WorldWideScience

Sample records for helium ions observed

  1. Observation of visible emission from the molecular helium ion in the afterglow of a dense helium Z-pinch plasma

    International Nuclear Information System (INIS)

    Tucker, J.E.; Brake, M.L.; Gilgenbach, R.M.

    1986-01-01

    The authors present the results of axial and radial time resolved visible emission spectroscopy from the afterglow of a dense helium Z-pinch. These results show that the visible emissions in the pinch afterglow are dominated by line emissions from molecular helium and He II. Axial spectroscopy measurements show the occurrence of several absorption bands which cannot be identified as molecular or atomic helium nor impurities from the discharge chamber materials. The authors believe that these absorption bands are attributable to the molecular helium ion which is present in the discharge. The molecular ion has been observed by others in low pressure and temperature helium discharges directly by means of mass spectrometry and indirectly by the presence of helium atoms in the 2/sup 3/S state, (the He 2/sup 3/S state is believed to result from molecular helium ion recombination). However, the molecular helium ion has not previously been observed spectroscopically

  2. Observations of energetic helium ions in the Earth's radiation belts during a sequence of geomagnetic storms

    International Nuclear Information System (INIS)

    Spjeldvik, W.N.; Fritz, T.A.

    1981-01-01

    Every year a significant number of magnetic storms disturb the earth's magnetosphere and the trapped particle populations. In this paper, we present observations of energetic (MeV) helium ions made with Explorer 45 during a sequence of magnetic storms during June through December of 1972. The first of these storms started on June 17 and had a Dst index excursion to approx.190 gamma, and the MeV helium ions were perturbed primarily beyond 3 earth radii in the equatorial radiation belts with a typical flux increase of an order of magnitude at L = 4. The second storm period took place during August and was associated with very major solar flare activity. Although the Dst extremum was at best 35 gamma less than the June storm, this period can be characterized as irregular (or multi-storm) with strong compression of the magnetosphere and very large (order of magnitude) MeV helium ion flux enhancements down to Lapprox.2. Following this injection the trapped helium ion fluxes showed positive spectral slope with the peak beyond 3.15 MeV at L = 2.5; and at the lowest observable L shells (Lapprox.2--3) little flux decay (tau>100 days) was seen during the rest of the year. Any effects of two subsequent major magnetic storms in September and November were essentially undetectable in the prolonged after-effect of the August solar flare associated MeV helium ion injection. The helium ion radial profile of the phase space density showed a significant negative slope during this period, and we infer that radial diffusion constitutes a significant loss of helium ions on L shells above Lapprox. =4 during the aftermath of the August 1972 magnetic storm

  3. Ion temperature anisotropy in high power helium neutral beam fuelling experiments in JET

    Energy Technology Data Exchange (ETDEWEB)

    Maas, A C; Core, W G.F.; Gerstel, U C; Von Hellermann, M G; Koenig, R W.T.; Marcus, F B [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    During helium beam fuelling experiments in JET, distinctive anisotropic features have been observed in the velocity distribution function describing both fast and thermal alpha particle populations. During the initial fuelling phase the central helium ion temperature observed perpendicular to the magnetic field is higher than the central electron temperature, while the central helium ion temperature observed parallel to the magnetic field is lower than or equal to the central electron temperature. In order to verify temperature measurements of both perpendicular and parallel lines of sight, other independent methods of deducing the ion temperature are investigated: deuterium ion temperature, deuterium density, comparison with neutron rates and profiles (influence of a possible metastable population of helium). 6 refs., 7 figs.

  4. Backscattered Helium Spectroscopy in the Helium Ion Microscope: Principles, Resolution and Applications

    NARCIS (Netherlands)

    van Gastel, Raoul; Hlawacek, G.; Dutta, S.; Poelsema, Bene

    2015-01-01

    We demonstrate the possibilities and limitations for microstructure characterization using backscattered particles from a sharply focused helium ion beam. The interaction of helium ions with matter enables the imaging, spectroscopic characterization, as well as the nanometer scale modification of

  5. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    International Nuclear Information System (INIS)

    Al-Ajlony, A.; Tripathi, J.K.; Hassanein, A.

    2017-01-01

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10 24 –1.6 × 10 25 ions m −2 ), and flux (2.0 × 10 20 –5.5 × 10 20 ion m −2 s −1 ). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  6. Determination of migration of ion-implanted helium in silica by proton backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Szakacs, G. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)], E-mail: szilagyi@rmki.kfki.hu; Paszti, F.; Kotai, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)

    2008-04-15

    Understanding the processes caused by ion implantation of light ions in dielectric materials such as silica is important for developing the diagnostic systems used in fusion and fission environments. Recently, it has been shown that ion-implanted helium is able to escape from SiO{sub 2} films. To study this process in details, helium was implanted into the central part of a buried SiO{sub 2} island up to a fluence of 4 x 10{sup 17} He/cm{sup 2}. The implanted helium could be detected in the SiO{sub 2} island, if the oxide was insulated properly from the vacuum. The shape of the helium depth distributions was far from SRIM simulation because helium distributed in the whole 1 {mu}m thick oxide layer. After the ion implantation, helium was observed only on the implanted spot. After nine months the implanted helium filled out the whole oxide island as it was expected from the high diffusivity.

  7. Determination of migration of ion-implanted helium in silica by proton backscattering spectrometry

    International Nuclear Information System (INIS)

    Szakacs, G.; Szilagyi, E.; Paszti, F.; Kotai, E.

    2008-01-01

    Understanding the processes caused by ion implantation of light ions in dielectric materials such as silica is important for developing the diagnostic systems used in fusion and fission environments. Recently, it has been shown that ion-implanted helium is able to escape from SiO 2 films. To study this process in details, helium was implanted into the central part of a buried SiO 2 island up to a fluence of 4 x 10 17 He/cm 2 . The implanted helium could be detected in the SiO 2 island, if the oxide was insulated properly from the vacuum. The shape of the helium depth distributions was far from SRIM simulation because helium distributed in the whole 1 μm thick oxide layer. After the ion implantation, helium was observed only on the implanted spot. After nine months the implanted helium filled out the whole oxide island as it was expected from the high diffusivity

  8. HEATHER - HElium Ion Accelerator for RadioTHERapy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Jordan [Huddersfield U.; Edgecock, Thomas [Huddersfield U.; Green, Stuart [Birmingham U.; Johnstone, Carol [Fermilab

    2017-05-01

    A non-scaling fixed field alternating gradient (nsFFAG) accelerator is being designed for helium ion therapy. This facility will consist of 2 superconducting rings, treating with helium ions (He²⁺ ) and image with hydrogen ions (H + 2 ). Currently only carbon ions are used to treat cancer, yet there is an increasing interest in the use of lighter ions for therapy. Lighter ions have reduced dose tail beyond the tumour compared to carbon, caused by low Z secondary particles produced via inelastic nuclear reactions. An FFAG approach for helium therapy has never been previously considered. Having demonstrated isochronous acceleration from 0.5 MeV to 900 MeV, we now demonstrate the survival of a realistic beam across both stages.

  9. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ajlony, A., E-mail: montaserajlony@yahoo.com; Tripathi, J.K.; Hassanein, A.

    2017-05-15

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10{sup 24}–1.6 × 10{sup 25} ions m{sup −2}), and flux (2.0 × 10{sup 20}–5.5 × 10{sup 20} ion m{sup −2} s{sup −1}). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  10. Radioactive core ions of microclusters, ``snowballs`` in superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Shimoda, T. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Fujita, Y. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Miyatake, H. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Mizoi, Y. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Kobayashi, H. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Sasaki, M. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Shirakura, T. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Itahashi, T. [Research Center for Nuclear Physics, Osaka Univ., Ibaraki (Japan); Mitsuoka, S. [Research Center for Nuclear Physics, Osaka Univ., Ibaraki (Japan); Matsukawa, T. [Naruto Univ. of Education, Tokushima (Japan); Ikeda, N. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Morinobu, S. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Hinde, D.J. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences; Asahi, K. [Tokyo Inst. of Tech. (Japan). Dept. of Physics; Ueno, H. [Tokyo Inst. of Tech. (Japan). Dept. of Physics; Izumi, H. [Tokyo Inst. of Tech. (Japan). Dept. of Physics

    1996-12-01

    Short-lived beta-ray emitters, {sup 12}B, sustaining nuclear spin polarization were introduced into superfluid helium. The nuclear polarization of {sup 12}B was observed via measurement of beta-ray asymmetry. It was found that the nuclear polarization was preserved throughout the lifetime of {sup 12}B (20.3 ms). This suggests that the ``snowball``, an aggregation of helium atoms produced around an alien ion, constitutes a suitable milieu for freezing-out the nuclear spin of the core ion and that most likely the solidification takes place at the interior of the aggregation. (orig.).

  11. Radioactive core ions of microclusters, ''snowballs'' in superfluid helium

    International Nuclear Information System (INIS)

    Takahashi, N.; Mitsuoka, S.; Matsukawa, T.; Ikeda, N.; Morinobu, S.; Hinde, D.J.; Asahi, K.; Ueno, H.; Izumi, H.

    1996-01-01

    Short-lived beta-ray emitters, 12 B, sustaining nuclear spin polarization were introduced into superfluid helium. The nuclear polarization of 12 B was observed via measurement of beta-ray asymmetry. It was found that the nuclear polarization was preserved throughout the lifetime of 12 B (20.3 ms). This suggests that the ''snowball'', an aggregation of helium atoms produced around an alien ion, constitutes a suitable milieu for freezing-out the nuclear spin of the core ion and that most likely the solidification takes place at the interior of the aggregation. (orig.)

  12. In-situ observation of damage evolution in TiC crystals during helium ion irradiation

    International Nuclear Information System (INIS)

    Hojou, K.; Otsu, H.; Furuno, S.; Izui, K.; Tsukamoto, T.

    1994-01-01

    In-situ observations were performed on bubble formation and growth in TiC during 20 keV helium ion irradiation over the wide range of irradiation temperatures from 12 to 1523 K. No amorphization occurred over this temperature range. The bubble densities and sizes were almost independent of irradiation temperatures from 12 to 1273 K. Remarkable growth and coalescence occurred during irradiation at high temperature above 1423 K and during annealing above 1373 K after irradiation. ((orig.))

  13. Biomolecular ions in superfluid helium nanodroplets

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Florez, Ana Isabel

    2016-07-01

    droplets has been recorded. The experimental results show well resolved spectra, which are in good agreement with theoretical calculations. Moreover, the weakly interacting nature of helium droplets is confirmed by the excellent agreement obtained with the available gas-phase data. Using standard gas-phase mass spectrometry techniques allows to study the molecular ions as a function of charge state. As a result, the role of the interplay between Coulomb repulsion and hydrogen bonding in the secondary structure of the target molecules can be investigated. For this purpose, the infrared spectra of the proteins ubiquitin and cytochrome c embedded in helium droplets were recorded. The experimental results are interpreted in terms of a charge induced unzipping of the proteins, where a structural transition from helical into extended C{sub 5}-type hydrogen bonded structures occurs. This interpretation is supported by simple energy considerations, as well as by quantum chemical calculations on model peptides. The transition in secondary structure observed here is most likely universal for isolated proteins in the gas phase. Embedding positively charged ions inside helium droplets also offers the possibility to directly investigate the intrinsic properties of helium droplets. One fundamental characteristic of helium droplets is their unique ability to pick up the species with which they collide. In order to gain more insight into this process, the presence of an electrical charge was used to accelerate and detect the ion-doped droplets as a function of the mass and size of the dopant. A systematic investigation of the pick-up probability demonstrates the existence of a dopant dependent minimum droplet size below which no pick-up occurs. As a result, different hypotheses and theoretical models are proposed and discussed in order to shed more light into the constraints and limitations of the pick-up process.

  14. Biomolecular ions in superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Gonzalez Florez, Ana Isabel

    2016-01-01

    droplets has been recorded. The experimental results show well resolved spectra, which are in good agreement with theoretical calculations. Moreover, the weakly interacting nature of helium droplets is confirmed by the excellent agreement obtained with the available gas-phase data. Using standard gas-phase mass spectrometry techniques allows to study the molecular ions as a function of charge state. As a result, the role of the interplay between Coulomb repulsion and hydrogen bonding in the secondary structure of the target molecules can be investigated. For this purpose, the infrared spectra of the proteins ubiquitin and cytochrome c embedded in helium droplets were recorded. The experimental results are interpreted in terms of a charge induced unzipping of the proteins, where a structural transition from helical into extended C 5 -type hydrogen bonded structures occurs. This interpretation is supported by simple energy considerations, as well as by quantum chemical calculations on model peptides. The transition in secondary structure observed here is most likely universal for isolated proteins in the gas phase. Embedding positively charged ions inside helium droplets also offers the possibility to directly investigate the intrinsic properties of helium droplets. One fundamental characteristic of helium droplets is their unique ability to pick up the species with which they collide. In order to gain more insight into this process, the presence of an electrical charge was used to accelerate and detect the ion-doped droplets as a function of the mass and size of the dopant. A systematic investigation of the pick-up probability demonstrates the existence of a dopant dependent minimum droplet size below which no pick-up occurs. As a result, different hypotheses and theoretical models are proposed and discussed in order to shed more light into the constraints and limitations of the pick-up process.

  15. Radioactive ions and atoms in superfluid helium

    NARCIS (Netherlands)

    Dendooven, P.G.; Purushothaman, S.; Gloos, K.; Aysto, J.; Takahashi, N.; Huang, W.; Harissopulos, S; Demetriou, P; Julin, R

    2006-01-01

    We are investigating the use of superfluid helium as a medium to handle and manipulate radioactive ions and atoms. Preliminary results on the extraction of positive ions from superfluid helium at temperatures close to 1 K are described. Increasing the electric field up to 1.2 kV/cm did not improve

  16. Relation between the conditions of helium ion implantation and helium void equilibrium parameters

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Rybalko, V.F.; Ruzhitskij, V.V.; Tolstolutskaya, G.D.

    1981-01-01

    The conditions of helium thermodynamic equilibrium in a system of voids produced by helium ion bombardment of a metal sample are studied. As an initial equation for description of the equilibrium the Clapeyron equation was used. The equation is obtained relating basic parameters of helium voids (average diameter and density) to irradiation parameters (dose, ion energy (straggling)) and properties of the metal (surface tension coefficient, yield strength). Comparison of the calculations with experimental data on helium in nickel found in literature shows that the equation yields satisfactory resutls for the dose range 1.10 16 -1x10 17 cm -2 and temperatures T [ru

  17. The interaction of a nanoscale coherent helium-ion probe with a crystal

    International Nuclear Information System (INIS)

    D'Alfonso, A.J.; Forbes, B.D.; Allen, L.J.

    2013-01-01

    Thickness fringing was recently observed in helium ion microscopy (HIM) when imaging magnesium oxide cubes using a 40 keV convergent probe in scanning transmission mode. Thickness fringing is also observed in electron microscopy and is due to quantum mechanical, coherent, multiple elastic scattering attenuated by inelastic phonon excitation (thermal scattering). A quantum mechanical model for elastic scattering and phonon excitation correctly models the thickness fringes formed by the helium ions. However, unlike the electron case, the signal in the diffraction plane is due mainly to the channeling of ions which have first undergone inelastic thermal scattering in the first few atomic layers so that the origin of the thickness fringes is not due to coherent interference effects. This quantum mechanical model affords insight into the interaction of a nanoscale, focused coherent ion probe with the specimen and allows us to elucidate precisely what is needed to achieve atomic resolution HIM. - Highlights: • Thickness fringing has recently been observed imaging MgO cubes using helium ion microscopy. • A quantum mechanical model for elastic scattering and phonon excitation models the fringes. • The signal is due mainly to the coherent scattering of ions after inelastic thermal scattering. • We elucidate precisely what is needed to achieve atomic resolution HIM

  18. Damage studies on tungsten due to helium ion irradiation

    International Nuclear Information System (INIS)

    Dutta, N.J.; Buzarbaruah, N.; Mohanty, S.R.

    2014-01-01

    Highlights: • Used plasma focus helium ion source to study radiation induced damage on tungsten. • Surface analyses confirm formation of micro-crack, bubbles, blisters, pinholes, etc. • XRD patterns confirm development of compressive stress due to thermal load. • Reduction in hardness value is observed in the case of exposed sample. - Abstract: Energetic and high fluence helium ions emitted in a plasma focus device have been used successfully to study the radiation induced damage on tungsten. The reference and irradiated samples were characterized by optical microscopy, field emission scanning electron microscopy, X-ray diffraction and by hardness testers. The micrographs of the irradiated samples at lower magnification show uniform mesh of cracks of micrometer width. However at higher magnification, various types of crystalline defects such as voids, pinholes, bubbles, blisters and microcracks are distinctly noticed. The prominent peaks in X-ray diffraction spectrum of irradiated samples are seen shifted toward higher Bragg angles, thus indicating accumulation of compressive stress due to the heat load delivered by helium ions. A marginal reduction in hardness of the irradiated sample is also noticed

  19. Effect of helium ion bombardment on hydrogen behaviour in stainless steel

    International Nuclear Information System (INIS)

    Guseva, M.I.; Stolyarova, V.G.; Gorbatov, E.A.

    1987-01-01

    The effect of helium ion bombardment on hydrogen behaviour in 12Kh18N10T stainless steel is investigated. Helium and hydrogen ion bombardment was conducted in the ILU-3 ion accelerator; the fluence and energy made up 10 16 -5x10 17 cm -2 , 30 keV and 10 16 -5x10 18 cm -2 , 10 keV respectively. The method of recoil nuclei was used for determination of helium and hydrogen content. Successive implantation of helium and hydrogen ions into 12Kh18N10T stainless steel results in hydrogen capture by defects formed by helium ions

  20. Helium ion distributions in a 4 kJ plasma focus device by 1 mm-thick large-size polycarbonate detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sohrabi, M., E-mail: dr_msohrabi@yahoo.com; Habibi, M.; Ramezani, V.

    2014-11-14

    Helium ion beam profile, angular and iso-ion beam distributions in 4 kJ Amirkabir plasma focus (APF) device were effectively observed by the unaided eyes and studied in single 1 mm-thick large-diameter (20 cm) polycarbonate track detectors (PCTD). The PCTDs were processed by 50 Hz–HV electrochemical etching using a large-size ECE chamber. The results show that helium ions produced in the APF device have a ring-shaped angular distribution peaked at an angle of ∼±60° with respect to the top of the anode. Some information on the helium ion energy and distributions is also provided. The method is highly effective for ion beam studies. - Highlights: • Helium iso-ion beam profile and angular distributions were studied in the 4 kJ APF device. • Large-area 1 mm-thick polycarbonate detectors were processed by 50 Hz-HV ECE. • Helium ion beam profile and distributions were observed by unaided eyes in a single detector. • Helium ion profile has ring-shaped distributions with energies lower at the ring location. • Helium iso-ion track density, diameter and energy distributions are estimated.

  1. Ion source based on Penning discharge for production of doubly charged helium ions

    Directory of Open Access Journals (Sweden)

    V. I. Voznyi

    2017-11-01

    Full Text Available The article presents the results of operation of ion source with Penning discharge developed in the IAP of NAS of Ukraine to produce doubly charged helium ions He2+ beam and to increase the energy of accelerated ions up to 3.2 MeV. This energy is necessary for ERDA channel when measuring hydrogen concentration in the structural materials used in nuclear engineering. The ion source parameters are the following: discharge voltage is 6 kV, discharge current is 0.8 - 1.2 mA, the current of singly charged helium ions He+ 24 μA, the current of doubly charged helium ions He2+ 0.5 μA.

  2. Radiation blistering of niobium in sequence irradiated by helium ions with different energy

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminskij, M.S.; Guseva, M.I.; Gusev, V.M.; Krasulin, Yu.L.; Martynenko, Yu.V.; Rozina, I.A.

    1977-01-01

    The results of the investigation of the blistering of the surface of polycrystalline niobium foils subjected to successive irradiation by helium ions of energies of 3 to 50 keV are reported. The critical doses of irradiation, the types of blisters and the rate of erosion were determined. A comparative analysis of the formation of blisters on cold-rolled and annealed niobium has been made. On cold-rolled niobium the blistering is mainly due to ions with energies of 3 to 80 keV, on annealed niobium of 100 to 500 keV. The erosion of cold-rolled niobium takes place through blisters formed by the action of helium ions with energies of the order of 45 keV, and that of annealed niobium, through helium ions with energies of 100 to 500 keV. The observed differences in the formation of blisters on niobium irradiated with helium ions of a wide range of energies are explained by the change in the diffusion kinetics of implanted ions having a uniform distribution across the thickness of the target

  3. Imprints from the solar cycle on the helium atom and helium pickup ion distributions

    Directory of Open Access Journals (Sweden)

    D. Rucinski

    Full Text Available Neutral interstellar helium atoms penetrate into the solar system almost unaffected by gas–plasma interactions in the heliospheric interface region, and thus can be considered as carriers of original information on the basic parameters (like density, temperature, bulk velocity of the Very Local Interstellar Medium (VLISM. Such information can nowadays be derived from analysis of data obtained from different experimental methods: in situ measurements of He atoms (Ulysses, observations of the solar backscattered He 584 A radiation (EUVE, in situ measurements of He + pickup ions (AMPTE, Ulysses, Wind, SOHO, ACE. In view of the current coordinated international ISSI campaign devoted to the study of the helium focusing cone structure and its evolution, we analyze expected variations of neutral He density, of He + pickup fluxes and of their phase space distributions at various phases of the solar activity cycle based on a realistic time-dependent modelling of the neutral helium and He + pickup ion distributions, which reflect solar cycle-induced variations of the photoionization rate. We show that the neutral helium density values are generally anticorrelated with the solar activity phase and in extreme cases (near the downwind axis the maximum-to-minimum density ratio may even exceed factors of ~ 3 at 1 AU. We also demonstrate that in the upwind hemisphere (at 1 AU and beyond the He + fluxes are correlated with the solar cycle activity, whereas on the downwind side the maximum of the expected flux up to distances of ~ 3 AU occurs around solar minimum epoch, and only further away does the correlation with solar activity become positive. Finally, we present the response of the phase space distribution spectra of He + pickup ions (in the solar wind frame for different epochs of the solar cycle and heliocentric distances from 1 to 5 AU covering the range of Ulysses, Wind and ACE observations.

    Key words. Solar physics, astrophysics and astronomy

  4. Imprints from the solar cycle on the helium atom and helium pickup ion distributions

    Directory of Open Access Journals (Sweden)

    D. Rucinski

    2003-06-01

    Full Text Available Neutral interstellar helium atoms penetrate into the solar system almost unaffected by gas–plasma interactions in the heliospheric interface region, and thus can be considered as carriers of original information on the basic parameters (like density, temperature, bulk velocity of the Very Local Interstellar Medium (VLISM. Such information can nowadays be derived from analysis of data obtained from different experimental methods: in situ measurements of He atoms (Ulysses, observations of the solar backscattered He 584 A radiation (EUVE, in situ measurements of He + pickup ions (AMPTE, Ulysses, Wind, SOHO, ACE. In view of the current coordinated international ISSI campaign devoted to the study of the helium focusing cone structure and its evolution, we analyze expected variations of neutral He density, of He + pickup fluxes and of their phase space distributions at various phases of the solar activity cycle based on a realistic time-dependent modelling of the neutral helium and He + pickup ion distributions, which reflect solar cycle-induced variations of the photoionization rate. We show that the neutral helium density values are generally anticorrelated with the solar activity phase and in extreme cases (near the downwind axis the maximum-to-minimum density ratio may even exceed factors of ~ 3 at 1 AU. We also demonstrate that in the upwind hemisphere (at 1 AU and beyond the He + fluxes are correlated with the solar cycle activity, whereas on the downwind side the maximum of the expected flux up to distances of ~ 3 AU occurs around solar minimum epoch, and only further away does the correlation with solar activity become positive. Finally, we present the response of the phase space distribution spectra of He + pickup ions (in the solar wind frame for different epochs of the solar cycle and heliocentric distances from 1 to 5 AU covering the range of Ulysses, Wind and ACE observations.Key words. Solar physics, astrophysics and astronomy

  5. In-situ observation system for dual ion irradiation damage

    International Nuclear Information System (INIS)

    Furuno, Shigemi; Hojou, Kiichi; Otsu, Hitoshi; Sasaki, T.A.; Izui, Kazuhiko; Tukamoto, Tetsuo; Hata, Takao.

    1992-01-01

    We have developed an in-situ observation and analysis system during dual ion beam irradiation in an electron microscope. This system consists of an analytical electron microscope of JEM-4000FX type equipped with a parallel EELS and an EDS attachments and linked with two sets of ion accelerators of 40 kV. Hydrogen and helium dual-ion beam irradiation experiments were performed for SiC crystals. The result of dual-ion beam irradiation was compared with those of helium and hydrogen single ion irradiations. It is clearly seen that the dual-ion irradiation has the effect of suppressing bubble formation and growth in comparison with the case of single helium ion irradiation. (author)

  6. Helium Energetic Neutral Atoms from the Heliosphere: Perspectives for Future Observations

    Energy Technology Data Exchange (ETDEWEB)

    Swaczyna, Paweł; Grzedzielski, Stan; Bzowski, Maciej, E-mail: pswaczyna@cbk.waw.pl [Space Research Centre of the Polish Academy of Sciences (CBK PAN), Bartycka 18A, 00-716 Warsaw (Poland)

    2017-05-10

    Observations of energetic neutral atoms (ENAs) allow for remote sensing of plasma properties in distant regions of the heliosphere. So far, most of the observations have concerned only hydrogen atoms. In this paper, we present perspectives for observations of helium energetic neutral atoms (He ENAs). We calculated the expected intensities of He ENAs created by the neutralization of helium ions in the inner heliosheath and through the secondary ENA mechanism in the outer heliosheath. We found that the dominant source region for He ENAs is the inner heliosheath. The obtained magnitudes of intensity spectra suggest that He ENAs can be observed with future ENA detectors, as those planned on Interstellar Mapping and Acceleration Probe . Observing He ENAs is most likely for energies from a few to a few tens of keV/nuc. Estimates of the expected count rates show that the ratio of helium to hydrogen atoms registered in the detectors can be as low as 1:10{sup 4}. Consequently, the detectors need to be equipped with an appropriate mass spectrometer capability, allowing for recognition of chemical elements. Due to the long mean free paths of helium ions in the inner heliosheath, He ENAs are produced also in the distant heliospheric tail. This implies that observations of He ENAs can resolve its structure, which seems challenging from observations of hydrogen ENAs since energetic protons are neutralized before they progress deeper in the heliospheric tail.

  7. Helium behaviour in UO{sub 2} through low fluence ion implantation studies

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, P., E-mail: philippe.garcia@cea.fr [CEA – DEN/DEC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Gilabert, E. [Centre d’Et' udes Nucleáires de Bordeaux-Gradignan, Le Haut Vigneau, 33175 Gradignan (France); Martin, G.; Carlot, G.; Sabathier, C. [CEA – DEN/DEC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Sauvage, T.; Desgardin, P.; Barthe, M.-F. [CNRS-CEMHTI, UPR3079, 45071 Orleáns (France)

    2014-05-01

    In this work we focus on experiments involving implantation of 500 keV {sup 3}He ions in sintered polycrystalline material. Samples are implanted at low fluences (∼2 ×10{sup 13} ions/cm{sup 2}) and subsequently isothermally annealed in a highly sensitive thermal desorption spectrometry (TDS) device PIAGARA (Plateforme Interdisciplinaire pour l’Analyse des GAz Rares en Aquitaine). The helium fluencies studied are two to three orders of magnitude lower than previous Nuclear Reaction Analysis (NRA) experiments carried out on identical samples implanted at identical energies. The fractional release of helium obtained in the TDS experiments is interpreted using a three-dimensional axisymmetric diffusion model which enables results to be quantitatively compared to previous NRA data. The analysis shows that helium behaviour is qualitatively independent of ion fluency over three orders of magnitude: helium diffusion appears to be strongly inhibited below 1273 K within the centre of the grains presumably as a result of helium bubble precipitation. The scenario involving diffusion at grain boundaries and in regions adjacent to them observed at higher fluencies is quantitatively confirmed at much lower doses. The main difference lies in the average width of the region in which uninhibited diffusion occurs.

  8. Observation of reduction of secondary electron emission from helium ion impact due to plasma-generated nanostructured tungsten fuzz

    International Nuclear Information System (INIS)

    Hollmann, E M; Doerner, R P; Nishijima, D; Pigarov, A Yu

    2017-01-01

    Growth of nanostructured fuzz on a tungsten target in a helium plasma is found to cause a significant (∼3×) reduction in ion impact secondary electron emission in a linear plasma device. The ion impact secondary electron emission is separated from the electron impact secondary electron emission by varying the target bias voltage and fitting to expected contributions from electron impact, both thermal and non-thermal; with the non-thermal electron contribution being modeled using Monte-Carlo simulations. The observed (∼3×) reduction is similar in magnitude to the (∼2×) reduction observed in previous work for the effect of tungsten fuzz formation on secondary electron emission due to electron impact. It is hypothesized that the observed reduction results from re-absorption of secondary electrons in the tungsten fuzz. (paper)

  9. Helium retention in krypton ion pre-irradiated nanochannel W film

    Science.gov (United States)

    Qin, Wenjing; Ren, Feng; Zhang, Jian; Dong, Xiaonan; Feng, Yongjin; Wang, Hui; Tang, Jun; Cai, Guangxu; Wang, Yongqiang; Jiang, Changzhong

    2018-02-01

    Nanochannel tungsten (W) film is a promising candidate as an alternative to bulk W for use in fusion applications. In previous work it has been shown to have good radiation resistance under helium (He) irradiation. To further understand the influence of the irradiation-induced displacement cascade damage on helium retention behaviour in a fusion environment, in this work, nanochannel W film and bulk W were pre-irradiated by 800 keV Kr2+ ions to the fluence of 2.6  ×  1015 ions cm-2 and subsequently irradiated by 40 keV He+ ions to the fluence of 5  ×  1017 ions cm-2. The Kr2+ ion pre-irradiation greatly increases helium retention in the form of small clusters and retards the formation of large clusters. It can effectively inhibit surface helium blistering under high temperature annealing. Compared with bulk W, no cracks were found in the nanochannel W film post-irradiated by He+ ions at high fluence. The release of helium from the nanochannel W film is more than one order of magnitude higher than that of bulk W whether they are irradiated by single He+ ions or sequentially irradiated by Kr2+ and He+ ions. Moreover, swelling of the bulk W is more serious than that of the nanochannel film. Therefore, nanochannel W film has a higher radiation tolerance performance in the synergistic irradiation.

  10. Thermal release behavior of helium from copper irradiated by He+ ions

    International Nuclear Information System (INIS)

    Yamauchi, T.; Tokura, S.; Yamanaka, S.; Miyake, M.

    1988-01-01

    Thermal release behavior of helium from copper irradiated by 20 keV He + ions with a dose of 2x10 15 to 3x10 17 ions/cm 2 has been studied. The shape of the thermal release curves and thew number of helium release peaks strongly depend on the irradiation dose. Results from SEM surface observastion after post-irradiation heating suggested that helium release caused various surface damages such as blistering, flaking, and hole formation. Helium release resulting in small holes was analyzed and helium bubble growth mechanisms are discussed. (orig.)

  11. A compact quadrupole ion filter for helium detection

    International Nuclear Information System (INIS)

    Pereira, E.B.

    1981-01-01

    A compact quadrupole ion filter was conceived and constructed for optimum performance at the mass four region of the mass spectra. It was primarely designed for geological applications in the measurements of helium of soil-gases. The whole ion filter structure is 15 cm long by 3.5 cm diameter, including ion source and collecting plate. The sensitivity to helium is of the order of 10 - 2 A.torr - 1 measured at a total pressure of 6x10 - 6 torr and resolution 6. The system can be easily adapted to work as a dynamic residual gas analyser for other purposes. (Author) [pt

  12. Deposition, milling, and etching with a focused helium ion beam

    NARCIS (Netherlands)

    Alkemade, P.F.A.; Veldhoven, E. van

    2012-01-01

    The recent successful development of the helium ion microscope has produced both a new type of microscopy and a new tool for nanoscale manufacturing. This chapter reviews the first explorations in this new field in nanofabrication. The studies that utilize the Orion helium ion microscope to grow or

  13. Focal depth measurement of scanning helium ion microscope

    International Nuclear Information System (INIS)

    Guo, Hongxuan; Itoh, Hiroshi; Wang, Chunmei; Zhang, Han; Fujita, Daisuke

    2014-01-01

    When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at different focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.

  14. Production of negative helium ions

    International Nuclear Information System (INIS)

    Toledo, A.S. de; Sala, O.

    1977-01-01

    A negative helium ion source using potassium charge exchange vapor has been developed to be used as an injector for the Pelletron accelerator. 3 He and α beam currents of up to 2μA have been extracted with 75% particle transmission through the machine [pt

  15. Four-body conversion of atomic helium ions

    International Nuclear Information System (INIS)

    de Vries, C.P.; Oskam, H.J.

    1980-01-01

    The conversion of atomic helium ions into molecular ions was studied in pure helium and in helium-neon mixtures containing between 0.1 at. % and 50 at. % neon. The experiments showed that the termolecular conversion reaction, He + +2He → He 2 + +He, is augmented by the four-body conversion reaction He + +3He → products, where the products could include either He 2 + or He 3 + ions. Conversion rate coefficients of (5.7 +- 0.8) x 10 -32 cm 6 sec -1 and (2.6 +- 0.4) x 10 -49 cm 9 sec -1 were found for the termolecular and four-body conversion reactions, respectively. In addition, rate coefficients for the following Ne + conversion reactions were measured: Ne + +He+He → (HeNe) + +He, (2.3 +- 0.1) x 10 -32 cm 6 sec -1 ; Ne + +He+Ne → (HeNe) + +Ne or Ne 2 + +He, (8.0 +- 0.8) x 10 -32 cm 6 sec -1 ; and Ne + +Ne+Ne → Ne 2 + +Ne, (5.1 +- 0.3) x 10 -32 cm 6 sec -1 . All rate coefficients are at a gas temperature of 295 K

  16. Effects of helium ions of an early embryo on postembryonic leaf development in Brassica napus L.

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Noboru [Tokyo Metropolitan Industrial Technology Research Institute, Tokyo (Japan); Minami, Harufumi [Tokyo Metropolitan Agricultural Experiment Station, Tachikawa, Tokyo (Japan); Shikazono, Naoya; Tanaka, Atsushi; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-12-01

    We examined postembryonic effects after helium ion and gamma ray irradiation of an isolated whole flower (a flower with pedicel) of Brassica napus through a flower organ culture, and estimated the effects of irradiation on embryogenesis in sexual reproductive stages. The whole flowers were irradiated with 30 Gy of helium ions and gamma rays in the early globular embryo and/or torpedo embryo stages. The helium ion and gamma ray irradiation of early globular embryos caused some drastic malformations in the first true leaves. Those malformations were classified into four types: cup-shaped, funnel-shaped, shrunk and the other varied leaves. The types were observed in 40% of plants that developed first true leaves. Both cup-shaped and funnel-shaped types were observed in over 15%. On the other hand, the irradiation of gamma rays of torpedo embryos caused sectors lacking chlorophyll in first true leaves. (author)

  17. The Erosion of Frozen Argon by Swift Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Graversen, O.

    1981-01-01

    The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore unequivo......The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore...... unequivocally associated with electronic processes generated by the bombarding particle. In the present energy region, it is found that Y scales approximately as the electronic stopping power squared, depends on the charge state of the incoming helium ions, and perhaps more important, is independent...

  18. Helium ion distributions in a 4 kJ plasma focus device by 1 mm-thick large-size polycarbonate detectors

    Science.gov (United States)

    Sohrabi, M.; Habibi, M.; Ramezani, V.

    2014-11-01

    Helium ion beam profile, angular and iso-ion beam distributions in 4 kJ Amirkabir plasma focus (APF) device were effectively observed by the unaided eyes and studied in single 1 mm-thick large-diameter (20 cm) polycarbonate track detectors (PCTD). The PCTDs were processed by 50 Hz-HV electrochemical etching using a large-size ECE chamber. The results show that helium ions produced in the APF device have a ring-shaped angular distribution peaked at an angle of ∼ ± 60 ° with respect to the top of the anode. Some information on the helium ion energy and distributions is also provided. The method is highly effective for ion beam studies.

  19. Improvement of helium characteristics using argon in cylindrical ion source

    International Nuclear Information System (INIS)

    Abdel salam, F.W.; El-Khabeary, H.; Abdel reheem, A.M.; Kassem, N.E.; Ahmed, M.M.

    2004-01-01

    the discharge characteristics of pure helium gas were measured at different pressures in the range of 10 -4 torr. in order o improve its characteristics, argon gas was added . different percentages of argon gas ,1%,2%,3%,4%,5%,10% and 20% were used at constant values of pressures . Measurements of the efficiency of the cylindrical ion source in case of adding different percentages of argon gas to pure helium gas were made . an optimum value of the output ion beam current was obtained when 2% argon gas was added to pure helium gas . an output ion beam current of 105 μA was obtained at a pressure of 7X10 -4 torr inside the vacuum chamber and discharge current of 0.6 m A

  20. The TEXTOR helium self-pumping experiment: Design, plans, and supporting ion-beam data on helium retention in nickel

    International Nuclear Information System (INIS)

    Brooks, J.N.; Krauss, A.; Mattas, R.F.; Smith, D.L.; Nygren, R.E.; Doyle, B.L.; McGrath, R.T.; Walsh, D.; Dippel, K.H.; Finken, K.H.

    1990-01-01

    A proof-of-principle experiment to demonstrate helium self-pumping in a tokamak is being undertaken in TEXTOR. The experiment will use a helium self-pumping module installed in a modified ALT-I limiter head. The module consists of two, ≅ 25x25 cm 2 heated nickel alloy trapping plates, a nickel deposition filament array, and associated diagnostics. Between plasma shots a coating of ≅ 50A nickel will be deposited on the two trapping plates. During a shot helium and hydrogen ions will impinge on the plates through a ≅ 3 cm wide entrance slot. The helium removal capability, due to trapping in the nickel, will be assessed for a variety of plasma conditions. In support of the tokamak experiment, the trapping of helium over a range of ion fluences and surface temperatures, and detrapping during subsequent exposure to hydrogen, were measured in ion beam experiments using evaporated nickel surfaces similar to that expected in TEXTOR. Also, the retention of H and He after exposure of a nickel surface to mixed He/H plasmas has been measured. The results appear favorable, showing high helium trapping (≅ 10-50% He/Ni) and little or no detrapping by hydrogen. The TEXTOR experiment is planned to begin in 1991. (orig.)

  1. The TEXTOR helium self-pumping experiment: Design, plans, and supporting ion-beam data on helium retention in nickel

    International Nuclear Information System (INIS)

    Brooks, J.N.; Krauss, A.; Mattas, R.F.; Smith, D.L.; Nygren, R.E.; Doyle, B.L.; McGrath, R.T.; Walsh, D.; Dippel, K.H.; Finken, K.H.

    1990-01-01

    A proof-of-principle experiment to demonstrate helium self-pumping in a tokamak is being undertaken in TEXTOR. The experiment will use a helium self-pumping module installed in a modified ALT-I limiter head. The module consists of two, ∼25 x 25 cm 2 heated nickel alloy trapping plates, a nickel deposition filament array, and associated diagnostics. Between plasma shots a coating of ∼50 angstrom nickel will be deposited on the two trapping plates. During a shot helium and hydrogen ions will impinge on the plates through a ∼3 cm wide entrance slot. The helium removal capability, due to trapping in the nickel, will be assessed for a variety of plasma conditions. In support of the tokamak experiment, the trapping of helium over a range of ion fluences and surface temperatures, and detrapping during subsequent exposure to hydrogen, were measured in ion beam experiments using evaporated nickel surfaces similar to that expected in TEXTOR. Also, the retention of H and He after exposure of a nickel surface to mixed He/H plasmas has bee measured. The results appear favorable, showing high helium trapping (∼10--50% He/Ni) and little or no detrapping by hydrogen. The TEXTOR experiment is planned to begin in 1991. 12 refs., 2 figs., 2 tabs

  2. Helium ion lithography principles and performance

    NARCIS (Netherlands)

    Drift, E. van der; Maas, D.J.

    2012-01-01

    Recent developments show that Scanning Helium Ion Beam Lithography (SHIBL) with a sub-nanometer beam diameter is a promising alternative fabrication technique for high-resolution nanostructures at high pattern densities. Key principles and critical conditions of the technique are explained. From

  3. Laser Induced Fluorescence of Helium Ions in a Helicon Plasma

    Science.gov (United States)

    Compton, C. S.; Biloui, C.; Hardin, R. A.; Keesee, A. M.; Scime, E. E.; Boivin, R.

    2003-10-01

    The lack of a suitable Laser Induced Fluorescence (LIF) scheme for helium ions at visible wavelengths has prevented LIF from being employed in helium plasmas for measurements of ion temperature and bulk ion flow speeds. In this work, we will discuss our attempts to perform LIF of helium ions in a helicon source plasma using an infrared, tunable diode laser operating at 1012.36 nm. The infrared transition corresponds to excitation from the n = 4 level (4f ^2F) to the n = 5 (5g ^2G) level of singly ionized helium and therefore requires substantial electron temperatures (> 10 eV) to maintain an adequate ion population in the n = 4 state. Calculations using a steady state coronal model predict that the n = 4 state population will be 25% larger than the n = 5 population for our experimental conditions. The fluorescence decay from the n = 5 (5f ^2F) level of singly ionized helium level to the n = 3 (3d ^2D) level at 320.31 nm is monitored as the diode laser is swept through 10 GHz around the 1012.36 nm line. Note that the fluorescence emission requires a collisionally coupled transition between two different n = 5 quantum states. We will also present measurements of the emission intensities of both the 1012.36 nm and the 320.31 nm lines as a function of source neutral pressure, rf power, and plasma density. This work supported by the U.S. DoE EPSCoR Lab Partnership Program.

  4. Conductivity change of defective graphene by helium ion beams

    Directory of Open Access Journals (Sweden)

    Yuichi Naitou

    2017-04-01

    Full Text Available Applying a recently developed helium ion microscope, we demonstrated direct nano-patterning and Anderson localization of single-layer graphene (SLG on SiO2/Si substrates. In this study, we clarified the spatial-resolution-limitation factor of direct nano-patterning of SLG. Analysis of scanning capacitance microscopy measurements reveals that the conductivity of helium ion (H+-irradiated SLG nanostructures depends on their geometrical size, i.e., the smaller the H+-irradiated SLG region, the higher its conductivity becomes. This finding can be explained by the hopping carrier transport across strongly localized states of defective SLG.

  5. Impact of helium implantation and ion-induced damage on reflectivity of molybdenum mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Carrasco, A., E-mail: alvarogc@kth.se [Department of Fusion Plasma Physics, Royal Institute of Technology (KTH), Teknikringen 31, 100 44 Stockholm (Sweden); Petersson, P.; Hallén, A. [Department of Fusion Plasma Physics, Royal Institute of Technology (KTH), Teknikringen 31, 100 44 Stockholm (Sweden); Grzonka, J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw (Poland); Institute of Electronic Materials Technology, 133 Wolczynska Str., 01-919 Warsaw (Poland); Gilbert, M.R. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Fortuna-Zalesna, E. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw (Poland); Rubel, M. [Department of Fusion Plasma Physics, Royal Institute of Technology (KTH), Teknikringen 31, 100 44 Stockholm (Sweden)

    2016-09-01

    Molybdenum mirrors were irradiated with Mo and He ions to simulate the effect of neutron irradiation on diagnostic first mirrors in next-generation fusion devices. Up to 30 dpa were produced under molybdenum irradiation leading to a slight decrease of reflectivity in the near infrared range. After 3 × 10{sup 17} cm{sup −2} of helium irradiation, reflectivity decreased by up to 20%. Combined irradiation by helium and molybdenum led to similar effects on reflectivity as irradiation with helium alone. Ion beam analysis showed that only 7% of the implanted helium was retained in the first 40 nm layer of the mirror. The structure of the near-surface layer after irradiation was studied with scanning transmission electron microscopy and the extent and size distribution of helium bubbles was documented. The consequences of ion-induced damage on the performance of diagnostic components are discussed.

  6. Unexpected mobility of OH+ and OD+ molecular ions in cooled helium gas

    International Nuclear Information System (INIS)

    Isawa, R; Yamazoe, J; Tanuma, H; Ohtsuki, K

    2012-01-01

    Mobilities of OH + and OD + ions in cooled helium gas have been measured at gas temperature of 4.3 K. Measured mobilities of both ions as a function of an effective temperature T eff show a minimum around 80 K, and they are approaching to the polarization limits at very low T eff . These findings will be related to the extremely strong anisotropy of the interaction potential between the molecular ion and helium atom.

  7. Helium ion beam induced electron emission from insulating silicon nitride films under charging conditions

    Science.gov (United States)

    Petrov, Yu. V.; Anikeva, A. E.; Vyvenko, O. F.

    2018-06-01

    Secondary electron emission from thin silicon nitride films of different thicknesses on silicon excited by helium ions with energies from 15 to 35 keV was investigated in the helium ion microscope. Secondary electron yield measured with Everhart-Thornley detector decreased with the irradiation time because of the charging of insulating films tending to zero or reaching a non-zero value for relatively thick or thin films, respectively. The finiteness of secondary electron yield value, which was found to be proportional to electronic energy losses of the helium ion in silicon substrate, can be explained by the electron emission excited from the substrate by the helium ions. The method of measurement of secondary electron energy distribution from insulators was suggested, and secondary electron energy distribution from silicon nitride was obtained.

  8. The formation of microvoids in MgO by helium ion implantation and thermal annealing

    International Nuclear Information System (INIS)

    Veen, A. van; Schut, H.; Fedorov, A.V.; Labohm, F.; Neeft, E.A.C.; Konings, R.J.M.

    1999-01-01

    The formation of microvoids in metal oxides by helium implantation and thermal annealing is observed under similar conditions as has been shown earlier for silicon. Cleaved MgO (1 0 0) single crystals were implanted with 30 keV 3 He ions with doses varying from 10 15 to 10 16 cm -2 and subsequently thermally annealed from RT to 1500 K. Monitoring of the defect depth profile and the retained amount of helium was performed by positron beam analysis and neutron depth profiling, respectively. For a dose larger than 2x10 15 cm -2 annealing of the defects was observed in two stages: at 1000 K helium filled monovacancies dissociated, and other defects still retaining the helium were formed, and at 1300 K all helium left the sample while an increase of positron-valence-electron annihilations was observed, indicating an increase of the volume available in the defects. The voids of nm size were located at shallower depth than the implanted helium. At lower dose no voids were left after high temperature annealing. Voids can also be created, and even more effectively, by hydrogen or deuterium implantation. The voids are stable to temperatures of 1500 K. The use of the nanovoids as a precursor state for nanoprecipitates of metals or other species is discussed

  9. The formation of microvoids in MgO by helium ion implantation and thermal annealing

    Science.gov (United States)

    van Veen, A.; Schut, H.; Fedorov, A. V.; Labohm, F.; Neeft, E. A. C.; Konings, R. J. M.

    1999-01-01

    The formation of microvoids in metal oxides by helium implantation and thermal annealing is observed under similar conditions as has been shown earlier for silicon. Cleaved MgO (1 0 0) single crystals were implanted with 30 keV 3He ions with doses varying from 10 15 to 10 16 cm -2 and subsequently thermally annealed from RT to 1500 K. Monitoring of the defect depth profile and the retained amount of helium was performed by positron beam analysis and neutron depth profiling, respectively. For a dose larger than 2 × 10 15 cm -2 annealing of the defects was observed in two stages: at 1000 K helium filled monovacancies dissociated, and other defects still retaining the helium were formed, and at 1300 K all helium left the sample while an increase of positron-valence-electron annihilations was observed, indicating an increase of the volume available in the defects. The voids of nm size were located at shallower depth than the implanted helium. At lower dose no voids were left after high temperature annealing. Voids can also be created, and even more effectively, by hydrogen or deuterium implantation. The voids are stable to temperatures of 1500 K. The use of the nanovoids as a precursor state for nanoprecipitates of metals or other species is discussed.

  10. The formation of microvoids in MgO by helium ion implantation and thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Veen, A. van E-mail: avveen@iri.tudelft.nl; Schut, H.; Fedorov, A.V.; Labohm, F.; Neeft, E.A.C.; Konings, R.J.M

    1999-01-02

    The formation of microvoids in metal oxides by helium implantation and thermal annealing is observed under similar conditions as has been shown earlier for silicon. Cleaved MgO (1 0 0) single crystals were implanted with 30 keV {sup 3}He ions with doses varying from 10{sup 15} to 10{sup 16} cm{sup -2} and subsequently thermally annealed from RT to 1500 K. Monitoring of the defect depth profile and the retained amount of helium was performed by positron beam analysis and neutron depth profiling, respectively. For a dose larger than 2x10{sup 15} cm{sup -2} annealing of the defects was observed in two stages: at 1000 K helium filled monovacancies dissociated, and other defects still retaining the helium were formed, and at 1300 K all helium left the sample while an increase of positron-valence-electron annihilations was observed, indicating an increase of the volume available in the defects. The voids of nm size were located at shallower depth than the implanted helium. At lower dose no voids were left after high temperature annealing. Voids can also be created, and even more effectively, by hydrogen or deuterium implantation. The voids are stable to temperatures of 1500 K. The use of the nanovoids as a precursor state for nanoprecipitates of metals or other species is discussed.

  11. Helium sequestration at nanoparticle-matrix interfaces in helium + heavy ion irradiated nanostructured ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Parish, C.M., E-mail: parishcm@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Unocic, K.A.; Tan, L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zinkle, S.J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States); Kondo, S. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011 (Japan); Snead, L.L. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Hoelzer, D.T.; Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2017-01-15

    We irradiated four ferritic alloys with energetic Fe and He ions: one castable nanostructured alloy (CNA) containing Ti-W-Ta-carbides, and three nanostructured ferritic alloys (NFAs). The NFAs were: 9Cr containing Y-Ti-O nanoclusters, and two Fe-12Cr-5Al NFAs containing Y-Zr-O or Y-Hf-O clusters. All four were subjected to simultaneous dual-beam Fe + He ion implantation (650 °C, ∼50 dpa, ∼15 appm He/dpa), simulating fusion-reactor conditions. Examination using scanning/transmission electron microscopy (STEM) revealed high-number-density helium bubbles of ∼8 nm, ∼10{sup 21} m{sup −3} (CNA), and of ∼3 nm, 10{sup 23} m{sup −3} (NFAs). STEM combined with multivariate statistical analysis data mining suggests that the precipitate-matrix interfaces in all alloys survived ∼50 dpa at 650 °C and serve as effective helium trapping sites. All alloys appear viable structural material candidates for fusion or advanced fission energy systems. Among these developmental alloys the NFAs appear to sequester the helium into smaller bubbles and away from the grain boundaries more effectively than the early-generation CNA.

  12. Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures

    DEFF Research Database (Denmark)

    Chiriaev, Serguei; Dam Madsen, Nis; Rubahn, Horst-Günter

    2017-01-01

    electrode interface structure dependence on ionomer content, systematically studied by Helium Ion Microscopy (HIM). A special focus was on acquiring high resolution images of the electrode structure and avoiding interface damage from irradiation and tedious sample preparation. HIM demonstrated its....... In the hot-pressed electrodes, we found more closed contact between the electrode components, reduced particle size, polymer coalescence and formation of nano-sized polymer fiber architecture between the particles. Keywords: proton exchange membrane fuel cells (PEMFCs); Helium Ion Microscopy (HIM...

  13. The observation of helium gas bubble lattices in copper, nickel and stainless steel

    International Nuclear Information System (INIS)

    Johnson, P.B.; Mazey, D.J.

    1978-10-01

    Transmission electron microscopy is used to investigate the spatial arrangement of the small gas bubbles produced in several fcc metals by 30 keV helium ion irradiation to high dose at 300K. In what is a new result for this important class of metals it is found that the helium gas bubbles lie on a superlattice having an fcc structure with principal axes aligned with those of the metal matrix. The bubble lattice constant, asub(l), is measured for a helium fluence just below the critical dose for radiation blistering of the metal surface. Implantation rates are typically approximately 10 14 He ions cm -2 sec -1 . The values of asub(l) obtained for copper, nickel and stainless steel are given. Above the critical dose the bubble lattice is seen to survive in some blister caps as well as in the region between blisters. Bubble alignment is also observed in the case of hydrogen bubbles produced in copper by low energy proton irradiation to high fluence at 300K. (author)

  14. Electron microscopy observations of helium bubble-void transition effects in nimonic PE16 alloys

    International Nuclear Information System (INIS)

    Mazey, D.J.; Nelson, R.S.

    1980-01-01

    High-nickel alloys based on the Nimonic PE16 composition have been injected at temperatures of 525 0 C and 625 0 C with 1000 ppm helium to produce a high gas-bubble concentration and subsequently irradiated with 36 MeV nickel ions. Extensive heterogeneous nucleation of bubbles is observed on faulted interstitial loops and dislocations. Evidence is found in standard PE16 alloy for bimodal bubble plus void distributions which persist during nickel-ion irradiation to 30 and 60 dpa at 625 0 C and result in a low void volume swelling of approximately 1%. The observations can be correlated with the critical bubble/void transition radius which is calculated from theory to be approximately 4.4 nm. Pre-injection of helium into a 'matrix' PE16 (low Si, Ti and Al) alloy produced an initial bubble population whose average size was above the calculated transition radius such that all bubbles eventually grew as voids during subsequent nickel-ion irradiation up to 60 dpa at 625 0 C where the void volume swelling reached approximately 12%. The observations are discussed briefly and related to theoretical predictions of the bubble/void transition radius. (author)

  15. Interpretation of x-ray emission from lithium-like ions in collisions with helium

    International Nuclear Information System (INIS)

    Armen, G.B.; Aaberg, T.

    1994-01-01

    We consider the continuous x-ray distribution on the low-energy side of the K α line in projectile spectra coincident with single-electron loss in collision of lithium-like ions with helium. We demonstrate that the observed distributions are due to two-photon emission rather than to the radiative Auger effect. (author)

  16. Direct-write three-dimensional nanofabrication of nanopyramids and nanocones on Si by nanotumefaction using a helium ion microscope

    Science.gov (United States)

    Zhang, L.; Heinig, N. F.; Bazargan, S.; Abd-Ellah, M.; Moghimi, N.; Leung, K. T.

    2015-06-01

    The recently commercialized helium ion microscope (HIM) has already demonstrated its outstanding imaging capabilities in terms of resolution, surface sensitivity, depth of field and ease of charge compensation. Here, we show its exceptional patterning capabilities by fabricating dense lines and three-dimensional (3D) nanostructures on a Si substrate. Small focusing spot size and confined ion-Si interaction volume of a high-energy helium ion beam account for the high resolution in HIM patterning. We demonstrate that a set of resolvable parallel lines with a half pitch as small as 3.5 nm can be achieved. During helium ion bombardment of the Si surface, implantation outperforms milling due to the small mass of the helium ions, which produces tumefaction instead of depression in the Si surface. The Si surface tumefaction is the result of different kinetic processes including diffusion, coalescence and nanobubble formation of the implanted ions, and is found to be very stable structurally at room temperature. Under appropriate conditions, a linear dependence of the surface swollen height on the ion doses can be observed. This relation has enabled us to fabricate nanopyramids and nanocones, thus demonstrating that HIM patterning provides a new ‘bottom-up’ approach to fabricate 3D nanostructures. This surface tumefaction method is direct, both positioning and height accurate, and free of resist, etch, mode and precursor, and it promises new applications in nanoimprint mold fabrication and photomask clear defect reparation.

  17. Mechanical properties of tungsten following rhenium ion and helium plasma exposure

    Directory of Open Access Journals (Sweden)

    C.S. Corr

    2017-08-01

    Full Text Available Mechanical properties of Tungsten (W samples irradiated with 2 MeV Rhenium (Re ions and helium (He plasma were investigated using nanoindentation. It was found that there was an increase in hardness for all samples following separate irradiation with both Re ion and He plasma. A slight increase in hardness was obtained for combined exposures. A comparable increase in hardness was observed for a pure He plasma with a sample temperature of 473 K and 1273 K. Optical interferometry was employed to compare surface modification of the samples. Grazing incidence small angle x-ray scattering confirmed He nano-bubble formation of approximately 1 nm diameter in the higher temperature sample, which was not observed with samples at the lower temperatures.

  18. Arbitrary amplitude electrostatic wave propagation in a magnetized dense plasma containing helium ions and degenerate electrons

    Science.gov (United States)

    Mahmood, S.; Sadiq, Safeer; Haque, Q.; Ali, Munazza Z.

    2016-06-01

    The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.

  19. Channeling in helium ion microscopy: Mapping of crystal orientation

    Directory of Open Access Journals (Sweden)

    Vasilisa Veligura

    2012-07-01

    Full Text Available Background: The unique surface sensitivity and the high resolution that can be achieved with helium ion microscopy make it a competitive technique for modern materials characterization. As in other techniques that make use of a charged particle beam, channeling through the crystal structure of the bulk of the material can occur.Results: Here, we demonstrate how this bulk phenomenon affects secondary electron images that predominantly contain surface information. In addition, we will show how it can be used to obtain crystallographic information. We will discuss the origin of channeling contrast in secondary electron images, illustrate this with experiments, and develop a simple geometric model to predict channeling maxima.Conclusion: Channeling plays an important role in helium ion microscopy and has to be taken into account when trying to achieve maximum image quality in backscattered helium images as well as secondary electron images. Secondary electron images can be used to extract crystallographic information from bulk samples as well as from thin surface layers, in a straightforward manner.

  20. Single capture and transfer ionization in collisions of Clq+ projectile ions incident on helium

    International Nuclear Information System (INIS)

    Wong, K.L.; Ben-Itzhak, I.; Cocke, C.L.; Giese, J.P.; Richard, P.

    1995-01-01

    The Kansas State University linac has been used to measure the ratio of the cross sections for the processes of transfer ionization (TI) and single capture (SC) for 2 MeV/amu Cl q+ where q=7, 9, 13, 14, and 15 projectile ions incident on a helium target. The ratio was determined using a helium gas jet target by measuring coincidences between projectile-ion and recoil-ion final charge states. The σ TI /σ SC for Cl q+ were compared to measurements of bare F 9+ and hydrogenlike F 8+ and O 7+ taken at the same velocity. The ratios deviate from a q 2 scaling which is predicted in the perturbative regime. This deviation is attributed to screening by the projectile electrons for low q=7 and 9, and to the collision being non-perturbative for high q. A possible saturation effect in the ratio was observed for q similar 14. (orig.)

  1. Using ion production to monitor the birth and death of a metastable helium Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Seidelin, S; Sirjean, O; Gomes, J Viana; Boiron, D; Westbrook, C I; Aspect, A

    2003-01-01

    We discuss observations of the ion flux from a cloud of trapped 2 3 S 1 metastable helium atoms. Both Bose-Einstein condensates (BEC) and thermal clouds were investigated. The ion flux is compared with time-of-flight observations of the expanded cloud. We show data concerning BEC formation and decay, as well as measurements of two-and three-body ionization rate constants. We also discuss possible improvements and extensions of our results

  2. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    Science.gov (United States)

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  3. Comparison of multilayered nanowire imaging by SEM and Helium Ion Microscopy

    International Nuclear Information System (INIS)

    Inkson, B J; Peng, Y; Jepson, M A E; Rodenburg, C; Liu, X

    2010-01-01

    The helium ion microscope (HeIM) is capable of probe sizes smaller than SEM and, with intrinsically small ion/sample interaction volumes, may therefore potentially offer higher spatial resolution secondary electron (SE) imaging of nanostructures. Here 55 nm diameter CoPt/Pt multilayered nanowires have been imaged by HeIM, SEM and TEM. It is found that there is an increased resolution of nanowire surface topography in HeIM SE images compared to SEM, however there is a reduction of materials contrast of the alternating Pt and CoPt layers. This can be attributed to the increased contribution of surface contamination layers to the ion-induced SE signal, and carbon is also observed to grow on the nanowires under prolonged HeIM scanning.

  4. Direct-write three-dimensional nanofabrication of nanopyramids and nanocones on Si by nanotumefaction using a helium ion microscope

    International Nuclear Information System (INIS)

    Zhang, L; Heinig, N F; Bazargan, S; Abd-Ellah, M; Moghimi, N; Leung, K T

    2015-01-01

    The recently commercialized helium ion microscope (HIM) has already demonstrated its outstanding imaging capabilities in terms of resolution, surface sensitivity, depth of field and ease of charge compensation. Here, we show its exceptional patterning capabilities by fabricating dense lines and three-dimensional (3D) nanostructures on a Si substrate. Small focusing spot size and confined ion–Si interaction volume of a high-energy helium ion beam account for the high resolution in HIM patterning. We demonstrate that a set of resolvable parallel lines with a half pitch as small as 3.5 nm can be achieved. During helium ion bombardment of the Si surface, implantation outperforms milling due to the small mass of the helium ions, which produces tumefaction instead of depression in the Si surface. The Si surface tumefaction is the result of different kinetic processes including diffusion, coalescence and nanobubble formation of the implanted ions, and is found to be very stable structurally at room temperature. Under appropriate conditions, a linear dependence of the surface swollen height on the ion doses can be observed. This relation has enabled us to fabricate nanopyramids and nanocones, thus demonstrating that HIM patterning provides a new ‘bottom-up’ approach to fabricate 3D nanostructures. This surface tumefaction method is direct, both positioning and height accurate, and free of resist, etch, mode and precursor, and it promises new applications in nanoimprint mold fabrication and photomask clear defect reparation. (paper)

  5. Investigation of mixed ion fields in the forward direction for 220.5 MeV/u helium ion beams: comparison between water and PMMA targets

    Science.gov (United States)

    Aricò, G.; Gehrke, T.; Jakubek, J.; Gallas, R.; Berke, S.; Jäkel, O.; Mairani, A.; Ferrari, A.; Martišíková, M.

    2017-10-01

    Currently there is a rising interest in helium ion beams for radiotherapy. For benchmarking of the physical beam models used in treatment planning, there is a need for experimental data on the composition and spatial distribution of mixed ion fields. Of particular interest are the attenuation of the primary helium ion fluence and the build-up of secondary hydrogen ions due to nuclear interactions. The aim of this work was to provide such data with an enhanced precision. Moreover, the validity and limits of the mixed ion field equivalence between water and PMMA targets were investigated. Experiments with a 220.5 MeV/u helium ion pencil beam were performed at the Heidelberg Ion-Beam Therapy Center in Germany. The compact detection system used for ion tracking and identification was solely based on Timepix position-sensitive semiconductor detectors. In comparison to standard techniques, this system is two orders of magnitude smaller, and provides higher precision and flexibility. The numbers of outgoing helium and hydrogen ions per primary helium ion as well as the lateral particle distributions were quantitatively investigated in the forward direction behind water and PMMA targets with 5.2-18 cm water equivalent thickness (WET). Comparing water and PMMA targets with the same WET, we found that significant differences in the amount of outgoing helium and hydrogen ions and in the lateral particle distributions arise for target thicknesses above 10 cm WET. The experimental results concerning hydrogen ions emerging from the targets were reproduced reasonably well by Monte Carlo simulations using the FLUKA code. Concerning the amount of outgoing helium ions, significant differences of 3-15% were found between experiments and simulations. We conclude that if PMMA is used in place of water in dosimetry, differences in the dose distributions could arise close to the edges of the field, in particular for deep seated targets. The results presented in this publication are

  6. Neovascular glaucoma after helium ion irradiation for uveal melanoma

    International Nuclear Information System (INIS)

    Kim, M.K.; Char, D.H.; Castro, J.L.; Saunders, W.M.; Chen, G.T.; Stone, R.D.

    1986-01-01

    Neovascular glaucoma developed in 22 of 169 uveal melanoma patients treated with helium ion irradiation. Most patients had large melanomas; no eyes containing small melanomas developed anterior segment neovascularization. The mean onset of glaucoma was 14.1 months (range, 7-31 months). The incidence of anterior segment neovascularization increased with radiation dosage; there was an approximately three-fold increase at 80 GyE versus 60 GyE of helium ion radiation (23% vs. 8.5%) (P less than 0.05). Neovascular glaucoma occurred more commonly in larger tumors; the incidence was not affected by tumor location, presence of subretinal fluid, nor rate of tumor regression. Fifty-three percent of patients had some response with intraocular pressures of 21 mmHg or less to a combination of antiglaucoma treatments

  7. Radiolysis study of actinide complexing agent by irradiation with helium ion beam

    International Nuclear Information System (INIS)

    Sugo, Yumi; Taguchi, Mitsumasa; Sasaki, Yuji; Hirota, Koichi; Kimura, Takaumi

    2009-01-01

    α-Radiolysis of N,N,N',N'-tetraoctyldiglycolamide (TODGA) in n-dodecane was investigated by the irradiation with helium ion beam provided by a tandem accelerator. The radiation chemical yield for the degradation of TODGA by helium ion beam irradiation was less than that by γ-rays irradiation. It is considered that the radical cations of n-dodecane, which contribute to the charge transfer reaction with the TODGA molecules, decrease by recombination in track by high LET radiations such as α-particles.

  8. Transport and extraction of radioactive ions stopped in superfluid helium

    NARCIS (Netherlands)

    Huang, WX; Dendooven, P; Gloos, K; Takahashi, N; Arutyunov, K; Pekola, JP; Aysto, J

    A new approach to convert a high energy beam to a low energy one, which is essential for the next generation radioactive ion beam facilities, has been proposed and tested at Jyvaskyla, Finland. An open Ra-223 alpha-decay-recoil source has been used to produce radioactive ions in superfluid helium.

  9. A MEASUREMENT OF THE ADIABATIC COOLING INDEX FOR INTERSTELLAR HELIUM PICKUP IONS IN THE INNER HELIOSPHERE

    International Nuclear Information System (INIS)

    Saul, Lukas; Wurz, Peter; Kallenbach, Reinald

    2009-01-01

    Interstellar neutral gas enters the inner heliosphere where it is ionized and becomes the pickup ion population of the solar wind. It is often assumed that this population will subsequently cool adiabatically, like an expanding ideal gas due, to the divergent flow of the solar wind. Here, we report the first independent measure of the effective adiabatic cooling index in the inner heliosphere from SOHO CELIAS measurements of singly charged helium taken during times of perpendicular interplanetary magnetic field. We use a simple adiabatic transport model of interstellar pickup helium ions, valid for the upwind region of the inner heliosphere. The time averaged velocity spectrum of helium pickup ions measured by CELIAS/CTOF is fit to this model with a single free parameter which indicates an effective cooling rate with a power-law index of γ = 1.35 ± 0.2. While this average is consistent with the 'ideal-gas' assumption of γ = 1.5, the analysis indicates that such an assumption will not apply in general, and that due to observational constraints further measurements are necessary to constrain the cooling process. Implications are discussed for understanding the transport processes in the inner heliosphere and improving this measurement technique.

