WorldWideScience

Sample records for helium ion microscope

  1. Nanofabrication with a helium ion microscope

    NARCIS (Netherlands)

    Maas, D.; Van Veldhoven, E.; Chen, P.; Sidorkin, V; Salemink, H.; Van der Drift, E.; Alkemade, P.

    2009-01-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valu

  2. Nanofabrication with a helium ion microscope

    NARCIS (Netherlands)

    Maas, D.; Van veldhoven, E.; Chen, P.; Sidorkin, V.; Salemink, H.; Van der Drift, E.; Alkemade, P.

    2010-01-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valu

  3. Nanofabrication with a helium ion microscope

    NARCIS (Netherlands)

    Maas, D.; Van veldhoven, E.; Chen, P.; Sidorkin, V.; Salemink, H.; Van der Drift, E.; Alkemade, P.

    2010-01-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valu

  4. Nanofabrication with a helium ion microscope

    NARCIS (Netherlands)

    Maas, D.; Van Veldhoven, E.; Chen, P.; Sidorkin, V; Salemink, H.; Van der Drift, E.; Alkemade, P.

    2009-01-01

    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a valu

  5. Nanometer scale elemental analysis in the helium ion microscope using time of flight spectrometry.

    Science.gov (United States)

    Klingner, N; Heller, R; Hlawacek, G; von Borany, J; Notte, J; Huang, J; Facsko, S

    2016-03-01

    Time of flight backscattering spectrometry (ToF-BS) was successfully implemented in a helium ion microscope (HIM). Its integration introduces the ability to perform laterally resolved elemental analysis as well as elemental depth profiling on the nm scale. A lateral resolution of ≤54nm and a time resolution of Δt≤17ns(Δt/t≤5.4%) are achieved. By using the energy of the backscattered particles for contrast generation, we introduce a new imaging method to the HIM allowing direct elemental mapping as well as local spectrometry. In addition laterally resolved time of flight secondary ion mass spectrometry (ToF-SIMS) can be performed with the same setup. Time of flight is implemented by pulsing the primary ion beam. This is achieved in a cost effective and minimal invasive way that does not influence the high resolution capabilities of the microscope when operating in standard secondary electron (SE) imaging mode. This technique can thus be easily adapted to existing devices. The particular implementation of ToF-BS and ToF-SIMS techniques are described, results are presented and advantages, difficulties and limitations of this new techniques are discussed.

  6. Synthesis of nanowires via helium and neon focused ion beam induced deposition with the gas field ion microscope.

    Science.gov (United States)

    Wu, H M; Stern, L A; Chen, J H; Huth, M; Schwalb, C H; Winhold, M; Porrati, F; Gonzalez, C M; Timilsina, R; Rack, P D

    2013-05-03

    The ion beam induced nanoscale synthesis of platinum nanowires using the trimethyl (methylcyclopentadienyl)platinum(IV) (MeCpPt(IV)Me3) precursor is investigated using helium and neon ion beams in the gas field ion microscope. The He(+) beam induced deposition resembles material deposited by electron beam induced deposition with very small platinum nanocrystallites suspended in a carbonaceous matrix. The He(+) deposited material composition was estimated to be 16% Pt in a matrix of amorphous carbon with a large room-temperature resistivity (∼3.5 × 10(4)-2.2 × 10(5) μΩ cm) and temperature-dependent transport behavior consistent with a granular material in the weak intergrain tunnel coupling regime. The Ne(+) deposited material has comparable composition (17%), however a much lower room-temperature resistivity (∼600-3.0 × 10(3) μΩ cm) and temperature-dependent electrical behavior representative of strong intergrain coupling. The Ne(+) deposited nanostructure has larger platinum nanoparticles and is rationalized via Monte Carlo ion-solid simulations which show that the neon energy density deposited during growth is much larger due to the smaller ion range and is dominated by nuclear stopping relative to helium which has a larger range and is dominated by electronic stopping.

  7. Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection

    Science.gov (United States)

    Deng, Yunsheng; Huang, Qimeng; Zhao, Yue; Zhou, Daming; Ying, Cuifeng; Wang, Deqiang

    2017-01-01

    We report a scalable method to fabricate high-quality graphene nanopores for biomolecule detection using a helium ion microscope (HIM). HIM milling shows promising capabilities for precisely controlling the size and shape, and may allow for the potential production of nanopores at wafer scale. Nanopores could be fabricated at different sizes ranging from 5 to 30 nm in diameter in few minutes. Compared with the current solid-state nanopore fabrication techniques, e.g. transmission electron microscopy, HIM is fast. Furthermore, we investigated the exposure-time dependence of graphene nanopore formation: the rate of pore expansion did not follow a simple linear relationship with exposure time, but a fast expansion rate at short exposure time and a slow rate at long exposure time. In addition, we performed biomolecule detection with our patterned graphene nanopore. The ionic current signals induced by 20-base single-stranded DNA homopolymers could be used as a basis for homopolymer differentiation. However, the charge interaction of homopolymer chains with graphene nanopores, and the conformations of homopolymer chains need to be further considered to improve the accuracy of discrimination.

  8. Imaging and nanofabrication with the helium ion microscope of the Van Leeuwenhoek Laboratory in Delft.

    Science.gov (United States)

    Alkemade, Paul F A; Koster, Emma M; van Veldhoven, Emile; Maas, Diederik J

    2012-01-01

    Although helium ion microscopy (HIM) was introduced only a few years ago, many new application fields are emerging. The connecting factor between these novel applications is the unique interaction of the primary helium ion beam with the sample material at and just below its surface. In particular, the HIM secondary electron signal stems from an area that is extremely well localized around the point of incidence of the primary beam. This makes the HIM well suited for both high-resolution imaging and high-resolution nanofabrication. Another advantage in nanofabrication is the low ion backscattering fraction, which leads to a weak proximity effect. The subnanometer probe size and the unique beam-materials interactions have opened new areas of research. This review presents a selection of studies conducted on a single instrument. The selection encompasses applications ranging from imaging to nanofabrication and from fundamental academic research to applied industrial developments.

  9. Atom probe field ion microscope study of the range and diffusivity of helium in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, A.

    1978-08-01

    A time-of-flight (TOF) atom-probe field-ion microscope (FIM) specifically designed for the study of defects in metals is described. With this automated system 600 TOF min/sup -1/ can be recorded and analyzed. Performance tests of the instrument demonstrated that (1) the seven isotopes of molybdenum and the five isotopes of tungsten can be clearly resolved; and (2) the concentration and spatial distribution of all constitutents present at levels greater than 0.05 at. % in a W--25 at. % Re, Mo--1.0 at. % Ti, Mo--1.0 at. % Ti--0.08 at. % Zr (TZM), a low swelling stainless steel (LS1A) and a metallic glass (Metglas 2826) can be measured. The effect of the rate of field evaporation on the quantitative atom probe analysis of a Mo--1.0 at. % Ti alloy and a Mo--1.0 at. % Ti--0.08 at. % Zr alloy was investigated. As the field evaporation rate increased the measured Ti concentration was found to also increase. A simple qualitative model was proposed to explain the observation. The spatial distribution of titanium in a fast neutron irradiated Mo--1.0 at. % Ti alloy has been investigated. No evidence of Ti segregation to the voids was detected nor has any evidence of significant resolution of Ti from the TiC precipitates been detected. A small amount of segregation of carbon to a void was detected.

  10. Deposition, milling, and etching with a focused helium ion beam

    NARCIS (Netherlands)

    Alkemade, P.F.A.; Veldhoven, E. van

    2012-01-01

    The recent successful development of the helium ion microscope has produced both a new type of microscopy and a new tool for nanoscale manufacturing. This chapter reviews the first explorations in this new field in nanofabrication. The studies that utilize the Orion helium ion microscope to grow or

  11. Deposition, milling, and etching with a focused helium ion beam

    NARCIS (Netherlands)

    Alkemade, P.F.A.; Veldhoven, E. van

    2012-01-01

    The recent successful development of the helium ion microscope has produced both a new type of microscopy and a new tool for nanoscale manufacturing. This chapter reviews the first explorations in this new field in nanofabrication. The studies that utilize the Orion helium ion microscope to grow or

  12. Negative ions in liquid helium

    Science.gov (United States)

    Khrapak, A. G.; Schmidt, W. F.

    2011-05-01

    The structure of negative ions in liquid 4He is analyzed. The possibility of cluster or bubble formation around impurity ions of both signs is discussed. It is shown that in superfluid helium, bubbles form around negative alkaline earth metal ions and clusters form around halogen ions. The nature of "fast" and "exotic" negative ions is also discussed. It is assumed that "fast" ions are negative ions of helium excimer molecules localized inside bubbles. "Exotic" ions are stable negative impurity ions, which are always present in small amounts in gas discharge plasmas. Bubbles or clusters with radii smaller the radius of electron bubbles develop around these ions.

  13. A design for a pinhole scanning helium microscope

    Energy Technology Data Exchange (ETDEWEB)

    Barr, M.; Fahy, A. [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia); Jardine, A.; Ellis, J.; Ward, D. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); MacLaren, D.A. [Dept. of Physics, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Allison, W. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Dastoor, P.C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia)

    2014-12-01

    We present a simplified design for a scanning helium microscope (SHeM) which utilises almost entirely off the shelf components. The SHeM produces images by detecting scattered neutral helium atoms from a surface, forming an entirely surface sensitive and non-destructive imaging technique. This particular prototype instrument avoids the complexities of existing neutral atom optics by replacing them with an aperture in the form of an ion beam milled pinhole, resulting in a resolution of around 5 microns. Using the images so far produced, an initial investigation of topological contrast has been performed.

  14. Helium-3 Microscopic Optical Model Potential Based on Skyrme Interaction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The helium-3 microscopic optical potential is obtained by Green function method through nuclear matter approximation and local density approximation based on the effective Skyrme interaction. The reaction cross

  15. Focused helium-ion-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Alkemade, P.F.A.; Miro, H. [Delft University of Technology, Kavli Institute of Nanoscience, Delft (Netherlands)

    2014-12-15

    The recent introduction of the helium ion microscope (HIM) offers new possibilities for materials modification and fabrication with spatial resolution below 10 nm. In particular, the specific interaction of He{sup +} ions in the tens of keV energy range with materials - i.e., minimal deflection and mainly energy loss via electronic excitations - renders the HIM a special tool for ion-beam-induced deposition. In this work, an overview is given of all studies of helium-ion-beam-induced deposition (He-IBID) that appeared in the literature before summer 2014. Continuum models that describe the deposition processes are presented in detail, with emphasis on precursor depletion and replenishment. In addition, a Monte Carlo model is discussed. Basic experimental He-IBID studies are critically examined. They show deposition rates of up to 0.1 nm{sup 3}/ion. Analysis by means of a continuum model yields the precursor diffusion constant and the cross sections for beam-induced precursor decomposition and beam-induced desorption. Moreover, it is shown that deposition takes place only in a small zone around the beam impact point. Furthermore, the characterization of deposited materials is discussed in terms of microstructure and resistivity. It is shown that He-IBID material resembles more electron-beam-induced-deposition (EBID) material than Ga-ion-beam-induced-deposition (Ga-IBID) material. Nevertheless, the spatial resolution for He-IBID is in general better than for EBID and Ga-IBID; in particular, proximity effects are minimal. (orig.)

