WorldWideScience

Sample records for helium leak rate

  1. On the helium gas leak test

    Nishikawa, Akira; Ozaki, Susumu

    1975-01-01

    The helium gas leak test (Helium mass spectrometer testing) has a leak detection capacity of the highest level in practical leak tests and is going to be widely applied to high pressure vessels, atomic and vacuum equipments that require high tightness. To establish a standard test procedure several series of experiments were conducted and the results were investigated. The conclusions are summarized as follows: (1) The hood method is quantitatively the most reliable method. The leak rate obtained by tests using 100% helium concentration should be the basis of the other method of test. (2) The integrating method, bell jar method, and vacuum spray method can be considered quantitative when particular conditions are satisfied. (3) The sniffer method is not to be considered quantitive. (4) The leak rate of the hood, integrating, and bell jar methods is approximately proportional to the square of the helium partial pressure. (auth.)

  2. Helium leak testing the Westinghouse LCP coil

    Merritt, P.A.; Attaar, M.H.; Hordubay, T.D.

    1983-01-01

    The tests, equipment, and techniques used to check the Westinghouse LCP coil for coolant flow path integrity and helium leakage are unique in terms of test sensitivity and application. This paper will discuss the various types of helium leak testing done on the LCP coil as it enters different stages of manufacture. The emphasis will be on the degree of test sensitivity achieved under shop conditions, and what equipment, techniques and tooling are required to achieve this sensitivity (5.9 x 10 -8 scc/sec). Other topics that will be discussed are helium flow and pressure drop testing which is used to detect any restrictions in the flow paths, and the LCP final acceptance test which is the final leak test performed on the coil prior to its being sent for testing. The overall allowable leak rate for this coil is 5 x 10 -6 scc/sec. A general evaluation of helium leak testing experience are included

  3. Leak testing using helium leak detector

    Aparicio, G.; Mathot, S.; Munoz, C.; Orlando, O.

    1997-01-01

    Most of the equipment used in the industry and particularly in the nuclear activity need to be, vacuum or pressure tight, for operative and safety requirements. These devices have to satisfy particular regulations in order to be qualified by means of operating licences. One of the most efficient system to ensure leaktightnes is using a helium leak detector with a mass spectrometer. In this paper we show the equipment and the devices employed in fuel rods fabrication for CAREM project, and some typical material defects. Operating system and the sensitivity of this method is also described. (author) [es

  4. Helium leak testing methods in nuclear applications

    Ahmad, Anis

    2004-01-01

    Helium mass-spectrometer leak test is the most sensitive leak test method. It gives very reliable and sensitive test results. In last few years application of helium leak testing has gained more importance due to increased public awareness of safety and environment pollution caused by number of growing chemical and other such industries. Helium leak testing is carried out and specified in most of the critical area applications like nuclear, space, chemical and petrochemical industries

  5. Mockup experiments to investigate the leak rate correlation between mercury and helium for the mercury target system of J-PARC

    Haga, Katsuhiro; Naoe, Takashi; Kogawa, Hiroyuki; Wakui, Takashi; Futakawa, Masatoshi

    2009-01-01

    Checking the seal performance of the mercury piping network is very important for the mercury target system operation of J-PARC, and the test method for leaks using the pressure change measurement is preferable for this purpose because it can be carried out easily and precisely by measuring the pressure change, and it is free from the risk of mercury contamination. The piping network is pressurized by helium gas. Thus, the correlation between the helium leak rate and mercury leak flow rate was investigated experimentally by carrying out leak tests for helium and mercury with an identical mockup flange model. The results showed that the mercury leak flow rates of the experimental data were lower than those of the estimated value by 64% on average. It was also found that the threshold of the helium leak rate at which good seal performance for mercury can be obtained exists between 2.18 x 10 -4 and 1.01 x 10 -2 Pa.m 3 /s. This fact confirmed the sufficient safety margin of the mercury target system against the mercury leak, where 1 x 10 -6 Pa.m 3 /s was adopted as the seal performance criterion. (author)

  6. New helium sniffing device for locating very fine leaks

    Murakami, Y.; Shimomura, Y.; Abe, T.; Obara, K.

    1984-01-01

    A new helium sniffing method for leak checking large vacuum vessels is described. The low sensitivity problem of the conventional helium sniffing method has been overcome by increasing the gas draw rate from around leaks into the detector up to about 0.1 Pa m 3 /s. The devised system consists of a flexible stainless steel capillary tube 0.6 mm i.d. and 10 m long, a sorption pump using molecular sieve, and a helium leak detector in series. This method is particularly useful for locating very fine leaks down to 10 -11 Pa m 3 /s. Relevant theoretical considerations and experimental results are presented

  7. Helium Leak Test for the PLS Storage Ring Chamber

    Choi, M. H.; Kim, H. J.; Choi, W. C.

    1993-01-01

    The storage ring vacuum system for the Pohang Light Source (PLS) has been designed to maintain the vacuum pressure of 10 1 0 Torr which requires UHV welding to have helium leak rate less than 1x10 1 0 Torr·L/sec. In order to develop new technique (PLS) welding technique), a prototype vacuum chamber has been welded by using Tungsten Inert Gas welding method and all the welded joints have been tested with a non-destructive method, so called helium leak detection, to investigate the vacuum tightness of the weld joints. The test was performed with a detection limit of 1x10 1 0 Torr·L/sec for helium and no detectable leaks were found for all the welded joints. Thus the performance of welding technique is proven to meet the criteria of helium leak rate required in the PLS Storage Ring. Both the principle and the procedure for the helium leak detection are also discussed

  8. Helium leak testing of scanning electron microscope

    Ahmad, Anis; Tripathi, S.K.; Mukherjee, D.

    2015-01-01

    Scanning Electron Microscope (SEM) is a specialized electron-optical device which is used for imaging of miniscule features on topography of material specimens. Conventional SEMs used finely focused high energy (about 30 KeV) electron beam probes of diameter of about 10nm for imaging of solid conducting specimens. Vacuum of the order of 10"-"5 Torr is prerequisite for conventional Tungsten filament type SEMs. One such SEM was received from one of our laboratory in BARC with a major leak owing to persisting poor vacuum condition despite continuous pumping for several hours. He-Leak Detection of the SEM was carried out at AFD using vacuum spray Technique and various potential leak joints numbering more than fifty were helium leak tested. The major leak was detected in the TMP damper bellow. The part was later replaced and the repeat helium leak testing of the system was carried out using vacuum spray technique. The vacuum in SEM is achieved is better than 10"-"5 torr and system is now working satisfactorily. (author)

  9. Theoretical and experimental investigation of magnetic field related helium leak in helium vessel of a large superconducting magnet

    Bhattachryya, Pranab; Gupta, Anjan Dutta; Dhar, S.; Sarma, P. R.; Mukherjee, Paramita

    2017-06-01

    The helium vessel of the superconducting cyclotron (SCC) at the Variable Energy Cyclotron centre (VECC), Kolkata shows a gradual loss of insulation vacuum from 10-7 mbar to 10-4 mbar with increasing coil current in the magnet. The insulation vacuum restores back to its initial value with the withdrawal of current. The origin of such behavior has been thought to be related to the electromagnetic stress in the magnet. The electromagnetic stress distribution in the median plane of the helium vessel was studied to figure out the possible location of the helium leak. The stress field from the possible location was transferred to a simplified 2D model with different leak geometries to study the changes in conductance with coil current. The leak rate calculated from the changes in the leak geometry was compared with the leak rate calculated from the experimental insulation vacuum degradation behavior to estimate the initial leak shape and size.

  10. Leak rate models and leak detection

    1992-01-01

    Leak detection may be carried out by a number of detection systems, but selection of the systems must be carefully adapted to the fluid state and the location of the leak in the reactor coolant system. Computer programs for the calculation of leak rates contain different models to take into account the fluid state before its entrance into the crack, and they have to be verified by experiments; agreement between experiments and calculations is generally not satisfactory for very small leak rates resulting from narrow cracks or from a closing bending moment

  11. Nuclear fuel rod helium leak inspection apparatus and method

    Ahmed, H.J.

    1991-01-01

    This patent describes an inspection apparatus for testing nuclear fuel rods for helium leaks. It comprises a test chamber being openable and closable for receiving at least one nuclear fuel rod; means separate from the fuel rod for supplying helium and constantly leaking helium at a predetermined known positive value into the test chamber to constantly provide an atmosphere of helium at the predetermined known positive value in the test chamber; and means for sampling the atmosphere within the chamber and measuring the helium in the atmosphere such that a measured helium value below a preset minimum helium value substantially equal to the predetermined known positive value of the atmosphere of helium being constantly provided in the test chamber indicates a malfunction in the inspection apparatus, above a preset maximum helium value greater than the predetermined known positive in the test chamber indicates the existence of a helium leak from the fuel rod, or between the preset minimum and maximum helium values indicates the absence of a helium leak from the fuel rod

  12. Helium leak testing of large pressure vessels or subassemblies

    Hopkins, J.S.; Valania, J.J.

    1977-01-01

    Specifications for pressure-vessel components [such as the intermediate heat exchangers (IHX)] for service in the liquid metal fast breeder reactor facilities require helium leak testing of pressure boundaries to very exacting standards. The experience of Foster Wheeler Energy Corporation (FWEC) in successfully leak-testing the IHX shells and bundle assemblies now installed in the Fast Flux Test Facility at Richland, WA is described. Vessels of a somewhat smaller size for the closed loop heat exchanger system in the Fast Flux Test Facility have also been fabricated and helium leak tested for integrity of the pressure boundary by FWEC. Specifications on future components call for helium leak testing of the tube to tubesheet welds of the intermediate heat exchangers

  13. Liquid to gas leak ratios with liquid nitrogen and liquid helium

    Batzer, T.H.; Call, W.R.

    1985-01-01

    To predict the leak rates of liquid helium and liquid nitrogen containers at operating conditions we need to know how small leaks (10 -8 to 10 -5 atm-cm 3 air/s), measured at standard conditions, behave when flooded with these cryogens. Two small leaks were measured at ambient conditions (approx.750 Torr and 295 K), at the normal boiling points of LN 2 and LHe, and at elevated pressures above the liquids. The ratios of the leak rates of the liquids at ambient pressure to the gases (G) at ambient pressure and room temperature were: GN 2 (1), LN 2 (18), GHe(1), and LHe(172). The leak rate ratio of LN 2 at elevated pressure was linear with pressure. The leak rate ratio of LHe at elevated pressure was also linear with pressure

  14. Liquid to gas leak ratios with liquid nitrogen and liquid helium

    Batzer, T.H.; Call, W.R.

    1985-01-01

    To predict the leak rates of liquid helium and liquid nitrogen containers at operating conditions we need to know how small leaks (10 -8 to 10 -5 atm-cm 3 air/s), measured at standard conditions, behave when flooded with these cryogens. Two small leaks were measured at ambient conditions (about 750 Torr and 295 K), at the normal boiling points of LN 2 and LHe, and at elevated pressures above the liquids. The ratios of the leak rates of the liquids at ambient pressure to the gases at ambient pressure and room temperature are presented. The leak rate ratio of LN 2 at elevated pressure was linear with pressure. The leak rate ratio of LHe at elevated pressure was also linear with pressure

  15. Helium Mass Spectrometer Leak Detection: A Method to Quantify Total Measurement Uncertainty

    Mather, Janice L.; Taylor, Shawn C.

    2015-01-01

    In applications where leak rates of components or systems are evaluated against a leak rate requirement, the uncertainty of the measured leak rate must be included in the reported result. However, in the helium mass spectrometer leak detection method, the sensitivity, or resolution, of the instrument is often the only component of the total measurement uncertainty noted when reporting results. To address this shortfall, a measurement uncertainty analysis method was developed that includes the leak detector unit's resolution, repeatability, hysteresis, and drift, along with the uncertainty associated with the calibration standard. In a step-wise process, the method identifies the bias and precision components of the calibration standard, the measurement correction factor (K-factor), and the leak detector unit. Together these individual contributions to error are combined and the total measurement uncertainty is determined using the root-sum-square method. It was found that the precision component contributes more to the total uncertainty than the bias component, but the bias component is not insignificant. For helium mass spectrometer leak rate tests where unit sensitivity alone is not enough, a thorough evaluation of the measurement uncertainty such as the one presented herein should be performed and reported along with the leak rate value.

  16. Helium leak and chemical impurities control technology in HTTR

    Tochio, Daisuke; Shimizu, Atsushi; Hamamoto, Shimpei; Sakaba, Nariaki

    2014-01-01

    Japan Atomic Energy Agency (JAEA) has designed and developed high-temperature gas-cooled reactor (HTGR) hydrogen cogeneration system named gas turbine high-temperature reactor (GTHTR300C) as a commercial HTGR. Helium gas is used as the primary coolant in HTGR. Helium gas is easy to leak, and the primary helium leakage should be controlled tightly from the viewpoint of preventing the release of radioactive materials to the environment. Moreover from the viewpoint of preventing the oxidization of graphite and metallic material, the helium coolant chemistry should be controlled tightly. The primary helium leakage and the helium coolant chemistry during the operation is the major factor in the HTGR for commercialization of HTGR system. This paper shows the design concept and the obtained operational experience on the primary helium leakage control and primary helium impurity control in the high-temperature engineering test reactor (HTTR) of JAEA. Moreover, the future plan to obtain operational experience of these controls for commercialization of HTGR system is shown. (author)

  17. Process for detecting leak faults using a helium mass spectrometer

    Divet, Claude; Morin, Claude.

    1977-01-01

    The description is given of a process for detecting very small leak faults putting into communication the outer and inner sides of the wall of a containment, one of these wall sides being in contact with gaseous helium under a pressure of around one torr, the other side being one of the limits of a space pumped down to a residual gas pressure under 10 -3 torr. This space is in communication with the measuring cell of a helium mass spectrometer. This process may be applied to the detection of faults in metal claddings of the fuel rods used in nuclear reactors [fr

  18. The Development of Leak Test Techniques by Means Helium Detector

    Sigit Asmara Santa; Puradwi lsmu Wahyono; Deddy Haryanto; Joko Irianto; Ismu Handoyo

    2003-01-01

    The auxiliary vacuum tube used for helium leak detection has been designed. The aim is to increase measured leak test sensitivity of existing helium leak detection system from the level of 10 -3 ∼10 -5 standard cm 3 /second to 10 -8 ∼10 -10 standard cm 3 /second. The goals of installed auxiliary vacuum tube in the existing leak detection system are used for quality control test product of Fission Product Molybdenum (FPM) capsule and AgInCd safety control rod. The design requirements were established based on both of their quality control test requirement to assure their safety and reliability. The vacuum tube length was designed at least as long as 100 cm with 6 inch diameter and have leakage tightness till as low as 10 10 standard cm 3 /second. The temperature and pressure could be controlled up to 100 o C and negative pressure 10 inch Hg respectively. The vacuum tube was equipped with temperature controller system consisting of covered heater and installed 3 thermocouples which were evenly distributed along the length of tube. Pressure control system controls the inside pressure vacuum tube according to prior setpoint values. Vacuum tube temperature and pressure were controlled using combination of both prior its set-up temperature and pressure. Aluminum disks were installed at the end of covered heater used for cooling system and to protect heat hazard to operator. (author)

  19. Sensitive helium leak detection in a deuterium atmosphere using a high-resolution quadrupole mass spectrometer

    Hiroki, S.; Abe, T.; Murakami, Y.

    1996-01-01

    In fusion machines, realizing a high-purity plasma is a key to improving the plasma parameters. Thus, leak detection is a necessary part of reducing the leak rate to a tolerable level. However, a conventional helium ( 4 He) leak detector is useless in fusion machines with a deuterium (D 2 ) plasma, because retained D particles on the first walls release D 2 for a long period and the released D 2 interferes with the signals from the leaked 4 He due to the near identical masses of 4.0026 u ( 4 He) and 4.0282 u (D 2 ). A high-resolution quadrupole mass spectrometer (HR-QMS) that we have recently developed, can detect a 4 He + population as small as 10 -4 peak in a D 2 atmosphere. Thus, the HR-QMS has been applied to detect 4 He leaks. To improve the minimum detectable limit of 4 He leak, a differentially pumped HR-QMS analyzer was attached to a chamber of the 4 He leak detector. In conclusion, the improved 4 He leak detector could detect 4 He leaks of the order of 10 -10 Pa · m 3 /s in a D 2 atmosphere. (Author)

  20. High level helium leak testing methods developed at ICSI Rm. Valcea

    Saros, Gili; Armeanu, Adrian; Saros, Irina; Ciortea, Constantin

    2007-01-01

    Full text: Helium leak detection is one of the most widely used methods of nondestructive testing in use today. In principle two methods are applied for leak testing and localization of leaks, the 'Vacuum method' and the 'Overpressure method'. In case of the 'Vacuum method' the object to be examined for leaks is evacuated and filled instead with Helium. The gas penetrates through any leaks found in the object and is detected by the leak test instrument. In case of the 'Overpressure method' the object to be examined for leaks is filled with Helium, under slight overpressure. The gas escapes through any leaks present and it is detected by a detector probe. This detector probe sometimes called a 'sniffer' acting as a gas sampling probe. Varian 979 Helium Leak Detector has a built-in turbo pump and an externally mounted dry forepump located below the system. The leak detector is configured for the evacuation type leak testing. In this case, the vacuum system under test is evacuated by the leak detector. Helium is then sprayed on the outside of the vacuum system and is pumped into the leak detector if a leak is present. The leak detector is capable to detect leaks down to 10 -9 atm-cc/sec range. The Specton 300E is a strong, rugged leak detector designed to operate in dirty industrial conditions as well as clean research areas. A number of applications are mentioned: - Generators; - Buried Pipelines; - Chemical and power plants; - Vacuum furnace installations; - Heat Exchangers; - Tank Floors; - Nuclear research centers; - Refrigeration installations; - Any type of industrial vacuum system. (authors)

  1. Leak detection in turbo group condensers using helium

    Gomez Cores, C.; Lloret, J.

    1997-01-01

    This method allows a rapid location of leaks (small or not) in the pipelines of a turbo group condenser, before opening the condenser boxes and no need of stooping the turbo group operation. This operation can last two hours maximum depending on the volume of the box or semi box. The technique consists of injecting helium into the water side and detecting it in the steam side, in the outlet of not condensable gases of the ejector. In the same way, probable air inlet to the condenser can be proved (auxiliary systems, turbo group joints to the condenser, etc.) in order to improve the vacuum and/or reduce the quantity of oxygen dissolved in the water of the steam side. (author) [es

  2. Leak rate measurements and detection systems

    Kupperman, D.; Shack, W.J.; Claytor, T.

    1983-10-01

    A research program is under way to evaluate and develop improve leak detection systems. The primary focus of the work has been on acoustic emission detection of leaks. Leaks from artificial flaws, laboratory-generated IGSCCs and thermal fatigue cracks, and field-induced intergranular stress corrosion cracks (IGSCCs) from reactor piping have been examined. The effects of pressure, temperature, and leak rate and geometry on the acoustic signature are under study. The use of cross-correlation techniques for leak location and pattern recognition and autocorrelation for source discrimination is also being considered

  3. Leak detection on the DIII-D tokamak using helium entrainment techniques

    Brooks, N.H.; Baxi, C.; Anderson, P.

    1988-01-01

    The entrainment of helium in a viscous gas flow was utilized to compartmentalize, and then to pinpoint, a leak across the inner skin of the double-walled DIII-D vacuum vessel. Inaccessible from the outside, the leak connected the cooling channels in the wall interspace with the primary vacuum chamber. By entraining helium in the pressurized flow from the single-pass gas circulation system, well-defined portions of the wall were exposed to helium without disassembly of the poorly accessible cooling manifolds. Varying the helium injection point permitted the localization of the leak to a single 30 0 toroidal sector of the vessel. The exact location of the leak was found from inside the vessel by spraying helium on suspect regions, while sweeping the contents of the cooling channels to the foreline of a Varian Contraflow leak detector with a 0.1 Pa m 3 /s flow of nitrogen. Flow speed calculations were used to predict the response time to entrained helium of the actual leak detection setup

  4. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    Pathan, F. S.; Khan, Z.; Semwal, P.; Raval, D. C.; Joshi, K. S.; Thankey, P. L.; Dhanani, K. R.

    2008-05-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN2 panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN2 panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN2 panels during sniffer test and pressure drop test using helium gas.

  5. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    Pathan, F S; Khan, Z; Semwal, P; Raval, D C; Joshi, K S; Thankey, P L; Dhanani, K R [Institute for Plasma Research, Bhat, Gandhinagar - 382 428, Gujarat (India)], E-mail: firose@ipr.res.in

    2008-05-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN{sub 2} panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN{sub 2} panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN{sub 2} panels during sniffer test and pressure drop test using helium gas.

  6. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    Pathan, F S; Khan, Z; Semwal, P; Raval, D C; Joshi, K S; Thankey, P L; Dhanani, K R

    2008-01-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN 2 panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN 2 panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN 2 panels during sniffer test and pressure drop test using helium gas

  7. Back pressure helium leak testing of fuel elements for Dhruva research reactor

    Dutta, N G; Ahmad, Anis; Kulkarni, P G; Purushotham, D S.C. [Bhabha Atomic Research Centre, Bombay (India). Atomic Fuels Div.

    1994-12-31

    Leak tightness specification on fuel elements for reactor use is always very stringent. The fuel element fabricated for Dhruva reactor is specified to be leak-tight up to 1 x 10{sup -8} std. cc/sec. The fuel element consists of natural metallic uranium rod around 12.5 mm diameter and 3 meter long in encased in aluminium tube and seal welded at both ends. Since helium gas is not filled inside the fuel element while doing seal welding, the only way to do helium leak testing of such fuel rods is by back-pressure technique. This paper describes the development of test facility for carrying out such test and discusses the experiences of carrying out helium leak testing by back-pressure technique on more than 700 numbers of fuel rods for Dhruva reactor. (author). 4 refs., 3 figs., 1 tab.

  8. Evaluation of leak rate by EPRI code

    Isozaki, Toshikuni; Hashiguchi, Issei; Kato, Kiyoshi; Miyazono, Shohachiro

    1987-08-01

    From 1987, a research on the leak rate from a cracked pipe under BWR or PWR operating condition is going to be carried out at the authors' laboratory. This report describes the computed results by EPRI's leak rate code which was mounted on JAERI FACOM-M380 machine. Henry's critical flow model is used in this program. For the planning of an experimental research, the leak rate from a crack under BWR or PWR operating condition is computed, varying a crack length 2c, crack opening diameter COD and pipe diameter. The COD value under which the minimum detectable leak rate of 5 gpm is given is 0.22 mm or 0.21 mm under the BWR or PWR condition with 2c = 100 mm and 16B pipe geometry. The entire lists are shown in the appendix. (author)

  9. Engineering Sensitivity Improvement of Helium Mass Spectrometer Leak Detection System by Means Global Hard Vacuum Test

    Sigit Asmara Santa

    2006-01-01

    The engineering sensitivity improvement of Helium mass spectrometer leak detection using global hard vacuum test configuration has been done. The purpose of this work is to enhance the sensitivity of the current leak detection of pressurized method (sniffer method) with the sensitivity of 10 -3 ∼ 10 -5 std cm 3 /s, to the global hard vacuum test configuration method which can be achieved of up to 10 -8 std cm 3 /s. The goal of this research and development is to obtain a Helium leak test configuration which is suitable and can be used as routine bases in the quality control tests of FPM capsule and AgInCd safety control rod products. The result is an additional instrumented vacuum tube connected with conventional Helium mass spectrometer. The pressure and temperature of the test object during the leak measurement are simulated by means of a 4.1 kW capacity heater and Helium injection to test object, respectively. The addition of auxiliary mechanical vacuum pump of 2.4 l/s pumping speed which is directly connected to the vacuum tube, will reduce 86 % of evacuation time. The reduction of the measured sensitivity due to the auxiliary mechanical vacuum pump can be overcome by shutting off the pump soon after Helium mass spectrometer reaches its operating pressure condition. (author)

  10. Experiences in integrated leak rate measurements

    Shirk, R.E.

    1982-01-01

    During a hypothetical design basis accident for nuclear power plants, the reactor containment system is relied upon to maintain radioactive exposure limits below acceptable limits. Integrated leak rate testing is a means of verifying that the leakage of radioactivity material from the reactor containment will be below allowable limits. Leakage rate computations are based on the ideal gas law. The absolute method of leakage rate testing utilizing mass point method of data analysis is recommended. Integrated leak rate testing data is obtained from pressure, drybulb temperature, dewpoint temperature, and flow measuring systems. Test data does not support the usual leakage (flow) - pressure square root relationship. The major source of potential leakage from the reactor containment is reactor containment isolation valves

  11. Some applications of the Helium Leak Detectors in the nuclear industry

    Psacharopulo, A.

    1985-01-01

    The improved reliability and ease of operation of Helium Mass Spectrometer leak Detectors currently manufactured has dramatically widened the field of applications for these instruments. The authors describe here some applications: 1. Testing power plants steam condensers in operation; 2. Leak checking of underground pressurized cables or pipes. The field of applications of the Helium Leak Detectors is nowadays much larger due to the increased reliability and ease of operation of current instruments. This has allowed their use in several applications where the techniques used in the past were totally insufficient. The major benefits of the helium method are the very high sensitivity (up to 10 -1 std cc/sec, equivalent to 1 cm 3 every 300 years), fast response times, no operator judgement, possibility to adjust the sensitivity of the instrument to the requirements of the parts under test, and absolute selectivity for helium (no response to any other gas). To these benefits there has been recently the addition of better reliability, ease of operation, allowing unskilled operators to perform tests, no need for liquid nitrogen and finally the physical size of some instruments available today means that they can be easily carried around for on-site tests

  12. Remote helium leak test of the DUPIC fuel rod

    Kim, W. K; Kim, S. S.; Lim, S. P.; Lee, J. W.; Yang, M. S.

    1998-01-01

    DUPIC(Direct Use of spent PWR fuel In CANDU reactor) is one of dry reprocessing fuel cycles to reuse irradiated PWR fuel in CANDU power plant. DUPIC fuel is so radioactive that DUPIC fuel is remotely fabricated at hot cell such as IMEF hot cell in which radiation is shielded and remote operation is possible. In this study, Helium leakage has been tested for the simulated DUPIC fuel rod manufactured by Nd:YAG laser end-cap welding at simulated hot cell. The remote inspection technique has been developed to evaluate the soundness of DUPIC fuel fabricated through new processes. Vacuum chamber has been developed to be remotely operated by manipulators at hot cell. As the result of remote test, Helium leakage of DUPIC fuel rod is around background level, CANDU specification has been satisfied. In the result of the study, remote test has been successfully performed at the simulated hot cell, and the soundness of DUPIC fuel rod welded by Nd:YAG laser has been confirmed

  13. FFTF integrated leak rate computer system

    Hubbard, J.A.

    1987-01-01

    The Fast Flux Test Facility (FFTF) is a liquid-metal-cooled test reactor located on the Hanford site. The FFTF is the only reactor of this type designed and operated to meet the licensing requirements of the Nuclear Regulatory Commission. Unique characteristics of the FFTF that present special challenges related to leak rate testing include thin wall containment vessel construction, cover gas systems that penetrate containment, and a low-pressure design basis accident. The successful completion of the third FFTF integrated leak rate test 5 days ahead of schedule and 10% under budget was a major achievement for the Westinghouse Hanford Company. The success of this operational safety test was due in large part to a special network (LAN) of three IBM PC/XT computers, which monitored the sensor data, calculated the containment vessel leak rate, and displayed test results. The equipment configuration allowed continuous monitoring of the progress of the test independent of the data acquisition and analysis functions, and it also provided overall improved system reliability by permitting immediate switching to backup computers in the event of equipment failure

  14. Leak rate test of containment personnel lock

    Julien, J.T.; Peters, S.W.

    1988-01-01

    As part of the US NRC Containment Integrity Program, a leak rate test was performed on a full size personnel airlock for a nuclear containment building. The airlock was subjected to conditions simulating severe accident conditions. The objective of the test was to characterize the performance of airlock door seals when subjected to conditions that exceeded design. The seals tested were a double dog-ear configuration and made from EPDM E603. The data obtained from this test will be used by SNL as a benchmark for development of analytical methods. In addition to leak rate information, strain, temperature, displacements, and pressure data were measured and recorded from over 330 transducers. The test lasted approximately 60 hours. Data were recorded at regular intervals and during heating, pressurization and depressurization. The inner airlock door and bulkhead were exposed to a maximum air temperature of 850 F and a maximum air pressure of 300 psig. The airlock was originally designed for 340 F and 60 psig. Two heating and pressurization cycles were planned; one to heat to 400 F and pressurize to 300 psig, and the second to heat to 800 F and pressurize to 300 psig. No significant leakage was recorded during these two cycles. A third cycle was added to the test program. The air temperature was increased to 850 F and held at this temperature for approximately 10 hours. The inner door seal failed quickly at a pressure of 150.5 psig. The maximum leak rate was 706 SCFM

  15. Helium leak testing of superconducting magnets, thermal shields and cryogenic lines of SST -1

    Thankey, P.L.; Joshi, K.S.; Semwal, P.; Pathan, F.S.; Raval, D.C.; Khan, Z.; Patel, R.J.; Pathak, H.A.

    2005-01-01

    Tokamak SST - 1 is under commissioning at Institute for Plasma Research. It comprises of a toroidal doughnut shaped plasma chamber, surrounded by liquid helium cooled superconducting magnets, housed in a cryostat chamber. The cryostat has two cooling circuits, (1) liquid nitrogen cooling circuit operating at 80 K to minimize the radiation heat load on the magnets, and (2) liquid helium cooling circuit to cool magnets and cold mass support structure to 4.5 K. In this paper we describe (a) the leak testing of copper - SS joints, brazing joints, interconnecting joints of the superconducting magnets, and (b) the leak testing of the liquid nitrogen cooling circuit, comprising of the main supply header, the thermal shields, interconnecting pipes, main return header and electrical isolators. All these tests were carried out using both vacuum and sniffer methods. (author)

  16. Experiences with leak rate calculations methods for LBB application

    Grebner, H.; Kastner, W.; Hoefler, A.; Maussner, G.

    1997-01-01

    In this paper, three leak rate computer programs for the application of leak before break analysis are described and compared. The programs are compared to each other and to results of an HDR Reactor experiment and two real crack cases. The programs analyzed are PIPELEAK, FLORA, and PICEP. Generally, the different leak rate models are in agreement. To obtain reasonable agreement between measured and calculated leak rates, it was necessary to also use data from detailed crack investigations

  17. Experiences with leak rate calculations methods for LBB application

    Grebner, H.; Kastner, W.; Hoefler, A.; Maussner, G. [and others

    1997-04-01

    In this paper, three leak rate computer programs for the application of leak before break analysis are described and compared. The programs are compared to each other and to results of an HDR Reactor experiment and two real crack cases. The programs analyzed are PIPELEAK, FLORA, and PICEP. Generally, the different leak rate models are in agreement. To obtain reasonable agreement between measured and calculated leak rates, it was necessary to also use data from detailed crack investigations.

  18. A new approach for helium backfilling and leak testing seal-welded capsules in a hot cell

    Strasslsund, E.K.; Berger, D.N.

    1992-05-01

    Gamma irradiation sources containing radioactive 137 Cesium Chloride are being produced at the US Department of Energy's Hanford Site as part of a Westinghouse Hanford company/Pacific Northwest Laboratory cooperative program. New equipment was developed to leak test the double-encapsulated sources in a hot cell. The equipment, which includes a helium backfill chamber and end cap press , a vacuum chamber, and a helium mass spectrometer, has provided technicians with the capability to detect leaks in sealed sources as small as 1. 0x10 -7 atm cm 3 /S helium

  19. Evaluation of sulfur hexafluoride and helium for steam generator leak location: Final report

    Kassen, W.R.

    1987-01-01

    Since the use of sulfur hexafluoride as a tracer for identifying sources of primary to secondary leakage in PWR steam generators appeared to offer significant sensitivity advantages, the thermal stability of sulfur hexafluoride in water was evaluated at steam generator operating temperature. Significant decomposition was observed after 2 to 4 hours at temperature. Key decomposition products were fluoride and sulfide ions. Based on this observation and these limited test results, the use of SF 6 for PWR steam generator leak location can not be recommended at this time. A survey of 15 utilities was conducted in regard to their application experience with the helium tracer-mass spectroscopy technique for steam generator leak location. Although several successful steam generator integrity programs do not include use of this technique, it has proven to be a useful addition to the inspection program at some plants. No corrosion concerns appear to be associated with this technique

  20. Probabilistic pipe fracture evaluations for leak-rate-detection applications

    Rahman, S.; Ghadiali, N.; Paul, D.; Wilkowski, G.

    1995-04-01

    Regulatory Guide 1.45, open-quotes Reactor Coolant Pressure Boundary Leakage Detection Systems,close quotes was published by the U.S. Nuclear Regulatory Commission (NRC) in May 1973, and provides guidance on leak detection methods and system requirements for Light Water Reactors. Additionally, leak detection limits are specified in plant Technical Specifications and are different for Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). These leak detection limits are also used in leak-before-break evaluations performed in accordance with Draft Standard Review Plan, Section 3.6.3, open-quotes Leak Before Break Evaluation Proceduresclose quotes where a margin of 10 on the leak detection limit is used in determining the crack size considered in subsequent fracture analyses. This study was requested by the NRC to: (1) evaluate the conditional failure probability for BWR and PWR piping for pipes that were leaking at the allowable leak detection limit, and (2) evaluate the margin of 10 to determine if it was unnecessarily large. A probabilistic approach was undertaken to conduct fracture evaluations of circumferentially cracked pipes for leak-rate-detection applications. Sixteen nuclear piping systems in BWR and PWR plants were analyzed to evaluate conditional failure probability and effects of crack-morphology variability on the current margins used in leak rate detection for leak-before-break

  1. Fast leak of a channel filled with helium at a pressure of 2 bars (channel H5)

    Bauer, E.; Tribolet, J.

    1987-01-01

    The loss of seal of a helium-filled channel opening the entire cross section of the front part leads to a fast leak. The channel fills to the upper generatrix of the leak orifice and part of the helium contained in the channel escapes into the circuit. The pressure drop in the reflector can lead to reactor and main pump shutdown. On the other hand, the Cooling Circuit Shutdown Bar circuit pumps remain in operation. This paper evaluates the consequences of an incident of this nature for the reactor and the surrounding experimental zones

  2. Easy method enhancing the sensitivity of a helium mass-spectrometer leak detector

    Firpo, G.; Pozzo, A.

    2004-01-01

    Commercial He mass spectrometer leak detectors usually do not provide sufficient sensitivity to perform accurate measurements of the permeation rate of He through glass. Ultrasensitive dedicated systems have adeguate sensitivity but involve high costs and complex procedures. However, both cryogenics and photomultiplier technology routinely demand this goal. Here, we propose a novel method to increase the sensitivity of commercial devices to easily measure accurate permeation rate. We modified a commercial leak detector by reducing the pumping speed at the inlet of the rotary pump, thus increasing its sensitivity by one order of magnitude. The modified detector was used to measure the leak rate of the permeation of He through the glass walls of a photomultiplier. Further improvements made to decrease the minimum detectable signal were limited by the high ultimate pressure in the spectrometer tube

  3. Experiments and calculations to leak openings and leak rates on typical piping components and systems

    Hoefler, A.; Grebner, H.

    1992-01-01

    Calculations of leak opening and leak rate for through cracks in piping components have been performed. The analyses are pre- or mostly post-calculations to experiments performed at the HDR facility under PWR operating conditions. Piping components under consideration are small diameter straight pipes with circumferential cracks, pipe bends with longitudinal or circumferential cracks and pipe branches with weldment cracks. The component are loaded by internal pressure and opening as well as closing bending moment. The finite element method and two-phase flow leak rate programs are used for the calculations. Results of the analyses are presented as J-integral values, crack opening displacements and areas and leak rates as well as comparisons to the experimental results. 6 refs., 16 figs., 2 tabs

  4. Comparison of leak opening and leak rate calculations to HDR experimental results

    Grebner, H.; Hoefler, A.; Hunger, H.

    1993-01-01

    During the last years a number of calculations of leak opening and leak rate for through cracks in piping components have been performed. Analyses are pre- or mostly post-calculations to experiments performed at the HDR facility under PWR operating conditions. Piping components under consideration were small diameter straight pipes with circumferential cracks, pipe bends with longitudinal or circumferential cracks and pipe branches with weldment cracks. The components were loaded by internal pressure and opening as well as closing bending moment. The finite element method and two-phase flow leak rate programs were used for the calculations. Results of the analyses are presented as J-integral values, crack opening displacements and areas and leak rates as well as comparisons to the experimental results

  5. Leak-tightness assessment of demountable joints for the super fluid helium system of the CERN Large Hadron Collider (LHC)

    Brunet, J.C.; Poncet, A.; Trilhe, P.

    1994-01-01

    The future high energy accelerator LHC presently considered at CERN, will make heavy use of demountable cryogenic joints operating at superfluid helium temperatures (1.8 K). These joints will be required for connecting the cryomagnets to their feeding lines, helium safety valves to cold masses, both on their measuring benches and eventually in their final installation set-up. The very large size of the future machine and, consequently, the large number of cryogenic joints imply that their reliability in leak tightness be very high, in particular after extreme loading conditions such as the high helium pressures resulting from superconducting magnet quenches. For these reasons, a test set-up has been especially built at CERN to reproduce these conditions, and to assess the leak tightness reliability of commercially available joints. A description of the facility is presented, together with the first test results

  6. Study on the leak rate test for HANARO reactor building

    Choi, Y. S.; Kim, Y. K.; Kim, M. J.; Park, J. M.; Woo, J. S.

    2002-01-01

    The reactor building of HANARO adopts the confinement concept, which allows a certain amount of air leakage. In order to restrict the air leakage through the confinement boundary, negative pressure of at least 2.5 mmWG is maintained in normal operating condition while maintaining 25 mmWG of negative pressure in abnormal condition, the inside air filtered by a train of charcoal filter is released to the atmosphere through the stack. In this situation, if the emergency ventilation system is not operable, the reactor building is isolated from the outside then the trapped air inside will be leaked out through the building by ground release concept. As the leak rate may be affected by an effect of wind velocity outside the reactor building, the air tightness of confinement should be maintained to limit the leak rate below the allowable value. The local leak rate test method was used since the beginning of the commissioning until July 1999. However it has been pointed out as a defect that the method is so susceptible to the change of temperature and atmospheric pressure during testing. For more accurate leak rate testing, we have introduced a new test method. We have periodically carried out the new leak rate testing and the results indicate that the bad effect by the temperature and atmospheric pressure change is considerably reduced, which gives more stable leak rate measurement

  7. Research and development of a high-temperature helium-leak detection system (joint research). Part 1 survey on leakage events and current leak detection technology

    Sakaba, Nariaki; Nakazawa, Toshio; Kawasaki, Kozo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Urakami, Masao; Saisyu, Sadanori [Japan Atomic Power Co., Tokyo (Japan)

    2003-03-01

    In High Temperature Gas-cooled Reactors (HTGR), the detection of leakage of helium at an early stage is very important for the safety and stability of operations. Since helium is a colourless gas, it is generally difficult to identify the location and the amount of leakage when very little leakage has occurred. The purpose of this R and D is to develop a helium leak detection system for the high temperature environment appropriate to the HTGR. As the first step in the development, this paper describes the result of surveying leakage events at nuclear facilities inside and outside Japan and current gas leakage detection technology to adapt optical-fibre detection technology to HTGRs. (author)

  8. LEAK: A source term generator for evaluating release rates from leaking vessels

    Clinton, J.H.

    1994-01-01

    An interactive computer code for estimating the rate of release of any one of several materials from a leaking tank or broken pipe leading from a tank is presented. It is generally assumed that the material in the tank is liquid. Materials included in the data base are acetonitrile, ammonia, carbon tetrachloride, chlorine, chlorine trifluoride, fluorine, hydrogen fluoride, nitric acid, nitrogen tetroxide, sodium hydroxide, sulfur hexafluoride, sulfuric acid, and uranium hexafluoride. Materials that exist only as liquid and/or vapor over expected ranges of temperature and pressure can easily be added to the data base file. The Fortran source code for LEAK and the data file are included with this report

  9. Achieving low anastomotic leak rates utilizing clinical perfusion assessment.

    Kream, Jacob; Ludwig, Kirk A; Ridolfi, Timothy J; Peterson, Carrie Y

    2016-10-01

    Anastomotic leak after colorectal resection increases morbidity, mortality, and in the setting of cancer, increases recurrences rates and reduces survival odds. Recent reports suggest that fluorescence evaluation of perfusion after colorectal anastomosis creation is associated with low anastomotic leak rates (1.4%). The purpose of this work was to evaluate whether a similar low anastomotic leak rate after left-sided colorectal resections could be achieved using standard assessment of blood flow to the bowel ends. We performed a retrospective chart review at an academic tertiary referral center, evaluating 317 consecutive patients who underwent a pelvic anastomosis after sigmoid colectomy, left colectomy, or low anterior resection. All operations were performed by a single surgeon from March 2008 to January 2015 with only standard clinical measures used to assess perfusion to the bowel ends. The primary outcome measure was the anastomotic leak rate as diagnosed by clinical symptoms, exam, or routine imaging. The average patient age was 59.7 years with an average body mass index of 28.8 kg/m(2). Rectal cancer (128, 40.4%) was the most common indication for operation while hypertension (134, 42.3%) was the most common comorbidity. In total, 177 operations were laparoscopic (55.8%), 13 were reoperative resections (4.1%), and 108 were protected with a loop ileostomy (34.1%). Preoperative chemotherapy was administered to 25 patients (7.9%) while preoperative chemo/radiation was administered to 64 patients (20.2%). The anastomotic leak rate was 1.6% (5/317). Our data suggests that standard, careful evaluation of adequate blood flow via inspection and confirmation of pulsatile blood flow to the bowel ends and meticulous construction of the colorectal or coloanal anastomoses can result in very low leak rates, similar to the rate reported when intraoperative imaging is used to assess perfusion. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Integrated leak rate test results of JOYO reactor containment vessel

    Tamura, M.; Endo, J.

    1982-02-01

    Integrated leak rate tests of JOYO after the reactor coolant system had been filled with sodium have been performed two times since 1978 (February 1978 and December 1979). The tests were conducted with the in-containment sodium systems, primary argon cover gas system and air conditioning systems operating. Both the absolute pressure method and the reference chamber method were employed during the test. The results of both tests confirmed the functioning of the containment vessel, and leak rate limits were satisfied. In Addition, the adequancy of the test instrumentation system and the test method was demonstrated. Finally the plant conditions required to maintain reasonable accuracy for the leak rate testing of LMFBR were established. In this paper, the test conditions and the test results are described. (author)

  11. Leak-rate qualification of the FFTF control area

    Billings, M.P.; Swenson, L.D.

    1983-06-01

    Positive experience with the Fast Flux Test Facility (FFTF) Control Area boundary has demonstrated that strigent requirements for reactor control room leak-tightness can be met and maintained. Guidance contained in 10CFR50, Appendix A, Criteria 4 and 19, and Regulatory Guides 1.78 and 1.95 provided criteria for control room habitability, to provide safe, central control of the FFTF plant under normal and accident conditions. A leak rate criterion of 178 scfm for the approximate 53,000 cu. ft. Volume of the Control Area was established for the limiting condition of airborne sodium oxide aerosols from a postulated fire in one of the three secondary sodium loops. Numerous tests utilizing a variety of leak identification techniques were conducted

  12. Helium leak testing of a radioactive contaminated vessel under high pressure in a contaminated environment

    Winter, M.E.

    1996-01-01

    At ANL-W, with the shutdown of EBR-II, R ampersand D has evolved from advanced reactor design to the safe handling, processing, packaging, and transporting spent nuclear fuel and nuclear waste. New methods of processing spent fuel rods and transforming contaminated material into acceptable waste forms are now in development. Storage of nuclear waste is a high interest item. ANL-W is participating in research of safe storage of nuclear waste, with the WIPP (Waste Isolation Pilot Plant) site in New Mexico the repository. The vessel under test simulates gas generated by contaminated materials stored underground at the WIPP site. The test vessel is 90% filled with a mixture of contaminated material and salt brine (from WIPP site) and pressurized with N2-1% He at 2500 psia. Test acceptance criteria is leakage -7 cc/seconds at 2500 psia. The bell jar method is used to determine leakage rate using a mass spectrometer leak detector (MSLD). The efficient MSLD and an Al bell jar replaced a costly, time consuming pressure decay test setup. Misinterpretation of test criterion data caused lengthy delays, resulting in the development of a unique procedure. Reevaluation of the initial intent of the test criteria resulted in leak tolerances being corrected and test efficiency improved

  13. Study on the Measurement of Valve Leak Rate Using Acoustic Emission Technology

    Lee, Sang-Guk; Park, Jong-Hyuck; Yoo, Keun-Bae; Lee, Sun-Ki; Hong, Sung-Yull

    2006-01-01

    This study is to estimate the feasibility of acoustic emission(AE) method for the internal leak from the valves. In this study, 4 inch ball water valve leak tests using three different leak path and various leak rates were performed in order to analyze AE properties when leaks arise in valve seat. As a result of leak test for specimens simulated valve seat, we conformed that leak sound amplitude increased in proportion to the increase of leak rate, and leak rates were plotted versus peak acoustic amplitudes recorded within those two narrow frequency bands on each spectrum plot. The resulting plots of leak rate versus peak AE amplitude were the primary basis for determining the feasibility of quantifying leak acoustically. The large amount of data attained also allowed a favorable investigation of the effects of different leak paths, leak rates, pressure differentials and AE sensors on the AE amplitude spectrum. From the experimental results, it was suggested that the AE method for monitoring of leak was feasible. This paper describes quantitative measurements of fluid valve leak rates by the analysis of AE. Experimental apparatus were fabricated to accept a variety of leaking water valves in order to determine what characteristics of AE signal change with leak rate. The data for each valve were generated by varying the leak rate and recording the time averaged amplitude of AE versus frequency. Leak rates were varied by modifying the valve seating surfaces in ways designed to simulate actual defects observed in service. Most of the data analysis involved plotting the leak rate versus signal amplitude at a specific frequency to determine how well the two variables correlate in terms of accuracy, resolution, and repeatability

  14. Evaluation of methodologies for the calculation of leak rates for pressure retaining components with crack-like leaks

    Sievers, Juergen; Heckmann, Klaus; Blaesius, Christoph

    2015-06-01

    For the demonstration of break preclusion for pressure retaining components in nuclear power plants, the nuclear safety standard KTA 3206 determines also the requirements for the leak-before-break verification. For this procedure, it has to be ensured that a wall-penetrating crack is subcritical with respect to instable growth, and that the resulting leakage under stationary operation conditions can be detected by a leak detection system. Within the scope of the project 3613R01332 analyses with respect to conservative estimates of the leak rates in case of detections regarding break preclusion were performed by means of leak rate models being available at GRS. For this purpose, conservative assumptions in the procedure were quantified by comparative calculations concerning selected leak rate experiments and the requirements regarding the determination of leak rates indicated in the KTA 3206 were verified and specified. Moreover, the models were extended and relevant recommendations for the calculation procedure were developed. During the investigations of leak rate tests the calculation methods were validated, qualified by means of both examples indicated in KTA 3206 and applied to a postulated leak accident in the cooling circuit of a PWR. For the calculation of leak rates several simplified solution methods which are included in the GRS program WinLeck were applied, and for the simulation of a leak accident the large-scale programs ANSYS Mechanical and ATHLET (thermohydraulics program developed by GRS) were used. When applying simplified methods for the calculation of leak rates using the limiting curve for the friction factor which has been derived during the project and which is included in the KTA 3206 attention has to be paid to the fact that in case of small flow lengths the entrance loss can dominate compared to the friction loss. However, the available data do not suffice in order to make a quantitative statement with respect to limits of applicability

  15. Measurement for the Leak Rate enhanced by a Improved Method

    Bae, Sang-Hoon; Choi, Young-San; Kim, Young-Ki; Lee, Yong-Sub; Jung, Hoan-Sung

    2007-01-01

    The leak rate measurement of the HANARO such as a research reactor that adopts a confinement concept for a reactor hall is very important one during a period inspection. This test verifies whether the reactor building could maintain the negative pressure or not when radiation is perceived by abnormal accidents. Of course, this may not cause a problem in a reactor operation only if it can satisfy the design requirement, but it is necessary to have some margin of a limitation value because a reactor hall should be managed more conservatively than the design reference. To meet the requirements of this strict design condition, previous method was changed to a new type of test with more stable and robust measuring method. The new leak rate measurement method is briefly introduced and the merits of this proposed method are shown through the data analyzed for last 3 years

  16. Pipe fracture evaluations for leak-rate detection: Probabilistic models

    Rahman, S.; Wilkowski, G.; Ghadiali, N.

    1993-01-01

    This is the second in series of three papers generated from studies on nuclear pipe fracture evaluations for leak-rate detection. This paper focuses on the development of novel probabilistic models for stochastic performance evaluation of degraded nuclear piping systems. It was accomplished here in three distinct stages. First, a statistical analysis was conducted to characterize various input variables for thermo-hydraulic analysis and elastic-plastic fracture mechanics, such as material properties of pipe, crack morphology variables, and location of cracks found in nuclear piping. Second, a new stochastic model was developed to evaluate performance of degraded piping systems. It is based on accurate deterministic models for thermo-hydraulic and fracture mechanics analyses described in the first paper, statistical characterization of various input variables, and state-of-the-art methods of modem structural reliability theory. From this model. the conditional probability of failure as a function of leak-rate detection capability of the piping systems can be predicted. Third, a numerical example was presented to illustrate the proposed model for piping reliability analyses. Results clearly showed that the model provides satisfactory estimates of conditional failure probability with much less computational effort when compared with those obtained from Monte Carlo simulation. The probabilistic model developed in this paper will be applied to various piping in boiling water reactor and pressurized water reactor plants for leak-rate detection applications

  17. Burst pressure and leak rate from fretted SG tubes

    Hwang, Seong Sik; Jung, Man Kyo; Kim, Hong Pyo; Kim, Joung Soo

    2005-01-01

    Steam generator(SG) tubes of a pressurized water reactor(PWR) have suffered from various types of corrosion, such as pitting, wastage and stress corrosion cracking (SCC) on both the primary and secondary side. Recently, fretting/wear degradation at the tube support region has been reported in some Korean nuclear power plants. In order to prevent the primary coolant from leaking to the secondary side, the tubes are repaired by a sleeving or plugging. It is important to establish the repair criteria to assure a reactor integrity and yet maintain the plugging ratio within the limits needed for an efficient operation. The objective of the burst test is to obtain a relationship between the burst/leak rate and the shape of the fretted flaws machined with an electro discharge machining (EDM)

  18. RCS Leak Rate Calculation with High Order Least Squares Method

    Lee, Jeong Hun; Kang, Young Kyu; Kim, Yang Ki

    2010-01-01

    As a part of action items for Application of Leak before Break(LBB), RCS Leak Rate Calculation Program is upgraded in Kori unit 3 and 4. For real time monitoring of operators, periodic calculation is needed and corresponding noise reduction scheme is used. This kind of study was issued in Korea, so there have upgraded and used real time RCS Leak Rate Calculation Program in UCN unit 3 and 4 and YGN unit 1 and 2. For reduction of the noise in signals, Linear Regression Method was used in those programs. Linear Regression Method is powerful method for noise reduction. But the system is not static with some alternative flow paths and this makes mixed trend patterns of input signal values. In this condition, the trend of signal and average of Linear Regression are not entirely same pattern. In this study, high order Least squares Method is used to follow the trend of signal and the order of calculation is rearranged. The result of calculation makes reasonable trend and the procedure is physically consistence

  19. Evaluation of design, leak monitoring, dnd NDEA strategies to assure PBMR Helium pressure boundary reliability - HTR2008-58037

    Fleming, K. N.; Smit, K.

    2008-01-01

    This paper discusses the reliability and integrity management (RIM) strategies that have been applied in the design of the PBMR passive metallic components for the helium pressure boundary (HPB) to meet reliability targets and to evaluate what combination of strategies are needed to meet the targets. The strategies considered include deterministic design strategies to reduce or eliminate the potential for specific damage mechanisms, use of an on-line leak monitoring system and associated design provisions that provide a high degree of leak detection reliability, and periodic nondestructive examinations combined with repair and replacement strategies to reduce the probability that degradation would lead to pipe ruptures. The PBMR RIM program for passive metallic piping components uses a leak-before-break philosophy. A Markov model developed for use in LWR risk-informed in-service inspection evaluations was applied to investigate the impact of alternative RIM strategies and plant age assumptions on the pipe rupture frequencies as a function of rupture size. Some key results of this investigation are presented in this paper. (authors)

  20. The discussion on a new measure method of radon chamber leak rate

    Zhang Junkui; Tang Bing

    2010-01-01

    Radon chamber is the third standard radon source. The leak rate is the key parameter for the radon chamber to naturally and safely operate. One way, that measure the leak rate is introduced. The experience result is that the way is simple and veracious to measure the leak rate. (authors)

  1. Research and development for the high-temperature helium-leak detection system (Joint research). Part 2. Development of temperature sensors using optical fibre for the HTTR

    Sakaba, Nariaki; Nakazawa, Toshio; Kawasaki, Kozo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Urakami, Masao; Saisyu, Sadanori [Japan Atomic Power Co., Tokyo (Japan)

    2003-03-01

    In the second stage of the research and development for a high-temperature helium-leak detection system, the temperature sensor using optical fibres was studied. The sensor detects the helium leakage by the temperature increase surrounded optical fibre with or without heat insulator. Moreover, the applicability of high temperature equipments as the HTTR system was studied. With the sensor we detected 5.0-20.0 cm{sup 3}/s helium leakages within 60 minutes. Also it was possible to detect earlier when the leakage level is at 20.0 cm {sup 3}/s. (author)

  2. Developments in steam generator leak detection at Ontario Hydro

    Maynard, K.J.; Singh, V.P. [Ontario Hydro Technologies, Toronto, Ontario (Canada)

    1998-07-01

    A method for locating small tube leaks in steam generators has been developed and implemented at Ontario Hydro. The technique utilizes both helium leak detection and moisture leak detection. The combination of these two methods allows tube leaks to be detected in any part of the tube bundle, including those submerged below water near the tubesheet. The estimated detection limits for the helium and moisture leak detection systems are 0.001 kg/hr and 0.05 kg/hr respectively, expressed as leak rates measured at typical boiler operating conditions. This technology is best utilized in situations where the leak rate under operating conditions is smaller than the practical limit for fluorescein dye techniques ({approx}2 kg/hour). Other novel techniques have been utilized to increase the reliability and speed of the boiler leak search process. These include the use of argon carrier gas to stabilize the buoyant helium gas in the boiler secondary. (author)

  3. Developments in steam generator leak detection at Ontario Hydro

    Maynard, K.J.; Singh, V.P.

    1998-01-01

    A method for locating small tube leaks in steam generators has been developed and implemented at Ontario Hydro. The technique utilizes both helium leak detection and moisture leak detection. The combination of these two methods allows tube leaks to be detected in any part of the tube bundle, including those submerged below water near the tubesheet. The estimated detection limits for the helium and moisture leak detection systems are 0.001 kg/hr and 0.05 kg/hr respectively, expressed as leak rates measured at typical boiler operating conditions. This technology is best utilized in situations where the leak rate under operating conditions is smaller than the practical limit for fluorescein dye techniques (∼2 kg/hour). Other novel techniques have been utilized to increase the reliability and speed of the boiler leak search process. These include the use of argon carrier gas to stabilize the buoyant helium gas in the boiler secondary. (author)

  4. Leak rate analysis of the Westinghouse Reactor Coolant Pump

    Boardman, T.; Jeanmougin, N.; Lofaro, R.; Prevost, J.

    1985-07-01

    An independent analysis was performed by ETEC to determine what the seal leakage rates would be for the Westinghouse Reactor Coolant Pump (RCP) during a postulated station blackout resulting from loss of ac electric power. The object of the study was to determine leakage rates for the following conditions: Case 1: All three seals function. Case 2: No. 1 seal fails open while Nos. 2 and 3 seals function. Case 3: All three seals fail open. The ETEC analysis confirmed Westinghouse calculations on RCP seal performance for the conditions investigated. The leak rates predicted by ETEC were slightly lower than those predicted by Westinghouse for each of the three cases as summarized below. Case 1: ETEC predicted 19.6 gpm, Westinghouse predicted 21.1 gpm. Case 2: ETEC predicted 64.7 gpm, Westinghouse predicted 75.6 gpm. Case 3: ETEC predicted 422 gpm, Westinghouse predicted 480 gpm. 3 refs., 22 figs., 6 tabs

  5. Estimation of leak rate through circumferential cracks in pipes in nuclear power plants

    Jai Hak Park

    2015-04-01

    Full Text Available The leak before break (LBB concept is widely used in designing pipe lines in nuclear power plants. According to the concept, the amount of leaking liquid from a pipe should be more than the minimum detectable leak rate of a leak detection system before catastrophic failure occurs. Therefore, accurate estimation of the leak rate is important to evaluate the validity of the LBB concept in pipe line design. In this paper, a program was developed to estimate the leak rate through circumferential cracks in pipes in nuclear power plants using the Henry–Fauske flow model and modified Henry–Fauske flow model. By using the developed program, the leak rate was calculated for a circumferential crack in a sample pipe, and the effect of the flow model on the leak rate was examined. Treating the crack morphology parameters as random variables, the statistical behavior of the leak rate was also examined. As a result, it was found that the crack morphology parameters have a strong effect on the leak rate and the statistical behavior of the leak rate can be simulated using normally distributed crack morphology parameters.

  6. Mantle helium along the Newport-Inglewood fault zone, Los Angeles basin, California: A leaking paleo-subduction zone

    Boles, J. R.; Garven, G.; Camacho, H.; Lupton, J. E.

    2015-07-01

    Mantle helium is a significant component of the helium gas from deep oil wells along the Newport-Inglewood fault zone (NIFZ) in the Los Angeles (LA) basin. Helium isotope ratios are as high as 5.3 Ra (Ra = 3He/4He ratio of air) indicating 66% mantle contribution (assuming R/Ra = 8 for mantle), and most values are higher than 1.0 Ra. Other samples from basin margin faults and from within the basin have much lower values (R/Ra geothermal gradients, and is modeled as truncated by a proposed major, potentially seismically active, décollement beneath the LA basin. Our results demonstrate that the NIFZ is a deep-seated fault directly or indirectly connected with the mantle. Based on a 1-D model, we calculate a maximum Darcy flow rate q ˜ 2.2 cm/yr and a fault permeability k ˜ 6 × 10-17 m2 (60 microdarcys), but the flow rates are too low to create a geothermal anomaly. The mantle leakage may be a result of the NIFZ being a former Mesozoic subduction zone in spite of being located 70 km west of the current plate boundary at the San Andreas fault.

  7. Development of evaluation method of long-term confinement performance for canister. Part 1. Fundamental study of analyses method for helium leak detection

    Takeda, Hirofumi; Toriu, Daisuke; Ushijima, Satoru

    2014-01-01

    The storage management of spent nuclear fuel for ageing degradation is becoming a global issue, so we researched the present status and measures of the management in each country. In particular, for the concrete cask storage, a leak detecting method that detects the leak from the change in canister surface temperature has been proposed. We performed thermal hydraulics analysis to clarify the phenomenon and to work toward practical use of the detecting method. For analyzing the leak phenomenon with high accuracy, it is necessary to stably solve the low-Mach number flow problem considering compressibility of gas. Therefore, we originally modified the conventional compressible flow solution method and proposed a new method which is applicable to thermo-hydraulics phenomenon and satisfies the mass conservation law with high accuracy. For the cavity natural convection analysis, the mass conservation in a calculating area was satisfied with high accuracy. As for the analysis of leak from the cavity, a helium leak phenomenon could be calculated stably by using the proposed method. The pressure in the cavity and the change of the mass could be also analyzed validly. As for the temperature distribution in the cavity, it was confirmed that the temperature changes before and after the leak. (author)

  8. NEK containment integrated leak rate test at full pressure

    Skaler, F.; Planinc, V.; Gregoric, D.; Cicvaric, D.

