting in a pressure increase inside of the synchrotron and thus, a dramatically reduction of the beam life time. To minimize the amount of desorbed gas an experimental program has been started to measure the desorption yields (released gas molecules per incident ion) of various materials and different projectile ions. The present work is a contribution to the understanding of the physical processes behind the ion beam loss induced desorption. The yield measurements by the pressure rise method have been combined for the rst time with in situ ion beam analysis technologies such as ERDA and RBS. With this unique method the desorption behavior of a sample can be correlated to its surface and bulk properties. The performed experiments with 1,4 MeV/u Xenon-Ions show that the ion induced desorption is mainly a surface effect. Sputtered oxide layers or impurities do not contribute to the desorbed gas significantly. Nevertheless bulk properties play an important role in the desorption strength. Pure metallic samples desorb less gas than isolating materials under swift heavy ion irradiation. From the experimental results it was possible to estimate the desorption yields of various materials under ion bombardment by means of an extended inelastic thermal-spike-model. The extension is the combination of the thermal-spike's temperature map with thermal desorption. Within this model the ion induced desorption can be regarded as the release of adsorbates from a transient overheated spot on the samples surface around the ion impact. Finally a copper substrate with a gold coated surface was developed and proposed as a suitable material for a beam loss collimator with minimum desorption to ensure the performance of GSI's SIS18 in high current beam operation. (orig.)

  10. VAC*TRAX vacuum thermal desorption

    Energy Technology Data Exchange (ETDEWEB)



    Pilot VAC*TRAX treatability tests were conducted on RCRA, TSCA, and RCRA/radioactive mixed wastes, to determine the efficiency in remediating organics` contaminated solids. The process volatilizes organic compounds by indirectly heating the feed material in a vacuum batch dryer and condensing the organics separately from the remaining solids. Contaminants included tetrachloroethene, bis(2-ethylhexyl)phthalate, pentachlorophenol, and PCBs. Treatment specifications were met: a tetrachloroethene removal >99.99% and PCB removal from a starting level of 990 ppM to a final level of <1 ppM. One test run was spiked with MoO{sub 3}, as a uranium simulant; the Mo remained in the treated solids, not transferring to the condensate. In the mixed waste tests, uranium present in a feed soil remained in the soil. Economic viability was demonstrated by achieving excellent treatment on a routine basis with both 4 and 6 hour heating cycles.

  11. Application Guide for Thermal Desorption Systems (United States)


    Flue Gas Cleaning System Used Fabric Filter, Sometimes Includes Wet Scrubber Fabric Filter, HEPA Filter, and Carbon Bed Fabric Filter, Carbon Bed...System Afterburner Afterburner Afterburner Typical Flue Gas Cleaning System Used Filter and Carbon Bed Catalytic Oxidizer Carbon Bed Carbon Bed...Average = 8 tph) Off-gas treatment Afterburner Afterburner operating temperature Over 1,500°F Flue gas cleaning system Fabric filter 8.1.3 Treatability

  12. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis. (United States)

    Kanamori-Kataoka, Mieko; Seto, Yasuo


    To establish adequate on-site solvent trapping of volatile chemical warfare agents (CWAs) from air samples, we measured the breakthrough volumes of CWAs on three adsorbent resins by an elution technique using direct electron ionization mass spectrometry. The trapping characteristics of Tenax(®) TA were better than those of Tenax(®) GR and Carboxen(®) 1016. The latter two adsorbents showed non-reproducible breakthrough behavior and low VX recovery. The specific breakthrough values were more than 44 (sarin) L/g Tenax(®) TA resin at 20°C. Logarithmic values of specific breakthrough volume for four nerve agents (sarin, soman, tabun, and VX) showed a nearly linear correlation with the reciprocals of their boiling points, but the data point of sulfur mustard deviated from this linear curve. Next, we developed a method to determine volatile CWAs in ambient air by thermal desorption-gas chromatography (TD-GC/MS). CWA solutions that were spiked into the Tenax TA(®) adsorbent tubes were analyzed by a two-stage TD-GC/MS using a Tenax(®) TA-packed cold trap tube. Linear calibration curves for CWAs retained in the resin tubes were obtained in the range between 0.2pL and 100pL for sarin, soman, tabun, cyclohexylsarin, and sulfur mustard; and between 2pL and 100pL for VX and Russian VX. We also examined the stability of CWAs in Tenax(®) TA tubes purged with either dry or 50% relative humidity air under storage conditions at room temperature or 4°C. More than 80% sarin, soman, tabun, cyclohexylsarin, and sulfur mustard were recovered from the tubes within 2 weeks. In contrast, the recoveries of VX and Russian VX drastically reduced with storage time at room temperature, resulting in a drop to 10-30% after 2 weeks. Moreover, we examined the trapping efficiency of Tenax TA(®) adsorbent tubes for vaporized CWA samples (100mL) prepared in a 500mL gas sampling cylinder. In the concentration range of 0.2-2.5mg/m(3), >50% of sarin, soman, tabun, cyclohexylsarin, and HD were

  13. Methods of Helium Injection and Removal for Heat Transfer Augmentation (United States)

    Haight, Harlan; Kegley, Jeff; Bourdreaux, Meghan


    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives usually involve simulation of an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Cryogenic Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  14. Effects of flow rate and temperature on thermal desorbability of polycyclic aromatic hydrocarbons and pesticides from Tenax-GC

    Energy Technology Data Exchange (ETDEWEB)

    Pankow, J.F.; Kristensen, T.J.


    One factor limiting adsorption/thermal desorption (ATD) preconcentration techniques is the thermal desorbability of the analyte compounds. The behavior of a set of compounds including polynuclear aromatic hydrocarbons (PAH) and several pesticides on 0.110 g of the sorbent Tenax-GC was investigated as a function of desorption temperature and carrier gas flow rate. The recoveries obtained with helium at 11.2 mL/min are as follows: naphthalene, 99 +/- 1; fluorene, 70 +/- 1; ..cap alpha..-BHC, 97 +/- 8; heptachlor, 26 +/- 5; fluoranthene, 99 +/- 1; pyrene, 93 +/- 1; dieldrin, 120 +/- 3; DDD, 60 +/- 2;DDT 20 +/- 1; benzo(k)fluoranthene, 93 +/- 3; perylene, 89 +/- 2; and benzo(ghi)perylene, 88 +/- 5. The desorbing compounds were trapped on a fused silica capillary column at -30/sup 0/C. Excellent resolution and separation number performance was maintained despite the use of high desorption carrier gas flow rates. Estimates were made of the retention volume and desorbing peak width characteristics of several of the compounds on Tenax-GC at the desorption temperatures studied. 5 figures, 3 tables.

  15. Toxicological findings in three cases of suicidal asphyxiation with helium. (United States)

    Oosting, Roelof; van der Hulst, Rogier; Peschier, Leo; Verschraagen, Miranda


    Toxicological findings in deaths by asphyxiation due to a pure inert gas like helium are rare. We present three suicide cases of asphyxial death attributed to anoxia caused by inhalation of helium in a plastic bag positioned over the head. In one case, lung tissue, brain tissue and heart blood were obtained during standard autopsy procedures. In two cases, samples were obtained differently: heart blood, femoral blood, brain tissue, lung tissue and/or air from the lungs were directly sealed into headspace vials during autopsy. Air from the lungs was collected using a syringe and transferred into an aluminum gas sampling bag which was heat sealed as soon as possible. Semi-quantitative gas analyses were performed using headspace gas chromatography-thermal conductivity detection (HS-GC/TCD) with a molsieve column capable of separating permanent gasses. Nitrogen was used as carrier gas. In the first case no helium was detected in lung tissue, brain tissue and heart blood. In the second case the presence of helium was detected in lung tissue (approximately 5% helium in gaseous phase) but not in femoral blood. In the third case the presence of helium was detected in air from the lungs (0.05%), lung tissue (0.4%), brain tissue (0.1%) and heart blood (0.04%). Helium is easily lost if sampling is not performed properly. The presented cases suggest that quick sample collection of various matrices during autopsy is suitable to detect gasses like helium in postmortem cases. Use of HS-GC/TCD enables to detect an inert gas like helium. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Applications of Groundwater Helium (United States)

    Kulongoski, Justin T.; Hilton, David R.


    Helium abundance and isotope variations have widespread application in groundwater-related studies. This stems from the inert nature of this noble gas and the fact that its two isotopes ? helium-3 and helium-4 ? have distinct origins and vary widely in different terrestrial reservoirs. These attributes allow He concentrations and 3He/4He isotope ratios to be used to recognize and quantify the influence of a number of potential contributors to the total He budget of a groundwater sample. These are atmospheric components, such as air-equilibrated and air-entrained He, as well as terrigenic components, including in situ (aquifer) He, deep crustal and/or mantle He and tritiogenic 3He. Each of these components can be exploited to reveal information on a number of topics, from groundwater chronology, through degassing of the Earth?s crust to the role of faults in the transfer of mantle-derived volatiles to the surface. In this review, we present a guide to how groundwater He is collected from aquifer systems and quantitatively measured in the laboratory. We then illustrate the approach of resolving the measured He characteristics into its component structures using assumptions of endmember compositions. This is followed by a discussion of the application of groundwater He to the types of topics mentioned above using case studies from aquifers in California and Australia. Finally, we present possible future research directions involving dissolved He in groundwater.

  17. 3D CFD Transient Numerical Simulation of Superfluid Helium (United States)

    Bruce, R.; Reynaud, J.; Pascali, S.; Baudouy, B.


    Numerical simulations of superfluid helium are necessary to design the next generation of superconducting accelerator magnets at CERN. Previous studies have presented the thermodynamic equations implemented in the Fluent CFD software to model the thermal behavior of superfluid helium. Momentum and energy equations have been modified in the solver to model a simplified two-fluid model. In this model, the thermo-mechanical effect term and the Gorter-Mellink mutual friction term are the dominant terms in the momentum equation for the superfluid component. This assumption is valid for most of superfluid applications. Transient thermal and dynamic behavior of superfluid helium has been studied in this paper. The equivalent thermal conductivity in the energy equation is represented by the Gorter-Mellink term and both the theoretical and the Sato formulation of this term have been compared to unsteady helium superfluid experiments. The main difference between these two formulations is the coefficient to the power of the temperature gradient between the hot and the cold part in the equivalent thermal conductivity. The results of these unsteady simulations have been compared with two experiments. The first one is a Van Sciver experiment on a 10 m long, and 9 mm diameter tube at saturation conditions and the other, realized in our laboratory, is a 150×50×10 mm rectangular channel filled with pressurized superfluid helium. Both studies have been performed with a heating source that starts delivering power at the beginning of the experiment and many temperature sensors measure the transient thermal behavior of the superfluid helium along the length of the channel.

  18. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data. (United States)


    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2002) (a) Definitions...

  19. High Efficiency Regenerative Helium Compressor Project (United States)

    National Aeronautics and Space Administration — Helium plays several critical rolls in spacecraft propulsion. High pressure helium is commonly used to pressurize propellant fuel tanks. Helium cryocoolers can be...

  20. Cavitation in liquid helium

    Energy Technology Data Exchange (ETDEWEB)

    Finch, R. D.; Kagiwada, R.; Barmatz, M.; Rudnick, I.


    Ultrasonic cavitation was induced in liquid helium over the temperature range 1.2 to 2.3 deg K, using a pair of identical transducers. The transducers were calibrated using a reciprocity technique and the cavitation threshold was determined at 90 kc/s. It was found that this threshold has a sharp peak at the lambda point, but is, at all temperatures quite low, with an approximate range of 0.001 to 0.01 atm. The significance of the results is discussed. (auth)

  1. Production of thorium-229 using helium nuclei (United States)

    Mirzadeh, Saed [Knoxville, TN; Garland, Marc Alan [Knoxville, TN


    A method for producing .sup.229Th includes the steps of providing .sup.226Ra as a target material, and bombarding the target material with alpha particles, helium-3, or neutrons to form .sup.229Th. When neutrons are used, the neutrons preferably include an epithermal neutron flux of at least 1.times.10.sup.13 n s.sup.-1cm.sup.-2. .sup.228Ra can also be bombarded with thermal and/or energetic neutrons to result in a neutron capture reaction to form .sup.229Th. Using .sup.230Th as a target material, .sup.229Th can be formed using neutron, gamma ray, proton or deuteron bombardment.

  2. Tritium decay helium-3 effects in tungsten

    Directory of Open Access Journals (Sweden)

    M. Shimada


    Full Text Available Tritium (T implanted by plasmas diffuses into bulk material, especially rapidly at elevated temperatures, and becomes trapped in neutron radiation-induced defects in materials that act as trapping sites for the tritium. The trapped tritium atoms will decay to produce helium-3 (3He atoms at a half-life of 12.3 years. 3He has a large cross section for absorbing thermal neutrons, which after absorbing a neutron produces hydrogen (H and tritium ions with a combined kinetic energy of 0.76 MeV through the 3He(n,HT nuclear reaction. The purpose of this paper is to quantify the 3He produced in tungsten by tritium decay compared to the neutron-induced helium-4 (4He produced in tungsten. This is important given the fact that helium in materials not only creates microstructural damage in the bulk of the material but alters surface morphology of the material effecting plasma-surface interaction process (e.g. material evolution, erosion and tritium behavior of plasma-facing component materials. Effects of tritium decay 3He in tungsten are investigated here with a simple model that predicts quantity of 3He produced in a fusion DEMO FW based on a neutron energy spectrum found in literature. This study reveals that: (1 helium-3 concentration was equilibrated to ∼6% of initial/trapped tritium concentration, (2 tritium concentration remained approximately constant (94% of initial tritium concentration, and (3 displacement damage from 3He(n,HT nuclear reaction became >1 dpa/year in DEMO FW.

  3. Ultra-cold neutron production with superfluid helium and spallation neutrons

    CERN Document Server

    Masuda, Y


    Ultra-cold neutrons (UCN) production in superfluid helium with spallation neutrons is discussed. A source is described, where superfluid helium is located in a cold moderator of deuterium at 20 K surrounded by a thermal moderator of heavy water at 300 K. A lead target is installed in the thermal moderator for neutron production via a medium energy proton induced spallation reaction. A Monte Carlo simulation showed that a UCN density of the order of 10 sup 5 n/cm sup 3 is achievable with an acceptable heat load for the helium cryostat.

  4. Electronic properties of physisorbed helium

    Energy Technology Data Exchange (ETDEWEB)

    Kossler, Sarah


    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  5. Trapping fermionic and bosonic helium atoms

    NARCIS (Netherlands)

    Stas, R.J.W.


    This thesis presents experimental and theoretical work performed at the Laser Centre of the Vrije Universiteit in Amsterdam to study laser-cooled metastable triplet helium atoms. Samples containing about 3x10^8 helium atoms-either fermionic helium-3 atoms, bosonic helium-4 atoms or mixtures

  6. Cold Helium Gas Pressurization For Spacecraft Cryogenic Propulsion Systems (United States)

    Morehead, Robert L.; Atwell. Matthew J.; Hurlbert, Eric A.; Melcher, J. C.


    To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.

  7. Commissioning of the JT-60SA helium refrigerator (United States)

    Kamiya, Koji; Natsume, Kyohei; Ohtsu, Kiichi; Oishi, Makoto; Honda, Atsushi; Kashiwa, Yoshitoshi; Kizu, Kaname; Koide, Yoshihiko; Hoa, Christine; Michel, Frederic; Roussel, Pascal; Lamaison, Valerie; Bonne, Francois; Dipietro, Enrico; Cardella, Antonino; Wanner, Manfred; Legrand, Jerome; Pudys, Vincent; Langevin, Baptiste


    The JT-60SA project will use superconducting magnets to confine the plasma and achieve a plasma current with a typical flat top duration of 100 second in purely inductive mode. The helium refrigerator has an equivalent cooling power of 9 kW at 4.5 K providing 3.7 K, 4.5 K, 50 K and 80 K for the diverter cryopump, the superconducting magnets, the HTS current leads, and the thermal shields, respectively. This paper summarizes the JT-60SA helium refrigerator commissioning activities aiming at successful operation of heat load smoothing technology to manage the 12 kW heat pulses by 9 kW cooling power using a 7000 liter liquid helium.

  8. SPS Ion Induced Desorption Experiment

    CERN Multimedia

    Maximilien Brice


    This experiment will give a study about the induced desorption from heavy ion (Indium ion run from week 45 in SPS T4-H8 area) impacting LHC type graphite collimator. 4 different samples are located in the 4 chambers 90° one to each other: pure graphite, graphite with copper coating, graphite with NEG coating, 316LN stainless steal (reference).

  9. Optomechanics in a Levitated Droplet of Superfluid Helium (United States)

    Brown, Charles; Harris, Glen; Harris, Jack


    A critical issue common to all optomechanical systems is dissipative coupling to the environment, which limits the system's quantum coherence. Superfluid helium's extremely low optical and mechanical dissipation, as well as its high thermal conductivity and its ability cool itself via evaporation, makes the mostly uncharted territory of superfluid optomechanics an exciting avenue for exploring quantum effects in macroscopic objects. I will describe ongoing work that aims to exploit the unique properties of superfluid helium by constructing an optomechanical system consisting of a magnetically levitated droplet of superfluid helium., The optical whispering gallery modes (WGMs) of the droplet, as well as the mechanical oscillations of its surface, should offer exceptionally low dissipation, and should couple to each other via the usual optomechanical interactions. I will present recent progress towards this goal, and also discuss the background for this work, which includes prior demonstrations of magnetic levitation of superfluid helium, high finesse WGMs in liquid drops, and the self-cooling of helium drops in vacuum.

  10. Variable helium diffusion characteristics in fluorite (United States)

    Wolff, R.; Dunkl, I.; Kempe, U.; Stockli, D.; Wiedenbeck, M.; von Eynatten, H.


    Precise analysis of the diffusion characteristics of helium in fluorite is crucial for establishing the new fluorite (U-Th-Sm)/He thermochronometer (FHe), which potentially provides a powerful tool for dating ore deposits unsuitable for the application of conventional geochronometers. Incremental helium outgassing experiments performed on fluorites derived from a spectrum of geological environments suggest a thermally activated volume diffusion mechanism. The diffusion behaviour is highly variable and the parameters range between log D0/a2 = 0.30 ± 0.27-7.27 ± 0.46 s-1 and Ea = 96 ± 3.5-182 ± 3.8 kJ/mol. Despite the fact that the CaF2 content of natural fluorites in most cases exceeds 99 weight percent, the closure temperature (Tc) of the fluorite (U-Th-Sm)/He thermochronometer as calculated from these diffusion parameters varies between 46 ± 14 °C and 169 ± 9 °C, considering a 125 μm fragment size. Here we establish that minor substitutions of calcium by rare earth elements and yttrium (REE + Y) and related charge compensation by sodium, fluorine, oxygen and/or vacancies in the fluorite crystal lattice have a significant impact on the diffusivity of helium in the mineral. With increasing REE + Y concentrations F vacancies are reduced and key diffusion pathways are narrowed. Consequently, a higher closure temperature is to be expected. An empirical case study confirms this variability: two fluorite samples from the same deposit (Horni Krupka, Czech Republic) with ca. 170 °C and ca. 43 °C Tc yield highly different (U-Th-Sm)/He ages of 290 ± 10 Ma and 79 ± 10 Ma, respectively. Accordingly, the fluorite sample with the high Tc could have quantitatively retained helium since the formation of the fluorite-bearing ores in the Permian, despite subsequent Mesozoic burial and associated regional hydrothermal heating. In contrast, the fluorite with the low Tc yields a Late Cretaceous age close to the apatite fission track (AFT) and apatite (U-Th)/He ages (AHe

  11. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant (United States)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.


    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  12. Processes for desorption from LiAlO sub 2 treated with H sub 2 as studied by temperature programmed desorption

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, A.K.


    The energetics and kinetics of the evolution of H{sub 2}O and H{sub 2} from LiAlO{sub 2} are being studied by the temperature programmed desorption technique. The concentrations of H{sub 2}, H{sub 2}O, N{sub 2}, and O{sub 2} in a helium stream during a temperature ramp are measured simultaneously with a mass spectrometer. Blank experiments with an empty sample tube showed that square wave spikes of H{sub 2} introduced into the helium gas stream were severely distorted by reaction with the tube walls. The tube could be stabilized, however, by sufficiently prolonged heat treatment with H{sub 2} so that H{sub 2} peaks would not be distorted up to approximately 923 K(650{degree}C). The amount of H{sub 2}adsorption/desorption is small compared to the amount of H{sub 2}O adsorption/desorption. After prolonged treatment with helium containing 990 ppm H{sub 2} at 400{degree}C, H{sub 2}O evolution into the He-H{sub 2} stream was observed during 473 to 1023 K (200 to 750{degree}C) ramps at rates of 2 or 5.6 K/min. The different peak shapes reflecting this process were deconvoluted to show that they are composites of only 2 or 3 reproducible processes. The activation energies and pre-exponential terms was evaluated. The different behavior originates in the differences among different surface sites for adsorption. The interpretation of higher temperature peaks (above 873 K (650{degree}C)) must still consider the possibility of contributions from interactions with steel walls. It was found that H{sub 2} enhances evolution of N{sub 2} from the steel. 1 tab., 6 figs., 11 refs.

  13. LRO-LAMP Observations of Lunar Exospheric Helium (United States)

    Grava, Cesare; Retherford, Kurt D.; Hurley, Dana M.; Feldman, Paul D.; Gladstone, Randy; Greathouse, Thomas K.; Cook, Jason C.; Stern, Alan; Pryor, Wayne R.; Halekas, Jasper S.; Kaufmann, David E.


    We present results from Lunar Reconnaissance Orbiter’s (LRO) UV spectrograph LAMP (Lyman-Alpha Mapping Project) campaign to study the lunar atmosphere. Two kinds of off-nadir maneuvers (lateral rolls and pitches towards and opposite the direction of motion of LRO) were performed to search for resonantly scattering species, increasing the illuminated line-of-sight (and hence the signal from atoms resonantly scattering the solar photons) compared to previously reported LAMP “twilight observations” [Cook & Stern, 2014]. Helium was the only element distinguishable on a daily basis, and we present latitudinal profiles of its line-of-sight column density in December 2013. We compared the helium line-of-sight column densities with solar wind alpha particle fluxes measured from the ARTEMIS (Acceleration, Reconnection, Turbulence, & Electrodynamics of Moon’s Interaction with the Sun) twin spacecraft. Our data show a correlation with the solar wind alpha particle flux, confirming that the solar wind is the main source of the lunar helium, but not with a 1:1 relationship. Assuming that the lunar soil is saturated with helium atoms, our results suggest that not all of the incident alpha particles are converted to thermalized helium, allowing for a non-negligible fraction (~50 %) to escape as suprathermal helium or simply backscattered from the lunar surface. We also support the finding by Benna et al. [2015] and Hurley et al. [2015], that a non-zero contribution from endogenic helium, coming from radioactive decay of 232Th and 238U within the mantle, is present, and is estimated to be (4.5±1.2) x 106 He atoms cm-2 s-1. Finally, we compare LAMP-derived helium surface density with the one recorded by the mass spectrometer LACE (Lunar Atmospheric Composition Experiment) deployed on the lunar surface during the Apollo 17 mission, finding good agreement between the two measurements. These LRO off-nadir maneuvers allow LAMP to provide unique coverage of local solar time and

  14. Theoretical model of the helium zone plate microscope (United States)

    Salvador Palau, Adrià; Bracco, Gianangelo; Holst, Bodil


    Neutral helium microscopy is a new technique currently under development. Its advantages are the low energy, charge neutrality, and inertness of the helium atoms, a potential large depth of field, and the fact that at thermal energies the helium atoms do not penetrate into any solid material. This opens the possibility, among others, for the creation of an instrument that can measure surface topology on the nanoscale, even on surfaces with high aspect ratios. One of the most promising designs for helium microscopy is the zone plate microscope. It consists of a supersonic expansion helium beam collimated by an aperture (skimmer) focused by a Fresnel zone plate onto a sample. The resolution is determined by the focal spot size, which depends on the size of the skimmer, the optics of the system, and the velocity spread of the beam through the chromatic aberrations of the zone plate. An important factor for the optics of the zone plate is the width of the outermost zone, corresponding to the smallest opening in the zone plate. The width of the outermost zone is fabrication limited to around 10 nm with present-day state-of-the-art technology. Due to the high ionization potential of neutral helium atoms, it is difficult to build efficient helium detectors. Therefore, it is crucial to optimize the microscope design to maximize the intensity for a given resolution and width of the outermost zone. Here we present an optimization model for the helium zone plate microscope. Assuming constant resolution and width of the outermost zone, we are able to reduce the problem to a two-variable problem (zone plate radius and object distance) and we show that for a given beam temperature and pressure, there is always a single intensity maximum. We compare our model with the highest-resolution zone plate focusing images published and show that the intensity can be increased seven times. Reducing the width of the outermost zone to 10 nm leads to an increase in intensity of more than 8000

  15. Kinetic approach to the helium transport in a divertor plasma along the magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, S.I.; Soboleva, T.K. (I.V. Kurchatov Inst. of Atomic Energy, Ploshchad akademika Kurchatova, 123281 Moscos (SU)); Gac, K. (Instytut Fizyki Plazmy i Laserowej Mikrosyntezy, Warsaw (Poland))


    This paper considers impurity (helium) ion transport kinetics in a tokamak divertor along magnetic field lines, both analytically and numerically, for the case when the ratio of collisional mean-free-path to the characteristic length of plasma parameter variation is not too small. To obtain the numerical solution of the kinetics equation, the stochastic modeling method is used. For International Thermonuclear Experimental Reactor (ITER) divertor plasma conditions, the influence of thermal force on helium ions is expected to be decreased considerably. As a result, the helium ion flux toward the divertor plates may be significantly enhanced compared to that predicted by the hydrodynamics approach.

  16. Pierre Gorce working on a helium pump.

    CERN Multimedia


    This type of pump was designed by Mario Morpurgo, to circulate liquid helium in superconducting magnets wound with hollow conductors. M. Morpurgo, Design and construction of a pump for liquid helium, CRYIOGENICS, February 1977, p. 91

  17. Transition to ballistic regime for heat transport in helium II

    Energy Technology Data Exchange (ETDEWEB)

    Sciacca, Michele, E-mail: [Dipartimento Scienze Agrarie e Forestali, Università degli studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Sellitto, Antonio, E-mail: [Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, Campus Macchia Romana, 85100 Potenza (Italy); Jou, David, E-mail: [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)


    The size-dependent and flux-dependent effective thermal conductivity of narrow capillaries filled with superfluid helium is analyzed from a thermodynamic continuum perspective. The classical Landau evaluation of the effective thermal conductivity of quiescent superfluid, or the Gorter–Mellinck regime of turbulent superfluids, is extended to describe the transition to ballistic regime in narrow channels wherein the radius R is comparable to (or smaller than) the phonon mean-free path ℓ in superfluid helium. To do so, we start from an extended equation for the heat flux incorporating non-local terms, and take into consideration a heat slip flow along the walls of the tube. This leads from an effective thermal conductivity proportional to R{sup 2} (Landau regime) to another one proportional to Rℓ (ballistic regime). We consider two kinds of flows: along cylindrical pipes and along two infinite parallel plates. - Highlights: • Heat transport in counterflow helium in the ballistic regime. • The one-fluid model based on the Extended Thermodynamics is used. • The transition from the Landau regime to the ballistic regime. • The transition from quantum turbulence to ballistic regime.

  18. 21 CFR 184.1355 - Helium. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Helium. 184.1355 Section 184.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1355 Helium. (a) Helium (empirical formula He, CAS Reg. No. 7440-59-7) is a...

  19. 21 CFR 582.1355 - Helium. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Helium. 582.1355 Section 582.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Helium. (a) Product. Helium. (b) Conditions of use. This substance is generally recognized as safe when...

  20. 30 CFR 256.11 - Helium. (United States)


    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Helium. 256.11 Section 256.11 Mineral Resources... Helium. (a) Each lease issued or continued under these regulations shall be subject to a reservation by the United States, under section 12(f) of the Act, of the ownership of and the right to extract helium...

  1. Conceptual design of a helium heater for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xue Zhou, E-mail:; Chen, Yuming; Ghidersa, Bradut-Eugen


    Highlights: •A special design of heater with two vessels is introduced for the operation at 10 MPa and 800 °C. •The additional coupling between the cold leg and the hot leg of the loop due to the heater design has an impact on the loop energy budget. •Reducing the heat transfer between the two flow channels inside the heater by means of a helium gap in the inlet nozzle is proven to be effective. -- Abstract: The Karlsruhe Advanced Technologies Helium Loop (KATHELO) has been designed for testing divertor modules as well as qualifying materials for high heat flux, high temperature (up to 800 °C) and high pressure (10 MPa) applications. The test section inlet temperature level is controlled using a process electrical heater. To cope with the extreme operating conditions, a special design of this unit has been proposed. In this paper the conceptual design of the unit will be presented and the impact of the coupling between the cold and hot helium gas on the overall efficiency of the loop will be investigated. The detailed thermal-hydraulic analysis of the feed through of the hot helium into the low temperature pressure vessel using ANSYS CFX will be presented. The impact of the design choices on the overall energy budget of the loop will be analyzed using RELAP5-3D.

  2. Simplicity works for superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bowley, Roger [University of Nottingham, Nottingham (United Kingdom)


    The famous philosopher Karl Popper once said that ''science is the art of systematic oversimplification''. Indeed, when faced with a new puzzle the trick is to simplify it without losing the essential physics - something that is easier said than done. However, this approach has paid off recently in low-temperature physics. Last year Richard Packard, Seamus Davis and co-workers at the University of California at Berkeley encountered a puzzling new phenomenon in superfluid helium-3, a quantum fluid that remains a liquid close to absolute zero and exhibits unusual properties such as the ability to flow without friction (A Machenkov et al. 1999 Phys. Rev. Lett. 83 3860). Previous experiments had revealed that certain effects in liquid helium are analogous to effects observed in superconductors, materials that lose all resistance to electric current at low temperatures. When the Berkeley researchers connected two reservoirs of superfluid helium-3, the superfluid flowed back and forth through apertures that formed a ''weak link'' between the two containers. This behaviour is similar to the oscillatory current of electrons that can flow across an insulating gap separating two superconductors - a device that is known as a Josephson junction. What was puzzling about the Berkeley results was that the helium-3 had two different stable configurations, both of which behaved in an unconventional way compared with a Josephson junction. This puzzle has now been solved independently by Sidney Yip at the National Center for Theoretical Sciences in Taiwan, and by Janne Viljas and Erkki Thuneberg at the Helsinki University of Technology in Finland (Phys. Rev. Lett. 1999 83 3864 and 3868). In this article the author describes the latest research on superfluid helium. (UK)

  3. Charging dynamics of dopants in helium nanoplasmas

    DEFF Research Database (Denmark)

    Heidenreich, Andreas; Grüner, Barbara; Schomas, Dominik


    We present a combined experimental and theoretical study of the charging dynamics of helium nanodroplets doped with atoms of different species and irradiated by intense near-infrared laser pulses (≤1015 W cm−2). In particular, we elucidate the interplay of dopant ionization inducing the ignition...... of a helium nanoplasma, and the charging of the dopant atoms driven by the ionized helium host. Most efficient nanoplasma ignition and charging is found when doping helium droplets with xenon atoms, in which case high charge states of both helium (He2+) and of xenon (Xe21+) are detected. In contrast, only low...

  4. Heat transfer between the superconducting cables of the LHC accelerator magnets and the superfluid helium bath

    CERN Document Server

    Granieri, Pier Paolo; Tommasini, D

    In this thesis work we investigate the heat transfer through the electrical insulation of superconducting cables cooled by superfluid helium. The cable insulation constitutes the most severe barrier for heat extraction from the superconducting magnets of the CERN Large Hadron Collider (LHC). We performed an experimental analysis, a theoretical modeling and a fundamental research to characterize the present LHC insulation and to develop new ideas of thermally enhanced insulations. The outcome of these studies allowed to determine the thermal stability of the magnets for the LHC and its future upgrades. An innovative measurement technique was developed to experimentally analyze the heat transfer between the cables and the superfluid helium bath. It allowed to describe the LHC coil behavior using the real cable structure, an appropriate thermometry and controlling the applied pressure. We developed a new thermally enhanced insulation scheme based on an increased porosity to superfluid helium. It aims at withstan...

  5. Structural and chemical evolution in neutron irradiated and helium-injected ferritic ODS PM2000 alloy (United States)

    Jung, Hee Joon; Edwards, Dan J.; Kurtz, Richard J.; Yamamoto, Takuya; Wu, Yuan; Odette, G. Robert


    An investigation of the influence of helium on damage evolution under neutron irradiation of an 11 at% Al, 19 at% Cr ODS ferritic PM2000 alloy was carried out in the High Flux Isotope Reactor (HFIR) using a novel in situ helium injection (ISHI) technique. Helium was injected into adjacent TEM discs from thermal neutron 58Ni(nth,γ) 59Ni(nth,α) reactions in a thin NiAl layer. The PM2000 undergoes concurrent displacement damage from the high-energy neutrons. The ISHI technique allows direct comparisons of regions with and without high concentrations of helium since only the side coated with the NiAl experiences helium injection. The corresponding microstructural and microchemical evolutions were characterized using both conventional and scanning transmission electron microscopy techniques. The evolutions observed include formation of dislocation loops and associated helium bubbles, precipitation of a variety of phases, amorphization of the Al2YO3 oxides (which also variously contained internal voids), and several manifestations of solute segregation. Notably, high concentrations of helium had a significant effect on many of these diverse phenomena. These results on PM2000 are compared and contrasted to the evolution of so-called nanostructured ferritic alloys (NFA).

  6. Structural and chemical evolution in neutron irradiated and helium-injected ferritic ODS PM2000 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hee Joon; Edwards, Dan J.; Kurtz, Richard J.; Yamamoto, Takuya; Wu, Yuan; Odette, G. Robert


    An investigation of the influence of helium on damage evolution under neutron irradiation of an 11 at% Al, 19 at% Cr ODS ferritic PM2000 alloy was carried out in the High Flux Isotope Reactor (HFIR) using a novel in situ helium injection (ISHI) technique. Helium was injected into adjacent TEM discs from thermal neutron 59Ni(nth, 59Ni(nth,α) reactions in a thin NiAl layer. The PM2000 undergoes concurrent displacement damage from the high-energy neutrons. The ISHI technique allows direct comparisons of regions with and without high concentrations of helium since only the side coated with the NiAl experiences helium injection. The corresponding microstructural and microchemical evolutions were characterized using both conventional and scanning transmission electron microscopy techniques. The evolutions observed include formation of dislocation loops and associated helium bubbles, precipitation of a variety of phases, amorphization of the Al2YO3 oxides (which also variously contained internal voids), and several manifestations of solute segregation. Notably, high concentrations of helium had a significant effect on many of these diverse phenomena. These results on PM2000 are compared and contrasted to the evolution of so-called nanostructured ferritic alloys (NFA).

  7. HeREF-2003 : Helium Refrigeration Techniques

    CERN Multimedia


    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. • Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 • Cost per participant: 500.- CHF ...

  8. HeREF-2003: Helium Refrigeration Techniques

    CERN Multimedia


    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 Cost per participant: 500.- CHF Language: Bilingual English...

  9. Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization (United States)

    Lu, I.-Chung; Lee, Chuping; Lee, Yuan-Tseh; Ni, Chi-Kung


    In past studies, mistakes in determining the ionization mechanism in matrix-assisted laser desorption/ionization (MALDI) were made because an inappropriate ion-to-neutral ratio was used. The ion-to-neutral ratio of the analyte differs substantially from that of the matrix in MALDI. However, these ratios were not carefully distinguished in previous studies. We begin by describing the properties of ion-to-neutral ratios and reviews early experimental measurements. A discussion of the errors committed in previous theoretical studies and a comparison of recent experimental measurements follow. We then describe a thermal proton transfer model and demonstrate how the model appropriately describes ion-to-neutral ratios and the total ion intensity. Arguments raised to challenge thermal ionization are then discussed. We demonstrate how none of the arguments are valid before concluding that thermal proton transfer must play a crucial role in the ionization process of MALDI.

  10. Saturn's Helium Abundance from Cassini CIRS and RSS Data (United States)

    Achterberg, Richard K.; Schinder, Paul J.; Flasar, F. Michael


    The ratio of helium to hydrogen in Saturn's atmosphere provides an important constraint on models of Saturn's formation and evolution, but has been poorly constrained by available data. Measurements combining Voyager infrared and radio data [1] gave a He/H2 mole ratio of 0.034 ± 0.024, far below the protosolar value and requiring either significant helium loss or sequestration in the interior. Prompted by discrepancies between the Voyager infrared/radio and Galileo probe measurements of helium on Jupiter, Conrath and Gautier [2] reevaluated the helium abundance on Saturn from Voyager infrared data only, obtaining a He/H2 mole ratio of 0.135 ± 0.025, inconsistent with the previous results. Because of this discrepancy, estimating Saturn's atmospheric helium abundance has been a major goal of the Cassini mission.We are estimating the He/H2 mole ratio in Saturn's atmosphere using a combination of data from the Cassini Radio Science Subsystem (RSS) and Composite InfraRed Spectrometer (CIRS). Radio occultations, in which a carrier signal is observed as Cassini passed behind Saturn as seen from antennas on Earth, give a vertical profile of atmospheric refractivity, which can be converted to temperature as a function of pressure assuming a mean molecular weight. The assumed molecular weight is adjusted until synthetic thermal infrared spectra match spectra observed by CIRS at the same latitude and time. Preliminary results from a set of eleven near-equatorial occultations taken in 2005 give He/H2 mole ratios varying between ~0.060 and 0.085.[1] Conrath, B. J., et al., 1984, Ap. J., 282:807-815[2] Conrath, B. J. and D. Gautier, 2000, Icarus, 144:124-134

  11. Ion temperature anisotropy in high power helium neutral beam fuelling experiments in JET

    Energy Technology Data Exchange (ETDEWEB)

    Maas, A.C.; Core, W.G.F.; Gerstel, U.C.; Von Hellermann, M.G.; Koenig, R.W.T.; Marcus, F.B. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking


    During helium beam fuelling experiments in JET, distinctive anisotropic features have been observed in the velocity distribution function describing both fast and thermal alpha particle populations. During the initial fuelling phase the central helium ion temperature observed perpendicular to the magnetic field is higher than the central electron temperature, while the central helium ion temperature observed parallel to the magnetic field is lower than or equal to the central electron temperature. In order to verify temperature measurements of both perpendicular and parallel lines of sight, other independent methods of deducing the ion temperature are investigated: deuterium ion temperature, deuterium density, comparison with neutron rates and profiles (influence of a possible metastable population of helium). 6 refs., 7 figs.