  16. Radioactive ions and atoms in superfluid helium

    NARCIS (Netherlands)

    Dendooven, P.G.; Purushothaman, S.; Gloos, K.; Aysto, J.; Takahashi, N.; Huang, W.; Harissopulos, S; Demetriou, P; Julin, R

    2006-01-01

    We are investigating the use of superfluid helium as a medium to handle and manipulate radioactive ions and atoms. Preliminary results on the extraction of positive ions from superfluid helium at temperatures close to 1 K are described. Increasing the electric field up to 1.2 kV/cm did not improve t

  17. Conductivity change of defective graphene by helium ion beams

    Directory of Open Access Journals (Sweden)

    Yuichi Naitou

    2017-04-01

    Full Text Available Applying a recently developed helium ion microscope, we demonstrated direct nano-patterning and Anderson localization of single-layer graphene (SLG on SiO2/Si substrates. In this study, we clarified the spatial-resolution-limitation factor of direct nano-patterning of SLG. Analysis of scanning capacitance microscopy measurements reveals that the conductivity of helium ion (H+-irradiated SLG nanostructures depends on their geometrical size, i.e., the smaller the H+-irradiated SLG region, the higher its conductivity becomes. This finding can be explained by the hopping carrier transport across strongly localized states of defective SLG.

  18. Focused helium and neon ion beam induced etching for advanced extreme ultraviolet lithography mask repair

    NARCIS (Netherlands)

    Gonzalez, Carlos M.; Timilsina, Rajendra; Li, Guoliang; Duscher, Gerd; Rack, Philip D.; Slingenbergh, Winand; van Dorp, Willem F.; De Hosson, Jeff T. M.; Klein, Kate L.; Wu, Huimeng M.; Stern, Lewis A.

    2014-01-01

    The gas field ion microscope was used to investigate helium and neon ion beam induced etching of nickel as a candidate technique for extreme ultraviolet (EUV) lithography mask editing. No discernable nickel etching was observed for room temperature helium exposures at 16 and 30 keV in the dose range

  19. Modification on graphite due to helium ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, N.J.; Mohanty, S.R., E-mail: smrutirm@yahoo.com; Buzarbaruah, N.

    2016-07-29

    This paper studies the influence of helium ion irradiation on morphological and structural properties of graphite samples. The helium ions emanated from a plasma focus device have been used to irradiate graphite samples by varying the number of ion pulses. The effect of radiation induced changes in morphology and structure are examined by using optical microscopy, atomic force microscopy, transmission electron microscopy along with selected area electron diffraction and x-ray diffraction. A distinct change in the surface topography is marked in the case of the ion irradiated samples when viewed under the optical microscope. The micrographs of the ion irradiated samples confirm mostly rounded and sparely elongated type of structures arising due to intense melting and local ablation accompanied with ejection of graphite melts that depends upon the ion fluence. The atomic force microscopy images also reveal the formation of globules having sizes ∼50–200 nm which are the agglomeration of small individual clusters. Transmission electron micrographs of the ion irradiated samples furnish that the diameter of these individual small clusters are ∼10.4 nm. Moreover, selected area electron diffraction patterns corroborate that the ion irradiated sample retains its crystalline nature, even after exposure to larger helium ion pulses. It is noticed from the x-ray diffraction patterns that some new phases are developed in the case of ion irradiated sample. - Highlights: • Used an ingenious helium ion source to study irradiation induced transformation on graphite. • OM, AFM and TEM analyses confirm the formation mostly rounded structures. • SAED patterns confirm the retention of crystallinity of graphite even after exposure to larger helium ion fluences. • XRD patterns confirm the development of new peaks that indicate structural rearrangement.

  20. Theoretical model of the helium zone plate microscope

    Science.gov (United States)

    Salvador Palau, Adrià; Bracco, Gianangelo; Holst, Bodil

    2017-01-01

    Neutral helium microscopy is a new technique currently under development. Its advantages are the low energy, charge neutrality, and inertness of the helium atoms, a potential large depth of field, and the fact that at thermal energies the helium atoms do not penetrate into any solid material. This opens the possibility, among others, for the creation of an instrument that can measure surface topology on the nanoscale, even on surfaces with high aspect ratios. One of the most promising designs for helium microscopy is the zone plate microscope. It consists of a supersonic expansion helium beam collimated by an aperture (skimmer) focused by a Fresnel zone plate onto a sample. The resolution is determined by the focal spot size, which depends on the size of the skimmer, the optics of the system, and the velocity spread of the beam through the chromatic aberrations of the zone plate. An important factor for the optics of the zone plate is the width of the outermost zone, corresponding to the smallest opening in the zone plate. The width of the outermost zone is fabrication limited to around 10 nm with present-day state-of-the-art technology. Due to the high ionization potential of neutral helium atoms, it is difficult to build efficient helium detectors. Therefore, it is crucial to optimize the microscope design to maximize the intensity for a given resolution and width of the outermost zone. Here we present an optimization model for the helium zone plate microscope. Assuming constant resolution and width of the outermost zone, we are able to reduce the problem to a two-variable problem (zone plate radius and object distance) and we show that for a given beam temperature and pressure, there is always a single intensity maximum. We compare our model with the highest-resolution zone plate focusing images published and show that the intensity can be increased seven times. Reducing the width of the outermost zone to 10 nm leads to an increase in intensity of more than 8000

  1. Lamb shift in muonic helium ion

    CERN Document Server

    Martynenko, A P

    2006-01-01

    The Lamb shift (2P_{1/2}-2S_{1/2}) in the muonic helium ion (mu ^4_2He)^+ is calculated with the account of contributions of orders alpha^3, alpha^4, alpha^5 and alpha^6. Special attention is given to corrections of the electron vacuum polarization, the nuclear structure and recoil effects. The obtained numerical value of the Lamb shift 1381.716 meV can be considered as a reliable estimate for the comparison with experimental data.

  2. Effect of helium ion beam treatment on the etching rate of silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Yu.V., E-mail: y.petrov@spbu.ru; Sharov, T.V.; Baraban, A.P.; Vyvenko, O.F.

    2015-04-15

    We investigated the effect of the helium ion implantation on the etching rate of silicon nitride in hydrofluoric acid. 30 keV helium ions were implanted into a 500-nm-thick silicon nitride film on silicon. Ion fluences from 10{sup 15} to 10{sup 17} cm{sup −2} were used. Etching was performed in a hydrofluoric acid solution. All samples were investigated with a scanning electron microscope and atomic force microscope. It was found that helium ion implantation can increase the etching rate by a factor of three. This results in the formation of a well in the implanted area after etching. The maximum depth of the well is about 180 nm and is limited by the penetration depth of 30 keV helium ions. Two possible reasons for enhanced etching are suggested: enhancement by ion-induced defects and electrostatic interaction of ions of the etchant with ion-induced space charge of silicon nitride. The recombination of ion-induced defects is also discussed.

  3. Imaging of carbon nanomembranes with helium ion microscopy

    Directory of Open Access Journals (Sweden)

    André Beyer

    2015-08-01

    Full Text Available Carbon nanomembranes (CNMs prepared from aromatic self-assembled monolayers constitute a recently developed class of 2D materials. They are made by a combination of self-assembly, radiation-induced cross-linking and the detachment of the cross-linked SAM from its substrate. CNMs can be deposited on arbitrary substrates, including holey and perforated ones, as well as on metallic (transmission electron microscopy grids. Therewith, freestanding membranes with a thickness of 1 nm and macroscopic lateral dimensions can be prepared. Although free-standing CNMs cannot be imaged by light microscopy, charged particle techniques can visualize them. However, CNMs are electrically insulating, which makes them sensitive to charging. We demonstrate that the helium ion microscope (HIM is a good candidate for imaging freestanding CNMs due to its efficient charge compensation tool. Scanning with a beam of helium ions while recording the emitted secondary electrons generates the HIM images. The advantages of HIM are high resolution, high surface sensitivity and large depth of field. The effects of sample charging, imaging of multilayer CNMs as well as imaging artefacts are discussed.

  4. Transport and extraction of radioactive ions stopped in superfluid helium

    CERN Document Server

    Huang Wan Xia; Gloos, K; Takahashi, N; Arutyunov, K; Pekola, J P; Äystö, J

    2003-01-01

    A new approach to convert a high energy beam to a low energy one, which is essential for the next generation radioactive ion beam facilities, has been proposed and tested at Jyvaeskylae, Finland. An open sup 2 sup 2 sup 3 Ra alpha-decay-recoil source has been used to produce radioactive ions in superfluid helium. The alpha spectra demonstrate that the recoiling sup 2 sup 1 sup 9 Rn ions have been extracted out of liquid helium. This first observation of the extraction of heavy positive ions across the superfluid helium surface was possible thanks to the high sensitivity of radioactivity detection. An efficiency of 36% was obtained for the ion extraction out of liquid helium.

  5. Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy

    Directory of Open Access Journals (Sweden)

    Patrick Philipp

    2016-11-01

    Full Text Available The analysis of polymers by secondary ion mass spectrometry (SIMS has been a topic of interest for many years. In recent years, the primary ion species evolved from heavy monatomic ions to cluster and massive cluster primary ions in order to preserve a maximum of organic information. The progress in less-damaging sputtering goes along with a loss in lateral resolution for 2D and 3D imaging. By contrast the development of a mass spectrometer as an add-on tool for the helium ion microscope (HIM, which uses finely focussed He+ or Ne+ beams, allows for the analysis of secondary ions and small secondary cluster ions with unprecedented lateral resolution. Irradiation induced damage and depth profiling capabilities obtained with these light rare gas species have been far less investigated than ion species used classically in SIMS. In this paper we simulated the sputtering of multi-layered polymer samples using the BCA (binary collision approximation code SD_TRIM_SP to study preferential sputtering and atomic mixing in such samples up to a fluence of 1018 ions/cm2. Results show that helium primary ions are completely inappropriate for depth profiling applications with this kind of sample materials while results for neon are similar to argon. The latter is commonly used as primary ion species in SIMS. For the two heavier species, layers separated by 10 nm can be distinguished for impact energies of a few keV. These results are encouraging for 3D imaging applications where lateral and depth information are of importance.

  6. Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy.

    Science.gov (United States)

    Philipp, Patrick; Rzeznik, Lukasz; Wirtz, Tom

    2016-01-01

    The analysis of polymers by secondary ion mass spectrometry (SIMS) has been a topic of interest for many years. In recent years, the primary ion species evolved from heavy monatomic ions to cluster and massive cluster primary ions in order to preserve a maximum of organic information. The progress in less-damaging sputtering goes along with a loss in lateral resolution for 2D and 3D imaging. By contrast the development of a mass spectrometer as an add-on tool for the helium ion microscope (HIM), which uses finely focussed He(+) or Ne(+) beams, allows for the analysis of secondary ions and small secondary cluster ions with unprecedented lateral resolution. Irradiation induced damage and depth profiling capabilities obtained with these light rare gas species have been far less investigated than ion species used classically in SIMS. In this paper we simulated the sputtering of multi-layered polymer samples using the BCA (binary collision approximation) code SD_TRIM_SP to study preferential sputtering and atomic mixing in such samples up to a fluence of 10(18) ions/cm(2). Results show that helium primary ions are completely inappropriate for depth profiling applications with this kind of sample materials while results for neon are similar to argon. The latter is commonly used as primary ion species in SIMS. For the two heavier species, layers separated by 10 nm can be distinguished for impact energies of a few keV. These results are encouraging for 3D imaging applications where lateral and depth information are of importance.

  7. Communication: Barium ions and helium nanodroplets: solvation and desolvation.

    Science.gov (United States)

    Zhang, Xiaohang; Drabbels, Marcel

    2012-08-07

    The solvation of Ba(+) ions created by the photoionization of barium atoms located on the surface of helium nanodroplets has been investigated. The excitation spectra corresponding to the 6p (2)P(1/2) ← 6s (2)S(1/2) and 6p (2)P(3/2) ← 6s (2)S(1/2) transitions of Ba(+) are found to be identical to those recorded in bulk He II [H. J. Reyher, H. Bauer, C. Huber, R. Mayer, A. Schafer, and A. Winnacker, Phys. Lett. A 115, 238 (1986)], indicating that the ions formed at the surface of the helium droplets become fully solvated by the helium. Time-of-flight mass spectra suggest that following the excitation of the solvated Ba(+) ions, these are being ejected from the helium droplets either as bare Ba(+) ions or as small Ba(+)He(n) (n < 20) complexes.