    1999-01-01

    NPP Krsko is a Pressure Water Reactor (PWR) Plant which has four barriers to prevent release of radioactive fission products. These four barriers are following: Fuel itself, Fuel Clad, Reactor Coolant System and Containment Building. Containment is the last barrier which can prevent release of fission product when other barriers have been already broken. To find out the real condition of containment vessel and to prove its ability of withstanding increased parameters during accident we have to perform Containment Integrated Leak Rate Test at least three times in every ten years of operation. CILRT 1999 in NPP Krsko was completely performed following regulation of 10CFR50 App. J Option A and ANSI/ANS 56.8-1987. The main goal of CILRT is to prove that the leakage of containment pathways and wall structures are within limits prescribed in Technical Specifications by pressurization of containment building above peak accident pressure Pa and measuring the mass changes of air using Ideal Gas Law.(author)

  9. Differential measurement of low level HTO and HT leak rates

    Sheehan, W.E.; Muldoon, K.M.

    1976-08-01

    Leak rates of 5 x 10 -17 cm 3 /sec and greater can be measured by a very simple technique that will also differentiate tritium oxide (HTO) from tritium gas (HT). Because of the much greater health hazard of tritium oxide (200 to 1), the determination of chemical form is significant. The method involves flushing a gas collection chamber, containing the item being measured, with dry air. The flushed air is passed through an ethylene glycol bubbler which removes only the HTO. The outlet of the ethylene glycol bubbler is connected to a heated (400 0 C) palladium sponge catalyst which converts the HT to HTO and then to a second ethylene glycol bubbler for collection of the oxidized tritium gas. Liquid scintillation (p-dioxane base) counting solution is added directly to the bubblers and counted for tritium in a Liquid Scintillation Spectrometer. Advantages, method validation, operational experience, and data obtained by this technique are discussed. The sensitivity of the method is dependent on the time allowed between bubbler changes, the liquid scintillation spectrometer counting efficiency, background, and counting times employed

  10. Estimation of Leak Rate Through Cracks in Bimaterial Pipes in Nuclear Power Plants

    Jai Hak Park

    2016-10-01

    Full Text Available The accurate estimation of leak rate through cracks is crucial in applying the leak before break (LBB concept to pipeline design in nuclear power plants. Because of its importance, several programs were developed based on the several proposed flow models, and used in nuclear power industries. As the flow models were developed for a homogeneous pipe material, however, some difficulties were encountered in estimating leak rates for bimaterial pipes. In this paper, a flow model is proposed to estimate leak rate in bimaterial pipes based on the modified Henry–Fauske flow model. In the new flow model, different crack morphology parameters can be considered in two parts of a flow path. In addition, based on the proposed flow model, a program was developed to estimate leak rate for a crack with linearly varying cross-sectional area. Using the program, leak rates were calculated for through-thickness cracks with constant or linearly varying cross-sectional areas in a bimaterial pipe. The leak rate results were then compared and discussed in comparison with the results for a homogeneous pipe. The effects of the crack morphology parameters and the variation in cross-sectional area on the leak rate were examined and discussed.

  11. On the possibilities for efficient simulation of leak rates through SG tubes

    Sorsek, I.; Cizelj, L.

    1995-01-01

    In this paper, the problem of predicting excessive leak rates through the through wall cracks in tubes at the tube - tube support plate intersections is discussed in some detail. Basically, we are able to define the leak rate through an individual defect. On the steam generator level, which actually means the sum of all individual leak rates, a new approach is introduced. The main characteristic of the new approach is seeking for a probability of exceeding the allowable leak rate rather than estimating more or less conservative highest expected leak rate value. This however introduces extensive computational effort which practically prevents the use of direct Monte Carlo simulations. Some possibilities to reduce the computational effort are discussed and their preliminary results compared. Also, some exact solutions were found and compared with numerical solutions achieved with the first order reliability method. Directions for future work in this important topic are given. (author)

  12. The calculation of coolant leak rate through the cracks using RELAP5 code

    Krungeleviciute, V.; Kaliatka, A.

    2001-01-01

    For reason to choose method of leak detection first of all it is necessary to perform evaluating thermal-hydraulic calculations. These calculations allow to determine flow rate of discharged coolant. For coolant leak rate calculations through possible cracks in Ignalina NPP pipes SQUIRT and RELAP5 thermal-hydraulic codes were used. SQUIRT is well known as computer program that predicts the leakage for cracked pipes in NPP. As this code calculates only water (at subcooled or saturated conditions) leak rate, RELAP5 code model, that calculates water and steam leak rate, was created. For model validation comparison of SQUIRT, RELAP5 and experimental results was performed. Analysis shows RELAP5 code model suitability for calculations of leak through through-wall cracks in pipes. (author)

  13. Phylogenetic differences of mammalian basal metabolic rate are not explained by mitochondrial basal proton leak.

    Polymeropoulos, E T; Heldmaier, G; Frappell, P B; McAllan, B M; Withers, K W; Klingenspor, M; White, C R; Jastroch, M

    2012-01-07

    Metabolic rates of mammals presumably increased during the evolution of endothermy, but molecular and cellular mechanisms underlying basal metabolic rate (BMR) are still not understood. It has been established that mitochondrial basal proton leak contributes significantly to BMR. Comparative studies among a diversity of eutherian mammals showed that BMR correlates with body mass and proton leak. Here, we studied BMR and mitochondrial basal proton leak in liver of various marsupial species. Surprisingly, we found that the mitochondrial proton leak was greater in marsupials than in eutherians, although marsupials have lower BMRs. To verify our finding, we kept similar-sized individuals of a marsupial opossum (Monodelphis domestica) and a eutherian rodent (Mesocricetus auratus) species under identical conditions, and directly compared BMR and basal proton leak. We confirmed an approximately 40 per cent lower mass specific BMR in the opossum although its proton leak was significantly higher (approx. 60%). We demonstrate that the increase in BMR during eutherian evolution is not based on a general increase in the mitochondrial proton leak, although there is a similar allometric relationship of proton leak and BMR within mammalian groups. The difference in proton leak between endothermic groups may assist in elucidating distinct metabolic and habitat requirements that have evolved during mammalian divergence.

  14. Supporting information for the estimation of plutonium oxide leak rates through very small apertures

    Schwendiman, L.C.

    1977-01-01

    Information is presented from which an estimate can be made of the release of plutonium oxide from shipping containers. The leak diameter is estimated from gas leak tests of the container and an estimate is made of gas leak rate as a function of pressure over the time of interest in the accident. These calculations are limited in accuracy because of assumptions regarding leak geometry and the basic formulations of hydrodynamic flow for the assumed conditions. Sonic flow is assumed to be the limiting gas flow rate. Particles leaking from the air space above the powder will be limited by the low availability of particles due to rapid settling, the very limited driving force (pressure buildup) during the first minute, and the deposition in the leak channel. Equations are given to estimate deposition losses. Leaks of particles occurring below the level of the bulk powder will be limited by mechanical interference when leaks are of dimension smaller than particle sizes present. Some limiting cases can be calculated. When the leak dimension is large compared to the particle sizes present, maximum particle releases can be estimated, but will be very conservative

  15. Leak detection : Principles and practice

    Rama Rao, V.V.K.

    1981-01-01

    Principles of leak detection are explained and various aspects of leak detection techniques and leak detectors are reviewed. The review covers: units for leaks and leak tightness, classification of leaks, timing of leak testing, designing for ease of leak testing of any job, methods of leak detection, their ranges of application and limitations, leak detectors, response time of leak test, minimum detectable concentration of search gas during leak tests, and validity of leak tests. Helium mass spectrometer type leak detector and technique are described in detail. Recent improvements in leak detectors and techniques, particularly mass spectrometer leak detectors using gases other than helium (e.g. hydrogen, argon) are also covered in the review. (M.G.B.)

  16. Leak rate measurements on bimetallic transition samples for ILC cryomodules

    Budagov, Yu.; Chernikov, A.; Sabirov, B.

    2008-01-01

    The results of leak test of bimetallic (titanium-stainless steel) transition elements produced by explosion welding are presented. Vacuum and high-pressure tests of the sample for leakage were carried out at room temperature and liquid nitrogen temperature. Similar tests were also carried out under thermal cycling conditions

  17. Using An Adapter To Perform The Chalfant-Style Containment Vessel Periodic Maintenance Leak Rate Test

    Loftin, B.; Abramczyk, G.; Trapp, D.

    2011-01-01

    Recently the Packaging Technology and Pressurized Systems (PT and PS) organization at the Savannah River National Laboratory was asked to develop an adapter for performing the leak-rate test of a Chalfant-style containment vessel. The PT and PS organization collaborated with designers at the Department of Energy's Pantex Plant to develop the adapter currently in use for performing the leak-rate testing on the containment vessels. This paper will give the history of leak-rate testing of the Chalfant-style containment vessels, discuss the design concept for the adapter, give an overview of the design, and will present results of the testing done using the adapter.

  18. Growth rate effects on the formation of dislocation loops around deep helium bubbles in Tungsten

    Sandoval, Luis; Perez, Danny; Uberuaga, Blas P.; Voter, Arthur Ford

    2016-01-01

    Here, the growth process of spherical helium bubbles located 6 nm below a (100) surface is studied using molecular dynamics and parallel replica dynamics simulations, over growth rates from 10"6 to 10"1"2 helium atoms per second. Slower growth rates lead to a release of pressure and lower helium content as compared with fast growth cases. In addition, at slower growth rates, helium bubbles are not decorated by multiple dislocation loops, as these tend to merge or emit given sufficient time. At faster rates, dislocation loops nucleate faster than they can emit, leading to a more complicated dislocation structure around the bubble.

  19. 105-KE Basin isolation barrier leak rate test analytical development. Revision 1

    Irwin, J.J.

    1995-01-01

    This document provides an analytical development in support of the proposed leak rate test of the 105-KE Basin. The analytical basis upon which the K-basin leak test results will be used to determine the basin leakage rates is developed in this report. The leakage of the K-Basin isolation barriers under postulated accident conditions will be determined from the test results. There are two fundamental flow regimes that may exist in the postulated K-Basin leakage: viscous laminar and turbulent flow. An analytical development is presented for each flow regime. The basic geometry and nomenclature of the postulated leak paths are denoted

  20. Integrated leak rate test of the FFTF [Fast Flux Test Facility] containment vessel

    Grygiel, M.L.; Davis, R.H.; Polzin, D.L.; Yule, W.D.

    1987-04-01

    The third integrated leak rate test (ILRT) performed at the Fast Flux Test Facility (FFTF) demonstrated that effective leak rate measurements could be obtained at a pressure of 2 psig. In addition, innovative data reduction methods demonstrated the ability to accurately account for diurnal variations in containment pressure and temperature. Further development of methods used in this test indicate significant savings in the time and effort required to perform an ILRT on Liquid Metal Reactor Systems with consequent reduction in test costs

  1. Effects of displacement damage and helium production rates on the nucleation and growth of helium bubbles - Positron annihilation spectroscopy aspects

    Krsjak, Vladimir; Degmova, Jarmila; Sojak, Stanislav; Slugen, Vladimir

    2018-02-01

    Fe-12 wt% Cr model alloy samples were implanted by 250 keV He2+ ions to three different fluencies (3 × 1017, 9 × 1017 and 1.5 × 1018 cm-2) at T steel samples [1] irradiated in the frame of a two-years irradiation program of the Swiss Spallation Neutron Source. Bi-modal defect distribution represented by two defect components in positron lifetime spectrum reveals two distinct helium bubbles growth mechanisms. While at the lower helium production rate of the spallation environment, the bubbles grow primarily by migration and coalescence, at the high production rates of helium in the implanted samples, the results indicate this growth is driven by Ostwald ripening mechanism. A competitive growth process via emission of interstitial atoms (clusters) is discussed in terms of low-temperature He implantations.

  2. Mobile natural gas leak surveys indicate that two utilities have high false negative rates

    von Fischer, J. C.; Brewer, P. E.; Chamberlain, S.; Gaylord, A.; von Fischer, J.

    2016-12-01

    In the distribution systems that carry natural gas to consumers, leaks need to be discovered for safety reasons and to reduce greenhouse gas emissions. However, few utilities have adopted newer laser-based technologies that have greater sensitivity and precision, and instead rely on "industry standard" equipment that is far less sensitive. In partnership with the Environmental Defense Fund and Google, we mapped natural gas leaks in the domains of two anonymous utilities (Utility "A" and "B") using high sensitivity Picarro methane analyzers in Google Street View Cars. Surprisingly, when we shared these results with utilities, their survey crews were unable to find most of the leaks that our survey indicated (84% in A and 80% in B). To investigate this phenomenon, our team visited a subset of the leaks in each utility domain (n=32 in A and n=30 in B), and worked alongside utility surveyors to search the leak indication area, using a Los Gatos Research ultraportable methane analyzer to pinpoint leak locations. We found evidence of natural gas leaks at 69% and 68% of the locations in Utilities A and B respectively where survey crews had found nothing. We describe this as a "false negative" rate for the utility because the utility survey falsely indicated that there was no leak at these locations. Of these false negatives, 7% (n=2 of 32 in A, n=2 of 30 in B) were determined to be Grade 1 leaks requiring immediate repair due to high safety risk. Instrument sensitivity appears to explain some of the false negative rates. In particular, use of some industry standard equipment appears to have created a false sense of confidence among utility surveyors that leaks were not present. However, there was also evidence of communication failures and that surveyors did not use optimal approaches in their search. Based on these findings, we suggest that: 1) mobile deployment of high-precision methane analyzers can help find more natural gas leaks, and 2) use of some hand-held survey

  3. PFR evaporator leak

    Smedley, J.A.

    1975-01-01

    PFR has three heat removal circuits each one having an evaporator, superheater, reheater; all separate units. The status of the system was that circuit No 3 was steaming with 10 MW thermal nuclear power; No 1 circuit was filled with sodium but with the evaporator awaiting modification to cure gas entrainment problems already reported. The leak was in No 2 circuit and was located in the evaporator unit. The evaporator is rated at 120 M thermal at full power and as such is a large unit. The circuit was filled with both sodium and water for the first time three weeks before the conference so it was recent history being reported and therefore any figures quoted should be taken as indicative only. The history of the steam generator was that it was built at works to a very high standard and underwent all the usual tests of strength, inspection of welds and helium leak testing. The steam generator is of U tube design with a tube plate to which the boiler tubes are welded, with all the welds in one of two gas spaces. The inlet and outlet sides are separated by a baffle and the salient features are illustrated in the attached figure. The unit achieved a leak tightness better than the detection limit in the helium leak test at works. This limit was assessed as being less than an equivalent leak of 10 -6 g/s water under steam generator service conditions. However even though all the steam generator units passed this test at works a further test was carried out when the circuits had been completed. The test was carried out during commissioning after sodium filling and with the units hot. The method was to introduce a mixture of helium/ argon at 500 pounds/square inch into the water side of the steam generators and measure the helium concentration in the sodium side gas spaces of the circuit. The test lasted many days and under these conditions the sensitivity is such that a leak equivalent to somewhere between 10 -7 to 10 -6 g/s equivalent water leak could be detected, i

  4. PFR evaporator leak

    Smedley, J A

    1975-07-01

    PFR has three heat removal circuits each one having an evaporator, superheater, reheater; all separate units. The status of the system was that circuit No 3 was steaming with 10 MW thermal nuclear power; No 1 circuit was filled with sodium but with the evaporator awaiting modification to cure gas entrainment problems already reported. The leak was in No 2 circuit and was located in the evaporator unit. The evaporator is rated at 120 M thermal at full power and as such is a large unit. The circuit was filled with both sodium and water for the first time three weeks before the conference so it was recent history being reported and therefore any figures quoted should be taken as indicative only. The history of the steam generator was that it was built at works to a very high standard and underwent all the usual tests of strength, inspection of welds and helium leak testing. The steam generator is of U tube design with a tube plate to which the boiler tubes are welded, with all the welds in one of two gas spaces. The inlet and outlet sides are separated by a baffle and the salient features are illustrated in the attached figure. The unit achieved a leak tightness better than the detection limit in the helium leak test at works. This limit was assessed as being less than an equivalent leak of 10{sup -6} g/s water under steam generator service conditions. However even though all the steam generator units passed this test at works a further test was carried out when the circuits had been completed. The test was carried out during commissioning after sodium filling and with the units hot. The method was to introduce a mixture of helium/ argon at 500 pounds/square inch into the water side of the steam generators and measure the helium concentration in the sodium side gas spaces of the circuit. The test lasted many days and under these conditions the sensitivity is such that a leak equivalent to somewhere between 10{sup -7} to 10{sup -6} g/s equivalent water leak could be

  5. An Experimental Investigation of Leak Rate Performance of a Subscale Candidate Elastomer Docking Space Seal

    Garafolo, Nicholas G.; Daniels, Christopher C.

    2011-01-01

    A novel docking seal was developed for the main interface seal of NASA s Low Impact Docking System (LIDS). This interface seal was designed to maintain acceptable leak rates while being exposed to the harsh environmental conditions of outer space. In this experimental evaluation, a candidate docking seal assembly called Engineering Development Unit (EDU58) was characterized and evaluated against the Constellation Project leak rate requirement. The EDU58 candidate seal assembly was manufactured from silicone elastomer S0383-70 vacuum molded in a metal retainer ring. Four seal designs were considered with unique characteristic heights. The leak rate performance was characterized through a mass point leak rate method by monitoring gas properties within an internal control volume. The leakage performance of the seals were described herein at representative docking temperatures of -50, +23, and +50 C for all four seal designs. Leak performance was also characterized at 100, 74, and 48 percent of full closure. For all conditions considered, the candidate seal assemblies met the Constellation Project leak rate requirement.

  6. Influence of chemistry on steam generator primary-to-secondary stabilized low leak flow rate

    Hervouet, C.; Pages, D.; Fauchon, C.; Bretelle, J.L.; Bus, F.

    2002-01-01

    The comparison of the leak flow rate behavior between the previous and the new boron/lithium coordination, the second one corresponding to an higher pH during the cycle than the first one, leads to the following conclusions, confirmed by the experimental and theoretical studies: Low leak flow rate is extremely sensitive to pH in the zone of pH of primary water because the behavior of metallic oxide is changing drastically in that range of pH (from precipitation to dissolution); Leak flow rate is often maintained lower with low pH. Let's recall however that pH can not reach a too low value which could enhance corrosion product deposition, increase dose rates along the primary circuit, and lead to reactor outages due to problems on fuel assemblies. The understanding of the governing phenomena led to adapt in 2000 the reactor cooling system chemical conditioning for the French Pressurized Water reactors facing problems with the management of the stabilized leak flow rate fluctuations, once no degradation of tube bundle integrity is proved. Each part of the cycle and operating conditions lead to an advised operating action. In general, the new recommendations for the reactors facing problems with the management of low leak flow rate are based on the principle of helping the precipitation of metallic oxide within the crack and preventing their dissolution. (authors)

  7. Assessment of crack opening area for leak rates

    Sharples, J.K.; Bouchard, P.J.

    1997-04-01

    This paper outlines the background to recommended crack opening area solutions given in a proposed revision to leak before break guidance for the R6 procedure. Comparisons with experimental and analytical results are given for some selected cases of circumferential cracks in cylinders. It is shown that elastic models can provide satisfactory estimations of crack opening displacement (and area) but they become increasingly conservative for values of L{sub r} greater than approximately 0.4. The Dugdale small scale yielding model gives conservative estimates of crack opening displacement with increasing enhancement for L{sub r} values greater than 0.4. Further validation of the elastic-plastic reference stress method for up to L{sub r} values of about 1.0 is presented by experimental and analytical comparisons. Although a more detailed method, its application gives a best estimate of crack opening displacement which may be substantially greater than small scale plasticity models. It is also shown that the local boundary conditions in pipework need to be carefully considered when evaluating crack opening area for through-wall bending stresses resulting from welding residual stresses or geometry discontinuities.

  8. Assessment of crack opening area for leak rates

    Sharples, J.K.; Bouchard, P.J.

    1997-01-01

    This paper outlines the background to recommended crack opening area solutions given in a proposed revision to leak before break guidance for the R6 procedure. Comparisons with experimental and analytical results are given for some selected cases of circumferential cracks in cylinders. It is shown that elastic models can provide satisfactory estimations of crack opening displacement (and area) but they become increasingly conservative for values of L r greater than approximately 0.4. The Dugdale small scale yielding model gives conservative estimates of crack opening displacement with increasing enhancement for L r values greater than 0.4. Further validation of the elastic-plastic reference stress method for up to L r values of about 1.0 is presented by experimental and analytical comparisons. Although a more detailed method, its application gives a best estimate of crack opening displacement which may be substantially greater than small scale plasticity models. It is also shown that the local boundary conditions in pipework need to be carefully considered when evaluating crack opening area for through-wall bending stresses resulting from welding residual stresses or geometry discontinuities

  9. Enhancement of leak rate estimation model for corroded cracked thin tubes

    Chang, Y.S.; Jeong, J.U.; Kim, Y.J.; Hwang, S.S.; Kim, H.P.

    2010-01-01

    During the last couple of decades, lots of researches on structural integrity assessment and leak rate estimation have been carried out to prevent unanticipated catastrophic failures of pressure retaining nuclear components. However, from the standpoint of leakage integrity, there are still some arguments for predicting the leak rate of cracked components due primarily to uncertainties attached to various parameters in flow models. The purpose of present work is to suggest a leak rate estimation method for thin tubes with artificial cracks. In this context, 23 leak rate tests are carried out for laboratory generated stress corrosion cracked tube specimens subjected to internal pressure. Engineering equations to calculate crack opening displacements are developed from detailed three-dimensional elastic-plastic finite element analyses and then a simplified practical model is proposed based on the equations as well as test data. Verification of the proposed method is done through comparing leak rates and it will enable more reliable design and/or operation of thin tubes.

  10. Leak Rate Quantification Method for Gas Pressure Seals with Controlled Pressure Differential

    Daniels, Christopher C.; Braun, Minel J.; Oravec, Heather A.; Mather, Janice L.; Taylor, Shawn C.

    2015-01-01

    An enhancement to the pressure decay leak rate method with mass point analysis solved deficiencies in the standard method. By adding a control system, a constant gas pressure differential across the test article was maintained. As a result, the desired pressure condition was met at the onset of the test, and the mass leak rate and measurement uncertainty were computed in real-time. The data acquisition and control system were programmed to automatically stop when specified criteria were met. Typically, the test was stopped when a specified level of measurement uncertainty was attained. Using silicone O-ring test articles, the new method was compared with the standard method that permitted the downstream pressure to be non-constant atmospheric pressure. The two methods recorded comparable leak rates, but the new method recorded leak rates with significantly lower measurement uncertainty, statistical variance, and test duration. Utilizing this new method in leak rate quantification, projects will reduce cost and schedule, improve test results, and ease interpretation between data sets.

  11. Pre-service proof pressure and leak rate tests for the Qinshan CANDU project reactor buildings

    Petrunik, K.J.; Khan, A.; Ricciuti, R.; Ivanov, A.; Chen, S.

    2003-01-01

    The Qinshan CANDU Project Reactor Buildings (Units 1 and 2) have been successfully tested for the Pre-Service Proof Pressure and Integrated Leak Rate Tests. The Unit 1 tests took place from May 3 to May 9, 2002 and from May 22 to May 25, 2002, and the Unit 2 tests took place from January 21 to January 27, 2003. This paper discusses the significant steps taken at minimum cost on the Qinshan CANDU Project, which has resulted in a) very good leak rate (0.21%) for Unit 1 and excellent leak rate (0.130%) for Unit 2; b) continuous monitoring of the structural behaviour during the Proof Pressure Test, thus eliminating any repeat of the structural test due to lack of data; and c) significant schedule reduction achieved for these tests in Unit 2. (author)

  12. The principle and data analysis of online monitoring system of containment leak rate

    Zhang Chunwei; Yang Yongdeng; Qiao Yu; Liang Bo

    2014-01-01

    The use of online monitoring system of containment leak rate (EPP) in Qinshan 2nd nuclear power plant is introduced. When the containment leak rate reaches the operational limit, the system will automatically alarm and inform the unit operator to take the necessary action. But it is found that the EPP will give a mendacious alarm of 'Containment leak rate abnormity' once in a while during use. The mendacious alarm has an effect on the normal operation of the unit. The reason of the mendacious alarm is analyzed. The data monitored by the EPP are relative hysteretic and the veracity of the flow of compressed air into the containment has a significant influence on the data monitored by the EPP. (authors)

  13. Leak testing at Westinghouse Hanford Company for the Fast Flux Test Facility (FFTF)

    Jackson, C.N.

    1981-01-01

    Described leak testing applications require an arsenal of test equipment, a diverse range of testing techniques and a cadre of technical talent. A wide range helium mass spectrometer leak detector, a volume change tester and a halogen detector are employed to cover the 1 x 10 -8 to 1 atm cc/sec leak rate range encountered. Leak testing techniques, equipment problems, costs, and recommendations are discussed for examination of reactor pressure boundary and other ancillary components of the FFTF

  14. Estimation of Leak Flow Rate during Post-LOCA Using Cascaded Fuzzy Neural Networks

    Kim, Dong Yeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Na, Man Gyun [Chosun University, Gwangju (Korea, Republic of)

    2016-10-15

    In this study, important parameters such as the break position, size, and leak flow rate of loss of coolant accidents (LOCAs), provide operators with essential information for recovering the cooling capability of the nuclear reactor core, for preventing the reactor core from melting down, and for managing severe accidents effectively. Leak flow rate should consist of break size, differential pressure, temperature, and so on (where differential pressure means difference between internal and external reactor vessel pressure). The leak flow rate is strongly dependent on the break size and the differential pressure, but the break size is not measured and the integrity of pressure sensors is not assured in severe circumstances. In this paper, a cascaded fuzzy neural network (CFNN) model is appropriately proposed to estimate the leak flow rate out of break, which has a direct impact on the important times (time approaching the core exit temperature that exceeds 1200 .deg. F, core uncover time, reactor vessel failure time, etc.). The CFNN is a data-based model, it requires data to develop and verify itself. Because few actual severe accident data exist, it is essential to obtain the data required in the proposed model using numerical simulations. In this study, a CFNN model was developed to predict the leak flow rate before proceeding to severe LOCAs. The simulations showed that the developed CFNN model accurately predicted the leak flow rate with less error than 0.5%. The CFNN model is much better than FNN model under the same conditions, such as the same fuzzy rules. At the result of comparison, the RMS errors of the CFNN model were reduced by approximately 82 ~ 97% of those of the FNN model.

  15. Mass Spectrometric Calibration of Controlled Fluoroform Leak Rate Devices Technique and Uncertainty Analysis

    Balsley, S D; Laduca, C A

    2003-01-01

    Controlled leak rate devices of fluoroform on the order of 10 sup - sup 8 atm centre dot cc sec sup - sup 1 at 25 C are used to calibrate QC-1 War Reserve neutron tube exhaust stations for leak detection sensitivity. Close-out calibration of these tritium-contaminated devices is provided by the Gas Dynamics and Mass Spectrometry Laboratory, Organization 14406, which is a tritium analytical facility. The mass spectrometric technique used for the measurement is discussed, as is the first principals calculation (pressure, volume, temperature and time). The uncertainty of the measurement is largely driven by contributing factors in the determination of P, V and T. The expanded uncertainty of the leak rate measurement is shown to be 4.42%, with a coverage factor of 3 (k=3).

  16. Detecting subsurface fluid leaks in real-time using injection and production rates

    Singh, Harpreet; Huerta, Nicolas J.

    2017-12-01

    CO2 injection into geologic formations for either enhanced oil recovery or carbon storage introduces a risk for undesired fluid leakage into overlying groundwater or to the surface. Despite decades of subsurface CO2 production and injection, the technologies and methods for detecting CO2 leaks are still costly and prone to large uncertainties. This is especially true for pressure-based monitoring methods, which require the use of simplified geological and reservoir flow models to simulate the pressure behavior as well as background noise affecting pressure measurements. In this study, we propose a method to detect the time and volume of fluid leakage based on real-time measurements of well injection and production rates. The approach utilizes analogies between fluid flow and capacitance-resistance modeling. Unlike other leak detection methods (e.g. pressure-based), the proposed method does not require geological and reservoir flow models to simulate the behavior that often carry significant sources of uncertainty; therefore, with our approach the leak can be detected with greater certainty. The method can be applied to detect when a leak begins by tracking a departure in fluid production rate from the expected pattern. The method has been tuned to detect the effect of boundary conditions and fluid compressibility on leakage. To highlight the utility of this approach we use our method to detect leaks for two scenarios. The first scenario simulates a fluid leak from the storage formation into an above-zone monitoring interval. The second scenario simulates intra-reservoir migration between two compartments. We illustrate this method to detect fluid leakage in three different reservoirs with varying levels of geological and structural complexity. The proposed leakage detection method has three novelties: i) requires only readily-available data (injection and production rates), ii) accounts for fluid compressibility and boundary effects, and iii) in addition to

  17. K West basin isolation barrier leak rate test

    Whitehurst, R.; McCracken, K.; Papenfuss, J.N.

    1994-01-01

    This document establishes the procedure for performing the acceptance test on the two isolation barriers being installed in K West basin. This acceptance test procedure shall be used to: First establish a basin water loss rate prior to installation of the two isolation barriers between the main basin and the discharge chute in K-Basin West. Second, perform an acceptance test to verify an acceptable leakage rate through the barrier seals

  18. Estimation of Leak Rate from the Emergency Pump Well in L-Area Complex Basin

    Duncan, A

    2005-01-01

    This report provides an estimate of the leak rate from the emergency pump well in L-basin that is to be expected during an off-normal event. This estimate is based on expected shrinkage of the engineered grout (i.e., controlled low strength material) used to fill the emergency pump well and the header pipes that provide the dominant leak path from the basin to the lower levels of the L-Area Complex. The estimate will be used to provide input into the operating safety basis to ensure that the water level in the basin will remain above a certain minimum level. The minimum basin water level is specified to ensure adequate shielding for personnel and maintain the ''as low as reasonably achievable'' concept of radiological exposure. The need for the leak rate estimation is the existence of a gap between the fill material and the header pipes, which penetrate the basin wall and would be the primary leak path in the event of a breach in those pipes. The gap between the pipe and fill material was estimated based on a full scale demonstration pour that was performed and examined. Leak tests were performed on full scale pipes as a part of this examination. Leak rates were measured to be on the order of 0.01 gallons/minute for completely filled pipe (vertically positioned) and 0.25 gallons/minute for partially filled pipe (horizontally positioned). This measurement was for water at 16 feet head pressure and with minimal corrosion or biofilm present. The effect of the grout fill on the inside surface biofilm of the pipes is the subject of a previous memorandum

  19. Influence of wetting effect at the outer surface of the pipe on increase in leak rate - experimental results and discussion

    Isozaki, Toshikuni; Shibata, Katsuyuki

    1997-04-01

    Experimental and computed results applicable to Leak Before Break analysis are presented. The specific area of investigation is the effect of the temperature distribution changes due to wetting of the test pipe near the crack on the increase in the crack opening area and leak rate. Two 12-inch straight pipes subjected to both internal pressure and thermal load, but not to bending load, are modelled. The leak rate was found to be very susceptible to the metal temperature of the piping. In leak rate tests, therefore, it is recommended that temperature distribution be measured precisely for a wide area.

  20. RCSLK9: reactor coolant system leak rate determination for PWRs. User's guide

    Kirkpatrick, D.C.; Woodruff, R.W.; Holland, R.A.

    1984-12-01

    RCSLK9 is a computer program that was developed to analyze the leak tightness of the primary cooling system for any pressurized water reactor. From system conditions, water levels in tanks, and certain system design parameters, RCSLK9 calculates the loss of water from the cooling system and the increase of water in the leakage collection system during an arbitrary time interval. The program determines the system leak rates and displays or prints a report of the results. For initial application of the program at a reactor, RCSLK9 creates a file of system parameters and stores it for future use. RCSLK9 is written for use on the IBM PC

  1. The PWR integrated leak rate test, a review of experiences and results

    Keogh, P.

    1985-01-01

    The paper reviews the Integrated Leak Rate Test (ILRT) as it has been carried out in the USA and as reported in papers in European countries. The test procedures are critically appraised and recommendations are given for modifications to them. The values used in a PWR are identified as a main source of leaks and possibilities for improvement are discussed. The use of a part pressure test and its limitations are considered. A part pressure test cannot give the same assurance as a full pressure test but may be useful for the identification of gross leaks. Secondary effects such as weather and the use of Van de Waals equations are considered and are found to be not important for concrete containments. (orig.)

  2. Noble Gas Leak Detector for Use in the SNS Neutron Electric Dipole Moment Experiment

    Barrow, Chad; Huffman, Paul; Leung, Kent; Korobkina, Ekaterina; White, Christian; nEDM Collaboration Collaboration

    2017-09-01

    Common practice for leak-checking high vacuum systems uses helium as the probing gas. However, helium may permeate some materials at room temperature, making leak characterization difficult. The experiment to find a permanent electric dipole moment of the neutron (nEDM), to be conducted at Oak Ridge National Laboratories, will employ a large volume of liquid helium housed by such a helium-permeable composite material. It is desirable to construct a leak detector that can employ alternative test gases. The purpose of this experiment is to create a leak detector that can quantify the argon gas flux in a high vacuum environment and interpret this flux as a leak-rate. This apparatus will be used to check the nEDM volumes for leaks at room temperature before cooling down to cryogenic temperatures. Our leak detector uses a residual gas analyzer and a vacuum pumping station to characterize the gas present in an evacuated volume. The introduction of argon gas into the system is interpreted as a leak-rate into the volume. The device has been calibrated with NIST certified calibrated leaks and the machine's sensitivity has been calculated using background gas analysis. As a result of the device construction and software programming, we are able to leak-check composite and polyamide volumes This work was supported in part by the US Department of Energy under Grant No. DE-FG02-97ER41042.

  3. Leak Rate Performance of Silicone Elastomer O-Rings Contaminated with JSC-1A Lunar Regolith Simulant

    Oravec, Heather Ann; Daniels, Christopher C.

    2014-01-01

    Contamination of spacecraft components with planetary and foreign object debris is a growing concern. Face seals separating the spacecraft cabin from the debris filled environment are particularly susceptible; if the seal becomes contaminated there is potential for decreased performance, mission failure, or catastrophe. In this study, silicone elastomer O-rings were contaminated with JSC- 1A lunar regolith and their leak rate performance was evaluated. The leak rate values of contaminated O-rings at four levels of seal compression were compared to those of as-received, uncontaminated, O-rings. The results showed a drastic increase in leak rate after contamination. JSC-1A contaminated O-rings lead to immeasurably high leak rate values for all levels of compression except complete closure. Additionally, a mechanical method of simulant removal was examined. In general, this method returned the leak rate to as-received values.

  4. Determination of helium in beryl minerals

    Souza Barcellos, E. de.

    1985-08-01

    In order to obtain the diffusion coefficients of helium in beryl and phenacite samples at various temperatures, helium leak rates were measured in these minerals at these temperatures. Mass spectrometry (MS) was used to obtain helium leak rates and the gas flow was plotted against time. The gas quantity determined by MS was first obtained at various temperatures until no helium leak rate was detected. After that, these samples were irradiated with fast neutrons to produce helium which was measured again. This procedure was used to estimate the experimental error. The quantity of helium produced by interaction of gamma radiation with beryl minerals was theoretically calculated from the amount of thorium-232 at the neighbourhood of the samples. The quantity of helium produced in the minerals due to uranium and thorium decay was calculated using the amount of these heavy elements, and the results were compared with the amounts determined by MS. The amount of potassium-40 was determined in order to derive the quantity of argonium-40, since some workers found argonium in excess in these minerals. The quantity of helium in the beryl samples (s) was determined in the center and in the surface of the samples in order to obtain informations about the effectiveness of the Be(α, η) He reaction. Beryl and phenacite minerals were choosen in this research since they are opposite each other with respect to the helium contents. Both have beryllium in their compositon but beryl hold a large amount of helium while phenacite, in spite of having about three times more beryllium than beryl, do not hold the gas. (author) [pt

  5. Helium generation reaction rates for 6Li and 10B in benchmark facilities

    Farrar, Harry IV; Oliver, B.M.; Lippincott, E.P.

    1980-01-01

    The helium generation rates for 10 B and 6 Li have been measured in two benchmark reactor facilities having neutron spectra similar to those found in a breeder reactor. The irradiations took place in the Coupled Fast Reactivity Measurements Facility (CFRMF) and in the 10% enriched 235 U critical assembly, BIG-10. The helium reaction rates were obtained by precise high-sensitivity gas mass spectrometric analyses of the helium content of numerous small samples. Comparison of these reaction rates with other reaction rates measured in the same facilities, and with rates calculated from published cross sections and from best estimates of the neutron spectral shapes, indicate significant discrepancies in the calculated values. Additional irradiations in other benchmark facilities have been undertaken to better determine the energy ranges where the discrepancies lie

  6. Semiclassical calculation of ionisation rate for Rydberg helium atoms in an electric field

    Wang De-Hua

    2011-01-01

    The ionisation of Rydberg helium atoms in an electric field above the classical ionisation threshold has been examined using the semiclassical method, with particular emphasis on discussing the influence of the core scattering on the escape dynamics of electrons. The results show that the Rydberg helium atoms ionise by emitting a train of electron pulses. Unlike the case of the ionisation of Rydberg hydrogen atom in parallel electric and magnetic fields, where the pulses of the electron are caused by the external magnetic field, the pulse trains for Rydberg helium atoms are created through core scattering. Each peak in the ionisation rate corresponds to the contribution of one core-scattered combination trajectory. This fact further illustrates that the ionic core scattering leads to the chaotic property of the Rydberg helium atom in external fields. Our studies provide a simple explanation for the escape dynamics in the ionisation of nonhydrogenic atoms in external fields. (atomic and molecular physics)

  7. Helium release rates and ODH calculations from RHIC magnet cooling line failure

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-03-28

    A catastrophic failure of the magnet cooling lines, similar to the LHC superconducting bus failure incident, could discharge cold helium into the RHIC tunnel and cause an Oxygen Deficiency Hazard (ODH) problem. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the insulating vacuum volumes and discharging via the reliefs into the RHIC tunnel, had been developed. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces are included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Results, including helium discharge rates, helium inventory loss, and the resulting oxygen concentration in the RHIC tunnel area, are reported. Good agreement had been achieved when comparing the simulation results, a RHIC sector depressurization test measurement, and some simple analytical calculations.

  8. Essential results of analyses accompanying the leak rate experiments E22 at HDR

    Grebner, H.; Hoefler, A.; Hunger, H.

    1994-01-01

    Under the E22 test group of phase III of the HDR safety programme, experiments were performed on the crack opening and leak rate behaviour of pipe components of smaller nominal bores. The experiments were complemented by computations, in particular verifications, to qualify the computation models as one of the main aims of the HDR safety programme. Most of the analyses to determine crack openings were performed by means of the finite-element method, including elastic-plastic materials behaviour and, complementarily, assessing engineering methods. The leak rate was calculated by means of separate 2-phase computation models. Altogether, it may be concluded from the structural and fracture mechanical experiments with pipes, elbows and branch pieces, that crack openings and incipient cracks at loading with internal pressure or bending moment can be described with good accuracy by means of the finite-element programme ADINA and the developed FE-models. (orig.) [de

  9. VAMCIS, a new measuring channel for continuous monitoring of leak rates inside PWR steam generators

    Champion, G.; Dubail, A.; Lefevre, F.

    1988-01-01

    In order to assess the primary to secondary leakage, radioactive isotopes, formed in the primary coolant as a result of fission or neutron capture, are usually monitored in the pressurized water reactor (PWR) secondary coolant. Conventional methods mainly based on the detection of 133 Xe, tritium, and 41 Ar are widely used on French Electricite de France (EdF) PWRs. Some years ago, it appeared necessary to improve both leak rate assessments and steam generator tube rupture (SGTR) detection. A volumetric activity measuring channel inside steam (VAMCIS) has been developed for this purpose. The SGTR that occurred at the North Anna PWR has focused the attention of safety authorities on this new measuring channel. It is planned to implement VAMCIS at North Anna in order to check the leak rate variations more accurately

  10. Pre- and post-calculations for crack opening and leak rate experiments on piping components within the HDR-program

    Grebner, H.; Hoefler, A.; Hunger, H.

    1991-01-01

    In this paper calculations to experiments on leak opening and leak rates of piping components are presented. The experiments are performed at the HDR-facility at Karlstein/Germany and up to now straight pipes and pipe branches were considered. Numerical and experimental results are compared. (author)

  11. Determination of crack morphology parameters from service failures for leak-rate analyses

    Wilkowski, G.; Ghadiali, N.; Paul, D. [Battelle Memorial Institute, Columbus, OH (United States)] [and others

    1997-04-01

    In leak-rate analyses described in the literature, the crack morphology parameters are typically not well agreed upon by different investigators. This paper presents results on a review of crack morphology parameters determined from examination of service induced cracks. Service induced cracks were found to have a much more tortuous flow path than laboratory induced cracks due to crack branching associated with the service induced cracks. Several new parameters such as local and global surface roughnesses, as well as local and global number of turns were identified. The effect of each of these parameters are dependent on the crack-opening displacement. Additionally, the crack path is typically assumed to be straight through the pipe thickness, but the service data show that the flow path can be longer due to the crack following a fusion line, and/or the number of turns, where the number of turns in the past were included as a pressure drop term due to the turns, but not the longer flow path length. These parameters were statistically evaluated for fatigue cracks in air, corrosion-fatigue, IGSCC, and thermal fatigue cracks. A refined version of the SQUIRT leak-rate code was developed to account for these variables. Sample calculations are provided in this paper that show how the crack size can vary for a given leak rate and the statistical variation of the crack morphology parameters.

  12. Low anastomotic leak rate after colorectal surgery: a single-centre study.

    Jones, O M; John, S K P; Horseman, N; Lawrance, R J; Fozard, J B J

    2007-10-01

    Anastomotic leak after colorectal surgery is a serious event associated with significant morbidity and mortality. There is little consensus regarding 'acceptable' rates of leakage, however. This study describes the experience of anastomotic leakage after both elective and emergency colorectal surgery in a district general hospital. A prospectively collected database of all patients with a diagnosis of colorectal cancer in a single hospital formed the basis of the study. Leak was defined as breakdown of the anastomosis contributing to death or requiring reoperation or reintervention. A total of 949 patients underwent surgery with an anastomosis between 1996 and 2004, including 331 patients treated with anterior resection. Anastomotic leaks requiring reoperation occurred in eight patients (0.8%). Thirty-day and in-hospital mortality was 4%. A very low rate of anastomotic leakage after colorectal surgery is possible in a district general hospital setting. Given the impact of anastomotic leakage on function, tumour recurrence and long-term survival, it should be considered as a marker of surgical quality when evaluating surgical performance.

  13. Assessments of fluid friction factors for use in leak rate calculations

    Chivers, T.C. [Berkeley Technology Centre, Glos (United Kingdom)

    1997-04-01

    Leak before Break procedures require estimates of leakage, and these in turn need fluid friction to be assessed. In this paper available data on flow rates through idealized and real crack geometries are reviewed in terms of a single friction factor k It is shown that for {lambda} < 1 flow rates can be bounded using correlations in terms of surface R{sub a} values. For {lambda} > 1 the database is less precise, but {lambda} {approx} 4 is an upper bound, hence in this region flow calculations can be assessed using 1 < {lambda} < 4.

  14. INTERSTELLAR METASTABLE HELIUM ABSORPTION AS A PROBE OF THE COSMIC-RAY IONIZATION RATE

    Indriolo, Nick; McCall, Benjamin J.; Hobbs, L. M.; Hinkle, K. H.

    2009-01-01

    The ionization rate of interstellar material by cosmic rays has been a major source of controversy, with different estimates varying by three orders of magnitude. Observational constraints of this rate have all depended on analyzing the chemistry of various molecules that are produced following cosmic-ray ionization, and in many cases these analyses contain significant uncertainties. Even in the simplest case (H + 3 ), the derived ionization rate depends on an (uncertain) estimate of the absorption path length. In this paper, we examine the feasibility of inferring the cosmic-ray ionization rate using the 10830 A absorption line of metastable helium. Observations through the diffuse clouds toward HD 183143 are presented, but yield only an upper limit on the metastable helium column density. A thorough investigation of He + chemistry reveals that only a small fraction of He + will recombine into the triplet state and populate the metastable level. In addition, excitation to the triplet manifold of helium by secondary electrons must be accounted for as it is the dominant mechanism which produces He* in some environments. Incorporating these various formation and destruction pathways, we derive new equations for the steady state abundance of metastable helium. Using these equations in concert with our observations, we find ζ He -15 s -1 , an upper limit about 5 times larger than the ionization rate previously inferred for this sight line using H + 3 . While observations of interstellar He* are extremely difficult at present, and the background chemistry is not nearly as simple as previously thought, potential future observations of metastable helium would provide an independent check on the cosmic-ray ionization rate derived from H + 3 in diffuse molecular clouds, and, perhaps more importantly, allow the first direct measurements of the ionization rate in diffuse atomic clouds.

  15. Isotopic alloying to tailor helium production rates in mixed spectrum reactors

    Mansur, L.K.; Rowcliffe, A.F.; Grossbeck, M.L.; Stoller, R.E.

    1985-01-01

    The purposes of this work are to increase the understanding of mechanisms by which helium affects microstructure and properties, to aid in the development of materials for fusion reactors, and to obtain data from fission reactors in regimes of direct interest for fusion reactor applications. Isotopic alloying is examined as a means of manipulating the ratio of helium transmutations to atom displacements in mixed spectrum reactors. The application explored is based on artificially altering the relative abundances of the stable isotopes of nickel to systematically vary the fraction of 58 Ni in nickel bearing alloys. The method of calculating helium production rates is described. Results of example calculations for proposed experiments in the High Flux Isotope Reactor are discussed

  16. Essential results of analyses accompanying the leak rate experiments E22 at HDR

    Grebner, H.; Hoefler, A.; Hunger, H.

    1997-01-01

    During phase III of the HDR Safety Programme (HDR: decommissioned overheated steam reactor in Karlstein, Germany), experiments were performed in test group E22 on small-bore austenitic straight piping and on pipe elbows and branches containing through-wall cracks. The main aim was the determination of crack opening and leak rate behaviour for the cracked components under almost operational pressure and temperature loading conditions, especially including transient bending moments. In addition to machined slits, naturally grown fatigue cracks were also considered to cover the leakage behaviour. The experiments were accompanied by calculations, mainly performed by GRS. The paper describes the most important aspects and the essential results of the calculations and analysis. The main outcome was that the crack opening and initiation of crack growth can be described with the finite element techniques applied with sufficient accuracy. However, the qualification of the leak rate models could not be completed successfully, and therefore more sophisticated experiments of this kind are needed. (orig.)

  17. Results of a bench mark test on the crack opening and leak rate calculation

    Grebner, H.

    1995-01-01

    Results of a bench mark test on the standard problem calculation of crack opening and leak rate in piping components are presented. The bench mark test is based on two experiments performed in phase III of the German HDR safety program. The pipe sections considered in these experiments were a straight pipe with an 80 mm diameter containing a circumferential wall penetrating crack and a pipe branch DN 100/DN 25 with a crack in the weldment between the nozzle and the main pipe. Both test pieces were made of austenitic steel and were loaded by internal pressure and bending moment. For the evaluation of the crack opening either analytical methods or estimation schemes or the finite element method were used, while leak rates were calculated by means of two-phase flow methods. The compilation of the results shows very large scatter bands in general, with deviations between calculated and measured values of up to some one hundred percent. Reasons for this behaviour are uncertainties in the measured data and their evaluation as well as the different methods of calculation and their uncertainties. (author)

  18. Integrated leak rate testing of the fast flux test facility reactor containment building

    James, E.B.; Farabee, O.A.; Bliss, R.J.

    1978-01-01

    The initial Integrated Leak Rate Test (ILRT) of the Fast Flux Test Facility containment building was performed from May 27 to June 2, 1978. The test was conducted in air with systems vented and with the containment recirculating coolers in operation. 10 psig and 5 psig tests were run using the absolute pressure test method. The measured leakage rates were .033% Vol/24 hr. and -.0015% Vol/24 hrs. respectively. Subsequent verification tests at both 10 psig and 5 psig proved that the test equipment was operating properly and it was sensitive enough to detect leaks at low pressures. This ILRT was performed at a lower pressure than any previous ILRT on a reactor containment structure in the United States. While the initial design requirements for ice condenser containments called for a part pressure test at 6 psig, the tests were waived due to the apparent statistical problems of data analysis and the repeatability of the data itself at such low pressure. In contrast to this belief, both the 5 and 10 psig ILRT's were performed in a successful manner at FFTF

  19. Study of air and steam leak rate through damaged concrete wall

    Abdeslam Laghcha; Gerard Debicki; Benoit Masson

    2005-01-01

    Full text of publication follows: The leak rate prediction of air and steam through a cracked concrete wall is an extremely important issue in assessing the safety of nuclear reactor containment building. Furthermore the relation between air leak rate and steam leak rate on the same wall could have some interest for safety prediction. This laboratory study investigates the transfer of fluids through a wall of 1.3 m of thickness, with a focus on two cases: one on a mechanically damaged concrete by compressive stress and another one on a crossing artificial flaw in a construction joint realized in the concrete specimen (cylindrical / section 0.1925 m 2 / length 1.3 m). The both specimens were made of ordinary concrete (compressive strength: 35 MPa). To initiate residual compressive cracks, the specimen (A) was loaded in compression under controlled strains until a level of 90% of the failure strain was reached. To create a crossing artificial flaw in a construction joint, the concrete was set in the mould in two times, the second time, a water saturated sand bed was placed on the surface of the hardened concrete to realize the flaw along a diameter of the specimen (B). The permeability of damaged concrete wall was studied comparatively under two conditions, but without appreciable stresses applied on. The first condition was at ambient temperature, a reference test of permeability, with dry air, gave the characteristics of permeability and the type of flow through the specimen. In this case, the used method consisted to proceed by stages. The imposed pressures on the exposed face were successively 0.1, 0.18, 0.23, 0.28, 0.34 and 0.42 MPa, the other face was at atmospheric pressure. The second condition was an accidental scenario with simultaneous effects of temperature and gas (a mix of air and steam) pressure applied on a face, the other one remaining at atmospheric pressure and temperature. During the test, the lateral face of the cylindrical specimen was thermally

  20. Livaditis' circular myotomy does not decrease anastomotic leak rates and induces deleterious changes in anastomotic healing.

    Tannuri, U; Teodoro, W R; de Santana Witzel, S; Tannuri, A C A; Lupinacci, R M; Matsunaga, P; Matsumura, N; Naufal, R R

    2003-08-01

    Considering that Livaditis' myotomy is still accepted as a good method for lengthening the esophagus to allow primary repair of long-gap esophageal atresia, the aim of this experimental study was to verify if this procedure decreases the incidence of leaks in anastomoses performed under severe tension. In addition, it was verified whether the myotomy promotes any morphological or biochemical change in the healing esophageal anastomosis. Sixty small dogs were submitted to a cervicotomy and resection of an esophageal segment (8.0 - 10.0 cm) resulting in an anastomosis under severe tension. The animals were divided into two groups (control group: only anastomosis; experimental group: anastomosis plus circular myotomy in the proximal esophageal segment). The animals were sacrificed on the 14th postoperative day, submitted to autopsy, and were evaluated as to the presence of leaks. Twelve scars of each group were collected for histological, histomorphometric (evaluation of scar thickness), electrophoretic and immunoblotting studies of collagen (total collagen and types of collagen determinations). Leak rates were the same in both groups. Histologic examination showed that the scar at the anastomosis was formed by fibrous tissue, without mucosa or muscular tissue. In the myotomy animals, a decreased number of newly formed small vessels was noted in comparison to control animals, and morphometric analysis showed that in the myotomy animals the anastomotic scar was thinner than in the control animals. Biochemical analysis of scars demonstrated that myotomy promoted a decrease in the soluble collagen content in comparison with the control animals and no alteration in the content of insoluble collagen. The electrophoretic separation of the types of collagen and characterization by immunoblotting demonstrated the presence of collagen types I, III, and V, and the quantification by densitometry of the bands showed a reduction in collagen type V (present in the blood vessels) in

  1. Does the type of pancreaticojejunostomy after Whipple alter the leak rate?

    Ball, Chad G; Howard, Thomas J

    2010-01-01

    Despite the overwhelming limitations that plague the literature surrounding the optimal method of reestablishing pancreatico-enteric continuity following a Whipple operation, it is clear that all successful techniques conform to sound surgical principles. These principles include a water-tight and tension-free anastomosis, preservation of adequate blood supply for both organs involved in the anastomosis, and minimal trauma to the pancreas gland. Although surgeon experience, gland texture, and pancreatic duct size are clearly the dominate risk factors from a long list of variables associated with pancreatic leaks following pancreatoduodenectomy, these are nonmodifiable covariates. Although the plethora of current literature cannot provide a single definitive technical solution for restoring pancreatico-enteric continuity, a small number of well-designed RCTs support the use of transanastomotic external stenting for high-risk pancreatic glands and an end-to-side invaginated pancreaticojejunostomy. The truth remains that an individual surgeon's mastery of a specific anastomotic technique, in conjunction with a large personal experience, is likely to be the best predictor of a low pancreas leak rate following pancreatoduodenectomy.

  2. The influence of data collection rate, containment size and data smoothing on containment Integrated Leak Rate Tests

    Wagner, W.T.; Langan, J.P.; Norris, W.E.; Lurie, D.

    1988-01-01

    Phase I of a U.S. Nuclear Regulatory Commission contract investigated nuclear power plant Integrated Leak Rate Tests (ILRTs) using data gathered at many domestic and foreign ILRTs. The study evaluated ILRTs with the ANS criteria (in ANSI/ANS-56.8-1987) and the proposed extended ANS criteria (in draft Regulatory Guide, Task MS 021-5, October 1986). The study considered (1) the effects of data collection rates on ILRT conclusions, (2) a possible relationship between containment size, data collection rate and ILRT duration, (3) the impact of the proposed extended ANS methodology on ILRTs, and (4) the influence of data smoothing on ILRT data. The study was performed using 20 sets of Type A and 17 sets of verification data

  3. Evaluation of methodologies for the calculation of leak rates for pressure retaining components with crack-like leaks; Bewertung von Methoden zur Berechnung von Leckraten fuer druckfuehrende Komponenten mit rissartigen Lecks

    Sievers, Juergen; Heckmann, Klaus; Blaesius, Christoph

    2015-06-15

    For the demonstration of break preclusion for pressure retaining components in nuclear power plants, the nuclear safety standard KTA 3206 determines also the requirements for the leak-before-break verification. For this procedure, it has to be ensured that a wall-penetrating crack is subcritical with respect to instable growth, and that the resulting leakage under stationary operation conditions can be detected by a leak detection system. Within the scope of the project 3613R01332 analyses with respect to conservative estimates of the leak rates in case of detections regarding break preclusion were performed by means of leak rate models being available at GRS. For this purpose, conservative assumptions in the procedure were quantified by comparative calculations concerning selected leak rate experiments and the requirements regarding the determination of leak rates indicated in the KTA 3206 were verified and specified. Moreover, the models were extended and relevant recommendations for the calculation procedure were developed. During the investigations of leak rate tests the calculation methods were validated, qualified by means of both examples indicated in KTA 3206 and applied to a postulated leak accident in the cooling circuit of a PWR. For the calculation of leak rates several simplified solution methods which are included in the GRS program WinLeck were applied, and for the simulation of a leak accident the large-scale programs ANSYS Mechanical and ATHLET (thermohydraulics program developed by GRS) were used. When applying simplified methods for the calculation of leak rates using the limiting curve for the friction factor which has been derived during the project and which is included in the KTA 3206 attention has to be paid to the fact that in case of small flow lengths the entrance loss can dominate compared to the friction loss. However, the available data do not suffice in order to make a quantitative statement with respect to limits of applicability

  4. Crack shape developments and leak rates for circumferential complex-cracked pipes

    Brickstad, B.; Bergman, M. [SAQ Inspection Ltd., Stockholm (Sweden)

    1997-04-01

    A computerized procedure has been developed that predicts the growth of an initial circumferential surface crack through a pipe and further on to failure. The crack growth mechanism can either be fatigue or stress corrosion. Consideration is taken to complex crack shapes and for the through-wall cracks, crack opening areas and leak rates are also calculated. The procedure is based on a large number of three-dimensional finite element calculations of cracked pipes. The results from these calculations are stored in a database from which the PC-program, denoted LBBPIPE, reads all necessary information. In this paper, a sensitivity analysis is presented for cracked pipes subjected to both stress corrosion and vibration fatigue.

  5. Probabilistic pipe fracture evaluations for applications to leak-rate detection

    Rahman, S; Wilkowski, G; Ghadiali, N [Battelle Columbus Labs., OH (United States)

    1993-12-31

    Stochastic pipe fracture evaluations are conducted for applications to leak-rate detection. A state-of-the-art review was first conducted to evaluate the adequacy of current deterministic models for thermo-hydraulic and elastic-plastic fracture analyses. Then a new probabilistic model was developed with the above deterministic models for structural reliability analysis of cracked piping systems and statistical characterization of crack morphology parameters, material properties of pipe, and crack location. The proposed models are then applied for computing conditional probability of failure for various nuclear piping systems in BWR and PWR plants. The PRAISE code was not used, and the probabilistic model is based on modern methods of stochastic mechanics, computationally far superior to Monte Carlo and Stratified Sampling methods used in PRAISE. 10 refs., 9 figs., 1 tab.

  6. Probabilistic pipe fracture evaluations for applications to leak-rate detection

    Rahman, S.; Wilkowski, G.; Ghadiali, N.

    1992-01-01

    Stochastic pipe fracture evaluations are conducted for applications to leak-rate detection. A state-of-the-art review was first conducted to evaluate the adequacy of current deterministic models for thermo-hydraulic and elastic-plastic fracture analyses. Then a new probabilistic model was developed with the above deterministic models for structural reliability analysis of cracked piping systems and statistical characterization of crack morphology parameters, material properties of pipe, and crack location. The proposed models are then applied for computing conditional probability of failure for various nuclear piping systems in BWR and PWR plants. The PRAISE code was not used, and the probabilistic model is based on modern methods of stochastic mechanics, computationally far superior to Monte Carlo and Stratified Sampling methods used in PRAISE. 10 refs., 9 figs., 1 tab

  7. The independence of irradiation creep in austenitic alloys of displacement rate and helium to dpa ratio

    Garner, F.A.; Toloczko, M.B. [Pacific Northwest National Lab., Richland, WA (United States); Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The majority of high fluence data on the void swelling and irradiation creep of austenitic steels were generated at relatively high displacement rates and relatively low helium/dpa levels that are not characteristic of the conditions anticipated in ITER and other anticipated fusion environments. After reanalyzing the available data, this paper shows that irradiation creep is not directly sensitive to either the helium/dpa ratio or the displacement rate, other than through their possible influence on void swelling, since one component of the irradiation creep rate varies with no correlation to the instantaneous swelling rate. Until recently, however, the non-swelling-related creep component was also thought to exhibit its own strong dependence on displacement rate, increasing at lower fluxes. This perception originally arose from the work of Lewthwaite and Mosedale at temperatures in the 270-350{degrees}C range. More recently this perception was thought to extend to higher irradiation temperatures. It now appears, however, that this interpretation is incorrect, and in fact the steady-state value of the non-swelling component of irradiation creep is actually insensitive to displacement rate. The perceived flux dependence appears to arise from a failure to properly interpret the impact of the transient regime of irradiation creep.

  8. Influence of helium generation rate and temperature history on mechanical properties of model Fe-Cr-Ni alloys irradiated in FFTF at relatively low displacement rates

    Hamilton, M.L.; Garner, F.A.; Edwards, D.J.