  12. Lightweight Liquid Helium Dewar for High-Altitude Balloon Payloads (United States)

    Kogut, Alan; James, Bryan; Fixsen, Dale


    Astrophysical observations at millimeter wavelengths require large (2-to-5- meter diameter) telescopes carried to altitudes above 35 km by scientific research balloons. The scientific performance is greatly enhanced if the telescope is cooled to temperatures below 10 K with no emissive windows between the telescope and the sky. Standard liquid helium bucket dewars can contain a suitable telescope for telescope diameter less than two meters. However, the mass of a dewar large enough to hold a 3-to-5-meter diameter telescope would exceed the balloon lift capacity. The solution is to separate the functions of cryogen storage and in-flight thermal isolation, utilizing the unique physical conditions at balloon altitudes. Conventional dewars are launched cold: the vacuum walls necessary for thermal isolation must also withstand the pressure gradient at sea level and are correspondingly thick and heavy. The pressure at 40 km is less than 0.3% of sea level: a dewar designed for use only at 40 km can use ultra thin walls to achieve significant reductions in mass. This innovation concerns new construction and operational techniques to produce a lightweight liquid helium bucket dewar. The dewar is intended for use on high-altitude balloon payloads. The mass is low enough to allow a large (3-to-5-meter) diameter dewar to fly at altitudes above 35 km on conventional scientific research balloons without exceeding the lift capability of the balloon. The lightweight dewar has thin (250- micron) stainless steel walls. The walls are too thin to support the pressure gradient at sea level: the dewar launches warm with the vacuum space vented continuously during ascent to eliminate any pressure gradient across the walls. A commercial 500-liter storage dewar maintains a reservoir of liquid helium within a minimal (hence low mass) volume. Once a 40-km altitude is reached, the valve venting the vacuum space of the bucket dewar is closed to seal the vacuum space. A vacuum pump then

  13. Spiral Surface Growth without Desorption

    Energy Technology Data Exchange (ETDEWEB)

    Karma, A.; Plapp, M. [Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115 (United States)


    Spiral surface growth is well understood in the limit where the step motion is controlled by the local supersaturation of adatoms near the spiral ridge. In epitaxial thin-film growth, however, spirals can form in a step-flow regime where desorption of adatoms is negligible and the ridge dynamics is governed by the nonlocal diffusion field of adatoms on the whole surface. We investigate this limit numerically using a phase-field formulation of the Burton-Cabrera-Frank model, as well as analytically. Quantitative predictions, which differ strikingly from those of the local limit, are made for the selected step spacing as a function of the deposition flux, as well as for the dependence of the relaxation time to steady-state growth on the screw dislocation density. {copyright} {ital 1998} {ital The American Physical Society }

  14. Helium atom scattering from surfaces

    CERN Document Server


    High resolution helium atom scattering can be applied to study a number of interesting properties of solid surfaces with great sensitivity and accuracy. This book treats in detail experimental and theoretical aspects ofthis method as well as all current applications in surface science. The individual chapters - all written by experts in the field - are devoted to the investigation of surface structure, defect shapes and concentrations, the interaction potential, collective and localized surface vibrations at low energies, phase transitions and surface diffusion. Over the past decade helium atom scattering has gained widespread recognitionwithin the surface science community. Points in its favour are comprehensiveunderstanding of the scattering theory and the availability of well-tested approximation to the rigorous theory. This book will be invaluable to surface scientists wishing to make an informed judgement on the actual and potential capabilities of this technique and its results.

  15. The maintenance record of the KSTAR helium refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Moon, K. M.; Joo, J. J.; Kim, N. W. [National Fusion Research Institute, Daejeon (Korea, Republic of); and others


    Korea Superconducting Tokamak Advanced Research (KSTAR) has a helium refrigeration system (HRS) with the cooling capacity of 9 kW at 4.5 K. Main cold components are composed of 300 tons of superconducting (SC) magnets, main cryostat thermal shields, and SC current feeder system. The HRS comprises six gas storage tanks, a liquid nitrogen tank, the room temperature compression sector, the cold box (C/B), the 1st stage helium distribution box (DB no.1), the PLC base local control system interconnected to central control tower and so on. Between HRS and cold components, there is another distribution box (DB#2) nearby the KSTAR device. The entire KSTAR device was constructed in 2007 and has been operated since 2008. This paper will present the maintenance result of the KSTAR HRS during the campaign and discuss the operation record and maintenance history of the KSTAR HRS.

  16. Boron gettering on cavities induced by helium implantation in Si (United States)

    Roqueta, F.; Alquier, D.; Ventura, L.; Dubois, Ch.; Jérisian, R.


    In this paper, we shed light on the strong interaction between the cavity layer induced by helium implantation and boron. First of all, we evidence the impact of He gettering step on a boron-diffused profile. In order to study the boron-cavity interaction, we had used uniformly boron-doped wafers implanted with helium at high dose and anneal using usual furnace annealing (FA) as well as rapid thermal annealing. Then, to avoid any precipitation phenomena, conditions were chosen to not exceed the boron solid solubility value. Our experimental results exhibit a large trapping of boron within the cavity layer. This trapping occurs since the early stage of the annealing. These results enable us to have better understanding of this He gettering step as well as its interaction with boron atoms, which are of great interest for device.

  17. Implementation of the superfluid helium phase transition using finite element modeling: Simulation of ransient heat transfer and He-I/He-II phase front movement in cooling channels of superconducting magnets

    NARCIS (Netherlands)

    Bielert, Erwin; Verweij, A.P.; ten Kate, Herman H.J.


    In the thermal design of high magnetic field superconducting accelerator magnets, the emphasis is on the use of superfluid helium as a coolant and stabilizing medium. The very high effective thermal conductivity of helium below the lambda transition temperature significantly helps to extract heat

  18. Investigations of levitated helium drops (United States)

    Whitaker, Dwight Lawrence


    We report on the development of two systems capable of levitating drops of liquid helium. Helium drops of ˜20 mum have been levitated with the radiation pressure from two counter-propagating Nd:YAG laser beams. Drops are produced with a submerged piezoelectric transducer, and could be held for up to three minutes in our optical trap. Calculations show that Brillouin and Raman scattering of the laser light in the liquid helium produces a negligible rate of evaporation of the drop. Evaporation caused by the enhanced vapor pressure of the curved drop surfaces appears to be a significant effect limiting the drop lifetimes. Helium drops as large as 2 cm in diameter have been suspended in the earth's gravitational field with a magnetic field. A commercial superconducting solenoid provides the necessary field, field-gradient product required to levitate the drops. Drops are cooled to 0.5 K with a helium-3 refrigerator, and can be held in the trap indefinitely. We have found that when two or more drops are levitated in the same magnetic trap, the drops often remain in a state of apparent contact without coalescing. This effect is a result of the evaporation of liquid from between the two drops, and is found to occur only for normal fluid drops. We can induce shape oscillations in charged, levitated drops with an applied ac electric field. We have measured the resonance frequencies and damping rates for the l = 2 mode of oscillation as function of temperature. We have also developed a theory to describe the small amplitude shape oscillations of a He II drop surrounded by its saturated vapor. In our theory, we have considered two sets of boundary conditions---one where the drop does not evaporate and another in which the liquid and vapor are in thermodynamic equilibrium. We have found that both solutions give a frequency that agrees well with experiment, but that the data for the damping rate agree better with the solution without evaporation.

  19. Thermodynamic properties of hydrogen-helium plasmas. (United States)

    Nelson, H. F.


    Calculation of the thermodynamic properties of an atomic hydrogen-helium plasma for postulated conditions present in a stagnation shock layer of a spacecraft entering the atmosphere of Jupiter. These properties can be used to evaluate transport properties, to calculate convective heating, and to investigate nonequilibrium behavior. The calculations have been made for temperatures from 10,000 to 100,000 K, densities of 10 to the minus 7th and .00001 g cu cm, and three plasma compositions: pure hydrogen, 50% hydrogen/50% helium, and pure helium. The shock layer plasma consists of electrons, protons, atomic hydrogen, atomic helium, singly ionized helium, and doubly atomized helium. The thermodynamic properties which have been investigated are: pressure, average molecular weight, internal energy, enthalpy, entropy, specific heat, and isentropic speed of sound. A consistent model was used for the reduction of the ionization potential in the calculation of the partition functions.

  20. Critical Landau velocity in helium nanodroplets. (United States)

    Brauer, Nils B; Smolarek, Szymon; Loginov, Evgeniy; Mateo, David; Hernando, Alberto; Pi, Marti; Barranco, Manuel; Buma, Wybren J; Drabbels, Marcel


    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective excitations of the helium atoms in the liquid. In the present work we determine to what extent this concept can still be applied to nanometer-scale, finite size helium systems. To this end, atoms and molecules embedded in helium nanodroplets of various sizes are accelerated out of the droplets by means of optical excitation, and the speed distributions of the ejected particles are determined. The measurements reveal the existence of a critical velocity in these systems, even for nanodroplets consisting of only a thousand helium atoms. Accompanying theoretical simulations based on a time-dependent density functional description of the helium confirm and further elucidate this experimental finding.

  1. Ras Laffan helium recovery unit 2 (United States)

    Fauve, Eric Arnaud; Grabié, Veronique; Grillot, David; Delcayre, Franck; Deschildre, Cindy


    In May 2010, Air Liquide was awarded a contract for the Engineering Procurement and Construction (Turnkey EPC) for a second helium recovery unit [RLH II] dedicated to the Ras Laffan refinery in Qatar. This unit will come in addition to the one [RLH I] delivered and commissioned by Air Liquide in 2005. It will increase the helium production of Qatar from 10% to 28% of worldwide production. RLH I and RLH II use Air Liquide Advanced Technologies helium liquefiers. With a production of 8 tons of liquid helium per day, the RLH I liquefier is the world largest, but not for long. Thanks to the newly developed turbine TC7, Air Liquide was able to propose for RLH II a single liquefier able to produce over 20 tons per day of liquid helium without liquid nitrogen pre-cooling. This liquefier using 6 Air Liquide turbines (TC series) will set a new record in the world of helium liquefaction.

  2. Backscattered Helium Spectroscopy in the Helium Ion Microscope: Principles, Resolution and Applications

    NARCIS (Netherlands)

    van Gastel, Raoul; Hlawacek, G.; Dutta, S.; Poelsema, Bene


    We demonstrate the possibilities and limitations for microstructure characterization using backscattered particles from a sharply focused helium ion beam. The interaction of helium ions with matter enables the imaging, spectroscopic characterization, as well as the nanometer scale modification of

  3. Calibrating the Helium Pressurization System for the Space Shuttle Liquid-Hydrogen Tank (United States)


    Analysis of the results from the STS-114 tanking tests and subsequent launch called into question existing thermal and mass models of helium pressurization of the liquid hydrogen tank. This hydrogen tank, which makes up the bottom two-thirds of the External Tank, is pressurized prior to launch to avoid cavitation in the Shuttle Main Engine pumps. At about 2 minutes prior to launch, the main vent valve is closed, and pressurized helium flows into the tank ullage space to achieve set point pressure. As the helium gas cools, its pressure drops, calling for additional helium. Subsequent helium flows are provided in short, timed pulses. The number of pulses is taken as a rough leak indicator. An analysis of thermal models by Marshall Space Flight Center showed considerable uncertainty in the pressure-versus-time behavior of the helium ullage space and the ability to predict the number of pulses normally expected. Kennedy Space Center proposed to calibrate the dime-sized orifice, which together with valves, controls the helium flow quantity (Figure 1). Pressure and temperature sensors were installed to provide upstream and downstream measurements necessary to compute flow rate based on the orifice discharge coefficient. An assessment of flow testing with helium indicated an extremely costly use of this critical resource. In order to reduce costs, we proposed removing the orifices from each Mobile Launcher Platform (MLP) and asking Colorado Engineering Experiment Station Inc. (CEESI) to calibrate the flow. CEESI has a high-pressure air flow system with traceable flow meters capable of handling the large flow rates. However, literature research indicated that square-edged orifices of small diameters often exhibit significant hysteresis and nonrepeatability in the vicinity of choked or sonic flow. Fortunately, the MLP orifices behaved relatively well in testing (Figure 2). Using curve fitting of the air-flow data, in conjunction with ASME orifice modeling equations, a

  4. Helium turbine power generation in high temperature gas reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Yasuo [Tokyo Inst. of Tech. (Japan)


    This paper presents studies on the helium turbine power generator and important components in the indirect cycle of high temperature helium cooled reactor with multi-purpose use of exhaust thermal energy from the turbine. The features of this paper are, firstly the reliable estimation of adiabatic efficiencies of turbine and compressor, secondly the introduction of heat transfer enhancement by use of the surface radiative heat flux from the thin metal plates installed in the hot helium and between the heat transfer coil rows of IHX and RHX, thirdly the use of turbine exhaust heat to produce fresh water from seawater for domestic, agricultural and marine fields, forthly a proposal of plutonium oxide fuel without a slight possibility of diversion of plutonium for nuclear weapon production and finally the investigation of GT-HTGR of large output such as 500 MWe. The study of performance of GT-HTGR reduces the result that for the reactor of 450 MWt the optimum thermal efficiency is about 43% when the turbine expansion ratio is 3.9 for the turbine efficiency of 0.92 and compressor efficiency of 0.88 and the helium temperature at the compressor inlet is 45degC. The produced amount of fresh water is about 8640 ton/day. It is made clear that about 90% of the reactor thermal output is totally used for the electric power generation in the turbine and for the multi-puposed utilization of the heat from the turbine exhaust gas and compressed helium cooling seawater. The GT-Large HTGR is realized by the separation of the pressure and temperature boundaries of the pressure vessel, the increase of burning density of the fuel by 1.4 times, the extention of the nuclear core diameter and length by 1.2 times, respectively, and the enhancement of the heat flux along the nuclear fuel compact surface by 1.5 times by providing riblets with the peak in the flow direction. (J.P.N.).

  5. Film growth, adsorption and desorption kinetics of indigo on SiO2 (United States)

    Scherwitzl, Boris; Resel, Roland; Winkler, Adolf


    Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation of dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer desorption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption.

  6. Film growth, adsorption and desorption kinetics of indigo on SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Scherwitzl, Boris, E-mail:; Resel, Roland; Winkler, Adolf [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria)


    Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation of dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer desorption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption.

  7. Enhanced desorption of cesium from collapsed interlayer regions in vermiculite by hydrothermal treatment with divalent cations

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiangbiao, E-mail: [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Wang, Xinpeng [College of Resources and Metallurgy, Guangxi University, 100 Daxue East Road, Nanning 530004 (China); Wu, Hao; Ohnuki, Toshihiko; Takeshita, Kenji [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)


    Highlights: • Desorption of Cs{sup +} fixed in collapsed interlayer region of vermiculite was studied. • Monovalent cations readily induced interlayer collapse inhibiting Cs{sup +} desorption. • Larger hydrous ionic radii of divalent cations greatly prevented Cs{sup +} desorption. • Effect of divalent cation on Cs{sup +} desorption changes depending on thermal treatment. • ∼100% removal of saturated Cs{sup +} was achieved by hydrothermal treatment at 250 °C. - Abstract: Adsorption of cesium (Cs) on phyllosilicates has been intensively investigated because natural soils have strong ability of immobilizing Cs within clay minerals resulting in difficulty of decontamination. The objectives of present study are to clarify how Cs fixation on vermiculite is influenced by structure change caused by Cs sorption at different loading levels and how Cs desorption is affected by various replacing cations induced at different treating temperature. As a result, more than 80% of Cs was readily desorbed from vermiculite with loading amount of 2% saturated Cs (5.49 × 10{sup −3} mmol g{sup −1}) after four cycles of treatment of 0.01 M Mg{sup 2+}/Ca{sup 2+} at room temperature, but less than 20% of Cs was desorbed from saturated vermiculite. These distinct desorption patterns were attributed to inhibition of Cs desorption by interlayer collapse of vermiculite, especially at high Cs loadings. In contrast, elevated temperature significantly facilitated divalent cations to efficiently desorb Cs from collapsed regions. After five cycles of treatment at 250 °C with 0.01 M Mg{sup 2+}, ∼100% removal of saturated Cs was achieved. X-ray diffraction analysis results suggested that Cs desorption was completed through enhanced diffusion of Mg{sup 2+} cations into collapsed interlayer space under hydrothermal condition resulting in subsequent interlayer decollapse and readily release of Cs{sup +}.

  8. Parameters of helium absorption by porous structures (United States)

    Bukin, A. N.; Ivanova, A. S.; Marunich, S. A.; Pak, Yu. S.; Rozenkevich, M. B.


    Results from investigating the parameters of helium absoption by hollow glass-crystalline cenospheres obtained at the Reftinsky regional power station in the city of Asbest are presented. The permeability coefficients of helium penetrating through shells are determined, and the apparent activation energy is estimated ( E act = 33 ± 5 kJ/mol). The possibility of selectively extracting helium from mixtures of it and nitrogen is shown.

  9. Surface Impact Simulations of Helium Nanodroplets (United States)


    AFRL-RW-EG-TP-2015-001 Surface Impact Simulations of Helium Nanodroplets Robert J. Hinde Department of Chemistry University of...TITLE AND SUBTITLE Surface Impact Simulations of Helium Nanodroplets 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8651-11-1-0005 5c. PROGRAM ELEMENT...captures atomic delocalization of the helium atoms characteristic of the quantum solvent, but allow the single-particle wavefunctions to vary throughout

  10. Behavior of deuterium and rare gases in thermal convection loops with molten Pb-17Li

    Energy Technology Data Exchange (ETDEWEB)

    Feuerstein, H.; Graebner, H.; Horn, S.; Oschinski, J. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.))


    The behaviour of deuterium in thermal convection loops with molten Pb-17Li{sup *} was investigated in the temperature range from 300 to 610deg C, and in the range of deuterium partial pressures from 0.05 to 1000 mbar. Dissolution and desorption are controlled by diffusion through a 0.002 mm thick LM boundary layer at the interface, no chemical reactions are involved in the rate determining step. This boundary layer is also effective in case of permeation through membranes, if one side is covered by the LM. The permeation through 0.6 mm iron was reduced by a factor of 100. However in case of a fusion reactor blanket this boundary layer will not be important, because the wall thickness of the components is much larger. For the 2 mm stainless steel of the thermal convection loops with a downstream oxide layer, no effect of the boundary layer could be seen. The amount of oxides in the loop had no influence on the results. Furthermore an excess of H{sub 2} at low pressures did not change transfer rates of deuterium. The solubility of deuterium in the LM was determined from the kinetics of loading and degassing. The found values are one order of magnitude smaller than the lowest values so far published. The transport behavior of the rare gases He, Ne, Ar, Kr and Xe was investigated. The solubility of helium was found five orders of magnitude lower than that of deuterium, those for Ne, Ar, Kr and Xe even lower than that for helium. Helium-bubble formation has to be considered if the flow rate of the LM in a blanket is small, or in case of static irradiation experiments. On the other hand argon can be used as covergas for a fusion reactor blanket. Because of the low solubility in the LM, the Ar-41 activity will be much smaller than in sodium cooled reactors. (orig.).

  11. Behaviour of helium after implantation in molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Viaud, C. [Commissariat a l' Energie Atomique (CEA), Cadarache (France)], E-mail:; Maillard, S.; Carlot, G.; Valot, C. [Commissariat a l' Energie Atomique (CEA), Cadarache (France); Gilabert, E. [Chimie Nucleaire Analytique and Bio-environnementale (CNAB), Gradignan (France); Sauvage, T. [CEMHTI-CNRS, Orleans (France); Peaucelle, C.; Moncoffre, N. [Institut de Physique Nucleaire de Lyon (IPNL), Lyon (France)


    This study deals with the behaviour of helium in a molybdenum liner dedicated to the retention of fission products. More precisely this work contributes to evaluate the release of implanted helium when the gas has precipitated into nanometric bubbles close to the free surface. A simple model dedicated to calculate the helium release in such a condition is presented. The specificity of this model lays on the assumption that the gas is in equilibrium with a simple distribution of growing bubbles. This effort is encouraging since the calculated helium release fits an experimental dataset with a set of parameters in good agreement with the literature.

  12. Helium resources of the United States, 1989 (United States)

    Miller, Richard D.; Hamak, John E.

    The helium resources base of the United States was estimated by the Bureau of Mines to be 894.6 Bcf as of January 1, 1989. These resources are divided into four categories in decreasing degree of the assurance of their existence: (1) helium in storage and in proved natural gas reserves, 282.4 Bcf; (2) helium in probable natural gas resources, estimated at 237.7 Bcf; (3) helium in possible natural gas resources, estimated to be 263.2 Bcf; and (4) helium in speculative natural gas resources, 111.4 Bcf. These helium resources are further divided into depleting and nondepleting, with the helium in storage being in a separate classification. The depleting resources are those associated with natural gasfields that are, or will be, produced for the natural gas they contain. Almost all of the helium in potential (probable, possible, and speculative) natural gas resources is included in this classification. These depleting resources are estimated to contain 775 Bcf of the total helium resource base.


    Energy Technology Data Exchange (ETDEWEB)

    Hu, Renyu; Yung, Yuk L. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Seager, Sara, E-mail: [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)


    Warm Neptune- and sub-Neptune-sized exoplanets in orbits smaller than Mercury’s are thought to have experienced extensive atmospheric evolution. Here we propose that a potential outcome of this atmospheric evolution is the formation of helium-dominated atmospheres. The hydrodynamic escape rates of Neptune- and sub-Neptune-sized exoplanets are comparable to the diffusion-limited escape rate of hydrogen, and therefore the escape is heavily affected by diffusive separation between hydrogen and helium. A helium atmosphere can thus be formed—from a primordial hydrogen–helium atmosphere—via atmospheric hydrodynamic escape from the planet. The helium atmosphere has very different abundances of major carbon and oxygen species from those of a hydrogen atmosphere, leading to distinctive transmission and thermal emission spectral features. In particular, the hypothesis of a helium-dominated atmosphere can explain the thermal emission spectrum of GJ 436b, a warm Neptune-sized exoplanet, while also being consistent with the transmission spectrum. This model atmosphere contains trace amounts of hydrogen, carbon, and oxygen, with the predominance of CO over CH{sub 4} as the main form of carbon. With our atmospheric evolution model, we find that if the mass of the initial atmosphere envelope is 10{sup −3} planetary mass, hydrodynamic escape can reduce the hydrogen abundance in the atmosphere by several orders of magnitude in ∼10 billion years. Observations of exoplanet transits may thus detect signatures of helium atmospheres and probe the evolutionary history of small exoplanets.

  14. Design of Helium Brayton Cycle for Small Modular High Temperature Gas cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yoon Han; Lee, Je Kyoung; Lee, Jeong Ik [Korea Advanced Institue of Science and Technology, Daejeon (Korea, Republic of)


    The small modular reactor (SMR) is gaining a lot of interest recently. Not only it can achieve better passive safety, but also it can be potentially utilized for the diverse applications to respond to the increasing global energy demands. As a part of the SMR development effort, SM-HTGR (Small Modular-High Temperature Gas-cooled Reactor), a 20MWth reactor is under development by the Korean Atomic Energy Research Institute (KAERI) for the complete passive safety, desalination and industrial process heat application. The Helium Brayton cycle is considered as a promising candidate for the SM-HTGR power conversion. The advantages of Helium Brayton cycles are: 1) helium is an inert gas that does not interact with structure material. 2) helium is chemically stable that helium Brayton cycle can be utilized under the high temperature circumstance. 3) higher thermal efficiency is achievable under higher outlet temperature range. Moreover, high temperature advantage can be utilized (reinforced) by diverting part of the heat for industrial process heat. This paper will discuss the progress on the helium power conversion cycle operating condition optimization by studying the sensitivity of the maximum pressure, pressure ratio and the component cooling on the total cycle efficiency

  15. Heat transfer resistances in the measurements of cold helium vapour temperature in a subatmospheric process line (United States)

    Adamczyk, A.; Pietrowicz, S.; Fydrych, J.


    The superfluid helium technology, which is essentially used in particle accelerators, requires complex cryogenic systems that include long lines transferring cold helium vapours at a subathmospheric pressure below 50 mbar. Usually in large systems the subatmospheric pressure is generated by a set of warm and cold compressors. In consequence, the heat loads to the line and especially the helium temperature in the inlet to the cold compressors are crucial parameters. In order to measure the helium temperature the temperature sensors are usually fixed to the external surface of the process lines. However, this technique can lead to unwanted measurement errors and affect the temperature measurement dynamics mainly due to low thermal conductivity of the pipe wall material, large pipe diameters and low helium density. Assembling a temperature sensor in a well (cold finger) reaching the centerline of the flowing helium is a technique that can improve the measurement quality and dynamics (response time). The paper presents the numerical simulations of heat transfers occurring in the both measurement techniques and discusses the impacts of the heat transfer resistances on the temperature measurement dynamics.

  16. Helium release from neutron-irradiated Li{sub 2}O single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yamaki, Daiju; Tanifuji, Takaaki; Noda, Kenji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment


    Helium release behavior in post-irradiation heating tests was investigated for Li{sub 2}O single crystals which had been irradiated with thermal neutrons in JRR-4 and JRR-2, and fast neutrons in FFTF. It is clarified that the helium release curves from JRR-4 and JRR-2 specimens consists of only one broad peak. From the dependence of the peak temperatures on the neutron fluence and the crystal diameter, and the comparison with the results obtained for sintered pellets, it is considered that the helium generated in the specimen is released through the process of bulk diffusion with trapping by irradiation defects such as some defect clusters. For the helium release from FFTF specimens, two broad peaks were observed in the release curves. It is considered to suggest that two different diffusion paths exist for helium migration in the specimen, that is, bulk diffusion and diffusion through the micro-crack due to the heavy irradiation. In addition, helium bubble formation after irradiation due to the high temperature over 800K is suggested. (J.P.N.)

  17. The helium-graphite interaction

    Energy Technology Data Exchange (ETDEWEB)

    Joly, F.; Lhuillier, C.; Brami, B. (Lab. de Physique Theorique des Liquides, Univ. Pierre et Marie Curie, 75 - Paris (France))


    We propose a very simple empirical form of the helium-on-graphite potential, which reproduces the energy of the six known bound states, the experimental average distance of the {sup 4}He atom from the surface in the ground state and the correct asymptotic behaviour of the interaction. This optimized potential is used to compute the binding energy of a {sup 3}He atom on the same substrate. The agreement between the theoretical predictions and the experimental results is a check of the set of variational parameters. (orig.).

  18. Helium transfer line installation details.

    CERN Multimedia

    G. Perinic


    A particularity of the 32 m long four in one helium transfer line in between the cold box in USC55 and the cavern UX5 is the fact that the transfer line passes through a hole in the crane rail support beam. In order to ensure the alignment of the suspension rail in the interconnecting tunnel with the hole in the rail support as well as the connection points at both ends required precise measurements of the given geometries as well as the installation of a temporary target for the verification of the theoretical predictions.

  19. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak (United States)

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))


    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  20. Nucleation and growth of helium bubbles in aluminum between 20 and 900 K

    DEFF Research Database (Denmark)

    Rajainmäki, H.; Linderoth, Søren; Hansen, H. E.


    migration of the He-vacancy pairs. The migration energy for a He-vacancy pair is estimated to be 1.3±0.1 eV. Above 600 K the He bubbles grow through condensation of thermally produced vacancies, as well as bubble migration and coalescence. The created helium bubbles are extremely stable and survive...

  1. Rotational excitation of methanol by helium at interstellar temperatures

    CERN Document Server

    Pottage, J


    Calculations have been performed to obtain accurate cross-sections and thermally averaged rate coefficients for the rotational excitation of methanol by helium, using the Coupled States quantum-mechanical approach. Transitions within the ground and first torsionally excited states of A and E-type methanol were considered. The 'propensity rules' governing the collisional transitions were examined and compared with the results of microwave double resonance experiments. Predictions are made of line intensity ratios which are sensitive to the density of the He perturber and which lend themselves to the determination of the perturber densities in astrophysically interesting regions of molecular clouds.

  2. Helium Reionization Simulations. II. Signatures of Quasar Activity on the IGM (United States)

    La Plante, Paul; Trac, Hy; Croft, Rupert; Cen, Renyue


    We have run a new suite of simulations that solve hydrodynamics and radiative transfer simultaneously to study helium II reionization. Our suite of simulations employs various models for populating quasars inside of dark matter halos, which affect the He II reionization history. In particular, we are able to explore the impact that differences in the timing and duration of reionization have on observables. We examine the thermal signature that reionization leaves on the intergalactic medium (IGM), and measure the temperature-density relation. As previous studies have shown, we confirm that the photoheating feedback from helium II reionization raises the temperature of the IGM by several thousand kelvin. To compare against observations, we generate synthetic Lyα forest sightlines on-the-fly and match the observed effective optical depth {τ }{eff}(z) of hydrogen to recent observations. We show that when the simulations have been normalized to have the same values of {τ }{eff}, the effect that helium II reionization has on observations of the hydrogen Lyα forest is minimal. Specifically, the flux PDF and the one-dimensional power spectrum are sensitive to the thermal state of the IGM, but do not show direct evidence for the ionization state of helium. We show that the peak temperature of the IGM typically corresponds to the time of 90%-95% helium ionization by volume, and is a relatively robust indicator of the timing of reionization. Future observations of helium reionization from the hydrogen Lyα forest should thus focus on measuring the temperature of the IGM, especially at mean density. Detecting the peak in the IGM temperature would provide valuable information about the timing of the end of helium II reionization.

  3. Experimental factors controlling analyte ion generation in laser desorption/ionization mass spectrometry on porous silicon. (United States)

    Kruse, R A; Li, X; Bohn, P W; Sweedler, J V


    Desorption/ionization on porous silicon (DIOS) is a relatively new laser desorption/ionization technique for the direct mass spectrometric analysis of a wide variety of samples without the requirement of a matrix. Porous silicon substrates were fabricated using the recently developed nonelectrochemical H2O2-metal-HF etching as a versatile platform for investigating the effects of morphology and physical properties of porous silicon on DIOS-MS performance. In addition, laser wavelength, mode of ion detection, pH, and solvent contributions to the desorption/ionization process were studied. Other porous substrates such as GaAs and GaN, with similar surface characteristics but differing in thermal and optical properties from porous silicon, allowed the roles of surface area, optical absorption, and thermal conductivities in the desorption/ionization process to be investigated. Among the porous semiconductors studied, only porous silicon has the combination of large surface area, optical absorption, and thermal conductivity required for efficient analyte ion generation under the conditions studied. In addition to these substrate-related factors, surface wetting, determined by the interaction of deposition solvent with the surface, and charge state of the peptide were found to be important in determining ion generation efficiency.

  4. LOX Tank Helium Removal for Propellant Scavenging (United States)

    Chato, David J.


    System studies have shown a significant advantage to reusing the hydrogen and oxygen left in these tanks after landing on the Moon in fuel cells to generate power and water for surface systems. However in the current lander concepts, the helium used to pressurize the oxygen tank can substantially degrade fuel cell power and water output by covering the reacting surface with inert gas. This presentation documents an experimental investigation of methods to remove the helium pressurant while minimizing the amount of the oxygen lost. This investigation demonstrated that significant quantities of Helium (greater than 90% mole fraction) remain in the tank after draining. Although a single vent cycle reduced the helium quantity, large amounts of helium remained. Cyclic venting appeared to be more effective. Three vent cycles were sufficient to reduce the helium to small (less than 0.2%) quantities. Two vent cycles may be sufficient since once the tank has been brought up to pressure after the second vent cycle the helium concentration has been reduced to the less than 0.2% level. The re-pressurization process seemed to contribute to diluting helium. This is as expected since in order to raise the pressure liquid oxygen must be evaporated. Estimated liquid oxygen loss is on the order of 82 pounds (assuming the third vent cycle is not required).

  5. Helium-cooled high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D.B.


    Experience with several helium cooled reactors has been favorable, and two commercial plants are now operating. Both of these units are of the High Temperature Graphite Gas Cooled concept, one in the United States and the other in the Federal Republic of Germany. The initial helium charge for a reactor of the 1000 MW(e) size is modest, approx.15,000 kg.

  6. Organ protection by the noble gas helium

    NARCIS (Netherlands)

    Smit, K.F.


    The aims of this thesis were to investigate whether helium induces preconditioning in humans, and to elucidate the mechanisms behind this possible protection. First, we collected data regarding organ protective effects of noble gases in general, and of helium in particular (chapters 1-3). In chapter

  7. Nanofabrication with a helium ion microscope

    NARCIS (Netherlands)

    Maas, D.; Van Veldhoven, E.; Chen, P.; Sidorkin, V.; Salemink, H.; Van der Drift, E.; Alkemade, P.


    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a

  8. Helium Speech: An Application of Standing Waves (United States)

    Wentworth, Christopher D.


    Taking a breath of helium gas and then speaking or singing to the class is a favorite demonstration for an introductory physics course, as it usually elicits appreciative laughter, which serves to energize the class session. Students will usually report that the helium speech "raises the frequency" of the voice. A more accurate description of the…

  9. Radioactive ions and atoms in superfluid helium

    NARCIS (Netherlands)

    Dendooven, P.G.; Purushothaman, S.; Gloos, K.; Aysto, J.; Takahashi, N.; Huang, W.; Harissopulos, S; Demetriou, P; Julin, R


    We are investigating the use of superfluid helium as a medium to handle and manipulate radioactive ions and atoms. Preliminary results on the extraction of positive ions from superfluid helium at temperatures close to 1 K are described. Increasing the electric field up to 1.2 kV/cm did not improve

  10. Global helium particle balance in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Motojima, G., E-mail: [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Masuzaki, S.; Tokitani, M.; Kasahara, H.; Yoshimura, Y.; Kobayashi, M.; Sakamoto, R.; Morisaki, T.; Miyazawa, J.; Akiyama, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Ohno, N. [Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan); Mutoh, T.; Yamada, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)


    Global helium particle balance in long-pulse discharges is analyzed for the first time in the Large Helical Device (LHD) with the plasma-facing components of the first wall and the divertor tiles composed of stainless steel and carbon, respectively. During the 2-min discharge sustained by ion cyclotron resonance heating (ICRH) and electron cyclotron heating (ECH), helium is observed to be highly retained in the wall (regarded as both the first wall and the divertor tiles). Almost all (about 96%) puffed helium particles (1.3 × 10{sup 22} He) are absorbed in the wall near the end of the discharge. Even though a dynamic retention is eliminated, 56% is still absorbed. The analysis is also applied to longer pulse discharges over 40 min by ICRH and ECH, indicating that the helium wall retention is dynamically changed in time. At the initial phase of the discharge, a mechanism for adsorbing helium other than dynamical retention is invoked.

  11. Waves propagation in turbulent superfluid helium in presence of combined rotation and counterflow


    Peruzza, Rosa Anna; Sciacca, Michele


    A complete study of the propagation of waves (namely longitudinal density and temperature waves, longitudinal and transversal velocity waves and heat waves) in turbulent superfluid helium is made in three situations: a rotating frame, a thermal counterflow, and the simultaneous combination of thermal counterflow and rotation. Our analysis aims to obtain as much as possible information on the tangle of quantized vortices from the wave speed and attenuation factor of these different waves, depe...

  12. Exotic helium molecules; Molecules exotiques d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Portier, M


    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  13. Heat-integrated liquid-desorption exchanger (HILDE) for CO2 desorption

    NARCIS (Netherlands)

    Ham, L.V. van der; Khakharia, P.M.; Goetheer, E.L.V.


    A novel type of separating heat exchanger, called a heat-integrated liquid-desorption exchanger (HILDE), applied to a typical CO2 desorption process, has been investigated both numerically and experimentally. Process simulations, hydrodynamic and mass transfer experiments, and a preliminary cost

  14. Large volume injection in gas chromatography using the through oven transfer adsorption desorption interface operating under vacuum. (United States)

    Aragón, Álvaro; Toledano, Rosa M; Gea, Sara; Cortés, José M; Vázquez, Ana M; Villén, Jesús


    The present work describes a modification of the Through Oven Transfer Adsorption Desorption (TOTAD) interface, consisting of coupling a vacuum system to reduce the consumption of the helium needed to totally remove the eluent for large volume injection (LVI) in gas chromatography (GC). Two different retention materials in the liner of the TOTAD interface were evaluated: Tenax TA, which was seen to be unsuitable for working under vacuum conditions, and polydimethylsiloxane (PDMS), which provided satisfactory repeatability as well as a good sensitivity. No variability was observed in the retention times in either case. Solutions containing organophosphorous pesticides in two different solvents, a polar (methanol/water) and a non-polar (hexane) solvent, were used to evaluate the modification. The vacuum system coupled to the TOTAD interface allowed up to 90% helium to be saved without affecting the performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Helium Detonations on Neutron Stars (United States)

    Zingale, M.; Timmes, F. X.; Fryxell, B.; Lamb, D. Q.; Olson, K.; Calder, A. C.; Dursi, L. J.; Ricker, P.; Rosner, R.; Truran, J. W.; MacNeice, P.; Tufo, H.