  8. Transport and extraction of radioactive ions stopped in superfluid helium

    NARCIS (Netherlands)

    Huang, WX; Dendooven, P; Gloos, K; Takahashi, N; Arutyunov, K; Pekola, JP; Aysto, J

    2003-01-01

    A new approach to convert a high energy beam to a low energy one, which is essential for the next generation radioactive ion beam facilities, has been proposed and tested at Jyvaskyla, Finland. An open Ra-223 alpha-decay-recoil source has been used to produce radioactive ions in superfluid helium. T

  9. Spectra of Cold Molecular Ions from Hot Helium Nanodroplets

    Science.gov (United States)

    Drabbels, Marcel

    2012-06-01

    The function of a molecule is intimately related to its structure. Accordingly, in the quest for a better understanding of molecular function, the development of spectroscopic methods to elucidate molecular structures increasingly takes central stage. The amount of detail that can be derived from spectra depends on the experimental conditions, most notably on the temperature of the sample and the intermolecular interactions a molecule experiences. Helium nanodroplets provide in this respect an almost ideal matrix [1, 2]. For neutral molecules, helium nanodroplet spectroscopy thus has led to important discoveries related to the structure of key molecular systems and has provided insight into the mechanisms underlying chemical reactions. Compared to the level of sophistication that has been reached for neutrals, the spectroscopic exploration of ions is still in its infancy. The use of helium droplets as a cryogenic matrix could potentially solve many of the technical challenges associated with recording high-resolution spectra of cold molecular ions. Here, we will present a method to record spectra of ion containing helium nanodroplets that finds its roots in the nonthermal cooling dynamics of excited molecular ions. In addition, spectra of several molecular ions will be present and the influence of the helium environment on these spectra will be discussed. [1] G. Scoles, and K. K. Lehmann, Science 287, 2429 (2000). [2] J. P. Toennies, and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

  10. Microstructure characterization and optical properties of sapphire after helium ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Mian; Yang, Liang [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Shen, Huahai [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Liu, Wei [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Xiang, Xia, E-mail: xiaxiang@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zheng, Wanguo, E-mail: wgzheng_caep@sina.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Guo, Decheng [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Huang, Jin [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Sun, Kai [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Yuan, Xiaodong, E-mail: yxd66my@163.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-06-15

    The (0 0 0 1) sapphire samples are irradiated with 60 keV helium ions at the fluences of 5 × 10{sup 16}, 1 × 10{sup 17}and 5 × 10{sup 17} ions/cm{sup 2} at room temperature. After implantation, two broad absorption bands at 320–460 and 480–700 nm are observed and their intensities increase with the increasing ion fluence. The grazing incidence X-ray diffraction results indicate that the {0 0 0 1} diffraction peaks of sapphire decrease and broaden due to the disorientation of the generated crystallites after ion irradiation. The microstructure evolution is examined by the scanning and transmission electron microscopes. The surface becomes rough because of the aggregation of helium bubbles and migration towards the surface. There is a lattice expansion up to ∼4.5% in the implanted area and the lattice distortion measured from dispersion of (1 1 0) diffraction is ∼4.6°. Such strain of crystal lattice is rather large and leads to contrast fluctuation at scale of 1–2 nm (the bubble size). The laser induced damage threshold (LIDT) is investigated to understand the effect of helium ion beam irradiation on the laser damage resistance of sapphire components and the results show that the LIDT decreases from 5.4 to 2.5 J/cm{sup 2} due to the absorptive color centers, helium bubbles and defects induced by helium ion implantation. The laser damage morphologies of samples before and after ion implantation are also presented.

  11. Microscopic Deformation of Tungsten Surfaces by High Energy and High Flux Helium/Hydrogen Particle Bombardment with Short Pulses

    Science.gov (United States)

    Tokitani, Masayuki; Yoshida, Naoaki; Tokunaga, Kazutoshi; Sakakita, Hajime; Kiyama, Satoru; Koguchi, Haruhisa; Hirano, Yoichi; Masuzaki, Suguru

    The neutral beam injection facility in the National Institute of Advanced Industrial Science and Technology was used to irradiate a polycrystalline tungsten specimen with high energy and high flux helium and hydrogen particles. The incidence energy and flux of the beam shot were 25 keV and 8.8 × 1022 particles/m2 s, respectively. The duration of each shot was approximately 30 ms, with 6 min intervals between each shot. Surface temperatures over 1800 K were attained. In the two cases of helium irradiation, total fluence of either 1.5 × 1022 He/m2 or 4.0 × 1022 He/m2 was selected. In the former case, large sized blisters with diameter of 500 nm were densely observed. While, the latter case, the blisters were disappeared and fine nanobranch structures appeared instead. Cross-sectional observations using a transmission electron microscope (TEM) with the focused ion beam (FIB) technique were performed. According to the TEM image, after irradiation with a beam shot of total fluence 4.0 × 1022 He/m2 , there were very dense fine helium bubbles in the tungsten of sizes 1-50 nm. As the helium bubbles grew the density of the tungsten matrix drastically decreased as a result of void swelling. These effects were not seen in hydrogen irradiation case.

  12. The Erosion of Frozen Argon by Swift Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Graversen, O.

    1981-01-01

    The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore unequivo......The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore...

  13. Radioactive core ions of microclusters, ``snowballs`` in superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Shimoda, T. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Fujita, Y. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Miyatake, H. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Mizoi, Y. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Kobayashi, H. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Sasaki, M. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Shirakura, T. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Itahashi, T. [Research Center for Nuclear Physics, Osaka Univ., Ibaraki (Japan); Mitsuoka, S. [Research Center for Nuclear Physics, Osaka Univ., Ibaraki (Japan); Matsukawa, T. [Naruto Univ. of Education, Tokushima (Japan); Ikeda, N. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Morinobu, S. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Hinde, D.J. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences; Asahi, K. [Tokyo Inst. of Tech. (Japan). Dept. of Physics; Ueno, H. [Tokyo Inst. of Tech. (Japan). Dept. of Physics; Izumi, H. [Tokyo Inst. of Tech. (Japan). Dept. of Physics

    1996-12-01

    Short-lived beta-ray emitters, {sup 12}B, sustaining nuclear spin polarization were introduced into superfluid helium. The nuclear polarization of {sup 12}B was observed via measurement of beta-ray asymmetry. It was found that the nuclear polarization was preserved throughout the lifetime of {sup 12}B (20.3 ms). This suggests that the ``snowball``, an aggregation of helium atoms produced around an alien ion, constitutes a suitable milieu for freezing-out the nuclear spin of the core ion and that most likely the solidification takes place at the interior of the aggregation. (orig.).

  14. Hydration of magnesia cubes: a helium ion microscopy study

    Directory of Open Access Journals (Sweden)

    Ruth Schwaiger

    2016-02-01

    Full Text Available Physisorbed water originating from exposure to the ambient can have a strong impact on the structure and chemistry of oxide nanomaterials. The effect can be particularly pronounced when these oxides are in physical contact with a solid substrate such as the ones used for immobilization to perform electron or ion microscopy imaging. We used helium ion microscopy (HIM and investigated morphological changes of vapor-phase-grown MgO cubes after vacuum annealing and pressing into foils of soft and high purity indium. The indium foils were either used as obtained or, for reference, subjected to vacuum drying. After four days of storage in the vacuum chamber of the microscope and at a base pressure of p −7 mbar, we observed on these cubic particles the attack of residual physisorbed water molecules from the indium substrate. As a result, thin magnesium hydroxide layers spontaneously grew, giving rise to characteristic volume expansion effects, which depended on the size of the particles. Rounding of the originally sharp cube edges leads to a significant loss of the morphological definition specific to the MgO cubes. Comparison of different regions within one sample before and after exposure to liquid water reveals different transformation processes, such as the formation of Mg(OH2 shells that act as diffusion barriers for MgO dissolution or the evolution of brucite nanosheets organized in characteristic flower-like microstructures. The findings underline the significant metastability of nanomaterials under both ambient and high-vacuum conditions and show the dramatic effect of ubiquitous water films during storage and characterization of oxide nanomaterials.

  15. The Helium Atom and Isoelectronic Ions in Two Dimensions

    Science.gov (United States)

    Patil, S. H.

    2008-01-01

    The energy levels of the helium atom and isoelectronic ions in two dimensions are considered. The difficulties encountered in the analytical evaluation of the perturbative and variational expressions for the ground state, promote an interesting factorization of the inter-electronic interaction, leading to simple expressions for the energy. This…

  16. Sputtering of solid nitrogen by keV helium ions

    DEFF Research Database (Denmark)

    Ellegaard, O.; Schou, Jørgen; Sørensen, H.;

    1993-01-01

    Solid nitrogen has become a standard material among the frozen molecular gases for electronic sputtering. We have combined measurements of sputtering yields and energy spectra from nitrogen bombarded by 4-10 keV helium ions. The data show that the erosion is electronic rather than knockon...

  17. The Helium Atom and Isoelectronic Ions in Two Dimensions

    Science.gov (United States)

    Patil, S. H.

    2008-01-01

    The energy levels of the helium atom and isoelectronic ions in two dimensions are considered. The difficulties encountered in the analytical evaluation of the perturbative and variational expressions for the ground state, promote an interesting factorization of the inter-electronic interaction, leading to simple expressions for the energy. This…

  18. Stopping Power of Solid Argon for Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Grauersen, O.

    1981-01-01

    By means of the Rutherford-backscattering method, the stopping cross section of solid argon has been measured for 0.5–3 MeV helium ions to an accuracy of not, vert, similar3%. The results agree within the experimental accuracies with our earlier measurements for gaseous argon over the energy region...

  19. Quantum computation with ions in microscopic traps

    Science.gov (United States)

    Šašura, Marek; Steane, Andrew M.

    2002-12-01

    We discuss a possible experimental realization of fast quantum gates with high fidelity with ions confined in microscopic traps. The original proposal of this physical system for quantum computation comes from Cirac and Zoller (Nature 404, 579 (2000)). In this paper we analyse a sensitivity of the ion-trap quantum gate on various experimental parameters which was omitted in the original proposal. We address imprecision of laser pulses, impact of photon scattering, nonzero temperature effects and influence of laser intensity fluctuations on the total fidelity of the two-qubit phase gate.

  20. Nanopillar growth by focused helium ion-beam-induced deposition

    NARCIS (Netherlands)

    Chen, P.; Veldhoven, E. van; Sanford, C.A.; Salemink, H.W.M.; Maas, D.J.; Smith, D.A.; Rack, P.D.; Alkemade, P.F.A.

    2010-01-01

    A 25 keV focused helium ion beam has been used to grow PtC nanopillars on a silicon substrate by beam-induced decomposition of a (CH3) 3Pt(CPCH3) precursor gas. The ion beam diameter was about 1 nm. The observed relatively high growth rates suggest that el

  1. Dark-Field Scanning Transmission Ion Microscopy via Detection of Forward-Scattered Helium Ions with a Microchannel Plate.

    Science.gov (United States)

    Woehl, Taylor J; White, Ryan M; Keller, Robert R

    2016-06-01

    A microchannel plate was used as an ion sensitive detector in a commercial helium ion microscope (HIM) for dark-field transmission imaging of nanomaterials, i.e. scanning transmission ion microscopy (STIM). In contrast to previous transmission HIM approaches that used secondary electron conversion holders, our new approach detects forward-scattered helium ions on a dedicated annular shaped ion sensitive detector. Minimum collection angles between 125 mrad and 325 mrad were obtained by varying the distance of the sample from the microchannel plate detector during imaging. Monte Carlo simulations were used to predict detector angular ranges at which dark-field images with atomic number contrast could be obtained. We demonstrate atomic number contrast imaging via scanning transmission ion imaging of silica-coated gold nanoparticles and magnetite nanoparticles. Although the resolution of STIM is known to be degraded by beam broadening in the substrate, we imaged magnetite nanoparticles with high contrast on a relatively thick silicon nitride substrate. We expect this new approach to annular dark-field STIM will open avenues for more quantitative ion imaging techniques and advance fundamental understanding of underlying ion scattering mechanisms leading to image formation.