    1993-01-01

    In agreement with earlier studies conducted at higher displacement rates, evolution of mechanical properties of model Fe-Cr-Ni alloys irradiated at lower displacement rates in the 59 Ni isotopic doping experiment does not appear to be strongly affected by large differences in helium generation rate. This insensitivity to helium/dpa ratio is exhibited during both isothermal and non-isothermal irradiation. The overall behavior of the model alloys used in this study is dominated by the tendency to converge to a saturation strength level that is independent of thermomechanical starting state and helium/dpa ratio, but which is dependent on irradiation temperature and alloy composition

  9. Measured Leak Rate of Ammonia Through an Epoxy/Stainless-Steel Patch

    Brady, B. B; Desain, J. D; Curtiss, T. J

    2007-01-01

    .... To assess the lifetime of the patch and sensitivity to manufacturing variation, simulated leaks in circular aluminum discs were patched with several different variants on the same epoxy-stainless materials system...

  10. Disalignment rate coefficient of neon excited atoms due to helium atom collisions at low temperatures

    Seo, M; Shimamura, T; Furutani, T; Hasuo, M; Bahrim, C; Fujimoto, T

    2003-01-01

    Disalignment of neon excited atoms in the fine-structure 2p i levels (in Paschen notation) of the 2p 5 3p configuration is investigated in a helium-neon glow discharge at temperatures between 15 and 77 K. At several temperatures, we plot the disalignment rate as a function of the helium atom density for Ne* (2p 2 or 2p 7 ) + He(1s 2 ) collisions. The slope of this dependence gives the disalignment rate coefficient. For both collisions, the experimental data for the disalignment rate coefficient show a more rapid decrease with the decrease in temperature below 40 K than our quantum close-coupling calculations based on the model potential of Hennecart and Masnou-Seeuws (1985 J. Phys. B: At. Mol. Phys. 18 657). This finding suggests that the disalignment cross section rapidly decreases below a few millielectronvolts, in disagreement with our theoretical quantum calculations which predict a strong increase below 1 meV. The disagreement suggests that the long-range electrostatic potentials are significantly more repulsive than in the aforementioned model

  11. Technical basis for inner container leak detection sensitivity goals in 3013 DE surveillance

    Berg, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-11

    Helium leak checking of 3013 inner container lids is under consideration for addition to DE Surveillance tasks as an improved means to detect any through-wall flaws that may have formed during storage. This white paper evaluates whether leak checking at DE could replace and improve upon the current method of comparing gas compositions and pressures within the inner and outer containers. We have used viscous and molecular flow equations in ANSI N14.5 to calculate what the measured standard helium leak rate would be for hypothetical leaks of three different sizes. For comparison, we have also calculated the effects on gas composition and pressure differences as a function of pre-DE storage time for the same three leak sizes, using molecular and viscous flow equations as well as diffusion equations to predict the relevant gas transport. For a hypothetical leak that would be measured at 1x10-7 std cc/sec, likely an achievable sensitivity using helium leak checking at DE, the calculations predict no measurable effect on pressure difference or gas composition as measured by DE gas analysis. We also calculate that it would take over 200 years for water vapor to diffuse through a 10-7 std cc/sec leak enough to raise the RH outer container to half the RH value in the inner container. A leak 100 times larger, which would be measured at 1x10-5 std cc/sec, the same water vapor diffusion would take at least 14 years. Our conclusion is that helium leak checking will be useful even at a sensitivity of 1x10-5 std cc/sec, and a significant improvement over current DE methods at a sensitivity of 1x10-7 std cc/sec.

  12. A Comparative Risk Assessment of Extended Integrated Leak Rate Testing Intervals

    Oh, Ji Yong; Hwang, Seok Won; Lee, Byung Sik [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2009-10-15

    This paper presents the risk impacts of extending the Integrated Leak Rate Testing (ILRT) intervals (from five years to ten years) of Yonggwang (YGN) Unit 1 and 2. These risk impacts depended on the annual variances of meteorological data and resident population. Main comparisons were performed between the initial risk assessment (2005) for the purpose of extending ILRT interval and risk reassessment (2009) where the changed plant internal configurations (core inventory and radioisotope release fraction) and plant external alterations (wind directions, rainfall and population distributions) were monitored. The reassessment showed that there was imperceptible risk increase when the ILRT interval was extended compared to the initial risk assessment. In addition, the increased value of the Large Early Release Frequency (LERF) also satisfied the acceptance guideline proposed on Reg. Guide 1.174. The MACCS II code was used for evaluating the offsite consequence analysis. The primary risk index were used as the Probabilistic Population Dose (PPD) by considering the early effects within 80 km. The Probabilistic Safety Assessment (PSA) of YGN 1 and 2 was applied to evaluate the accident frequency of each source term category and the used PSA scope was limited to internal event.

  13. Guidelines to achieve seals with minimal leak rates for HWR-NPR coolant system components

    Finn, P.A.

    1991-03-01

    Seal design practices that are acceptable in pressurized-water and boiling-water reactors in the United States are not usable for the Heavy Water Reactor-New Production Reactor (HWR-NPR) because of the stringent requirement on tritium control for the atmosphere within its containment building. To maintain an atmosphere in which workers do not need protective equipment, the components of the coolant system must have a cumulative leak rate less than 0.00026 L/s. Existing technology for seal systems was reviewed with regard to flange, elastomer, valve, and pump design. A technology data base for the designers of the HWR-NPR coolant system was derived from operating experience and seal development work on reactors in the United States, Canada, and Europe. This data base was then used to generate guidelines for the design of seals and/or joints for the HWR-NPR coolant system. Also discussed are needed additional research and development, as well as the necessary component qualification tests for an effective quality control program. 141 refs., 21 figs., 14 tabs

  14. Guidelines to achieve seals with minimal leak rates for HWR-NPR coolant system components

    Finn, P.A.

    1991-03-01

    Seal design practices that are acceptable in pressurized-water and boiling-water reactors in the United States are not usable for the Heavy Water Reactor-New Production Reactor (HWR-NPR) because of the stringent requirement on tritium control for the atmosphere within its containment building. To maintain an atmosphere in which workers do not need protective equipment, the components of the coolant system must have a cumulative leak rate less than 0.00026 L/s. Existing technology for seal systems was reviewed with regard to flange, elastomer, valve, and pump design. A technology data base for the designers of the HWR-NPR coolant system was derived from operating experience and seal development work on reactors in the United States, Canada, and Europe. This data base was then used to generate guidelines for the design of seals and/or joints for the HWR-NPR coolant system. Also discussed are needed additional research and development, as well as the necessary component qualification tests for an effective quality control program. 141 refs., 21 figs., 14 tabs.

  15. Leak testing and repair of fusion devices

    Kozman, T.A.

    1983-01-01

    The leak testing, reporting and vacuum leak repair techniques of the MFTF yin-yang number one magnet system, the world's largest superconducting magnet system, are discussed. Based on this experience, techniques will be developed for testing and repairing leaks on the 42 MFTF-B magnets. The leak-hunting techniques for the yin-yang magnet systems were applied to two helium circuits (the coil bundle and guard vacuum; both require helium flow for magnet cooldown), their associated piping, liquid nitrogen radiation shields, and piping. Additionally, during MFTF-B operation there will be warm water plasma shields and piping that require leak checking

  16. Study on DOP substitutes for leaking rate testing of HEPA filter used in nuclear air cleaning systems

    Qiu Dangui; Zhang Jirong; Hou Jianrong; Qiao Taifei; Shen Dapeng; Shi Yingxia

    2012-01-01

    Based on an extensive investigation over available literatures concerning HEPA filter testing, PEG400, SHELL on dina oil 15 and P.a. were chosen as candidates for Dop substitutes, and on which a series of tests were conducted about their aerosol conversion rate, particle size distribution, Dop detector response and leaking rate in H EPA filter. With consideration of technical properties, safety performance and economy, homemade P.a. is finally selected as the best substitute for Dop among the three. (authors)

  17. Determining Methane Leak Locations and Rates with a Wireless Network Composed of Low-Cost, Printed Sensors

    Smith, C. J.; Kim, B.; Zhang, Y.; Ng, T. N.; Beck, V.; Ganguli, A.; Saha, B.; Daniel, G.; Lee, J.; Whiting, G.; Meyyappan, M.; Schwartz, D. E.

    2015-12-01

    We will present our progress on the development of a wireless sensor network that will determine the source and rate of detected methane leaks. The targeted leak detection threshold is 2 g/min with a rate estimation error of 20% and localization error of 1 m within an outdoor area of 100 m2. The network itself is composed of low-cost, high-performance sensor nodes based on printed nanomaterials with expected sensitivity below 1 ppmv methane. High sensitivity to methane is achieved by modifying high surface-area-to-volume-ratio single-walled carbon nanotubes (SWNTs) with materials that adsorb methane molecules. Because the modified SWNTs are not perfectly selective to methane, the sensor nodes contain arrays of variously-modified SWNTs to build diversity of response towards gases with adsorption affinity. Methane selectivity is achieved through advanced pattern-matching algorithms of the array's ensemble response. The system is low power and designed to operate for a year on a single small battery. The SWNT sensing elements consume only microwatts. The largest power consumer is the wireless communication, which provides robust, real-time measurement data. Methane leak localization and rate estimation will be performed by machine-learning algorithms built with the aid of computational fluid dynamics simulations of gas plume formation. This sensor system can be broadly applied at gas wells, distribution systems, refineries, and other downstream facilities. It also can be utilized for industrial and residential safety applications, and adapted to other gases and gas combinations.

  18. Characterization of new a-Si:H detectors fabricated from amorphous silicon deposited at high rate by helium enhanced PECVD

    Pochet, T.; Ilie, A.; Foulon, F.

    1993-01-01

    This paper is concerned with the characterization of new detectors fabricated from a-Si:H films deposited at high rates through the dilution of SiH 4 in helium. Rates of up to ten times (5.5 micrometer/h) that of the standard technique are obtained, allowing for the feasible fabrication of detectors having thickness up to 100 micrometers. The electrical characteristics (depletion voltage, residual space charge density) of the helium diluted material, have been investigated and compared to that of the standard material. The response of detectors, made from both materials, to 5.5 MeV alpha particles are compared. 6 figs., 5 tabs., 13 refs

  19. Influence of short heat pulses on the helium boiling heat transfer rate

    Andreev, V.K.; Deev, V.I.; Savin, A.N.; Kutsenko, K.V.

    1987-01-01

    Investigation results on heat transfer in the process of helium boiling on a heated wall under conditions of pulsed heat effect are described. Results of the given study point to one of possible ways of heat exchange intensification in boiling helium by supplying short heat pulse to the heater. Even short-time noncontrolled or incidental increase in the heater capacity during experiment with boiling helium can result in a considerable disagreement of experimental data on heat transfer

  20. Small leak shutdown, location, and behavior in LMFBR steam generators

    Sandusky, D.W.

    1976-01-01

    The paper summarizes an experimental study of small leaks tested under LMFBR steam generator conditions. Defected tubes were exposed to flowing sodium and steam. The observed behavior of the defected tubes is reported along with test results of shutdown methods. Leak location methods were investigated. Methods were identified to open plugged defects for helium leak testing and detect plugged leaks by nondestructive testing

  1. Study on the Leak Rate Estimation of SG Tubes and Residual Stress Estimation based on Plastic Deformation

    Kim, Young Jin; Chang, Yoon Suk; Lee, Dock Jin; Lee, Tae Rin; Choi, Shin Beom; Jeong, Jae Uk; Yeum, Seung Won [Sungkyunkwan University, Seoul (Korea, Republic of)

    2009-02-15

    In this research project, a leak rate estimation model was developed for steam generator tubes with through wall cracks. The modelling was based on the leak data from 23 tube specimens. Also, the procedure of finite element analysis was developed for residual stress calculation of dissimilar metal weld in a bottom mounted instrumentation. The effect of geometric variables related with the residual stress in penetration weld part was investigated by using the developed analysis procedure. The key subjects dealt in this research are: 1. Development of leak rate estimation model for steam generator tubes with through wall cracks 2. Development of the program which can perform the structure and leakage integrity evaluation for steam generator tubes 3. Development of analysis procedure for bottom mounted instrumentation weld residual stress 4. Analysis on the effects of geometric variables on weld residual stress It is anticipated that the technologies developed in this study are applicable for integrity estimation of steam generator tubes and weld part in NPP.

  2. Leak detection/verification

    Krhounek, V.; Zdarek, J.; Pecinka, L. [Nuclear Research Institute, Rez (Czech Republic)

    1997-04-01

    Loss of coolant accident (LOCA) experiments performed as part of a Leak Before Break (LBB) analysis are very briefly summarized. The aim of these experiments was to postulate the leak rates of the coolant. Through-wall cracks were introduced into pipes by fatigue cycling and hydraulically loaded in a test device. Measurements included coolant pressure and temperature, quantity of leaked coolant, displacement of a specimen, and acoustic emission. Small cracks were plugged with particles in the coolant during testing. It is believed that plugging will have no effect in cracks with leak rates above 35 liters per minute. The leak rate safety margin of 10 is sufficient for cracks in which the leak rate is more than 5 liters per minute.

  3. Study on flow rate measurement and visualization of helium-air exchange flow through a small opening

    Fumizawa, Motoo

    1992-01-01

    This paper deals with an experimental investigation on buoyancy-driven exchange flows through horizontal and inclined openings. The method of the mass increment was developed to measure the flow rate in helium-air system and a displacement fringe technique was adopted in Mach-Zehnder interferometer to visualize the flow. As the result, the followings were obtained: Flow visualization results indicate that the upward and downward plumes of helium and air break through the opening intermittently, and they swing in the lateral direction through the horizontal opening. It is clearly visualized that the exchange flows through the inclined openings take place smoothly and stably in the separated passages. The inclination angle for the maximum Froude number decreases with increasing length-to-diameter ratio in the helium-air system, on the contrary to Mercer's experimental results in the water-brine system indicating that the angle remains almost constant. (author)

  4. Ultrasensitive leak detection

    Winkelman, C.R.; Davidson, H.G.

    1978-01-01

    The objective of this investigation was to develop a method of detecting leaks to a sensitivity of 1.0 x 10 -13 std/cm 3 /s in vacuum devices and to develop a qualifiable standard leak to provide system calibration at this leak rate. The development work demonstrated that minimum detectable leak rates of 6.5 x 10 -14 std/cm 3 /s and 5.5 x 10 -15 std/cm 3 /s are possible for respective analog and digital measurement modes

  5. Location and repair of air leaks in the ATF vacuum vessel

    Schwenterly, S.W.; Gabbard, W.A.; Schaich, C.R.; Yarber, J.L.

    1989-01-01

    On the basis of partial pressure rate-of-rise and base pressure measurements, it was determined that the Advanced Toroidal Facility (ATF) vacuum vessel had an air leak in the low 10 -4 mbarx ell/s range. Pinpointing this leak by conventional helium leak-checking procedures was not possible, because large portions of the outside of the vessel are covered by the helical field coils and a structural shell. Various alternative leak detection schemes that were considered are summarized and their advantages and disadvantages noted. In the method ultimately employed, gum-rubber patches of various sizes ranging from 12.7 by 12.7 cm to 20.3 by 30.5 cm were positioned on the inside surfaces of the vessel and evacuated by the leak detector (LD). After roughly 5% of the surface was inspected in this way, a leak of >10 -5 mbar xL/s was discovered and localized to an area of 5 by 5 cm. Dye penetrant applied to this area disclosed three pinholes. Two small slag pockets were discovered while these points were being ground out. After these were rewelded, no further leakage could be found in the repaired area. Global leak rates measured after the machine was reevacuated indicated that this leak was about 30% of the overall leak rate. 1 ref., 5 figs., 1 tab

  6. Location and repair of air leaks in the ATF [Advanced Toroidal Facility] vacuum vessel

    Schwenterly, S.W.; Gabbard, W.A.; Schaich, C.R.; Yarber, J.L.

    1989-01-01

    On the basis of partial pressure rate-of-rise and base pressure measurements, it was determined that the Advanced Toroidal Facility (ATF) vacuum vessel had an air leak in the low 10 -4 mbar-ell/s range. Pinpointing this leak by conventional helium leak-checking procedures was not possible, because large portions of the outside of the vessel are covered by the helcial field coils and a structural shell. Various alternative leak-detection schemes that were considered are summarized and their advantages and disadvantages noted. In the method ultimately employed, gun-rubber patches of various sizes ranging from 12.7 by 12.7 cm to 20.3 by 30.5 cm were positioned on the inside surfaces of the vessel and evacuated by the leak detector (LD). After roughly 5% of the surface was inspected in this way, a leak of > 10 -5 mbar-ell/s was discovered and localized to an area of 5 by 5 cm. Dye penetrant applied to this area disclosed three pinholes. Two small slag pockets were discovered while these points were being ground out. After these were rewelded, no furthered leakage could be found in the repaired area. Global leak rates measured after the machine was reevacuated indicated that this leak was about 30% of the overall leak rate. 1 ref., 5 figs., 1 tab

  7. Permanent underwater leak detector

    Costello, L; McStay, D; Moodie, D; Kane, D

    2009-01-01

    A new optoelectronic sensor for the real time monitoring of key components such as valves and connectors within the subsea production equipment for leaks of hydraulic fluid is reported. The sensor is capable of detecting low concentrations of such fluids, allowing the early detection of small leaks, and the ability to monitor the evolution of the leak-rate with time, hence providing an important new tool in complying with environmental requirements, enabling early intervention and optimising subsea production

  8. Reactor building pressure proof test (PPT) and leak rate test (LRT) of Qinshan phase III (CANDU) project

    Gu Jun; Shi Jinqi; Fan Fuping

    2004-12-01

    As the first reactor building (R/B) without stainless steel liner in china, TQNPC studied the containment characteristics, such as strong concrete absorb/release air effect, poor containment penetration. etc. And carefully prepared test scheme and emergency response, creatively introduced the instrument air self-supply system in reactor building, developed the special measurement and analysis system for PPT and LRT, organized work under high-pressure on large-scale in the test. Finally got the containment leak rate result and the test-cost-time value is the best in all same type tests. (authors)

  9. A study on a real-time leak detection method for pressurized liquid refrigerant pipeline based on pressure and flow rate

    Tian, Shen; Du, Juanli; Shao, Shuangquan; Xu, Hongbo; Tian, Changqing

    2016-01-01

    Highlights: • A real-time leak detection method is developed for ammonia pipeline in cold storage. • A locating algorithm based on pressure difference profile is provided. • This method is validated by R22 and ammonia leak experiments. • The minimum detectable leak ratio is 1% for R22 and 4% for ammonia. • The location estimating errors are −27% ~ 17% for R22 and −27% ~ 27% for ammonia. - Graphical Abstract: - Abstract: Leakage from pressurized liquid ammonia pipeline has been a serious problem in large commercial cold storages because it might release large amount of liquid ammonia and without safety supervision in daily operations. The present paper shows a detection method for a pressurized liquid ammonia pipeline with a leak. The variations of pressure, flow rate and pressure difference profile are studied. A leak indicator (σ), proposed with the one-dimensional steady-state flow model, is used to detect the leak occurrence by comparing it with a threshold value (σ Le ). A locating algorithm based on pressure difference profile along the pipeline is also proposed, which has considered the effect of the static pressure increase at the leak point. Experiments on different leak positions and ratios from liquid R22 and ammonia pipelines are carried out to validate this method. It is found that, with a relatively low false alarm rate (as three percent), the minimum detectable leak ratio reached 1% for the R22 pipeline and 4% for the ammonia pipeline. The locating errors are between −27% ~ 17% for R22 pipeline and −27% ~ 27% for ammonia pipeline.

  10. Liquid helium target

    Fujii, Y.; Kitami, T.; Torikoshi, M.

    1984-12-01

    A liquid helium target system has been built and used for the experiment on the reaction 4 He(γ, p). The target system has worked satisfactorily; the consumption rate of liquid helium is 360 ml/h and the cryogenic system retains liquid helium for about ten hours. The structure, operation and performance of the target system are reported. (author)

  11. Metallicity-Dependent Isotopic Abundances and the Impact of Helium Rate Uncertainties in Massive Stars

    West, Christopher

    2013-03-01

    model compared to the linear interpolation method, for the six s--only isotopes along the weak s--process path. As a second project, we study the sensitivity of presupernova evolution and supernova nucleosynthesis yields of massive stars to variations of the helium-burning reaction rates within the range of their uncertainties. The current solar abundances from Lodders (2010) are used for the initial stellar composition. We compute a grid of 12 initial stellar masses and 176 models per stellar mass to explore the effects of independently varying the 12C(alpha,gamma)16O and 3alpha reaction rates, denoted Ralpha,12 and R3alpha, respectively. The production factors of both the intermediate-mass elements (A=16--40) and the s--only isotopes along the weak s--process path ( 70Ge, 76Se, 80Kr, 82Kr, 86Sr, and 87Sr) were found to be in reasonable agreement with predictions for variations of R3alpha and Ralpha,12 of +/-25%; the s--only isotopes, however, tend to favor higher values of R3alpha than the intermediate-mass isotopes. The experimental uncertainty (one standard deviation) in R3alpha(Ralpha,12 ) is approximately +/-10%(+/-25%). The results show that a more accurate measurement of one of these rates would decrease the uncertainty in the other as inferred from the present calculations. We also observe sharp changes in production factors and standard deviations for small changes in the reaction rates, due to differences in the convection structure of the star. The compactness parameter was used to assess which models would likely explode as successful supernovae, and hence contribute explosive nucleosynthesis yields. We also provide the approximate remnant masses for each model and the carbon mass fractions at the end of core-helium burning as a key parameter for later evolution stages.

  12. Development of a vacuum leak test method for large-scale superconducting magnet test facilities

    Kawano, Katsumi; Hamada, Kazuya; Okuno, Kiyoshi; Kato, Takashi

    2006-01-01

    Japan Atomic Energy Agency (JAEA) has developed leak detection technology for liquid helium temperature experiments in large-scale superconducting magnet test facilities. In JAEA, a cryosorption pump that uses an absorbent cooled by liquid nitrogen with a conventional helium leak detector, is used to detect helium gas that is leaking from pressurized welded joints of pipes and valves in a vacuum chamber. The cryosorption pump plays the role of decreasing aerial components, such as water, nitrogen and oxygen, to increase the sensitivity of helium leak detection. The established detection sensitivity for helium leak testing is 10 -10 to 10 -9 Pam 3 /s. A total of 850 welded and mechanical joints inside the cryogenic test facility for the ITER Central Solenoid Model Coil (CSMC) experiments have been tested. In the test facility, 73 units of glass fiber-reinforced plastic (GFRP) insulation break are used. The amount of helium permeation through the GFRP was recorded during helium leak testing. To distinguish helium leaks from insulation-break permeation, the helium permeation characteristic of the GFRP part was measured as a function of the time of helium charging. Helium permeation was absorbed at 6 h after helium charging, and the detected permeation is around 10 -7 Pam 3 /s. Using the helium leak test method developed, CSMC experiments have been successfully completed. (author)

  13. D0 Silicon Upgrade: Commissioning Test Results for D-Zero's Helium Refrigerator

    Rucinski, Russ

    1997-01-01

    The test objectives are: (1) Make liquid helium and measure refrigerator capacity; (2) Measure liquid helium dewar heat leak, transfer line heat leak, and liquid nitrogen consumption rates; (3) Operate all cryogenic transfer lines; (4) Get some running time on all components; (5) Debug mechanical components, instrumentation, DMACs user interface, tune loops, and otherwise shake out any problems; (6) Get some operating time in to get familiar with system behavior; (7) Revise and/or improve operating procedures to actual practice; and (8) Identify areas for future improvement. D-Zero's stand alone helium refrigerator (STAR) liquified helium at a rate of 114 L/hr. This is consistent with other STAR installations. Refrigeration capacity was not measured due to lack of a calibrated heat load. Measured heat leaks were within design values. The helium dewar loss was measured at 2 to 4 watts or 9% per day, the solenoid and VLPC helium transfer lines had a heat leak of about 20 watts each. The liquid nitrogen consumption rates of the mobile purifier, STAR, and LN2 subcooler were measured at 20 gph, 20 to 64 gph, and 3 gph respectively. All cryogenic transfer lines including the solenoid and visible light photon counter (VLPC) transfer lines were cooled to their cryogenic operating temperatures. This included independent cooling of nitrogen shields and liquid helium components. No major problems were observed. The system ran quite well. Many problems were identified and corrected as they came up. Areas for improvement were noted and will be implemented in the future. The instrumentation and control system operated commendably during the test. The commissioning test run was a worthwhile and successful venture.

  14. Steam generator leak detection at Bruce A Unit 1

    Maynard, K.J.; McInnes, D.E.; Singh, V.P.

    1997-01-01

    A new steam generator leak detection system was recently developed and utilized at Bruce A. The equipment is based on standard helium leak detection, with the addition of moisture detection and several other capability improvements. All but 1% of the Unit 1 Boiler 03 tubesheet was inspected, using a sniffer probe which inspected tubes seven at a time and followed by individual tube inspections. The leak search period was completed in approximately 24 hours, following a prerequisite period of several days. No helium leak indications were found anywhere on the boiler. A single water leak indication was found, which was subsequently confirmed as a through-wall defect by eddy current inspection. (author)

  15. Characterization of leaks from compressed hydrogen dispensing systems and related components

    Schefer, R.W.; Houf, W.G.; San Marchi, C. [Sandia National Laboratories, Livermore, CA 94551 (United States); Chernicoff, W.P.; Englom, L. [US DOT-RSPA, Research and Special Programs Administration, 400 7th St SW Washington, DC 20590 (United States)

    2006-08-15

    The equations are developed for the calculation of leak flow rates in various leak regimes. Leaks due to pressure-driven convection and due to permeation through metals are considered. For convective leaks, the conditions under which the flow transitions from laminar to turbulent and from subsonic to choked (sonic) flow are discussed. Equations are presented to calculate leak rates for subsonic laminar and turbulent flows, as well as choked (sonic) flow rates. Given the advantages of using noncombustible gases for leak testing and measurement, equations are also developed for calculating the equivalent leak rate of helium when it is used as a surrogate for the combustible gases hydrogen and methane in each of these flow regimes. Equations are derived for the permeation rate of hydrogen through several common metals. Tabulated data is presented for the permeation rates of hydrogen through pure iron and two types of stainless steel over a pressure range from 5000 to 15,000psi and a temperature range of -40-100{sup |}C. The results clearly show the sensitivity of flux to temperature, with over an order of magnitude increase in flux as the temperature is increased from ambient to 373K (100{sup |}C). Permeation rates are also found to vary significantly with material. For example, permeation rates for construction steel (as estimated from pure iron) are about three orders of magnitude higher than 403 stainless steel and nearly five orders of magnitude higher than type 316L stainless steel for a given temperature and pressure. Under many combinations of pressure and temperature, leak rates for Fe exceed the permissible gaseous hydrogen leak rates, while rates for 316L stainless steel are well below permissible permeation rates at all combinations of temperature and pressure considered. (author)

  16. Cross section for calculating the helium formation rate in construction materials irradiated by nucleons at energies to 800 MeV

    Konobeev, A.Yu.; Korovin, Yu.A.

    1992-01-01

    Recently, effects related to the formation of helium in irradiated construction materials have been studied extensively. Data on the nuclear cross sections for producing helium in these materials form the initial information necessary for such investigations. If the spectrum of the incoming particles is known, the value of the helium production cross section makes it possible to calculate the helium generation rate. In recent years, plans and simulating experiments on radiating materials with high-energy particles made it necessary to determine the helium production cross sections in constructionmaterials, which are irradiated by protons and neutrons with energies to 800 MeV. Helium-formation cross sections have been calculated at these energies. However, a correct description of the experimental data for various construction materials does not yet exist. For example, the calculated helium-formation cross sections turned out to overestimate the experimental data, and to underestimate the experimental data. The objective here is to calculate the helium-formation cross sections for various construction materials, which are irradiated by protons and neutrons to energies from 20 to 800 MeV, and to analyze the probable causes of deviations between experimental and earlier calculated cross sections

  17. Report of a consultants' meeting on a review of the methods used for leak rate measurements for WWER 440/230 confinements and WWER/440/213 containments. Extrabudgetary programme on the safety of WWER NPPS

    1995-01-01

    During the meeting the first two days were given to the presentations of the papers, after which the meeting was divided into working groups which prepared the experts' positions on the following topics: requirements of the National Regulatory Authorities on confinement/containment leak rate testing methods; local leak rate test methods; integral leak rate test methods; structural integrity testing; methods of evaluation of leak rate test results. The reports prepared by each working group were reviewed in plenary sessions and the final conclusions were discussed and agreed upon in the plenary meeting. 16 refs, 6 tabs

  18. Mobile leak testing system

    Ungr, F.

    The design and implementation are described of a mobile testing unit ULTRATEST M for helium leak tests. The equipment has been developed by Leybold-Heraeus GmbH in Cologne and is in-built in a Mercedes-Benz 208 van. The equipment is designed for the operative use in assembly and construction of nuclear power plants and its throughput is sufficient for checking the whole upper reactor block. It may also be used for removing defects of vacuum equipment requiring a high level of tightness or equally demanding equipment used in the chemical industry. Experience with the equipment is described. (B.S.)

  19. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, LEAKE COUNTY, MISSISSIPPI AND INCORPORATED AREAS

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  20. Acceptance test procedure for the 105-KW isolation barrier leak rate

    McCracken, K.J.

    1995-01-01

    This acceptance test procedure shall be used to: First establish a basin water loss rate prior to installation of the two isolation barriers between the main basin and the discharge chute in K-Basin West. Second, perform an acceptance test to verify an acceptable leakage rate through the barrier seals. This Acceptance Test Procedure (ATP) has been prepared in accordance with CM-6-1 EP 4.2, Standard Engineering Practices

  1. Small liquid sodium leaks

    Dufresne, J.; Rochedereux, Y.; Antonakas, D.; Casselman, C.; Malet, J.C.

    1986-05-01

    Usually, pessimistic considerations inassessing the safety of secondary sodium loops in LMFBR reactor lead to assume guillotine rupture releasing a large amount of sodium estimate the consequences of large sodium fires. In order to reduce these consequences, one has to detect the smallest leak as soon as possible and to evaluate the future of an initial small leak. Analysis of the relationship between crack size and sodium outflow rate; Analysis of a sodium pipe with a small open crack

  2. Experimental simulation of low rate primary coolant leaks. For the case of vessel head penetrations affected by through wall cracking

    You, D.; Feron, D.; Turluer, G.

    2002-01-01

    An experimental simulation of primary coolant leaks was carried out to determine how the composition of the leaking liquid would change. The experiment used the EVA experimental setup, specially designed for quantitatively investigating concentration phenomena driven by evaporation. The test showed that the final composition, obtained from a solution representative of the primary coolant at the beginning of the cycle, is highly concentrated and slightly acid. The experimental results are compared with those obtained using the MULTEQ software. (authors)

  3. Repair of EL4 leaks

    1985-03-01

    The reactor shutdown was decided on the 15th of November 1984, because the evolution of the carbon dioxide quantity in the helium blanket of the heavy water. Leaks have been localized on three different channels. Repairs have been made in hard conditions taking into account the reactor state (materials strongly irradiated). The restart has been authorized on the 24th of January 1985 [fr

  4. Influence of heating rate on corrosion behavior of Ni-base heat resistant alloys in simulated VHTR helium environment

    Kurata, Yuji; Kondo, Tatsuo

    1985-04-01

    The influence of heating rate on corrosion and carbon transfer was studied for Ni-base heat resistant alloys exposed to simulated VHTR(very high temperature reactor) coolant environment. Special attention was focused to relationship between oxidation and carburization at early stage of exposure. Tests were conducted on two heats of Hastelloy XR with different boron(B) content and the developmental alloys, 113MA and KSN. Two kinds of heating rates, i.e. 80 0 C/min and 2 0 C/min, were employed. Corrosion tests were carried out at 900 0 C up to 500 h in JAERI Type B helium, one of the simulated VHTR primary coolant specifications. Under higher heating rate, oxidation resistance of both heats of Hastelloy XR(2.8 ppmB and 40 ppmB) were equivalent and among the best, then KSN and 113MA followed in the order. Under lower heating rate only alloy, i.e. Hastelloy XR with 2.8 ppmB, showed some deteriorated oxidation resistance while all others being unaffected by the heating rate. On the other hand the carbon transfer behavior showed strong dependence on the heating rate. In case of higher heating rate, significant carburization occured at early stage of exposure and thereafter the progress of carburization was slow in all the alloys. On the other hand only slow carburization was the case throughout the exposure in case of lower heating rate. The carburization in VHTR helium environment was interpreted as to be affected by oxide film formation in the early stage of exposure. The carbon pick-up was largest in Hastelloy XR with 40 ppmB and it was followed by Hastelloy XR with 2.8 ppmB. 113MA and KSN were carburized only slightly. The observed difference of carbon pick-up among the alloys tested was interpreted to be attributed mainly to the difference of the carbon activity, the carbide precipitation characteristics among the alloys tested. (author)

  5. Correlations between deformations, surface state and leak rate in metal to metal contact; Correlations entre deformations, etat de surface et debit de fuite au contact metal-metal

    Armand, G; Lapujoulade, J; Paigne, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The study of metal to metal contact from the stand-point of the leak rate has been carried on a copper ring located between two hard-steel flanges. The analysis of the results confirms the hysteresis phenomenon already seen. Some curves (leak rate versus force and leak rate versus true deformation) in semi-logarithmic coordinates are straight lines. Likewise some curves (electrical contact resistance versus force) in bi-logarithmic coordinates are straight lines. All these results can be understood by looking at the conductance introduced by the deformations of the micro-geometry of the surfaces in contact. Some tests carried out in rising the temperature confirm these hypothesis. (authors) [French] L'etude du contact metal-metal du point de vue debit de fuite a ete poursuivie en utilisant un anneau de cuivre place entre brides d'acier dur. L'analyse des resultats confirme le phenomene d'hysteresis deja constate, montre l'influence de l'etat de surface des brides et du joint. Certaines courbes (debit de fuite/force et debit de fuite/deformation rationnelle), en coordonnees semi-logarithmiques, sont des droites. De meme, certaines courbes (resistance de contact/force) en coordonnees bi-logarithmiques, sont des droites. Ces resultats s'interpretent en considerant la conductance produite par la deformation des microgeometries des surfaces en contact. Quelques essais d'elevation de temperature confirment ces resultats. (auteurs)

  6. A Correlated Active Acoustic Leak Detection in a SFR Steam Generator

    Kim, Tae Joon; Jeong, Ji Young; Kim, Jong Man; Kim, Byung Ho; Kim, Yong Il

    2009-01-01

    The methods of acoustic leak detection are active acoustic leak detection and passive acoustic leak detection. The methods for passive acoustic leak detection are already established, but because our goal is development of passive acoustic leak detection for detecting a leakage range of small and micro leak rates, it is difficult detecting a leak in steam generator using this developed passive acoustic leak detection. Thus the acoustic leak detection system is required to be able to detect wide range of water leaks. From this view point we need to develop an active acoustic leak detection technology to be able to detect intermediate leak rates

  7. Preservation of the Myofascial Cuff During Posterior Fossa Surgery to Reduce the Rate of Pseudomeningocele Formation and Cerebrospinal Fluid Leak: A Technical Note.

    Felbaum, Daniel R; Mueller, Kyle; Anaizi, Amjad; Mason, Robert B; Jean, Walter C; Voyadzis, Jean M

    2016-12-28

     Suboccipital craniotomy is a workhorse neurosurgical operation for approaching the posterior fossa but carries a high risk of pseudomeningocele and cerebrospinal fluid (CSF) leak. We describe our experience with a simple T-shaped fascial opening that preserves the occipital myofascial cuff as compared to traditional methods to reduce this risk.  A single institution, retrospective review of prospectively collected database was performed of patients that underwent a suboccipital craniectomy or craniotomy. Patient data was reviewed for craniotomy or craniectomy, dural graft, and/or sealant use as well as CSF complications. A pseudomeningocele was defined as a subcutaneous collection of cerebrospinal fluid palpable clinically and confirmed on imaging. A CSF leak was defined as a CSF-cutaneous fistula manifested by CSF leaking through the wound. All patients underwent regular postoperative visits of two weeks, one month, and three months.  Our retrospective review identified 33 patients matching the inclusion criteria. Overall, our cohort had a 21% (7/33) rate of clinical and radiographic pseudomeningocele formation with 9% (3/33) requiring surgical revision or a separate procedure. The rate of clinical and radiographic pseudomeningocele formation in the myofascial cuff preservation technique was less than standard techniques (12% and 31%, respectively). Revision or further surgical procedures were also reduced in the myofascial cuff preservation technique vs. the standard technique (6% vs 13%).  Preservation of the myofascial cuff during posterior fossa surgery is a simple and adoptable technique that reduces the rate of pseudomeningocele formation and CSF leak as compared with standard techniques.

  8. Vacuum leak test technique of JT-60

    Kaminaga, Atsushi; Arai, Takashi; Kodama, Kozo; Sasaki, Noboru; Saidoh, Masahiro

    1998-01-01

    Since a vacuum vessel of JT-60 is very large (167 m 3 ) and is combined with many components, such as magnetic coils, neutral beam injection systems and RF heating systems, etc., the position of leak testing exceeds 700. The two kind of techniques for vacuum leak test used in JT-60 has been described. Firstly the probe helium gas can be fed remotely in the three-dimensionally sectioned 54 regions of the JT-60 torus. The leak test was very rapidly performed by using this method. Secondly the helium detector system has been modified by the additional installation of the cryopump, which reduced the background level of the deuterium gas. The sensitivity of vacuum leak test with the cryopump was two orders of magnitude larger than that of without it. The examples of the performed vacuum leak test are stated. The vacuum leaks during experiments were 9 times. They were caused by thermal strain and plasma discharge. The vacuum leaks just after maintenance are 36 times which mainly caused by mis-installation. (author)

  9. Device provides controlled gas leaks

    Kami, S. K.; King, H. J.

    1968-01-01

    Modified palladium leak device provides a controlled release /leak/ of very small quantities of gas at low or medium pressures. It has no moving parts, requires less than 5 watts to operate, and is capable of releasing the gas either continuously or in pulses at adjustable flow rates.

  10. Rapid heating tensile tests of high-energy-rate-forged 316L stainless steel containing internal helium from radioactive decay of absorbed tritium

    Mosley, W.C.

    1990-01-01

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. This austenitic stainless steel is frequently used in the high-energy-rate-forged (HERF) metallurgical condition to take advantage of increased strength produced by cold work introduced by this process. Proper design of tritium-handling equipment will require an understanding of how helium-3, the product of radioactive decay of tritium, affects mechanical properties. This report describes results of elevated-temperature tensile testing of HERF 316L stainless steel specimens containing helium concentrations of 171 (calculated) atomic parts per million (appm). Results are compared with those reported previously for specimens containing 0 and 94 (measured) appm helium

  11. Intraoperative leak testing has no correlation with leak after laparoscopic sleeve gastrectomy.

    Sethi, Monica; Zagzag, Jonathan; Patel, Karan; Magrath, Melissa; Somoza, Eduardo; Parikh, Manish S; Saunders, John K; Ude-Welcome, Aku; Schwack, Bradley F; Kurian, Marina S; Fielding, George A; Ren-Fielding, Christine J

    2016-03-01

    Staple line leak is a serious complication of sleeve gastrectomy. Intraoperative methylene blue and air leak tests are routinely used to evaluate for leak; however, the utility of these tests is controversial. We hypothesize that the practice of routine intraoperative leak testing is unnecessary during sleeve gastrectomy. A retrospective cohort study was designed using a prospectively collected database of seven bariatric surgeons from two institutions. All patients who underwent sleeve gastrectomy from March 2012 to November 2014 were included. The performance of intraoperative leak testing and the type of test (air or methylene blue) were based on surgeon preference. Data obtained included BMI, demographics, comorbidity, presence of intraoperative leak test, result of test, and type of test. The primary outcome was leak rate between the leak test (LT) and no leak test (NLT) groups. SAS version 9.4 was used for univariate and multivariate analyses. A total of 1550 sleeve gastrectomies were included; most were laparoscopic (99.8%), except for one converted and two open cases. Routine intraoperative leak tests were performed in 1329 (85.7%) cases, while 221 (14.3%) did not have LTs. Of the 1329 cases with LTs, there were no positive intraoperative results. Fifteen (1%) patients developed leaks, with no difference in leak rate between the LT and NLT groups (1 vs. 1%, p = 0.999). After adjusting for baseline differences between the groups with a propensity analysis, the observed lack of association between leak and intraoperative leak test remained. In this cohort, leaks presented at a mean of 17.3 days postoperatively (range 1-67 days). Two patients with staple line leaks underwent repeat intraoperative leak testing at leak presentation, and the tests remained negative. Intraoperative leak testing has no correlation with leak due to laparoscopic sleeve gastrectomy and is not predictive of the later development of staple line leak.

  12. Ultrasonic leak detection

    Murphy, R.V.

    1977-01-01

    A scanning ultrasonic microphone was used to detect the presence and locate the sources of hydraulic noises in piping systems in a reactor environment. The intensity changes of the noises correspond to changes of flow conditions within the system caused by throttled valves, flow rate changes, and leaks. (author)

  13. Hermetic Seal Leak Detection Apparatus

    Kelley, Anthony R. (Inventor)

    2013-01-01

    The present invention is a hermetic seal leak detection apparatus, which can be used to test for hermetic seal leaks in instruments and containers. A vacuum tight chamber is created around the unit being tested to minimize gas space outside of the hermetic seal. A vacuum inducing device is then used to increase the gas chamber volume inside the device, so that a slight vacuum is pulled on the unit being tested. The pressure in the unit being tested will stabilize. If the stabilized pressure reads close to a known good seal calibration, there is not a leak in the seal. If the stabilized pressure reads closer to a known bad seal calibration value, there is a leak in the seal. The speed of the plunger can be varied and by evaluating the resulting pressure change rates and final values, the leak rate/size can be accurately calculated.

  14. Apparent oxygen utilization rates calculated from tritium and helium-3 profiles at the Bermuda Atlantic Time-series Study site

    R. H. R. Stanley

    2012-06-01

    Full Text Available We present three years of Apparent Oxygen Utilization Rates (AOUR estimated from oxygen and tracer data collected over the ocean thermocline at monthly resolution between 2003 and 2006 at the Bermuda Atlantic Time-series Study (BATS site. We estimate water ages by calculating a transit time distribution from tritium and helium-3 data. The vertically integrated AOUR over the upper 500 m, which is a regional estimate of export, during the three years is 3.1 ± 0.5 mol O2 m−2 yr−1. This is comparable to previous AOUR-based estimates of export production at the BATS site but is several times larger than export estimates derived from sediment traps or 234Th fluxes. We compare AOUR determined in this study to AOUR measured in the 1980s and show AOUR is significantly greater today than decades earlier because of changes in AOU, rather than changes in ventilation rates. The changes in AOU are likely a methodological artefact associated with problems with early oxygen measurements.

  15. Liquid helium

    Atkins, K R

    1959-01-01

    Originally published in 1959 as part of the Cambridge Monographs on Physics series, this book addresses liquid helium from the dual perspectives of statistical mechanics and hydrodynamics. Atkins looks at both Helium Three and Helium Four, as well as the properties of a combination of the two isotopes. This book will be of value to anyone with an interest in the history of science and the study of one of the universe's most fundamental elements.

  16. A liquid helium saver

    Avenel, O.; Der Nigohossian, G.; Roubeau, P.

    1976-01-01

    A cryostat equipped with a 'liquid helium saver' is described. A mass flow rate M of helium gas at high pressure is injected in a counter-flow heat exchanger extending from room to liquid helium temperature. After isenthalpic expansion through a calibrated flow impedance this helium gas returns via the low pressure side of the heat exchanger. The helium boil-off of the cryostat represents a mass flow rate m, which provides additional precooling of the incoming helium gas. Two operating regimes appear possible giving nearly the same efficiency: (1) high pressure (20 to 25 atm) and minimum flow (M . L/W approximately = 1.5) which would be used in an open circuit with helium taken from a high pressure cylinder; and (2) low pressure (approximately = 3 atm), high flow (M . L/W > 10) which would be used in a closed circuit with a rubber diaphragm pumping-compressing unit; both provide a minimum theoretical boil-off factor of about 8%. Experimental results are reported. (U.K.)

  17. Controlled Cold Helium Spill Test in the LHC Tunnel at CERN

    Koettig, T.; Casas-Cubillos, J.; Chorowski, M.; Dufay-Chanat, L.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Vauthier, N.; van Weelderen, R.; Winkler, T.; Bremer, J.

    The helium cooled magnets of the LHC particle accelerator are installed in a confined space, formed by a 27 km circumference 3.8 m diameter underground tunnel. The vacuum enclosures of the superconducting LHC magnets are protected by a lift plate against excessive overpressure created by eventual leaks from the magnet helium bath, or from the helium supply headers. A three-meter long no stay zone has been defined centered to these plates, based on earlier scale model studies, to protect the personnel against the consequences of an eventual opening of such a lift plate. More recently several simulation studies have been carried out modelling the propagation of the resulting helium/air mixture along the tunnel in case of such a cold helium release at a rate in the range of 1 kg/s. To validate the different scale models and simulation studies, real life mock-up tests have been performed in the LHC, releasing about 1000 liter of liquid helium under standard operational tunnel conditions. Data recorded during these tests include oxygen level, temperature and flow speed as well as video recordings, taken up- and downstream of the spill point (-100 m to +200 m) with respect to the ventilation direction in the LHC tunnel. The experimental set-up and measurement results are presented. Generic effects found during the tests will be discussed to allow the transposal to possible cold helium release cases in similar facilities.

  18. The Liquefaction of Hydrogen and Helium Using Small Coolers

    Green, Michael A.

    2006-01-01

    This report discusses the history of the liquefaction of hydrogen and helium using small coolers. This history dates form the 1960's when two stage GM coolers capable of reaching 7 K were used to liquefy helium and hydrogen by suing an added compressor and J-T circuit. Liquefaction using the added circuit failed to become mainstream because the J-T valve and heat exchanger clogged because of impurities in the gas being liquefied. Liquefaction using a GM cooler without an added J-T circuit proved to be difficult because the first stage was not used to pre-cool the gas coming to the second stage of the cooler. Once the gas being liquefied was pre-cooled using the cooler first stage, improvements in the liquefaction rates were noted. The advent of low temperature pulse tube cooler (down to 2.5 K) permitted one to achieve dramatic improvement is the liquefactions rates for helium. Similar but less dramatic improvements are expected for hydrogen as well. Using the PT-415 cooler, one can expect liquefaction rates of 15 to 20 liters per day for helium or hydrogen provided the heat leak into the cooler and the storage vessel is low. A hydrogen liquefier for MICE is presented at the end of this report

  19. Aerospace Payloads Leak Test Methodology

    Lvovsky, Oleg; Grayson, Cynthia M.

    2010-01-01

    Pressurized and sealed aerospace payloads can leak on orbit. When dealing with toxic or hazardous materials, requirements for fluid and gas leakage rates have to be properly established, and most importantly, reliably verified using the best Nondestructive Test (NDT) method available. Such verification can be implemented through application of various leak test methods that will be the subject of this paper, with a purpose to show what approach to payload leakage rate requirement verification is taken by the National Aeronautics and Space Administration (NASA). The scope of this paper will be mostly a detailed description of 14 leak test methods recommended.

  20. Helium cryogenics

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  1. The effects of fasting and cold exposure on metabolic rate and mitochondrial proton leak in liver and skeletal muscle of an amphibian, the cane toad Bufo marinus.

    Trzcionka, M; Withers, K W; Klingenspor, M; Jastroch, M

    2008-06-01

    Futile cycling of protons across the mitochondrial inner membrane contributes significantly to standard metabolic rate in a variety of ectothermic and endothermic animals, but adaptations of the mitochondrial bioenergetics to different environmental conditions have rarely been studied in ectotherms. Changes in ambient temperature and nutritional status have a great effect on the physiological demands of ectothermic amphibians and may require the adjustment of mitochondrial efficiency. In order to investigate the effect of temperature and nutritional status on the mitochondrial level, we exposed male cane toads to either 10 degrees C or 30 degrees C and fasted half of the animals in each group. Cold exposure resulted in a fourfold reduction of the resting metabolic rate whereas nutritional status had only minor effects. The mitochondrial adjustments to each condition were observed by comparing the proton leak kinetics of isolated liver and skeletal muscle mitochondria at 25 degrees C. In response to cold exposure, liver mitochondria showed a decrease in proton conductance while skeletal muscle mitochondria were unchanged. Additional food deprivation had minor effects in skeletal muscle, but in liver we uncovered surprising differences in energy saving mechanisms between the acclimation temperatures: in warm-acclimated toads, fasting resulted in a decrease of the proton conductance whereas in cold-acclimated toads, the activity of the respiratory chain was reduced. To investigate the molecular mechanism underlying mitochondrial proton leakage, we determined the adenine-nucleotide transporter (ANT) content, which explained tissue-specific differences in the basal proton leak, but neither the ANT nor uncoupling protein (UCP) gene expression correlated with alterations of the proton leak in response to physiological stimuli.

  2. Leak Detection Modeling and Simulation for Oil Pipeline with Artificial Intelligence Method

    Sukarno, Pudjo; Sidarto, Kuntjoro Adji; Trisnobudi, Amoranto; Setyoadi, Delint Ira; Rohani, Nancy; Darmadi, Darmadi

    2007-01-01

    Leak detection is always interesting research topic, where leak location and leak rate are two pipeline leaking parameters that should be determined accurately to overcome pipe leaking problems. In this research those two parameters are investigated by developing transmission pipeline model and the leak detection model which is developed using Artificial Neural Network. The mathematical approach needs actual leak data to train the leak detection model, however such data could not be obtained ...

  3. He leak testing of Indus-2 dipole vacuum chambers

    Sindal, B.K.; Bhavsar, S.T.; Shukla, S.K.

    2003-01-01

    Full text: Centre for Advanced Technology is developing its second synchrotron radiation source INDUS-2 which is a 2.5 GeV electron storage ring. Dipole vacuum chambers are the vital components of Indus-2 vacuum system. Each of these chambers is approx. 3.6 m long and 0.67 m wide with 24 nos. of ports of various sizes. The dipole chambers were made by machining two halves and they are then lip welded together. The dipole chamber has approx. 14 m of total weld length and it was leak tested for leak tightness of the order of 10 -10 mbar 1/s. Helium mass spectrometer leak detector (HMSLD) was utilized for the leak testing. Subsequently the leaks of various orders in welding joints were repaired and leak tightness achieved. This paper describes the experiences during leak testing of 20 nos. of aluminum dipole chambers for INDUS-2

  4. Tests of cold helium compressors at Fermilab

    Peterson, T.J.; Fuerst, J.D.

    1987-10-01

    Fermilab has tested two cold helium compressors for possible installation in the satellite refrigerator buildings of the Tevatron cryogenic system. Operating conditions required to obtain an overall Tevatron energy upgrade from 900 to 1000 GeV are (for each of 24 machines): 52 g/s mass flow rate, 0.7 atm inlet pressure, 1.4 atm exhaust pressure. Acceptable efficiency is in the 60% range. Both Creare, Inc., and Cryogenic Consultants, Inc. (CCI), have supplied units for evaluation. The Creare machine is a high speed centrifugal pump/compressor which yielded 60% adiabatic efficiency (including an approximately 20 watt heat leak) with a 1.0 atm inlet pressure and 55 g/s flow rate. Certain mechanical difficulties were present, chiefly the device's inability to withstand two-phase flow. CCI supplied a reciprocating unit which, after initial testing and modification, achieved 59% efficiency with an approximate 35 watt heat leak at a 0.7 atm inlet pressure and 48 g/s flow rate. Although the device lacks the smooth, quiet operating characteristics of a turbomachine, it has endured mechanically throughout testing and is entirely insensitive to two-phase flow

  5. Vacuum leak detector and method

    Edwards, Jr., David

    1983-01-01

    Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.

  6. Depressurization as a means of leak checking large vacuum vessels

    Callis, R.W.; Langhorn, A.; Petersen, P.I.; Ward, C.; Wesley, J.

    1985-01-01

    A common problem associated with large vacuum vessels used in magnetic confinement fusion experiments is that leak checking is hampered by the inaccessibility to most of the vacuum vessel surface. This inaccessibility is caused by the close proximity of magnetic coils, diagnostics and, for those vessels that are baked, the need to completely surround the vessel with a thermal insulation blanket. These obstructions reduce the effectiveness of the standard leak checking method of using a mass spectrometer and spraying a search gas such as helium on the vessel exterior. Even when the presence of helium is detected, its entry point into the vessel cannot always be pinpointed. This paper will describe a method of overcoming this problem. By slightly depressurizing the vessel, an influx of helium through the leak is created. The leak site can then be identified by personnel within the vessel using standard sniffing procedures. There are two conditions which make this method of leak checking practical. First, the vessel need only be depressurized 2 psi, thus allowing personnel inside to perform the sniffing operation. Second, the sniffing probe used (Leybold--Heraus ''Quick Test'') could detect a change in helium concentration as small as 100 ppb, which allows for faster scanning of the vessel inferior. Use of this technique to find an elusive 10 -3 Torrxl/s leak in the Doublet III tokamak vacuum vessel will be presented

  7. Experiments for post accident hydrogen dispersion in F.M. vault using helium

    Bajaj, S.S.; Bhattacharyya, D.; Mishra, S.

    1994-01-01

    Under certain postulated accident scenarios involving a Loss of Coolant Accident (LOCA) simultaneous with impairment of Emergency Core Cooling (ECC), generation of hydrogen due to reaction between the zirconium clad and coolant is predicted in the coolant channel. The hydrogen generated in the coolant channels would eventually get released either in Fuelling Machine (FM) vault or in the pump room atmosphere depending on the location of the break. Analytical studies carried out so far to estimate the time dependent hydrogen concentration in the accident FM Vault consider the entire vault as a single volume. Tests were, therefore, planned to assess the mixing within the FM vault atmosphere with and without the availability of cooling fan units by releasing a known quantity of helium (instead of hydrogen) at selected locations and monitoring the relative concentration of helium in air at various locations. Test was conducted by releasing about 360 1 helium over a period of to 4 minutes at preselected locations and by measuring the relative concentration (leak rates indicated by helium leak detectors) at various locations in the FM vault. The results of cases with fans operating indicate repeatable and consistent trends of good mixing in the vault. For other cases (non turbulent, still condition) the results are sensitive to various factors including orientation of release. The former set of cases (turbulent. fans operating) are more relevant for postulated accident conditions. (author). 1 tab., 18 figs

  8. Remote leak localization approach for fusion machines

    Durocher, Au.; Bruno, V.; Chantant, M.; Gargiulo, L.; Gherman, T.; Hatchressian, J.-C.; Houry, M.; Le, R.; Mouyon, D.

    2013-01-01

    Highlights: ► Description of leaks issue. ► Selection of leak localization concepts. ► Qualification of leak localization concepts. -- Abstract: Fusion machine operation requires high-vacuum conditions and does not tolerate water or gas leak in the vacuum vessels, even if they are micrometric. Tore Supra, as a fully actively cooled tokamak, has got a large leak management experience; 34 water leaks occurred since the beginning of its operation in 1988. To handle this issue, after preliminary machine protection phases, the current process for leak localization is based on water or helium pressurization network by network. It generally allows the identification of a set of components where the leakage element is located. However, the unique background of CEA-IRFM laboratory points needs of accuracy and promptness out in the leak localization process. Moreover, in-vessel interventions have to be performed trying to minimize time and risks for the persons. They are linked to access conditions, radioactivity, tracer gas high pressure and vessel conditioning. Remote operation will be one of the ways to improve these points on future fusion machines. In this case, leak sensors would have to be light weight devices in order to be integrated on a carrier or to be located outside with a sniffing process set up. A leak localization program is on-going at CEA-IRFM Laboratory with the first goal of identifying and characterizing relevant concepts to localize helium or water leaks on ITER. In the same time, CEA has developed robotic carrier for effective in-vessel intervention in a hostile environment. Three major tests campaigns with the goal to identify leak sensors have been achieved on several CEA test-beds since 2010. Very promising results have been obtained: relevant scenario of leak localization performed, concepts tested in a high volume test-bed called TITAN, and, in several conditions of pressure and temperature (ultrahigh vacuum to atmospheric pressure and 20

  9. Remote leak localization approach for fusion machines

    Durocher, Au., E-mail: aurelien.durocher@cea.fr [CEA-IRFM, F-13108 Saint Paul-Lez-Durance (France); Bruno, V.; Chantant, M.; Gargiulo, L. [CEA-IRFM, F-13108 Saint Paul-Lez-Durance (France); Gherman, T. [Floralis UJF Filiale, F-38610 Gières (France); Hatchressian, J.-C.; Houry, M.; Le, R.; Mouyon, D. [CEA-IRFM, F-13108 Saint Paul-Lez-Durance (France)

    2013-10-15

    Highlights: ► Description of leaks issue. ► Selection of leak localization concepts. ► Qualification of leak localization concepts. -- Abstract: Fusion machine operation requires high-vacuum conditions and does not tolerate water or gas leak in the vacuum vessels, even if they are micrometric. Tore Supra, as a fully actively cooled tokamak, has got a large leak management experience; 34 water leaks occurred since the beginning of its operation in 1988. To handle this issue, after preliminary machine protection phases, the current process for leak localization is based on water or helium pressurization network by network. It generally allows the identification of a set of components where the leakage element is located. However, the unique background of CEA-IRFM laboratory points needs of accuracy and promptness out in the leak localization process. Moreover, in-vessel interventions have to be performed trying to minimize time and risks for the persons. They are linked to access conditions, radioactivity, tracer gas high pressure and vessel conditioning. Remote operation will be one of the ways to improve these points on future fusion machines. In this case, leak sensors would have to be light weight devices in order to be integrated on a carrier or to be located outside with a sniffing process set up. A leak localization program is on-going at CEA-IRFM Laboratory with the first goal of identifying and characterizing relevant concepts to localize helium or water leaks on ITER. In the same time, CEA has developed robotic carrier for effective in-vessel intervention in a hostile environment. Three major tests campaigns with the goal to identify leak sensors have been achieved on several CEA test-beds since 2010. Very promising results have been obtained: relevant scenario of leak localization performed, concepts tested in a high volume test-bed called TITAN, and, in several conditions of pressure and temperature (ultrahigh vacuum to atmospheric pressure and 20

  10. Concentration device for leak liquids

    Matsumoto, Kaname; Matsuda, Ken; Takabori, Ken-ichi.

    1987-01-01

    Purpose: To improve radioactivity recovery and volume-reducing rates, as well as enable safety and easy handling for leak liquids resulted from reptures in coolant circuits. Constitution: The device of the invention comprises an evaporation vessel filled with leak fluids to a predetermined level, an airtight vessel disposed in the evaporation vessel containing hydrophilic porous material partially immersed in the leak fluids and means for heating the hydrophilic material. In this device, leak liquids are absorbed in the hydrophilic porous material, a great amount of water is evaporated from the outer surface of the hydrophilic porous material exposed above the liquid surface, and salts and radioactive material are remained on the inside and the outer surface of the porous material. The evaporated water content is condensated and recovered in a cooler and the remaining salts, etc. are discarded together with the porous material. The volume-reducing property can be improved by constituting the porous material with burnable material. (Takahashi, M.)

  11. Basis UST leak detection systems

    Silveria, V.

    1992-01-01

    This paper reports that gasoline and other petroleum products are leaking from underground storage tanks (USTs) at an alarming rate, seeping into soil and groundwater. Buried pipes are an even greater culprit, accounting for most suspected and detected leaks according to Environmental Protection Agency (EPA) estimates. In response to this problem, the EPA issued regulations setting standards for preventing, detecting, reporting, and cleaning up leaks, as well as fiscal responsibility. However, federal regulations are only a minimum; some states have cracked down even harder Plant managers and engineers have a big job ahead of them. The EPA estimates that there are more than 75,000 fuel USTs at US industrial facilities. When considering leak detection systems, the person responsible for making the decision has five primary choices: inventory reconciliation combined with regular precision tightness tests; automatic tank gauging; groundwater monitoring; interstitial monitoring of double containment systems; and vapor monitoring

  12. Study on water leak-tightness of small leaks on a 1 inch cylinder valve

    Miyazawa, T.; Kasai, Y.; Inabe, N.; Aritomi, M.