  10. Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy

    Directory of Open Access Journals (Sweden)

    Patrick Philipp

    2016-11-01

    Full Text Available The analysis of polymers by secondary ion mass spectrometry (SIMS has been a topic of interest for many years. In recent years, the primary ion species evolved from heavy monatomic ions to cluster and massive cluster primary ions in order to preserve a maximum of organic information. The progress in less-damaging sputtering goes along with a loss in lateral resolution for 2D and 3D imaging. By contrast the development of a mass spectrometer as an add-on tool for the helium ion microscope (HIM, which uses finely focussed He+ or Ne+ beams, allows for the analysis of secondary ions and small secondary cluster ions with unprecedented lateral resolution. Irradiation induced damage and depth profiling capabilities obtained with these light rare gas species have been far less investigated than ion species used classically in SIMS. In this paper we simulated the sputtering of multi-layered polymer samples using the BCA (binary collision approximation code SD_TRIM_SP to study preferential sputtering and atomic mixing in such samples up to a fluence of 1018 ions/cm2. Results show that helium primary ions are completely inappropriate for depth profiling applications with this kind of sample materials while results for neon are similar to argon. The latter is commonly used as primary ion species in SIMS. For the two heavier species, layers separated by 10 nm can be distinguished for impact energies of a few keV. These results are encouraging for 3D imaging applications where lateral and depth information are of importance.

  11. Temperature dependent mobility measurements of alkali earth ions in superfluid helium

    Science.gov (United States)

    Putlitz, Gisbert Zu; Baumann, I.; Foerste, M.; Jungmann, K.; Riediger, O.; Tabbert, B.; Wiebe, J.; Zühlke, C.

    1998-05-01

    Mobility measurements of impurity ions in superfluid helium are reported. Alkali earth ions were produced with a laser sputtering technique and were drawn inside the liquid by an electric field. The experiments were carried out in the temperature region from 1.27 up to 1.66 K. The temperature dependence of the mobility of Be^+-ions (measured here for the first time) differs from that of the other alkali earth ions Mg^+, Ca^+, Sr^+ and Ba^+, but behaves similar to that of He^+ (M. Foerste, H. Günther, O. Riediger, J. Wiebe, G. zu Putlitz, Z. Phys. B) 104, 317 (1997). Theories of Atkins (A. Atkins, Phys. Rev.) 116, 1339 (1959) and Cole (M.W. Cole, R.A. Bachmann Phys. Rev. B) 15, 1388 (1977) predict a different defect structure for He^+ and the alkali earth ions: the helium ion is assumed to form a snowball like structure whereas for the alkali earth ions a bubble structure is assumed. If the temperature dependence is a characteristic feature for the different structures, then it seems likely that the Be^+ ion builds a snowball like structure.

  12. Helium Ion Microscopy: A Promising Tool for Probing Biota-Mineral Interfaces

    Science.gov (United States)

    Lybrand, R.; Zaharescu, D. G.; Gallery, R. E.

    2017-12-01

    The study of biogeochemical interfaces in soil requires powerful technologies that can enhance our ability to characterize mineral surfaces and interacting organisms at micro- to nanoscale resolutions. We aim to demonstrate potential applications of Helium Ion Microscopy in the earth and ecological sciences using, as an example, samples from a field experiment. We assessed samples deployed for one year along climatic and topographic gradients in two Critical Zone Observatories (CZOs): a desert to mixed conifer forest gradient (Catalina CZO) and a humid hardwood forest (Calhoun CZO). Sterile ground rock (basalt, quartz, and granite; 53-250 µm) was sealed into nylon mesh bags and buried in the surface soils of both CZOs. We employed helium ion and scanning electron microscopies to compare retrieved ground rock samples with sterile unreacted mineral controls in conjunction with the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory, USA. Our work showed early colonization of mesh bag materials by fungal and bacterial organisms from the field systems and identified morphological changes in mineral grains following exposure to the soil environment. Biological specimens observed on grain surfaces exhibited contrasting features depending on mineral type and ecosystem location, including fungal hyphae that varied in length, diameter, and surface morphologies. We also present imagery that provides evidence for incipient stages of mineral transformation at the fungal-mineral interface. Our findings demonstrate that helium ion microscopy can be successfully used to characterize grain features and biological agents of weathering in experimental field samples, representing a promising avenue for research in the biogeosciences. Future directions of this work will couple high resolution imaging with measures of aqueous and solid geochemistry, fungal morphological characterization, and microbial profiling to better understand mineral

  13. In-situ observation of weld joint of austenitic stainless steel due to helium irradiation

    International Nuclear Information System (INIS)

    Hamada, S.; Hojou, K.; Hishinuma, A.

    1992-01-01

    Microstructural evolution during helium ions irradiation in a weld metal containing 10% delta-ferrite of a weld joint of Ti-modified austenitic stainless steel were in-situ observed through a transmission electron microcopy. Very fine helium bubbles were observed in high number density in both a delta ferrite phase and a matrix to a dose of 3 x 10 19 ions·m -2 . Entirely different behavior appeared in both phases with increasing dose. Bubbles in a delta-ferrite phase were readily converted into voids during slight increment of dose, and these rapidly grew with additional increasing of dose. On the other hand, finer bubbles in a matrix were very stable during irradiation and did not grow any more up to 2 x 10 20 ions·m -2 . Swelling became much larger in a delta-ferrite phase than in a fcc matrix phase, resultantly ; This means an inverse phenomenon for conventional results that swelling is smaller in a ferrite phase than in a fcc phase. Sigma phase radiation-enhanced precipitated at the grain boundary between a delta-ferrite phase and a matrix at a dose 9 x 10 19 ions·m -2 . This phase grew in two dimensions with increasing dose. The chemical composition of the sigma phase observed during irradiation showed Cr and Mo enrichment, and Fe and Ni depletion compared with those of a sigma phase thermally produced. (author)

  14. Helium ion microscopy of graphene: beam damage, image quality and edge contrast

    International Nuclear Information System (INIS)

    Fox, D; Zhou, Y B; O’Neill, A; Wang, J J; Coleman, J N; Donegan, J F; Zhang, H Z; Kumar, S; Duesberg, G S

    2013-01-01

    A study to analyse beam damage, image quality and edge contrast in the helium ion microscope (HIM) has been undertaken. The sample investigated was graphene. Raman spectroscopy was used to quantify the disorder that can be introduced into the graphene as a function of helium ion dose. The effects of the dose on both freestanding and supported graphene were compared. These doses were then correlated directly to image quality by imaging graphene flakes at high magnification. It was found that a high magnification image with a good signal to noise ratio will introduce very significant sample damage. A safe imaging dose of the order of 10 13 He + cm −2 was established, with both graphene samples becoming highly defective at doses over 5 × 10 14 He + cm −2 . The edge contrast of a freestanding graphene flake imaged in the HIM was then compared with the contrast of the same flake observed in a scanning electron microscope and a transmission electron microscope. Very strong edge sensitivity was observed in the HIM. This enhanced edge sensitivity over the other techniques investigated makes the HIM a powerful nanoscale dimensional metrology tool, with the capability of both fabricating and imaging features with sub-nanometre resolution. (paper)

  15. Measurement of ion beam angular distribution at different helium gas pressures in a plasma focus device by large-area polycarbonate detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sohrabi, M.; Habibi, M., E-mail: mortezahabibi@gmail.com; Ramezani, V. [Amirkabir University of Technology, Energy Engineering and Physics Department (Iran, Islamic Republic of)

    2017-02-15

    The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of ~4.4 × 10{sup 4} tracks/cm{sup 2} was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due to the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.

  16. Modeling secondary electron emission from nanostructured materials in helium ion microscope

    International Nuclear Information System (INIS)

    Ohya, K.; Yamanaka, T.

    2013-01-01

    Charging of a SiO 2 layer on a Si substrate during helium (He) beam irradiation is investigated at an energy range relevant to a He ion microscope (HIM). A self-consistent calculation is performed to model the transport of the ions and secondary electrons (SEs), the charge accumulation in the layer, and the electric field below and above the surface. The calculated results are compared with those for gallium (Ga) ions at the same energy and 1 keV electrons corresponding to a low-voltage scanning electron microscope (SEM). The charging of thin layers ( 2 step formed on a Si substrate, a sharp increase in the number of SEs is observed, irrespective of whether a material is charged or not. When the He ions are incident on the bottom of the step, the re-entrance of SEs emitted from the substrate into the sidewall is clearly observed, but it causes the sidewall to be charged negatively. At the positions on the SiO 2 layer away from the step edge, the charging voltage becomes positive with increasing number of Ga ions and electrons. However, He ions do not induce such a voltage due to strong relaxation of positive and negative charges in the Si substrate and their recombination in the SiO 2 layer

  17. THE POPULATION OF HELIUM-MERGER PROGENITORS: OBSERVATIONAL PREDICTIONS

    International Nuclear Information System (INIS)

    Fryer, Chris L.; Belczynski, Krzysztof; Bulik, Tomasz; Berger, Edo; Thöne, Christina; Ellinger, Carola

    2013-01-01

    The helium-merger gamma-ray burst (GRB) progenitor is produced by the rapid accretion onto a compact remnant (neutron star or black hole) when it undergoes a common envelope inspiral with its companion's helium core. This merger phase produces a very distinct environment around these outbursts and recent observations suggest that, in some cases, we are detecting the signatures of the past merger in the GRB afterglow. These observations allow us, for the first time, to study the specific features of the helium-merger progenitor. In this paper, we couple population synthesis calculations to our current understanding of GRB engines and common envelope evolution to make observational predictions for the helium-merger GRB population. Many mergers do not produce GRB outbursts and we discuss the implications of these mergers with the broader population of astrophysical transients.

  18. Stopping Power of Solid Argon for Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Grauersen, O.

    1981-01-01

    By means of the Rutherford-backscattering method, the stopping cross section of solid argon has been measured for 0.5–3 MeV helium ions to an accuracy of not, vert, similar3%. The results agree within the experimental accuracies with our earlier measurements for gaseous argon over the energy region...

  19. Average equilibrium charge state of 278113 ions moving in a helium gas

    International Nuclear Information System (INIS)

    Kaji, D.; Morita, K.; Morimoto, K.

    2005-01-01

    Difficulty to identify a new heavy element comes from the small production cross section. For example, the production cross section was about 0.5 pb in the case of searching for the 112th element produced by the cold fusion reaction of 208 Pb( 70 Zn,n) 277 ll2. In order to identify heavier elements than element 112, the experimental apparatus with a sensitivity of sub-pico barn level is essentially needed. A gas-filled recoil separator, in general, has a large collection efficiency compared with other recoil separators as seen from the operation principle of a gas-filled recoil separator. One of the most important parameters for a gas-filled recoil separator is the average equilibrium charge state q ave of ions moving in a used gas. This is because the recoil ion can not be properly transported to the focal plane of the separator, if the q ave of an element of interest in a gas is unknown. We have systematically measured equilibrium charge state distributions of heavy ions ( 169 Tm, 208 Pb, 193,209 Bi, 196 Po, 200 At, 203,204 Fr, 212 Ac, 234 Bk, 245 Fm, 254 No, 255 Lr, and 265 Hs) moving in a helium gas by using the gas-filled recoil separator GARIS at RIKEN. Ana then, the empirical formula on q ave of heavy ions in a helium gas was derived as a function of the velocity and the atomic number of an ion on the basis of the Tomas-Fermi model of the atom. The formula was found to be applicable to search for transactinide nuclides of 271 Ds, 272 Rg, and 277 112 produced by cold fusion reactions. Using the formula on q ave , we searched for a new isotope of element 113 produced by the cold fusion reaction of 209 Bi( 70 Zn,n) 278 113. As a result, a decay chain due to an evaporation residue of 278 113 was observed. Recently, we have successfully observed the 2nd decay chain due to an evaporation residue of 278 113. In this report, we will present experimental results in detail, and will also discuss the average equilibrium charge sate of 278 113 in a helium gas by

  20. Helium ion microscopy based wall thickness and surface roughness analysis of polymer foams obtained from high internal phase emulsion

    International Nuclear Information System (INIS)

    Rodenburg, C.; Viswanathan, P.; Jepson, M.A.E.; Liu, X.; Battaglia, G.

    2014-01-01

    Due to their wide range of applications, porous polymers obtained from high internal phase emulsions have been widely studied using scanning electron microscopy. However, due to their lack of electrical conductivity, quantitative information of wall thicknesses and surface roughness, which are of particular interest to tissue engineering, has not been obtained. Here, Helium Ion Microscopy is used to examine uncoated polymer foams and some very strong but unexpected contrast is observed, the origin of which is established here. Based on this analysis, a method for the measurement of wall thickness variations and wall roughness measurements has been developed, based on the modeling of Helium ion transmission. The results presented here indicate that within the walls of the void structure there exist small features with height variations of ∼30 nm and wall thickness variations from ∼100 nm to larger 340 nm in regions surrounding interconnecting windows within the structure. The suggested imaging method is applicable to other porous carbon based structures with wall thicknesses in the range of 40–340 nm. - Highlights: • The first helium ion microscopy image of uncoated structures formed from HIPEs is presented. • Unusually high contrast features that change with accelerating voltage are observed. • The origin of the observed contrast is determined to be mass thickness contrast. • A new method for quantitative wall thickness variation/roughness measurements is demonstrated

  1. Helium ion microscopy based wall thickness and surface roughness analysis of polymer foams obtained from high internal phase emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Rodenburg, C., E-mail: c.rodenburg@sheffield.ac.uk [Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Viswanathan, P. [Department of Biomedical Sciences, University of Sheffield, Firth Court, Western Bank Sheffield, Sheffield S10 2 TN (United Kingdom); Jepson, M.A.E. [Department of Materials, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Liu, X. [Carl Zeiss Microscopy GmbH, Carl-Zeiss-Strasse 22, 73447 Oberkochen (Germany); Battaglia, G. [Department of Chemistry University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); The MRC/UCL Centre for Medical Molecular Virology, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2014-04-01

    Due to their wide range of applications, porous polymers obtained from high internal phase emulsions have been widely studied using scanning electron microscopy. However, due to their lack of electrical conductivity, quantitative information of wall thicknesses and surface roughness, which are of particular interest to tissue engineering, has not been obtained. Here, Helium Ion Microscopy is used to examine uncoated polymer foams and some very strong but unexpected contrast is observed, the origin of which is established here. Based on this analysis, a method for the measurement of wall thickness variations and wall roughness measurements has been developed, based on the modeling of Helium ion transmission. The results presented here indicate that within the walls of the void structure there exist small features with height variations of ∼30 nm and wall thickness variations from ∼100 nm to larger 340 nm in regions surrounding interconnecting windows within the structure. The suggested imaging method is applicable to other porous carbon based structures with wall thicknesses in the range of 40–340 nm. - Highlights: • The first helium ion microscopy image of uncoated structures formed from HIPEs is presented. • Unusually high contrast features that change with accelerating voltage are observed. • The origin of the observed contrast is determined to be mass thickness contrast. • A new method for quantitative wall thickness variation/roughness measurements is demonstrated.

  2. Sputtering of solid nitrogen by keV helium ions

    DEFF Research Database (Denmark)

    Ellegaard, O.; Schou, Jørgen; Sørensen, H.

    1993-01-01

    Solid nitrogen has become a standard material among the frozen molecular gases for electronic sputtering. We have combined measurements of sputtering yields and energy spectra from nitrogen bombarded by 4-10 keV helium ions. The data show that the erosion is electronic rather than knockon...

  3. The effect of low energy helium ion irradiation on tungsten-tantalum (W-Ta) alloys under fusion relevant conditions

    Science.gov (United States)

    Gonderman, S.; Tripathi, J. K.; Novakowski, T. J.; Sizyuk, T.; Hassanein, A.

    2017-08-01

    Currently, tungsten remains the best candidate for plasma-facing components (PFCs) for future fusion devices because of its high melting point, low erosion, and strong mechanical properties. However, continued investigation has shown tungsten to undergo severe morphology changes under fusion-like conditions. These results motivate the study of innovative PFC materials which are resistant to surface morphology evolution. The goal of this work is to examine tungsten-tantalum (W-Ta) alloys, a potential PFC material, and their response to low energy helium ion irradiation. Specifically, W-Ta samples are exposed to 100 eV helium irradiations with a flux of 1.15 × 1021 ions m-2 s-1, at 873 K, 1023 K, and 1173 K for 1 h duration. Scanning electron microscopy (SEM) reveals significant changes in surface deterioration due to helium ion irradiation as a function of both temperature and tantalum concentration in W-Ta samples. X-Ray Diffraction (XRD) studies show a slight lattice parameter expansion in W-Ta alloy samples compared to pure W samples. The observed lattice parameter expansion in W-Ta alloy samples (proportional to increasing Ta wt.% concentrations) reflect significant differences observed in the evolution of surface morphology, i.e., fuzz development processes for both increasing Ta wt.% concentration and target temperature. These results suggest a correlation between the observed morphology differences and the induced crystal structure change caused by the presence of tantalum. Shifts in the XRD peaks before and after 100 eV helium irradiation with a flux of 1.15 × 1021 ions m-2 s-1, 1023 K, for 1 h showed a significant difference in the magnitude of the shift. This has suggested a possible link between the atomic spacing of the material and the accumulated damage. Ongoing research is needed on W-Ta alloys and other innovative materials for their application as irradiation resistant materials in future fusion or irradiation environments.

  4. Low flux and low energy helium ion implantation into tungsten using a dedicated plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Pentecoste, Lucile [GREMI, CNRS/Université d’Orléans, 14 rue d’Issoudun, B.P. 6744, 45067 Orléans Cedex2 (France); Thomann, Anne-Lise, E-mail: anne-lise.thomann@univ-orleans.fr [GREMI, CNRS/Université d’Orléans, 14 rue d’Issoudun, B.P. 6744, 45067 Orléans Cedex2 (France); Melhem, Amer; Caillard, Amael; Cuynet, Stéphane; Lecas, Thomas; Brault, Pascal [GREMI, CNRS/Université d’Orléans, 14 rue d’Issoudun, B.P. 6744, 45067 Orléans Cedex2 (France); Desgardin, Pierre; Barthe, Marie-France [CNRS, UPR3079 CEMHTI, 1D avenue de la Recherche Scientifique, 45071 Orléans Cedex2 (France)

    2016-09-15

    The aim of this work is to investigate the first stages of defect formation in tungsten (W) due to the accumulation of helium (He) atoms inside the crystal lattice. To reach the required implantation conditions, i.e. low He ion fluxes (10{sup 11}–10{sup 14} ions.cm{sup 2}.s{sup −1}) and kinetic energies below the W atom displacement threshold (about 500 eV for He{sup +}), an ICP source has been designed and connected to a diffusion chamber. Implantation conditions have been characterized by means of complementary diagnostics modified for measurements in this very low density helium plasma. It was shown that lowest ion fluxes could only be reached for the discharge working in capacitive mode either in α or γ regime. Special attention was paid to control the energy gained by the ions by acceleration through the sheath at the direct current biased substrate. At very low helium pressure, in α regime, a broad ion energy distribution function was evidenced, whereas a peak centered on the potential difference between the plasma and the biased substrate was found at higher pressures in the γ mode. Polycrystalline tungsten samples were exposed to the helium plasma in both regimes of the discharge and characterized by positron annihilation spectroscopy in order to detect the formed vacancy defects. It was found that W vacancies are able to be formed just by helium accumulation and that the same final implanted state is reached, whatever the operating mode of the capacitive discharge.

  5. Hydrogen retention properties of polycrystalline tungsten and helium irradiated tungsten

    International Nuclear Information System (INIS)

    Hino, T.; Koyama, K.; Yamauchi, Y.; Hirohata, Y.

    1998-01-01

    The hydrogen retention properties of a polycrystalline tungsten and tungsten irradiated by helium ions with an energy of 5 keV were examined by using an ECR ion irradiation apparatus and a technique of thermal desorption spectroscopy, TDS. The polycrystalline tungsten was irradiated at RT with energetic hydrogen ions, with a flux of 10 15 H cm -2 and an energy of 1.7 keV up to a fluence of 5 x 10 18 H cm -2 . Subsequently, the amount of retained hydrogen was measured by TDS. The heating temperature was increased from RT to 1000 C, and the heating rate was 50 C min -1 . Below 1000 C, two distinct hydrogen desorption peaks were observed at 200 C and 400 C. The retained amount of hydrogen was observed to be five times smaller than that of graphite, but the concentration in the implantation layer was comparable with that of graphite. Also, the polycrystalline tungsten was irradiated with 5 keV helium ions up to a fluence of 1.4 x 10 18 He cm -2 , and then re-irradiated with 1.7 keV hydrogen ions. The amount of retained hydrogen in this later experiment was close to the value in the case without prior helium ion irradiation. However, the amount of hydrogen which desorbed around the low temperature peak, 200 C, was largely enhanced. The desorption amount at 200 C saturated for the helium fluence of more than 5 x 10 17 He cm -2 . The present data shows that the trapping state of hydrogen is largely changed by the helium ion irradiation. Additionally, 5 keV helium ion irradiation was conducted on a sample pre-implanted with hydrogen ions to simulate a helium ion impact desorption of hydrogen retained in tungsten. The amount of the hydrogen was reduced as much as 50%. (orig.)

  6. Electron induced formation and stability of molecular and cluster ions in gas phase and superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Aleem, M. A.

    2010-01-01

    -induced reactions of the molecules doped into superfluid helium nanodroplets. Pick up of more than one molecule has lead to the formation of ultracold neutral clusters inside the helium droplets. Electron attachment to He nanodroplets doped with ammonia has embarked a synthetic chemistry, forming hydrazine anions, followed by intermediate ion complexes at freezing temperature of 0.37 K of the helium environment. Also a concomitant solvation effect for hydrazine anions has been observed. Electron ionization of He droplets containing ammonia and water co-doped with fullerenes has shown unique sequence of the formation and fragmentation of cluster ions following electron-induced ionization processes. A novel ion-molecule reaction has been observed and established following electron ionization of water and fullerene co-doped into helium nanodroplets. (author)

  7. Microstructural observation on helium injected and creep ruptured JPCA

    International Nuclear Information System (INIS)

    Yamamoto, N.; Shiraishi, H.; Hishinuma, A.

    1986-01-01

    Detailed and quantitative TEM observation was performed on high temperature helium injected and creep ruptured JPCA to seek the prominent TiC distribution developed for suppression of helium embrittlement. Three different preinjection treatments were adopted for changing the TiC distribution. Considerable degradation in creep rupture strength by helium occurred in solution-annealed specimens, although there was much less effect of other treatments which included aging prior to injection. The concentration of helium at grain boundaries and the promotion of precipitation by helium during injection were responsible for the degradation. Therefore, the presence of TiC precipitates before helium introduction will help prevent degradation. On the other hand, the rupture elongation was reduced by helium after all treatments, although helium trapping by TiC precipitates in the matrix was successfully achieved. Consequently, the combined use of several methods may be necessary for further suppression of helium embrittlement. (orig.)

  8. Projectile electron loss in collisions of light charged ions with helium

    International Nuclear Information System (INIS)

    Yin Yong-Zhi; Chen Xi-Meng; Wang Yun

    2014-01-01

    We investigate the single-electron loss processes of light charged ions (Li 1+,2+ , C 2+,3+,5+ , and O 2+,3+ ) in collisions with helium. To better understand the experimental results, we propose a theoretical model to calculate the cross section of projectile electron loss. In this model, an ionization radius of the incident ion was defined under the classical over-barrier model, and we developed ''strings'' to explain the processes of projectile electron loss, which is similar with the molecular over-barrier model. Theoretical calculations are in good agreement with the experimental results for the cross section of single-electron loss and the ratio of double-to-single ionization of helium associated with one-electron loss. (atomic and molecular physics)

  9. Helium abundance and speed difference between helium ions and protons in the solar wind from coronal holes, active regions, and quiet Sun

    Science.gov (United States)

    Fu, Hui; Madjarska, M. S.; Li, Bo; Xia, LiDong; Huang, ZhengHua

    2018-05-01

    Two main models have been developed to explain the mechanisms of release, heating and acceleration of the nascent solar wind, the wave-turbulence-driven (WTD) models and reconnection-loop-opening (RLO) models, in which the plasma release processes are fundamentally different. Given that the statistical observational properties of helium ions produced in magnetically diverse solar regions could provide valuable information for the solar wind modelling, we examine the statistical properties of the helium abundance (AHe) and the speed difference between helium ions and protons (vαp) for coronal holes (CHs), active regions (ARs) and the quiet Sun (QS). We find bimodal distributions in the space of AHeand vαp/vA(where vA is the local Alfvén speed) for the solar wind as a whole. The CH wind measurements are concentrated at higher AHeand vαp/vAvalues with a smaller AHedistribution range, while the AR and QS wind is associated with lower AHeand vαp/vA, and a larger AHedistribution range. The magnetic diversity of the source regions and the physical processes related to it are possibly responsible for the different properties of AHeand vαp/vA. The statistical results suggest that the two solar wind generation mechanisms, WTD and RLO, work in parallel in all solar wind source regions. In CH regions WTD plays a major role, whereas the RLO mechanism is more important in AR and QS.

  10. Connection experiments with a hollow cathode ion source and a helium gas jet system for on-line isotope separation

    International Nuclear Information System (INIS)

    Mazumdar, A.K.; Wagner, H.; Walcher, W.; Lund, T.

    1976-01-01

    A helium jet system was connected to a hollow cathode ion source. Using fission products the efficiencies of the different steps were measured by β-, X-ray and γ-counting while the mass spectrum and the focussing of the extracted ion beam were observed with a small deflecting magnet. Mean transport efficiencies of 50% through the 12 m capillary were obtained and ion source efficiencies in the percent range for several elements. (Auth.)

  11. Effect of helium on void swelling in vanadium

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1975-01-01

    Little difference in void microstructural swelling of vanadium is observed when helium is injected simultaneously with a 46- or 5-MeV nickel beam as compared to no helium injection, at least at high dose rates. At lower dose rates, a strong helium effect is seen when the helium is injected prior to heavy ion bombardment. The effect of the helium is shown to be a strong function of the overall displacement damage rate

  12. The adsorption of helium atoms on coronene cations

    Energy Technology Data Exchange (ETDEWEB)

    Kurzthaler, Thomas; Rasul, Bilal; Kuhn, Martin; Scheier, Paul, E-mail: Paul.Scheier@uibk.ac.at, E-mail: andrew.ellis@le.ac.uk [Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck (Austria); Lindinger, Albrecht [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Ellis, Andrew M., E-mail: Paul.Scheier@uibk.ac.at, E-mail: andrew.ellis@le.ac.uk [Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2016-08-14

    We report the first experimental study of the attachment of multiple foreign atoms to a cationic polycyclic aromatic hydrocarbon (PAH). The chosen PAH was coronene, C{sub 24}H{sub 12}, which was added to liquid helium nanodroplets and then subjected to electron bombardment. Using mass spectrometry, coronene cations decorated with helium atoms were clearly seen and the spectrum shows peaks with anomalously high intensities (“magic number” peaks), which represent ion-helium complexes with added stability. The data suggest the formation of a rigid helium layer consisting of 38 helium atoms that completely cover both faces of the coronene ion. Additional magic numbers can be seen for the further addition of 3 and 6 helium atoms, which are thought to attach to the edge of the coronene. The observation of magic numbers for the addition of 38 and 44 helium atoms is in good agreement with a recent path integral Monte Carlo prediction for helium atoms on neutral coronene. An understanding of how atoms and molecules attach to PAH ions is important for a number of reasons including the potential role such complexes might play in the chemistry of the interstellar medium.

  13. The GOES-16 Energetic Heavy Ion Instrument Proton and Helium Fluxes for Space Weather Applications

    Science.gov (United States)

    Connell, J. J.; Lopate, C.

    2017-12-01

    The Energetic Heavy Ion Sensor (EHIS) was built by the University of New Hampshire, subcontracted to Assurance Technology Corporation, as part of the Space Environmental In-Situ Suite (SEISS) on the new GOES-16 satellite, in geostationary Earth orbit. The EHIS measures energetic ions in space over the range 10-200 MeV for protons, and energy ranges for heavy ions corresponding to the same stopping range. Though an operational satellite instrument, EHIS will supply high quality data for scientific studies. For the GOES Level 1-B and Level 2 data products, protons and helium are distinguished in the EHIS using discriminator trigger logic. Measurements are provided in five energy bands. The instrumental cadence of these rates is 3 seconds. However, the primary Level 1-B proton and helium data products are 1-minute and 5-minute averages. The data latency is 1 minute, so data products can be used for real-time predictions as well as general science studies. Protons and helium, comprising approximately 99% of all energetic ions in space are of great importance for Space Weather predictions. We discuss the preliminary EHIS proton and helium data results and their application to Space Weather. The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  14. Crystal orientation effects on helium ion depth distributions and adatom formation processes in plasma-facing tungsten

    International Nuclear Information System (INIS)

    Hammond, Karl D.; Wirth, Brian D.

    2014-01-01

    We present atomistic simulations that show the effect of surface orientation on helium depth distributions and surface feature formation as a result of low-energy helium plasma exposure. We find a pronounced effect of surface orientation on the initial depth of implanted helium ions, as well as a difference in reflection and helium retention across different surface orientations. Our results indicate that single helium interstitials are sufficient to induce the formation of adatom/substitutional helium pairs under certain highly corrugated tungsten surfaces, such as (1 1 1)-orientations, leading to the formation of a relatively concentrated layer of immobile helium immediately below the surface. The energies involved for helium-induced adatom formation on (1 1 1) and (2 1 1) surfaces are exoergic for even a single adatom very close to the surface, while (0 0 1) and (0 1 1) surfaces require two or even three helium atoms in a cluster before a substitutional helium cluster and adatom will form with reasonable probability. This phenomenon results in much higher initial helium retention during helium plasma exposure to (1 1 1) and (2 1 1) tungsten surfaces than is observed for (0 0 1) or (0 1 1) surfaces and is much higher than can be attributed to differences in the initial depth distributions alone. The layer thus formed may serve as nucleation sites for further bubble formation and growth or as a source of material embrittlement or fatigue, which may have implications for the formation of tungsten “fuzz” in plasma-facing divertors for magnetic-confinement nuclear fusion reactors and/or the lifetime of such divertors.

  15. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    DEFF Research Database (Denmark)

    Fuchs, Hermann; Alber, Markus; Schreiner, Thomas

    2015-01-01

    PURPOSE: Helium ions ((4)He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed...... published so far. The advantage of (4)He seems to lie in the reduction of dose to surrounding tissue and to OARs. Nevertheless, additional biological experiments and treatment planning studies with larger patient numbers and more tumor indications are necessary to study the possible benefits of helium ion...

  16. Direct nano-patterning of graphene with helium ion beams

    International Nuclear Information System (INIS)

    Naitou, Y.; Iijima, T.; Ogawa, S.

    2015-01-01

    Helium ion microscopy (HIM) was used for direct nano-patterning of single-layer graphene (SLG) on SiO 2 /Si substrates. This technique involves irradiation of the sample with accelerated helium ions (He + ). Doses of 2.0 × 10 16  He +  cm −2 from a 30 kV beam induced a metal-insulator transition in the SLG. The resolution of HIM patterning on SLG was investigated by fabricating nanoribbons and nanostructures. Analysis of scanning capacitance microscopy measurements revealed that the spatial resolution of HIM patterning depended on the dosage of He + in a non-monotonic fashion. Increasing the dose from 2.0 × 10 16 to 5.0 × 10 16  He +  cm −2 improved the spatial resolution to several tens of nanometers. However, doses greater than 1.0 × 10 17  He +  cm −2 degraded the patterning characteristics. Direct patterning using HIM is a versatile approach to graphene fabrication and can be applied to graphene-based devices

  17. Trapping and re-emission of energetic hydrogen and helium ions in materials

    International Nuclear Information System (INIS)

    Yamaguchi, Sadae

    1981-01-01

    The experimental results on the trapping and re-emission of energetic hydrogen and helium ions in materials are explained. The trapping of deuterium and helium in graphite saturates at the concentration of 10 18 ions/cm 2 . The trapping rate of hydrogen depends on the kinds of target materials. In the case of the implantation in Mo over 3 x 10 16 H/cm 2 , hydrogen is hardly trapped. On the other hand, the trapping of hydrogen in Ti, Zr and Ta which form solid solution is easily made. The hydrogen in these metals can diffuse toward the inside of metals. The deuterium retained in 316 SS decreased with time. The trapping rate reached saturation more rapidly at higher implantation temperature. The effective diffusion constant for the explanation of the re-emission process is 1/100 as small as the ordinary value. The radiation damage due to helium irradiation affects on the trapping of deuterium in Mo. The temperature dependence of the trapping rate can be explained by the diffusion model based on the Sievert's law. The re-emission of helium was measured at various temperature. At low temperature, the re-emission was low at first, then the rate increased. At high temperature, the re-emission rate was high from the beginning. (Kato, T.)

  18. The multiple ionization of helium induced by partially stripped carbon ions

    International Nuclear Information System (INIS)

    Cai Xiaohong; Chen Ximeng; Shen Ziyong

    1996-01-01

    The ratios of the double to single ionization cross sections of helium impacted by partially stripped C q+ ions (q = 1,2,3,4) in energy range of 1.5-7.5 MeV were measured by using the time of flight procedure. The n-body classical trajectory Monte Carlo calculation was carried out to get the Olson-Schlachter scaling. The single and double ionization cross sections of helium were obtained by comparing the cross section ratios of the present work with the Olson-Schlachter scaling

  19. Helium trapping in aluminum and sintered aluminum powders

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.; Rossing, T.

    1975-01-01

    The surface erosion of annealed aluminum and of sintered aluminum powder (SAP) due to blistering from implantation of 100-keV 4 He + ions at room temperature has been investigated. A substantial reduction in the blistering erosion rate in SAP was observed from that in pure annealed aluminum. In order to determine whether the observed reduction in blistering is due to enhanced helium trapping or due to helium released, the implanted helium profiles in annealed aluminum and in SAP have been studied by Rutherford backscattering. The results show that more helium is trapped in SAP than in aluminum for identical irradiation conditions. The observed reduction in erosion from helium blistering in SAP is more likely due to the dispersion of trapped helium at the large Al-Al 2 O 3 interfaces and at the large grain boundaries in SAP than to helium release

  20. The role of helium ion microscopy in the characterisation of complex three-dimensional nanostructures

    International Nuclear Information System (INIS)

    Rodenburg, C.; Liu, X.; Jepson, M.A.E.; Zhou, Z.; Rainforth, W.M.; Rodenburg, J.M.

    2010-01-01

    This work addresses two major issues relating to Helium Ion Microscopy (HeIM). First we show that HeIM is capable of solving the interpretation difficulties that arise when complex three-dimensional structures are imaged using traditional high lateral resolution techniques which are transmission based, such as scanning transmission electron microscopy (STEM). Secondly we use a nano-composite coating consisting of amorphous carbon embedded in chromium rich matrix to estimate the mean escape depth for amorphous carbon for secondary electrons generated by helium ion impact as a measure of HeIM depth resolution.

  1. A pencil beam algorithm for helium ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Hermann; Stroebele, Julia; Schreiner, Thomas; Hirtl, Albert; Georg, Dietmar [Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria); PEG MedAustron, 2700 Wiener Neustadt (Austria); Department of Nuclear Medicine, Medical University of Vienna, 1090 Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria)

    2012-11-15

    Purpose: To develop a flexible pencil beam algorithm for helium ion beam therapy. Dose distributions were calculated using the newly developed pencil beam algorithm and validated using Monte Carlo (MC) methods. Methods: The algorithm was based on the established theory of fluence weighted elemental pencil beam (PB) kernels. Using a new real-time splitting approach, a minimization routine selects the optimal shape for each sub-beam. Dose depositions along the beam path were determined using a look-up table (LUT). Data for LUT generation were derived from MC simulations in water using GATE 6.1. For materials other than water, dose depositions were calculated by the algorithm using water-equivalent depth scaling. Lateral beam spreading caused by multiple scattering has been accounted for by implementing a non-local scattering formula developed by Gottschalk. A new nuclear correction was modelled using a Voigt function and implemented by a LUT approach. Validation simulations have been performed using a phantom filled with homogeneous materials or heterogeneous slabs of up to 3 cm. The beams were incident perpendicular to the phantoms surface with initial particle energies ranging from 50 to 250 MeV/A with a total number of 10{sup 7} ions per beam. For comparison a special evaluation software was developed calculating the gamma indices for dose distributions. Results: In homogeneous phantoms, maximum range deviations between PB and MC of less than 1.1% and differences in the width of the distal energy falloff of the Bragg-Peak from 80% to 20% of less than 0.1 mm were found. Heterogeneous phantoms using layered slabs satisfied a {gamma}-index criterion of 2%/2mm of the local value except for some single voxels. For more complex phantoms using laterally arranged bone-air slabs, the {gamma}-index criterion was exceeded in some areas giving a maximum {gamma}-index of 1.75 and 4.9% of the voxels showed {gamma}-index values larger than one. The calculation precision of the

  2. Ion spectral structures observed by the Van Allen Probes

    Science.gov (United States)

    Ferradas, C.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.

    2015-12-01

    During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. Previous studies have reported single "nose-like" structures occurring alone and simultaneous nose-like structures (up to three). These ion structures are named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. They constitute the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. The HOPE mass spectrometer onboard the Van Allen Probes measures energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet, where these ion structures are observed. We present a statistical study of nose-like structures, using 2-years measurements from the HOPE instrument. The results provide important details about the spatial distribution (dependence on geocentric distance), spectral features of the structures (differences among species), and geomagnetic conditions under which these structures occur.

  3. Direct nano-patterning of graphene with helium ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Naitou, Y., E-mail: yu-naitou@aist.go.jp [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562 (Japan); Iijima, T.; Ogawa, S. [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569 (Japan)

    2015-01-19

    Helium ion microscopy (HIM) was used for direct nano-patterning of single-layer graphene (SLG) on SiO{sub 2}/Si substrates. This technique involves irradiation of the sample with accelerated helium ions (He{sup +}). Doses of 2.0 × 10{sup 16 }He{sup + }cm{sup −2} from a 30 kV beam induced a metal-insulator transition in the SLG. The resolution of HIM patterning on SLG was investigated by fabricating nanoribbons and nanostructures. Analysis of scanning capacitance microscopy measurements revealed that the spatial resolution of HIM patterning depended on the dosage of He{sup +} in a non-monotonic fashion. Increasing the dose from 2.0 × 10{sup 16} to 5.0 × 10{sup 16 }He{sup + }cm{sup −2} improved the spatial resolution to several tens of nanometers. However, doses greater than 1.0 × 10{sup 17 }He{sup + }cm{sup −2} degraded the patterning characteristics. Direct patterning using HIM is a versatile approach to graphene fabrication and can be applied to graphene-based devices.

  4. Absolute charge-changing cross sections for fast helium ions-C sub 6 sub 0 collisions

    CERN Document Server

    Nose, K; Shiraishi, K; Keizaki, T; Itoh, A

    2003-01-01

    Absolute charge-changing cross sections for fast helium ions passing through a C sub 6 sub 0 gas target have been measured. The measurements were carried out for incident projectile energies at 1.0MeV and 1.5MeV. The measured cross sections are compared with calculated values from Bohr-Lindhard model and Bohr model. In addition, we have obtained equilibrium charge state fractions and average equilibrium charge of helium ions passing through C sub 6 sub 0 , by using the measured cross sections.

  5. Electron capture by fast protons from helium-like ions

    International Nuclear Information System (INIS)

    Samanta, R.; Purkait, M.

    2011-01-01

    Four-body formalism of boundary corrected continuum intermediate state (BCCIS-4B) approximation have been applied to calculate the single-electron capture cross sections by fast protons through some helium-like ions in a large energy range from 30-1000 keV. In this model, distortion has been taken into account in the entrance channel. In the final channel, the passive electron plays the role of screening of the target ion. However, continuum states of the projectile and the electron in the field of the residual target ion are included. The comparison of the results is made with those of other theoretical investigations and experimental findings. The present calculated results are found to be in good agreement with the available experimental findings. (authors)

  6. New views of the Toxoplasma gondii parasitophorous vacuole as revealed by Helium Ion Microscopy (HIM).

    Science.gov (United States)

    de Souza, Wanderley; Attias, Marcia

    2015-07-01

    The Helium Ion Microscope (HIM) is a new technology that uses a highly focused helium ion beam to scan and interact with the sample, which is not coated. The images have resolution and depth of field superior to field emission scanning electron microscopes. In this paper, we used HIM to study LLC-MK2 cells infected with Toxoplasma gondii. These samples were chemically fixed and, after critical point drying, were scraped with adhesive tape to expose the inner structure of the cell and parasitophorous vacuoles. We confirmed some of the previous findings made by field emission-scanning electron microscopy and showed that the surface of the parasite is rich in structures suggestive of secretion, that the nanotubules of the intravacuolar network (IVN) are not always straight, and that bifurcations are less frequent than previously thought. Fusion of the tubules with the parasite membrane or the parasitophorous vacuole membrane (PVM) was also infrequent. Tiny adhesive links were observed for the first time connecting the IVN tubules. The PVM showed openings of various sizes that even allowed the observation of endoplasmic reticulum membranes in the cytoplasm of the host cell. These findings are discussed in relation to current knowledge on the cell biology of T. gondii. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Radiation blistering in Inconel-625 due to 100 KeV helium ion irradiation

    International Nuclear Information System (INIS)

    Whitton, J.L.; Rao, A.S.; Kaminsky, M.

    1988-01-01

    The objective of this study was to determine whether the change of angle of incidence of an ion beam impinging on surface blisters during their growth phase (before exfoliation) could influence the blister skin thickness and the blister crater depth. Polished, polycrystalline Inconel-625 samples were irradiated at room temperature and at normal incidence to the major sample surface with 100 keV helium ions to a total dose of 6.24x10 18 ions/cm 2 . The results revealed that many exfoliated blisters leave craters which have two or three concentric pits. The blister skin thickness near the center of the blister was found to agree well with the calculated projected range of 100 keV He ions in nickel. However, the blister skin thickness of some exfoliated blisters along the edge of the fracture surface showed different thicknesses. A model is proposed to explain the observed blister crater/blister fracture features in terms of a change of angle of incidence of the incident ions to the surface during the growth phase of surface blisters. (orig.)

  8. MESSENGER Observations of the Spatial Distribution of Planetary Ions Near Mercury

    Science.gov (United States)

    Zurbuchen, Thomas H.; Raines, Jim M.; Slavin, James A.; Gershman, Daniel J.; Gilbert, Jason A.; Gloeckler, George; Anderson, Brian J.; Baker, Daniel N.; Korth, Haje; Krimigis, Stamatios M.; hide

    2011-01-01

    Global measurements by MESSENGER of the fluxes of heavy ions at Mercury, particularly sodium (Na(+)) and oxygen (O(+)), exhibit distinct maxima in the northern magnetic-cusp region, indicating that polar regions are important sources of Mercury's ionized exosphere, presumably through solar-wind sputtering near the poles. The observed fluxes of helium (He(+)) are more evenly distributed, indicating a more uniform source such as that expected from evaporation from a helium-saturated surface. In some regions near Mercury, especially the nightside equatorial region, the Na(+) pressure can be a substantial fraction of the proton pressure.

  9. High resolution helium ion scanning microscopy of the rat kidney.

    Directory of Open Access Journals (Sweden)

    William L Rice

    Full Text Available Helium ion scanning microscopy is a novel imaging technology with the potential to provide sub-nanometer resolution images of uncoated biological tissues. So far, however, it has been used mainly in materials science applications. Here, we took advantage of helium ion microscopy to explore the epithelium of the rat kidney with unsurpassed image quality and detail. In addition, we evaluated different tissue preparation methods for their ability to preserve tissue architecture. We found that high contrast, high resolution imaging of the renal tubule surface is possible with a relatively simple processing procedure that consists of transcardial perfusion with aldehyde fixatives, vibratome tissue sectioning, tissue dehydration with graded methanol solutions and careful critical point drying. Coupled with the helium ion system, fine details such as membrane texture and membranous nanoprojections on the glomerular podocytes were visualized, and pores within the filtration slit diaphragm could be seen in much greater detail than in previous scanning EM studies. In the collecting duct, the extensive and striking apical microplicae of the intercalated cells were imaged without the shrunken or distorted appearance that is typical with conventional sample processing and scanning electron microscopy. Membrane depressions visible on principal cells suggest possible endo- or exocytotic events, and central cilia on these cells were imaged with remarkable preservation and clarity. We also demonstrate the use of colloidal gold probes for highlighting specific cell-surface proteins and find that 15 nm gold labels are practical and easily distinguishable, indicating that external labels of various sizes can be used to detect multiple targets in the same tissue. We conclude that this technology represents a technical breakthrough in imaging the topographical ultrastructure of animal tissues. Its use in future studies should allow the study of fine cellular details

  10. Observations of a fcc helium gas-bubble superlattice in copper, nickel, and stainless steel

    International Nuclear Information System (INIS)

    Johnson, P.B.; Mazey, D.J.

    1980-01-01

    Transmission electron microscopy is used to investigate the spatial arrangement of the small gas bubbles produced in several fcc metals by 30 keV helium ion irradiation to high dose at 300 K. In what is a new result for this important class of metals it is found that the helium gas bubbles lie on a superlattice having an fcc structure with principal axes aligned with those of the metal matrix. The bubble lattice constant asub(i), is measured for a helium fluence just below the critical dose for radiation blistering of the metal surface (approximately 4 x 10 17 He/cm 2 ). Implantation rates are typically approximately 10 14 He ions cm -2 sec -1 . The values of asub(i) obtained for copper, nickel and stainless steel are (7.6 +- 0.3)nm, (6.6 +- 0.5)nm and (6.4 +- 0.5)nm respectively. Above the critical dose the bubble lattice is seen to survive in some blister caps as well as in the region between blisters. Bubble alignment is also observed in the case of hydrogen bubbles produced in copper by low energy proton irradiation to high fluence at 300 K. The presentation of this data was accompanied by a cine film illustrating the behaviour of the gas bubble lattice in copper during post-irradiation annealing in the electron microscope. A summary of the film is given in the appendix. (author)

  11. Influence of ion implanted helium on deuterium trapping in Kh18N10T stainless steel

    International Nuclear Information System (INIS)

    Tolstolutskaya, G.D.; Ruzhitskij, V.V.; Kopanets, I.E.

    2004-01-01

    The results are presented on evolution of distribution profiles and helium and deuterium thermal desorption ion implanted in steel 18Cr10NiTi. Accumulation, trapping, retention and microstructure evolution are studied; effect helium and hydrogen simultaneous implantation on these processes is also studied

  12. Comparative effects of 60Co γ-rays and neon and helium ions on cycle duration and division probability of EMT 6 cells. A time-lapse cinematography study

    International Nuclear Information System (INIS)

    Collyn-d'Hooghe, M.; Hemon, D.; Gilet, R.

    1981-01-01

    Exponentially growing cultures of EMT 6 cells were irradiated in vitro with neon ions, helium ions or 60 Co γ-rays. Time-lapse cinematography allowed the determination, for individual cells, of cycle duration, success of the mitotic division and the age of the cell at the moment of irradiation. Irradiation induced a significant mitotic delay increasing proportionally with the delivered dose. Using mitotic delay as an endpoint, the r.b.e. for neon ions with respect to 60 Co γ-rays was 3.3 +- 0.2 while for helium ions it was 1.2 +- 0.1. Mitotic delay was greatest in those cells that had progressed furthest in their cycle at the time of irradiation. No significant mitotic delay was observed in the post-irradiation generation. Division probability was significantly reduced by irradiation both in the irradiated and in the post-irradiated generation. The reduction in division probability obtained with 3 Gy of neon ions was similar to that obtained after irradiation with 6 Gy of helium ions or 60 Co γ-rays. (author)

  13. Comparative effects of 60Co gamma-rays and neon and helium ions on cycle duration and division probability of EMT 6 cells. A time-lapse cinematography study.

    Science.gov (United States)

    Collyn-d'Hooghe, M; Hemon, D; Gilet, R; Curtis, S B; Valleron, A J; Malaise, E P

    1981-03-01

    Exponentially growing cultures of EMT 6 cells were irradiated in vitro with neon ions, helium ions or 60Co gamma-rays. Time-lapse cinematography allowed the determination, for individual cells, of cycle duration, success of the mitotic division and the age of the cell at the moment of irradiation. Irradiation induced a significant mitotic delay increasing proportionally with the delivered dose. Using mitotic delay as an endpoint, the r.b.e. for neon ions with respect to 60Co gamma-rays was 3.3 +/- 0.2 while for helium ions it was 1.2 +/- 0.1. Mitotic delay was greatest in those cells that had progressed furthest in their cycle at the time of irradiation. No significant mitotic delay was observed in the post-irradiation generation. Division probability was significantly reduced by irradiation both in the irradiated and in the post-irradiated generation. The reduction in division probability obtained with 3 Gy of neon ions was similar to that obtained after irradiation with 6 Gy of helium ions or 60Co gamma-rays.

  14. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    Directory of Open Access Journals (Sweden)

    S. S. Bulanov

    2015-06-01

    Full Text Available The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He^{3} ions, having almost the same penetration depth as He^{4} with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.

  15. Recombination of positive helium ions in gaseous helium

    International Nuclear Information System (INIS)

    Shyu, J.S.

    1988-01-01

    The Wigner-Keck Monte Carlo trajectory method and the resonance complex theory are employed to calculate the rate coefficient k for H e + ions recombining in gaseous helium in the temperature range 80 2 + is obtained from a Morse potential and a long range ion-induced dipole interaction term. The three body He 3 + interaction is represented by an approximate expression which, for practical purpose, depends on the same parameters that determine the two body interaction. Russell had employed the Wigner-Keck Monte Carlo trajectory method to the same reaction. Unlike his calculation, in which the final quasibound states are treated as continuous, we apply the JWKB approximation to quantize those quasibound states. Both the values of k, calculated from two different quasibound state treatments, are found to be very close and give good agreement with experimental results obtained by Biondi, although they are still 10% to 20% lower than the experimental results. The resonance complex theory, developed by Roberts et al, is then employed to investigated de-excitation from the highest quasibound state, which can be populated by inward tunneling through the rotational (centrifugal) barrier. It is found that this strongly supports a suggestion proposed by Russell. He had suggested that the remaining difference between the Wigner-Keck method and experiment might be largely due to the formation of highly excited quasibound states. The statistical errors of the rate constants, which is the sun of results obtained from both methods, are kept less then 5% by running 2500 trajectories in the first method and 500 in the second

  16. Effect of helium on swelling and microstructural evolution in ion-irradiated V-15Cr-5Ti alloy

    International Nuclear Information System (INIS)

    Loomis, B.A.; Kestel, B.J.; Gerber, S.B.; Ayrault, G.

    1986-03-01

    An investigation was made on the effects of implanted helium on the swelling and microstructural evolution that results from energetic single- and dual-ion irradiation of the V-15Cr-5Ti alloy. Single-ion irradiations were utilized for a simulated production of the irradiation damage that might be expected from neutron irradiation of the alloy in a reactor with a fast neutron energy spectrum (E > 0.1 MeV). Dual-ion irradiations were utilized for a simulated production of the simultaneous creation of helium atoms and irradiation damage in the alloy in the MFR environment. Experimental results are also presented on the radiation-induced segregation of the constituent atoms in the single- and dual-ion irradiated alloy

  17. A study of the effect of helium concentration and displacement damage on the microstructure of helium ion irradiated tungsten

    Science.gov (United States)

    Harrison, R. W.; Greaves, G.; Hinks, J. A.; Donnelly, S. E.

    2017-11-01

    Transmission electron microscopy (TEM) with in-situ He ion irradiation has been used to examine the damage microstructure of W when varying the helium concentration to displacement damage ratio, irradiation temperature and total dose. Irradiations employed 15, 60 or 85 keV He ions, at temperatures between 500 and 1000 °C up to doses of ∼3.0 DPA. Once nucleated and grown to an observable size in the TEM, bubble diameter as a function of irradiation dose did not measurably increase at irradiation temperatures of 500 °C between 1.0 and 3.0 DPA; this is attributed to the low mobility of vacancies and He/vacancy complexes at these temperatures. Bubble diameter increased slightly for irradiation temperatures of 750 °C and rapidly increased when irradiated at 1000 °C. Dislocation loops were observed at irradiation temperatures of 500 and 750 °C and no loops were observed at 1000 °C. Burgers vectors of the dislocations were determined to be b = ±½ type only and both vacancy and interstitial loops were observed. The proportion of interstitial loops increased with He-appm/DPA ratio and this is attributed to the concomitant increase in bubble areal density, which reduces the vacancy flux for both the growth of vacancy-type loops and the annihilation of interstitial clusters.

  18. Precision, high dose radiotherapy: helium ion treatment of uveal melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, W.M.; Char, D.H.; Quivey, J.M.; Castro, J.R.; Chen, G.T.Y.; Collier, J.M.; Cartigny, A.; Blakely, E.A.; Lyman, J.T.; Zink, S.R.

    1985-02-01

    The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons.

  19. Precision, high dose radiotherapy: helium ion treatment of uveal melanoma

    International Nuclear Information System (INIS)

    Saunders, W.M.; Char, D.H.; Quivey, J.M.

    1985-01-01

    The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons

  20. Observation of the Antimatter Nuclei in Relativistic Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Yoo, I.-K.

    2013-01-01

    Recently antimatter hyper-triton nuclei ( 3 Λ¯ H ¯) and antimatter helium nuclei ( 4 2 He ¯ ) are discovered with the Solenoidal Tracker At RHIC detector in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) (STAR Collaboration in Science 328(5974):58-62, 2010; STAR Collaboration in Nature 473:353-356, 2011). In this presentation, discoveries of antimatter particle are historically scanned and the recent observations at RHIC are reported in details as well as potential possibilities of discovery of antimatter nuclei at ALICE. (author)

  1. Complementary study of the internal porous silicon layers formed under high-dose implantation of helium ions

    Energy Technology Data Exchange (ETDEWEB)

    Lomov, A. A., E-mail: lomov@ftian.ru; Myakon’kikh, A. V. [Russian Academy of Sciences, Institute of Physics and Technology (Russian Federation); Chesnokov, Yu. M. [National Research Centre “Kurchatov Institute” (Russian Federation); Shemukhin, A. A.; Oreshko, A. P. [Moscow State University (Russian Federation)

    2017-03-15

    The surface layers of Si(001) substrates subjected to plasma-immersion implantation of helium ions with an energy of 2–5 keV and a dose of 5 × 10{sup 17} cm{sup –2} have been investigated using high-resolution X-ray reflectivity, Rutherford backscattering, and transmission electron microscopy. The electron density depth profile in the surface layer formed by helium ions is obtained, and its elemental and phase compositions are determined. This layer is found to have a complex structure and consist of an upper amorphous sublayer and a layer with a porosity of 30–35% beneath. It is shown that the porous layer has the sharpest boundaries at a lower energy of implantable ions.

  2. submitter Data-driven RBE parameterization for helium ion beams

    CERN Document Server

    Mairani, A; Dokic, I; Valle, S M; Tessonnier, T; Galm, R; Ciocca, M; Parodi, K; Ferrari, A; Jäkel, O; Haberer, T; Pedroni, P; Böhlen, T T

    2016-01-01

    Helium ion beams are expected to be available again in the near future for clinical use. A suitable formalism to obtain relative biological effectiveness (RBE) values for treatment planning (TP) studies is needed. In this work we developed a data-driven RBE parameterization based on published in vitro experimental values. The RBE parameterization has been developed within the framework of the linear-quadratic (LQ) model as a function of the helium linear energy transfer (LET), dose and the tissue specific parameter ${{(\\alpha /\\beta )}_{\\text{ph}}}$ of the LQ model for the reference radiation. Analytic expressions are provided, derived from the collected database, describing the $\\text{RB}{{\\text{E}}_{\\alpha}}={{\\alpha}_{\\text{He}}}/{{\\alpha}_{\\text{ph}}}$ and ${{\\text{R}}_{\\beta}}={{\\beta}_{\\text{He}}}/{{\\beta}_{\\text{ph}}}$ ratios as a function of LET. Calculated RBE values at 2 Gy photon dose and at 10% survival ($\\text{RB}{{\\text{E}}_{10}}$ ) are compared with the experimental ones. Pearson's correlati...

  3. Reflection of slow hydrogen and helium ions from solid surfaces

    International Nuclear Information System (INIS)

    Akkerman, A.F.

    1978-01-01

    Some characteristics of the proton and helium ion flux (E < 10 keV), reflected from solid surfaces are presented. A 'condensed walk' scheme, previously used for electron transport calculations, was adapted. Results obtained either by the scheme or by a more detailed 'consequent' scheme agreed closely. The presented data permit calculations of the mean energy of reflected particles and other values for various energy and angular distributions of incident particles. (author)

  4. The repetitive flaking of Inconel 625 by 100 keV helium bombardment

    International Nuclear Information System (INIS)

    Whitton, J.L.; Chen, H.M.; Littmark, U.

    1981-01-01

    Repetitive flaking of Inconel 625 occurs with ion bombardment doses of > than 10 18 100 keV helium ions cm -2 , with up to 39 exfoliations being observed after bombardment with 3 x 10 19 ions cm -2 . The thickness of the flakes, measured by scanning electron microscopy, is some 30% greater than when measured by Rutherford backscattering (RBS) of 1.8 MeV helium ions. These RBS measurements compare well with the thickness of the remaining layers in the resultant craters and to the most probable range of the 100 keV helium. The area of the flakes is dictated by the grain boundaries, and when one flake is ejected, the adjacent grains are prevented from doing so since there now exists an escape route for the injected helium. A strong dose rate dependence is observed; decreasing the beam current from 640 μA cm -2 to 64 μA cm -2 results in a factor 20 fewer flakes being exfoliated (for the same total dose of 3 x 10 19 ions cm -2 ). Successive flakes decrease in area, suggesting that eventually a cratered, but stable, surface will result with the only erosion being by the much less effective mechanism of sputtering. (orig.)

  5. ERDA, RBS, TEM and SEM characterization of microstructural evolution in helium-implanted Hastelloy N alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jie [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049 (China); Bao, Liangman [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Huang, Hefei, E-mail: huanghefei@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Yan, E-mail: liyan@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Lei, Qiantao [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Deng, Qi [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Liu, Zhe; Yang, Guo [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049 (China); Shi, Liqun [Institute of Modern Physics, Fudan University, Shanghai 200433 (China)

    2017-05-15

    Hastelloy N alloy was implanted with 30 keV, 5 × 10{sup 16} ions/cm{sup 2} helium ions at room temperature, and subsequent annealed at 600 °C for 1 h and further annealed at 850 °C for 5 h in vacuum. Using elastic recoil detection analysis (ERDA) and transmission electron microscopy (TEM), the depth profiles of helium concentration and helium bubbles in helium-implanted Hastelloy N alloy were investigated, respectively. The diffusion of helium and molybdenum elements to surface occurred during the vacuum annealing at 850 °C (5 h). It was also observed that bubbles in molybdenum-enriched region were much larger in size than those in deeper region. In addition, it is worth noting that plenty of nano-holes can be observed on the surface of helium-implanted sample after high temperature annealing by scanning electron microscope (SEM). This observation provides the evidence for the occurrence of helium release, which can be also inferred from the results of ERDA and TEM analysis.

  6. Microstructural evolution in dual-ion irradiated 316SS under various helium injection schedules

    International Nuclear Information System (INIS)

    Kohyama, A.; Igata, N.; Ayrault, G.; Tokyo Univ.

    1984-01-01

    Dual-ion irradiated 316 SS samples with various helium injection schedules were studied. The intent of using different schedules was to either approximate the MFR condition, mimic the mixed spectrum reactor condition or mimic the fast reactor condition. The objective of this investigation is to study the influence of these different helium injection schedules on the microstructural development under irradiation. The materials for this study was 316 SS (MFE heat) with three thermomechanical pre-irradiation treatments: solution annealed, solution annealed and aged and 20% cold worked. The cavity nucleation and growth stages were investigated using high resolution TEM. (orig.)

  7. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  8. Parametric analysis of the soft electron emission in ion-helium collisions

    Energy Technology Data Exchange (ETDEWEB)

    Cravero, W.R. (Centro Atomico Bariloche and CONICET, S.C. de Bariloche (Argentina)); Garibotti, C.R. (Centro Atomico Bariloche and CONICET, S.C. de Bariloche (Argentina)); Gasaneo, G. (Centro Atomico Bariloche and CONICET, S.C. de Bariloche (Argentina))

    1994-03-01

    We studied the doubly differential cross section (DDCS) for ion-helium ionization, in the region of near zero emission velocity. We expanded the DDCS in powers of the electron emission velocity, with angle-dependent weight coefficients, which are determined from available experimental data and calculated using the CDW-EIS theory. We also compared this expansion with a previously used Legendre polynomials expansion of the DDCS. (orig.)

  9. Effect of helium on void formation in nickel

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1977-01-01

    This study examines the influence of helium on void formation in self-ion irradiated nickel. Helium was injected either simultaneously with, or prior to, the self-ion bombardment. The void microstructure was characterized as a function of helium deposition rate and the total heavy-ion dose. In particular, at 575 0 C and 5 X 10 -3 displacements per atom per second the void density is found to be proportional to the helium deposition rate. The dose dependence of swelling is initially dominated by helium driven nucleation. The void density rapidly saturates after which swelling continues with increasing dose only from void growth. It is concluded that helium promotes void nucleation in nickel with either helium implantation technique, pre-injection or simultaneous injection. Qualitative differences, however, are recognized. (Auth.)

  10. Flaking and wave-like structure on metallic glasses induced by MeV-energy helium ions

    International Nuclear Information System (INIS)

    Paszti, F.; Fried, M.; Pogany, L.; Manuaba, A.; Mezey, G.; Kotai, E.; Lovas, I.; Lohner, T.; Pocs, L.

    1982-11-01

    Ten samples prepared from different kinds of metallic glasses (different in composition and manufacturing technology) were bombarded by 2 or 1 MeV helium ions with high fluence under different experimental circumstances. During bombardment the temperature increase of the samples caused by irradiation heating was estimated and kept below the temperature needed for the investigated metallic glass to be crystallized. In all cases the surface deformation processes were dominated by flaking i.e. nearly from the whole implanted area a layer suddenly flaked off with a uniform thickness of the applied ion projected range. The surface left behind the flaked layer can be characterized by a wave-like structure i.e. by a regular series of asymmetrical elevations. These elevations, which did not appear on the annealed samples, are caused by a mechanism developed during the bombardment of the amorphous structure (of metallic glasses) by high energy helium ions. Details of this unusual phenomenon are discussed. (author)

  11. Helium cosmic ray flux measurements at Mars

    International Nuclear Information System (INIS)

    Lee, Kerry; Pinsky, Lawrence; Andersen, Vic; Zeitlin, Cary; Cleghorn, Tim; Cucinotta, Frank; Saganti, Premkumar; Atwell, William; Turner, Ron

    2006-01-01

    The helium energy spectrum in Martian orbit has been observed by the MARIE charged particle spectrometer aboard the 2001 Mars Odyssey spacecraft. The orbital data were taken from March 13, 2002 to October 28, 2003, at which time a very intense Solar Particle Event caused a loss of communication between the instrument and the spacecraft. The silicon detector stack in MARIE is optimized for the detection of protons and helium in the energy range below 100MeV/n, which typically includes almost all of the flux during SPEs. This also makes MARIE an efficient detector for GCR helium in the energy range of 50-150MeV/n. We will present the first fully normalized flux results from MARIE, using helium ions in this energy range

  12. Helium cosmic ray flux measurements at Mars

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kerry [University of Houston, 4800 Calhoun Rd. Houston, TX 77204 (United States)]. E-mail: ktlee@ems.jsc.nasa.gov; Pinsky, Lawrence [University of Houston, 4800 Calhoun Rd. Houston, TX 77204 (United States); Andersen, Vic [University of Houston, 4800 Calhoun Rd. Houston, TX 77204 (United States); Zeitlin, Cary [National Space Biomedical Research Institute, Baylor College of Medicine, Houston, TX (United States); Cleghorn, Tim [NASA Johnson Space Center, 2101 NASA Road 1, Houston, TX 77058 (United States); Cucinotta, Frank [NASA Johnson Space Center, 2101 NASA Road 1, Houston, TX 77058 (United States); Saganti, Premkumar [Prairie View A and M University, P.O. Box 519, Prairie View, TX 77446-0519 (United States); Atwell, William [The Boeing Company, Houston, TX (United States); Turner, Ron [Advancing National Strategies and Enabling Results (ANSER), Arlington, Virginia (United States)

    2006-10-15

    The helium energy spectrum in Martian orbit has been observed by the MARIE charged particle spectrometer aboard the 2001 Mars Odyssey spacecraft. The orbital data were taken from March 13, 2002 to October 28, 2003, at which time a very intense Solar Particle Event caused a loss of communication between the instrument and the spacecraft. The silicon detector stack in MARIE is optimized for the detection of protons and helium in the energy range below 100MeV/n, which typically includes almost all of the flux during SPEs. This also makes MARIE an efficient detector for GCR helium in the energy range of 50-150MeV/n. We will present the first fully normalized flux results from MARIE, using helium ions in this energy range.

  13. Spectroscopy of helium hydride and triatomic hydrogen molecules

    International Nuclear Information System (INIS)

    Ketterle, W.

    1986-07-01

    Helium hydride and triatomic hydrogen has been produced by charge exchange between fast mass selected beams of molecular ions and alkali vapor. Using this method, the first discrete spectra of helium hydride were obtained. Fine electronic transitions with resolved rotational structure were observed in the visible and near infrared. Four isotopic mixtures were studied. Furthermore the first lifetime measurement of triatomic hydrogen states were performed and compared to theoretical predictions. (orig.)

  14. On depth profiling of hydrogen and helium isotopes and its application to ion-implantation studies

    International Nuclear Information System (INIS)

    Boettiger, J.

    1979-01-01

    The thesis is divided into two parts, the first being a general review of the experimental methods for depth profiling of light isotopes, where ion beams are used. In the second part, studies of ion implantation of hydrogen and helium isotopes, applying the techniques discussed in the first part, are described. The paper summarizes recent experimental results and discusses recent developments. (Auth.)

  15. Characterization of high flux magnetized helium plasma in SCU-PSI linear device

    Science.gov (United States)

    Xiaochun, MA; Xiaogang, CAO; Lei, HAN; Zhiyan, ZHANG; Jianjun, WEI; Fujun, GOU

    2018-02-01

    A high-flux linear plasma device in Sichuan University plasma-surface interaction (SCU-PSI) based on a cascaded arc source has been established to simulate the interactions between helium and hydrogen plasma with the plasma-facing components in fusion reactors. In this paper, the helium plasma has been characterized by a double-pin Langmuir probe. The results show that the stable helium plasma beam with a diameter of 26 mm was constrained very well at a magnetic field strength of 0.3 T. The core density and ion flux of helium plasma have a strong dependence on the applied current, magnetic field strength and gas flow rate. It could reach an electron density of 1.2 × 1019 m-3 and helium ion flux of 3.2 × 1022 m-2 s-1, with a gas flow rate of 4 standard liter per minute, magnetic field strength of 0.2 T and input power of 11 kW. With the addition of -80 V applied to the target to increase the helium ion energy and the exposure time of 2 h, the flat top temperature reached about 530 °C. The different sizes of nanostructured fuzz on irradiated tungsten and molybdenum samples surfaces under the bombardment of helium ions were observed by scanning electron microscopy. These results measured in the SCU-PSI linear device provide a reference for International Thermonuclear Experimental Reactor related PSI research.

  16. Double ionization of atomic helium under heavy ion impact

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Uskov, D.B.

    1995-01-01

    Cross sections for double ionization of helium by multiply-charged ion impact and the corresponding ratios of double-to-single ionization are presented as a sum of the contributions given by the one-step (shake-off) and two-step (TS) processes. An analytic form is found for the continuum wavefunction which is valid in both limiting cases of low and high velocities of the relative motion. Using this wavefunction, the TS cross sections are calculated within the independent-event model. The results for the ratios of double-to-single ionization show satisfactory agreement with the experimental data available. (author)

  17. Modeling Secondary Neutral Helium in the Heliosphere

    International Nuclear Information System (INIS)

    Müller, Hans-Reinhard; Möbius, Eberhard; Wood, Brian E.