  2. Imprints from the solar cycle on the helium atom and helium pickup ion distributions

    Directory of Open Access Journals (Sweden)

    D. Rucinski

    Full Text Available Neutral interstellar helium atoms penetrate into the solar system almost unaffected by gas–plasma interactions in the heliospheric interface region, and thus can be considered as carriers of original information on the basic parameters (like density, temperature, bulk velocity of the Very Local Interstellar Medium (VLISM. Such information can nowadays be derived from analysis of data obtained from different experimental methods: in situ measurements of He atoms (Ulysses, observations of the solar backscattered He 584 A radiation (EUVE, in situ measurements of He + pickup ions (AMPTE, Ulysses, Wind, SOHO, ACE. In view of the current coordinated international ISSI campaign devoted to the study of the helium focusing cone structure and its evolution, we analyze expected variations of neutral He density, of He + pickup fluxes and of their phase space distributions at various phases of the solar activity cycle based on a realistic time-dependent modelling of the neutral helium and He + pickup ion distributions, which reflect solar cycle-induced variations of the photoionization rate. We show that the neutral helium density values are generally anticorrelated with the solar activity phase and in extreme cases (near the downwind axis the maximum-to-minimum density ratio may even exceed factors of ~ 3 at 1 AU. We also demonstrate that in the upwind hemisphere (at 1 AU and beyond the He + fluxes are correlated with the solar cycle activity, whereas on the downwind side the maximum of the expected flux up to distances of ~ 3 AU occurs around solar minimum epoch, and only further away does the correlation with solar activity become positive. Finally, we present the response of the phase space distribution spectra of He + pickup ions (in the solar wind frame for different epochs of the solar cycle and heliocentric distances from 1 to 5 AU covering the range of Ulysses, Wind and ACE observations.

    Key words. Solar physics, astrophysics and astronomy

  3. Damage studies on tungsten due to helium ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, N.J.; Buzarbaruah, N.; Mohanty, S.R., E-mail: smrutirm@yahoo.com

    2014-09-15

    Highlights: • Used plasma focus helium ion source to study radiation induced damage on tungsten. • Surface analyses confirm formation of micro-crack, bubbles, blisters, pinholes, etc. • XRD patterns confirm development of compressive stress due to thermal load. • Reduction in hardness value is observed in the case of exposed sample. - Abstract: Energetic and high fluence helium ions emitted in a plasma focus device have been used successfully to study the radiation induced damage on tungsten. The reference and irradiated samples were characterized by optical microscopy, field emission scanning electron microscopy, X-ray diffraction and by hardness testers. The micrographs of the irradiated samples at lower magnification show uniform mesh of cracks of micrometer width. However at higher magnification, various types of crystalline defects such as voids, pinholes, bubbles, blisters and microcracks are distinctly noticed. The prominent peaks in X-ray diffraction spectrum of irradiated samples are seen shifted toward higher Bragg angles, thus indicating accumulation of compressive stress due to the heat load delivered by helium ions. A marginal reduction in hardness of the irradiated sample is also noticed.

  4. Effective doping of low energy ions into superfluid helium droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Chen, Lei; Freund, William M.; Kong, Wei, E-mail: wei.kong@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)

    2015-08-21

    We report a facile method of doping cations from an electrospray ionization (ESI) source into superfluid helium droplets. By decelerating and stopping the ion pulse of reserpine and substance P from an ESI source in the path of the droplet beam, about 10{sup 4} ion-doped droplets (one ion per droplet) can be recorded, corresponding to a pickup efficiency of nearly 1 out of 1000 ions. We attribute the success of this simple approach to the long residence time of the cations in the droplet beam. The resulting size of the doped droplets, on the order of 10{sup 5}/droplet, is measured using deflection and retardation methods. Our method does not require an ion trap in the doping region, which significantly simplifies the experimental setup and procedure for future spectroscopic and diffraction studies.

  5. Utilizing Neon Ion Microscope for GaSb nanopatterning studies: Nanostructure formation and comparison with low energy nanopatterning

    Science.gov (United States)

    El-Atwani, Osman; Huynh, Chuong; Norris, Scott

    2016-05-01

    Low energy irradiation of GaSb surfaces has been shown to lead to nanopillar formation. Being performed ex-situ, controlling the parameters of the ion beam for controlled nanopattern formation is challenging. While mainly utilized for imaging and cutting purposes, the development of multibeam (helium/neon) ion microscopes has opened the path towards the use of these microscopes for in-situ ion irradiation and nanopatterning studies. In this study, in-situ irradiation (neon ions)/imaging (helium ions) of GaSb surfaces is performed using Carl Zeiss-neon ion microscope at low energies (5 and 10 keV). Imaging with helium ions, nanodots were shown to form at particular fluences after which are smoothed. Ex-situ imaging with SEM showed nanopore formation of size controlled by the ion energy and fluence. Compared to lower energy ex-situ neon ion irradiation at similar fluxes, where nanopillars are formed, the results demonstrated a transition in the nanostructure type and formation mechanism as the energy is changed from 2 to 5 keV. Simulations show an increase in the ballistic diffusion and a decrease in the strength of phase separation as a function of ion energy in agreement with the suppression of nanopillar formation at higher energies. Collision cascade simulations suggest a transition toward bulk-driven mechanisms.

  6. Transport coefficients of He+ ions in helium

    Science.gov (United States)

    Johnsen, Rainer; Viehland, Larry; Gray, Benjamin; Wright, Timothy

    2016-09-01

    New experimental mobilities of 4He+ in 4He at 298.7 K, as a function of E/N, have been determined. Uncertainties in the mobilities were reduced to about 1% by using a shuttered drift tube. Comparison with previously measured values show that only one set of previous data is reliable. We demonstrate that the mobilities and diffusion coeffcients of 4He+ in 4He can be calculated over wide ranges of E/N with high precision if accurate potential energy curves are available for the X2Σu+ and A2Σg+ states, and if one takes into account resonant charge transfer and corrects for quantum-mechanical effects. Potentials, obtained by extrapolation of results from d-aug-cc-pVXZ (X =6,7) basis sets using the CASSCF +MRCISD approach were found to be in exceptionally close agreement with the best potentials available (separately) and with experiment, and those were subsequently used in a new computer program to determine semi-classical phase shifts and transport cross sections, from which the gaseous ion transport coefficients are determined. A new set of data for the mobilities of alpha particles (He2+) ions was obtained as a byproduct of the experiment, but the transport theory has not yet been completed.

  7. submitter Data-driven RBE parameterization for helium ion beams

    CERN Document Server

    Mairani, A; Dokic, I; Valle, S M; Tessonnier, T; Galm, R; Ciocca, M; Parodi, K; Ferrari, A; Jäkel, O; Haberer, T; Pedroni, P; Böhlen, T T

    2016-01-01

    Helium ion beams are expected to be available again in the near future for clinical use. A suitable formalism to obtain relative biological effectiveness (RBE) values for treatment planning (TP) studies is needed. In this work we developed a data-driven RBE parameterization based on published in vitro experimental values. The RBE parameterization has been developed within the framework of the linear-quadratic (LQ) model as a function of the helium linear energy transfer (LET), dose and the tissue specific parameter ${{(\\alpha /\\beta )}_{\\text{ph}}}$ of the LQ model for the reference radiation. Analytic expressions are provided, derived from the collected database, describing the $\\text{RB}{{\\text{E}}_{\\alpha}}={{\\alpha}_{\\text{He}}}/{{\\alpha}_{\\text{ph}}}$ and ${{\\text{R}}_{\\beta}}={{\\beta}_{\\text{He}}}/{{\\beta}_{\\text{ph}}}$ ratios as a function of LET. Calculated RBE values at 2 Gy photon dose and at 10% survival ($\\text{RB}{{\\text{E}}_{10}}$ ) are compared with the experimental ones. Pearson's correlati...

  8. High aspect ratio AFM Probe processing by helium-ion-beam induced deposition.

    Science.gov (United States)

    Onishi, Keiko; Guo, Hongxuan; Nagano, Syoko; Fujita, Daisuke

    2014-11-01

    A Scanning Helium Ion Microscope (SHIM) is a high resolution surface observation instrument similar to a Scanning Electron Microscope (SEM) since both instruments employ finely focused particle beams of ions or electrons [1]. The apparent difference is that SHIMs can be used not only for a sub-nanometer scale resolution microscopic research, but also for the applications of very fine fabrication and direct lithography of surfaces at the nanoscale dimensions. On the other hand, atomic force microscope (AFM) is another type of high resolution microscopy which can measure a three-dimensional surface morphology by tracing a fine probe with a sharp tip apex on a specimen's surface.In order to measure highly uneven and concavo-convex surfaces by AFM, the probe of a high aspect ratio with a sharp tip is much more necessary than the probe of a general quadrangular pyramid shape. In this paper we report the manufacture of the probe tip of the high aspect ratio by ion-beam induced gas deposition using a nanoscale helium ion beam of SHIM.Gas of platinum organic compound was injected into the sample surface neighborhood in the vacuum chamber of SHIM. The decomposition of the gas and the precipitation of the involved metal brought up a platinum nano-object in a pillar shape on the normal commercial AFM probe tip. A SHIM system (Carl Zeiss, Orion Plus) equipped with the gas injection system (OmniProbe, OmniGIS) was used for the research. While the vacuum being kept to work, we injected platinum organic compound ((CH3)3(CH3C5H4)Pt) into the sample neighborhood and irradiated the helium ion beam with the shape of a point on the apex of the AFM probe tip. It is found that we can control the length of the Pt nano-pillar by irradiation time of the helium ion beam. The AFM probe which brought up a Pt nano-pillar is shown in Figure 1. It is revealed that a high-aspect-ratio Pt nano-pillar of ∼40nm diameter and up to ∼2000 nm length can be grown. In addition, for possible heating

  9. Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions

    Science.gov (United States)

    SRD 124 Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions (Web, free access)   The databases ESTAR, PSTAR, and ASTAR calculate stopping-power and range tables for electrons, protons, or helium ions. Stopping-power and range tables can be calculated for electrons in any user-specified material and for protons and helium ions in 74 materials.