    2002-01-01

    Practical thresholds for water leak-tightness of small leaks were determined by experimentation. Measurements for small leak samples were taken of air leakage rates and water leakage rates for identical leak samples in order to identify parameters that influence water leak-tightness threshold. Four types of leaks were evaluated: a fine wire inserted in an O-ring seal, a glass capillary tube, a stainless steel orifice, and a scratched valve stem on a 1 inch UF 6 cylinder valve. Experimental results demonstrated that the key parameter for water leak-tightness is the opening size of the leak hole. The maximum allowable hole size to achieve water leak-tightness ranged from 10 to 20 μm in diameter in this study. Experimental results with 1 inch UF 6 cylinder valve samples demonstrated that the acceptance criteria for preshipment leakage test, 1x10 -3 ref-cm 3 .s -1 , as prescribed in ANSI N14.5 is an appropriate value from the point of view of water leak-tightness for enriched UF 6 packages. The mechanism of water leak-tightness is plugging by tiny particles existing in water. The water used in experiments in this study contained far fewer particles than in water assumed to be encountered under accident conditions of transport. Therefore, the water leak-tightness threshold determined in this study is a conservative value in a practical evaluation. (author)

  13. Analysis of SX farm leak histories - Historical leak model (HLM)

    Fredenburg, E.A.

    1998-01-01

    This report uses readily available historical information to better define the volume, chemical composition, and Cs-137/Sr-90 amounts for leaks that have occurred in the past for tanks SX-108, SX-109, SX-111, and SX-112. In particular a Historical Leak Model (HLM) is developed that is a month by month reconciliation of tank levels, fill records, and calculated boil-off rates for these tanks. The HLM analysis is an independent leak estimate that reconstructs the tank thermal histories thereby deriving each tank's evaporative volume loss and by difference, its unaccounted losses as well. The HLM analysis was meant to demonstrate the viability of its approach, not necessarily to establish the HLM leak estimates as being definitive. Past leak estimates for these tanks have invariably resorted to soil wetting arguments but the extent of soil contaminated by each leak has always been highly uncertain. There is also a great deal of uncertainty with the HLM that was not quantified in this report, but will be addressed later. These four tanks (among others) were used from 1956 to 1975 for storage of high-level waste from the Redox process at Hanford. During their operation, tank waste temperatures were often as high as 150 C (300 F), but were more typically around 130 C. The primary tank cooling was by evaporation of tank waste and therefore periodic replacement of lost volume with water was necessary to maintain each tank's inventory. This active reflux of waste resulted in very substantial turnovers in tank inventory as well as significant structural degradation of these tanks. As a result of the loss of structural integrity, each of these tanks leaked during their active periods of operation. Unfortunately, the large turnover in tank volume associated with their reflux cooling has made a determination of leak volumes very difficult. During much of these tanks operational histories, inventory losses because of evaporative cooling could have effectively masked any volume

  14. Leak detection capability in CANDU reactors

    Azer, N.; Barber, D.H.; Boucher, P.J.

    1997-01-01

    This paper addresses the moisture leak detection capability of Ontario Hydro CANDU reactors which has been demonstrated by performing tests on the reactor. The tests confirmed the response of the annulus gas system (AGS) to the presence of moisture injected to simulate a pressure tube leak and also confirmed the dew point response assumed in leak before break assessments. The tests were performed on Bruce A Unit 4 by injecting known and controlled rates of heavy water vapor. To avoid condensation during test conditions, the amount of moisture which could be injected was small (2-3.5 g/hr). The test response demonstrated that the AGS is capable of detecting and annunciating small leaks. Thus confidence is provided that it would alarm for a growing pressure tube leak where the leak rate is expected to increase to kg/hr rapidly. The measured dew point response was close to that predicted by analysis

  15. Leak detection capability in CANDU reactors

    Azer, N.; Barber, D.H.; Boucher, P.J. [and others

    1997-04-01

    This paper addresses the moisture leak detection capability of Ontario Hydro CANDU reactors which has been demonstrated by performing tests on the reactor. The tests confirmed the response of the annulus gas system (AGS) to the presence of moisture injected to simulate a pressure tube leak and also confirmed the dew point response assumed in leak before break assessments. The tests were performed on Bruce A Unit 4 by injecting known and controlled rates of heavy water vapor. To avoid condensation during test conditions, the amount of moisture which could be injected was small (2-3.5 g/hr). The test response demonstrated that the AGS is capable of detecting and annunciating small leaks. Thus confidence is provided that it would alarm for a growing pressure tube leak where the leak rate is expected to increase to kg/hr rapidly. The measured dew point response was close to that predicted by analysis.

  16. Paravalvular Leak in Structural Heart Disease.

    Goel, Kashish; Eleid, Mackram F

    2018-03-06

    This review will summarize the growing importance of diagnosing and managing paravalvular leak associated with surgical and transcatheter valves. The burden of paravalvular leak is increasing; however, advanced imaging techniques and high degree of clinical suspicion are required for diagnosis and management. The latest data from pivotal clinical trials in the field of transcatheter aortic valve replacement suggest that any paravalvular leak greater than mild was associated with worse clinical outcomes. Percutaneous techniques for paravalvular leak closure are now the preferred approach, and surgical repair is reserved for contraindications and unsuccessful procedures. Recent data from studies evaluating paravalvular leak closure outcomes report a greater than 90% success rate with a significant improvement in patient symptoms. Paravalvular leak is a growing problem in the structural heart disease arena. Percutaneous closure is successful in more than 90% of the procedures with a low complication rate.

  17. Improved method of measurement for outer leak

    Xu Guang

    2012-01-01

    Pneumatic pipeline is installed for the airborne radioactivity measurement equipment, air tightness and outer leak rate are essential for the testing of the characteristics, both in the national criteria and ISO standards, an improved practical method is available for the measurement of the outer air leak rate based on the engineering experiences for the equipment acceptance and testing procedure. (authors)

  18. Small sodium-to-gas leak behavior in relation to LMFBR leak detection system design

    Hopenfeld, J.; Taylor, G.R.; James, L.A.

    1976-01-01

    Various aspects of sodium-to-gas leaks which must be considered in the design of leak detection systems for LMFBR's are discussed. Attention is focused primarily on small, weeping type leaks. Corrosion rates of steels in fused sodium hydroxide and corrosion damage observed at the site of small leaks lead to the conclusion that the sodium-gas reaction products could attack the primary hot leg piping at rates up to 0.08 mils per hour. Based on theoretical considerations of the corrosion mechanism and on visual observations of pipe topography following small sodium leak tests, it is concluded that pipe damage will be manifested by the formation of small detectable leaks prior to the appearance of larger leaks. The case for uniform pipe corrosion along the pipe circumference or along a vertical section of the pipe is also examined. Using a theoretical model for the gravity flow of sodium and reaction products along the pipe surface and a mass transport controlled corrosion process, it is shown that below sodium leak rates of about 30 g/hr for the primary piping corrosion damage will not extend beyond one radius distance from the leak site. A method of estimating the time delay between the initiation of such leaks and the development of a larger leak due to increased pipe stresses resulting from corrosion is presented

  19. Cold Leak Tests of LHC Beam Screens

    Collomb-Patton, C; Jenninger, B; Kos, N

    2009-01-01

    In order to guide the high energy proton beams inside its two 27 km long vacuum rings, the Large Hadron Collider (LHC) at CERN, Geneva, makes use of superconducting technology to create the required magnetic fields. More than 4000 beam screens, cooled at 7 20 K, are inserted inside the 1.9 K beam vacuum tubes to intercept beam induced heat loads and to provide dynamic vacuum stability. As extremely high helium leak tightness is required, all beam screens have been leak tested under cold conditions in a dedicated test stand prior to their installation. After describing the beam screen design and its functions, this report focuses on the cold leak test sequence and discusses the results.

  20. Effect of helium on void swelling in vanadium

    Brimhall, J.L.; Simonen, E.P.

    1975-01-01

    Little difference in void microstructural swelling of vanadium is observed when helium is injected simultaneously with a 46- or 5-MeV nickel beam as compared to no helium injection, at least at high dose rates. At lower dose rates, a strong helium effect is seen when the helium is injected prior to heavy ion bombardment. The effect of the helium is shown to be a strong function of the overall displacement damage rate

  1. Leak test fixture and method for using same

    Hawk, Lawrence S.

    1976-01-01

    A method and apparatus are provided which are especially useful for leak testing seams such as an end closure or joint in an article. The test does not require an enclosed pressurized volume within the article or joint section to be leak checked. A flexible impervious membrane is disposed over an area of the seamed surfaces to be leak checked and sealed around the outer edges. A preselected vacuum is applied through an opening in the membrane to evacuate the area between the membrane and the surface being leak checked to essentially collapse the membrane to conform to the article surface or joined adjacent surfaces. A pressure differential is concentrated at the seam bounded by the membrane and only the seam experiences a pressure differential as air or helium molecules are drawn into the vacuum system through a leak in the seam. A helium detector may be placed in a vacuum exhaust line from the membrane to detect the helium. Alternatively, the vacuum system may be isolated at a preselected pressure and leaks may be detected by a subsequent pressure increase in the vacuum system.

  2. Cosmological helium production simplified

    Bernstein, J.; Brown, L.S.; Feinberg, G.

    1988-01-01

    We present a simplified model of helium synthesis in the early universe. The purpose of the model is to explain clearly the physical ideas relevant to the cosmological helium synthesis, in a manner that does not overlay these ideas with complex computer calculations. The model closely follows the standard calculation, except that it neglects the small effect of Fermi-Dirac statistics for the leptons. We also neglect the temperature difference between photons and neutrinos during the period in which neutrons and protons interconvert. These approximations allow us to express the neutron-proton conversion rates in a closed form, which agrees to 10% accuracy or better with the exact rates. Using these analytic expressions for the rates, we reduce the calculation of the neutron-proton ratio as a function of temperature to a simple numerical integral. We also estimate the effect of neutron decay on the helium abundance. Our result for this quantity agrees well with precise computer calculations. We use our semi-analytic formulas to determine how the predicted helium abundance varies with such parameters as the neutron life-time, the baryon to photon ratio, the number of neutrino species, and a possible electron-neutrino chemical potential. 19 refs., 1 fig., 1 tab

  3. Hermetic compartments leak-tightness enhancement

    Murani, J.

    2000-01-01

    In connection with the enhancement of the nuclear safety of the Jaslovske Bohunice V-1 NPP actions for the increase of the leak tightness are performed. The reconstruction has been done in the following directions: hermetic compartments leak tightness enhancement; air lock installation; installation of air lock in SP 4 vent system; integrated leakage rate test to hermetic compartments with leak detection. After 'major' leaks on the hermetic boundary components had been eliminated, since 1994 works on a higher qualitative level began. The essence of the works consists in the detection and identification of leaks in the structural component of the hermetic boundary during the planned refueling outages. The results of the Small Reconstruction and gradual enhancement of leak tightness are presented

  4. Acoustic surveillance techniques for SGU leak monitoring

    McKnight, J.A.; Rowley, R.; Beesley, M.J.

    1990-01-01

    The paper presents a brief review of the acoustic techniques applicable to the detection of steam generator unit leaks that have been studied in the UK. Before discussion of the acoustic detection methods a reference representation of the required performance as developed in the UK is given. The conclusion is made that preliminary specification for the acoustic leak detection of sodium/water leaks in steam generating units suggests that it will be necessary to detect better than a leak rate of 3 g/s within a few seconds. 10 refs, 12 figs

  5. Online helium inventory monitoring of JLab cryogenic systems

    Hasan, N.; Knudsen, P.; Wright, M.

    2017-12-01

    There are five cryogenic plants at Jefferson Lab which support the LINAC, experiment hall end-stations and test facility. The majority of JLab’s helium inventory, which is around 15 tons, is allocated in the LINAC cryo-modules, with the majority of the balance of helium distributed at the cryogenic-plant level mainly as stored gas and liquid for stable operation. Due to the organic evolution of the five plants and independent actions within the experiment halls, the traditional inventory management strategy suffers from rapid identification of potential leaks. This can easily result in losses many times higher than the normally accepted (average) loss rate. A real-time program to quickly identify potential excessive leakage was developed and tested. This program was written in MATLAB© for portability, easy diagnostics and modification. It interfaces directly with EPICS to access the cryogenic system state, and with and NIST REFPROP© for real fluid properties. This program was validated against the actual helium offloaded into the system. The present paper outlines the details of the inventory monitoring program, its validation and a sample of the achieved results.

  6. ISOLDE Off-line Gas Leak Upgrade

    Nielsen, Kristoffer Bested

    2017-01-01

    This study investigates gas injection system of the ISOLDE Off-line separator. A quadrupole mass spectrometer is used to analysis the composition of the gas. Based on these measurements a contamination of the injected gas is found and a system upgrade is purposed. Furthermore a calibration of the leak rate of the leak valve is made.

  7. He leak detection in the presence of deuterium background in tokamak vacuum systems

    Blanchard, W.R.; Krawchuk, R.B.; Dylla, H.F.

    1982-01-01

    Helium leak detection systems for magnetic fusion devices present several unique design problems because of the large dynamic range required and the high partial pressures of D 2 encountered. We describe the design and operation of a He leak detector system for the PDX tokamak. The system consists of a differentially-pumped, low resolution, He mass spectrometer which is interfaced to the foreline of one of the torus turbomolecular pump lines. The He detector has a minimum throughput sensitivity of 10 -10 Torrxl/s, and the torus-integrated system has been designed for detection of torus leaks over the range of 10 -7 to 10 Torrxl/s. Minimum leak-rates on the 38 m 3 PDX vessel which have been quantified using this system are approx.3 x 10 -8 Torrxl/s. When PDX is operated with D 2 plasmas it is necessary to reduce the partial pressure of D 2 by a factor of 100 within the mass spectrometer to maintain this sensitivity in the presence of the torus D 2 outgassing. We have designed and incorporated a D 2 filter which employs a Zr--Al getter assembly to affect the required D 2 pressure reduction

  8. A proposed structural, risk-informed approach to the periodicity of CANDU-6 nuclear containment integrated leak rate testing

    Saliba, N. [McGill Univ., Dept. of Civil Engineering and Applied Mechanics, Montreal, Quebec (Canada); Komljenovic, D. [Hydro-Quebec, Gentilly-2 Nuclear Power Plant, Becancour, Quebec (Canada); Chouinard, L. [McGill Univ., Dept. of Civil Engineering and Applied Mechanics, Montreal, Quebec (Canada); Vaillancourt, R.; Chretien, G. [Hydro-Quebec, Gentilly-2 Nuclear Power Plant, Becancour, Quebec (Canada); Gocevski, V. [Hydro-Quebec Equipements, Montreal, Quebec (Canada)

    2010-07-01

    As ultimate lines of defense against leakage of large amounts of radioactive material to the environment in case of major reactor accidents, containments have been monitored through well designed periodic tests to ensure their proper performance. Regulatory organizations have imposed types and frequencies of containment tests based on highly-conservative deterministic approaches, and judgments of knowledgeable experts. Recent developments in the perception and methods of risk evaluation have been applied to rationalize the leakage-rate testing frequencies while maintaining risks within acceptable levels, preserving the integrity of containments, and respecting the defense-in-depth philosophy. The objective of this paper is to introduce a proposed risk-informed decision making framework on the periodicity of nuclear containment ILRTs for CANDU-6 nuclear power plants based on five main decision criteria, namely: 1) the containment structural integrity; 2) inputs from PSA Level-2; 3) the requirements of deterministic safety analyses and defense-in-depth concepts; 4- the obligations under regulatory and standard requirements; and 5) the return of experience from nuclear containments historic performance. The concepts of dormant reliability and structural fragility will guide the assessment of the containment structural integrity, within the general context of a global containment life cycle management program. This study is oriented towards the requirements of CANDU-6 reactors, in general, and Hydro-Quebec's Gentilly-2 nuclear power plant, in particular. The present article is the first part in a series of papers that will comprehensively detail the proposed research. (author)

  9. A proposed structural, risk-informed approach to the periodicity of CANDU-6 nuclear containment integrated leak rate testing

    Saliba, N.; Komljenovic, D.; Chouinard, L.; Vaillancourt, R.; Chretien, G.; Gocevski, V.

    2010-01-01

    As ultimate lines of defense against leakage of large amounts of radioactive material to the environment in case of major reactor accidents, containments have been monitored through well designed periodic tests to ensure their proper performance. Regulatory organizations have imposed types and frequencies of containment tests based on highly-conservative deterministic approaches, and judgments of knowledgeable experts. Recent developments in the perception and methods of risk evaluation have been applied to rationalize the leakage-rate testing frequencies while maintaining risks within acceptable levels, preserving the integrity of containments, and respecting the defense-in-depth philosophy. The objective of this paper is to introduce a proposed risk-informed decision making framework on the periodicity of nuclear containment ILRTs for CANDU-6 nuclear power plants based on five main decision criteria, namely: 1) the containment structural integrity; 2) inputs from PSA Level-2; 3) the requirements of deterministic safety analyses and defense-in-depth concepts; 4- the obligations under regulatory and standard requirements; and 5) the return of experience from nuclear containments historic performance. The concepts of dormant reliability and structural fragility will guide the assessment of the containment structural integrity, within the general context of a global containment life cycle management program. This study is oriented towards the requirements of CANDU-6 reactors, in general, and Hydro-Quebec's Gentilly-2 nuclear power plant, in particular. The present article is the first part in a series of papers that will comprehensively detail the proposed research. (author)

  10. Sensors for Fluid Leak Detection

    Gonzalo Pajares Martinsanz

    2015-02-01

    Full Text Available Fluid leak detection represents a problem that has attracted the interest of researchers, but not exclusively because in industries and services leaks are frequently common. Indeed, in water or gas supplies, chemical or thermal plants, sea-lines or cooling/heating systems leakage rates can cause important economic losses and sometimes, what it is more relevant, environmental pollution with human, animal or plant lives at risk. This last issue has led to increased national and international regulations with different degrees of severity regarding environmental conservation.[...

  11. Leak testing of cryogenic components — problems and solutions

    Srivastava, S. P.; Pandarkar, S. P.; Unni, T. G.; Sinha, A. K.; Mahajan, K.; Suthar, R. L.

    2008-05-01

    A prototype of Cold Neutron Source (CNS) for Dhruva Reactor is being manufactured at Centre for Design and Manufacture (CDM), BARC, Mumbai for validating the mechanical and thermal engineering design aspects, besides checking the integrity of all joints and components at low temperature, 77K. Task of a Cold Neutron Source is to generate cold neutrons by cooling down the thermal neutrons, which are originally produced in a nuclear research reactor. The complete Cold Neutron Source system comprises a complex arrangement of moderator pot, transfer line (piping), pumps, refrigerators, storage tanks, a heat exchanger and associated controls and instrumentation. The heart of the system is moderator pot in which water (moderator) is cooled down by Liquid Nitrogen (LN2) being circulated through an annular cavity machined on the walls of the pot. Transfer lines for LN2 basically consist of two concentric Stainless Steel flexible pipes, which are joined to the inlet and outlet Aluminium tubes of the moderator pot through transition joints. Leak in any component may result in loss of liquid Nitrogen, degradation of vacuum, which in turn may affect the heat removal efficiency of the source. Hence, leak testing was considered a very important quality control tool and all joints and components were subjected to helium leak test using mass spectrometer leak detector (MSLD) at cryogenic temperature. During one of the earlier experiments, flow of LN2 through inner flexible pipe of the transfer line resulted in rise of pressure in the vacuum annulus and sweating on the outer flexible pipe. After investigations it was found that large thermal stress compounded with mechanical stress resulted in cracks in the inner pipe. Accordingly design was modified to get leak proof transfer line assembly. Further, during leak testing of thin wall moderator pot, gross leak was observed on the outer jacket welded joint. Leak was so large that even a small amount of Helium gas in the vicinity of the

  12. Specialists meeting on leak detection and location in LMFBR steam generators. Summary report

    NONE

    1978-10-01

    The following topics covered at the meeting were: with leak detection and location methods and equipment, including concentration measurements, helium tests, and electromagnetic methods; acoustic leak detection and related equipment; techniques and experiences in ensuring and measuring steam generator tightness during manufacturing, installation and repair, tube inspection methods for periodic control and damage assessment following leaks, influence of these methods on design of steam generators for LMFBR type reactors.

  13. Specialists meeting on leak detection and location in LMFBR steam generators. Summary report

    1978-10-01

    The following topics covered at the meeting were: with leak detection and location methods and equipment, including concentration measurements, helium tests, and electromagnetic methods; acoustic leak detection and related equipment; techniques and experiences in ensuring and measuring steam generator tightness during manufacturing, installation and repair, tube inspection methods for periodic control and damage assessment following leaks, influence of these methods on design of steam generators for LMFBR type reactors

  14. Summary of PWR leak detection studies

    Cho, J.H.; Elia, F.A. Jr.

    1986-01-01

    Thermal-hydraulic analysis can be used to determine the location and magnitude of leaks inside and location of leaks outside a pressurized water reactor (PWR) containment as required by plant technical specifications. The major advantage of this detection method is that it minimizes radiation exposure of maintenance personnel because most of the leak detection process is performed from the control room outside containment. Plant-specific analyses are utilized to predict change in parameters such as local dew point temperature, relative humidity, dry bulb temperature, and flow rate to sump for various leak rates and enthalpies. These parameter responses are then programmed into the plant computer and instrumentation is provided for area monitoring. The actual inputs are continuously monitored and compared to the predicted plant responses to identify the leak location and quantify the leak. This study concludes that a system that monitors dew point (or relative humidity) and dry bulb temperature changes together with the flow rate to the sump will provide the capability to both locate and quantify a leak inside a containment, while a system that monitors dew point temperature (or relative humidity) changes will provide the capability to locate a leak outside a containment

  15. Helium crystals

    Lipson, S.G.

    1987-01-01

    Hexagonal close-packed helium crystals in equilibrium with superfluid have been found to be one of the few systems in which an anisotropic solid comes into true thermodynamic equilibrium with its melt. The discovery of roughening transitions at the liquid-solid interface have shown this system to be ideal for the study of the statistical mechanics of interface structures. We describe the effect of roughening on the shape and growth of macroscopic crystals from both the theoretical and experimental points of view. (author)

  16. Performance evaluation of PFBR wire type sodium leak detectors

    Vijayakumar, G.; Rajan, K.K.; Nashine, B.K.; Chandramouli, S.; Madhusoodanan, K.; Kalyanasundaram, P.

    2011-01-01

    Highlights: → Performance evaluation of wire type leak detectors was conducted in LEENA facility by creating sodium leaks. → The lowest leak rate of 214 g/h was detected in 50 min and the highest detection time was 6 h for a leak rate of 222 g/h. → Factors affecting the leak detection time are packing density of thermal insulation, layout of heater, temperature, etc. → Relationship between leak rate and detection time was established and a leak rate of 100 g/h is likely to be detected in 11.1 h. → Contact resistance of leaked sodium increased to 3.5 kilo ohms in 20 h. - Abstract: Wire type leak detectors working on conductivity principle are used for detecting sodium leak in the secondary sodium circuits of fast breeder reactors. It is required to assess the performance of these detectors and confirm that they are meeting the requirements. A test facility by name LEENA was constructed at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam to test the wire type leak detector lay out by simulating different sodium leak rates. This test facility consists of a sodium dump tank, a test vessel, interconnecting pipelines with valves, micro filter and test section with leak simulators. There are three different test sections in the test set up of length 1000 mm each. These test sections simulate piping of Prototype Fast Breeder Reactor (PFBR) secondary circuit and the wire type leak detector layout in full scale. All test sections are provided with leak simulators. A leak simulator consists of a hole of size one mm drilled in the test section and closed with a tapered pin. The tapered pin position in the hole is adjusted by a screw mechanism and there by the annular gap of flow area is varied for getting different leak rates. Various experiments were conducted to evaluate the performance of the leak detectors by creating different sodium leak rates. This paper deals with the details of wire type leak detector layout for the secondary sodium circuit of

  17. Operational experiences with on line BWR condenser tube leak verification

    Bryant, R.A.; Duvall, W.E.; Kirkley, W.B.; Zavadoski, R.W.

    1988-01-01

    Verifying condenser tube leaks at a boiling water reactor is, at best, a difficult task carried out in hot steamy water boxes with concurrent radiation exposure. For small apparent leaks with slight chemical changes there is always uncertainty of whether the problem is a condenser tube leak or a feedback from radwaste. Most conventional methods (e.g soap tests, Saran wrap suction, and helium tests) usually involve a load reduction to isolate the water boxes one at a time and hours of drain down on each box. The sensitivity of the most sensitive test (helium) is of the order of 7500 l per day per box. Sulfur hexafluoride has been successfully used at a BWR to identify one leaking water box out of four while the unit was at 100 % power. The actual tubes leakig in the water box were identified by injecting helium during drain down of the box and subsequent manifold testing. Additional tests with sulfur hexafluoride on the second BWR unit indicated tight water boxes to within the sensitivity of the measurement, i.e. less than 19 l per day for all four boxes. Problems encountered in both tests included sulfur hexafluoride carry over from the plume of the cooling towers and off gas considerations. In brief sulfur hexafluoride can be used to quickly identify which particular water box has a condenser tube leak or, just as quickly, establish the integrity of all the water boxes to a level not previously attainable. (author)

  18. The physics of confined flow and its application to water leaks, water permeation and water nanoflows: a review

    Lei, Wenwen; Rigozzi, Michelle K; McKenzie, David R

    2016-01-01

    This review assesses the current state of understanding of the calculation of the rate of flow of gases, vapours and liquids confined in channels, in porous media and in permeable materials with an emphasis on the flow of water and its vapour. One motivation is to investigate the relation between the permeation rate of moisture and that of a noncondensable test gas such as helium, another is to assist in unifying theory and experiment across disparate fields. Available theories of single component ideal gas flows in channels of defined geometry (cylindrical, rectangular and elliptical) are described and their predictions compared with measurement over a wide range of conditions defined by the Knudsen number. Theory for two phase flows is assembled in order to understand the behaviour of four standard water leak configurations: vapour, slug, Washburn and liquid flow, distinguished by the number and location of phase boundaries (menisci). Air may or may not be present as a background gas. Slip length is an important parameter that greatly affects leak rates. Measurements of water vapour flows confirm that water vapour shows ideal gas behaviour. Results on carbon nanotubes show that smooth walls may lead to anomalously high slip lengths arising from the properties of ‘confined’ water. In porous media, behaviour can be matched to the four standard leaks. Traditional membrane permeation models consider that the permeant dissolves, diffuses and evaporates at the outlet side, ideas we align with those from channel flow. Recent results on graphite oxide membranes show examples where helium which does not permeate while at the same time moisture is almost unimpeded, again a result of confined water. We conclude that while there is no a priori relation between a noncondensable gas flow and a moisture flow, measurements using helium will give results within two orders of magnitude of the moisture flow rate, except in the case where there is anomalous slip or confined

  19. The physics of confined flow and its application to water leaks, water permeation and water nanoflows: a review.

    Lei, Wenwen; Rigozzi, Michelle K; McKenzie, David R

    2016-02-01

    This review assesses the current state of understanding of the calculation of the rate of flow of gases, vapours and liquids confined in channels, in porous media and in permeable materials with an emphasis on the flow of water and its vapour. One motivation is to investigate the relation between the permeation rate of moisture and that of a noncondensable test gas such as helium, another is to assist in unifying theory and experiment across disparate fields. Available theories of single component ideal gas flows in channels of defined geometry (cylindrical, rectangular and elliptical) are described and their predictions compared with measurement over a wide range of conditions defined by the Knudsen number. Theory for two phase flows is assembled in order to understand the behaviour of four standard water leak configurations: vapour, slug, Washburn and liquid flow, distinguished by the number and location of phase boundaries (menisci). Air may or may not be present as a background gas. Slip length is an important parameter that greatly affects leak rates. Measurements of water vapour flows confirm that water vapour shows ideal gas behaviour. Results on carbon nanotubes show that smooth walls may lead to anomalously high slip lengths arising from the properties of 'confined' water. In porous media, behaviour can be matched to the four standard leaks. Traditional membrane permeation models consider that the permeant dissolves, diffuses and evaporates at the outlet side, ideas we align with those from channel flow. Recent results on graphite oxide membranes show examples where helium which does not permeate while at the same time moisture is almost unimpeded, again a result of confined water. We conclude that while there is no a priori relation between a noncondensable gas flow and a moisture flow, measurements using helium will give results within two orders of magnitude of the moisture flow rate, except in the case where there is anomalous slip or confined water

  20. Role of Outgassing of ITER Vacuum Vessel In-Wall Shielding Materials in Leak Detection of ITER Vacuum Vessel

    Maheshwari, A.; Pathak, H. A.; Mehta, B. K.; Phull, G. S.; Laad, R.; Shaikh, M. S.; George, S.; Joshi, K.; Khan, Z.

    2017-04-01

    ITER Vacuum Vessel is a torus-shaped, double wall structure. The space between the double walls of the VV is filled with In-Wall Shielding Blocks (IWS) and Water. The main purpose of IWS is to provide neutron shielding during ITER plasma operation and to reduce ripple of Toroidal Magnetic Field (TF). Although In-Wall Shield Blocks (IWS) will be submerged in water in between the walls of the ITER Vacuum Vessel (VV), Outgassing Rate (OGR) of IWS materials plays a significant role in leak detection of Vacuum Vessel of ITER. Thermal Outgassing Rate of a material critically depends on the Surface Roughness of material. During leak detection process using RGA equipped Leak detector and tracer gas Helium, there will be a spill over of mass 3 and mass 2 to mass 4 which creates a background reading. Helium background will have contribution of Hydrogen too. So it is necessary to ensure the low OGR of Hydrogen. To achieve an effective leak test it is required to obtain a background below 1 × 10-8 mbar 1 s-1 and hence the maximum Outgassing rate of IWS Materials should comply with the maximum Outgassing rate required for hydrogen i.e. 1 x 10-10 mbar 1 s-1 cm-2 at room temperature. As IWS Materials are special materials developed for ITER project, it is necessary to ensure the compliance of Outgassing rate with the requirement. There is a possibility of diffusing the gasses in material at the time of production. So, to validate the production process of materials as well as manufacturing of final product from this material, three coupons of each IWS material have been manufactured with the same technique which is being used in manufacturing of IWS blocks. Manufacturing records of these coupons have been approved by ITER-IO (International Organization). Outgassing rates of these coupons have been measured at room temperature and found in acceptable limit to obtain the required Helium Background. On the basis of these measurements, test reports have been generated and got

  1. Study on Leak Detection of the Pipeline System by Acoustic Emission

    Yoon, D. J.; Kim, C. J.

    1987-01-01

    Leak detection testing for the pipeline system was performed by the acoustic emission method. It was found that the detected signal spectrum was influenced by the frequency response of sensors and pressure changes. AE parameters and frequency spectrum distributions were used to analyze the leak signals. The slope rise time of AE parameters were the important factors for distinguishing leak signals. The amplitude of leak signal was more affected by the changes of leak, rate and pressure than those of leak type

  2. Humos monitoring system of leaks in to the containment atmosphere

    Matal, O.; Zaloudek, J.; Matal, O. Jr.; Klinga, J.; Brom, J.

    1997-01-01

    HUmidity MOnitoring System (HUMOS) has been developed and designed to detect the presence of leak in selected primary circuit high energy pipelines and components that are evaluated from the point of view of Leak Before Break (LBB) requirements. It also requires to apply technical tools for detection and identification of coolant leaks from primary circuit and components of PWRs reactors. Safety significant of leaks depend on: leak source (location); leak rate, and leak duration. Therefore to detect and monitor coolant leaks in to the containment atmosphere during reactor operation is one of important safety measures. As potential leak sources flange connection in the upper head region of WWER reactors can be considered. HUMOS does not rely on the release of radioactivity to detect leaks but rather the relies on detection of moisture in the air resulting from a primary boundary leak. Because HUMOS relies on moisture and temperature detection, leaks can be detected without requiring the reactor to be critical. Therefore leaks can be detected during integrity pressure tests and any other mode of operation provided the reactor ventilation system is operating and primary circuit and components are pressurized. 3 figs

  3. Science of Water Leaks: Validated Theory for Moisture Flow in Microchannels and Nanochannels.

    Lei, Wenwen; Fong, Nicole; Yin, Yongbai; Svehla, Martin; McKenzie, David R

    2015-10-27

    Water is ubiquitous; the science of its transport in micro- and nanochannels has applications in electronics, medicine, filtration, packaging, and earth and planetary science. Validated theory for water vapor and two-phase water flows is a "missing link"; completing it enables us to define and quantify flow in a set of four standard leak configurations with dimensions from the nanoscale to the microscale. Here we report the first measurements of water vapor flow rates through four silica microchannels as a function of humidity, including under conditions when air is present as a background gas. An important finding is that the tangential momentum accommodation coefficient (TMAC) is strongly modified by surface layers of adsorbed water molecules, in agreement with previous work on the TMAC for nitrogen molecules impacting a silica surface in the presence of moisture. We measure enhanced flow rates for two-phase flows in silica microchannels driven by capillary filling. For the measurement of flows in nanochannels we use heavy water mass spectrometry. We construct the theory for the flow rates of the dominant modes of water transport through each of the four standard configurations and benchmark it against our new measurements in silica and against previously reported measurements for nanochannels in carbon nanotubes, carbon nanopipes, and porous alumina. The findings show that all behavior can be described by the four standard leak configurations and that measurements of leak behavior made using other molecules, such as helium, are not reliable. Single-phase water vapor flow is overestimated by a helium measurement, while two-phase flows are greatly underestimated for channels larger than 100 nm or for all channels when boundary slip applies, to an extent that depends on the slip length for the liquid-phase flows.

  4. Routine intraoperative leak testing for sleeve gastrectomy: is the leak test full of hot air?

    Bingham, Jason; Lallemand, Michael; Barron, Morgan; Kuckelman, John; Carter, Preston; Blair, Kelly; Martin, Matthew

    2016-05-01

    Staple line leak after sleeve gastrectomy (SG) is a rare but dreaded complication with a reported incidence of 0% to 8%. Many surgeons routinely test the staple line with an intraoperative leak test (IOLT), but there is little evidence to validate this practice. In fact, there is a theoretical concern that the leak test may weaken the staple line and increase the risk of a postop leak. Retrospective review of all SGs performed over a 7-year period was conducted. Cases were grouped by whether an IOLT was performed, and compared for the incidence of postop staple line leaks. The ability of the IOLT for identifying a staple line defect and for predicting a postoperative leak was analyzed. Five hundred forty-two SGs were performed between 2007 and 2014. Thirteen patients (2.4%) developed a postop staple line leak. The majority of patients (n = 494, 91%) received an IOLT, including all 13 patients (100%) who developed a subsequent clinical leak. There were no (0%) positive IOLTs and no additional interventions were performed based on the IOLT. The IOLT sensitivity and positive predictive value were both 0%. There was a trend, although not significant, to increase leak rates when a routine IOLT was performed vs no routine IOLT (2.6% vs 0%, P = .6). The performance of routine IOLT after SG provided no actionable information, and was negative in all patients who developed a postoperative leak. The routine use of an IOLT did not reduce the incidence of postop leak, and in fact was associated with a higher leak rate after SG. Published by Elsevier Inc.

  5. Sonic Helium Detectors in the Fermilab Tevatron

    Bossert, R. J.

    2006-04-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.

  6. Sonic helium detectors in the Fermilab Tevatron

    Bossert, R.J.; Fermilab

    2006-01-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years

  7. Leak detection method

    1978-01-01

    This invention provides a method for removing nuclear fuel elements from a fabrication building while at the same time testing the fuel elements for leaks without releasing contaminants from the fabrication building or from the fuel elements. The vacuum source used, leak detecting mechanism and fuel element fabrication building are specified to withstand environmental hazards. (UK)

  8. Performance evaluation of cryogenic counter-flow heat exchangers with longitudinal conduction, heat in-leak and property variations

    Jiang, Q. F.; Zhuang, M.; Zhu, Z. G.; Y Zhang, Q.; Sheng, L. H.

    2017-12-01

    Counter-flow plate-fin heat exchangers are commonly utilized in cryogenic applications due to their high effectiveness and compact size. For cryogenic heat exchangers in helium liquefaction/refrigeration systems, conventional design theory is no longer applicable and they are usually sensitive to longitudinal heat conduction, heat in-leak from surroundings and variable fluid properties. Governing equations based on distributed parameter method are developed to evaluate performance deterioration caused by these effects. The numerical model could also be applied in many other recuperators with different structures and, hence, available experimental data are used to validate it. For a specific case of the multi-stream heat exchanger in the EAST helium refrigerator, quantitative effects of these heat losses are further discussed, in comparison with design results obtained by the common commercial software. The numerical model could be useful to evaluate and rate the heat exchanger performance under the actual cryogenic environment.

  9. PERMCAT experiments with tritium at high helium flow rates relevant for the tritium extraction systems using the CAPER facility at TLK

    Bükki-Deme, András, E-mail: andras.buekki-deme@kit.edu; Demange, David; Le, Thanh-Long; Fanghänel, Eleonore; Simon, Karl-Heinz

    2016-11-01

    Highlights: • We examined PERMCAT reactor efficiency processing tritiated water at high Helium carrier flow rates. • We have found that – as expected from previous studies – that the swamping ratio (ratio between the impurity and purge side flow rates) has a key effect on the decontamination factors. • On the other hand, some rather unexpected effects tend to show that the limiting phenomena of such specific operation of PERMCAT reactors (at high impurity flow rates, thus short residence time) lies on the kinetics of the isotope exchange reactions. - Abstract: Experiments are still necessary to consolidate the processes retained for the Tritium Extraction Systems of the European ITER Test Blanket Modules (TBM). A PERMCAT reactor combines a catalyst promoting isotope exchange reactions and a Pd/Ag membrane allowing tritium recovery from complex gaseous mixtures containing tritium in different chemical forms. Originally developed for the Tokamak Exhaust Processing, the PERMCAT process is also candidate to detritiate the water arising from an adsorption column installed in the TBM ancillary systems. We discuss the results of an extensive experimental campaign using a PERMCAT reactor to process Q{sub 2}O containing impurity gas mixtures at high flow rates. Two different experimental configurations were studied, namely PERMCAT stand-alone, and PERMCAT in combination with a zeolite molecular sieve bed (MSB, previously loaded with Q{sub 2}O) under regeneration. On the one hand, many expected behaviors were observed, such as the key influence of the swamping ratio (ratio between the impurity and purge side flow rates) on the decontamination factors. On the other hand, some rather unexpected effects tend to show that the limiting phenomena of such specific operation of PERMCAT reactors (at high flow rates, thus short residence time) lies on the kinetics of the isotope exchange reactions.

  10. Steam and sodium leak simulation in a fluidized-bed steam generator

    Vaux, W.G.; Keeton, A.R.; Keairns, D.L.

    1977-01-01

    A fluidized-bed steam generator for the liquid metal fast breeder reactor enhances plant availability and minimizes the probability of a water/sodium reaction. An experimental test program was conceived to assess design criteria and fluidized-bed operation under conditions of water, steam, and sodium leaks. Sodium, steam, and water were leaked into helium-fluidized beds of metal and ceramic particles at 900 F. Test results show the effects of leaks on the heat transfer coefficient, quality of fluidization, leak detection, and cleanup procedures

  11. Self-trapping of helium in metals

    Wilson, W.D.; Bisson, C.L.; Baskes, M.I.

    1981-01-01

    Atomistic calculations are presented which demonstrate that helium atoms in a metal lattice are able to cluster with each other, producing vacancies and nearby self-interstitial defects. Even a small number of helium atoms is found to be sufficient to create these large distortions. As few as five interstitial helium can spontaneously produce a lattice vacancy and nearby self-interstitial. An eight-helium-atom cluster gives rise to two such defects, and 16 helium atoms to more than five self-interstitial vacancy pairs. It was noted that the self-interstitials prefer to agglomerate on the same ''side'' of the helium cluster rather than to spread themselves out uniformly. The binding energy of each additional helium atom to these clusters increases with helium concentration and the trap is apparently unsaturable. A rate theory using these atomistic binding energies has been used to calculate the kinetics of helium-bubble nucleation and growth. The results are consistent with measurements of the properties of helium resulting from tritium decay

  12. Preservation of the Myofascial Cuff During Posterior Fossa Surgery to Reduce the Rate of Pseudomeningocele Formation and Cerebrospinal Fluid Leak: A Technical Note

    Felbaum, Daniel R; Mueller, Kyle; Anaizi, Amjad; Mason, Robert B; Jean, Walter C; Voyadzis, Jean M

    2016-01-01

    Introduction:?Suboccipital craniotomy is a workhorse neurosurgical operation for approaching the posterior fossa?but carries a high risk of pseudomeningocele and cerebrospinal fluid (CSF) leak. We describe our experience with a simple T-shaped fascial opening that preserves the occipital myofascial cuff as compared to traditional methods to reduce this risk. Methods:?A single institution, retrospective review of prospectively collected database was performed of patients that underwent a suboc...

  13. Postoperative ascitic leaks: the ongoing challenge.

    Rosemurgy, A S; Statman, R C; Murphy, C G; Albrink, M H; McAllister, E W

    1992-06-01

    The leak of ascitic fluid from surgical incisions is thought to be associated with a very high mortality rate. There have been few reports, however, focusing on the clinical characteristics, management, or mortality rates of this condition. During a 10-year period, 18 patients with postoperative ascitic fluid leaks were treated. All patients had ascites before surgery and all had liver disease; in 13 of the 18 patients alcoholic liver disease was the cause of ascites. Ten of the 18 patients died (56%). Midline incisions were more often associated with recalcitrant leaks and fatal complications than were transverse incisions. Early consideration of fascial dehiscence and prompt repair is emphasized. The most effective predictor of survival was cessation of the leak.

  14. Helium diffusion in nickel at high temperatures

    Philipps, V.

    1980-09-01

    Helium has been implanted at certain temperatures between 800 and 1250 0 C into single and polycrystalline Ni-samples with implantation depths between 15 and 90 μm. Simultaneously the helium reemission from the sample is measured by a mass-spectrometer. It has been shown that the time dependence of the observed reemission rate is governed by volume diffusion of the helium. Measuring this time dependence as a function of temperature the helium diffusion constant has been determined. The He-diffusion is interpreted as a interstitial diffusion hindered by thermal vacancies. Depending on the implantation depth more or less of the implanted helium remains in the sample and forms large helium bubbles. (orig./GSCH)

  15. Test of a cryogenic helium pump

    Lue, J.W.; Miller, J.R.; Walstrom, P.L.; Herz, W.

    1981-01-01

    The design of a cryogenic helium pump for circulating liquid helium in a magnet and the design of a test loop for measuring the pump performance in terms of mass flow vs pump head at various pump speeds are described. A commercial cryogenic helium pump was tested successfully. Despite flaws in the demountable connections, the piston pump itself has performed satisfactorily. A helium pump of this type is suitable for the use of flowing supercritical helium through Internally Cooled Superconductor (ICS) magnets. It has pumped supercritical helium up to 7.5 atm with a pump head up to 2.8 atm. The maximum mass flow rate obtained was about 16 g/s. Performance of the pump was degraded at lower pumping speeds

  16. 40 CFR 63.1086 - How must I monitor for leaks to cooling water?

    2010-07-01

    ... monitor for leaks to cooling water? You must monitor for leaks to cooling water by monitoring each heat... system so that the cooling water flow rate is 51,031 liters per minute or less so that a leak of 3.06 kg... detected a leak. (b) Individual heat exchangers. Monitor the cooling water at the entrance and exit of each...

  17. Final Report on Investigations of the influence of Helium concentration and implantation rate on Cavity Nucleation and Growth during neutron irradiation of Fe and EUROFER 97

    Eldrup, Morten Mostgaard; Singh, Bachu Narain; Golubov, S.

    This report presents results of investigations of damage accumulation during neutron irradiation of pure iron and EUROFER 97 steel with or without prior helium implantation. The defect microstructure, in particular the cavities, was characterized using Positron Annihilation Spectroscopy (PAS) and...

  18. Final Report on investigations of the influence of helium concentration and implantation rate on cavity nucleation and growth during neutron irradiation of Fe and EUROFER 97

    Eldrup, M.; Singh, B.N.; Golubov, S.

    2010-09-01

    Model have been carried out for neutron irradiation with and without prior He implantation and for different implantation rates for comparison with the experimental results. Further, the purpose was to evaluate the role of helium in cavity nucleation and growth during 14 MeV neutron irradiation in a fusion reactor. Calculations were carried out for the experimental temperatures of 323 K and 623 K, i.e. below and above the recovery stage V. In general, the calculations agree qualitatively with the experimental observations and in some cases quantitatively. In this way the calculations give an experimentally supported detailed insight into the evolution of the cavity microstructure under different conditions. (author)

  19. Analysis of small leaks

    Frisch, W.; Hofmann, K.

    1979-01-01

    Problems associated with 'small leaks' are described and requirements are derived for experimental facilities and computer codes. Based on these requirements, a valuation of the existing experimental facilities and codes is presented. Facilities for integral tests in relatively large scale (ex. LOFT) are suitable for small leak test in principle, however minor changes (instrumentation, secondary side) are necessary for the evaluation of certain phenomena. The 'advanced blowdown codes' are capable of describing most of the phenomena occurring during small leak events, however a substantial amount of code development and verification is still needed. In addition, the use of transient codes in small leak analysis is demonstrated. There are some areas (neutronics feedback, influence of control system) in which the use of transient codes is possible and advantageous. (orig.) 891 HP/orig. 892 BRE [de

  20. Traumatic orbital CSF leak

    Borumandi, Farzad

    2013-01-01

    Compared to the cerebrospinalfluid (CSF) leak through the nose and ear, the orbital CSF leak is a rare and underreported condition following head trauma. We present the case of a 49-year-old woman with oedematous eyelid swelling and ecchymosis after a seemingly trivial fall onto the right orbit. Apart from the above, she was clinically unremarkable. The CT scan revealed a minimally displaced fracture of the orbital roof with no emphysema or intracranial bleeding. The fractured orbital roof in combination with the oedematous eyelid swelling raised the suspicion for orbital CSF leak. The MRI of the neurocranium demonstrated a small-sized CSF fistula extending from the anterior cranial fossa to the right orbit. The patient was treated conservatively and the lid swelling resolved completely after 5 days. Although rare, orbital CSF leak needs to be included in the differential diagnosis of periorbital swelling following orbital trauma. PMID:24323381

  1. Fuel leak testing performance at NPP Jaslovske Bohunice

    Slugen, V.; Krnac, S.; Smiesko, I.

    1995-01-01

    The NPP Bohunice VVER-440 fuel leak testing experience are relatively extensive in comparison with other VVER-440 users. As the first Europe NPP was adapted Siemens (KWU) in core-sipping equipment to VVER-440 units and since this time were have done these tests also for NPP Paks (Hungary) and NPP Dukovany (Czech Republic). The occurrence of leaking fuel assemblies in NPP is in the last 5 years relatively stabilised and low. A significant difference can be observed between type V-230 (31 leaks) and type V-213 (1 leak). None of of the indicated leaking fuel assemblies has been investigated in the hot cell. Therefore cannot be confirm the effective causes of leak occurrence. Nevertheless, the fuel failure rate and the performance of leak testing in NPP Bohunice are comparable to the world standard at PWR's. 1 tab., 2 figs., 3 refs

  2. Fuel leak testing performance at NPP Jaslovske Bohunice

    Slugen, V; Krnac, S [Slovak Technical Univ., Bratislava (Slovakia); Smiesko, I [Nuclear Powr Plant EBO, Jaslovske Bohuce (Slovakia)

    1996-12-31

    The NPP Bohunice VVER-440 fuel leak testing experience are relatively extensive in comparison with other VVER-440 users. As the first Europe NPP was adapted Siemens (KWU) in core-sipping equipment to VVER-440 units and since this time were have done these tests also for NPP Paks (Hungary) and NPP Dukovany (Czech Republic). The occurrence of leaking fuel assemblies in NPP is in the last 5 years relatively stabilised and low. A significant difference can be observed between type V-230 (31 leaks) and type V-213 (1 leak). None of of the indicated leaking fuel assemblies has been investigated in the hot cell. Therefore cannot be confirm the effective causes of leak occurrence. Nevertheless, the fuel failure rate and the performance of leak testing in NPP Bohunice are comparable to the world standard at PWR`s. 1 tab., 2 figs., 3 refs.

  3. Stimulated leaks found with SmartBall tool

    Anon.

    2011-05-15

    Pure Technologies has developed a SmartBall leak detection tool which can be used in oil and gas pipelines. This tool contains acoustic sensors which listen for leaks and other problems in pipelines. Pig tracking units are used to track the tool along with receivers positioned on the pipe. With these technologies, SmartBall is able to detect small leaks that conventional methods would not detect and to assess their location accurately. Two runs on a Petrobras pipeline in Brazil highlighted the effectiveness of this technology, detecting three simulated leaks as small as 240mL/min. In addition, this system can give an estimation of the leak rate and traverse non piggable pipelines. Software is then used to analyze data and generate a report giving the size and location of the leaks identified. SmartBall is a technology capable of detecting small leaks and locating them in all sorts of oil and gas pipelines.

  4. WRSS jumper leak assessment

    BAILEY, J.W.

    1999-01-01

    The purpose of this assessment is: (1) to assemble and document the facts associated with three recently installed jumpers which have leaked either during actual process operation or during post installation testing; (2) to describe the corrective actions taken and to identify any process improvements which need to be implemented in the Hanford jumper design and installation activities; and (3) to document WRSS jumper leak lessons learned for use by future projects and other jumper design, fabrication, and installation activities

  5. Pipeline Leak Detection Techniques

    Chis, Timur

    2009-01-01

    Leak detection systems range from simple, visual line walking and checking ones to complex arrangements of hard-ware and software. No one method is universally applicable and operating requirements dictate which method is the most cost effective. The aim of the paper is to review the basic techniques of leak detection that are currently in use. The advantages and disadvantages of each method are discussed and some indications of applicability are outlined.

  6. Pipeline Leak Detection Techniques

    Timur Chis, Ph.D., Dipl.Eng.

    2007-01-01

    Full Text Available Leak detection systems range from simple, visual line walking and checking ones to complex arrangements of hard-ware and software. No one method is universally applicable and operating requirements dictate which method is the most cost effective. The aim of the paper is to review the basic techniques of leak detection that are currently in use. The advantages and disadvantages of each method are discussed and some indications of applicability are outlined.

  7. Low Level Leaks

    1998-01-01

    NASA has transferred the improved portable leak detector technology to UE Systems, Inc.. This instrument was developed to detect leaks in fluid systems of critical launch and ground support equipment. This system incorporates innovative electronic circuitry, improved transducers, collecting horns, and contact sensors that provide a much higher degree of reliability, sensitivity and versatility over previously used systems. Potential commercial uses are pipelines, underground utilities, air-conditioning systems, petrochemical systems, aerospace, power transmission lines and medical devices.

  8. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    VENETZ TJ; WASHENFELDER D; JOHNSON J; GIRARDOT C

    2012-01-25

    leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design - working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching.

  9. Single-Shell Tanks Leak Integrity Elements/ SX Farm Leak Causes and Locations - 12127

    Girardot, Crystal [URS- Safety Management Solutions, Richland, Washington 99352 (United States); Harlow, Don [ELR Consulting Richland, Washington 99352 (United States); Venetz, Theodore; Washenfelder, Dennis [Washington River Protection Solutions, LLC Richland, Washington 99352 (United States); Johnson, Jeremy [U.S. Department of Energy, Office of River Protection Richland, Washington 99352 (United States)

    2012-07-01

    leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching. (authors)

  10. Detection of steam generator tube leaks in pressurized water reactors

    Roach, W.H.

    1984-11-01

    This report addresses the early detection of small steam generator tube leaks in pressurized water reactors. It identifies physical parameters, establishes instrumentation performance goals, and specifies sensor types and locations. It presents a simple algorithm that yields the leak rate as a function of known or measurable quantities. Leak rates of less than one-tenth gram per second should be detectable with existing instrumentation

  11. Helium turbo-expander with an alternator

    Akiyama, Yoshitane

    1980-01-01

    Study was made on a helium turbo-expander, the heart of helium refrigerator systems, in order to develop a system which satisfies the required conditions. A helium turbo-expander with externally pressurized helium gas bearings at the temperature of liquid nitrogen and an alternator as a brake have been employed. The essential difference between a helium turbo-expander and a nitrogen turbo-expander was clarified. The gas bearing lubricated with nitrogen at room temperature and the gas bearing lubricated with helium at low temperature were tested. The flow rate of helium in a helium refrigerator for a large superconducting magnet is comparatively small, therefore a helium turbine must be small, but the standard for large turbine design can be applied to such small turbine. Using the alternator as a brake, the turbo-expander was easily controllable electrically. The prototype turbo-expander was made, and the liquefaction test with it and MHD power generation test were carried out. (Kako, I.)

  12. Helium supply demand in future years

    Laverick, C.

    1975-01-01

    Adequate helium will be available to the year 2000 AD to meet anticipated helium demands for present day applications and the development of new superconducting technologies of potential importance to the nation. It is almost certain that there will not be enough helium at acceptable financial and energy cost after the turn of the century to meet the needs of the many promising helium based technologies now under development. Serious consideration should be given to establishing priorities in development and application based upon their relative value to the country. In the first half of the next century, three ways of estimating helium demand lead to cumulative ranges of from 75 to 125 Gcf (economic study), 89 to 470 Gcf (projected national energy growth rates) and 154 to 328 Gcf (needs for new technologies). These needs contrast with estimated helium resources in natural gas after 2000 AD which may be as low as 10 or 126 Gcf depending upon how the federal helium program is managed and the nation's natural gas resources are utilized. The technological and financial return on a modest national investment in further helium storage and a rational long term helium program promises to be considerable

  13. Study on the Fluid Leak Diagnosis for Steam Valve in Power Plant

    Lee, Sang-Guk; Park, Jong-Hyuck; Yoo, Keun-Bae; Lee, Sun-Ki; Hong, Sung-Yull

    2006-01-01

    This study aims to estimate the applicability of acoustic emission(AE) method for the internal fluid leak from the valves. In this study, 4 inch gate steam valve leak tests were performed in order to analyze AE properties when leaks arise in valve seat. As a result of leak test for valve seat in a secondary system of power plant, we conformed that leak sound level increased in proportion to the increase of leak rate, and leak rates were compared to simulated tests. The resulting plots of leak rate versus peak frequency and AE signal level were the primary basis for determining the feasibility of quantifying leak acoustically. Previously, the large amount of data attained also allowed a favorable investigation of the effects of different leak paths, leak rates, pressure differentials through simulated test. All results of application tests are compared with results of simulated test. From the application tests, it was suggested that the AE method for diagnosis of steam leak was applicable. This paper presents quantitative measurements of fluid valve leak conditions by the analysis of AE parameter, FFT(fast fourier transform) and RMS(root mean square) level. Test apparatus were fabricated to accept a variety of leaking steam valves in order to determine what characteristics of AE signal change with leak conditions. The data for each valve were generated by varying the leak rate and recording the averaged RMS level versus time and frequency versus amplitude(FFT). Leak rates were varied by the valve differential pressure and valve size and leaking valves were observed in service. Most of the data analysis involved plotting the leak rate versus RMS level at a specific frequency to determine how well the two variables correlate in terms of accuracy, resolution, and repeatability

  14. Artificial Leaks in Container Closure Integrity Testing: Nonlinear Finite Element Simulation of Aperture Size Originated by a Copper Wire Sandwiched between the Stopper and the Glass Vial.

    Nieto, Alejandra; Roehl, Holger; Brown, Helen; Adler, Michael; Chalus, Pascal; Mahler, Hanns-Christian

    2016-01-01

    Container closure integrity (CCI) testing is required by different regulatory authorities in order to provide assurance of tightness of the container closure system against possible contamination, for example, by microorganisms. Microbial ingress CCI testing is performed by incubation of the container closure system with microorganisms under specified testing conditions. Physical CCI uses surrogate endpoints, such as coloration by dye solution ingress or gas flow (helium leakage testing). In order to correlate microbial CCI and physical CCI test methods and to evaluate the methods' capability to detect a given leak, artificial leaks are being introduced into the container closure system in a variety of different ways. In our study, artificial leaks were generated using inserted copper wires between the glass vial opening and rubber stopper. However, the insertion of copper wires introduces leaks of unknown size and shape. With nonlinear finite element simulations, the aperture size between the rubber stopper and the glass vial was calculated, depending on wire diameter and capping force. The dependency of the aperture size on the copper wire diameter was quadratic. With the data obtained, we were able to calculate the leak size and model leak shape. Our results suggest that the size as well as the shape of the artificial leaks should be taken into account when evaluating critical leak sizes, as flow rate does not, independently, correlate to hole size. Capping force also affected leak size. An increase in the capping force from 30 to 70 N resulted in a reduction of the aperture (leak size) by approximately 50% for all wire diameters. From 30 to 50 N, the reduction was approximately 33%. Container closure integrity (CCI) testing is required by different regulatory authorities in order to provide assurance of tightness of the container closure system against contamination, for example, by microorganisms. Microbial ingress CCI testing is performed by incubation of the

  15. Detection of primary coolant leaks in NPP

    Slavov, S.; Bakalov, I.; Vassilev, H.

    2001-01-01

    The thermo-hydraulic analyses of the SG box behaviour of Kozloduy NPP units 3 and 4 in case of small primary circuit leaks and during normal operation of the existing ventilation systems in order to determine the detectable leakages from the primary circuit by analysing different parameters used for the purposes of 'Leak before break' concept, performed by ENPRO Consult Ltd. are presented. The following methods for leak detection: measurement of relative air humidity in SG box (can be used for detection of leaks with flow rate 3.78 l/min within one hour at ambient parameters - temperature 40 0 - 60 0 C and relative humidity form 30% to 60%); measurement of water level in SG box sumps (can not be used for reliable detection of small primary circuit leakages with flow rate about 3.78 l/min); measurement of gaseous radioactivity in SG box( can be used as a general global indication for detection of small leakages from the primary circuit); measurement of condensate flow after the air coolers of P-1 venting system (can be used for primary circuit leak detection) are considered. For determination of the confinement behaviour, a model used with computer code MELCOR has been developed by ENPRO Consult Ltd. A brief summary based on the capabilities of the different methods of leak detection, from the point of view of the applicability of a particular method is given. For both Units 3 and 4 of Kozloduy NPP a qualified complex system for small leak detection is planned to be constructed. Such a system has to unite the following systems: acoustic system for leak detection 'ALUS'; system for control of the tightness of the main primary circuit pipelines by monitoring the local humidity; system for primary circuit leakage detection by measuring condensate run-off in collecting tank after ventilation system P-1 air coolers

  16. Limiting enclosures. Method of control of the leak rate per hour. Enclosures of classes 1 and 2. Method of measurement of the increase of the oxygen titre in volume

    1984-07-01

    The present standard can be applied to limiting enclosures working under depression or overpressure. It can be applied to limiting enclosures used for works on radioactive or toxic materials. The leak rate per hour is -2 h -1 . The measuring method uses oxygen determination after the enclusore is filled with an inert gas. The influence of pressure and temperature are analysed. The measurement installation and its operating way are presented; the accuracy of the method given. This standard supersedes the experimental standard of December 1982 [fr

  17. Assessment of historical leak model methodology as applied to the REDOX high-level waste tank SX-108

    JONES, T.E.

    1999-01-01

    Using the Historical Leak Model approach, the estimated leak rate (and therefore, projected leak volume) for Tank 241-SX-108 could not be reproduced using the data included in the initial document describing the leak methodology. An analysis of parameters impacting tank heat load calculations strongly suggest that the historical tank operating data lack the precision and accuracy required to estimate tank leak volumes using the Historical Leak Model methodology

  18. Ammonia Leak Locator Study

    Dodge, Franklin T.; Wuest, Martin P.; Deffenbaugh, Danny M.