    2016-01-01

    An accurate, analytic heliospheric neutral test-particle code for helium atoms from the interstellar medium (ISM) is coupled to global heliospheric models dominated by hydrogen and protons from the solar wind and the ISM. This coupling enables the forward-calculation of secondary helium neutrals from first principles. Secondaries are produced predominantly in the outer heliosheath, upwind of the heliopause, by charge exchange of helium ions with neutral atoms. The forward model integrates the secondary production terms along neutral trajectories and calculates the combined neutral helium phase space density in the innermost heliosphere where it can be related to in-situ observations. The phase space density of the secondary component is lower than that of primary neutral helium, but its presence can change the analysis of primaries and the ISM, and can yield valuable insight into the characteristics of the plasma in the outer heliosheath. (paper)

  18. Charged condensate and helium dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Gabadadze, Gregory; Rosen, Rachel A, E-mail: gg32@nyu.edu, E-mail: rar339@nyu.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)

    2008-10-15

    White dwarf stars composed of carbon, oxygen and heavier elements are expected to crystallize as they cool down below certain temperatures. Yet, simple arguments suggest that the helium white dwarf cores may not solidify, mostly because of zero-point oscillations of the helium ions that would dissolve the crystalline structure. We argue that the interior of the helium dwarfs may instead form a macroscopic quantum state in which the charged helium-4 nuclei are in a Bose-Einstein condensate, while the relativistic electrons form a neutralizing degenerate Fermi liquid. We discuss the electric charge screening, and the spectrum of this substance, showing that the bosonic long-wavelength fluctuations exhibit a mass gap. Hence, there is a suppression at low temperatures of the boson contribution to the specific heat-the latter being dominated by the specific heat of the electrons near the Fermi surface. This state of matter may have observational signatures.

  19. Temporal Evolution of Ion Spectral Structures During a Geomagnetic Storm: Observations and Modeling

    Science.gov (United States)

    Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.

    2018-01-01

    Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1 to 50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convection electric field. Prior to the beginning of the storm, the plasma sheet inner edge exhibits narrow nose spectral structures that vary little in energy across L values. Ion access to the inner magnetosphere during these times is limited to the nose energy bands. As convection is enhanced and large amounts of plasma are injected from the plasma sheet during the main phase of the storm, ion access occurs at a wide energy range, as no nose structures are observed. As the magnetosphere recovers from the storm, single noses and then multiple noses are observed once again. We use a model of ion drift and losses due to charge exchange to simulate the ion spectra and gain insight into the main observed features.

  20. First observation of laser-induced resonant annihilation in metastable antiprotonic helium atoms

    International Nuclear Information System (INIS)

    Morita, N.; Kumakura, M.; Yamazaki, T.

    1993-11-01

    We have observed the first laser-induced resonant transitions in antiprotonic helium atoms. These occur between metastable states and Auger dominated short lived states, and show that the anomalous longevity of antiprotons previously observed in helium media results from the formation of high-n high-l atomic states of p-barHe + . The observed transition with vacuum wavelength 597.259 ± 0.002 nm and lower-state lifetime 15 ± 1 ns is tentatively assigned to (n,l) = (39,35) → (38,34). (author)

  1. Exfoliation on stainless steel and inconel produced by 0.8-4 MeV helium ion bombardment

    International Nuclear Information System (INIS)

    Paszti, F.; Mezey, G.; Pogany, L.; Fried, M.; Manuaba, A.; Kotai, E.; Lohner, T.; Pocs, L.

    1982-11-01

    Trying to outline the energy dependence of surface deformations such as exfoliation and flaking on candidate CTR first-wall materials, stainless steel and two types of inconels were bombarded by 0.8, 1 and 4 MeV helium ions. All the bombarded spots could be characterized by by large exfoliations covering almost the total implanted area. No spontaneous rupture was observed except on one type of inconel where flaking took place right after reaching the critical dose. After mechanical opening of the formations, similar inner morphology was found as in our previous studies on gold. (author)

  2. Magnetospheric Multiscale (MMS) Observations of Energetic Ion Response to Magnetotail Dipolarization Events

    Science.gov (United States)

    Cohen, I. J.; Mauk, B.; Anderson, B. J.; Sitnov, M. I.; Motoba, T.; Ohtani, S.; Gkioulidou, M.; Fuselier, S. A.; Giles, B. L.; Strangeway, R. J.; Torbert, R. B.; Burch, J. L.

    2017-12-01

    Observations from the Energetic Ion Spectrometer (EIS) instruments aboard MMS have shown angular (pitch, elevation, azimuthal) asymmetries of energetic (>10s of keV) ions corresponding to dipolarization events in the near-Earth and distant magnetotail. In particular, EIS distinguishes the species composition of these ions (protons, helium, oxygen) and reveals apparent species-based differences in their response. This study presents analysis of the dynamic injection and mass-dependent response of energetic ions that likely result from the kinetic response of the ions to the time-varying electric and magnetic fields associated with injection process. Analysis is focused on discriminating between truly kinetic responses to the dynamics and the features that arise from large gyro-radii particles in the vicinity of strong spatial gradients. The study will focus on EIS measurements and include supplementary data from the FIELDS, FPI, and HPCA instruments.

  3. Stereotactic helium-ion radiosurgery for the treatment of intracranial arteriovenous malformations

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Levy, R.P.; Frankel, K.A.; Phillips, M.H.; Lyman, J.T.; Chuang, F.Y.S.; Steinberg, G.K.; Marks, M.P.

    1989-12-01

    One of the more challenging problems of vascular neurosurgery is the management of surgically-inaccessible arteriovenous malformations (AVMs) of the brain. At Lawrence Berkeley Laboratory, we have developed the method of stereotactic heavy-charged-particle (helium-ion) Bragg peak radiosurgery for treatment of inoperable intracranial AVMs in over 300 patients since 1980 [Fabrikant et al. 1989, Fabrikant et al. 1985, Levy et al. 1989]. This report describes patient selection, treatment method, clinical and neuroradiologic results and complications encountered. 4 refs

  4. Helium mobility in advanced nuclear ceramics

    International Nuclear Information System (INIS)

    Agarwal, Shradha

    2014-01-01

    The main goal of this work is to improve our knowledge on the mechanisms able to drive the helium behaviour in transition metal carbides and nitrides submitted to thermal annealing or ion irradiation. TiC, TiN and ZrC polycrystals were implanted with 3 MeV 3 He ions at room temperature in the fluence range 2 * 10 15 et 6 * 10 16 cm -2 . Some of them have been pre-irradiated with self-ions (14 MeV Ti or Zr). Fully controlled thermal annealing tests were subsequently carried out in the temperature range 1000 - 1600 C for two hours. The evolution of the helium depth distribution in function of implantation dose, temperature and pre-irradiation dose was measured thanks to the deuteron-induced nuclear reaction 3 He(d, p 0 ) 4 He between 900 keV and 1.8 MeV. The microstructure of implanted and annealed samples was investigated by transmission electron microscopy on thin foils prepared using the FIB technique. Additional characterization tools, as X-ray diffraction and Raman microspectrometry, have been also applied in order to obtain complementary information. Among the most relevant results obtained, the following have to be outlined: - double-peak helium depth profile was measured on as implanted sample for the three compounds. The first peak is located near the end of range and includes the major part of helium, a second peak located close to the surface corresponds to the helium atoms trapped by the native vacancies; - the helium retention capacity in transition metal carbides and nitrides submitted to fully controlled thermal treatments varies according to ZrC 0.92 ≤ TiC 0.96 ≤ TiN 0.96 ; - whatever the investigated material, a self-ion-induced pre-damaging does not modify the initial helium profile extent. The influence of the post-implantation thermal treatment remains preponderant in any case; - the apparent diffusion coefficient of helium is in the range 4 * 10 -18 - 2 * 10 -17 m 2 s -1 in TiC0.96 and 3.5 * 10 -19 - 5.3 * 10 -18 m 2 s -1 in TiN 0.96 between

  5. Role of Helium-Hydrogen ratio on energetic interchange mode behaviour and its effect on ion temperature and micro-turbulence in LHD

    Science.gov (United States)

    Michael, C. A.; Tanaka, K.; Akiyama, T.; Ozaki, T.; Osakabe, M.; Sakakibara, S.; Yamaguchi, H.; Murakami, S.; Yokoyama, M.; Shoji, M.; Vyacheslavov, L. N.; LHD Experimental Group

    2018-04-01

    In the Large helical device, a change of energetic particle mode is observed as He concentration is varied in ion-ITB type experiments, having constant electron density and input heating power but with a clear increase of central ion temperature in He rich discharges. This activity consists of bursty, but damped energetic interchange modes (EICs, Du et al 2015 Phys. Rev. Lett. 114 155003), whose occurrence rate is dramatically lower in the He-rich discharges. Mechanisms are discussed for the changes in drive and damping of the modes with He concentration. These EIC bursts consist of marked changes in the radial electric field, which is derived from the phase velocity of turbulence measured with the 2D phase contrast imaging (PCI) system. Similar bursts are detected in edge fast ion diagnostics. Ion thermal transport by gyro-Bohm scaling is recognised as a contribution to the change in ion temperature, though fast ion losses by these EIC modes may also contribute to the ion temperature dependence on He concentration, most particularly controlling the height of an ‘edge-pedestal’ in the Ti profile. The steady-state level of fast ions is shown to be larger in helium rich discharges on the basis of a compact neutral particle analyser (CNPA), and the fast-ion component of the diamagnetic stored energy. These events also have an influence on turbulence and transport. The large velocity shear induced produced during these events transiently improves confinement and suppresses turbulence, and has a larger net effect when bursts are more frequent in hydrogen discharges. This exactly offsets the increased gyro-Bohm related turbulence drive in hydrogen which results in the same time-averaged turbulence level in hydrogen as in helium.

  6. Defects in TiN and HfN studied by helium thermal desorption spectrometry

    International Nuclear Information System (INIS)

    Hoondert, W.H.B.; Thijsse, B.J.; Beuckel, A. van den

    1994-01-01

    Point defects in sub-stoichiometric TiN 1-x and HfN 1-x were investigated by helium thermal desorption spectrometry (300-1800K) following He + ion implantation at energies up to 3000eV. It was found that the low energy spectra are dominated by helium dissociating from the structural vacancies on the nitrogen sublattice; the activation energy for dissociation is 2.2eV for TiN. Above a few hundred electron volts the ions begin to produce several other types of defects, from which helium dissociates with activation energies in the range 2.6-4.0eV. The identity of these defects is discussed. The results for the two nitrides were similar in many respects. The most significant difference observed is that in TiN low energy He + ions generate damage on the N sublattice of a type that is not observed for HfN. Activation energies for HfN are found to be consistently 0.7eV lower than for TiN. ((orig.))

  7. The adsorption of helium atoms on small cationic gold clusters.

    Science.gov (United States)

    Goulart, Marcelo; Gatchell, Michael; Kranabetter, Lorenz; Kuhn, Martin; Martini, Paul; Gitzl, Norbert; Rainer, Manuel; Postler, Johannes; Scheier, Paul; Ellis, Andrew M

    2018-04-04

    Adducts formed between small gold cluster cations and helium atoms are reported for the first time. These binary ions, Aun+Hem, were produced by electron ionization of helium nanodroplets doped with neutral gold clusters and were detected using mass spectrometry. For a given value of n, the distribution of ions as a function of the number of added helium atoms, m, has been recorded. Peaks with anomalously high intensities, corresponding to so-called magic number ions, are identified and interpreted in terms of the geometric structures of the underlying Aun+ ions. These features can be accounted for by planar structures for Aun+ ions with n ≤ 7, with the addition of helium having no significant effect on the structures of the underlying gold cluster ions. According to ion mobility studies and some theoretical predictions, a 3-D structure is expected for Au8+. However, the findings for Au8+ in this work are more consistent with a planar structure.

  8. Hydration of magnesia cubes: a helium ion microscopy study

    Directory of Open Access Journals (Sweden)

    Ruth Schwaiger

    2016-02-01

    Full Text Available Physisorbed water originating from exposure to the ambient can have a strong impact on the structure and chemistry of oxide nanomaterials. The effect can be particularly pronounced when these oxides are in physical contact with a solid substrate such as the ones used for immobilization to perform electron or ion microscopy imaging. We used helium ion microscopy (HIM and investigated morphological changes of vapor-phase-grown MgO cubes after vacuum annealing and pressing into foils of soft and high purity indium. The indium foils were either used as obtained or, for reference, subjected to vacuum drying. After four days of storage in the vacuum chamber of the microscope and at a base pressure of p −7 mbar, we observed on these cubic particles the attack of residual physisorbed water molecules from the indium substrate. As a result, thin magnesium hydroxide layers spontaneously grew, giving rise to characteristic volume expansion effects, which depended on the size of the particles. Rounding of the originally sharp cube edges leads to a significant loss of the morphological definition specific to the MgO cubes. Comparison of different regions within one sample before and after exposure to liquid water reveals different transformation processes, such as the formation of Mg(OH2 shells that act as diffusion barriers for MgO dissolution or the evolution of brucite nanosheets organized in characteristic flower-like microstructures. The findings underline the significant metastability of nanomaterials under both ambient and high-vacuum conditions and show the dramatic effect of ubiquitous water films during storage and characterization of oxide nanomaterials.

  9. The mobility of Li+ and K+ ions in helium and argon at 294 and 80 K and derived interaction potentials

    International Nuclear Information System (INIS)

    Cassidy, R.A.; Elford, M.T.

    1983-01-01

    The analysis of mobility data is a valuable technique for deriving ion-atom interaction potentials or testing at initio potentials particularly at relatively large internuclear separations. In order to obtain the most complete information on the long range part of the potential it is necessary to have mobility data at sufficiently low gas temperatures and small values of E/N that the mobility is determined only by the dipole polarization force. Although this condition can be reasonably well met at room temperature for gases of high polarizability, this is not the case for ions in helium and in particular for the most well studied case, that of Li + in helium. The prime purpose of the present measurements was to obtain low temperature data for Li + in helium in order to determine more accurately the attractive long range tail of the potential. The measurements were also extended to argon to demonstrate the effect of the polarizability on the derivation of potentials. The mobility measurements were made using a drift tube-mass spectrometer system employing the Bradbury-Nielsen time of flight technique. Measurements were performed at 294 K and 80 K. The 'three temperature' theory of Lin, Viehland and Mason was used to fit interaction potentials to the present data. Detailed comparisons are made here only for the case of Li + ions in helium. The new data for 80 K provide additional information on the potential at internuclear separations which cover the range to 5 A. (Authors)

  10. Determination of helium and oxygen abundances in gaseous nebulae

    International Nuclear Information System (INIS)

    Pronik, V.I.

    1975-01-01

    A new method of determining the abudance of helium and oxygen is proposed. It is based on the statement that functions of atomic distribution with states of ionization may be determined to the sufficient precision by the amount of atoms in two states of ionization. The abudance of helium atoms in nebulae is determined with most probability, since of three possible states of ionization two states with the overwhelming majority atoms may be directly observed. The amount of He++ ions is determined from He 2 recombination lines, and the amount of He+ ions is from He1 lines. The total abudance of He atoms can be found from the observed ratios of I(4686)/I(Hsub(β)) and I(4471)/I(Hsub(β)) at any degree of ionization. These ratios slightly depend on the electron temperature. For oxygen, unlike helium, the observed ratios depend on the electron temperature of gas, and at high densities they also depend on the density of electrons (it is necessary to take account of deactivation of the excited level by electron impacts). Constructed are curves of equal abundance He/H=const for determining He/H according to the ratios observed I(4686)/I(Hsub(β)) and I(4471)/I(Hsub(β)) and curves of equal abudance O/H=const for determining O/H according to the ratios observed I(3727)/I(Hsub(/b)) and I(Nsub(1)+Nsub(2))/I(Hsub(β)), corrected preliminarily for density and temperature

  11. Dual ion beam irradiation system for in situ observation with electron microscope

    International Nuclear Information System (INIS)

    Tsukamoto, Tetuo; Hojou, Kiiti; Furuno, Sigemi; Otsu, Hitosi; Izui, Kazuhiko.

    1993-01-01

    We have developed a new in situ observation system for dynamic processes under dual ion beam irradiation. The system consists of a modified 400 keV analytical electron microscope (JEOL, JEM-4000FX) and two 40 kV ion beam accelerators. This system allows evaluation of microscopic changes of structure and chemical bonding state of materials in the dynamic processes under two kinds of ion beam irradiations, that is required for the simulation test of the first wall of nuclear fusion reactors onto which He + , H + , and H 2 + ions are irradiated simultaneously. These two ion accelerators were equipped symmetrically both sides of the electron microscope and individually controlled. Each ion beam extracted from a duo-plasmatron ion gun is bent downward by an angle of 30deg with a mass-separating magnet, and introduced into specimen chamber of the electron microscope. Inside the specimen chamber the beam is deflected again by an angle of 30deg with an electrostatic prism so as to be incident on the specimen surface. Finally, two ion beams from both side are incident on the specimen surface at an angle of 60deg. The maximum ion current density of helium is more than 250μA/cm 2 at the specimen at an ion energy of 17 keV. Images of the electron microscope during dual ion beam irradiation are observed through a TV camera and recorded with a VTR. (author)

  12. 2D imaging of helium ion velocity in the DIII-D divertor

    Science.gov (United States)

    Samuell, C. M.; Porter, G. D.; Meyer, W. H.; Rognlien, T. D.; Allen, S. L.; Briesemeister, A.; Mclean, A. G.; Zeng, L.; Jaervinen, A. E.; Howard, J.

    2018-05-01

    Two-dimensional imaging of parallel ion velocities is compared to fluid modeling simulations to understand the role of ions in determining divertor conditions and benchmark the UEDGE fluid modeling code. Pure helium discharges are used so that spectroscopic He+ measurements represent the main-ion population at small electron temperatures. Electron temperatures and densities in the divertor match simulated values to within about 20%-30%, establishing the experiment/model match as being at least as good as those normally obtained in the more regularly simulated deuterium plasmas. He+ brightness (HeII) comparison indicates that the degree of detachment is captured well by UEDGE, principally due to the inclusion of E ×B drifts. Tomographically inverted Coherence Imaging Spectroscopy measurements are used to determine the He+ parallel velocities which display excellent agreement between the model and the experiment near the divertor target where He+ is predicted to be the main-ion species and where electron-dominated physics dictates the parallel momentum balance. Upstream near the X-point where He+ is a minority species and ion-dominated physics plays a more important role, there is an underestimation of the flow velocity magnitude by a factor of 2-3. These results indicate that more effort is required to be able to correctly predict ion momentum in these challenging regimes.

  13. Effects of sequential helium and hydrogen ion irradiation on the nucleation and evolution of bubbles in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Zhenyu; Zheng, Zhongcheng [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072 (China); Luo, Fengfeng [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072 (China); Institute of Applied Physics, Jiangxi Academy of Science, Nanchang, 330029 (China); Hu, Wenhui [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Zhang, Weiping [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072 (China); Ren, Yaoyao [Center for Electron Microscopy, Wuhan University, Wuhan, 430072 (China)

    2017-02-15

    Highlights: • The effect of H{sup +} irradiation on formation and evolution of helium bubbles is explored. • The growth of hydrogen bubbles under He{sup +} irradiation is observed. • Mechanism of synergistic effect between He and H is discussed. - Abstract: Irradiations of He{sup +} and H{sup +} have been performed to investigate the effect of H{sup +} irradiation on existing helium bubbles and the effect of pre-irradiation of H{sup +} on the formation of helium bubbles in tungsten. The specimens were irradiated at 800 °C with either 10kev-H{sup +}, 20kev-He{sup +}, or sequentially irradiated with both H{sup +} and He{sup +}. After H{sup +} irradiation, the growth of existing helium bubbles was observed. It was also found that pre- or post- irradiation of H{sup +} enhanced the nucleation of helium bubbles. The growth of hydrogen bubbles was also observed after post irradiation of He{sup +}. The possible mechanism is discussed.

  14. Particle energy loss spectroscopy and SEM studies of topography development in thin aluminium films implanted with high doses of helium

    International Nuclear Information System (INIS)

    Barfoot, K.M.; Webb, R.P.; Donnelly, S.E.

    1984-01-01

    Development of topography in thin (55.5 μg cm -2 ) self-supporting aluminium films, caused by high fluence (approx. 10 17 ions cm -2 ) irradiation with 5 keV helium ions, has been observed. This has been achieved by measuring the topography-enhanced energy straggling of 0.40 MeV 4 He + ions transmitted through the foils and detected with an electrostatic analyser of resolution 0.2 keV. Features, about 0.7 μm in width, are observed with scanning electron microscopy. TRIM Monte Carlo calculations of the implantation processes are performed in order to follow the helium implantation and damage depth distributions. It is deduced that a form of thin film micro-wrinkling has occurred which is caused by the relief of stress brought about by the implantation of helium. (author)

  15. Structure and micro-mechanical properties of helium-implanted layer on Ti by plasma-based ion implantation

    International Nuclear Information System (INIS)

    Ma Xinxin; Li Jinlong; Sun Mingren

    2008-01-01

    The present paper concentrates on structure and micro-mechanical properties of the helium-implanted layer on titanium treated by plasma-based ion implantation with a pulsed voltage of -30 kV and doses of 3, 6, 9 and 12 x 10 17 ions/cm 2 , respectively. X-ray photoelectron spectroscopy and transmission electron microscopy are employed to characterize the structure of the implanted layer. The hardnesses at different depths of the layer were measured by nano-indentation. We found that helium ion implantation into titanium leads to the formation of bubbles with a diameter from a few to more than 10 nm and the bubble size increases with the increase of dose. The primary existing form of Ti is amorphous in the implanted layer. Helium implantation also enhances the ingress of O, C and N and stimulates the formations of TiO 2 , Ti 2 O 3 , TiO, TiC and TiN in the near surface layer. And the amount of the ingressed oxygen is obviously higher than those of nitrogen and carbon due to its higher activity. At the near surface layer, the hardnesses of all implanted samples increases remarkably comparing with untreated one and the maximum hardness has an increase by a factor of up to 3.7. For the samples implanted with higher doses of 6, 9 and 12 x 10 17 He/cm 2 , the local displacement bursts are clearly found in the load-displacement curves. For the samples implanted with a lower dose of 3 x 10 17 He/cm 2 , there is no obvious displacement burst found. Furthermore, the burst width increases with the increase of the dose

  16. Local charge exchange of He{sup +} ions at Aluminum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, P., E-mail: pierfrancesco.riccardi@fis.unical.it [Dipartimento di Fisica, Università della Calabria and INFN – Gruppo collegato di Cosenza, Via P. Bucci cubo 33C, Arcavacata di Rende, Cosenza (Italy); Sindona, A. [Dipartimento di Fisica, Università della Calabria and INFN – Gruppo collegato di Cosenza, Via P. Bucci cubo 33C, Arcavacata di Rende, Cosenza (Italy); Dukes, C.A. [Laboratory for Astrophysics and Surface Physics, Materials Science and Engineering University of Virginia, Charlottesville, VA 22904 (United States)

    2017-04-04

    We report on experiments designed to observe the correlation between the autoionization of doubly excited helium atoms and the Auger decay of 2p vacancies in Al. The autoionizing states are formed when incident He{sup +*} and He{sup ++} are neutralized by resonant electron capture at the surface. 2p excitation in Al occurs in dielectronic charge transfer during the close encounter of an excited helium ion and an Al atom. These results clarify the mechanism for Al-2p excitation in the case of singly charged ground state He{sup +}(1s) ion impact, where the dielectronic transition occurs after promotion of the 1s electron of incoming ions. - Highlights: • We observe the correlation between autoionization of doubly excited helium atoms and the Auger decay of 2p vacancies in Al. • 2p excitation in Al occurs in dielectronic charge transfer during the close encounter of an excited helium ion and an Al atom. • These results clarify the mechanism for Al-2p excitation in the case of singly charged ground state He{sup +}(1s) ion impact.

  17. TH-A-19A-05: Modeling Physics Properties and Biologic Effects Induced by Proton and Helium Ions

    Energy Technology Data Exchange (ETDEWEB)

    Taleei, R; Titt, U; Peeler, C; Guan, F; Mirkovic, D; Grosshans, D; Mohan, R [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: Currently, proton and carbon ions are used for cancer treatment. More recently, other light ions including helium ions have shown interesting physical and biological properties. The purpose of this work is to study the biological and physical properties of helium ions (He-3) in comparison to protons. Methods: Monte Carlo simulations with FLUKA, GEANT4 and MCNPX were used to calculate proton and He-3 dose distributions in water phantoms. The energy spectra of proton and He-3 beams were calculated with high resolution for use in biological models. The repair-misrepairfixation (RMF) model was subsequently used to calculate the RBE. Results: The proton Bragg curve calculations show good agreement between the three general purpose Monte Carlo codes. In contrast, the He-3 Bragg curve calculations show disagreement (for the magnitude of the Bragg peak) between FLUKA and the other two Monte Carlo codes. The differences in the magnitude of the Bragg peak are mainly due to the discrepancy in the secondary fragmentation cross sections used by the codes. The RBE for V79 cell lines is about 0.96 and 0.98 at the entrance of proton and He-3 ions depth dose respectively. The RBE increases to 1.06 and 1.59 at the Bragg peak of proton and He-3 ions. The results demonstrated that LET, microdosimetric parameters (such as dose-mean lineal energy) and RBE are nearly constant along the plateau region of Bragg curve, while all parameters increase within the Bragg peak and at the distal edge for both proton and He-3 ions. Conclusion: The Monte Carlo codes should revise the fragmentation cross sections to more accurately simulate the physical properties of He-3 ions. The increase in RBE for He-3 ions is higher than for proton beams at the Bragg peak.

  18. Tritium Decay Helium-3 Effects in Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  19. Formation of excited states in high-Z helium-like systems

    International Nuclear Information System (INIS)

    Fritzsche, S.; Fricke, B.; Brinzanescu, O.

    1999-12-01

    High-Z helium-like ions represent the simplest multi-electron systems for studying the interplay between electron-electron correlations, relativistic as well as quantum electrodynamical effects in strong fields. In contrast to the adjacent lithium-like ions, however, almost no experimental information is available about the excited states in the high-Z domain of the helium sequence. Here, we present a theoretical analysis of the X-ray production and decay dynamics of the excited states in helium-like uranium. Emphasize has been paid particularly to the formation of the 3 P 0 and 3 P 2 levels by using electron capture into hydrogen-like U 91+ . Both states are of interest for precise measurements on high-Z helium-like ions in the future. (orig.)

  20. NUCLEAR CONDENSATE AND HELIUM WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Bedaque, Paulo F.; Berkowitz, Evan [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD (United States); Cherman, Aleksey, E-mail: bedaque@umd.edu, E-mail: evanb@umd.edu, E-mail: a.cherman@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA (United Kingdom)

    2012-04-10

    We consider a high-density region of the helium phase diagram, where the nuclei form a Bose-Einstein condensate rather than a classical plasma or a crystal. Helium in this phase may be present in helium-core white dwarfs. We show that in this regime there is a new gapless quasiparticle not previously noticed, arising when the constraints imposed by gauge symmetry are taken into account. The contribution of this quasiparticle to the specific heat of a white dwarf core turns out to be comparable in a range of temperatures to the contribution from the particle-hole excitations of the degenerate electrons. The specific heat in the condensed phase is two orders of magnitude smaller than in the uncondensed plasma phase, which is the ground state at higher temperatures, and four orders of magnitude smaller than the specific heat that an ion lattice would provide, if formed. Since the specific heat of the core is an important input for setting the rate of cooling of a white dwarf star, it may turn out that such a change in the thermal properties of the cores of helium white dwarfs has observable implications.

  1. NUCLEAR CONDENSATE AND HELIUM WHITE DWARFS

    International Nuclear Information System (INIS)

    Bedaque, Paulo F.; Berkowitz, Evan; Cherman, Aleksey

    2012-01-01

    We consider a high-density region of the helium phase diagram, where the nuclei form a Bose-Einstein condensate rather than a classical plasma or a crystal. Helium in this phase may be present in helium-core white dwarfs. We show that in this regime there is a new gapless quasiparticle not previously noticed, arising when the constraints imposed by gauge symmetry are taken into account. The contribution of this quasiparticle to the specific heat of a white dwarf core turns out to be comparable in a range of temperatures to the contribution from the particle-hole excitations of the degenerate electrons. The specific heat in the condensed phase is two orders of magnitude smaller than in the uncondensed plasma phase, which is the ground state at higher temperatures, and four orders of magnitude smaller than the specific heat that an ion lattice would provide, if formed. Since the specific heat of the core is an important input for setting the rate of cooling of a white dwarf star, it may turn out that such a change in the thermal properties of the cores of helium white dwarfs has observable implications.

  2. Helium ion microscopy and energy selective scanning electron microscopy - two advanced microscopy techniques with complementary applications

    Science.gov (United States)

    Rodenburg, C.; Jepson, M. A. E.; Boden, Stuart A.; Bagnall, Darren M.

    2014-06-01

    Both scanning electron microscopes (SEM) and helium ion microscopes (HeIM) are based on the same principle of a charged particle beam scanning across the surface and generating secondary electrons (SEs) to form images. However, there is a pronounced difference in the energy spectra of the emitted secondary electrons emitted as result of electron or helium ion impact. We have previously presented evidence that this also translates to differences in the information depth through the analysis of dopant contrast in doped silicon structures in both SEM and HeIM. Here, it is now shown how secondary electron emission spectra (SES) and their relation to depth of origin of SE can be experimentally exploited through the use of energy filtering (EF) in low voltage SEM (LV-SEM) to access bulk information from surfaces covered by damage or contamination layers. From the current understanding of the SES in HeIM it is not expected that EF will be as effective in HeIM but an alternative that can be used for some materials to access bulk information is presented.

  3. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    Science.gov (United States)

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-07

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  4. ESTAR, PSTAR, ASTAR. A PC package for calculating stopping powers and ranges of electrons, protons and helium ions. Version 2

    International Nuclear Information System (INIS)

    Berger, M.J.

    1993-01-01

    A PC package is documented for calculating stopping powers and ranges of electrons, protons and helium ions in matter for energies from 1 keV up to 10 GeV. Stopping powers and ranges for electrons can be calculated for any element, compound or mixture. Stopping powers and ranges of protons and helium ions can be calculated for 74 materials (26 elements and 48 compounds and mixtures). The files are stored on two HD diskettes in compressed form. Both executable files for IBM PC and Fortran-77 source files are provided. All three programs require 5.2 Mb of disk space. This set of two diskettes with detailed documentation is available upon request, cost free, from the IAEA Nuclear Data Section. (author). 25 refs, 4 tabs

  5. submitter Biologically optimized helium ion plans: calculation approach and its in vitro validation

    CERN Document Server

    Mairani, A; Magro, G; Tessonnier, T; Kamp, F; Carlson, D J; Ciocca, M; Cerutti, F; Sala, P R; Ferrari, A; Böhlen, T T; Jäkel, O; Parodi, K; Debus, J; Abdollahi, A; Haberer, T

    2016-01-01

    Treatment planning studies on the biological effect of raster-scanned helium ion beams should be performed, together with their experimental verification, before their clinical application at the Heidelberg Ion Beam Therapy Center (HIT). For this purpose, we introduce a novel calculation approach based on integrating data-driven biological models in our Monte Carlo treatment planning (MCTP) tool. Dealing with a mixed radiation field, the biological effect of the primary $^4$He ion beams, of the secondary $^3$He and $^4$He (Z  =  2) fragments and of the produced protons, deuterons and tritons (Z  =  1) has to be taken into account. A spread-out Bragg peak (SOBP) in water, representative of a clinically-relevant scenario, has been biologically optimized with the MCTP and then delivered at HIT. Predictions of cell survival and RBE for a tumor cell line, characterized by ${{(\\alpha /\\beta )}_{\\text{ph}}}=5.4$ Gy, have been successfully compared against measured clonogenic survival data. The mean ...

  6. Determining the Interstellar Wind Longitudinal Inflow Evolution Using Pickup Ions in the Helium Focusing Cone

    Science.gov (United States)

    Spitzer, S. A.; Gilbert, J. A.; Lepri, S. T.

    2017-12-01

    We propose to determine the longitudinal inflow direction of the local interstellar medium through the Heliosphere. This longitudinal inflow direction directly correlates to the longitudinal direction of the helium focusing cone with respect to the Sun. We can calculate this direction by finding the He+ pickup ion density peak as mass spectrometers such as ACE/SWICS, Wind/STICS, and Helios/Micrometeoroid Detector and Analyzer pass through the focusing cone. Mapping from the location of this density peak to the Sun, around which the helium is focused, will directly yield the desired longitudinal direction. We will find this direction for each year since the first measurements in the 1970s through the present and thereby analyze its evolution over time. This poster outlines our proposed method and initial results.

  7. ERDA with an external helium ion micro-beam: Advantages and potential applications

    International Nuclear Information System (INIS)

    Calligaro, T.; Castaing, J.; Dran, J.-C.; Moignard, B.; Pivin, J.-C.; Prasad, G.V.R.; Salomon, J.; Walter, P.

    2001-01-01

    Preliminary ERDA experiments at atmospheric pressure have been performed with our external microprobe set-up currently used for the analysis of museum objects by PIXE, RBS and NRA. The objective was to check the feasibility of hydrogen (and deuterium) profiling with an external beam of 3-MeV helium ions. The standard scattering geometry (incident beam at 15 deg. with respect to sample surface and emerging protons or deuterons at 15 deg. in the forward direction) was kept, but the thin foil absorber was replaced by helium gas filling the space between the beam spot and the detector over a distance of about 84 mm. Several standards prepared by ion implantation, with well known H or D depth profiles, were first analysed, which indicated that the analytical capability was as good as under vacuum. A striking feature is the much lower surface peak than under vacuum, a fact that enhances the sensitivity for H analysis near the surface. The same type of measurement was then performed on different materials to show the usefulness of the technique. As a first example, we have checked that the incorporation of H or D into sapphire crystals during mechanical polishing is below the detection limit. Another example is the measurement of the H content in emeralds which can be used as an additional compositional criterion for determining the provenance of emeralds set in museum jewels. The advantages and limitations of our set-up are discussed and several possible applications in the field of cultural heritage are described

  8. Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves

    International Nuclear Information System (INIS)

    Zhang Yang; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Vincena, S.; Carter, T. A.; Gekelman, W.; Leneman, D.; Pribyl, P.

    2008-01-01

    The Doppler-shifted cyclotron resonance (ω-k z v z =Ω f ) between fast ions and shear Alfven waves is experimentally investigated (ω, wave frequency; k z , axial wavenumber; v z , fast-ion axial speed; Ω f , fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li + source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude δ B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8ω ci . Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.

  9. Analysis of visible spectral lines in LHD helium discharge

    International Nuclear Information System (INIS)

    Wan, B.N.; Goto, M.; Morita, S.

    1999-06-01

    In this study, visible spectral lines in LHD helium discharges are analyzed and it was found that they could be well fitted with gaussian profile. The results reveal a simple mechanism of helium atom recycling. Ion temperatures were also derived from the fitting. A typical value of the ion temperature obtained was about 6 eV. (author)

  10. Calculation of helium-like ion dipole susceptibility with account for electron interaction

    International Nuclear Information System (INIS)

    Pal'chikov, V.G.; Tkachev, A.N.

    1989-01-01

    Numerical estimations of electron interaction effects are carried out for helium-like ions inserted in a homogeneous electric field. Statistical dipole polarizations and hyperpolarizations are calculated for the main state taking into account corrections of the first order to approximation of noninteracting electrons. Summation according to the full spectrum of intermediate states is carried out by the method of Coulomb-Green functions (CGF), that permitted to use analytical methods to calculate matrix elements of correlation diagrams. When calculating polarizations, relativistic corrections ∼(αZ) 2 , where α - the constant of a fine structure, Z-nucleus charge, are taken into account

  11. Electrostatic charging and levitation of helium II drops

    International Nuclear Information System (INIS)

    Niemela, J.J.

    1997-01-01

    Liquid Helium II drops, of diameter 1 mm or less, are charged with positive helium ions and subsequently levitated by static electric fields. Stable levitation was achieved for drops of order 100-150 micrometers in diameter. The suspended drops could be translated to arbitrary positions within the levitator using additional superimposed DC electric fields, and also could be made to oscillate stably about their average positions by means of an applied time-varying electric field. A weak corona discharge was used to produce the necessary ions for levitation. A novel superfluid film flow device, developed for the controlled deployment of large charged drops, is described. Also discussed is an adjustable electric fountain that requires only a field emission tip operating at modest potentials, and works in both Helium I and Helium II

  12. Mutation induced with ion beam irradiation in rose

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H. E-mail: yhiroya@nias.affrc.go.jp; Nagatomi, S.; Morishita, T.; Degi, K.; Tanaka, A.; Shikazono, N.; Hase, Y

    2003-05-01

    The effects of mutation induction by ion beam irradiation on axillary buds in rose were investigated. Axillary buds were irradiated with carbon and helium ion beams, and the solid mutants emerged after irradiation by repeated cutting back. In helium ion irradiation, mutations were observed in plants derived from 9 buds among 56 irradiated buds in 'Orange Rosamini' and in plants derived from 10 buds among 61 irradiated buds in 'Red Minimo'. In carbon ion, mutations were observed in plants derived from 12 buds among 88 irradiated buds in 'Orange Rosamini'. Mutations were induced not only in higher doses but also in lower doses, with which physiological effect by irradiation was hardly observed. Irradiation with both ion beams induced mutants in the number of petals, in flower size, in flower shape and in flower color in each cultivar.

  13. The influence of low-energy helium plasma on bubble formation in micro-engineered tungsten

    Science.gov (United States)

    Gao, Edward; Nadvornick, Warren; Doerner, Russ; Ghoniem, Nasr M.

    2018-04-01

    Four different types of micro-engineered tungsten surfaces were exposed to low energy helium plasma, with a planar surface as control. These samples include two surfaces covered with uniform W-coated rhenium micro-pillars; one with cylindrical pillars 1 μm in diameter and 25 μm in height, and one with dendritic conical pillars 4-10 μm in diameter and 20 μm in height. Additionally, two samples with reticulated open-cell foam geometry, one at 45 pores per inch (PPI), and the other at 80 PPI were fabricated with Chemical Vapor Deposition (CVD). The samples were exposed to helium plasma at 30-100 eV ion energy, 823-1123 K temperature, and 5 × 1025 - 2 × 1026 m-2 ion fluence. It is shown that the formation of nanometer-scale tendrils (fuzz) on micro-engineered W surfaces is greatly reduced as compared to planar surfaces. This is attributed to more significant ion backscattering and the increased effective surface area that intercept incident ions in micro-engineered W. A 20% decrease in the average ion incident angle on pillar type surfaces leads to ∼30% decrease in bubble size, down to 30 nm in diameter. W fuzz was found to be absent from pillar sides due to high ion backscattering rates from pillar sides. In foam samples, 28% higher PPI is observed to have 24.7%-36.7% taller fuzz, and 17.0%-25.0% larger subsurface bubbles. These are found to be an order of magnitude smaller than those found in planar surfaces of similar environment. The helium bubble density was found to increase with ion energy in pillars, roughly from 8.2% to 48.4%, and to increase with increasing PPI, from 36.4% to 116.2%, and with bubble concentrations up to 9.1 × 1021 m-3. Geometric shadowing effects in or near surface ligaments are observed in all foam samples, with near absence of helium bubbles or fuzz in deeper layers of the foam.

  14. Effects of alloying elements on thermal desorption of helium in Ni alloys

    International Nuclear Information System (INIS)

    Xu, Q.; Cao, X.Z.; Sato, K.; Yoshiie, T.

    2012-01-01

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni–Si, and Ni–Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni–Si and Ni–Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni–Sn alloy.

  15. Effects of alloying elements on thermal desorption of helium in Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q., E-mail: xu@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Cao, X.Z.; Sato, K.; Yoshiie, T. [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan)

    2012-12-15

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni-Si, and Ni-Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni-Si and Ni-Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni-Sn alloy.

  16. Effects of alloying elements on thermal desorption of helium in Ni alloys

    Science.gov (United States)

    Xu, Q.; Cao, X. Z.; Sato, K.; Yoshiie, T.

    2012-12-01

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni-Si, and Ni-Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni-Si and Ni-Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni-Sn alloy.

  17. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak

    Science.gov (United States)

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  18. Helium, iron and electron particle transport and energy transport studies on the TFTR tokamak

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Grek, B.; Hill, K.W.; Hulse, R.A.; Johnson, D.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Redi, M.H.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor

  19. Electronic Transport in Helium Beam Modified Graphene and Ballistic Josephson Junctions

    NARCIS (Netherlands)

    Nanda, G.

    2017-01-01

    This thesis describes the capabilities of the helium ion microscope (HIM) and that of graphene to explore fundamental physics and novel applications. While graphene offers superior electronic properties, the helium ion microscope allows us to combine imaging and modification of materials at the

  20. Selective area growth of InAs nanowires from SiO2/Si(1 1 1) templates direct-written by focused helium ion beam technology

    Science.gov (United States)

    Yang, Che-Wei; Chen, Wei-Chieh; Chou, Chieh; Lin, Hao-Hsiung

    2018-02-01

    We report on the selective area growth of InAs nanowires on patterned SiO2/Si (1 1 1) nano-holes, prepared by focused helium ion beam technology. We used a single spot mode, in which the focused helium ion beam was fixed on a single point with a He+-ion dosage, ranging from 1.5 pC to 8 pC, to drill the nano-holes. The smallest hole diameter achieved is ∼8 nm. We found that low He+-ion dosage is able to facilitate the nucleation of (1 1 1)B InAs on the highly mismatched Si, leading to the vertical growth of InAs nanowires (NWs). High He-ion dosage, on the contrary, severely damaged Si surface, resulting in tilted and stripe-like NWs. In addition to titled NW grown from (1 1 1)A InAs domain, a new titled growth direction due to defect induced twinning was observed. Cross-sectional TEM images of vertical NWs show mixed wurtizite (WZ) and zincblende (ZB) phases, while WZ phase dominants. The stacking faults resulting from the phase change is proportional to NW diameter, suggesting that the critical diameter of phase turning is larger than 110 nm, the maximum diameter of our NWs. Period of misfit dislocation at the InAs/Si interface of vertical NW is also found larger than the theoretical value when the diameter of heterointerface is smaller than 50 nm, indicating that the small contact area is able to accommodate the large lattice and thermal mismatch between InAs and Si.

  1. Hyperfine structure of the S levels of the muonic helium ion

    International Nuclear Information System (INIS)

    Martynenko, A. P.

    2008-01-01

    Corrections of the α 5 and α 6 orders to the energy spectrum of the hyperfine splitting of the 1S and 2S levels of the muonic helium ion are calculated with the inclusion of the electron vacuum polarization effects, nuclear-structure corrections, and recoil effects. The values ΔE hfs (1S) = -1334.56 meV and ΔE hfs (2S) = -166.62 meV obtained for hyperfine splitting values can be considered as reliable estimates for comparison with experimental data. The hyperfine structure interval Δ 12 = 8ΔE hfs (2S) - ΔE hfs (1S) = 1.64 meV can be used to verify QED predictions

  2. EVOLUTION OF THE RELATIONSHIPS BETWEEN HELIUM ABUNDANCE, MINOR ION CHARGE STATE, AND SOLAR WIND SPEED OVER THE SOLAR CYCLE

    International Nuclear Information System (INIS)

    Kasper, J. C.; Stevens, M. L.; Korreck, K. E.; Maruca, B. A.; Kiefer, K. K.; Schwadron, N. A.; Lepri, S. T.

    2012-01-01

    The changing relationships between solar wind speed, helium abundance, and minor ion charge state are examined over solar cycle 23. Observations of the abundance of helium relative to hydrogen (A He ≡ 100 × n He /n H ) by the Wind spacecraft are used to examine the dependence of A He on solar wind speed and solar activity between 1994 and 2010. This work updates an earlier study of A He from 1994 to 2004 to include the recent extreme solar minimum and broadly confirms our previous result that A He in slow wind is strongly correlated with sunspot number, reaching its lowest values in each solar minima. During the last minimum, as sunspot numbers reached their lowest levels in recent history, A He continued to decrease, falling to half the levels observed in slow wind during the previous minimum and, for the first time observed, decreasing even in the fastest solar wind. We have also extended our previous analysis by adding measurements of the mean carbon and oxygen charge states observed with the Advanced Composition Explorer spacecraft since 1998. We find that as solar activity decreased, the mean charge states of oxygen and carbon for solar wind of a given speed also fell, implying that the wind was formed in cooler regions in the corona during the recent solar minimum. The physical processes in the coronal responsible for establishing the mean charge state and speed of the solar wind have evolved with solar activity and time.

  3. Atmospheric helium and geomagnetic field reversals.

    Science.gov (United States)

    Sheldon, W. R.; Kern, J. W.

    1972-01-01

    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  4. Helium behaviour in nuclear glasses

    International Nuclear Information System (INIS)

    Fares, T.

    2011-01-01

    The present thesis focuses on the study of helium behavior in R7T7 nuclear waste glass. Helium is generated by the minor actinides alpha decays incorporated in the glass matrix. Therefore, four types of materials were used in this work. These are non radioactive R7T7 glasses saturated with helium under pressure, glasses implanted with 3 He + ions, glasses doped with curium and glasses irradiated in nuclear reactor. The study of helium solubility in saturated R7T7 glass has shown that helium atoms are inserted in the glass free volume. The results yielded a solubility of about 10 16 at. cm -3 atm. -1 . The incorporation limit of helium in this type of glass has been determined; its value amounted to about 2*10 21 at. cm -3 , corresponding to 2.5 at.%. Diffusion studies have shown that the helium migration is controlled by the single population dissolved in the glass free volume. An ideal diffusion model was used to simulate the helium release data which allowed to determine diffusion coefficients obeying to the following Arrhenius law: D = D 0 exp(-E a /kBT), where D 0 = 2.2*10 -2 and 5.4*10 -3 cm 2 s -1 and E a = 0.61 eV for the helium saturated and the curium doped glass respectively. These results reflect a thermally activated diffusion mechanism which seems to be not influenced by the glass radiation damage and helium concentrations studied in the present work (up to 8*10 19 at. g -1 , corresponding to 0.1 at.%). Characterizations of the macroscopic, structural and microstructural properties of glasses irradiated in nuclear reactor did not reveal any impact associated with the presence of helium at high concentrations. The observed modifications i.e. a swelling of 0.7 %, a decrease in hardness by 38 %, an increase between 8 and 34 % of the fracture toughness and a stabilization of the glass structure under irradiation, were attributed to the glass nuclear damage induced by the irradiation in reactor. Characterizations by SEM and TEM of R7T7 glasses implanted

  5. A study of ion damage in Al, Al/Cu and Al/Ag

    International Nuclear Information System (INIS)

    Marikar, P.

    1979-06-01

    Specimens of pure aluminium, aluminium-copper and aluminium-silver have been irradiated with 20 keV helium ions and/or 100 keV aluminium ions and the nature of the damage assessed using transmission electron microscopy. Irradiation with 20 keV helium ions to a dose of 2.7 x 10 15 ions cm -2 results in the formation of interstitial loops and helium gas bubbles. The helium bubbles were detectable only after annealing at a high temperature following irradiation. When the helium preinjected aluminium specimens were irradiated with 100 keV Al + ions to a dose of 84 dpa at temperatures above 150 0 C, voids were observed to form. At a lower dose of 64 dpa, only a high density of dislocation loops was observed. Al-1 wt% Cu alloy containing partially coherent theta' precipitates resists void formation to a considerable extent, and Al-10 wt% Ag alloy containing coherent G.P. zones offers complete resistance to both dislocation loop nucleation and void formation. The experimental results are discussed in the light of the current theories of irradiation induced damage in metals. The importance of the dislocation-sink efficiency for point defects, the gaseous impurity and the alloying elements in determining void formation is highlighted. (author)

  6. Observation of the antimatter helium-4 nucleus.

    Science.gov (United States)

    2011-05-19

    High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang; in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (4He), also known as the anti-α (α), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the α-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level. Antimatter nuclei with B antimatter nuclei and a benchmark for possible future observations of 4He in cosmic radiation.

  7. Active voltage contrast imaging of cross-sectional surface of multilayer ceramic capacitor using helium ion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, C., E-mail: SAKAI.Chikako@nims.go.jp; Ishida, N.; Masuda, H.; Nagano, S.; Kitahara, M.; Fujita, D. [National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Ogata, Y. [TAIYO YUDEN CO., LTD., Takasaki-shi, Gunma 370-3347 (Japan)

    2016-08-01

    We studied active voltage contrast (AVC) imaging using helium ion microscopy (HIM). We observed secondary electron (SE) images of the cross-sectional surface of multilayer ceramic capacitors (MLCCs) with and without a voltage applied to the internal electrodes. When no voltage was applied, we obtained an image reflecting the material contrast between the Ni internal electrode region and the BaTiO{sub 3} dielectric region of the cross-sectional surface of the MLCC. When a voltage was applied, the electrical potential difference between the grounded and the positively biased internal electrodes affected the contrast (voltage contrast). Moreover, attenuation of the SE intensity from the grounded to the positively biased internal electrodes was observed in the dielectric region. Kelvin probe force microscopy (KPFM) measurements of the contact potential difference (CPD) were performed on the same sample. By using the AVC image from the HIM observation and the CPD image from the KPFM measurement, we could quantitatively evaluate the electrical potential. We think that the results of this study will lead to an expansion in the number of applications of HIM.

  8. Dynamics of the reaction of the N+ ion with hydrogen isotopes and helium

    International Nuclear Information System (INIS)

    Ruska, W.E.W.

    1976-01-01

    Molecular beam techniques were used to study the reactive and non-reactive scattering of the nitrogen positive ion from hydrogen isotopes and helium, at energies above the stability limit for spectator stripping. Reactive scattering was observed from H 2 and HD targets. Non-reactive scattering was observed from H 2 and D 2 targets, and from He at one energy. A correlation diagram for the system is presented and compared with the available a priori calculations. Two surfaces are expected to lead to reaction. One is a 3 A 2 - 3 PI surface, the other, a 3 B 1 - 3 Σ - surface. Collinear approaches are expected to be most reactive on the 3 B 1 - 3 Σ - surface; noncollinear, on the 3 A 1 - 3 PI surface. Theoretical models are presented in which an incident hard sphere A, representing the projectile ion, strikes one of a pair of hard spheres B-C representing the B hydrogen molecule. After an impulsive A-B collision, an impulsive B-C collision may take place. The relative energy of A to B is then examined, and a reactive event is considered to have occurred if the energy is less than the dissociation energy for the A-B molecule. This model is treated both in the collinear case and in three dimensions. A graphical technique for the collinear case is summarized and applied to reaction on the 3 B 1 - 3 Σ - surface. An integral equation for the three-dimensional case is developed. A synthesis of two treatments, representing the behavior of the system on both reactive surfaces, and considering the charge-exchange channel, correctly predicts the observed product distribution. Predictions are also presented for the as yet unobserved case of reactive scattering from a D 2 target

  9. RBE of heavy ions (carbon, neon, helium, proton) for acute cell death of pancreatic islet cells

    International Nuclear Information System (INIS)

    Tsubouchi, Susumu; Fukutsu, Kumiko; Itsukaichi, Hiromi

    2003-01-01

    At this fiscal year, only two times irradiation experiments with neon and helium beams were performed to obtain relative biological effectiveness (RBE) of heavy ions (carbon, neon, helium, proton) for acute cell death of pancreatic islet cells in vivo. First of all this project was designed to obtain RBE of 290 MeV carbon and 400 MeV neon beams in the high linear energy transfer (LET) region for acute cell death of pancreatic islets of golden hamster (Mesocricetus auratus) in the condition of in both in vivo and in vitro systems. As mentioned in previous report, in vitro system, however, resulted in ill success. This in vitro experiment was tentatively shelved for the time being. In return in vivo experiments for low LET region of neon beams (32.5 KeV/u), carbon beams (15.0 KeV/u) and helium beams (2 KeV/u) were performed in these two years. Last year these results together with those previously obtained for 200 KeV X-ray, 70 MeV proton, 290 MeV carbon (60 KeV/u), and neon (100 KeV/u) beams were reconsidered. At this year dose response relations (25, 50, 100, 150, and 200 Gy respectively) in acute cell death of pancreatic islets studied histologically after whole body irradiation of 3 weeks young male golden hamster with lower LET helium beams (2 KeV/u) and neon beams (32.5 KeV/u). Results indicated that mean cell lethal dose (Do) of helium beams (2 KeV/u) and neon beams (32.5 KeV/u) were 38 Gy and 49 Gy, respectively. Previously obtained Do data for 200 KeV x-ray, 70 MeV proton, 290 MeV carbon (15 KeV/u), 400 MeV neon (32.5 KeV/u), 290 MeV carbon (60 KeV/u), and 400 MeV neon (100 KeV/u) beams were 37 Gy, 38 Gy, 38 Gy, 49 Gy, 75 Gy, and 200 Gy, respectively. From these data estimated RBE of neon (100 KeV/u and 32.5 KeV/u), carbon (60 KeV/u and 15.0 KeV/u), 70 MeV proton and 150 MeV helium (2 KeV/u) beams were 0.19, 0.76, 0.49, 0.97, 0.97, 0.97, respectively. Therefore the order of RBE (or radiosensitivities) of islets cells with these various heavy ion beams was

  10. Stopping power accuracy and achievable spatial resolution of helium ion imaging using a prototype particle CT detector system

    Directory of Open Access Journals (Sweden)

    Volz Lennart

    2017-09-01

    Full Text Available A precise relative stopping power map of the patient is crucial for accurate particle therapy. Charged particle imaging determines the stopping power either tomographically – particle computed tomography (pCT – or by combining prior knowledge from particle radiography (pRad and x-ray CT. Generally, multiple Coulomb scattering limits the spatial resolution. Compared to protons, heavier particles scatter less due to their lower charge/mass ratio. A theoretical framework to predict the most likely trajectory of particles in matter was developed for light ions up to carbon and was found to be the most accurate for helium comparing for fixed initial velocity. To further investigate the potential of helium in particle imaging, helium computed tomography (HeCT and radiography (HeRad were studied at the Heidel-berg Ion-Beam Therapy Centre (HIT using a prototype pCT detector system registering individual particles, originally developed by the U.S. pCT collaboration. Several phantoms were investigated: modules of the Catphan QA phantom for analysis of spatial resolution and achievable stopping power accuracy, a paediatric head phantom (CIRS and a custom-made phantom comprised of animal meat enclosed in a 2 % agarose mixture representing human tissue. The pCT images were reconstructed applying the CARP iterative reconstruction algorithm. The MTF10% was investigated using a sharp edge gradient technique. HeRad provides a spatial resolution above that of protons (MTF1010%=6.07 lp/cm for HeRad versus MTF10%=3.35 lp/cm for proton radiography. For HeCT, the spatial resolution was limited by the number of projections acquired (90 projections for a full scan. The RSP accuracy for all inserts of the Catphan CTP404 module was found to be 2.5% or better and is subject to further optimisation. In conclusion, helium imaging appears to offer higher spatial resolution compared to proton imaging. In future studies, the advantage of helium imaging compared to other

  11. The study on the electrical resistivity of Cu/V multilayer films subjected to helium (He) ion irradiation

    Science.gov (United States)

    Wang, P. P.; Xu, C.; Fu, E. G.; Du, J. L.; Gao, Y.; Wang, X. J.; Qiu, Y. H.

    2018-05-01

    Sputtering-deposited Cu/V multilayer films with the individual layer thickness varying from 2.5 nm to 100 nm were irradiated by 1 MeV helium (He) ion at the fluence of 6 ×1016 ions ·cm-2 at room temperature. The resistivity of Cu/V multilayer films after ion irradiation was evaluated as a function of individual layer thickness at 300 K and compared with their resistivity before ion irradiation. The results show that the resistivity change before and after ion irradiation is largely determined by the interface structure, grain boundary and radiation induced defects. A model amended based on the model used in describing the resistivity of as-deposited Cu/V multilayer films was proposed to describe the resistivity of ion irradiated Cu/V multilayer films by considering the point defects induced by ion irradiation, the effect of interface absorption on defects and the effect of interface microstructure in the multilayer films.

  12. Microstructure of HIPed and SPSed 9Cr-ODS steel and its effect on helium bubble formation

    International Nuclear Information System (INIS)

    Lu, Chenyang; Lu, Zheng; Xie, Rui; Liu, Chunming; Wang, Lumin

    2016-01-01

    Two 9Cr-ODS steels with the same nominal composition were consolidated by hot isostatic pressing (HIP, named COS-1) and spark plasma sintering (SPS, named COS-2). Helium ions were implanted into COS-1, COS-2 and non-ODS Eurofer 97 steels up at 673 K. Microstructures before and after helium ion implantations were carefully characterized. The results show a bimodal grain size distribution in COS-2 and a more uniform grain size distribution in COS-1. Nanoscale clusters of GP-zone type Y–Ti–O and Y_2Ti_2O_7 pyrochlore as well as large spinel Mn(Ti)Cr_2O_4 particles are all observed in the two ODS steels. The Y–Ti-enriched nano-oxides in COS-1 exhibit higher number density and smaller size than in COS-2. The Y–Ti-enriched nano-oxides in fine grains of COS-2 show higher number density and smaller size than that in coarse grains of COS-2. Nano-oxides effectively trap helium atoms and lead to the formation of high density and ultra-fine helium bubbles. - Highlights: • The microstructure changes of two ODS steels before and after helium ion implantation have been elucidated. • The mechanism of the microstructures of ODS steels under varied thermal mechanical processing paths have been explored. • The dependence of the size, density and distribution of helium bubbles on the specific microstructure features are explored.

  13. Microstructure of HIPed and SPSed 9Cr-ODS steel and its effect on helium bubble formation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chenyang [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, Liaoning (China); Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, MI, 48109 (United States); Lu, Zheng, E-mail: luz@atm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, Liaoning (China); Xie, Rui; Liu, Chunming [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, Liaoning (China); Wang, Lumin, E-mail: lmwang@umich.edu [Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, MI, 48109 (United States)

    2016-06-15

    Two 9Cr-ODS steels with the same nominal composition were consolidated by hot isostatic pressing (HIP, named COS-1) and spark plasma sintering (SPS, named COS-2). Helium ions were implanted into COS-1, COS-2 and non-ODS Eurofer 97 steels up at 673 K. Microstructures before and after helium ion implantations were carefully characterized. The results show a bimodal grain size distribution in COS-2 and a more uniform grain size distribution in COS-1. Nanoscale clusters of GP-zone type Y–Ti–O and Y{sub 2}Ti{sub 2}O{sub 7} pyrochlore as well as large spinel Mn(Ti)Cr{sub 2}O{sub 4} particles are all observed in the two ODS steels. The Y–Ti-enriched nano-oxides in COS-1 exhibit higher number density and smaller size than in COS-2. The Y–Ti-enriched nano-oxides in fine grains of COS-2 show higher number density and smaller size than that in coarse grains of COS-2. Nano-oxides effectively trap helium atoms and lead to the formation of high density and ultra-fine helium bubbles. - Highlights: • The microstructure changes of two ODS steels before and after helium ion implantation have been elucidated. • The mechanism of the microstructures of ODS steels under varied thermal mechanical processing paths have been explored. • The dependence of the size, density and distribution of helium bubbles on the specific microstructure features are explored.

  14. Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures

    Directory of Open Access Journals (Sweden)

    Serguei Chiriaev

    2017-12-01

    Full Text Available Characterization of composite materials with microscopy techniques is an essential route to understanding their properties and degradation mechanisms, though the observation with a suitable type of microscopy is not always possible. In this work, we present proton exchange membrane fuel cell electrode interface structure dependence on ionomer content, systematically studied by Helium Ion Microscopy (HIM. A special focus was on acquiring high resolution images of the electrode structure and avoiding interface damage from irradiation and tedious sample preparation. HIM demonstrated its advantages in surface imaging, which is paramount in studies of the interface morphology of ionomer covered or absorbed catalyst structures in a combination with electrochemical characterization and accelerated stress test. The electrode porosity was found to depend on the ionomer content. The stressed electrodes demonstrated higher porosity in comparison to the unstressed ones on the condition of no external mechanical pressure. Moreover, formation of additional small grains was observed for the electrodes with the low ionomer content, indicating Pt redeposition through Ostwald ripening. Polymer nanofiber structures were found in the crack regions of the catalyst layer, which appear due to the internal stress originated from the solvent evaporation. These fibers have fairly uniform diameters of a few tens of nanometers, and their density increases with the increasing ionomer content in the electrodes. In the hot-pressed electrodes, we found more closed contact between the electrode components, reduced particle size, polymer coalescence and formation of nano-sized polymer fiber architecture between the particles.

  15. Complete momentum balance for single ionization of helium by fast ion impact: I. Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Moshammer, R.; Kollmus, H.; Unverzagt, M.; Schmidt-Boecking, H. [Frankfurt Univ. (Germany). Inst. fuer Kernphysik; Ullrich, J.; Schmitt, W. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Wood, C.J.; Olson, R.E. [Missouri Univ., Rolla, MO (United States). Dept. of Physics

    1997-02-01

    The collision dynamics of He single ionization by 3.6 MeV/u Se{sup 28+} impact was explored using the GSI-reaction microscope, a high resolution integrated multi electron - recoil-ion momentum spectrometer. The complete three particle final state momentum distribution (9 cartesian components p{sub i}) was imaged with a resolution of {Delta}p{sub i} {approx} {+-}0.1 a.u. by measuring the three momentum components of the emitted electron and the recoiling target-ion in coincidence. The projectile energy loss has been determined on a level of {Delta}E{sub p}/E{sub p} {approx} 10{sup -7} and projectile scattering angles as small as {Delta}{theta} {approx} 10{sup -7}rad became accessible. The experimental data which are compared with results of classical trajectory Monte-Carlo (CTMC) calculations reveal an unprecedented insight into the details of the electron emission and the collision dynamics for ionization of helium by fast heavy-ion impact. (orig.)

  16. Complete momentum balance for single ionization of helium by fast ion impact: I. Experiment

    International Nuclear Information System (INIS)

    Moshammer, R.; Kollmus, H.; Unverzagt, M.; Schmidt-Boecking, H.; Wood, C.J.; Olson, R.E.

    1997-02-01

    The collision dynamics of He single ionization by 3.6 MeV/u Se 28+ impact was explored using the GSI-reaction microscope, a high resolution integrated multi electron - recoil-ion momentum spectrometer. The complete three particle final state momentum distribution (9 cartesian components p i ) was imaged with a resolution of Δp i ∼ ±0.1 a.u. by measuring the three momentum components of the emitted electron and the recoiling target-ion in coincidence. The projectile energy loss has been determined on a level of ΔE p /E p ∼ 10 -7 and projectile scattering angles as small as Δθ ∼ 10 -7 rad became accessible. The experimental data which are compared with results of classical trajectory Monte-Carlo (CTMC) calculations reveal an unprecedented insight into the details of the electron emission and the collision dynamics for ionization of helium by fast heavy-ion impact. (orig.)

  17. Observation of helium flow induced beam orbit oscillations at RHIC

    International Nuclear Information System (INIS)

    Montag, C.; Bonati, R.; Brennan, J.M.; Butler, J.; Cameron, P.; Ganetis, G.; He, P.; Hirzel, W.; Jia, L.X.; Koello, P.; Louie, W.; McIntyre, G.; Nicoletti, A.; Rank, J.; Roser, T.; Satogata, T.; Schmalzle, J.; Sidi-Yekhlef, A.; Sondericker, J.; Tallerico, T.

    2006-01-01

    Horizontal beam orbit jitter at frequencies around 10 Hz has been observed at RHIC for several years. The distinct frequencies of this jitter have been found at superconducting low-beta quadrupole triplet magnets around the ring, where they coincide with mechanical vibration modes of the cold masses. Recently, we have identified liquid helium flow as the driving force of these oscillations

  18. Monte Carlo calculation of energy loss of hydrogen and helium ions transmitted under channelling conditions in silicon single crystal

    International Nuclear Information System (INIS)

    El Bounagui, O.; Erramli, H.

    2010-01-01

    In this work, we report on calculations of the electronic channelling energy loss of hydrogen and helium ions along Si and Si axial directions for the low energy range by using the Monte Carlo simulation code. Simulated and experimental data are compared for protons and He ions in the and axis of silicon. A reasonable agreement was found. Computer simulation was also employed to study the angular dependence of energy loss for 0.5, 0.8, 1, and 2 MeV channelled 4 He ions transmitted through a silicon crystal of 3 μm thickness along the axis.

  19. WARM BREEZE FROM THE STARBOARD BOW: A NEW POPULATION OF NEUTRAL HELIUM IN THE HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, M. A.; Bzowski, M.; Sokół, J. M.; Swaczyna, P.; Grzedzielski, S. [Space Research Centre of the Polish Academy of Sciences, Warsaw (Poland); Alexashov, D. B.; Izmodenov, V. V. [Space Research Institute (IKI) of the Russian Academy of Sciences, Moscow (Russian Federation); Möbius, E.; Leonard, T. [Space Research Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Fuselier, S. A.; McComas, D. J. [Southwest Research Institute, San Antonio, TX (United States); Wurz, P. [Physics Institute, University of Bern, Bern (Switzerland)

    2014-08-01

    We investigate the signals from neutral helium atoms observed in situ from Earth orbit in 2010 by the Interstellar Boundary Explorer (IBEX). The full helium signal observed during the 2010 observation season can be explained as a superposition of pristine neutral interstellar He gas and an additional population of neutral helium that we call the Warm Breeze. The Warm Breeze is approximately 2 times slower and 2.5 times warmer than the primary interstellar He population, and its density in front of the heliosphere is ∼7% that of the neutral interstellar helium. The inflow direction of the Warm Breeze differs by ∼19° from the inflow direction of interstellar gas. The Warm Breeze seems to be a long-term, perhaps permanent feature of the heliospheric environment. It has not been detected earlier because it is strongly ionized inside the heliosphere. This effect brings it below the threshold of detection via pickup ion and heliospheric backscatter glow observations, as well as by the direct sampling of GAS/Ulysses. We discuss possible sources for the Warm Breeze, including (1) the secondary population of interstellar helium, created via charge exchange and perhaps elastic scattering of neutral interstellar He atoms on interstellar He{sup +} ions in the outer heliosheath, or (2) a gust of interstellar He originating from a hypothetic wave train in the Local Interstellar Cloud. A secondary population is expected from models, but the characteristics of the Warm Breeze do not fully conform to modeling results. If, nevertheless, this is the explanation, IBEX-Lo observations of the Warm Breeze provide key insights into the physical state of plasma in the outer heliosheath. If the second hypothesis is true, the source is likely to be located within a few thousand AU from the Sun, which is the propagation range of possible gusts of interstellar neutral helium with the Warm Breeze characteristics against dissipation via elastic scattering in the Local Cloud. Whatever the

  20. Influence of helium-ion bombardment on the optical properties of ZnO nanorods/p-GaN light-emitting diodes

    Science.gov (United States)

    Alvi, Naveed Ul Hassan; Hussain, Sajjad; Jensen, Jen; Nur, Omer; Willander, Magnus

    2011-12-01

    Light-emitting diodes (LEDs) based on zinc oxide (ZnO) nanorods grown by vapor-liquid-solid catalytic growth method were irradiated with 2-MeV helium (He+) ions. The fabricated LEDs were irradiated with fluencies of approximately 2 × 1013 ions/cm2 and approximately 4 × 1013 ions/cm2. Scanning electron microscopy images showed that the morphology of the irradiated samples is not changed. The as-grown and He+-irradiated LEDs showed rectifying behavior with the same I-V characteristics. Photoluminescence (PL) measurements showed that there is a blue shift of approximately 0.0347 and 0.082 eV in the near-band emission (free exciton) and green emission of the irradiated ZnO nanorods, respectively. It was also observed that the PL intensity of the near-band emission was decreased after irradiation of the samples. The electroluminescence (EL) measurements of the fabricated LEDs showed that there is a blue shift of 0.125 eV in the broad green emission after irradiation and the EL intensity of violet emission approximately centered at 398 nm nearly disappeared after irradiations. The color-rendering properties show a small decrease in the color-rendering indices of 3% after 2 MeV He+ ions irradiation.