  10. Helium Tagging Infrared Photodissociation Spectroscopy of Reactive Ions.

    Science.gov (United States)

    Roithová, Jana; Gray, Andrew; Andris, Erik; Jašík, Juraj; Gerlich, Dieter

    2016-02-16

    The interrogation of reaction intermediates is key for understanding chemical reactions; however their direct observation and study remains a considerable challenge. Mass spectrometry is one of the most sensitive analytical techniques, and its use to study reaction mixtures is now an established practice. However, the information that can be obtained is limited to elemental analysis and possibly to fragmentation behavior, which is often challenging to analyze. In order to extend the available experimental information, different types of spectroscopy in the infrared and visible region have been combined with mass spectrometry. Spectroscopy of mass selected ions usually utilizes the powerful sensitivity of mass spectrometers, and the absorption of photons is not detected as such but rather translated to mass changes. One approach to accomplish such spectroscopy involves loosely binding a tag to an ion that will be removed by absorption of one photon. We have constructed an ion trapping instrument capable of reaching temperatures that are sufficiently low to enable tagging by helium atoms in situ, thus permitting infrared photodissociation spectroscopy (IRPD) to be carried out. While tagging by larger rare gas atoms, such as neon or argon is also possible, these may cause significant structural changes to small and reactive species, making the use of helium highly beneficial. We discuss the "innocence" of helium as a tag in ion spectroscopy using several case studies. It is shown that helium tagging is effectively innocent when used with benzene dications, not interfering with their structure or IRPD spectrum. We have also provided a case study where we can see that despite its minimal size there are systems where He has a huge effect. A strong influence of the He tagging was shown in the IRPD spectra of HCCl(2+) where large spectral shifts were observed. While the presented systems are rather small, they involve the formation of mixtures of isomers. We have therefore

  11. High resolution helium ion scanning microscopy of the rat kidney.

    Science.gov (United States)

    Rice, William L; Van Hoek, Alfred N; Păunescu, Teodor G; Huynh, Chuong; Goetze, Bernhard; Singh, Bipin; Scipioni, Larry; Stern, Lewis A; Brown, Dennis

    2013-01-01

    Helium ion scanning microscopy is a novel imaging technology with the potential to provide sub-nanometer resolution images of uncoated biological tissues. So far, however, it has been used mainly in materials science applications. Here, we took advantage of helium ion microscopy to explore the epithelium of the rat kidney with unsurpassed image quality and detail. In addition, we evaluated different tissue preparation methods for their ability to preserve tissue architecture. We found that high contrast, high resolution imaging of the renal tubule surface is possible with a relatively simple processing procedure that consists of transcardial perfusion with aldehyde fixatives, vibratome tissue sectioning, tissue dehydration with graded methanol solutions and careful critical point drying. Coupled with the helium ion system, fine details such as membrane texture and membranous nanoprojections on the glomerular podocytes were visualized, and pores within the filtration slit diaphragm could be seen in much greater detail than in previous scanning EM studies. In the collecting duct, the extensive and striking apical microplicae of the intercalated cells were imaged without the shrunken or distorted appearance that is typical with conventional sample processing and scanning electron microscopy. Membrane depressions visible on principal cells suggest possible endo- or exocytotic events, and central cilia on these cells were imaged with remarkable preservation and clarity. We also demonstrate the use of colloidal gold probes for highlighting specific cell-surface proteins and find that 15 nm gold labels are practical and easily distinguishable, indicating that external labels of various sizes can be used to detect multiple targets in the same tissue. We conclude that this technology represents a technical breakthrough in imaging the topographical ultrastructure of animal tissues. Its use in future studies should allow the study of fine cellular details and provide

  12. Investigation of helium ion production in constricted direct current plasma ion source with layered-glows

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yuna [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr [Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Park, Yeong-Shin [Samsumg Electronics Co. Ltd., Gyeonggi 445-701 (Korea, Republic of); Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2014-02-15

    Generation of helium ions is experimentally investigated with a constricted direct current (DC) plasma ion source operated at layered-glow mode, in which electrons could be accelerated through multiple potential structures so as to generate helium ions including He{sup 2+} by successive ionization collisions in front of an extraction aperture. The helium discharge is sustained with the formation of a couple of stable layers and the plasma ball with high density is created near the extraction aperture at the operational pressure down to 0.6 Torr with concave cathodes. The ion beam current extracted with an extraction voltage of 5 kV is observed to be proportional to the discharge current and inversely proportional to the operating pressure, showing high current density of 130 mA/cm{sup 2} and power density of 0.52 mA/cm{sup 2}/W. He{sup 2+} ions, which were predicted to be able to exist due to multiple-layer potential structure, are not observed. Simple calculation on production of He{sup 2+} ions inside the plasma ball reveals that reduced operating pressure and increased cathode area will help to generate He{sup 2+} ions with the layered-glow DC discharge.

  13. Observation of a helium ion energy threshold for retention in tungsten exposed to hydrogen/helium mixture plasma

    Science.gov (United States)

    Thompson, M.; Deslandes, A.; Morgan, T. W.; Elliman, R. G.; De Temmerman, G.; Kluth, P.; Riley, D.; Corr, C. S.

    2016-10-01

    Helium retention is measured in tungsten samples exposed to mixed H/He plasma in the Magnum-PSI linear plasma device. It is observed that there is very little He retention below helium ion impact energies of 9.0+/- 1.4 eV, indicating the existence of a potential barrier which must be overcome for implantation to occur. The helium retention in samples exposed to plasma at temperatures  >1000 K is strongly correlated with nano-bubble formation measured using grazing incidence small-angle x-ray scattering. The diameters of nano-bubbles were not found to increase with increasing helium concentration, indicating that additional helium must be accommodated by increasing the bubble concentration or an increase in bubble pressure. For some samples pre-irradiation with heavy ions of 2.0 MeV energy is investigated to simulate the effects of neutron damage. It is observed that nano-bubble sizes are comparable between samples pre-irradiated with heavy-ions, and those without heavy-ion pre-irradiation.

  14. Proton Spectroscopic Factors Deduced from Helium-3 Global Phenomenological and Microscopic Optical Model Potentials

    Science.gov (United States)

    Jenny, Lee; Pang, Dan-Yang; Han, Yin-Lu; B. Tsang, M.

    2014-09-01

    Global phenomenological GDP08 and microscopic helium-3 optical model potentials have been recently derived. We evaluate these two potential sets by comparing the elastic scattering data of 25 MeV 3He on 16O, 18O, 19F, 23Na, 24Mg, 25Mg, 26Mg, 27Al, 28Si, 30Si, 31P, 32S, 34S, 35Cl, 37Cl, and 39K isotopes. Using the deuteron angular distributions calculated with the distorted wave Born approximation model, we extract the ground-state proton spectroscopic factors from (3He, d) reactions on the same set of nuclei. The extracted proton spectroscopic factors are compared with the large-basis shell-model calculations.

  15. Theory of the Lamb shift in muonic helium ions

    Energy Technology Data Exchange (ETDEWEB)

    Krutov, A. A.; Martynenko, A. P., E-mail: a.p.martynenko@samsu.ru; Martynenko, G. A. [Samara State University (Russian Federation); Faustov, R. N. [Russian Academy of Sciences, Dorodnitsyn Computer Center (Russian Federation)

    2015-01-15

    The Lamb shift (2P{sub 1/2}-2S{sub 1/2}) in muonic helium ions (μ{sub 2}{sup 3}){sup +}, (μ{sup 2/4}He){sup +} is calculated taking into account the contributions of the order of α{sup 3}, α{sup 4}, α{sup 5}, and α{sup 6}. Special attention is paid to corrections for the polarization of the vacuum, as well as the structure and recoil of the nucleus. Numerical values 1259.8583 meV ((μ{sub 2}{sup 3}He){sup +}) and 1379.1107 meV ((μ{sub 2}{sup 4}He){sup +}) obtained for the shifts can be considered reliable estimates when compared to the experimental data of the CREMA collaboration.

  16. Effect of bombardment with iron ions on the evolution of helium, hydrogen, and deuterium blisters in silicon

    Science.gov (United States)

    Reutov, V. F.; Dmitriev, S. N.; Sokhatskii, A. S.; Zaluzhnyi, A. G.

    2017-02-01

    The effect of bombardment with iron ions on the evolution of gas porosity in silicon single crystals has been studied. Gas porosity has been produced by implantation hydrogen, deuterium, and helium ions with energies of 17, 12.5, and 20 keV, respectively, in identical doses of 1 × 1017 cm-2 at room temperature. For such energy of bombarding ions, the ion doping profiles have been formed at the same distance from the irradiated surface of the sample. Then, the samples have been bombarded with iron Fe10+ ions with energy of 150 keV in a dose of 5.9 × 1014 cm-2. Then 30-min isochoric annealing has been carried out with an interval of 50°C in the temperature range of 250-900°C. The samples have been analyzed using optical and electron microscopes. An extremely strong synergetic effect of sequential bombardment of silicon single crystals with gas ions and iron ions at room temperature on the nucleation and growth of gas porosity during postradiation annealing has been observed. For example, it has been shown that the amorphous layer formed in silicon by additional bombardment with iron ions stimulates the evolution of helium blisters, slightly retards the evolution of hydrogen blisters, and completely suppresses the evolution of deuterium blisters. The results of experiments do not provide an adequate explanation of the reason for this difference; additional targeted experiments are required.

  17. Effect of 800 keV argon ions pre-damage on the helium blister formation of tungsten exposed to 60 keV helium ions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhe; Han, Wenjia; Yu, Jiangang; Zhu, Kaigui, E-mail: kgzhu@buaa.edu.cn

    2016-04-15

    This study aims to investigate the effect of Ar{sup 8+} ions pre-damage on the following He{sup 2+} irradiation behavior of polycrystalline tungsten. We compared the irradiation resistance performance against 60 keV He{sup 2+} ions of undamaged tungsten samples with that of pre-damaged samples which were preliminarily exposed to 800 keV Ar{sup 8+} ions at a fluence of 4 × 10{sup 19} ions m{sup −2}. The experimental results indicate that the helium blistering of tungsten could be effectively relieved by the Ar{sup 8+} ions pre-damage, while the retention of helium around low energy desorption sites in the pre-damaged tungsten was larger than that of the undamaged samples. A strong orientation dependence of blistering had been observed, with the blister occurred preferentially on the surface of grains with normal direction close to <111>. The Ar{sup 8+} ions irradiation-induced damage altered the morphology of helium bubbles in tungsten exposed to the following He{sup 2+} irradiation significantly. The intensity of helium release peaks at relatively low temperatures (<600 K) was enhanced due to Ar{sup 8+} ions pre-damage. - Highlights: • Helium blistering on the surface of W was effectively relieved by Ar{sup 8+} ions pre-damage. • Strong orientation dependence of blister formation was observed. • Low temperature helium release peaks were increased due to Ar{sup 8+} ions pre-damage.

  18. Effect of 800 keV argon ions pre-damage on the helium blister formation of tungsten exposed to 60 keV helium ions

    Science.gov (United States)

    Chen, Zhe; Han, Wenjia; Yu, Jiangang; Zhu, Kaigui

    2016-04-01

    This study aims to investigate the effect of Ar8+ ions pre-damage on the following He2+ irradiation behavior of polycrystalline tungsten. We compared the irradiation resistance performance against 60 keV He2+ ions of undamaged tungsten samples with that of pre-damaged samples which were preliminarily exposed to 800 keV Ar8+ ions at a fluence of 4 × 1019 ions m-2. The experimental results indicate that the helium blistering of tungsten could be effectively relieved by the Ar8+ ions pre-damage, while the retention of helium around low energy desorption sites in the pre-damaged tungsten was larger than that of the undamaged samples. A strong orientation dependence of blistering had been observed, with the blister occurred preferentially on the surface of grains with normal direction close to . The Ar8+ ions irradiation-induced damage altered the morphology of helium bubbles in tungsten exposed to the following He2+ irradiation significantly. The intensity of helium release peaks at relatively low temperatures (<600 K) was enhanced due to Ar8+ ions pre-damage.

  19. Pulsed Helium Ion Beam Induced Deposition: A Means to High Growth Rates

    Energy Technology Data Exchange (ETDEWEB)

    Alkemade, Paul F. A. [Delft University of Technology, Delft, Netherlands; Miro, Hozanna [Delft University of Technology, Delft, Netherlands; Van Veldhoven, Emile [TNO Van Leeuwenhoek Laboratory; Maas, Diederick [TNO Van Leeuwenhoek Laboratory; Smith, Daryl [University of Tennessee, Knoxville (UTK); Rack, P. D. [University of Tennessee, Knoxville (UTK)

    2011-01-01

    The sub-nanometer beam of a helium ion microscope was used to study and optimize helium-ion beam induced deposition of PtC nanopillars with the (CH{sub 3}){sub 3}Pt(CPCH{sub 3}) precursor. The beam current, beam dwell time, precursor refresh time, and beam focus have been independently varied. Continuous beam exposure resulted in narrow but short pillars, while pulsed exposure resulted in thinner and higher ones. Furthermore, at short dwell times the deposition efficiency was very high, especially for a defocused beam. Efficiencies were measured up to 20 times the value for continuous exposure conditions. The interpretation of the experimental data was aided by a Monte Carlo simulation of the deposition. The results indicate that two regimes are operational in ion beam induced deposition (IBID). In the first one, the adsorbed precursor molecules originally present in the beam interaction region decompose. After the original precursor layer is consumed, further depletion is averted and growth continues by the supply of molecules via adsorption and surface diffusion. Depletion around the beam impact site can be distinguished from depletion on the flanges of the growing pillars. The Monte Carlo simulations for low precursor surface coverage reproduce measured growth rates, but predict considerably narrower pillars, especially at short dwell times. Both the experiments and the simulations show that the pillar width rapidly increases with increasing beam diameter. Optimal writing strategy, good beam focusing, and rapid beam positioning are needed for efficient and precise fabrication of extended and complex nanostructures by He-IBID.