    1995-01-01

    The thermal control system of International Space Station Alpha will use liquid ammonia as the heat exchange fluid. It is expected that small leaks (of the order perhaps of one pound of ammonia per day) may develop in the lines transporting the ammonia to the various facilities as well as in the heat exchange equipment. Such leaks must be detected and located before the supply of ammonia becomes critically low. For that reason, NASA-JSC has a program underway to evaluate instruments that can detect and locate ultra-small concentrations of ammonia in a high vacuum environment. To be useful, the instrument must be portable and small enough that an astronaut can easily handle it during extravehicular activity. An additional complication in the design of the instrument is that the environment immediately surrounding ISSA will contain small concentrations of many other gases from venting of onboard experiments as well as from other kinds of leaks. These other vapors include water, cabin air, CO2, CO, argon, N2, and ethylene glycol. Altogether, this local environment might have a pressure of the order of 10(exp -7) to 10(exp -6) torr. Southwest Research Institute (SwRI) was contracted by NASA-JSC to provide support to NASA-JSC and its prime contractors in evaluating ammonia-location instruments and to make a preliminary trade study of the advantages and limitations of potential instruments. The present effort builds upon an earlier SwRI study to evaluate ammonia leak detection instruments [Jolly and Deffenbaugh]. The objectives of the present effort include: (1) Estimate the characteristics of representative ammonia leaks; (2) Evaluate the baseline instrument in the light of the estimated ammonia leak characteristics; (3) Propose alternative instrument concepts; and (4) Conduct a trade study of the proposed alternative concepts and recommend promising instruments. The baseline leak-location instrument selected by NASA-JSC was an ion gauge.

  19. Environmental risk comparisons with internal methods of UST leak detection

    Durgin, P.B.

    1993-01-01

    The past five years have seen a variety of advances in how leaks can be detected from within underground storage tanks. Any leak-detection approach employed within a storage tanks must be conducted at specific time intervals and meet certain leak-rate criteria according to federal and state regulations. Nevertheless, the potential environmental consequences of leak detection approaches differ widely. Internal, volumetric UST monitoring techniques have developed over time including: (1) inventory control with stick measurements, (2) precision tank testing, (3) automatic tank gauging (ATG), (4) statistical inventory reconciliation (SIR), and (5) statistical techniques with automatic tank gauging. An ATG focuses on the advantage of precise data but measured for only a brief period. On the other hand, stick data has less precision but when combined with SIR over extended periods it too can detect low leak rates. Graphs demonstrate the comparable amounts of fuel than can leak out of a tank before being detected by these techniques. The results indicate that annual tank testing has the greatest potential for large volumes of fuel leaking without detection while new statistical approaches with an ATG have the least potential. The environmental implications of the volumes of fuel leaked prior to detection are site specific. For example, if storage tank is surrounded by a high water table and in a sole-source aquifer even small leaks may cause problems. The user must also consider regulatory risks. The level of environmental and regulatory risk should influence selection of the UST leak detection method

  20. Fabrication of ultra-sensitive leak detection standards

    Winkelman, C.R.

    1980-01-01

    The primary difficulty with flow rate measurements below 10 -10 standard cubic centimeters per second (std. cc/sec) is that there are no commercially available standards. The requirements, however, dictate that the problem of design and construction of a qualifiable standard in the ultra-sensitive range had to be solved. There are a number of leak types which were considered - capillary leaks, orifice leaks, and the pore type leaks, among others. The capillary leak was not used because of the cracking or sorting effects that are common to this type leak. For example, a gas blend flowing through a capillary leak will result in the lighter gases passing through the leak first. The difficulty of fabricating the proper hole size in relation to the flow rate requirements ruled out the orifice type leak. The choice was the pore type leak which utilizes the basic concept of a stainless steel knife edge driven into a fixed section composed of stainless steel with a gold over-lay and maintained under force

  1. Leak test method for radioactive material packagings without pressure valve connections

    Johnson, S.F.; Stenbaeck, A.

    1976-01-01

    A leak test method has been developed at Studsvik which provides the possibility of testing Type B packagings unequipped with valves for evacuation or pressurizing. Even large packagings with pressure valve connections can be leak tested by this method. The method is a pressure test method. The test gas comprises a mixture of helium and nitrogen or helium and air. Excess pressure in a valveless packaging is achieved by vaporization of liquid nitrogen. All parts of the packaging or package where leaks might be expected are covered by plastic sheet. Samples of the gas accumulated under the plastic sheets are taken using evacuated glass ampoules which are initially sealed off to a breakable point. The gas samples are measured with a He-mass spectrometer. The sensitivity of this method of leak testing is, in practice, of the order of 10 -7 atmcm 3 s -1 . (author)

  2. Post-giant evolution of helium stars

    Schoenberner, D.

    1977-01-01

    Extremely hydrogen deficient stars (helium stars and R Coronae Borealis variables) are considered to be remnants of double shell source stars (of the asymptotic giant branch). The evolution of stars with a condensed C/O-core and a helium envelope is followed numerically from the red giant stage to the white dwarf domain, crossing the regions of R CrB- and helium stars (so far analyzed). They have typically masses M/M(sun) = 0.7 and luminosities log L/L(sun) = 4.1. The time for crossing the helium star domain is some 10 3 years. The corresponding times in the R CrB-region amounts up to several 10 4 years. The lower limit of the death rate of helium stars is estimated to be 4 x 10 -14 pc -3 yr -1 . This value is only a factor of ten lower than the birth rate of all non-DA white dwarfs. It is therefore possible that the helium stars are the precursors of helium rich white dwarfs. As a consequence, a significant fraction of all stars which end their lives as white dwarfs should pass through the helium star phase. (orig.) [de

  3. Engineering study of tank leaks related to hydraulic retrieval of sludge from tank 241-C-106

    Lowe, S.S.; Carlos, W.C.; Irwin, J.J.; Khaleel, R.; Kline, N.W.; Ludowise, J.D.; Marusich, R.M.; Rittman, P.D.

    1993-01-01

    This study evaluates hydraulic retrieval (sluicing) of the waste in single-shell tank 241-C-106 with respect to the likelihood of tank leaks, gross volumes of potential leaks, and their consequences. A description of hydraulic retrieval is developed to establish a baseline for the study. Leak models are developed based on postulated leak mechanisms to estimate the amount of waste that could potentially leak while sluicing. Transport models describe the movement of the waste constituents in the surrounding soil and groundwater after a leak occurs. Environmental impact and risk associated with tank leaks are evaluated. Transport of leaked material to the groundwater is found to be dependent on the rate of recharge of moisture in the soil for moderate-sized leaks. Providing a cover over the tank and surrounding area would eliminate the recharge. The bulk of any leaked material would remain in the vicinity of the tank for remedial action

  4. Evaluation of pipeline leak detection systems

    Glauz, W.D.; Flora, J.D.; Hennon, G.J.

    1993-01-01

    Leaking underground storage tank system presents an environmental concern and a potential health hazard. It is well known that leaks in the piping associated with these systems account for a sizeable fraction of the leaks. EPA has established performance standards for pipeline leak detection systems, and published a document presenting test protocols for evaluating these systems against the standards. This paper discusses a number of facets and important features of evaluating such systems, and presents results from tests of several systems. The importance of temperature differences between the ground and the product in the line is shown both in theory and with test data. The impact of the amount of soil moisture present is addressed, along with the effect of frozen soil. These features are addressed both for line tightness test systems, which must detect leaks of 0.10 gal/h (0.38 L/h) at 150% of normal line pressure, or 0.20 gal/h (0.76 L/h) at normal line pressure, and for automatic line leak detectors that must detect leaks of 3 gal/h (11 L/h) at 10 psi (69 kPa) within an hour of the occurrence of the leak. This paper also addresses some statistical aspects of the evaluation of these systems. Reasons for keeping the evaluation process ''blind'' to the evaluated company are given, along with methods for assuring that the tests are blind. Most importantly, a test procedure is presented for evaluating systems that report a flow rate (not just a pass/fail decision) that is much more efficient than the procedure presented in the EPA protocol, and is just as stringent

  5. Thermal optimization of the helium-cooled power leads for the SSC

    Demko, J.A.; Schiesser, W.E.; Carcagno, R.; McAshan, M.; McConeghy, R.

    1992-01-01

    The optimum thermal design of the power leads for the Superconducting Super Collider (SSC) will minimize the amount of Carnot work (which is a combination of refrigeration and liquefaction work) required. This optimization can be accomplished by the judicious selection of lead length and diameter. Even though an optimum set of dimensions is found, the final design must satisfy other physical constraints such as maximum allowable heat leak and helium vapor mass flow rate. A set of corresponding lengths and diameters has been determined that meets these requirements for the helium vapor-cooled, spiral-fin power lead design of the SSC. Early efforts by McFee and Mallon investigated optimizing power leads for cryogenic applications with no convection cooling. Later designs utilized the boiled-off helium vapor to cool the lead. One notable design for currents up to several thousand amps is presented by Efferson based on a series of recommendations discussed by Deiness. Buyanov presents many theoretical models and design formulae but does not demonstrate an approach to thermally optimizing the design of a vapor-cooled lead. In this study, a detailed numerical thermal model of a power lead design for the SSC has been developed. It was adapted from the dynamic model developed by Schiesser. This model was used to determine the optimum dimensions that minimize the Carnot refrigeration and liquefaction work due to the leads. Since the SSC leads will be cooled by supercritical helium, the flow of vapor is regulated by a control valve. These leads include a superconducting portion at the cold end. All of the material properties in the model are functions of temperature, and for the helium are functions of pressure and temperature. No pressure drop calculations were performed as part of this analysis. The diameter that minimizes the Carnot work was determined for four different lengths at a design current of 6600 amps

  6. Thermal optimization of the helium-cooled power leads for the SSC

    Demko, J.A.; Schiesser, W.E.; Carcagno, R.; McAshan, M.; McConeghy, R.

    1992-03-01

    The optimum thermal design of the power leads for the Superconducting Super Collider (SSC) will minimize the amount of Carnot work (which is a combination of refrigeration and liquefaction work) required. This optimization can be accomplished by the judicious selection of lead length and diameter. Even though an optimum set of dimensions is found, the final design must satisfy other physical constraints such as maximum allowable heat leak and helium vapor mass flow rate. A set of corresponding lengths and diameters has been determined that meets these requirements for the helium vapor-cooled, spiral-fin power lead design of the SSC. Early efforts by McFee and Mallon investigated optimizing power leads for cryogenic applications with no convection cooling. Later designs utilized the boiled-off helium vapor to cool the lead. One notable design for currents up to several thousand amps is presented by Efferson based on a series of recommendations discussed by Deiness. Buyanov presents many theoretical models and design formulate but does not demonstrate an approach to thermally optimizing the design of a vapor-cooled lead. A method for optimizing superconducting magnet current leads is described by Maehata et al. The approach assumes that the helium boil-off caused by heat conduction along with power lead into the low-temperature helium is used to cool the lead. The optimum solution is found when the heat flow at the cold end is minimized.. In this study, a detailed numerical thermal model of a power lead design for the SSC has been developed. It was adapted from the dynamic model developed by Schiesser. This model was used to determine the optimum dimensions that minimize the Carnot refrigeration and liquefaction work due to the leads

  7. Engineering, Manufacture and Preliminary Testing of the ITER Toroidal Field (TF) Magnet Helium Cold Circulator

    Rista, P. E. C.; Shull, J.; Sargent, S.

    2015-12-01

    The ITER cryodistribution system provides the supercritical Helium (SHe) forced flow cooling to the magnet system using cold circulators. The cold circulators are located in each of five separate auxiliary cold boxes planned for use in the facility. Barber-Nichols Inc. has been awarded a contract from ITER-India for engineering, manufacture and testing of the Toroidal Field (TF) Magnet Helium Cold Circulator. The cold circulator will be extensively tested at Barber-Nichols’ facility prior to delivery for qualification testing at the Japan Atomic Energy Agency's (JAEA) test facility at Naka, Japan. The TF Cold Circulator integrates features and technical requirements which Barber-Nichols has utilized when supplying helium cold circulators worldwide over a period of 35 years. Features include a vacuum-jacketed hermetically sealed design with a very low helium leak rate, a heat shield for use with both nitrogen & helium cold sources, a broad operating range with a guaranteed isentropic efficiency over 70%, and impeller design features for high efficiency. The cold circulator will be designed to meet MTBM of 17,500 hours and MTBF of 36,000 hours. Vibration and speed monitoring are integrated into a compact package on the rotating assembly with operation and health monitoring in a multi-drop PROFIBUS communication environment using an electrical cabinet with critical features and full local and network PLC interface and control. For the testing in Japan and eventual installation in Europe, the cold circulator must be certified to the Japanese High Pressure Gas Safety Act (JHPGSA) and CE marked in compliance with the European Pressure Equipment Directive (PED) including Essential Safety Requirements (ESR). The test methodology utilized at Barber-Nichols’ facility and the resulting test data, validating the high efficiency of the TF Cold Circulator across a broad operating range, are important features of this paper.

  8. Engineering, Manufacture and Preliminary Testing of the ITER Toroidal Field (TF) Magnet Helium Cold Circulator

    C Rista, P E; Shull, J; Sargent, S

    2015-01-01

    The ITER cryodistribution system provides the supercritical Helium (SHe) forced flow cooling to the magnet system using cold circulators. The cold circulators are located in each of five separate auxiliary cold boxes planned for use in the facility. Barber-Nichols Inc. has been awarded a contract from ITER-India for engineering, manufacture and testing of the Toroidal Field (TF) Magnet Helium Cold Circulator. The cold circulator will be extensively tested at Barber-Nichols’ facility prior to delivery for qualification testing at the Japan Atomic Energy Agency's (JAEA) test facility at Naka, Japan. The TF Cold Circulator integrates features and technical requirements which Barber-Nichols has utilized when supplying helium cold circulators worldwide over a period of 35 years. Features include a vacuum-jacketed hermetically sealed design with a very low helium leak rate, a heat shield for use with both nitrogen and helium cold sources, a broad operating range with a guaranteed isentropic efficiency over 70%, and impeller design features for high efficiency. The cold circulator will be designed to meet MTBM of 17,500 hours and MTBF of 36,000 hours. Vibration and speed monitoring are integrated into a compact package on the rotating assembly with operation and health monitoring in a multi-drop PROFIBUS communication environment using an electrical cabinet with critical features and full local and network PLC interface and control. For the testing in Japan and eventual installation in Europe, the cold circulator must be certified to the Japanese High Pressure Gas Safety Act (JHPGSA) and CE marked in compliance with the European Pressure Equipment Directive (PED) including Essential Safety Requirements (ESR). The test methodology utilized at Barber-Nichols’ facility and the resulting test data, validating the high efficiency of the TF Cold Circulator across a broad operating range, are important features of this paper. (paper)

  9. Nucleation path of helium bubbles in metals during irradiation

    Morishita, Kazunori

    2008-01-01

    Thermodynamical formalization is made for description of the nucleation and growth of helium bubbles in metals during irradiation. The proposed formalization is available or evaluating both microstructural changes in fusion first wall materials where helium is produced by (n, α) nuclear transmutation reactions, and those in fusion divertor materials where helium particles with low energy are directly implanted. Calculated nucleation barrier is significantly reduced by the presence of helium, showing that a helium bubble with an appropriate number of helium atoms depending on bubble size can nucleate without any large nucleation barriers, even at a condition where an empty void has very large nucleation barrier without helium. With the proposed thermodynamical formalization, the nucleation and growth process of helium bubbles in iron during irradiation is simulated by the kinetic Monte-Carlo (KMC) technique. It shows the nucleation path of a helium bubble on the (N He , N V ) space as functions of temperatures and the concentration of helium in the matrix, where N He and N V are the number of helium atoms and vacancies in the helium bubble, respectively. Bubble growth rates depend on the nucleation path and suggest that two different mechanisms operate for bubble growth: one is controlled by vacancy diffusion and the other is controlled by interstitial helium diffusion. (author)

  10. Evaluation of advanced and current leak detection systems

    Kupperman, D.S.

    1988-01-01

    U.S. Nuclear Regulatory Commission Guide 1.45 recommends the use of at least three different detection methods in reactors to detect leakage. Monitoring of both sump-flow and airborne particulate radioactivity is mandatory. A third method can involve either monitoring of condensate flow rate from air coolers or monitoring of airborne gaseous radioactivity. Although the methods currently used for leak detection reflect the state of the art, other techniques may be developed and used. Since the recommendations of Regulatory Guide 1.45 are not mandatory, Licensee Event Report Compilations have been reviewed to help establish actual capabilities for leak detection. The review of event reports, which had previously covered the period of June 1985 to August 1986 has been extended, and now covers events to June 1987. The total number of significant events is now 83. These reports have provided documented, sometimes detailed, summaries of reactor leaks. They have helped establish the capabilities of existing systems to detect and locate leaks. Differences between PWRs and BWRs with regard to leak detection have now been analyzed. With regard to detection methods, the greatest differences between reactor types are as follows: (a) The sump pump is reported as the detection method more frequently in BWRs than in PWRs (64% vs. 35%). (b) The radiation monitor is reported as the detection method (excluding false alarms) more frequently in PWRs. Current efforts at Argonne National Laboratory (ANL) to evaluate advanced acoustic leak detection methods are directed toward the generation and analysis of acoustic data from large (0.5 to 10 gal/min) leaks and modification of the software of the GARD/ANL advanced acoustic leak detection system. In order to reach the goal of 10 gal/min leaks, the Steam Generator Test Facility at ANL has been modified to carry out the leak testing. Tests were carried out with water at 525 deg. F and 1100 psi leaking through a fatigue crack in a 4-in

  11. The experiment and analysis on small leak phenomena

    Jeong, Kyung Chai; Hwang, S. T.; Kim, B. H.; Jeong, J. Y.

    2000-07-01

    The liquid sodium which is used as a coolant in LMFBR, may give rise to a serious trouble in the safety aspect of steam generator. The defects in a heat transfer tube, such as pin-hole or tube welding defect, will result in a leakage of high pressure steam into the sodium side and production of hydrogen gas and corrosive sodium compounds which can cause significant damage to the tube wall of steam generator by using exothermic reaction. In significant damage to the tube wall of steam generator by using exothermic reaction. In this case, initial leak size will be enlarged with time and the leak rate developed to large leak through the micro, small, intermediate leaks. Therefore, the analysis of sodium-water reaction phenomena on the micro and small water leaks in the heat transfer tube is very important in the initial leak stage in the aspects of the protection of leak progress and safety evaluation of steam generator. In this study, firstly, the micro and small leaks phenomena, such as reopen size, shape, and time of leak path, self-wastage, corrosion of tube materials, was analyzed from the literature survey and water leakage experiments using the leak specimen. In small water leak experiments, the leak path was plugged by the sodium-water reaction products at the leak path of a specimen, and re-open phenomena were not observed in initial experiments. Other leak experiments, reopen phenomena of self-plugged leak path was observed. Re-open mechanism of sealed path could be explained by the thermal transient and vibration of heat transfer tube. As a result, perfect reopen time of self plugged leak path was observed to be about 130 minutes after water leak initiation. Reopen shape of a specimen was appeared with double layer of circular type, and reopen size of this specimen surface was about 2 mm diameter on sodium side. Also, the corrosion of a specimen initiated from sodium side, the segregation phenomena of Cr in the specimen was found much more than those of

  12. A helium regenerative compressor

    Swift, W.L.; Nutt, W.E.; Sixsmith, H.

    1994-01-01

    This paper discusses the design and performance of a regenerative compressor that was developed primarily for use in cryogenic helium systems. The objectives for the development were to achieve acceptable efficiency in the machine using conventional motor and bearing technology while reducing the complexity of the system required to control contamination from the lubricants. A single stage compressor was built and tested. The compressor incorporates aerodynamically shaped blades on a 218 mm (8.6 inches) diameter impeller to achieve high efficiency. A gas-buffered non-contact shaft seal is used to oppose the diffusion of lubricant from the motor bearings into the cryogenic circuit. Since it is a rotating machine, the flow is continuous and steady, and the machine is very quiet. During performance testing with helium, the single stage machine has demonstrated a pressure ratio of 1.5 at a flow rate of 12 g/s with measured isothermal efficiencies in excess of 30%. This performance compares favorably with efficiencies generally achieved in oil flooded screw compressors

  13. SEALING SIMULATED LEAKS

    Michael A. Romano

    2004-09-01

    This report details the testing equipment, procedures and results performed under Task 7.2 Sealing Simulated Leaks. In terms of our ability to seal leaks identified in the technical topical report, Analysis of Current Field Data, we were 100% successful. In regards to maintaining seal integrity after pigging operations we achieved varying degrees of success. Internal Corrosion defects proved to be the most resistant to the effects of pigging while External Corrosion proved to be the least resistant. Overall, with limitations, pressure activated sealant technology would be a viable option under the right circumstances.

  14. Fuel rod leak detector

    Womack, R.E.

    1978-01-01

    A typical embodiment of the invention detects leaking fuel rods by means of a radiation detector that measures the concentration of xenon-133 ( 133 Xe) within each individual rod. A collimated detector that provides signals related to the energy of incident radiation is aligned with one of the ends of a fuel rod. A statistically significant sample of the gamma radiation (γ-rays) that characterize 133 Xe is accumulated through the detector. The data so accumulated indicates the presence of a concentration of 133 Xe appropriate to a sound fuel rod, or a significantly different concentration that reflects a leaking fuel rod

  15. Margins in high temperature leak-before-break assessments

    Budden, P.J.; Hooton, D.G.

    1997-01-01

    Developments in the defect assessment procedure R6 to include high-temperature mechanisms in Leak-before-Break arguments are described. In particular, the effect of creep on the time available to detect a leak and on the crack opening area, and hence leak rate, is discussed. The competing influence of these two effects is emphasized by an example. The application to Leak-before-Break of the time-dependent failure assessment diagram approach for high temperature defect assessment is then outlined. The approach is shown to be of use in assessing the erosion of margins by creep

  16. Margins in high temperature leak-before-break assessments

    Budden, P.J.; Hooton, D.G.

    1997-04-01

    Developments in the defect assessment procedure R6 to include high-temperature mechanisms in Leak-before-Break arguments are described. In particular, the effect of creep on the time available to detect a leak and on the crack opening area, and hence leak rate, is discussed. The competing influence of these two effects is emphasized by an example. The application to Leak-before-Break of the time-dependent failure assessment diagram approach for high temperature defect assessment is then outlined. The approach is shown to be of use in assessing the erosion of margins by creep.

  17. Risk Factors for Gastrointestinal Leak after Bariatric Surgery: MBASQIP Analysis.

    Alizadeh, Reza Fazl; Li, Shiri; Inaba, Colette; Penalosa, Patrick; Hinojosa, Marcelo W; Smith, Brian R; Stamos, Michael J; Nguyen, Ninh T

    2018-03-30

    Gastrointestinal leak remains one of the most dreaded complications in bariatric surgery. We aimed to evaluate risk factors and the impact of common perioperative interventions on the development of leak in patients who underwent laparoscopic bariatric surgery. Using the 2015 database of accredited centers, data were analyzed for patients who underwent laparoscopic sleeve gastrectomy or Roux-en-Y gastric bypass (LRYGB). Emergent, revisional, and converted cases were excluded. Multivariate logistic regression was used to analyze risk factors for leak, including provocative testing of anastomosis, surgical drain placement, and use of postoperative swallow study. Data from 133,478 patients who underwent laparoscopic sleeve gastrectomy (n = 92,495 [69.3%]) and LRYGB (n = 40,983 [30.7%]) were analyzed. Overall leak rate was 0.7% (938 of 133,478). Factors associated with increased risk for leak were oxygen dependency (adjusted odds ratio [AOR] 1.97), hypoalbuminemia (AOR 1.66), sleep apnea (AOR 1.52), hypertension (AOR 1.36), and diabetes (AOR 1.18). Compared with LRYGB, laparoscopic sleeve gastrectomy was associated with a lower risk of leak (AOR 0.52; 95% CI 0.44 to 0.61; p leak rate was higher in patients with vs without a provocative test (0.8% vs 0.4%, respectively; p leak rate was higher in patients with vs without a surgical drain placed (1.6% vs 0.4%, respectively; p leak rate was similar between patients with vs without swallow study (0.7% vs 0.7%; p = 0.50). The overall rate of gastrointestinal leak in bariatric surgery is low. Certain preoperative factors, procedural type (LRYGB), and interventions (intraoperative provocative test and surgical drain placement) were associated with a higher risk for leaks. Copyright © 2018 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Standard practice for leaks using ultrasonics

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 Practice A, Pressurization—This practice covers procedures for calibration of ultrasonic instruments, location, and estimated measurements of gas leakage to atmosphere by the airborne ultrasonic technique. 1.2 In general practice this should be limited to leaks detected by two classifications of instruments, Class I and Class II. Class I instruments should have a minimum detectable leak rate of 6.7 × 10−7 mol/s (1.5 × 10−2 std. cm3/s at 0°C) or more for the pressure method of gas leakage to atmosphere. Class II instruments should have a minimal detectable leak rate of 6.7 × 10−6 mol/s (1.5 × 10−1 std. cm3/s at 0°C) or more for the pressure method of gas leakage to atmosphere. Refer to Guide E432 for additional information. 1.3 Practice B, Ultrasonic Transmitter—For object under test not capable of being pressurized but capable of having ultrasonic tone placed/injected into the test area to act as an ultrasonic leak trace source. 1.3.1 This practice is limited to leaks producing leakage o...

  19. Leak processing system for valve gland portion

    Nishino, Masami

    1990-01-01

    When a process fluid for a valve to be checked is at such a normal temperature as during reactor operation, leaked fluid can be detected depending on the temperature increase accompanying the leakage. However, detection is difficult if the temperature of the process fluid for the valve to be checked is low and, if leakage is detected after the reactor start-up, repair has to be applied after the shutdown of the plant. Then, gland leak is detected by detecting the pressure instead of the temperature in the pipeline system and the leak flow rate is calculated based on the pressure. As a result, leakage is detected irrespective of the temperature of the leaked fluid and, for instance, leakage can be detected even in a case where the temperature is not high as in the case of pressure proof test for the pressure vessel before start-up. It can contribute much to the improvement of the plant operation efficiency and can determine the leak flow rate at a high accuracy. (N.H.)

  20. Effect of helium on void formation in nickel

    Brimhall, J.L.; Simonen, E.P.

    1977-01-01

    This study examines the influence of helium on void formation in self-ion irradiated nickel. Helium was injected either simultaneously with, or prior to, the self-ion bombardment. The void microstructure was characterized as a function of helium deposition rate and the total heavy-ion dose. In particular, at 575 0 C and 5 X 10 -3 displacements per atom per second the void density is found to be proportional to the helium deposition rate. The dose dependence of swelling is initially dominated by helium driven nucleation. The void density rapidly saturates after which swelling continues with increasing dose only from void growth. It is concluded that helium promotes void nucleation in nickel with either helium implantation technique, pre-injection or simultaneous injection. Qualitative differences, however, are recognized. (Auth.)

  1. Cooling with Superfluid Helium

    Lebrun, P; Tavian, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics.

  2. Electron Excitation Rate Coefficients for Transitions from the IS21S Ground State to the 1S2S1,3S and 1S2P1,3P0 Excited States of Helium

    Aggarwal, K. M.; Kingston, A. E.; McDowell, M. R. C.

    1984-03-01

    The available experimental and theoretical electron impact excitation cross section data for the transitions from the 1s2 1S ground state to the 1s2s 1,3S and 1s2p 1,3P0 excited states of helium are assessed. Based on this assessed data, excitation rate coefficients are calculated over a wide electron temperature range below 3.0×106K. A comparison with other published results suggests that the rates used should be lower by a factor of 2 or more.

  3. Low-temperature centrifugal helium compressor

    Kawada, M.; Togo, S.; Akiyama, Y.; Wada, R.

    1974-01-01

    A centrifugal helium compressor with gas bearings, which can be operated at the temperature of liquid nitrogen, has been investigated. This compressor has the advantages that the compression ratio should be higher than the room temperature operation and that the contamination of helium could be eliminated. The outer diameter of the rotor is 112 mm. The experimental result for helium gas at low temperature shows a flow rate of 47 g/s and a compression ratio of 1.2 when the inlet pressure was 1 ata and the rotational speed 550 rev/s. The investigation is now focused on obtaining a compression ratio of 1.5. (author)

  4. Sodium and steam leak simulation studies for fluidized bed steam generators

    Keeton, A.R.; Vaux, W.G.; Lee, P.K.; Witkowski, R.E.

    1976-01-01

    An experimental program is described which was conducted to study the effects of sodium or steam leaking into an operating fluidized bed of metal or ceramic particles at 680 to 800 0 K. This effort was part of the early development studies for a fluidized-bed steam generator concept using helium as the fluidizing gas. Test results indicated that steam and small sodium leaks had no effect on the quality of fluidization, heat transfer coefficient, temperature distribution, or fluidizing gas pressure drop across the bed. Large sodium leaks, however, immediately upset the operation of the fluidized bed. Both steam and sodium leaks were detected positively and rapidly at an early stage of a leak by instruments specifically selected to accomplish this

  5. Current practice and developmental efforts for leak detection in U.S. reactor primary systems

    Kupperman, D.S.; Claytor, T.N.

    1986-01-01

    Current leak detection practices in 74 operating nuclear reactors have been reviewed. Existing leak detection systems are adequate to ensure a leak-before-break scenario in most situations, but no currently available, single method combines optimal leakage detection sensitivity, leak-locating ability, and leakage measurement accuracy. Simply tightening current leakage limits may produce an unacceptably large number of unnecessary shutdowns. The use of commercially available acoustic monitoring systems or moisture-sensitive tape may improve leak detection capability at specific sites. However, neither of these methods currently provides source discrimination (e.g., to distinguish between leaks from pipe cracks and valves) or leak-rate information (a small leak may saturate the system). A field-implementable acoustic leak detection system is being developed to address these limitations. 5 refs.

  6. Current practice and developmental efforts for leak detection in US reactor primary systems

    Kupperman, D.S.; Claytor, T.N.

    1985-07-01

    Current leak detection practices in 74 operating nuclear reactors have been reviewed. Existing leak detection systems are adequate to ensure a leak-before-break scenario in most situations, but no currently available, single method combines optimal leakage detection sensitivity, leak-locating ability, and leakage measurement accuracy. Simply tightening current leakage limits may produce an unacceptably large number of unnecessary shutdowns. The use of commercially available acoustic monitoring systems or moisture-sensitive tape may improve leak detection capability at specific sites. However, neither of these methods currently provides source discrimination (e.g., to distinguish between leaks from pipe cracks and valves) or leak-rate information (a small leak may saturate the system). A field-implementable acoustic leak detection system is being developed to address these limitations. 5 refs., 3 figs

  7. Leaking Fuel Impacts and Practices

    Hozer, Zoltan; Szabo, Peter; Somfai, Barbara; Cherubini, Marco; Aldworth, Robin; Waeckel, Nicolas; Delorme, Tim; Dickson, Raymond; Fujii, Hajime; Rey Gayo, Jose Maria; Grant, Wade; Gorzel, Andreas; Hellwig, Christian; Kamimura, Katsuichiro; Sugiyama, Tomoyuki; Klouzal, Jan; Miklos, Marek; Nagase, Fumihisa; Nilsson, Marcus; Petit, Marc; Richards, Stuart; Lundqvist Saleh, Tobias; Stepniewski, Marek; Sim, Ki Seob; ); Rehacek, Radomir; Kissane, Martin; )

    2014-01-01

    The impact of leaking fuel rods on the operation of nuclear power plants and the practices of handling leaking fuel has been reviewed by the CSNI Working Group on Fuel Safety in order to promote a better understanding on the handling of leaking fuel in power reactors, as well as to discuss and review the current practices in member countries to help in decisions on the specification of reactor operation conditions with leaking fuel rods and on the handling of leaking fuel after removal from reactor. Experts from 15 countries provided data on the handling of leaking fuel in PWR, BWR, VVER and PHWR reactor types. The review covered the operation of NPP reactors with leaking fuel, wet and dry storage and transport of leaking assemblies. The methods and applied instruments to identify leaking fuel assemblies and the repair of them were addressed in the review. Special attention was paid to the activity release from leaking rods in the reactor and under storage conditions. The consideration of leaking fuel in safety analyses on core behaviour during postulated accidents was also discussed in the review. The main conclusions of the review pointed out that the activity release from leaking fuel rods in the reactor can be handled by technological systems, or in case of failure of too many rods the reactor can be shutdown to minimize activity release. Under accident conditions and operational transients the leaking rods may produce coolant activity concentration peaks. The storage of spent leaking fuel is normally characterised by moderate release of radionuclides from the fuel. The power plants apply limits for activity concentration to limit the amount of leaking rods in the core. In different countries, the accident analyses take into consideration the potential release from leaking fuel rods in design basis accidents in different ways. Some power plants apply special tools for handling and repair of leaking assemblies and rods. The leaking rods are stored together with

  8. Single-Shell Tank Leak Integrity Summary

    Harlow, D. G. [Washington River Protection Solutions LLC, Richland, WA (United States); Girardot, C. L. [Washington River Protection Solutions LLC, Richland, WA (United States); Venetz, T. J. [Washington River Protection Solutions LLC, Richland, WA (United States)

    2015-03-26

    This document summarizes and evaluates the information in the Hanford Tri-Party Agreement Interim Milestone M-045-91F Targets completed between 2010 and 2015. 1) Common factors of SST liner failures (M-045-91F-T02), 2) the feasibility of testing for ionic conductivity between the inside and outside of SSTs (M-045-91F-T03, and 3) the causes, locations, and rates of leaks from leaking SSTs (M-045-91F-T04).

  9. Hazardous fluid leak detector

    Gray, Harold E.; McLaurin, Felder M.; Ortiz, Monico; Huth, William A.

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  10. Natural gas leak mapper

    Reichardt, Thomas A [Livermore, CA; Luong, Amy Khai [Dublin, CA; Kulp, Thomas J [Livermore, CA; Devdas, Sanjay [Albany, CA

    2008-05-20

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  11. Recent Progress in Technology of Leak detection

    Jung, H. K.; Kim, S. H.; Cho, J. W.; Joo, Y. S.; Yang, D. J

    2005-07-15

    It is very important to check for leakage points of fluids and gases on primary pressure boundary of nuclear power plants in order to maintain and manage various structures safely. Even though much investigation has been performed by a number of researchers, there are a lot of problems to detect the leakage under some areas to which people can not approach. In particular, it is certainly necessary to find the leakage point in order to repair and replace the pressure boundaries. In this report, the basic principle and application situations for the development of the leak detection system which can detect micro-leaks are introduced. As the technologies and performances of recent sensors have been improving, the application range of leak detection has been increasing steadily. Therefore the sensor technologies written in this report will be able to contribute to nuclear safety to detect the leakage rate and the leakage point with an on-line monitoring system in the near future.

  12. Does a dyon leak

    Grossman, B.

    1983-01-01

    In the presence of a CP-nonconservation measured by an angle theta, the ground state of a point magnetic monopole is shown to have an electric charge of value -etheta/2π which changes discontinuously to zero for massless fermions. A new version of Levinson's theorem is also given. The latter effect as well as the S-wave helicity flip of a dyon can be interpreted as a leak at the origin

  13. Aspects of leak detection

    Chivers, T.C.

    1997-01-01

    A requirement of a Leak before Break safety case is that the leakage from the through wall crack be detected prior to any growth leading to unacceptable failure. This paper sets out to review some recent developments in this field. It does not set out to be a comprehensive guide to all of the methods available. The discussion concentrates on acoustic emission and how the techniques can be qualified and deployed on operational plant

  14. Aspects of leak detection

    Chivers, T.C. [Berkeley Technology Centre, Glos (United Kingdom)

    1997-04-01

    A requirement of a Leak before Break safety case is that the leakage from the through wall crack be detected prior to any growth leading to unacceptable failure. This paper sets out to review some recent developments in this field. It does not set out to be a comprehensive guide to all of the methods available. The discussion concentrates on acoustic emission and how the techniques can be qualified and deployed on operational plant.

  15. Reliability evaluation of the Savannah River reactor leak detection system

    Daugherty, W.L.; Sindelar, R.L.; Wallace, I.T.

    1991-01-01

    The Savannah River Reactors have been in operation since the mid-1950's. The primary degradation mode for the primary coolant loop piping is intergranular stress corrosion cracking. The leak-before-break (LBB) capability of the primary system piping has been demonstrated as part of an overall structural integrity evaluation. One element of the LBB analyses is a reliability evaluation of the leak detection system. The most sensitive element of the leak detection system is the airborne tritium monitors. The presence of small amounts of tritium in the heavy water coolant provide the basis for a very sensitive system of leak detection. The reliability of the tritium monitors to properly identify a crack leaking at a rate of either 50 or 300 lb/day (0.004 or 0.023 gpm, respectively) has been characterized. These leak rates correspond to action points for which specific operator actions are required. High reliability has been demonstrated using standard fault tree techniques. The probability of not detecting a leak within an assumed mission time of 24 hours is estimated to be approximately 5 x 10 -5 per demand. This result is obtained for both leak rates considered. The methodology and assumptions used to obtain this result are described in this paper. 3 refs., 1 fig., 1 tab

  16. Gas leak tightness of SiC/SiC composites at elevated temperature

    Hayasaka, Daisuke, E-mail: hayasaka@oasis.muroran-it.ac.jp [OASIS, Muroran Institute of Technology, Muroran, Hokkaido (Japan); Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido (Japan); Park, Joon-Soo. [OASIS, Muroran Institute of Technology, Muroran, Hokkaido (Japan); Kishimoto, Hirotatsu [OASIS, Muroran Institute of Technology, Muroran, Hokkaido (Japan); Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido (Japan); Kohyama, Akira [OASIS, Muroran Institute of Technology, Muroran, Hokkaido (Japan)

    2016-11-01

    Highlights: • NITE-SiC/SiC has extremely densified microstructure compared with other SiC/SiC composite like CVI. • Excellent helium and hydrogen gas-leak tightness of SiC/SiC composites by DEMO-NITE method from prototype industrialization production line was presented. • The excellence against stainless steel and Zircaloy at elevated temperature, together with generic excellent properties of SiC will be inevitable for innovative blanket and divertors for DEMO- and power- fusion reactors. - Abstract: SiC/SiC composite materials are attractive candidates for high heat flux components and blanket of fusion reactor, mainly due to their high temperature properties, radiation damage tolerance and low induced radioactivity. One of the challenges for SiC/SiC application in fusion reactors is to satisfy sufficient gas leak tightness of hydrogen and helium isotopes. Although many efforts have been carried-out, SiC/SiC composites by conventional processes have not been successful to satisfy the requirements, except SiC/SiC composites by NITE-methods. Toward the early realization of SiC/SiC components into fusion reactor systems process development of NITE-process has been continued. Followed to the brief introduction of recently developed DEMO-NITE process, baseline properties and hydrogen and helium gas leak tightness is presented. SiC/SiC claddings with 10 mm in diameter and 1 mm in wall thickness are tested by gas leak tightness system developed. The leak tightness measurements are done room temperature to 400 °C. Excellent gas leak tightness equivalent or superior to Zircaloy claddings for light water fission reactors is confirmed. The excellent gas leak tightness suggests nearly perfect suppression of large gas leak path in DEMO-NITE SiC/SiC.

  17. Helium the disappearing element

    Sears, Wheeler M

    2015-01-01

    The subject of the book is helium, the element, and its use in myriad applications including MRI machines, particle accelerators, space telescopes, and of course balloons and blimps. It was at the birth of our Universe, or the Big Bang, where the majority of cosmic helium was created; and stellar helium production continues. Although helium is the second most abundant element in the Universe, it is actually quite rare here on Earth and only exists because of radioactive elements deep within the Earth. This book includes a detailed history of the discovery of helium, of the commercial industry built around it, how the helium we actually encounter is produced within the Earth, and the state of the helium industry today. The gas that most people associate with birthday party balloons is running out. “Who cares?” you might ask. Well, without helium, MRI machines could not function, rockets could not go into space, particle accelerators such as those used by CERN could not operate, fiber optic cables would not...

  18. Helium dilution refrigerator

    1973-01-01

    A new system of continuous heat exchange for a helium dilution refrigerator is proposed. The 3 He effluent tube is concurrent with the affluent mixed helium tube in a vertical downward direction. Heat exchange efficiency is enhanced by placing in series a number of elements with an enlarged surface area

  19. Helium localisation in tritides

    Flament, J.L.; Lozes, G.

    1982-06-01

    Study of titanium and LaNi 5 type alloys tritides lattice parameters evolution revealed that helium created by tritium decay remains in interstitial sites up to a limit material dependant concentration. Beyond this one exceeding helium precipites in voids [fr

  20. Helium trapping in aluminum and sintered aluminum powders

    Das, S.K.; Kaminsky, M.; Rossing, T.

    1975-01-01

    The surface erosion of annealed aluminum and of sintered aluminum powder (SAP) due to blistering from implantation of 100-keV 4 He + ions at room temperature has been investigated. A substantial reduction in the blistering erosion rate in SAP was observed from that in pure annealed aluminum. In order to determine whether the observed reduction in blistering is due to enhanced helium trapping or due to helium released, the implanted helium profiles in annealed aluminum and in SAP have been studied by Rutherford backscattering. The results show that more helium is trapped in SAP than in aluminum for identical irradiation conditions. The observed reduction in erosion from helium blistering in SAP is more likely due to the dispersion of trapped helium at the large Al-Al 2 O 3 interfaces and at the large grain boundaries in SAP than to helium release

  1. Evaluation of helium cooling for fusion divertors

    Baxi, C.B.

    1993-09-01

    The divertors of future fusion reactors will have a power throughput of several hundred MW. The peak heat flux on the diverter surface is estimated to be 5 to 15 MW/m 2 at an average heat flux of 2 MW/m 2 . The divertors have a requirement of both minimum temperature (100 degrees C) and maximum temperature. The minimum temperature is dictated by the requirement to reduce the absorption of plasma, and the maximum temperature is determined by the thermo-mechanical properties of the plasma facing materials. Coolants that have been considered for fusion reactors are water, liquid metals and helium. Helium cooling has been shown to be very attractive from safety and other considerations. Helium is chemically and neutronically inert and is suitable for power conversion. The challenges associated with helium cooling are: (1) Manifold sizes; (2) Pumping power; and (3) Leak prevention. In this paper the first two of the above design issues are addressed. A variety of heat transfer enhancement techniques are considered to demonstrate that the manifold sizes and the pumping power can be reduced to acceptable levels. A helium-cooled diverter module was designed and fabricated by GA for steady-state heat flux of 10 MW/m 2 . This module was recently tested at Sandia National Laboratories. At an inlet pressure of 4 MPa, the module was tested at a steady-state heat flux of 10 MW/m 2 . The pumping power required was less than 1% of the power removed. These results verified the design prediction

  2. Correlation for boron carbide helium release in fast reactors

    Basmajian, J.A.; Pitner, A.L.

    1977-04-01

    An empirical helium correlation for the helium release from boron carbide has been developed. The correlation provides a good fit to the experimental data in the temperature range from 800 to 1350 0 K, and burnup levels up to 80 x 10 20 captures/cm 3 . The correlation has the capability of extrapolation to 2200 0 K (3500 0 F) and 200 x 10 20 captures/cm 3 . In this range the helium release rate will not exceed the generation rate

  3. Vehicle-based Methane Mapping Helps Find Natural Gas Leaks and Prioritize Leak Repairs

    von Fischer, J. C.; Weller, Z.; Roscioli, J. R.; Lamb, B. K.; Ferrara, T.

    2017-12-01

    Recently, mobile methane sensing platforms have been developed to detect and locate natural gas (NG) leaks in urban distribution systems and to estimate their size. Although this technology has already been used in targeted deployment for prioritization of NG pipeline infrastructure repair and replacement, one open question regarding this technology is how effective the resulting data are for prioritizing infrastructure repair and replacement. To answer this question we explore the accuracy and precision of the natural gas leak location and emission estimates provided by methane sensors placed on Google Street View (GSV) vehicles. We find that the vast majority (75%) of methane emitting sources detected by these mobile platforms are NG leaks and that the location estimates are effective at identifying the general location of leaks. We also show that the emission rate estimates from mobile detection platforms are able to effectively rank NG leaks for prioritizing leak repair. Our findings establish that mobile sensing platforms are an efficient and effective tool for improving the safety and reducing the environmental impacts of low-pressure NG distribution systems by reducing atmospheric methane emissions.

  4. Fully automatic AI-based leak detection system

    Tylman, Wojciech; Kolczynski, Jakub [Dept. of Microelectronics and Computer Science, Technical University of Lodz in Poland, ul. Wolczanska 221/223, Lodz (Poland); Anders, George J. [Kinectrics Inc., 800 Kipling Ave., Toronto, Ontario M8Z 6C4 (Canada)

    2010-09-15

    This paper presents a fully automatic system intended to detect leaks of dielectric fluid in underground high-pressure, fluid-filled (HPFF) cables. The system combines a number of artificial intelligence (AI) and data processing techniques to achieve high detection capabilities for various rates of leaks, including leaks as small as 15 l per hour. The system achieves this level of precision mainly thanks to a novel auto-tuning procedure, enabling learning of the Bayesian network - the decision-making component of the system - using simulated leaks of various rates. Significant new developments extending the capabilities of the original leak detection system described in and form the basis of this paper. Tests conducted on the real-life HPFF cable system in New York City are also discussed. (author)

  5. Leak detection and localization system through acoustics; Sistema de deteccao e localizacao de vazamentos por acustica

    Alonso, Julio [Aselco Automacao, Sao Paulo, SP (Brazil)

    2003-07-01

    Acoustic Leak Detection Systems (ALDS) are used on both liquid and gas pipelines as well as multi-phase flow pipelines to detect leaks quickly and provide a means of limiting product loss. The real-time acoustic signal is continuously compared against signature leak profiles for the particular operating and geometric conditions. These profiles were developed from a database established from over 20 years of experimental and field leak tests. This technique not only drastically reduces the false alarm rate, but also significantly improves the sensitivity and leak location accuracy. This system will also detect leaks with shut-in flow (zero flow rate in the pipeline). With the use of GPS (Global Positioning System) it not only improves leak location accuracy, but also allows for continuous leak detection during the loss of communications. (author)

  6. Sealing of leaks in the bioshield cooling system of three research reactors

    May, R.; Taylor, M.F.

    1995-01-01

    Water leaks have occurred in the bioshield cooling system of three research reactors. These leaks have been plugged with a sealant based on a blend of a water-based resin and a bentonite-type clay originally developed for sealing similar leaks on power reactors. The mechanism of sealing and development testing of the sealant are described. Application of the sealant to the three reactors sealed the leaks. However, unlike experience with leaks in steel and aluminium systems, some leaks reappeared after several months service - albeit at a leak rate only a very small fraction of the original leak rate. The recurrent defects were readily retreated with sealant and hence, in these instances, the treatment is an effective maintenance procedure for any ageing reactor rather than a permanent cure. (orig.)

  7. Novel Methods of Hydrogen Leak Detection

    Pushpinder S Puri

    2006-01-01

    With the advent of the fuel cell technology and a drive for clean fuel, hydrogen gas is emerging as a leading candidate for the fuel of choice. For hydrogen to become a consumer fuel for automotive and domestic power generation, safety is paramount. It is, therefore, desired to have a method and system for hydrogen leak detection using odorant which can incorporate a uniform concentration of odorant in the hydrogen gas, when odorants are mixed in the hydrogen storage or delivery means. It is also desired to develop methods where the odorant is not added to the bulk hydrogen, keeping it free of the odorization additives. When odorants are not added to the hydrogen gas in the storage or delivery means, methods must be developed to incorporate odorant in the leaking gas so that leaks can be detected by small. Further, when odorants are not added to the stored hydrogen, it may also be desirable to observe leaks by sight by discoloration of the surface of the storage or transportation vessels. A series of novel solutions are proposed which address the issues raised above. These solutions are divided into three categories as follows: 1. Methods incorporating an odorant in the path of hydrogen leak as opposed to adding it to the hydrogen gas. 2. Methods where odorants are generated in-situ by chemical reaction with the leaking hydrogen 3. Methods of dispensing and storing odorants in high pressure hydrogen gas which release odorants to the gas at a uniform and predetermined rates. Use of one or more of the methods described here in conjunction with appropriate engineering solutions will assure the ultimate safety of hydrogen use as a commercial fuel. (authors)

  8. Reliability of leak detection systems in light water reactors

    Kupperman, D.S.

    1987-01-01

    US Nuclear Regulatory Commission Guide 1.45 recommends the use of at least three different detection methods in reactors to detect leakage. Monitoring of both sump-flow and airborne particulate radioactivity is recommended. A third method can involve either monitoring of condensate flow rate from air coolers or monitoring of airborne gaseous radioactivity. Although the methods currently used for leak detection reflect the state of the art, other techniques may be developed and used. Since the recommendations of Regulatory Guide 1.45 are not mandatory, the technical specifications for 74 operating plants have been reviewed to determine the types of leak detection methods employed. In addition, Licensee Event Report (LER) Compilations from June 1985 to June 1986 have been reviewed to help establish actual capabilities for detecting leaks and determining their source. Work at Argonne National Laboratory has demonstrated that improvements in leak detection, location, and sizing are possible with advanced acoustic leak detection technology

  9. Deconstructing Gender Stereotypes in Leak

    Nengah Bawa Atmadja

    2015-05-01

    Full Text Available The belief of Balinese people towards leak still survive. Leak is a magic based on durgaism that can transform a person from human to another form, such as apes, pigs, etc. People tend to regard leak as evil. In general, the evilness is constructed in gender stereotypes, so it is identified that leak are always women. This idea is a power game based on the ideology of patriarchy that provides legitimacy for men to dominate women with a plea for social harmony. As a result, women are marginalized in the Balinese society. Women should be aware of so it would provide encouragement for them to make emancipatory changes dialogically. Kepercayaan orang Bali terhadap leak tetap bertahan sampai saat ini. Leak adalah sihir yang berbasiskan durgaisme yang dapat mengakibatkan seseorang bisa merubah bentuk dari manusia ke wujud yang lain, misalnya kera, babi, dll. Leak termasuk magi hitam sehingga dinilai bersifat jelek. Pada umumnya perempuan diidentikkan dengan leak sehingga melahirkan asumsi yang bermuatan steriotip gender bahwa leak = perempuan. Gagasan ini merupakan permainan kekuasaan berbasis ideologi patriarkhi dan sekaligus memberikan legitimasi bagi laki-laki untuk menguasai perempuan dengan dalih demi keharmonisan sosial. Akibatnya, perempuan menjadi termarginalisasi pada masyarakat Bali.  Perempuan harus menyadarinya sehingga memberikan dorongan bagi mereka untuk melakukan perubahan secara dialogis emansipatoris.

  10. Configuration and testing of a saturated vapor helium compressor

    Ludwigsen, J.L.; Iwasa, Y.; Smith, J.L.

    1986-01-01

    A saturated vapor helium compressor was designed and tested as a component of a helium-temperature refrigeration cycle. The use of the cold compressor allows reduction of both the precooling heat exchanger area and main compressor size compared to a conventional cycle due to increased pressure of the return gas. The compressor tested was a single-piston reciprocating device which was controlled with programmable hydraulic/pneumatic logic. The compressor was mounted at the cold end of a CTI Model 1400 helium liquefier. An average compression ratio of 2.4 was obtained and an average efficiency of 82% was achieved. In computing compressor efficiency, external heat leaks to the compressor were neglected

  11. Intraoperative air leak measured after lobectomy is associated with postoperative duration of air leak.

    Brunelli, Alessandro; Salati, Michele; Pompili, Cecilia; Gentili, Paolo; Sabbatini, Armando

    2017-11-01

    To verify the association between the air leak objectively measured intraoperatively (IAL) using the ventilator and the air leak duration after pulmonary lobectomy. Prospective analysis on 111 patients submitted to pulmonary lobectomy (33 by video-assisted thoracic surgery). After resection, objective assessment of air leak (in milliliter per minute) was performed before closure of the chest by measuring the difference between a fixed inspired and expired volume, using a tidal volume of 8 ml/kg, a respiratory rate of 10 and a positive-end expiratory pressure of 5 cmH2O. A multivariable analysis was performed for identifying factors associated with duration of postoperative air leak. Average IAL was 158 ml/min (range 0-1500 ml/min). The best cut-off (receiver-operating characteristics analysis) associated with air leak longer than 5 days was 500 ml/min. Nine patients had IAL >500 ml/min (8%). They had a longer duration of postoperative air leak compared with those with a lower IAL (mean values, 10.1 days, SD 8.8 vs 1.5 days, SD 4.9 P leak duration after multivariable regression: left side resection (P = 0.018), upper site resection (P = 0.031) and IAL >500 ml/min (P leak duration was generated: 1.7 + 2.4 × left side + 2.2 × upper site + 8.8 × IAL >500. The air leak measurement using the ventilator parameters after lung resection may assist in estimating the risk of postoperative prolonged air leak. An IAL > 500 ml/min may warrant the use of intraoperative preventative measures, particularly after video-assisted thoracic surgery lobectomy where a submersion test is often unreliable. © 2017 European Society of Cardiology and European Atherosclerosis Association. All rights reserved. For permissions please email: journals.permissions@oup.com.

  12. Radiation leaking protection device

    Sunami, Yoshio; Mitsumori, Kojiro

    1980-01-01

    Purpose: To prevent radioactivity from leaking outside of a reactor container by way of pipeways passing therethrough, by supplying pressurized fluid between each of a plurality of valves for separating the pipeways. Constitution: Pressurized fluid is supplied between each of a plurality of valves for separating pipeways. For instance, water in a purified water tank is pressurized by a pressure pump and the pressure of the pressurized water is controlled by a differential pressure detector, a pressure controller and a pressure control valve. In the case if a main steam pipe is ruptured outside of the reactor container or to be repaired, the separation valves are wholly closed and then the pressurizing device is actuated to supply pressurized water containing no radioactivity from the purified water tank to the position between the valves. The pressure in the pressurized water is controlled such that it is always higher by a predetermined level than the pressure in the reactor. This prevents the radioacitivity in the reactor core from leaking outside of the container passing through the valves, whereby radiation exposure in the working can be reduced and the circumferential contamination upon accident of pipeway rupture can be decreased. (Kawakami, Y.)

  13. CSNI specialist meeting on leak-before-break in nuclear reactor piping: proceedings

    1984-08-01

    On September 1 and 2, 1983, the CSNI subcommittee on primary system integrity held a special meeting in Monterey, California, on the subject of leak-before-break in nuclear reactor piping systems. The purpose of the meeting was to provide an international forum for the exchange of ideas, positions, and research results; to identify areas requiring additional research and development; and to determine the general attitude toward acceptance of the leak-before-break concept. The importance of the leak-before-break issue was evidenced by excellent attendance at the meeting and through active participation by the meeting attendees. Approximately 125 people representing fifteen different nations attended the meeting. The meeting was divided into four technical sessions addressing the following areas: Application of Piping Fracture Mechanics to Leak-Before Break, Leak Rate and Leak Detection, Leak-Before-Break Studies, Methods and Results, Current and Proposed Positions on Leak-Before-Break.

  14. CSNI specialist meeting on leak-before-break in nuclear reactor piping: proceedings

    1984-08-01

    On September 1 and 2, 1983, the CSNI subcommittee on primary system integrity held a special meeting in Monterey, California, on the subject of leak-before-break in nuclear reactor piping systems. The purpose of the meeting was to provide an international forum for the exchange of ideas, positions, and research results; to identify areas requiring additional research and development; and to determine the general attitude toward acceptance of the leak-before-break concept. The importance of the leak-before-break issue was evidenced by excellent attendance at the meeting and through active participation by the meeting attendees. Approximately 125 people representing fifteen different nations attended the meeting. The meeting was divided into four technical sessions addressing the following areas: Application of Piping Fracture Mechanics to Leak-Before Break, Leak Rate and Leak Detection, Leak-Before-Break Studies, Methods and Results, Current and Proposed Positions on Leak-Before-Break

  15. Measurement of OH density and air-helium mixture ratio in an atmospheric-pressure helium plasma jet

    Yonemori, Seiya; Ono, Ryo; Nakagawa, Yusuke; Oda, Tetsuji

    2012-01-01

    The absolute density of OH radicals in an atmospheric-pressure helium plasma jet is measured using laser-induced fluorescence (LIF). The plasma jet is generated in room air by applying a pulsed high voltage onto a quartz tube with helium gas flow. The time-averaged OH density is 0.10 ppm near the quartz tube nozzle, decreasing away from the nozzle. OH radicals are produced from water vapour in the helium flow, which is humidified by water adsorbed on the inner surface of the helium line and the quartz tube. When helium is artificially humidified using a water bubbler, the OH density increases with humidity and reaches 2.5 ppm when the water vapour content is 200 ppm. Two-dimensional distribution of air-helium mixture ratio in the plasma jet is also measured using the decay rate of the LIF signal waveform which is determined by the quenching rate of laser-excited OH radicals. (paper)

  16. 40 CFR 63.1005 - Leak repair.

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Leak repair. 63.1005 Section 63.1005... Standards for Equipment Leaks-Control Level 1 § 63.1005 Leak repair. (a) Leak repair schedule. The owner or operator shall repair each leak detected no later than 15 calendar days after it is detected, except as...

  17. 40 CFR 63.1024 - Leak repair.

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Leak repair. 63.1024 Section 63.1024... Standards for Equipment Leaks-Control Level 2 Standards § 63.1024 Leak repair. (a) Leak repair schedule. The owner or operator shall repair each leak detected as soon as practical, but not later than 15 calendar...

  18. 40 CFR 65.105 - Leak repair.

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Leak repair. 65.105 Section 65.105... FEDERAL AIR RULE Equipment Leaks § 65.105 Leak repair. (a) Leak repair schedule. The owner or operator shall repair each leak detected as soon as practical but not later than 15 calendar days after it is...

  19. Measurement of the initial population and decay rate of the ($\\mu ^{4}He)_{2S}^{+}$ system in a helium target at 50 atm

    Bertin, A; Gorini, G; Pitzurra, O; Polacco, E; Torelli, G; Vitale, A; Zavattini, E

    1974-01-01

    The fraction ( epsilon /sub 25/) of negative muons captured by the 2S level of He atoms and the lifetime tau /sub 2S/ of the muons at this level has been observed with pure helium gas at 50 'atm' and 293K. epsilon /sub 2S/, with no Stark effect, =(4.3+or-0.6)*10/sup -2/, for max. Stark effect, =(3.5+or-0.5)*10/sup -2/ and is insignificantly pressure dependent. tau /sub 2S/=(1.43+or-0.15) mu sec. X-rays from a 2S level two-photon decay and the delayed muon decay electron were observed. (7 refs).

  20. Helium release from radioisotope heat sources

    Peterson, D.E.; Early, J.W.; Starzynski, J.S.; Land, C.C.

    1984-05-01

    Diffusion of helium in /sup 238/PuO/sub 2/ fuel was characterized as a function of the heating rate and the fuel microstructure. The samples were thermally ramped in an induction furnace and the helium release rates measured with an automated mass spectrometer. The diffusion constants and activation energies were obtained from the data using a simple diffusion model. The release rates of helium were correlated with the fuel microstructure by metallographic examination of fuel samples. The release mechanism consists of four regimes, which are dependent upon the temperature. Initially, the release is controlled by movement of point defects combined with trapping along grain boundaries. This regime is followed by a process dominated by formation and growth of helium bubbles along grain boundaries. The third regime involves volume diffusion controlled by movement of oxygen vacancies. Finally, the release at the highest temperatures follows the diffusion rate of intragranular bubbles. The tendency for helium to be trapped within the grain boundaries diminishes with small grain sizes, slow thermal pulses, and older fuel.

  1. Helium release from radioisotope heat sources

    Peterson, D.E.; Early, J.W.; Starzynski, J.S.; Land, C.C.

    1984-05-01

    Diffusion of helium in 238 PuO 2 fuel was characterized as a function of the heating rate and the fuel microstructure. The samples were thermally ramped in an induction furnace and the helium release rates measured with an automated mass spectrometer. The diffusion constants and activation energies were obtained from the data using a simple diffusion model. The release rates of helium were correlated with the fuel microstructure by metallographic examination of fuel samples. The release mechanism consists of four regimes, which are dependent upon the temperature. Initially, the release is controlled by movement of point defects combined with trapping along grain boundaries. This regime is followed by a process dominated by formation and growth of helium bubbles along grain boundaries. The third regime involves volume diffusion controlled by movement of oxygen vacancies. Finally, the release at the highest temperatures follows the diffusion rate of intragranular bubbles. The tendency for helium to be trapped within the grain boundaries diminishes with small grain sizes, slow thermal pulses, and older fuel

  2. Experiments in LEENA facility with modified wire type leak detector layout in large sodium pipelines

    Vijayakumar, G.; Chandramouli, S.; Nashine, B.K.; Selvaraj, P.; Rajan, K.K.