  1. Investigation of helium-induced embrittlement

    International Nuclear Information System (INIS)

    Sabelova, V.; Slugen, V.; Krsjak, V.

    2014-01-01

    In this work, the hardness of Fe-9%(wt.) Cr binary alloy implanted by helium ions up to 1000 nm was investigated. The implantations were performed using linear accelerator at temperatures below 80 grad C. Isochronal annealing up to 700 grad C with the step of 100 grad C was applied on the helium implanted samples in order to investigate helium induced embrittlement of material. Obtained results were compared with theoretical calculations of dpa profiles. Due to the results, the nano-hardness technique results to be an appropriate approach to the hardness determination of thin layers of implanted alloys. Both, experimental and theoretical calculation techniques (SRIM) show significant correlation of measured results of induced defects. (authors)

  2. Effect of helium preinjection and prior thermomechanical treatment on the microstructure of Type 316 SS

    International Nuclear Information System (INIS)

    Kohyama, A.; Ayrault, G.; Turner, A.P.L.; Igata, N.

    1982-10-01

    Samples of 316 SS were preinjected with 15 appM helium either hot (650 0 C) or cold (room temperature) and irradiated with 3 MeV Ni + ions to a dose level of 25 dpa at 625 0 C in order to test the validity of helium preinjection as a means of simulation of transmutant helium production. Results for preinjected and single-ion irradiated samples were compared to samples irradiated with 3 MeV Ni + and simultaneously injected with helium at a rate of 15 appM He/dpa (dual-ion irradiated samples). Preinjected samples exhibited bimodal cavity size distributions. Preinjected samples of solution annealed or solution annealed and aged material showed lower swelling than dual-ion irradiated samples. However, He preinjection in 20% cold worked samples showed greater swelling than dual-ion irradiated samples 9 figures, 1 table

  3. Helium Ion Microscope: A New Tool for Sub-nanometer Imaging of Soft Materials

    Science.gov (United States)

    Shutthanandan, V.; Arey, B.; Smallwood, C. R.; Evans, J. E.

    2017-12-01

    High-resolution inspection of surface details is needed in many biological and environmental researches to understand the Soil organic material (SOM)-mineral interactions along with identifying microbial communities and their interactions. SOM shares many imaging characteristics with biological samples and getting true surface details from these materials are challenging since they consist of low atomic number materials. FE-SEM imaging is the main imagining technique used to image these materials in the past. These SEM images often show loss of resolution and increase noise due to beam damage and charging issues. Newly developed Helium Ion Microscope (HIM), on the other hand can overcome these difficulties and give very fine details. HIM is very similar to scanning electron microscopy (SEM) but instead of using electrons as a probe beam, HIM uses helium ions with energy ranges from 5 to 40 keV. HIM offers a series of advantages compared to SEM such as nanometer and sub-nanometer image resolutions (about 0.35 nm), detailed surface topography, high surface sensitivity, low Z material imaging (especially for polymers and biological samples), high image contrast, and large depth of field. In addition, HIM also has the ability to image insulating materials without any conductive coatings so that surface details are not modified. In this presentation, several scientific applications across biology and geochemistry will be presented to highlight the effectiveness of this powerful microscope. Acknowledgements: Research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. Work was supported by DOE-BER Mesoscale to Molecules Bioimaging Project FWP# 66382.

  4. Direct energy recovery from helium ion beams by a beam direct converter with secondary electron suppressors

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Yamamoto, Y.; Toku, H.; Kobayashi, A.; Okazaki, T.

    1989-01-01

    A 5-yr study of beam direct energy conversion was performed at the Kyoto University Institute of Atomic Energy to clarify the essential features of direct energy recovery from monoenergetic ion beams so that the performance characteristics of energy recovery can be predicted reasonably well by numerical calculations. The study used an improved version of an electrostatically electron-suppressed beam direct converter. Secondary electron suppressor grids were added, and a helium ion beam was used with typical parameters of 15.4 keV, 90 mA, and 100 ms. This paper presents a comparison of experimental results with numerical results by the two-dimensional Kyoto University Advanced Dart (KUAD) code, including evaluation of atomic processes

  5. Correlation of blister diameter and blister skin thickness in helium-ion-irradiated Nb

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.; Fenske, G.

    1979-01-01

    A systematic study of the correlation between blister diameter and blister skin thickness has been performed for helium-ion irradiation of monocrystalline and polycrystalline Nb for ion energies ranging from 20 to 500 keV. The results indicate that a relationship Datsub mpatproportionaltatsup 1.50at between the most probable blister diameter, Datsub mpat, and blister skin thickness, t, which has been suggested by other authors, does not exist for the various types of Nb targets studied. For example, for room-temperature irradiation of annealed polycrystalline Nb the experimentally determined relationship is Datsub mpat<10.3tatsup 1.22at. Furthermore, the D-t relationship was found to depend on the irradiation temperature in contrast to theoretical predictions by the lateral stress model of blister formation. These results do not appear to support the lateral stress model which predicts the relationship Dproportionaltatsup 1.5at. However, the experimentally determined relationships can be explained in part by the gas pressure model of blister formation

  6. Helium-induced hardening effect in polycrystalline tungsten

    Science.gov (United States)

    Kong, Fanhang; Qu, Miao; Yan, Sha; Zhang, Ailin; Peng, Shixiang; Xue, Jianming; Wang, Yugang

    2017-09-01

    In this paper, helium induced hardening effect of tungsten was investigated. 50 keV He2+ ions at fluences vary from 5 × 1015 cm-2 to 5 × 1017 cm-2 were implanted into polycrystalline tungsten at RT to create helium bubble-rich layers near the surface. The microstructure and mechanical properties of the irradiated specimens were studied by TEM and nano-indentor. Helium bubble rich layers are formed in near surface region, and the layers become thicker with the rise of fluences. Helium bubbles in the area of helium concentration peak are found to grow up, while the bubble density is almost unchanged. Obvious hardening effect is induced by helium implantation in tungsten. Micro hardness increases rapidly with the fluence firstly, and more slowly when the fluence is above 5 × 1016 cm-2. The hardening effect of tungsten can be attributed to helium bubbles, which is found to be in agreement with the Bacon-Orowan stress formula. The growing diameter is the major factor rather than helium bubbles density (voids distance) in the process of helium implantation at fluences below 5 × 1017 cm-2.

  7. 15 years experience with helium ion radiotherapy for uveal melanoma

    International Nuclear Information System (INIS)

    Castro, J.R.; Char, D.H.; Petti, P.L.; Daftari, I.K.; Quivey, J.M.; Singh, R.P.; Phillips, T.L.

    1996-01-01

    Purpose/Objective: In this study we review our long term experience with helium ion therapy in treating uveal melanoma. Materials and Methods: At UCSF-LBL, 347 patients with uveal melanoma were treated with helium ions from December 1978 - May 1992. A non randomized dose searching study was undertaken beginning with 80 GyE in 5 fractions and subsequently lowered through several levels to 48 GyE in 4 fractions. The treatment period ranged from 3 to 15 days, with a mean of 7 days. The various dose groups were similar in tumor characteristics and size. Results: An overall local control rate of 96% has been achieved, with no dose response being seen at 80, 70, 60 or 50 GyE in 5 fxs. At the lowest dose level of 48 GyE in 4 fxs, the local control rate fell to 87%. Fifteen patients (4%) had local failure in the eye requiring enucleation (12 pts), laser (1 pt) or reirradiation (2 pts). The time of appearance of local failures ranges from 4 to 64 months with most occurring within 2 years. Eight of the 15 patients with local failure are dead of distant metastases. Of the 347 patients, 308 had (20(200)) vision or better in the affected eye prior to treatment. Of these, 125 (41%) have retained at least(20(200)) vision in the treated eye. Patients with tumors greater than 5 mm in ultrasound height or close to the optic nerve or fovea have a reduced chance of retaining useful vision. The total enucleation rate is 15%, 1% for local failure and 14% because of complications of the helium RT, mostly secondary to severe glaucoma. Of the 347 patients, 230 are still alive. The median follow up is 75 months, range 3-206 months. Kaplan-Maier (K-M) survival for all 347 patients was 80% at 5 years, 77% at 10 years and 68% at 15 years post treatment. Results for patients whose tumor involves the ciliary body is much worse with a 15 year K-M survival of 42%, whereas patients not having ciliary involvement have a 15 year K-M survival of 75%. The K-M survival in patients with local failure in

  8. Data on ionization, excitation, dissociation and dissociative ionization of targets by helium ion bombardments, (1)

    International Nuclear Information System (INIS)

    Oda, Nobuo; Urakawa, Junji

    1984-03-01

    This report presents a compilation of the experimental data on cross sections for the ionization, excitation, dissociation and dissociative ionization processes of targets in helium ion impacts on atoms and molecules under a single collision condition. These measurements were carried out in the energy range from several keV to 3.5 MeV. A systematic survey has been made on the literatures from 1975 to the end of 1982. A list of references is also given, including relevant papers published before 1975. (author)

  9. Radiation blistering of Nb implanted sequentially with helium ions of different energies (3-500 keV)

    International Nuclear Information System (INIS)

    Guseva, M.I.; Gusev, V.; Krasulin, U.L.; Martinenko, U.V.; Das, S.K.; Kaminsky, M.S.

    1976-01-01

    Cold rolled, polycrystalline niobium samples were irradiated at room temperature with 4 He + ions sequentially at 14 different energies over an energy range from 3 keV--500 keV in steps of 50 keV. The dose for each energy was chosen to give an approximately uniform concentration of helium between the implant depths corresponding to 3 keV and 500 keV. In one set of experiments the irradiations were started at the Kurchatov Institute with 3 keV 4 He + ions and extended up to 80 keV in several steps. Subsequently, the same target area was irradiated with 4 He + ions at Argonne National Laboratory (ANL) starting at 100 keV and increased to 500 keV in steps of 50 keV. Another set of irradiations were started at ANL with 500 keV 4 He + ions and continued with decreasing ion energies to 100 keV. Subsequently, the same area was irradiated at the Kurchatov Institute starting at 80 keV and continued with decreasing ion energies to 3 keV. Both sets of irradiations were completed for two different total doses, 0.5 C cm -2 and 1.0 C cm -2

  10. A statistical study of coronal densities from X-ray line ratios of helium-like ions - Ne IX and Mg XI

    Science.gov (United States)

    Linford, G. A.; Lemen, J. R.; Strong, K. T.

    1988-01-01

    Since the repair of the Solar Maximum Mission (SMM) spacecraft, the Flat Crystal Spectrometer (FCS) has recorded many high temperature spectra of helium-like ions under a wide variety of coronal conditions including active regions, long duration events, compact events, and double flares. The plasma density and temperature are derived from the ratios R and G, where R = f/i, G = (f + i)/r, and r, f, and i denote the resonance, forbidden, and intercombination line fluxes. A new method for obtaining the density and temperature for events observed with the FCS aboard SMM is presented. The results for these events are presented and compared to earlier results, and the method is evaluated based on these comparisons.

  11. Fully differential cross sections for the single ionization of helium by fast ions: Classical model calculations

    Science.gov (United States)

    Sarkadi, L.

    2018-04-01

    Fully differential cross sections (FDCSs) have been calculated for the single ionization of helium by 1- and 3-MeV proton and 100-MeV/u C6 + ion impact using the classical trajectory Monte Carlo (CTMC) method in the nonrelativistic, three-body approximation. The calculations were made employing a Wigner-type model in which the quantum-mechanical position distribution of the electron is approximated by a weighted integral of the microcanonical distribution over a range of the binding energy of the electron. In the scattering plane, the model satisfactorily reproduces the observed shape of the binary peak. In the region of the peak the calculated FDCSs agree well with the results of continuum-distorted-wave calculations for all the investigated collisions. For 1-MeV proton impact the experimentally observed shift of the binary peak with respect to the first Born approximation is compared with the shifts obtained by different higher-order quantum-mechanical theories and the present CTMC method. The best result was achieved by CTMC, but still a large part of the shift remained unexplained. Furthermore, it was found that the classical theory failed to reproduce the shape of the recoil peak observed in the experiments, it predicts a much narrower peak. This indicates that the formation of the recoil peak is dominated by quantum-mechanical effects. For 100-MeV/u C6 + ion impact the present CTMC calculations confirmed the existence of the "double-peak" structure of the angular distribution of the electron in the plane perpendicular to the momentum transfer, in accordance with the observation, the prediction of an incoherent semiclassical model, and previous CTMC results. This finding together with wave-packet calculations suggests that the "C6 + puzzle" may be solved by considering the loss of the projectile coherence. Experiments to be conducted using ion beams of anisotropic coherence are proposed for a more differential investigation of the ionization dynamics.

  12. Effects of low energy helium plasma irradiation on potassium doped tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Xiaoyan [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu (China); Key Subject Laboratory of National Defense for Radioactive Waste and Environmental Security, Southwest University of Science and Technology, Mianyang (China); Huang, Bo [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu (China); Liu, Dongping; Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian (China); Liu, Ning [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu (China); Tang, Jun, E-mail: tangjun@scu.edu.cn [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu (China)

    2017-04-15

    Effects of helium plasma irradiation on spark plasma sintering (SPS) W-K, pure W and traditionally sintered commercial W-K have been studied, concerning the density, grain size and potassium content as the influence factors. Pinholes are formed under 120 eV He ions at 600 °C and 1 × 10{sup 23} m{sup −2} fluence on the surface of all samples. It is found that SPS-sintered W-K shows the best irradiation resistance among the present samples, and SPS-sintered pure W exhibits higher irradiation tolerance than commercial W-K. Different He-plasma tolerance was observed among the SPS-sintered W-K samples due to varied potassium content and grain size. In addition, the microstructure evolution under helium irradiation, the growth-migration of helium bubbles and their interactions of potassium bubbles have also been discussed.

  13. On the size and structure of helium snowballs formed around charged atoms and clusters of noble gases.

    Science.gov (United States)

    Bartl, Peter; Leidlmair, Christian; Denifl, Stephan; Scheier, Paul; Echt, Olof

    2014-09-18

    Helium nanodroplets doped with argon, krypton, or xenon are ionized by electrons and analyzed in a mass spectrometer. HenNgx(+) ions containing up to seven noble gas (Ng) atoms and dozens of helium atoms are identified; the high resolution of the mass spectrometer combined with advanced data analysis make it possible to unscramble contributions from isotopologues that have the same nominal mass but different numbers of helium or Ng atoms, such as the magic He20(84)Kr2(+) and the isobaric, nonmagic He41(84)Kr(+). Anomalies in these ion abundances reveal particularly stable ions; several intriguing patterns emerge. Perhaps most astounding are the results for HenAr(+), which show evidence for three distinct, solid-like solvation shells containing 12, 20, and 12 helium atoms. This observation runs counter to the common notion that only the first solvation shell is solid-like but agrees with calculations by Galli et al. for HenNa(+) [J. Phys. Chem. A 2011, 115, 7300] that reveal three shells of icosahedral symmetry. HenArx(+) (2 ≤ x ≤ 7) ions appear to be especially stable if they contain a total of n + x = 19 atoms. A sequence of anomalies in the abundance distribution of HenKrx(+) suggests that rings of six helium atoms are inserted into the solvation shell each time a krypton atom is added to the ionic core, from Kr(+) to Kr3(+). Previously reported strong anomalies at He12Kr2(+) and He12Kr3(+) [Kim , J. H.; et al. J. Chem. Phys. 2006, 124, 214301] are attributed to a contamination. Only minor local anomalies appear in the distributions of HenXex(+) (x ≤ 3). The distributions of HenKr(+) and HenXe(+) show strikingly similar, broad features that are absent from the distribution of HenAr(+); differences are tentatively ascribed to the very different fragmentation dynamics of these ions.

  14. Analysis of helium-ion scattering with a desktop computer

    Science.gov (United States)

    Butler, J. W.

    1986-04-01

    This paper describes a program written in an enhanced BASIC language for a desktop computer, for simulating the energy spectra of high-energy helium ions scattered into two concurrent detectors (backward and glancing). The program is designed for 512-channel spectra from samples containing up to 8 elements and 55 user-defined layers. The program is intended to meet the needs of analyses in materials sciences, such as metallurgy, where more than a few elements may be present, where several elements may be near each other in the periodic table, and where relatively deep structure may be important. These conditions preclude the use of completely automatic procedures for obtaining the sample composition directly from the scattered ion spectrum. Therefore, efficient methods are needed for entering and editing large amounts of composition data, with many iterations and with much feedback of information from the computer to the user. The internal video screen is used exclusively for verbal and numeric communications between user and computer. The composition matrix is edited on screen with a two-dimension forms-fill-in text editor and with many automatic procedures, such as doubling the number of layers with appropriate interpolations and extrapolations. The control center of the program is a bank of 10 keys that initiate on-event branching of program flow. The experimental and calculated spectra, including those of individual elements if desired, are displayed on an external color monitor, with an optional inset plot of the depth concentration profiles of the elements in the sample.

  15. Void structure of O+ ions in the inner magnetosphere observed by the Van Allen Probes

    Science.gov (United States)

    Nakayama, Y.; Ebihara, Y.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.; Kistler, L. M.; Tanaka, T.

    2016-12-01

    The Van Allen Probes Helium Oxygen Proton Electron instrument observed a new type of enhancement of O+ ions in the inner magnetosphere during substorms. As the satellite moved outward in the premidnight sector, the flux of the O+ ions with energy 10 keV appeared first in the energy-time spectrograms. Then, the enhancement of the flux spread toward high and low energies. The enhanced flux of the O+ ions with the highest energy remained, whereas the flux of the ions with lower energy vanished near apogee, forming what we call the void structure. The structure cannot be found in the H+ spectrogram. We studied the generation mechanism of this structure by using numerical simulation. We traced the trajectories of O+ ions in the electric and magnetic fields from the global magnetohydrodynamics simulation and calculated the flux of O+ ions in the inner magnetosphere in accordance with the Liouville theorem. The simulated spectrograms are well consistent with the ones observed by Van Allen Probes. We suggest the following processes. (1) When magnetic reconnection starts, an intensive equatorward and tailward plasma flow appears in the plasma lobe. (2) The flow transports plasma from the lobe to the plasma sheet where the radius of curvature of the magnetic field line is small. (3) The intensive dawn-dusk electric field transports the O+ ions earthward and accelerates them nonadiabatically to an energy threshold; (4) the void structure appears at energies below the threshold.

  16. Helium-filled proportional counter and its operation mechanism at low temperatures

    CERN Document Server

    Isozumi, Y; Kishimoto, S

    2002-01-01

    The operation mechanism of helium-filled proportional counter (HFPC) at about 4.2 K is explained. Unstable behavior of HFPC is caused by releasing secondary-electron from the cathode by four kinds of active particles such as He sub n sup + , non-resonance photon from excited helium atom, non-resonance photon from He sub 2 sup * (A sup 1 Su sup +) and He sub 2 sup m (a sup 3 Su sup +). On experiments of HFPC behavior at low temperature, the following facts were observed; 1) main charge formation process in the electron avalanche is direct ionization by electron without Hornbeck-Molnar process. Accordingly, the gas amplification factor becomes small at low temperature. 2) Stable helium cation is He sub 2 sup + at room temperature, but cluster at low temperature. Large after-pulse is observed in output signal depends on cluster ion. The probability of secondary-electron emission decreased. The gas gain increased with increasing anode voltage. 3) By decreasing reaction rate of atom and molecule collision at low t...

  17. A forward model for the helium plume effect and the interpretation of helium charge exchange measurements at ASDEX Upgrade

    Science.gov (United States)

    Kappatou, A.; McDermott, R. M.; Pütterich, T.; Dux, R.; Geiger, B.; Jaspers, R. J. E.; Donné, A. J. H.; Viezzer, E.; Cavedon, M.; the ASDEX Upgrade Team

    2018-05-01

    The analysis of the charge exchange measurements of helium is hindered by an additional emission contributing to the spectra, the helium ‘plume’ emission (Fonck et al 1984 Phys. Rev. A 29 3288), which complicates the interpretation of the measurements. The plume emission is indistinguishable from the active charge exchange signal when standard analysis of the spectra is applied and its intensity is of comparable magnitude for ASDEX Upgrade conditions, leading to a significant overestimation of the He2+ densities if not properly treated. Furthermore, the spectral line shape of the plume emission is non-Gaussian and leads to wrong ion temperature and flow measurements when not taken into account. A kinetic model for the helium plume emission has been developed for ASDEX Upgrade. The model is benchmarked against experimental measurements and is shown to capture the underlying physics mechanisms of the plume effect, as it can reproduce the experimental spectra and provides consistent values for the ion temperature, plasma rotation, and He2+ density.

  18. IBA studies of helium mobility in nuclear materials revisited

    Energy Technology Data Exchange (ETDEWEB)

    Trocellier, P., E-mail: patrick.trocellier@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Agarwal, S.; Miro, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Vaubaillon, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); CEA, INSTN, UEPTN, F-91191 Gif-sur-Yvette (France); Leprêtre, F.; Serruys, Y. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2015-12-15

    The aim of this paper is to point out and to discuss some features extracted from the study of helium migration in nuclear materials performed during the last fifteen years using ion beam analysis (IBA) measurements. The first part of this paper is devoted to a brief description of the two main IBA methods used, i.e. deuteron induced nuclear reaction for {sup 3}He depth profiling and high-energy heavy-ion induced elastic recoil detection analysis for {sup 4}He measurement. In the second part, we provide an overview of the different studies carried out on model nuclear waste matrices and model nuclear reactor structure materials in order to illustrate and discuss specific results in terms of key influence parameters in relation with thermal or radiation activated migration of helium. Finally, we show that among the key parameters we have investigated as able to influence the height of the helium migration barrier, the following can be considered as pertinent: the experimental conditions used to introduce helium (implanted ion energy and implantation fluence), the grain size of the matrix, the lattice cell volume, the Young's modulus, the ionicity degree of the chemical bond between the transition metal atom M and the non-metal atom X, and the width of the band gap.

  19. Cross Sections for K-shell X-ray Production by Hydrogen and Helium Ions in Elements from Beryllium to Uranium

    International Nuclear Information System (INIS)

    Lapicki, G.

    1989-01-01

    Experimental cross sections for K-shell x-ray production by hydrogen and helium ions (Z 1 = 1,2) in target atoms from beryllium to uranium (Z 2 = 4--92 ) are tabulated as compiled (7418 cross sections) from the literature (161 references were found) with the search for the data terminated in January 1988. These cross sections are compared with predictions of the first Born approximation and ECPSSR theory for inner-shell ionization. The ECPSSR accounts for the energy loss (E) and Coulomb deflection (C) of the projectile ion as well as for the perturbed stationary state (PSS) and relativistic (R) nature of the target's inner-shell electron.While the first Born approximation generally overestimates the data by orders of magnitude, the ECPSSR theory is confirmed to be, on the average, in agreement with the experiment to within 10%--20%. For light and heavy target atoms, however, systematic and opposite deviations are found in the low projectile-velocity regime. These deviations are associated with the influence of multiple outer-shell ionizations on the fluorescence yields of light elements, particularly in ionization by helium ions, and with the inaccuracy of the ECPSSR theory in the reproduction of relativistic calculations for ionization of heavy elements. The remaining discrepancies at moderate projectile velocities are prima facie attributed to inadequacies of a screened hydrogenic description for the K-shell electron

  20. Positron and nanoindentation study of helium implanted high chromium ODS steels

    Science.gov (United States)

    Veternikova, Jana Simeg; Fides, Martin; Degmova, Jarmila; Sojak, Stanislav; Petriska, Martin; Slugen, Vladimir

    2017-12-01

    Three oxide dispersion strengthened (ODS) steels with different chromium content (MA 956, MA 957 and ODM 751) were studied as candidate materials for new nuclear reactors in term of their radiation stability. The radiation damage was experimentally simulated by helium ion implantation with energy of ions up to 500 keV. The study was focused on surface and sub-surface structural change due to the ion implantation observed by mostly non-destructive techniques: positron annihilation lifetime spectroscopy and nanoindentation. The applied techniques demonstrated the best radiation stability of the steel ODM 751. Blistering effect occurred due to high implantation dose (mostly in MA 956) was studied in details.

  1. Helium atoms and molecules in strong magnetic fields

    Science.gov (United States)

    Mori, K.

    Recent theoretical studies have shown that the neutron star surface may be composed of helium or heavier elements as hydrogen may be quickly depleted by diffuse nuclear burning Chang Bildsten However while Hydrogen atmospheres have been studied in great details atomic data for helium is available only for He ion Pavlov Bezchastnov 2005 We performed Hartree-Fock type calculation for Helium atom and molecules and computed their binding ionization and dissociation energies in strong magnetic fields B sim10 12 -- 10 15 G We will present ionization balance of Helium atmospheres at typical magnetic field strengths and temperatures to radio-quiet neutron stars and AXPs We will also discuss several implications of helium atmosphere to X-ray data of isolated neutron stars focusing on the detected spectral features

  2. Lithium atoms on helium nanodroplets: Rydberg series and ionization dynamics

    Science.gov (United States)

    Lackner, Florian; Krois, Günter; Ernst, Wolfgang E.

    2017-11-01

    The electronic excitation spectrum of lithium atoms residing on the surface of helium nanodroplets is presented and analyzed employing a Rydberg-Ritz approach. Utilizing resonant two-photon ionization spectroscopy, two different Rydberg series have been identified: one assigned to the nS(Σ) series and the other with predominantly nP(Π) character. For high Rydberg states, which have been resolved up to n = 13, the surrounding helium effectively screens the valence electron from the Li ion core, as indicated by the apparent red-shift of Li transitions and lowered quantum defects on the droplet with respect to their free atom counterparts. For low n states, the screening effect is weakened and the prevailing repulsive interaction gives rise to strongly broadened and blue-shifted transitions. The red-shifts originate from the polarization of nearby He atoms by the positive Li ion core. As a consequence of this effect, the ionization threshold is lowered by 116 ± 10 cm-1 for Li on helium droplets with a radius of about 40 Å. Upon single-photon ionization, heavy complexes corresponding to Li ions attached to intact helium droplets are detected. We conclude that ionization close to the on-droplet ionization threshold triggers a dynamic process in which the Li ion core undergoes a transition from a surface site into the droplet.

  3. Elastic scattering of helium ions on 9Be nuclei and exchange mechanisms

    International Nuclear Information System (INIS)

    Burtebaev, N.; Dujsebaev, B.A.

    1999-01-01

    Among nuclei of 1p-shell 9 Be is an extremely deformed nucleus with cluster structure. This considerably impedes determination of nucleus-nucleus potential of interaction. The latter relates to the fact that cross-section of 3 He ion and ?-particle elastic scattering on light nuclei is formed by not only mechanism of mere potential nature but also by other processes of heavy breakaway and displacement as well as by effects of channel relation. Final probability of 6 He+ and 3 He and 5 He+? cluster existence in 9 Be nucleus can be determined in the processes of 3 He or ?-particle ion scattering. As a result, it can cause considerable growth of cross-section under backward angles due to exchange of impinging particle with identical cluster in a nucleus. In order to study the contribution of different mechanisms into formation of cross-section of elastic scattering of helium nuclides on 9 Be nucleus we have performed series of experiments in broad angular range at energies 8-20 MeV/nucleon at derived beams of isochronous cyclotron of the Institute of Nuclear Physics of Kazakhstan national Nuclear Centre

  4. Z3 model of Saturns magnetic field and the Pioneer 11 vector helium magnetometer observations

    International Nuclear Information System (INIS)

    Connerney, J.E.P.; Acuna, M.H.; Ness, N.F.

    1984-05-01

    Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1%) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model

  5. The scattering of low energy helium ions and atoms from a copper single crystal, ch. 2

    International Nuclear Information System (INIS)

    Verheij, L.K.; Poelsema, B.; Boers, A.L.

    1976-01-01

    The scattering of 4-10 keV helium ions from a copper surface cannot be completely described with elastic, single collisions. The general behaviour of the measured energy and width of the surface peak can be explained by differences in inelastic energy losses for scattering from an ideal surface and from surface structures (damage). Multiple scattering effects have a minor influence. Additional information about the inelastic processes is obtained from scattering experiments with a primary atom beam. For large angles of incidence, the energy of the reflected ions is reduced about 20 eV if the primary beam consists of atoms instead of ions. An explanation of this effect and an explanation of the different behaviour of small angles is given. In the investigated energy range, the electronic stopping power might depend on the charge state of the primary particles. The experimental results are rather well explained by the Lindhard, Scharff, Schioett theory

  6. Scaling of cross-sections for asymmetric (e, 3e) process on helium ...

    Indian Academy of Sciences (India)

    An approximate simple scaling law is obtained for asymmetric (, 3) process on helium-like ions for double ionization by fast electrons. It is based on the equation ( Z ′ 3 / ) exp [ − Z ′ ( r 1 + r 2 ) ] , Z ′ = Z − ( 5 / 16 ) for ground state wave function of helium- like ions and Z ′ 2 scaling of energies. The scaling law is ...

  7. Excitation of the n=2 states of He+ in the ionization of helium

    International Nuclear Information System (INIS)

    Dixon, A.J.; McCarthy, I.E.; Weigold, E.

    1976-03-01

    The cross section ratio for the symmetric (e,2e) reaction on helium leading to the n = 2 and ground states of the helium ion has been calculated as a function of the ion recoil momentum q, using a correlated helium wave function, and compared with the results of a 1200eV noncoplanar experiment and some previous results at 800eV. The calculation agrees well with the measured (e,2e) cross section ratios and at high q with ratios measured in photoelectron spectroscopy experiments. (author)

  8. Damage behavior in helium-irradiated reduced-activation martensitic steels at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Chen, Jihong; Li, Tiecheng; Zheng, Zhongcheng [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yao, Z. [Department of Mechanical and Materials Engineering, Queen’s University, Kingston K7L 3N6, ON (Canada); Suo, Jinping [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-12-15

    Dislocation loops induced by helium irradiation at elevated temperatures in reduced-activation martensitic steels were investigated using transmission electron microscopy. Steels were irradiated with 100 keV helium ions to 0.8 dpa between 300 K and 723 K. At irradiation temperatures T{sub irr} ⩽ 573 K, small defects with both Burger vectors b = 1/2〈1 1 1〉 and b = 〈1 0 0〉 were observed, while at T{sub irr} ⩾ 623 K, the microstructure was dominated by large convoluted interstitial dislocation loops with b = 〈1 0 0〉. Only small cavities were found in the steels irradiated at 723 K.

  9. Use of double and triple-ion irradiation to study the influence of high levels of helium and hydrogen on void swelling of 8-12% Cr ferritic-martensitic steels

    Science.gov (United States)

    Kupriiyanova, Y. E.; Bryk, V. V.; Borodin, O. V.; Kalchenko, A. S.; Voyevodin, V. N.; Tolstolutskaya, G. D.; Garner, F. A.

    2016-01-01

    In accelerator-driven spallation (ADS) devices, some of the structural materials will be exposed to intense fluxes of very high energy protons and neutrons, producing not only displacement damage, but very high levels of helium and hydrogen. Unlike fission flux-spectra where most helium and hydrogen are generated by transmutation in nickel and only secondarily in iron or chromium, gas production in ADS flux-spectra are rather insensitive to alloy composition, such that Fe-Cr base ferritic alloys also generate very large gas levels. While ferritic alloys are known to swell less than austenitic alloys in fission spectra, there is a concern that high gas levels in fusion and especially ADS facilities may strongly accelerate void swelling in ferritic alloys. In this study of void swelling in response to helium and hydrogen generation, irradiation was conducted on three ferritic-martensitic steels using the Electrostatic Accelerator with External Injector (ESUVI) facility that can easily produce any combination of helium to dpa and/or hydrogen to dpa ratios. Irradiation was conducted under single, dual and triple beam modes using 1.8 MeV Cr+3, 40 keV He+, and 20 keV H+. In the first part of this study we investigated the response of dual-phase EP-450 to variations in He/dpa and H/dpa ratio, focusing first on dual ion studies and then triple ion studies, showing that there is a diminishing influence on swelling with increasing total gas content. In the second part we investigated the relative response of three alloys spanning a range of starting microstructure and composition. In addition to observing various synergisms between He and H, the most important conclusion was that the tempered martensite phase, known to lag behind the ferrite phase in swelling in the absence of gases, loses much of its resistance to void nucleation when irradiated at large gas/dpa levels.

  10. Modification of graphene by ion beam

    Science.gov (United States)

    Gawlik, G.; Ciepielewski, P.; Jagielski, J.; Baranowski, J.

    2017-09-01

    Ion induced defect generation in graphene was analyzed using Raman spectroscopy. A single layer graphene membrane produced by chemical vapor deposition (CVD) on copper foil and then transferred on glass substrate was subjected to helium, carbon, nitrogen, argon and krypton ions bombardment at energies from the range 25 keV to 100 keV. A density of ion induced defects and theirs mean size were estimated by using Raman measurements. Increasing number of defects generated by ion with increase of ion mass and decrease of ion energy was observed. Dependence of ion defect efficiency (defects/ion) on ion mass end energy was proportional to nuclear stopping power simulated by SRIM. No correlation between ion defect efficiency and electronic stopping power was observed.

  11. Standard Guide for Simulation of Helium Effects in Irradiated Metals

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This guide provides advice for conducting experiments to investigate the effects of helium on the properties of metals where the technique for introducing the helium differs in some way from the actual mechanism of introduction of helium in service. Simulation techniques considered for introducing helium shall include charged particle implantation, exposure to α-emitting radioisotopes, and tritium decay techniques. Procedures for the analysis of helium content and helium distribution within the specimen are also recommended. 1.2 Two other methods for introducing helium into irradiated materials are not covered in this guide. They are the enhancement of helium production in nickel-bearing alloys by spectral tailoring in mixed-spectrum fission reactors, and isotopic tailoring in both fast and mixed-spectrum fission reactors. These techniques are described in Refs (1-5). Dual ion beam techniques (6) for simultaneously implanting helium and generating displacement damage are also not included here. This lat...

  12. Geological implications of radium and helium in oil-field brines: observations, inferences and speculations

    International Nuclear Information System (INIS)

    Lerche, I.

    1993-01-01

    The 1600 yr half-life of radium restricts the time and thus the distance over which radium can migrate in sediments. The dominant source of unsupported radium in sandstone reservoir brines must then be close by and is likely in shales adjacent to the oil-field reservoirs. The chemical similarity of calcium and radium can be used to argue for a local shale-source contribution to the calcium in reservoir sands -suggesting the probability of calcite cementation early in the sedimentary sequence. Helium production by radium decay increases with time. Concentrations of helium found in reservoir oil field brines are then used to suggest that: (a) such reservoirs are dominantly closed systems over geological times; (b) neither methane nor helium in the reservoirs have migrated any significant distance; and (c) the mechanism responsible for the observed helium in the brine is a continuous on-going process operative today. Diagenetic studies should then deal with both sands and shales interdependently, the two are not separable. Shales control the transport mechanisms of migration so that the primary migration of hydrocarbons, the result of kerogen catagenesis in shales, should occur sufficiently early in the sedimentary sequence in order to avoid exclusion from the reservoir by calcite cementation in association with radium transport. (author)

  13. A preliminary investigation of the diffusion of helium in zirconium

    International Nuclear Information System (INIS)

    Reed, D.J.; Faulkner, D.

    1976-10-01

    The out-diffusion of helium, introduced into polycrystalline zirconium at room temperature by ion-implantation at 100 keV to a peak concentration of 1ppm, was found to occur in two principal regions. Two evolution rate maxima, obtained during post-implantation target annealing at 2.6 0 K s -1 , were observed in close proximity at 330 0 C (0.28 Tsub(m)) and 450 0 C (0.34 Tsub(m)) comprising the principal stage, with a subordinate stage occurring at 600 0 C (0.4 Tsub(m)). These data were compared with similar maxima observed in nickel at 600 0 C (0.5 Tsub(m)) and 850 0 C (0.65 Tsub(m)). The results imply a high helium diffusivity over the 0.5 mm experimental range in comparison with nickel, and an exceptionally high diffusivity taking into account the melting temperature of zirconium. On the basis of a diffusion model proposed earlier for nickel, activation energies of 1.37 and 1.66 eV have been assigned to the principal maxima at 330 0 C and 450 0 C, and a value of 2.41 eV to the maximum at 600 0 C. The long range diffusivity of helium manifested by its thermal evolution from uniformly filled 120 mm thick foils was found to be much lower than that measured for short range migration. An empirical activation energy of approximately 3 eV was estimated for this process, thought to be a result of bubble migration. The release of helium from zirconium has been explained by comparison with nickel data. The proposed substitutional de-trapping mechanism has been invoked to account for the principal evolution rate maxima at 330 0 C. Helium release observed at 600 0 C has been explained by the annealing of radiation damage, so allowing gas trapped therein to be evolved. (author)

  14. Dynamics of the reaction of the N/sup +/ ion with hydrogen isotopes and helium

    Energy Technology Data Exchange (ETDEWEB)

    Ruska, W.E.W.

    1976-06-28

    Molecular beam techniques were used to study the reactive and non-reactive scattering of the nitrogen positive ion from hydrogen isotopes and helium, at energies above the stability limit for spectator stripping. Reactive scattering was observed from H/sub 2/ and HD targets. Non-reactive scattering was observed from H/sub 2/ and D/sub 2/ targets, and from He at one energy. A correlation diagram for the system is presented and compared with the available a priori calculations. Two surfaces are expected to lead to reaction. One is a /sup 3/A/sub 2/ - /sup 3/PI surface, the other, a /sup 3/B/sub 1/ - /sup 3/..sigma../sup -/ surface. Collinear approaches are expected to be most reactive on the /sup 3/B/sub 1/ - /sup 3/..sigma../sup -/ surface; noncollinear, on the /sup 3/A/sub 1/ - /sup 3/PI surface. Theoretical models are presented in which an incident hard sphere A, representing the projectile ion, strikes one of a pair of hard spheres B-C representing the B hydrogen molecule. After an impulsive A-B collision, an impulsive B-C collision may take place. The relative energy of A to B is then examined, and a reactive event is considered to have occurred if the energy is less than the dissociation energy for the A-B molecule. This model is treated both in the collinear case and in three dimensions. A graphical technique for the collinear case is summarized and applied to reaction on the /sup 3/B/sub 1/ - /sup 3/..sigma../sup -/ surface. An integral equation for the three-dimensional case is developed. A synthesis of two treatments, representing the behavior of the system on both reactive surfaces, and considering the charge-exchange channel, correctly predicts the observed product distribution. Predictions are also presented for the as yet unobserved case of reactive scattering from a D/sub 2/ target.

  15. Space and time resolved spectroscopy of laser-produced plasmas: A study of density-sensitive x-ray transitions in helium-like and neon-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Young, Bruce Kai Fong

    1988-09-01

    The determination of level populations and detailed population mechanisms in dense plasmas has become an increasingly important problem in atomic physics. In this work, the density variation of line intensities and level populations in aluminum K-shell and molybdenum and silver L-shell emission spectra have been measured from high-powered, laser-produced plasmas. For each case, the density dependence of the observed line emission is due to the effect of high frequency electron-ion collisions on metastable levels. The density dependent line intensities vary greatly in laser-produced plasmas and can be used to extract detailed information concerning the population kinetics and level populations of the ions. The laser-plasmas had to be fully characterized in order to clearly compare the observed density dependence with atomic theory predictions. This has been achieved through the combined use of new diagnostic instruments and microdot targets which provided simultaneously space, time, and spectrally resolved data. The plasma temperatures were determined from the slope of the hydrogen-like recombination continuum. The time resolved electron density profiles were measured using multiple frame holographic interferometry. Thus, the density dependence of K-shell spectral lines could be clearly examined, independent of assumptions concerning the dynamics of the plasma. In aluminum, the electron density dependence of various helium-like line intensity ratios were measured. Standard collisional radiative equilibrium models fail to account for the observed density dependence measured for the ''He/sub ..cap alpha..//IC'' ratio. Instead, a quasi-steady state atomic model based on a purely recombining plasma is shown to accurately predict the measured density dependence. This same recombining plasma calculation successfully models the density dependence of the high-n ''He/sub ..gamma..//He/sub ..beta../'' and ''He/sub delta

  16. Space and time resolved spectroscopy of laser-produced plasmas: A study of density-sensitive x-ray transitions in helium-like and neon-like ions

    International Nuclear Information System (INIS)

    Young, Bruce Kai Fong.

    1988-09-01

    The determination of level populations and detailed population mechanisms in dense plasmas has become an increasingly important problem in atomic physics. In this work, the density variation of line intensities and level populations in aluminum K-shell and molybdenum and silver L-shell emission spectra have been measured from high-powered, laser-produced plasmas. For each case, the density dependence of the observed line emission is due to the effect of high frequency electron-ion collisions on metastable levels. The density dependent line intensities vary greatly in laser-produced plasmas and can be used to extract detailed information concerning the population kinetics and level populations of the ions. The laser-plasmas had to be fully characterized in order to clearly compare the observed density dependence with atomic theory predictions. This has been achieved through the combined use of new diagnostic instruments and microdot targets which provided simultaneously space, time, and spectrally resolved data. The plasma temperatures were determined from the slope of the hydrogen-like recombination continuum. The time resolved electron density profiles were measured using multiple frame holographic interferometry. Thus, the density dependence of K-shell spectral lines could be clearly examined, independent of assumptions concerning the dynamics of the plasma. In aluminum, the electron density dependence of various helium-like line intensity ratios were measured. Standard collisional radiative equilibrium models fail to account for the observed density dependence measured for the ''He/sub α//IC'' ratio. Instead, a quasi-steady state atomic model based on a purely recombining plasma is shown to accurately predict the measured density dependence. This same recombining plasma calculation successfully models the density dependence of the high-n ''He/sub γ//He/sub β/'' and ''He/sub δ//He/sub β/'' helium-like resonance line intensity ratios

  17. Double ionisation of helium in fast ion collisions: the role of momentum transfer

    International Nuclear Information System (INIS)

    Bapat, B.; Moshammer, R.; Schmitt, W.; Kollmus, H.; Ullrich, J.; Doerner, R.; Weber, T.; Khayyat, K.

    1999-01-01

    Double ionisation of helium in the perturbative regime has been explored in a kinematically complete collision experiment using 100 MeV/u C 6+ ions. Different ionisation mechanisms are identified by inspecting the angular distribution of the electrons as a function of the momentum transfer q to the target by the projectile. For q 1.2 a.u., the faster electron resulting from a binary encounter with the projectile is emitted along the direction of momentum transfer, while the other electron is distributed uniformly. Experimental data are compared with various model calculations based on the Bethe-Born approximation with shake-off. Surprisingly, the effect of the final state interaction is found to depend decisively on the choice of the initial state wave function. (orig.)

  18. ACE/SWICS OBSERVATIONS OF HEAVY ION DROPOUTS WITHIN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Weberg, Micah J. [PhD Candidate in Space and Planetary Physics, 2435 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Zurbuchen, Thomas H. [Professor, Space Science and Aerospace Engineering, Associate Dean for Entrepreneurship, 2429 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Lepri, Susan T., E-mail: mjweberg@umich.edu, E-mail: thomasz@umich.edu, E-mail: slepri@umich.edu [Associate Research Scientist, 2417 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States)

    2012-11-20

    We present the first in situ observations of heavy ion dropouts within the slow solar wind, observed for select elements ranging from helium to iron. For iron, these dropouts manifest themselves as depletions of the Fe/H ratio by factors up to {approx}25. The events often exhibit mass-dependent fractionation and are contained in slow, unsteady wind found within a few days from known stream interfaces. We propose that such dropouts are evidence of gravitational settling within large coronal loops, which later undergo interchange reconnection and become source regions of slow, unsteady wind. Previously, spectroscopic studies by Raymond et al. in 1997 (and later Feldman et al. in 1999) have yielded strong evidence for gravitational settling within these loops. However, their expected in situ signature plasma with heavy elements fractionated by mass was not observed prior to this study. Using data from the SWICS instrument on board the Advanced Composition Explorer (ACE), we investigate the composition of the solar wind within these dropouts and explore long term trends over most of a solar cycle.

  19. ACE/SWICS OBSERVATIONS OF HEAVY ION DROPOUTS WITHIN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Weberg, Micah J.; Zurbuchen, Thomas H.; Lepri, Susan T.

    2012-01-01

    We present the first in situ observations of heavy ion dropouts within the slow solar wind, observed for select elements ranging from helium to iron. For iron, these dropouts manifest themselves as depletions of the Fe/H ratio by factors up to ∼25. The events often exhibit mass-dependent fractionation and are contained in slow, unsteady wind found within a few days from known stream interfaces. We propose that such dropouts are evidence of gravitational settling within large coronal loops, which later undergo interchange reconnection and become source regions of slow, unsteady wind. Previously, spectroscopic studies by Raymond et al. in 1997 (and later Feldman et al. in 1999) have yielded strong evidence for gravitational settling within these loops. However, their expected in situ signature plasma with heavy elements fractionated by mass was not observed prior to this study. Using data from the SWICS instrument on board the Advanced Composition Explorer (ACE), we investigate the composition of the solar wind within these dropouts and explore long term trends over most of a solar cycle.

  20. Heavy metal incorporated helium ion active hybrid non-chemically amplified resists: Nano-patterning with low line edge roughness

    Directory of Open Access Journals (Sweden)

    Pulikanti Guruprasad Reddy

    2017-08-01

    Full Text Available Helium (He ion lithography is being considered as one of the most promising and emerging technology for the manufacturing of next generation integrated circuits (ICs at nanolevel. However, He-ion active resists are rarely reported. In this context, we are introducing a new non-chemically amplified hybrid resist (n-CAR, MAPDSA-MAPDST, for high resolution He-ion beam lithography (HBL applications. In the resist architecture, 2.15 % antimony is incorporated as heavy metal in the form of antimonate. This newly developed resists has successfully used for patterning 20 nm negative tone features at a dose of 60 μC/cm2. The resist offered very low line edge roughness (1.27±0.31 nm for 20 nm line features. To our knowledge, this is the first He-ion active hybrid resist for nanopatterning. The contrast (γ and sensitivity (E0 of this resist were calculated from the contrast curve as 0.73 and 7.2 μC/cm2, respectively.

  1. Heavy metal incorporated helium ion active hybrid non-chemically amplified resists: Nano-patterning with low line edge roughness

    Science.gov (United States)

    Reddy, Pulikanti Guruprasad; Thakur, Neha; Lee, Chien-Lin; Chien, Sheng-Wei; Pradeep, Chullikkattil P.; Ghosh, Subrata; Tsai, Kuen-Yu; Gonsalves, Kenneth E.

    2017-08-01

    Helium (He) ion lithography is being considered as one of the most promising and emerging technology for the manufacturing of next generation integrated circuits (ICs) at nanolevel. However, He-ion active resists are rarely reported. In this context, we are introducing a new non-chemically amplified hybrid resist (n-CAR), MAPDSA-MAPDST, for high resolution He-ion beam lithography (HBL) applications. In the resist architecture, 2.15 % antimony is incorporated as heavy metal in the form of antimonate. This newly developed resists has successfully used for patterning 20 nm negative tone features at a dose of 60 μC/cm2. The resist offered very low line edge roughness (1.27±0.31 nm) for 20 nm line features. To our knowledge, this is the first He-ion active hybrid resist for nanopatterning. The contrast (γ) and sensitivity (E0) of this resist were calculated from the contrast curve as 0.73 and 7.2 μC/cm2, respectively.

  2. Angle-resolved imaging of single-crystal materials with MeV helium ions

    Energy Technology Data Exchange (ETDEWEB)

    Strathman, M D; Baumann, S [Charles Evans and Associates, Redwood City, CA (United States)

    1992-02-01

    The simplest form of angle-resolved mapping for single-crystal materials is the creation of a channeling angular scan. Several laboratories have expanded this simple procedure to include mapping as a function of two independent tilts. These angle-resolved images are particularly suited to the assessment of crystal parameters including disorder, lattice location of impurities, and lattice stress. This paper will describe the use of the Charles Evans and Associates RBS-400 scattering chamber for acquisition, display, and analysis of angle-resolved images obtained from backscattered helium ions. Typical data acquisition times are 20 min for a {+-}2deg X-Y tilt scan with 2500 pixels (8/100deg resolution), and 10 nC per pixel. In addition, we will present a method for automatically aligning crystals for channeling measurements based on this imaging technology. (orig.).

  3. Angle-resolved imaging of single-crystal materials with MeV helium ions

    International Nuclear Information System (INIS)

    Strathman, M.D.; Baumann, S.

    1992-01-01

    The simplest form of angle-resolved mapping for single-crystal materials is the creation of a channeling angular scan. Several laboratories have expanded this simple procedure to include mapping as a function of two independent tilts. These angle-resolved images are particularly suited to the assessment of crystal parameters including disorder, lattice location of impurities, and lattice stress. This paper will describe the use of the Charles Evans and Associates RBS-400 scattering chamber for acquisition, display, and analysis of angle-resolved images obtained from backscattered helium ions. Typical data acquisition times are 20 min for a ±2deg X-Y tilt scan with 2500 pixels (8/100deg resolution), and 10 nC per pixel. In addition, we will present a method for automatically aligning crystals for channeling measurements based on this imaging technology. (orig.)

  4. The EUV Helium Spectrum in the Quiet Sun: A By-Product of Coronal Emission?

    Science.gov (United States)

    Andretta, Vincenzo; DelZanna, Giulio; Jordan, Stuart D.; Oegerle, William (Technical Monitor)

    2002-01-01

    In this paper we test one of the mechanisms proposed to explain the intensities and other observed properties of the solar helium spectrum, and in particular of its Extreme-Ultraviolet (EUV) resonance lines. The so-called Photoionisation-Recombination (P-R) mechanism involves photoionisation of helium atoms and ions by EUV coronal radiation, followed by recombination cascades. We present calibrated measurements of EUV flux obtained with the two CDS spectrometers on board SOHO, in quiescent solar regions. We were able to obtain an essentially complete estimate of the total photoionizing flux in the wavelength range below 504 A (the photoionisation threshold for He(I)), as well as simultaneous measurements with the same instruments of the intensities of the strongest EUV helium lines: He(II) lambda304, He(I) lambda584, and He(I) lambda537. We find that there are not enough EUV photons to account for the observed helium line intensities. More specifically, we conclude that He(II) intensities cannot be explained by the P-R mechanism. Our results, however, leave open the possibility that the He(I) spectrum could be formed by the P-R mechanism, with the He(II) lambda304 line as a significant photoionizating source.

  5. Evaluation of defect formation in helium irradiated Y2O3 doped W-Ti alloys by positron annihilation and nanoindentation

    Science.gov (United States)

    Richter, Asta; Anwand, Wolfgang; Chen, Chun-Liang; Böttger, Roman

    2017-10-01

    Helium implanted tungsten-titanium ODS alloys are investigated using positron annihilation spectroscopy and nanoindentation. Titanium reduces the brittleness of the tungsten alloy, which is manufactured by mechanical alloying. The addition of Y2O3 nanoparticles increases the mechanical properties at elevated temperature and enhances irradiation resistance. Helium ion implantation was applied to simulate irradiation effects on these materials. The irradiation was performed using a 500 kV He ion implanter at fluences around 5 × 1015 cm-2 for a series of samples both at room temperature and at 600 °C. The microstructure and mechanical properties of the pristine and irradiated W-Ti-ODS alloy are compared with respect to the titanium and Y2O3 content. Radiation damage is studied by positron annihilation spectroscopy analyzing the lifetime and the Doppler broadening. Three types of helium-vacancy defects were detected after helium irradiation in the W-Ti-ODS alloy: small defects with high helium-to-vacancy ratio (low S parameter) for room temperature irradiation, larger open volume defects with low helium-to-vacancy ratio (high S parameter) at the surface and He-vacancy complexes pinned at nanoparticles deeper in the material for implantation at 600 °C. Defect induced hardness was studied by nanoindentation. A drastic hardness increase is observed after He ion irradiation both for room temperature and elevated irradiation temperature of 600 °C. The Ti alloyed tungsten-ODS is more affected by the hardness increase after irradiation compared to the pure W-ODS alloy.

  6. Comment on theories for helium-assisted void nucleation

    International Nuclear Information System (INIS)

    Russell, K.C.

    1976-01-01

    Voids form by agglomeration of irradiation-induced vacancies which remain after preferential absorption of self interstitials at dislocation lines. Helium which is formed by (n,α) transmutations and, in simulation studies, may be ion-implanted, often plays an important, but puzzling role. In some materials, very few voids form in the absence of helium, even after intense irradiation. In many other materials , voids form readily under a variety of irradiation conditions, even in the absence of helium. Why some materials require helium - typically in the 10 -6 apa (atom per atom) range - and others do not, and the reason for that particular level are by no means clear. The physics of void nucleation, particularly the role of helium, have been the subject of several theoretical papers. This note presents a critique of these theories, and then briefly outlines a new analysis which is not subject to their limitations. (Auth.)

  7. Quasi free mechanism in single photon double ionization of helium

    Energy Technology Data Exchange (ETDEWEB)

    Schoeffler, Markus; Stuck, Christian [Frankfurt Univ., Frankfurt am Main (Germany). Inst. fuer Kernphysik; Lawrence Berkeley National Lab, Berkeley, CA (United States); Jahnke, Till; Waitz, Markus; Trinter, Florian; Lenz, Ute; Schmidt-Boecking, Horst; Doerner, Reinhard [Frankfurt Univ., Frankfurt am Main (Germany). Inst. fuer Kernphysik; Jones, Mathew; Landers, Allen [Auburn University, Auburn, AL (United States); Belkacem, Ali; Weber, Thorsten [Lawrence Berkeley National Lab, Berkeley, CA (United States); Cocke, Lew [Kansas State University, Manhattan, KS (United States)

    2012-07-01

    Double ionization of Helium by a single photon is widely believed to proceed through two mechanisms: knock-off (TS1) or shake-off, with the last one dominating at high photon energies. A new mechanism, termed ''Quasi Free Mechanism'' (QFM) was predicted 35 years ago by Amusia and coworkers, but escaped experimental observation till today. Here we provide the first proof of this mechanism using 800 eV photons from the Advanced Light Source. Fragments (electrons and ions) were measured in coincidence using momentum spectroscopy (COLTRIMS). He{sup (}2+) ions with zero momentum were found - the fingerprint for the QFM.

  8. Electric response in superfluid helium

    Czech Academy of Sciences Publication Activity Database

    Chagovets, Tymofiy

    2016-01-01

    Roč. 488, May (2016), s. 62-66 ISSN 0921-4526 R&D Projects: GA ČR GP13-03806P Institutional support: RVO:68378271 Keywords : superfluid helium * electric response * second sound * ions in He II Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2016

  9. Single-electron-capture processes in collisions of He2+, Liq+ (q=1,2,3), C6+, and O8+ ions with helium

    International Nuclear Information System (INIS)

    Samanta, R.; Purkait, M.; Mandal, C. R.

    2011-01-01

    Cross sections for single-electron capture in collisions of He 2+ , Li q+ (q = 1,2,3), C 6+ , and O 8+ ions with helium atoms at incident energy ranging from 50 to 5000 keV/amu have been calculated in the framework of four-body boundary-corrected continuum intermediate state (BCCIS-4B) approximation in both prior and post forms. In this formalism, distortion in the final channel related to the Coulomb continuum states of the projectile ion and the active electron in the field of residual target ion are included. In all cases, total single-electron-capture cross sections have been calculated by summing over all contributions up to n = 3 shells and subshells, respectively. It has been observed that the contribution of the capture cross section into the excited states is significant for asymmetric collision (Z P >Z T ) and is insignificant for symmetric collision. Numerical results for the total cross sections show good agreement with the available experimental findings, particularly in the post form. Post-prior discrepancy has been found to be within 30% except for Li + + He interactions below 150 keV/amu.

  10. Damage, trapping and desorption at the implantation of helium and deuterium in graphite, diamond and silicon carbide

    International Nuclear Information System (INIS)

    Lopez, G.A.R.

    1995-07-01

    The production, thermal stability and structure of ion induced defects have been studied by Rutherford backscattering in channeling geometry for the implantation of helium and deuterium in graphite, diamond and silicon carbide with energies of 8 and 20 keV. At the implantation of deuterium and helium ions more defects were measured in graphite than in diamond or silicon carbide at equal experimental conditions. This is due to increased backscattering in graphite, which is caused by the splitting and tilting of crystallites and a local reordering of lattice atoms around defects. At 300 K, Helium produces more defects in all three materials than deuterium with equal depth distribution of defects. The ratio of the defects produced by helium and deuterium agrees very well with the corresponding ratio of the energy deposited in nuclear collisions. In graphite, only small concentrations of deuterium induced defects anneal below 800 K, while in diamond small concentrations of deuterium as well as of helium induced defects anneal mostly below 800 K. This annealing behavior is considered to be due to recombination of point defects. The buildup of helium and deuterium in graphite is different. The trapping of deuterium proceeds until saturation is reached, while in the case of helium trapping is interrupted by flaking. In diamond, deuterium as well as helium are trapped almost completely until at higher fluences reemission starts and saturation is reached. Two desorption mechanisms were identified for the thermal desorption of helium from base-oriented graphite. Helium implanted at low fluences desorbs diffusing to the surface, while for the implantation of high fluences the release of helium due to blistering dominates. The desorption of deuterium from graphite and diamond shows differences. While in graphite the desorption starts already at 800 K, in diamond up to 1140 K only little desorption can be observed. These differences can be explained by the different transport

  11. Simulation of alpha decay of actinides in iron phosphate glasses by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dube, Charu L., E-mail: dubecharu@gmail.com; Stennett, Martin C.; Gandy, Amy S.; Hyatt, Neil C.

    2016-03-15

    Highlights: • Alpha decay of actinides in iron phosphate glasses is simulated by employing ion irradiation technique. • FTIR and Raman spectroscopic measurements confirm modification of glass network. • The depolymerisation of glass network after irradiation is attributed to synergetic effect of nuclear and electronic losses. - Abstract: A surrogate approach of ion beam irradiation is employed to simulate alpha decay of actinides in iron phosphate nuclear waste glasses. Bismuth and helium ions of different energies have been selected for simulating glass matrix modification owing to radiolysis and ballistic damage due to recoil atoms. Structural modification and change in coordination number of network former were probed by employing Reflectance Fourier-Transform Infrared (FT-IR), and Raman spectroscopies as a consequence of ion irradiation. Depolymerisation is observed in glass sample irradiated at intermediate energy of 2 MeV. Helium blisters of micron size are seen in glass sample irradiated at low helium ion energy of 30 keV.

  12. Energization of helium ions by proton-induced hydromagnetic waves

    International Nuclear Information System (INIS)

    Gendrin, R.; Roux, A.

    1980-01-01

    We consider the diffusion of He + ions under the influence of ion cyclotron waves generated in a plasma consisting of three different ion populations: a thermal isotropic population containing both H + and He + ions and an energetic H + population, with a positive anisotropy A=T/sub perpendicular//T/sub parallel/-1. We compute, in the velocity space upsilon/sub parallel/, upsilon/sub perpendicular/, the diffusion curves that He + ions will follow in the presence of ion cyclotron waves propagating in such a medium. We show that for small concentrations of the He + ions, of the order of 1 to approx.10%, these ions can be energized by such a process up to and above suprathermal energies (E> or approx. =20 eV). On some occasions the He + ions may even reach energies of the order of the Alfven energy of the cold plasma population: E/sub a/approx. =m/sub p/V/sub a/ 2 approx. =5 keV. Characteristic diffusion times, in pitch angle and energy, for both ion species, are evaluated. They are of the order of 2 to 20 min. These theoretical results are discussed in the frame of recent observations by Geos experimenters showing the close association that exists between the occurrence of ion cyclotron ULF waves and the presence of thermal or supra-thermal He + ions in the equatorial region of the magnetosphere

  13. In situ transmission electron microscope observation of the formation of fuzzy structures on tungsten

    International Nuclear Information System (INIS)

    Miyamoto, M; Watanabe, T; Nagashima, H; Nishijima, D; Doerner, R P; Krasheninnikov, S I; Sagara, A; Yoshida, N

    2014-01-01

    To investigate the formation processes of tungsten nano-structures, so called fuzz, in situ transmission electron microscope observations during helium ion irradiation and high temperature annealing have been performed. The irradiation with 3 keV He + from room temperature to 1273 K is found to cause high-density helium bubbles in tungsten with no significant change in the surface structure. At higher temperatures, surface morphology changes were observed even without helium irradiation due probably to surface diffusion of tungsten atoms driven by surface tension. It is clearly shown that this morphology change is enhanced with helium irradiation, i.e. the formation of helium bubbles. (paper)

  14. Helium ion damage in an amorphous Fe-Ni-Mo-B alloy

    International Nuclear Information System (INIS)

    Swijgenhoven, H. van; Stals, L.M.; Knuyt, G.

    1983-01-01

    Data are presented on helium gas bubble and helium blister formation for Metglas 2826MB during 5 keV He + -implantation in the temperature range 200K-600K and dose range 5.10 20 -10 22 He + /m 2 . It is concluded that amorphous alloys are less radiation resistant as has been thought earlier. (author)

  15. Modeling Space-Time Dependent Helium Bubble Evolution in Tungsten Armor under IFE Conditions

    International Nuclear Information System (INIS)

    Qiyang Hu; Shahram Sharafat; Nasr Ghoniem

    2006-01-01

    The High Average Power Laser (HAPL) program is a coordinated effort to develop Laser Inertial Fusion Energy. The implosion of the D-T target produces a spectrum of neutrons, X-rays, and charged particles, which arrive at the first wall (FW) at different times within about 2.5 μs at a frequency of 5 to 10 Hz. Helium is one of several high-energy charged particle constituents impinging on the candidate tungsten armored low activation ferritic steel First Wall. The spread of the implanted debris and burn helium energies results in a unique space-time dependent implantation profile that spans about 10 μm in tungsten. Co-implantation of X-rays and other ions results in spatially dependent damage profiles and rapid space-time dependent temperature spikes and gradients. The rate of helium transport and helium bubble formation will vary significantly throughout the implanted region. Furthermore, helium will also be transported via the migration of helium bubbles and non-equilibrium helium-vacancy clusters. The HEROS code was developed at UCLA to model the spatial and time-dependent helium bubble nucleation, growth, coalescence, and migration under transient damage rates and transient temperature gradients. The HEROS code is based on kinetic rate theory, which includes clustering of helium and vacancies, helium mobility, helium-vacancy cluster stability, cavity nucleation and growth and other microstructural features such as interstitial loop evolution, grain boundaries, and precipitates. The HEROS code is based on space-time discretization of reaction-diffusion type equations to account for migration of mobile species between neighboring bins as single atoms, clusters, or bubbles. HAPL chamber FW implantation conditions are used to model helium bubble evolution in the implanted tungsten. Helium recycling rate predictions are compared with experimental results of helium ion implantation experiments. (author)

  16. Bubbles formation in helium ion irradiated Cu/W multilayer nanocomposites: Effects on structure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Callisti, M., E-mail: M.Callisti@soton.ac.uk [National Centre for Advanced Tribology at Southampton, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Karlik, M. [Department of Materials, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Prague 2 (Czech Republic); Polcar, T. [National Centre for Advanced Tribology at Southampton, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627 Prague 6 (Czech Republic)

    2016-05-15

    This study investigates the effects of He bubbles on structural and mechanical properties of sputter-deposited Cu/W multilayers. A multilayer with a periodicity of 10 nm was deposited and subjected to helium ion irradiation with two different fluences. He bubbles formed mostly in Cu layers and their distribution was affected by He concentration and radiation damage. According to SRIM calculations, in low He concentration regions bubbles formed mostly along interfaces, while more homogeneously distributed bubbles were found in Cu layers and along columnar grain boundaries in higher He concentration regions. We suggest that the capability of interfaces to annihilate point defects is weakened by the He bubbles shielding effect. Nanoindentation tests revealed a hardness decrease amounting to ∼0.5 and ∼1 GPa for low and high fluences, respectively. The observed softening effect is attributed to He storage-induced changes in residual stresses and columnar grain boundary/interfacial sliding facilitated by He bubbles. - Highlights: • Cu/W nanocomposites were subjected to He{sup +} irradiation with different fluences. • He bubbles formed more homogeneously in higher He concentration regions. • Decrease in mechanical properties was observed for higher He concentrations. • He bubbles formation facilitated interfacial and grain boundary sliding.

  17. On the distribution of electrons in the double ionization of helium-like ions by Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Drukarev, E G [Petersburg Nuclear Physics Institute, Gatchina, St Petersburg 188300 (Russian Federation)

    2003-06-28

    The Compton scattering of a high energy photon by a helium-like ion, followed by the ionization of two electrons, is considered outside of the Bethe surface of Compton scattering with the knock-out of a single electron. The role of shake-off (SO), of final state interactions (FSI) and of the quasi-free mechanism (QFM) is analysed. The triple and double differential distributions are calculated. It is demonstrated for the first time that in certain kinematical regions the process is dominated by the FSI and by the QFM, while the SO contribution is much smaller.

  18. Blowing smoke rings in superfluid helium

    International Nuclear Information System (INIS)

    Allum, D.R.; McClintock, P.V.E.

    1977-01-01

    Among experiments designed to investigate the properties of superfluids, measurements are discussed which aim at determining the variation in the speed of an ion with the size of the electric field propelling it through liquid helium. The experimental set up using helium ions is described. The velocity-field characteristic shows an initial rise but at a higher electric field the ions exhibit the curious behaviour of slowing down before again increasing speed with force. The reason for this region of slowing down is here explained as being due to the fact that the charge is no longer carried by a free ion but, rather, by a charged vortex ring. As the ion speeds thorugh the liquid it suddenly creates a vortex ring and as one of the fundamental characteristics of a vortex ring is that its velocity is inversely proportional to its radius the speed reduction is explained. The subsequent rise in the characteristic indicates that the charge carriers are no longer straightforward charged vortex rings. This behaviour is attributed to ions 'falling off' their rings soon after creating them. It would appear that the force exerted by the electric field is so large that it overcomes the hydrodynamic force which binds the ion to the slowly moving vortex, enabling the ion to escape and accelerate away. In a final levelling off part of the characteristic curve it is considered that the ions are travelling faster than the critical velocity for roton creation, but are moving far below that for phonon creation. One may therefore conclude that the ion, as it travels through the liquid, transforms energy extracted from the electric field into rotons, which fan out forming a sort of wake behind it. (U.K.)

  19. A comparison of hydrogen vs. helium glow discharge effects on fusion device first-wall conditioning

    International Nuclear Information System (INIS)

    Dylla, H.F.