    We present the results of a numerical study of helium detonations on the surfaces of neutron stars. We analyze the evolution of a detonation as it breaks through the envelope of the neutron star and propagates across its surface. A series of surface waves propagate across the pool of hot ash with a speed of 1.3 x 109 \\ cm \\ s-1, matching the speed expected from shallow water wave theory. The entire envelope bounces in the gravitational potential well of the neutron star with a period of 50 μ s. The photosphere reaches a height of 15 km above the surface of the neutron star. The sensitivity of the results to the spatial resolution and assumed initial conditions are analyzed, and the relevance of this model to Type I X-ray bursts is discussed. This work is supported by the Department of Energy under Grant No. B341495 to the Center for Astrophysical Thermonuclear Flashes at the University of Chicago.

  16. Electric response in superfluid helium (United States)

    Chagovets, Tymofiy V.


    We report an experimental investigation of the electric response of superfluid helium that arises in the presence of a second sound standing wave. It was found that the signal of the electric response is observed in a narrow range of second sound excitation power. The linear dependence of the signal amplitude has been derived at low excitation power, however, above some critical power, the amplitude of the signal is considerably decreased. It was established that the rapid change of the electric response is not associated with a turbulent regime generated by the second sound wave. A model of the appearance of the electric response as a result of the oscillation of electron bubbles in the normal fluid velocity field in the second sound wave is presented. Possible explanation for the decrease of the electric response are presented.

  17. In Beam Tests of Implanted Helium Targets

    CERN Document Server

    McDonald, J E; Ahmed, M W; Blackston, M A; Delbar, T; Gai, M; Kading, T J; Parpottas, Y; Perdue, B A; Prior, R M; Rubin, D A; Spraker, M C; Yeomans, J D; Weissman, L; Weller, H R; Delbar, Th.; Conn, LNS/U; Duke, TUNL/


    Targets consisting of 3,4He implanted into thin aluminum foils (approximately 100, 200 or 600 ug/cm^2) were prepared using intense (a few uA) helium beams at low energy (approximately 20, 40 or 100 keV). Uniformity of the implantation was achieved by a beam raster across a 12 mm diameter tantalum collimator at the rates of 0.1 Hz in the vertical direction and 1 Hz in the horizontal direction. Helium implantation into the very thin (approximately 80-100 ug/cm^2) aluminum foils failed to produce useful targets (with only approximately 10% of the helium retained) due to an under estimation of the range by the code SRIM. The range of low energy helium in aluminum predicted by Northcliffe and Shilling and the NIST online tabulation are observed on the other hand to over estimate the range of low energy helium ions in aluminum. An attempt to increase the amount of helium by implanting a second deeper layer was also carried out, but it did not significantly increase the helium content beyond the blistering limit (ap...

  18. Helium-Cooled Refractory Alloys First Wall and Blanket Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; Nygren, R.E.; Baxi, C.B.; Fogarty, P.; Ghoniem, N.; Khater, H.; McCarthy, K.; Merrill, B.; Nelson, B.; Reis, E.E.; Sharafat, S.; Schleicher, R.; Sze, D.K.; Ulrickson, M.; Willms, S.; Youssef, M.; Zinkel, S.


    Under the APEX program the He-cooled system design task is to evaluate and recommend high power density refractory alloy first wall and blanket designs and to recommend and initiate tests to address critical issues. We completed the preliminary design of a helium-cooled, W-5Re alloy, lithium breeder design and the results are reported in this paper. Many areas of the design were assessed, including material selection, helium impurity control, and mechanical, nuclear and thermal hydraulics design, and waste disposal, tritium and safety design. System study results show that at a closed cycle gas turbine (CCGT) gross thermal efficiency of 57.5%, a superconducting coil tokamak reactor, with an aspect ratio of 4, and an output power of 2 GWe, can be projected to have a cost of electricity at 54.6 mill/kWh. Critical issues were identified and we plan to continue the design on some of the critical issues during the next phase of the APEX design study.

  19. CFD Analysis on the Passive Heat Removal by Helium and Air in the Canister of Spent Fuel Dry Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Do Young; Jeong, Ui Ju; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)


    In the current commercial design, the canister of the dry storage system is mainly backfilled with helium gas. Helium gas shows very conductive behavior due to high thermal conductivity and small density change with temperature. However, other gases such as air, argon, or nitrogen are expected to show effective convective behavior. Thus these are also considered as candidates for the backfill gas to provide effective coolability. In this study, to compare the dominant cooling mechanism and effectiveness of cooling between helium gas and air, a computational fluid dynamics (CFD) analysis for the canister of spent fuel dry storage system with backfill gas of helium and air is carried out. In this study, CFD simulations for the helium and air backfilled gas for dry storage system canister were carried out using ANSYS FLUENT code. For the comparison work, two backfilled fluids were modeled with same initial and boundary conditions. The observed major difference can be summarized as follows. - The simulation results showed the difference in dominant heat removal mechanism. Conduction for helium, and convection for air considering Reynolds number distribution. - The temperature gradient inside the fuel assembly showed that in case of air, more effective heat mixing occurred compared to helium.

  20. Helium implanted AlHf as studied by Ta TDPAC

    Indian Academy of Sciences (India)


    TDPAC; electric field gradient; Hf solute clusters; helium-vacancy complex; defect recovery. 1. Introduction. In recent years a considerable effort has been directed to the behaviour of helium in metals as helium is produced by (n, α) reaction in nuclear materials. Helium atoms are insoluble in metals and are strongly attracted ...

  1. 21 CFR 868.1640 - Helium gas analyzer. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Helium gas analyzer. 868.1640 Section 868.1640...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1640 Helium gas analyzer. (a) Identification. A helium gas analyzer is a device intended to measure the concentration of helium in a gas...

  2. Desorption of 137Cs+ from mosses

    Directory of Open Access Journals (Sweden)



    Full Text Available Mosses are biomonitors that accumulate large amounts of various pollutants, including radionuclides. In this work we investigated the possibility of 137Cs extraction from mosses, as well as the significance of species specificity on the efficiency of 137Cs desorption. Salt and acid solutions were used as extraction media. It was shown that a 5 % solution of both ammonium oxalate and phosphoric acid was able to desorb 81.8 % of 137Cs+ from Homalothecium sericeum, which was 39.9 % more than desorption from water. At the same time, most of the desorbed 137Cs+ was incorporated in crystals that precipitated from the solution. An interspecies difference in respect to 137Cs+ desorption was noticed.

  3. Ionic Adsorption and Desorption of CNT Nanoropes

    Directory of Open Access Journals (Sweden)

    Jun-Jun Shang


    Full Text Available A nanorope is comprised of several carbon nanotubes (CNTs with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment.

  4. 5th International Workshop on Desorption Induced by Electronic Transitions

    CERN Document Server

    Jennison, Dwight R; Stechel, Ellen B; DIET V; Desorption induced by electronic transitions


    This volume in the Springer Series on Surface Sciences presents a recent account of advances in the ever-broadening field of electron-and photon-stimulated sur­ face processes. As in previous volumes, these advances are presented as the proceedings of the International Workshop on Desorption Induced by Electronic Transitions; the fifth workshop (DIET V) was held in Taos, New Mexico, April 1-4, 1992. It will be abundantly clear to the reader that "DIET" is not restricted to desorption, but has for several years included photochemistry, non-thermal surface modification, exciton self-trapping, and many other phenomena that are induced by electron or photon bombardment. However, most stimulated surface processes do share a common physics: initial electronic excitation, localization of the excitation, and conversion of electronic energy into nuclear kinetic energy. It is the rich variation of this theme which makes the field so interesting and fruitful. We have divided the book into eleven parts in orde...

  5. Cooling Strings of Superconducting Devices below 2 K the Helium II Bayonet Heat Exchanger

    CERN Document Server

    Lebrun, P; Tavian, L; Van Weelderen, R


    High-energy particle accelerators and colliders contain long strings of superconducting devices - acceleration RF cavities and magnets - operating at high field, which may require cooling in helium II below 2 K. In order to maintain adequate operating conditions, the applied or generated heat loads must be extracted and transported with minimum temperature difference. Conventional cooling schemes based on conductive or convective heat transport in pressurized helium II very soon reach their intrinsic limits of thermal impedance over extended lengths. We present the concept of helium II bayonet heat exchanger, which has been developed at CERN for the magnet cooling scheme of the Large Hadron Collider (LHC), and describe its specific advantages as a slim, quasi-isothermal heat sink. Experimental results obtained on several test set-ups, and a prototype magnet string have permitted to validate its performance and sizing rules, for transporting linear heat loads in the W.m-1 range over distances of several tens o...

  6. Study of damage and helium diffusion in fluoro-apatites; Etude de l'endommagement et de la diffusion de l'helium dans des fluoroapatites

    Energy Technology Data Exchange (ETDEWEB)

    Miro, S


    This work lies within the scope of the study of the radionuclides containment matrices. The choice of the fluoro-apatites as potential matrices of containment was suggested by the notable properties of these latter (thermal and chemical stability even under radioactive radiation). By irradiations with heavy ions and a helium implantation we simulated the effects related to the alpha radioactivity and to the spontaneous nuclear fission of the radionuclides. Thanks to the study of Durango fluoro-apatite single crystals and fluoro-apatite sintered ceramics, we evidenced that the damage fraction as well as the unit cell deformations increase with the electronic energy loss and with the substitution. These effects are followed at high fluences by a phenomenon of re-crystallization. The study of the helium diffusion points out that the thermal diffusion process improves with the substitution and strongly increases with heavy ions irradiation. (author)

  7. Heat transfer in electrical insulation of LHC cables cooled with superfluid helium

    CERN Document Server

    Meuris, C; Leroy, D; Szeless, Balázs


    The electrical insulation of the Large Hadron Collider (LHC) cables constitutes a thermal barrier between the conductor and the superfluid helium bath. This can prevent removal of the heat dissipated in the cable by the current rise in the dipoles or by the beam losses. The main experimental results, obtained with stacks of insulated conductors representing a piece of the actual coil, are given. The mock-ups vary only by the material composition and the structure of the electrical insulation. Analysis of the temperature distribution measured in the conductors as a function of the dissipated heat power makes it possible to determine the dominant heat transfer mode in each type of tested insulation and to classify these according to their permeability to superfluid helium. Thermal numerical modelling of the experimental mock-ups clarifies the heat transfer path in the complex structure of the insulation and enables calculation of values of the thermal quantities characteristic of each insulation. The results of...

  8. Development of a transferline connecting a helium liquefier coldbox and a liquid helium Dewar (United States)

    Menon, Rajendran S.; Rane, Tejas; Chakravarty, Anindya; Joemon, V.


    A helium liquefier with demonstrated capacity of 32 1/hr has been developed by BARC. Mumbai. A transferline for two way flow of helium between the helium liquefier coldbox and receiver Dewar has been developed in-house at BARC. Further, a functionally similar, but structurally improved transferline has been developed through a local fabricator. This paper describes and discusses issues related to the development of these cryogenic transferlines. The developed transferlines have been tested with a flow of liquid nitrogen and successfully utilised later in the helium liquefier plant.

  9. ASACUSA Anti-protonic Helium_Final

    CERN Multimedia

    CERN Audiovisual Production Service; CERN AD; Paola Catapano; Julien Ordan, Arzur Catel; Paola Catapano; ASACUSA COLLABORATION


    Latest precision measurement of the mass of the proton and the anti proton though the production of antiprotonic helium by the ASACUSA experiment at CERN's antimatter factory, with a beam from the Antiproton Decelerator

  10. Realization of mechanical rotation in superfluid helium (United States)

    Gordon, E. B.; Kulish, M. I.; Karabulin, A. V.; Matyushenko, V. I.; Dyatlova, E. V.; Gordienko, A. S.; Stepanov, M. E.


    The possibility of using miniaturized low-power electric motors submerged in superfluid helium for organization of rotation inside a cryostat has been investigated. It has been revealed that many of commercial micromotors can operate in liquid helium consuming low power. Turret with 5 sample holders, assembled on the base of stepper motor, has been successfully tested in experiments on the nanowire production in quantized vortices of superfluid helium. Application of the stepper motor made it possible in a single experiment to study the effect of various experimental parameters on the yield and quality of the nanowires. The promises for continuous fast rotation of the bath filled by superfluid helium by using high-speed brushless micromotor were outlined and tested. Being realized, this approach will open new possibility to study the guest particles interaction with the array of parallel linear vortices in He II.

  11. Helium-Hydrogen Recovery System Project (United States)

    National Aeronautics and Space Administration — Immense quantities of expensive liquefied helium are required at Stennis and Kennedy Space Centers for pre-cooling rocket engine propellant systems prior to filling...

  12. Positron and deuteron depth profiling in helium-3-implanted electrum-like alloy (United States)

    Grynszpan, R. I.; Baclet, N.; Darque, A.; Flament, J. L.; Zielinski, F.; Anwand, W.; Brauer, G.


    In spite of previous extensive studies, the helium behavior in metals still remains an issue in microelectronics as well as in nuclear technology. A gold-silver solid solution (Au 60Ag 40: synthetic gold-rich electrum) was chosen as a relevant model to study helium irradiation of heavy metals. After helium-3 ion implantation at an energy ranging from 4.2 to 5.6 MeV, nuclear reaction analysis (NRA) based on the 3He(d,p) 4He reaction, was performed in order to study the thermal diffusion of helium atoms. At room temperature, NRA data reveal that a single Gaussian can fit the He-distribution, which remains unchanged after annealing at temperatures below 0.45 of the melting point. Slow positron implantation spectroscopy, used to monitor the fluence dependence of induced defects unveils a positron saturation trapping, which occurs for He contents of the order of 50-100 appm, whereas concentrations larger than 500 appm seem to favor an increase in the S-parameter of Doppler broadening. Moreover, at high temperature, NRA results clearly show that helium long range diffusion occurs, though, without following a simple Fick law.

  13. Theoretical investigation on helium incorporation in Ti{sub 3}AlC{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingren; Wang, Chenxu; Yang, Tengfei; Kong, Shuyan; Xue, Jianming; Wang, Yugang, E-mail:


    Ti{sub 3}AlC{sub 2} known as representing material in MAX phases, has been suggested for next generation nuclear reactor applications for their advantages of thermal/mechanical properties in high temperature and radiation damage resistance. In this paper the helium incorporation properties in Ti{sub 3}AlC{sub 2} are investigated via ab initio methods. The energetically preferred interstitial sites of helium atom in Ti{sub 3}AlC{sub 2} are identified with respect to the chemical potential of each component element. The formation energies of interstitial and substitutional helium atoms are compared to decide the most favorable sites for He in Ti{sub 3}AlC{sub 2} lattice. The calculations show that in most situations helium atom favors the interstitial sites in aluminum layer, whereas it is more likely to substitute on Al sites in the (Ti- and C-rich) environment. Furthermore, the energetics of vacancies were calculated because the presence of single vacancies and bivacancies in the early stage of irradiation damage is thought to modify He behavior in materials to a great extent. These preliminary results lay a solid foundation for further understanding of the underlying mechanisms of helium bubble nucleation and formation in Ti{sub 3}AlC{sub 2}.

  14. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney


    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  15. Helium-neon laser irradiation stimulates migration and proliferation in melanocytes and induces repigmentation in segmental-type vitiligo. (United States)

    Yu, Hsin-Su; Wu, Chieh-Shan; Yu, Chia-Li; Kao, Ying-Hsien; Chiou, Min-Hsi


    Low-energy helium-neon lasers (632.8 nm) have been employed in a variety of clinical treatments including vitiligo management. Light-mediated reaction to low-energy laser irradiation is referred to as biostimulation rather than a thermal effect. This study sought to determine the theoretical basis and clinical evidence for the effectiveness of helium-neon lasers in treating vitiligo. Cultured keratinocytes and fibroblasts were irradiated with 0.5-1.5 J per cm2 helium-neon laser radiation. The effects of the helium-neon laser on melanocyte growth and proliferation were investigated. The results of this in vitro study revealed a significant increase in basic fibroblast growth factor release from both keratinocytes and fibroblasts and a significant increase in nerve growth factor release from keratinocytes. Medium from helium-neon laser irradiated keratinocytes stimulated [3H]thymidine uptake and proliferation of cultured melanocytes. Furthermore, melanocyte migration was enhanced either directly by helium-neon laser irradiation or indirectly by the medium derived from helium-neon laser treated keratinocytes. Thirty patients with segmental-type vitiligo on the head and/or neck were enrolled in this study. Helium-neon laser light was administered locally at 3.0 J per cm2 with point stimulation once or twice weekly. The percentage of repigmented area was used for clinical evaluation of effectiveness. After an average of 16 treatment sessions, initial repigmentation was noticed. Marked repigmentation (>50%) was observed in 60% of patients with successive treatments. Basic fibroblast growth factor is a putative melanocyte growth factor, whereas nerve growth factor is a paracrine factor for melanocyte survival in the skin. Both nerve growth factor and basic fibroblast growth factor stimulate melanocyte migration. It is reasonable to propose that helium-neon laser irradiation clearly stimulates melanocyte migration and proliferation and mitogen release for melanocyte growth

  16. Product desorption limitations in selective photocatalytic oxidation

    NARCIS (Netherlands)

    Renckens, T.J.A.; Almeida, A.R.; Almeida, A.R.; Damen, M.R.; Kreutzer, M.T.; Mul, Guido


    The rate of photocatalytic processes can be significantly improved if strongly bound products rapidly desorb to free up active sites. This paper deals with the rate of desorption of cyclohexanone, the product of the liquid-phase photo-oxidation of cyclohexane. Dynamic step-response and

  17. Quantum theory of laser-stimulated desorption (United States)

    Slutsky, M. S.; George, T. F.


    A quantum theory of laser-stimulated desorption (LSDE) is presented and critically analyzed. It is shown how LSDE depends on laser-pulse characteristics and surface-lattice dynamics. Predictions of the theory for a Debye model of the lattice dynamics are compared to recent experimental results.

  18. Helium and Neon in Comets (United States)

    Jewitt, David


    Two comets were observed with EUVE in late 1994. Both comet Mueller and comet Borrelly are short-period comets having well established orbital elements and accurate ephemerides. Spectra of 40 ksec were taken of each. No evidence for emission lines from either Helium or Neon was detected. We calculated limits on the production rates of these atoms (relative to solar) assuming a standard isotropic outflow model, with a gas streaming speed of 1 km/s. The 3-sigma (99.7% confidence) limits (1/100,000 for He, 0.8 for Ne) are based on a conservative estimate of the noise in the EUVE spectra. They are also weakly dependent on the precise pointing and tracking of the EUVE field of view relative to the comet during the integrations. These limits are consistent with ice formation temperatures T greater than or equal to 30 K, as judged from the gas trapping experiments of Bar-Nun. For comparison, the solar abundances of these elements are He/O = 110, Ne/O = 1/16. Neither limit was as constraining as we had initially hoped, mainly because comets Mueller and Borrelly were intrinsically less active than anticipated.

  19. Helium Detonations on Neutron Stars (United States)

    Zingale, M.; Timmes, F. X.; Fryxell, B.; Lamb, D. Q.; Olson, K.; Calder, A. C.; Dursi, L. J.; Ricker, P.; Rosner, R.; MacNeice, P.; Tufo, H. M.


    We present the results of a numerical study of helium detonations on the surfaces of neutron stars. We describe two-dimensional simulations of the evolution of a detonation as it breaks through the accreted envelope of the neutron star and propagates laterally through the accreted material. The detonation front propagates laterally at nearly the Chapman-Jouguet velocity, v=1.3×109 cm s-1. A series of surface waves propagate across the pool of hot ash behind the detonation front with the same speed, matching the speed expected from shallow water wave theory. The entire envelope oscillates in the gravitational potential well of the neutron star with a period of ~50 μs. The photosphere reaches an estimated height of 10 km above the surface of the neutron star. Our study confirms that such a detonation can insure the spread of burning over the entire neutron star surface on a timescale consistent with burst rise times. We analyze the sensitivity of the results to the spatial resolution and the assumed initial conditions. We conclude by presenting a comparison of this model to type I X-ray bursts.

  20. Residence time dependent desorption of Staphylococcus epidermidis from hydrophobic and hydrophilic substrata

    NARCIS (Netherlands)

    Boks, N.P.; Kaper, H.J.; Norde, W.; Busscher, H.J.; Mei, van der H.C.


    Adhesion and desorption are simultaneous events during bacterial adhesion to surfaces. although desorption is far less studied than adhesion. Here, desorption of Staphylococcus epidermidis from substratum surfaces is demonstrated to be residence time dependent. Initial desorption rate coefficients

  1. Standard Guide for Simulation of Helium Effects in Irradiated Metals

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This guide provides advice for conducting experiments to investigate the effects of helium on the properties of metals where the technique for introducing the helium differs in some way from the actual mechanism of introduction of helium in service. Simulation techniques considered for introducing helium shall include charged particle implantation, exposure to α-emitting radioisotopes, and tritium decay techniques. Procedures for the analysis of helium content and helium distribution within the specimen are also recommended. 1.2 Two other methods for introducing helium into irradiated materials are not covered in this guide. They are the enhancement of helium production in nickel-bearing alloys by spectral tailoring in mixed-spectrum fission reactors, and isotopic tailoring in both fast and mixed-spectrum fission reactors. These techniques are described in Refs (1-5). Dual ion beam techniques (6) for simultaneously implanting helium and generating displacement damage are also not included here. This lat...

  2. Scattering, Adsorption, and Langmuir-Hinshelwood Desorption Models for Physisorptive and Chemisorptive Gas-Surface Systems (United States)

    Bentley, Brook I.

    Surface effects limit the performance of hypersonic vehicles, micro-electro-mechanical devices, and directed energy systems. This research develops methods to predict adsorption, scattering, and thermal desorption of molecules on a surface. These methods apply to physisorptive (adsorption and scattering) and chemisorptive (thermal desorption) gas-surface systems. Engineering and design applications will benefit from these methods, hence they are developed under the Direct Simulation Monte Carlo construct. The novel adsorption and scattering contribution, the Modified Kisliuk with Scattering method, predicts angular and energy distributions, and adsorption probabilities. These results agree more closely with experiment than the state-of-the-art Cercignani-Lampis-Lord scattering kernel. Super-elastic scattering is predicted. Gas-adlayer interactions are included for the first time. Accommodation coefficents can be determined by fitting simulations to experimental data. The new thermal desorption model accurately calculates angular, translational, rotational, and vibrational distributions, and the rotational alignment parameter. The model is validated by comparing with experiments. Multiple transition states are considered in a set of non-dimensionalized equations of motion, linked with temporally-accurate event timing. Initial conditions are chosen from a new truncated Maxwell-Boltzmann distribution. Run times are improved by eliminating the Gaussian Weighting of desorbing products. The absorption energy barrier is shown to significantly contribute only to the translational energy of desorbing molecules by contributing energy to each adatom in a similar manner.

  3. Lunar exospheric helium observations of LRO/LAMP coordinated with ARTEMIS (United States)

    Grava, C.; Retherford, K. D.; Hurley, D. M.; Feldman, P. D.; Gladstone, G. R.; Greathouse, T. K.; Cook, J. C.; Stern, S. A.; Pryor, W. R.; Halekas, J. S.; Kaufmann, D. E.


    We present results from Lunar Reconnaissance Orbiter's (LRO) UV spectrograph LAMP (Lyman-Alpha Mapping Project) campaign to study the lunar atmosphere. Several off-nadir maneuvers (lateral rolls) were performed to search for resonantly scattering species, increasing the illuminated line-of-sight (and hence the signal from atoms resonantly scattering the solar photons) compared to previously reported LAMP's "twilight observations" (Cook, J.C., Stern, S.A. [2014]. Icarus 236, 48-55). Helium was the only element distinguishable on a daily basis, and we present latitudinal profiles of its line-of-sight column density in December 2013. We compared the helium line-of-sight column densities with solar wind alpha particle fluxes measured from the ARTEMIS (Acceleration, Reconnection, Turbulence, & Electrodynamics of Moon's Interaction with the Sun) twin spacecraft. Our data show a correlation with the solar wind alpha particle flux, confirming that the solar wind is the main source of the lunar helium. We also support the finding by Benna et al. (Benna, M. et al. [2015]. Geophys. Res. Lett. 42, 3723-3729) and Hurley et al. (Hurley, D.M. et al. [2015]. Icarus, this issue), that a non-zero contribution from endogenic helium, coming from radioactive decay of 232Th and 238U, is present. Moreover, our results suggest that not all of the incident alpha particles are converted to thermalized helium, allowing for a non-negligible fraction to escape as suprathermal helium or simply backscattered from the lunar surface. We compare LAMP-derived helium surface density with the one recorded by the mass spectrometer LACE (Lunar Atmospheric Composition Experiment) deployed on the lunar surface during the Apollo 17 mission, finding good agreement between the two measurements. The LRO/LAMP roll observations presented here are in agreement with the most recent lunar exospheric helium model (Hurley, D.M. et al. [2015]. Icarus, this issue) around mid- to high-latitudes (50-70°) regardless of

  4. Advanced helium purge seals for Liquid Oxygen (LOX) turbopumps (United States)

    Shapiro, Wilbur; Lee, Chester C.


    Program objectives were to determine three advanced configurations of helium buffer seals capable of providing improved performance in a space shuttle main engine (SSME), high-pressure liquid oxygen (LOX) turbopump environment, and to provide NASA with the analytical tools to determine performance of a variety of seal configurations. The three seal designs included solid-ring fluid-film seals often referred to as floating ring seals, back-to-back fluid-film face seals, and a circumferential sectored seal that incorporated inherent clearance adjustment capabilities. Of the three seals designed, the sectored seal is favored because the self-adjusting clearance features accommodate the variations in clearance that will occur because of thermal and centrifugal distortions without compromising performance. Moreover, leakage can be contained well below the maximum target values; minimizing leakage is important on the SSME since helium is provided by an external tank. A reduction in tank size translates to an increase in payload that can be carried on board the shuttle. The computer codes supplied under this program included a code for analyzing a variety of gas-lubricated, floating ring, and sector seals; a code for analyzing gas-lubricated face seals; a code for optimizing and analyzing gas-lubricated spiral-groove face seals; and a code for determining fluid-film face seal response to runner excitations in as many as five degrees of freedom. These codes proved invaluable for optimizing designs and estimating final performance of the seals described.

  5. Suicide by asphyxiation due to helium inhalation. (United States)

    Howard, Matthew O; Hall, Martin T; Edwards, Jeffrey D; Vaughn, Michael G; Perron, Brian E; Winecker, Ruth E


    Suicide by asphyxiation using helium is the most widely-promoted method of "self-deliverance" by right-to-die advocates. However, little is known about persons committing such suicides or the circumstances and manner in which they are completed. Prior reports of suicides by asphyxiation involving helium were reviewed and deaths determined by the North Carolina Office of the Chief Medical Examiner to be helium-associated asphyxial suicides occurring between January 1, 2000 and December 31, 2008 were included in a new case series examined in this article. The 10 asphyxial suicides involving helium identified in North Carolina tended to occur almost exclusively in non-Hispanic, white men who were relatively young (M age = 41.1 T 11.6). In 6 of 10 cases, decedents suffered from significant psychiatric dysfunction; in 3 of these 6 cases, psychiatric disorders were present comorbidly with substance abuse. In none of these cases were decedents suffering from terminal illness. Most persons committing suicide with helium were free of terminal illness but suffered from psychiatric and/or substance use disorders.

  6. Commissioning of a new helium pipeline (United States)


    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants cut the lines to helium-filled balloons. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO.

  7. Desorption of Water from Distinct Step Types on a Curved Silver Crystal

    Directory of Open Access Journals (Sweden)

    Jakrapan Janlamool


    Full Text Available We have investigated the adsorption of H2O onto the A and B type steps on an Ag single crystal by temperature programmed desorption. For this study, we have used a curved crystal exposing a continuous range of surface structures ranging from [5(111 × (100] via (111 to [5(111 × (110]. LEED and STM studies verify that the curvature of our sample results predominantly from monoatomic steps. The sample thus provides a continuous array of step densities for both step types. Desorption probed by spatially-resolved TPD of multilayers of H2O shows no dependence on the exact substrate structure and thus confirms the absence of thermal gradients during temperature ramps. In the submonolayer regime, we observe a small and linear dependence of the desorption temperature on the A and B step density. We argue that such small differences are only observable by means of a single curved crystal, which thus establishes new experimental benchmarks for theoretical calculation of chemically accurate binding energies. We propose an origin of the observed behavior based on a “two state” desorption model.

  8. Desorption of water from distinct step types on a curved silver crystal. (United States)

    Janlamool, Jakrapan; Bashlakov, Dima; Berg, Otto; Praserthdam, Piyasan; Jongsomjit, Bunjerd; Juurlink, Ludo B F


    We have investigated the adsorption of H2O onto the A and B type steps on an Ag single crystal by temperature programmed desorption. For this study, we have used a curved crystal exposing a continuous range of surface structures ranging from [5(111) × (100)] via (111) to [5(111) × (110)]. LEED and STM studies verify that the curvature of our sample results predominantly from monoatomic steps. The sample thus provides a continuous array of step densities for both step types. Desorption probed by spatially-resolved TPD of multilayers of H2O shows no dependence on the exact substrate structure and thus confirms the absence of thermal gradients during temperature ramps. In the submonolayer regime, we observe a small and linear dependence of the desorption temperature on the A and B step density. We argue that such small differences are only observable by means of a single curved crystal, which thus establishes new experimental benchmarks for theoretical calculation of chemically accurate binding energies. We propose an origin of the observed behavior based on a "two state" desorption model.

  9. Screw Compressor Characteristics for Helium Refrigeration Systems (United States)

    Ganni, V.; Knudsen, P.; Creel, J.; Arenius, D.; Casagrande, F.; Howell, M.


    The oil injected screw compressors have practically replaced all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, minimal vibration, reliability and capability of handling helium's high heat of compression. At the present state of compressor system designs for helium systems, typically two-thirds of the lost input power is due to the compression system. Therefore it is important to understand the isothermal and volumetric efficiencies of these machines to help properly design these compression systems to match the refrigeration process. This presentation summarizes separate tests that have been conducted on Sullair compressors at the Superconducting Super-Collider Laboratory (SSCL) in 1993, Howden compressors at Jefferson Lab (JLab) in 2006 and Howden compressors at the Spallation Neutron Source (SNS) in 2006. This work is part of an ongoing study at JLab to understand the theoretical basis for these efficiencies and their loss mechanisms, as well as to implement practical solutions.

  10. Feasibility of lunar Helium-3 mining (United States)

    Kleinschneider, Andreas; Van Overstraeten, Dmitry; Van der Reijnst, Roy; Van Hoorn, Niels; Lamers, Marvin; Hubert, Laurent; Dijk, Bert; Blangé, Joey; Hogeveen, Joel; De Boer, Lennaert; Noomen, Ron

    With fossil fuels running out and global energy demand increasing, the need for alternative energy sources is apparent. Nuclear fusion using Helium-3 may be a solution. Helium-3 is a rare isotope on Earth, but it is abundant on the Moon. Throughout the space community lunar Helium-3 is often cited as a major reason to return to the Moon. Despite the potential of lunar Helium-3 mining, little research has been conducted on a full end-to-end mission. This abstract presents the results of a feasibility study conducted by students from Delft University of Technology. The goal of the study was to assess whether a continuous end-to-end mission to mine Helium-3 on the Moon and return it to Earth is a viable option for the future energy market. The set requirements for the representative end-to-end mission were to provide 10% of the global energy demand in the year 2040. The mission elements have been selected with multiple trade-offs among both conservative and novel concepts. A mission architecture with multiple decoupled elements for each transportation segment (LEO, transfer, lunar surface) was found to be the best option. It was found that the most critical element is the lunar mining operation itself. To supply 10% of the global energy demand in 2040, 200 tons of Helium-3 would be required per year. The resulting regolith mining rate would be 630 tons per second, based on an optimistic concentration of 20 ppb Helium-3 in lunar regolith. Between 1,700 to 2,000 Helium-3 mining vehicles would be required, if using University of Wisconsin’s Mark III miner. The required heating power, if mining both day and night, would add up to 39 GW. The resulting power system mass for the lunar operations would be in the order of 60,000 to 200,000 tons. A fleet of three lunar ascent/descent vehicles and 22 continuous-thrust vehicles for orbit transfer would be required. The costs of the mission elements have been spread out over expected lifetimes. The resulting profits from Helium

  11. Electron correlation for helium-like atoms

    Energy Technology Data Exchange (ETDEWEB)

    Roy, U. [Visvabharati Univ., Santiniketan (India). Dept. of Comput. Sci.; Talukdar, B. [Visvabharati Univ., Santiniketan (India). Dept. of Physics


    A recently proposed analytical approach to the ground-state energy of helium atom is generalised to study the effect of electron-electron correlation on the properties of helium isoelectronic sequence. The expectation values of the Hamiltonian and some important functions of radial distances are expressed in terms of derivatives of Lewis integrals which not only permit the straightforward variational calculation to get numerical results but also help one derive interesting recurrence relations for radial expectation values. The results presented for atoms from H{sup -} to Si{sup 12+} indicate that the present analytical model will have quantitative applicability for the study of electronic correlation in high-Z helium-like atoms within the framework of non-relativistic quantum mechanics. (orig.) 22 refs.

  12. Superfluid helium-4 in one dimensional channel (United States)

    Kim, Duk Y.; Banavar, Samhita; Chan, Moses H. W.; Hayes, John; Sazio, Pier


    Superfluidity, as superconductivity, cannot exist in a strict one-dimensional system. However, the experiments employing porous media showed that superfluid helium can flow through the pores of nanometer size. Here we report a study of the flow of liquid helium through a single hollow glass fiber of 4 cm in length with an open id of 150 nm between 1.6 and 2.3 K. We found the superfluid transition temperature was suppressed in the hollow cylinder and that there is no flow above the transition. Critical velocity at temperature below the transition temperature was determined. Our results bear some similarity to that found by Savard et. al. studying the flow of helium through a nanohole in a silicon nitrite membrane. Experimental study at Penn State is supported by NSF Grants No. DMR 1103159.

  13. Experimental helium liquefier with a GM cryocooler (United States)

    Choudhury, Anup; Sahu, Santosh


    A helium liquefier has been developed with a Gifford-McMahon cryocooler using the cold enthalpy available at the first stage, the inter-stage, and the second stage of the cryocooler. Most of the enthalpy of the helium gas at 300 K is absorbed in the first stage by a coaxial heat exchanger and inter-stage region of the cryocooler. Pre-cooled helium gas is liquefied at the second stage heat exchanger where the final cooldown and condensation happens. The measured production capacity of the liquefier is 17.4 l/day at atmospheric pressure. The whole setup has been designed to work in a coaxial configuration where the two heat exchangers, the cryostat, and the dewar are symmetrically placed around the central axis.

  14. Plasma Desorption Mass Spectrometry analysis of HCOOH ice

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, D.P.P.; Rocco, M.L.M. [Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Cidade Universitaria, Ilha do Fundao, 21949-900 Rio de Janeiro, RJ (Brazil); Boechat-Roberty, H.M. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira Pedro Antonio, 43, Centro, Rio de Janeiro, RJ (Brazil); Iza, P.; Martinez, R. [Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, 22543-900 Rio de Janeiro (Brazil); Homem, M.G.P. [Laboratorio Nacional de Luz Sincrotron (LNLS), Box 6192, 13084-971 Campinas, SP (Brazil); Silveira, E.F. da [Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, 22543-900 Rio de Janeiro (Brazil)], E-mail:


    Planetary magnetospheres, in which outer planet satellites orbit, are bombarded by energetic particles inducing chemical and physical changes in their icy surfaces. The existing condensed gases react to form new products, which then undergo thermal evolution from the natural day/night cycles of these satellites. Plasma irradiation of ice causes phase changes, e.g., water ice from crystalline to amorphous over short timescales. When ice is recrystallized by heating, the surface layers retain some disorder, which promote reactions among adsorbed molecules such as H{sub 2}O, CO{sub 2}, CH{sub 2}CO, HCOOH and theirs radiolysis products. In this work, chemical reactions involving formic acid condensed at 56 K are analyzed by using Plasma Desorption Mass Spectrometry-time-of-flight ({sup 252}Cf-PDMS-TOF). Mass spectra of positive and negative desorbed ions were obtained, giving information on the structure and abundance of the molecules on the ice; the expected cations and anions generated by the HCOOH dissociation have been observed. Furthermore, several series of cluster ions were also detected, all exhibiting the structure X{sub n}Y{sub m}R{sup {+-}}, where X and Y are the neutral ice molecules, such as HCOOH or H{sub 2}O, and R{sup {+-}} is either an atomic or a molecular ion, such as H{sup +}, H{sub 3}O{sup +} or COOH{sup -}. In general, the desorption yields of the observed positive and negative ions are characterized by a decreasing exponential function as the emitted ion mass increases; however, the (HCOOH){sub n}OH{sup -} series presents its maximum at n = 8.

  15. Temperature Rises In Pumps For Superfluid Helium (United States)

    Kittel, Peter


    Report discusses increases in temperature of superfluid helium in centrifugal and fountain-effect pumps. Intended for use in transfers of superfluid helium in outer space. Increases in temperature significantly affect losses during transfers and are important in selection of temperatures of supply tanks. Purpose of study, increase in temperature in fountain-effect pump calculated on basis of thermodynamic considerations, starting from assumption of ideal pump. Results of recent tests of ceramic material intended for use in such pumps support this assumption. Overall, centrifugal pumps more effective because it produces smaller rise in temperature.

  16. Generation and Retention of Helium and Hydrogen in Austenitic Steels Irradiated in a Variety of LWR and Test Reactor Spectral Environments

    Energy Technology Data Exchange (ETDEWEB)

    Garner, Francis A.; Oliver, Brian M.; Greenwood, Lawrence R.; Edwards, Danny J.; Bruemmer, Stephen M.; Grossbeck, Martin L.