  20. Arbitrary amplitude electrostatic wave propagation in a magnetized dense plasma containing helium ions and degenerate electrons

    Science.gov (United States)

    Mahmood, S.; Sadiq, Safeer; Haque, Q.; Ali, Munazza Z.

    2016-06-01

    The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.

  1. Ion temperature anisotropy in high power helium neutral beam fuelling experiments in JET

    Energy Technology Data Exchange (ETDEWEB)

    Maas, A.C.; Core, W.G.F.; Gerstel, U.C.; Von Hellermann, M.G.; Koenig, R.W.T.; Marcus, F.B. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    During helium beam fuelling experiments in JET, distinctive anisotropic features have been observed in the velocity distribution function describing both fast and thermal alpha particle populations. During the initial fuelling phase the central helium ion temperature observed perpendicular to the magnetic field is higher than the central electron temperature, while the central helium ion temperature observed parallel to the magnetic field is lower than or equal to the central electron temperature. In order to verify temperature measurements of both perpendicular and parallel lines of sight, other independent methods of deducing the ion temperature are investigated: deuterium ion temperature, deuterium density, comparison with neutron rates and profiles (influence of a possible metastable population of helium). 6 refs., 7 figs.

  2. Ion Beam Analysis of the Annealing Behavior of Helium in Ti Films

    Institute of Scientific and Technical Information of China (English)

    HE Zhi-Jiang; SHI Li-Qun; LIU Chao-Zhuo; ZHANG Lei; LU Yong-Fang; ZHANG Bin

    2009-01-01

    @@ We present a theoretical calculation finding that a spectrum from ion beam analysis will change at different stopping cross sections. This is more visible at a deeper place in the sample. Helium-contained Ti films annealed at different temperatures are prepared to gain different stopping cross sections whereby the stopping cross section will change with the helium phase states and the pressure of helium bubbles. Then ion beam analysis is used to measure the concentration of helium. It is found that the concentration curve rises greatly after the sample is annealed at 673K which reflects the increasing size of the helium bubble. The results axe consistent with that of positron annihilation radiation spectra which are performed by using a changeable energy positron beam.

  3. Helium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells.

    Science.gov (United States)

    Schürmann, Matthias; Frese, Natalie; Beyer, André; Heimann, Peter; Widera, Darius; Mönkemöller, Viola; Huser, Thomas; Kaltschmidt, Barbara; Kaltschmidt, Christian; Gölzhäuser, Armin

    2015-11-18

    Cell membranes are composed of 2D bilayers of amphipathic lipids, which allow a lateral movement of the respective membrane components. These components are arranged in an inhomogeneous manner as transient micro- and nanodomains, which are believed to be crucially involved in the regulation of signal transduction pathways in mammalian cells. Because of their small size (diameter 10-200 nm), membrane nanodomains cannot be directly imaged using conventional light microscopy. Here, direct visualization of cell membrane nanodomains by helium ion microscopy (HIM) is presented. It is shown that HIM is capable to image biological specimens without any conductive coating and that HIM images clearly allow the identification of nanodomains in the ultrastructure of membranes with 1.5 nm resolution. The shape of these nanodomains is preserved by fixation of the surrounding unsaturated fatty acids while saturated fatty acids inside the nanodomains are selectively removed. Atomic force microscopy, fluorescence microscopy, 3D structured illumination microscopy, and direct stochastic optical reconstruction microscopy provide additional evidence that the structures in the HIM images of cell membranes originate from membrane nanodomains. The nanodomains observed by HIM have an average diameter of 20 nm and are densely arranged with a minimal nearest neighbor distance of ≈ 15 nm.

  4. Ion charge neutralization effects in scanning electron microscopes.

    Science.gov (United States)

    Crawford, C K

    1980-01-01

    The use of low energy ion charge neutralization to stabilize surface potentials in scanning microscopes leads to the observation of new effects. Among the most important of these, are effects which result from the primary beam being scanned in a raster. A new theory which describes raster charge-up for highly insulating specimens is presented. It is shown that the required neutralizing ion current is a surprisingly strong function of the primary electron current, the raster parameters, specimen parameters, and magnification. Contrary to intuition, the required ion current is not linearly related to the primary electron current. Methods of adjusting parameters to achieve better ion charge neutralization are discussed.

  5. A comparison of neon versus helium ion beam induced deposition via Monte Carlo simulations.

    Science.gov (United States)

    Timilsina, Rajendra; Smith, Daryl A; Rack, Philip D

    2013-03-22

    The ion beam induced nanoscale synthesis of PtCx (where x ∼ 5) using the trimethyl (methylcyclopentadienyl)platinum(IV) (MeCpPt(IV)Me3) precursor is investigated by performing Monte Carlo simulations of helium and neon ions. The helium beam leads to more lateral growth relative to the neon beam because of its larger interaction volume. The lateral growth of the nanopillars is dominated by molecules deposited via secondary electrons in both the simulations. Notably, the helium pillars are dominated by SE-I electrons whereas the neon pillars are dominated by SE-II electrons. Using a low precursor residence time of 70 μs, resulting in an equilibrium coverage of ∼4%, the neon simulation has a lower deposition efficiency (3.5%) compared to that of the helium simulation (6.5%). At larger residence time (10 ms) and consequently larger equilibrium coverage (85%) the deposition efficiencies of helium and neon increased to 49% and 21%, respectively; which is dominated by increased lateral growth rates leading to broader pillars. The nanoscale growth is further studied by varying the ion beam diameter at 10 ms precursor residence time. The study shows that total SE yield decreases with increasing beam diameters for both the ion types. However, helium has the larger SE yield as compared to that of neon in both the low and high precursor residence time, and thus pillars are wider in all the simulations studied.

  6. Diagnostics of a charge breeder electron cyclotron resonance ion source helium plasma with the injection of ^{23}Na^{1+} ions

    Directory of Open Access Journals (Sweden)

    O. Tarvainen

    2016-05-01

    Full Text Available This work describes the utilization of an injected ^{23}Na^{1+} ion beam as a diagnostics of the helium plasma of a charge breeder electron cyclotron resonance ion source. The obtained data allows estimating the upper limit for the ion-ion collision mean-free path of the incident sodium ions, the lower limit of ion-ion collision frequencies for all charge states of the sodium ions and the lower limit of the helium plasma density. The ion-ion collision frequencies of high charge state ions are shown to be at least on the order of 1–10 MHz and the plasma density is estimated to be on the order of 10^{11}  cm^{-3} or higher. The experimental results are compared to simulations of the ^{23}Na^{1+} capture into the helium plasma. The results indicate that the lower breeding efficiency of light ions in comparison to heavier elements is probably due to different capture efficiencies in which the in-flight ionization of the incident 1+ ions plays a vital role.

  7. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging

    NARCIS (Netherlands)

    Kiss, A.; Smith, D.F.; Jungmann, JH; Heeren, R.M.A.

    2013-01-01

    RATIONALE: Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with

  8. Broadening of the Interplanetary Helium Cone Structure Due to Elastic Collisions of LISM Helium Atoms with Solar Wind Ions

    Science.gov (United States)

    Fahr, H. J.; Nass, H. U.; Rucinski, D.

    1984-01-01

    Neutral interstellar particles penetrating into the heliosphere, besides being subject there to specific loss processes, suffer elastic collisions with KeV-solar wind ions. The momentum transfer to the neutrals connected with these collisions leads to a loss of angular momentum with respect to the Sun and to a fractional compensation of the effective solar gravity. The dynamical particle trajectories hence are changed into non-Keplerians leading to density and temperature distributions differing from those calculated in the past. This is found from a solution of the Boltzmann equation that linearizes the effect of this additional force. It is shown that the HeI-584A resonance glow of the heliospheric helium cone lead to substantially lower interstellar helium temperatures if re-interpreted on the basis of this revised theory. These temperatures now seem to be in accordance with the derived temperatures for interstellar hydrogen.

  9. Oxide dispersion strengthened steel irradiation with helium ions

    Energy Technology Data Exchange (ETDEWEB)

    Pouchon, M.A. [Laboratory for Materials Behaviour, Paul Scherrer Institute, OHLA/131, 5232 Villigen PSI (Switzerland)]. E-mail: manuel.pouchon@psi.ch; Chen, J. [Laboratory for Materials Behaviour, Paul Scherrer Institute, OHLA/131, 5232 Villigen PSI (Switzerland); Doebeli, M. [Laboratory for Materials Behaviour, Paul Scherrer Institute, OHLA/131, 5232 Villigen PSI (Switzerland); Hoffelner, W. [Laboratory for Materials Behaviour, Paul Scherrer Institute, OHLA/131, 5232 Villigen PSI (Switzerland)

    2006-06-30

    Oxide dispersion strengthened (ODS) ferritic steels are investigated as possible structural material for the future generation of high temperature gas cooled nuclear reactors. ODS-steels are considered to replace other high temperature materials for tubing or structural parts. The oxide particles serve for interfacial pinning of moving dislocations. Therefore, the creep resistance is improved. In case of the usage of these materials in reactors, the behavior under irradiation must be further clarified. In this paper the effects induced by {sup 4}He{sup 2+} implantation into a ferritic ODS steel are investigated. The fluence ranges from 10{sup 16} to 10{sup 17} cm{sup -2} and the energy from 1 to 2 MeV. The induced swelling is investigated for implantations at room temperature and 470 K. It is derived from the irradiation induced surface displacement, which is measured with an atomic force microscope (AFM). With a displacement damage of 0.6 dpa, a volume increase of 0.65% is observed at room temperature and 0.33% at 470 K. A cross-sectional cut is performed by focused ion beam and investigated by transmission electron microcopy (TEM). The defect density observed on the TEM micrographs agrees well with the computational simulation (TRIM) of the damage profile.

  10. Microscopic construction of the two-fluid model for superfluid helium-4

    Directory of Open Access Journals (Sweden)

    P. Shygorin

    2009-01-01

    Full Text Available Using a system of Heisenberg's equation of motion for both the normal and the anomalous correlation functions a two-fluid hydrodynamics for superfluid helium-4 was constructed. The method is based on a gradient expansion of the exact equations of motion for correlation functions about a local equilibrium together with explicit use of the local equilibrium statistical operator for superfluid helium in the frame of reference, where condensate is in the state of rest.

  11. The scanning ion conductance microscope for cellular physiology.

    Science.gov (United States)

    Lab, Max J; Bhargava, Anamika; Wright, Peter T; Gorelik, Julia

    2013-01-01

    The quest for nonoptical imaging methods that can surmount light diffraction limits resulted in the development of scanning probe microscopes. However, most of the existing methods are not quite suitable for studying biological samples. The scanning ion conductance microscope (SICM) bridges the gap between the resolution capabilities of atomic force microscope and scanning electron microscope and functional capabilities of conventional light microscope. A nanopipette mounted on a three-axis piezo-actuator, scans a sample of interest and ion current is measured between the pipette tip and the sample. The feedback control system always keeps a certain distance between the sample and the pipette so the pipette never touches the sample. At the same time pipette movement is recorded and this generates a three-dimensional topographical image of the sample surface. SICM represents an alternative to conventional high-resolution microscopy, especially in imaging topography of live biological samples. In addition, the nanopipette probe provides a host of added modalities, for example using the same pipette and feedback control for efficient approach and seal with the cell membrane for ion channel recording. SICM can be combined in one instrument with optical and fluorescent methods and allows drawing structure-function correlations. It can also be used for precise mechanical force measurements as well as vehicle to apply pressure with precision. This can be done on living cells and tissues for prolonged periods of time without them loosing viability. The SICM is a multifunctional instrument, and it is maturing rapidly and will open even more possibilities in the near future.