    1989-09-01

    Hydrogen- and deuterium-fueled glow discharges are used for the initial conditioning of magnetic fusion device vacuum vessels following evacuation from atmospheric pressure. Hydrogenic glow discharge conditioning (GDC) significantly reduces the near-surface concentration of simple adsorbates, such as H 2 O, CO, and CH 4 , and lowers ion-induced desorption coefficients by typically three orders of magnitude. The time evolution of the residual gas production observed during hydrogen-glow discharge conditioning of the carbon first-wall structure of the TFTR device is similar to the time evolution observed during hydrogen GDC of the initial first-wall configuration in TFTR, which was primarily stainless steel. Recently, helium GDC has been investigated for several wall-conditioning tasks on a number of tokamaks including TFTR. Helium GDC shows negligible impurity removal with stainless steel walls. For impurity conditioning with carbon walls, helium GDC shows significant desorption of H 2 O, CO, and CO 2 ; however, the total desorption yield is limited to the monolayer range. In addition, helium GDC can be used to displace hydrogen isotopes from the near-surface region of carbon first-walls in order to lower hydrogenic retention and recycling. 38 refs., 6 figs

  20. Effects of dual-ion irradiation on the swelling of SiC/SiC composites

    International Nuclear Information System (INIS)

    Kishimoto, Hirotatsu; Kohyama, Akira; Ozawa, Kazumi; Kondo, Sosuke

    2005-01-01

    Silicon carbide (SiC) matrix composites reinforced by SiC fibers is a candidate structural material of fusion gas-cooled blanket system. From the viewpoint of material designs, it is important to investigate the swelling by irradiation, which results from the accumulation of displacement damages. In the fusion environment, (n, α) nuclear reactions are considered to produce helium gas in SiC. For the microstructural evolution, a dual-ion irradiation method is able to simulate the effects of helium. In the present research, 1.7 MeV tandem and 1 MeV single-end accelerators were used for Si self-ion irradiation and helium implantation, respectively. The average helium over displacement per atom (dpa) ratio in SiC was adjusted to 60 appm/dpa. The irradiation temperature ranged from room temperature to 1400degC. The irradiation-induced swelling was measured by the step height method. Helium that was implanted simultaneously with displacement damages in dual-ion irradiated SiC increased the swelling that was larger than that by single-ion irradiated SiC below 800degC. Since this increase was not observed above 1000degC, the interaction of helium and displacement damages was considered to change above 800degC. In this paper, the microstructural behavior and dimensional stability of SiC materials under the fusion relevant environment are discussed. (author)

  1. Ultrastructural Characterization of the Glomerulopathy in Alport Mice by Helium Ion Scanning Microscopy (HIM).

    Science.gov (United States)

    Tsuji, Kenji; Suleiman, Hani; Miner, Jeffrey H; Daley, James M; Capen, Diane E; Păunescu, Teodor G; Lu, Hua A Jenny

    2017-09-15

    The glomerulus exercises its filtration barrier function by establishing a complex filtration apparatus consisting of podocyte foot processes, glomerular basement membrane and endothelial cells. Disruption of any component of the glomerular filtration barrier leads to glomerular dysfunction, frequently manifested as proteinuria. Ultrastructural studies of the glomerulus by transmission electron microscopy (TEM) and conventional scanning electron microscopy (SEM) have been routinely used to identify and classify various glomerular diseases. Here we report the application of newly developed helium ion scanning microscopy (HIM) to examine the glomerulopathy in a Col4a3 mutant/Alport syndrome mouse model. Our study revealed unprecedented details of glomerular abnormalities in Col4a3 mutants including distorted podocyte cell bodies and disorganized primary processes. Strikingly, we observed abundant filamentous microprojections arising from podocyte cell bodies and processes, and presence of unique bridging processes that connect the primary processes and foot processes in Alport mice. Furthermore, we detected an altered glomerular endothelium with disrupted sub-endothelial integrity. More importantly, we were able to clearly visualize the complex, three-dimensional podocyte and endothelial interface by HIM. Our study demonstrates that HIM provides nanometer resolution to uncover and rediscover critical ultrastructural characteristics of the glomerulopathy in Col4a3 mutant mice.

  2. Observation of the ion resonance instability

    International Nuclear Information System (INIS)

    Peurrung, A.J.; Notte, J.; Fajans, J.

    1993-01-01

    Observation of the ion resonance instability in a pure electron plasma trap contaminated with a small population of ions is reported. The ion population is maintained by ionization of the background gas. The instability causes the plasma to move steadily off-center while undergoing l=1 diocotron oscillations. The observed scaling of the maximum growth point is presented, and the growth rate and its dependence on ion density are discussed. Several aspects of the observed behavior are not in agreement with previous theory but derive from the transitory nature of the ion population

  3. Convoluted dislocation loops induced by helium irradiation in reduced-activation martensitic steel and their impact on mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yao, Z. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada K7L 3N6 (Canada); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Suo, Jinping [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wen, Yongming [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2014-06-01

    Helium irradiation induced dislocation loops in reduced-activation martensitic steels were investigated using transmission electron microscopy. The specimens were irradiated with 100 keV helium ions to 0.8 dpa at 350 °C. Unexpectedly, very large dislocation loops were found, significantly larger than that induced by other types of irradiations under the same dose. Moreover, the large loops were convoluted and formed interesting flower-like shape. The large loops were determined as interstitial type. Loops with the Burgers vectors of b=〈100〉 were only observed. Furthermore, irradiation induced hardening caused by these large loops was observed using the nano-indentation technique.

  4. Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He+ implantation

    Science.gov (United States)

    Chen, Da; Tong, Y.; Li, H.; Wang, J.; Zhao, Y. L.; Hu, Alice; Kai, J. J.

    2018-04-01

    Face-centered cubic (FCC) high-entropy alloys (HEA), as emerging alloys with equal-molar or near equal-molar constituents, show a promising radiation damage resistance under heavy ion bombardment, making them potential for structural material application in next-generation nuclear reactors, but the accumulation of light helium ions, a product of nuclear fission reaction, has not been studied. The present work experimentally studied the helium accumulation and bubble formation at implantation temperatures of 523 K, 573 K and 673 K in a homogenized FCC FeCoNiCr HEA, a HEA showing excellent radiation damage resistance under heavy ion irradiation. The size and population density of helium bubbles in FeCoNiCr samples were quantitatively analyzed through transmission electron microscopy (TEM), and the helium content existing in bubbles were estimated from a high-pressure Equation of State (EOS). We found that the helium diffusion in such condition was dominated by the self-interstitial/He replacement mechanism, and the corresponding activation energy in FeCoNiCr is comparable with the vacancy migration energy in Ni and austenitic stainless steel but only 14.3%, 31.4% and 51.4% of the accumulated helium precipitated into helium bubbles at 523 K, 573 K and 673 K, respectively, smaller than the pure Ni case. Importantly, the small bubble size suggested that FeCoNiCr HEA has a high resistance of helium bubble formation compared with Ni and steels.

  5. A metastable helium trap for atomic collision physics

    International Nuclear Information System (INIS)

    Colla, M.; Gulley, R.; Uhlmann, L.; Hoogerland, M.D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Full text: Metastable helium in the 2 3 S state is an important species for atom optics and atomic collision physics. Because of its large internal energy (20eV), long lifetime (∼8000s) and large collision cross section for a range of processes, metastable helium plays an important role in atmospheric physics, plasma discharges and gas laser physics. We have embarked on a program of studies on atom-atom and electron-atom collision processes involving cold metastable helium. We confine metastable helium atoms in a magneto-optic trap (MOT), which is loaded by a transversely collimated, slowed and 2-D focussed atomic beam. We employ diode laser tuned to the 1083 nm (2 3 S 1 - 2 3 P2 1 ) transition to generate laser cooling forces in both the loading beam and the trap. Approximately 10 million helium atoms are trapped at temperatures of ∼ 1mK. We use phase modulation spectroscopy to measure the trapped atomic density. The cold, trapped atoms can collide to produce either atomic He + or molecular He 2 + ions by Penning Ionisation (PI) or Associative Ionisation (AI). The rate of formation of these ions is dependant upon the detuning of the trapping laser from resonance. A further laser can be used to connect the 2 3 S 1 state to another higher lying excited state, and variation of the probe laser detuning used to measure interatomic collision potential. Electron-atom collision processes are studied using a monochromatic electron beam with a well defined spatial current distribution. The total trap loss due to electron collisions is measured as a function of electron energy. Results will be presented for these atomic collision physics measurements involving cold, trapped metastable helium atoms. Copyright (1999) Australian Optical Society

  6. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    International Nuclear Information System (INIS)

    Kyrie, N. P.; Markov, V. S.; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V.

    2016-01-01

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  7. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    Energy Technology Data Exchange (ETDEWEB)

    Kyrie, N. P., E-mail: kyrie@fpl.gpi.ru; Markov, V. S., E-mail: natalya.kyrie@yandex.ru; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2016-06-15

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  8. Transport of deuterium, tritium and helium in a tokamak

    International Nuclear Information System (INIS)

    Potters, J.H.H.M.

    1984-02-01

    A one-dimensional numerical model for determining steady-state radial profiles of the densities of the particles, including neutrals, in a multispecies toroidal plasma is described. For prescribed temperature profiles, the coupled momentum and particle balances of the ions are solved numerically with a newly developed compact finite difference scheme for a non-equidistant mesh. Neutral densities are obtained by solving the Boltzmann equations, using a collocation method. The model is applied to deuterium-tritium plasmas without and with a helium admixture. For the charged particles, Pfirsch-Schlueter transport, including the highly collisional extension, and either of two anomalous transport models are adopted. For equal densities of deuterons and tritons in the plasma centre, the neutral tritium density in front of the wall is found to be 1.3 to 1.6 times higher than that of deuterium, depending on the plasma density, the temperature profile and the transport model. Secondly, it is found that pumping neutral helium, originating from fusion alpha particles, out of a cold plasma/gas blanket surrounding the hot plasma is not feasible, as the helium gas density, corresponding to a relative abundance of alpha-particles in the plasma core below 10%, is very low. Although depending strongly on the ion transport model and being increased by elastic collisions between neutral helium and charged hydrogen isotopes, the neutral helium enrichment ratio is always much less than unity. (Auth.)

  9. Lithium concentration dependence of implanted helium retention in lithium silicates

    Energy Technology Data Exchange (ETDEWEB)

    Szocs, D.E., E-mail: szocsd@rmki.kfki.h [KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Szilagyi, E.; Bogdan, Cs.; Kotai, E. [KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Horvath, Z.E. [Research Institute for Technical Physics and Materials Science, H-1525 Budapest, P.O. Box 49 (Hungary)

    2010-06-15

    Helium ions of 500 keV were implanted with a fluence of 1.4 x 10{sup 17} ion/cm{sup 2} into various lithium silicates to investigate whether a threshold level of helium retention exists in Li-containing silicate ceramics similar to that found in SiO{sub x} in previous work. The composition and phases of the as prepared lithium silicates were determined by proton backscattering spectrometry (p-BS) and X-ray diffraction (XRD) methods with an average error of {+-}10%. Electrostatic charging of the samples was successfully eliminated by wrapping the samples in Al foil. The amounts of the retained helium within the samples were determined by subtracting the non-implanted spectra from the implanted ones. The experimental results show a threshold in helium retention depending on the Li concentration. Under 20 at.% all He is able to escape from the material; at around 30 at.% nearly half of the He, while over 65 at.% all implanted He is retained. With compositions expressed in SiO{sub 2} volume percentages, a trend similar to those reported of SiO{sub x} previously is found.

  10. High resistivity in InP by helium bombardment

    International Nuclear Information System (INIS)

    Focht, M.W.; Macrander, A.T.; Schwartz, B.; Feldman, L.C.

    1984-01-01

    Helium implants over a fluence range from 10 11 to 10 16 ions/cm 2 , reproducibly form high resistivity regions in both p- and n-type InP. Average resistivities of greater than 10 9 Ω cm for p-type InP and of 10 3 Ω cm for n-type InP are reported. Results are presented of a Monte Carlo simulation of helium bombardment into the compound target InP that yields the mean projected range and the range straggling

  11. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    International Nuclear Information System (INIS)

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit

    2016-01-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed

  12. Control of helium effects in irradiated materials based on theory and experiment

    International Nuclear Information System (INIS)

    Mansur, L.K.; Lee, E.H.; Maziasz, P.J.; Rowcliffe, A.F.

    1986-01-01

    Helium produced in materials by (n,α) transmutation reactions during neutron irradiations or subjected in ion bombardment experiments causes substantial changes in the response to displacement damage. In particular, swelling, phase transformations and embrittlement are strongly affected. Present understanding of the mechanisms underlying these effects is reviewed. Key theoretical relationships describing helium effects on swelling and helium diffusion are described. Experimental data in the areas of helium effects on swelling and precipitation is reviewed with emphasis on critical experiments that have been designed and evaluated in conjunction with theory. Confirmed principles for alloy design to control irradiation performance are described

  13. Ion spectroscopy for improvement of the physical beam model for therapy planning in ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Arico, Giulia

    2016-11-23

    Helium and carbon ions enable a more conformal dose distribution, narrower penumbra and higher relative biological effectiveness than photon and proton radiotherapy. However, they may undergo nuclear fragmentation in the patient tissues and the arising secondary fragments affect the delivered biological dose distributions. Currently there is a lack of data regarding ion nuclear fragmentation. One reason is the large size (up to some meters) of the experimental setups required for the investigations. In this thesis a new method is presented, which makes use of versatile pixelated semiconductor detectors (Timepix). This method is based on tracking of single particles and pattern recognition of their signals in the detectors. Measurements were performed at the HIT facility. The mixed radiation field arising from 430 MeV/u carbon ion beams and 221 MeV/u helium ion beams in water and in PMMA targets was investigated. The amounts of primary (carbon or helium) ions detected behind targets with the same water equivalent thickness (WET) were found to be in agreement within the statistical uncertainties. However, more fragments (differences up to 20% in case of H) and narrower lateral particle distributions were measured behind the PMMA than the water targets. The spectra of ions behind tissue surrogates and corresponding water targets with the same WET were analysed. The results obtained with adipose and inner bone surrogates and with the equivalent water phantoms were found to be consistent within the uncertainties. Significant differences in the results were observed in the case of lung and cortical bone surrogates when compared to the water phantoms. The experimental results were compared to FLUKA Monte Carlo simulations. This comparison could contribute to enhance the ion interaction models currently implemented for {sup 12}C and {sup 4}He ion beams.

  14. Use of double and triple-ion irradiation to study the influence of high levels of helium and hydrogen on void swelling of 8–12% Cr ferritic-martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kupriiyanova, Y.E., E-mail: fomenkoj@kipt.kharkov.ua [National Science Centre Kharkov Institute of Physics and Technology, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Bryk, V.V.; Borodin, O.V.; Kalchenko, A.S.; Voyevodin, V.N.; Tolstolutskaya, G.D. [National Science Centre Kharkov Institute of Physics and Technology, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Garner, F.A. [Radiation Effects Consulting, Richland, WA 99354 (United States)

    2016-01-15

    In accelerator-driven spallation (ADS) devices, some of the structural materials will be exposed to intense fluxes of very high energy protons and neutrons, producing not only displacement damage, but very high levels of helium and hydrogen. Unlike fission flux-spectra where most helium and hydrogen are generated by transmutation in nickel and only secondarily in iron or chromium, gas production in ADS flux-spectra are rather insensitive to alloy composition, such that Fe–Cr base ferritic alloys also generate very large gas levels. While ferritic alloys are known to swell less than austenitic alloys in fission spectra, there is a concern that high gas levels in fusion and especially ADS facilities may strongly accelerate void swelling in ferritic alloys. In this study of void swelling in response to helium and hydrogen generation, irradiation was conducted on three ferritic-martensitic steels using the Electrostatic Accelerator with External Injector (ESUVI) facility that can easily produce any combination of helium to dpa and/or hydrogen to dpa ratios. Irradiation was conducted under single, dual and triple beam modes using 1.8 MeV Cr{sup +3}, 40 keV He{sup +}, and 20 keV H{sup +}. In the first part of this study we investigated the response of dual-phase EP-450 to variations in He/dpa and H/dpa ratio, focusing first on dual ion studies and then triple ion studies, showing that there is a diminishing influence on swelling with increasing total gas content. In the second part we investigated the relative response of three alloys spanning a range of starting microstructure and composition. In addition to observing various synergisms between He and H, the most important conclusion was that the tempered martensite phase, known to lag behind the ferrite phase in swelling in the absence of gases, loses much of its resistance to void nucleation when irradiated at large gas/dpa levels.

  15. STEREO/SEPT observations of upstream particle events: almost monoenergetic ion beams

    Directory of Open Access Journals (Sweden)

    A. Klassen

    2009-05-01

    Full Text Available We present observations of Almost Monoenergetic Ion (AMI events in the energy range of 100–1200 keV detected with the Solar Electron and Proton Telescope (SEPT onboard both STEREO spacecraft. The energy spectrum of AMI events contain 1, 2, or 3 narrow peaks with the relative width at half maximum of 0.1–0.7 and their energy maxima varies for different events from 120 to 1200 keV. These events were detected close to the bow-shock (STEREO-A&B and to the magnetopause at STEREO-B as well as unexpectedly far upstream of the bow-shock and far away from the magnetotail at distances up to 1100 RE (STEREO-B and 1900 RE (STEREO-A. We discuss the origin of AMI events, the connection to the Earth's bow-shock and to the magnetosphere, and the conditions of the interplanetary medium and magnetosphere under which these AMI bursts occur. Evidence that the detected spectral peaks were caused by quasi-monoenergetic beams of protons, helium, and heavier ions are given. Furthermore, we present the spatial distribution of all AMI events from December 2006 until August 2007.

  16. Observation of the initial stage of the laser ablation

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Ohyanagi, Takasumi; Murakami, Kouichi.

    1994-01-01

    The time and space resolved properties of laser ablated carbon particles were measured by X-ray absorption spectroscopy using Laser Plasma X-ray (LPX) as an X-ray source. The energy density of the irradiation laser on the sample was in the range of 0.5-20 J/cm 2 and the time delay was varied between 0 and 120ns. The absorption spectra exhibits several peaks originated from level to level transitions and an intense broad absorption in the energy range of C-K edge. At a delay time of 120ns, the absorption peak of 1s → 2p transition of neutral carbon atom (C 0 ), C - , C + and C 2+ ions were observed. The absorption peak from C 0 is stronger as the probing position is closer to the sample surface and its intensity decreases rapidly with distance from the sample surface. The absorption peak C 2+ ion was observed only at comparatively distant positions from surface. The maximum speed of highly charged ions are faster than that of neutral atoms and negative charged ions. The neutral atom and lower charged ions are emitted from the sample surface even after laser irradiation. The spatial distribution of the laser ablated particles in the localized helium gas environment were measured. In the helium gas environment, the ablation plume is depressed by the helium cloud generated on the top of ablation plume. (author)

  17. The Observational Determination of the Primordial Helium Abundance: a Y2K Status Report

    Science.gov (United States)

    Skillman, Evan D.

    I review observational progress and assess the current state of the determination of the primordial helium abundance, Yp. At present there are two determinations with non-overlapping errors. My impression is that the errors have been under-estimated in both studies. I review recent work on errors assessment and give suggestions for decreasing systematic errors in future studies.

  18. Spectroscopic Study of Recombination in the Early Afterglow of a Helium Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Stevefelt, J

    1968-02-15

    Some properties of a decaying helium plasma have been studied using time resolved spectroscopy and probe diagnostics. The plasma was produced in a pulsed, repetitive, hot cathode discharge in helium at a pressure 11 torr , and the light emitted in the afterglow of the discharge was measured by means of a spectrometer-photomultiplier combination. Single photoelectrons were counted on a scaler during a preset gate time of each discharge cycle, and after a preset number of cycles recorded on punched tape. The spectrometer was calibrated for absolute intensity measurements of the spectral lines of atomic helium. The overall conductance of the positive column was determined by measuring the voltage difference between two probes inserted into the plasma, passing a very small current pulse between the anode and cathode in the afterglow. Heavier current pulses were used to heat the free electrons selectively, thus providing so-called 'afterglow quenching'. From the measured absolute intensities of the helium lines, the number densities of the excited states of helium were calculated. All levels with principal quantum number n {>=} 8 were found to be in near Saha equilibrium with the free electrons at a temperature 1,275 deg K in the early afterglow (15-35 {mu}s after end of the discharge). By measuring the absolute intensities of some of the molecular helium bands, an estimate of the rate of conversion of atomic helium ions into molecular helium ions was obtained. The atomic line radiation, as well as the molecular band radiation, was assumed to result from collisional-radiative recombination of atomic and molecular helium ions, respectively. The rate of recombination down to the metastable level n = 2 was obtained from the measured line intensities. By adding the rate of ambipolar diffusion, calculated from known literature data, quite good agreement with the measured decay rate for the electron density was found. The measured line intensities were also used to calculate

  19. Study of the average charge states of 188Pb and 252,254No ions at the gas-filled separator TASCA

    International Nuclear Information System (INIS)

    Khuyagbaatar, J.; Ackermann, D.; Andersson, L.-L.; Ballof, J.; Brüchle, W.; Düllmann, Ch.E.; Dvorak, J.; Eberhardt, K.; Even, J.; Gorshkov, A.; Graeger, R.; Heßberger, F.-P.; Hild, D.; Hoischen, R.; Jäger, E.; Kindler, B.

    2012-01-01

    The average charge states of 188 Pb and 252,254 No ions in dilute helium gas were measured at the gas-filled recoil separator TASCA. Hydrogen gas was also used as a filling gas for measurements of the average charge state of 254 No. Helium and hydrogen gases at pressures from 0.2 mbar to 2.0 mbar were used. A strong dependence of the average charge state on the pressure of the filling gases was observed for both, helium and hydrogen. The influence of this dependence, classically attributed to the so-called “density effect”, on the performance of TASCA was investigated. The average charge states of 254 No ions were also measured in mixtures of helium and hydrogen gases at low gas pressures around 1.0 mbar. From the experimental results simple expressions for the prediction of average charge states of heavy ions moving in rarefied helium gas, hydrogen gas, and in their mixture were derived.

  20. Electron cyclotron resonance hydrogen/helium plasma characterization and simulation of pumping in tokamaks

    International Nuclear Information System (INIS)

    Outten, C.A.

    1992-01-01

    Electron Cyclotron Resonance (ECR) plasmas have been employed to simulate the plasma conditions at the edge of a tokamak in order to investigate hydrogen/helium uptake in thin metal films. The process of microwave power absorption, important to characterizing the ECR plasma source, was investigated by measuring the electron density and temperature with a Langmuir probe and optical spectroscopy as a function of the magnetic field gradient and incident microwave power. A novel diagnostic, carbon resistance probe, provided a direct measure of the ion energy and fluence while measurements from a Langmuir probe were used for comparison. The Langmuir probe gave a plasma potential minus floating potential of 30 ± 5 eV, in good agreement with the carbon resistance probe result of ion energy ≤ 40 eV. The measured ion energy was consistent with the ion energy predicted from a model based upon divergent magnetic field extraction. Also, based upon physical sputtering of the carbon, the hydrogen fluence rate was determined to be 1 x 10 16 /cm 2 -sec for 50 Watts of incident microwave power. ECR hydrogen/helium plasmas were used to study preferential pumping of helium in candidate materials for tokamak pump-limiters: nickel, vanadium, aluminum, and nickel/aluminum multi-layers. Nickel and vanadium exhibited similar pumping capacities whereas aluminum showed a reduced capacity due to increased sputtering. A helium retention model based upon ion implantation ranges and sputtering rates agreed with the experimental data. A new multilayer/bilayer pumping concept showed improved pumping above that for single element films

  1. Stable Trapping of Multielectron Helium Bubbles in a Paul Trap

    Science.gov (United States)

    Joseph, E. M.; Vadakkumbatt, V.; Pal, A.; Ghosh, A.

    2017-06-01

    In a recent experiment, we have used a linear Paul trap to store and study multielectron bubbles (MEBs) in liquid helium. MEBs have a charge-to-mass ratio (between 10^{-4} and 10^{-2} C/kg) which is several orders of magnitude smaller than ions (between 10^6 and 10^8 C/kg) studied in traditional ion traps. In addition, MEBs experience significant drag force while moving through the liquid. As a result, the experimental parameters for stable trapping of MEBs, such as magnitude and frequency of the applied electric fields, are very different from those used in typical ion trap experiments. The purpose of this paper is to model the motion of MEBs inside a linear Paul trap in liquid helium, determine the range of working parameters of the trap, and compare the results with experiments.

  2. Surface electrons of helium films

    International Nuclear Information System (INIS)

    Studart, N.; Hipolito, O.

    1986-01-01

    Theoretical calculations of some properties of two-dimensional electrons on a liquid helium film adsorbed on a solid substrate are reviewed. We describe the spectrum of electron bound states on bulk helium as well on helium films. The correlational properties, such as the structure factor and correlation energy, are determined as functions of the film thickness for different types of substrates in the framework of a Generalized Random-Phase Approximation. The collective excitations of this system are also described. The results for electrons on the surface of thin films and bulk helium are easily obtained. we examine the electron interaction with the excitations of the liquid helium surface resulting in a new polaron state, which was observed very recently. The ground state energy and the effective mass of this polaron are determined by using the path-integral formalism and unitary-transformation method. Recent speculations about the phase diagram of electrons on the helium film are also discussed. (Author) [pt

  3. The pumping of hydrogen and helium by sputter-ion pumps

    International Nuclear Information System (INIS)

    Welch, K.M.; Pate, D.J.; Todd, R.J.

    1992-01-01

    The pumping of hydrogen in diode and triode sputter-ion pumps is discussed. The type of cathode material used in these pumps is shown to have a significant impact on the effectiveness with which hydrogen is pumped. Examples of this include data for pumps with aluminum and titanium-alloy cathodes. Diode pumps with aluminum cathodes are shown to be no more effective in the pumping of hydrogen than in the pumping of helium. The use of titanium or titanium alloy anodes is also shown to measurably impact on the speed of these pumps at.very low pressures. This stems from the fact that hydrogen is x10 6 more soluble in titanium than in stainless steel. Hydrogen becomes resident in the anodes because of fast neutral burial. Lastly, quantitative data are given for the He speeds and capacities of both noble and conventional diode and triode pumps. The effectiveness of various pump regeneration procedures, subsequent to the pumping of He, is reported.These included bakeout and N 2 glow discharge cleaning. The comparative desorption of He with the subsequent pumping of N 2 is reported on. The N 2 speed of these pumps was used as the benchmark for defining the size of the pumps vs. their respective He speeds

  4. Effects of displacement damage and helium production rates on the nucleation and growth of helium bubbles - Positron annihilation spectroscopy aspects

    Science.gov (United States)

    Krsjak, Vladimir; Degmova, Jarmila; Sojak, Stanislav; Slugen, Vladimir

    2018-02-01

    Fe-12 wt% Cr model alloy samples were implanted by 250 keV He2+ ions to three different fluencies (3 × 1017, 9 × 1017 and 1.5 × 1018 cm-2) at T steel samples [1] irradiated in the frame of a two-years irradiation program of the Swiss Spallation Neutron Source. Bi-modal defect distribution represented by two defect components in positron lifetime spectrum reveals two distinct helium bubbles growth mechanisms. While at the lower helium production rate of the spallation environment, the bubbles grow primarily by migration and coalescence, at the high production rates of helium in the implanted samples, the results indicate this growth is driven by Ostwald ripening mechanism. A competitive growth process via emission of interstitial atoms (clusters) is discussed in terms of low-temperature He implantations.

  5. Helium 3 precipitation in AISI 316L stainless steel induced by radioactive decay of tritium: Microstructural study of helium bubble precipitation

    International Nuclear Information System (INIS)

    Brass, A.M.; Chene, J.

    1994-01-01

    The development of the thermonuclear technology has given rise to a renewed interest in the study of the behavior of helium in metals. A great amount of work is still required for the understanding of the role of helium on the mechanical properties of structural materials for fusion technology, especially austenitic stainless steels. This article deals with the study of the influence of thermomechanical heat treatments, aging conditions (temperature and time), and helium concentration of helium bubble precipitation in a 316L austenitic steel. Helium was generated by the radioactive decay of tritium (tritium trick). Helium bubbles impede the grain growth in 316L steel aged at 1,373 K and also the recrystallization reaction at this temperature if cold working is performed prior to aging. Transmission electron microscopy (TEM) observations indicated a weak helium precipitation at 1,073 and 1,223 K, presumably due to the presence of trapping sites for tritium, and no bubble growth after aging up to 100 hours. Precipitation sites are mainly dislocations in the matrix at 1,073 K and grain boundaries and individual dislocations in the matrix at 1,223 K. The large bubble size (50 nm) observed at 1,373 K, even for short aging times (0.083), can partly be attributed to bubble dragging by dislocations toward the grain boundaries. Cold deformation prior to aging leads to a larger bubble size due to growth enhancement during recrystallization. Decreasing the helium content leads to a smaller helium bubble size and density. Tritium trapping at helium bubbles may favor helium 3 accumulation on defects such as grain boundaries, as observed by tritium autoradiography

  6. Ion Acceleration by Double Layers with Multi-Component Ion Species

    Science.gov (United States)

    Good, Timothy; Aguirre, Evan; Scime, Earl; West Virginia University Team

    2017-10-01

    Current-free double layers (CFDL) models have been proposed to explain observations of magnetic field-aligned ion acceleration in plasmas expanding into divergent magnetic field regions. More recently, experimental studies of the Bohm sheath criterion in multiple ion species plasma reveal an equilibration of Bohm speeds at the sheath-presheath boundary for a grounded plate in a multipole-confined filament discharge. We aim to test this ion velocity effect for CFDL acceleration. We report high resolution ion velocity distribution function (IVDF) measurements using laser induced fluorescence downstream of a CFDL in a helicon plasma. Combinations of argon-helium, argon-krypton, and argon-xenon gases are ionized and measurements of argon or xenon IVDFs are investigated to determine whether ion acceleration is enhanced (or diminished) by the presence of lighter (or heavier) ions in the mix. We find that the predominant effect is a reduction of ion acceleration consistent with increased drag arising from increased gas pressure under all conditions, including constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in these expanding plasmas. Department of Physics, Gettysburg College.

  7. Atmospheric structure and helium abundance on Saturn from Cassini/UVIS and CIRS observations

    Science.gov (United States)

    Koskinen, T. T.; Guerlet, S.

    2018-06-01

    We combine measurements from stellar occultations observed by the Cassini Ultraviolet Imaging Spectrograph (UVIS) and limb scans observed by the Composite Infrared Spectrometer (CIRS) to create empirical atmospheric structure models for Saturn corresponding to the locations probed by the occultations. The results cover multiple locations at low to mid-latitudes between the spring of 2005 and the fall of 2015. We connect the temperature-pressure (T-P) profiles retrieved from the CIRS limb scans in the stratosphere to the T-P profiles in the thermosphere retrieved from the UVIS occultations. We calculate the altitudes corresponding to the pressure levels in each case based on our best fit composition model that includes H2, He, CH4 and upper limits on H. We match the altitude structure to the density profile in the thermosphere that is retrieved from the occultations. Our models depend on the abundance of helium and we derive a volume mixing ratio of 11 ± 2% for helium in the lower atmosphere based on a statistical analysis of the values derived for 32 different occultation locations. We also derive the mean temperature and methane profiles in the upper atmosphere and constrain their variability. Our results are consistent with enhanced heating at the polar auroral region and a dynamically active upper atmosphere.

  8. Irradiation hardening of Fe–9Cr-based alloys and ODS Eurofer: Effect of helium implantation and iron-ion irradiation at 300 °C including sequence effects

    Energy Technology Data Exchange (ETDEWEB)

    Heintze, C. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Bergner, F., E-mail: f.bergner@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Hernández-Mayoral, M. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Kögler, R.; Müller, G.; Ulbricht, A. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany)

    2016-03-15

    Single-beam, dual-beam and sequential iron- and/or helium-ion irradiations are widely accepted to emulate more application-relevant but hardly accessible irradiation conditions of generation-IV fission and fusion candidate materials for certain purposes such as material pre-selection, identification of basic mechanisms or model calibration. However, systematic investigations of sequence effects capable to critically question individual approaches are largely missing. In the present study, sequence effects of iron-ion irradiations at 300 °C up to 5 dpa and helium implantations up to 100 appm He are investigated by means of post-irradiation nanoindentation of an Fe9%Cr model alloy, ferritic/martensitic 9%Cr steels T91 and Eurofer97 and oxide dispersion strengthened (ODS) Eurofer. Different types of sequence effects, both synergistic and antagonistic, are identified and tentative interpretations are suggested. It is found that different accelerated irradiation approaches have a great impact on the mechanical hardening. This stresses the importance of experimental design in attempts to emulate in-reactor conditions. - Highlights: • The single-beam He-ion implantations do not give rise to significant hardening. • The single-beam Fe-ion irradiations give rise to significant hardening, ΔH{sub Fe}. • Hardening due to sequential He-/Fe-ion irradiation is smaller than ΔH{sub Fe}. • Hardening due to simultaneous He-/Fe-ion irradiation is larger than ΔH{sub Fe}. • The He–Fe synergism for ODS-Eurofer is less pronounced than for Eurofer97.

  9. On the Scattering of the Electron off the Hydrogen Atom and the Helium Ion Below and Above the Ionization Threshold: Temkin–Poet Model

    International Nuclear Information System (INIS)

    Yarevsky, E.; Yakovlev, S. L.; Volkov, M. V.; Elander, N.

    2014-01-01

    We generalize here the splitting approach to the long range (Coulomb) interaction for the three body scattering problem. With this approach, the exterior complex rotation technique can be applied for systems with asymptotic Coulomb interaction. We illustrate the method with calculations of the electron scattering on the hydrogen atom and positive helium ion in the frame of the Temkin–Poet model. (author)

  10. On the Scattering of the Electron off the Hydrogen Atom and the Helium Ion Below and Above the Ionization Threshold: Temkin-Poet Model

    Science.gov (United States)

    Yarevsky, E.; Yakovlev, S. L.; Elander, N.; Volkov, M. V.

    2014-08-01

    We generalize here the splitting approach to the long range (Coulomb) interaction for the three body scattering problem. With this approach, the exterior complex rotation technique can be applied for systems with asymptotic Coulomb interaction. We illustrate the method with calculations of the electron scattering on the hydrogen atom and positive helium ion in the frame of the Temkin-Poet model.

  11. Helium diffusion in nickel at high temperatures

    International Nuclear Information System (INIS)

    Philipps, V.

    1980-09-01

    Helium has been implanted at certain temperatures between 800 and 1250 0 C into single and polycrystalline Ni-samples with implantation depths between 15 and 90 μm. Simultaneously the helium reemission from the sample is measured by a mass-spectrometer. It has been shown that the time dependence of the observed reemission rate is governed by volume diffusion of the helium. Measuring this time dependence as a function of temperature the helium diffusion constant has been determined. The He-diffusion is interpreted as a interstitial diffusion hindered by thermal vacancies. Depending on the implantation depth more or less of the implanted helium remains in the sample and forms large helium bubbles. (orig./GSCH)

  12. Utilizing Neon Ion Microscope for GaSb nanopatterning studies: Nanostructure formation and comparison with low energy nanopatterning

    International Nuclear Information System (INIS)

    El-Atwani, Osman; Huynh, Chuong; Norris, Scott

    2016-01-01

    Graphical abstract: - Highlights: • Carl Zeiss-neon ion microscope was used to irradiated GaSb surfaces with 5 keV neon. • In-situ imaging using helium beam and ex-situ imaging using an electron beam were performed. • Differences in imaging output between the helium and the electron beam were observed. • Transition occurred in the nanostructure type and formation mechanism as the energy is changed from 2 to 5 keV. • Collision cascade simulations suggested a transition toward bulk-driven mechanisms. - Abstract: Low energy irradiation of GaSb surfaces has been shown to lead to nanopillar formation. Being performed ex-situ, controlling the parameters of the ion beam for controlled nanopattern formation is challenging. While mainly utilized for imaging and cutting purposes, the development of multibeam (helium/neon) ion microscopes has opened the path towards the use of these microscopes for in-situ ion irradiation and nanopatterning studies. In this study, in-situ irradiation (neon ions)/imaging (helium ions) of GaSb surfaces is performed using Carl Zeiss-neon ion microscope at low energies (5 and 10 keV). Imaging with helium ions, nanodots were shown to form at particular fluences after which are smoothed. Ex-situ imaging with SEM showed nanopore formation of size controlled by the ion energy and fluence. Compared to lower energy ex-situ neon ion irradiation at similar fluxes, where nanopillars are formed, the results demonstrated a transition in the nanostructure type and formation mechanism as the energy is changed from 2 to 5 keV. Simulations show an increase in the ballistic diffusion and a decrease in the strength of phase separation as a function of ion energy in agreement with the suppression of nanopillar formation at higher energies. Collision cascade simulations suggest a transition toward bulk-driven mechanisms.

  13. Utilizing Neon Ion Microscope for GaSb nanopatterning studies: Nanostructure formation and comparison with low energy nanopatterning

    Energy Technology Data Exchange (ETDEWEB)

    El-Atwani, Osman, E-mail: oelatwan25@gmail.com [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Huynh, Chuong [Carl Zeiss Microscopy, LLC, One Corporation Way, Peabody, MA 01960 (United States); Norris, Scott [Department of Mathematics, Southern Methodist University, Dallas, TX 75275 (United States)

    2016-05-01

    Graphical abstract: - Highlights: • Carl Zeiss-neon ion microscope was used to irradiated GaSb surfaces with 5 keV neon. • In-situ imaging using helium beam and ex-situ imaging using an electron beam were performed. • Differences in imaging output between the helium and the electron beam were observed. • Transition occurred in the nanostructure type and formation mechanism as the energy is changed from 2 to 5 keV. • Collision cascade simulations suggested a transition toward bulk-driven mechanisms. - Abstract: Low energy irradiation of GaSb surfaces has been shown to lead to nanopillar formation. Being performed ex-situ, controlling the parameters of the ion beam for controlled nanopattern formation is challenging. While mainly utilized for imaging and cutting purposes, the development of multibeam (helium/neon) ion microscopes has opened the path towards the use of these microscopes for in-situ ion irradiation and nanopatterning studies. In this study, in-situ irradiation (neon ions)/imaging (helium ions) of GaSb surfaces is performed using Carl Zeiss-neon ion microscope at low energies (5 and 10 keV). Imaging with helium ions, nanodots were shown to form at particular fluences after which are smoothed. Ex-situ imaging with SEM showed nanopore formation of size controlled by the ion energy and fluence. Compared to lower energy ex-situ neon ion irradiation at similar fluxes, where nanopillars are formed, the results demonstrated a transition in the nanostructure type and formation mechanism as the energy is changed from 2 to 5 keV. Simulations show an increase in the ballistic diffusion and a decrease in the strength of phase separation as a function of ion energy in agreement with the suppression of nanopillar formation at higher energies. Collision cascade simulations suggest a transition toward bulk-driven mechanisms.

  14. Photoionization of helium dimers

    International Nuclear Information System (INIS)

    Havermeier, Tilo

    2010-01-01

    The helium dimer is one of the most weakly bound systems in the universe. This makes it an interesting quantum mechanical object for investigation. These Van der Waals Clusters can be produced in an expansion of a cryogenic gas jet through a small nozzle into vacuum. In the present experiment we examine the interaction of He dimers with synchrotron radiation at an energy range from 64 to 78 eV. We observed different pathways leading to single ionization of both He atoms of the dimer compound. This two close standing ions begin now to dissociate in cause of their coulomb potential. All charged fragments were detected in coincidence with a COLTRIMS system. Especially Interatomic Coulombic Decay (ICD) and the two step process (TS1) were clearly identified. Furthermore a distribution of the internuclear distance was obtained from the measured Kinetic Energy Release (KER). (orig.)

  15. Electronic stopping power of slow H{sup +} and He{sup 2+} ions in CdTe from first principle

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chang-kai [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Mao, Fei [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China); Fu, Yan-long; Liao, Bin [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ouyang, Xiao-ping [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); Zhang, Feng-Shou, E-mail: fszhang@bnu.edu.cn [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000 (China)

    2017-02-01

    We study through time-dependent density-functional theory (TDDFT) method the electronic stopping power of low-energy protons and helium ions moving through CdTe under the condition of channeling. The agreement between our calculated results and SRIM data roughly up to the stopping maximum for the proton along the 〈1 0 0〉 and 〈1 1 1〉 crystalline axes and for helium ions along 〈1 0 0〉 crystalline axis is satisfactory, which can be explained by the energy transfer mechanism that electron–hole excitation caused by ions in the solid. However, in the channel of 〈1 1 1〉 for helium ions, a transition between two velocities regimes is observed at about v = 0.4 a.u. This may be an indication of extra energy loss channel beyond the electron–hole excitation. To analyze it, we calculate the amount of electrons captured by the moving projectiles in real time. It is found that the soft transition between two velocities regimes can be attributed to the charge transfer and charge resonance between helium ion and host atoms of CdTe crystal, which are considered as additional energy loss channels.

  16. Bed system performance in helium circulation mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yean Jin; Jung, Kwang Jin; Ahn, Do Hee; Chung, Hong Suk [UST, Daejeon (Korea, Republic of); Kang, Hee Suk [KAERI, Daejeon (Korea, Republic of); Yun, Sei Hun [NFRI, Deajeon (Korea, Republic of)

    2016-05-15

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, We have conducted an experiment for storing hydrogen to depleted uranium and zirconium cobalt. The helium blanket effect has been observed in experiments using metal hydrides. The collapse of the hydrogen isotopes are accompanied by the decay heat and helium-3. Helium-3 dramatically reduces the hydrogen isotope storage capacity by surrounding the metal. This phenomenon is called a helium blanket effect. In addition the authors are working on the recovery and removal techniques of helium-3. In this paper, we discuss the equipment used to test the helium blanket effect and the results of a helium circulation experiment. The helium-3 produced surrounds the storage material surface and thus disturbs the reaction of the storage material and the hydrogen isotope. Even if the amount of helium-3 is small, the storage capacity of the SDS bed significantly drops. This phenomenon is the helium blanket effect. To resolve this phenomenon, a circulating loop was introduced. Using a circulating system, helium can be separated from the storage material. We made a helium loop that includes a ZrCo bed. Then using a metal bellows pump, we tested the helium circulation.

  17. Effective implantation of light emitting centers by plasma immersion ion implantation and focused ion beam methods into nanosized diamond

    International Nuclear Information System (INIS)

    Himics, L.; Tóth, S.; Veres, M.; Tóth, A.; Koós, M.

    2015-01-01

    Highlights: • Characteristics of nitrogen implantation of nanodiamond using two low ion energy ion implantation methods were compared. • Formation of complex nitrogen-related defect centers was promoted by subsequent helium implantation and heat treatments. • Depth profiles of the implanted ions and the generated vacancies were determined using SRIM calculations. • The presence of nitrogen impurity was demonstrated by Fourier-transform infrared spectroscopic measurements. • A new nitrogen related band was detected in the photoluminescence spectrum of the implanted samples that was attributed to the N3 color center in nanodiamond. - Abstract: Two different implantation techniques, plasma immersion ion implantation and focused ion beam, were used to introduce nitrogen ions into detonation nanodiamond crystals with the aim to create nitrogen-vacancy related optically active centers of light emission in near UV region. Previously samples were subjected to a defect creation process by helium irradiation in both cases. Heat treatments at different temperatures (750 °C, 450 °C) were applied in order to initiate the formation of nitrogen-vacancy related complex centers and to decrease the sp 2 carbon content formed under different treatments. As a result, a relatively narrow and intensive emission band with fine structure at 2.98, 2.83 and 2.71 eV photon energies was observed in the light emission spectrum. It was assigned to the N3 complex defect center. The formation of this defect center can be expected by taking into account the relatively high dose of implanted nitrogen ions and the overlapped depth distribution of vacancies and nitrogen. The calculated depth profiles distribution for both implanted nitrogen and helium by SRIM simulation support this expectation

  18. Research and development of groundwater dating (Part 3). A proposal of determination method for diffusion coefficients of dissolved helium in rock and applicability of estimation of diffusion coefficients using anions

    International Nuclear Information System (INIS)

    Higashihara, Tomohiro; Nakata, Kotaro; Hasegawa, Takuma

    2006-01-01

    Dissolved helium in groundwater is one of the most suitable tracers for the groundwater dating. The diffusion coefficients in aquitard and aquifer were important to estimate an accumulation of the helium in groundwater. However, few papers have been reported about the diffusion of helium in rocks. In this study, effective diffusion coefficients of the helium in sandstones and mudstone were determined using a through-diffusion method. The effective diffusion coefficients of helium were in the range of 1.5 x 10 -10 to 1.1 x 10 -9 m 2 s -1 and larger than those of Br - ions. Geometrical factors for the diffusion of helium were also larger than those for the diffusion of Br - ions. This fact suggests that diffusion path of helium in the rocks is not more restricted than that of Br - ions. The diffusion coefficients of helium were also estimated using the diffusion coefficient of helium in bulk water and formation factors for diffusion of Br - ions. The estimated diffusion coefficients of helium were larger than the effective diffusion coefficients. It is clarified that the effective diffusion coefficients of helium are underestimated by the estimation method using anions. (author)

  19. Helium-plasma heating with a powerful proton beam for spectroscopic applications

    International Nuclear Information System (INIS)

    Arteev, M.S.; Kuznetsov, A.A.; Sulakshin, S.S.

    1986-01-01

    In this work the authors consider an ion gun which was especially developed for producing a gas plasma and report on the details of an experiment on (ELLIGIBLE) plasma spectroscopy. The current density of the proton beam was measured in the experiments on the axis of the gas tube with the aid of a collimating current collector with the wave impedance of a 75 omega cable. The ion gun was tested in the excitation of a helium plasma. Extremely pure helium with a pressure P = (0.2-1).10 5 Pa was employed. The proton gun which was developed satifies the requirements of spectroscopic plasma experiments and makes it possible to excite a plasma of inert gases under atmospheric pressure over a length of up to 100 cm, with the plasma having high homogeneity and stability. They obtained first results of spectroscopic measurements of the electron concentration of a helium plasma and the results agree with the theoretical predictions

  20. Genetic changes in Mammalian cells transformed by helium cells

    Energy Technology Data Exchange (ETDEWEB)

    Durante, M.; Grossi, G. (Naples Univ. (Italy). Dipt. di Scienze Fisiche); Yang, T.C.; Roots, R. (Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    Midterm Syrian Hamster embryo (SHE) cells were employed to study high LET-radiation induced tumorigenesis. Normal SHE cells (secondary passage) were irradiated with accelerated helium ions at an incident energy of 22 MeV/u (9--10 keV/{mu}m). Transformed clones were isolated after growth in soft agar of cells obtained from the foci of the initial monolayer plated postirradiation. To study the progression process of malignant transformation, the transformed clones were followed by monolayer subculturing for prolonged periods of time. Subsequently, neoplasia tests in nude mice were done. In this work, however, we have focused on karyotypic changes in the banding patterns of the chromosomes during the early part of the progressive process of cell transformation for helium ion-induced transformed cells. 26 refs., 5 figs., 2 tabs.

  1. Explosive helium burning in white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Khokhlov, A.M. (AN SSSR, Moscow. Astronomicheskij Sovet)

    1984-04-01

    Helium burning kinetics in white dwarfs has been considered at constant temperatures T >= 10/sup 9/ K and densities rho >10/sup 5/ g/cm/sup 3/. It is found, that helium detonation in white dwarfs does not lead to formation of light (A < 56) elements. Thus, helium white dwarf model for supernova 1 is inconsistent with observations.

  2. Calculated L-shell x-ray line intensities for proton and helium ion impact

    International Nuclear Information System (INIS)

    Cohen, D.D.; Harrigan, M.

    1986-01-01

    Theoretical L-shell X-ray line intensities have been calculated for proton and helium bombardment of atoms from nickel (Z 2 = 28) to curium (Z 2 = 96). The ionization cross sections for the three L subshells were obtained from the recent calculations by Cohen and Harrigan in the ECPSSR theory, which uses the plane-wave Born approximation (PWBA) with corrections for energy loss (E), Coulomb deflection (C), perturbed-stationary-state (PSS), and relativistic (R) effects. The fluorescence yields and Coster-Kronig transition probabilities were taken from M. O. Krause (Phys. Chem. Ref. Data 8, 307 (1979)) and the L-subshell emission rates from S. I. Salem, S. L. Panosian, and R. A. Krause (Atomic Data and Nuclear Data Tables 14, 91 (1974)). The line intensities Ll, Lα, Leta, Lβ 1 to Lβ 6 , Lβ/sub 9,10/, and Lγ 1 to Lgg 6 are tabulated for selected ion energies from 0.2 to 10 MeV

  3. Ultraviolet transitions from the 2 3P states of helium-like argon

    International Nuclear Information System (INIS)

    Davis, W.A.

    1976-09-01

    This thesis describes the observation of two allowed electric dipole transitions in helium-like argon. The transitions are 2 3 P 2 --2 3 S 1 and 2 3 P 0 --2 3 S 1 . These transitions were observed by using a vacuum ultraviolet monochromator to collect photons from decays-in-flight of a beam-foil excited argon ion beam. The ion beam was generated by the Lawrence Berkeley Laboratory heavy ion linear accelerator (SuperHILAC) and had a beam energy of 138 MeV with a charge current of roughly 500 nanoamperes. After initial observation, the lifetimes and absolute wavelengths of these transitions were measured. The results are tau(2 3 P 2 ) = 1.62 +- 0.08 X 10 -9 sec, tau(2 3 P 0 ) = 4.87 +- 0.44 X 10 -9 sec, lambda(2 3 P 2 --2 3 S 1 ) = 560.2 +- 0.9A, and lambda(2 3 P 0 --2 3 S 1 ) = 660.7 +- 1.1A. This work has demonstrated the observability of these transitions in high-Z ions using beam-foil excitation. Employing a new grazing-incidence spectrometer this work will be pursued in ions of higher Z. Accuracies of at least one part in a thousand should be attainable and will probe the radiative contributions to these transitions to better than 10 percent in a previously unstudied region

  4. Krypton and helium irradiation damage in neodymium-zirconolite

    International Nuclear Information System (INIS)

    Gilbert, M.; Davoisne, C.; Stennett, M.; Hyatt, N.; Peng, N.; Jeynes, C.; Lee, W.E.

    2011-01-01

    A leading candidate for the immobilisation of actinides, zirconolite's suitability as a potential ceramic host for plutonium disposition, both in storage and geological disposal, has been the subject of much research. One key aim of this study is to understand the effects of radiation damage and noble gas accommodation within the zirconolite material. To this end, a series of ex situ irradiations have been performed on polycrystalline (Ca 0.8 Nd 0.2 )Zr(Ti 1.8 Al 0.2 )O 7 zirconolite samples. Zirconolite samples, doped with Nd 3+ (as a Pu surrogate) on the Ca-site and charge-balanced by substituting Al 3+ onto the Ti-site, were irradiated with 36 Kr + (2 MeV) ions at fluences of 1 x 10 14 and 5 x 10 15 cm -2 and 4 He + (200 keV) ions at fluences of 1 x 10 14 , 5 x 10 15 and 1 x 10 17 cm -2 to simulate the impact of alpha decay on the microstructure. Microstructural analysis revealed no damage present at the lower Kr + fluence, but that the higher 36 Kr + fluence rendered the zirconolite completely amorphous. Similarly, evidence of helium accumulation was only seen at the highest 4 He + fluence (1 x 10 17 cm -2 ). Monte Carlo simulations using the TRIM code predict the highest concentration of helium accumulating at a depth of 720 nm, in good agreement with the experimental observations.

  5. Experimental mechanistic investigation of the nanostructuring of tungsten with low energy helium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fiflis, P., E-mail: fiflis1@illinois.edu; Connolly, N.; Ruzic, D.N.

    2016-12-15

    Helium ion bombardment of tungsten at temperatures between approximately one third and one half of its melting point has shown growth of nanostructures colloquially referred to as “fuzz”. The nanostructures take the form of thin tendrils of diameter about 30 nm and grow out of the bulk material. Tungsten will and does compose one of the key materials for plasma facing components (PFCs) in fusion reactors. The formation of nanostructured fuzz layers on PFCs would be detrimental to the performance of the reactor, and must therefore be avoided. Previous experiments have shown evidence that tungsten fuzz is initially grown by loop punching of helium bubbles created in the bulk. However, once the tendrils grow to sufficient length, the tendrils should intercept the entire helium flux, halting the production of fuzz. Fuzz continues to grow though. To increase the understanding of the mechanisms of tungsten fuzz formation, and thereby aid the avoidance of its production, a series of tests were performed to examine the validity of several theories regarding later stage tungsten fuzz growth. Tests showed that the fuzz formation was dependent solely on the bombardment of helium ions, and not on electric fields, or adatom diffusion. Experiments employing a tungsten coated molybdenum sample indicate the presence of a strong mixing layer and strongly suggest that tungsten fuzz growth continues to occur from the bottom up even as the tendrils grow in size. Tests also show a similarity between different metals exposed to helium ion fluxes where the ratio of bubble diameter to tendril diameter is constant.

  6. Experimental mechanistic investigation of the nanostructuring of tungsten with low energy helium plasmas

    International Nuclear Information System (INIS)

    Fiflis, P.; Connolly, N.; Ruzic, D.N.

    2016-01-01

    Helium ion bombardment of tungsten at temperatures between approximately one third and one half of its melting point has shown growth of nanostructures colloquially referred to as “fuzz”. The nanostructures take the form of thin tendrils of diameter about 30 nm and grow out of the bulk material. Tungsten will and does compose one of the key materials for plasma facing components (PFCs) in fusion reactors. The formation of nanostructured fuzz layers on PFCs would be detrimental to the performance of the reactor, and must therefore be avoided. Previous experiments have shown evidence that tungsten fuzz is initially grown by loop punching of helium bubbles created in the bulk. However, once the tendrils grow to sufficient length, the tendrils should intercept the entire helium flux, halting the production of fuzz. Fuzz continues to grow though. To increase the understanding of the mechanisms of tungsten fuzz formation, and thereby aid the avoidance of its production, a series of tests were performed to examine the validity of several theories regarding later stage tungsten fuzz growth. Tests showed that the fuzz formation was dependent solely on the bombardment of helium ions, and not on electric fields, or adatom diffusion. Experiments employing a tungsten coated molybdenum sample indicate the presence of a strong mixing layer and strongly suggest that tungsten fuzz growth continues to occur from the bottom up even as the tendrils grow in size. Tests also show a similarity between different metals exposed to helium ion fluxes where the ratio of bubble diameter to tendril diameter is constant.

  7. Femtosecond spectroscopy on alkali-doped helium nanodroplets; Femtosekundenspektroskopie an alkalidotierten Helium-Nanotroepfchen

    Energy Technology Data Exchange (ETDEWEB)

    Claas, P.

    2006-01-15

    In the present thesis first studies on the short-time dynamics in alkali dimers and microclusters, which were bound on the surface of superfluid helium droplets, were presented. The experiments comprehended pump-probe measurements on the fs scale on the vibration dynamics on the dimers and on the fragmentation dynamics on the clusters. Generally by the studies it was shown that such extremely short slopes can also be observed on helium droplets by means of the femtosecond spectroscopy.

  8. Influence of displacement damage on deuterium and helium retention in austenitic and ferritic-martensitic alloys considered for ADS service

    Energy Technology Data Exchange (ETDEWEB)

    Voyevodin, V.N.; Karpov, S.A.; Kopanets, I.E.; Ruzhytskyi, V.V. [National Science Center “Kharkov Institute of Physics and Technology” Kharkov, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Tolstolutskaya, G.D., E-mail: g.d.t@kipt.kharkov.ua [National Science Center “Kharkov Institute of Physics and Technology” Kharkov, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Garner, F.A. [Radiation Effects Consulting, Richland, WA (United States)

    2016-01-15

    The behavior of ion-implanted hydrogen (deuterium) and helium in austenitic 18Cr10NiTi stainless steel, EI-852 ferritic steel and ferritic/martensitic steel EP-450 and their interaction with displacement damage were investigated. Energetic argon irradiation was used to produce displacement damage and bubble formation to simulate nuclear power environments. The influence of damage morphology and the features of radiation-induced defects on deuterium and helium trapping in structural alloys was studied using ion implantation, the nuclear reaction D({sup 3}He,p){sup 4}He, thermal desorption spectrometry and transmission electron microscopy. It was found in the case of helium irradiation that various kinds of helium-radiation defect complexes are formed in the implanted layer that lead to a more complicated spectra of thermal desorption. Additional small changes in the helium spectra after irradiation with argon ions to a dose of ≤25 dpa show that the binding energy of helium with these traps is weakly dependent on the displacement damage. It was established that retention of deuterium in ferritic and ferritic-martensitic alloys is three times less than in austenitic steel at damage of ∼1 dpa. The retention of deuterium in steels is strongly enhanced by presence of radiation damages created by argon ion irradiation, with a shift in the hydrogen release temperature interval of 200 K to higher temperature. At elevated temperatures of irradiation the efficiency of deuterium trapping is reduced by two orders of magnitude.

  9. Liquid helium plant in Dubna

    International Nuclear Information System (INIS)

    Agapov, N.N.; Baldin, A.M.; Kovalenko, A.D.

    1995-01-01

    The liquid-helium cooling capacity installed at the Laboratory of High Energies is about 5 kw at a 4.5 K temperature level. It is provided with four industrial helium liquefiers of 1.6 kw/4.5 K each. They have been made by the Russian enterprise NPO GELYMASH and upgraded by the specialists of the Laboratory. The first one was put into operation in 1980, the two others in 1991, and the last one is under commissioning. The development of the LHE cryoplant was concerned with the construction of the new superconducting accelerator Nuclotron aimed to accelerate nuclei and heavy ions up to energies of 6 GeV/u. The first test run at the Nuclotron was carried out in March 1993, and the total running time has been about 2000 hours up to now. Since 1992 the cryoplant has been intensively used by the users outside the Laboratory. More than a million liters of liquid helium was provided in 1993 for such users. The reliability of the cryoplant system was as high as 98 percent for 4500 hours of operation in 1993-1994. 7 refs., 4 figs., 1 tab

  10. Evaluation of hardening by ion irradiation in molybdenum using nanoindentation techniques

    International Nuclear Information System (INIS)

    Iwakiri, Hirotomi; Watanabe, Hideo; Yoshida, Naoaki

    1997-01-01

    As a part of fundamental research on interaction of plasma and wall, some model experiments on loading of particles such as He, H and so forth suffered by plasma facing material were conducted for Mo in high Z material. As an evaluation method for it, nanoindentation technique was proposed. By this method, the hardness evaluation in surface neighboring damage range was conducted. As a result, in the helium irradiated materials, sufficient hardening was observed even at low dpa range impossible to recognize hardening on heavy ion and deuterium irradiated materials, and extreme hardening was established by formation of helium bubble at high dpa region. Furthermore, in the helium irradiated materials, recovery of hardening could not be observed even for annealed materials at 1173 K for 1 hr after irradiation. From such results, hardening promotion work due to helium and extreme thermal stability of the formed defects were elucidated. (B.K.)

  11. Assessment of potential advantages of relevant ions for particle therapy: A model based study

    Energy Technology Data Exchange (ETDEWEB)

    Grün, Rebecca, E-mail: r.gruen@gsi.de [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291 (Germany); Institute of Medical Physics and Radiation Protection, University of Applied Sciences Gießen, Gießen 35390 (Germany); Medical Faculty of Philipps-University Marburg, Marburg 35032 (Germany); Friedrich, Thomas; Krämer, Michael; Scholz, Michael [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291 (Germany); Zink, Klemens [Institute of Medical Physics and Radiation Protection, University of Applied Sciences Gießen, Gießen 35390, Germany and Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg 35043 (Germany); Durante, Marco [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291, Germany and Department of Condensed Matter Physics, Darmstadt University of Technology, Darmstadt 64289 (Germany); Engenhart-Cabillic, Rita [Medical Faculty of Philipps-University Marburg, Marburg 35032, Germany and Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg 35043 (Germany)

    2015-02-15

    Purpose: Different ion types offer different physical and biological advantages for therapeutic applications. The purpose of this work is to assess the advantages of the most commonly used ions in particle therapy, i.e., carbon ({sup 12}C), helium ({sup 4}He), and protons ({sup 1}H) for different treatment scenarios. Methods: A treatment planning analysis based on idealized target geometries was performed using the treatment planning software TRiP98. For the prediction of the relative biological effectiveness (RBE) that is required for biological optimization in treatment planning the local effect model (LEM IV) was used. To compare the three ion types, the peak-to-entrance ratio (PER) was determined for the physical dose (PER{sub PHY} {sub S}), the RBE (PER{sub RBE}), and the RBE-weighted dose (PER{sub BIO}) resulting for different dose-levels, field configurations, and tissue types. Further, the dose contribution to artificial organs at risk (OAR) was assessed and a comparison of the dose distribution for the different ion types was performed for a patient with chordoma of the skull base. Results: The study showed that the advantages of the ions depend on the physical and biological properties and the interplay of both. In the case of protons, the consideration of a variable RBE instead of the clinically applied generic RBE of 1.1 indicates an advantage in terms of an increased PER{sub RBE} for the analyzed configurations. Due to the fact that protons show a somewhat better PER{sub PHY} {sub S} compared to helium and carbon ions whereas helium shows a higher PER{sub RBE} compared to protons, both protons and helium ions show a similar RBE-weighted dose distribution. Carbon ions show the largest variation of the PER{sub RBE} with tissue type and a benefit for radioresistant tumor types due to their higher LET. Furthermore, in the case of a two-field irradiation, an additional gain in terms of PER{sub BIO} is observed when using an orthogonal field configuration

  12. The Chalk River helium jet and skimmer system

    International Nuclear Information System (INIS)

    Schmeing, H.; Koslowsky, V.; Wightman, M.; Hardy, J.C.; MacDonald, J.A.; Faestermann, T.; Andrews, H.R.; Geiger, J.S.; Graham, R.L.

    1976-01-01

    A helium jet and skimmer system intended as an interface between a target location at the Chalk River tandem accelerator and the ion source of an on-line separator presently under construction has been developed. The system consists of a target chamber, a 125 cm long capillary, and a one stage skimmer chamber. The designs of the target and skimmer chambers allow one to vary a large number of independent flow and geometrical parameters with accurate reproducibility. Experiments with the β-delayed proton emitter 25 Si (tsub(1/2)=218 ms) produced in the reaction 24 Mg( 3 He,2n) 25 Si show that under optimized conditions about 75% of the reaction products leaving the target are transported to the skimmer. Of those, more than 90% pass through the skimmer orifice, which separates off 97.5% of the transport gas, helium. By introducing an additional helium flow across the skimming orifice the amount of helium separated off the transport jet can be increased to beyond 99.85%, leaving the high throughput of recoils unaffected. (Auth.)

  13. Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution

    Science.gov (United States)

    Joens, Matthew S.; Huynh, Chuong; Kasuboski, James M.; Ferranti, David; Sigal, Yury J.; Zeitvogel, Fabian; Obst, Martin; Burkhardt, Claus J.; Curran, Kevin P.; Chalasani, Sreekanth H.; Stern, Lewis A.; Goetze, Bernhard; Fitzpatrick, James A. J.

    2013-12-01

    Scanning Electron Microscopy (SEM) has long been the standard in imaging the sub-micrometer surface ultrastructure of both hard and soft materials. In the case of biological samples, it has provided great insights into their physical architecture. However, three of the fundamental challenges in the SEM imaging of soft materials are that of limited imaging resolution at high magnification, charging caused by the insulating properties of most biological samples and the loss of subtle surface features by heavy metal coating. These challenges have recently been overcome with the development of the Helium Ion Microscope (HIM), which boasts advances in charge reduction, minimized sample damage, high surface contrast without the need for metal coating, increased depth of field, and 5 angstrom imaging resolution. We demonstrate the advantages of HIM for imaging biological surfaces as well as compare and contrast the effects of sample preparation techniques and their consequences on sub-nanometer ultrastructure.

  14. Low helium flux from the mantle inferred from simulations of oceanic helium isotope data

    Science.gov (United States)

    Bianchi, Daniele; Sarmiento, Jorge L.; Gnanadesikan, Anand; Key, Robert M.; Schlosser, Peter; Newton, Robert

    2010-09-01

    The high 3He/ 4He isotopic ratio of oceanic helium relative to the atmosphere has long been recognized as the signature of mantle 3He outgassing from the Earth's interior. The outgassing flux of helium is frequently used to normalize estimates of chemical fluxes of elements from the solid Earth, and provides a strong constraint to models of mantle degassing. Here we use a suite of ocean general circulation models and helium isotope data obtained by the World Ocean Circulation Experiment to constrain the flux of helium from the mantle to the oceans. Our results suggest that the currently accepted flux is overestimated by a factor of 2. We show that a flux of 527 ± 102 mol year - 1 is required for ocean general circulation models that produce distributions of ocean ventilation tracers such as radiocarbon and chlorofluorocarbons that match observations. This new estimate calls for a reevaluation of the degassing fluxes of elements that are currently tied to the helium fluxes, including noble gases and carbon dioxide.

  15. Defects and morphological changes in nanothin Cu films on polycrystalline Mo analyzed by thermal helium desorption spectrometry

    International Nuclear Information System (INIS)

    Venugopal, V.; Seijbel, L.J.; Thijsse, B.J.

    2005-01-01

    Thermal helium desorption spectrometry (THDS) has been used for the investigation of defects and thermal stability of thin Cu films (5-200 A ) deposited on a polycrystalline Mo substrate in ultrahigh vacuum. These films are metastable at room temperature. On heating, the films transform into islands, giving rise to a relatively broad peak in the helium desorption spectra. The temperature of this island formation is dependent on film thickness, being 417 K for 10 A and 1100 K for a 200 A film. The activation energy for island formation was found to be 0.3±0.1 eV for 75 A film. Grain boundaries have a strong effect on island formation. The defect concentration in the as-deposited films is ∼5x10 -4 , for films thicker than 50 A and more for thinner films. Helium release from monovacancies was identified in the case of a 200 A film. Helium release was also seen during sublimation of the Cu film (∼1350 K). Overlayer experiments were used to identify helium trapped close to the film surface. An increase of the substrate temperature during deposition resulted in a film that had already formed islands. Argon-ion assistance (250 eV) during film deposition with an ion/atom ratio of ∼0.1 resulted in a significant enhancement of helium trapping in the films. The argon concentration in the films was found to be 10 -3 . The temperature of island formation was increased due to argon-ion assistance. The helium and argon desorption spectra are found to be similar, which is due to most of the helium becoming trapped in the defects created by the argon beam. The role of the Mo surface in affecting the defects at the film-substrate interface is investigated. The effect of variation of helium fluence and helium implantation energy is also considered. The present THDS results of Cu/poly-Mo are compared to those of Cu/Mo(100) and Cu/Mo(100) reported earlier

  16. Helium desorption in EFDA iron materials for use in nuclear fusion reactors

    International Nuclear Information System (INIS)

    Salazar R, A. R.; Pinedo V, J. L.; Sanchez, F. J.; Ibarra, A.; Vila, R.

    2015-09-01

    In this paper the implantation with monoenergetic ions (He + ) was realized with an energy of 5 KeV in iron samples (99.9999 %) EFDA (European Fusion Development Agreement) using a collimated beam, after this a Thermal Desorption Spectrometry of Helium (THeDS) was made using a leak meter that detects amounts of helium of up to 10 - - 12 mbar l/s. Doses with which the implantation was carried out were 2 x 10 15 He + /cm 2 , 1 x 10 16 He + /cm 2 , 2 x 10 16 He + /cm 2 , 1 x 10 17 He + /cm 2 during times of 90 s, 450 s, 900 s and 4500 s, respectively. Also, using the SRIM program was calculated the depth at which the helium ions penetrate the sample of pure ion, finding that the maximum distance is 0.025μm in the sample. For this study, 11 samples of Fe EFDA were prepared to find defects that are caused after implantation of helium in order to provide valuable information to the manufacture of materials for future fusion reactors. However understand the effects of helium in the micro structural evolution and mechanical properties of structural materials are some of the most difficult questions to answer in materials research for nuclear fusion. When analyzing the spectra of THeDS was found that five different groups of desorption peaks existed, which are attributed to defects of He caused in the material, these defects are He n V (2≤n≤6), He n V m , He V for the groups I, II and IV respectively. These results are due to the comparison of the peaks presented in the desorption spectrum of He, with those of other authors who have made theoretical calculations. Is important to note that the thermal desorption spectrum of helium was different depending on the dose with which the implantation of He + was performed. (Author)

  17. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Z. Y.; Breese, M. B. H. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore Singapore 117542 (Singapore); Lin, Y.; Tok, E. S. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Vittone, E. [Physics Department, NIS Excellence Centre and CNISM, University of Torino, via Pietro Giuria 1, 10125 Torino (Italy)

    2014-05-12

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such as cesium over a wide range of fluences and irradiation geometries.