    In fission and fusion reactor environments stainless steels generate significant amounts of helium and hydrogen by transmutation. The primary sources of helium are boron and nickel, interacting with both fast and especially thermal neutrons. Hydrogen arises primarily from fast neutron reactions, but is also introduced into steels at often much higher levels by other environmental processes. Although essentially all of the helium is retained in the steel, it is commonly assumed that most of the hydrogen is not retained. It now appears that under some circumstances, significant levels of hydrogen can be retained, especially when helium-nucleated cavities become a significant part of the microstructure. A variety of stainless steel specimens have been examined from various test reactors, PWRs and BWRs. These specimens were exposed to a wide range of neutron spectra with different thermal/fast neutron ratios. Pure nickel and pure iron have also been examined. It is shown that all major features of the retention of helium and hydrogen can be explained in terms of the composition, thermal/fast neutron ratio and the presence or absence of helium-nucleated cavities. In some cases, the hydrogen retention is very large and can exceed that generated by transmutation, with the additional hydrogen arising from either environmental sources and/or previously unidentified radioisotope sources that may come into operation at high neutron exposures.


    CERN Document Server

    Pietrowicz, S; Canfer, S; Jones, S; Baudouy, B


    In the framework of the European project EuCARD (FP7) aiming at constructing a high magnetic field accelerator magnet of 13 T with Nb3Sn superconducting cables, new electrical insulation are thermally tested. This technology will use “conventional” electrical insulation in combination with pressurized superfluid helium (He II) or saturated helium at atmospheric pressure as coolant. Two composite insulation systems composed of cyanate ester epoxy mix or a tri-functional epoxy (TGPAP-DETDA) with fiberglass tape frame, have been chosen as potential candidates. The knowledge of their thermal properties is necessary for the thermal design and therefore samples have been tested in pressurized He II where heat is applied perpendicularly to the fibers between 1.6 K and 2.0 K. Overall thermal resistance is determined as a function of temperature and the results are compared with other electrical insulation systems used for accelerator magnets.

  18. Current-Driven Hydrogen Desorption from Graphene: Experiment and Theory

    Energy Technology Data Exchange (ETDEWEB)

    Gao, L.; Pal, Partha P.; Seideman, Tamar; Guisinger, Nathan P.; Guest, Jeffrey R.


    Electron-stimulated desorption of hydrogen from the graphene/SiC(0001) surface at room temperature was investigated with ultrahigh vacuum scanning tunneling microscopy and ab initio calculations in order to elucidate the desorption mechanisms and pathways. Two different desorption processes were observed. In the high electron energy regime (4-8 eV), the desorption yield is independent of both voltage and current, which is attributed to the direct electronic excitation of the C-H bond. In the low electron energy regime (2-4 eV), however, the desorption yield exhibits a threshold dependence on voltage, which is explained by the vibrational excitation of the C-H bond via transient ionization induced by inelastic tunneling electrons. The observed current-independence of the desorption yield suggests that the vibrational excitation is a singleelectron process. We also observed that the curvature of graphene dramatically affects hydrogen desorption. Desorption from concave regions was measured to be much more probable than desorption from convex regions in the low electron energy regime (~ 2 eV), as would be expected from the identified desorption mechanism

  19. Investigation of the helium proportion influence on the Prandtl number value of gas mixtures

    Directory of Open Access Journals (Sweden)

    S. A. Burtsev


    Full Text Available The paper investigates an influence of helium fraction (light gases on the Prandtl number value for binary and more complex gas mixtures.It is shown that a low value of the Prandtl number (Pr-number results in decreasing a temperature recovery factor value and, respectively, in reducing a recovery temperature value on the wall (thermoinsulated wall temperature with the compressive gas flow bypassing it. This, in turn, allows us to increase efficiency of gasdynamic energy separation in Leontyev's tube.The paper conducts a numerical research of the influence of binary and more complex gas mixture composition on the Prandtl number value. It is shown that a mixture of two gases with small and large molecular weight allows us to produce a mixture with a lower value of the Prandtl number in comparison with the initial gases. Thus, the value of Prandtl number decreases by 1.5-3.2 times in comparison with values for pure components (the more a difference of molar mass of components, the stronger is a decrease.The technique to determine the Prandtl number value for mixtures of gases in the wide range of temperatures and pressure is developed. Its verification based on experimental data and results of numerical calculations of other authors is executed. It is shown that it allows correct calculation of binary and more complex mixtures of gasesFor the mixtures of inert gases it has been obtained that the minimum value of the Prandtl number is as follows: for helium - xenon mixtures (He-Xe makes 0.2-0.22, for helium - krypton mixtures (He-Kr – 0.3, for helium - argon mixes (He-Ar – 0.41.For helium mixture with carbon dioxide the minimum value of the Prandtl number makes about 0.4, for helium mixture with N2 nitrogen the minimum value of the Prandtl number is equal to 0.48, for helium-methane (CH4 - 0.5 and helium – oxygen (O2 – 0.46.This decrease is caused by the fact that the thermal capacity of mixture changes under the linear law in regard to the

  20. Direct evidence of mismatching effect on H emission in laser-induced atmospheric helium gas plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zener Sukra Lie; Koo Hendrik Kurniawan [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); May On Tjia [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Physics of Magnetism and Photonics Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha, Bandung 40132 (Indonesia); Rinda, Hedwig [Department of Computer Engineering, Bina Nusantara University, 9 K.H. Syahdan, Jakarta 14810 (Indonesia); Suliyanti, Maria Margaretha [Research Center for Physics, Indonesia Institute of Sciences, Kawasan PUSPIPTEK, Serpong, Tangerang Selatan 15314, Banten (Indonesia); Syahrun Nur Abdulmadjid; Nasrullah Idris [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Alion Mangasi Marpaung [Department of Physics, Faculty of Mathematics and Natural Sciences, Jakarta State University, Rawamangun, Jakarta 12440 (Indonesia); Marincan Pardede [Department of Electrical Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Jobiliong, Eric [Department of Industrial Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Muliadi Ramli [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Heri Suyanto [Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Bali (Indonesia); Fukumoto, Kenichi; Kagawa, Kiichiro [Research Institute of Nuclear Engineering, University of Fukui, Fukui 910-8507 (Japan)


    A time-resolved orthogonal double pulse laser-induced breakdown spectroscopy (LIBS) with helium surrounding gas is developed for the explicit demonstration of time mismatch between the passage of fast moving impurity hydrogen atoms and the formation of thermal shock wave plasma generated by the relatively slow moving major host atoms of much greater masses ablated from the same sample. Although this so-called 'mismatching effect' has been consistently shown to be responsible for the gas pressure induced intensity diminution of hydrogen emission in a number of LIBS measurements using different ambient gases, its explicit demonstration has yet to be reported. The previously reported helium assisted excitation process has made possible the use of surrounding helium gas in our experimental set-up for showing that the ablated hydrogen atoms indeed move faster than the simultaneously ablated much heavier major host atoms as signaled by the earlier H emission in the helium plasma generated by a separate laser prior to the laser ablation. This conclusion is further substantiated by the observed dominant distribution of H atoms in the forward cone-shaped target plasma.

  1. Helium diffusion in R7T7 nuclear glass investigated by NRA technique

    Energy Technology Data Exchange (ETDEWEB)

    Chamssedine, F.; Sauvage, T. [CNRS-CEMHTI, Site Cyclotron, 3A rue de la Ferollerie, 45071 Orleans Cedex2 (France); Peuget, S. [CEA Valrho-Marcoule, DEN/DTCD/SECM/LMPA, BP 17171, 30207 Bagnols-sur-Ceze cedex (France); Martin, G. [CEA Cadarache, DEC/DEN/SESC/LLCC, 13108 St Paul Lez Durance cedex (France)


    The mechanisms related to helium migration into R7T7 nuclear waste glass is studied from the evolution of the concentration profiles as a function of the annealing conditions. The presence of helium is simulated by implantation of 600 keV {sup 3}He ions into nuclear glass disks at 150 K. The fluence analyzed in this paper is 2.10{sup 16}{sup -2} (36.10{sup 19} at./g). Helium depth profile after the various annealing stages is determined by the {sup 3}He(d,{alpha}){sup 1}H Nuclear Reaction Analysis method. The results show the mobility of helium at temperature as low as 253 K. Simple modeling based on a diffusion process using a Fick's law is used to determinate, from the depth profile change, thermal diffusion coefficient D at temperatures in the range 253 K to 323 K. The activation energy was then estimated by Arrhenius plot at 0.54 {+-} 0.01 eV. (authors)

  2. Graphene on Ni(111): Electronic Corrugation and Dynamics from Helium Atom Scattering. (United States)

    Tamtögl, Anton; Bahn, Emanuel; Zhu, Jianding; Fouquet, Peter; Ellis, John; Allison, William


    Using helium atom scattering, we have studied the structure and dynamics of a graphene layer prepared in situ on a Ni(111) surface. Graphene/Ni(111) exhibits a helium reflectivity of ∼20% for a thermal helium atom beam and a particularly small surface electron density corrugation ((0.06 ± 0.02) Å peak to peak height). The Debye-Waller attenuation of the elastic diffraction peaks of graphene/Ni(111) and Ni(111) was measured at surface temperatures between 150 and 740 K. A surface Debye temperature of θD = (784 ± 14) K is determined for the graphene/Ni(111) system and θD = (388 ± 7) K for Ni(111), suggesting that the interlayer interaction between graphene and the Ni substrate is intermediary between those for strongly interacting systems like graphene/Ru(0001) and weakly interacting systems like graphene/Pt(111). In addition we present measurements of low frequency surface phonon modes on graphene/Ni(111) where the phonon modes of the Ni(111) substrate can be clearly observed. The similarity of these findings with the graphene/Ru(0001) system indicates that the bonding of graphene to a metal substrate alters the dynamic properties of the graphene surface strongly and is responsible for the high helium reflectivity of these systems.

  3. Photoassociation of cold metastable helium atoms

    NARCIS (Netherlands)

    Woestenenk, G.R.


    During the last decades the study of cold atoms has grown in a great measure. Research in this field has been made possible due to the development of laser cooling and trapping techniques. We use laser cooling to cool helium atoms down to a temperature of 1 mK and we are able to

  4. Parametric study of radiofrequency helium discharge under ...

    Indian Academy of Sciences (India)

    The excitation temperatures in the α and γ modes were 3266 and 4500 K respectively, evaluated by Boltzmann's plot method. The estimated gas temperature increased from 335 K in the α mode to 485 K in the γ mode, suggesting that the radio frequency atmospheric pressure helium discharge can be used for surface ...

  5. Critical Landau Velocity in Helium Nanodroplets

    NARCIS (Netherlands)

    Brauer, N.B.; Smolarek, S.; Loginov, E.; Mateo, D.; Hernando, A.; Pi, M.; Barranco, M.; Buma, W.J.; Drabbels, M.


    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective

  6. Helium and Sulfur Hexafluoride in Musical Instruments (United States)

    Forinash, Kyle; Dixon, Cory L.


    The effects of inhaled helium on the human voice were investigated in a recent article in "The Physics Teacher." As mentioned in that article, demonstrations of the effect are a popular classroom activity. If the number of YouTube videos is any indication, the effects of sulfur hexafluoride on the human voice are equally popular.…

  7. Interatomic Coulombic decay in helium nanodroplets

    DEFF Research Database (Denmark)

    Shcherbinin, Mykola; Laforge, Aaron; Sharma, Vandana


    Interatomic Coulombic decay (ICD) is induced in helium nanodroplets by photoexciting the n=2 excited state of He+ using XUV synchrotron radiation. By recording multiple-coincidence electron and ion images we find that ICD occurs in various locations at the droplet surface, inside the surface region...

  8. Messer to provide helium for LHC

    CERN Multimedia


    Over the course of the next few years, industrial gas specialist The Messer Group, through its Swiss subsidiary Messer Schweiz AG, is to provide a 160,000kg supply of helium to the European Organisation for Nuclear Research (CERN) for the operation of the world's largest particle accelerator.

  9. Messer to provide helium for LHC project

    CERN Multimedia


    Over the course of the next few years, industrial gas specialist The Messer Group, through its Swiss subsidiary Messer Schweiz AG, is to provide a 160,000kg supply of helium to the European Organisation for Nuclear Research (CERN) for the operation of the world's largest particle accelerator.

  10. Near field characteristics of buoyant helium plumes

    Indian Academy of Sciences (India)

    affects the combustion. Puffing is also observed in low density gas plumes when the ratio of inlet ... generated using helium and helium–air mixtures, hot gases were used to understand the flow dynamics associated .... The glass lens acts as a filter to block any UV light and prevents fluorescence signal contamination. Since.

  11. Near field characteristics of buoyant helium plumes

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Sadhana; Volume 40; Issue 3. Near field characteristics of buoyant helium plumes. Kuchimanchi K Bharadwaj Debopam Das Pavan K Sharma. Section I – Fluid Mechanics and Fluid Power (FMFP) Volume 40 Issue 3 May 2015 pp 757- ...

  12. Thirty years of screw compressors for helium; Dreissig Jahre Schraubenkompressoren fuer Helium

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, H. [Kaeser Kompressoren GmbH, Coburg (Germany). Technisches Buero/Auftragskonstruktion


    KAESER helium compressors, as well as their other industrial compressors, will be further developed with the intention to improve the availability and reliability of helium liquefaction systems. Further improvement of compressor and control system efficiency will ensure a low and sustainable operating cost. Fast supply of replacement parts with several years of warranty is ensured by a world-wide distribution system and is also worked on continuously. (orig.)

  13. Femtosecond spectroscopy on alkali-doped helium nanodroplets; Femtosekundenspektroskopie an alkalidotierten Helium-Nanotroepfchen

    Energy Technology Data Exchange (ETDEWEB)

    Claas, P.


    In the present thesis first studies on the short-time dynamics in alkali dimers and microclusters, which were bound on the surface of superfluid helium droplets, were presented. The experiments comprehended pump-probe measurements on the fs scale on the vibration dynamics on the dimers and on the fragmentation dynamics on the clusters. Generally by the studies it was shown that such extremely short slopes can also be observed on helium droplets by means of the femtosecond spectroscopy.


    Energy Technology Data Exchange (ETDEWEB)

    Stowe, A; Ragaiy Zidan, R


    This article is a brief introduction to temperature-programmed desorption (TPD), an analytical technique devised to analyze, in this case, materials for their potential as hydrogen storage materials. The principles and requirements of TPD are explained and the different components of a generic TPD apparatus are described. The construction of a modified TPD instrument from commercially available components is reported together with the control and acquisition technique used to create a TPD spectrum. The chemical and instrumental parameters to be considered in a typical TPD experiment and the analytical utility of the technique are demonstrated by the dehydrogenation of titanium-doped NaAlH{sub 4} by means of thermally programmed desorption.

  15. Evaluation of helium cooling for fusion divertors

    Energy Technology Data Exchange (ETDEWEB)

    Baxi, C.B.


    The divertors of future fusion reactors will have a power throughput of several hundred MW. The peak heat flux on the diverter surface is estimated to be 5 to 15 MW/m{sup 2} at an average heat flux of 2 MW/m{sup 2}. The divertors have a requirement of both minimum temperature (100{degrees}C) and maximum temperature. The minimum temperature is dictated by the requirement to reduce the absorption of plasma, and the maximum temperature is determined by the thermo-mechanical properties of the plasma facing materials. Coolants that have been considered for fusion reactors are water, liquid metals and helium. Helium cooling has been shown to be very attractive from safety and other considerations. Helium is chemically and neutronically inert and is suitable for power conversion. The challenges associated with helium cooling are: (1) Manifold sizes; (2) Pumping power; and (3) Leak prevention. In this paper the first two of the above design issues are addressed. A variety of heat transfer enhancement techniques are considered to demonstrate that the manifold sizes and the pumping power can be reduced to acceptable levels. A helium-cooled diverter module was designed and fabricated by GA for steady-state heat flux of 10 MW/m{sup 2}. This module was recently tested at Sandia National Laboratories. At an inlet pressure of 4 MPa, the module was tested at a steady-state heat flux of 10 MW/m{sup 2}. The pumping power required was less than 1% of the power removed. These results verified the design prediction.

  16. The future of helium as a natural resource

    CERN Document Server

    Glowacki, Bartek A; Nuttall, William J


    The book reveals the changing dynamics of the helium industry on both the supply-side and the demand-side. The helium industry has a long-term future and this important gas will have a role to play for many decades to come. Major new users of helium are expected to enter the market, especially in nuclear energy (both fission and fusion). Prices and volumes supplied and expected to rise and this will prompt greater efforts towards the development of new helium sources and helium conservation and recycling.


    Energy Technology Data Exchange (ETDEWEB)



    Hydrogen is the dominating gas specie in room temperature, ultrahigh vacuum systems of particle accelerators and storage rings, such as the Relativistic Heavy Ion Collider (RHIC) at Brookhaven. Rapid pressure increase of a few decades in hydrogen and other residual gases was observed during RHIC's recent high intensity gold and proton runs. The type and magnitude of the pressure increase were analyzed and compared with vacuum conditioning, beam intensity, number of bunches and bunch spacing. Most of these pressure increases were found to be consistent with those induced by beam loss and/or electron stimulated desorption from electron multipacting.

  18. Nonisothermal desorption of droplets of complex compositions

    Directory of Open Access Journals (Sweden)

    Nakoryakov Vladimir E.


    Full Text Available This paper presents the process of nonstationary evaporation of aqueous solutions of LiBr-H2O, CaCl2-H2O, NaCl-H2O droplets on a horizontal heating surface. The following typical stages of heat and mass transfer depending on wall temperature have been considered: evaporation below boiling temperature and nucleate boiling. The significant decrease in desorption intensity with a rise of initial mass concentration of salt has been observed. Formation of a surface crystallization front at evaporation of a droplet has been detected. We have developed the experimental method for direct measurements of the mass of evaporating droplet.

  19. Nickel (II) ion desorption kinetic modeling from unmodified and ...

    African Journals Online (AJOL)

    The desorption of Ni2+ from three oil palm fruit fibre adsorbents (UOPF, 0.5MOPF and 1.0MOPF) using five desorbing solutions showed a desorption efficiency following the trend, 0.1M HCl > 0.1MH2SO4 > 0.1MHNO3 > 0.1MNaOH >hot deionized H2O. The Elovich desorption constant, β values for the 0.1MHCl desorbent ...

  20. Helium-Cooled Black Shroud for Subscale Cryogenic Testing (United States)

    Tuttle, James; Jackson, Michael; DiPirro, Michael; Francis, John


    This shroud provides a deep-space simulating environment for testing scaled-down models of passively cooling systems for spaceflight optics and instruments. It is used inside a liquid-nitrogen- cooled vacuum chamber, and it is cooled by liquid helium to 5 K. It has an inside geometry of approximately 1.6 m diameter by 0.45 m tall. The inside surfaces of its top and sidewalls have a thermal absorptivity greater than 0.96. The bottom wall has a large central opening that is easily customized to allow a specific test item to extend through it. This enables testing of scale models of realistic passive cooling configurations that feature a very large temperature drop between the deepspace-facing cooled side and the Sun/Earth-facing warm side. This shroud has an innovative thermal closeout of the bottom wall, so that a test sample can have a hot (room temperature) side outside of the shroud, and a cold side inside the shroud. The combination of this closeout and the very black walls keeps radiated heat from the sample s warm end from entering the shroud, reflecting off the walls and heating the sample s cold end. The shroud includes 12 vertical rectangular sheet-copper side panels that are oriented in a circular pattern. Using tabs bent off from their edges, these side panels are bolted to each other and to a steel support ring on which they rest. The removable shroud top is a large copper sheet that rests on, and is bolted to, the support ring when the shroud is closed. The support ring stands on four fiberglass tube legs, which isolate it thermally from the vacuum chamber bottom. The insides of the cooper top and side panels are completely covered with 25- mm-thick aluminum honeycomb panels. This honeycomb is painted black before it is epoxied to the copper surfaces. A spiral-shaped copper tube, clamped at many different locations to the outside of the top copper plate, serves as part of the liquid helium cooling loop. Another copper tube, plumbed in a series to the

  1. Kinetic isotope effect for H2 and D2 quantum molecular sieving in adsorption/desorption on porous carbon materials. (United States)

    Zhao, Xuebo; Villar-Rodil, Silvia; Fletcher, Ashleigh J; Thomas, K Mark


    Adsorption and desorption of H(2) and D(2) from porous carbon materials, such as activated carbon at 77 K, are usually fully reversible with very rapid adsorption/desorption kinetics. The adsorption and desorption of H(2) and D(2) at 77 K on a carbon molecular sieve (Takeda 3A), where the kinetic selectivity was incorporated by carbon deposition, and a carbon, where the pore structure was modified by thermal annealing to give similar pore structure characteristics to the carbon molecular sieve substrate, were studied. The D(2) adsorption and desorption kinetics were significantly faster (up to x1.9) than the corresponding H(2) kinetics for specific pressure increments/decrements. This represents the first experimental observation of kinetic isotope quantum molecular sieving in porous materials due to the larger zero-point energy for the lighter H(2), resulting in slower adsorption/desorption kinetics compared with the heavier D(2). The results are discussed in terms of the adsorption mechanism.

  2. Review of Membranes for Helium Separation and Purification (United States)

    Scholes, Colin A.; Ghosh, Ujjal K.


    Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources. PMID:28218644

  3. Substrate-Enhanced Micro Laser Desorption Ionization Mass Spectrometry Project (United States)

    National Aeronautics and Space Administration — Aerodyne Research, Inc. and the University of Massachusetts at Amherst will collaborate to develop laser desorption ionization (LDI) mass spectrometric analysis of...

  4. Testosterone sorption and desorption: Effects of soil particle size

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yong, E-mail: [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Zhang, Tian C. [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Ren, Yongzheng [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)


    Graphical abstract: - Highlights: • Smaller soil particles have higher sorption and lower desorption rates. • The sorption capacity ranks as clay > silt > sand. • Small particles like clays have less potential for desorption. • Colloids (clays) have high potential to facilitate the transport of hormones in soil–water environments. - Abstract: Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay > silt > sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36–65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments.

  5. Gas turbine modular helium reactor in cogeneration; Turbina de gas reactor modular con helio en cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Leon de los Santos, G. [UNAM, Facultad de Ingenieria, Division de Ingenieria Electrica, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico, D. F. (Mexico)], e-mail:


    This work carries out the thermal evaluation from the conversion of nuclear energy to electric power and process heat, through to implement an outline gas turbine modular helium reactor in cogeneration. Modeling and simulating with software Thermo flex of Thermo flow the performance parameters, based on a nuclear power plant constituted by an helium cooled reactor and helium gas turbine with three compression stages, two of inter cooling and one regeneration stage; more four heat recovery process, generating two pressure levels of overheat vapor, a pressure level of saturated vapor and one of hot water, with energetic characteristics to be able to give supply to a very wide gamma of industrial processes. Obtaining a relationship heat electricity of 0.52 and efficiency of net cogeneration of 54.28%, 70.2 MW net electric, 36.6 MW net thermal with 35% of condensed return to 30 C; for a supplied power by reactor of 196.7 MW; and with conditions in advanced gas turbine of 850 C and 7.06 Mpa, assembly in a shaft, inter cooling and heat recovery in cogeneration. (Author)

  6. Design and Test of a Liquid Oxygen / Liquid Methane Thruster with Cold Helium Pressurization Heat Exchanger (United States)

    Melcher, John C.; Morehead, Robert L.; Atwell, Matthew J.; Hurlbert, Eric A.


    A liquid oxygen / liquid methane 2,000 lbf thruster was designed and tested in conjuction with a nozzle heat exchanger for cold helium pressurization. Cold helium pressurization systems offer significant spacecraft vehicle dry mass savings since the pressurant tank size can be reduced as the pressurant density is increased. A heat exchanger can be incorporated into the main engine design to provide expansion of the pressurant supply to the propellant tanks. In order to study the systems integration of a cold-helium pressurization system, a 2,000 lbf thruster with a nozzle heat exchanger was designed for integration into the Project Morpheus vehicle at NASA Johnson Space Center. The testing goals were to demonstrate helium loading and initial conditioning to low temperatures, high-pressure/low temperature storage, expansion through the main engine heat exchanger, and propellant tank injection/pressurization. The helium pressurant tank was an existing 19 inch diameter composite-overwrap tank, and the targert conditions were 4500 psi and -250 F, providing a 2:1 density advantage compared to room tempatrue storage. The thruster design uses like-on-like doublets in the injector pattern largely based on Project Morpheus main engine hertiage data, and the combustion chamber was designed for an ablative chamber. The heat exchanger was installed at the ablative nozzle exit plane. Stand-alone engine testing was conducted at NASA Stennis Space Center, including copper heat-sink chambers and highly-instrumented spoolpieces in order to study engine performance, stability, and wall heat flux. A one-dimensional thermal model of the integrated system was completed. System integration into the Project Morpheus vehicle is complete, and systems demonstrations will follow.

  7. On Helium-Dominated Stellar Evolution: The Mysterious Role of the O(He)-Type Stars (United States)

    Reindl, N.; Rauch, T.; Werner, K.; Kruk, J. W.; Todt, H.


    Context. About a quarter of all post-asymptotic giant branch (AGB) stars are hydrogen-deficient. Stellar evolutionary models explain the carbon-dominated H-deficient stars by a (very) late thermal pulse scenario where the hydrogen-rich envelope is mixed with the helium-rich intershell layer. Depending on the particular time at which the final flash occurs, the entire hydrogen envelope may be burned. In contrast, helium-dominated post-AGB stars and their evolution are not yet understood. Aims. A small group of very hot, helium-dominated stars is formed by O(He)-type stars. A precise analysis of their photospheric abundances will establish constraints to their evolution. Methods. We performed a detailed spectral analysis of ultraviolet and optical spectra of four O(He) stars by means of state-of-the-art non-LTE model-atmosphere techniques. Results. We determined effective temperatures, surface gravities, and the abundances of H, He, C, N, O, F, Ne, Si, P, S, Ar, and Fe. By deriving upper limits for the mass-loss rates of the O(He) stars, we found that they do not exhibit enhanced mass-loss. The comparison with evolutionary models shows that the status of the O(He) stars remains uncertain. Their abundances match predictions of a double helium white dwarf (WD) merger scenario, suggesting that they might be the progeny of the compact and of the luminous helium-rich sdO-type stars. The existence of planetary nebulae that do not show helium enrichment around every other O(He) star precludes a merger origin for these stars. These stars must have formed in a different way, for instance via enhanced mass-loss during their post-AGB evolution or a merger within a common-envelope (CE) of a CO-WD and a red giant or AGB star. Conclusions. A helium-dominated stellar evolutionary sequence exists that may be fed by different types of mergers or CE scenarios. It appears likely that all these pass through the O(He) phase just before they become WDs.

  8. Survivor from asphyxiation due to helium inhalation

    Directory of Open Access Journals (Sweden)

    Massimiliano Etteri


    Full Text Available In this rare case report we describe a 27- year-old white man survived to suicide by asphyxiation using the so-called suicide bag (or exit bag filled with helium supplied through a plastic tube. He had no previous psychiatric or organic illnesses. At the time of presentation to our Emergency Department he was awake and reported severe dyspnea with a clinical pattern of acute respiratory failure. Imaging studies showed pulmonary edema and the patient was treated with non-invasive ventilation in Intensive Care Unit. After 15 days the patient was discharged from hospital in optimal conditions. These rare cases of survivor might suggest the possible causes of death from inhaling helium.

  9. Detection of charged particles in superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, Simon R. [Brown Univ., Providence, RI (United States)


    This thesis is concerned with the use of a large superfluid helium detector for the detection of solar neutrinos. A small-scale prototype of this type of detector has been constructed and tested. In this thesis the author discussed in detail the design of the apparatus, the experiments which have been carried out, and what has been learned about the important physical processes involved in this type of detector. These processes include the anisotropic generation of phonons and rotons by the recoiling particle, the propagation of the phonons and rotons in the liquid, the evaporation process at the liquid surface, and the adsorption of the helium atoms onto the wafers. In addition he discusses the generation and detection of fluorescent photons from recoiling particles. The implications of these results to the design of a full-scale detector of neutrinos are discussed.

  10. Feasibility of conducting a dynamic helium charging experiment for vanadium alloys in the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Gomes, I.; Strain, R.V.; Smith, D.L. [Argonne National Lab., IL (United States); Matsui, H. [Tohoku Univ. (Japan)


    The feasibility of conducting a dynamic helium charging experiment (DHCE) for vanadium alloys in the water-cooled Advanced Test Reactor (ATR) is being investigated as part of the U.S./Monbusho collaboration. Preliminary findings suggest that such an experiment is feasible, with certain constraints. Creating a suitable irradiation position in the ATR, designing an effective thermal neutron filter, incorporating thermocouples for limited specimen temperature monitoring, and handling of tritium during various phases of the assembly and reactor operation all appear to be feasible. An issue that would require special attention, however, is tritium permeation loss through the capsule wall at the higher design temperatures (>{approx}600{degrees}C). If permeation is excessive, the reduced amount of tritium entering the test specimens would limit the helium generation rates in them. At the lower design temperatures (<{approx}425{degrees}C), sodium, instead of lithium, may have to be used as the bond material to overcome the tritium solubility limitation.

  11. Limits of helium cooling in fusion reactor first walls and blankets

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, C.W.; Bampton, M.C.C.; Aase, D.T.; Sutey, A.M.


    This study explores the practical limits of helium cooling in a simple geometry unconstrained by a particular conceptual design. Specifically, the configuration was chosen to be an externally heated straight tube considering both uniform heating and heating of half the external parimeter. Both thermal hydraulic and structural limits to the heat flux have been investigated. Curves are presented to show the heat flux and tube length which simultaneously attain both a well temperature and pressure drop/pumping power limit for a range of diameters from 0.05 to 8.0 inches and pressures from 50 to 5000 psia. Tube wall stress limits on heat flux are also shown for the same range of pressure and diameter. These results should serve as an aid in planning more complex concepts as well as evaluating helium cooling in this specific configuration.

  12. Laser-Induced Breakdown in Liquid Helium (United States)

    Sirisky, S.; Yang, Y.; Wei, W.; Maris, H. J.


    We report on experiments in which focused laser light is used to induce optical breakdown in liquid helium-4. The threshold intensity has been measured over the temperature range from 1.1 to 2.8 K with light of wavelength 1064 nm. In addition to the measurement of the threshold, we have performed experiments to study how the breakdown from one pulse modifies the probability that a subsequent pulse will result in breakdown.

  13. Combined cold compressor/ejector helium refrigerator (United States)

    Brown, Donald P.


    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  14. Correlation of Helium Solubility in Liquid Nitrogen (United States)

    VanDresar, Neil T.; Zimmerli, Gregory A.


    A correlation has been developed for the equilibrium mole fraction of soluble gaseous helium in liquid nitrogen as a function of temperature and pressure. Experimental solubility data was compiled and provided by National Institute of Standards and Technology (NIST). Data from six sources was used to develop a correlation within the range of 0.5 to 9.9 MPa and 72.0 to 119.6 K. The relative standard deviation of the correlation is 6.9 percent.

  15. Field desorption mass spectrometry of oligosaccharides (United States)

    Linscheid, Michael; D'Angona, Jay; Burlingame, Alma L.; Dell, Anne; Ballou, Clinton E.


    Field desorption mass spectrometry has been used to analyze carbohydrate polymers with 5 to 14 hexose units without prior derivatization. In all examples, the molecular weight of the oligosaccharide could be determined by means of the abundant quasimolecular ions of the type MNa+, MH+, MNa22+, and MNa33+. Fragmentation at glycosidic linkages was observed in varying extents. The reduced oligosaccharide Man8GlcNAcH2, obtained from IgM [Cohen, R. E. & Ballou, C. E. (1980) Biochemistry 19, 4345-4358], gave quasimolecular ion signals MNa+ at m/z 1544, MH+ at m/z 1522, MNa22+ at m/z 784, and MNa33+ at m/z 530, all corresponding to its assumed molecular weight of 1519.5. Mycobacterial methylmannose polysaccharides with the general structure ManxMeMany-OCH3 [Yamada, H., Cohen, R. E. & Ballou, C. E. (1979) J. Biol. Chem. 254, 1972-1979] were also successfully analyzed. Man1MeMan13-OCH3, the largest homolog, gave the expected signal of the quasimolecular ion MNa+ at m/z 2506. The larger polysaccharides were analyzed by using a KRATOS MS-50 mass spectrometer with a high-field magnet enabling full sensitivity to be maintained up to 3000 atomic mass units. Polysaccharides up to m/z 1978 were analyzed by using a KRATOS MS-9 mass spectrometer operated at 4 Kv. The signal-to-noise ratio, which becomes a serious problem in field desorption mass spectrometry at low accelerating voltages, and the low instrument sensitivity were improved considerably by our use of a method of adding scans with low total ion currents obtained over a longer desorption time. In this way, we obtained complete sequence information on methylmannose polysaccharides up to Man1MeMan9-OCH3(MNa+ at m/z 1802). Analysis of a presumed Man1MeMan7-OCH3, gave a spectrum consistent only with the structure Man2MeMan6-OCH3, revealing the existence of a methylmannose homolog with 2 unmethylated mannoses at the nonreducing end of the chain. PMID:6940169

  16. Sequential sorption and desorption of chlorinated phenols in organoclays. (United States)

    Kim, J H; Shin, W S; Kim, Y H; Choi, S J; Jeon, Y W; Song, D I


    Effect of pH on the sorption and desorption of the chlorinated phenols (2-chlorophenol and 2,4-dichlorophenol) in HDTMA-montmorillonite organoclays was investigated using sequential batch experiments. 2,4-dichlorophenol exhibited higher affinity in both sorption and desorption than 2-chlorophenol at pH 4.85 and 9.15. For both chlorophenols, the protonated speciation (at pH 4.85) exhibited a higher affinity in both sorption and desorption than the predominant deprotonated speciation (about 80% and 95% of 2-chlorophenate and 2,4-dichlophenate anions at pH 9.15, respectively). Desorption of chlorinated phenols was strongly dependent on the current pH regardless of their speciation during the previous sorption stage. No appreciable desorption resistance of the chlorinated phenols was observed in organoclays after sequential desorptions. Affinity of both chlorophenols in bisolute competitive sorption and desorption was reduced compared to that in a single-solute system due to the competition between solutes. The ideal adsorbed solution theory coupled with the single-solute Freundlich model successfully predicted the bisolute competitive sorption and desorption equilibria.

  17. Helium refrigeration system for hydrogen liquefaction applications (United States)

    Nair, J. Kumar, Sr.; Menon, RS; Goyal, M.; Ansari, NA; Chakravarty, A.; Joemon, V.


    Liquid hydrogen around 20 K is used as cold moderator for generating “cold neutron beam” in nuclear research reactors. A cryogenic helium refrigeration system is the core upon which such hydrogen liquefaction applications are built. A thermodynamic process based on reversed Brayton cycle with two stage expansion using high speed cryogenic turboexpanders (TEX) along with a pair of compact high effectiveness process heat exchangers (HX), is well suited for such applications. An existing helium refrigeration system, which had earlier demonstrated a refrigeration capacity of 470 W at around 20 K, is modified based on past operational experiences and newer application requirements. Modifications include addition of a new heat exchanger to simulate cryogenic process load and two other heat exchangers for controlling the temperatures of helium streams leading out to the application system. To incorporate these changes, cryogenic piping inside the cold box is suitably modified. This paper presents process simulation, sizing of new heat exchangers as well as fabrication aspects of the modified cryogenic process piping.

  18. Optical traps for ultracold metastable helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Simonet, Juliette [LKB ENS, Paris (France)


    One of the main characteristics of metastable helium atoms is their high internal energy (20 eV). This energy can be released when a metastable atom hits a surface, ejecting one electron. Therefore, using a Channeltron Electron Multiplier (CEM), one can detect atoms with a time resolution of up to 5 ns. However, this high internal energy raises the problem of inelastic Penning ionizations, following: He{sup *}+He{sup *}{yields}He+He{sup +}+e{sup *}. This process has a rate of the order of 10 x 10 cm{sup 3} cot s{sup -}1 but is reduced by four orders of magnitude if the atoms are spin polarized due to total spin conservation. We report on the progress of the set up of a dipole trap for ultracold metastable helium using a red detuned fiber laser at 1560 nm. One of the aims of this optical trap is to release the constraint on the magnetic field value. We plan to measure the magnetic field dependance of inelastic collision rates for temperatures smaller than 10 {mu}K. In a spin polarized gas of helium, the spin-spin interaction produces spin relaxation and relaxation induced Penning ionization if the polarization condition is no longer maintained. We also present the development of a optical lattices in 1D and later in 3D. We intend to monitor the Penning ionization rate in order to follow the real-time dynamics of the superfluid-Mott insulator quantum phase transition.

  19. Laser Spectroscopy of Antiprotonic Helium Atoms

    CERN Multimedia


    %PS205 %title\\\\ \\\\Following the discovery of metastable antiprotonic helium atoms ($\\overline{p}He^{+} $) at KEK in 1991, systematic studies of their properties were made at LEAR from 1991 to 1996. In the first two years the lifetime of $\\overline{p}He^{+}$ in liquid and gaseous helium at various temperatures and pressures was measured and the effect of foreign gases on the lifetime of these atoms was investigated. Effects were also discovered which gave the antiproton a 14\\% longer lifetime in $^4$He than in $^3$He, and resulted in important differences in the shape of the annihilation time spectra in the two isotopes.\\\\ \\\\Since 1993 laser spectroscopy of the metastable $\\overline{p}He^{+}$ atoms became the main focus of PS205. Transitions were stimulated between metastable and non-metastable states of the $\\overline{p}He^{+}$ atom by firing a pulsed dye laser beam into the helium target every time an identified metastable atom was present (Figure 1). If the laser frequency matched the transition energy, the...