  12. Chimera microscopic approach to heavy ion collisions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Lukasik, J.; Majka, Z. [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki

    1993-12-01

    A microscopic model based on a molecular dynamics concept is presented. The model simulates some quantum effects and thus enables studies of large fermionic systems. It was devised to investigate the dynamics of heavy ion collision at intermediate energies. The model was applied to study an early phase of the {sup 84}Kr+{sup 159}Tb reaction at 45 MeV/nucleon. (author). 30 refs, 9 figs.

  13. The Lamb shift measurement in muonic helium ions

    Energy Technology Data Exchange (ETDEWEB)

    Diepold, Marc [Max-Planck-Institute of Quantum Optics, Garching (Germany); Collaboration: The CREMA Collaboration

    2013-07-01

    In 2013, the CREMA collaboration measured the 2S-2P transition frequencies (Lamb shift) in μ{sup 4}He {sup +} and μ{sup 3}He{sup +} using laser spectroscopy. This measurement achieved ten times more accurate values for the absolute nuclear charge radii of the lightest helium isotopes, as well as evaluate the μ{sup 3}He{sup +} hyperfine structure to determine the magnetic moment distribution of the {sup 3}He nucleus. Charge radii provided by this experiment will serve as a benchmark for few-nucleon nuclear models and as the basis for stringent tests of higher order bound-state QED contributions. In addition, the muonic helium measurements should be able to shed new light on the ''proton size puzzle'', i.e. the seven sigma discrepancy of our charge radius determination in muonic hydrogen and the 2009 CODATA value.

  14. Recondensation performance of liquid helium cryostat for a 28 GHz electron cyclotron resonance ion source

    Science.gov (United States)

    Choi, Seyong; Lee, Byoung-Seob; Park, Jin Yong; Ok, Jung-Woo; Shin, Chang Seouk; Yoon, Jang-Hee; Won, Mi-Sook; Kim, Byoung-Chul

    2014-02-01

    Cryostat performance is essential for the stable operation of a superconducting magnet. A closed-cycle liquid helium cryostat was adopted for use for a superconducting electron cyclotron resonance (ECR) ion source by recondensing liquid helium vapor. The goal was to maintain the liquid helium filled reservoir at a constant level without transferring any liquid helium during the normal operation of the ECR ion source. To accomplish this, Gifford-McMahon (GM) refrigerators, which have two cold heads, were installed on the top of the cryostat. The cooling power of the GM cryocooler is 1.5 W at the second stage and 50 W at the first stage. Each stage was connected to the liquid helium reservoir, a radiation shield including high-Tc current lead, and related items. Before commissioning the ECR ion source, a preliminary evaluation of the recondensation performance was carried out with the magnet in partial operation. The design of the cryostat, its fabrication, and the experimental results are reported.

  15. POLAR spacecraft observations of helium ion angular anisotropy in the Earth's radiation belts

    Directory of Open Access Journals (Sweden)

    W. N. Spjeldvik

    Full Text Available New observations of energetic helium ion fluxes in the Earth's radiation belts have been obtained with the CAMMICE/HIT instrument on the ISTP/GGS POLAR spacecraft during the extended geomagnetically low activity period April through October 1996. POLAR executes a high inclination trajectory that crosses over both polar cap regions and passes over the geomagnetic equator in the heart of the radiation belts. The latter attribute makes possible direct observations of nearly the full equatorial helium ion pitch angle distributions in the heart of the Earth's radiation belt region. Additionally, the spacecraft often re-encounters the same geomagnetic flux tube at a substantially off-equatorial location within a few tens of minutes prior to or after the equatorial crossing. This makes both the equatorial pitch angle distribution and an expanded view of the local off-equatorial pitch angle distribution observable. The orbit of POLAR also permitted observations to be made in conjugate magnetic local time sectors over the course of the same day, and this afforded direct comparison of observations on diametrically opposite locations in the Earth's radiation belt region at closely spaced times. Results from four helium ion data channels covering ion kinetic energies from 520 to 8200 KeV show that the distributions display trapped particle characteristics with angular flux peaks for equatorially mirroring particles as one might reasonably expect. However, the helium ion pitch angle distributions generally flattened out for equatorial pitch angles below about 45°. Significant and systematic helium ion anisotropy difference at conjugate magnetic local time were also observed, and we report quiet time azimuthal variations of the anisotropy index.

    Key words. Magnetospheric physics (energetic particles · trapped; magnetospheric configuration and dynamics; plasmasphere

  16. A high signal-to-noise ratio passive near-field microscope equipped with a helium-free cryostat

    Science.gov (United States)

    Lin, Kuan-Ting; Komiyama, Susumu; Kim, Sunmi; Kawamura, Ken-ichi; Kajihara, Yusuke

    2017-01-01

    We have developed a passive long-wavelength infrared (LWIR) scattering-type scanning near-field optical microscope (s-SNOM) installed in a helium-free mechanically cooled cryostat, which facilitates cooling of an LWIR detector and optical elements to 4.5 K. To reduce mechanical vibration propagation from a compressor unit, we have introduced a metal bellows damper and a helium gas damper. These dampers ensure the performance of the s-SNOM to be free from mechanical vibration. Furthermore, we have introduced a solid immersion lens to improve the confocal microscope performance. To demonstrate the passive s-SNOM capability, we measured thermally excited surface evanescent waves on Au/SiO2 gratings. A near-field signal-to-noise ratio is 4.5 times the improvement with an acquisition time of 1 s/pixel. These improvements have made the passive s-SNOM a more convenient and higher-performance experimental tool with a higher signal-to-noise ratio for a shorter acquisition time of 0.1 s.

  17. A high signal-to-noise ratio passive near-field microscope equipped with a helium-free cryostat.

    Science.gov (United States)

    Lin, Kuan-Ting; Komiyama, Susumu; Kim, Sunmi; Kawamura, Ken-Ichi; Kajihara, Yusuke

    2017-01-01

    We have developed a passive long-wavelength infrared (LWIR) scattering-type scanning near-field optical microscope (s-SNOM) installed in a helium-free mechanically cooled cryostat, which facilitates cooling of an LWIR detector and optical elements to 4.5 K. To reduce mechanical vibration propagation from a compressor unit, we have introduced a metal bellows damper and a helium gas damper. These dampers ensure the performance of the s-SNOM to be free from mechanical vibration. Furthermore, we have introduced a solid immersion lens to improve the confocal microscope performance. To demonstrate the passive s-SNOM capability, we measured thermally excited surface evanescent waves on Au/SiO2 gratings. A near-field signal-to-noise ratio is 4.5 times the improvement with an acquisition time of 1 s/pixel. These improvements have made the passive s-SNOM a more convenient and higher-performance experimental tool with a higher signal-to-noise ratio for a shorter acquisition time of 0.1 s.

  18. Observations of energetic helium ions in the earth's radiation belts during a sequence of geomagnetic storms

    Science.gov (United States)

    Spjeldvik, W. N.; Fritz, T. A.

    1981-01-01

    Observations of energetic (MeV) helium ions made with Explorer 45 during a sequence of magnetic storms during June through December of 1972 are presented. It is noted that the first of these storms started on June 17 and had a Dst index excursion to -190 gamma and that the MeV helium ions were perturbed primarily beyond 3 earth radii in the equatorial radiation belts with a typical flux increase of an order of magnitude at L equal to 4. The second storm period was in August and was associated with very major solar flare activity. While the Dst extremum was at best 35 gamma less than the June storm, this period can be characterized as irregular (or multi-storm) with strong compression of the magnetosphere and very large (order of magnitude) MeV helium ion flux enhancements down to L approximately equal to 2. After this injection, the trapped helium ion fluxes showed positive spherical slope with the peak beyond 3.15 MeV at L equal to 2.5; at the lowest observable L shells, little flux decay was seen during the remainder of the year.

  19. Evaluation of EUV resist performance below 20nm CD using helium ion lithography

    NARCIS (Netherlands)

    Maas, D.J.; Veldhoven, E. van; Langen-Suurling, A. van; Alkemade, P.F.A.; Wuister, S.; Hoefnagels, R.; Verspaget, C.; Meessen, J.; Fliervoet, T.

    2014-01-01

    For the introduction of EUV lithography, development of high performance EUV resists is of key importance. This development involves studies into resist sensitivity, resolving power and pattern uniformity. We have used a sub-nanometer-sized 30 keV helium ion beam to expose chemically amplified (CAR)

  20. Angular spreading measurements using MeV ion microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, Harry J., E-mail: harry.whitlow@he-arc.ch [Institut des Microtechnologies Appliquées, Haute Ecole Arc Ingénierie, Eplatures-Gris 17, CH-2300 La Chaux-de-Fonds (Switzerland); Department of Physics, P.O. Box 35 (YFL), FI-40014 University of Jyväskylä (Finland); Ren, Minqin; Chen, Xiao; Osipowicz, Thomas; Kan, Jeroen A. van; Watt, Frank [Centre for Ion Beam Applications, National University of Singapore (Singapore)

    2013-07-01

    The sharpness of MeV ion microscope images is governed by small-angle scattering and associated lateral spreading of the ion beam in the sample. We have investigated measurement of the half-angle of the angular spreading distribution by characterising the image blurring in direct-Scanning Transmission Ion Microscopy (direct-STIM). In these tests Mylar™ foils of 0.5–6 μm were used to induce angular spreading. Images were taken of an electron microscope grid using 2 MeV protons with, and without, the foils in the beam path. The blurring was measured by fitting the width of a circular Gaussian point spread function to the images with and without the foil in position. The results show the half-angle width of the spreading has a square root dependence on foil thickness that lies intermediate between SRIM predictions and the theoretical estimates (Bird and Williams fits to the Sigmund and Winterbon data and Amsel et al.)

  1. Boundedness and convergence of perturbed corrections for helium-like ions in ground states

    Institute of Scientific and Technical Information of China (English)

    Zhao Yun-Hui; Hai Wen-Hua; Zhao Cheng-Lin; Luo Xiao-Bing

    2008-01-01

    Applying the improved Rayleigh-Schr(o)dinger perturbation theory based on an integral equation to helium-like ions in ground states and treating electron correlations as perturbations,we obtain the second-order corrections to wavefunctions consisting of a few terms and the third-order corrections to energicity.It is demonstrated that the corrected wavefunctions are bounded and quadratically integrable,and the corresponding perturbation series is convergent.The results clear off the previous distrust for the convergence in the quantum perturbation theory and show a reciprocal development on the quantum perturbation problem of the ground state helium-like systems.

  2. Conception design of helium ion FFAG accelerator with induction accelerating cavity

    Institute of Scientific and Technical Information of China (English)

    LUO Huan-Li; XU Yu-Cun; WANG Xiang-Qi; XU Hong-Liang

    2013-01-01

    In the recent decades of particle accelerator R&D area,the fixed field alternating gradient (FFAG) accelerator has become a highlight for some advantages of its higher beam intensity and lower cost,although there are still some technical challenges.In this paper,the FFAG accelerator is adopted to accelerate a helium ion beam on the one hand for the study of helium embrittlement on fusion reactor envelope material and on the other hand for promoting the conception research and design of the FFAG accelerator and exploring the possibility of developing high power FFAG accelerators.The conventional period focusing unit of the helium ion FFAG accelerator and threedimensional model of the large aperture combinatorial magnet by OPERA-TOSCA are given.For low energy and low revolution frequency,induction acceleration is proposed to replace conventional radio frequency (RF) acceleration for the helium ion FFAG accelerator,which avoids the potential breakdown of the acceleration field caused by the wake field and improves the acceleration repetition frequency to gain higher beam intensity.The main parameters and three-dimensional model of induction cavity are given.Two special constraint waveforms are proposed to refrain from particle accelerating time slip (AT) caused by accelerating voltage drop of flat top and energy deviation.The particle longitudinal motion in two waveforms is simulated.