  18. Theoretical investigation of thermophysical properties in two-temperature argon-helium thermal plasma

    International Nuclear Information System (INIS)

    Sharma, Rohit; Singh, Kuldip; Singh, Gurpreet

    2011-01-01

    The thermophysical properties of argon-helium thermal plasma have been studied in the temperature range from 5000 to 40 000 K at atmospheric pressure in local thermodynamic equilibrium and non-local thermodynamic equilibrium conditions. Two cases of thermal plasma considered are (i) ground state plasma in which all the atoms and ions are assumed to be in the ground state and (ii) excited state plasma in which atoms and ions are distributed over various possible excited states. The influence of electronic excitation and non-equilibrium parameter θ = T e /T h on thermodynamic properties (composition, degree of ionization, Debye length, enthalpy, and total specific heat) and transport properties (electrical conductivity, electron thermal conductivity, and thermal diffusion ratio) have been studied. Within the framework of Chapman-Enskog method, the higher-order contributions to transport coefficient and their convergence are studied. The influence of different molar compositions of argon-helium plasma mixture on convergence of higher-orders is investigated. Furthermore, the effect of different definitions of Debye length has also been examined for electrical conductivity and it is observed that electrical conductivity with the definition of Debye length (in which only electrons participate in screening) is less than that of the another definition (in which both the electrons and ions participate in screening) and this deviation increases with electron temperature. Finally, the effect of lowering of ionization energy is examined on electron number density, Debye length, and higher-order contribution to electrical conductivity. It is observed that the lowering of the ionization energy affects the electron transport-properties and consequently their higher-order contributions depending upon the value of the non-equilibrium parameter θ.

  19. Effect of He+ fluence on surface morphology and ion-irradiation induced defect evolution in 7075 aluminum alloys

    Science.gov (United States)

    Ni, Kai; Ma, Qian; Wan, Hao; Yang, Bin; Ge, Junjie; Zhang, Lingyu; Si, Naichao

    2018-02-01

    The evolution of microstructure for 7075 aluminum alloys with 50 Kev helium ions irradiation were studied by using optical microscopy (OM), scanning electron microscopy (SEM), x-ray diffraction (XRD) and transmission electron microscopy (TEM). The fluences of 1 × 1015, 1 × 1016 and 1 × 1017 ions cm-2 were selected, and irradiation experiments were conducted at room temperatures. The transmission process of He+ ions was simulated by using SRIM software, including distribution of ion ranges, energy losses and atomic displacements. Experimental results show that irradiated pits and micro-cracks were observed on irradiation sample surface, and the size of constituent particles (not including Mg2Si) decreased with the increasing dose. The x-ray diffraction results of the pair of peaks is better resolved in irradiated samples might indicate that the stressed structure consequence due to crystal defects (vacancies and interstitials) after He+ implantation. TEM observation indicated that the density of MgZn2 phase was significantly reduced after helium ion irradiation which is harmful to strength. Besides, the development of compressive stress produced a large amount of dislocation defects in the 1015 ions cm-2 sample. Moreover, higher fluence irradiation produced more dislocations in sample. At fluence of 1016 ions cm-2, dislocation wall formed by dislocation slip and aggregation in the interior of grains, leading to the refinement of these grains. As fluence increased to 1017 ions cm-2, dislocation loops were observed in pinned dislocation. Moreover, dislocation as effective defect sink, irradiation-induced vacancy defects aggregated to these sinks, and resulted in the formation of helium bubbles in dislocation.

  20. Extreme ultraviolet spectroscopy of low pressure helium microwave driven discharges

    Science.gov (United States)

    Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Alves, Luis Lemos

    2016-09-01

    Surface wave driven discharges are reliable plasma sources that can produce high levels of vacuum and extreme ultraviolet radiation (VUV and EUV). The richness of the emission spectrum makes this type of discharge a possible alternative source in EUV/VUV radiation assisted applications. However, due to challenging experimental requirements, publications concerning EUV radiation emitted by microwave plasmas are scarce and a deeper understanding of the main mechanisms governing the emission of radiation in this spectral range is required. To this end, the EUV radiation emitted by helium microwave driven plasmas operating at 2.45 GHz has been studied for low pressure conditions. Spectral lines from excited helium atoms and ions were detected via emission spectroscopy in the EUV/VUV regions. Novel data concerning the spectral lines observed in the 23 - 33 nm wavelength range and their intensity behaviour with variation of the discharge operational conditions are presented. The intensity of all the spectral emissions strongly increases with the microwave power delivered to the plasma up to 400 W. Furthermore, the intensity of all the ion spectral emissions in the EUV range decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar. Work funded by FCT - Fundacao para a Ciencia e a Tecnologia, under Project UID/FIS/50010/2013 and grant SFRH/BD/52412/2013 (PD-F APPLAuSE).

  1. Primordial helium abundance from CMB: A constraint from recent observations and a forecast

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Sekiguchi, Toyokazu; Takahashi, Tomo

    2008-01-01

    We studied a constraint on the primordial helium abundance Y p from current and future observations of CMB. Using the currently available data from WMAP, ACBAR, CBI, and BOOMERANG, we obtained the constraint as Y p =0.25 -0.07 +0.10 at 68% confidence level. We also provide a forecast for the Planck experiment using the Markov chain Monte Carlo approach. In addition to forecasting the constraint on Y p , we investigate how assumptions for Y p affect constraints on the other cosmological parameters.

  2. Simulation study of radiation damage induced by energetic helium nuclei

    CERN Document Server

    Hoang Dac Luc; Hoang Dac Dat

    2003-01-01

    High energy alpha particles produced by neutron-induced nuclear reactions can damage severely reactor materials. Simulation of this process is described using theoretical calculation and ion irradiation experiments at different displacement doses and Helium doses.

  3. Effect of Fe and C doping on the thermal release of helium from aluminum

    International Nuclear Information System (INIS)

    Xiang, X.; Chen, C.A.; Liu, K.Z.; Peng, L.X.; Rao, Y.C.

    2010-01-01

    The effect of Fe and C doping on the thermal release of helium from Al implanted with 10 keV, 4.0 x 10 21 ion/m 2 He at room temperature (RT) has been investigated by thermal helium desorption spectrometry (THDS) and transmission electron microscope (TEM). The results show that Fe and C doping have significant impact on the release of helium from Al and the extent depends on the doping fluence. Proper fluence of Fe and C doping would lead to the retardation of the release of helium from Al, while excessive fluence of Fe and C doping would result in more desorption peaks and the release of helium in lower temperature ranges. Fe and C doping have different influence on the release of helium from Al, and the difference is related with the secondary phases forming in the samples.

  4. In situ investigation of helium fuzz growth on tungsten in relation to ion flux, fluence, surface temperature and ion energy using infrared imaging in PSI-2

    International Nuclear Information System (INIS)

    Möller, S; Kachko, O; Rasinski, M; Kreter, A; Linsmeier, Ch

    2017-01-01

    Tungsten is a candidate material for plasma-facing components in nuclear fusion reactors. In operation it will face temperatures >800 K together with an influx of helium ions. Previously, the evolution of special surface nanostructures called fuzz was found under these conditions in a limited window of surface temperature, ion flux and ion energy. Fuzz potentially leads to lower heat load tolerances, enhanced erosion and dust formation, hence should be avoided in a fusion reactor. Here the fuzz growth is reinvestigated in situ during its growth by considering its impact on the surfaces infrared emissivity at 4 μ m wavelength with an infrared camera in the linear plasma device PSI-2. A hole in the surface serves as an emissivity reference to calibrate fuzz thickness versus infrared emissivity. Among new data on the above mentioned relations, a lower fuzz growth threshold of 815 ± 24 K is found. Fuzz is seen to grow on rough and polished surfaces and even on the hole’s side walls alike. Literature scalings for thickness, flux and time relations of the fuzz growth rate could not be reproduced, but for the temperature scaling a good agreement to the Arrhenius equation was found. (paper)

  5. Investigation of impurity-helium solid phase decomposition

    International Nuclear Information System (INIS)

    Boltnev, R.E.; Gordon, E.B.; Krushinskaya, I.N.; Martynenko, M.V.; Pel'menev, A.A.; Popov, E.A.; Khmelenko, V.V.; Shestakov, A.F.

    1997-01-01

    The element composition of the impurity-helium solid phase (IHSP), grown by injecting helium gas jet, involving Ne, Ar, Kr, and Xe atoms and N 2 molecules, into superfluid helium, has been studied. The measured stoichiometric ratios, S = N H e / N I m, are well over the values expected from the model of frozen together monolayer helium clusters. The theoretical possibility for the freezing of two layers helium clusters is justified in the context of the model of IHSP helium subsystem, filled the space between rigid impurity centers. The process of decomposition of impurity-helium (IH)-samples taken out of liquid helium in the temperature range 1,5 - 12 K and the pressure range 10-500 Torr has been studied. It is found that there are two stages of samples decomposition: a slow stage characterized by sample self cooling and a fast one accompanied by heat release. These results suggest, that the IHSP consists of two types of helium - weakly bound and strongly bound helium - that can be assigned to the second and the first coordination helium spheres, respectively, formed around heavy impurity particles. A tendency for enhancement of IHSP thermo stability with increasing the impurity mass is observed. Increase of helium vapor pressure above the sample causes the improvement of IH sample stability. Upon destruction of IH samples, containing nitrogen atoms, a thermoluminescence induced by atom recombination has been detected in the temperature region 3-4,5 K. This suggests that numerous chemical reactions may be realized in solidified helium

  6. Simulation study of radiation damage induced by energetic helium nuclei

    International Nuclear Information System (INIS)

    Hoang Dac Luc; Vo Tuong Hanh; Hoang Dac Dat

    2003-01-01

    High energy alpha particles produced by neutron-induced nuclear reactions can damage severely reactor materials. Simulation of this process is described using theoretical calculation and ion irradiation experiments at different displacement doses and Helium doses. (author)

  7. Reflection properties of hydrogen ions at helium irradiated tungsten surfaces

    International Nuclear Information System (INIS)

    Doi, K; Tawada, Y; Kato, S; Sasao, M; Kenmotsu, T; Wada, M; Lee, H T; Ueda, Y; Tanaka, N; Kisaki, M; Nishiura, M; Matsumoto, Y; Yamaoka, H

    2016-01-01

    Nanostructured W surfaces prepared by He bombardment exhibit characteristic angular distributions of hydrogen ion reflection upon injection of 1 keV H + beam. A magnetic momentum analyzer that can move in the vacuum chamber has measured the angular dependence of the intensity and the energy of reflected ions. Broader angular distributions were observed for He-irradiated tungsten samples compared with that of the intrinsic polycrystalline W. Both intensity and energy of reflected ions decreased in the following order: the polycrystalline W, the He-bubble containing W, and the fuzz W. Classical trajectory Monte Carlo simulations based on Atomic Collision in Amorphous Target code suggests that lower atom density near the surface can make the reflection coefficients lower due to increasing number of collisions. (paper)

  8. Impact and effects of simultaneous MeV-ion irradiation and helium plasma exposure to the formation of tungsten nano-tendrils

    Science.gov (United States)

    Wright, Graham; Kesler, Leigh Ann; Whyte, Dennis

    2013-10-01

    The extrusion of nano-tendrils from high temperature (>1000 K) tungsten (W) targets exposed to helium (He) plasma ions remains a concern for future fusion reactors. Previous work on the Alcator C-Mod tokamak has demonstrated it is possible to form these structures in a tokamak environment. However, one area where Alcator C-Mod and a fusion reactor differ is total neutron flux at the wall and the displacement damage these neutrons produce in the plasma-facing materials. This dsiplacement damage may affect the size and number He bubbles precipitating in the W target, which is a key factor in the formation and growth of the nano-tendrils. The DIONISOS experiment directly measures the impact of the displacement damage by simultaneously bombarding high temperature W targets with MeV-range ions (to simulate the displacement damage caused by neutron flux) and high flux of He plasma ions. Different combinations of irradiating ion species and W target temperatures are used to vary the different processes and rates that are involved such as He trapping rate, vacancy production and annealing rates, and nano-tendril growth rate. The nano-tendril growth is characterized by SEM imaging and focused ion beam (FIB) cross-sectioning and compared to nano-tendril formation without the presence of the irradiating ion beam. This work is supported by US DOE award DE-SC00-02060.

  9. Experimental Observations of Ion Phase-Space Vortices

    DEFF Research Database (Denmark)

    Pécseli, Hans; Armstrong, R. J.; Trulsen, J.

    1981-01-01

    Experimental observations of ion phase-space vortices are reported. The ion phase-space vortices form in the region of heated ions behind electrostatic ion acoustic shocks. The results are in qualitative agreement with numerical and analytic studies....

  10. Study of damage and helium diffusion in fluoro-apatites

    International Nuclear Information System (INIS)

    Miro, S.

    2004-12-01

    This work lies within the scope of the study of the radionuclides containment matrices. The choice of the fluoro-apatites as potential matrices of containment was suggested by the notable properties of these latter (thermal and chemical stability even under radioactive radiation). By irradiations with heavy ions and a helium implantation we simulated the effects related to the alpha radioactivity and to the spontaneous nuclear fission of the radionuclides. Thanks to the study of Durango fluoro-apatite single crystals and fluoro-apatite sintered ceramics, we evidenced that the damage fraction as well as the unit cell deformations increase with the electronic energy loss and with the substitution. These effects are followed at high fluences by a phenomenon of re-crystallization. The study of the helium diffusion points out that the thermal diffusion process improves with the substitution and strongly increases with heavy ions irradiation. (author)

  11. The influence of autoionizing states on the excitation of helium by electrons

    International Nuclear Information System (INIS)

    Ittersum, T. van

    1976-01-01

    The work described in this thesis deals with resonance effects in the scattering of electrons by helium at energies near the threshold of the autoionizing states (50-70 eV). The investigation is performed by studying light emission following the excitation of singly excited states. In some cases, the polarization of the radiation was also investigated. The purpose of the research was (i) to enlarge our knowledge of triply excited negative ion states, i.e. resonance states which are formed by temporary binding of the incident electron to a doubly excited (autoionizing) state of neutral helium, and (ii) to clear up the nature of some resonance structures which could not be explained in terms of negative ion resonances

  12. Electron diffraction of CBr{sub 4} in superfluid helium droplets: A step towards single molecule diffraction

    Energy Technology Data Exchange (ETDEWEB)

    He, Yunteng; Zhang, Jie; Kong, Wei, E-mail: wei.kong@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003 (United States)

    2016-07-21

    We demonstrate the practicality of electron diffraction of single molecules inside superfluid helium droplets using CBr{sub 4} as a testing case. By reducing the background from pure undoped droplets via multiple doping, with small corrections for dimers and trimers, clearly resolved diffraction rings of CBr{sub 4} similar to those of gas phase molecules can be observed. The experimental data from CBr{sub 4} doped droplets are in agreement with both theoretical calculations and with experimental results of gaseous species. The abundance of monomers and clusters in the droplet beam also qualitatively agrees with the Poisson statistics. Possible extensions of this approach to macromolecular ions will also be discussed. This result marks the first step in building a molecular goniometer using superfluid helium droplet cooling and field induced orientation. The superior cooling effect of helium droplets is ideal for field induced orientation, but the diffraction background from helium is a concern. This work addresses this background issue and identifies a possible solution. Accumulation of diffraction images only becomes meaningful when all images are produced from molecules oriented in the same direction, and hence a molecular goniometer is a crucial technology for serial diffraction of single molecules.

  13. A simple method to produce quasi-simultaneous multiple energy helium implantation

    International Nuclear Information System (INIS)

    Paszti, F.; Fried, M.; Manuaba, A.; Mezey, G.; Kotai, E.; Lohner, T.

    1982-11-01

    If a monoenergetic ion beam is bombarding a target through an absorber foil tilted continuously (i.e. its effective thickness changing continuously), the depth distribution of the implanted ions in the sample depends on the way the absorber is moving. The present paper describes a way of absorber tilting for obtaining a uniform depth distribution and its experimental verification in the case of MeV energy helium ions implanted into aluminium target. (author)

  14. Atmospheric ions and nucleation: a review of observations

    Directory of Open Access Journals (Sweden)

    A. Hirsikko

    2011-01-01

    Full Text Available This review is based on ca. 260 publications, 93 of which included data on the temporal and spatial variation of the concentration of small ions (<1.6 nm in diameter especially in the lower troposphere, chemical composition, or formation and growth rates of sub-3 nm ions. This information was collected on tables and figures. The small ions exist all the time in the atmosphere, and the average concentrations of positive and negative small ions are typically 200–2500 cm−3. However, concentrations up to 5000 cm−3 have been observed. The results are in agreement with observations of ion production rates in the atmosphere. We also summarised observations on the conversion of small ions to intermediate ions, which can act as embryos for new atmospheric aerosol particles. Those observations include the formation rates (J2[ion] of 2-nm intermediate ions, growth rates (GR[ion] of sub-3 nm ions, and information on the chemical composition of the ions. Unfortunately, there were only a few studies which presented J2[ion] and GR[ion]. Based on the publications, the formation rates of 2-nm ions were 0–1.1 cm−3 s−1, while the total 2-nm particle formation rates varied between 0.001 and 60 cm−3 s−1. Due to small changes in J2[ion], the relative importance of ions in 2-nm particle formation was determined by the large changes in J2[tot], and, accordingly the contribution of ions increased with decreasing J2[tot]. Furthermore, small ions were observed to activate for growth earlier than neutral nanometer-sized particles and at lower saturation ratio of condensing vapours.

  15. Interaction of implanted deuterium and helium with beryllium: radiation enhanced oxidation

    International Nuclear Information System (INIS)

    Langley, R.A.

    1979-01-01

    The interaction of implanted deuterium and helium with beryllium is of significant interest in the application of first wall coatings and other components of fusion reactors. Electropolished polycrystalline beryllium was first implanted with an Xe backscatter marker at 1.98 MeV followed by either implantation with 5 keV diatomic deuterium or helium. A 2.0 MeV He beam was used to analyze for impurity buildup; namely oxygen. The oxide layer thickness was found to increase linearly with increasing implant fluence. A 2.5 MeV H + beam was used to depth profile the D and He by ion backscattering. In addition the retention of the implant was measured as a function of the implant fluence. The mean depth of the implant was found to agree with theoretical range calculations. Scanning electron microscopy was used to observe blister formation. No blisters were observed for implanted D but for implanted He blisters occurred at approx. 1.75 x 10 17 He cm -2 . The blister diameter increased with increasing implant fluence from about 0.8 μm at 10 18 He cm -2 to 5.5 μm at 3 x 10 18 He cm -2

  16. Modeling and Observation of Interstellar He+ Pickup Ions in the Inner Heliosphere

    Science.gov (United States)

    Chen, Junhong

    Interstellar pickup ions constitute a charged particle population that originates from interstellar neutrals inside the heliosphere. They are produced by photoionization, charge exchange with solar wind ions, and electron impact ionization (EI). Once ionized, they are picked up by the interplanetary magnetic field (IMF) and rapidly swept outward with the solar wind. Typically, pickup ion distributions have been described in terms of a velocity distribution function that evolves through fast pitch angle scattering followed by adiabatic cooling during radial transport in the reference frame of the solar wind [e.g., Vasyliunas & Siscoe, 1976, VS76 hereafter]. In the VS76 model, the slope of the isotropic velocity distributions is controlled by the combination of the ionization rate and the cooling process. Thus far, for the cooling index that relates the slope of the velocity distribution to the radial transport and expansion of the pickup ions a constant value of 3/2 has been widely used. The implicit assumptions to arrive at this value are immediate PUI isotropization due to pitch angle scattering and solar wind expansion with the square of the distance from the Sun. Any experimental determination of the cooling index depends on the knowledge of the ionization rate and its spatial variation, as well as solar wind and interplanetary conditions. In this thesis, we study their influences on the PUI cooling index and separate them by making use of the two complementary helium PUI data sets from SWICS instrument on the ACE spacecraft, and PLASTIC instrument on STEREO spacecraft. We use the pickup ion observations from ACE SIWCS in the last solar cycle to determine the cooling index, and the possible effects of the electron impact ionization on the determination of the cooling index. With pickup ion observations from STEREO PLASTIC, we determine how solar wind expansion patterns affect the cooling index. We find that the cooling index varies substantially with solar

  17. Production of zero energy radioactive beams through extraction across superfluid helium surface

    NARCIS (Netherlands)

    Takahashi, N; Huang, WX; Gloos, K; Dendooven, P; Pekola, JP; Aysto, J

    A radioactive Ra-223 source was immersed in superfluid helium at 1.2-1.7 K. Electric fields transported recoiled Rn-219 ions in the form of snowballs to the surface and further extracted them across the surface. The ions were focussed onto an aluminium foil and alpha particle spectra were taken with

  18. Searches for fractional electric charge on niobium samples exposed to liquid helium

    International Nuclear Information System (INIS)

    Smith, P.F.; Homer, G.J.; Lewin, J.D.; Walford, H.E.; Jones, W.G.

    1986-01-01

    Levitation measurements at room temperature described in a previous paper did not confirm the apparent fractional electric charges reported by the Stanford Group for niobium samples at liquid helium temperature. To simulate possible effects of a low-temperature environment, both niobium and steel samples have been exposed to liquid helium for periods of typically 48 h, both with and without the assistance of electric fields to extract possible fractionally charged ions. Subsequent levitation tests show no indication of fractional charge. With some additional assumptions regarding ionic mobility and surface energy, an upper limit ∝10 -2 fractional charges/g is inferred for the liquid helium itself. (orig.)

  19. Microstructural and microchemical evolution in vanadium alloys by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sekimura, Naoto; Kakiuchi, Hironori; Shirao, Yasuyuki; Iwai, Takeo [Tokyo Univ. (Japan)

    1996-10-01

    Microstructural and microchemical evolution in vanadium alloys were investigated using heavy ion irradiation. No cavities were observed in V-5Cr-5Ti alloys irradiated to 30 dpa at 520 and 600degC. Energy dispersive X-ray spectroscopy analyses showed that Ti peaks around grain boundaries. Segregation of Cr atoms was not clearly detected. Co-implanted helium was also found to enhance dislocation evolution in V-5Cr-5Ti. High density of matrix cavities were observed in V-5Fe alloys irradiated with dual ions, whereas cavities were formed only around grain boundaries in single ion irradiated V-5Fe. (author)

  20. Solution of the Dirac Coulomb equation for helium-like ions in the Poet-Temkin model.

    Science.gov (United States)

    Tang, Li-Yan; Tang, Yong-Bo; Shi, Ting-Yun; Mitroy, J

    2013-10-07

    The Dirac-Coulomb equation for the helium atom is studied under the restrictions of the Poet-Temkin model which replaces the 1/r12 interaction by the simplified 1/r> form. The effective reduction in the dimensionality made it possible to obtain binding energies for the singlet and triplet states in this model problem with a relative precision from 10(-8) to 10(-10). The energies for the singlet state were consistent with a previous configuration interaction calculation [H. Tatewaki and Y. Watanabe, Chem. Phys. 389, 58 (2011)]. Manifestations of Brown-Ravenhall disease were noted at higher values of nuclear charge and ultimately limited the accuracy of the Poet-Temkin model energy. The energies from a no-pair configuration interaction (CI) calculation (the negative-energy states for the appropriate hydrogen-like ion were excluded from the CI expansion) were found to be different from the unrestricted B-spline calculation.

  1. Solution of the Dirac Coulomb equation for helium-like ions in the Poet-Temkin model

    Science.gov (United States)

    Tang, Li-Yan; Tang, Yong-Bo; Shi, Ting-Yun; Mitroy, J.

    2013-10-01

    The Dirac-Coulomb equation for the helium atom is studied under the restrictions of the Poet-Temkin model which replaces the 1/r12 interaction by the simplified 1/r> form. The effective reduction in the dimensionality made it possible to obtain binding energies for the singlet and triplet states in this model problem with a relative precision from 10-8 to 10-10. The energies for the singlet state were consistent with a previous configuration interaction calculation [H. Tatewaki and Y. Watanabe, Chem. Phys. 389, 58 (2011)]. Manifestations of Brown-Ravenhall disease were noted at higher values of nuclear charge and ultimately limited the accuracy of the Poet-Temkin model energy. The energies from a no-pair configuration interaction (CI) calculation (the negative-energy states for the appropriate hydrogen-like ion were excluded from the CI expansion) were found to be different from the unrestricted B-spline calculation.

  2. Formation of Negative Metal Ions in a Field-Free Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, E

    1969-02-15

    A field-free and homogeneous plasma of a large volume is formed by neutron irradiation of {sup 3}He at a density corresponding to NTP and at gas temperatures in the range 300-1600 deg K. The accuracy and ease by which the source density of free electrons can be varied and controlled offers special possibilities to study recombination and attachment phenomena in the absence of diffusion. These possibilities are described and utilized for the study of the effects of mixing the helium gas with metal vapours. Attachment of electrons to neutral metal atoms is found to be the dominant cause of electron removal for metal concentrations above certain limits. Negative metal ions are formed and the rate of their formation was determined to be about 10{sup -13} cm{sup 3}/s. Evidence is also presented, that for such conditions where formation of negative metal ions does not occur, the electrons are lost in electron-ion recombinations, in which the third body is not an electron. No molecular helium spectrum is observed from the plasma when it is very close to spectroscopic purity. Instead, between 3,000-7,000 A only one atomic helium line at 5875 A is observed. The recombination of He{sup +}{sub 2} may therefore be dissociative. A difference in recombination behaviour between {sup 3}He and {sup 4}He at high pressures may therefore exist considering results from previous work on {sup 4}He.

  3. Formation of Negative Metal Ions in a Field-Free Plasma

    International Nuclear Information System (INIS)

    Larsson, E.

    1969-02-01

    A field-free and homogeneous plasma of a large volume is formed by neutron irradiation of 3 He at a density corresponding to NTP and at gas temperatures in the range 300-1600 deg K. The accuracy and ease by which the source density of free electrons can be varied and controlled offers special possibilities to study recombination and attachment phenomena in the absence of diffusion. These possibilities are described and utilized for the study of the effects of mixing the helium gas with metal vapours. Attachment of electrons to neutral metal atoms is found to be the dominant cause of electron removal for metal concentrations above certain limits. Negative metal ions are formed and the rate of their formation was determined to be about 10 -13 cm 3 /s. Evidence is also presented, that for such conditions where formation of negative metal ions does not occur, the electrons are lost in electron-ion recombinations, in which the third body is not an electron. No molecular helium spectrum is observed from the plasma when it is very close to spectroscopic purity. Instead, between 3,000-7,000 A only one atomic helium line at 5875 A is observed. The recombination of He + 2 may therefore be dissociative. A difference in recombination behaviour between 3 He and 4 He at high pressures may therefore exist considering results from previous work on 4 He

  4. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Hermann, E-mail: hermann.fuchs@meduniwien.ac.at [Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, Vienna 1090, Austria and Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090 (Austria); Alber, Markus [Department for Oncology, Aarhus University Hospital, Aarhus 8000 (Denmark); Schreiner, Thomas [PEG MedAustron, Wiener Neustadt 2700 (Austria); Georg, Dietmar [Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, Vienna 1090 (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090 (Austria); Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, Vienna 1090 (Austria)

    2015-09-15

    Purpose: Helium ions ({sup 4}He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed and integrated into the treatment planning system Hyperion. Methods: Current knowledge on RBE of {sup 4}He together with linear energy transfer considerations motivated an empirical depth-dependent “zonal” RBE model. In the plateau region, a RBE of 1.0 was assumed, followed by an increasing RBE up to 2.8 at the Bragg-peak region, which was then kept constant over the fragmentation tail. To account for a variable proton RBE, the same model concept was also applied to protons with a maximum RBE of 1.6. Both RBE models were added to a previously developed pencil beam algorithm for physical dose calculation and included into the treatment planning system Hyperion. The implementation was validated against Monte Carlo simulations within a water phantom using γ-index evaluation. The potential benefits of {sup 4}He based treatment plans were explored in a preliminary treatment planning comparison (against protons) for four treatment sites, i.e., a prostate, a base-of-skull, a pediatric, and a head-and-neck tumor case. Separate treatment plans taking into account physical dose calculation only or using biological modeling were created for protons and {sup 4}He. Results: Comparison of Monte Carlo and Hyperion calculated doses resulted in a γ{sub mean} of 0.3, with 3.4% of the values above 1 and γ{sub 1%} of 1.5 and better. Treatment plan evaluation showed comparable planning target volume coverage for both particles, with slightly increased coverage for {sup 4}He. Organ at risk (OAR) doses were generally reduced using {sup 4}He, some by more than to 30%. Improvements of {sup 4}He over protons were more pronounced for treatment plans taking biological effects into account. All

  5. An online low energy gaseous ion source

    International Nuclear Information System (INIS)

    Jin Shuoxue; Guo Liping; Peng Guoliang; Zhang Jiaolong; Yang Zheng; Li Ming; Liu Chuansheng; Ju Xin; Liu Shi

    2010-01-01

    The accumulation of helium and/or hydrogen in nuclear materials may cause performance deterioration of the materials. In order to provide a unique tool to investigate the He-and/or H-caused problems, such as interaction of helium with hydrogen and defects, formation of gas bubbles and its evolution, and the related effects, we designed a low energy (≤ 20 keV) cold cathode Penning ion source, which will be interfaced to a 200 kV transmission electron microscope (TEM), for monitoring continuously the evolution of micro-structure during the He + or H + ion implantation. Studies on discharge voltage-current characteristics of the ion source, and extraction and focusing of the ion beam were performed. The ion source works stably with 15-60 mA of the discharge current.Under the gas pressure of 5 x 10 -3 Pa and 1.5 x 10 -2 Pa, the discharge voltage are about 380 V and 320 V, respectively. The extracted ion current under lower gas pressure is greater than that under higher gas pressure, and it increases with the discharge current and extraction voltage. The ion lens consisting of three equal-diameter metal cylinder focus the ion beam effectively, so that the beam density at the 150 cm away from the lens exit increases by a over one order of magnitude. For ion beams of around 10 keV, the measured beam density is about 200 nA · cm -2 , which is applicable for ion implantation and in situ TEM observation for many kinds of nuclear materials. (authors)

  6. Relaxation of helium levels excited by heavy ion impact: III.- Orientation by anisotropic relaxation of excited atoms in previously aligned states

    International Nuclear Information System (INIS)

    Chamoun, E.; Lombardi, M.; Carre, M.; Gaillard, M.L.

    1977-01-01

    In the last paper of this series devoted to relaxation phenomena in a low pressure cell of helium excited by an accelerated ion beam, experimental evidence is given for a new mechanism of transfer between alignment and orientation through anisotropic relaxation of initially aligned excited states. The theory predicting this effect is briefly outlined and then description is given of the exact experimental conditions to detect the circularly polarized component of the light emitted by the target excited in the 4 1 D level of He I by Na + impact [fr

  7. Triple differential cross section for the ionization of helium by electronic impact

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, Saidou, E-mail: saidou40@yahoo.fr [Laboratoire de Physique des Plasmas et de Recherches Interdisciplinaires, Universite Cheikh Anta Diop, Faculte des Sciences et Techniques, Departement de Physique, BP: 5005 Dakar-Fann (Senegal); Faye, I.G.; Diedhiou, I.A.; Tall, M.S.; Gomis, L.; Diatta, C.S. [Laboratoire de Physique des Plasmas et de Recherches Interdisciplinaires, Universite Cheikh Anta Diop, Faculte des Sciences et Techniques, Departement de Physique, BP: 5005 Dakar-Fann (Senegal)

    2011-12-01

    We report results of analytical triple differential cross sections (TDCS) for the single ionization of the helium iso-electronic ions by the electron impact. A two variational parameters wave function is used to evaluate the TDCS. This study shows the accuracy of the TDCS for helium atom and helium like ions in the first Born approximation (FBA) at high incident energy domain. The theory is quite acceptable as a fast calculation of the triple differential cross section, particularly at high energies where other theories and methods are cumbersome. A comparison is made of our calculations with previous results of the other theoretical methods and experiment. The FBA results obtained here with the two variational parameters wave function are in good agreement with the experiment data at high incident energy. The results show that the electron correlation effects are important around the maxima and influence only the extrema magnitude but not their positions. The calculations presented here are extanded to the cases where the energies of the outgoing electrons are more equal.

  8. Mechanical properties and microstructure of austenitic steels loaded with helium using tritium

    International Nuclear Information System (INIS)

    Sacovy, Paulette; Brun, Gilbert; Delaplace, Jean; Devaux, Joel; Fidelle, J.P.

    1982-06-01

    Following a review of the principle of the method using the radioactive decay of tritium to helium 3 to introduce helium into thick metallic test specimens, the results of preliminary tests performed on austenitic steels are presented. 304L and 316 steel specimens were loaded with helium, treated at 760 0 C to precipitate the helium in bubbles, and then strained by tensile stress at 800 0 C. In the material most loaded with helium (304 steel containing 230 ppm at. helium), a significant increase in distributed and total elongation at 800 0 C was observed. In the least loaded material (steel 316 containing 13 ppm at. helium), only total elongation decreased. Neither the yield stress nor the breaking load was altered by the presence of helium. Observations made by electron microscopy in the most loaded material revealed the presence, after heat treatment at 760 0 C, of very small bubbles of helium and also imperfect dislocation loops. The cause of these fault loops is discussed [fr

  9. Effect of helium irradiation on deuterium permeation behavior in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, Yuki; Sakurada, Shodai; Fujita, Hiroe; Azuma, Keisuke; Zhou, Quilai [Graduate School of Science & Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529 Japan (Japan); Hatano, Yuji [Hydrogen Isotope Research Center, University of Toyama, 3190 Gofuku, Toyama, 930-8555 Japan (Japan); Yoshida, Naoaki; Watanabe, Hideo [Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 816-8580 Japan (Japan); Oyaizu, Makoto; Isobe, Kanetsugu [National Institutes for Quantum and Radiological Science and Technology, 2166 Obuchi, Rokkasho, Aomori, 039-3212 Japan (Japan); Shimada, Masashi [Idaho National Laboratory, 1955 N. Fremont Avenue, Idaho Falls, ID 83415 (United States); Buchenauer, Dean; Kolasinski, Robert [Sandia National Laboratories, Chemistry, Combustion and Materials Center, Livermore, CA 94550 (United States); Chikada, Takumi [Graduate School of Science & Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529 Japan (Japan); Oya, Yasuhisa, E-mail: oya.yasuhisa@shizuoka.ac.jp [Graduate School of Science & Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529 Japan (Japan)

    2017-07-15

    In this study, we measured deuterium (D) gas-driven permeation through tungsten (W) foils that had been pre-damaged by helium ions (He{sup +}). The goal of this work was to determine how ion-induced damage affects hydrogen isotope permeation. At 873 K, the D permeability for W irradiated by 3.0 keV He{sup +} was approximately one order of magnitude lower than that for un-damaged W. This difference diminished with increasing temperature. Even after heating to 1173 K, the permeability returned to less than half of the value measured for un-damaged W. We propose that this is due to nucleation of He bubbles near the surface which potentially serve as a barrier to diffusion deeper into the bulk. Exposure at higher temperatures shows that the D permeability and diffusion coefficients return to levels observed for undamaged material. It is possible that these effects are linked to annealing of defects introduced by ion damage, and whether the defects are stabilized by the presence of trapped He.

  10. Reduction of surface erosion caused by helium blistering in sintered beryllium and sintered aluminum powder

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.

    1976-01-01

    Studies have been conducted to find materials with microstructures which minimize the formation of blisters. A promising class of materials appears to be sintered metal powder with small average grain sizes and low atomic number Z. Studies of the surface erosion of sintered aluminum powder (SAP 895) and of aluminum held at 400 0 C due to blistering by 100 keV helium ions have been conducted and the results are compared to those obtained earlier for room temperature irradiation. A significant reduction of the erosion rate in SAP 895 in comparison to annealed aluminum and SAP 930 is observed. In addition results on the blistering of sintered beryllium powder (type I) irradiated at room temperature and 600 0 C by 100 keV helium ions are given. These results will be compared with those reported recently for vacuum cast beryllium foil and a foil of sintered beryllium powder (type II) which was fabricated differently, than type I. For room temperature irradiation only a few blisters could be observed in sintered beryllium powder type I and type II and they are smaller in size and in number than in vacuum cast beryllium. For irradiation at 600 0 C large scale exfoliation of blisters was observed for vacuum cast beryllium but much less exfoliation was seen for sintered beryllium powder, type I, and type II. The results show a reduction in erosion rate cast beryllium, for both room temperature and 600 0 C

  11. Effects of helium implantation on fatigue properties of F82H-IEA heat

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, N.; Murase, Y.; Nagakawa, J. [National Research Institute for Metals, Tsukuba, Ibaraki (Japan)

    2007-07-01

    Full text of publication follows: Ferritic steels including reduced activation ones that have been recognized as attractive structural candidates for DEMO reactors and the beyond are known to be highly resistant to helium embrittlement. However, almost studies that deduced this behavior have been carried out by means of short time experiments such as tensile tests, and a few results are available concerning long term inspections, although the detrimental helium effect appears more severely in the latter. The aim of this work is to obtain further information on the influence of helium on fatigue properties of a representative reduced activation ferritic/martensitic steel F82H (8Cr2WVTa) using helium implantation technique with a cyclotron. The material examined is an IEA heat version of F82H. In order to realize a fine grain size due to thin specimens (0.08 mm thick) for ion irradiation, normalizing was conducted at rather low temperature of 1213 K, followed by tempering at 1023 K. Helium was implanted by {alpha}-particle irradiation at 823 K, a desired highest temperature of this material for first wall application, to the concentration of 100 appm He with an implantation rate of about 1.7 x 10{sup -3} appm He/s. Subsequent fatigue tests were conducted at the same temperature as that of irradiation, not only on implanted specimens but also on reference controls which were not implanted with helium but experienced the same metallurgical histories as those of irradiated ones. After fracture, samples were observed with electron microscopes. In short time periods, it has been notified that helium introduction caused no significant deterioration of both fatigue life and extension at fracture. In addition, all specimens failed in a fully trans-crystalline and ductile manner, irrespective of whether helium was present or not. Indication of grain boundary embrittlement was therefore not discerned. These facts would reflect insusceptible characteristics of this material to

  12. Effects of helium implantation on fatigue properties of F82H-IEA heat

    International Nuclear Information System (INIS)

    Yamamoto, N.; Murase, Y.; Nagakawa, J.

    2007-01-01

    Full text of publication follows: Ferritic steels including reduced activation ones that have been recognized as attractive structural candidates for DEMO reactors and the beyond are known to be highly resistant to helium embrittlement. However, almost studies that deduced this behavior have been carried out by means of short time experiments such as tensile tests, and a few results are available concerning long term inspections, although the detrimental helium effect appears more severely in the latter. The aim of this work is to obtain further information on the influence of helium on fatigue properties of a representative reduced activation ferritic/martensitic steel F82H (8Cr2WVTa) using helium implantation technique with a cyclotron. The material examined is an IEA heat version of F82H. In order to realize a fine grain size due to thin specimens (0.08 mm thick) for ion irradiation, normalizing was conducted at rather low temperature of 1213 K, followed by tempering at 1023 K. Helium was implanted by α-particle irradiation at 823 K, a desired highest temperature of this material for first wall application, to the concentration of 100 appm He with an implantation rate of about 1.7 x 10 -3 appm He/s. Subsequent fatigue tests were conducted at the same temperature as that of irradiation, not only on implanted specimens but also on reference controls which were not implanted with helium but experienced the same metallurgical histories as those of irradiated ones. After fracture, samples were observed with electron microscopes. In short time periods, it has been notified that helium introduction caused no significant deterioration of both fatigue life and extension at fracture. In addition, all specimens failed in a fully trans-crystalline and ductile manner, irrespective of whether helium was present or not. Indication of grain boundary embrittlement was therefore not discerned. These facts would reflect insusceptible characteristics of this material to high

  13. Depth distribution of bubbles in He-ion irradiated nickel and the mechanism of blister formation

    International Nuclear Information System (INIS)

    Fenske, G.; Das, S.K.; Kaminsky, M.; Miley, G.H.

    1978-01-01

    Studies carried out to understand the experimental observation that the blister skin thickness for many metals irradiated with He + ions of energies lower than 20 keV is a factor of two or more larger than the calculated projected range are reported. Nickel foils were used with 20 and 500 keV helium ions

  14. The effects of ion irradiation on the micromechanical fracture strength and hardness of a self-passivating tungsten alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lessmann, Moritz T., E-mail: mor.lessmann@gmail.com [School of Mechanical Aerospace and Civil Engineering, The University of Manchester, Manchester (United Kingdom); CCFE, Culham Science Centre, Abingdon (United Kingdom); Sudić, Ivan; Fazinić, Stjepko; Tadić, Tonči [Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb (Croatia); Calvo, Aida [Ceit-IK4 and Tecnun (University of Navarra), San Sebastian (Spain); Hardie, Christopher D.; Porton, Michael [CCFE, Culham Science Centre, Abingdon (United Kingdom); García-Rosales, Carmen [Ceit-IK4 and Tecnun (University of Navarra), San Sebastian (Spain); Mummery, Paul M. [School of Mechanical Aerospace and Civil Engineering, The University of Manchester, Manchester (United Kingdom)

    2017-04-01

    An ultra-fine grained self-passivating tungsten alloy (W88-Cr10-Ti2 in wt.%) has been implanted with iodine ions to average doses of 0.7 and 7 dpa, as well as with helium ions to an average concentration of 650 appm. Pile-up corrected Berkovich nanoindentation reveals significant irradiation hardening, with a maximum hardening of 1.9 GPa (17.5%) observed. The brittle fracture strength of the material in all implantation conditions was measured through un-notched cantilever bending at the microscopic scale. All cantilever beams failed catastrophically in an intergranular fashion. A statistically confirmed small decrease in strength is observed after low dose implantation (−6%), whilst the high dose implantation results in a significant increase in fracture strength (+9%), further increased by additional helium implantation (+16%). The use of iodine ions as the implantation ion type is justified through a comparison of the hardening behaviour of pure tungsten under tungsten and iodine implantation.

  15. Depth-dependence recovery of helium-implanted 18 carats gold-silver alloy

    Energy Technology Data Exchange (ETDEWEB)

    Thome, T.; Grynszpan, R.I. [DCE-CTA-LOT, Arcueil (France); Lab. de Chimie Metallurgique des Terres Rares, Thiais (France); Fradin, J. [DCE-CTA-LOT, Arcueil (France); SINUMEF, Ecole Nationale Superieure d' Arts et Metiers, Paris (France); Anwand, W.; Brauer, G. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany)

    2001-07-01

    Helium diffusion in Au{sub 60}Ag{sub 40} is investigated using a variable energy positron beam. The positron diffusion length of the annealed material (66 {+-} 1 nm) is reduced after implantation of 2.2 x 10{sup 14} He ions/cm{sup 2} at 300 keV. During isochronal annealing up to 600 K, the recovery rate of the Doppler broadening lineshape parameter S strongly depends on the distance to the helium implantation peak, indicating an increase of the defect stabilization by He atoms. In contrast, for subsequent annealing, and irrespective of the depth, a maximum in S occurs at 670 K (around 0.5 T{sub m}) resulting from competing processes of growth and breaking up of helium bubbles. (orig.)

  16. Chemical effects induced by ion implantation in molecular solids

    International Nuclear Information System (INIS)

    Foti, G.; Calcagno, L.; Puglisi, O.

    1983-01-01

    Ion implantation in molecular solids as ice, frozen noble gases, benzene and polymers produces a large amount of new molecules compared to the starting materials. Mass and energy analysis of ejected molecules together with the erosion yield, are discussed for several ion-target combinations at low temperature. The observed phenomena are analyzed in terms of deposited ennergy in electronic and nuclear collisions, for incoming beams, as helium or argon, in the range 10-2000 keV. (orig.)

  17. High temperature tensile properties of 316 stainless steel implanted with helium

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Yamamoto, Norikazu; Shiraishi, Haruki

    1993-01-01

    Helium embrittlement is one of the problems in structural materials for fusion reactors. Recently, martensitic steels have been developed which have a good resistance to high-temperature helium embrittlement, but the mechanism has not yet been clarified. In this paper, tensile behaviors of helium implanted austenitic stainless steels, which are sensitive to the helium embrittlement, were studied and compared with those of martensitic steels under the same experimental conditions, and the effect of microstructure on helium embrittlement was discussed. Helium was implanted by 300 appm at 573-623 K to miniature tensile speciments of 316 austenitic steels using a cyclotron accelerator. Solution annealed (316SA) and 20% cold worked (316CW) specimens were used. Post-implantation tensile tests were carried out at 573, 873 and 973 K. Yield stress at 573 K increased with the helium implantation in 316SA and 316CW, but the yield stress changes of 316SA at 873 and 973 K were different from that of 316CW. Black-dots were observed in the as-implanted specimen and bubbles were observed in the speciments tensile-tested at 873 and 973 K. Intergranular fracture was observed at only 973 K in both of the 316SA and 316CW specimens. Therefore, cold work did not suppress the high-temperature helium embrittlement under this experimental condition. The difference in the influence of helium on type 316 steel and 9Cr martensitic steels were discussed. Test temperature change of reduction in are showed clearly that helium embrittlement did not occur in 9Cr martensitic steels but occurred in 316 austenitic steels. Fine microstructures of 9Cr martensitic steels should suppress helium embrittlement at high temperatures. (author)

  18. Compressive flow behavior of Cu thin films and Cu/Nb multilayers containing nanometer-scale helium bubbles

    International Nuclear Information System (INIS)

    Li, N.; Mara, N.A.; Wang, Y.Q.; Nastasi, M.; Misra, A.

    2011-01-01

    Research highlights: → Firstly micro-pillar compression technique has been used to measure the implanted metal films. → The magnitude of radiation hardening decreased with decreasing layer thickness. → When thickness decreases to 2.5 nm, no hardening and no loss in deformability after implantation. -- Focused-ion-beam machined compression specimens were used to investigate the effect of nanometer-scale helium bubbles on the strength and deformability of sputter-deposited Cu and Cu/Nb multilayers with different layer thickness. The flow strength of Cu films increased by more than a factor of 2 due to helium bubbles but in multilayers, the magnitude of radiation hardening decreased with decreasing layer thickness. When the layer thickness decreases to 2.5 nm, insignificant hardening and no measurable loss in deformability is observed after implantation.

  19. Study of damage and helium diffusion in fluoro-apatites; Etude de l'endommagement et de la diffusion de l'helium dans des fluoroapatites

    Energy Technology Data Exchange (ETDEWEB)

    Miro, S

    2004-12-15

    This work lies within the scope of the study of the radionuclides containment matrices. The choice of the fluoro-apatites as potential matrices of containment was suggested by the notable properties of these latter (thermal and chemical stability even under radioactive radiation). By irradiations with heavy ions and a helium implantation we simulated the effects related to the alpha radioactivity and to the spontaneous nuclear fission of the radionuclides. Thanks to the study of Durango fluoro-apatite single crystals and fluoro-apatite sintered ceramics, we evidenced that the damage fraction as well as the unit cell deformations increase with the electronic energy loss and with the substitution. These effects are followed at high fluences by a phenomenon of re-crystallization. The study of the helium diffusion points out that the thermal diffusion process improves with the substitution and strongly increases with heavy ions irradiation. (author)

  20. Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, Michael, E-mail: m.kraemer@gsi.de; Scifoni, Emanuele; Schuy, Christoph; Rovituso, Marta; Maier, Andreas; Kaderka, Robert; Kraft-Weyrather, Wilma [Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Tinganelli, Walter; Durante, Marco [Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany and Trento Institute for Fundamental Physics and Application (TIFPA-INFN), 38123, via Sommarive 14, Trento (Italy); Brons, Stephan; Tessonnier, Thomas [Heidelberger Ionenstrahl-Therapiezentrum (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany and Radioonkologie und Strahlentherapie, Universitätsklinikums Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Parodi, Katia [Heidelberger Ionenstrahl-Therapiezentrum (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg (Germany); Radioonkologie und Strahlentherapie, Universitätsklinikums Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Ludwig-Maximilians-Universitaet Muenchen (LMU Munich), Department of Medical Physics, Am Coulombwall 1, 85748 Munich (Germany)

    2016-04-15

    Purpose: Modern facilities for actively scanned ion beam radiotherapy allow in principle the use of helium beams, which could present specific advantages, especially for pediatric tumors. In order to assess the potential use of these beams for radiotherapy, i.e., to create realistic treatment plans, the authors set up a dedicated {sup 4}He beam model, providing base data for their treatment planning system TRiP98, and they have reported that in this work together with its physical and biological validations. Methods: A semiempirical beam model for the physical depth dose deposition and the production of nuclear fragments was developed and introduced in TRiP98. For the biological effect calculations the last version of the local effect model was used. The model predictions were experimentally verified at the HIT facility. The primary beam attenuation and the characteristics of secondary charged particles at various depth in water were investigated using {sup 4}He ion beams of 200 MeV/u. The nuclear charge of secondary fragments was identified using a ΔE/E telescope. 3D absorbed dose distributions were measured with pin point ionization chambers and the biological dosimetry experiments were realized irradiating a Chinese hamster ovary cells stack arranged in an extended target. Results: The few experimental data available on basic physical processes are reproduced by their beam model. The experimental verification of absorbed dose distributions in extended target volumes yields an overall agreement, with a slight underestimation of the lateral spread. Cell survival along a 4 cm extended target is reproduced with remarkable accuracy. Conclusions: The authors presented a simple simulation model for therapeutical {sup 4}He beams which they introduced in TRiP98, and which is validated experimentally by means of physical and biological dosimetries. Thus, it is now possible to perform detailed treatment planning studies with {sup 4}He beams, either exclusively or in

  1. Positron annihilation investigation and nuclear reaction analysis of helium and oxygen-implanted zirconia

    International Nuclear Information System (INIS)

    Grynszpan, R.I.; Saude, S.; Anwand, W.; Brauer, G.

    2005-01-01

    Since irradiation affects in-service properties of zirconia, we investigated the fluence dependence on production and thermal stability of defects induced by helium and oxygen-ion implantation in single crystals of yttria-fully-stabilized zirconia. In either case, depth profiling by slow positron implantation spectroscopy (SPIS) detects a distribution of vacancy-type defects peaking at 60% of the projected ion range R p . Owing to the saturation of positron-trapping occurring for low fluences, which depends on the ion mass, we could estimate a critical size of clusters ranging from 0.4 to 1.6 nm. The lack of SPIS-evidence of an open-volume excess at R p is explained by the presence of over-pressurized gas bubbles. This assumption is confirmed by Nuclear Reaction Analysis of 3 He concentration profiles, which shows that helium remains partly trapped at R p , even after annealing above 400 o C

  2. Formation of Pyrylium from Aromatic Systems with a Helium:Oxygen Flowing Atmospheric Pressure Afterglow (FAPA) Plasma Source

    Science.gov (United States)

    Badal, Sunil P.; Ratcliff, Tyree D.; You, Yi; Breneman, Curt M.; Shelley, Jacob T.

    2017-06-01

    The effects of oxygen addition on a helium-based flowing atmospheric pressure afterglow (FAPA) ionization source are explored. Small amounts of oxygen doped into the helium discharge gas resulted in an increase in abundance of protonated water clusters by at least three times. A corresponding increase in protonated analyte signal was also observed for small polar analytes, such as methanol and acetone. Meanwhile, most other reagent ions (e.g., O2 +·, NO+, etc.) significantly decrease in abundance with even 0.1% v/v oxygen in the discharge gas. Interestingly, when analytes that contained aromatic constituents were subjected to a He:O2-FAPA, a unique (M + 3)+ ion resulted, while molecular or protonated molecular ions were rarely detected. Exact-mass measurements revealed that these (M + 3)+ ions correspond to (M - CH + O)+, with the most likely structure being pyrylium. Presence of pyrylium-based ions was further confirmed by tandem mass spectrometry of the (M + 3)+ ion compared with that of a commercially available salt. Lastly, rapid and efficient production of pyrylium in the gas phase was used to convert benzene into pyridine. Though this pyrylium-formation reaction has not been shown before, the reaction is rapid and efficient. Potential reactant species, which could lead to pyrylium formation, were determined from reagent-ion mass spectra. Thermodynamic evaluation of reaction pathways was aided by calculation of the formation enthalpy for pyrylium, which was found to be 689.8 kJ/mol. Based on these results, we propose that this reaction is initiated by ionized ozone (O3 +·), proceeds similarly to ozonolysis, and results in the neutral loss of the stable CHO2 · radical. [Figure not available: see fulltext.

  3. An efficient cooling loop for connecting cryocooler to a helium reservoir

    International Nuclear Information System (INIS)

    Taylor, C.E.; Abbott, C.S.R.; Leitner, D.; Leitner, M.; Lyneis, C.M.

    2003-01-01

    The magnet system of the VENUS ECR Ion Source at LBNL has two 1.5-watt cryocoolers suspended in the cryostat vacuum. Helium vapor from the liquid reservoir is admitted to a finned condenser bolted to the cryocooler 2nd stage and returns as liquid via gravity. Small-diameter flexible tubes allow the cryocoolers to be located remotely from the reservoir. With 3.1 watts load, the helium reservoir is maintained at 4.35 K, 0.05K above the cryocooler temperature. Design, analysis, and performance are presented

  4. Effect of preliminary neutron irradiation on helium blistering of 0Kh16N15M3B steel

    International Nuclear Information System (INIS)

    Chernov, I.I.; Kalin, B.A.; Skorov, D.M.; Shishkin, G.N.; Ivanov, M.V.

    1982-01-01

    The method of electron microscopy has been applied to investigate the effect of preliminary neutron irradiation on the OKh16N15M3B steel blistering under irradiation by 20 keV helium ions with (1-10)x10 21 ion/m 2 doses at the temperature below 373 K. It is shown that neutron irradiation shifts critical doses of blister formation and intense scaling towards higher doses. But after the incubation period the erosion of steel preliminary neutron irradiated grows with the increase of helium ion dose above 7x10 21 ion/m 2 . Short-term heating of neutron irradiated samples during 15 min at 1173 K does not practically affect the beginning of intense scaling of the surface

  5. CRRES observations of stormtime ring current ion composition

    International Nuclear Information System (INIS)

    Roeder, J.L.; Fennell, J.F.; Chen, M.W.; Grande, M.; Livi, S.; Schulz, M.

    1996-01-01

    The Magnetospheric Ion Composition Spectrometer onboard the CRRES spacecraft provided mass and charge state composition data for positive ions in the energy-per-charge range 1 endash 426 keV/e. The CRRES data is compared to the AMPTE/CCE observations during a moderately large geomagnetic storm on 4 June 1991. The results are compared to observations of large storms by CRRES and by the AMPTE/CCE spacecraft. The CRRES data show that oxygen ions formed 29% of the total measured ion energy density at L=3 endash 5 during the storm recovery phase. This result implies that domination of the plasma by oxygen ions may not be necessary to produce the observed rapid initial recovery of the Dst magnetic index. A preliminary test of the Dessler-Parker-Sckopke relation between the ion energy and the global magnetic perturbation shows that the observed particle fluxes during the 4 June 1991 storm could account for only 40 endash 70% of the variation of Dst. copyright 1996 American Institute of Physics

  6. Contribution to the experimental study of the polarized liquid helium-3; Contributions a l'etude experimentale de l'helium-3 liquide polarise

    Energy Technology Data Exchange (ETDEWEB)

    Villard, B

    1999-07-15

    Spin-polarized liquid helium-3 is prepared by laser optical pumping in low magnetic field and at room temperature, prior to fast liquefaction of the polarized sample. The use of a new helium-3 cryostat enabled us to obtain liquid helium-3 with polarization rates up to 25 % at well-stabilized temperatures (around 0.5 K). We could thereby study the effect of nuclear polarization on liquid-vapour equilibrium, and particularly on the saturated vapour pressure. Very sensitive capacitive gauges were developed. We estimated (to first order in M{sup 2}) the expected effects when the polarization M is suddenly destroyed. These effects were experimentally observed in helium-3/helium-4 mixtures, in pure helium-3, only a transient increase in pressure has been recorded. We then describe in a third part a preliminary experiment which aimed at determining the longitudinal relaxation time T1 in mixtures. Relaxation on the walls is efficiently reduced by a cesium coating and T1s of order 20 minutes were observed. A careful determination of the helium-3 concentration in the liquid phase was made. Finally we studied the effects of dipolar field on transverse polarisation decay in our strongly polarized samples. We observed the free precession of polarization after a NMR pulse, and analysed in detail its decay time constant as a function of different parameters. This time constant drastically varied with the tipping angle, an effect which could be linked to NMR dynamical instabilities. (author)

  7. COROTATING INTERACTION REGION ASSOCIATED SUPRATHERMAL HELIUM ION ENHANCEMENTS AT 1 AU: EVIDENCE FOR LOCAL ACCELERATION AT THE COMPRESSION REGION TRAILING EDGE

    International Nuclear Information System (INIS)

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I.; Mason, G. M.

    2012-01-01

    We examined the temporal profiles and peak intensities for 73 corotating interaction region (CIR)-associated suprathermal (∼0.1-8 MeV nucleon –1 ) helium (He) ion enhancements identified at STEREO-A, STEREO-B, and/or Advanced Composition Explorer between 2007 and 2010. We found that in most events the peak He intensity times were well organized by the CIR compression region trailing edge, regardless of whether or not a reverse shock was present. Out of these events, 19% had their 0.193 MeV nucleon –1 He intensities peak within 1 hr and 50% within 4.75 hr of the CIR trailing edge, the distribution having a 1σ value of 7.3 hr. Events with a 0.193 MeV nucleon –1 He intensity peak time within 1σ of the CIR trailing edge showed a positive correlation between the ∼0.1 and 0.8 MeV nucleon –1 He peak intensities and magnetic compression ratios in events both with and without a reverse shock. The peak intensities in all other events showed little to moderate correlation between these parameters. Our results provide evidence that some fraction of the CIR-associated –1 He intensity enhancements observed at 1 AU are locally driven. We suggest an extended source for the CIR-associated energetic particles observed at 1 AU where the –1 ions are accelerated locally at or near the CIR trailing edge, the intensities being proportional to the local compression ratio strength, while the >MeV particles are likely accelerated at CIR-driven shocks beyond Earth orbit.

  8. Interactions of solid and liquid lithium with steady state hydrogen and helium plasmas

    International Nuclear Information System (INIS)

    Hirooka, Y.; Nishikawa, M.; Ohgaki, H.; Ohtsuka, Y.

    2005-01-01

    A variety of innovative Plasma-Facing Component (PFC) concepts, employing moving solid or liquid surfaces, have recently been proposed in order to resolve technical issues, associated with the applications of currently used PFCs in future steady state fusion devices. As the first step to evaluate the concept using flowing-liquids for PFCs, steady state hydrogen and helium plasma interactions with solid and standing liquid lithium have been investigated in the present work, using the H α and He-I spectroscopy at the ion bombarding energies up to 150eV and at the lithium temperatures between room temperature and 480 deg C. Data indicate that hydrogen recycling over liquid lithium is clearly reduced, relative to that over solid lithium, whereas helium recycling does not show the same trend. From the kinetic analysis of these recycling time constant data, the activation energies for the overall recycling processes have been evaluated to be 0.02±0.01eV, both for hydrogen and helium plasmas. Also, it has been found that the activation energy is nearly independent of ion bombarding energy. (author)

  9. Interaction of implanted deuterium and helium with beryllium: radiation enhanced oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Langley, R.A.

    1979-01-01

    The interaction of implanted deuterium and helium with beryllium is of significant interest in the application of first wall coatings and other components of fusion reactors. Electropolished polycrystalline beryllium was first implanted with an Xe backscatter marker at 1.98 MeV followed by either implantation with 5 keV diatomic deuterium or helium. A 2.0 MeV He beam was used to analyze for impurity buildup; namely oxygen. The oxide layer thickness was found to increase linearly with increasing implant fluence. A 2.5 MeV H/sup +/ beam was used to depth profile the D and He by ion backscattering. In addition the retention of the implant was measured as a function of the implant fluence. The mean depth of the implant was found to agree with theoretical range calculations. Scanning electron microscopy was used to observe blister formation. No blisters were observed for implanted D but for implanted He blisters occurred at approx. 1.75 x 10/sup 17/ He cm/sup -2/. The blister diameter increased with increasing implant fluence from about 0.8 ..mu..m at 10/sup 18/ He cm/sup -2/ to 5.5 ..mu..m at 3 x 10/sup 18/ He cm/sup -2/.

  10. Helium induced fine structure in the electronic spectra of anthracene derivatives doped into superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Pentlehner, D.; Slenczka, A.

    2015-01-01

    Electronic spectra of organic molecules doped into superfluid helium nanodroplets show characteristic features induced by the helium environment. Besides a solvent induced shift of the electronic transition frequency, in many cases, a spectral fine structure can be resolved for electronic and vibronic transitions which goes beyond the expected feature of a zero phonon line accompanied by a phonon wing as known from matrix isolation spectroscopy. The spectral shape of the zero phonon line and the helium induced phonon wing depends strongly on the dopant species. Phonon wings, for example, are reported ranging from single or multiple sharp transitions to broad (Δν > 100 cm −1 ) diffuse signals. Despite the large number of example spectra in the literature, a quantitative understanding of the helium induced fine structure of the zero phonon line and the phonon wing is missing. Our approach is a systematic investigation of related molecular compounds, which may help to shed light on this key feature of microsolvation in superfluid helium droplets. This paper is part of a comparative study of the helium induced fine structure observed in electronic spectra of anthracene derivatives with particular emphasis on a spectrally sharp multiplet splitting at the electronic origin. In addition to previously discussed species, 9-cyanoanthracene and 9-chloroanthracene will be presented in this study for the first time

  11. Influence of tensile stress on cavity growth in nickel under helium irradiation

    International Nuclear Information System (INIS)

    Kusanagi, Hideo; Hide, Koichiro; Takaku, Hiroshi

    1989-01-01

    The influence of tensile stress on cavity behavior in pure nickel under helium irradiation was investigated by in-situ observation using the transmission electron microscope (TEM) in which an ion gun is installed. Specimens were irradiated at 500 0 C with 20 keV helium in the TEM. The dose rate was about 10 14 He/cm 2 s, and the angle between the helium beam and the normal direction of the specimens was about 60 0 . The damage rate estimated by the E-DEP-1 code was about 0.6x10 -3 dpa/s at its peak position. The main results are as follows: (1) cavity nucleation was accelerated by applying tensile stress, and cavity size in stressed specimens was several times larger than that in stress-free specimens; (2) cavity density in the stressed specimen increased more rapidly than in the stress-free specimen, and then decreased by cavity coalescences; (3) depth of cavity nucleation in the stress-free specimen was about 160 nm, while that in the stressed specimen was about 320 nm; that is, cavities nucleated in deeper regions in the stressed specimen than in the stress-free specimen. This result indicates that helium atoms and vacancies can migrate into the deeper region by applying tensile stress. (4) The experimental results obtained in this study can be explained qualitatively by the mechanism that mobile dislocations drag He-V complexes to the deeper region. This implies that there are similar phenomena in the case of compressive stress. (orig.)

  12. Helium-induced weld degradation of HT-9 steel

    International Nuclear Information System (INIS)

    Wang, Chin-An; Chin, B.A.; Lin, Hua T.; Grossbeck, M.L.

    1992-01-01

    Helium-bearing Sandvik HT-9 ferritic steel was tested for weldability to simulate the welding of structural components of a fusion reactor after irradiation. Helium was introduced into HT-9 steel to 0.3 and 1 atomic parts per million (appm) by tritium doping and decay. Autogenous single pass full penetration welds were produced using the gas tungsten arc (GTA) welding process under laterally constrained conditions. Macroscopic examination showed no sign of any weld defect in HT-9 steel containing 0.3 appm helium. However, intergranular micro cracks were observed in the HAZ of HT-9 steel containing 1 appm helium. The microcracking was attributed to helium bubble growth at grain boundaries under the influence of high stresses and temperatures that were present during welding. Mechanical test results showed that both yield strength (YS) and ultimate tensile strength (UTS) decreased with increasing temperature, while the total elongation increased with increasing temperature for all control and helium-bearing HT-9 steels

  13. Cryogenic filter method produces super-pure helium and helium isotopes

    Science.gov (United States)

    Hildebrandt, A. F.

    1964-01-01

    Helium is purified when cooled in a low pressure environment until it becomes superfluid. The liquid helium is then filtered through iron oxide particles. Heating, cooling and filtering processes continue until the purified liquid helium is heated to a gas.

  14. A simulation study of antimatter-helium ion planar channeling in silicon

    International Nuclear Information System (INIS)

    Wijesundera, Dharshana; Jayarathna, Sandun; Bellwied, Rene; Chu, Wei-Kan

    2012-01-01

    With the physical significance arising with the reports on experimental observation of antimatter-He nuclei, we have investigated a case of 2 MeV antimatter-He ion planar channeling in Si (1 0 0) in comparison with He channeling, by simulation. For a negatively charged antimatter-He nucleus, the planar potential well is centered at the atomic plane itself as opposed to the center-channel minimum for He ions; the antimatter-He ion distribution therefore tends to concentrate toward the atomic lattice planes. The antimatter-He ion flux distribution and the resulting close encounter probability are crucial in determining the probability of close encounter events including annihilation at channeling incidence. We have therefore analyzed the variation of antimatter-He ion flux distribution within the channels with respect to the angle of incidence and have thereby derived the orientation dependence of probability of close encounter events, or an antimatter-He channeling angular scan. The angular scan is inverted with a maximum yield at the perfect beam-planar alignment. The half-angle is narrower compared to He channeling, as a consequence of the narrower planar channeling potential centered at the lattice planes. The high de-channeling rate associated with the higher antimatter-He ion concentration in the proximity of lattice planes causes the maximum yield to be less prominent and to decrease rapidly with depth. The shoulder region shows strong depth dependent reduction that can be associated to near surface depth dependent ion flux variation.

  15. Superfluid helium-4: An introductory review

    International Nuclear Information System (INIS)

    Vinen, W.F.

    1983-01-01

    Helium was first liquefied by Kamerlingh Onnes in Leiden in July 1908, an achievement that followed much careful and painstaking work. On the same day Onnes reduced the temperature of his helium to a value approaching lK, and he must therefore have produced and observed the superfluid phase. These experimental discoveries led very quickly to a series of remarkable theoretical contributions that laid the foundations for all subsequent work. The period since the second world war has of course seen an enormous amount of work on superfluid helium-4. In reviewing it the author tries to see it in terms of two threads: one originating from Landau; the other from London

  16. Meas.of the Ratio Between Double and Single Ionization of Helium for Antiprotons

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to measure the ratio between double and single ionization of helium by antiprotons in the energy range $>$~3~MeV. Comparison with already existing proton data will yield information on the mechanisms for double ionization, which could not be extracted from previous comparisons between ratios measured for equivelocity electrons and protons. The most basic information to be obtained from an antiproton experiment will be the amount of correlation existing between the two electrons in the ground-state helium atom.\\\\ \\\\ The equipment consists of a gas cell, which employs slow-ion collection via the so-called condenser-plate method for the absolute sum of partial-ionization cross sections and determination of the relative contribution of multiple charged ions by TOF. The gas cell has movable entrance and exit slits and a grid system to account for secondary emission from the collection of slow ions. Together with a field of 800~V/cm in the collision region, the potentials of the TOF sp...