    2017-01-01

    Highlights: • FBR large horizontal secondary pipeline were simulated and five sodium leak experiments were conducted by providing modified wire type leak detector layout at 550 °C. • Early detection of sodium leak is needed for minimizing the sodium leaked out and consequent damages. • PFBR leak detector layout on large horizontal pipelines can detect a leak rate of 200 g/h within 6 h. • By reducing the distance between leak point and detector to half, detection time was reduced to 1/6th and found that a leak rate of 200 g/h can be detected in one hour. • A relationship between leak rate and detection time was established based on experimental results. - Abstract: Sodium cooled Fast Breeder Reactors (SFRs) are envisaged in the second phase of Indian nuclear power programme. Liquid sodium is used as the coolant in the SFRs due to its favourable nuclear properties and excellent heat transfer properties. Leaks in sodium systems have the potential of being exceptionally hazardous due to the reaction of liquid sodium with oxygen and water vapour in the air. When a sodium leak occurs, the sodium leak rate, the total quantity of sodium leaked and leak detector layout governs the detection time. Other factors to be considered are insulation material packing condition, distance between the leak point and detector, heater layout, pipe geometry, temperature etc. Potential regions of leakage in Fast Breeder Reactor (FBR) sodium circuits are near welds, high stress areas and regions subjected to thermal striping. Early detection of leak is needed for minimizing the quantity of sodium leaked to outside and consequent damages. Three wire type leak detectors (WLDs positioned at 90°, 180° and 270°) working on conductivity principle are used for detecting sodium leak in the large horizontal secondary sodium pipelines of Prototype Fast Breeder Reactor (PFBR). It was found from the upper boundary curve based on LEENA (LEak Experiments in NAtrium) facility experimental

  3. Full scale leak test of the MEGAPIE containment hull

    Samec, K

    2006-07-15

    The Full Scale Leak Test (FSLT) experiment is designed to replicate an accidental leak of Lead-Bismuth Eutectic (LBE) liquid metal from the MEGAPIE neutron spallation source. The neutron source is totally encased in an aluminum containment hull cooled by heavy water. Any liquid metal which would, in a hypothetical accident, leak into the helium-filled insulation gap between the source and the aluminum containment hull, would immediately impact the hull. Furthermore, during irradiation in the PSI SINQ facility, the LBE in the MEGAPIE Lower Liquid Metal Container (LLMC) accumulates radio-active substances which, in the event of a leak, must be cooled and contained under controlled conditions, as they may otherwise contaminate the facility. The FSLT experiment has been devised to fully test the structural integrity of the containment hull against a sudden liquid metal leak, and in addition, to resolve the peak temperature of he coolant, to validate the sensors used in detecting a leak and of proof-test the analytical methods used in predicting the consequences of a leak. The FSLT experiment has been analysed ahead of the test, and both thermal and structural aspects calculated using commercial codes. The predictions applied conservative assumptions to the analysis of the thermal shock so as to preclude the likelihood of an unforeseen failure of the hull. In this document, these initial predictions are compared to the temperature and strain data recorded in the experiment. Further analysis, to be published at a later stage, will focus on applying actual conditions realised in the experiment, as opposed to the envelope case used in the test predictions. The integrity of the containment hull under loads resulting from liquid metal-leak is therefore the focal point of the experiment described in the current document, and serves as a key reference test for the Iicensing of the facility. The data recorded during the SLT experiment shows that the MEGAPIE containment hull is

  4. Full scale leak test of the MEGAPIE containment hull

    Samec, K.

    2006-07-01

    The Full Scale Leak Test (FSLT) experiment is designed to replicate an accidental leak of Lead-Bismuth Eutectic (LBE) liquid metal from the MEGAPIE neutron spallation source. The neutron source is totally encased in an aluminum containment hull cooled by heavy water. Any liquid metal which would, in a hypothetical accident, leak into the helium-filled insulation gap between the source and the aluminum containment hull, would immediately impact the hull. Furthermore, during irradiation in the PSI SINQ facility, the LBE in the MEGAPIE Lower Liquid Metal Container (LLMC) accumulates radio-active substances which, in the event of a leak, must be cooled and contained under controlled conditions, as they may otherwise contaminate the facility. The FSLT experiment has been devised to fully test the structural integrity of the containment hull against a sudden liquid metal leak, and in addition, to resolve the peak temperature of he coolant, to validate the sensors used in detecting a leak and of proof-test the analytical methods used in predicting the consequences of a leak. The FSLT experiment has been analysed ahead of the test, and both thermal and structural aspects calculated using commercial codes. The predictions applied conservative assumptions to the analysis of the thermal shock so as to preclude the likelihood of an unforeseen failure of the hull. In this document, these initial predictions are compared to the temperature and strain data recorded in the experiment. Further analysis, to be published at a later stage, will focus on applying actual conditions realised in the experiment, as opposed to the envelope case used in the test predictions. The integrity of the containment hull under loads resulting from liquid metal-leak is therefore the focal point of the experiment described in the current document, and serves as a key reference test for the Iicensing of the facility. The data recorded during the SLT experiment shows that the MEGAPIE containment hull is

  5. ISS Ammonia Leak Detection Through X-Ray Fluorescence

    Camp, Jordan; Barthelmy, Scott; Skinner, Gerry

    2013-01-01

    Ammonia leaks are a significant concern for the International Space Station (ISS). The ISS has external transport lines that direct liquid ammonia to radiator panels where the ammonia is cooled and then brought back to thermal control units. These transport lines and radiator panels are subject to stress from micrometeorites and temperature variations, and have developed small leaks. The ISS can accommodate these leaks at their present rate, but if the rate increased by a factor of ten, it could potentially deplete the ammonia supply and impact the proper functioning of the ISS thermal control system, causing a serious safety risk. A proposed ISS astrophysics instrument, the Lobster X-Ray Monitor, can be used to detect and localize ISS ammonia leaks. Based on the optical design of the eye of its namesake crustacean, the Lobster detector gives simultaneously large field of view and good position resolution. The leak detection principle is that the nitrogen in the leaking ammonia will be ionized by X-rays from the Sun, and then emit its own characteristic Xray signal. The Lobster instrument, nominally facing zenith for its astrophysics observations, can be periodically pointed towards the ISS radiator panels and some sections of the transport lines to detect and localize the characteristic X-rays from the ammonia leaks. Another possibility is to use the ISS robot arm to grab the Lobster instrument and scan it across the transport lines and radiator panels. In this case the leak detection can be made more sensitive by including a focused 100-microampere electron beam to stimulate X-ray emission from the leaking nitrogen. Laboratory studies have shown that either approach can be used to locate ammonia leaks at the level of 0.1 kg/day, a threshold rate of concern for the ISS. The Lobster instrument uses two main components: (1) a microchannel plate optic (also known as a Lobster optic) that focuses the X-rays and directs them to the focal plane, and (2) a CCD (charge

  6. Chemochromic Hydrogen Leak Detectors

    Roberson, Luke; Captain, Janine; Williams, Martha; Smith, Trent; Tate, LaNetra; Raissi, Ali; Mohajeri, Nahid; Muradov, Nazim; Bokerman, Gary

    2009-01-01

    At NASA, hydrogen safety is a key concern for space shuttle processing. Leaks of any level must be quickly recognized and addressed due to hydrogen s lower explosion limit. Chemo - chromic devices have been developed to detect hydrogen gas in several embodiments. Because hydrogen is odorless and colorless and poses an explosion hazard, there is an emerging need for sensors to quickly and accurately detect low levels of leaking hydrogen in fuel cells and other advanced energy- generating systems in which hydrogen is used as fuel. The device incorporates a chemo - chromic pigment into a base polymer. The article can reversibly or irreversibly change color upon exposure to hydrogen. The irreversible pigment changes color from a light beige to a dark gray. The sensitivity of the pigment can be tailored to its application by altering its exposure to gas through the incorporation of one or more additives or polymer matrix. Furthermore, through the incorporation of insulating additives, the chemochromic sensor can operate at cryogenic temperatures as low as 78 K. A chemochromic detector of this type can be manufactured into any feasible polymer part including injection molded plastic parts, fiber-spun textiles, or extruded tapes. The detectors are simple, inexpensive, portable, and do not require an external power source. The chemochromic detectors were installed and removed easily at the KSC launch pad without need for special expertise. These detectors may require an external monitor such as the human eye, camera, or electronic detector; however, they could be left in place, unmonitored, and examined later for color change to determine whether there had been exposure to hydrogen. In one type of envisioned application, chemochromic detectors would be fabricated as outer layers (e.g., casings or coatings) on high-pressure hydrogen storage tanks and other components of hydrogen-handling systems to provide visible indications of hydrogen leaks caused by fatigue failures or

  7. Acoustic Leak Detection under Micro and Small Water Steam Leaks into Sodium for a Protection of the SFR Steam Generator

    Kim, Tae-Joon; Jeong, Ji-Young; Kim, Jong-Man; Kim, Byung-Ho; Hahn, Do-Hee; Yugay, Valeriy S.

    2008-01-01

    The results of an experimental study of water in a sodium leak noise spectrum formation related with a leak noise attenuation and absorption, and at various rates of water into a sodium leak, smaller than 1.0 g/s, are presented. We focused on studying the micro leak dynamics with an increasing rate of water into sodium owing to a self-development from 0.005 till 0.27 g/s. Conditions and ranges for the existence of bubbling and jetting modes in a water steam outflow into circulating sodium through an injector device, for simulating a defect in a wall of a heat-transmitting tube of a sodium water steam generator were determined. On the basis of the experimental leak noise data the simple dependency of an acoustic signal level from the rate of a micro and small leak at different frequency bands is presented to understand the principal analysis for the development of an acoustic leak detection methodology used in a K- 600 steam generator, with the operational experiences for the noise analysis and measurements in BN-600

  8. Steam leak detection in advance reactors via acoustics method

    Singh, Raj Kumar; Rao, A. Rama

    2011-01-01

    Highlights: → Steam leak detection system is developed to detect any leak inside the reactor vault. → The technique uses leak noise frequency spectrum for leak detection. → Testing of system and method to locate the leak is also developed and discussed in present paper. - Abstract: Prediction of LOCA (loss of coolant activity) plays very important role in safety of nuclear reactor. Coolant is responsible for heat transfer from fuel bundles. Loss of coolant is an accidental situation which requires immediate shut down of reactor. Fall in system pressure during LOCA is the trip parameter used for initiating automatic reactor shut down. However, in primary heat transport system operating in two phase regimes, detection of small break LOCA is not simple. Due to very slow leak rates, time for the fall of pressure is significantly slow. From reactor safety point of view, it is extremely important to find reliable and effective alternative for detecting slow pressure drop in case of small break LOCA. One such technique is the acoustic signal caused by LOCA in small breaks. In boiling water reactors whose primary heat transport is to be driven by natural circulation, small break LOCA detection is important. For prompt action on post small break LOCA, steam leak detection system is developed to detect any leak inside the reactor vault. The detection technique is reliable and plays a very important role in ensuring safety of the reactor. Methodology developed for steam leak detection is discussed in present paper. The methods to locate the leak is also developed and discussed in present paper which is based on analysis of the signal.

  9. Tank car leaks gasoline

    Anon.

    1997-01-01

    On January 27, 1994, a Canadian National (CN) tank car loaded with gasoline began to leak from a crack in the tank shell on the end of the car near the stub sill. The tank car had been damaged from impact switching. A part of the tank car was sent for laboratory analysis which concluded that: (1) the fracture originated in two locations in welds, (2) the cracks propagated in a symmetrical manner and progressed into the tank plate, (3) the fracture surface revealed inadequate weld fusion. A stress analysis of the tank car was conducted to determine the coupling force necessary to cause the crack. It was noted that over the last decade several problems have occurred pertaining to stub sill areas of tank cars that have resulted in hazardous material spills. An advisory was sent to Transport Canada outlining many examples where tank cars containing serious defects had passed CN inspections that were specifically designed to identify such defects. 4 figs

  10. The Leaking Pipeline

    Henningsen, Inge; Højgaard, Lis

    2002-01-01

    negotiations of cultural prescriptions of gendered subjectivity and identities, organizational understandings and procedures embedded in specific university cultures, traditional of different science disciplines, and the systemic logic and political rationale of the education and research system....... these positions, and one that maintains that a closer look at the statistics does not support this optimism because women’s percentage in recruitment positions is not increasing as the pool of potential female researchers increases, or to put it metaphorically, “the pipeline is leaking women all along” (Alper...... it identifies and describes a Danish verion of ‘the leaky pipeline’ from analyses of the ratios of women in science from high school through tenured positions. Finally it illustrates the cultural mechanisms at play in this process, based on the results of three studies. The first two analyze the educational...

  11. Detection of heavy-water leaks in nuclear reactors : a novel method

    Murthy, M.S.; Gor, M.K.

    2002-01-01

    Technical Physics and Prototype Engineering Division, BARC has designed, developed and produced several high sensitivity mass spectrometer helium leak detectors over a period of two decades. Sometimes back, when there was a problem of detecting heavy water leaks in situ in one of the nuclear power reactors of the Department of Atomic Energy, it was referred to this division for a technical solution. After discussing with the site engineers, the various problems involved in the on-line detection of heavy water leaks especially near the end fittings of the coolant assemblies, a novel method of leak detection was developed. Some of the salient features of the method and the results obtained in the laboratory tests are given in this paper. (author)

  12. Reducing Uncertainties in the Production of the Gamma-emitting Nuclei {sup 26}Al, {sup 44}Ti, and {sup 60}Fe in Core-collapse Supernovae by Using Effective Helium Burning Rates

    Austin, Sam M. [National Superconducting Cyclotron Laboratory, Michigan State University, 640 South Shaw Lane, East Lansing, MI 48824-1321 (United States); West, Christopher; Heger, Alexander, E-mail: austin@nscl.msu.edu, E-mail: christopher.west@metrostate.edu, E-mail: Alexander.Heger@Monash.edu [Joint Institute for Nuclear Astrophysics—Center for the Evolution of the Elements, Michigan State University, East Lansing, MI 48824-1321 (United States)

    2017-04-10

    We have used effective reaction rates (ERRs) for the helium burning reactions to predict the yield of the gamma-emitting nuclei {sup 26}Al, {sup 44}Ti, and {sup 60}Fe in core-collapse supernovae (SNe). The variations in the predicted yields for values of the reaction rates allowed by the ERR are much smaller than obtained previously, and smaller than other uncertainties. A “filter” for SN nucleosynthesis yields based on pre-SN structure was used to estimate the effect of failed SNe on the initial mass function averaged yields; this substantially reduced the yields of all these isotopes, but the predicted yield ratio {sup 60}Fe/{sup 26}Al was little affected. The robustness of this ratio is promising for comparison with data, but it is larger than observed in nature; possible causes for this discrepancy are discussed.

  13. Detection of steam generator tube leaks in pressurized water reactors

    Roach, W.H.

    1985-01-01

    This report addresses the early detection of small steam generator tube leaks in pressurized water reactors. It discusses the third, and final, year's work on an NRC-funded project examining diagnostic instrumentation in water reactors. The first two years were broad in coverage, concentrating on anticipatory measurements for detection of potential problems in both pressurized- and boiling-water reactors, with recommendations for areas of further study. One of these areas, the early detection of small steam tube leaks in PWRs, formed the basis of study for the last year of the project. Four tasks are addressed in this study of the detection of steam tube leaks. (1) Determination of which physical parameters indicate the onset of steam generator tube leaks. (2) Establishing performance goals for diagnostic instruments which could be used for early detection of steam generator tube leaks. (3) Defining the diagnostic instrumentation and their location which satisfy Items 1 and 2 above. (4) Assessing the need for diagnostic data processing and display. Parameters are identified, performance goals established, and sensor types and locations are specified in the report, with emphasis on the use of existing instrumentation with a minimum of retrofitting. A simple algorithm is developed which yields the leak rate as a function of known or measurable quantities. The conclusion is that leak rates of less than one-tenth gram per second should be detectable with existing instrumentation. (orig./HP)

  14. Neutron-induced helium implantation in GCFR cladding

    Yamada, H.; Poeppel, R.B.; Sevy, R.H.

    1980-10-01

    The neutron-induced implantation of helium atoms on the exterior surfaces of the cladding of a prototypic gas-cooled fast reactor (GCFR) has been investigated analytically. A flux of recoil helium particles as high as 4.2 x 10 10 He/cm 2 .s at the cladding surface has been calculated at the peak power location in the core of a 300-MWe GCFR. The calculated profile of the helium implantation rates indicates that although some helium is implanted as deep as 20 μm, more than 99% of helium particles are implanted in the first 2-μm-deep layer below the cladding surface. Therefore, the implanted helium particles should mainly affect surface properties of the GCFR cladding

  15. Impact of process parameters and design options on heat leaks of straight cryogenic distribution lines

    P. Duda

    2017-03-01

    Full Text Available The Future Circular Collider (FCC accelerator will require a helium distribution system that will exceed the presently exploited transfer lines by almost 1 order of magnitude. The helium transfer line will contain five process pipes protected against heat leaks by a common thermal shield. The design pressure of the FCC process pipe with supercritical helium will be equal to 5.0 MPa, significantly exceeding the 2.0 MPa value in the present, state-of–art transfer lines. The increase of the design pressure requires construction changes to be introduced to the support system, the vacuum barriers and the compensation bellows. This will influence heat flows to the helium. The paper analyses the impact of the increased design pressure on the heat flow. The paper also offers a discussion of the design modifications to the compensation system, including the replacement of stainless steel with Invar®—aimed at mitigating the pressure increase.

  16. Impact of process parameters and design options on heat leaks of straight cryogenic distribution lines

    Duda, Pawel; Chorowski, Maciej Pawel; Polinski, J

    2017-01-01

    The Future Circular Collider (FCC) accelerator will require a helium distribution system that will exceed the presently exploited transfer lines by almost 1 order of magnitude. The helium transfer line will contain five process pipes protected against heat leaks by a common thermal shield. The design pressure of the FCC process pipe with supercritical helium will be equal to 5.0 MPa, significantly exceeding the 2.0 MPa value in the present, state-of–art transfer lines. The increase of the design pressure requires construction changes to be introduced to the support system, the vacuum barriers and the compensation bellows. This will influence heat flows to the helium. The paper analyses the impact of the increased design pressure on the heat flow. The paper also offers a discussion of the design modifications to the compensation system, including the replacement of stainless steel with Invar—aimed at mitigating the pressure increase.

  17. Influence of Crack Morphology on Leak Before Break Margins

    Weilin Zang

    2007-11-01

    The purpose of the project is to evaluate the deterministic LBB-margins for different pipe systems in a Swedish PWR-plant and using different crack morphology parameters. Results: - The influence of crack morphology on Leak Before Break (LBB) margins is studied. The subject of the report is a number of LBB-submittals to SKI where deterministic LBB-margins are reported. These submittals typically uses a surface roughness of 0.0762 mm (300 microinch) and number of turns equal to zero and an in-house code for the leak rate evaluations. The present report has shown that these conditions give the largest LBB-margins both in terms of the quotient between the critical crack length and the leakage crack size and for the leak rate margin. - Crack morphology parameters have a strong influence on the leak rate evaluations. Using the SQUIRT code and more recent recommendations for crack morphology parameters, it is shown that in many cases the evaluated margins, using 1 gpm as the reference leak rate detection limit, are below the safety factor of 2 on crack size and 10 on leak rate, which is generally required for LBB approval. - The effect of including weld residual stresses on the LBB margins is also investigated. It is shown that for the two examples studied, weld residual stresses were important for the small diameter thin wall pipe whereas it was negligible for the large diameter thick wall pipe which had a self-balanced weld residual stress distribution

  18. Pumping and leak detection system of the HL-2A

    Cao Zeng; Xu Yunxian; Fu Weidong

    2001-01-01

    The pumping system is a combination of 8 turbomolecular pumps with three stages pumping for HL-2A vacuum vessel, a total effective pumping speed at the vessel of 12 m 3 ·s -1 for nitrogen. The leak detection of element and vessel is performed with inspiration, case of leak detection and two mass spectrometry. The total leak rate of vessel is bellow 1 x 10 -5 Pa ·m 3 ·s -1 . The base pressure is 1 x 10 -5 Pa

  19. Study of the characteristics of water into sodium leak acoustic noise in LMR steam generator

    Kim, Tae Joon; Jeong, Kyung Chai; Jeong, Ji Young; Hur, Seop; Nam, Ho Yun

    2005-01-01

    A successful time for detecting a water/steam leak into sodium in the LMR SG (steam generator) at an early phase of a leak origin depends on the fast response and sensitivity of a leak detection system. It is considered, that the acoustic system is intended for a fast detecting of a water/steam into sodium leak of an intermediate flow rate, 1∼10 g/s. This intention of an acoustic system is stipulated by a key impossibility of a fast detecting of an intermediate leak by the present nominal systems on measuring the hydrogen in the sodium and in the cover gas concentration generated at a leak. During the self-wastage of a water/steam into sodium leak in a particular instant, it is usual in 30∼40 minutes from the moment of a leak origin, there is a modification of a leak flow out regime from bubble regime to the steam jet outflow. This evolution occurs as a jump function of the self-wastage of a leak and is escorted by an increase of a leak noise power and qualitative change of a leak noise spectrum. Subject of this study is by means of two experiments, one is an acoustic leak noise analysis of the water into sodium leak results in no damage to the LMR SG tube bundle, and another is for prediction of the frequency band under a high outflow leak condition. We experimented with the Argon gas injection considered with the phenomena of secondary leaks in real

  20. Estimating particle release through gas leaks in dry powder shipping containers

    Schwendiman, L.C.

    1977-06-01

    Information is presented from which an estimate can be made of the release of plutonium oxide from shipping containers. The leak diameter is estimated from gas leak tests of the container and an estimate is made of gas leak rate as a function of pressure over the time of interest in the accident. These calculations are limited in accuracy because of assumptions regarding leak geometry and the basic formulations of hydrodynamic flow for the assumed conditions. Sonic flow is assumed to be the limiting gas flow rate. Particles leaking from the air space above the powder will be limited by the low availability of particles due to rapid settling, the very limited driving force (pressure buildup) during the first minute, and the deposition in the leak channel. Equations are given to estimate deposition losses. Leaks of particles occurring below the level of the bulk powder will be limited by mechanical interference when leaks are of dimension smaller than particle sizes present. Some limiting cases can be calculated. When the leak dimension is large compared to the particle sizes present, maximum particle releases can be estimated, but will be very conservative. Further theoretical and experimental studies are needed to better define the hydrodynamics of gas flow in leaks of the size being considered, and to establish particle transport rates through known geometry leak paths

  1. Experiments on leak-selfwastage and leak-propagation

    Voss, J.; Vagt, P.; Westenbrugge, J.K. van; Joziasse, J.

    1984-01-01

    During the last years a considerable number of selfwastage experiments with small leaks of different shape and size and for different ferritic materials (2 1/4% Cr - and 12% Cr-steel) were performed by TNO and by INTERATOM, using several sodium test facilities. Many fabrication-methods of artificial micro-leaks were applied and examined. Selfplugging-, selfwastage- and reopening-effects were observed and evaluated during different time periods and under various test conditions. The main results will be discussed. Concerning the leak propagation program of INTERATOM, the first series of experiments was carried out this year. A short status report and some first results will be given. (author)

  2. Clinical Factors and Postoperative Impact of Bile Leak After Liver Resection.

    Martin, Allison N; Narayanan, Sowmya; Turrentine, Florence E; Bauer, Todd W; Adams, Reid B; Stukenborg, George J; Zaydfudim, Victor M

    2018-04-01

    Despite technical advances, bile leak remains a significant complication after hepatectomy. The current study uses a targeted multi-institutional dataset to characterize perioperative factors that are associated with bile leakage after hepatectomy to better understand the impact of bile leak on morbidity and mortality. Adult patients in the 2014-2015 ACS NSQIP targeted hepatectomy dataset were linked to the ACS NSQIP PUF dataset. Bivariable and multivariable regression analyses were used to assess the associations between clinical factors and post-hepatectomy bile leak. Of 6859 patients, 530 (7.7%) had a postoperative bile leak. Proportion of bile leaks was significantly greater in patients after major compared to minor hepatectomy (12.6 vs. 5.1%, p leak was significantly greater in patients after major hepatectomy who had concomitant enterohepatic reconstruction (31.8 vs. 10.1%, p leaks (6.0 vs. 1.7%, p leak was independently associated with increased risk of postoperative morbidity (OR = 4.55; 95% CI 3.72-5.56; p leak was not independently associated with increased risk of postoperative mortality (p = 0.262). Major hepatectomy and enterohepatic biliary reconstruction are associated with significantly greater rates of bile leak after liver resection. Bile leak is independently associated with significant postoperative morbidity. Mitigation of bile leak is critical in reducing morbidity and mortality after liver resection.

  3. Bile Duct Leaks from the Intrahepatic Biliary Tree: A Review of Its Etiology, Incidence, and Management

    Sorabh Kapoor

    2012-01-01

    Full Text Available Bile leaks from the intrahepatic biliary tree are an important cause of morbidity following hepatic surgery and trauma. Despite reduction in mortality for hepatic surgery in the last 2 decades, bile leaks rates have not changed significantly. In addition to posted operative bile leaks, leaks may occur following drainage of liver abscess and tumor ablation. Most bile leaks from the intrahepatic biliary tree are transient and managed conservatively by drainage alone or endoscopic biliary decompression. Selected cases may require reoperation and enteric drainage or liver resection for management.

  4. Autologous Blood Pleurodesis In Patients With Persistent Air Leaks

    Agkajanzadeh M

    2003-10-01

    Full Text Available Persistent air leaks occur after Spontaneous pneumothorax both primary and secondary, and after lungs trauma and lung surgeries are sever problems encountered chest surgeons with. Persistent air leak causes longer patients hospitalization."nMaterials and Methods: We used autologous blood pleurodesis in patients with persistent air leak for 30patients with more than 8 days air leaks, during a three years period 1377-1380 (1999-2002."nResults: The patients had 19 years up to 70 years old. Eight patients had thoracotomy and lobectomy and /or segmentectomies 6 with primary pneumothorax, 10 with secondary pneumothorax, and four with penetrated or blunt thoracic traumas. Blood was obtained from femoral or brachial veins and 70-150 mis. Injected in chest tubes. Chest bottle was first lied 80cm higher than body levels. After 24 hours repositioned in normal levels, and patients were supervised. Via chest tube we injected blood 70-100ml.for young patients, and 100-150 ml for older patients into intra pleural space. There were no clamped chest tubes. There were no pain, respiratory distress, fever, or cough in pleurodesized patients. The only patient's complaint was local pain in femoral vein or brachial vein because blood sampling and blood obtaining, although there was no local visible complication as hematoma or bleeding. After 48 hours in 24 patients air leak ceased. In six patients because persistent air leak autologous blood pleurodesis repeated, two patients after 48hours"nair leak ceased, remaining four patients underwent for thoracotomies, success rate"nwas 86.6%."nConclusion: According above success rate we suggest autologous blood pleurodesis in patients with persistent air leak is a reliable, effective, and no complicated procedure for persistent air leaks.

  5. Effect of helium plasma gas flow rate on the properties of WC-12 wt.%Co coatings sprayed by atmospheric plasma

    Mihailo R. Mrdak

    2014-06-01

    Full Text Available The cermet coatings of WC-12wt.%Co are extensively used to improve the wear resistance of a wide range of technical components. This paper analyses the influence of the plasma gas flow of helium on the microstructure and mechanical properties of WC-12wt.%Co coatings deposited by plasma spraying at atmospheric pressure (APS. In order to obtain homogeneous and denser coatings, three different flows of He ( 8 l/min., 16 l/min. and 32 l/min were used in the research. With the application of He, coatings achieved higher values of hardness due to less degradation of the primary WC carbides. The main goal was to deposit dense and homogeneous layers of WC-12wt.%Co coatings with improved wear resistance for different applications. The test results of the microstructure of the layers were evaluated under a light microscope. The analysis of the microstructure and the mechanical properties of the deposited layers was made in accordance with the standard of Pratt-Whitney. The morphology of the powder particles and the microstructure of the best coating was examined on the SEM (scanning electron microscope. The evaluation of the mechanical properties of the layers was done by applying the HV0.3 method for microhardness testing and by applying tensile testing to test the bond strength. The research has shown that the flow of He plasma gas significantly affects the microstructure, the mechanical properties and the structure of WC-12 wt.%Co coatings.

  6. Water leak detection in steam generator of SUPER PHENIX

    Brunet, M.; Garnaud, P.; Ghaleb, D.; Kong, N.

    1988-01-01

    With the intent of detecting water leaks inside steam generators, we developed a third system, called acoustic detector, to complement hydrogen detectors and rupture disks (burst disks). The role of the acoustic system is to enable rapid intervention in the event of a leak growing rapidly which could rupture neighbouring tubes. In such a case, the detectable flow rate of the leak varies from a few tens of g/s to a few hundred g/s. At the SUPER PHENIX, three teams work in [20-100 kHz] and CEA/STA* [50-300 kHz]. The simulation of water leaks in the steam generator by the argon injections performed to date at 50% of the rated power has shown promising results. An anomaly in the evolution of the background noise at more than 50% loading of one of the two instrumented steam generators would make difficult any extrapolation to full power behaviour. (author)

  7. Measurement of Submerged Oil/Gas Leaks using ROV Video

    Shaffer, Franklin; de Vera, Giorgio; Lee, Kenneth; Savas, Ömer

    2013-11-01

    Drilling for oil or gas in the Gulf of Mexico is increasing rapidly at depths up to three miles. The National Commission on the Deepwater Horizon Oil Leak concluded that inaccurate estimates of the leak rate from the Deepwater Horizon caused an inadequate response and attempts to cap the leak to fail. The first response to a submerged oil/gas leak will be to send a Remotely Operated Vehicle (ROV) down to view the leak. During the response to the Deepwater Horizon crisis, the authors Savas and Shaffer were members of the Flow Rate Technical Group's Plume Team who used ROV video to develop the FRTG's first official estimates of the oil leak rate. Savas and Shaffer developed an approach using the larger, faster jet features (e.g., turbulent eddies, vortices, entrained particles) in the near-field developing zone to measure discharge rates. The authors have since used the Berkeley Tow Tank to test this approach on submerged dye-colored water jets and compressed air jets. Image Correlation Velocimetry has been applied to measure the velocity of visible features. Results from tests in the Berkeley Tow Tank and submerged oil jets in the OHMSETT facility will be presented.

  8. Creep properties of Hastelloy X in a carburizing helium environment

    Nakanishi, T.; Kawakami, H.

    1982-01-01

    In this work, we investigate the environmental effect on the creep behavior of Hastelloy X at 900 0 C in helium and air. Since helium coolant in HTGR is expected to be carburizing and very weakly oxidizing for most metals, testings were focused on the effect of carburizing and slight oxidation. Carburization decreases secondary creep strain rate and delays tertiary creep initiation. On the other hand, the crack growth rate on the specimen surface is enhanced due to very weak oxidation in helium, therefore the tertiary creep strain rate becomes larger than that in air. The rupture time of Hastelloy X was shorter in helium when compared with in air. Stress versus rupture time curves for both environments do not deviate with each other during up to 5000 hours test, and a ratio of rupture stress in helium to that in air was about 0.9

  9. Adsorption pump for helium pumping out

    Donde, A.L.; Semenenko, Yu.E.

    1981-01-01

    Adsorption pump with adsorbent cooling by liquid helium is described. Shuttered shield protecting adsorbent against radiation is cooled with evaporating helium passing along the coil positioned on the shield. The pump is also equipped with primed cylindrical shield, cooled with liquid nitrogen. The nitrogen shield has in the lower part the shuttered shield, on the pump casing there is a valve used for pump pre-burning, and valves for connection to recipient as well. Pumping- out rates are presented at different pressures and temperatures of adsorbent. The pumping-out rate according to air at absorbent cooling with liquid nitrogen constituted 5x10 -4 Pa-3000 l/s, at 2x10 -2 Pa-630 l/s. During the absorbent cooling with liquid hydrogen the pumping-out rate according to air was at 4x10 -4 Pa-580 l/s, at 2x10 -3 Pa-680 l/s, according to hydrogen - at 8x10 -5 Pa-2500 l/s, at 5x10 -3 Pa-4200 l/s. During adsorbent cooling with liquid helium the rate of pumping-out according to hydrogen at 3x10 5 Pa-2400% l/s, at 6x10 3 Pa-1200 l/s, and according to helium at 3.5x10 -5 Pa-2800 l/s, at 4x10 -3 Pa-1150 l/s. The limit vacuum is equal to 1x10 -7 Pa. The volume of the vessel with liquid helium is equal to 3.5 l. Helium consumption is 80 cm 3 /h. Consumption of liquid nitrogen from the shield is 400 cm 3 /h. The limit pressure in the pump is obtained after forevacuum pumping-out (adsorbent regeneration) at 300 K temperature. The pump is made of copper. The pump height together with primed tubes is 800 mm diameter-380 mm [ru

  10. High-temperature helium-loop facility

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100 0 F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system. The experimental capabilities and test conand presents the results that have been obtained. The study has been conducted using a four-phase approach. The first phase develops the solution to the steady-state radon-diffusion equation in one-dimensieered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent f water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, BB, a 200 mK. In case 2), x-ray studies of isotopic phase separation in 3 He-- 4 He bcc solids were carried out by B. A. Fraass

  11. Tube leak detector

    Morita, Bunji; Takamura, Koichi; Matsuda, Shigehiro; Kiyosawa, Shun-ichi; Asami, Toru; Yamada, Hiroshi; Naruse, Shin-ichi.

    1995-01-01

    The device of the present invention detects occurrence of leakage in a steam generator, a steam heating tube, or a heat exchanger of a nuclear power plant. Namely, an vibration sensor is disposed at the rear end of a rod-like supersonic resonance member. A node portion for the vibrations of the resonance member is held by a holding member and attached to a wall surface of a can such as a boiler. With such a constitution, the resonance member is resonated by supersonic waves generated upon leakage of the tube. The vibrations are measured by the vibration sensor at the rear end. Presence of leakage is detected by utilizing one or more of resonance frequencies. Since the device adopts a resonance phenomenon, a conduction efficiency of the vibrations is high, thereby enabling to detect leakage at high sensitivity. In addition, the supersonic wave resonance member has its top end directly protruded into a pressure vessel such as a boiler by using a metal or a ceramic which is excellent in heat and pressure resistance. Accordingly, the sound of leak can be detected efficiently. (I.S.)

  12. An integrated leak detection system for the ALMR steam generator

    Dayal, Y.; Gaubatz, D.C.; Wong, K.K.; Greene, D.A.

    1995-01-01

    The steam generator (SG) of the Advanced Liquid Metal Reactor (ALMR) system serves as a heat exchanger between the shell side secondary loop hot liquid sodium and the tube side water/steam mixture. A leak in the tube will result in the injection of the higher pressure water/steam into the sodium and cause an exothermic sodium-water reaction. An initial small leak (less than 1 gm/sec) can escalate into an intermediate size leak in a relatively short time by self enlargement of the original flaw and by initiating leaks in neighboring tubes. If not stopped, complete rupture of one or more tubes can cause injection rates of thousands of gm/sec and result in the over pressurization of the secondary loop rupture disk and dumping of the sodium to relieve pressure. The down time associated with severe sodium-water reaction damage has great adverse economic consequence. An integrated leak detection system (ILDS) has been developed which utilizes both chemical and acoustic sensors for improved leak detection. The system provides SG leak status to the reactor operator and is reliable enough to trigger automatic control action to protect the SG. The ILDS chemical subsystem uses conventional in-sodium and cover gas hydrogen detectors and incorporates knowledge based effects due to process parameters for improved reliability. The ILDS acoustic subsystem uses an array of acoustic sensors and incorporates acoustic beamforming technology for highly reliable and accurate leak identification and location. The new ILDS combines the small leak detection capability of the chemical system with the reliability and rapid detection/location capability of the acoustic system to provide a significantly improved level of protection for the SG over a wide range of operation conditions. (author)

  13. Development of leak detector by radiation. 2

    Suzuki, Takashi; Okano, Yasuhiro; Chisaka, Haruo

    1997-01-01

    Leak detector by radiation has been developed by cooperative research between Water Authority and us. In his fiscal year, the most suitable arrangement of detector system was simulated by Monte Carlo method. The first, the experimental values were compared with the results of simulation. The second, calculation was carried out by changing the quality of reflective materials and distance between radiation source and detector. The simulation results were agreed with the experimental results. On the basis of the rate of presence of leak, the most suitable arrangement of detector system was obtained under the conditions that both radiation source and detector covered with graphite or iron of 5 cm thickness and separated each other 3 cm apart. However, by comparing FOM (figure of merit), the suitable arrangement was that radiation source and detector adjoined each other and covered by graphite or iron of 20 cm thickness. (S.Y.)

  14. Leak monitoring method for a reactor container

    Uehara, Toshio.

    1987-01-01

    Purpose: To confirm leakages from a container upon nuclear reactor operation. Method: Leakages from a nuclear reactor container has been prevented by lowering the inner pressure of the container relative to the external pressure. In the conventional method of calculating the leakage by applying an inner pressure to the container and measuring the pressure change, etc. after the elapse of a pre-determined time, the measurement has to be conducted at periodical inspection when the nuclear reactor is shut-down. In view of the above, the leak test is conducted in the present invention by applying a slight inner pressure to the inside of the reactor container by supplying gases from a gas supply system and detecting the flow rate of the gases in the gas supply system while maintaining the slight inner pressure constant by controlling the supply and discharge of the gases. By applying such a inner pressure as causing no effect to the reactor operation, it is possible to monitor the leaks during operation and to detect the flow rate value surely and continuously if the leak is resulted. (Kamimura, M.)

  15. LEAK AND GAS PERMEABILITY TESTING DURING SOIL-GAS SAMPLING AT HAL'S CHEVRON LUST SITE IN GREEN RIVER, UTAH

    The results of gas permeability and leak testing during active soil-gas sampling at Hal’s Chevron LUST Site in Green River, Utah are presented. This study was conducted to support development of a passive soil-gas sampling method. Gas mixtures containing helium and methane were...

  16. Evaluation of a leaking crack in an irradiated CANDU pressure tube

    Coleman, C.E.; Simpson, L.A.

    1988-06-01

    Leak-before-break is used in CANDU reactors as part of the defence against rupture of the pressure tubes. Two important features of this technique are the action time available for detection of a leaking crack and the size of the leak allowing crack location. Support for continued reliance on leak-before-break is being obtained from experiments, on irradiated Zr-2.5 Nb pressure tubes attached to their end fittings, that simulate the behaviour of a leaking crack in a reactor. At reactor operating temperatures leaking cracks grow more slowly than dry cracks in the laboratory because they are cooled when pressurised water flashes to steam on their surface. These cracks remain stable till they are at least 70 mm long. From the results of these experiments the action time is at least 100 h. The leak rate increases rapidly when a through-wall crack extends a small amount, thus greatly assisting with crack location

  17. Differential Impact of Anastomotic Leak in Patients With Stage IV Colonic or Rectal Cancer

    Nordholm-Carstensen, Andreas; Rolff, Hans Christian; Krarup, Peter-Martin

    2017-01-01

    BACKGROUND: Anastomotic leak has a negative impact on the prognosis of patients who undergo colorectal cancer resection. However, data on anastomotic leak are limited for stage IV colorectal cancers. OBJECTIVE: The purpose of this study was to investigate the impact of anastomotic leak on survival....... PATIENTS: Patients who were diagnosed with stage IV colorectal cancer between 2009 and 2013 and underwent elective resection of their primary tumors were included. MAIN OUTCOME MEASURES: The primary outcome was all-cause mortality depending on the occurrence of anastomotic leak. Secondary outcomes were...... the administration of and time to adjuvant chemotherapy, metastasectomy rate, and risk factors for leak. RESULTS: Of the 774 patients with stage IV colorectal cancer who were included, 71 (9.2%) developed anastomotic leaks. Anastomotic leak had a significant impact on the long-term survival of patients with colon...

  18. Helium refrigerator for 'SULTAN'

    Arpagaus, M.; Erlach, H.; Quack, H.

    1984-01-01

    The authors describe the helium refrigerator designed for the SULTAN test facility. SULTAN (Supraleiter-Testanlage) is intended to serve for the developments and testing of high field superconducting magnets. These magnets are needed mainly for future applications in nuclear fusion. (Auth.)

  19. Novel Methods of Hydrogen Leak Detection

    Pushpinder S Puri

    2006-01-01

    For hydrogen to become a consumer fuel for automotive and domestic power generation, safety is paramount. Today's hydrogen systems are built with inherent safety measures and multiple levels of protection. However, human senses, in particular, the sense of smell, is considered the ultimate safeguards against leaks. Since hydrogen is an odorless gas, use of odorants to detect leaks, as is done in case of natural gas, is obvious solution. The odorants required for hydrogen used in fuel cells have a unique requirement which must be met. This is because almost all of the commercial odorants used in gas leak detection contain sulfur which acts as poison for the catalysts used in hydrogen based fuel cells, most specifically for the PEM (polymer electrolyte membrane or proton exchange membrane) fuel cells. A possible solution to this problem is to use non-sulfur containing odorants. Chemical compounds based on mixtures of acrylic acid and nitrogen compounds have been adopted to achieve a sulfur-free odorization of a gas. It is, therefore, desired to have a method and system for hydrogen leak detection using odorant which can incorporate a uniform concentration of odorant in the hydrogen gas, when odorants are mixed in the hydrogen storage or delivery means. It is also desired to develop methods where the odorant is not added to the bulk hydrogen, keeping it free of the odorization additives. A series of novel solutions are proposed which address the issues raised above. These solutions are divided into three categories as follows: 1. Methods incorporating an odorant in the path of hydrogen leak as opposed to adding it to the hydrogen gas. 2. Methods where odorants are generated in-situ by chemical reaction with the leaking hydrogen 3. Methods of dispensing and storing odorants in high pressure hydrogen gas which release odorants to the gas at a uniform and predetermined rates. Use of one or more of the methods described here in conjunction with appropriate engineering

  20. Mapping urban pipeline leaks: Methane leaks across Boston

    Phillips, Nathan G.; Ackley, Robert; Crosson, Eric R.; Down, Adrian; Hutyra, Lucy R.; Brondfield, Max; Karr, Jonathan D.; Zhao Kaiguang; Jackson, Robert B.

    2013-01-01

    Natural gas is the largest source of anthropogenic emissions of methane (CH 4 ) in the United States. To assess pipeline emissions across a major city, we mapped CH 4 leaks across all 785 road miles in the city of Boston using a cavity-ring-down mobile CH 4 analyzer. We identified 3356 CH 4 leaks with concentrations exceeding up to 15 times the global background level. Separately, we measured δ 13 CH 4 isotopic signatures from a subset of these leaks. The δ 13 CH 4 signatures (mean = −42.8‰ ± 1.3‰ s.e.; n = 32) strongly indicate a fossil fuel source rather than a biogenic source for most of the leaks; natural gas sampled across the city had average δ 13 CH 4 values of −36.8‰ (±0.7‰ s.e., n = 10), whereas CH 4 collected from landfill sites, wetlands, and sewer systems had δ 13 CH 4 signatures ∼20‰ lighter (μ = −57.8‰, ±1.6‰ s.e., n = 8). Repairing leaky natural gas distribution systems will reduce greenhouse gas emissions, increase consumer health and safety, and save money. Highlights: ► We mapped 3356 methane leaks in Boston. ► Methane leaks in Boston carry an isotopic signature of pipeline natural gas. ► Replacing failing gas pipelines will provide safety, environmental, and economic benefits. - We identified 3356 methane leaks in Boston, with isotopic characteristics consistent with pipeline natural gas.

  1. Evaluation of methods for leak detection in reactor primary systems and NDE of cast stainless steel

    Kupperman, D.S.; Claytor, T.N.; Prine, D.W.; Mathieson, T.A.

    1984-01-01

    Six cracks, including two field-induced IGSCC specimens and two thermal-fatigue cracks, have been installed in a laboratory acoustic leak detection facility. The IGSCC specimens produce stronger acoustic signals than the thermal-fatigue cracks at equivalent leak rates. Despite significant differences in crack geometry, the acoustic signals from the two IGSCC specimens, tested at the same leak rate, are virtually identical in the frequency range from 200 to 400 kHz. Thus, the quantitative correlations between the acoustic signals and leak rate in the 300 to 400 kHz band are very similar for the two IGSCC specimens. Also, acoustic background data have been acquired during a hot functional sensitivity of acoustic leak detection techniques. In addition, cross-correlation techniques have been successfully used in the laboratory to locate the source of an electronically simulated leak signal

  2. Acoustic Leak Detection Testing Using KAERI Sodium-Water Reaction Signals for a SFR Steam Generator

    Kim, Tae-Joon; Jeong, Ji-Young; Kim, Jong-Man; Kim, Byung-Ho; Hahn, Do-Hee; Yugay, Valeriy S.

    2009-01-01

    The results of an experimental study of water in a sodium leak noise spectrum formation at 0.004-0.54 g/sec, various rates of water into a sodium leak, smaller than 1.0 g/sec, are presented. We focused on studying a micro leak detection with an increasing rate of water into sodium. On the basis of the experimental leak noise data manufactured in KAERI the simple dependency of an acoustic signal level from the rate of a micro and small leak at different frequency bands is presented to understand the principal analysis for the development of an acoustic leak detection methodology used in a K- 600 steam generator

  3. Epidural block and neostigmine cause anastomosis leak

    Ataro G

    2016-05-01

    Full Text Available Getu Ataro Department of Anesthesia, Jimma University, Jimma, EthiopiaI read the article by Phillips entitled, “Reducing gastrointestinal anastomotic leak rates: review of challenges and solutions”, published in the journal of Open Access Surgery with enthusiasm and found it crucial for perioperative management of patients with gastrointestinal (GI surgery, particularly anastomosis. I appreciate the author’s exhaustive search of literature and discussion with some limitation on review basics like methodology, which may affect the reliability of the review findings. The effects of risk factors for anastomosis leak, such as malnutrition, smoking, steroid use, bowel preparation, chemotherapy, duration of surgery, use of pressors, intravenous fluid administration, blood transfusion, and surgical anastomotic technique, were well discussed.1 However, from anesthesia perspective, there are some other well-studied risk factors that can affect healing of anastomosis wound and cause anastomosis leak. Among others, the effect of neostigmine and epidural block has been reported in many studies since half a century ago. View the original paper by Phillips

  4. Atmospheric helium and geomagnetic field reversals.

    Sheldon, W. R.; Kern, J. W.

    1972-01-01

    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  5. The leakage problem in vacuum system. Realization of a mass spectrometer detecting leaks

    Geller, R.

    1954-11-01

    In the first part of this paper we consider the problem of leaks in vacuum systems, and their detection. We consider in particular the method of detection by means of a helium spectrometer. The second part deals with the experimental set p. The analyser and the ion source have been studied in great detail, and we have also discussed the technological and mechanical aspects of the apparatus and its performances. (author) [fr

  6. Some considerations in standard gas leak designs and their applications to computer control systems

    Winkelman, C.R.; Wedel, T.A.

    The primary difficulty with flow rate measurements below 10 -10 standard cubic centimeters per second (std. cc/sec) is that there are no commercially available standards. The requirements, however, dictate that the problem of design and construction of a qualifiable standard in the ultra-sensitive range had to be solved. There are a number of leak types which were considered: capillary leaks, orifice leaks, and the pore type leaks, among others. The capillary leak was not used because of the cracking or sorting effects that are common to this type leak. For example, a gas blend flowing through a capillary leak will result in the lighter gases passing through the leak first. The difficulty of fabricating the proper hole size in relation to the flow rate requirements ruled out the orifice type leak. The selected choice was the pore type leak which utilizes the basic concept of a stainless steel knife edge driven into a fixed section composed of stainless steel with a gold overlay and maintained under force

  7. A multicenter study of routine versus selective intraoperative leak testing for sleeve gastrectomy.

    Bingham, Jason; Kaufman, Jedediah; Hata, Kai; Dickerson, James; Beekley, Alec; Wisbach, Gordon; Swann, Jacob; Ahnfeldt, Eric; Hawkins, Devon; Choi, Yong; Lim, Robert; Martin, Matthew

    2017-09-01

    Staple line leaks after sleeve gastrectomy are dreaded complications. Many surgeons routinely perform an intraoperative leak test (IOLT) despite little evidence to validate the reliability, clinical benefit, and safety of this procedure. To determine the efficacy of IOLT and if routine use has any benefit over selective use. Eight teaching hospitals, including private, university, and military facilities. A multicenter, retrospective analysis over a 5-year period. The efficacy of the IOLT for identifying unsuspected staple line defects and for predicting postoperative leaks was evaluated. An anonymous survey was also collected reflecting surgeons' practices and beliefs regarding IOLT. From January 2010 through December 2014, 4284 patients underwent sleeve gastrectomy. Of these, 37 patients (.9%) developed a postoperative leak, and 2376 patients (55%) received an IOLT. Only 2 patients (0.08%) had a positive finding. Subsequently, 21 patients with a negative IOLT developed a leak. IOLT demonstrated a sensitivity of only 8.7%. There was a nonsignificant trend toward increased leak rates when an IOLT was performed versus when IOLT was not performed. Leak rates were not statistically different between centers that routinely perform IOLT versus those that selectively perform IOLT. Routine IOLT had very poor sensitivity and was negative in 91% of patients who later developed postoperative leaks. The use of IOLT was not associated with a decrease in the incidence of postoperative leaks, and routine IOLT had no benefit over selective leak testing. IOLT should not be used as a quality indicator or "best practice" for bariatric surgery. Published by Elsevier Inc.

  8. Room temperature desorption of helium-3 from metal tritides

    Beavis, L.C.; Kass, W.J.

    1976-10-01

    It has long been known that helium-3 accumulates in metal tritides as tritium decays. Early in life nearly 100% of the helium-3 is retained in the lattice, but when a critical concentration is reached (material dependent), the lattice will no longer retain the helium-3 and it is emitted at about the generation rate. Measurements were recently made on a number of erbium tritides with varying concentrations in the ditritide phase. The expected early release characteristics are observed for all of the samples. However, ditritides with higher tritium concentrations reach the rapid release state at much lower helium-3 concentrations. For instance, the helium to metal concentration for rapid release in the unsaturated ditritide is about 0.22, whereas it is only one-tenth this value in the saturated ditritide. The additional tritium in the tritide appears to be the cause of this effect

  9. Mitigated Transfer Line Leaks that Result in Surface Pools and Spray Leaks into Pits

    HEY, B.E.

    1999-12-07

    This analysis provides radiological and toxicological consequence calculations for postulated mitigated leaks during transfers of six waste compositions. Leaks in Cleanout Boxes equipped with supplemental covers and leaks in pits are analyzed.

  10. Mitigated Transfer Line Leaks that Result in Surface Pools and Spray Leaks into Pits

    HEY, B.E.

    1999-01-01

    This analysis provides radiological and toxicological consequence calculations for postulated mitigated leaks during transfers of six waste compositions. Leaks in Cleanout Boxes equipped with supplemental covers and leaks in pits are analyzed

  11. Gas Leak Detection by Dilution of Atmospheric Oxygen

    Armin Lambrecht

    2017-12-01

    Full Text Available Gas leak detection is an important issue in infrastructure monitoring and industrial production. In this context, infrared (IR absorption spectroscopy is a major measurement method. It can be applied in an extractive or remote detection scheme. Tunable laser spectroscopy (TLS instruments are able to detect CH4 leaks with column densities below 10 ppm·m from a distance of 30 m in less than a second. However, leak detection of non-IR absorbing gases such as N2 is not possible in this manner. Due to the fact that any leaking gas displaces or dilutes the surrounding background gas, an indirect detection is still possible. It is shown by sensitive TLS measurements of the ambient background concentration of O2 that N2 leaks can be localized with extractive and standoff methods for distances below 1 m. Minimum leak rates of 0.1 mbar·L/s were determined. Flow simulations confirm that the leakage gas typically effuses in a narrow jet. The sensitivity is mainly determined by ambient flow conditions. Compared to TLS detection of CH4 at 1651 nm, the indirect method using O2 at 761 nm is experimentally found to be less sensitive by a factor of 100. However, the well-established TLS of O2 may become a universal tool for rapid leakage screening of vessels that contain unknown or inexpensive gases, such as N2.

  12. Rio Vista gas leak study: Belleaire Gas Field, California

    Wilkey, P.L.

    1992-08-01

    The Rio Vista gas leak study evaluated methods for remotely sensing gas leaks from buried pipelines and developed methods to elucidate methane transport and microbial oxidation in soils. Remote-sensing methods were evaluated by singing gas leaks along an abandoned Pacific Gas and Electric (PG ampersand E) gas field collection line in northern California and applying surface-based and airborne remote-sensing techniques in the field, including thermal imaging, laser imaging, and multispectral imagery. The remote-sensing techniques exhibited limitations in range and in their ability to correlate with ground truth data. To elucidate methane transport and microbial oxidation in soils, a study of a controlled leak permitted field testing of methods so that such processes could be monitored and evaluated. Monitoring and evaluation techniques included (1) field measurement of soil-gas concentrations, temperatures, and pressures; (2) laboratory measurement of soil physical/chemical properties and activity of methane-oxidizing microorganisms by means of field samples; and (3) development of a preliminary numerical analysis technique for combined soil-gas transport/methane oxidation. Soil-gas concentrations at various depths responded rapidly to the high rate of gas leakage. The number of methane-oxidizing microorganisms in site soils rapidly increased when the gas leak was initiated and decreased after the leak was terminated. The preliminary field, laboratory, and numerical analysis techniques tested for this study of a controlled gas leak could be successfully applied to future studies of gas leaks. Because soil-gas movement is rapid and temporally variable, the use of several complementary techniques that permit generalization of site-specific results is favored

  13. Helium effect on mechanical property of fusion reactor structural materials

    Yamamoto, Norikazu; Chuto, Toshinori; Murase, Yoshiharu; Nakagawa, Johsei

    2004-01-01

    High-energy neutrons produced in fusion reactor core caused helium in the structural materials of fusion reactors, such as blankets. We injected alpha particles accelerated by the cyclotron to the samples of martensite steel (9Cr3WVTaB). Equivalent helium doses injected to the sample is estimated to be up to 300 ppm, which were estimated to be equivalent to helium accumulation after the 1-year reactor operation. Creep tests of the samples were made to investigate helium embrittlement. There were no appreciable changes in the relation between the stresses and the rupture time, the minimum creep rate and the applied stress. Grain boundary effect by helium was not observed in ruptured surfaces. Fatigue tests were made for SUS304 samples, which contain helium up to 150 ppm. After 0.05 Hz cyclic stress tests, it was shown that the fatigue lifetime (cycles to rupture and extension to failure) are 1/5 in 150 ppm helium samples compared with no helium samples. The experimental results suggest martensite steel is promising for structural materials of fusion reactors. (Y. Tanaka)

  14. Neutral helium beam probe

    Karim, Rezwanul

    1999-10-01

    This article discusses the development of a code where diagnostic neutral helium beam can be used as a probe. The code solves numerically the evolution of the population densities of helium atoms at their several different energy levels as the beam propagates through the plasma. The collisional radiative model has been utilized in this numerical calculation. The spatial dependence of the metastable states of neutral helium atom, as obtained in this numerical analysis, offers a possible diagnostic tool for tokamak plasma. The spatial evolution for several hypothetical plasma conditions was tested. Simulation routines were also run with the plasma parameters (density and temperature profiles) similar to a shot in the Princeton beta experiment modified (PBX-M) tokamak and a shot in Tokamak Fusion Test Reactor tokamak. A comparison between the simulation result and the experimentally obtained data (for each of these two shots) is presented. A good correlation in such comparisons for a number of such shots can establish the accurateness and usefulness of this probe. The result can possibly be extended for other plasma machines and for various plasma conditions in those machines.

  15. Antiprotonic helium atomcules

    Sauge Sébastien

    2012-10-01

    Full Text Available About 3% of antiprotons ( stopped in helium are long-lived with microsecond lifetimes, against picoseconds in all other materials. This unusual longevity has been ascribed to the trapping of on metastable bound states in He+ helium atom-molecules thus named atomcules. Apart from their unique dual structure investigated by laser spectroscopy – a near-circular quasi-classical Rydberg atom with l ~ n – 1 ~ 37 or a special diatomic molecule with a negatively charged nucleus in high rotational state with J = l – the chemical physics aspects of their interaction with other atoms or molecules constitute an interesting topic for molecular physics. While atomcules may resist to million collisions in helium, molecular contaminants such as H2 are likely to destroy them in a single one, down to very low temperatures. In the Born-Oppenheimer framework, we interpret the molecular interaction obtained by ab initio quantum chemical calculations in terms of classical reactive channels, with activation barriers accounting for the experiments carried out in He and H2. From classical trajectory Monte Carlo simulations, we show that the thermalization stage strongly quenches initial populations, thus reduced to a recovered 3 % trapping fraction. This work illustrates the pertinence of chemical physics concepts to the study of exotic processes involving antimatter. New insights into the physico-chemistry of cold interstellar radicals are anticipated.

  16. Feasibility of lunar Helium-3 mining

    Kleinschneider, Andreas; Van Overstraeten, Dmitry; Van der Reijnst, Roy; Van Hoorn, Niels; Lamers, Marvin; Hubert, Laurent; Dijk, Bert; Blangé, Joey; Hogeveen, Joel; De Boer, Lennaert; Noomen, Ron

    With fossil fuels running out and global energy demand increasing, the need for alternative energy sources is apparent. Nuclear fusion using Helium-3 may be a solution. Helium-3 is a rare isotope on Earth, but it is abundant on the Moon. Throughout the space community lunar Helium-3 is often cited as a major reason to return to the Moon. Despite the potential of lunar Helium-3 mining, little research has been conducted on a full end-to-end mission. This abstract presents the results of a feasibility study conducted by students from Delft University of Technology. The goal of the study was to assess whether a continuous end-to-end mission to mine Helium-3 on the Moon and return it to Earth is a viable option for the future energy market. The set requirements for the representative end-to-end mission were to provide 10% of the global energy demand in the year 2040. The mission elements have been selected with multiple trade-offs among both conservative and novel concepts. A mission architecture with multiple decoupled elements for each transportation segment (LEO, transfer, lunar surface) was found to be the best option. It was found that the most critical element is the lunar mining operation itself. To supply 10% of the global energy demand in 2040, 200 tons of Helium-3 would be required per year. The resulting regolith mining rate would be 630 tons per second, based on an optimistic concentration of 20 ppb Helium-3 in lunar regolith. Between 1,700 to 2,000 Helium-3 mining vehicles would be required, if using University of Wisconsin’s Mark III miner. The required heating power, if mining both day and night, would add up to 39 GW. The resulting power system mass for the lunar operations would be in the order of 60,000 to 200,000 tons. A fleet of three lunar ascent/descent vehicles and 22 continuous-thrust vehicles for orbit transfer would be required. The costs of the mission elements have been spread out over expected lifetimes. The resulting profits from Helium

  17. Prevention of Postoperative Bile Leak in Partial Cystectomy for Hydatid Liver Disease: Tricks of the Trade.

    Peker, Kivanc Derya; Gumusoglu, Alpen Yahya; Seyit, Hakan; Kabuli, Hamit Ahmet; Salik, Aysun Erbahceci; Gonenc, Murat; Kapan, Selin; Alis, Halil

    2015-12-01

    The presence of postoperative bile leak is the major outcome measure for the assessment of operative success in partial cystectomy for hydatid liver disease. However, the optimal operative strategy to reduce the postoperative bile leak rate is yet to be defined. Medical records of patients who underwent partial cystectomy for hydatid liver disease between January 2013 and January 2015 were reviewed in this retrospective analysis. All patients were managed with a specific operative protocol. The primary outcome measure was the rate of persistent postoperative bile leak. The secondary outcome measures were the morbidity and mortality rate, and the length of hospital stay. Twenty-eight patients were included in the study. Only one patient (3.6 %) developed persistent postoperative bile leak. The overall morbidity and mortality rate was 17.8 and 0 %, respectively. The median length of hospital stay was 5 days. Aggressive preventative surgical measures have led to low persistent bile leak rates with low morbidity and mortality.