  20. Glycine: A potential coupling agent to bond to helium plasma treated PEEK? (United States)

    Schmidlin, Patrick R; Eichberger, Marlis; Stawarczyk, Bogna


    To test the tensile bond strength (TBS) between two self-adhesive resin composite cements and PEEK after helium plasma treatment and used glycine as a potential coupling agent incorporated in different adhesives. In summary, 896 air-abraded PEEK specimens were fabricated. Half of the specimens were treated with cold active inert helium plasma and the other half were left non-treated. Both groups were then split in two groups: In group 1 (n=256), 64 specimens were pre-treated with: (a) soft-liner liquid, (b), (c) Ambarino P60 and (d) no pre-treatment (control), respectively. In group 2 (n=192), specimens were conditioned accordingly, but the adhesive materials were modified by including a commercially available glycine (Air-Flow PERIO). PEEK specimens were then luted using either RelyX Unicem or Clearfil SA Cement and TBS was measured initially and after 14 days water storage combined with 10'000 thermal cycles (16 specimens/subgroup). Fracture type analysis was performed. For statistical analyses Kolmogorov-Smirnov, Shapiro-Wilk tests, 1-, 4-way ANOVA (post hoc: Scheffé), and t-test were used (p0.348). In contrast, a combination between glycine application and Softline/Ambarino P60 allowed for significantly higher initial TBS was measured after helium plasma treatment (p=0.001). However, this effect was no evident after thermo-cycling. All groups conditioned with showed the highest TBS values. The introduction of amine groups by simple provision of amino acids in the form of glycine can improve the bond strength after helium plasma treatment using different adhesive materials. However, using this simple approach, the method cannot withstand thermal challenge yet. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Modeling Organic Contaminant Desorption from Municipal Solid Waste Components (United States)

    Knappe, D. R.; Wu, B.; Barlaz, M. A.


    Approximately 25% of the sites on the National Priority List (NPL) of Superfund are municipal landfills that accepted hazardous waste. Unlined landfills typically result in groundwater contamination, and priority pollutants such as alkylbenzenes are often present. To select cost-effective risk management alternatives, better information on factors controlling the fate of hydrophobic organic contaminants (HOCs) in landfills is required. The objectives of this study were (1) to investigate the effects of HOC aging time, anaerobic sorbent decomposition, and leachate composition on HOC desorption rates, and (2) to simulate HOC desorption rates from polymers and biopolymer composites with suitable diffusion models. Experiments were conducted with individual components of municipal solid waste (MSW) including polyvinyl chloride (PVC), high-density polyethylene (HDPE), newsprint, office paper, and model food and yard waste (rabbit food). Each of the biopolymer composites (office paper, newsprint, rabbit food) was tested in both fresh and anaerobically decomposed form. To determine the effects of aging on alkylbenzene desorption rates, batch desorption tests were performed after sorbents were exposed to toluene for 30 and 250 days in flame-sealed ampules. Desorption tests showed that alkylbenzene desorption rates varied greatly among MSW components (PVC slowest, fresh rabbit food and newsprint fastest). Furthermore, desorption rates decreased as aging time increased. A single-parameter polymer diffusion model successfully described PVC and HDPE desorption data, but it failed to simulate desorption rate data for biopolymer composites. For biopolymer composites, a three-parameter biphasic polymer diffusion model was employed, which successfully simulated both the initial rapid and the subsequent slow desorption of toluene. Toluene desorption rates from MSW mixtures were predicted for typical MSW compositions in the years 1960 and 1997. For the older MSW mixture, which had a

  2. Integrated field emission array for ion desorption (United States)

    Resnick, Paul J; Hertz, Kristin L; Holland, Christopher; Chichester, David; Schwoebel, Paul


    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  3. Integrated field emission array for ion desorption

    Energy Technology Data Exchange (ETDEWEB)

    Resnick, Paul J; Hertz, Kristin L.; Holland, Christopher; Chichester, David


    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  4. Brominated Tyrosine and Polyelectrolyte Multilayer Analysis by Laser Desorption VUV Postionization and Secondary Ion Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    University of Illinois at Chicago; Blaze, Melvin M. T.; Takahashi, Lynelle; Zhou, Jia; Ahmed, Musahid; Gasper, Gerald; Pleticha, F. Douglas; Hanley, Luke


    The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 ? 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by≤8 eV single photon ionization. Thermal desorption and electronic structure calculations determined the ionization energy of Br2Y to be ~;;8.3?0.1 eV and further indicated that the lower ionization energies of clusters permitted their detection at≤8 eV photon energies. However, single photon ionization could only detect Br2Y adsorbed within PEMs when using either higher photon energies or matrix addition to the sample. All samples were also analyzed by 25 keV Bi3 + secondary ion mass spectrometry (SIMS), with the negative ion spectra showing strong parent ion signal which complemented that observed by LDPI-MS. The negative ion SIMS depended strongly on the high electron affinity of this specific analyte and the analyte?s condensed phase environment.

  5. Copper desorption from Gelidium algal biomass. (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R


    Desorption of divalent copper from marine algae Gelidium sesquipedale, an algal waste (from agar extraction industry) and a composite material (the algal waste immobilized in polyacrylonitrile) was studied in a batch system. Copper ions were first adsorbed until saturation and then desorbed by HNO(3) and Na(2)EDTA solutions. Elution efficiency using HNO(3) increases as pH decreases. At pH=1, for a solid to liquid ratio S/L=4gl(-1), elution efficiency was 97%, 95% and 88%, the stoichiometric coefficient for the ionic exchange, 0.70+/-0.02, 0.73+/-0.05 and 0.76+/-0.06 and the selectivity coefficient, 0.93+/-0.07, 1.0+/-0.3 and 1.1+/-0.3, respectively, for algae Gelidium, algal waste and composite material. Complexation of copper ions by EDTA occurs in a molar proportion of 1:1 and the elution efficiency increases with EDTA concentration. For concentrations of 1.4, 0.88 and 0.57 mmoll(-1), the elution efficiency for S/L=4gl(-1), was 91%, 86% and 78%, respectively, for algae Gelidium, algal waste and composite material. The S/L ratio, in the range 1-20gl(-1), has little influence on copper recovery by using 0.1M HNO(3). Desorption kinetics was very fast for all biosorbents. Kinetic data using HNO(3) as eluant were well described by the mass transfer model, considering the average metal concentration in the solid phase and the equilibrium relationship given by the mass action law. The homogeneous diffusion coefficient varied between 1.0 x 10(-7)cm(2)s(-1) for algae Gelidium and 3.0 x 10(-7)cm(2)s(-1) for the composite material.

  6. In situ controlled modification of the helium density in single helium-filled nanobubbles

    Energy Technology Data Exchange (ETDEWEB)

    David, M.-L., E-mail:; Pailloux, F. [Institut Pprime, UPR 3346 CNRS-Université de Poitiers, SP2MI, 86962 Futuroscope-Chasseneuil cedex (France); Canadian Centre for Electron Microscopy, Mc Master University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada); Alix, K.; Mauchamp, V.; Pizzagalli, L. [Institut Pprime, UPR 3346 CNRS-Université de Poitiers, SP2MI, 86962 Futuroscope-Chasseneuil cedex (France); Couillard, M.; Botton, G. A. [Canadian Centre for Electron Microscopy, Mc Master University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada); Department of Materials Science and Engineering, Mc Master University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)


    We demonstrate that the helium density and corresponding pressure can be modified in single nano-scale bubbles embedded in semiconductors by using the electron beam of a scanning transmission electron microscope as a multifunctional probe: the measurement probe for imaging and chemical analysis and the irradiation source to modify concomitantly the pressure in a controllable way by fine tuning of the electron beam parameters. The control of the detrapping rate is achieved by varying the experimental conditions. The underlying physical mechanisms are discussed; our experimental observations suggest that the helium detrapping from bubbles could be interpreted in terms of direct ballistic collisions, leading to the ejection of the helium atoms from the bubble.

  7. Variable Temperature Infrared Spectroscopy Investigations of Benzoic Acid Desorption from Sodium and Calcium Montmorillonite Clays. (United States)

    Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L


    Processes involved in thermal desorption of benzoic acid from sodium and calcium montmorillonite clays are investigated by using variable temperature diffuse reflection Fourier transform infrared spectroscopy (DRIFTS). By monitoring the temperature dependence of infrared absorbance bands while heating samples, subtle changes in molecular vibrations are detected and employed to characterize specific benzoic acid adsorption sites. Abrupt changes in benzoic acid adsorption site properties occur for both clay samples at about 125 °C. Difference spectra absorbance band frequency variations indicate that adsorbed benzoic acid interacts with interlayer cations through water bridges and that these interactions can be disrupted by the presence of organic anions, in particular, benzoate.

  8. Capacity enhancement of indigenous expansion engine based helium liquefier (United States)

    Doohan, R. S.; Kush, P. K.; Maheshwari, G.


    Development of technology and understanding for large capacity helium refrigeration and liquefaction at helium temperature is indispensable for coming-up projects. A new version of helium liquefier designed and built to provide approximately 35 liters of liquid helium per hour. The refrigeration capacity of this reciprocating type expansion engine machine has been increased from its predecessor version with continuous improvement and deficiency debugging. The helium liquefier has been built using components by local industries including cryogenic Aluminum plate fin heat exchangers. Two compressors with nearly identical capacity have been deployed for the operation of system. Together they consume about 110 kW of electric power. The system employs liquid Nitrogen precooling to enhance liquid Helium yield. This paper describes details of the cryogenic expander design improvements, reconfiguration of heat exchangers, performance simulation and their experimental validation.

  9. CO desorption from a catalytic surface: elucidation of the role of steps by velocity-selected residence time measurements. (United States)

    Golibrzuch, Kai; Shirhatti, Pranav R; Geweke, Jan; Werdecker, Jörn; Kandratsenka, Alexander; Auerbach, Daniel J; Wodtke, Alec M; Bartels, Christof


    Directly measuring the rate of a surface chemical reaction remains a challenging problem. For example, even after more than 30 years of study, there is still no agreement on the kinetic parameters for one of the simplest surface reactions: desorption of CO from Pt(111). We present a new experimental technique for determining rates of surface reactions, the velocity-selected residence time method, and demonstrate it for thermal desorption of CO from Pt(111). We use UV−UV double resonance spectroscopy to record surface residence times at selected final velocities of the desorbing CO subsequent to dosing with a pulsed molecular beam. Velocity selection differentiates trapping-desorption from direct scattering and removes influences on the temporal profile arising from the velocity distribution of the desorbing CO. The kinetic data thus obtained are of such high quality that bi-exponential desorption kinetics of CO from Pt(111) can be clearly seen. We assign the faster of the two rate processes to desorption from (111) terraces, and the slower rate process to sequential diffusion from steps to terraces followed by desorption. The influence of steps, whose density may vary from crystal to crystal, accounts for the diversity of previously reported (single exponential) kinetics results. Using transition-state theory, we derive the binding energy of CO to Pt(111) terraces, D(0)(terr) (Pt−CO) = 34 ± 1 kcal/mol (1.47 ± 0.04 eV) for the low coverage limit (≤0.03 ML) where adsorbate−adsorbate interactions are negligible. This provides a useful benchmark for electronic structure theory of adsorbates on metal surfaces.

  10. Helium induces preconditioning in human endothelium in vivo. (United States)

    Smit, Kirsten F; Oei, Gezina T M L; Brevoord, Daniel; Stroes, Erik S; Nieuwland, Rienk; Schlack, Wolfgang S; Hollmann, Markus W; Weber, Nina C; Preckel, Benedikt


    Helium protects myocardium by inducing preconditioning in animals. We investigated whether human endothelium is preconditioned by helium inhalation in vivo. Forearm ischemia-reperfusion (I/R) in healthy volunteers (each group n = 10) was performed by inflating a blood pressure cuff for 20 min. Endothelium-dependent and endothelium-independent responses were measured after cumulative dose-response infusion of acetylcholine and sodium nitroprusside, respectively, at baseline and after 15 min of reperfusion using strain-gauge, venous occlusion plethysmography. Helium preconditioning was applied by inhalation of helium (79% helium, 21% oxygen) either 15 min (helium early preconditioning [He-EPC]) or 24 h before I/R (helium late preconditioning). Additional measurements of He-EPC were done after blockade of endothelial nitric oxide synthase. Plasma levels of cytokines, adhesion molecules, and cell-derived microparticles were determined. Forearm I/R attenuated endothelium-dependent vasodilation (acetylcholine) with unaltered endothelium-independent response (sodium nitroprusside). Both He-EPC and helium late preconditioning attenuated I/R-induced endothelial dysfunction (max increase in forearm blood flow in response to acetylcholine after I/R was 180 ± 24% [mean ± SEM] without preconditioning, 573 ± 140% after He-EPC, and 290 ± 32% after helium late preconditioning). Protection of helium was comparable to ischemic preconditioning (max forearm blood flow 436 ± 38%) and was not abolished after endothelial nitric oxide synthase blockade. He-EPC did not affect plasma levels of cytokines, adhesion molecules, or microparticles. Helium is a nonanesthetic, nontoxic gas without hemodynamic side effects, which induces early and late preconditioning of human endothelium in vivo. Further studies have to investigate whether helium may be an instrument to induce endothelial preconditioning in patients with cardiovascular risk factors.

  11. Asteroseismic estimate of helium abundance of 16 Cyg A, B

    Directory of Open Access Journals (Sweden)

    Verma Kuldeep


    Full Text Available The helium ionization zone in a star leaves a characteristic signature on its oscillation frequencies, which can be used to estimate the helium content in the envelope of the star. We use the oscillation frequencies of 16 Cyg A and B, obtained using 2.5 years of Kepler data, to estimate the envelope helium abundance of these stars. We find the envelope helium abundance to lie in the range 0.231–0.251 for 16 Cyg A and 0.218–0.266 for 16 Cyg B.

  12. Helium vs. Proton Induced Displacement Damage in Electronic Materials (United States)

    Ringo, Sawnese; Barghouty, A. F.


    In this project, the specific effects of displacement damage due to the passage of protons and helium nuclei on some typical electronic materials will be evaluated and contrasted. As the electronic material absorbs the energetic proton and helium momentum, degradation of performance occurs, eventually leading to overall failure. Helium nuclei traveling at the same speed as protons are expected to impart more to the material displacement damage; due to the larger mass, and thus momentum, of helium nuclei compared to protons. Damage due to displacement of atoms in their crystalline structure can change the physical properties and hence performance of the electronic materials.

  13. [Desorption characteristics of phosphorus in tea tree rhizosphere soil]. (United States)

    Yang, Wei; Zhou, Wei-Jun; Bao, Chun-Hong; Miao, Xiao-Lin; Hu, Wen-Min


    In order to explore the phosphorus (P) release process and its supply mechanism in tea tree rhizosphere soil, an exogenous P adsorption and culture experiment was conducted to study the P desorption process and characters in the tea tree rhizosphere soils having been cultivated for different years and derived from different parent materials. The least squares method was used to fit the isotherms of P desorption kinetics. There was an obvious difference in the P desorption process between the rhizosphere soils and non-rhizosphere soils. The P desorption ability of the rhizosphere soils was significantly higher than that of the non-rhizosphere soils. As compared with non-rhizosphere soils, rhizosphere soils had higher available P content, P desorption rate, and beta value (desorbed P of per unit adsorbed P), with the average increment being 5.49 mg x kg(-1), 1.7%, and 24.4%, respectively. The P desorption ability of the rhizosphere soils derived from different parent materials was in the order of granite > quaternary red clay > slate. The average available P content and P desorption ability of the rhizosphere soils increased with increasing cultivation years.

  14. Helium-3 and Helium-4 acceleration by high power laser pulses for hadron therapy

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Leemans, W P; Bulanov, S V; Margarone, D; Korn, G; Haberer, T


    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (Magnetic Vortex Acceleration and hole-boring Radiation Pressure Acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the ...

  15. The antimicrobial effects of helium and helium-air plasma on Staphylococcus aureus and Clostridium difficile. (United States)

    Galvin, S; Cahill, O; O'Connor, N; Cafolla, A A; Daniels, S; Humphreys, H


    Healthcare-associated infections (HCAI) affect 5-10% of acute hospital admissions. Environmental decontamination is an important component of all strategies to prevent HCAI as many bacterial causes survive and persist in the environment, which serve as ongoing reservoirs of infection. Current approaches such as cleaning with detergents and the use of chemical disinfectant are suboptimal. We assessed the efficacy of helium and helium-air plasma in killing Staphylococcus aureus and Clostridium difficile on a glass surface and studied the impact on bacterial cells using atomic force microscopy (AFM). Both plasma types exhibited bactericidal effects on Staph. aureus (log3·6 - >log7), with increased activity against methicillin-resistant strains, but had a negligible effect on Cl. difficile spores (helium and helium-air plasma as a decontaminant and demonstrated a significant reduction in bacterial counts of Staphylococcus aureus on a glass surface. Atomic force microscopy morphologically confirmed the impact on bacterial cells. This approach warrants further study as an alternative to current options for hospital hygiene. © 2013 The Society for Applied Microbiology.

  16. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    Directory of Open Access Journals (Sweden)

    S. S. Bulanov


    Full Text Available The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He^{3} ions, having almost the same penetration depth as He^{4} with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.

  17. Kinetic Ising model for desorption from a chain (United States)

    Geldart, D. J. W.; Kreuzer, H. J.; Rys, Franz S.


    Adsorption along a linear chain of adsorption sites is considered in an Ising model with nearest neighbor interactions. The kinetics are studied in a master equation approach with transition probabilities describing single spin flips to mimic adsorption-desorption processes. Exchange of two spins to account for diffusion can be included as well. Numerical results show that desorption is frequently of fractional (including zero) order. Only at low coverage and high temperature is desorption a first order process. Finite size effects and readsorption are also studied.

  18. Helium passage through homogeneous ultrafine hydrocarbon layers

    Directory of Open Access Journals (Sweden)

    Bubenchikov Michael A.


    Full Text Available The present paper deals with the problem of helium atoms and methane molecules moving through a hydrocarbon layer of evenly distributed energy sources. A computational technique for integrating the Schrödinger equation based on formulation of two fundamental numerical solutions to the problem of waves passing through a barrier is suggested. A linear combination of these solutions defines the required wave function, while cross-linking with asymptotic boundary conditions allows determining the coefficients of transmission and particle reflection from the potential layer barrier.

  19. Linde standard helium plant of medium capacity

    Energy Technology Data Exchange (ETDEWEB)

    Patzelt, A.; Stephan, A.; Nienaber, U.; Weber, J.


    The unit is designed to deliver up to 70 l/h of liquid helium (LHe) without precooling by liquid nitrogen (LN{sub 2}), up to 105 l/h with LN{sub 2} precooling, or up to 210 W cryo-refrigeration output at 4.5 K. Its principal components are an oil-flooded screw compressor, gas-bearing expansion turbines, vacuum-brazed aluminium plate-fin heat exchangers, an automatic feed gas purifier, and a process control system. Descriptions are given of the process layout, the main system components, and operation of the unit. (orig.).

  20. Heuristic theory of positron-helium scattering. (United States)

    Drachman, R. J.


    An error in a previous modified adiabatic approximation (Drachman, 1966), due to a lack of generality in the form of the short-range correlation part of the wave function for L greater than zero, is corrected heuristically by allowing the monopole suppression parameter to depend on L. An L-dependent local potential is constructed to fit the well-known positron-hydrogen s, p, and d wave phase shifts below the rearrangement threshold. The same form of potential yields a positron-helium cross-section in agreement with a recent experimental measurement near threshold.

  1. Quantum entanglement in helium-like ions (United States)

    Lin, Y.-C.; Ho, Y. K.


    Recently, there have been considerable interests to investigate quantum entanglement in two-electron atoms [1-3]. Here we investigate quantum entanglement for the ground and excited states of helium-like ions using correlated wave functions, concentrating on the particle-particle entanglement coming from the continuous spatial degrees of freedom. We use the two-electron wave functions constructed by employing B-spline basis to calculate the linear entropy of the reduced density matrix L=1-TrA(ρA^2 ) as a measure of the spatial entanglement. HereρA=TrB(| >AB ABDehesa et. al., J. Phys. B 45, 015504 (2012)

  2. Temperature rise in superfluid helium pumps (United States)

    Kittel, Peter


    The temperature rise of a fountain effect pump (FEP) and of a centrifugal pump (CP) are compared. Calculations and estimates presented here show that under the operating conditions expected during the resupply of superfluid helium in space, a centrifugal pump will produce a smaller temperature rise than will a fountain effect pump. The temperature rise for the FEP is calculated assuming an ideal pump, while the temperature rise of the CP is estimated from the measured performance of a prototype pump. As a result of this smaller temperature rise and of the different operating characteristics of the two types of pumps, transfers will be more effective using a centrifugal pump.

  3. Microstructure of HIPed and SPSed 9Cr-ODS steel and its effect on helium bubble formation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chenyang [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, Liaoning (China); Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, MI, 48109 (United States); Lu, Zheng, E-mail: [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, Liaoning (China); Xie, Rui; Liu, Chunming [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, Liaoning (China); Wang, Lumin, E-mail: [Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, MI, 48109 (United States)


    Two 9Cr-ODS steels with the same nominal composition were consolidated by hot isostatic pressing (HIP, named COS-1) and spark plasma sintering (SPS, named COS-2). Helium ions were implanted into COS-1, COS-2 and non-ODS Eurofer 97 steels up at 673 K. Microstructures before and after helium ion implantations were carefully characterized. The results show a bimodal grain size distribution in COS-2 and a more uniform grain size distribution in COS-1. Nanoscale clusters of GP-zone type Y–Ti–O and Y{sub 2}Ti{sub 2}O{sub 7} pyrochlore as well as large spinel Mn(Ti)Cr{sub 2}O{sub 4} particles are all observed in the two ODS steels. The Y–Ti-enriched nano-oxides in COS-1 exhibit higher number density and smaller size than in COS-2. The Y–Ti-enriched nano-oxides in fine grains of COS-2 show higher number density and smaller size than that in coarse grains of COS-2. Nano-oxides effectively trap helium atoms and lead to the formation of high density and ultra-fine helium bubbles. - Highlights: • The microstructure changes of two ODS steels before and after helium ion implantation have been elucidated. • The mechanism of the microstructures of ODS steels under varied thermal mechanical processing paths have been explored. • The dependence of the size, density and distribution of helium bubbles on the specific microstructure features are explored.

  4. A robust helium-cooled shield/blanket design for ITER (United States)

    Wong, C. P. C.; Bourque, R. F.; Baxi, C. B.; Colleraine, A. P.; Grunloh, H. J.; Letchenberg, T.; Leuer, J. A.; Reis, E. E.; Redler, K.; Will, R.


    General Atomics Fusion and Reactor Groups have completed a helium-cooled, conceptual shield/blanket design for ITER. The configuration selected is a pressurized tubes design embedded in radially oriented plates. This plate can be made from ferritic steel or from V-alloy. Helium leakage to the plasma chamber is eliminated by conservative, redundant design and proper quality control and inspection programs. High helium pressure at 18 MPa is used to reduce pressure drop and enhance heat transfer. This high gas pressure is believed practical when confined in small diameter tubes. Ample industrial experience exists for safe high gas pressure operations. Inboard shield design is highlighted in this study since the allowable void fraction is more limited. Lithium is used as the thermal contacting medium and for tritium breeding; its safety concerns are minimized by a modular, low inventory design that requires no circulation of the liquid metal for the purpose of heat removal. This design is robust, conservative, reliable, and meets all design goals and requirements. It can also be built with present-day technology.

  5. Laser-Induced Acoustic Desorption/Electron Ionization of Amino Acids and Small Peptides (United States)

    Jarrell, Tiffany M.; Owen, Benjamin C.; Riedeman, James S.; Prentice, Boone M.; Pulliam, Chris J.; Max, Joann; Kenttämaa, Hilkka I.


    Laser-induced acoustic desorption (LIAD) allows for desorption of neutral nonvolatile compounds independent of their volatility or thermal stability. Many different ionization methods have been coupled with LIAD. Hence, this setup provides a better control over the types of ions formed than other mass spectrometry evaporation/ionization methods commonly used to characterize biomolecules, such as ESI or MALDI. In this study, the utility of LIAD coupled with electron ionization (EI) was tested for the analysis of common amino acids with no derivatization. The results compared favorably with previously reported EI mass spectra obtained using thermal desorption/EI. Further, LIAD/EI mass spectra collected for hydrochloride salts of two amino acids were found to be similar to those measured for the neutral amino acids with the exception of the appearance of an HCl+● ion. However, the hydrochloride salt of arginine showed a distinctly different LIAD/EI mass spectrum than the previously published literature EI mass spectrum, likely due to its highly basic side chain that makes a specific zwitterionic form particularly favorable. Finally, EI mass spectra were measured for seven small peptides, including di-, tri-, and tetrapeptides. These mass spectra show a variety of ion types. However, an type ions are prevalent. Also, electron-induced dissociation (EID) of protonated peptides has been reported to form primarily an type ions. In addition, the loss of small neutral molecules and side-chain cleavages were observed that are reminiscent of other high-energy fragmentation methods, such as EID. Finally, the isomeric dipeptides LG and IG were found to produce drastically different EI mass spectra, thus allowing differentiation of the leucine and isoleucine amino acids in these dipeptides. [Figure not available: see fulltext.

  6. Transport coefficients of helium-neon mixtures at low density computed from ab initio potentials. (United States)

    Sharipov, Felix; Benites, Victor J


    The viscosity, thermal conductivity, diffusion coefficient, and thermal diffusion factor of helium-neon mixtures at low density are calculated for a wide range of temperature and for various molar fractions. The Chapman-Enskog method is employed considering the 10th order of the Sonine polynomial expansion. Ab initio potentials for intermolecular interactions are used to calculate the omega-integrals. The relative numerical error of the present results obtained for the potentials used here is less than 7 × 10-5 for the thermal diffusion factor and 2 × 10-5 for all the other coefficients. Since each employed potential has a different accuracy, the uncertainty related to such accuracies was analyzed, considering the contribution of each potential uncertainty. It was found that the total uncertainty due to the potentials is larger than the numerical error and it varies depending on the temperature and molar fraction. A comparison of the calculated transport coefficients with those available in the open literature shows that the present calculations provide the most accurate values currently available for the transport coefficients of helium-neon binary mixtures at low density.

  7. Salt Tolerance of Desorption Electrospray Ionization (DESI)

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Ayanna U. [Purdue University; Talaty, Nari [Purdue University; Cooks, R G [Purdue University; Van Berkel, Gary J [ORNL


    Suppression of ion intensity in the presence of high salt matrices is common in most mass spectrometry ionization techniques. Desorption electrospray ionization (DESI) is an ionization method that exhibits salt tolerance, and this is investigated. DESI analysis was performed on three different drug mixtures in the presence of 0, 0.2, 2, 5, 10, and 20% NaCl:KCl weight by volume from seven different surfaces. At physiological concentrations individual drugs in each mixture were observed with each surface. Collision-induced dissociation (CID) was used to provide additional confirmation for select compounds. Multiple stage experiments, to MS5, were performed for select compounds. Even in the absence of added salt, the benzodiazepine containing mixture yielded sodium and potassium adducts of carbamazepine which masked the ions of interest. These adducts were eliminated by adding 0.1% 7M ammonium acetate to the standard methanol:water (1:1) spray solvent. Comparison of the salt tolerance of DESI with that of electrospray ionization (ESI) demonstrated much better signal/noise characteristics for DESI in this study. The salt tolerance of DESI was also studied by performing limit of detection and dynamic range experiments. Even at a salt concentration significantly above physiological concentrations, select surfaces were effective in providing spectra that allowed the ready identification of the compounds of interest. The already high salt tolerance of DESI can be optimized further by appropriate choices of surface and spray solution.

  8. Natural convection and thermomechanical motion in helium in a low-gravity environment (United States)

    Kassoy, D. R.; Sutrisno

    The paper considers the consequences of a sudden and significant heat leak at the wall of a vessel containing pressurized helium gas. A theoretical formulation is developed to describe the motion and thermodynamical disturbances that occur subsequent to the boundary power deposition. Gas speed and pressure/temperature disturbances resulting from localized thermal expansion are compared with those arising from buoyancy effects at gravity levels from 1g to 10 to the -6th g. It is demonstrated that in most low gravity environments thermomechanically induced disturbances predominate for significant time periods.

  9. Applicability of the Atkins model to the ion behavior in superfluid helium (United States)

    Leiderer, P.; Shikin, V.


    The properties of ion clusters in superfluid helium are usually treated within the model proposed by Atkins (the snowball model). However, although a solid sphere of radius Ra around the seed ion can actually exist, it is vitally important to which extent it really governs the scattering mechanisms of various thermal excitations at the cluster. Detailed analysis of available data on the phonon as well as the impurity and Stokes mobilities reveals that the true unifying factor in the discussed picture is a power-law density enhancement in the vicinity of the seed charged particle caused by the polarization forces rather than the radius Ra

  10. Two photon laser spectroscopy of antiprotonic helium atoms at CERN’s AD

    CERN Document Server

    Hori, M


    The ASACUSA collaboration of CERN has carried out two-photon laser spectroscopy of antiprotonic helium atoms using counter-propagating ultraviolet laser beams. This excited some non-linear transitions of the antiproton at the wavelengths λ = 139.8–197.0 nm, in a way that reduced the thermal Doppler broadening of the observed resonances. The resulting narrow spectral lines allowed the measurement of three transition frequencies with fractional precisions of 2.3–5 parts in 109. By comparing these values with three-body QED calculations, the antiproton-to-electron mass ratio was derived as 1836.1526736(23). We briefly review these results.

  11. Atomic scattering from an adsorbed monolayer solid with a helium beam that penetrates to the substrate

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, L.W.; Dammann, Bernd


    Diffraction and one-phonon inelastic scattering of a thermal energy helium atomic beam are evaluated in the situation that the target monolayer lattice is so dilated that the atomic beam penetrates to the interlayer region between the monolayer and the substrate. The scattering is simulated......(1 × 1) commensurate monolayer solid of H2/KCl(001). For the latter, there are cases where part of the incident beam is trapped in the interlayer region for times exceeding 50 ps, depending on the spacing between the monolayer and the substrate and on the angle of incidence. The feedback effect...

  12. Nano-engineering with a focused helium ion beam

    NARCIS (Netherlands)

    Maas, D.J.; Drift, E.W. van der; Veldhoven, E. van; Meessen, J.; Rudneva, M.; Alkemade, P.F.A.


    Although Helium Ion Microscopy (HIM) was introduced only a few years ago, many new application fields are budding. The connecting factor between these novel applications is the unique interaction of the primary helium ion beam with the sample material at and just below its surface. In particular,

  13. Turnkey Helium Purification and Liquefaction Plant for DARWIN, Australia (United States)

    Lindemann, U.; Boeck, S.; Blum, L.; Kurtcuoglu, K.


    The Linde Group, through its Australian subsidiary BOC Limited, has signed an agreement with Darwin LNG Pty Ltd for the supply of feed-gas to Linde's new helium refining and liquefaction facility in Darwin, Australia. Linde Kryotechnik AG, located in Switzerland, has carried out the engineering and fabrication of the equipment for the turn key helium plant. The raw feed gas flow of 20'730 Nm3/h contains up to of 3 mol% helium. The purification process of the feed gas consists of partial condensation of nitrogen in two stages, cryogenic adsorption and finally catalytic oxidation of hydrogen followed by a dryer system. Downstream of the purification the refined helium is liquefied using a modified Bryton process and stored in a 30'000 gal LHe tank. For further distribution and export of the liquid helium there are two stations available for filling of truck trailers and containers. The liquid nitrogen, required for refrigeration capacity to the nitrogen removal stages in the purification process as well as for the pre-cooling of the pure helium in the liquefaction process, is generated on site during the feed gas purification process. The optimized process provides low power consumption, maximum helium recovery and a minimum helium loss.

  14. Proton-Helium Elastic Electromagnetic Cross-Section

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Burn [Chinese Academy of Sciences (CAS), Lanzhou (China); Ng, Kingyuen B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)


    In the test facility of the C-ADS project, A 25-MeV proton beam is directed to hit a target consisting of 1-mm tungsten balls lubricated by 100-Pa helium gas. To estimate the power loss to the helium gas, an accurate collision cross section is computed.

  15. Nuclear polarizability of helium isotopes in atomic transitions


    Pachucki, K.; Moro, A. M.


    We estimate the nuclear polarizability correction to atomic transition frequencies in various helium isotopes. This effect is non-negligible for high precision tests of quantum electrodynamics or accurate determination of the nuclear charge radius from spectroscopic measurements in helium atoms and ions. In particular, it amounts to $28(3)$ kHz for 1S-2S transition in 4He+.

  16. Deposition, milling, and etching with a focused helium ion beam

    NARCIS (Netherlands)

    Alkemade, P.F.A.; Veldhoven, E. van


    The recent successful development of the helium ion microscope has produced both a new type of microscopy and a new tool for nanoscale manufacturing. This chapter reviews the first explorations in this new field in nanofabrication. The studies that utilize the Orion helium ion microscope to grow or

  17. Low Temperature Gaseous Helium and very High Turbulence Experiments

    CERN Document Server

    Pietropinto, S; Castaing, B; Chabaud, B; Gagne, Y; Hébral, B; Ladam, Y; Lebrun, P; Pirotte, O; Poulain, C; Roche, P E


    Cryogenic gaseous helium gives access to extreme turbulent experimental conditions. The very high cooling helium flow rates available at CERN have been used to reach Reynolds numbers up to Re ~ 10**7 in a round jet experiment. First results are discussed.

  18. Cesium sorption and desorption on selected Los Alamos soils

    Energy Technology Data Exchange (ETDEWEB)

    Kung, K.S.; Chan, J.; Longmire, P.; Fowler, M.


    Laboratory experiments were conducted to evaluate the sorptivity of cesium onto Los Alamos soils under controlled experimental conditions. Four soil profiles were collected and each soil profile which is broken into layers according to previously identified soil horizons were studied. Batch sorption isotherms were studied to quantify the chemical reactivity of each soil horizon toward cesium ion. Radioactive cesium-137 was used as sorbent and gamma counting was used to quantify the amount of sorption. Desorption experiments were conducted after the sorption experiments. Batch desorption isotherms were studied to quantify the desorption of presorbed cesium from these Los Alamos soils. This study suggests cesium may sorb strongly and irreversibly on most Los Alamos soils. The amount of cesium sorption and desorption is possibly related to the clay content of the soil sample since subsurface sample has a higher clay content than that of surface sample.

  19. Search for Dislocation Free Helium 4 Crystals. (United States)

    Souris, F; Fefferman, A D; Haziot, A; Garroum, N; Beamish, J R; Balibar, S

    The giant plasticity of [Formula: see text]He crystals has been explained as a consequence of the large mobility of their dislocations. Thus, the mechanical properties of dislocation free crystals should be quite different from those of usual ones. In 1996-1998, Ruutu et al. published crystal growth studies showing that, in their helium 4 crystals, the density of screw dislocations along the c-axis was less than 100 per cm[Formula: see text], sometimes zero. We have grown helium 4 crystals using similar growth speeds and temperatures, and extracted their dislocation density from their mechanical properties. We found dislocation densities that are in the range of 10[Formula: see text]-10[Formula: see text] per cm[Formula: see text], that is several orders of magnitude larger than Ruutu et al. Our tentative interpretation of this apparent contradiction is that the two types of measurements are somewhat indirect and concern different types of dislocations. As for the dislocation nucleation mechanism, it remains to be understood.

  20. Helium enrichment during convective carbon dioxide dissolution (United States)

    Larson, T.; Hesse, M. A.


    Motivated by observed variations of the CO2/He ratios in natural carbon dioxide (CO2) reservoirs, such as the Bravo Dome field in northeastern New Mexico, we have performed laboratory experiments equilibrating gas mixtures containing Helium (He) and CO2 with water, at close to ambient conditions in a closed system. The experimental design allows for continuous measurement of headspace pressure as well as timed interval measurements of the CO2/He ratios and the δ13C value of CO2 in the headspace. Results from three dissolution experiments are reported: 1) pure Helium system, 2) 98% CO2 + 2% Nitrogen system, and 3) 97% CO2 and 3% Helium. Final equilibrated experimental results are compared to theoretical results obtained using Henry's Law relationships. The evolution of the amount of dissolved CO2 computed from gas pressure and gas compositions are in good agreement with Henry's Law relationships. For example, the CO2 + N2 system was initially pressurized with pure CO2 to 1323 mbar and after six days it equilibrated to a measured headspace pressure of 596 mbar. This compares very well with a calculated equilibrium headspace pressure of 592 mbar for this system. The CO2 + He system was pressurized to 1398 mbar CO2 and after six days equilibrated to a measured headspace pressure of 397 mbar. This measured pressure is slightly higher than the predicted equilibrated headspace pressure of 341 mbar, indicating a possible leak in the system during this particular experiment. In both experiments the initial pH of the water was 9.3 and the final equilibrated pH was 5.4. The δ13C value of equilibrated headspace CO2 was within 0.25‰ of its starting δ13C value, demonstrating insignificant carbon isotope fractionation at low pH. Measured Helium/ CO2 ratios throughout the CO2+Helium experiment preserve a non-linear trend of increasing He/ CO2 ratios through time that correlate very well with the measured pressure drop from CO2 dissolution. This indicates that gas composition

  1. Study on hydrogen absorption/desorption properties of uranium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.


    Hydrogen absorption/desorption properties of two U-Mn intermetallic compounds, U{sub 6}Mn and UMn{sub 2}, were investigated. U{sub 6}Mn absorbed hydrogen and the hydrogen desorption pressure of U{sub 6}Mn obtained from this experiment was higher than that of U, which was considered to be the effect of alloying, whereas UMn{sub 2} was not observed to absorb hydrogen up to 50 atm at room temperature. (author)

  2. Desorption by Femtosecond Laser Pulses : An Electron-Hole Effect?


    D. M., NEWNS; T. F., HEINZ; J. A., MISEWICH; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center


    Desorption of molecules from metal surfaces induced by femtosecond visible laser pulses has been reported. Since the lattice temperature rise is insufficient to explain desorption, an electronic mechanism is clearly responsible. It is shown that a theory based on direct coupling between the center-of-mass degree of freedom of the adsorbate and the electron-hole excitations of the substrate provides a satisfactory explanation of the various experimental findings.