  17. High-temperature helium-loop facility

    International Nuclear Information System (INIS)

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100 0 F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system. The experimental capabilities and test conand presents the results that have been obtained. The study has been conducted using a four-phase approach. The first phase develops the solution to the steady-state radon-diffusion equation in one-dimensieered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent f water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, BB, a 200 mK. In case 2), x-ray studies of isotopic phase separation in 3 He-- 4 He bcc solids were carried out by B. A. Fraass

  18. Scaling of cross-sections for asymmetric (e,3e) process on helium ...

    Indian Academy of Sciences (India)

    , India ... (e, 3e) process; five-fold differential cross-section; scaling; helium isoelec- tronic ions. ... ration and experimental control of the target and the intensity related problems make the measurements extremely difficult. The scaling laws of ...

  19. Quantitative calculations of helium ion escape fluxes from the polar ionospheres

    International Nuclear Information System (INIS)

    Raitt, W.J.; Schunk, R.W.; Banks, P.M.

    1978-01-01

    Recent experimental measurements of He + outward fluxes have been obtained for winter and summer hemispheres. The observed fluxes indicate an average He + escape flux of 2 x 10 7 cm -2 s -1 in the winter hemisphere and a factor of 10-20 lower in the summer hemisphere. Earlier theoretical calculations had yielded winter fluxes a factor of 4 lower than the measured values and summer fluxes a further factor of 20 below the winter fluxes. We have attempted to reduce this discrepancy between our earlier theoretical model and the experimental observations by improving our theoretical model in the following ways. The helium photoionization cross sections used are accurate to 10%, the latest solar EUV fluxes measured by the Atmosphere Explorer satellites have been incorporated, and the most recent MSIS model of the neutral atmosphere is contained in the model. A range of conditions covering solar cycle, seasonal, and geomagnetic conditions were studied. The results show a maximum He + escape flux of 1.4 x 10 7 cm -2 s -1 for solar maximum, winter, low magnetic activity conditions, which is within the scatter of the measured fluxes. The computed summer He + escape flux is a factor of 20 lower than the winter value, a result which is in reasonable agreement with the summer experimental observations. Possible reasons for the slight discrepancy between theory and experiment in summer are discussed

  20. Fuel and helium confinement in fusion reactors

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Attenberger, S.E.

    1993-01-01

    An expanded macroscopic model for particle confinement is used to investigate both fuel and helium confinement in reactor plasmas. The authors illustrate the relative effects of external sources of fuel, divertor pumping, and wall and divertory recycle on core, edge and scrape-off layer densities by using separate particle confinement times for open-quote core close-quote fueling (deep pellet or beam penetration, τ c ), open-quote shallow close-quote fueling (shallow pellet penetration or neutral atoms that penetrate the scrape-off layer, τ s ) and fueling in the scrape-off layer (τ sol ). Because τ s is determined by the parallel flow velocity and characteristic distance to the divertor plate, it can be orders of magnitude lower than either τ c or τ sol . A dense scrape-off region, desirable for reduced divertor erosion, leads to a high fraction of the recycled neutrals being ionized in the scrape-off region and poor core fueling efficiency. The overall fueling efficiency can then be dramatically improved with either shallow or deep auxillary fueling. Helium recycle is nearly always coupled to the scrape-off region and does not lead to strong core accumulation unless the helium pumping efficiency is much less than the fuel pumping efficiency, or the plasma preferentially retains helium over hydrogenic ions. Differences between the results of this model, single-τ p macroscopic models, and 1-D and 2-D models are discussed in terms of assumptions and boundary conditions

  1. The Helium Warm Breeze in IBEX Observations As a Result of Charge-exchange Collisions in the Outer Heliosheath

    Energy Technology Data Exchange (ETDEWEB)

    Bzowski, Maciej; Kubiak, Marzena A.; Czechowski, Andrzej; Grygorczuk, Jolanta, E-mail: bzowski@cbk.waw.pl [Space Research Centre PAS (CBK PAN) Bartycka 18A 00-716 Warsaw (Poland)

    2017-08-10

    We simulated the signal due to neutral He atoms, observed by the Interstellar Boundary Explorer ( IBEX ), assuming that charge-exchange collisions between neutral He atoms and He{sup +} ions operate everywhere between the heliopause and a distant source region in the local interstellar cloud, where the neutral and charged components are in thermal equilibrium. We simulated several test cases of the plasma flow within the outer heliosheath (OHS) and investigated the signal generation for plasma flows both in the absence and in the presence of the interstellar magnetic field (ISMF). We found that a signal in the portion of IBEX data identified as being due to the Warm Breeze (WB) does not arise when a homogeneous plasma flow in front of the heliopause is assumed, but it appears immediately when any reasonable disturbance in its flow due to the presence of the heliosphere is assumed. We obtained a good qualitative agreement between the data selected for comparison and the simulations for a model flow with the velocity vector of the unperturbed gas and the direction and intensity of magnetic field adopted from recent determinations. We conclude that direct-sampling observations of neutral He atoms at 1 au from the Sun are a sensitive tool for investigating the flow of interstellar matter in the OHS, that the WB is indeed the secondary population of interstellar helium, which was hypothesized earlier, and that the WB signal is consistent with the heliosphere distorted from axial symmetry by the ISMF.

  2. Americium-241 and -243 as an ion-engine propellant

    International Nuclear Information System (INIS)

    Schachter, M.M.

    1994-01-01

    Commercially available americium-241 and -243 can be obtained as the mixture of the two isotopes in 100-gram quantities--a product of reprocessing spent nuclear powerplant fuel elements along with plutonium. The half-lives of the isotopes are 450 years for the -241 and 8,000 years for the -243 (the plutonium half-life isotope so obtained is 24,000 years). Americium rolled out in thin foil sheets emits alpha-rays (helium-4 ions) and beta-rays--2 valence electrons for each helium ion. Electrons are also considered as ions. As a foil, the americium radiates only a minimal amount of gamma-rays via the Curie effect. With appropriately designed permanent magnet rings insulated with Wood's alloy, the + and - ions can be accelerated from their already 5.5 million electron-Volts to billion and even trillions of electron-Volts by electronic control grids powered by the magnetohydrodynamic effect of electrons and helium ions streaming at the post-rocket nozzle of the ion engine. Protocol for the estimated thrust of this ion rocket engine is more than ten kilograms continuously sustainable for several thousand years

  3. SIMS as a new methodology to depth profile helium in as-implanted and annealed pure bcc metals?

    Energy Technology Data Exchange (ETDEWEB)

    Gorondy-Novak, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Jomard, F. [Groupe d' Etude de la Matière Condensée, CNRS, UVSQ, 45 avenue des Etats-Unis, 78035 Versailles cedex (France); Prima, F. [PSL Research University, Chimie ParisTech – CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Lefaix-Jeuland, H., E-mail: helene.lefaix@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France)

    2017-05-01

    Reliable He profiles are highly desirable for better understanding helium behavior in materials for future nuclear applications. Recently, Secondary Ions Mass Spectrometry (SIMS) allowed the characterization of helium distribution in as-implanted metallic systems. The Cs{sup +} primary ion beam coupled with CsHe{sup +} molecular detector appeared to be a promising technique which overcomes the very high He ionization potential. In this study, {sup 4}He depth profiles in pure body centered cubic (bcc) metals (V, Fe, Ta, Nb and Mo) as-implanted and annealed, were obtained by SIMS. All as-implanted samples exhibited a projected range of around 200 nm, in agreement with SRIM theoretical calculations. After annealing treatment, SIMS measurements evidenced the evolution of helium depth profile with temperature. The latter SIMS results were compared to the helium bubble distribution obtained by Transmission Electron Microscopy (TEM). This study confirmed the great potential of this experimental procedure as a He-depth profiling technique in bcc metals. Indeed, the methodology described in this work could be extended to other materials including metallic and non-metallic compounds. Nevertheless, the quantification of helium concentration after annealing treatment by SIMS remains uncertain probably due to the non-uniform ionization efficiency in samples containing large bubbles.

  4. Electron impact ionization-excitation of Helium

    Science.gov (United States)

    Ancarani, Lorenzo Ugo; Gomez, A. I.; Gasaneo, G.; Mitnik, D. M.; Ambrosio, M. J.

    2016-09-01

    We calculate triple differential cross sections (TDCS) for the process of ionization-excitation of Helium by fast electron impact in which the residual ion is left in the n =2 excited state. We chose the strongly asymmetric kinematics used in the experiment performed by Dupré et al.. In a perturbative scheme, for high projectile energies the four-body problem reduces to a three-body one and, within that framework, we solve the time- independent Schrödinger equation with a Sturmian approach. The method, based on Generalized Sturmian Functions (GSF), is employed to obtain the initial ground state of Helium, the single-continuum state and the scattering wave function; for each of them, the GSF basis is constructed with the corresponding adequate asymptotic conditions. Besides, the method presents the following advantage: the scattering amplitudes can be extracted directly in the asymptotic region of the scattering solution, and thus the TDCS can be obtained without requiring a matrix element evaluation.

  5. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  6. Liquid helium

    CERN Document Server

    Atkins, K R

    1959-01-01

    Originally published in 1959 as part of the Cambridge Monographs on Physics series, this book addresses liquid helium from the dual perspectives of statistical mechanics and hydrodynamics. Atkins looks at both Helium Three and Helium Four, as well as the properties of a combination of the two isotopes. This book will be of value to anyone with an interest in the history of science and the study of one of the universe's most fundamental elements.

  7. Prompt ignition of a unipolar arc on helium irradiated tungsten

    International Nuclear Information System (INIS)

    Kajita, Shin; Takamura, Shuichi; Ohno, Noriyasu

    2009-01-01

    A fibreform nanostructured layer is formed on a tungsten surface by helium plasma bombardment. The helium fluence was of the order of 10 26 m -2 , and the surface temperature and incident ion energy during helium irradiation were, respectively, 1900 K and 75 eV. By irradiating a laser pulse to the surface in the plasma, a unipolar arc, which many people have tried to verify in well-defined experiments, is promptly initiated and continued for a much longer time than the laser pulse width. The laser pulse width (∼0.6 ms) and power (∼5 MJ m -2 ) are similar to the heat load accompanied by type-I edge localized modes (ELMs) in ITER. The unipolar arc is verified from an increase in the floating potential, a moving arc spot detected by a fast camera and arcing traces on the surface. This result suggests that the nanostructure on the tungsten surface formed by the bombardment of helium, which is a fusion product, could significantly change the ignition property of arcing, and ELMs become a trigger of unipolar arcing, which would be a great impurity source in fusion devices. (letter)

  8. Co-Registered In Situ Secondary Electron and Mass Spectral Imaging on the Helium Ion Microscope Demonstrated Using Lithium Titanate and Magnesium Oxide Nanoparticles.

    Science.gov (United States)

    Dowsett, D; Wirtz, T

    2017-09-05

    The development of a high resolution elemental imaging platform combining coregistered secondary ion mass spectrometry and high resolution secondary electron imaging is reported. The basic instrument setup and operation are discussed and in situ image correlation is demonstrated on a lithium titanate and magnesium oxide nanoparticle mixture. The instrument uses both helium and neon ion beams generated by a gas field ion source to irradiate the sample. Both secondary electrons and secondary ions may be detected. Secondary ion mass spectrometry (SIMS) is performed using an in-house developed double focusing magnetic sector spectrometer with parallel detection. Spatial resolutions of 10 nm have been obtained in SIMS mode. Both the secondary electron and SIMS image data are very surface sensitive and have approximately the same information depth. While the spatial resolutions are approximately a factor of 10 different, switching between the different images modes may be done in situ and extremely rapidly, allowing for simple imaging of the same region of interest and excellent coregistration of data sets. The ability to correlate mass spectral images on the 10 nm scale with secondary electron images on the nanometer scale in situ has the potential to provide a step change in our understanding of nanoscale phenomena in fields from materials science to life science.

  9. Fine Structure in Helium-like Fluorine by Fast-Beam Laser Spectroscopy

    Science.gov (United States)

    Myers, E. G.; Thompson, J. K.; Silver, J. D.

    1998-05-01

    With the aim of providing an additional precise test of higher-order corrections to high precision calculations of fine structure in helium and helium-like ions(T. Zhang, Z.-C. Yan and G.W.F. Drake, Phys. Rev. Lett. 77), 1715 (1996)., a measurement of the 2^3P_2,F - 2^3P_1,F' fine structure in ^19F^7+ is in progress. The method involves doppler-tuned laser spectroscopy using a CO2 laser on a foil-stripped fluorine ion beam. We aim to achieve a higher precision, compared to an earlier measurement(E.G. Myers, P. Kuske, H.J. Andrae, I.A. Armour, H.A. Klein, J.D. Silver, and E. Traebert, Phys. Rev. Lett. 47), 87 (1981)., by using laser beams parallel and anti-parallel to the ion beam, to obtain partial cancellation of the doppler shift(J.K. Thompson, D.J.H. Howie and E.G. Myers, Phys. Rev. A 57), 180 (1998).. A calculation of the hyperfine structure, allowing for relativistic, QED and nuclear size effects, will be required to obtain the ``hyperfine-free'' fine structure interval from the measurements.

  10. Theoretical and experimental comparison of proton and helium-beam radiography using silicon pixel detectors

    Science.gov (United States)

    Gehrke, T.; Amato, C.; Berke, S.; Martišíková, M.

    2018-02-01

    Ion-beam radiography (iRAD) could potentially improve the quality control of ion-beam therapy. The main advantage of iRAD is the possibility to directly measure the integrated stopping power. Until now there is no clinical implementation of iRAD. Topics of ongoing research include developing dedicated detection systems to achieve the desired spatial resolution (SR) and investigating different ion types as imaging radiation. This work focuses on the theoretical and experimental comparison of proton (pRAD) and helium-beam radiography (αRAD). The experimental comparison was performed with an in-house developed detection system consisting of silicon pixel detectors. This system enables the measurement of energy deposition of single ions, their tracking, and the identification of the ion type, which is important for αRAD due to secondary fragments. A 161 mm-thick PMMA phantom with an air gap of 1 mm placed at different depths was imaged with a 168 MeV u-1 proton/helium-ion beam at the Heidelberg ion-beam therapy center. The image quality in terms of SR and contrast-to-noise ratio (CNR) was evaluated. After validating MC simulations against experiments, pRAD and αRAD were compared to carbon-beam radiography (cRAD) in simulations. The theoretical prediction that the CNR of pRAD and αRAD is equal at similar imaging doses was experimentally confirmed. The measured SR of αRAD was 55% better compared to pRAD. The simulated cRads showed the expected improvement in SR and the decreased CNR at the same dose compared to the αRads, however only at dose levels exceeding typical doses of diagnostic x-ray projections. For clinically applicable dose levels, the cRads suffered from an insufficient number of carbon ions per pixel (220 μm  ×  220 μm). In conclusion, it was theoretically and experimentally shown that αRAD provides a better SR than pRAD without any disadvantages concerning the CNR. Using carbon ions instead of helium ions leads to a better SR at the

  11. CALCULATED REGENERATOR PERFORMANCE AT 4 K WITH HELIUM-4 AND HELIUM-3

    International Nuclear Information System (INIS)

    Radebaugh, Ray; Huang Yonghua; O'Gallagher, Agnes; Gary, John

    2008-01-01

    The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transport properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies

  12. High frequency way of helium ash removal from stellarator-reactor

    International Nuclear Information System (INIS)

    Grekov, D.L.

    2005-01-01

    The paper deals with the problem of helium ash removal from stellarator-reactor. The lower hybrid heating of ash ions is proposed to solve this problem. The theory of ion stochastic heating, developed earlier by Karney, is generalized on the case of heating in stellarators. The features of the lower hybrid waves propagation and the ions motion in the stellarator confining field are taken into account. With proper choice of wave parameters (such as frequency, antenna position and initial spectrum of longitudinal refractive index) the slow mode of LH waves penetrates from the launching system to plasma core (and back) without conversion to kinetic plasma mode or to fast mode. With all these going on, the LH wave is absorbed by alpha particles only. The electron Landau damping is negligibly small, and there is no bulk ions stochastic heating. The motion of high energy (>100 keV) ions in the LHD heliotron with inwardly shifted magnetic axis, as an example of stellarator type device, is calculated numerically using the single particle simulation code which couples modified Karney's ion stochastic heating theory. The effect of collisions was taken into account through the Monte Carlo equivalent of the Lorentz collision operator. It is shown, that due to interaction with lower hybrid wave, initially well-confined alpha particles are expelled from the plasma during the time period less then collision time. At the same time, the low hybrid heating does not remove the ions with energy higher than 500 keV. Therefore, it is possible to use this method of RF heating for helium ash removal in stellarator-reactor. The required LH power is estimated to be of the order of 10 MW. (author)

  13. Lifetime and quenching of CO /a super 3 pi/ produced by recombination of CO2 ions in a helium afterglow.

    Science.gov (United States)

    Wauchop, T. S.; Broida, H. P.

    1972-01-01

    Demonstration that rapid dissociative recombination of CO2(+) in a flowing, helium afterglow is an efficient source of CO in the a super 3 pi metastable state. Ions produced by mixing CO2 with He(2 super 3 S) recombine to produce a CO metastable afterglow with a number density as great as 10 to the 9th per sq cm. Monitoring of the (a super 3 pi-X super 1 sigma) Cameron transition in CO was used to study the lifetime and quenching of CO (a super 3 pi) by CO2, N2, NO, and He. Recombination of CO2(+) also produces CO in the d super 3 delta and a' super 3 sigma states.

  14. Photoionization of helium dimers; Photoionisation von Heliumdimeren

    Energy Technology Data Exchange (ETDEWEB)

    Havermeier, Tilo

    2010-06-09

    The helium dimer is one of the most weakly bound systems in the universe. This makes it an interesting quantum mechanical object for investigation. These Van der Waals Clusters can be produced in an expansion of a cryogenic gas jet through a small nozzle into vacuum. In the present experiment we examine the interaction of He dimers with synchrotron radiation at an energy range from 64 to 78 eV. We observed different pathways leading to single ionization of both He atoms of the dimer compound. This two close standing ions begin now to dissociate in cause of their coulomb potential. All charged fragments were detected in coincidence with a COLTRIMS system. Especially Interatomic Coulombic Decay (ICD) and the two step process (TS1) were clearly identified. Furthermore a distribution of the internuclear distance was obtained from the measured Kinetic Energy Release (KER). (orig.)

  15. Helium diffraction study of pentacene films on Au(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Albayrak, E. [Department of Materials and Metallurgical Engineering, Ahi Evran University, Kırşehir 40000 (Turkey); Danışman, M.F., E-mail: danisman@metu.edu.tr [Department of Chemistry, Middle East Technical University, Ankara 06531 (Turkey)

    2014-03-01

    Highlights: • Pentacene films were grown by supersonic molecular beam deposition on Au(1 1 1). • Simultaneous helium scattering and quartz crystal resonance frequency shift measurements were performed. • Helium diffraction results were consistent with a (6 × 3) monolayer structure. • No ordered multilayers could be observed. - Abstract: Here we present a helium atom diffraction study of pentacene films on Au(1 1 1) surface prepared by supersonic molecular beam deposition. Though investigated parameter space was limited no significant difference between the films prepared by different deposition energies was observed. Completion of monolayer coverage was confirmed by simultaneous helium scattering and quartz crystal resonance frequency shift measurements during pentacene film growth on the gold electrode of a quartz resonator. Monolayer films were found to adopt a (6 × 3) unit cell which was also observed for pentacene monolayers on Ag(1 1 1). However no ordered multilayer film structure could be observed which is in contrast with the previous Ag(1 1 1) studies.

  16. Observation of ion-acoustic rarefaction solitons in a multicomponent plasma with negative ions

    International Nuclear Information System (INIS)

    Ludwig, G.O.; Ferreira, J.L.; Nakamura, Y.

    1984-01-01

    The propagation of ion-acoustic solitons in a plasma with negative ions has been observed. For sufficiently large concentration of negative ions, applied rarefactive (negative) voltage pulses break up into solitons, whereas compressive pulses evolve into wave trains, with exactly the opposite behavior as that for a plasma composed only of positive ions. There is a critical value of the negative-ion concentration for which a finite-amplitude pulse propagates without steepening

  17. Synergistic effect of helium and hydrogen for bubble swelling in reduced-activation ferritic/martensitic steel under sequential helium and hydrogen irradiation at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wenhui [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Chen, Jihong; Luo, Fengfeng; Li, Tiecheng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Ren, Yaoyao [Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China); Suo, Jinping; Yang, Feng [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-04-15

    Highlights: • Helium/hydrogen synergistic effect can increase irradiation swelling of RAFM steel. • Hydrogen can be trapped to the outer surface of helium bubbles. • Too large a helium bubble can become movable. • Point defects would become mobile and annihilate at dislocations at high temperature. • The peak swelling temperature for RAFM steel is 450 °C. - Abstract: In order to investigate the synergistic effect of helium and hydrogen on swelling in reduced-activation ferritic/martensitic (RAFM) steel, specimens were separately irradiated by single He{sup +} beam and sequential He{sup +} and H{sup +} beams at different temperatures from 250 to 650 °C. Transmission electron microscope observation showed that implantation of hydrogen into the specimens pre-irradiated by helium can result in obvious enhancement of bubble size and swelling rate which can be regarded as a consequence of hydrogen being trapped by helium bubbles. But when temperature increased, Ostwald ripening mechanism would become dominant, besides, too large a bubble could become mobile and swallow many tiny bubbles on their way moving, reducing bubble number density. And these effects were most remarkable at 450 °C which was the peak bubble swelling temperature for RAMF steel. When temperature was high enough, say above 450, point defects would become mobile and annihilate at dislocations or surface. As a consequence, helium could no longer effectively diffuse and clustering in materials and bubble formation was suppressed. When temperature was above 500, helium bubbles would become unstable and decompose or migrate out of surface. Finally no bubble was observed at 650 °C.

  18. Synergistic effect of helium and hydrogen for bubble swelling in reduced-activation ferritic/martensitic steel under sequential helium and hydrogen irradiation at different temperatures

    International Nuclear Information System (INIS)

    Hu, Wenhui; Guo, Liping; Chen, Jihong; Luo, Fengfeng; Li, Tiecheng; Ren, Yaoyao; Suo, Jinping; Yang, Feng

    2014-01-01

    Highlights: • Helium/hydrogen synergistic effect can increase irradiation swelling of RAFM steel. • Hydrogen can be trapped to the outer surface of helium bubbles. • Too large a helium bubble can become movable. • Point defects would become mobile and annihilate at dislocations at high temperature. • The peak swelling temperature for RAFM steel is 450 °C. - Abstract: In order to investigate the synergistic effect of helium and hydrogen on swelling in reduced-activation ferritic/martensitic (RAFM) steel, specimens were separately irradiated by single He + beam and sequential He + and H + beams at different temperatures from 250 to 650 °C. Transmission electron microscope observation showed that implantation of hydrogen into the specimens pre-irradiated by helium can result in obvious enhancement of bubble size and swelling rate which can be regarded as a consequence of hydrogen being trapped by helium bubbles. But when temperature increased, Ostwald ripening mechanism would become dominant, besides, too large a bubble could become mobile and swallow many tiny bubbles on their way moving, reducing bubble number density. And these effects were most remarkable at 450 °C which was the peak bubble swelling temperature for RAMF steel. When temperature was high enough, say above 450, point defects would become mobile and annihilate at dislocations or surface. As a consequence, helium could no longer effectively diffuse and clustering in materials and bubble formation was suppressed. When temperature was above 500, helium bubbles would become unstable and decompose or migrate out of surface. Finally no bubble was observed at 650 °C

  19. submitter Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams

    CERN Document Server

    Dokic, Ivana; Niklas, Martin; Zimmermann, Ferdinand; Chaudhri, Naved; Krunic, Damir; Tessonnier, Thomas; Ferrari, Alfredo; Parodi, Katia; Jäkel, Oliver; Debus, Jürgen; Haberer, Thomas; Abdollahi, Amir

    2016-01-01

    The growing number of particle therapy facilities worldwide landmarks a novel era of precision oncology. Implementation of robust biophysical readouts is urgently needed to assess the efficacy of different radiation qualities. This is the first report on biophysical evaluation of Monte Carlo simulated predictive models of prescribed dose for four particle qualities i.e., proton, helium-, carbon- or oxygen ions using raster-scanning technology and clinical therapy settings at HIT. A high level of agreement was found between the in silico simulations, the physical dosimetry and the clonogenic tumor cell survival. The cell fluorescence ion track hybrid detector (Cell-Fit-HD) technology was employed to detect particle traverse per cell nucleus. Across a panel of radiobiological surrogates studied such as late ROS accumulation and apoptosis (caspase 3/7 activation), the relative biological effectiveness (RBE) chiefly correlated with the radiation species-specific spatio-temporal pattern of DNA double strand break ...

  20. Doubly excited helium. From strong correlation to chaos

    International Nuclear Information System (INIS)

    Jiang, Yuhai

    2006-03-01

    In the present dissertation, the double excitation states of helium including the autoionization decay of these states were studied experimentally and theoretically in a broad energy region, which includes the transition from strong correlation below the low single ionization thresholds (SIT) to the region of quantum chaos at energies very close to the double-ionization threshold. Two kind of experiments were performed, namely total-ion-yield measurements with the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measurements to obtain partial cross sections (PCS) as well as angular distribution parameters (ADP). Both types of measurements were performed at the third generation synchrotron radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I 15 , and they were found to be in in excellent agreement with state-of-the-art complex-rotation calculations performed recently by D. Delande. These experimental and theoretical data on the TCSs were analyzed in order to study quantum chaos in doubly excited helium, and interesting signatures of quantum chaos were found. The TOF technique allowed to measure PCSs and ADPs in the energy regions from I 5 to I 9 and I 7 , respectively. These experimental data provide a critical assessment of theoretical models that can be used to explore the dynamics of strong correlation as well as quantum chaos in helium. In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below I 4 were calculated employing the R-matrix method. The present theoretical results agree well with a recent experimental study of l-specific PCSs below I 4 by J.R. Harries et al. An analysis of patterns in the PCSs and ADPs on the basis of the present experimental and theoretical l-specific data allowed to improve the present understanding of autoionization decay dynamics in this two-electron atom. (orig.)

  1. Evolution Models of Helium White Dwarf–Main-sequence Star Merger Remnants

    International Nuclear Information System (INIS)

    Zhang, Xianfei; Bi, Shaolan; Hall, Philip D.; Jeffery, C. Simon

    2017-01-01

    It is predicted that orbital decay by gravitational-wave radiation and tidal interaction will cause some close binary stars to merge within a Hubble time. The merger of a helium-core white dwarf with a main-sequence (MS) star can produce a red giant branch star that has a low-mass hydrogen envelope when helium is ignited and thus become a hot subdwarf. Because detailed calculations have not been made, we compute post-merger models with a stellar evolution code. We find the evolutionary paths available to merger remnants and find the pre-merger conditions that lead to the formation of hot subdwarfs. We find that some such mergers result in the formation of stars with intermediate helium-rich surfaces. These stars later develop helium-poor surfaces owing to diffusion. Combining our results with a model population and comparing to observed stars, we find that some observed intermediate helium-rich hot subdwarfs can be explained as the remnants of the mergers of helium-core white dwarfs with low-mass MS stars.

  2. Evolution Models of Helium White Dwarf–Main-sequence Star Merger Remnants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xianfei; Bi, Shaolan [Department of Astronomy, Beijing Normal University, Beijing, 100875 (China); Hall, Philip D.; Jeffery, C. Simon, E-mail: zxf@bnu.edu.cn [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom)

    2017-02-01

    It is predicted that orbital decay by gravitational-wave radiation and tidal interaction will cause some close binary stars to merge within a Hubble time. The merger of a helium-core white dwarf with a main-sequence (MS) star can produce a red giant branch star that has a low-mass hydrogen envelope when helium is ignited and thus become a hot subdwarf. Because detailed calculations have not been made, we compute post-merger models with a stellar evolution code. We find the evolutionary paths available to merger remnants and find the pre-merger conditions that lead to the formation of hot subdwarfs. We find that some such mergers result in the formation of stars with intermediate helium-rich surfaces. These stars later develop helium-poor surfaces owing to diffusion. Combining our results with a model population and comparing to observed stars, we find that some observed intermediate helium-rich hot subdwarfs can be explained as the remnants of the mergers of helium-core white dwarfs with low-mass MS stars.

  3. Interaction of electrons with biomolecules and development of a helium cluster source

    International Nuclear Information System (INIS)

    Denifl, S.

    2004-07-01

    In the main part of the present work electron interaction (attachment/ionization) with molecules of biological relevance has been studied in the electron energy range from about 0 to 70 eV. For these measurements a crossed neutral / high resolution electron beams apparatus in conjunction with a quadrupole mass spectrometer has been used. The present work should evaluate the description of the damage induced by high energy radiation since low secondary electrons with energies below 20 eV are created in a large amount in the interaction of the primary radiation with cell compounds. Thus dissociative electron attachment (DEA) and electron impact ionization near the threshold of biomulecules has been studied below 20 eV under isolated conditions. DEA to the DNA/RNA molecules thymine, cytosine and uracil has been carried out. As for most of the recently studied simple biomolecules (like isolated DNA bases, amino acids and sugars) no parent ion has been observed. It turned out that the most abundant fragment ions for DNA/RNA bases are the dehydrogenated bases. In addition to DNA/RNA bases also electron interaction with 6-Chlorouracil has been studied. Another part of this thesis is the construction of a He cluster source. Helium clusters are most difficult to produce as temperatures of about 10 K have to be reached in the stagnation chamber at the stagnation pressure of about 20 bar. The newly developed source allows achieving stagnation conditions for a helium cluster production. (author)

  4. New helium spectrum variable and a new helium-rich star

    International Nuclear Information System (INIS)

    Walborn, N.R.

    1974-01-01

    HD 184927, known previously as a helium-rich star, has been found to have a variable helium spectrum; the equivalent widths of five He I lines are larger by an average of 46 percent on a 1974 spectrogram than on one obtained with the same equipment in 1970. HD 186205 has been found to be a new, pronounced helium-rich star. (auth)

  5. Tensile properties and microstructure of helium-injected and reactor-irradiated V-20 Ti

    International Nuclear Information System (INIS)

    Tanaka, M.P.; Bloom, E.E.; Horak, J.A.

    1981-01-01

    Mechanical properties and microstructure of vanadium-20% titanium were examined following helium-injection and reactor irradiation. Helium was injected at ambient temperature to concentrations of 90 and 200 at. ppM; neutron irradiation was at 400, 575, 625, and 700 0 C to fluence of 3 x 10 26 n/m 2 , E > 0.1 MeV. Cavities representing negligible volume swelling were observed in all helium-injected specimens. Degradation of mechanical properties, especially loss of ductility due to helium, occurred at temperatures of 625 and 700 0 C. The levels of helium produced in the fusion spectrum can be expected to alter the response of vanadium alloys from that observed in fast reactor irradiations

  6. Tensile properties and microstructure of helium-injected and reactor-irradiated V-20 Ti

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M.P.; Bloom, E.E.; Horak, J.A.

    1981-01-01

    Mechanical properties and microstructure of vanadium-20% titanium were examined following helium-injection and reactor irradiation. Helium was injected at ambient temperature to concentrations of 90 and 200 at. ppM; neutron irradiation was at 400, 575, 625, and 700/sup 0/C to fluence of 3 x 10/sup 26/ n/m/sup 2/, E > 0.1 MeV. Cavities representing negligible volume swelling were observed in all helium-injected specimens. Degradation of mechanical properties, especially loss of ductility due to helium, occurred at temperatures of 625 and 700/sup 0/C. The levels of helium produced in the fusion spectrum can be expected to alter the response of vanadium alloys from that observed in fast reactor irradiations.

  7. Tritium decay helium-3 effects in tungsten

    Directory of Open Access Journals (Sweden)

    M. Shimada

    2017-08-01

    Full Text Available Tritium (T implanted by plasmas diffuses into bulk material, especially rapidly at elevated temperatures, and becomes trapped in neutron radiation-induced defects in materials that act as trapping sites for the tritium. The trapped tritium atoms will decay to produce helium-3 (3He atoms at a half-life of 12.3 years. 3He has a large cross section for absorbing thermal neutrons, which after absorbing a neutron produces hydrogen (H and tritium ions with a combined kinetic energy of 0.76 MeV through the 3He(n,HT nuclear reaction. The purpose of this paper is to quantify the 3He produced in tungsten by tritium decay compared to the neutron-induced helium-4 (4He produced in tungsten. This is important given the fact that helium in materials not only creates microstructural damage in the bulk of the material but alters surface morphology of the material effecting plasma-surface interaction process (e.g. material evolution, erosion and tritium behavior of plasma-facing component materials. Effects of tritium decay 3He in tungsten are investigated here with a simple model that predicts quantity of 3He produced in a fusion DEMO FW based on a neutron energy spectrum found in literature. This study reveals that: (1 helium-3 concentration was equilibrated to ∼6% of initial/trapped tritium concentration, (2 tritium concentration remained approximately constant (94% of initial tritium concentration, and (3 displacement damage from 3He(n,HT nuclear reaction became >1 dpa/year in DEMO FW.

  8. Helium effect on mechanical property of fusion reactor structural materials

    International Nuclear Information System (INIS)

    Yamamoto, Norikazu; Chuto, Toshinori; Murase, Yoshiharu; Nakagawa, Johsei

    2004-01-01

    High-energy neutrons produced in fusion reactor core caused helium in the structural materials of fusion reactors, such as blankets. We injected alpha particles accelerated by the cyclotron to the samples of martensite steel (9Cr3WVTaB). Equivalent helium doses injected to the sample is estimated to be up to 300 ppm, which were estimated to be equivalent to helium accumulation after the 1-year reactor operation. Creep tests of the samples were made to investigate helium embrittlement. There were no appreciable changes in the relation between the stresses and the rupture time, the minimum creep rate and the applied stress. Grain boundary effect by helium was not observed in ruptured surfaces. Fatigue tests were made for SUS304 samples, which contain helium up to 150 ppm. After 0.05 Hz cyclic stress tests, it was shown that the fatigue lifetime (cycles to rupture and extension to failure) are 1/5 in 150 ppm helium samples compared with no helium samples. The experimental results suggest martensite steel is promising for structural materials of fusion reactors. (Y. Tanaka)

  9. Radiation response of ODS ferritic steels with different oxide particles under ion-irradiation at 550 °C

    Science.gov (United States)

    Song, Peng; Morrall, Daniel; Zhang, Zhexian; Yabuuchi, Kiyohiro; Kimura, Akihiko

    2018-04-01

    In order to investigate the effects of oxide particles on radiation response such as hardness change and microstructural evolution, three types of oxide dispersion strengthened (ODS) ferritic steels (named Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS), mostly strengthened by Y-Ti-O, Y-Al-O and Y-Zr-O dispersoids, respectively, were simultaneously irradiated with iron and helium ions at 550 °C up to a damage of 30 dpa and a corresponding helium (He) concentration of ∼3500 appm to a depth of 1000-1300 nm. A single iron ion beam irradiation was also performed for reference. Transmission electron microscopy revealed that after the dual ion irradiation helium bubbles of 2.8, 6.6 and 4.5 nm in mean diameter with the corresponding number densities of 1.1 × 1023, 2.7 × 1022 and 3.6 × 1022 m-3 were observed in Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS, respectively, while no such bubbles were observed after single ion irradiation. About 80% of intragranular He bubbles were adjacent to oxide particles in the ODS ferritic steels. Although the high number density He bubbles were observed in the ODS steels, the void swelling in Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS was still small and estimated to be 0.13%, 0.53% and 0.20%, respectively. The excellent swelling resistance is dominantly attributed to the high sink strength of oxide particles that depends on the morphology of particle dispersion rather than the crystal structure of the particles. In contrast, no dislocation loops were produced in any of the irradiated steels. Nanoindentation measurements showed that no irradiation hardening but softening was found in the ODS ferritic steels, which was probably due to irradiation induced dislocation recovery. The helium bubbles in high number density never contributed to the irradiation hardening of the ODS steels at these irradiation conditions.

  10. Dopant profiling based on scanning electron and helium ion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chee, Augustus K.W., E-mail: kwac2@cam.ac.uk [Centre for Advanced Photonics and Electronics, Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Boden, Stuart A. [University of Southampton, Electronics and Computer Science, Highfield, Southampton SO17 1BJ (United Kingdom)

    2016-02-15

    In this paper, we evaluate and compare doping contrast generated inside the scanning electron microscope (SEM) and scanning helium ion microscope (SHIM). Specialised energy-filtering techniques are often required to produce strong doping contrast to map donor distributions using the secondary electron (SE) signal in the SEM. However, strong doping contrast can be obtained from n-type regions in the SHIM, even without energy-filtering. This SHIM technique is more sensitive than the SEM to donor density changes above its sensitivity threshold, i.e. of the order of 10{sup 16} or 10{sup 17} donors cm{sup −3} respectively on specimens with or without a p–n junction; its sensitivity limit is well above 2×10{sup 17} acceptors cm{sup −3} on specimens with or without a p–n junction. Good correlation is found between the widths and slopes of experimentally measured doping contrast profiles of thin p-layers and the calculated widths and slopes of the potential energy distributions across these layers, at a depth of 1 to 3 nm and 5 to 10 nm below the surface in the SHIM and the SEM respectively. This is consistent with the mean escape depth of SEs in silicon being about 1.8 nm and 7 nm in the SHIM and SEM respectively, and we conclude that short escape depth, low energy SE signals are most suitable for donor profiling. - Highlights: • Strong doping contrast from n-type regions in the SHIM without energy-filtering. • Sensitivity limits are established of the SHIM and SEM techniques. • We discuss the impact of SHIM imaging conditions on quantitative dopant profiling. • Doping contrast stems from different surface layer thicknesses in the SHIM and SEM.

  11. Commercial helium reserves, continental rifting and volcanism

    Science.gov (United States)

    Ballentine, C. J.; Barry, P. H.; Hillegonds, D.; Fontijn, K.; Bluett, J.; Abraham-James, T.; Danabalan, D.; Gluyas, J.; Brennwald, M. S.; Pluess, B.; Seneshens, D.; Sherwood Lollar, B.

    2017-12-01

    Helium has many industrial applications, but notably provides the unique cooling medium for superconducting magnets in medical MRI scanners and high energy beam lines. In 2013 the global supply chainfailed to meet demand causing significant concern - the `Liquid Helium Crisis' [1]. The 2017 closure of Quatar borders, a major helium supplier, is likely to further disrupt helium supply, and accentuates the urgent need to diversify supply. Helium is found in very few natural gas reservoirs that have focused 4He produced by the dispersed decay (a-particle) of U and Th in the crust. We show here, using the example of the Rukwa section of the Tanzanian East African Rift, how continental rifting and local volcanism provides the combination of processes required to generate helium reserves. The ancient continental crust provides the source of 4He. Rifting and associated magmatism provides the tectonic and thermal mechanism to mobilise deep fluid circulation, focusing flow to the near surface along major basement faults. Helium-rich springs in the Tanzanian Great Rift Valley were first identified in the 1950's[2]. The isotopic compositions and major element chemistry of the gases from springs and seeps are consistent with their release from the crystalline basement during rifting [3]. Within the Rukwa Rift Valley, helium seeps occur in the vicinity of trapping structures that have the potential to store significant reserves of helium [3]. Soil gas surveys over 6 prospective trapping structures (1m depth, n=1486) show helium anomalies in 5 out of the 6 at levels similar to those observed over a known helium-rich gas reservoir at 1200m depth (7% He - Harley Dome, Utah). Detailed macroseep gas compositions collected over two days (n=17) at one site allows us to distinguish shallow gas contributions and shows the deep gas to contain between 8-10% helium, significantly increasing resource estimates based on uncorrected values (1.8-4.2%)[2,3]. The remainder of the deep gas is

  12. Study of helium behaviour in body-centered cubic structures for new nuclear reactor generations: experimental approach in well characterized materials

    International Nuclear Information System (INIS)

    Gorondy-Novak, Sofia Maria

    2017-01-01

    The presence of helium produced during the operation of future fast reactors and fusion reactors in core structural materials induces a deterioration of their mechanical properties (hardening, swelling, embrittlement). In order to pursue the development of the metallic structural alloys, it is necessary to comprehend the He interaction with the metal lattice thus the point in common is the study of the metallic components with body-centered cubic structure (bcc) of future alloys, such as iron and/or vanadium. Ion implantation of ions "4He was employed with the aim of simulating the damaging effects associated with the helium accumulation, the point defects' creation (vacancies, self-interstitials) and the He cluster formation in future reactors. Helium evolution in pure iron and pure vanadium has been revealed from the point of view of the trapping sites' nature and well as the helium migration mechanisms and the nucleation/growth of bubbles. These phenomena were studied by coupling different complementary techniques. Despite of the fact that some mechanisms involved seem to be similar for both bcc metals, the comparison between the helium behavior in iron and vanadium shows certain differences. Microstructural defects, including grain boundaries and implanted helium concentration (dose) in both bcc metals will play significant roles on the helium behavior at high temperature. The acquired experimental data coupled with simulation methods contribute to the future development in terms of kinetic and thermodynamic data management of helium behavior in the metal components of the alloys of nuclear interest. (author) [fr

  13. Dynamics of the single and double ionization of helium in fast proton collisions

    International Nuclear Information System (INIS)

    Doerner, R.; Schmidt-Boecking, H.

    1991-08-01

    A new experimental approach, designed to measure differential ionisation and electron capture cross sections for relativistic heavy ion beams, has been developed and was used to investigate dynamic mechanisms of Helium single and double ionisation in collisions with fast protons. Detailed insight into the dynamics of the ionisation process has been obtained. The experimental results prove, that the many-body momentum exchange between all particles involved, the projectile and target nucleus as well as the emitted electrons, has to be incorporated in order to correctly describe the ionisation collision dynamics. For the proton on Helium collision system the transverse momenta of projectile and recoil-ion were found to be of comparable magnitude only for very close collisions and large scattering angles above 1 mrad, which contribute less than 3% to the total ionisation cross section. (orig./HSI) [de

  14. Helium the disappearing element

    CERN Document Server

    Sears, Wheeler M

    2015-01-01

    The subject of the book is helium, the element, and its use in myriad applications including MRI machines, particle accelerators, space telescopes, and of course balloons and blimps. It was at the birth of our Universe, or the Big Bang, where the majority of cosmic helium was created; and stellar helium production continues. Although helium is the second most abundant element in the Universe, it is actually quite rare here on Earth and only exists because of radioactive elements deep within the Earth. This book includes a detailed history of the discovery of helium, of the commercial industry built around it, how the helium we actually encounter is produced within the Earth, and the state of the helium industry today. The gas that most people associate with birthday party balloons is running out. “Who cares?” you might ask. Well, without helium, MRI machines could not function, rockets could not go into space, particle accelerators such as those used by CERN could not operate, fiber optic cables would not...

  15. A natural orbital analysis of the helium (e,2e) spectrum

    International Nuclear Information System (INIS)

    Mitroy, J.; McCarthy, I.E.; Weigold, E.

    1984-10-01

    A series of successively more accurate wavefunctions (of the Natural Orbital form) for the helium atom ground state is used to analyse the 1200eV non-coplanar symmetric (e,2e) data for helium with the Plane Wave Impulse Approximation. Particular attention is focussed upon the determination of the ratio for populating the n = 2 (2s and 2p) and 1s ion states. It is seen that the cross-section ratio (at low recoil momentum) converges satisfactorily as additional target natural orbitals are utilised for the calculation of the overlap function. The convergence of the cross-section ratio at high azimuthal angles is seen to be much slower

  16. Fast helium production in interactions of 3.7 A GeV 24Mg with emulsion nuclei

    International Nuclear Information System (INIS)

    Jilany, M.A.

    2004-01-01

    We have studied the properties of the relativistic helium fragments emitted from the projectile in the interactions of 24 Mg ions accelerated at an energy of 3.7 A GeV with emulsion nuclei. The total, partial nuclear cross-sections and production rates of helium fragmentation channels in relativistic nucleus-nucleus collisions and their dependence on the mass and energy of the incident projectile nucleus are investigated. The yields of multiple helium projectile fragments disrupted from the interactions of 24 Mg projectile nuclei with hydrogen H, light CNO and heavy AgBr groups of target emulsion nuclei are discussed and they indicate that the breakup mechanism of the projectile seems to be independent of the target mass. Limiting fragmentation behavior of fast-moving helium fragments is observed in both the projectile and target nuclei. The multiplicity distributions of helium projectile fragments emitted in the interactions of 24 Mg projectile nuclei with the different target nuclei of the emulsion are well described by the KNO scaling presentation. The mean multiplicities of the different charged secondary particles, normally defined shower, grey and black (left angle n s right angle, left angle n g right angle and left angle n b right angle) emitted in the interactions of 3.7 A GeV 24 Mg with the different groups of emulsion nuclei at different ranges of projectile fragments are decreasing when the number of He fragments stripped from projectile increases. These values of left angle n i right angle (i=s, g, band h particles) in the events where the emission of fast helium fragments were accompanied by heavy fragments having Z≥3 seem to be constant as the He multiplicity increases, and exhibit a behavior independent of the He multiplicity. (orig.)

  17. DIRECT EVALUATION OF THE HELIUM ABUNDANCES IN OMEGA CENTAURI

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Avrett, E. H., E-mail: dupree@cfa.harvard.edu, E-mail: eavrett@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2013-08-20

    A direct measure of the helium abundances from the near-infrared transition of He I at 1.08 {mu}m is obtained for two nearly identical red giant stars in the globular cluster Omega Centauri. One star exhibits the He I line; the line is weak or absent in the other star. Detailed non-local thermal equilibrium semi-empirical models including expansion in spherical geometry are developed to match the chromospheric H{alpha}, H{beta}, and Ca II K lines, in order to predict the helium profile and derive a helium abundance. The red giant spectra suggest a helium abundance of Y {<=} 0.22 (LEID 54064) and Y = 0.39-0.44 (LEID 54084) corresponding to a difference in the abundance {Delta}Y {>=} 0.17. Helium is enhanced in the giant star (LEID 54084) that also contains enhanced aluminum and magnesium. This direct evaluation of the helium abundances gives observational support to the theoretical conjecture that multiple populations harbor enhanced helium in addition to light elements that are products of high-temperature hydrogen burning. We demonstrate that the 1.08 {mu}m He I line can yield a helium abundance in cool stars when constraints on the semi-empirical chromospheric model are provided by other spectroscopic features.

  18. Ultra-low energy electrons from fast heavy-ion helium collisions: the `target Cusp`

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, W. [Freiburg Univ. (Germany)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Moshammer, R.; Kollmus, H.; Ullrich, J. [Freiburg Univ. (Germany); O`Rourke, F.S.C. [Queen`s Univ., Belfast, Northern Ireland (United Kingdom); Sarkadi, L. [Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete; Mann, R. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Hagmann, S. [Kansas State Univ., Manhattan, KS (United States). J.R. MacDonald Lab.; Olson, R.E. [Missouri Univ., Rolla, MO (United States). Dept. of Physics

    1998-09-01

    Doubly differential cross sections d{sup 2}{sigma}/dv {sub parallel} dv {sub perpendicular} {sub to} have been obtained by mapping the 3-dimensional velocity space of ultra-low and low-energy electrons (1.5 meV{<=} E{sub e}{<=}100 eV) emitted in singly ionizing 3.6 MeV/u Au{sup 53+} on helium collisions. A sharp ({Delta}E{sub e} {sub perpendicular} {sub to} {sup FWHM} {<=} 22 meV) asymmetric peak centered at vertical stroke anti {nu} vertical stroke =0 is observed to emerge at ultra-low energies from the strongly forward shifted low-energy electron velocity distribution. The shape of this ``target cusp``, which is very sensitive on the details of the two-center potential, is in excellent accord with theoretical CTMC and CDW-EIS predictions. (orig.)

  19. The Mean Excitation Energy of Atomic Ions

    DEFF Research Database (Denmark)

    Sauer, Stephan; Oddershede, Jens; Sabin, John R.

    2015-01-01

    A method for calculation of the mean excitation energies of atomic ions is presented, making the calculation of the energy deposition of fast ions to plasmas, warm, dense matter, and complex biological systems possible. Results are reported to all ions of helium, lithium, carbon, neon, aluminum...

  20. Liquid helium target

    International Nuclear Information System (INIS)

    Fujii, Y.; Kitami, T.; Torikoshi, M.

    1984-12-01

    A liquid helium target system has been built and used for the experiment on the reaction 4 He(γ, p). The target system has worked satisfactorily; the consumption rate of liquid helium is 360 ml/h and the cryogenic system retains liquid helium for about ten hours. The structure, operation and performance of the target system are reported. (author)

  1. Binary and ternary recombination of [image omitted] and [image omitted] ions with electrons in low temperature plasma

    Science.gov (United States)

    Glosík, J.; Plašil, R.; Kotrík, T.; Dohnal, P.; Varju, J.; Hejduk, M.; Korolov, I.; Roučka, Š.; Kokoouline, V.

    2010-09-01

    Measurements of recombination rate coefficients of binary and ternary recombination of ? and ? ions with electrons in a low temperature plasma are described. The experiments were carried out in the afterglow plasma in helium with a small admixture of Ar and parent gas (H2 or D2). For both ions a linear increase of measured apparent binary recombination rate coefficients (αeff) with increasing helium density was observed: αeff = αBIN + K He[He]. From the measured dependencies, we have obtained for both ions the binary (αBIN) and the ternary (K He) rate coefficients and their temperature dependence. For the description of observed ternary recombination a mechanism with two subsequent rate determining steps is proposed. In the first step, in ? + e- (or ? + e-) collision, a rotationally excited long-lived Rydberg molecule ? (or ? ) is formed. In the following step ? (or ? ) collides with a He atom of the buffer gas and this collision prevents autoionization of ? (or ? ). Lifetimes of the formed ? (or ? ) and corresponding ternary recombination rate coefficients have been calculated. The theoretical and measured binary and ternary recombination rate coefficients obtained for ? and ? ions are in good agreement.

  2. Use of helium in uranium exploration, Grants district

    International Nuclear Information System (INIS)

    DeVoto, R.H.; Mead, R.H.; Martin, J.P.; Bergquist, L.E.

    1980-01-01

    The continuous generation of inert helium gas from uranium and its daughter products provides a potentially useful means for remote detection of uranium deposits. The practicality of conducting helium surveys in the atmosphere, soil gas, and ground water to explore for buried uranium deposits has been tested in the Grants district and in the Powder River Basin of Wyoming. No detectable helium anomalies related to buried or surface uranium deposits were found in the atmosphere. However, reproducible helium-in-soil-gas anomalies were detected spatially related to uranium deposits buried from 50 to 800 ft deep. Diurnal and atmospheric effects can cause helium content variations (noise) in soil gas that are as great as the anomalies observed from instantaneous soil-gas samples. Cumulative soil-gas helium analyses, such as those obtained from collecting undisturbed soil samples and degassing them in the laboratory, may reveal anomalies from 5 to 100 percent above background. Ground water samples from the Grants district, New Mexico, and the Powder River Basin, Wyoming, have distinctly anomalous helium values spatially related to buried uranium deposits. In the southern Powder River Basin, helium values 20 to 200 percent above background occur 2 to 18 mile down the ground-water flow path from known uranium roll-front deposits. In the Grants district, helium contents 40 to 700 percent above background levels are present in ground waters from the host sandstone in the vicinity of uranium deposits and from aquifers up to 3,000 ft stratigraphically above the deep uranium deposits. The use of helium in soil and ground-water surveys, along with uranium and radon analyses of the same materials, is strongly recommended is expensive, deep, uranium-exploration programs such as those being conducted in the Grants district

  3. He2+ molecular ion and the He- atomic ion in strong magnetic fields

    Science.gov (United States)

    Vieyra, J. C. Lopez; Turbiner, A. V.

    2017-08-01

    We study the question of existence, i.e., stability with respect to dissociation of the spin-quartet permutation- and reflection-symmetric 4(-3) +g (Sz=-3 /2 ,M =-3 ) state of the (α α e e e ) Coulomb system: the He2 + molecular ion, placed in a magnetic field 0 ≤B ≤10 000 a.u. We assume that the α particles are infinitely massive (Born-Oppenheimer approximation of zero order) and adopt the parallel configuration, when the molecular axis and the magnetic field direction coincide, as the optimal configuration. The study of the stability is performed variationally with a physically adequate trial function. To achieve this goal, we explore several helium-containing compounds in strong magnetic fields, in particular; we study the spin-quartet ground state of the He- ion and the ground (spin-triplet) state of the helium atom, both for a magnetic field in 100 ≤B ≤10 000 a.u. The main result is that the He2 + molecular ion in the state 4(-3) +g is stable towards all possible decay modes for magnetic fields B ≳120 a .u . and with the magnetic field increase the ion becomes more tightly bound and compact with a cigar-type form of electronic cloud. At B =1000 a .u . , the dissociation energy of He2 + into He-+α is ˜702 eV and the dissociation energy for the decay channel to He +α +e is ˜729 eV , and both energies are in the energy window for one of the observed absorption features of the isolated neutron star 1E1207.4-5209.

  4. Evidence for charge exchange effects in electronic excitations in Al by slow singly charged He ions

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, P., E-mail: Pierfrancesco.riccardi@fis.unical.it [Dipartimento di Fisica, Università della Calabria and INFN Gruppo collegato di Cosenza, Via P. Bucci cubo 31C, 87036 – Arcavacata di Rende, Cosenza (Italy); Sindona, A. [Dipartimento di Fisica, Università della Calabria and INFN Gruppo collegato di Cosenza, Via P. Bucci cubo 31C, 87036 – Arcavacata di Rende, Cosenza (Italy); Dukes, C.A. [Laboratory for Astrophysics and Surface Physics, Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2016-09-01

    We report on experiments of secondary electron emission in the interaction of helium ions with aluminum surfaces. Comparison between the electron emission induced by the impact of {sup 3}He{sup +} and {sup 4}He{sup +} on Al illustrates similarities and differences between the two projectiles. The intensity of emission shows the same dependence on velocity for the two isotopes, showing that KEE yields for helium ions impact on Al are dominated by direct excitation of valence electrons and not by electron promotion. Electron promotion and charge transfer processes are unambiguously identified by the observation of Auger electron emission from Al, at energies below the excitation threshold of Al–Al collisions, indicating energy losses for the projectiles higher than those commonly considered.

  5. Impact of neutron irradiation on thermal helium desorption from iron

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xunxiang, E-mail: hux1@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Field, Kevin G. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Taller, Stephen [University of Michigan, Ann Arbor, MI 48109 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wirth, Brian D. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States)

    2017-06-15

    The synergistic effect of neutron irradiation and transmutant helium production is an important concern for the application of iron-based alloys as structural materials in fission and fusion reactors. In this study, we investigated the impact of neutron irradiation on thermal helium desorption behavior in high purity iron. Single crystalline and polycrystalline iron samples were neutron irradiated in HFIR to 5 dpa at 300 °C and in BOR-60 to 16.6 dpa at 386 °C, respectively. Following neutron irradiation, 10 keV He ion implantation was performed at room temperature on both samples to a fluence of 7 × 10{sup 18} He/m{sup 2}. Thermal desorption spectrometry (TDS) was conducted to assess the helium diffusion and clustering kinetics by analyzing the desorption spectra. The comparison of He desorption spectra between unirradiated and neutron irradiated samples showed that the major He desorption peaks shift to higher temperatures for the neutron-irradiated iron samples, implying that strong trapping sites for He were produced during neutron irradiation, which appeared to be nm-sized cavities through TEM examination. The underlying mechanisms controlling the helium trapping and desorption behavior were deduced by assessing changes in the microstructure, as characterized by TEM, of the neutron irradiated samples before and after TDS measurements.

  6. A liquid helium saver

    International Nuclear Information System (INIS)

    Avenel, O.; Der Nigohossian, G.; Roubeau, P.

    1976-01-01

    A cryostat equipped with a 'liquid helium saver' is described. A mass flow rate M of helium gas at high pressure is injected in a counter-flow heat exchanger extending from room to liquid helium temperature. After isenthalpic expansion through a calibrated flow impedance this helium gas returns via the low pressure side of the heat exchanger. The helium boil-off of the cryostat represents a mass flow rate m, which provides additional precooling of the incoming helium gas. Two operating regimes appear possible giving nearly the same efficiency: (1) high pressure (20 to 25 atm) and minimum flow (M . L/W approximately = 1.5) which would be used in an open circuit with helium taken from a high pressure cylinder; and (2) low pressure (approximately = 3 atm), high flow (M . L/W > 10) which would be used in a closed circuit with a rubber diaphragm pumping-compressing unit; both provide a minimum theoretical boil-off factor of about 8%. Experimental results are reported. (U.K.)

  7. Observations of Two-Stream Ion Wave Instability

    DEFF Research Database (Denmark)

    Christoffersen, G.B.; Prahm, L.P.

    1973-01-01

    A double‐humped ion velocity distribution function is produced in a Q‐machine cesium plasma. When the plasma becomes unstable, a growing wave amplitude and a characteristic change in the phase velocity of a grid‐excited ion‐acoustic wave are observed.......A double‐humped ion velocity distribution function is produced in a Q‐machine cesium plasma. When the plasma becomes unstable, a growing wave amplitude and a characteristic change in the phase velocity of a grid‐excited ion‐acoustic wave are observed....

  8. Helicon plasma ion temperature measurements and observed ion cyclotron heating in proto-MPEX

    Science.gov (United States)

    Beers, C. J.; Goulding, R. H.; Isler, R. C.; Martin, E. H.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Kafle, N.; Rapp, J.

    2018-01-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) linear plasma device is a test bed for exploring and developing plasma source concepts to be employed in the future steady-state linear device Material Plasma Exposure eXperiment (MPEX) that will study plasma-material interactions for the nuclear fusion program. The concept foresees using a helicon plasma source supplemented with electron and ion heating systems to reach necessary plasma conditions. In this paper, we discuss ion temperature measurements obtained from Doppler broadening of spectral lines from argon ion test particles. Plasmas produced with helicon heating alone have average ion temperatures downstream of the Helicon antenna in the range of 3 ± 1 eV; ion temperature increases to 10 ± 3 eV are observed with the addition of ion cyclotron heating (ICH). The temperatures are higher at the edge than the center of the plasma either with or without ICH. This type of profile is observed with electrons as well. A one-dimensional RF antenna model is used to show where heating of the plasma is expected.

  9. An investigation of the electron irradiation of graphite in a helium atmosphere using a modified electron microscope

    International Nuclear Information System (INIS)

    Burden, A.P.; Hutchison, J.L.

    1997-01-01

    The behaviour of graphite particles immersed in helium gas and irradiated with an electron-beam has been investigated. Because this treatment was performed in a modified high resolution transmission electron microscope, the rapid morphological and microstructural changes that occurred could be directly observed. The results have implications for future controlled environment microscopy of carbonaceous materials and the characterisation of such microscopes. It is also shown that the processes can provide insight into ion-irradiation induced damage of graphite and the mechanism of fullerene generation. (Author)

  10. Ion beam profiling from the interaction with a freestanding 2D layer

    Directory of Open Access Journals (Sweden)

    Ivan Shorubalko

    2017-03-01

    Full Text Available Recent years have seen a great potential of the focused ion beam (FIB technology for the nanometer-scale patterning of a freestanding two-dimensional (2D layer. Experimentally determined sputtering yields of the perforation process can be quantitatively explained using the binary collision theory. The main peculiarity of the interaction between the ion beams and the suspended 2D material lies in the absence of collision cascades, featured by no interaction volume. Thus, the patterning resolution is directly set by the beam diameters. Here, we demonstrate pattern resolution beyond the beam size and precise profiling of the focused ion beams. We find out that FIB exposure time of individual pixels can influence the resultant pore diameter. In return, the pore dimension as a function of the exposure dose brings out the ion beam profiles. Using this method of determining an ion-beam point spread function, we verify a Gaussian profile of focused gallium ion beams. Graphene sputtering yield is extracted from the normalization of the measured Gaussian profiles, given a total beam current. Interestingly, profiling of unbeknown helium ion beams in this way results in asymmetry of the profile. Even triangular beam shapes are observed at certain helium FIB conditions, possibly attributable to the trimer nature of the beam source. Our method of profiling ion beams with 2D-layer perforation provides more information on ion beam profiles than the conventional sharp-edge scan method does.

  11. Room temperature desorption of helium-3 from metal tritides

    International Nuclear Information System (INIS)

    Beavis, L.C.; Kass, W.J.

    1976-10-01

    It has long been known that helium-3 accumulates in metal tritides as tritium decays. Early in life nearly 100% of the helium-3 is retained in the lattice, but when a critical concentration is reached (material dependent), the lattice will no longer retain the helium-3 and it is emitted at about the generation rate. Measurements were recently made on a number of erbium tritides with varying concentrations in the ditritide phase. The expected early release characteristics are observed for all of the samples. However, ditritides with higher tritium concentrations reach the rapid release state at much lower helium-3 concentrations. For instance, the helium to metal concentration for rapid release in the unsaturated ditritide is about 0.22, whereas it is only one-tenth this value in the saturated ditritide. The additional tritium in the tritide appears to be the cause of this effect

  12. Diagnostics of helium plasmas under special consideration of the continuous spectrum

    International Nuclear Information System (INIS)

    Einfeld, D.

    1974-01-01

    From measurements of the spectral beam density of the helium plasma in the region 290 nm to 650 nm, transition probabilities, Gaunt factors, line broadening parameters and deviations from the state of local thermodynamic equilibrium (L.T.E.) were determined and compared with theoretical data. Using the Gaunt factors experimentally secured in this work for the term n = 3, the electron density could be determined with an uncertainty of +-10% from the emission coefficients of the continuous spectrum. Assuming steady transition of the spectral emission coefficients over the series limit, a numerical method has been given according to which, amongst others, the Gaunt factors for the various series limits can be determined from the transition probabilities of these series. By determining the overpopulation factors of the ground states of the helium atom and the helium ion, a deviation from the L.T.E. state is experimentally detected and quantitatively described. (orig./LH) [de

  13. Thermal desorption of deuterium from polycrystalline nickel pre-implanted with helium

    International Nuclear Information System (INIS)

    Shi, S.Q.; Abramov, E.; Thompson, D.A.

    1990-01-01

    The thermal desorption technique has been used to study the trapping of deuterium atoms in high-purity polycrystalline nickel pre-implanted with helium for 1 x 10 19 to 5 x 10 20 ions/m 2 . The effect of post-implantation annealing at 703 K and 923 K on the desorption behavior was investigated. Measured values of the total amount of detrapped deuterium (Q T ) and helium concentration were used in a computer simulation of the desorption curve. It was found that the simulation using one or two discrete trap energies resulted in an inadequate fit between the simulated and the measured data. Both experimental and simulation results are explained using a stress-field trapping model. The effective binding energy, E b eff , was estimated to be in the range of 0.4-0.6 eV. Deuterium charging was found to stimulate a release of helium at a relatively low temperature

  14. Canada's helium output rising fast

    Energy Technology Data Exchange (ETDEWEB)

    1966-12-01

    About 12 months from now, International Helium Limited will be almost ready to start up Canada's second helium extraction plant at Mankota, in Saskatchewan's Wood Mountain area about 100 miles southwest of Moose Jaw. Another 80 miles north is Saskatchewan's (and Canada's) first helium plant, operated by Canadian Helium and sitting on a gas deposit at Wilhelm, 9 miles north of Swift Current. It contains almost 2% helium, some COD2U, and the rest nitrogen. One year in production was apparently enough to convince Canadian Helium that the export market (it sells most of its helium in W. Europe) can take a lot more than it's getting. Construction began this summer on an addition to the Swift Current plant that will raise its capacity from 12 to 36MMcf per yr when it goes on stream next spring. Six months later, International Helium's 40 MMcf per yr plant to be located about 4 miles from its 2 Wood Mountain wells will double Canada's helium output again.

  15. Molecular dynamics simulations of the diffusion and coalescence of helium in tungsten

    International Nuclear Information System (INIS)

    Zhou, Y.L.; Wang, J.; Hou, Q.; Deng, A.H.

    2014-01-01

    Molecular dynamics (MD) simulations are performed on the diffusion and coalescence of helium in tungsten. A new method for determining the effective capture radii (ECRs) and the dissociation energies of helium-related defects is proposed in this work. It is observed that the ECR of an interstitial helium atom trapping helium interstitials (denoted as He–He n , n = 1–3) decreases with increasing temperature, except for He–He 2 at T n for helium clusters are also investigated. He 2 migrates more quickly than a single He atom does at T 2 changes at higher temperatures. Another counterintuitive observation is that D 5 > D 3 > D 4 at T 5 . The Arrhenius relation describes the diffusion of He n well in the temperature range from 300 K to 550 K, whereas the diffusion is not a standard thermally activated process at higher temperatures. Taken together, these results help elucidate the initial stage of helium bubble formation in tungsten as well as the requirements of long-term evolution methods such as KMC or RT models

  16. Ion acceleration by laser hole-boring into plasmas

    International Nuclear Information System (INIS)

    Pogorelsky, I. V.; Dover, N. P.; Babzien, M.; Bell, A. R.; Dangor, A. E.; Horbury, T.; Palmer, C. A. J.; Polyanskiy, M.; Schreiber, J.; Schwartz, S.; Shkolnikov, P.; Yakimenko, V.; Najmudin, Z.

    2012-01-01

    By experiment and simulations, we study the interaction of an intense CO 2 laser pulse with slightly overcritical plasmas of fully ionized helium gas. Transverse optical probing is used to show a recession of the front plasma surface with an initial velocity >10 6 m/s driven by hole-boring by the laser pulse and the resulting radiation pressure driven electrostatic shocks. The collisionless shock propagates through the plasma, dissipates into an ion-acoustic solitary wave, and eventually becomes collisional as it slows further. These observations are supported by PIC simulations which prove the conclusion that monoenergetic protons observed in our earlier reported experiment with a hydrogen jet result from ion trapping and reflection from a shock wave driven through the plasma.

  17. Diffusion of helium and nucleation-growth of helium-bubbles in metallic materials

    International Nuclear Information System (INIS)

    Zhang Chonghong; Chen Keqin; Wang Yinshu

    2001-01-01

    Studies of diffusion and aggregation behaviour of helium in metallic materials are very important to solve the problem of helium embrittlement in structural materials used in the environment of nuclear power. Experimental studies on helium diffusion and aggregation in austenitic stainless steels in a wide temperature range have been performed in authors' research group and the main results obtained are briefly summarized. The mechanism of nucleation-growth of helium-bubbles has been discussed and some problems to be solved are also given

  18. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    International Nuclear Information System (INIS)

    Sharma, Rohit; Singh, Kuldip

    2014-01-01

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Zγ, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter θ(= T e /T h ) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Zγ with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter

  19. The neon gas field ion source-a first characterization of neon nanomachining properties

    International Nuclear Information System (INIS)

    Livengood, Richard H.; Tan, Shida; Hallstein, Roy; Notte, John; McVey, Shawn; Faridur Rahman, F.H.M.