  18. The ISS 2B PVTCS Ammonia Leak: An Operational History

    Vareha, Anthony

    2014-01-01

    In 2006, the Photovoltaic Thermal Control System (PVTCS) for the International Space Station's 2B power channel began leaking ammonia at a rate of approximately 1.5lbm/year (out of a starting approximately 53lbm system ammonia mass). Initially, the operations strategy was "feed the leak," a strategy successfully put into action via Extra Vehicular Activity during the STS-134 mission. During this mission the system was topped off with ammonia piped over from a separate thermal control system. This recharge was to have allowed for continued power channel operation into 2014 or 2015, at which point another EVA would have been required. Without these periodic EVAs to refill the 2B coolant system, the channel would eventually leak enough fluid as to risk pump cavitation and system failure, resulting in the loss of the 2B power channel - the most critical of the Space Station's 8 power channels. In mid-2012, the leak rate increased to approximately 5lbm/year. Once discovered, an EVA was planned and executed within a 5 week timeframe to drastically alter the architecture of the PVTCS via connection to a dormant thermal control system not intended to be utilized as anything other than spare components. The purpose of this rerouting of the TCS was to increase system volume and to isolate the photovoltaic radiator, thought to be the likely leak source. This EVA was successfully executed on November 1st, 2012 and left the 2B PVTCS in a configuration where the system was now being adequately cooled via a totally different radiator than what the system was designed to utilize. Unfortunately, data monitoring over the next several months showed that the isolated radiator was not leaking, and the system itself continued to leak steadily until May 9th, 2013. It was on this day that the ISS crew noticed the visible presence of ammonia crystals escaping from the 2B channel's truss segment, signifying a rapid acceleration of the leak from 5lbm/year to 5lbm/day. Within 48 hours of the

  19. Leak testing United States Nuclear Regulatory Commission type b packaging

    Lacy, K.A.

    1995-01-01

    The Waste Isolation Pilot Plant (WTPP) is a one of its kind research and development facility operated by the Department of Energy, Carlsbad Area Office. Located in southeastern New Mexico, the WTPP is designed to demonstrate the safe, permanent disposal of transuranic (TRU) radioactive nuclear waste, accumulated from 40 years of nuclear weapons production. Before the waste can be disposed of, it must first be safely transported from generator storage sites to the WIPP. To accomplish this, the TRUPACT-II was designed and fabricated. This double containment, non-vented waste packaging successfully completed a rigorous testing program, and in 1989 received a Certificate of Compliance (C of C) from the Nuclear Regulatory Commission (NRC). Currently, the TRUPACT-II is in use at Idaho National Engineering Laboratory to transport waste on site for characterization. The DOE/CAO is responsible for maintaining the TRUPACT-II C of C. The C of C requires performance of nondestructive examination (NDE), e.g., visual testing (VT), dimensional inspections, Liquid Dye Penetrant testing (PT), and Helium Leak Detection (HLD). The Waste Isolation Division (WID) uses HLD for verification of the containment integrity. The following HLD tests are performed on annual basis or when required, i.e. repairs or component replacement: (1) fabrication verification leak tests on both the outer containment vessel (OCV) and the inner containment vessel (ICV); (2) assembly verification leak tests on the OCV and ICV upper main o-rings; and (3) assembly verification leak tests on the OCV and the ICV vent port plugs. These tests are addressed in detail as part of this presentation

  20. Maintaining leak tightness capability of Caorso BWR containment

    Barsanti, P.; Di Palo, L.; Grimaldi, G.

    1988-01-01

    In 1987 the local leak rate test (LLRT) results of the primary containment were revised, with the following main goals: to highlight recurring problems, leading to lack of leak tightness of the primary containment; to individuate the pertinent degradation mechanisms; to assess the corrective actions already implemented and to plan further improvements, if necessary; and to optimize the preventive maintenance program on the containment, particularly the inspection frequency. All LLRTs in the past operating period, both before (as found) and after (as left) maintenance were analyzed, in terms of leakage rate and equivalent area of leak, for each penetration. Corrective actions already implemented included replacement of some valves with better quality type one, passivation of the carbon steel pipes and improvement of the pertinent surveillance procedures. Long term corrective actions, now under consideration, will include the following: more extensive passivation of pipes, carrying humid air, so that oxidation could be drastically reduced; better chemistry control in fluid systems; extensive replacement of the butterfly valves presently used; implementation of the LLRT practice, such to quantitatively measure the leakage rate, also in presence of large leak; and reduction of the time interval between periodical tests, on the basis of the results of the previous ones. Following these guidelines, future overall leakage tests would be performed in as found condition, aimed to verify the effectiveness of the entire maintenance and testing program of the primary containment and of its capability to maintain leak tightness during the time between two subsequent tests

  1. Surface electrons of helium films

    Studart, N.; Hipolito, O.

    1986-01-01

    Theoretical calculations of some properties of two-dimensional electrons on a liquid helium film adsorbed on a solid substrate are reviewed. We describe the spectrum of electron bound states on bulk helium as well on helium films. The correlational properties, such as the structure factor and correlation energy, are determined as functions of the film thickness for different types of substrates in the framework of a Generalized Random-Phase Approximation. The collective excitations of this system are also described. The results for electrons on the surface of thin films and bulk helium are easily obtained. we examine the electron interaction with the excitations of the liquid helium surface resulting in a new polaron state, which was observed very recently. The ground state energy and the effective mass of this polaron are determined by using the path-integral formalism and unitary-transformation method. Recent speculations about the phase diagram of electrons on the helium film are also discussed. (Author) [pt

  2. Transcatheter closure of paravalvular leaks using a paravalvular leak device – a prospective Polish registry

    Grzegorz Smolka

    2016-05-01

    Full Text Available Introduction : Transcatheter paravalvular leak closure (TPVLC has become an established treatment option but is mostly performed with off-label use of different non-dedicated occluders. The first one specifically designed for TPVLC is the paravalvular leak device (PLD – Occlutech. Aim : We present initial short-term results of a prospective registry intended to assess the safety and efficacy of TPVLC with PLD. Material and methods : We screened patients with paravalvular leak (PVL after surgical valve replacement (SVR. Heart failure symptoms and/or hemolytic anemia were indications for TPVLC. Patients were selected according to PVL anatomy by RT 3D TEE. Only those considered appropriate for closure with a single PLD were enrolled. The procedures were performed via transvascular or transapical access using type W (waist PLDs only. Results : Thirty patients with 34 PVLs (18 aortic, 16 mitral were included. We implanted 35 PLDs with a total device success rate of 94.3% (100% for aortic, 88.2% for mitral. The procedural success rate, encompassing device success without in-hospital complications, was 94.1% (100% for aortic, 93.8% for mitral. During the follow-up period we recorded an increase of hemoglobin concentration (3.9 to 4.1 g/dl, red blood count (11.6 to 12.2 M/mm3 and functional improvement by NYHA class. Conclusions : Paravalvular leak device type W is a promising TPVLC device, but meticulous preselection of patients based on imaging of PVL anatomy is a prerequisite. A PLD should only be chosen for channels shorter than 5 mm. Size of the device should match the PVL cross-sectional area without any oversizing. Such an approach facilitates high device and procedural success rates.

  3. Leak behavior of steam generator tube-to-tubesheet joints under creep condition: Experimental study

    Bahn, Chi Bum; Majumdar, Saurin; Kasza, Ken E.; Shack, William J.

    2013-01-01

    To address concerns regarding excessive leakage from throughwall cracks in steam generator tube-to-tubesheet joints under severe accident conditions, leak rate testing was conducted using tube-to-collar joint specimens. The tube interior and the interface between tube and collar (crevice) were pressurized independently using nitrogen gas. The leak rate through the crevice was almost zero when the specimens were pressurized at ∼500 °C; this low leak rate is attributed to thermal mismatch effects preventing much leakage. The near zero leak rate was maintained until the onset of large leakage at higher temperatures. The leak rate behavior after the onset of the large leakage was not much affected by the crevice length or heat-to-heat variation of Alloy 600 tubes. This suggests that once the crevice gap opens, the creep rate of the low alloy steel collar becomes dominant. Specimens with different tube diameters behaved essentially the same way. To simulate a flawed steam generator tube in the tubesheet, the crevice region was pressurized through a hole in the tube. This simulation resulted in essentially the same behavior as those specimens whose tubes and crevices were pressurized independently. Oxidation of low alloy steel collars in air tests can increase the flow resistance, and thus tests using nitrogen gas would provide more conservative leak rate data. Highlights: ► Leak rates were measured by using tube-to-collar joint specimens under creep condition. ► Leak rate through the joint interface was almost zero at ∼500 °C due to thermal mismatch. ► The near zero leak rate was maintained until the onset of large leakage at ∼680 °C. ► The leak behavior after the onset of the large leakage was not affected by hydraulic expansion length or tube heats.

  4. High-temperature helium embrittlement (T>=0,45Tsub(M)) of metals

    Batfalsky, P.

    1984-06-01

    High temperature helium embrittlement, swelling and irradiation creep are the main technical problem of fusion reactor materials. The expected helium production will be very high. The helium produced by (n,α)-processes precipitates into helium bubbles because its solubility in solid metals is very low. Under continuous helium production at high temperature and stress the helium bubbles grow and lead to intergranular early failure. Solution annealed foil specimens of austenitic stainless steel AISI 316 were implanted with α-particles: 1. during creep tests at 1023 K (''in-beam'' test) 2. before the creep tests at high temperature (1023 K). The creep tests have been performed within large ranges of test parameter, e.g. applied stress, temperature, helium implantation rate and helium concentration. After the creep tests the microstructure was investigated using scanning (SEM) and transmission (TEM) electron microscopy. All the helium implanted specimens showed high temperature helium embrittlement, i.e. reduction of rupture time tsub(R) and ductility epsilonsub(R) and evidence of intergranular brittle fracture. The ''in-beam'' creep tests showed greater reduction of rupture time tsub(R) and ductility than the preimplanted creep tests. The comparison of this experimentally obtained data with various theoretical models of high temperature helium embrittlement showed that within the investigated parameter ranges the mechanism controlling the life time of the samples is probably the gas driven stable growth of the helium bubbles within the grain boundaries. (orig.)

  5. Some problems of leaks in sodium-water steam generator

    Kozlov, F.A.; Sergeev, G.V.; Sednev, A.R.; Makarov, V.M.

    1976-01-01

    The paper contains data on wastage of steam generator structural materials and high-nickel alloys in the zone of water leakage into sodium as well as investigation results for self-enlargement of water leaks into sodium through defects in these materials. It is shown that the rate of material damage in the zone of sodium-water reaction and in the channel with water leaking-out decreases with increasing nickel content in steels and strongly depends on sodium temperature. The paper presents experimentally obtained dependences of leakage self-enlargement rates on sodium temperature and leakage size

  6. Design and study of Engineering Test Facility - Helium Circulator

    Jiang Huijing; Ye Ping; Zhao Gang; Geng Yinan; Wang Jie

    2015-01-01

    Helium circulator is one of the key equipment of High-temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM). In order to simulate most normal and accident operating conditions of helium circulator in HTR-PM, a full scale, rated flow rate and power, engineering test loop, which was called Engineering Test Facility - Helium Circulator (ETF-HC), was designed and established. Two prototypes of helium circulator, which was supported by Active Magnetic Bearing (AMB) or sealed by dry gas seals, would be tested on ETF-HC. Therefore, special interchangeable design was under consideration. ETF-HC was constructed compactly, which consisted of eleven sub-systems. In order to reduce the flow resistance of the circuit, special ducts, elbows, valves and flowmeters were selected. Two stages of heat exchange loops were designed and a helium - high pressure pure water heat exchanger was applied to ensure water wouldn't be vaporized while simulating accident conditions. Commissioning tests were carried out and operation results showed that ETF-HC meets the requirement of helium circulator operation. On this test facility, different kinds of experiments were supposed to be held, including mechanical and aerodynamic performance tests, durability tests and so on. These tests would provide the features and performance of helium circulator and verify its feasibility, availability and reliability. (author)

  7. Canada's helium output rising fast

    1966-12-01

    About 12 months from now, International Helium Limited will be almost ready to start up Canada's second helium extraction plant at Mankota, in Saskatchewan's Wood Mountain area about 100 miles southwest of Moose Jaw. Another 80 miles north is Saskatchewan's (and Canada's) first helium plant, operated by Canadian Helium and sitting on a gas deposit at Wilhelm, 9 miles north of Swift Current. It contains almost 2% helium, some COD2U, and the rest nitrogen. One year in production was apparently enough to convince Canadian Helium that the export market (it sells most of its helium in W. Europe) can take a lot more than it's getting. Construction began this summer on an addition to the Swift Current plant that will raise its capacity from 12 to 36MMcf per yr when it goes on stream next spring. Six months later, International Helium's 40 MMcf per yr plant to be located about 4 miles from its 2 Wood Mountain wells will double Canada's helium output again.

  8. Conceptual design of helium experimental loop

    Yu Xingfu; Feng Kaiming

    2007-01-01

    In a future demonstration fusion power station (DEMO), helium is envisaged as coolant for plasma facing components, such as blanket and dive,or. All these components have a very complex geometry, with many parallel cooling channels, involving a complex helium flow distribution. Test blanket modules (TBM) of this concept will under go various tests in the experimental reactor ITER. For the qualification of TBM, it is indispensable to test mock-ups in a helium loop under realistic pressure and temperature profiles, in order to validate design codes, especially regarding mass flow and heat transition processes in narrow cooling channels. Similar testing must be performed for DEMO blanket, currently under development. A Helium Experimental Loop (HELOOP) is planed to be built for TBM tests. The design parameter of temperature, pressure, flow rate is 550 degree C, 10 MPa, l kg/s respectively. In particular, HELOOP is able to: perform full-scale tests of TBM under realistic conditions; test other components of the He-cooling system in ITER; qualify the purification circuit; obtain information for the design of the ITER cooling system. The main requirements and characteristics of the HELOOP facility and a preliminary conceptual design are described in the paper. (authors)

  9. NUCLEAR CONDENSATE AND HELIUM WHITE DWARFS

    Bedaque, Paulo F.; Berkowitz, Evan [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD (United States); Cherman, Aleksey, E-mail: bedaque@umd.edu, E-mail: evanb@umd.edu, E-mail: a.cherman@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA (United Kingdom)

    2012-04-10

    We consider a high-density region of the helium phase diagram, where the nuclei form a Bose-Einstein condensate rather than a classical plasma or a crystal. Helium in this phase may be present in helium-core white dwarfs. We show that in this regime there is a new gapless quasiparticle not previously noticed, arising when the constraints imposed by gauge symmetry are taken into account. The contribution of this quasiparticle to the specific heat of a white dwarf core turns out to be comparable in a range of temperatures to the contribution from the particle-hole excitations of the degenerate electrons. The specific heat in the condensed phase is two orders of magnitude smaller than in the uncondensed plasma phase, which is the ground state at higher temperatures, and four orders of magnitude smaller than the specific heat that an ion lattice would provide, if formed. Since the specific heat of the core is an important input for setting the rate of cooling of a white dwarf star, it may turn out that such a change in the thermal properties of the cores of helium white dwarfs has observable implications.

  10. NUCLEAR CONDENSATE AND HELIUM WHITE DWARFS

    Bedaque, Paulo F.; Berkowitz, Evan; Cherman, Aleksey

    2012-01-01

    We consider a high-density region of the helium phase diagram, where the nuclei form a Bose-Einstein condensate rather than a classical plasma or a crystal. Helium in this phase may be present in helium-core white dwarfs. We show that in this regime there is a new gapless quasiparticle not previously noticed, arising when the constraints imposed by gauge symmetry are taken into account. The contribution of this quasiparticle to the specific heat of a white dwarf core turns out to be comparable in a range of temperatures to the contribution from the particle-hole excitations of the degenerate electrons. The specific heat in the condensed phase is two orders of magnitude smaller than in the uncondensed plasma phase, which is the ground state at higher temperatures, and four orders of magnitude smaller than the specific heat that an ion lattice would provide, if formed. Since the specific heat of the core is an important input for setting the rate of cooling of a white dwarf star, it may turn out that such a change in the thermal properties of the cores of helium white dwarfs has observable implications.

  11. Leak-before-break due to fatigue cracks in the cold leg piping system

    Mayfield, M.E.; Collier, R.P.

    1984-01-01

    This review paper presents the results of a deterministic assessment of the margin of safety against a large break in the cold leg piping system of pressurized water reactors. The paper focuses on the computation of leak rates resulting from fatigue cracks that penetrate the full wall thickness. Results are presented that illustrate the sensitivity of the leak rate to stress level, crack shape and crack orientation. Further, the leak rates for specific conditions are contrasted to detection levels, shutdown criteria, make-up capacity and the leak rate associated with final failure of the piping system. The results of these computations indicate that, in general, leaks far in excess of the present detection sensitivities would result at crack sizes well below the critical crack sizes for the upset loadings on the cold leg piping system

  12. Detecting leaks in vacuum bags

    Carlstrom, E. E.

    1980-01-01

    Small leaks in vacuum bag can be readily detected by eye, using simple chemical reaction: combination of ammonia and acetic acid vapors to produce cloudy white smoke. Technique has been successfully used to test seam integrity and to identify minute pinholes in vacuum bag used in assembly of ceramic-tile heat shield for Space Shuttle Orbiter.

  13. LOCATING LEAKS WITH ACOUSTIC TECHNOLOGY

    Many water distribution systems in this country are almost 100 years old. About 26 percent of piping in these systems is made of unlined cast iron or steel and is in poor condition. Many methods that locate leaks in these pipes are time-consuming, costly, disruptive to operations...

  14. Pipe Leak Detection Technology Development

    The U. S. Environmental Protection Agency (EPA) has determined that one of the nation’s biggest infrastructural needs is the replacement or rehabilitation of the water distribution and transmission systems. The institution of more effective pipe leak detection technology will im...

  15. Tritium Decay Helium-3 Effects in Tungsten

    Shimada, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  16. Modeling Space-Time Dependent Helium Bubble Evolution in Tungsten Armor under IFE Conditions

    Qiyang Hu; Shahram Sharafat; Nasr Ghoniem

    2006-01-01

    The High Average Power Laser (HAPL) program is a coordinated effort to develop Laser Inertial Fusion Energy. The implosion of the D-T target produces a spectrum of neutrons, X-rays, and charged particles, which arrive at the first wall (FW) at different times within about 2.5 μs at a frequency of 5 to 10 Hz. Helium is one of several high-energy charged particle constituents impinging on the candidate tungsten armored low activation ferritic steel First Wall. The spread of the implanted debris and burn helium energies results in a unique space-time dependent implantation profile that spans about 10 μm in tungsten. Co-implantation of X-rays and other ions results in spatially dependent damage profiles and rapid space-time dependent temperature spikes and gradients. The rate of helium transport and helium bubble formation will vary significantly throughout the implanted region. Furthermore, helium will also be transported via the migration of helium bubbles and non-equilibrium helium-vacancy clusters. The HEROS code was developed at UCLA to model the spatial and time-dependent helium bubble nucleation, growth, coalescence, and migration under transient damage rates and transient temperature gradients. The HEROS code is based on kinetic rate theory, which includes clustering of helium and vacancies, helium mobility, helium-vacancy cluster stability, cavity nucleation and growth and other microstructural features such as interstitial loop evolution, grain boundaries, and precipitates. The HEROS code is based on space-time discretization of reaction-diffusion type equations to account for migration of mobile species between neighboring bins as single atoms, clusters, or bubbles. HAPL chamber FW implantation conditions are used to model helium bubble evolution in the implanted tungsten. Helium recycling rate predictions are compared with experimental results of helium ion implantation experiments. (author)

  17. Reliability of leak detection systems in LWRs

    Kupperman, D.S.

    1986-10-01

    In this paper, NRC guidelines for leak detection will be reviewed, current practices described, potential safety-related problems discussed, and potential improvements in leak detection technology (with emphasis on acoustic methods) evaluated

  18. Stochastic Consequence Analysis for Waste Leaks

    HEY, B.E.

    2000-01-01

    This analysis evaluates the radiological consequences of potential Hanford Tank Farm waste transfer leaks. These include ex-tank leaks into structures, underneath the soil, and exposed to the atmosphere. It also includes potential misroutes, tank overflow

  19. Liquid helium cooling of the MFTF superconducting magnets

    VanSant, J.H.; Zbasnik, J.P.

    1986-09-01

    During acceptance testing of the Mirror Fusion Test Facility (MFTF), we measured these tests: liquid helium heat loads and flow rates in selected magnets. We used the data from these tests to estimate helium vapor quality in the magnets so that we could determine if adequate conductor cooling conditions had occurred. We compared the measured quality and flow with estimates from a theoretical model developed for the MFTF magnets. The comparison is reasonably good, considering influences that can greatly affect these values. This paper describes the methods employed in making the measurements and developing the theoretical estimates. It also describes the helium system that maintained the magnets at required operating conditions

  20. A reciprocating liquid helium pump used for forced flow of supercritical helium

    Krafft, G.; Zahn, G.

    1978-01-01

    The performance of a small double acting piston pump for circulating helium in a closed heat transfer loop is described. The pump was manufactured by LINDE AG, Munich, West Germany. The measured flow rate of supercritical helium was about 17 gs -1 (500 lhr -1 ) with a differential pressure of Δp = 0.5 x 10 5 Nm -2 at a working pressure of p = 6 x 10 5 Nm -2 . At differential pressures beyond 0.5 x 10 5 Nm -2 the volumetric efficiency decreases. (author)

  1. Orion A helium abundance

    Tsivilev, A.P.; Ershov, A.A.; Smirnov, G.T.; Sorochenko, R.L.

    1986-01-01

    The 22.4-GHz (H,He)66-alpha and 36.5-GHz (H,He)56-alpha radio recombination lines have been observed at several Jaffe-Pankonin positions in the central part of the Orion A source. The measured relative abundance of ionized helium increases with distance, averaging 11.6 percent at peripheral points. The observed behavior is interpreted by a blister-type model nebula, which implies that Orion A has a true He abundance of 12 percent, is moving with a radial velocity of 5 km/sec, and is expanding. 18 references

  2. Simulation of liquid helium

    Ceperley, D.M.

    1985-07-01

    The author discusses simulation methods for quantum mechanical systems at finite temperatures. Recently it has been shown that static properties of some quantum systems can be obtained by simulation in a straightforward manner using path integrals, albeit with an order of magnitude more computing effort needed than for the corresponding classical systems. Some dynamical information can be gleaned from these simulations as will be discussed below. But this is very limited - there is no quantum version of the molecular dynamics method. The path integral method is illustrated by discussing the application to liquid helium. 12 refs., 8 figs

  3. Simulation of leaking fuel rods

    Hozer, Z.

    2006-01-01

    The behaviour of failed fuel rods includes several complex phenomena. The cladding failure initiates the release of fission product from the fuel and in case of large defect even urania grains can be released into the coolant. In steady state conditions an equilibrium - diffusion type - release is expected. During transients the release is driven by a convective type leaching mechanism. There are very few experimental data on leaking WWER fuel rods. For this reason the activity measurements at the nuclear power plants provide very important information. The evaluation of measured data can help in the estimation of failed fuel rod characteristics and the prediction of transient release dynamics in power plant transients. The paper deals with the simulation of leaking fuel rods under steady state and transient conditions and describes the following new results: 1) A new algorithm has been developed for the simulation of leaking fuel rods under steady state conditions and the specific parameters of the model for the Paks NPP has been determined; 2) The steady state model has been applied to calculation of leaking fuel characteristics using iodine and noble gas activity measurement data; 3) A new computational method has been developed for the simulation of leaking fuel rods under transient conditions and the specific parameters for the Paks NPP has been determined; 4) The transient model has been applied to the simulation of shutdown process at the Paks NPP and for the prediction of the time and magnitude of 123 I activity peak; 5) Using Paks NPP data a conservative value has been determined for the upper limit of the 123 I release from failed fuel rods during transients

  4. Imaging review of cerebrospinal fluid leaks

    Naga V Vemuri; Lakshmi S P Karanam; Venkatesh Manchikanti; Srinivas Dandamudi; Sampath K Puvvada; Vineet K Vemuri

    2017-01-01

    Cerebrospinal fluid (CSF) leak occurs due to a defect in the dura and skull base. Trauma remains the most common cause of CSF leak; however, a significant number of cases are iatrogenic, and result from a complication of functional endoscopic sinus surgery (FESS). Early diagnosis of CSF leak is of paramount importance to prevent life-threatening complications such as brain abscess and meningitis. Imaging plays a crucial role in the detection and characterization of CSF leaks. Three-dimensiona...

  5. Calibration of a leak detection spectrometer

    Geller, R.

    1958-01-01

    This paper describes a study of the possible methods for calibrating a leak detection spectrometer, and the estimation of outputs from the leaks is considered. With this in mind the question of sensitivity of leak detection is tackled on a very general level; first the sensitivity of the isolated instrument is determined, and then the sensitivity of an instrument connected to an installation where leaks may be suspected. Finally, practical solutions are proposed. (author) [fr

  6. Anastomotic leak after colorectal resection: A population-based study of risk factors and hospital variation.

    Nikolian, Vahagn C; Kamdar, Neil S; Regenbogen, Scott E; Morris, Arden M; Byrn, John C; Suwanabol, Pasithorn A; Campbell, Darrell A; Hendren, Samantha

    2017-06-01

    Anastomotic leak is a major source of morbidity in colorectal operations and has become an area of interest in performance metrics. It is unclear whether anastomotic leak is associated primarily with surgeons' technical performance or explained better by patient characteristics and institutional factors. We sought to establish if anastomotic leak could serve as a valid quality metric in colorectal operations by evaluating provider variation after adjusting for patient factors. We performed a retrospective cohort study of colorectal resection patients in the Michigan Surgical Quality Collaborative. Clinically relevant patient and operative factors were tested for association with anastomotic leak. Hierarchical logistic regression was used to derive risk-adjusted rates of anastomotic leak. Of 9,192 colorectal resections, 244 (2.7%) had a documented anastomotic leak. The incidence of anastomotic leak was 3.0% for patients with pelvic anastomoses and 2.5% for those with intra-abdominal anastomoses. Multivariable analysis showed that a greater operative duration, male sex, body mass index >30 kg/m 2 , tobacco use, chronic immunosuppressive medications, thrombocytosis (platelet count >400 × 10 9 /L), and urgent/emergency operations were independently associated with anastomotic leak (C-statistic = 0.75). After accounting for patient and procedural risk factors, 5 hospitals had a significantly greater incidence of postoperative anastomotic leak. This population-based study shows that risk factors for anastomotic leak include male sex, obesity, tobacco use, immunosuppression, thrombocytosis, greater operative duration, and urgent/emergency operation; models including these factors predict most of the variation in anastomotic leak rates. This study suggests that anastomotic leak can serve as a valid metric that can identify opportunities for quality improvement. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. High Efficiency Regenerative Helium Compressor, Phase I

    National Aeronautics and Space Administration — Helium plays several critical rolls in spacecraft propulsion. High pressure helium is commonly used to pressurize propellant fuel tanks. Helium cryocoolers can be...

  8. Sodium fire tests for investigating the sodium leak in Monju

    Seino, Hiroshi; Miyahara, Shinya; Miyake, Osamu; Tanabe, Hiromi

    1996-01-01

    As a part of the work for investigating the sodium leak accident which occurred in Monju on December 8, 1995, three tests, (1) sodium leak test, (2) sodium fire test-I, and (3) sodium fire test-II, were carried out at OEC/PNC. Main objectives of these tests are to confirm leak and burning behavior of sodium from the damaged thermometer, and effects of the sodium fire on integrity of the surrounding structure, etc. The main conclusions obtained from the tests are shown as below. 1) Average sodium leak rate obtained from the sodium leak test was about 50 g/sec. This was equivalent to the value estimated from level change in the sodium overflow tank in the Monju accident. 2) Observation from video cameras in the sodium fire tests revealed that in early stages of sodium leak, sodium dropped down out of the flexible tube of thermometer in drips. This dripping and burning were expanded in range as sodium splashed on the duct. 3) Though, in the sodium fire test-I, there was a decrease of about 1 mm at a thickness of the burning pan in the vicinity in just under in the leak point, there were completely no crack and failure. In the meantime, in the sodium fire test-II the six open holes were found in the floor liner. By this liner failure, the reaction between sodium and concrete might take place. At present, while the detailed evaluation on the sodium fire test-II has been mainly carried out, the investigation for clarifying the cause of the liner failure has been also carried out. (author)

  9. Leak Detection Modeling and Simulation for Oil Pipeline with Artificial Intelligence Method

    Pudjo Sukarno

    2007-05-01

    Full Text Available Leak detection is always interesting research topic, where leak location and leak rate are two pipeline leaking parameters that should be determined accurately to overcome pipe leaking problems. In this research those two parameters are investigated by developing transmission pipeline model and the leak detection model which is developed using Artificial Neural Network. The mathematical approach needs actual leak data to train the leak detection model, however such data could not be obtained from oil fields. Therefore, for training purposes hypothetical data are developed using the transmission pipeline model, by applying various physical configuration of pipeline and applying oil properties correlations to estimate the value of oil density and viscosity. The various leak locations and leak rates are also represented in this model. The prediction of those two leak parameters will be completed until the total error is less than certain value of tolerance, or until iterations level is reached. To recognize the pattern, forward procedure is conducted. The application of this approach produces conclusion that for certain pipeline network configuration, the higher number of iterations will produce accurate result. The number of iterations depend on the leakage rate, the smaller leakage rate, the higher number of iterations are required. The accuracy of this approach is clearly determined by the quality of training data. Therefore, in the preparation of training data the results of pressure drop calculations should be validated by the real measurement of pressure drop along the pipeline. For the accuracy purposes, there are possibility to change the pressure drop and fluid properties correlations, to get the better results. The results of this research are expected to give real contribution for giving an early detection of oil-spill in oil fields.

  10. Growth process of helium bubbles in aluminium

    Shiraishi, Haruki; Sakairi, Hideo; Yagi, Eiichi; Karasawa, Takashi; Hashiguti, R.R.

    1975-01-01

    The growth process of helium bubbles in α-particle bombarded pure aluminum during isothermal anneal ranging 200 to 645 0 C and 1 to 100 hr was observed by a transmission electron microscope and the possible growth mechanisms are discussed. The effects of helium concentration and cold work were investigated. The helium bubbles are detectable only at the anneal above 550 0 C in both annealed and cold worked samples. The cold work does not cause any extra coarsening trend of bubbles. The observed types of bubble distribution in the grain interior are divided into two categories, irrespective of helium concentration and cold work; (1) the fine and uniform bubble distribution, in which case the average size is limited to about 200 A or less in diameter even at the anneal just below the melting point, and (2) the coarsened and non-uniform bubble distribution ranging 500 to 4000 A in diameter. The intermediate size bubbles are scarcely found in any cases. In the above fine bubble distribution, the increase of helium concentration by a factor of two increases the density by the same factor of two, but does not change the mean size of bubbles. Corresponding to the above two characteristic bubble distributions, it is concluded that two different mechanisms are operative in this experiment; (1) the growth of bubbles by the Brownian motion, in which the growth rate of bubbles is decreased to almost zero by bubble faceting and this results in the bubble size constancy during the prolonged annealing, and (2) the growth of bubbles by the grain boundary sweep-out mechanism, by which the abrupt coarsening of bubbles is caused. The lack of existence of the intermediate size bubbles is explained in this way. (auth.)

  11. Containment integrity and leak testing. Procedures applied and experiences gained in European countries

    1987-01-01

    Containment systems are the ultimate safety barrier for preventing the escape of gaseous, liquid and solid radioactive materials produced in normal operation, not retained in process systems, and for keeping back radioactive materials released by system malfunction or equipment failure. A primary element of the containment shell is therefore its leak-tight design. The report describes the present containment concepts mostly used in European countries. The leak-testing procedures applied and the experiences gained in their application are also discussed. The report refers more particularly to pre-operational testing, periodic testing and extrapolation methods of leak rates measured at test conditions to expected leak rates at calculated accident conditions. The actual problems in periodic containment leak rate testing are critically reviewed. In the appendix to the report a summary is given of the regulations and specifications applied in different member countries

  12. Ultralow temperature helium compressor for Japan Atomic Energy Research Institute

    Asakura, Hiroshi

    1988-01-01

    Ishikawajima Harima Heavy Industries Co., Ltd. started the development of an ultralow temperature helium compressor for helium liquefaction in 1984 jointly with Japan Atomic Energy Research Institute, and has delivered the first practical machine to the Superconductive Magnet Laboratory of JAERI. For a large superconductive magnet to be used in the stable state for a fusion reactor, conventional superconductive materials (NbTi, NbTi 3 Sn, etc.) must be used, being cooled forcibly with supercritical helium. The supercritical helium which is compressed above the critical pressure of 228 kPa has a stable cooling effect since the thermal conductivity does not change due to the evaporation of liquid helium. In order to maintain the temperature of the supercritical helium below 4 K before it enters a magnet, a heat exchanger is used. The compressor that IHI has developed has the ability to reduce the vapor pressure of liquid helium from atmospheric pressure to 50.7 kPa, and can attain the temperature of 3.5 K. The specification of this single stage centrifugal compressor is: mass flow rate 25 - 64 g/s, speed 80,000 rpm, adiabatic efficiency 62 - 69 %. The structure and the performance are reported. (K.I.)

  13. Helium production in reactor materials

    Lippincott, E.P.; McElroy, W.N.; Farrar, H. IV.

    1975-02-01

    Comparisons of integral helium production measurements with predictions based on ENDF/B Version IV cross sections have been made. It is concluded that an ENDF/B helium production cross section file should be established in order to ensure a complete and consistent cross section evaluation to meet accuracies required for LMFBR, CTR, and LWR applications. (U.S.)

  14. Leak behaviors of steam generator tube-to-tubesheet joints from room temperature to 320 °C

    Bahn, Chi Bum; Majumdar, Saurin; Kasza, Ken E.; Shack, William J.

    2013-01-01

    To address concerns about excessive leakage from throughwall cracks in nuclear reactor tube-to-tubesheet joints under accident conditions, leak rates were measured experimentally by using tube-to-collar joint specimens and nitrogen gas. Rates were dependent on differential pressure between the tube internal surface and the crevice (i.e., the tube-to-collar interface region) and on temperature. As specimen temperature was raised to 320 °C, leak rates decreased gradually due to changes in gas properties and to differential thermal expansion between the Alloy 600 tubes and the SA508 collars. The leak rates did not change even after repeated temperature excursions to 320 °C, suggesting that thermally induced creep and subsequent contact pressure relaxation is negligible below that temperature. When considering factors that could increase flow resistance, such as oxidation, or debris on top of the tubesheet, the measured leak rates in this work are considered to be conservative. The test results were further used to validate the contact pressure calculation and a leak rate model. Highlights: ► Leak rates were measured by using tube-to-collar joint specimens. ► Leak rates were dependent on differential pressure between tube internal and joint interface. ► Leak rates decreased gradually as specimen temperature was raided to 320 °C. ► Differential thermal expansion between Alloy 600 tube and SA508 collar plays a major role on the leak behavior.

  15. A description of bubble growth and gas release of helium implanted tungsten

    Sharafat, S.; Hu, Q.; Ghoniem, N.; Tkahashi, A.

    2007-01-01

    Full text of publication follows: Bubble growth and gas release during annealing of helium implanted tungsten is described using a Kinetic Monte Carlo approach. The implanted spatial profiles of stable bubble nuclei are first determined using the Kinetic Rate Theory based helium evolution code, HEROS. The effects of implantation energy, temperature, and bias forces, such as temperature- and stress gradients on bubble migration and coalescence are investigated to explain experimental gas release measurements. This comprehensive helium bubble evolution and release model, demonstrates the impact of near surface (< 1 um) versus deep helium implantation on bubble evolution. Near surface implanted helium bubbles readily attain large equilibrium sizes, while matrix bubbles remain small with high helium pressures. Using the computer simulation, the various stages of helium bubble nucleation, growth, coalescence, and migration are demonstrated and compared with available experimental results. (authors)

  16. Helium behaviour in nuclear glasses

    Fares, T.

    2011-01-01

    The present thesis focuses on the study of helium behavior in R7T7 nuclear waste glass. Helium is generated by the minor actinides alpha decays incorporated in the glass matrix. Therefore, four types of materials were used in this work. These are non radioactive R7T7 glasses saturated with helium under pressure, glasses implanted with 3 He + ions, glasses doped with curium and glasses irradiated in nuclear reactor. The study of helium solubility in saturated R7T7 glass has shown that helium atoms are inserted in the glass free volume. The results yielded a solubility of about 10 16 at. cm -3 atm. -1 . The incorporation limit of helium in this type of glass has been determined; its value amounted to about 2*10 21 at. cm -3 , corresponding to 2.5 at.%. Diffusion studies have shown that the helium migration is controlled by the single population dissolved in the glass free volume. An ideal diffusion model was used to simulate the helium release data which allowed to determine diffusion coefficients obeying to the following Arrhenius law: D = D 0 exp(-E a /kBT), where D 0 = 2.2*10 -2 and 5.4*10 -3 cm 2 s -1 and E a = 0.61 eV for the helium saturated and the curium doped glass respectively. These results reflect a thermally activated diffusion mechanism which seems to be not influenced by the glass radiation damage and helium concentrations studied in the present work (up to 8*10 19 at. g -1 , corresponding to 0.1 at.%). Characterizations of the macroscopic, structural and microstructural properties of glasses irradiated in nuclear reactor did not reveal any impact associated with the presence of helium at high concentrations. The observed modifications i.e. a swelling of 0.7 %, a decrease in hardness by 38 %, an increase between 8 and 34 % of the fracture toughness and a stabilization of the glass structure under irradiation, were attributed to the glass nuclear damage induced by the irradiation in reactor. Characterizations by SEM and TEM of R7T7 glasses implanted

  17. Nuclear fuel element leak detection system

    John, C.D. Jr.

    1978-01-01

    Disclosed is a leak detection system integral with a wall of a building used to fabricate nuclear fuel elements for detecting radiation leakage from the nuclear fuel elements as the fuel elements exit the building. The leak detecting system comprises a shielded compartment constructed to withstand environmental hazards extending into a similarly constructed building and having sealed doors on both ends along with leak detecting apparatus connected to the compartment. The leak detecting system provides a system for removing a nuclear fuel element from its fabrication building while testing for radiation leaks in the fuel element

  18. Leak detection by vibrational diagnostic methods

    Siklossy, P.

    1983-01-01

    The possibilities and methods of leak detection due to mechanical failures in nuclear power plants are reviewed on the basis of the literature. Great importance is attributed to vibrational diagnostic methods for their adventageous characteristics which enable them to become final leak detecting methods. The problems of noise analysis, e.g. leak detection by impact sound measurements, probe characteristics, gain problems, probe selection, off-line analysis and correlation functions, types of leak noises etc. are summarized. Leak detection based on noise analysis can be installed additionally to power plants. Its maintenance and testing is simple. On the other hand, it requires special training and measuring methods. (Sz.J.)

  19. Using Decision Trees to Detect and Isolate Simulated Leaks in the J-2X Rocket Engine

    Schwabacher, Mark A.; Aguilar, Robert; Figueroa, Fernando F.

    2009-01-01

    The goal of this work was to use data-driven methods to automatically detect and isolate faults in the J-2X rocket engine. It was decided to use decision trees, since they tend to be easier to interpret than other data-driven methods. The decision tree algorithm automatically "learns" a decision tree by performing a search through the space of possible decision trees to find one that fits the training data. The particular decision tree algorithm used is known as C4.5. Simulated J-2X data from a high-fidelity simulator developed at Pratt & Whitney Rocketdyne and known as the Detailed Real-Time Model (DRTM) was used to "train" and test the decision tree. Fifty-six DRTM simulations were performed for this purpose, with different leak sizes, different leak locations, and different times of leak onset. To make the simulations as realistic as possible, they included simulated sensor noise, and included a gradual degradation in both fuel and oxidizer turbine efficiency. A decision tree was trained using 11 of these simulations, and tested using the remaining 45 simulations. In the training phase, the C4.5 algorithm was provided with labeled examples of data from nominal operation and data including leaks in each leak location. From the data, it "learned" a decision tree that can classify unseen data as having no leak or having a leak in one of the five leak locations. In the test phase, the decision tree produced very low false alarm rates and low missed detection rates on the unseen data. It had very good fault isolation rates for three of the five simulated leak locations, but it tended to confuse the remaining two locations, perhaps because a large leak at one of these two locations can look very similar to a small leak at the other location.

  20. Henry's law and accumulation of weak source for crust-derived helium: A case study of Weihe Basin, China

    Yuhong Li

    2017-12-01

    Full Text Available Crust-derived helium is generated from the radioactive decay of uranium, thorium and other radioactive elements in geological bodies. Compared with conventional natural gas, helium is a typical weak source gas as a result of extremely slow generation rate and absence of helium-generating peak. It is associated with methane or carbon dioxide reservoirs frequently and related to groundwater closely. Helium can meet the industry standard with 0.1% in volume fraction. In order to study the accumulation mechanism of helium, the previous research on Henry's coefficient and solubility of helium, nitrogen and methane are summarized and the key roles of Henry's Law in the helium migration, accumulation and preservation are discussed by simulating calculation taking Weihe Basin as an example. According to the Law, the gas solubility in dilute solution is controlled by the gas partial pressure and the Henry's coefficient. Compared with the carrier gases, the Henry's constant of helium is high, with striking difference at low and high temperature. In addition, the helium partial pressure is greatly different in helium source rocks and gas reservoirs, resulting in the great differences of helium solubility in the two places. The accumulation progresses are as follows. Firstly, helium can dissolve into water and migrate out of helium source rocks due to the high helium solubility, which is caused by high helium partial pressure and high temperature in source rock. Secondly, when dissolved helium is transported to the shallow gas reservoir, it is prone to be out of solution and into reservoir due to the extremely low partial pressure and low temperature. Meanwhile part of carrier gases dissolves into water, as if helium is “replaced” out. Furthermore, the low concentration funnel of dissolved helium is formed near the gas reservoir, then other dissolved helium continues to migrate towards the gas reservoir, which greatly improves the helium accumulation

  1. Assessment of volume and leak measurements during CPAP using a neonatal lung model

    Fischer, H S; Roehr, C C; Proquitté, H; Wauer, R R; Schmalisch, G

    2008-01-01

    Although several commercial devices are available which allow tidal volume and air leak monitoring during continuous positive airway pressure (CPAP) in neonates, little is known about their measurement accuracy and about the influence of air leaks on volume measurement. The aim of this in vitro study was the validation of volume and leak measurement under CPAP using a commercial ventilatory device, taking into consideration the clinical conditions in neonatology. The measurement accuracy of the Leoni ventilator (Heinen and Löwenstein, Germany) was investigated both in a leak-free system and with leaks simulated using calibration syringes (2–10 ml, 20–100 ml) and a mechanical lung model. Open tubes of variable lengths were connected for leak simulation. Leak flow was measured with the flow-through technique. In a leak-free system the mean relative volume error ±SD was 3.5 ± 2.6% (2–10 ml) and 5.9 ± 0.7% (20–60 ml), respectively. The influence of CPAP level, driving flow, respiratory rate and humidification of the breathing gas on the volume error was negligible. However, an increasing F i O 2 caused the measured tidal volume to increase by up to 25% (F i O 2 = 1.0). The relative error ±SD of the leak measurements was −0.2 ± 11.9%. For leaks >19%, measured tidal volume was underestimated by more than 10%. In conclusion, the present in vitro study showed that the Leoni allowed accurate volume monitoring under CPAP conditions similar to neonates. Air leaks of up to 90% of patient flow were reliably detected. For an F i O 2 >0.4 and for leaks >19%, a numerical correction of the displayed volume should be performed

  2. Assessment of volume and leak measurements during CPAP using a neonatal lung model.

    Fischer, H S; Roehr, C C; Proquitté, H; Wauer, R R; Schmalisch, G

    2008-01-01

    Although several commercial devices are available which allow tidal volume and air leak monitoring during continuous positive airway pressure (CPAP) in neonates, little is known about their measurement accuracy and about the influence of air leaks on volume measurement. The aim of this in vitro study was the validation of volume and leak measurement under CPAP using a commercial ventilatory device, taking into consideration the clinical conditions in neonatology. The measurement accuracy of the Leoni ventilator (Heinen & Löwenstein, Germany) was investigated both in a leak-free system and with leaks simulated using calibration syringes (2-10 ml, 20-100 ml) and a mechanical lung model. Open tubes of variable lengths were connected for leak simulation. Leak flow was measured with the flow-through technique. In a leak-free system the mean relative volume error +/-SD was 3.5 +/- 2.6% (2-10 ml) and 5.9 +/- 0.7% (20-60 ml), respectively. The influence of CPAP level, driving flow, respiratory rate and humidification of the breathing gas on the volume error was negligible. However, an increasing F(i)O(2) caused the measured tidal volume to increase by up to 25% (F(i)O(2) = 1.0). The relative error +/- SD of the leak measurements was -0.2 +/- 11.9%. For leaks > 19%, measured tidal volume was underestimated by more than 10%. In conclusion, the present in vitro study showed that the Leoni allowed accurate volume monitoring under CPAP conditions similar to neonates. Air leaks of up to 90% of patient flow were reliably detected. For an F(i)O(2) > 0.4 and for leaks > 19%, a numerical correction of the displayed volume should be performed.

  3. What is the optimal management of an intra-operative air leak in a colorectal anastomosis?

    Mitchem, J B; Stafford, C; Francone, T D; Roberts, P L; Schoetz, D J; Marcello, P W; Ricciardi, R

    2018-02-01

    An airtight anastomosis on intra-operative leak testing has been previously demonstrated to be associated with a lower risk of clinically significant postoperative anastomotic leak following left-sided colorectal anastomosis. However, to date, there is no consistently agreed upon method for management of an intra-operative anastomotic leak. Therefore, we powered a noninferiority study to determine whether suture repair alone was an appropriate strategy for the management of an intra-operative air leak. This is a retrospective cohort analysis of prospectively collected data from a tertiary care referral centre. We included all consecutive patients with left-sided colorectal or ileorectal anastomoses and evidence of air leak during intra-operative leak testing. Patients were excluded if proximal diversion was planned preoperatively, a pre-existing proximal diversion was present at the time of surgery or an anastomosis was ultimately unable to be completed. The primary outcome measure was clinically significant anastomotic leak, as defined by the Surgical Infection Study Group at 30 days. From a sample of 2360 patients, 119 had an intra-operative air leak during leak testing. Sixty-eight patients underwent suture repair alone and 51 underwent proximal diversion or anastomotic reconstruction. The clinically significant leak rate was 9% (6/68; 95% CI: 2-15%) in the suture repair alone arm and 0% (0/51) in the diversion or reconstruction arm. Suture repair alone does not meet the criteria for noninferiority for the management of intra-operative air leak during left-sided colorectal anastomosis. Further repair of intra-operative air leak by suture repair alone should be reconsidered given these findings. Colorectal Disease © 2017 The Association of Coloproctology of Great Britain and Ireland.

  4. CT findings suggesting anastomotic leak and predicting the recovery period following gastric surgery

    Kim, Tae Ho; Kim, Jung Hoon; Shin, Cheong-Il; Kim, Se Hyung; Han, Joon Koo; Choi, Byung Ihn [Seoul National University College of Medicine, Department of Radiology, Institute of Radiation Medicine, Jongno-gu, Seoul (Korea, Republic of)

    2015-07-15

    To assess diagnostic performance of routine CT for detecting anastomotic leak after gastric surgery, and analyse the relationship between recovery period and CT findings. We included 179 patients who underwent immediate CT and fluoroscopy after gastric surgery. Two reviewers retrospectively rated the possibility of leak on CT using a five-point scale focused on predefined CT findings. They also evaluated CT findings. Patients were categorised as: Group I, leak on fluoroscopy; Group II, possible leak on CT but negative on fluoroscopy; Group III, no leak. We analysed the relationship between recovery period and group. Area under the curve for detecting leak on CT was 0.886 in R1 and 0.668 in R2 with moderate agreement (k = 0.482). Statistically common CT findings for leak included discontinuity, large amount of air-fluid and wall thickening at anastomosis site (p < 0.05). Discontinuity at anastomosis site and a large air-fluid collection were independently associated with leak (p < 0.05). The recovery period including hospitalisation and postoperative fasting period was longer in Group I than Group II or III (p < 0.05). Group II showed a longer recovery period than Group III (p < 0.05). Postoperative routine CT was useful for predicting anastomotic leak using specific findings, and for predicting length of recovery period. (orig.)

  5. Development of acoustic leak detection and localization methods for inlet piping of fugen nuclear power plant

    Shimanskiy, Sergey; Iijima, Takashi; Naoi, Yosuke

    2004-01-01

    The development work carried out on Fugen NPP is focused on detection of a small leakage on the reactor's inlet feeder pipes at an early stage by an acoustic leak detection method with usage of high-temperature resistant microphones. Specifically, the leak rate of 0.046m 3 /h has been chosen as a target detection capability for this system. A cross-correlation technique has been studied for leak detection under low signal-noise ratios. The study shows that the sound diffusion on piping causes distortion of leak signals that results in their low correlation. A leak-location estimator and multi-channel correlation value, associated with estimated leak position, have been employed to detect such low-correlated leak signals. A method based on cross-correlation of signal spectral components has been proposed to deal with non-stationary leak signals. Joint-Time-Frequency-Analysis has been applied to analyze such signals, whilst a Wavelet decomposition technique has been used to extract their short-term spectral fluctuations. Since the spectral components are less affected by signal distortion, they provide higher correlation value and can be applied for leak detection under lower signal-noise ratios. The possibility of detecting and locating a small leakage by the methods proposed has been demonstrated by a number of simulation tests conducted on the Fugen NPP site. (author)

  6. Leaking electricity in domestic appliances

    Meier, Alan; Rosen, Karen

    1999-01-01

    Many types of home electronic equipment draw electric power when switched off or not performing their principal functions. Standby power use (or ''leaking electricity'') for most appliances ranges from 1 - 20 watts. Even though standby use of each device is small, the combined standby power use of all appliances in a home can easily exceed 50 watts. Leaking electricity is already responsible for 5 to 10 percent of residential electricity use in the United States and over 10 percent in Japan. An increasing number of white goods also have standby power requirements. There is a growing international effort to limit standby power to around one watt per device. New and existing technologies are available to meet this target at little or no extra cost

  7. Leak testing. Environment and workplaces

    1984-01-01

    Workplaces specified for leak testing are divided into clean workplaces of the 1st degree, clean workplaces of the second degree, clean workplaces of the third degree and semi-clean workplaces. Clean workplaces are further subdivided into permanent and temporary workplaces. For all said types of workplaces the standard sets the following provisions: basic equipment, machines and instrumentation, permitted and prohibited working activities and principles for maintenance and inspection. (E.S.)

  8. Hydrogen Leak Detection Sensor Database

    Baker, Barton D.

    2010-01-01

    This slide presentation reviews the characteristics of the Hydrogen Sensor database. The database is the result of NASA's continuing interest in and improvement of its ability to detect and assess gas leaks in space applications. The database specifics and a snapshot of an entry in the database are reviewed. Attempts were made to determine the applicability of each of the 65 sensors for ground and/or vehicle use.

  9. Process and device for detecting and localizing leaks in a tube bundle heat exchanger when it is stopped

    Germain, J.L.; Jeanneteau, E.; Loisy, F.

    1986-01-01

    The device can be used to detect the tubes presenting leaks in a tube bundle exchanger of a light water reactor. This device comprises a feeding point to fill the secondary part of the exchanger, in which the tubes are immersed, with a pressure mixture of vector gas (air) and helium. It has also a feeding point to establish in the tube a sweeping air flow. An analysis apparatus, such as a spectrograph, measures the helium content of air at the outlet of each tube [fr

  10. Photoionization of helium dimers

    Havermeier, Tilo

    2010-01-01

    The helium dimer is one of the most weakly bound systems in the universe. This makes it an interesting quantum mechanical object for investigation. These Van der Waals Clusters can be produced in an expansion of a cryogenic gas jet through a small nozzle into vacuum. In the present experiment we examine the interaction of He dimers with synchrotron radiation at an energy range from 64 to 78 eV. We observed different pathways leading to single ionization of both He atoms of the dimer compound. This two close standing ions begin now to dissociate in cause of their coulomb potential. All charged fragments were detected in coincidence with a COLTRIMS system. Especially Interatomic Coulombic Decay (ICD) and the two step process (TS1) were clearly identified. Furthermore a distribution of the internuclear distance was obtained from the measured Kinetic Energy Release (KER). (orig.)

  11. Development of sodium leak detectors for PFBR

    Sylvia, J.I.; Rao, P. Vijayamohana; Babu, B.; Madhusoodanan, K.; Rajan, K.K.

    2012-01-01

    Highlights: ► Sodium leak detection system developed for PFBR using diverse principle. ► Miniature, remotely locatable diverse leak detector developed for Main Vessel. ► Mutual inductance type leak detectors designed and adapted for different locations. ► Sodium Ionisation detectors used for area monitoring. ► Crosswire type leak detector designed, developed and tested. - Abstract: The 500 MWe Prototype Fast Breeder Reactor (PFBR) is under advanced stage of construction at Kalpakkam near Chennai in India. The wide and high operating temperature, highly chemically active nature of sodium and its reaction with air make the sodium instrumentation complex over the conventional instrumentation. Over the years, traditional instruments such as wire type leak detectors, spark plug type leak detectors were developed and used in different sodium systems. The redundant and diverse leak detection method calls for development of special instrumentation for sodium systems which include sodium ionization (leak) detector for detecting minute sodium leak in addition to those systems based on mutual inductance principle. For detection of sodium leak from reactor Main Vessel (MV), diverse methods are used such as miniature, remotely locatable, Mutual Inductance type Leak Detector(MILD) and specially modified spark plug type leak detector. The design of MILD is suitably modified for detecting leak in double wall pipes and Diverse Safety Rod drive Mechanism (DSRDM). Steam/water leak in steam generator produces hydrogen and leads to high pressure and temperature in the system. Rupture disc is used as a safety device which punctures itself due to sudden pressure rise. To detect the discharge of sodium and its reaction products at the downstream of the rupture disc due to bursting of the rupture disc, cross wire type leak detector has been designed, developed and tested. The selection of the leak detection system depends on the location where leak has to be detected. This paper

  12. Exotic helium molecules

    Portier, M.

    2007-12-01

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range 4 He 2 (2 3 S 1 -2 3 P 0 ) molecule, or a 4 He 2 (2 3 S 1 -2 3 S 1 ) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 ± 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range 4 He 2 (2 3 S 1 -2 3 S 1 ) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime τ = (1.4 ± 0.3) μs is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  13. Diagnostic instrumentation for detection of the onset of steam tube leaks in PWRs

    Roach, W.H.

    1984-01-01

    Four tasks are addressed in this study of the detection of steam tube leaks: determination of which physical parameters indicate the onset of steam generator tube leaks; establishing performance goals for diagnostic instruments which could be used for early detection of steam generator tube leaks; defining the diagnostic instrumentation and their location which satisfy Items 1 and 2; and assessing the need for diagnostic data processing and display. Parameters are identified, performance goals established and sensor types and locations are specified in the report, with emphasis on the use of existing instrumentation with a minimum of retrofitting. A simple algorithm is developed which yields the leak rate as a function of known or measurable quantities. The conclusion is that leak rates of less than one-tenth gram per second should be detectable with existing instrumentation

  14. Wall conditioning and leak localization in the advanced toroidal facility

    Langley, R.A.; Glowienka, J.C.; Mioduszewski, P.K.; Murakami, M.; Rayburn, T.F.; Simpkins, J.E.; Schwenterly, S.W.; Yarber, J.L.

    1989-01-01

    The Advanced Toroidal Facility (ATF) vacuum vessel and its internal components have been conditioned for plasma operation by baking, discharge cleaning with hydrogen and helium, and gettering with chromium and titanium. The plasma-facing surface of ATF consists mainly of stainless steel with some graphite; the outgassing area is dominated by the graphite because of its open porosity. Since this situation is somewhat different from that in other fusion plasma experiments, in which a single material dominates both the outgassing area and the plasma-facing area, different cleaning and conditioning techniques are required. The situation was aggravated by air leaks in the vacuum vessel, presumably resulting from baking and from vibration during plasma operation. The results of the various cleaning and conditioning techniques used are presented and compared on the basis of residual gas analysis and plasma performance. A technique for detecting leaks from the inside of the vacuum vessel is described; this technique was developed because access to the outside of the vessel is severely restricted by external components. 10 refs., 6 figs., 2 tabs

  15. Wall conditioning and leak localization in the Advanced Toroidal Facility

    Langley, R.A.; Glowienka, J.C.; Mioduszewski, P.K.; Murakami, M.; Rayburn, T.F.; Simpkins, J.E.; Schwenterly, S.W.; Yarber, J.L.

    1990-01-01

    The Advanced Toroidal Facility (ATF) vacuum vessel and its internal components have been conditioned for plasma operation by baking, discharge cleaning with hydrogen and helium, and gettering with chromium and titanium. The plasma-facing surface of ATF consists mainly of stainless steel with some graphite; the outgassing area is dominated by the graphite because of its open porosity. Since this situation is somewhat different from that in other fusion plasma experiments, in which a single material dominates both the outgassing area and the plasma-facing area, different cleaning and conditioning techniques are required. The situation was aggravated by air leaks in the vacuum vessel, presumably resulting from baking and from vibration during plasma operation. The results of the various cleaning and conditioning techniques used are presented and compared on the basis of residual gas analysis and plasma performance. A technique for detecting leaks from the inside of the vacuum vessel is described. This technique was developed because access to the outside of the vessel is severely restricted by external components

  16. High efficiency nebulization for helium inductively coupled plasma mass spectrometry

    Jorabchi, Kaveh; McCormick, Ryan; Levine, Jonathan A.; Liu Huiying; Nam, S.-H.; Montaser, Akbar

    2006-01-01

    A pneumatically-driven, high efficiency nebulizer is explored for helium inductively coupled plasma mass spectrometry. The aerosol characteristics and analyte transport efficiencies of the high efficiency nebulizer for nebulization with helium are measured and compared to the results obtained with argon. Analytical performance indices of the helium inductively coupled plasma mass spectrometry are evaluated in terms of detection limits and precision. The helium inductively coupled plasma mass spectrometry detection limits obtained with the high efficiency nebulizer at 200 μL/min are higher than those achieved with the ultrasonic nebulizer consuming 2 mL/min solution, however, precision is generally better with high efficiency nebulizer (1-4% vs. 3-8% with ultrasonic nebulizer). Detection limits with the high efficiency nebulizer at 200 μL/min solution uptake rate approach those using ultrasonic nebulizer upon efficient desolvation with a heated spray chamber followed by a Peltier-cooled multipass condenser

  17. Transfer of hydrogen and helium through corrugated, flexible tubes

    Schippl, K.