  3. Binary helium dwarf supernovae. [numerical hydrodynamic investigation of evolution (United States)

    Mazurek, T. J.


    The possibility of helium dwarf evolution to sufficiently high densities for violent helium ignition in low-massed binary systems is investigated. During accretional evolution the occurrence of thermonuclear runaway is found to be probable when the dwarf's mass approaches 1 solar mass, and steady-state discontinuous wave propagation considerations indicate that the dwarf is totally incinerated (i.e., its total mass burns to nuclear equilibrium) by a detonation wave. A numerical stellar dynamic investigation, including the full effects of nuclear statistical equilibrium and electron capture indicates total disruption for all reasonable dwarf central densities. For consistency with the cosmic element abundances, the conclusion of total disruption requires a low frequency for helium supernova events, implying that helium ignition in mass-exchanging binaries must occur at the lower densities of the relatively mild helium flash.

  4. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom (United States)

    Harbola, Varun


    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…

  5. Critical Temperature Differences of a Standing Wave Thermoacoustic Prime Mover with Various Helium-Based Binary Mixture Working Gases (United States)

    Setiawan, Ikhsan; Nohtomi, Makoto; Katsuta, Masafumi


    Thermoacoustic prime movers are energy conversion devices which convert thermal energy into acoustic work. The devices are environmentally friendly because they do not produce any exhaust gases. In addition, they can utilize clean energy such as solar-thermal energy or waste heat from internal combustion engines as the heat sources. The output mechanical work of thermoacoustic prime movers are usually used to drive a thermoacoustic refrigerator or to generate electricity. A thermoacoustic prime mover with low critical temperature difference is desired when we intend to utilize low quality of heat sources such as waste heat and sun light. The critical temperature difference can be significantly influenced by the kinds of working gases inside the resonator and stack's channels of the device. Generally, helium gas is preferred as the working gas due to its high sound speed which together with high mean pressure will yield high acoustic power per unit volume of the device. Moreover, adding a small amount of a heavy gas to helium gas may improve the efficiency of thermoacoustic devices. This paper presents numerical study and estimation of the critical temperature differences of a standing wave thermoacoustic prime mover with various helium-based binary-mixture working gases. It is found that mixing helium (He) gas with other common gases, namely argon (Ar), nitrogen (N2), oxygen (O2), and carbon dioxide (CO2), at appropriate pressures and molar compositions, reduce the critical temperature differences to lower than those of the individual components of the gas mixtures. In addition, the optimum mole fractions of Hegas which give the minimum critical temperature differences are shifted to larger values as the pressure increases, and tends to be constant at around 0.7 when the pressure increases more than 2 MPa. However, the minimum critical temperature differences slightly increase as the pressure increases to higher than 1.5 MPa. Furthermore, we found that the lowest

  6. Heat switch technology for cryogenic thermal management (United States)

    Shu, Q. S.; Demko, J. A.; E Fesmire, J.


    Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.

  7. Thermal control of solid breeder blankets

    Energy Technology Data Exchange (ETDEWEB)

    Raffray, A.R.; Ying, A.; Gorbis, Z.; Tillack, M.S.; Abdou, M.A.


    An assessment of the thermal control mechanisms applicable to solid breeder blanket designs under ITER-like operating conditions is presented in this paper. Four cases are considered: a helium gap; a sintered block Be region; a sintered block helium region with a metallic felt at the Be/clad interface; and a Be packed bed region. For these cases, typical operating are explored to determine the ranges of wall load which can be accommodated while maintaining the breeder within its allowable operating temperature window. The corresponding region thicknesses are calculated to help identify practicality and design tolerances.

  8. Thermal control of solid breeder blankets

    Energy Technology Data Exchange (ETDEWEB)

    Raffray, A.R.; Ying, A.; Gorbis, Z.; Tillack, M.S.; Abdou, M.A.


    An assessment of the thermal control mechanisms applicable to solid breeder blanket designs under ITER-like operating conditions is presented in this paper. Four cases are considered: a helium gap; a sintered block Be region; a sintered block helium region with a metallic felt at the Be/clad interface; and a Be packed bed region. For these cases, typical operating are explored to determine the ranges of wall load which can be accommodated while maintaining the breeder within its allowable operating temperature window. The corresponding region thicknesses are calculated to help identify practicality and design tolerances.

  9. Helium processing for deuterium/helium burns in ITER's physics phase

    Energy Technology Data Exchange (ETDEWEB)

    Finn, P.A.; Sze, D.K.


    The requirements for vacuum pumping and fuel processing for deuterium/helium (D/{sup 3}He) burns in the physics operating phase for the International Thermonuclear Experimental Reactor (ITER) were assessed. These burns are expected to have low fusion power (100 MW), short burn times ({le}30 s), limited operation (2000 shots), and a fractional burn {approximately}0.3%. For the physics phase, the fuel processing system will include several units to separate deuterium and helium (activated charcoal bed, SAES getter and a Pd/Ag diffuser), as well as an isotopic separation system to separate {sup 3}He and {sup 4}He. The needed vacuum system's cryosorption surface area may be as large as 10 m{sup 2} if the burn time is {approximately}200 s, the fractional burn is <0.3%, or the fusion power is >100 MW. 8 refs., 1 fig., 4 tabs.

  10. Imprints from the solar cycle on the helium atom and helium pickup ion distributions

    Directory of Open Access Journals (Sweden)

    D. Rucinski


    Full Text Available Neutral interstellar helium atoms penetrate into the solar system almost unaffected by gas–plasma interactions in the heliospheric interface region, and thus can be considered as carriers of original information on the basic parameters (like density, temperature, bulk velocity of the Very Local Interstellar Medium (VLISM. Such information can nowadays be derived from analysis of data obtained from different experimental methods: in situ measurements of He atoms (Ulysses, observations of the solar backscattered He 584 A radiation (EUVE, in situ measurements of He + pickup ions (AMPTE, Ulysses, Wind, SOHO, ACE. In view of the current coordinated international ISSI campaign devoted to the study of the helium focusing cone structure and its evolution, we analyze expected variations of neutral He density, of He + pickup fluxes and of their phase space distributions at various phases of the solar activity cycle based on a realistic time-dependent modelling of the neutral helium and He + pickup ion distributions, which reflect solar cycle-induced variations of the photoionization rate. We show that the neutral helium density values are generally anticorrelated with the solar activity phase and in extreme cases (near the downwind axis the maximum-to-minimum density ratio may even exceed factors of ~ 3 at 1 AU. We also demonstrate that in the upwind hemisphere (at 1 AU and beyond the He + fluxes are correlated with the solar cycle activity, whereas on the downwind side the maximum of the expected flux up to distances of ~ 3 AU occurs around solar minimum epoch, and only further away does the correlation with solar activity become positive. Finally, we present the response of the phase space distribution spectra of He + pickup ions (in the solar wind frame for different epochs of the solar cycle and heliocentric distances from 1 to 5 AU covering the range of Ulysses, Wind and ACE observations.Key words. Solar physics, astrophysics and astronomy

  11. Helium and Sulfur Hexafluoride in Musical Instruments (United States)

    Forinash, Kyle; Dixon, Cory L.


    The effects of inhaled helium on the human voice were investigated in a recent article in The Physics Teacher.1 As mentioned in that article, demonstrations of the effect are a popular classroom activity. If the number of YouTube videos is any indication, the effects of sulfur hexafluoride on the human voice are equally popular. However, there appears to be little information available on the effects of either of these gases on musical instruments.2 We describe here the results of a student project that involved measuring the frequency shifts in an organ pipe, a trumpet, and a trombone as the result of filling the instruments with these two gases. The project was one of several possible end-of-semester projects required in an elective science of sound course for non-science majors.

  12. Frequency metrology in quantum degenerate helium

    Directory of Open Access Journals (Sweden)

    Vassen Wim


    Full Text Available We have measured the absolute frequency of the 1557-nm doubly forbidden transition between the two metastable states of helium, 2 3S1 (lifetime 8000 s and 2 1S0 (lifetime 20 ms, with 1 kHz precision. With an Einstein coefficient of 10−7 s−1 this is one of weakest optical transitions ever measured. The measurement was performed in a Bose-Einstein condensate of 4He* as well as in a Degenerate Fermi Gas of 3He*, trapped in a crossed dipole trap. From the isotope shift we deduced the nuclear charge radius difference between the α-particle and the helion. Our value differs by 4σ with a very recent result obtained on the 2 3S → 2 3P transition.

  13. An Update of the Primordial Helium Abundance (United States)

    Peimbert, Antonio; Peimbert, Manuel; Luridiana, Valentina


    Three of the best determinations of the primordial helium abundance (Yp) are those obtained from low metallicity HII regions by Aver, Olive, Porter, & Skillman (2013); Izotov, Thuan, & Guseva (2014); and Peimbert, Peimbert, & Luridiana (2007). In this poster we update the Yp determination by Peimbert et al. taking into account, among other aspects, recent advances in the determination of the He atomic physical parameters, the temperature structure, the collisional effects of high temperatures on the Balmer lines, as well as the effect of H and He bound-bound absorption.We compare our results with those of Aver et al. and Izotov et al. and point out possible explanations for the differences among the three determinations. We also compare our results with those obtained with the Plank satellite considering recent measurements of the neutron mean life; this comparison has implications on the determination of the number of light neutrino families.

  14. Cluster counting in helium based gas mixtures (United States)

    Cataldi, G.; Grancagnolo, F.; Spagnolo, S.


    The statistical advantages deriving from counting primary ionization, as opposed to the conventional energy loss measurement, are extensively discussed. A primary ionization counting method is proposed for a "traditional", cylindrical, single sense wire cell drift chamber, which makes use of a helium based gas mixture. Its conceptual feasibility is proven by means of a simple Monte Carlo simulation. A counting algorithm is developed and tested on the simulation output. A definition of the parameters of the read-out and of the digitizing electronics is given, assuming the described counting algorithm applied to a general detector design, in order to have a complete and realistic planning of a cluster counting measurement. Finally, some interesting results from a beam test, performed according to the described parameters, on primary ionization measurements and on {π}/{μ} separation are shown.

  15. Helium Inventory Management For LHC Cryogenics

    CERN Document Server

    Pyarali, Maisam


    The LHC is a 26.7 km circumference ring lined with superconducting magnets that operate at 1.9 K. These magnets are used to control the trajectory of beams of protons traveling in opposite directions and collide them at various experimental sites across the LHC where their debris is analyzed. The focus of this paper is the cryogenic system that allows the magnets to operate in their superconducting states. It aims to highlight the operating principles of helium refrigeration and liquefaction, with and without nitrogen pre-cooling; discuss the various refrigerators and liquefiers used at CERN for both LHC and Non-LHC applications, with their liquefaction capacities and purposes; and finally to deliberate the management of the LHC inventory and how it contributes to the strategic decision CERN makes regarding the inventory management during the Year-End Technical Stop (YETS), Extended Year-End Technical Stop (EYETS) and long shutdowns.

  16. Photoionization of helium dimers; Photoionisation von Heliumdimeren

    Energy Technology Data Exchange (ETDEWEB)

    Havermeier, Tilo


    The helium dimer is one of the most weakly bound systems in the universe. This makes it an interesting quantum mechanical object for investigation. These Van der Waals Clusters can be produced in an expansion of a cryogenic gas jet through a small nozzle into vacuum. In the present experiment we examine the interaction of He dimers with synchrotron radiation at an energy range from 64 to 78 eV. We observed different pathways leading to single ionization of both He atoms of the dimer compound. This two close standing ions begin now to dissociate in cause of their coulomb potential. All charged fragments were detected in coincidence with a COLTRIMS system. Especially Interatomic Coulombic Decay (ICD) and the two step process (TS1) were clearly identified. Furthermore a distribution of the internuclear distance was obtained from the measured Kinetic Energy Release (KER). (orig.)

  17. Positronium and Electron Scattering on Helium (United States)

    DiRienzi, Joseph


    A recent work [1] establishes experimentally that Positronium scattering by atoms of various elements is surprisingly close in total cross-section to that of an isolated electron of the same velocity. In this work we will look at the scattering of Ps on Helium and compare it to a determination of the scattering of an e- with the same element. For both the Ps scattering and the e- scattering on He, we assume the symmetrization of the e- with the closed shell He electrons is the dominant interaction. A local effective potential employed in [2] and [3] is used to model the electron exchange and cross- sections are determined for a set of partial waves. For the Ps scattering we include as a secondary effect the Van der Waals interaction. For single e- scattering of He, we also employ a short range Coulomb potential and dispersion as contributing effects. Results of the cross-sections determined in each case are then compared

  18. Observation of the antimatter helium-4 nucleus. (United States)


    High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang; in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (4He), also known as the anti-α (α), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the α-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level. Antimatter nuclei with B antimatter nuclei and a benchmark for possible future observations of 4He in cosmic radiation.

  19. Operation of an ADR using helium exchange gas as a substitute for a failed heat switch (United States)

    Shirron, P.; DiPirro, M.; Kimball, M.; Sneiderman, G.; Porter, F. S.; Kilbourne, C.; Kelley, R.; Fujimoto, R.; Yoshida, S.; Takei, Y.; Mitsuda, K.


    The Soft X-ray Spectrometer (SXS) is one of four instruments on the Japanese Astro-H mission, which is currently planned for launch in late 2015. The SXS will perform imaging spectroscopy in the soft X-ray band (0.3-12 keV) using a 6 × 6 pixel array of microcalorimeters cooled to 50 mK. The detectors are cooled by a 3-stage adiabatic demagnetization refrigerator (ADR) that rejects heat to either a superfluid helium tank (at 1.2 K) or to a 4.5 K Joule-Thomson (JT) cryocooler. Four gas-gap heat switches are used in the assembly to manage heat flow between the ADR stages and the heat sinks. The engineering model (EM) ADR was assembled and performance tested at NASA/GSFC in November 2011, and subsequently installed in the EM dewar at Sumitomo Heavy Industries, Japan. During the first cooldown in July 2012, a failure of the heat switch that linked the two colder stages of the ADR to the helium tank was observed. Operation of the ADR requires some mechanism for thermally linking the salt pills to the heat sink, and then thermally isolating them. With the failed heat switch unable to perform this function, an alternate plan was devised which used carefully controlled amounts of exchange gas in the dewar's guard vacuum to facilitate heat exchange. The process was successfully demonstrated in November 2012, allowing the ADR to cool the detectors to 50 mK for hold times in excess of 10 h. This paper describes the exchange-gas-assisted recycling process, and the strategies used to avoid helium contamination of the detectors at low temperature.

  20. Operation of an ADR Using Helium Exchange Gas as a Substitute for a Failed Heat Switch (United States)

    Shirron, P.; DiPirro, M.; Kimball, M.; Sneiderman, G.; Porter, F. S.; Kilbourne, C.; Kelley, R.; Fujimoto, R.; Yoshida, S.; Takei, Y.; hide


    The Soft X-ray Spectrometer (SXS) is one of four instruments on the Japanese Astro-H mission, which is currently planned for launch in late 2015. The SXS will perform imaging spectroscopy in the soft X-ray band (0.3-12 keV) using a 6 6 pixel array of microcalorimeters cooled to 50 mK. The detectors are cooled by a 3-stage adiabatic demagnetization refrigerator (ADR) that rejects heat to either a superfluid helium tank (at 1.2 K) or to a 4.5 K Joule-Thomson (JT) cryocooler. Four gas-gap heat switches are used in the assembly to manage heat flow between the ADR stages and the heat sinks. The engineering model (EM) ADR was assembled and performance tested at NASA/GSFC in November 2011, and subsequently installed in the EM dewar at Sumitomo Heavy Industries, Japan. During the first cooldown in July 2012, a failure of the heat switch that linked the two colder stages of the ADR to the helium tank was observed. Operation of the ADR requires some mechanism for thermally linking the salt pills to the heat sink, and then thermally isolating them. With the failed heat switch unable to perform this function, an alternate plan was devised which used carefully controlled amounts of exchange gas in the dewar's guard vacuum to facilitate heat exchange. The process was successfully demonstrated in November 2012, allowing the ADR to cool the detectors to 50 mK for hold times in excess of 10 h. This paper describes the exchange-gas-assisted recycling process, and the strategies used to avoid helium contamination of the detectors at low temperature.

  1. Liquid Oxygen Thermodynamic Vent System Testing with Helium Pressurization (United States)

    VanDresar, Neil T.


    This report presents the results of several thermodynamic vent system (TVS) tests with liquid oxygen plus a test with liquid nitrogen. In all tests, the liquid was heated above its normal boiling point to 111 K for oxygen and 100 K for nitrogen. The elevated temperature was representative of tank conditions for a candidate lunar lander ascent stage. An initial test series was conducted with saturated oxygen liquid and vapor at 0.6 MPa. The initial series was followed by tests where the test tank was pressurized with gaseous helium to 1.4 to 1.6 MPa. For these tests, the helium mole fraction in the ullage was quite high, about 0.57 to 0.62. TVS behavior is different when helium is present than when helium is absent. The tank pressure becomes the sum of the vapor pressure and the partial pressure of helium. Therefore, tank pressure depends not only on temperature, as is the case for a pure liquid-vapor system, but also on helium density (i.e., the mass of helium divided by the ullage volume). Thus, properly controlling TVS operation is more challenging with helium pressurization than without helium pressurization. When helium was present, the liquid temperature would rise with each successive TVS cycle if tank pressure was kept within a constant control band. Alternatively, if the liquid temperature was maintained within a constant TVS control band, the tank pressure would drop with each TVS cycle. The final test series, which was conducted with liquid nitrogen pressurized with helium, demonstrated simultaneous pressure and temperature control during TVS operation. The simultaneous control was achieved by systematic injection of additional helium during each TVS cycle. Adding helium maintained the helium partial pressure as the liquid volume decreased because of TVS operation. The TVS demonstrations with liquid oxygen pressurized with helium were conducted with three different fluid-mixer configurations-a submerged axial jet mixer, a pair of spray hoops in the tank

  2. The primordial helium abundance from updated emissivities

    Energy Technology Data Exchange (ETDEWEB)

    Aver, Erik [Department of Physics, Gonzaga University, 502 E Boone Ave, Spokane, WA, 99258 (United States); Olive, Keith A.; Skillman, Evan D. [School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN, 55455 (United States); Porter, R.L., E-mail:, E-mail:, E-mail:, E-mail: [Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602 (United States)


    Observations of metal-poor extragalactic H II regions allow the determination of the primordial helium abundance, Y{sub p}. The He I emissivities are the foundation of the model of the H II region's emission. Porter, Ferland, Storey, and Detisch (2012) have recently published updated He I emissivities based on improved photoionization cross-sections. We incorporate these new atomic data and update our recent Markov Chain Monte Carlo analysis of the dataset published by Izotov, Thuan, and Stasi'nska (2007). As before, cuts are made to promote quality and reliability, and only solutions which fit the data within 95% confidence level are used to determine the primordial He abundance. The previously qualifying dataset is almost entirely retained and with strong concordance between the physical parameters. Overall, an upward bias from the new emissivities leads to a decrease in Y{sub p}. In addition, we find a general trend to larger uncertainties in individual objects (due to changes in the emissivities) and an increased variance (due to additional objects included). From a regression to zero metallicity, we determine Y{sub p} = 0.2465 ± 0.0097, in good agreement with the BBN result, Y{sub p} = 0.2485 ± 0.0002, based on the Planck determination of the baryon density. In the future, a better understanding of why a large fraction of spectra are not well fit by the model will be crucial to achieving an increase in the precision of the primordial helium abundance determination.

  3. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.


    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal uptake. Little is known about the interaction dynamics of organic acid anions with the soil matrix and the potential impact of adsorption and desorption processes on the functional significance of these effects. The aim of this study was to characterize experimentally the adsorption and desorption dynamics of organic acid anions in five agricultural soils differing in iron and aluminium oxide contents and using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast in all soils, reaching a steady state within approximately 1 hour. However, for a given total soil citrate concentration (ct) the steady state was critically dependent on the starting conditions of the experiment, whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs). Specifically, desorption-led processes resulted in significantly smaller steady-state solution concentrations than adsorption-led processes, indicating that hysteresis occurred. As it is not possible to distinguish between different adsorption and desorption pools in soil experimentally, a new dynamic hysteresis model that relies only on measured soil solution concentrations was developed. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use, we applied the model to two relevant situations involving exudation and microbial degradation. The study highlighted the complex nature of citrate adsorption and desorption dynamics in soil. We conclude that existing models need to incorporate both temporal and hysteresis components to describe realistically the role and fate of organic acids in soil processes. © 2011 The

  4. Suicidal asphyxiation with helium: report of three cases. (United States)

    Grassberger, Martin; Krauskopf, Astrid


    Helium is an inert gas that among other things is used medically to alleviate the symptoms of airway obstruction, as part of a diving mix in deep-sea diving or as balloon gas. In recent years the so-called right-to-die literature has suggested suffocation with inhaled helium as an effective and peaceful means of self-deliverance for terminally ill patients. Helium displaces oxygen and carbon dioxide and can thus lead to asphyxia. We report three cases of suicidal asphyxiation with helium gas that were examined at the Department of Forensic Medicine Vienna within three months in 2006. In all three cases, autopsy was unrewarding from the point of view of gross pathology. Special autopsy techniques and devices are required for collection of the gas from the lungs. Gas-chromatography is used to examine the gas for helium; however, this requires replacement of the carrier gas, which is itself usually helium. The fact that three people in Vienna committed suicide using this method within a short period of time, together with the abundance of detailed how-to literature on the Internet, suggests a possible future increase in the number of deaths associated with the inhalation of inert gases, particularly helium. Because of the diagnostic obstacles involved, it is necessary to rely on good death-scene investigation for situational evidence when the body is discovered.

  5. Airborne laser-spark for ambient desorption/ionisation. (United States)

    Bierstedt, Andreas; Riedel, Jens

    A novel direct sampling ionisation scheme for ambient mass spectrometry is presented. Desorption and ionisation are achieved by a quasi-continuous laser induced plasma in air. Since there are no solid or liquid electrodes involved the ion source does not suffer from chemical interferences or fatigue originating from erosive burning or from electrode consumption. The overall plasma maintains electro-neutrality, minimising charge effects and accompanying long term drift of the charged particles trajectories. In the airborne plasma approach the ambient air not only serves as the plasma medium but at the same time also slows down the nascent ions via collisional cooling. Ionisation of the analyte molecules does not occur in the plasma itself but is induced by interaction with nascent ionic fragments, electrons and/or far ultraviolet photons in the plasma vicinity. At each individual air-spark an audible shockwave is formed, providing new reactive species, which expands concentrically and, thus, prevents direct contact of the analyte with the hot region inside the plasma itself. As a consequence the interaction volume between plasma and analyte does not exceed the threshold temperature for thermal dissociation or fragmentation. Experimentally this indirect ionisation scheme is demonstrated to be widely unspecific to the chemical nature of the analyte and to hardly result in any fragmentation of the studied molecules. A vast ensemble of different test analytes including polar and non-polar hydrocarbons, sugars, low mass active ingredients of pharmaceuticals as well as natural biomolecules in food samples directly out of their complex matrices could be shown to yield easily accessible yet meaningful spectra. Since the plasma medium is humid air, the chemical reaction mechanism of the ionisation is likely to be similar to other ambient ionisation techniques. Wir stellen hier eine neue Ionisationsmethode für die Umgebungsionisation (ambient ionisation) vor. Sowohl die

  6. Adsorption and desorption of dibenzothiophene on Ag-titania studied by the complementary temperature-programmed XPS and ESR (United States)

    Samokhvalov, Alexander; Duin, Evert C.; Nair, Sachin; Tatarchuk, Bruce J.


    Adsorption, desorption and structure of the surface chemical compounds formed upon interaction of dibenzothiophene (DBT) in solution of n-octane with the sulfur-selective Ag/Titania sorbent for the ultradeep desulfurization of liquid fuels was characterized by the temperature-programmed X-ray photoemission spectroscopy (XPS) and Electron Spin Resonance. Adsorption of DBT proceeds via chemisorption via the oxygen-containing surface groups. Desorption of DBT and thermal regeneration of the “spent” Ag/Titania were studied by the complementary temperature-programmed XPS and ESR from 25 °C to 525 °C, in the high vacuum vs. air. The XPS spectrum of the pure DBT is reported for the first time.

  7. Adsorption and desorption of dibenzothiophene on Ag-titania studied by the complementary temperature-programmed XPS and ESR

    Energy Technology Data Exchange (ETDEWEB)

    Samokhvalov, Alexander, E-mail: [Department of Chemical Engineering, Auburn University, Auburn, AL 36849 (United States); Department of Chemistry, Rutgers University, Camden, NJ 08102 (United States); Duin, Evert C. [Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849 (United States); Nair, Sachin; Tatarchuk, Bruce J. [Department of Chemical Engineering, Auburn University, Auburn, AL 36849 (United States)


    Adsorption, desorption and structure of the surface chemical compounds formed upon interaction of dibenzothiophene (DBT) in solution of n-octane with the sulfur-selective Ag/Titania sorbent for the ultradeep desulfurization of liquid fuels was characterized by the temperature-programmed X-ray photoemission spectroscopy (XPS) and Electron Spin Resonance. Adsorption of DBT proceeds via chemisorption via the oxygen-containing surface groups. Desorption of DBT and thermal regeneration of the 'spent' Ag/Titania were studied by the complementary temperature-programmed XPS and ESR from 25 deg. C to 525 deg. C, in the high vacuum vs. air. The XPS spectrum of the pure DBT is reported for the first time.

  8. Nanoscale helium ion microscopic analysis of collagen fibrillar changes following femtosecond laser dissection of human cornea. (United States)

    Riau, Andri K; Poh, Rebekah; Pickard, Daniel S; Park, Chris H J; Chaurasia, Shyam S; Mehta, Jodhbir S


    Over the last decade, femtosecond lasers have emerged as an important tool to perform accurate and fine dissections with minimal collateral damage in biological tissue. The most common surgical procedure in medicine utilizing femtosecond laser is LASIK. During the femtosecond laser dissection process, the corneal collagen fibers inevitably undergo biomechanical and thermal changes on a sub-micro- or even a nanoscale level, which can potentially lead to post-surgical complications. In this study, we utilized helium ion microscopy, complemented with transmission electron microscopy to examine the femtosecond laser-induced collagen fibrillar damage in ex vivo human corneas. We found that the biomechanical damage induced by laser etching, generation of tissue bridges, and expansion of cavitation bubble and its subsequent collapse, created distortion to the surrounding collagen lamellae. Femtosecond laser-induced thermal damage was characterized by collapsed collagen lamellae, loss of collagen banding, collagen coiling, and presence of spherical debris. Our findings have shown the ability of helium ion microscopy to provide high resolution images with unprecedented detail of nanoscale fibrillar morphological changes in order to assess a tissue damage, which could not be resolved by conventional scanning electron microscopy previously. This imaging technology has also given us a better understanding of the tissue-laser interactions in a nano-structural manner and their possible effects on post-operative wound recovery.

  9. The Local Helium Compound Transfer Lines for the Large Hadron Collider Cryogenic System

    CERN Document Server

    Parente, C; Munday, A; Wiggins, P


    The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include twelve new local helium transfer lines distributed among five LHC points in underground caverns. These lines, being manufactured and installed by industry, will connect the cold boxes of the 4.5-K refrigerators and the 1.8-K refrigeration units to the cryogenic interconnection boxes. The lines have a maximum of 30-m length and may possess either small or large re-distribution units to allow connection to the interface ports. Due to space restrictions the lines may have complex routings and require several elbowed sections. The lines consist of a vacuum jacket, a thermal shield and either three or four helium process pipes. Specific internal and external supporting and compensation systems were designed for each line to allow for thermal contraction of the process pipes (or vacuum jacket, in case of a break in the insulation vacuum) and to minimise the forces applied to the interface equipment. Whenever possible, f...

  10. Performance of Oil-Injected Scroll Compressors for Helium Refrigerators (United States)

    Shiibayashi, Masao; Izunaga, Yasushi; Sado, Shintaro

    In recent years there arises growing demand of helium liquefaction refrigerators for the magnetic resonance imaging systems, magnetically levitated vehicles and other systems using superconducting magnet. From this background, a small size, scroll type of hermetic helium compressor capable of compressing helium gas to the pressure ratio of 20 in a single stage is developed. Main features of this compressor are as follows. 1) Discharge capacity can be varied from 7 to 20 Nm3/h by changing driving motor frequency from 30 to 80 Hz. 2) The overall adiabatic efficiency showed 72%∼79% under the pressure ratio range of 11∼20 at 60 Hz using oil injection cooling device.

  11. European standardization activities on safety of liquid helium cryostats

    CERN Multimedia

    CERN. Geneva


    This talk gives a general overview on the challenges of designing safety units for liquid helium cryostats with regard to existing industry standards. It reviews the work of a national working group that published the technical guideline DIN SPEC 4683 in April 2015, which is dedicated to the particular conditions in liquid helium cryostats. Based on both this guideline and equivalent documents from e.g. CEA, CERN, a working group is being formed at the European Committee for Standardization, associated to CEN/TC 268, which will work on a European standard on safety of liquid helium cryostats. The actual status and the schedule of this project are presented.

  12. International thermodynamic tables of the fluid state helium-4

    CERN Document Server

    Angus, S; McCarty, R D


    International Thermodynamic Tables of the Fluid State Helium-4 presents the IUPAC Thermodynamic Tables for the thermodynamic properties of helium. The IUPAC Thermodynamic Tables Project has therefore encouraged the critical analysis of the available thermodynamic measurements for helium and their synthesis into tables. This book is divided into three chapters. The first chapter discusses the experimental results and compares with the equations used to generate the tables. These equations are supplemented by a vapor pressure equation, which represents the 1958 He-4 scale of temperature that is

  13. Multi-objective Optimization on Helium Liquefier Using Genetic Algorithm (United States)

    Wang, H. R.; Xiong, L. Y.; Peng, N.; Meng, Y. R.; Liu, L. Q.


    Research on optimization of helium liquefier is limited at home and abroad, and most of the optimization is single-objective based on Collins cycle. In this paper, a multi-objective optimization is conducted using genetic algorithm (GA) on the 40 L/h helium liquefier developed by Technical Institute of Physics and Chemistry of the Chinese Academy of Science (TIPC, CAS), steady solutions are obtained in the end. In addition, the exergy loss of the optimized system is studied in the case of with and without liquid nitrogen pre-cooling. The results have guiding significance for the future design of large helium liquefier.

  14. Heat flux to the helium cryogenic system elements in the case of incidental vacuum vessel ventilation with atmospheric air

    CERN Multimedia

    CERN. Geneva


    The selection process for size in safety equipment for cold vessels or process pipes in cryogenic systems should take into consideration the incidental ventilation of the vacuum vessel with atmospheric air. In this case, a significant heat input toward the cold elements of the system can be expected. A number of experimental investigations have been done for the elements at liquid helium temperature which have been covered with 10 layers of MLI. The typical values of the heat flux were measured in a range of 3.7 to 5.0 kW/m2 of the element surface. The helium temperature parts are typically surrounded by thermal shields that are kept in a temperature range of 50-80K. On the external side, the thermal shields are covered with 30-40 layers of MLI while on the internal side, the shields are bare. The theoretical calculations of heat flux to the thermal shield, with respect to the possibility of air condensation and freezing on the bare side of the thermal shield, show that the heat flux to the thermal shield can...

  15. Lateral gettering of iron by cavities induced by helium implantation in silicon (United States)

    Roqueta, F.; Ventura, L.; Grob, J. J.; Jérisian, R.


    Lateral gettering has been studied by introducing cavities in the periphery of large active devices. Cavities were induced by helium implantation followed by a thermal treatment on samples previously contaminated by iron. Those cavities are known to be efficient to trap metallic impurities in silicon by chemisorption. The iron distribution in samples of 6×6 mm2 area has been monitored by measuring current versus voltage characteristics and interstitial iron concentrations by deep level transient spectroscopy on Schottky diodes uniformly distributed. A symmetrical iron distribution has been observed with a decreasing concentration close to the gettering region. This lateral gettering is enhanced with increasing thermal budget. Extensions of several millimeters can be obtained allowing applications in power device technology.

  16. Sorption and desorption of diuron in Oxisol under biochar application

    Directory of Open Access Journals (Sweden)

    Fabiano André Petter

    Full Text Available ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula and 3 doses of biochar (0, 8 and 16 Mg∙ha−1. In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diuron, total organic carbon, fulvic acid, humic acid and humin, pH and partition coefficient to organic carbon were evaluated. The Freundlich isotherm was adjusted appropriately to describe diuron sorption kinetics in all the studied treatments. The application of biochar provided increment in the sorption (Kf and reduction in the desorption of diuron in 64 and 44%, respectively. This effect is attributed to the biochar contribution to the total organic carbon and C-humin and of these to diuron through hydrophobic interactions and hydrogen bonds. The positive correlation between the partition coefficient to organic carbon and Kf confirms the importance of soil organic compartment in the sorption of diuron. There was no competition of NPK fertilizer for the same sorption site of diuron. The increase and reduction in sorption and desorption, respectively, show that the application of biochar is an important alternative for the remediation of soil leaching of diuron, especially in sandy soils.

  17. New experimental device for VHTR structural material testing and helium coolant chemistry investigation - High Temperature Helium Loop in NRI Rez

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Jan, E-mail: [Research Centre Rez, Ltd, Husinec-Rez 130, 25068 Rez (Czech Republic); Institute of Chemical Technology Prague, Technicka 1905, 16628 Prague 6 (Czech Republic); Matecha, Josef, E-mail: [Nuclear Research Institute Rez plc., Husinec-Rez 130, 25068 Rez (Czech Republic); Cerny, Michal [Institute of Chemical Technology Prague, Technicka 1905, 16628 Prague 6 (Czech Republic); Viden, Ivan, E-mail: [Institute of Chemical Technology Prague, Technicka 1905, 16628 Prague 6 (Czech Republic); Sus, Frantisek [Research Centre Rez, Ltd, Husinec-Rez 130, 25068 Rez (Czech Republic); Nuclear Research Institute Rez plc., Husinec-Rez 130, 25068 Rez (Czech Republic); Hajek, Petr [Nuclear Research Institute Rez plc., Husinec-Rez 130, 25068 Rez (Czech Republic)


    The High Temperature Helium Loop (HTHL) is an experimental device for simulation of VHTR helium coolant conditions. The purpose of the HTHL is structural materials testing and helium coolant chemistry investigation. In the HTHL pure helium will be used as working medium and its main physical parameters are 7 MPa, max. temperature in the test section 900 Degree-Sign C and flow rate 37.8 kg/h. The HTHL consists of an active channel, the helium purification system, the system of impurities dosage (e.g. CO, CO{sub 2}, H{sub 2}, H{sub 2}O, O{sub 2}, N{sub 2}, and CH{sub 4}) and the helium chemistry monitoring system (sampling and on-line analysis and determination of impurities in the helium flow). The active channel is planned to be placed into the core of the experimental reactor LVR-15 which will serve as a neutron flux source (max. 2.5 Multiplication-Sign 10{sup 18} n/m{sup 2} s for fast neutrons). The HTHL is now under construction. Some of its main parts are finished, some are still being produced (active channel internals, etc.), some should be improved to work correctly (the helium circulatory compressor); certain sub-systems are planned to be integrated to the loop (systems for the determination of moisture and other impurities in helium, etc.). The start of the HTHL operation is expected during 2011 and the integration of the active channel into the LVR-15 core during 2012.

  18. On the design and implementation of a novel impedance chamber based variable temperature regulator at liquid helium temperatures. (United States)

    Nagendran, R; Thirumurugan, N; Chinnasamy, N; Janawadkar, M P; Sundar, C S


    A novel variable temperature regulator (VTR) based on the use of a fine impedance capillary to control the flow rate of cold helium gas into the VTR chamber is described. The capillary has a diameter of just 200 microm and the flow rate of cold helium gas through the capillary can be effectively controlled to the desired value by heating the capillary to a preset temperature and by controlling the pressure in the VTR chamber to a preset pressure using automated control circuits. Excellent temperature stability (about +/-1 mK at 10 K and +/-2 mK at 100 K) has been demonstrated in this setup with uniform rates of heating or cooling by an optimal choice of parameters. Compared to the more conventional VTR designs based on the use of mechanical long stem valves in the liquid helium reservoir to control the flow rate of liquid helium into the VTR chamber, and the use of a needle valve at the top of the cryostat to control the exchange gas pressure in the thermal isolation chamber, the present design enables temperature stability at any user desired temperature to be attained with uniform rates of cooling/heating with minimum consumption of liquid helium. The VTR has been successfully incorporated in the high field superconducting quantum interference device magnetometer setup developed in-house. It can also be incorporated in any low temperature physical property measurement system in which the temperature has to be varied in a controlled manner from 4.2 to 300 K and vice versa with uniform rates of heating and cooling.