    2011-01-01

    At the Charged Particle Optics Conference (CPO7) in 2006, a novel trimer based helium gas field ion source (GFIS) was introduced for use in a new helium ion microscope (HIM), demonstrating the novel source performance attributes and unique imaging applications of the HIM (Hill et al., 2008 ; Livengood et al., 2008 ). Since that time there have been numerous enhancements to the HIM source and platform demonstrating resolution scaling into the sub 0.5 nm regime (Scipioni et al., 2009 ; Pickard et al., 2010 ). At this Charged Particle Optics Conference (CPO8) we will be introducing a neon version of the trimer-GFIS co-developed by Carl Zeiss SMT and Intel Corporation. The neon source was developed as a possible supplement to the gallium liquid metal ion source (LMIS) used today in most focused ion beam (FIB) systems (Abramo et al., 1994 ; Young et al.,1998 ). The neon GFIS source has low energy spread (∼1 eV) and a small virtual source size (sub-nanometer), similar to that of the helium GFIS. However neon does differ from the helium GFIS in two significant ways: neon ions have high sputtering yields (e.g. 1 Si atom per incident ion at 20 keV); and have relatively shallow implant depth (e.g. 46 nm in silicon at 20 keV). Both of these are limiting factors for helium in many nanomachining applications. In this paper we will present both simulation and experimental results of the neon GFIS used for imaging and nanomachining applications.

  20. A 3-D model of superfluid helium suitable for numerical analysis

    CERN Document Server

    Darve, C; Van Sciver, S W

    2009-01-01

    The two-fluid description is a very successful phenomenological representation of the properties of Helium II. A 3-D model suitable for numerical analysis based on the Landau-Khalatnikov description of Helium II is proposed. In this paper we introduce a system of partial differential equations that is both complete and consistent as well as practical, to be used for a 3-D solution of the flow of Helium II. The development of a 3-D numerical model for Helium II is motivated by the need to validate experimental results obtained by observing the normal component velocity distribution in a Helium II thermal counter-flow using the Particle Image Velocimetry (PIV) technique.

  1. Applications of simultaneous ion backscattering and ion-induced x-ray emission

    International Nuclear Information System (INIS)

    Musket, R.G.

    1983-05-01

    Simultaneous ion backscattering and ion-induced x-ray emission (E/sub x/greater than or equal to 300 eV) analyses have been performed using helium ions as probes of the first few hundred nanometers of various materials. These studies serve as a demonstration of the complementary nature of the two types of information obtained. Uncertainties associated with each of the individual techniques were reduced by performing both analyses. The principal advantages of simultaneous analyses over sequential analyses have been delineated

  2. Blistering effects in neutral injection systems operated with helium and hydrogen gases: a preliminary assessment

    International Nuclear Information System (INIS)

    Hamilton, G.W.

    1977-01-01

    The practical effects of blistering and flaking in neutral injection systems are studied. These effects will soon be more important because of energy increases in systems now under development and because of their operation with fast helium ions as well as hydrogen and deuterium ions. Two main effects were studied: enhanced erosion rate and possible voltage breakdown from sharp flakes and gas emission

  3. Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection

    Science.gov (United States)

    Deng, Yunsheng; Huang, Qimeng; Zhao, Yue; Zhou, Daming; Ying, Cuifeng; Wang, Deqiang

    2017-01-01

    We report a scalable method to fabricate high-quality graphene nanopores for biomolecule detection using a helium ion microscope (HIM). HIM milling shows promising capabilities for precisely controlling the size and shape, and may allow for the potential production of nanopores at wafer scale. Nanopores could be fabricated at different sizes ranging from 5 to 30 nm in diameter in few minutes. Compared with the current solid-state nanopore fabrication techniques, e.g. transmission electron microscopy, HIM is fast. Furthermore, we investigated the exposure-time dependence of graphene nanopore formation: the rate of pore expansion did not follow a simple linear relationship with exposure time, but a fast expansion rate at short exposure time and a slow rate at long exposure time. In addition, we performed biomolecule detection with our patterned graphene nanopore. The ionic current signals induced by 20-base single-stranded DNA homopolymers could be used as a basis for homopolymer differentiation. However, the charge interaction of homopolymer chains with graphene nanopores, and the conformations of homopolymer chains need to be further considered to improve the accuracy of discrimination.

  4. Effect of Carbon Concentration on the Sputtering of Carbon-Rich SiC Bombarded by Helium Ions

    Directory of Open Access Journals (Sweden)

    Xinghao Liang

    2018-02-01

    Full Text Available Silicon carbide (SiC is considered as an important material for nuclear engineering due to its excellent properties. Changing the carbon content in SiC can regulate and control its elastic and thermodynamic properties, but a simulation study of the effect of carbon content on the sputtering (caused by the helium ions of SiC is still lacking. In this work, we used the Monte-Carlo and molecular dynamics simulation methods to study the effects of carbon concentration, incidence energy, incident angle, and target temperature on the sputtering yield of SiC. The results show that the incident ions’ energy and angle have a significant effect on sputtering yield of SiC when the carbon concentration in SiC is around 62 at %, while the target temperature has a little effect on the sputtering yield of SiC. Our work might provide theoretical support for the experimental research and engineering application of carbon fiber-reinforced SiC that be used as the plasma-facing material in tokamak fusion reactors.

  5. Effect of rhenium addition on tungsten fuzz formation in helium plasmas

    NARCIS (Netherlands)

    Khan, A.; De Temmerman, G.; Morgan, T. W.; M. B. Ward,

    2016-01-01

    The effect of the addition of rhenium to tungsten on the formation of a nanostructure referred to as ‘fuzz’ when exposed to helium plasmas at fusion relevant ion fluxes was investigated in the Magnum and Pilot PSI devices at the FOM Institute DIFFER. The effect rhenium had on fuzz growth was seen to

  6. Precision high-dose radiotherapy with helium-ion beams: treatment of malignant tumors in humans

    International Nuclear Information System (INIS)

    Saunders, W.S.; Castro, J.R.; Austin-Seymour, M.; Chen, G.T.Y.; Collier, J.M.; Zink, S.R.; Capra-Young, D.; Pitluck, S.; Walton, R.E.; Pascale, C.R.

    1985-01-01

    The advantages of the Bragg peak and sharp penumbra of the helium-ion beam emphasize its importance in radiotherapy. Perhaps the best example of this type of treatment is that for the treatment of malignant melanoma of the eye. The authors treated 181 such patients, 46 in the last 12 months. They continue to have very encouraging results in this group. Only eight patients have had a recurrence of their tumor, and in all eight a second treatment, usually removal of the eye, has apparently cured the tumor. They have generally been able to preserve the pretreatment visual acuity as long as the edge of the tumor is at least 3-4 mm away from the optic disc or macula. Four different tumor doses have been used since this program was begun. The first 20 patients received 70 GyE; the dose was then raised to 80 GyE for the next 69 patients. The group of patients treated with 80 GyE began to develop an unacceptable incidence of glaucoma in the treated eye, so the dose was then decreased to 60 GyE. So far, 4 of 61 patients (or 7%) in the 60-GyE group have developed glaucoma

  7. The compatibility of candidate first wall metallic materials with impure helium

    International Nuclear Information System (INIS)

    Noda, T.; Okada, M.; Watanabe, R.

    1979-01-01

    The compatibilities of SUS 316 stainless steels, Nimonic PE 16, Nb-1% Zr, V-25% Mo, Mo, and TZM with the commercial grade helium (> 99.995%) and the helium containing oxygen of 13 vpm at temperatures from 873 to 1273 K were studied. SUS 316 and PE 16 were internally oxidized above 1100 K. The marked depletion of Cr and Mn in SUS 316 specimens was observed in the commercial grade helium above around 1100 K. Nb-1% Zr and V-25% Mo extremely absorbed oxygen and nitrogen from the helium gases and were deteriorated in the range of test temperatures. Mo and TZM appeared not to be affected by the exposure to the commercial grade helium at temperature up to 1273 K. However, Mo and TZM lost ductility at room temperature after exposure to helium above 1100 and 900 K respectively. (orig.)

  8. Lattice site of helium implanted in Si and diamond

    International Nuclear Information System (INIS)

    Allen, W.R.

    1993-01-01

    Single crystals of silicon and diamond were implanted at 300K with 70 keV 3 He. Ion channeling analyses were executed by application of Rutherford backscattering spectrometry and nuclear reaction analysis. Helium exhibits a non-random lattice site in the channeling angular distributions for silicon and diamond. A major fraction of the implanted He was qualitatively identified to be near to the tetrahedral interstice in both materials

  9. Effects of hydrogen mixture into helium gas on deuterium removal from lithium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Akihito, E-mail: tsuchiya@frontier.hokudai.ac.jp [Laboratory of Plasma Physics and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Hino, Tomoaki; Yamauchi, Yuji; Nobuta, Yuji [Laboratory of Plasma Physics and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Akiba, Masato; Enoeda, Mikio [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan)

    2013-10-15

    Lithium titanate (Li{sub 2}TiO{sub 3}) pebbles were irradiated with deuterium ions with energy of 1.7 keV and then exposed to helium or helium–hydrogen mixed gas at various temperatures, in order to evaluate the effects of gas exposure on deuterium removal from the pebbles. The amounts of residual deuterium in the pebbles were measured by thermal desorption spectroscopy. The mixing of hydrogen gas into helium gas enhanced the removal amount of deuterium. In other words, the amount of residual deuterium after the helium–hydrogen mixed gas exposure at lower temperature was lower than that after the helium gas exposure. In addition, we also evaluated the pebbles exposed to the helium gas with different hydrogen mixture ratio from 0% to 1%, at 573 K. Although the amount of residual deuterium in the pebbles after the exposure decreased with increasing the hydrogen mixture ratio, the implanted deuterium partly remained after the exposure. These results suggest that the tritium inventory may occur at low temperature region in the blanket during the operation.

  10. Observation of distorted Maxwell-Boltzmann distribution of epithermal ions in LHD

    Science.gov (United States)

    Ida, K.; Kobayashi, T.; Yoshinuma, M.; Akiyama, T.; Tokuzawa, T.; Tsuchiya, H.; Itoh, K.; LHD Experiment Group

    2017-12-01

    A distorted Maxwell-Boltzmann distribution of epithermal ions is observed associated with the collapse of energetic ions triggered by the tongue shaped deformation. The tongue shaped deformation is characterized by the plasma displacement localized in the toroidal, poloidal, and radial directions at the non-rational magnetic flux surface in toroidal plasma. Moment analysis of the ion velocity distribution measured with charge exchange spectroscopy is studied in order to investigate the impact of tongue event on ion distribution. A clear non-zero skewness (3rd moment) and kurtosis (4th moment -3) of ion velocity distribution in the epithermal region (within three times of thermal velocity) is observed after the tongue event. This observation indicates the clear evidence of the distortion of ion velocity distribution from Maxwell-Boltzmann distribution. This distortion from Maxwell-Boltzmann distribution is observed in one-third of plasma minor radius region near the plasma edge and disappears in the ion-ion collision time scale.

  11. Ion hole formation and nonlinear generation of electromagnetic ion cyclotron waves: THEMIS observations

    Science.gov (United States)

    Shoji, Masafumi; Miyoshi, Yoshizumi; Katoh, Yuto; Keika, Kunihiro; Angelopoulos, Vassilis; Kasahara, Satoshi; Asamura, Kazushi; Nakamura, Satoko; Omura, Yoshiharu

    2017-09-01

    Electromagnetic plasma waves are thought to be responsible for energy exchange between charged particles in space plasmas. Such an energy exchange process is evidenced by phase space holes identified in the ion distribution function and measurements of the dot product of the plasma wave electric field and the ion velocity. We develop a method to identify ion hole formation, taking into consideration the phase differences between the gyromotion of ions and the electromagnetic ion cyclotron (EMIC) waves. Using this method, we identify ion holes in the distribution function and the resulting nonlinear EMIC wave evolution from Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations. These ion holes are key to wave growth and frequency drift by the ion currents through nonlinear wave-particle interactions, which are identified by a computer simulation in this study.

  12. Simulation and modeling of the Gamble II self-pinched ion beam transport experiment

    International Nuclear Information System (INIS)

    Rose, D.V.; Ottinger, P.F.; Hinshelwood, D.D.

    1999-01-01

    Progress in numerical simulations and modeling of the self-pinched ion beam transport experiment at the Naval Research Laboratory (NRL) is reviewed. In the experiment, a 1.2-MeV, 100-kA proton beam enters a 1-m long, transport region filled with a low pressure gas (30--250 mTorr helium, or 1 Torr air). The time-dependent velocity distribution function of the injected ion beam is determined from an orbit code that uses a pinch-reflex ion diode model and the measured voltage and current from this diode on the Gamble II generator at NRL. This distribution function is used as the beam input condition for numerical simulations carried out using the hybrid particle-in-cell code IPROP. Results of the simulations will be described, and detailed comparisons will be made with various measurements, including line-integrated electron-density, proton-fluence, and beam radial-profile measurements. As observed in the experiment, the simulations show evidence of self-pinching for helium pressures between 35 and 80 mTorr. Simulations and measurements in 1 Torr air show ballistic transport. The relevance of these results to ion-driven inertial confinement fusion will be discussed

  13. Simplicity works for superfluid helium

    International Nuclear Information System (INIS)

    Bowley, Roger

    2000-01-01

    The famous philosopher Karl Popper once said that ''science is the art of systematic oversimplification''. Indeed, when faced with a new puzzle the trick is to simplify it without losing the essential physics - something that is easier said than done. However, this approach has paid off recently in low-temperature physics. Last year Richard Packard, Seamus Davis and co-workers at the University of California at Berkeley encountered a puzzling new phenomenon in superfluid helium-3, a quantum fluid that remains a liquid close to absolute zero and exhibits unusual properties such as the ability to flow without friction (A Machenkov et al. 1999 Phys. Rev. Lett. 83 3860). Previous experiments had revealed that certain effects in liquid helium are analogous to effects observed in superconductors, materials that lose all resistance to electric current at low temperatures. When the Berkeley researchers connected two reservoirs of superfluid helium-3, the superfluid flowed back and forth through apertures that formed a ''weak link'' between the two containers. This behaviour is similar to the oscillatory current of electrons that can flow across an insulating gap separating two superconductors - a device that is known as a Josephson junction. What was puzzling about the Berkeley results was that the helium-3 had two different stable configurations, both of which behaved in an unconventional way compared with a Josephson junction. This puzzle has now been solved independently by Sidney Yip at the National Center for Theoretical Sciences in Taiwan, and by Janne Viljas and Erkki Thuneberg at the Helsinki University of Technology in Finland (Phys. Rev. Lett. 1999 83 3864 and 3868). In this article the author describes the latest research on superfluid helium. (UK)

  14. Hydrogenlike nitrogen ions collision with helium into excited states

    International Nuclear Information System (INIS)

    Pan Guangyan; Yang Feng; Li Dawan; Xu Qian; Liu Huiping; Zhao Mengchun

    1991-01-01

    The emission spectra have been measured in collisions between N 6+ and He using the LHT-30 VUV Monochromator. The wavelength range is 10 nm-80 nm, the energy of N 6+ ions is 90 keV, the current of ion beam in the collision region is about 10 μA. Recently, the authors have investigated the electron capture processes and incident ions excitation in the velocity of N 6+ ions about 0.5 atomic unit. The emission spectrum of N V, N VI and N VII liens is given in collisions of N 6+ with He at 90 keV of ions energy

  15. CDW-EIS theoretical calculations of projectile deflection for single ionization in highly charged ion-atom collisions

    International Nuclear Information System (INIS)

    Rodriguez, V.D.

    2003-01-01

    We present continuum distorted wave-eikonal initial state (CDW-EIS) theoretical calculations for the projectile deflection in single ionization of helium by heavy-ion impact as a function of ionized electron energies. These calculations account for the helium passive electron shielding in the internuclear interaction improving standard CDW-EIS theory. The results are compared with recent experimental results by impact of 100 MeV/amu C 6+ and 3.6 MeV/amu Au 53+ . For highly charged projectiles there is a poor quantitative agreement between theory and experiment. However, this refined calculation does share some qualitative features with the data. In particular the variation of the effective charge of the residual He + ion from Z eff =1 to Z eff =2 when going from small to large projectile scattering angles is able to represent a shoulder observed in the double differential cross sections. Important qualitative differences are observed at the level of triple differential cross sections

  16. Semiconductor analysis with a channeled helium microbeam

    International Nuclear Information System (INIS)

    Ingarfield, S.A.; McKenzie, C.D.; Short, K.T.; Williams, J.S.

    1981-01-01

    This paper describes the use of a channeled helium microbeam for analysis of damage and dopant distributions in semiconductors. Practical difficulties and potential problems associated with the channeling of microbeams in semiconductors have been examined. In particular, the following factors have been characterised: i) the effect of both convergence of focused beam and beam scanning on the quality of channeling; ii) damage produced by the probe ions; and iii) local beam heating effects arising from high current densities. Acceptable channeling has been obtained (minimum yield approaching 4%) under a variety of focusing and scanning conditions which are suitable for analysis of device structures. The capabilities of the technique are demonstrated by monitoring variations in local damage and impurity depth distributions across a narrow (<2mm) region of an ion implanted silicon wafer

  17. Screw compressor system for industrial-scale helium refrigerators or industrial ammonia screw compressors for helium refrigeration systems; Schraubenkompressor-System fuer Helium-Grosskaelteanlage oder Ammoniak-Schraubenverdichter aus Industrieanwendungen fuer Helium-Kaelteanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Fredrich, O.; Mosemann, D.; Zaytsev, D. [GEA Grasso GmbH Refrigeration Technology, Berlin (Germany)

    2007-07-01

    Material characteristics, requirements and measured data of ammonia and helium compression are compared. The compressor lines for industrial ammonia and helium refrigerators are presented, and important characteristics of the compressors are explained. The test stand for performance measurements with helium and ammonia is described, and results are presented. In spite of the different characteristics of the fluids, the compressor-specific efficiencies (supply characteristic, quality characteristic) were found to be largely identical. The values calculated for helium on the basis of NH3 test runs were found to be realistic, which means that the decades of experience with ammonia in industrial applications can be applied to helium compression as well. The design of screw compressor aggregates (skids) in industrial refrigeration is discussed and illustrated by examples. (orig.)

  18. Asteroseismic estimate of helium abundance of a solar analog binary system

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Kuldeep; Antia, H. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Faria, João P.; Monteiro, Mário J. P. F. G. [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Basu, Sarbani [Astronomy Department, Yale University, P. O. Box 208101, New Haven, CT 065208101 (United States); Mazumdar, Anwesh [Homi Bhabha Centre for Science Education, TIFR, V. N. Purav Marg, Mankhurd, Mumbai 400088 (India); Appourchaux, Thierry [Institut d' Astrophysique Spatiale, Université Paris XI-CNRS (UMR8617), Batiment 121, F-91405 Orsay Cedex (France); Chaplin, William J. [School of Physics and Astronomy, University of Birmingham, B15 2TT (United Kingdom); García, Rafael A. [Laboratoire AIM, CEA/DSM, CNRS, Université Paris Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Metcalfe, Travis S. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)

    2014-08-01

    16 Cyg A and B are among the brightest stars observed by Kepler. What makes these stars more interesting is that they are solar analogs. 16 Cyg A and B exhibit solar-like oscillations. In this work we use oscillation frequencies obtained using 2.5 yr of Kepler data to determine the current helium abundance of these stars. For this we use the fact that the helium ionization zone leaves a signature on the oscillation frequencies and that this signature can be calibrated to determine the helium abundance of that layer. By calibrating the signature of the helium ionization zone against models of known helium abundance, the helium abundance in the envelope of 16 Cyg A is found to lie in the range of 0.231 to 0.251 and that of 16 Cyg B lies in the range of 0.218 to 0.266.

  19. Non-local Thermodynamic Equilibrium Abundance Analyses of the Extreme Helium Stars V652 Her and HD 144941

    International Nuclear Information System (INIS)

    Pandey, Gajendra; Lambert, David L.

    2017-01-01

    Optical high-resolution spectra of V652 Her and HD 144941, the two extreme helium stars with exceptionally low C/He ratios, have been subjected to a non-LTE abundance analysis using the tools TLUSTY and SYNSPEC. Defining atmospheric parameters were obtained from a grid of non-LTE atmospheres and a variety of spectroscopic indicators including He i and He ii line profiles, and the ionization equilibrium of ion pairs such as C ii/C iii and N ii/N iii. The various indicators provide a consistent set of atmospheric parameters: T eff = 25,000 ± 300 K, log g = 3.10 ± 0.12(cgs), and ξ = 13 ± 2 km s −1 are provided for V652 Her, and T eff = 22,000 ± 600 K, log g = 3.45 ± 0.15 (cgs), and ξ = 10 km s −1 are provided for HD 144941. In contrast to the non-LTE analyses, the LTE analyses—LTE atmospheres and an LTE line analysis—with the available indicators do not provide a consistent set of atmospheric parameters. The principal non-LTE effect on the elemental abundances is on the neon abundance. It is generally considered that these extreme helium stars with their very low C/He ratio result from the merger of two helium white dwarfs. Indeed, the derived composition of V652 Her is in excellent agreement with predictions by Zhang and Jeffery, who model the slow merger of helium white dwarfs; a slow merger results in the merged star having the composition of the accreted white dwarf. In the case of HD 144941, which appears to have evolved from metal-poor stars, a slow merger is incompatible with the observed composition but variations of the merger rate may account for the observed composition. More detailed theoretical studies of the merger of a pair of helium white dwarfs are to be encouraged.

  20. Non-local Thermodynamic Equilibrium Abundance Analyses of the Extreme Helium Stars V652 Her and HD 144941

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Gajendra [Indian Institute of Astrophysics, Bangalore, 560034 (India); Lambert, David L., E-mail: pandey@iiap.res.in, E-mail: dll@astro.as.utexas.edu [The W.J. McDonald Observatory and Department of Astronomy, University of Texas at Austin, Austin, TX 78712-1083 (United States)

    2017-10-01

    Optical high-resolution spectra of V652 Her and HD 144941, the two extreme helium stars with exceptionally low C/He ratios, have been subjected to a non-LTE abundance analysis using the tools TLUSTY and SYNSPEC. Defining atmospheric parameters were obtained from a grid of non-LTE atmospheres and a variety of spectroscopic indicators including He i and He ii line profiles, and the ionization equilibrium of ion pairs such as C ii/C iii and N ii/N iii. The various indicators provide a consistent set of atmospheric parameters: T {sub eff} = 25,000 ± 300 K, log g = 3.10 ± 0.12(cgs), and ξ = 13 ± 2 km s{sup −1} are provided for V652 Her, and T {sub eff} = 22,000 ± 600 K, log g = 3.45 ± 0.15 (cgs), and ξ = 10 km s{sup −1} are provided for HD 144941. In contrast to the non-LTE analyses, the LTE analyses—LTE atmospheres and an LTE line analysis—with the available indicators do not provide a consistent set of atmospheric parameters. The principal non-LTE effect on the elemental abundances is on the neon abundance. It is generally considered that these extreme helium stars with their very low C/He ratio result from the merger of two helium white dwarfs. Indeed, the derived composition of V652 Her is in excellent agreement with predictions by Zhang and Jeffery, who model the slow merger of helium white dwarfs; a slow merger results in the merged star having the composition of the accreted white dwarf. In the case of HD 144941, which appears to have evolved from metal-poor stars, a slow merger is incompatible with the observed composition but variations of the merger rate may account for the observed composition. More detailed theoretical studies of the merger of a pair of helium white dwarfs are to be encouraged.

  1. Interface strength of SiC/SiC composites with and without helium implantation using micro-indentation test

    International Nuclear Information System (INIS)

    Saito, M.; Ohtsuka, S.

    1998-01-01

    Helium implantation effects on interface strength of SiC/SiC composite were studied using the micro-indentation fiber push-out method. Helium implantation was carried out with an accelerator at about 400 K. Total amount of implanted helium was approximately 10000 appm. Increase of the fiber push-in load was observed in as-implanted specimen. After post-implantation-annealing at 1673 K for 1 h, the change of the fiber push-in load by helium implantation was not observed. Effects of helium implantation on the interface are discussed. (orig.)

  2. Helium solubility and bubble growth in metals under high pressure

    International Nuclear Information System (INIS)

    Laakmann, J.

    1985-07-01

    Helium solubility and bubble growth in metals under high pressure polycrystals and single crystals of gold were heated in helium at temperatures between 475 K and 1250 K in a pressure regime of 200 to 2700 bar to measure the solubility of helium in gold. After quenching to room temperature the helium content, measured by mass spectrometry, showed the following properties: 1) A linear dependence of the He solubility on pressure. 2) Thinning of the specimen reduces the helium content by a factor 10 to 100 but does not change the linear pressure dependence. 3) The thermal release of He from thinned polycrystals and single crystals occurs mainly in a single peak at 500 K. 4) The He concentration of the thinned single crystals was lower by a factor of 10 to 50 than that of the thinned polycrystals. 5) The He solubility in single crystals can be described by an enthalpy of solution Hsub(s)sup(f) = 0.85 +- 0.7 eV and a non-configurational entropy of Ssub(s)sup(f) between 0 k and 1 k (k: Boltzmann-constant). In order to measure the pressure dependence of helium bubble growth in nickel polycrystal Ni-foils were α-implanted to a helium content of 130 appm. The evaluation of the size distribution of the helium bubbles after heat treatments shows 1) The helium content of the observable bubbles - assumed to be in equilibrium - equals the amount of helium implanted into the specimen. 2) The activation energy for the growth of helium bubbles is 1.25 +- 0.3 eV. The comparison of specimen which had been heated at low pressures up to 10 bar with others heated at 2500-2700 bar does not show an unequivocal pressure dependence for helium bubble growth. (orig./IHOE) [de

  3. Self-trapping of helium in metals

    International Nuclear Information System (INIS)

    Wilson, W.D.; Bisson, C.L.; Baskes, M.I.

    1981-01-01

    Atomistic calculations are presented which demonstrate that helium atoms in a metal lattice are able to cluster with each other, producing vacancies and nearby self-interstitial defects. Even a small number of helium atoms is found to be sufficient to create these large distortions. As few as five interstitial helium can spontaneously produce a lattice vacancy and nearby self-interstitial. An eight-helium-atom cluster gives rise to two such defects, and 16 helium atoms to more than five self-interstitial vacancy pairs. It was noted that the self-interstitials prefer to agglomerate on the same ''side'' of the helium cluster rather than to spread themselves out uniformly. The binding energy of each additional helium atom to these clusters increases with helium concentration and the trap is apparently unsaturable. A rate theory using these atomistic binding energies has been used to calculate the kinetics of helium-bubble nucleation and growth. The results are consistent with measurements of the properties of helium resulting from tritium decay

  4. Particle exhaust of helium plasmas with actively cooled outboard pump limiter on Tore Supra

    International Nuclear Information System (INIS)

    Uckan, T.; Mioduszewski, P.K.; Loarer, T.; Chatelier, M.; Guilhem, D.; Lutz, T.; Nygren, R.E.; Mahdavi, M.A.

    1995-08-01

    The superconducting tokamak Tore Supra was designed for long-pulse (30-s) high input power operation. Here observations on the particle-handling characteristics of the actively cooled modular outboard pump limiter (OPL) are presented for helium discharges. The important experimental result was that a modest pumping speed (1 m 3 /s) of the OPL turbomolecular pump (TMP) provided background helium exhaust. This result came about due to a well-conditioned vessel wall with helium discharges that caused no wall outgasing. The particle accountability in these helium discharges was excellent, and the well-conditioned wall did not play a significant role in the particle balance. The helium density control, 25% density drop with OPL exhaust efficiency of ∼1%, was possible with TMP although this may not be the case with reactive gases such as deuterium. The observed quadratic increase of the OPL neutral pressure with helium density was consistent with an improvement of the particle control with increasing plasma density

  5. Spontaneous emission of heavy-ions from uranium

    International Nuclear Information System (INIS)

    Carvalho, H.G. de; Martins, J.B.; Souza, I.O. de; Tavares, O.A.P.

    1974-09-01

    The experimental evidences that 238 U, and perhaps other heavy nuclei, besides undergoing spontaneous fission, are also emitters of ions in the mass-range from 20 to 70. Estimates obtained by means of the WKB method indicate half-lifes of 10 15 to 10 18 years for some of these processes, which agree with our findings. Our results are supported by a systematic observation of neon and argon with abnormal isotopic abundance in both radioactive minerals and helium-bearing natural gases

  6. Growth process of helium bubbles in aluminium

    International Nuclear Information System (INIS)

    Shiraishi, Haruki; Sakairi, Hideo; Yagi, Eiichi; Karasawa, Takashi; Hashiguti, R.R.

    1975-01-01

    The growth process of helium bubbles in α-particle bombarded pure aluminum during isothermal anneal ranging 200 to 645 0 C and 1 to 100 hr was observed by a transmission electron microscope and the possible growth mechanisms are discussed. The effects of helium concentration and cold work were investigated. The helium bubbles are detectable only at the anneal above 550 0 C in both annealed and cold worked samples. The cold work does not cause any extra coarsening trend of bubbles. The observed types of bubble distribution in the grain interior are divided into two categories, irrespective of helium concentration and cold work; (1) the fine and uniform bubble distribution, in which case the average size is limited to about 200 A or less in diameter even at the anneal just below the melting point, and (2) the coarsened and non-uniform bubble distribution ranging 500 to 4000 A in diameter. The intermediate size bubbles are scarcely found in any cases. In the above fine bubble distribution, the increase of helium concentration by a factor of two increases the density by the same factor of two, but does not change the mean size of bubbles. Corresponding to the above two characteristic bubble distributions, it is concluded that two different mechanisms are operative in this experiment; (1) the growth of bubbles by the Brownian motion, in which the growth rate of bubbles is decreased to almost zero by bubble faceting and this results in the bubble size constancy during the prolonged annealing, and (2) the growth of bubbles by the grain boundary sweep-out mechanism, by which the abrupt coarsening of bubbles is caused. The lack of existence of the intermediate size bubbles is explained in this way. (auth.)

  7. Characterization of a cryogenic ion guide at IGISOL

    NARCIS (Netherlands)

    Saastamoinen, A.; Moore, I. D.; Ranjan, M.; Dendooven, P.; Penttila, H.; Perajarvi, K.; Popov, A.; Aysto, J.

    2012-01-01

    A small volume cryogenic ion guide has been characterized at the IGISOL facility, Jyvaskyla, as a prototype to verify whether there are any major obstacles to the use of high-density cryogenic helium gas for the stopping and extraction of high-energy ions from a large volume cryogenic ion catcher.

  8. Helium ion microscopy of enamel crystallites and extracellular tooth enamel matrix.

    Science.gov (United States)

    Bidlack, Felicitas B; Huynh, Chuong; Marshman, Jeffrey; Goetze, Bernhard

    2014-01-01

    An unresolved problem in tooth enamel studies has been to analyze simultaneously and with sufficient spatial resolution both mineral and organic phases in their three dimensional (3D) organization in a given specimen. This study aims to address this need using high-resolution imaging to analyze the 3D structural organization of the enamel matrix, especially amelogenin, in relation to forming enamel crystals. Chemically fixed hemi-mandibles from wild type mice were embedded in LR White acrylic resin, polished and briefly etched to expose the organic matrix in developing tooth enamel. Full-length amelogenin was labeled with specific antibodies and 10 nm immuno-gold. This allowed us to use and compare two different high-resolution imaging techniques for the analysis of uncoated samples. Helium ion microscopy (HIM) was applied to study the spatial organization of organic and mineral structures, while field emission scanning electron microscopy (FE-SEM) in various modes, including backscattered electron detection, allowed us to discern the gold-labeled proteins. Wild type enamel in late secretory to early maturation stage reveals adjacent to ameloblasts a lengthwise parallel alignment of the enamel matrix proteins, including full-length amelogenin proteins, which then transitions into a more heterogeneous appearance with increasing distance from the mineralization front. The matrix adjacent to crystal bundles forms a smooth and lacey sheath, whereas between enamel prisms it is organized into spherical components that are interspersed with rod-shaped protein. These findings highlight first, that the heterogeneous organization of the enamel matrix can be visualized in mineralized en bloc samples. Second, our results illustrate that the combination of these techniques is a powerful approach to elucidate the 3D structural organization of organic matrix molecules in mineralizing tissue in nanometer resolution.

  9. Helium ion microscopy of enamel crystallites and extracellular tooth enamel matrix

    Directory of Open Access Journals (Sweden)

    Felicitas B Bidlack

    2014-10-01

    Full Text Available An unresolved problem in tooth enamel studies has been to analyze simultaneously and with sufficient spatial resolution both mineral and organic phases in their three dimensional (3D organization in a given specimen. This study aims to address this need using high-resolution imaging to analyze the 3D structural organization of the enamel matrix, especially amelogenin, in relation to forming enamel crystals. Chemically fixed hemi-mandibles from wild type mice were embedded in LR White acrylic resin, polished and briefly etched to expose the organic matrix in developing tooth enamel. Full-length amelogenin was labeled with specific antibodies and 10 nm immuno-gold. This allowed us to use and compare two different high-resolution imaging techniques for the analysis of uncoated samples. Helium ion microscopy (HIM was applied to study the spatial organization of organic and mineral structures, while field emission scanning electron microscopy (FE-SEM in various modes, including backscattered electron detection, allowed us to discern the gold-labeled proteins. Wild type enamel in late secretory to early maturation stage reveals adjacent to ameloblasts a lengthwise parallel alignment of the enamel matrix proteins, including full-length amelogenin proteins, which then transitions into a more heterogeneous appearance with increasing distance from the mineralization front. The matrix adjacent to crystal bundles forms a smooth and lacey sheath, whereas between enamel prisms it is organized into spherical components that are interspersed with rod-shaped protein. These findings highlight first, that the heterogeneous organization of the enamel matrix can be visualized in mineralized en bloc samples. Second, our results illustrate that the combination of these techniques is a powerful approach to elucidate the 3D structural organization of organic matrix molecules in mineralizing tissue in nanometer resolution.

  10. DC negative corona discharge in atmospheric pressure helium: transition from the corona to the ‘normal’ glow regime

    International Nuclear Information System (INIS)

    Hasan, Nusair; Farouk, Bakhtier; Antao, Dion S

    2014-01-01

    Direct current (dc) negative corona discharges in atmospheric pressure helium are simulated via detailed numerical modeling. Simulations are conducted to characterize the discharges in atmospheric helium for a pin plate electrode configuration. A self-consistent two-dimensional hybrid model is developed to simulate the discharges and the model predictions are validated with experimental measurements. The discharge model considered consists of momentum and energy conservation equations for a multi-component (electrons, ions, excited species and neutrals) gas mixture, conservation equations for each component of the mixture and state relations. A drift–diffusion approximation for the electron and the ion fluxes is used. A model for the external circuit driving the discharge is also considered and solved along with the discharge model. Many of the key features of a negative corona discharge, namely non-linear current–voltage characteristics, spatially flat cathode current density and glow-like discharge in the high current regime are displayed in the predictions. A transition to the ‘normal’ glow discharge from the corona discharge regime is also observed. The transition is identified from the calculated current–voltage characteristic curve and is characterized by the radial growth of the negative glow and the engulfment of the cathode wire. (paper)

  11. Tandem Mass Spectrometry and Ion Mobility Reveals Structural Insight into Eicosanoid Product Ion Formation.

    Science.gov (United States)

    Di Giovanni, James P; Barkley, Robert M; Jones, David N M; Hankin, Joseph A; Murphy, Robert C

    2018-04-23

    Ion mobility measurements of product ions were used to characterize the collisional cross section (CCS) of various complex lipid [M-H] - ions using traveling wave ion mobility mass spectrometry (TWIMS). TWIMS analysis of various product ions derived after collisional activation of mono- and dihydroxy arachidonate metabolites was found to be more complex than the analysis of intact molecular ions and provided some insight into molecular mechanisms involved in product ion formation. The CCS observed for the molecular ion [M-H] - and certain product ions were consistent with a folded ion structure, the latter predicted by the proposed mechanisms of product ion formation. Unexpectedly, product ions from [M-H-H 2 O-CO 2 ] - and [M-H-H 2 O] - displayed complex ion mobility profiles suggesting multiple mechanisms of ion formation. The [M-H-H 2 O] - ion from LTB 4 was studied in more detail using both nitrogen and helium as the drift gas in the ion mobility cell. One population of [M-H-H 2 O] - product ions from LTB 4 was consistent with formation of covalent ring structures, while the ions displaying a higher CCS were consistent with a more open-chain structure. Using molecular dynamics and theoretical CCS calculations, energy minimized structures of those product ions with the open-chain structures were found to have a higher CCS than a folded molecular ion structure. The measurement of product ion mobility can be an additional and unique signature of eicosanoids measured by LC-MS/MS techniques. Graphical Abstract ᅟ.

  12. Tandem Mass Spectrometry and Ion Mobility Reveals Structural Insight into Eicosanoid Product Ion Formation

    Science.gov (United States)

    Di Giovanni, James P.; Barkley, Robert M.; Jones, David N. M.; Hankin, Joseph A.; Murphy, Robert C.

    2018-04-01

    Ion mobility measurements of product ions were used to characterize the collisional cross section (CCS) of various complex lipid [M-H]- ions using traveling wave ion mobility mass spectrometry (TWIMS). TWIMS analysis of various product ions derived after collisional activation of mono- and dihydroxy arachidonate metabolites was found to be more complex than the analysis of intact molecular ions and provided some insight into molecular mechanisms involved in product ion formation. The CCS observed for the molecular ion [M-H]- and certain product ions were consistent with a folded ion structure, the latter predicted by the proposed mechanisms of product ion formation. Unexpectedly, product ions from [M-H-H2O-CO2]- and [M-H-H2O]- displayed complex ion mobility profiles suggesting multiple mechanisms of ion formation. The [M-H-H2O]- ion from LTB4 was studied in more detail using both nitrogen and helium as the drift gas in the ion mobility cell. One population of [M-H-H2O]- product ions from LTB4 was consistent with formation of covalent ring structures, while the ions displaying a higher CCS were consistent with a more open-chain structure. Using molecular dynamics and theoretical CCS calculations, energy minimized structures of those product ions with the open-chain structures were found to have a higher CCS than a folded molecular ion structure. The measurement of product ion mobility can be an additional and unique signature of eicosanoids measured by LC-MS/MS techniques. [Figure not available: see fulltext.

  13. Measurement of the ion temperature in a diffuse theta pinch

    International Nuclear Information System (INIS)

    Kudo, Koichi; Watanabe, Yukio; Ogi, Sukeomi; Sumikawa, Toshio; Akazaki, Masanori

    1979-01-01

    The Doppler broadening of helium ion spectra was observed, and the ion temperature of theta pinch plasma was obtained. The apparatus for the measurement consists of a spectroscope, a photomultiplier and an oscilloscope. The time variation of initial plasma density was obtained. The doppler broadening of the spectra was observed in case of the plasma density of 2 x 10 13 /cm 3 and 3 x 10 12 /cm 3 . The analyses of the spectra gave the ion temperature. The double temperature distribution was seen. The temperature of the low temperature part was 5 to 9 electron-volt, and that of the high temperature part several hundred electron-volt. The high temperature is caused by the thermalization of particles accelerated by the magnetic piston. The decay of high temperature ions is due to the charge exchange with the neutral particles. The time of the highest temperature corresponds to the time at which the luminescent layer reaches to the central axis. (Kato, T.)

  14. Rotation characteristics of main ions and impurity ions in H-mode tokamak plasma

    International Nuclear Information System (INIS)

    Kim, J.; Burrell, K.H.; Gohil, P.; Groebner, R.J.; Kim, Y.; St. John, H.E.; Seraydarian, R.P.; Wade, M.R.

    1994-01-01

    Poloidal and toroidal rotation of the main ions (He 2+ ) and the impurity ions (C 6+ and B 5+ ) in H-mode helium plasmas have been measured via charge exchange recombination spectroscopy in the DIII-D tokamak. It was discovered that the main ion poloidal rotation is in the ion diamagnetic drift direction while the impurity ion rotation is in the electron diamagnetic drift direction, in qualitative agreement with the neoclassical theory. The deduced radial electric field in the edge is of the same negative-well shape regardless of which ion species is used, validating the fundamental nature of the electric field in L-H transition phenomenology

  15. Doubly excited helium. From strong correlation to chaos

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yuhai

    2006-03-15

    In the present dissertation, the double excitation states of helium including the autoionization decay of these states were studied experimentally and theoretically in a broad energy region, which includes the transition from strong correlation below the low single ionization thresholds (SIT) to the region of quantum chaos at energies very close to the double-ionization threshold. Two kind of experiments were performed, namely total-ion-yield measurements with the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measurements to obtain partial cross sections (PCS) as well as angular distribution parameters (ADP). Both types of measurements were performed at the third generation synchrotron radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I{sub 15}, and they were found to be in in excellent agreement with state-of-the-art complex-rotation calculations performed recently by D. Delande. These experimental and theoretical data on the TCSs were analyzed in order to study quantum chaos in doubly excited helium, and interesting signatures of quantum chaos were found. The TOF technique allowed to measure PCSs and ADPs in the energy regions from I{sub 5} to I{sub 9} and I{sub 7}, respectively. These experimental data provide a critical assessment of theoretical models that can be used to explore the dynamics of strong correlation as well as quantum chaos in helium. In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below I{sub 4} were calculated employing the R-matrix method. The present theoretical results agree well with a recent experimental study of l-specific PCSs below I{sub 4} by J.R. Harries et al. An analysis of patterns in the PCSs and ADPs on the basis of the present experimental and theoretical l-specific data allowed to improve the present understanding of autoionization decay dynamics in this two-electron atom. (orig.)

  16. Helium emission in the middle chromosphere

    International Nuclear Information System (INIS)

    Livshits, M.A.

    1976-01-01

    Slitless spectrograms obtained during the eclipse of 10 June 1972 have been analyzed to determine the height distribution of the D 3 He line intensity. For undisturbed regions the maximum of D 3 line intensity is confirmed to exist at about 1700 km above the limb. Besides the above mentioned maximum, in plages a considerable intensity may be observed at low heights (h 1000 km has been carried out within the low temperature mechanism of triplet helium emission taking into account the helium ionization by XUV radiation. The density dependence of the 2 3 S level population at different XUV flux values has been calculated. The observations give Nsub(e) approximately 2x10 10 cm -3 in the chromosphere at h = 2000 km. The probable coincidence of the H and He emission small filaments in the middle chromosphere is discussed. (Auth.)

  17. Simplicity works for superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bowley, Roger [University of Nottingham, Nottingham (United Kingdom)

    2000-02-01

    The famous philosopher Karl Popper once said that ''science is the art of systematic oversimplification''. Indeed, when faced with a new puzzle the trick is to simplify it without losing the essential physics - something that is easier said than done. However, this approach has paid off recently in low-temperature physics. Last year Richard Packard, Seamus Davis and co-workers at the University of California at Berkeley encountered a puzzling new phenomenon in superfluid helium-3, a quantum fluid that remains a liquid close to absolute zero and exhibits unusual properties such as the ability to flow without friction (A Machenkov et al. 1999 Phys. Rev. Lett. 83 3860). Previous experiments had revealed that certain effects in liquid helium are analogous to effects observed in superconductors, materials that lose all resistance to electric current at low temperatures. When the Berkeley researchers connected two reservoirs of superfluid helium-3, the superfluid flowed back and forth through apertures that formed a ''weak link'' between the two containers. This behaviour is similar to the oscillatory current of electrons that can flow across an insulating gap separating two superconductors - a device that is known as a Josephson junction. What was puzzling about the Berkeley results was that the helium-3 had two different stable configurations, both of which behaved in an unconventional way compared with a Josephson junction. This puzzle has now been solved independently by Sidney Yip at the National Center for Theoretical Sciences in Taiwan, and by Janne Viljas and Erkki Thuneberg at the Helsinki University of Technology in Finland (Phys. Rev. Lett. 1999 83 3864 and 3868). In this article the author describes the latest research on superfluid helium. (UK)

  18. Experimental investigations of hydrogen cluster ions

    International Nuclear Information System (INIS)

    Lumig, H.A. van.

    1978-01-01

    Experiments to obtain information about the structure and stability of small hydrogen cluster ions have been performed. Attenuation and fragmentation measurements are presented of hydrogen cluster ions colliding with nitrogen, argon, hydrogen and helium over fixed energy ranges. The total collision and differential fragmentation cross sections are tabulated. (C.F.)

  19. Observations of transverse ion acceleration in the topside auroral ionosphere

    International Nuclear Information System (INIS)

    Garbe, G.P.; Arnoldy, R.L.; Moore, T.E.; Kintner, P.M.; Vago, J.L.

    1992-01-01

    Data obtained from a sounding rocket flight which reached an apogee of 927 km and passed through several auroral arcs are reported. During portions of the flight when the rocket was not in an energetic auroral structure, the ion data are fit to a Maxwellian function which yields the plasma parameters. Throughout the middle portion of the flight when above 700 km altitude, ion distributions having a superthermal tail were measured. These ion distributions generally coexisted with a cold thermal core distribution and peaked at pitch angles slightly greater than 90 degree, which identifies them as conic distributions. These ions can be modeled using a bi-Maxwellian distribution function with a perpendicular (to B) temperature about 10 times greater than the parallel temperature of 0.15 eV. When the rocket was immersed in energetic auroral electron precipitation, two other ion distributions were observed. Transversely accelerated ions which represented bulk heating of the ambient population were observed. Transversely accelerated ions which represented bulk heating of the ambient population were observed continuously in these arcs. The characteristic perpendicular energy of the transversely bulk heated ions reached as high as 3 eV compared to typically less than 0.4 eV during nonauroral times. Cold ions flowing down the magnetic field were also continuously observed when the rocket was immersed in auroral electron precipitation and had downward speeds between 3 and 5 km/s. If one balances electric and collisional forces, these speeds translate to an electric field pointing into the atmosphere of magnitude 0.01 mV/m. A close correlation between auroral electron precipitation, measured electrostatic oxygen cyclotron waves, cold downflowing ions and transversely bulk heated ions will be shown

  20. Film boiling heat transfer in liquid helium

    International Nuclear Information System (INIS)

    Inai, Nobuhiko

    1979-01-01

    The experimental data on the film boiling heat transfer in liquid helium are required for investigating the stability of superconducting wires. On the other hand, liquid helium has the extremely different physical properties as compared with the liquids at normal temperature such as water. In this study, the experiments on pool boiling were carried out, using the horizontal top surface of a 20 mm diameter copper cylinder in liquid helium. For observing individual bubbles, the experiments on film boiling from a horizontal platinum wire were performed separately in liquid nitrogen and liquid helium, and photographs of floating-away bubbles were taken. The author pointed out the considerable upward shift of the boiling curve near the least heat flux point in film boiling from the one given by the Berenson's equation which has been said to agree comparatively well with the data on the film boiling of the liquids at normal temperature, and the reason was investigated. Consequently, a model for film boiling heat transfer was presented. Also one equation expressing the film boiling at low heat flux for low temperature liquids was proposed. It represents well the tendency to shift from Berenson's equation of the experimental data on film boiling at the least heat flux point for liquid helium, liquid nitrogen and water having extremely different physical properties. Some discussions are added at the end of the paper. (Wakatsuki, Y.)

  1. Helium isotopes in rocks, waters and gases of the earth's crust

    International Nuclear Information System (INIS)

    Tolstikhin, L.H.

    1984-01-01

    In this chapter the distribution of helium isotopes in various samples (rocks, minerals, terrestrial fluids, gases etc.) is interpreted from the genetic point of view, namely what sources and processes provide the abundance of helium isotopes observed in a sample. The mixing of mantle, juvenile helium with pure radiogenic helium is the main process responsible for the helium isotope composition in any sample of the earth's crust, the share of each component (reflected in the 3 He/ 4 He ratio) depending on the history of the tectono-magnetic activity in the given region. A specific chemical composition of a rock or mineral, peculiarities of losses or trapping and a peculiar kind of distribution of radioactive elements can lead to unusual isotopic ratios of 3 He/ 4 He in radiogenic helium. Lastly, technogenic radioactive isotopes are widespread in nature; one of them, tritium ( 3 H), yields 3 He excess in terrestrial waters. (orig.)

  2. Convective mixing in helium white dwarfs

    International Nuclear Information System (INIS)

    Vauclair, G.; Fontaine, G.

    1979-01-01

    The conditions under which convective mixing episodes take place between the helium envelopes and the underlying carbon layers in helium-rich white dwarfs are investigated. It is found that, for essentially any value of the initial helium content less than the maximum mass a helium convection zone can have, mixing does occur, and leads, in the vast majority of cases, to an almost pure carbon superficial composition. Mixing products that show only traces of carbon while retaining helium-dominated envelopes are possible only if the initial helium content is quite close to the maximum possible mass of the helium convection zone. In the presence of turbulence, this restriction could be relaxed, however, and the helium-rich lambda4670 stars may possibly be explained in this fashion

  3. A numerical model for diffusion of helium in a hydrogen plasma

    International Nuclear Information System (INIS)

    Potters, J.H.H.M.

    1983-07-01

    A quasi-cylindrical steady-state numerical model for the diffusion of helium in a hydrogen plasma is presented, adopting collisional plus either ALCATOR-INTOR- or ASDEX-like anomalous transport for the charged species. The coupled momentum and conservation equations for H + , He + and He ++ are solved to obtain radial profiles of their densities, consistent with those of the neutral species. For the neutrals, a diffusion equation is used for the transport of H, whereas He is assumed to enter the plasma with an energy equal to the temperature of the plasma immediately in front of the wall. A stable numerical scheme for the solution of the coupled ion and electron energy balances is discussed. Results are presented for the JET-tokamak, using prescribed temperature profiles. Collisional effects are shown to produce an enhancement of the alpha particle density about 10 centimetres in front of the wall, especially in combination with ALCATOR-INTOR-like scaling. The neutral helium density that accumulates in the outer plasma is too low to allow for pumping helium from a cool plasma/gas blanket

  4. Electron induced break-up of helium. Benchmark experiments on a dynamical four-body Coulomb system

    International Nuclear Information System (INIS)

    Duerr, M.

    2006-01-01

    This work presents an experimental study of fragmentation of helium by electron impact, in which absolute fully differential cross sections for single ionization, ionization-excitation and double ionization were determined. By applying a charged-particle imaging technique, the so-called 'reaction microscope', a large fraction of the final-state momentum space is covered, and the major limitations of previous experimental methods applied in this field could be overcome. Decisive modifications of the previous reaction microscope were undertaken, the most important one being the arrangement of the projectile beam parallel to the imaging-fields. For single ionization on helium an enhanced electron emission outside the projectile scattering plane is observed at both considered impact energies (102 eV and 1 keV), which is similar to the result found for ion-impact (M. Schulz et al., Nature (London) 422, 48 (2003)). The angle resolved cross sections obtained for double ionization at 105 eV impact energy reveal, that the process is dominated by the mutual repulsion of the three final-state continuum electrons. However, signatures of more complex dynamics are also observed. The data provide an ultimate benchmark for recently developed theories treating the dynamical three- and four-body Coulomb problem. (orig.)

  5. Electron induced break-up of helium. Benchmark experiments on a dynamical four-body Coulomb system

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, M.

    2006-07-05

    This work presents an experimental study of fragmentation of helium by electron impact, in which absolute fully differential cross sections for single ionization, ionization-excitation and double ionization were determined. By applying a charged-particle imaging technique, the so-called 'reaction microscope', a large fraction of the final-state momentum space is covered, and the major limitations of previous experimental methods applied in this field could be overcome. Decisive modifications of the previous reaction microscope were undertaken, the most important one being the arrangement of the projectile beam parallel to the imaging-fields. For single ionization on helium an enhanced electron emission outside the projectile scattering plane is observed at both considered impact energies (102 eV and 1 keV), which is similar to the result found for ion-impact (M. Schulz et al., Nature (London) 422, 48 (2003)). The angle resolved cross sections obtained for double ionization at 105 eV impact energy reveal, that the process is dominated by the mutual repulsion of the three final-state continuum electrons. However, signatures of more complex dynamics are also observed. The data provide an ultimate benchmark for recently developed theories treating the dynamical three- and four-body Coulomb problem. (orig.)

  6. Inner Source Pickup Ions Observed by Ulysses

    Science.gov (United States)

    Gloeckler, G.

    2016-12-01

    The existence of an inner source of pickup ions close to the Sun was proposed in order to explain the unexpected discovery of C+ in the high-speed polar solar wind. Here I report on detailed analyses of the composition and the radial and latitudinal variations of inner source pickup ions measured with the Solar Wind Ion Composition Spectrometer on Ulysses from 1991 to 1998, approaching and during solar minimum. We find that the C+ intensity drops off with radial distance R as R-1.53, peaks at mid latitudes and drops to its lowest value in the ecliptic. Not only was C+ observed, but also N+, O+, Ne+, Na+, Mg+, Ar+, S+, K+, CH+, NH+, OH+, H2O+, H3O+, MgH+, HCN+, C2H4+, SO+ and many other singly-charged heavy ions and molecular ions. The measured velocity distributions of inner source pickup C+ and O+ indicate that these inner source pickup ions are most likely produced by charge exchange, photoionization and electron impact ionization of neutrals close to the Sun (within 10 to 30 solar radii). Possible causes for the unexpected latitudinal variations and the neutral source(s) producing the inner source pickup ions as well as plausible production mechanisms for inner source pickup ions will be discussed.

  7. Friendly fermions of helium-three

    International Nuclear Information System (INIS)

    Leggatt, T.

    1976-01-01

    The importance of helium in showing up the effects of atomic indistinguishability and as a material by which to test some of the most fundamental principles of quantum mechanics is discussed. Helium not only remains liquid down to zero temperature but of the two isotopes helium-three has intrinsic spin 1/2 and should therefore obey the Pauli principle, while helium-four has spin zero and is expected to undergo Bose condensation. Helium-three becomes superfluid at temperatures of a few thousandths of a degree above absolute zero by the bulk liquid collecting its atoms into spinning pairs. There are three different superfluid phases, now conveniently called A, B and A 1 and each is characterised by a different behaviour of the spin and/or relative angular motion of the atoms composing the Cooper pairs. Problems surrounding the complicated physical system of helium-three are discussed. It is suggested that the combined coherence and directionality of superfluid helium-three should create some fascinating physics. (U.K.)

  8. Helium-induced weld cracking in austenitic and martensitic steels

    International Nuclear Information System (INIS)

    Lin, H.T.; Chin, B.A.

    1991-01-01

    Helium was uniformly implanted into type 316 stainless steel and Sandvik HT-9 (12Cr-1MoVW) to levels of 0.18 to 256 and 0.3 to 1 a.p.p.m., respectively, using the ''tritium trick'' technique. Autogenous bead-on-plate, full penetration, welds were then produced under fully constrained conditions using the gas tungsten arc welding (GTAW) process. The control and hydrogen-charged plates of both alloys were sound and free of any weld defects. For the 316 stainless steel, catastrophic intergranular fracture occurred in the heat-affected zone (HAZ) of welds with helium levels ≥ 2.5 a.p.p.m. In addition to the HAZ cracking, brittle fracture along the centreline of the fusion zone was also observed for the welds containing greater than 100 a.p.p.m. He. For HT-9, intergranular cracking occurred in the HAZ along prior-austenite grain boundaries of welds containing 1 a.p.p.m. He. Electron microscopy observations showed that the cracking in the HAZ originated from the growth and coalescence of grain-boundary helium bubbles and that the fusion-zone cracking resulted from the growth of helium bubbles at dendrite boundaries. The bubble growth kinetics in the HAZ is dominated by stress-induced diffusion of vacancies into bubbles. Results of this study indicate that the use of conventional GTAW techniques to repair irradiation-degraded materials containing even small amounts of helium may be difficult. (author)

  9. Scanning ion microscopy with low energy lithium ions

    International Nuclear Information System (INIS)

    Twedt, Kevin A.; Chen, Lei; McClelland, Jabez J.

    2014-01-01

    Using an ion source based on photoionization of laser-cooled lithium atoms, we have developed a scanning ion microscope with probe sizes of a few tens of nanometers and beam energies from 500 eV to 5 keV. These beam energies are much lower than the typical operating energies of the helium ion microscope or gallium focused ion beam systems. We demonstrate how low energy can be advantageous in ion microscopy when detecting backscattered ions, due to a decreased interaction volume and the potential for surface sensitive composition analysis. As an example application that demonstrates these advantages, we non-destructively image the removal of a thin residual resist layer during plasma etching in a nano-imprint lithography process. - Highlights: • We use an ion source based on photoionization of laser-cooled lithium atoms. • The ion source makes possible a low energy (500 eV to 5 keV) scanning ion microscope. • Low energy is preferred for ion microscopy with backscattered ions. • We use the microscope to image a thin resist used in nano-imprint lithography

  10. Non-detection of a Helium Exosphere for the Hot Jupiter WASP-12b

    Science.gov (United States)

    Kreidberg, Laura; Oklopčić, Antonija

    2018-06-01

    An exosphere was recently detected around the exoplanet WASP-107b, a low-density, warm Neptune, based on an absorption feature from metastable helium (which has a vacuum wavelength of 10833 \\AA). Inspired by the WASP-107b detection, we reanalyzed archival HST observations of another evaporating exoplanet, WASP-12b, to search for signs of helium in its exosphere. We find no significant increase in transit depth at 10833 \\AA. We compare this result to theoretical predictions from a 1D model, and find that the expected helium feature amplitude is small, in agreement with the observed non-detection. We discuss possible explanations for why the helium feature is weaker for WASP-12b than WASP-107b, and conclude that the amplitude of the signal is highly sensitive to the stellar spectrum and the geometry of the evaporating gas cloud. These considerations should be taken into account in the design of future searches for helium exospheres.

  11. Study of a decaying helium plasma having a high neutral particle density; Etude d'un plasma d'helium, a forte densite de neutres, en regime de relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Deloche, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    We have shown theoretically, in a high pressure, decaying helium plasma, the effect at low energy of inelastic collisions between neutral particles on the population densities of excited molecules and electron-ion recombination coefficient. The formalism of Bates (1962) has been used, taking into account simultaneously collisional mechanisms with electrons, collisional mechanisms with neutrals and radiative processes. The variation of the population densities and electron-ion recombination coefficient with respect to the pressure is given for different values of electron density and temperature. These theoretical results indicate an effect of pressure large enough to be measured and allow us to define the most favorable experimental conditions. (author) [French] L'effet des collisions inelastiques entre particules neutres dans un plasma d'helium, en regime de relaxation, a basse temperature electronique et forte densite de neutres, a ete mis en evidence, theoriquement, aussi bien dans le calcul des densites de population des molecules excitees que dans la determination du coefficient de recombinaison electron-ion. Nous avons utilise le formalisme de Bates (1962) en tenant compte simultanement des mecanismes collisionnels avec les electrons, des mecanismes collisionnels avec les neutres et des phenomenes radiatifs. La variation des densites de population et du coefficient de recombinaison electron-ion en fonction de la pression est donnee pour differentes valeurs de la densite electronique et de la temperature. Ces resultats theoriques laissent prevoir un effet de la pression suffisamment important pour qu'il puisse etre mesure et permettent de definir les conditions experimentales les plus favorables. (auteur)

  12. Helium turbo-expander with an alternator

    International Nuclear Information System (INIS)

    Akiyama, Yoshitane

    1980-01-01

    Study was made on a helium turbo-expander, the heart of helium refrigerator systems, in order to develop a system which satisfies the required conditions. A helium turbo-expander with externally pressurized helium gas bearings at the temperature of liquid nitrogen and an alternator as a brake have been employed. The essential difference between a helium turbo-expander and a nitrogen turbo-expander was clarified. The gas bearing lubricated with nitrogen at room temperature and the gas bearing lubricated with helium at low temperature were tested. The flow rate of helium in a helium refrigerator for a large superconducting magnet is comparatively small, therefore a helium turbine must be small, but the standard for large turbine design can be applied to such small turbine. Using the alternator as a brake, the turbo-expander was easily controllable electrically. The prototype turbo-expander was made, and the liquefaction test with it and MHD power generation test were carried out. (Kako, I.)

  13. Influence of helium-injection schedule and prior thermomechanical treatment on the microstructure of Type 316 SS

    International Nuclear Information System (INIS)

    Kohyama, A.; Ayrault, G.; Turner, A.P.L.

    1982-10-01

    The influence of different helium-injection schedules on microstructure development Ni + ion irradiated 316 SS at 625 0 C is discussed. Injection schedules were chosen to (1) approximate the magnetic fusion reactor condition and (2) mimic the mixed-spectrum reactor condition. Dual-ion irradiation to 25 dpa produced strongly bimodal cavity size distributions in solution-annealed and solution-annealed and aged samples, whereas single-ion irradiation followed by dual-ion irradiation to the same dose produced a cavity size distribution with a substantial component of intermediate-size cavities. Dual-ion irradiation produced only very small cavities in 20% CW material, while single-ion followed by dual-ion irradiation produced some intermediate size cavities and greater swelling. 10 figures

  14. Effect of helium on fatigue crack growth and life of reduced activation ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Takahashi, Manabu; Hasegawa, Akira; Yamazaki, Masanori

    2013-01-01

    The effects of helium on the fatigue life, micro-crack growth behavior up to final fatigue failure, and fracture mode under fatigue in the reduced activation ferritic/martensitic steel, F82H IEA-heat, were investigated by low cycle fatigue tests at room temperature in air at a total strain range of 0.6–1.5%. Significant reduction of the fatigue life due to helium implantation was observed for a total strain range of 1.0–1.5%, which might be attributable to an increase in the micro-crack propagation rate. However, the reduction of fatigue life due to helium implantation was not significant for a total strain range of 0.6–0.8%. A brittle fracture surface (an original point of micro-crack initiation) and a cleavage fracture surface were observed in the helium-implanted region of fracture surface. A striation pattern was observed in the non-implanted region. These fracture modes of the helium-implanted specimen were independent of the strain range

  15. Properties of vanadium-base alloys irradiated in the Dynamic Helium Charging Experiment*1

    Science.gov (United States)

    Chung, H. M.; Loomis, B. A.; Smith, D. L.

    1996-10-01

    One property of vanadium-base alloys that is not well understood in terms of their potential use a fusion reactor structural materials, is the effect of simultaneous generation of helium and neutron damage. In the present Dynamic Helium Charging Experiment (DHCE), helium was produced uniformly in the specimen at linear rates of ≈ 0.4 to 4.2 appm helium/dpa by the decay of tritium during irradiation to 18-31 dpa at 425-600°C in Li-filled capsules in a sodium-cooled fast reactor. This paper presents results of postirradiation examination and tests of microstructure and mechanical properties of V5Ti, V3Ti1Si, V8Cr6Ti, and V4Cr4Ti (the latter alloy has been identified as the most promising candidate vanadium alloy). Effects of helium on tensile strength and ductility were insignificant after irradiation and testing at > 420°C. However, postirradiation ductilities at irradiation. Ductile—brittle transition behavior of the DHCE specimens was also determined from bend tests and fracture appearance of transmission electron microscopy (TEM) disks and broken tensile specimens. No brittle behavior was observed at temperatures > - 150°C in DHCE specimens. Predominantly brittle-cleavage fracture morphologies were observed only at - 196°C in some specimens that were irradiated to 31 dpa at 425°C during the DHCE. For the helium generation rates in this experiment (≈ 0.4-4.2 appm He/dpa), grain-boundary coalescence of helium microcavities was negligible and intergranular fracture was not observed.

  16. Creep properties of heat-resistant superalloys for nuclear plants in helium

    International Nuclear Information System (INIS)

    Shimizu, Shigeki; Satoh, Keisuke; Honda, Yoshio; Matsuda, Shozo; Murase, Hirokazu

    1979-01-01

    Creep properties of candidate superalloys for VHTR components in a helium environment at both temperatures of 800 0 C and 900 0 C were compared with those of the same alloys in the atmospheric condition, and the superalloys were contrasted with each other from the viewpoint of high temperature structural design. At 800 0 C, no significant effect of a helium environment on creep properties of the superalloys is observed. At 900 0 C, however, creep strength of Inconel 617, Incoloy 800 and Incoloy 807 in the helium environment decrease more than in the atmospheric environment. In Hastelloy X and Inconel 625, there is no significant difference between creep strengths in helium and those in the atmospheric condition. Concerning So and St values in helium at 900 0 C, Inconel 617 and Hastelloy X are clearly superior to other superalloys. (author)

  17. Hydrogen-Helium shock Radiation tests for Saturn Entry Probes

    Science.gov (United States)

    Cruden, Brett A.

    2016-01-01

    This paper describes the measurement of shock layer radiation in Hydrogen/Helium mixtures representative of that encountered by probes entering the Saturn atmosphere. Normal shock waves are measured in Hydrogen-Helium mixtures (89:11% by volume) at freestream pressures between 13-66 Pa (0.1-0.5 Torr) and velocities from 20-30 km/s. Radiance is quantified from the Vacuum Ultraviolet through Near Infrared. An induction time of several centimeters is observed where electron density and radiance remain well below equilibrium. Radiance is observed in front of the shock layer, the characteristics of which match the expected diffusion length of Hydrogen.

  18. Helium in inert matrix dispersion fuels

    International Nuclear Information System (INIS)

    Veen, A. van; Konings, R.J.M.; Fedorov, A.V.

    2003-01-01

    The behaviour of helium, an important decay product in the transmutation chains of actinides, in dispersion-type inert matrix fuels is discussed. A phenomenological description of its accumulation and release in CERCER and CERMET fuel is given. A summary of recent He-implantation studies with inert matrix metal oxides (ZrO 2 , MgAl 2 O 4 , MgO and Al 2 O 3 ) is presented. A general picture is that for high helium concentrations helium and vacancy defects form helium clusters which convert into over-pressurized bubbles. At elevated temperature helium is released from the bubbles. On some occasions thermal stable nano-cavities or nano-pores remain. On the basis of these results the consequences for helium induced swelling and helium storage in oxide matrices kept at 800-1000 deg. C will be discussed. In addition, results of He-implantation studies for metal matrices (W, Mo, Nb and V alloys) will be presented. Introduction of helium in metals at elevated temperatures leads to clustering of helium to bubbles. When operational temperatures are higher than 0.5 melting temperature, swelling and helium embrittlement might occur

  19. Operating Manual of Helium Refrigerator (Rev. 2)

    Energy Technology Data Exchange (ETDEWEB)

    Song, K.M.; Son, S.H.; Kim, K.S.; Lee, S.K.; Kim, M.S. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    A helium refrigerator was installed as a supplier of 20K cold helium to the cryogenic distillation system of WTRF pilot plant. The operating procedures of the helium refrigerator, helium compressor and auxiliary apparatus are described for the safety and efficient operation in this manual. The function of the helium refrigerator is to remove the impurities from the compressed helium of about 250psig, to cool down the helium from ambient temperature to 20K through the heat exchanger and expansion engine and to transfer the cold helium to the cryogenic distillation system. For the smoothly operation of helium refrigerator, the preparation, the start-up, the cool-down and the shut-down of the helium refrigerator are described in this operating manual. (author). 3 refs., 14 tabs.

  20. Research and development of a helium-4 based solar neutrino detector

    International Nuclear Information System (INIS)

    Lanou, R.E.; Maris, H.J.; Seidel, G.M.

    1990-12-01

    We report on work accomplished in the first 30 months of a research and development program to investigate the feasibility of a new technique to detect solar neutrinos in superfluid helium. Accomplishments include the successful completion of design, construction and operation of the entire cryogenic, mechanical and electronic apparatus. During the last several months we have begun a series of experiments in superfluid helium to test the method. Experimental results include the first observation of the combined physical processes essential to the detection technique: ballistic roton generation by energetic charged particles, quantum evaporation of helium at a free surface and bolometric detection of the evaporated helium by physisorption on a cold silicon wafer. Additional results are also presented