    2001-01-01

    The transfer of liquid gas or cold gas through corrugated tubes is an alternative to rigid systems for the use in reactor technique. Advantages: flexibility for easy installation; these tubes together with their associated terminations and hardware are assembled, leak-tested and evacuated at the factory. This permits simple and cost saving installation on site. All tubes are helium leak-tested with a sensitivity of 10E -9 mbar 1/sec. Following the leak test, the vacuum space is pumped down to the operation vacuum level and properly sealed. The vacuum integrity is guaranteed as a result of the high degree of cleanliness observed during production and from the use of a specially selected better material inside the vacuum space. Disadvantage: pressure is limited to 20 bar. To fulfil all rules of the reactor safety, different tests have to be done. Because of the longitudinal weld of the corrugated tube, a bursting test of different sizes gives the best information of the liability of this kind of tube. It can be shown that the bursting pressure of such a tube is more than 5 times higher than the max. working pressure

  18. What Is the Risk of Anastomotic Leak After Repeat Intestinal Resection in Patients With Crohn's Disease?

    Johnston, W Forrest; Stafford, Caitlin; Francone, Todd D; Read, Thomas E; Marcello, Peter W; Roberts, Patricia L; Ricciardi, Rocco

    2017-12-01

    Approximately half of Crohn's patients require intestinal resection, and many need repeat resections. The purpose of this study was to evaluate the increased risk of clinical anastomotic leak in patients with a history of previous intestinal resection undergoing repeat resection with anastomosis for Crohn's disease. This was a retrospective analysis of prospectively collected departmental data with 100% capture. The study was conducted at the department of colorectal surgery in a tertiary care teaching hospital between July 2007 and March 2016. A cohort of consecutive patients with Crohn's disease who were treated with intestinal resection and anastomosis, excluding patients with proximal fecal diversion, were included. The cohort was divided into 2 groups, those with no previous resection compared with those with previous resection. Clinical anastomotic leak within 30 days of surgery was measured. Of the 206 patients who met criteria, 83 patients had previous intestinal resection (40%). The 2 groups were similar in terms of patient factors, immune-suppressing medication use, and procedural factors. Overall, 20 clinical anastomotic leaks were identified (10% leak rate). There were 6 leaks (5%) detected in patients with no previous intestinal resection and 14 leaks (17%) detected in patients with a history of previous intestinal resection (p leak in patients with Crohn's disease with previous resection compared with no previous resection was 3.5 (95% CI, 1.3-9.4). Patients with 1 previous resection (n = 53) had a leak rate of 13%, whereas patients with ≥2 previous resections (n = 30) had a leak rate of 23%. The number of previous resections correlated with increasing risk for clinical anastomotic leak (correlation coefficient = 0.998). This was a retrospective study with limited data to perform a multivariate analysis. Repeat intestinal resection in patients with Crohn's disease is associated with an increased rate of anastomotic leakage when compared with initial

  19. Electronic properties of physisorbed helium

    Kossler, Sarah

    2011-01-01

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  20. Electronic properties of physisorbed helium

    Kossler, Sarah

    2011-09-22

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  1. Effect of heat transfer tube leak on dynamic characteristic of steam generator

    Sun Baozhi; Shi Jianxin; Li Na; Zheng Lusong; Liu Shanghua; Lei Yu

    2015-01-01

    Taking the steam generator of Daya Bay Nuclear Power Station as the research object, one-dimensional dynamic model of the steam generator based on drift flux theory and leak model of heat transfer tube were established. Steady simulation of steam generator under different conditions was carried out. Based on verifying the drift flux model and leak model of heat transfer tube, the effect of leak location and flow rate under different conditions on steam generator's key parameters was studied. The results show that the drift flux model and leak model can reflect the law of key parameter change accurately such as vapor mass fraction and steam pressure under different leak cases. The variation of the parameters is most apparent when the leak is at the entrance of boiling section and vapor mass fraction varies from 0.261 to 0.163 when leakage accounts for 5% of coolant flow rate. The successful prediction of the effect of heat transfer tube leak on dynamic characteristics of the steam generator based on drift flux theory supplies some references for monitoring and taking precautionary measures to prevent heat transfer tube leak accident. (authors)

  2. Leak detection device for control rod drive and detection method therefor

    Imasaki, Yoshio.

    1997-01-01

    The present invention provides a detection device for leak of cooling water from a sealed axial portion of control rod drives (CRD) disposed in a BWR type reactor and a monitoring method therefor. Namely, the CRD transfers rotation at the sealed axial portion and elevates/lowers a piston to insert/withdraw control rod into/from the reactor core. High pressure water is injected upon occurrence of scram to urge the piston upwardly thereby rapidly inserting the control rods. Leak detection pipelines are laid from the sealed axial portion. A flow glass is connected to the leak detection pipelines. Then, cooling water leaked from the sealed axial portion flows in the leak detection pipelines and flows into the flow glass. The flow rate of cooling water leaked from the sealed axial portion of the CRD can thus be detected by monitoring the flow glass. In addition, a flowmeter is connected to the leak detection pipelines, or the flowmeter and the flow glass are connected, and a flowmeter is connected downstream. Then, the flow rate of the leaked cooling water can be detected automatically. (I.S.)

  3. Preliminary Overview of a Helium Cooling System for the Secondary Helium Loop in VHTR-based SI Hydrogen Production Facilities

    Shin, Youngjoon; Cho, Mintaek; Kim, Dahee; Lee, Taehoon; Lee, Kiyoung; Kim, Yongwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Nuclear hydrogen production facilities consist of a very high temperature gas-cooled nuclear reactor (VHTR) system, intermediate heat exchanger (IHX) system, and a sulfur-iodine (SI) thermochemical process. This study focuses on the coupling system between the IHX system and SI thermochemical process. To prevent the propagation of the thermal disturbance owing to the abnormal operation of the SI process components from the IHX system to the VHTR system, a helium cooling system for the secondary helium of the IHX is required. In this paper, the helium cooling system has been studied. The temperature fluctuation of the secondary helium owing to the abnormal operation of the SI process was then calculated based on the proposed coupling system model. Finally, the preliminary conceptual design of the helium cooling system with a steam generator and forced-draft air-cooled heat exchanger to mitigate the thermal disturbance has been carried out. A conceptual flow diagram of a helium cooling system between the IHX and SI thermochemical processes in VHTR-based SI hydrogen production facilities has been proposed. A helium cooling system for the secondary helium of the IHX in this flow diagram prevents the propagation of the thermal disturbance from the IHX system to the VHTR system, owing to the abnormal operation of the SI process components. As a result of a dynamic simulation to anticipate the fluctuations of the secondary helium temperature owing to the abnormal operation of the SI process components with a hydrogen production rate of 60 mol·H{sub 2}/s, it is recommended that the maximum helium cooling capacity to recover the normal operation temperature of 450 .deg. C is 31,933.4 kJ/s. To satisfy this helium cooling capacity, a U-type steam generator, which has a heat transfer area of 12 m{sup 2}, and a forced-draft air-cooled condenser, which has a heat transfer area of 12,388.67 m{sup 2}, are required for the secondary helium cooling system.

  4. Modeling of helium bubble nucleation and growth in neutron irradiated boron doped RAFM steels

    Dethloff, Christian; Gaganidze, Ermile; Svetukhin, Vyacheslav V.; Aktaa, Jarir

    2012-01-01

    Reduced activation ferritic/martensitic (RAFM) steels are promising candidates for structural materials in future fusion technology. In addition to other irradiation defects, the transmuted helium is believed to strongly influence material hardening and embrittlement behavior. A phenomenological model based on kinetic rate equations is developed to describe homogeneous nucleation and growth of helium bubbles in neutron irradiated RAFM steels. The model is adapted to different 10 B doped EUROFER97 based heats, which already had been studied in past irradiation experiments. Simulations yield bubble size distributions, whereby effects of helium generation rate, surface energy, helium sinks and helium density are investigated. Peak bubble diameters under different conditions are compared to preliminary microstructural results on irradiated specimens. Helium induced hardening was calculated by applying the Dispersed Barrier Hardening model to simulated cluster size distributions. Quantitative microstructural investigations of unirradiated and irradiated specimens will be used to support and verify the model.

  5. Modeling of helium bubble nucleation and growth in neutron irradiated boron doped RAFM steels

    Dethloff, Christian, E-mail: christian.dethloff@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gaganidze, Ermile [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Svetukhin, Vyacheslav V. [Ulyanovsk State University, Leo Tolstoy Str. 42, 432970 Ulyanovsk (Russian Federation); Aktaa, Jarir [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-07-15

    Reduced activation ferritic/martensitic (RAFM) steels are promising candidates for structural materials in future fusion technology. In addition to other irradiation defects, the transmuted helium is believed to strongly influence material hardening and embrittlement behavior. A phenomenological model based on kinetic rate equations is developed to describe homogeneous nucleation and growth of helium bubbles in neutron irradiated RAFM steels. The model is adapted to different {sup 10}B doped EUROFER97 based heats, which already had been studied in past irradiation experiments. Simulations yield bubble size distributions, whereby effects of helium generation rate, surface energy, helium sinks and helium density are investigated. Peak bubble diameters under different conditions are compared to preliminary microstructural results on irradiated specimens. Helium induced hardening was calculated by applying the Dispersed Barrier Hardening model to simulated cluster size distributions. Quantitative microstructural investigations of unirradiated and irradiated specimens will be used to support and verify the model.

  6. Operating Manual of Helium Refrigerator (Rev. 2)

    Song, K.M.; Son, S.H.; Kim, K.S.; Lee, S.K.; Kim, M.S. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    A helium refrigerator was installed as a supplier of 20K cold helium to the cryogenic distillation system of WTRF pilot plant. The operating procedures of the helium refrigerator, helium compressor and auxiliary apparatus are described for the safety and efficient operation in this manual. The function of the helium refrigerator is to remove the impurities from the compressed helium of about 250psig, to cool down the helium from ambient temperature to 20K through the heat exchanger and expansion engine and to transfer the cold helium to the cryogenic distillation system. For the smoothly operation of helium refrigerator, the preparation, the start-up, the cool-down and the shut-down of the helium refrigerator are described in this operating manual. (author). 3 refs., 14 tabs.

  7. Helium cooling of fusion reactors

    Wong, C.P.C.; Baxi, C.; Bourque, R.; Dahms, C.; Inamati, S.; Ryder, R.; Sager, G.; Schleicher, R.

    1994-01-01

    On the basis of worldwide design experience and in coordination with the evolution of the International Thermonuclear Experimental Reactor (ITER) program, the application of helium as a coolant for fusion appears to be at the verge of a transition from conceptual design to engineering development. This paper presents a review of the use of helium as the coolant for fusion reactor blanket and divertor designs. The concept of a high-pressure helium cooling radial plate design was studied for both ITER and PULSAR. These designs can resolve many engineering issues, and can help with reaching the goals of low activation and high performance designs. The combination of helium cooling, advanced low-activation materials, and gas turbine technology may permit high thermal efficiency and reduced costs, resulting in the environmental advantages and competitive economics required to make fusion a 21st century power source. ((orig.))

  8. Laser spectroscopy of antiprotonic helium

    Hori, M

    2005-01-01

    When antiprotons (i.e. the antimatter counterpart of protons) are stopped in helium gas, 97% of them annihilate within picoseconds by reacting with the helium nuclei; a 3% fraction, however, survive with an anomalously long lifetime of several microseconds. This longevity is due to the formation of antiprotonic helium, which is a three-body Rydberg atom composed of an antiproton, electron, and helium nucleus. The ASACUSA experimental collaboration has recently synthesized large numbers of these atoms using CERN's Antiproton Decelerator facility, and measured the atom's transition frequencies to 60 parts per billion by laser spectroscopy. By comparing the experimental results with recent three-body QED calculations and the known antiproton cyclotron frequency, we were able to show that the antiproton mass and charge are the same as the corresponding proton values to a precision of 10 parts per billion. Ongoing and future series of experiments will further improve the experimental precision by using chirp-compe...

  9. High Accuracy Vector Helium Magnetometer

    National Aeronautics and Space Administration — The proposed HAVHM instrument is a laser-pumped helium magnetometer with both triaxial vector and omnidirectional scalar measurement capabilities in a single...

  10. Application of leak-before-break criteria to pressurized water reactors

    Roege, P.; Day, B.; Beckjord, E.; Golay, M.

    1986-01-01

    The possibility of consequential damage to safety-related systems or components after postulated pipe breaks in Light Water Reactors has led to the installation of pipe restraints capable of withstanding the loads in such an accident. These restraints are a significant part of initial capital cost, and because of their size and location, impede plant maintenance. The Piping Review Committee of the U.S. Nuclear Regulatory Commission has concluded that, subject to fulfillment of certain criteria, the pipe restraints for pressurized water reactor main coolant piping are not necessary, because the failure mode of this piping is such that it will leak before it will break, and the leakage of reactor coolant is large enough to detect. In this study, we examine the piping systems of a 4-loop 1,150 MWe pressurized water reactor, determining the crack size that would be stable from a fracture mechanics point of view, and the range of leak rates that would ensue. We then consider the sensitivity of conventional leak detection systems, and find that pipe sizes down to 45 cm in diameter would meet the leak-before-break criteria. Improvements in the sensitivity of conventional leak detectors would extend this range down to pipe sizes down to the range of 20 - 45 cm in diameter. The development of local leak detection systems which would respond to leaks in compartments or confined areas would make it possible to apply the criteria to sizes as low as 10 - 20 cm in diameter, which appear to be the limit of the net cost savings of eliminating pipe restraints and adding additional leak detection instrumentation. Extending the leak-before-break concept into this smallest pipe range may require improved precision in crack definition, flow modeling, and leak detection. Better detection of leaks may also require use of new detection methods coupled to novel approaches to piping system design. (J.P.N.)

  11. Acoustic leak detection of LMFBR steam generator

    Kumagai, Hiromichi; Yoshida, Kazuo

    1993-01-01

    The development of a water leak detector with short response time for LMFBR steam generators is required to prevent the failure propagation caused by the sodium-water reaction and to maintain structural safety in steam generators. The development of an acoustic leak detector assuring short response time has attracted. The purpose of this paper is to confirm the basic detection feasibility of the active acoustic leak detector, and to investigate the leak detection method by erasing the background noise by spectrum analysis of the passive acoustic leak detector. From a comparison of the leak detection sensitivity of the active and the passive method, the active method is not influenced remarkably by the background noise, and it has possibility to detect microleakage with short response time. We anticipate a practical application of the active method in the future. (author)

  12. Dissipation in the superfluid helium film

    Turkington, R.R.; Harris-Lowe, R.F.

    1977-01-01

    We have measured the rate of energy dissipation in superfluid helium film flow in an attempt to test a recent theory due to Harris-Lowe, which predicts that for superfluid stream velocities v/sub s/ that just exceed the critical velocity v/sub c0/, the rate of dissipation is given by an equation of the form Q=C(v/sub s/-v/sub c0/)/sup 3/2/. Our experiments at 1.33 K show that the exponent, predicted to be 3/2, is 1.491 +- 0.021

  13. Water leak detection in steam generator of Super Phenix

    Kong, N.; Brunet, M.; Garnaud, P.; Ghaleb, D.

    1990-01-01

    With the intent of detecting water leaks inside steam generators, we developed a third system, called acoustic detector, to complement hydrogen detectors and rupture disks (burst disks). The role of the acoustic system is to enable rapid intervention in the event of a leak growing rapidly which could rupture neighbouring tubes. In such a case, the detectable flow rate of the leak varies from a few tens of g/s to a few hundred g/s. At the Super Phenix, three teams work in parallel in complementary frequency bands: EDF (0-20 kHz), CEA/SPCI (20-100 kHz) and CEA/STA (50-300 kHz). The simulation of water leaks in the steam generator by the argon injections performed to date at 50% of the rated power has shown promising results. An anomaly in the evolution of the background noise at more than 50% loading of one of the two instrumented steam generators would make difficult any extrapolation to full power behaviour. 5 refs, 6 figs, 1 tab

  14. Benign Biliary Strictures and Leaks.

    Devière, Jacques

    2015-10-01

    The major causes of benign biliary strictures include surgery, chronic pancreatitis, primary sclerosing cholangitis, and autoimmune cholangitis. Biliary leaks mainly occur after surgery and, rarely, abdominal trauma. These conditions may benefit from a nonsurgical approach in which endoscopic retrograde cholangiopancreatography (ERCP) plays a pivotal role in association with other minimally invasive approaches. This approach should be evaluated for any injury before deciding about the method for repair. ERCP, associated with peroral cholangioscopy, plays a growing role in characterizing undeterminate strictures, avoiding both unuseful major surgeries and palliative options that might compromise any further management. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Leak detection of KNI seals

    Baranyai, G.; Peter, A.; Windberg, P.

    1990-03-01

    In Unit 3 and 4 of the Paks Nuclear Power Plant, Hungary, KNI type seals are used as lead-throughs with conical nickel sealing rings. Their failure can be critical for the operation of the reactor. An Acoustical Leak Detection System (ALDS) was constructed and tested for the operational testing of the seals. Some individual papers are presented in this collection on the calibration and testing of the ALDS intended to be placed on the top of the reactor vessels. The papers include simulation measurements of Unit 3 of NPP, laboratory experiments, evaluation of measurements, and further development needs with the ALDS. (R.P.) 50 figs.; 19 tabs

  16. Small leak detection by measuring surface oscillation during sodium-water reaction in steam generator

    Nei, Hiromichi; Hori, Masao

    1977-01-01

    Small leak sodium-water reaction tests were conducted to develop various kinds of leak detectors for the sodium-heated steam generator in FBR. The super-heated steam was injected into sodium in a reaction vessel having a sodium free surface, simulating the steam generator. The level gauge in the reaction vessel generated the most reliable signal among detectors, as long as the leak rates were relatively high. The level gauge signal was estimated to be the sodium surface oscillation caused by hydrogen bubbles produced in sodium-water reaction. Experimental correlation was derived, predicting the amplitude as a function of leak rate, hydrogen dissolution ratio, bubble rise velocity and other parameters concerned, assuming that the surface oscillation is in proportion to the gas hold-up. The noise amplitude under normal operation without water leak was increased with sodium flow rate and found to be well correlated with Froud number. These two correlations predict that a water leak in a ''MONJU'' class (300 MWe) steam generator could possibly be detected by level gauges at a leak rate above 2 g/sec. (auth.)

  17. Leaking tankers: how much oil was spilled?

    Simecek-Beatty, D. A.; Lehr, W. J.; Lankford, J. F.

    1997-01-01

    A model to estimate leak rates from tankers has been developed for use in emergency situations when more direct oil-loss estimation methods are not available. The model includes algorithms for gravity outflow and air and water ingestion. Three laboratory tests were conducted using fresh water and canola oil to evaluate the model output. Comparison with results from the laboratory experiments indicate good correlation of model results with measured data. However, it is not yet possible in the case of very large crude carriers to answer the question 'how much oil was spilled?' Sensitivity analysis and further laboratory testing were suggested to determine the effect of factors such as: pressure vacuum relief valves that prevent cavitation in the event of tank puncture; changing outside water levels due to wave and tidal action; tank and hole dimensions; and the amount and density of the product.10 refs., 4 figs

  18. Acoustic emission leak monitoring system LMS-96

    Liska, J.; Cvrcek, M.; Mueller, L.

    1997-01-01

    On-line acoustic emission leak monitoring under industrial conditions of nuclear power plants is a problem with specific features setting specific demands on the leak monitoring system. The paper briefly reviews those problems (attenuation pattern of a real structure, acoustic background, alarm system, etc.) and the solution of some of them is discussed. Information is presented on the Acoustic Emission Leak Monitoring System LMS-96 by SKODA NUCLEAR MACHINERY and the system's function is briefly described. (author)

  19. Leak detection using structure-borne noise

    Holland, Stephen D. (Inventor); Chimenti, Dale E. (Inventor); Roberts, Ronald A. (Inventor)

    2010-01-01

    A method for detection and location of air leaks in a pressure vessel, such as a spacecraft, includes sensing structure-borne ultrasound waveforms associated with turbulence caused by a leak from a plurality of sensors and cross correlating the waveforms to determine existence and location of the leak. Different configurations of sensors and corresponding methods can be used. An apparatus for performing the methods is also provided.

  20. Hepatobiliary scintigraphy in patients with bile leaks

    Carichner, S.L.; Nagle, C.E.

    1987-01-01

    Hepatobiliary scintigraphy has been recognized as a useful tool in detecting the presence and sites of bile leaks. The clinical settings in which bile leaks are likely to occur, as well as some of the scintigraphic patterns seen in patients with bile leaks, are reviewed here. Tips for technologists are offered on interventions that might enhanced the quality of information available to the nuclear physician

  1. Biphasic decay of the Ca transient results from increased sarcoplasmic reticulum Ca leak

    Sankaranarayanan, Rajiv; Li, Yatong; Greensmith, David J.; Eisner, David A.

    2016-01-01

    Key points Ca leak from the sarcoplasmic reticulum through the ryanodine receptor (RyR) reduces the amplitude of the Ca transient and slows its rate of decay.In the presence of β‐adrenergic stimulation, RyR‐mediated Ca leak produces a biphasic decay of the Ca transient with a fast early phase and a slow late phase.Two forms of Ca leak have been studied, Ca‐sensitising (induced by caffeine) and non‐sensitising (induced by ryanodine) and both induce biphasic decay of the Ca transient.Only Ca‐sensitising leak can be reversed by traditional RyR inhibitors such as tetracaine.Ca leak can also induce Ca waves. At low levels of leak, waves occur. As leak is increased, first biphasic decay and then slowed monophasic decay is seen. The level of leak has major effects on the shape of the Ca transient. Abstract In heart failure, a reduction in Ca transient amplitude and contractile dysfunction can by caused by Ca leak through the sarcoplasmic reticulum (SR) Ca channel (ryanodine receptor, RyR) and/or decreased activity of the SR Ca ATPase (SERCA). We have characterised the effects of two forms of Ca leak (Ca‐sensitising and non‐sensitising) on calcium cycling and compared with those of SERCA inhibition. We measured [Ca2+]i with fluo‐3 in voltage‐clamped rat ventricular myocytes. Increasing SR leak with either caffeine (to sensitise the RyR to Ca activation) or ryanodine (non‐sensitising) had similar effects to SERCA inhibition: decreased systolic [Ca2+]i, increased diastolic [Ca2+]i and slowed decay. However, in the presence of isoproterenol, leak produced a biphasic decay of the Ca transient in the majority of cells while SERCA inhibition produced monophasic decay. Tetracaine reversed the effects of caffeine but not of ryanodine. When caffeine (1 mmol l−1) was added to a cell which displayed Ca waves, the wave frequency initially increased before waves disappeared and biphasic decay developed. Eventually (at higher caffeine concentrations), the

  2. Helium production in mixed spectrum reactor-irradiated pure elements

    Kneff, D.W.; Oliver, B.M.; Skowronski, R.P.

    1986-01-01

    The objectives of this work are to apply helium accumulation neutron dosimetry to the measurement of neutron fluences and energy spectra in mixed-spectrum fission reactors utilized for fusion materials testing, and to measure helium generation rates of materials in these irradiation environments. Helium generation measurements have been made for several Fe, Cu Ti, Nb, Cr, and Pt samples irradiated in the mixed-spectrum High Flux Isotope Reactor (HFIR) and Oak Ridge Research Reactor (ORR) at the Oak Ridge National Laboratory. The results have been used to integrally test the ENDF/B-V Gas Production File, by comparing the measurements with helium generation predictions made by Argonne National Laboratory using ENDF/B-V cross sections and adjusted reactor spectra. The comparisons indicate consistency between the helium measurements and ENDF/B-V for iron, but cross section discrepancies exist for helium production by fast neutrons in Cu, Ti, Nb, and Cr (the latter for ORR). The Fe, Cu, and Ti work updates and extends previous measurements

  3. Hydrogen and helium shell burning during white dwarf accretion

    Cui, Xiao; Meng, Xiang-Cun; Han, Zhan-Wen

    2018-05-01

    Type Ia supernovae (SNe Ia) are believed to be thermonuclear explosions of carbon oxygen (CO) white dwarfs (WDs) with masses close to the Chandrasekhar mass limit. How a CO WD accretes matter and grows in mass to this limit is not well understood, hindering our understanding of SN Ia explosions and the reliability of using SNe Ia as a cosmological distance indicator. In this work, we employed the stellar evolution code MESA to simulate the accretion process of hydrogen-rich material onto a 1.0 M ⊙ CO WD at a high rate (over the Eddington limit) of 4.3 × 10‑7 M ⊙ yr‑1. The simulation demonstrates the characteristics of the double shell burning on top of the WD, with a hydrogen shell burning on top of a helium burning shell. The results show that helium shell burning is not steady (i.e. it flashes). Flashes from the helium shell are weaker than those in the case of accretion of helium-rich material onto a CO WD. The carbon to oxygen mass ratio resulting from the helium shell burning is higher than what was previously thought. Interestingly, the CO WD growing due to accretion has an outer part containing a small fraction of helium in addition to carbon and oxygen. The flashes become weaker and weaker as the accretion continues.

  4. Pressure transients resulting from sodium-water reaction following a large leak in LMFBR steam generator

    Rajput, A.K.

    1984-01-01

    The study of sodium water reaction, following a large leak, concerns primarily with the estimation of pressure/flow transients that are developed in the steam generator and the associated secondary circuit. This paper describes the mathematical formulations used in SWRT (Sodium Water Reaction Transients) code developed to estimate such pressure transients for FBTR plant. The results, obtained using SWRT have been presented for a leak in economiser (20m from bottom water header) and for a leak in super heater portions. A time lag of 50 m sec was considered for rupture disc takes to burst once the pressure experienced by it exceeds the set value. Also described in annexure to this paper is the mathematical formulation for two phase transient flow for the better estimation of leak rate from the ruptured end of the damaged heat transfer tube. This leak model considers slip but assumes thermal equilibrium between the liquid and vapour phases

  5. NDE of stainless steel and on-line leak monitoring of LWRs

    Kupperman, D.S.; Claytor, T.N.; Mathieson, T.; Prine, D.W.

    1985-10-01

    The GARD/ANL acoustic leak detection system is under evaluation in the laboratory. Results of laboratory tests with simulated acoustic leak signals and acoustic signals from field-induced intergranular stress corrosion cracks (IGSCCs) indicate that cross-correlation techniques can be used to locate the position of a leak. Leaks from a 2-in. ball valve and a flange were studied and compared with leaks from IGSCCs and fatigue cracks. The dependence of acoustic signal on flow rate and frequency for the valve and the flange was comparable to that of fatigue cracks (thermal and mechanical) and different from that of IGSCCs. Two pipe-to-endcap weldments with overlays were examined. Because the amount of cracking in the specimens was limited, the emphasis was on trying understand the nature of crack overcalling. Four 60-mm-thick cast stainless steel plates with microstructures ranging from equiaxed to primarily columnar grains have been examined with ultrasonic waves. 13 refs., 23 figs

  6. Oxidation characteristics of the electron beam surface-treated Alloy 617 in high temperature helium environments

    Lee, Ho Jung; Sah, Injin; Kim, Donghoon; Kim, Hyunmyung; Jang, Changheui

    2015-01-01

    The oxidation characteristics of the electron beam surface-treated Alloy 617, which has an Al-rich surface layer, were evaluated in high temperature helium environments. Isothermal oxidation tests were performed in helium (99.999% purity) and VHTR-helium (helium of prototypical VHTR chemistry containing impurities like CO, CO 2 , CH 4 , and H 2 ) environments at 900 °C for up to 1000 h. The surface-treated Alloy 617 showed an initial transient oxidation stage followed by the steady-state oxidation in all test environments. In addition, the steady-state oxidation kinetics of the surface-treated Alloy 617 was 2-order of magnitude lower than that of the as-received Alloy 617 in both helium environments as well as in air. The improvement in oxidation resistance was primarily due to the formation of the protective Al 2 O 3 layer on the surface. The weight gain was larger in the order of air, helium, and VHTR-helium, while the parabolic rate constants (k p ) at steady-state were similar for all test environments. In both helium environments, the oxide structure consisted of the outer transition Al 2 O 3 with a small amount of Cr 2 O 3 and inner columnar structured Al 2 O 3 without an internal oxide. In the VHTR-helium environment, where the impurities were added to helium, the initial transient oxidation increased but the steady state kinetics was not affected

  7. A description of stress driven bubble growth of helium implanted tungsten

    Sharafat, Shahram; Takahashi, Akiyuki; Nagasawa, Koji; Ghoniem, Nasr

    2009-01-01

    Low energy (<100 keV) helium implantation of tungsten has been shown to result in the formation of unusual surface morphologies over a large temperature range (700-2100 deg. C). Simulation of these macroscopic phenomena requires a multiscale approach to modeling helium transport in both space and time. We present here a multiscale helium transport model by coupling spatially-resolved kinetic rate theory (KRT) with kinetic Monte Carlo (KMC) simulation to model helium bubble nucleation and growth. The KRT-based HEROS Code establishes defect concentrations as well as stable helium bubble nuclei as a function of implantation parameters and position from the implanted surface and the KMC-based Mc-HEROS Code models the growth of helium bubbles due to migration and coalescence. Temperature- and stress-gradients can act as driving forces, resulting in biased bubble migration. The Mc-HEROS Code was modified to simulate the impact of stress gradients on bubble migration and coalescence. In this work, we report on bubble growth and gas release of helium implanted tungsten W/O stress gradients. First, surface pore densities and size distributions are compared with available experimental results for stress-free helium implantation conditions. Next, the impact of stress gradients on helium bubble evolution is simulated. The influence of stress fields on bubble and surface pore evolution are compared with stress-free simulations. It is shown that near surface stress gradients accelerate helium bubbles towards the free surface, but do not increasing average bubble diameters significantly.

  8. State of the Art Report for a Bearing for VHTR Helium Circulator

    Lee, Jae Seon; Song, Kee Nam; Kim, Yong Wan; Lee, Won Jae

    2008-10-01

    A helium circulator in a VHTR(Very High Temperature gas-cooled Reactor) plays a core role which translates thermal energy at high temperature from a nuclear core to a steam generator. Helium as a operating coolant circulates a primary circuit in high temperature and high pressure state, and controls thermal output of a nuclear core by controlling flow rate. A helium circulator is the only rotating machinery in a VHTR, and its reliability should be guaranteed for reliable operation of a reactor and stable production of hydrogen. Generally a main helium circulator is installed on the top of a steam generator vessel, and helium is circulated only by a main helium circulator in a normal operation state. An auxiliary or shutdown circulator is installed at the bottom of a reactor vessel, and it is an auxiliary circulator for shutting down a reactor in case of refueling or accelerating cooling down in case of fast cooling. Since a rotating shaft of a helium circulator is supported by bearings, bearings are the important machine elements which determines reliability of a helium circulator and a nuclear reactor. Various types of support bearings have been developed and applied for circulator bearings since 1960s, and it is still developing for developing VHTRs. So it is necessary to review and analyze the current technical state of helium circulator support bearings to develop bearings for Koran developing VHTR helium circulator

  9. Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone

    Lowenstern, Jacob B.; Evans, William C.; Bergfeld, D.; Hunt, Andrew G.

    2014-01-01

    Helium is used as a critical tracer throughout the Earth sciences, where its relatively simple isotopic systematics is used to trace degassing from the mantle, to date groundwater and to time the rise of continents1. The hydrothermal system at Yellowstone National Park is famous for its high helium-3/helium-4 isotope ratio, commonly cited as evidence for a deep mantle source for the Yellowstone hotspot2. However, much of the helium emitted from this region is actually radiogenic helium-4 produced within the crust by α-decay of uranium and thorium. Here we show, by combining gas emission rates with chemistry and isotopic analyses, that crustal helium-4 emission rates from Yellowstone exceed (by orders of magnitude) any conceivable rate of generation within the crust. It seems that helium has accumulated for (at least) many hundreds of millions of years in Archaean (more than 2.5 billion years old) cratonic rocks beneath Yellowstone, only to be liberated over the past two million years by intense crustal metamorphism induced by the Yellowstone hotspot. Our results demonstrate the extremes in variability of crustal helium efflux on geologic timescales and imply crustal-scale open-system behaviour of helium in tectonically and magmatically active regions.

  10. Assessment of Field Experience Related to Pressurized Water Reactor Primary System Leaks

    Ware, A.G.; Hsu, C.; Atwood, C.L.; Sattison, M.B.; Hartley, R.S.; Shah, V.N.

    1999-01-01

    This paper presents our assessment of field experience related to pressurized water reactor (PWR) primary system leaks in terms of their number and rates, how aging affects frequency of leak events, the safety significance of such leaks, industry efforts to reduce leaks, and effectiveness of current leak detection systems. We have reviewed the licensee event reports to identify the events that took place during 1985 to the third quarter of 1996, and reviewed related technical literature and visited PWR plants to analyze these events. Our assessment shows that USNRC licensees have taken effective actions to reduce the number of leak events. One main reason for this decreasing trend was the elimination or reportable leakages from valve stem packing after 1991. Our review of leak events related to vibratory fatigue reveals a statistically significant decreasing trend with age (years of operation), but not in calendar time. Our assessment of worldwide data on leakage caused by thermal fatigue cracking is that the fatigue of aging piping is a safety significant issue. Our review of leak events has identified several susceptible sites in piping having high safety significance; but the inspection of some of these sites is not required by the ASME Code. These sites may be included in the risk-informed inspection programs

  11. Assessment of Field Experience Related to Pressurized Water Reactor Primary System Leaks

    Shah, Vikram Naginbhai; Ware, Arthur Gates; Atwood, Corwin Lee; Sattison, Martin Blaine; Hartley, Robert Scott; Hsu, C.

    1999-01-01

    This paper presents our assessment of field experience related to pressurized water reactor (PWR) primary system leaks in terms of their number of rates, how aging affects frequency of leak events, the safety significance of such leaks, industry efforts to reduce leaks, and effectiveness of current leak detection systems. We have reviewed the licensee event reports to identify the events that took place during 1985 to the third quarter of 1996, and reviewed related technical literature and visited PWR plants to analyze these events. Our assessment shows that USNRC licensees have taken effective actions to reduce the number of leak events. One main reason for this decreasing trend was the elimination or reportable leakages from valve stem packing after 1991. Our review of leak events related to vibratory fatigue reveals a statistically significant decreasing trend with age (years of operation), but not in calendar time. Our assessment of worldwide data on leakage caused by thermal fatigue cracking is that the fatigue of aging piping is a safety significant issue. Our review of leak events has identified several susceptible sites in piping having high safety significance; but the inspection of some of these sites is not required by the ASME Code. These sites may be included in the risk-informed inspection programs

  12. Radon/helium survey of thermal springs of Parbati, Beas and Sutlej valleys in Himachal Himalaya

    Virk, H.S.; Sharma, Anand K.; Naresh Kumar

    1998-01-01

    India has more than 300 thermal springs spread over the entire geographical area of the subcontinent. Some of these springs have linkage with Indian mythology and are famous pilgrimage centres since historical times. The temperature of water recorded in these springs varies from 40 degC to that of steam. Some of them are being exploited as a source for geothermal energy. The purpose of this study is to measure radon and helium activity in the thermal springs of Himachal Himalaya. Radon is estimated in the soil and thermal waters using alpha spectrometry and scintillometry, respectively. The radon activity is maximum ( 716.3 Bq/l ) in thermal spring at Kasol and minimum ( 15.9 Bq/l ) in a natural spring ( bauli ) at Takrer. Radon concentration is highly variable in the Parbati valley with minimum value of 2230±430 Bq/m 3 recorded at Chhinjra on the banks of river Parbati and a maximum value of 57700±2050 Bq/m 3 at Dharmaur, the site of uranium ore exploitation by the AMD (DAE). Helium is estimated in the thermal springs by using a Helium Leak Detector (sniffing technique). The radon and helium contents of Kasol thermal springs are correlatable with high radioactivity in the soil of the area as revealed by Alpha Guard survey in the environs of Parbati valley. The helium content recorded in thermal springs is found to vary between 15-90 ppm. Radon and helium are well established as geochemical precursors for earthquake prediction studies. Helium/radon ratio seems to be a better predictive tool for earthquakes in comparison to individual radon and helium precursors. (author)

  13. Recombination of positive helium ions in gaseous helium

    Shyu, J.S.

    1988-01-01

    The Wigner-Keck Monte Carlo trajectory method and the resonance complex theory are employed to calculate the rate coefficient k for H e + ions recombining in gaseous helium in the temperature range 80 2 + is obtained from a Morse potential and a long range ion-induced dipole interaction term. The three body He 3 + interaction is represented by an approximate expression which, for practical purpose, depends on the same parameters that determine the two body interaction. Russell had employed the Wigner-Keck Monte Carlo trajectory method to the same reaction. Unlike his calculation, in which the final quasibound states are treated as continuous, we apply the JWKB approximation to quantize those quasibound states. Both the values of k, calculated from two different quasibound state treatments, are found to be very close and give good agreement with experimental results obtained by Biondi, although they are still 10% to 20% lower than the experimental results. The resonance complex theory, developed by Roberts et al, is then employed to investigated de-excitation from the highest quasibound state, which can be populated by inward tunneling through the rotational (centrifugal) barrier. It is found that this strongly supports a suggestion proposed by Russell. He had suggested that the remaining difference between the Wigner-Keck method and experiment might be largely due to the formation of highly excited quasibound states. The statistical errors of the rate constants, which is the sun of results obtained from both methods, are kept less then 5% by running 2500 trajectories in the first method and 500 in the second

  14. Cryogenic filter method produces super-pure helium and helium isotopes

    Hildebrandt, A. F.

    1964-01-01

    Helium is purified when cooled in a low pressure environment until it becomes superfluid. The liquid helium is then filtered through iron oxide particles. Heating, cooling and filtering processes continue until the purified liquid helium is heated to a gas.

  15. Prevention of intraoperative cerebrospinal fluid leaks by lumbar cerebrospinal fluid drainage during surgery for pituitary macroadenomas.

    Mehta, Gautam U; Oldfield, Edward H

    2012-06-01

    Cerebrospinal fluid leakage is a major complication of transsphenoidal surgery. An intraoperative CSF leak, which occurs in up to 50% of pituitary tumor cases, is the only modifiable risk factor for postoperative leaks. Although several techniques have been described for surgical repair when an intraoperative leak is noted, none has been proposed to prevent an intraoperative CSF leak. The authors postulated that intraoperative CSF drainage would diminish tension on the arachnoid, decrease the rate of intraoperative CSF leakage during surgery for larger tumors, and reduce the need for surgical repair of CSF leaks. The results of 114 transsphenoidal operations for pituitary macroadenoma performed without intraoperative CSF drainage were compared with the findings from 44 cases in which a lumbar subarachnoid catheter was placed before surgery to drain CSF at the time of dural exposure and tumor removal. Cerebrospinal fluid drainage reduced the rate of intraoperative CSF leakage from 41% to 5% (p drainage reduced the need for operative repair (from 32% to 5%, p drainage during transsphenoidal surgery for macroadenomas reduces the rate of intraoperative CSF leaks. This preventative measure obviated the need for surgical repair of intraoperative CSF leaks using autologous fat graft placement, other operative techniques, postoperative lumbar drainage, and/or reoperation in most patients and is associated with minimal risks.

  16. Active acoustic leak detection for LMFBR steam generators. Pt. 7. Potential for small leak detection

    Kumagai, Hiromichi; Yoshida, Kazuo

    1998-01-01

    In order to prevent the expansion of tube damage and to maintain structural integrity in the steam generators (SGs) of fast breeder reactors (FBR), it is necessary to detect precisely and immediately the leakage of water from heat transfer tubes. Therefore, an active acoustic method, which detects the sound attenuation due to bubbles generated in the sodium-water reactions, is being developed. Previous studies have revealed that the active acoustic method can detect bubbles of 10 l/s (equivalence water leak rate about 10 g/s) within 10 seconds in practical steam generators. In order to prevent the expansion of damage to neighboring tubes, however, it is necessary to detect smaller leakage of water from heat transfer tubes. In this study, in order to evaluate the detection sensitivity of the active method, the signal processing methods for emitter and receiver sound and the detection method for leakage within 1 g/s are investigated experimentally, using an SG full-sector model that simulates the actual SGs. A typical result shows that detection of 0.4 l/s air bubbles (equivalent water leak rate about 0.4 g/s) takes about 80 seconds, which is shorter than the propagation time of damage to neighboring tubes. (author)

  17. Use of duraseal in repair of cerebrospinal fluid leaks.

    Chin, Christopher J; Kus, Lukas; Rotenberg, Brian W

    2010-10-01

    The purpose of our article is to review the use of the DuraSeal Sealant System (Confluent Surgical Inc., Waltham, MA) in the repair of complex cerebrospinal fluid (CSF) leaks in endoscopic skull-base surgery. Retrospective chart review. London Health Sciences Centre. A database of endoscopic skull-base cases between 2007 and 2009 that involved CSF leakage repaired with DuraSeal was created. Demographic data and operative reports were collected and analyzed qualitatively. Recurrence of CSF leak after repair. Five cases were identified that met study criteria. In four of the five cases, the repair was successful. There were no complications related to DuraSeal use. Comparison to a subset of patients using Tisseel Fibrin Sealant (Baxter, Toronto, ON) for repair did not show a significant difference in failure rate (χ2 = 0.029, p = .858). There are a variety of techniques described to repair CSF rhinorrhea, with various studies demonstrating the advantages of using tissue glues in CSF leak repairs. We used DuraSeal in five patients to enhance graft strength and form a watertight seal. The system was effective in the majority of patients. Our study is the first to report on endoscopic endonasal repair of CSF leaks using DuraSeal.

  18. Analyzing User Awareness of Privacy Data Leak in Mobile Applications

    Youngho Kim

    2015-01-01

    Full Text Available To overcome the resource and computing power limitation of mobile devices in Internet of Things (IoT era, a cloud computing provides an effective platform without human intervention to build a resource-oriented security solution. However, existing malware detection methods are constrained by a vague situation of information leaks. The main goal of this paper is to measure a degree of hiding intention for the mobile application (app to keep its leaking activity invisible to the user. For real-world application test, we target Android applications, which unleash user privacy data. With the TaintDroid-ported emulator, we make experiments about the timing distance between user events and privacy leaks. Our experiments with Android apps downloaded from the Google Play show that most of leak cases are driven by user explicit events or implicit user involvement which make the user aware of the leakage. Those findings can assist a malware detection system in reducing the rate of false positive by considering malicious intentions. From the experiment, we understand better about app’s internal operations as well. As a case study, we also presents a cloud-based dynamic analysis framework to perform a traffic monitor.

  19. Development of acoustic leak detection system in PNC

    Tanabe, H.; Kuroha, M.

    1990-01-01

    The development of an acoustic leak detector is under way at PNC as a detection system that has potential of quick response and high reliability for larger steam generators of future LMFBR plants. The studies have two aspects, i.e., an acoustic wave analysis in various sodium-water reactions and a background noise (BGN) analysis in a sodium-heated 50MWt steam generator (50MWGS). In the former analysis, wave profiles of the sodium-water reaction sound were analyzed and compared with those of inert gas injection sound. The comparison revealed that there were no wave profiles specific to a sodium-water reaction sound. The latter clarified that major acoustic sources in the steam generator were sodium flow and steam generation/flow and that the water leak rate at which a noise level was comparable with that of the background noise was about 0.5 g/sec. in the evaporator of 50MWSG. The estimation of acceleration levels of BGN and leak sounds in other plants reveals that an intermediate leak is detectable in the Monju evaporator with a present acoustic detection system. (author). 2 refs, 9 figs

  20. Helium transport and exhaust studies in enhanced confinement regimes in DIII-D

    Wade, M.R.; Hillis, D.L.; Hogan, J.T.; Mahdavi, M.A.; Maingi, R.; West, W.P.; Burrell, K.H.; Finkenthal, D.F.; Gohil, P.; Groebner, R.J.

    1995-02-01

    A better understanding of helium transport in the plasma core and edge in enhanced confinement regimes is now emerging from recent experimental studies on DIII-D. Overall, the results are encouraging. Significant helium exhaust (τ* He /τ E ∼ 11) has been obtained in a diverted, ELMing H-mode plasma simultaneous with a central source of helium. Detailed analysis of the helium profile evolution indicates that the exhaust rate is limited by the exhaust efficiency of the pump (∼5%) and not by the intrinsic helium transport properties of the plasma. Perturbative helium transport studies using gas puffing have shown that D He /X eff ∼1 in all confinement regimes studied to date (including H-mode and VH-mode). Furthermore, there is no evidence of preferential accumulation of helium in any of these regimes. However, measurements in the core and pumping plenum show a significant dilution of helium as it flows from the plasma core to the pumping plenum. Such dilution could be the limiting factor in the overall removal rate of helium in a reactor system

  1. Leak testing requirements at a research facility

    Conner, J.B.

    1979-01-01

    Since September, 1952, Lawrence Livermore Laboratory has conducted pioneering research in applied science. A vital part of this activity has been the development of a variety of high vacuum and ultrahigh vacuum systems. Leaks occur in everything, including vacuum systems. The mass spectrometer leak detection equipment is described

  2. Capacitive system detects and locates fluid leaks

    1966-01-01

    Electronic monitoring system automatically detects and locates minute leaks in seams of large fluid storage tanks and pipelines covered with thermal insulation. The system uses a capacitive tape-sensing element that is adhesively bonded over seams where fluid leaks are likely to occur.

  3. 3D numerical simulation of fluid–solid coupled heat transfer with variable property in a LBE-helium heat exchanger

    Chen, Fei, E-mail: chenfei@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China); North China University of Water Resources and Electric Power, 36 Beihuan Road, Zhengzhou, Henan 450011 (China); Cai, Jun, E-mail: caijun@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China); Li, Xunfeng, E-mail: lixunfeng@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China); Huai, Xiulan, E-mail: hxl@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China); Wang, Yongwei, E-mail: wangyongwei@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China)

    2014-07-01

    Highlights: • Heat transfer in heat exchanger can be improved by increasing helium's flow rate. • The outlet temperature of helium decreases with increasing helium's flow rate. • Balance is necessary between good heat transfer and high helium outlet temperature. - Abstract: LBE-helium experimental loop of ADS (LELA) and LBE-helium heat exchanger have been designed and constructed with the supporting of the “ADS Transmutation System” project of Chinese Academy of Sciences. In order to investigate the flow and heat transfer characteristics between LBE and helium, 3D numerical simulation of fluid–solid coupled heat transfer with variable property in the LBE-helium heat exchanger is conducted in the present study. The effects of mass-flow-rates of helium and LBE in the shell-side and tube-side on the heat transfer performance are addressed. It is found that the heat transfer performance can be significantly improved by increasing helium mass-flow-rate in the shell-side. In order to easily and quickly obtain the outlet temperatures of helium and LBE, a concept of modified effectiveness is introduced and correlated as the function of tube-side to shell-side heat capacity rate ratio. The results show that the outlet temperature of helium decreases with increasing helium mass-flow-rate. Therefore, considering the utilization of high-temperature helium in the future, for example power generation, there should be a tradeoff between good heat transfer performance and high outlet helium temperature when confirming helium mass-flow-rate.

  4. Leak detector of liquid sodium

    Himeno, Yoshiaki.

    1975-01-01

    Object: To arrange a cable core connected to a leakage current detector on the outer wall of piping for liquid sodium, devices or the like and apply a voltage to said core and outer wall to quickly and securely detect the leakage of liquid sodium. Structure: A cable, which is composed of metal coating formed of metal material (copper, steel, stainless, etc.) which is apt to be corroded by reaction products of liquid sodium with water and oxygen in air, and metal oxide (such as magnesium oxide, beryllium oxide, aluminum oxide) as an electric insulator is arranged on the outer wall of pipes or devices. In the event sodium is leaked from the pipes or devices, said metal coating and the insulator are corroded, and the leakage of sodium is sensed by a leakage current detector through the core in the cable. (Kamimura, M.)

  5. Leak detection for underground storage tanks

    Durgin, P.B.; Young, T.M.

    1993-01-01

    This symposium was held in New Orleans, Louisiana on January 29, 1992. The purpose of this conference was to provide a forum for exchange of state-of-the-art information on leak detection for underground storage tanks that leaked fuel. A widespread concern was protection of groundwater supplies from these leaking tanks. In some cases, the papers report on research that was conducted two or three years ago but has never been adequately directed to the underground storage tank leak-detection audience. In other cases, the papers report on the latest leak-detection research. The symposium was divided into four sessions that were entitled: Internal Monitoring; External Monitoring; Regulations and Standards; and Site and Risk Evaluation. Individual papers have been cataloged separately for inclusion in the appropriate data bases

  6. SCTI chemical leak detection test plan

    1981-01-01

    Tests will be conducted on the CRBRP prototype steam generator at SCTI to determine the effects of steam generator geometry on the response of the CRBRP chemical leak detection system to small water-to-sodium leaks in various regions of the steam generator. Specifically, small injections of hydrogen gas (simulating water leaks) will be made near the two tubesheets, and the effective transport times to the main stream exit and vent line hydrogen meters will be measured. The magnitude and time characteristics of the meters' response will also be measured. This information will be used by the Small Leak Protection Base Program (SG027) for improved predictions of meter response times and leak detection sensitivity

  7. ELECTRON ENERGY DECAY IN HELIUM AFTERGLOW PLASMAS AT CRYOGENIC TEMPERATURES

    Goldan, P. D.; Cahn, J. H.; Goldstein, L.

    1963-10-15

    Studies of decaying afterglow plasmas in helium were ined near 4 deg K by immersion in a liquid helium bath. By means of a Maser Radiometer System, the electron temperature was followed below 200 deg K. Guided microwave propagation and wave interaction techniques premit determination of election number density and collision frequencies for momentum transfer. Electron temperature decay rates of the order of 150 mu sec/p(mm Hg alpha 4.2 deg K) were found. Since thermal relaxation by elastic collisions should be some two orders of magnitude faster than this, the electrons appear to be in quasiequilibrium with a slowly decaying internal heating source. Correlation of the expected decay rates of singlet metastable helium atoms with the electron temperature decay gives good agreement with the present experiment. (auth)

  8. The Erosion of Frozen Argon by Swift Helium Ions

    Besenbacher, F.; Bøttiger, Jørgen; Graversen, O.

    1981-01-01

    The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore unequivo......The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore...... unequivocally associated with electronic processes generated by the bombarding particle. In the present energy region, it is found that Y scales approximately as the electronic stopping power squared, depends on the charge state of the incoming helium ions, and perhaps more important, is independent...

  9. Helium bubble formation and retention in Cu-Nb nanocomposites

    Dunn, A.Y.; McPhie, M.G.; Capolungo, L.; Martinez, E; Cherkaoui, M.

    2013-01-01

    A spatially dependent rate theory model for helium migration, clustering, and trapping on interfaces between Cu and Nb layers is introduced to predict the evolution of the concentrations of He clusters of various sizes during implantation and early annealing. Migration and binding energies of point defects and small clusters in bulk Cu and Nb are found using conjugate gradient minimization and the nudged elastic band method. The model is implemented in a three-dimensional framework and used to predict the relationship between helium bubble formation and the nano-composite microstructure, including interfacial free volume, grain size, and layer thickness. Interstitial and vacancy-like migration of helium is considered. The effects of changing layer thickness and interfacial misfit dislocation density on the threshold for helium bubble nucleation are found to match experiments. Accelerated helium release due to interfaces and grain boundaries is shown to occur only when diffusion rates on interfaces and grain boundaries are greatly increased relative to the bulk material.

  10. Kinetics of the excited muonic hydrogen in the mixtures of hydrogen isotopes in helium

    Bystritskij, V.M.; Kravtsov, A.V.; Popov, N.P.

    1989-01-01

    De-excitation of the excited muonic hydrogen in the mixture of hydrogen isotopes and helium is considered. The method is proposed which allows one to determine the rates of the muon transfer from the excited muonic hydrogen to helium nuclei, as well as the probability of the direct muon atomic capture by nuclei of hydrogen isotopes. 20 refs.; 4 figs

  11. Helium generation in fusion-reactor materials. Progress report, October-December 1982

    Kneff, D.W.; Farrar, H. IV.

    1982-01-01

    The objectives of this work are to measure helium generation rates of materials for Magnetic Fusion Reactor applications in the Be(d,n) neutron environment, to characterize this neutron environment, and to develop helium accumulation neutron dosimeters for routine neutron fluence and energy spectrum measurements in Be(d,n) and Li(d,n) neutron fields

  12. Leak Signature Space: An Original Representation for Robust Leak Location in Water Distribution Networks

    Myrna V. Casillas

    2015-03-01

    Full Text Available In this paper, an original model-based scheme for leak location using pressure sensors in water distribution networks is introduced. The proposed approach is based on a new representation called the Leak Signature Space (LSS that associates a specific signature to each leak location being minimally affected by leak magnitude. The LSS considers a linear model approximation of the relation between pressure residuals and leaks that is projected onto a selected hyperplane. This new approach allows to infer the location of a given leak by comparing the position of its signature with other leak signatures. Moreover, two ways of improving the method’s robustness are proposed. First, by associating a domain of influence to each signature and second, through a time horizon analysis. The efficiency of the method is highlighted by means of a real network using several scenarios involving different number of sensors and considering the presence of noise in the measurements.

  13. A mathematical model for leak location and leak area determination in pipeline networks

    Oyedokun O.I.

    2013-01-01

    Full Text Available Prompt leak location and leak area determination in oil and gas pipeline installations is an indispensable approach to controlling petroleum products wastages in pipes. However, there is an evident lack of literature information on this subject. In this paper, we modelled leak location detection and leak area determination in pipes by applying two methodologies and gave an illustrative example using simulated data with the aid of Matlab. A comparison of these two approaches resulted in an error of 6.24%, suggesting that the closer the leak is to the measurement station, the lower will be the time interval between two successive waves that will pass through the leak and get to the measurement station. The relationship between the pipe area and coefficient of reflection is parabolic. This contribution is valuable to pipeline engineers in the economic control of leaks.

  14. Ultrasonic Detectors Safely Identify Dangerous, Costly Leaks

    2013-01-01

    In 1990, NASA grounded its space shuttle fleet. The reason: leaks detected in the hydrogen fuel systems of the Space Shuttles Atlantis and Columbia. Unless the sources of the leaks could be identified and fixed, the shuttles would not be safe to fly. To help locate the existing leaks and check for others, Kennedy Space Center engineers used portable ultrasonic detectors to scan the fuel systems. As a gas or liquid escapes from a leak, the resulting turbulence creates ultrasonic noise, explains Gary Mohr, president of Elmsford, New York-based UE Systems Inc., a long-time leader in ultrasonic detector technologies. "In lay terms, the leak is like a dog whistle, and the detector is like the dog ear." Because the ultrasound emissions from a leak are highly localized, they can be used not only to identify the presence of a leak but also to help pinpoint a leak s location. The NASA engineers employed UE s detectors to examine the shuttle fuel tanks and solid rocket boosters, but encountered difficulty with the devices limited range-certain areas of the shuttle proved difficult or unsafe to scan up close. To remedy the problem, the engineers created a long-range attachment for the detectors, similar to "a zoom lens on a camera," Mohr says. "If you are on the ground, and the leak is 50 feet away, the detector would now give you the same impression as if you were only 25 feet away." The enhancement also had the effect of reducing background noise, allowing for a clearer, more precise detection of a leak s location.

  15. Bed system performance in helium circulation mode

    Kim, Yean Jin; Jung, Kwang Jin; Ahn, Do Hee; Chung, Hong Suk [UST, Daejeon (Korea, Republic of); Kang, Hee Suk [KAERI, Daejeon (Korea, Republic of); Yun, Sei Hun [NFRI, Deajeon (Korea, Republic of)

    2016-05-15

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, We have conducted an experiment for storing hydrogen to depleted uranium and zirconium cobalt. The helium blanket effect has been observed in experiments using metal hydrides. The collapse of the hydrogen isotopes are accompanied by the decay heat and helium-3. Helium-3 dramatically reduces the hydrogen isotope storage capacity by surrounding the metal. This phenomenon is called a helium blanket effect. In addition the authors are working on the recovery and removal techniques of helium-3. In this paper, we discuss the equipment used to test the helium blanket effect and the results of a helium circulation experiment. The helium-3 produced surrounds the storage material surface and thus disturbs the reaction of the storage material and the hydrogen isotope. Even if the amount of helium-3 is small, the storage capacity of the SDS bed significantly drops. This phenomenon is the helium blanket effect. To resolve this phenomenon, a circulating loop was introduced. Using a circulating system, helium can be separated from the storage material. We made a helium loop that includes a ZrCo bed. Then using a metal bellows pump, we tested the helium circulation.

  16. Frequencies of leaks and probability of ignition sources in the H-area tank farm

    Cramer, D.S.

    1994-01-01

    Point estimates are developed for the probability of an ignition source for tetraphenylborate (TPB) solids in H-area which leak into the annulus of Tank 48 and/or in the Filter Cell. Additionally, leak frequencies and leak rates are estimated for: the inner cell wall of Tank 48; Hanford connectors and single-wall transfer lines in the Filter Cell of the In-Tank Precipitation (ITP) Facility; and the double-wall transfer lines between tank 48, the Filter Cell, Tank 49 and the 'Late Wash' Tank

  17. Design of sealing arrangements for development of leak tight articulated manipulator for waste management and reprocessing plants

    Patil, Satish B.; Mudaiya, Avinash K.

    2016-01-01

    As a part of development of Remote handling equipment and gadgets, Leak tight Articulated Manipulator (ARTM) has been developed for shielded facilities of Nuclear Recycle Plant. The ARTM is a Master Slave Manipulator having 8 Kg Payload capacity and most suitable for shielded sampling cubicles of Waste Management plants and dilution hot cells of Reprocessing plants. All the motions and forces are transmitted from Master to slave arm through the mechanical linkages, which are housed inside the wall tube. The mechanical linkages and wall tube run across the shielded wall. The applications involving seal tightness of the glove boxes and dilution hot cells intend to use all the accessories including MSMs to be leak tight. During the design of leak tight ARTM, all the potential leak paths through the components of existing ARTM were examined critically and static and dynamic seals were designed based on the geometry and requirement of particular leak path. A leak proof testing set up was fabricated for evaluating the leak rates across the manipulator contemplating the actual operating conditions. The manipulator was subjected to the Friction, Rigidity and Leak tests. The results of the tests are satisfactory and as per the International standards available. The leak rates measured for different manipulators were in the range of 0.05 to 0.1 % of air volume/hr @ 200 mm of water columndifferential negative pressure. (author)

  18. Hydrogen retention properties of polycrystalline tungsten and helium irradiated tungsten

    Hino, T.; Koyama, K.; Yamauchi, Y.; Hirohata, Y.

    1998-01-01

    The hydrogen retention properties of a polycrystalline tungsten and tungsten irradiated by helium ions with an energy of 5 keV were examined by using an ECR ion irradiation apparatus and a technique of thermal desorption spectroscopy, TDS. The polycrystalline tungsten was irradiated at RT with energetic hydrogen ions, with a flux of 10 15 H cm -2 and an energy of 1.7 keV up to a fluence of 5 x 10 18 H cm -2 . Subsequently, the amount of retained hydrogen was measured by TDS. The heating temperature was increased from RT to 1000 C, and the heating rate was 50 C min -1 . Below 1000 C, two distinct hydrogen desorption peaks were observed at 200 C and 400 C. The retained amount of hydrogen was observed to be five times smaller than that of graphite, but the concentration in the implantation layer was comparable with that of graphite. Also, the polycrystalline tungsten was irradiated with 5 keV helium ions up to a fluence of 1.4 x 10 18 He cm -2 , and then re-irradiated with 1.7 keV hydrogen ions. The amount of retained hydrogen in this later experiment was close to the value in the case without prior helium ion irradiation. However, the amount of hydrogen which desorbed around the low temperature peak, 200 C, was largely enhanced. The desorption amount at 200 C saturated for the helium fluence of more than 5 x 10 17 He cm -2 . The present data shows that the trapping state of hydrogen is largely changed by the helium ion irradiation. Additionally, 5 keV helium ion irradiation was conducted on a sample pre-implanted with hydrogen ions to simulate a helium ion impact desorption of hydrogen retained in tungsten. The amount of the hydrogen was reduced as much as 50%. (orig.)

  19. Pierre Gorce working on a helium pump.

    1975-01-01

    This type of pump was designed by Mario Morpurgo, to circulate liquid helium in superconducting magnets wound with hollow conductors. M. Morpurgo, Design and construction of a pump for liquid helium, CRYIOGENICS, February 1977, p. 91

  20. Convective mixing in helium white dwarfs

    Vauclair, G.; Fontaine, G.

    1979-01-01

    The conditions under which convective mixing episodes take place between the helium envelopes and the underlying carbon layers in helium-rich white dwarfs are investigated. It is found that, for essentially any value of the initial helium content less than the maximum mass a helium convection zone can have, mixing does occur, and leads, in the vast majority of cases, to an almost pure carbon superficial composition. Mixing products that show only traces of carbon while retaining helium-dominated envelopes are possible only if the initial helium content is quite close to the maximum possible mass of the helium convection zone. In the presence of turbulence, this restriction could be relaxed, however, and the helium-rich lambda4670 stars may possibly be explained in this fashion