  19. How to make Raman-inactive helium visible in Raman spectra of tritium-helium gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Schloesser, M.; Pakari, O.; Rupp, S.; Mirz, S.; Fischer, S. [Institute of Technical Physics, Tritium Laboratory Karlsruhe - TLK, Karlsruhe Institute of Technology - KIT, Karlsruhe (Germany)


    Raman spectroscopy, a powerful method for the quantitative compositional analysis of molecular gases, e.g. mixtures of hydrogen isotopologues, is not able to detect monoatomic species like helium. This deficit can be overcome by using radioluminescence emission from helium atoms induced by β-electrons from tritium decay. We present theoretical considerations and combined Raman/radioluminescence spectra. Furthermore, we discuss the linearity of the method together with validation measurements for determining the pressure dependence. Finally, we conclude how this technique can be used for samples of helium with traces of tritium, and vice versa. (authors)

  20. Femtosecond laser pulse induced desorption: A molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lončarić, Ivor, E-mail: [Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Alducin, Maite [Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain); Saalfrank, Peter [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam (Germany); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain); Juaristi, J. Iñaki [Departamento de Física de Materiales, Facultad de Químicas, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 San Sebastián (Spain); Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain)


    In recent simulations of femtosecond laser induced desorption of molecular oxygen from the Ag(110) surface, it has been shown that depending on the properties (depth and electronic environment) of the well in which O{sub 2} is adsorbed, the desorption can be either induced dominantly by hot electrons or via excitations of phonons. In this work we explore whether the ratios between the desorption yields from different adsorption wells can be tuned by changing initial surface temperature and laser pulse properties. We show that the initial surface temperature is an important parameter, and that by using low initial surface temperatures the electronically mediated process can be favored. In contrast, laser properties seem to have only a modest influence on the results.

  1. The influence of various factors on the droplet desorption (United States)

    Misyura, S. Y.; Morozov, V. S.


    Experimental data on sessile droplet desorption of aqueous salt solution of LiBr on a heated wall were implemented. High-temperature desorption of water-salt solutions in air atmosphere leads to significant difficulties at modeling heat and mass transfer. In this case, the evaporation rate multiply decreases with time and the diffusion coefficient, the desorption heat and the salt concentration change significantly. With the growth of salt concentration in solution from 10 % to 65 %, the steam partial pressure at the interface falls by dozens of times. In this study, we performed experiments in a wide range of salt concentrations and proposed a simple estimated method for calculating the mass flow. The resulting technique can predict the droplet solution behavior with a significant change in the partial vapor pressure on the droplet interphase with time.

  2. A study of the process of desorption of hexavalent chromium

    Directory of Open Access Journals (Sweden)

    W.B. Amorim


    Full Text Available In this work the process of desorption of hexavalent chromium, a toxic metal ion, from the marine algae Sargassum sp, following biosorption experiments 2³ factorial design was studied. A technique was applied to three eluents: HCl, H2SO4 and EDTA. Three factors of importance were evaluated: concentration of eluent, the ratio between mass of biosorbent and volume of eluent (S/L and process time. A statistical analysis of the experimental results showed that the three variables evaluated are significant for all three eluents. The models for chromium desorption were validated, as the results agreed well with the observed values. Through use of the response surface methodology, a factorial design based optimization technique; it was possible to identify the most suitable eluent and the interval of values for the process variables that resulted in the most significant desorption of chromium, which is relevant information for work aiming at process optimization.

  3. Performance of Screw Compressor for Small-Capacity Helium Refrigerators (United States)

    Urashin, Masayuki; Matsubara, Katsumi; Izunaga, Yasushi

    A helium compressor is one of the important components comprising a cryogenic refrigerator. The purpous of this investigation is to develop a new small-capacity helium screw compressor. The performance of a single-stage compressor at high compression ratio and the cooling performance of the compressor are investigated. A semi-hermetic screw compressor with new profile screw rotors, with which high performance can be obtained, is utilized in this investigation. Lubricating oil is applied to cool the compressor motor and the compressed gas. As a result, an overall isentropic efficiency of 80% is obtained when helium is compressed to a compression ratio of 19.8 with a single-stage screw compressor. At the same time, the temperature of a compressor motor and discharge gas can be maintained at low levels. Therefore, it is found that a single-stage screw compressor can compress helium to high compression ratio.

  4. Gaseous Helium Reclamation at Rocket Test Systems Project (United States)

    National Aeronautics and Space Administration — GHe reclamation is critical in reducing operating costs at rocket engine test facilities. Increases in cost and shortages of helium will dramatically impact testing...

  5. One of the Helium Liquifiers in the North Area

    CERN Multimedia

    CERN PhotoLab


    Several Helium Liquifiers were installed in the North Area to cool superconducting magnets used in the experiments. At center top is M.Dykes, at bottom right J.Dozio. See CERN Annual Report 1979 p.82.

  6. General mechanism for helium blistering involving displaced atom transport

    Energy Technology Data Exchange (ETDEWEB)

    McDonell, W.R.


    A mechanism developed to account for formation of vertically elongated blisters in high displacement environments produced by /sup 252/Cf alpha particles and fission fragments has been extended to formation of done-shaped blisters in the low displacement environments produced by simple helium ion beams. In this mechanism, transport of displaced atoms to relieve compressive stresses in the helium-implanted layer allows interconnections of small, subsurface bubbles to form the blister cavity. The same transport may cause thickening of the blister caps at low implantation energies. The transition from dome-shaped to vertically elongated blistering occurs between the 300 and 3000 displacements per helium atom produced by simple helium ions and /sup 252/Cf radiations respectively.

  7. Self-Calibrating Vector Helium Magnetometer (SVHM) Project (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposal describes proposed development of a conceptual design for a Self-Calibrating Vector Helium Magnetometer (SVHM) for design and fabrication...

  8. High-Range Scalar Helium Magnetometer (HSHM) Project (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes development of a conceptual design for a High-range Scalar Helium Magnetometer (HSHM) for the field range +/-16 Gauss. The HSHM...

  9. Helium, hydrogen, and fuzz in plasma-facing materials (United States)

    Hammond, Karl D.


    Tungsten, the primary material under consideration as the divertor material in magnetic-confinement nuclear fusion reactors, has been known for the last decade to form ‘fuzz’—a layer of microscopic, high-void-fraction features on the surface—after only a few hours of exposure to helium plasma. Fuzz has also been observed in molybdenum, tantalum, and several other metals. Helium bubbles in tungsten and other metals are also known to change the hardness of the surface, accumulate at grain boundaries and dislocations, and increase hydrogen isotope retention. This article reviews helium- and hydrogen-induced surface evolution, including fuzz formation, in tungsten and other plasma-facing materials, as well as modeling and experimental efforts that have been undertaken to understand the mechanisms of fuzz formation, helium and hydrogen transport in plasma-facing materials, and relevant atomic-scale and electronic effects relevant to plasma-facing materials.

  10. Dark Matter Detection Using Helium Evaporation and Field Ionization (United States)

    Maris, Humphrey J.; Seidel, George M.; Stein, Derek


    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1 MeV /c2 .

  11. Advances in molecular mechanism of cardioprotection induced by helium (United States)

    Ding, Yi-ping; Zhang, Ju-yi; Feng, Dong-xia; Kong, Yan; Xu, Zhuan; Chen, Gang


    Helium has been classified as a kind of inert gas that is not effortless to spark chemical reactions with other substances in the past decades. Nevertheless, the cognition of scientists has gradually changed accompanied with a variety of studies revealing the potential molecular mechanism underlying organ-protection induced by helium. Especially, as a non-anesthetic gas which is deficient of relevant cardiopulmonary side effects, helium conditioning is recognized as an emerging and promising approach to exert favorable effects by mimicking the cardioprotection of anesthetic gases or xenon. In this review we will summarize advances in the underlying biological mechanisms and clinical applicability with regards to the cardioprotective effects of helium. PMID:28744366

  12. Gaseous Helium Reclamation at Rocket Test Systems Project (United States)

    National Aeronautics and Space Administration — The ability to restore large amounts of vented gaseous helium (GHe) at rocket test sites preserves the GHe and reduces operating cost. The used GHe is vented into...

  13. Self-Calibrating Vector Helium Magnetometer (SVHM) Project (United States)

    National Aeronautics and Space Administration — This Phase 2 SBIR proposal describes the design, fabrication and calibration of a brass-board Self-Calibrating Vector Helium Magnetometer (SVHM). The SVHM instrument...

  14. Transport and extraction of radioactive ions stopped in superfluid helium

    CERN Document Server

    Huang Wan Xia; Gloos, K; Takahashi, N; Arutyunov, K; Pekola, J P; Äystö, J


    A new approach to convert a high energy beam to a low energy one, which is essential for the next generation radioactive ion beam facilities, has been proposed and tested at Jyvaeskylae, Finland. An open sup 2 sup 2 sup 3 Ra alpha-decay-recoil source has been used to produce radioactive ions in superfluid helium. The alpha spectra demonstrate that the recoiling sup 2 sup 1 sup 9 Rn ions have been extracted out of liquid helium. This first observation of the extraction of heavy positive ions across the superfluid helium surface was possible thanks to the high sensitivity of radioactivity detection. An efficiency of 36% was obtained for the ion extraction out of liquid helium.

  15. Dark Matter Detection Using Helium Evaporation and Field Ionization. (United States)

    Maris, Humphrey J; Seidel, George M; Stein, Derek


    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1  MeV/c^{2}.

  16. Analysis of nitrogen-based explosives with desorption atmospheric pressure photoionization mass spectrometry. (United States)

    Kauppila, T J; Flink, A; Pukkila, J; Ketola, R A


    Fast methods that allow the in situ analysis of explosives from a variety of surfaces are needed in crime scene investigations and home-land security. Here, the feasibility of the ambient mass spectrometry technique desorption atmospheric pressure photoionization (DAPPI) in the analysis of the most common nitrogen-based explosives is studied. DAPPI and desorption electrospray ionization (DESI) were compared in the direct analysis of trinitrotoluene (TNT), trinitrophenol (picric acid), octogen (HMX), cyclonite (RDX), pentaerythritol tetranitrate (PETN), and nitroglycerin (NG). The effect of different additives in DAPPI dopant and in DESI spray solvent on the ionization efficiency was tested, as well as the suitability of DAPPI to detect explosives from a variety of surfaces. The analytes showed ions only in negative ion mode. With negative DAPPI, TNT and picric acid formed deprotonated molecules with all dopant systems, while RDX, HMX, PETN and NG were ionized by adduct formation. The formation of adducts was enhanced by addition of chloroform, formic acid, acetic acid or nitric acid to the DAPPI dopant. DAPPI was more sensitive than DESI for TNT, while DESI was more sensitive for HMX and picric acid. DAPPI could become an important method for the direct analysis of nitroaromatics from a variety of surfaces. For compounds that are thermally labile, or that have very low vapor pressure, however, DESI is better suited. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Laser Desorption of Tryptophan from Tryptophan-HCl Salt on a Graphite Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Jun; Kim, Jeong Jin; Kang, Hyuk [Ajou University, Suwon (Korea, Republic of)


    Laser spectroscopy of biological molecules in the gas phase has been pioneered by Levy and coworkers when they first produced a supersonic molecular beam of tryptophan (Trp) and obtained its electronic spectrum. They were able to obtain enough vapor pressure needed for spectroscopy by heating a powder sample of Trp, although a special thermal spray was used to minimize fragmentation during heating. Many amine compounds, including biomolecules like amino acids and peptides, are usually available only as HCl salt form in order to prevent oxidation in air. Chemical processing is required to recover a neutral amine compound from its salt, thus limiting the applicability of laser-desorption spectroscopy of biomolecules. The experimental setup is a standard molecular beam machine composed of a pulsed valve with a laser-desorption module in a vacuum chamber, a second buffer chamber, a skimmer that separates the first and the second chambers, and a third vacuum chamber that is a time-of-flight mass spectrometer (TOF MS)

  18. Helium-cooled molten-salt fusion breeder

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.; Lee, J.D.; Fulton, F.J.; Huegel, F.; Neef, W.S. Jr.; Sherwood, A.E.; Berwald, D.H.; Whitley, R.H.; Wong, C.P.C.; Devan, J.H.


    We present a new conceptual design for a fusion reactor blanket that is intended to produce fissile material for fission power plants. Fast fission is suppressed by using beryllium instead of uranium to multiply neutrons. Thermal fission is suppressed by minimizing the fissile inventory. The molten-salt breeding medium (LiF + BeF/sub 2/ + ThF/sub 4/) is circulated through the blanket and to the on-line processing system where /sup 233/U and tritium are continuously removed. Helium cools the blanket and the austenitic steel tubes that contain the molten salt. Austenitic steel was chosen because of its ease of fabrication, adequate radiation-damage lifetime, and low corrosion by molten salt. We estimate that a breeder having 3000 MW of fusion power will produce 6500 kg of /sup 233/U per year. This amount is enough to provide makeup for 20 GWe of light-water reactors per year or twice that many high-temperature gas-cooled reactors or Canadian heavy-water reactors. Safety is enhanced because the afterheat is low and blanket materials do not react with air or water. The fusion breeder based on a pre-MARS tandem mirror is estimated to cost $4.9B or 2.35 times a light-water reactor of the same power. The estimated cost of the /sup 233/U produced is $40/g for fusion plants costing 2.35 times that of a light-water reactor if utility owned or $16/g if government owned.

  19. CO Diffusion and Desorption Kinetics in CO2 Ices (United States)

    Cooke, Ilsa R.; Öberg, Karin I.; Fayolle, Edith C.; Peeler, Zoe; Bergner, Jennifer B.


    The diffusion of species in icy dust grain mantles is a fundamental process that shapes the chemistry of interstellar regions; yet, measurements of diffusion in interstellar ice analogs are scarce. Here we present measurements of CO diffusion into CO2 ice at low temperatures (T = 11–23 K) using CO2 longitudinal optical phonon modes to monitor the level of mixing of initially layered ices. We model the diffusion kinetics using Fick’s second law and find that the temperature-dependent diffusion coefficients are well fit by an Arrhenius equation, giving a diffusion barrier of 300 ± 40 K. The low barrier along with the diffusion kinetics through isotopically labeled layers suggest that CO diffuses through CO2 along pore surfaces rather than through bulk diffusion. In complementary experiments, we measure the desorption energy of CO from CO2 ices deposited at 11–50 K by temperature programmed desorption and find that the desorption barrier ranges from 1240 ± 90 K to 1410 ± 70 K depending on the CO2 deposition temperature and resultant ice porosity. The measured CO–CO2 desorption barriers demonstrate that CO binds equally well to CO2 and H2O ices when both are compact. The CO–CO2 diffusion–desorption barrier ratio ranges from 0.21 to 0.24 dependent on the binding environment during diffusion. The diffusion–desorption ratio is consistent with the above hypothesis that the observed diffusion is a surface process and adds to previous experimental evidence on diffusion in water ice that suggests surface diffusion is important to the mobility of molecules within interstellar ices.

  20. Future Energy Source. [Mining Helium-3 on the Moon (United States)


    This video describes the efforts of the Center for the Commercial Development of Space in Wisconsin to develop a strategy for mining Helium-3, an efficient, environmentally safe alternative to fossil fuels that exists on the moon. Animated sequences depict the equipment that could mine the lunar surface, boil away Helium-3 to be transported back to earth, and return the soil to the moon without destroying the lunar surface.

  1. Pulsed extraction of ionization from helium buffer gas


    Morrissey, D. J.; Bollen, G.; Facina, M.; Schwarz, S.


    The migration of intense ionization created in helium buffer gas under the influence of applied electric fields is considered. First the chemical evolution of the ionization created by fast heavy-ion beams is described. Straight forward estimates of the lifetimes for charge exchange indicate a clear suppression of charge exchange during ion migration in low pressure helium. Then self-consistent calculations of the migration of the ions in the electric field of a gas-filled cell at the Nationa...

  2. Using Electrons on Liquid Helium for Quantum Computing


    Dahm, A. J.; Goodkind, J. M.; Karakurt, I.; Pilla, S.


    We describe a quantum computer based on electrons supported by a helium film and localized laterally by small electrodes just under the helium surface. Each qubit is made of combinations of the ground and first excited state of an electron trapped in the image potential well at the surface. Mechanisms for preparing the initial state of the qubit, operations with the qubits, and a proposed readout are described. This system is, in principle, capable of 100,000 operations in a decoherence time.

  3. Robust Ferromagnetism of Chromium Nanoparticles Formed in Superfluid Helium. (United States)

    Yang, Shengfu; Feng, Cheng; Spence, Daniel; Al Hindawi, Aula M A A; Latimer, Elspeth; Ellis, Andrew M; Binns, Chris; Peddis, Davide; Dhesi, Sarnjeet S; Zhang, Liying; Zhang, Yafei; Trohidou, Kalliopi N; Vasilakaki, Marianna; Ntallis, Nikolaos; MacLaren, Ian; de Groot, Frank M F


    Chromium nanoparticles are formed using superfluid helium droplets as the nanoreactors, which are strongly ferromagnetic. The transition from antiferromagentism to ferromagnetism is attributed to atomic-scale disorder in chromium nanoparticles, leading to abundant unbalanced surface spins. Theoretical modeling confirms a frustrated aggregation process in superfluid helium due to the antiferromagnetic nature of chromium. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Sensing earth's rotation with a helium-neon ring laser operating at 1.15  μm. (United States)

    Ulrich Schreiber, K; Thirkettle, Robert J; Hurst, Robert B; Follman, David; Cole, Garrett D; Aspelmeyer, Markus; Wells, Jon-Paul R


    We report on the operation of a 2.56  m2 helium-neon based ring laser interferometer at a wavelength of 1.152276 μm using crystalline coated intracavity supermirrors. This work represents the first implementation of crystalline coatings in an active laser system and expands the core application area of these low-thermal-noise cavity end mirrors to inertial sensing systems. Stable gyroscopic behavior can only be obtained with the addition of helium to the gain medium as this quenches the 1.152502 μm (2s4→2p7) transition of the neon doublet which otherwise gives rise to mode competition. For the first time at this wavelength, the ring laser is observed to readily unlock on the bias provided by the earth's rotation alone, yielding a Sagnac frequency of approximately 59 Hz.

  5. Desorption of toluene from modified clays using supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Carneiro D. G. P.


    Full Text Available The main objective of this work is to study the regeneration capacity of modified clays using supercritical fluid. These modified clays are used as organic compound adsorvents. The experimental step was done using a packed column with the clay contaminated by toluene. The results obtained showed the influence of the density of the supercritical CO2 and of the organic modifier in the desorption process. These data were modeled with first- and second-order models. Better results were obtained using the second-order model. This study makes possible the scale-up of the desorption process for regeneration of solid matrices using supercritical fluids.

  6. Nonthermal current-stimulated desorption of gases from carbon nanotubes. (United States)

    Salehi-Khojin, Amin; Lin, Kevin Y; Field, Christopher R; Masel, Richard I


    The desorption of gases from carbon nanotubes is usually a slow process that limits the nanotubes' utility as sensors or as memristors. Here, we demonstrate that flow in the nanotube above the Poole-Frenkel conduction threshold can stimulate adsorbates to desorb without heating the sensor substantially. The method is general: alcohols, aromatics, amines, and phosphonates were all found to desorb. We postulate that the process is analogous to electron-stimulated desorption, but with an internally conducted rather than externally applied source of electrons.

  7. Helium penetrates into silica glass and reduces its compressibility. (United States)

    Sato, Tomoko; Funamori, Nobumasa; Yagi, Takehiko


    SiO(2) glass has a network structure with a significant amount of interstitial voids. Gas solubilities in silicates are expected to become small under high pressure due to compaction of voids. Here we show anomalous behaviour of SiO(2) glass in helium. Volume measurements clarify that SiO(2) glass is much less compressible than normal when compressed in helium, and the volume in helium at 10 GPa is close to the normal volume at 2 GPa. X-ray diffraction and Raman scattering measurements suggest that voids are prevented from contracting when compressed in helium because helium penetrates into them. The estimated helium solubility is very high and is between 1.0 and 2.3 mol per mole of SiO(2) glass at 10 GPa, which shows marked contrast with previous models. These results may have implications for discussions of the Earth's evolution as well as interpretations of various high-pressure experiments, and also lead to the creation of new materials.

  8. Atomistic simulation of helium bubble nucleation in palladium

    Energy Technology Data Exchange (ETDEWEB)

    Wang Liang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu, Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail:; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail:; Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Deng Huiqiu [Department of Applied Physics, Hunan University, Changsha 410082 (China)


    A palladium crystal has been constructed with 11808 atoms. 55 helium atoms occupied the octahedral position of palladium crystal are introduced and retained in a spherical region. Molecular dynamic simulations are performed in a constant temperature and constant volume ensemble (NVT) with temperature controlled by Nose-Hoover thermostat. The interactions between palladium atoms are described with modified analytic embedded atom method (MAEAM), the interactions between palladium atom and helium atom are in the form of Morse potential, and the interactions between helium atoms are in the form of L-J potential function. With the analysis of the radial distribution function (RDF) and microstructure, it reveals that some of helium atoms form a series of clusters with different size, and the nucleation core is random at low temperature, and which is the embryo of helium bubble. Increasing temperature can accelerate the process of bubble nucleation, and the clusters will aggregate and coalesce into a bigger one in which there are no palladium atoms, and it is considered as a helium bubble.

  9. Measurement of helium production cross sections of iron for d-T neutrons by helium accumulation method

    Energy Technology Data Exchange (ETDEWEB)

    Takao, Yoshiyuki; Kanda, Yukinori; Nagae, Koji; Fujimoto, Toshihiro [Kyushu Univ., Fukuoka (Japan); Ikeda, Yujiro


    Helium production cross sections of Iron were measured by helium accumulation method for neutron energies from 13.5 to 14.9 MeV. Iron samples were irradiated with FNS, an intense d-T neutron source of JAERI. As the neutron energy varies according to the emission angle at the neutron source, the samples were set around the neutron source and were irradiated by neutrons of different energy depending on each sample position. The amount of helium produced in a sample was measured by Helium Atoms Measurement System at Kyushu University. The results of this work are in good agreement with other experimental data in the literature and also compared with the evaluated values in JENDL-3. (author)

  10. Quantum interference spectroscopy of rubidium-helium exciplexes formed on helium nanodroplets. (United States)

    Mudrich, M; Stienkemeier, F; Droppelmann, G; Claas, P; Schulz, C P


    Femtosecond multiphoton pump-probe photoionization is applied to helium nanodroplets doped with rubidium (Rb). The yield of Rb+ ions features pronounced quantum interference (QI) fringes demonstrating the coherence of a superposition of electronic states on a time scale of tens of picoseconds. Furthermore, we observe QI in the yield of formed RbHe exciplex molecules. The quantum interferogram allows us to determine the vibrational structure of these unstable molecules. From a sliced Fourier analysis one cannot only extract the population dynamics of vibrational states but also follow their energetic evolution during the RbHe formation.

  11. Cavity optomechanics in a levitated helium drop (United States)

    Childress, L.; Schmidt, M. P.; Kashkanova, A. D.; Brown, C. D.; Harris, G. I.; Aiello, A.; Marquardt, F.; Harris, J. G. E.


    We describe a proposal for a type of optomechanical system based on a drop of liquid helium that is magnetically levitated in vacuum. In the proposed device, the drop would serve three roles: its optical whispering-gallery modes would provide the optical cavity, its surface vibrations would constitute the mechanical element, and evaporation of He atoms from its surface would provide continuous refrigeration. We analyze the feasibility of such a system in light of previous experimental demonstrations of its essential components: magnetic levitation of mm-scale and cm-scale drops of liquid He , evaporative cooling of He droplets in vacuum, and coupling to high-quality optical whispering-gallery modes in a wide range of liquids. We find that the combination of these features could result in a device that approaches the single-photon strong-coupling regime, due to the high optical quality factors attainable at low temperatures. Moreover, the system offers a unique opportunity to use optical techniques to study the motion of a superfluid that is freely levitating in vacuum (in the case of 4He). Alternatively, for a normal fluid drop of 3He, we propose to exploit the coupling between the drop's rotations and vibrations to perform quantum nondemolition measurements of angular momentum.

  12. Helium irradiation induced hardening in MNHS steels (United States)

    Cui, Minghuan; Wang, Ji; Wang, Zhiguang; Shen, Tielong; Wei, Kongfang; Yao, Cunfeng; Sun, Jianrong; Gao, Ning; Zhu, Yabin; Pang, Lilong; Wang, Dong; Zhu, Huiping; Han, Yi; Fang, Xuesong


    A recently developed reduced activation martensitic MNHS steel was irradiated with 200 keV helium (He) ions to a fluence of 1.0 × 1020 ions/m2 at 300 °C and 1.0 × 1021 ions/m2 at 300 °C and 450 °C. After irradiation, transmission electron microscopy (TEM) and nano-indentation measurements were used to investigate the hardness change and defects induced by He irradiation. Two kinds of defects including He bubbles and dislocation loops are observed by TEM. Irradiation induces hardening of MNHS steels and peak hardness values occur in all irradiated samples. Hardness increments induced by He bubbles and dislocation loops are predicted and fitted with the experimental peak hardness increment, based on the dispersed barrier-hardening (DBH) model and the size and number density of the two defects. A good agreement is got between the predicted and experimental hardness increment and the obstacle strength factor of He bubbles is a little stronger than the obstacle strength of dislocation loops. Other possible contributions to irradiation induced hardening are also discussed.

  13. Helium-Shell Nucleosynthesis and Extinct Radioactivities (United States)

    Meyer, B. S.; The, L.-S.; Clayton, D. D.; ElEid, M. F.


    Although the exact site for the origin of the r-process isotopes remains mysterious, most thinking has centered on matter ejected from the cores of massive stars in core-collapse supernovae [13]. In the 1970's and 1980's, however, difficulties in understanding the yields from such models led workers to consider the possibility of r-process nucleosynthesis farther out in the exploding star, in particular, in the helium burning shell [4,5]. The essential idea was that shock passage through this shell would heat and compress this material to the point that the reactions 13C(alpha; n)16O and, especially, 22Ne(alpha; n)25Mg would generate enough neutrons to capture on preexisting seed nuclei and drive an "n process" [6], which could reproduce the r-process abundances. Subsequent work showed that the required 13C and 22Ne abundances were too large compared to the amounts available in realistic models [7] and recent thinking has returned to supernova core material or matter ejected from neutron star-neutron star collisions as the more likely r-process sites.

  14. Simplified Methodology to Estimate the Maximum Liquid Helium (LHe) Cryostat Pressure from a Vacuum Jacket Failure (United States)

    Ungar, Eugene K.; Richards, W. Lance


    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared astronomical observation experiments. These experiments carry sensors cooled to liquid helium temperatures. The liquid helium supply is contained in large (i.e., 10 liters or more) vacuum-insulated dewars. Should the dewar vacuum insulation fail, the inrushing air will condense and freeze on the dewar wall, resulting in a large heat flux on the dewar's contents. The heat flux results in a rise in pressure and the actuation of the dewar pressure relief system. A previous NASA Engineering and Safety Center (NESC) assessment provided recommendations for the wall heat flux that would be expected from a loss of vacuum and detailed an appropriate method to use in calculating the maximum pressure that would occur in a loss of vacuum event. This method involved building a detailed supercritical helium compressible flow thermal/fluid model of the vent stack and exercising the model over the appropriate range of parameters. The experimenters designing science instruments for SOFIA are not experts in compressible supercritical flows and do not generally have access to the thermal/fluid modeling packages that are required to build detailed models of the vent stacks. Therefore, the SOFIA Program engaged the NESC to develop a simplified methodology to estimate the maximum pressure in a liquid helium dewar after the loss of vacuum insulation. The method would allow the university-based science instrument development teams to conservatively determine the cryostat's vent neck sizing during preliminary design of new SOFIA Science Instruments. This report details the development of the simplified method, the method itself, and the limits of its applicability. The simplified methodology provides an estimate of the dewar pressure after a loss of vacuum insulation that can be used for the initial design of the liquid helium dewar vent stacks. However, since it is not an exact

  15. Quantitative Detection of Trace Explosive Vapors by Programmed Temperature Desorption Gas Chromatography-Electron Capture Detector (United States)

    Field, Christopher R.; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C.; Rose-Pehrsson, Susan L.


    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416

  16. A passively-safe fusion reactor blanket with helium coolant and steel structure

    Energy Technology Data Exchange (ETDEWEB)

    Crosswait, Kenneth Mitchell [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)


    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.

  17. Updated conceptual design of helium cooling ceramic blanket for HCCB-DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Suhao [University of Science and Technology of China, Hefei, Anhui (China); Southwestern Institute of Physics, Chengdu, Sichuan (China); Cao, Qixiang; Wu, Xinghua; Wang, Xiaoyu; Zhang, Guoshu [Southwestern Institute of Physics, Chengdu, Sichuan (China); Feng, Kaiming, E-mail: [Southwestern Institute of Physics, Chengdu, Sichuan (China)


    Highlights: • An updated design of Helium Cooled Ceramic breeder Blanket (HCCB) for HCCB-DEMO is proposed in this paper. • The Breeder Unit is transformed to TBM-like sub-modules, with double “banana” shape tritium breeder. Each sub-module is inserted in space formed by Stiffen Grids (SGs). • The performance analysis is performed based on the R&D development of material, fabrication technology and safety assessment in CN ITER TBM program. • Hot spots will be located at the FW bend side. - Abstract: The basic definition of the HCCB-DEMO plant and preliminary blanket designed by Southwestern Institution of Physics was proposed in 2009. The DEMO fusion power is 2550 MW and electric power is 800 MW. Based on development of R&D in breeding blanket, a conceptual design of helium cooled blanket with ceramic breeder in HCCB-DEMO was presented. The main design features of the HCCB-DEMO blanket were: (1) CLF-1 structure materials, Be multiplier and Li{sub 4}SiO{sub 4} breeder; (2) neutronic wall load is 2.3 MW/m{sup 2} and surface heat flux is 0.43 MW/m{sup 2} (2) TBR ≈ 1.15; (3) geometry of breeding units is ITER TBM-like segmentation; (4)Pressure of helium is 8 MPa and inlet/outlet temperature is 300/500 °C. On the basis of these design, some important analytical results are presented in aspects of (i) neutronic behavior of the blanket; (ii) design of 3D structure and thermal-hydraulic lay-out for breeding blanket module; (iii) structural-mechanical behavior of the blanket under pressurization. All of these assessments proved current stucture fulfill the design requirements.

  18. Equilibrium adsorption data from temperature-programmed desorption measurements

    NARCIS (Netherlands)

    Foeth, F.; Mugge, J.M.; van der Vaart, R.; van der Vaart, Rick; Bosch, H.; Reith, T.


    This work describes a novel method that enables the calculation of a series of adsorption isotherms basically from a single Temperature-Programmed Desorption (TPD) experiment. The basic idea is to saturate an adsorbent packed in a fixed bed at a certain feed concentration and temperature and to

  19. The Effects of composts on adsorption-desorption of three ...

    African Journals Online (AJOL)

    Michael Horsfall

    (1/n des). @JASEM. Pesticides adsorption and desorption are the key processes determining whether pesticide used will have any impact on environmental quality. For most of the pesticides soil organic matter and clay contents are the most important properties which affect the sorption and transformation (Durovic et al., ...

  20. Overview literature on matrix assisted laser desorption ionization ...

    Indian Academy of Sciences (India)


    Overview literature on matrix assisted laser desorption ionization mass spectroscopy (MALDI MS): basics and its .... Overview literature on MALDI MS. 517 mined as opposed to obtaining relative molecular ...... accurate representation of the overall molecular mass distribution in each of the fractionated materials. This.

  1. Characterizing and optimizing a laser-desorption molecular beam source (United States)

    Teschmit, Nicole; Długołecki, Karol; Gusa, Daniel; Rubinsky, Igor; Horke, Daniel A.; Küpper, Jochen


    The design and characterization of a new laser-desorption molecular beam source, tailored for use in x-ray free-electron laser and ultrashort-pulse laser imaging experiments, is presented. It consists of a single mechanical unit containing all source components, including the molecular-beam valve, the sample, and the fiber-coupled desorption laser, which is movable in five axes, as required for experiments at central facilities. Utilizing strong-field ionization, we characterize the produced molecular beam and evaluate the influence of desorption laser pulse energy, relative timing of valve opening and desorption laser, sample bar height, and which part of the molecular packet is probed on the sample properties. Strong-field ionization acts as a universal probe and allows detecting all species present in the molecular beam, and hence enables us to analyze the purity of the produced molecular beam, including molecular fragments. We present optimized experimental parameters for the production of the purest molecular beam, containing the highest yield of intact parent ions, which we find to be very sensitive to the placement of the desorbed-molecule plumes within the supersonic expansion.

  2. Adsorption and laser-induced desorption of dimethylcadmium from silicon (United States)

    Simonov, Alexander P.; Varakin, Vladimir N.


    The dynamics of Cd (cH ) 2 chemisorption and spontaneous decomposit ion on n-type 51(100) with native surface oxide the pathwa and efficiencies of the adsorbate desorption due to the absorption of the XeC1 laser radiation by silicon have been examined using laser-induced desorption miss spectrorrtry (LIDMS ) . The k inetics of these sur face processes has been found to depend on the preceding laser irradiation of the surface. The extremely fast chemisorption and efficient decomposition of the parent rrlecules have been observed on the irradiated silicon surface. The competition between intact dissociative and recombination desorption pathways was responsible for the observed laser fluence dependences of the desorption of Cd(CI-6) and i ts fragments. 1 . INTROOIJCTIct4 1 . 1 . Laser chemical vapour depos ition (LCVD). Laser-induced deposition of thin filme on solid surfaces by using volatile organometallic precursors has been the subject of numerous investigations in the 8Os2. Due to the spatial/temporal localization of laser radiation and the resonant nature of laser-rr1ecule interaction this deposition technique has such attractive features as submicrometer resolution of deposits high film growth rate and high quality lowtemperature processing. The deposition process can be controlled by varying the laser parameters (wavelength fluence beam spot on the substrate surface scanning speed ). A var iety of mater ials can be depos I ted using LCVD. Of special interest for microelectronics is the deposition of

  3. Temperature-programmed desorption of water and ammonia on ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 115; Issue 4. Temperature-programmed desorption of water and ammonia on sulphated zirconia catalysts for ... Author Affiliations. Vasant R Choudhary1 Abhijeet J Karkamkar1. Chemical Engineering Division, National Chemical Laboratory, Pune 411 008, India ...

  4. Stable Isotope Systematics of Coalbed Gas during Desorption and Production

    Directory of Open Access Journals (Sweden)

    Martin Niemann


    Full Text Available The stable carbon isotope ratios of coalbed methane (CBM demonstrate diagnostic changes that systematically vary with production and desorption times. These shifts can provide decisive, predictive information on the behaviour and potential performance of CBM operations. Samples from producing CBM wells show a general depletion in 13C-methane with increasing production times and corresponding shifts in δ13C-CH4 up to 35.8‰. Samples from canister desorption experiments show mostly enrichment in 13C for methane with increasing desorption time and isotope shifts of up to 43.4‰. Also, 13C-depletion was observed in some samples with isotope shifts of up to 32.1‰. Overall, the magnitudes of the observed isotope shifts vary considerably between different sample sets, but also within samples from the same source. The δ13C-CH4 values do not have the anticipated signature of methane generated from coal. This indicates that secondary processes, including desorption and diffusion, can influence the values. It is also challenging to deconvolute these various secondary processes because their molecular and isotope effects can have similar directions and/or magnitudes. In some instances, significant alteration of CBM gases has to be considered as a combination of secondary alteration effects.

  5. Organic contaminants in soil : desorption kinetics and microbial degradation

    NARCIS (Netherlands)

    Schlebaum, W.


    The availability of organic contaminants in soils or sediments for microbial degradation or removal by physical means (e.g.) soil washing or soil venting) depends on the desorption kinetics of these contaminants from the soil matrix. When the organic contaminants desorb very slow from the

  6. Temperature-programmed desorption of water and ammonia on ...

    Indian Academy of Sciences (India)


    Abstract. Temperature-programmed desorption (TPD) of water and ammonia over. ZrO2 and sulphated ZrO2 prepared by different methods has been investigated for measuring strong acidity and acidity distribution on sulphated zirconia-type solid super-acid catalysts. The TPD of water provides a simple reliable method for ...

  7. Desorption of plutonium from montmorillonite: An experimental and modeling study (United States)

    Begg, James D.; Zavarin, Mavrik; Kersting, Annie B.


    Desorption of plutonium (Pu) will likely control the extent to which it is transported by mineral colloids. We evaluated the adsorption/desorption behavior of Pu on SWy-1 montmorillonite colloids at pH 4, pH 6, and pH 8 using batch adsorption and flow cell desorption experiments. After 21 days adsorption, Pu(IV) affinity for montmorillonite displayed a pH dependency, with Kd values highest at pH 4 and lowest at pH 8. The pH 8 experiment was further allowed to equilibrate for 6 months and showed an increase in Kd, indicating that true sorption equilibrium was not achieved within the first 21 days. For the desorption experiments, aliquots of the sorption suspensions were placed in a flow cell, and Pu-free solutions were then pumped through the cell for a period of 12 days. Changes in influent solution flow rate were used to investigate the kinetics of Pu desorption and demonstrated that it was rate-limited over the experimental timescales. At the end of the 12-day flow cell experiments, the extent of desorption was again pH dependent, with pH 8 > pH 6 > pH 4. Further, at pH 8, less Pu was desorbed after an adsorption contact time of 6 months than after a contact time of 21 days, consistent with an aging of Pu on the clay surface. A conceptual model for Pu adsorption/desorption that incorporated known surface-mediated Pu redox reactions was used to fit the experimental data. The resulting rate constants indicated processes occurring on timescales of months and even years which may, in part, explain observations of clay colloid-facilitated Pu transport on decadal timescales. Importantly, however, our results also imply that migration of Pu adsorbed to montmorillonite colloids at long (50-100 year) timescales under oxic conditions may not be possible without considering additional phenomena, such as co-precipitation.

  8. Investigations into ultraviolet matrix-assisted laser desorption

    Energy Technology Data Exchange (ETDEWEB)

    Heise, Theodore W. [Iowa State Univ., Ames, IA (United States)


    Matrix-assisted laser desorption (MALD) is a technique for converting large biomolecules into gas phase ions. Some characteristics of the commonly used uv matrices are determined. Solubilities in methanol range from 0.1 to 0.5 M. Solid phase absorption spectra are found to be similar to solution, but slightly red-shifted. Acoustic and quartz crystal microbalance signals are investigated as possible means of uv-MALD quantitation. Evidence for the existence of desorption thresholds is presented. Threshold values are determined to be in the range of 2 to 3 MW/cm2. A transient imaging technique based on laser-excited fluorescence for monitoring MALD plumes is described. Sensitivity is well within the levels required for studying matrix-assisted laser desorption, where analyte concentrations are significantly lower than those in conventional laser desorption. Results showing the effect of film morphology, particularly film thickness, on plume dynamics are presented. In particular, MALD plumes from thicker films tend to exhibit higher axial velocities. Fluorescent labeling of protein and of DNA is used to allow imaging of their uv-MALD generated plumes. Integrated concentrations are available with respect to time, making it possible to assess the rate of fragmentation. The spatial and temporal distributions are important for the design of secondary ionization schemes to enhance ion yields and for the optimization of ion collection in time-of-flight MS instruments to maximize resolution. Such information could also provide insight into whether ionization is closely associated with the desorption step or whether it is a result of subsequent collisions with the matrix gas (e.g., proton transfer). Although the present study involves plumes in a normal atmosphere, adaptation to measurements in vacuum (e.g., inside a mass spectrometer) should be straightforward.

  9. Sorption and desorption of carbamazepine from water by smectite clays. (United States)

    Zhang, Weihao; Ding, Yunjie; Boyd, Stephen A; Teppen, Brian J; Li, Hui


    Carbamazepine is a prescription anticonvulsant and mood stabilizing pharmaceutical administered to humans. Carbamazepine is persistent in the environment and frequently detected in water systems. In this study, sorption and desorption of carbamazepine from water was measured for smectite clays with the surface negative charges compensated with K+, Ca2+, NH4+, tetramethylammonium (TMA), trimethylphenylammonium (TMPA) and hexadecyltrimethylammonium (HDTMA) cations. The magnitude of sorption followed the order: TMPA-smectite≥HDTMA-smectite>NH4-smectite>K-smectite>Ca-smectite⩾TMA-smectite. The greatest sorption of carbamazepine by TMPA-smectite is attributed to the interaction of conjugate aromatic moiety in carbamazepine with the phenyl ring in TMPA through π-π interaction. Partitioning process is the primary mechanism for carbamazepine uptake by HDTMA-smectite. For NH4-smectite the urea moiety in carbamazepine interacts with exchanged cation NH4+ by H-bonding hence demonstrating relatively higher adsorption. Sorption by K-, Ca- and TMA-smectites from water occurs on aluminosilicate mineral surfaces. These results implicate that carbamazepine sorption by soils occurs primarily in soil organic matter, and soil mineral fractions play a secondary role. Desorption of carbamazepine from the sorbents manifested an apparent hysteresis. Increasing irreversibility of desorption vs. sorption was observed for K-, Ca-, TMA-, TMPA- and HDTMA-clays as aqueous carbamazepine concentrations increased. Desorption hysteresis of carbamazepine from K-, Ca-, NH4-smectites was greater than that from TMPA- and HDTMA-clays, suggesting that the sequestrated carbamazepine molecules in smectite interlayers are more resistant to desorption compared to those sorbed by organic phases in smectite clays. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Co2 desorption from glycerol for reusable absorbent (United States)

    Mindaryani, Aswati; Budhijanto, Wiratni; Narendratama, Roberto Delta


    Increasing demand of energy forces human to develop new energy sources. Biogas comes as a reliable option of sustainable energy fulfilment. Biogas consists of methane and some impurities such as CO2 and H2S. CO2 removal from biogas guarantees an elevation of biogas heating value. CO2 removal can be achieved by integrated absorption-desorption process using certain absorbent. Regeneration of absorbent is a necessity to recover CO2 absorption capability of used absorbent. This paper focuses on the study of CO2 desorption from glycerol absorbent using N2 as stripping gas. Effect of desorption temperature and N2 flow rate is studied. Three neck flask equipped with water bath is filled with 750 mL of glycerol. Waterbath temperature is set at 40°C. Absorption starts with flowing 1 LPM gas mixture of 40% CO2 to absorbent through sparger. CO2 concentration of outlet gas is analyzed using gas chromatograph every 10 seconds. Gas flow is stopped when outlet CO2 concentration reaches inlet concentration. Desorption process is conducted as follows, 0.1 LPM nitrogen is flowed through sparger to absorber. Samples of outlet gas are taken at several time. Samples are analyzed with gas chromatograph. The same experiments are conducted for temperature variation of 60°C and 80°C and nitrogen flow rate variation of 0.2 LPM and 0.3 LPM. The model of batch desorption process by gas stripping is developed. Mass transfer coefficient was determined by curve fitting. Result shows a noticeable increase of desorbed CO2 with increasing of temperature and N2 flow rate.

  11. Rapid on-site detection of explosives on surfaces by ambient pressure laser desorption and direct inlet single photon ionization or chemical ionization mass spectrometry. (United States)

    Ehlert, S; Hölzer, J; Rittgen, J; Pütz, M; Schulte-Ladbeck, R; Zimmermann, R


    Considering current security issues, powerful tools for detection of security-relevant substances such as traces of explosives and drugs/drug precursors related to clandestine laboratories are required. Especially in the field of detection of explosives and improvised explosive devices, several relevant compounds exhibit a very low vapor pressure. Ambient pressure laser desorption is proposed to make these substances available in the gas phase for the detection by adapted mass spectrometers or in the future with ion-mobility spectrometry as well. In contrast to the state-of-the-art thermal desorption approach, by which the sample surface is probed for explosive traces by a wipe pad being transferred to a thermal desorber unit, by the ambient pressure laser desorption approach presented here, the sample is directly shockwave ablated from the surface. The laser-dispersed molecules are sampled by a heated sniffing capillary located in the vicinity of the ablation spot into the mass analyzer. This approach has the advantage that the target molecules are dispersed more gently than in a thermal desorber unit where the analyte molecules may be decomposed by the thermal intake. In the technical realization, the sampling capillary as well as the laser desorption optics are integrated in the tip of an endoscopic probe or a handheld sampling module. Laboratory as well as field test scenarios were performed, partially in cooperation with the Federal Criminal Police Office (Bundeskriminalamt, BKA, Wiesbaden, Germany), in order to demonstrate the applicability for various explosives, drugs, and drug precursors. In this work, we concentrate on the detection of explosives. A wide range of samples and matrices have been investigated successfully.

  12. Preliminary neutronics design and analysis of helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Zhongliang; Chen, Hongli, E-mail:; Chen, Chong; Li, Min; Zhou, Guangming


    Highlights: • Neutronics design of a helium cooled solid breeder blanket for CFETR was presented. • The breeding zones parallel to FW and perpendicular to FW were optimized. • A series of neutronics analyses for the proposed blanket were shown. - Abstract: Chinese Fusion Engineering Test Reactor (CFETR) is a test tokamak reactor being designed in China to bridge the gap between ITER and future fusion power plant. Tritium self-sufficiency is one of the most important issues for CFETR and the tritium breeding ratio (TBR) is recommended not less than 1.2. As one of the candidates, a helium cooled solid breeder blanket for CFETR superconducting tokamak option was proposed. In the concept, radial arranged U-shaped breeding zones are adopted for higher TBR and simpler structure. In this work, three-dimensional neutronics design and analysis of the blanket were performed using the Monte Carlo N-Particle transport code MCNP with IAEA data library FENDL-2.1. Tritium breeding capability of the proposed blanket was assessed and the breeding zones parallel to first wall (FW) and perpendicular to FW were optimized. Meanwhile, the nuclear heating analysis and shielding performance were also presented for later thermal and structural analysis. The results showed that the blanket could well meet the tritium self-sufficiency target and the neutron shield could satisfy the design requirements.

  13. Helium Cryo Testing of a SLMS(TM) (Silicon Lightweight Mirrors) Athermal Optical Assembly (United States)

    Jacoby, Marc T.; Goodman, William A.; Stahl, H. Philip; Keys, Andrew S.; Reily, Jack C.; Eng, Ron; Hadaway, James B.; Hogue, William D.; Kegley, Jeffrey R.; Siler, Richard


    SLMS (TM) a thermal technology has been demonstrated in the small 4-foot helium cryogenic test chamber located at the NASA/MSFC X-Ray Calibration Facility (XRCF). A SLMS (TM) Ultraviolet Demonstrator Mirror (UVDM) produced by Schafer under a NASA/MSFC Phase I SBIR was helium cryo tested both free standing and bonded to a Schafer designed prototype carbon fiber reinforced silicon carbide (Cesic) mount. Surface figure data was obtained with a test measurement system that featured an Instantaneous Phase Interferometer (IPI) by ADE Phase Shift. The test measurement system s minimum resolvable differential figure deformation and possible contributions from test chamber ambient to cryo window deformation are under investigation. The free standing results showed differential figure deformation of 10.4 nm rms from 295K to 27K and 3.9 nm rms after one cryo cycle. The surface figure of the UVDM degraded by lambda/70 rms HeNe once it was bonded to the prototype Cesic mount. The change was due to a small astigmatic aberration in the rototype Cesic mount due to lack of finish machining and not the bonding technique. This effect was seen in SLMST (TM) optical assembly results, which showed differential figure deformation of 46.5 nm rms from 294K to 27K, 42.9 nm rms from 294K to 77K, 28.0 nm rms from 294K to 193K and 6.2 nm rms after one cryo cycle.

  14. Heat Load Estimator for Smoothing Pulsed Heat Loads on Supercritical Helium Loops (United States)

    Hoa, C.; Lagier, B.; Rousset, B.; Bonnay, P.; Michel, F.

    Superconducting magnets for fusion are subjected to large variations of heat loads due to cycling operation of tokamaks. The cryogenic system shall operate smoothly to extract the pulsed heat loads by circulating supercritical helium into the coils and structures. However the value of the total heat loads and its temporal variation are not known before the plasma scenario starts. A real-time heat load estimator is of interest for the process control of the cryogenic system in order to anticipate the arrival of pulsed heat loads to the refrigerator and finally to optimize the operation of the cryogenic system. The large variation of the thermal loads affects the physical parameters of the supercritical helium loop (pressure, temperature, mass flow) so those signals can be used for calculating instantaneously the loads deposited into the loop. The methodology and algorithm are addressed in the article for estimating the heat load deposition before it reaches the refrigerator. The CEA patented process control has been implemented in a Programmable Logic Controller (PLC) and has been successfully validated on the HELIOS test facility at CEA Grenoble. This heat load estimator is complementary to pulsed load smoothing strategies providing an estimation of the optimized refrigeration power. It can also effectively improve the process control during the transient between different operating modes by adjusting the refrigeration power to the need. This way, the heat load estimator participates to the safe operation of the cryogenic system.

  15. Rotovibrational spectroscopy of hydrogen peroxide embedded in superfluid helium nanodroplets. (United States)

    Raston, Paul L; Knapp, Chrissy J; Jäger, Wolfgang


    We report the infrared depletion spectrum of para- and ortho-hydrogen peroxide embedded in superfluid helium nanodroplets in the OH stretching region. Six transitions were observed in the antisymmetric stretching band (v(5)) of H(2)O(2), and three in the weaker symmetric stretching band (v(1)). While rotations about the b- and c-axes are slowed by a factor of ∼0.4 relative to the gas phase, rotations about the a-axis are not significantly affected; this relates to the rotational speed about the a-axis being too fast for helium density to adiabatically follow. The trans tunneling splitting does not appear to be considerably affected by the helium droplet environment, and is reduced by only 6% relative to the gas phase, under the assumption that the vibrational shifts of the v(5) and v(1) torsional subbands are the same. The linewidths increase with increasing rotorsional energies, and are significantly narrower for energies which fall within the "phonon gap" of superfluid helium. These narrower lines are asymmetrically broadened, indicative of a dynamical coupling between the H(2)O(2) rotor and surrounding helium density.

  16. Validation of Helium Inlet Design for ITER Toroidal Field Coil

    CERN Document Server

    Boyer, C; Hamada, K; Foussat, A; Le Rest, M; Mitchell, N; Decool, P; Savary, F; Sgobba, S; Weiss, K-P


    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA-Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb3Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, are pr...

  17. Adsorption-desorption and leaching of pyraclostrobin in Indian soils. (United States)

    Reddy, S Navakishore; Gupta, Suman; Gajbhiye, Vijay T


    Pyraclostrobin is a new broad-spectrum foliar applied and seed protectant fungicide of the strobilurin group. In this paper, adsorption-desorption of pyraclostrobin has been investigated in three different soils viz. Inceptisol (sandy loam, Delhi), Vertisol (sandy clay, Hyderabad) and Ultisol (sandy clay loam, Thrissur). Effect of organic matter and clay content on sorption was also studied in Inceptisol of Delhi. Leaching potential of pyraclostrobin as influenced by rainfall was studied in intact soil columns to confirm the results of adsorption-desorption studies. The adsorption studies were carried out at initial concentrations of 0.05, 0.1, 0.5, 1 and 1.5 μg mL(-1). The distribution coefficient (Kd) values in three test soils ranged from 4.91 to 18.26 indicating moderate to high adsorption. Among the three test soils, adsorption was the highest in Ultisol (Kd 18.26), followed by Vertisol (Kd 9.87) and Inceptisol (Kd 4.91). KF value was also highest for Ultisol soil (66.21), followed by Vertisol (40.88) and Inceptisol (8.59). S-type adsorption isotherms were observed in all the three test soils. Kd values in organic carbon-removed soil and clay-removed soil were 3.57 and 2.83 respectively, indicating lower adsorption than normal Inceptisol. Desorption studies were carried out at initial concentrations of 0.5, 1 and 1.5 μg mL(-1). Desorption was the greatest in Inceptisol, followed by Vertisol and Ultisol. Amounts of pyraclostrobin desorbed in three desorption cycles for different concentrations were 23.1-25.3%, 9.4-20.7% and 8.1-13.6% in Inceptisol, Vertisol and Ultisol respectively. Desorption was higher in clay fraction-removed and organic carbonremoved soils than normal Inceptisol. Desorption was slower than adsorption in all the test soils, indicating hysteresis effect (with hysteresis coefficient values varying from 0.05 to 0.20). Low values of hysteresis coefficient suggest high hysteresis effect indicating easy and strong adsorption, and slow

  18. Options for a high heat flux enabled helium cooled first wall for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, Frederik, E-mail:; Chen, Yuming; Ghidersa, Bradut-Eugen; Klein, Christine; Neuberger, Heiko; Ruck, Sebastian; Schlindwein, Georg; Schwab, Florian; Weth, Axel von der


    Highlights: • Design challenges for helium cooled first wall reviewed and otimization approaches explored. • Application of enhanced heat transfer surfaces to the First Wall cooling channels. • Demonstrated a design point for 1 MW/m{sup 2} with temperatures <550 °C and acceptable stresses. • Feasibility of several manufacturing processes for ribbed surfaces is shown. - Abstract: Helium is considered as coolant in the plasma facing first wall of several blanket concepts for DEMO fusion reactors, due to the favorable properties of flexible temperature range, chemical inertness, no activation, comparatively low effort to remove tritium from the gas and no chemical corrosion. Existing blanket designs have shown the ability to use helium cooled first walls with heat flux densities of 0.5 MW/m{sup 2}. Average steady state heat loads coming from the plasma for current EU DEMO concepts are expected in the range of 0.3 MW/m{sup 2}. The definition of peak values is still ongoing and depends on the chosen first wall shape, magnetic configuration and assumptions on the fraction of radiated power and power fall off lengths in the scrape off layer of the plasma. Peak steady state values could reach and excess 1 MW/m{sup 2}. Higher short-term transient loads are expected. Design optimization approaches including heat transfer enhancement, local heat transfer tuning and shape optimization of the channel cross section are discussed. Design points to enable a helium cooled first wall capable to sustain heat flux densities of 1 MW/m{sup 2} at an average shell temperature lower than 500 °C are developed based on experimentally validated heat transfer coefficients of structured channel surfaces. The required pumping power is in the range of 3–5% of the collected thermal power. The FEM stress analyses show code-acceptable stress intensities. Several manufacturing methods enabling the application of the suggested heat transfer enhanced first wall channels are explored. An

  19. Observation of reduction of secondary electron emission from helium ion impact due to plasma-generated nanostructured tungsten fuzz (United States)

    Hollmann, E. M.; Doerner, R. P.; Nishijima, D.; Pigarov, A. Yu


    Growth of nanostructured fuzz on a tungsten target in a helium plasma is found to cause a significant (~3×) reduction in ion impact secondary electron emission in a linear plasma device. The ion impact secondary electron emission is separated from the electron impact secondary electron emission by varying the target bias voltage and fitting to expected contributions from electron impact, both thermal and non-thermal; with the non-thermal electron contribution being modeled using Monte-Carlo simulations. The observed (~3×) reduction is similar in magnitude to the (~2×) reduction observed in previous work for the effect of tungsten fuzz formation on secondary electron emission due to electron impact. It is hypothesized that the observed reduction results from re-absorption of secondary electrons in the tungsten fuzz.

  20. Dynamic Simulation of Temperature Transition on the Secondary Helium Loop of a VHTR-SI Hydrogen Production System

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ji Woon; Shin, Young Joon; Lee, Tae Hoon; Lee, Ki Young; Kim, Yong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Youn, Cheong [Chungnam National University, Daejeon (Korea, Republic of)


    A sulfur.iodine (SI) cycle coupled to a Very High Temperature Gas Cooled Reactor (VHTR) is one of the leading candidates of thermochemical cycles for hydrogen production. The SI cycle can be divided into three sections based on the chemical reactions: a Bunsen reaction (Section 1), sulfuric acid concentration and decomposition (Section 2), and a hydrogen iodine concentration and decomposition (Section 3). The heat required in the SI cycle can be supplied through an intermediate heat exchanger (IHX) by the VHTR. On the other hand, helium is used as a high-temperature energy carrier gas between the VHTR and the IHX or IHX and the SI cycle. In the SI cycle, the chemical reactors that receive thermal energy from the helium are a sulfuric acid vaporizer, sulfuric acid decomposer, sulfuric trioxide decomposer, and hydriodic acid decomposer including a pre-heating part. To simulate the dynamic behavior of the VHTR-SI cycle, the Korea Atomic Energy Research Institute -Dynamic Simulation Code (KAERI-DySCo) based on the Visual C++ has been prepared by the KAERI research group in 2010. KAERI-DySCo is integration application software, which includes several code modules that can solve the dynamic problem of the seven chemical reactors in the VHTR-SI cycle. In this paper, the dynamic behavior of the temperature transition on the secondary helium loop of the SI cycle has been simulated using KAERI-DySCo

  1. Thermal Plasma Synthesis of Superparamagnetic Iron Oxide Nanoparticles

    NARCIS (Netherlands)

    Lei, P.Y.; Boies, A.M.; Calder, S.A.; Girshick, S.L.


    Superparamagnetic iron oxide nanoparticles were synthesized by injecting ferrocene vapor and oxygen into an argon/helium DC thermal plasma. Size distributions of particles in the reactor exhaust were measured online using an aerosol extraction probe interfaced to a scanning mobility particle sizer,

  2. Photoionization Energies and Oscillator Strengths of Helium and Helium-like Ions (United States)

    Faye, N. A. B.; Ndao, A. S.; Konte, A.; Biaye, M.; Wague, A.


    We first studied the resonant photoionization of helium-like ions, such as C4+, N5+, and O6+, and determined the wave functions, the excitation energies, and the partial and total widths of the autoionizing states of these ions lying under the n = 3 thresholds of the residual ion. For more detailed analysis of the theory, and a better comprehension of the internal dynamics of atomic resonances and electronic phenomena of correlation, we extended these calculations to other helium-like ions, under higher thresholds (n = 4 and 5) of the hydrogen ions H-, and of Li+, C4+, N5+, and O6+. We were also interested in oscillator strengths. These parameters are important for interpreting the spectra and diagnosing astrophysical and laboratory plasmas, as well as for analyzing the spectra coming from space and determining the composition and relative abundance from the various elements of the stellar and interstellar environment. We sought a better comprehension of the coupling between autoionizing and continuum states and of the phenomena of electronic correlations. We used the method of diagonalization that has been used below the n = 2 threshold of the residual ion. The results are important for astrophysicists and physicists studying matter-radiation interaction and for the invention of new laser systems. We also measured laser-induced chlorophyll fluorescence (LICF) emission spectra of the leaves of some tropical plants using a compact fiber-optic fluorosensor with a continuous-wave violet diode laser as the exciting source and an integrated digital spectrometer to analyze the state of stress of the plants.

  3. A cryogenic axial-centrifugal compressor for superfluid helium refrigeration

    CERN Document Server

    Decker, L; Schustr, P; Vins, M; Brunovsky, I; Lebrun, P; Tavian, L


    CERN's new project, the Large Hadron Collider (LHC), will use superfluid helium as coolant for its high-field superconducting magnets and therefore require large capacity refrigeration at 1.8 K. This may only be achieved by subatmospheric compression of gaseous helium at cryogenic temperature. To stimulate development of this technology, CERN has procured from industry prototype Cold Compressor Units (CCU). This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating under low-pressure helium at ambient temperature. The machine has been commissioned and is now in operation. After describing basic constructional features of the compressor, we report on measured performance.

  4. Helium and neon isotopes in deep Pacific Ocean sediments (United States)

    Nier, A. O.; Schlutter, D. J.; Brownlee, D. E.


    Helium and neon concentration measurements, along with isotope ratio determinations, have been made for particles collected in the deep Pacific with a magnetic sled, and they are believed to be of extraterrestrial origin. Analyses were made for samples consisting of composites of many extremely fine particles and for several individual particles large enough to contain sufficient gas for analysis but small enough to escape melting in their passage through the atmosphere. Step-heating was employed to extract the gas. Cosmic-ray spallation products or solar-wind helium and neon, if present, were not abundant enough to account for the isotopic compositions measured. In the case of the samples of magnetic fines, the low temperature extractions provided elemental and isotopic ratios in the general range found for the primordial gas in carbonaceous chondrites and gas-rich meteorites. The isotopic ratios found in the high temperature extractions suggest the presence of solar-flare helium and neon.

  5. The Story of Helium and the Birth of Astrophysics

    CERN Document Server

    Nath, Biman B


    Biman Nath The Story of Helium and the Birth of Astrophysics Helium was the first element ever discovered by astronomers. Its presence was first indicated in the Sun and not on Earth. Further, its discovery marked the birth of the new science of astrophysics. However, it turns out that the events leading to the discovery of helium have been rather misrepresented in books, journals, and even encyclopedias. The usual story about its joint discovery during a solar eclipse in 1868 by French astronomer Pierre Janssen and late in England by Norman Lockyer, is far from the truth. Janssen never mentioned any new spectral line in his reports. The actual story turns out to be as dramatic as in fiction. This book tells the story without jargon, using the words of the scientists themselves (from their letters and reports), and rescues the real story from the backwaters of history.

  6. A quantitative experiment on the fountain effect in superfluid helium (United States)

    Amigó, M. L.; Herrera, T.; Neñer, L.; Peralta Gavensky, L.; Turco, F.; Luzuriaga, J.


    Superfluid helium, a state of matter existing at low temperatures, shows many remarkable properties. One example is the so called fountain effect, where a heater can produce a jet of helium. This converts heat into mechanical motion; a machine with no moving parts, but working only below 2 K. Allen and Jones first demonstrated the effect in 1938, but their work was basically qualitative. We now present data of a quantitative version of the experiment. We have measured the heat supplied, the temperature and the height of the jet produced. We also develop equations, based on the two-fluid model of superfluid helium, that give a satisfactory fit to the data. The experiment has been performed by advanced undergraduate students in our home institution, and illustrates in a vivid way some of the striking properties of the superfluid state.

  7. Helium and mercury in the central Seward Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Wescott, E.; Ruscetta, C.A.; Foley, D. (eds.)


    The central Seward Peninsula, Alaska, has one Known Geothermal Resource Area (KGRA) at Pilgrim Springs, and has recent volcanic flows, fault systems, topographic and tectonic features which can be explained by a rift model. As part of a geothermal reconnaissance of the area we used helium and mercury concentrations in soil as indicators of geothermal resources. The largest helium concentrations were found in the vicinity of the Pilgrims Springs KGRA, and indicate prime drilling sites. Five profile lines were run across the suspected rift system. Significant helium anomalies were found on several of the traverses, where future exploration might be concentrated. Mercury values showed a great range of variability on the traverses, and seem unreliable as geothermal indicators except in the vicinity of the Pilgrim Springs. Permafrost at the surface resulting in variations in sampling depth may contribute to the mercury variations.

  8. Supersonic jets of hydrogen and helium for laser wakefield acceleration

    CERN Document Server

    Svensson, K.; Wojda, F.; Senje, L.; Burza, M.; Aurand, B.; Genoud, G.; Persson, A.; Wahlström, C.-G.; Lundh, O.


    The properties of laser wakefield accelerated electrons in supersonic gas flows of hydrogen and helium are investigated. At identical backing pressure, we find that electron beams emerging from helium show large variations in their spectral and spatial distributions, whereas electron beams accelerated in hydrogen plasmas show a higher degree of reproducibility. In an experimental investigation of the relation between neutral gas density and backing pressure, it is found that the resulting number density for helium is ∼30% higher than for hydrogen at the same backing pressure. The observed differences in electron beam properties between the two gases can thus be explained by differences in plasma electron density. This interpretation is verified by repeating the laser wakefield acceleration experiment using similar plasma electron densities for the two gases, which then yielded electron beams with similar properties.

  9. HEATHER - HElium Ion Accelerator for RadioTHERapy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Jordan [Huddersfield U.; Edgecock, Thomas [Huddersfield U.; Green, Stuart [Birmingham U.; Johnstone, Carol [Fermilab


    A non-scaling fixed field alternating gradient (nsFFAG) accelerator is being designed for helium ion therapy. This facility will consist of 2 superconducting rings, treating with helium ions (He²⁺ ) and image with hydrogen ions (H + 2 ). Currently only carbon ions are used to treat cancer, yet there is an increasing interest in the use of lighter ions for therapy. Lighter ions have reduced dose tail beyond the tumour compared to carbon, caused by low Z secondary particles produced via inelastic nuclear reactions. An FFAG approach for helium therapy has never been previously considered. Having demonstrated isochronous acceleration from 0.5 MeV to 900 MeV, we now demonstrate the survival of a realistic beam across both stages.

  10. Feasibility of line-ratio spectroscopy on helium and neon as edge diagnostic tool for Wendelstein 7-X. (United States)

    Barbui, T; Krychowiak, M; König, R; Schmitz, O; Muñoz Burgos, J M; Schweer, B; Terra, A


    A beam emission spectroscopy system on thermal helium (He) and neon (Ne) has been set up at Wendelstein 7-X to measure edge electron temperature and density profiles utilizing the line-ratio technique or its extension by the analysis of absolutely calibrated line emissions. The setup for a first systematic test of these techniques of quantitative atomic spectroscopy in the limiter startup phase (OP1.1) is reported together with first measured profiles. This setup and the first results are an important test for developing the technique for the upcoming high density, low temperature island divertor regime.

  11. Application of helium isotopes to studies of ocean circulation (United States)

    Schlosser, P.; Newton, R.; Winckler, G.; Lupton, J.; Jenkins, W.; Top, Z.; Roether, W.; Jean-Baptiste, P.


    Since the discovery of excess He-3 in the ocean by Clarke and Craig in the 1960's helium isotopes have been used in local, regional and global studies of circulation patterns and water mass transformation in the world ocean. From initial pilot studies through systematic exploration of these tracers during the GEOSECS (Geochemical Ocean Sections) program to the recent global survey as part of the WOCE (World Ocean Circulation Experiment) hydrographic program (WHP) we obtained more detailed information on the distribution of helium isotopes, as well as their sources and sinks in the ocean. This information can now be applied to construct global fields of helium isotopes and to extract unique information on the circulation patterns at different depth levels in the ocean, as well as on local and regional processes such as ventilation of water masses in deep water formation regions. Additionally, the data sets are now sufficiently large to be useful for validation of Ocean General Circulation Models (OGCM's). In this contribution we present examples of global helium isotope fields constructed from major programs such as GEOCECS, TTO (Transient Tracers in the Ocean), SAVE (South Atlantic Ventilation Experiment) and WOCE, as well as from individual ocean sections. We use the data to delineate circulation patterns in the major ocean basins at several depth levels, especially mid-depth waters. Additionally, we outline the use of helium isotopes in studies of ocean ventilation. Finally, we compare observed and simulated helium isotope fields to highlight OGCM capabilities and deficiencies to reproduce internal He-3 excesses in the ocean and the related ventilation processes.

  12. Coronene molecules in helium clusters: Quantum and classical studies of energies and configurations

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Cantano, Rocío; Pérez de Tudela, Ricardo; Bartolomei, Massimiliano; Hernández, Marta I.; Campos-Martínez, José; González-Lezana, Tomás, E-mail:; Villarreal, Pablo [Instituto de Física Fundamental, IFF-CSIC, Serrano 123, 28006 Madrid (Spain); Hernández-Rojas, Javier; Bretón, José [Departamento de Física and IUdEA, Universidad de La Laguna, 38205 Tenerife (Spain)


    Coronene-doped helium clusters have been studied by means of classical and quantum mechanical (QM) methods using a recently developed He–C{sub 24}H{sub 12} global potential based on the use of optimized atom-bond improved Lennard-Jones functions. Equilibrium energies and geometries at global and local minima for systems with up to 69 He atoms were calculated by means of an evolutive algorithm and a basin-hopping approach and compared with results from path integral Monte Carlo (PIMC) calculations at 2 K. A detailed analysis performed for the smallest sizes shows that the precise localization of the He atoms forming the first solvation layer over the molecular substrate is affected by differences between relative potential minima. The comparison of the PIMC results with the predictions from the classical approaches and with diffusion Monte Carlo results allows to examine the importance of both the QM and thermal effects.

  13. Building and Testing a Superconductivity Measurement Platform for a Helium Cryostat (United States)

    Rose, Heath; Ostrander, Joshua; Wu, Jim; Ramos, Roberto


    Superconductivity experiments using Josephson junctions are an excellent environment to study quantum mechanics and materials science. A standard electrical transport technique uses filtered four wire measurement of these superconducting devices. We report our experience as undergraduates in a liberal arts college in building and testing an experimental platform anchored on the cold-finger of a helium cryostat and designed for performing differential conductance measurements in Josephson junctions. To filter out RF, we design, build and test cryogenic filters using ceramic capacitors and inductors and thermocoax cables. We also use fixed attenuators for thermal anchoring and use miniature connectors to connect wires and coax to a sample box. We report on progress in our diagnostic measurements as well as low-temperature tunneling experiments to probe the structure of the energy gap in both single- and multi-gapped superconductors. We acknowledge the support of the National Science Foundation through NSF Grant DMR-1206561.

  14. A new desorption method for removing organic solvents from activated carbon using surfactant. (United States)

    Hinoue, Mitsuo; Ishimatsu, Sumiyo; Fueta, Yukiko; Hori, Hajime


    A new desorption method was investigated, which does not require toxic organic solvents. Efficient desorption of organic solvents from activated carbon was achieved with an ananionic surfactant solution, focusing on its washing and emulsion action. Isopropyl alcohol (IPA) and methyl ethyl ketone (MEK) were used as test solvents. Lauryl benzene sulfonic acid sodium salt (LAS) and sodium dodecyl sulfate (SDS) were used as the surfactant. Activated carbon (100 mg) was placed in a vial and a predetermined amount of organic solvent was added. After leaving for about 24 h, a predetermined amount of the surfactant solution was added. After leaving for another 72 h, the vial was heated in an incubator at 60°C for a predetermined time. The organic vapor concentration was then determined with a frame ionization detector (FID)-gas chromatograph and the desorption efficiency was calculated. A high desorption efficiency was obtained with a 10% surfactant solution (LAS 8%, SDS 2%), 5 ml desorption solution, 60°C desorption temperature, and desorption time of over 24 h, and the desorption efficiency was 72% for IPA and 9% for MEK. Under identical conditions, the desorption efficiencies for another five organic solvents were investigated, which were 36%, 3%, 32%, 2%, and 3% for acetone, ethyl acetate, dichloromethane, toluene, and m-xylene, respectively. A combination of two anionic surfactants exhibited a relatively high desorption efficiency for IPA. For toluene, the desorption efficiency was low due to poor detergency and emulsification power.

  15. Experimental study on desorption of soluble matter as influenced by cations in static water

    Directory of Open Access Journals (Sweden)

    Wen-sheng XU


    Full Text Available With variation of drainage basin environments, desorption of soluble matter has become one of the significant erosion processes in rivers. It has a considerable impact on flow and sediment transport, as well as processes of river bed deformation and landform evolution throughout a watershed. In this study, considering influences on sediment movement, especially on cohesive sediment transport, Ca2+ and H+ were chosen as characteristic ions of soluble matter, and the total desorption quantity of Ca2+ and pH value when the desorption equilibrium is reached were employed as two indexes representing the desorption of soluble matter. By means of an indoor experiment, desorption of soluble matter as influenced by cations in static water was investigated. The results show that the total desorption quantity of soluble matter increases with the initial cation concentration until a maximum desorption quantity value is obtained and maintained. The total desorption quantity of soluble matter depends on properties of the specific cations in static water, and the stronger the affinity is between the cation and sediment surface, the higher the total desorption quantity will be. Finally, a strong approximate linear relationship between desorption quantities for different kinds of soluble matters was obtained, which means that variation of pH values can accurately reflect the desorption results of soluble matter.

  16. Radioactive core ions of microclusters, ``snowballs`` in superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Shimoda, T. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Fujita, Y. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Miyatake, H. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Mizoi, Y. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Kobayashi, H. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Sasaki, M. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Shirakura, T. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Itahashi, T. [Research Center for Nuclear Physics, Osaka Univ., Ibaraki (Japan); Mitsuoka, S. [Research Center for Nuclear Physics, Osaka Univ., Ibaraki (Japan); Matsukawa, T. [Naruto Univ. of Education, Tokushima (Japan); Ikeda, N. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Morinobu, S. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Hinde, D.J. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences; Asahi, K. [Tokyo Inst. of Tech. (Japan). Dept. of Physics; Ueno, H. [Tokyo Inst. of Tech. (Japan). Dept. of Physics; Izumi, H. [Tokyo Inst. of Tech. (Japan). Dept. of Physics


    Short-lived beta-ray emitters, {sup 12}B, sustaining nuclear spin polarization were introduced into superfluid helium. The nuclear polarization of {sup 12}B was observed via measurement of beta-ray asymmetry. It was found that the nuclear polarization was preserved throughout the lifetime of {sup 12}B (20.3 ms). This suggests that the ``snowball``, an aggregation of helium atoms produced around an alien ion, constitutes a suitable milieu for freezing-out the nuclear spin of the core ion and that most likely the solidification takes place at the interior of the aggregation. (orig.).

  17. High temperature indentation of helium-implanted tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, James S.K.-L., E-mail: [Oxford University, Department of Materials, Parks Road, Oxford OX1 3PH (United Kingdom); Roberts, Steve G. [Oxford University, Department of Materials, Parks Road, Oxford OX1 3PH (United Kingdom); Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Armstrong, David E.J. [Oxford University, Department of Materials, Parks Road, Oxford OX1 3PH (United Kingdom)


    Nanoindentation has been performed on tungsten, unimplanted and helium-implanted to ~600 appm, at temperatures up to 750 °C. The hardening effect of the damage was 0.90 GPa at 50 °C, but is negligible above 450 °C. The hardness value at a given temperature did not change on re-testing after heating to 750 °C. This suggests that the helium is trapped in small vacancy complexes that are stable to at least 750 °C, but which can be bypassed due to increased dislocation mobility (cross slip or climb) above 450 °C.

  18. Supercritical Helium Cooling of the LHC Beam Screens

    CERN Document Server

    Hatchadourian, E; Tavian, L


    The cold mass of the LHC superconducting magnets, operating in pressurised superfluid helium at 1.9 K, must be shielded from the dynamic heat loads induced by the circulating particle beams, by means of beam screens maintained at higher temperature. The beam screens are cooled between 5 and 20 K by forced flow of weakly supercritical helium, a solution which avoids two-phase flow in the long, narr ow cooling channels, but still presents a potential risk of thermohydraulic instabilities. This problem has been studied by theoretical modelling and experiments performed on a full-scale dedicated te st loop.

  19. Hydrogen-Helium shock Radiation tests for Saturn Entry Probes (United States)

    Cruden, Brett A.


    This paper describes the measurement of shock layer radiation in Hydrogen/Helium mixtures representative of that encountered by probes entering the Saturn atmosphere. Normal shock waves are measured in Hydrogen-Helium mixtures (89:11% by volume) at freestream pressures between 13-66 Pa (0.1-0.5 Torr) and velocities from 20-30 km/s. Radiance is quantified from the Vacuum Ultraviolet through Near Infrared. An induction time of several centimeters is observed where electron density and radiance remain well below equilibrium. Radiance is observed in front of the shock layer, the characteristics of which match the expected diffusion length of Hydrogen.

  20. A Neutron Scattering Study of Collective Excitations in Superfluid Helium

    DEFF Research Database (Denmark)

    Graf, E. H.; Minkiewicz, V. J.; Bjerrum Møller, Hans


    Extensive inelastic-neutron-scattering experiments have been performed on superfluid helium over a wide range of energy and momentum transfers. A high-resolution study has been made of the pressure dependence of the single-excitation scattering at the first maximum of the dispersion curve over...... of the multiexcitation scattering was also studied. It is shown that the multiphonon spectrum of a simple Debye solid with the phonon dispersion and single-excitation cross section of superfluid helium qualitatively reproduces these data....