  3. Helium ion beam induced growth of hammerhead AFM probes

    NARCIS (Netherlands)

    Nanda, G.; Veldhoven, E. van; Maas, D.J.; Sadeghian Marnani, H.; Alkemade, P.F.A.

    2015-01-01

    The authors report the direct-write growth of hammerhead atomic force microscope (AFM) probes by He+ beam induced deposition of platinum-carbon. In order to grow a thin nanoneedle on top of a conventional AFM probe, the authors move a focused He+ beam during exposure to a PtC precursor gas. In the f

  4. Charge stripping of U238 ion beam by helium gas stripper

    Science.gov (United States)

    Imao, H.; Okuno, H.; Kuboki, H.; Yokouchi, S.; Fukunishi, N.; Kamigaito, O.; Hasebe, H.; Watanabe, T.; Watanabe, Y.; Kase, M.; Yano, Y.

    2012-12-01

    Development of a nondestructive, efficient electric-charge-stripping method is a key requirement for next-generation high-intensity heavy-ion accelerators such as the RIKEN Radioactive-Isotope Beam Factory. A charge stripper employing a low-Z gas is an important candidate applicable to high-intensity uranium beams for replacing carbon-foil strippers. In this study, a high-beam-transmission charge-stripping system employing helium gas for U238 beams injected at 10.8MeV/u was developed and demonstrated for the first time. The charge-state evolution measured using helium in a thickness range of 0.24-1.83mg/cm2 is compared with theoretical predictions. Energy attenuation and energy spread due to the helium stripper are also investigated.

  5. Study of the amorphization of surface silicon layers implanted by low-energy helium ions

    Science.gov (United States)

    Lomov, A. A.; Myakon'kikh, A. V.; Oreshko, A. P.; Shemukhin, A. A.

    2016-03-01

    The structural changes in surface layers of Si(001) substrates subjected to plasma-immersion implantation by (2-5)-keV helium ions to a dose of D = 6 × 1015-5 × 1017 cm-2 have been studied by highresolution X-ray diffraction, Rutherford backscattering, and spectral ellipsometry. It is found that the joint application of these methods makes it possible to determine the density depth distribution ρ( z) in an implanted layer, its phase state, and elemental composition. Treatment of silicon substrates in helium plasma to doses of 6 × 1016 cm-2 leads to the formation of a 20- to 30-nm-thick amorphized surface layer with a density close to the silicon density. An increase in the helium dose causes the formation of an internal porous layer.

  6. Towards Polarization Measurements of Laser-accelerated Helium-3 Ions

    OpenAIRE

    Engin, Ilhan

    2016-01-01

    In the framework of this thesis, preparatory investigations for the spin-polarization measurement of 3He ions from laser-induced plasmas have been performed.Therefore, experiments aiming at an efficient laser-induced ion acceleration out of a 4He gas target were carried out at two high-intensity laser facilities: the Arcturus laser at Heinrich-Heine-Universität Düsseldorf as well as PHELIX at GSI Darmstadt. The scientific goal of both experiments was to investigate the ion-acceleration proces...

  7. Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium

    Science.gov (United States)

    Liu, Hao; Kang, Wei; Zhang, Qi; Zhang, Yin; Duan, Huilin; He, X. T.

    2016-12-01

    Hydrodynamic properties and structure of strong shock waves in classical dense helium are simulated using non-equilibrium molecular dynamics methods. The shock speed in the simulation reaches 100 km/s and the Mach number is over 250, which are close to the parameters of shock waves in the implosion process of inertial confinement fusion. The simulations show that the high-Mach-number shock waves in dense media have notable differences from weak shock waves or those in dilute gases. These results will provide useful information on the implosion process, especially the structure of strong shock wave front, which remains an open question in hydrodynamic simulations.

  8. On the microscopic mechanism of ion-extraction of a gridded ion propulsion thruster

    CERN Document Server

    Kirmse, Danny

    2013-01-01

    The following paper includes a physical microscopic particle-description of the phenomena and mechanisms that lead to the extraction of ions with the aim to generate thrust. This theoretical treatise arose from the intention to visualize the behavior of the involved particles under effect of the involved electrical fields. By this way, an underlying basis for experimental investigations of the work of an ion thruster should be formed. So a foundation was created, which explains the ion extracting and so thrust generating function of an ion thruster. The theoretical work was related to the Radio-frequency Ion Thruster (RIT). But the model worked out can be generalized for all thruster types that use electrostatic fields to extract positively charged ions.

  9. The development and advantages of helium ion microscopy for the study of block copolymer nanopatterns

    Science.gov (United States)

    Bell, Alan P.; Senthamaraikannan, Ramsankar; Ghoshal, Tandra; Chaudhari, Atul; Leeson, Michael; Morris, Mick A.

    2015-03-01

    Helium ion microscopy (HIM) has been used to study nanopatterns formed in block copolymer (BCP) thin films. Owing to its' small spot size, minimal forward scattering of the incident ion and reduced velocity compared to electrons of comparable energy, HIM has considerable advantages and provides pattern information and resolution not attainable with other commercial microscopic techniques. In order to realize the full potential of BCP nanolithography in producing high density ultra-small features, the dimensions and geometry of these BCP materials will need to be accurately characterized through pattern formation, development and pattern transfer processes. The preferred BCP pattern inspection techniques (to date) are principally atomic force microscopy (AFM) and secondary electron microscopy (SEM) but suffer disadvantages in poor lateral resolution (AFM) and the ability to discriminate individual polymer domains (SEM). SEM suffers from reduced resolution when a more surface sensitive low accelerating voltage is used and low surface signal when a high accelerating voltage is used. In addition to these drawbacks, SEM can require the use of a conductive coating on these insulating materials and this reduces surface detail as well as increasing the dimensions of coated features. AFM is limited by the dimensions of the probe tip and a skewing of lateral dimension results. This can be eliminated through basic geometry for large sparse features, but when dense small features need to be characterized AFM lacks reliability. With this in mind, BCP inspection by HIM can offer greater insight into block ordering, critical dimensions and, critically, line edge roughness (LER) a critical parameter whose measurement is well suited to HIM because of its' enhanced edge contrast. In this work we demonstrate the resolution capabilities of HIM using various BCP systems (lamellar and cylinder structures). Imaging of BCP patterns of low molecular weight (MW)/low feature size which

  10. Charge state studies of low energy heavy ions passing through hydrogen and helium gas

    CERN Document Server

    Liu, W; Buchmann, L; Chen, A A; D'Auria, J M; D'Onofrio, A; Engel, S; Gialanella, L; Greife, U; Hunter, D; Hussein, A; Hutcheon, D A; Olin, A; Ottewell, D; Rogalla, D; Rogers, J; Romano, M; Roy, G; Terrasi, F

    2003-01-01

    Studies of the charge state distribution of low energy (<1.5 MeV/u), low Z (<13) heavy ions passing through hydrogen and helium gas of varying target pressure have been performed using separate windowless gas target systems at TRIUMF and the University of Naples. Semi-empirical relationships have been deduced to estimate the equilibrium charge state distributions as a function of beam energy. From these distributions, cross-sections for the relevant charge changing reactions have been deduced.

  11. Helium release and amorphization resistance in ion irradiated nanochannel films

    Science.gov (United States)

    Hong, Mengqing; Wang, Yongqiang; Ren, Feng; Zhang, Hongxiu; Fu, Dejun; Yang, Bing; Xiao, Xiangheng; Jiang, Changzhong

    2014-04-01

    Volumetric swelling, surface blistering, exfoliation and embrittlement partially induced by the aggregation of gas bubbles are serious problems for materials in nuclear reactors. This letter demonstrates that the “vein-like” nanochannel films possess greater He management capability and radiation tolerance. For a given fluence, the He bubble size in the nanochannel film decreases with increasing the nanochannel density. For a given nanochannel density, the bubble size increases with increasing fluence initially but levels off to a maximum value of 0.8 nm after the ion fluence reaches 2\\times10^{17}\\ \\text{ions/cm}^{2} , corresponding to He release ratio of 79% in the irradiated CrN RT films. The abundant surfaces in the nanochannel films are perfect defect sinks and thereby large sized He bubbles and supersaturated defects are less likely to be developed in these high radiation tolerant materials.

  12. Towards polarization measurements of laser-accelerated helium-3 ions

    Energy Technology Data Exchange (ETDEWEB)

    Engin, Ilhan

    2015-08-28

    In the framework of this thesis, preparatory investigations for the spin-polarization measurement of {sup 3}He ions from laser-induced plasmas have been performed. Therefore, experiments aiming at an efficient laser-induced ion acceleration out of a {sup 4}He gas target were carried out at two high-intensity laser facilities: the Arcturus laser at Heinrich-Heine-Universitaet Duesseldorf as well as PHELIX at GSI Darmstadt. The scientific goal of both experiments was to investigate the ion-acceleration process in underdense plasmas by measuring the ion energy spectra and the angular distribution of the ion signal around the gas-jet target. Laser-accelerated MeV-He-ions could successfully be detected. The main acceleration direction at large angles with regard to the laser propagation direction was determined. In a second step, unpolarized {sup 3}He gas was attached in order to cross-check the experimental results with those of {sup 4}He. With the help of the achieved ion yield data, the expected rates of the fusion reaction D({sup 3}He,p){sup 4}He in the polarized case have been estimated: the information regarding the fusion proton yield from this nuclear reaction allows an experimentally based estimation for future experiments with pre-polarized {sup 3}He gas as plasma target. The experimental data is in line with supporting Particle-in-Cell (PIC) simulations performed on the Juelich supercomputers. For this purpose, the simulated target was defined as a neutral gas. The use of pre-polarized {sup 3}He gas demands a special preparation of a polarized {sup 3}He target for laser-acceleration experiments. This layout includes an (external) homogeneous magnetic holding field (field strength of ∝1.4 mT) for storing the pre-polarized gas for long time durations inside the PHELIX target chamber. For this purpose, a precise Halbach array consisting of horizontally arranged rings with built-in permanent magnets had to be designed, optimized, and constructed to deliver high

  13. Applicability of the Atkins model to the ion behavior in superfluid helium

    Science.gov (United States)

    Leiderer, P.; Shikin, V.

    2009-02-01

    The properties of ion clusters in superfluid helium are usually treated within the model proposed by Atkins (the snowball model). However, although a solid sphere of radius Ra around the seed ion can actually exist, it is vitally important to which extent it really governs the scattering mechanisms of various thermal excitations at the cluster. Detailed analysis of available data on the phonon as well as the impurity and Stokes mobilities reveals that the true unifying factor in the discussed picture is a power-law density enhancement in the vicinity of the seed charged particle caused by the polarization forces rather than the radius Ra

  14. Mass flow facilitates tungsten blistering under 60 keV helium ion implantation

    Science.gov (United States)

    Han, Wenjia; Yu, Jiangang; Chen, Zhe; Lu, Guanghong; Zhu, Kaigui

    2017-07-01

    Gaseous ion implantation induces displacement damage and gaseous atom uptake in the target material and is widely adopted to simulate plasma-material interaction in fusion devices. Here we report an observation of tungsten blistering with large plastic deformation under 60 keV helium ion implantation at room temperature. The near-surface morphology and microstructure analyses suggest more than 50% plastic elongation and breakdown of lattice periodicity in the blister caps. We propose that collision cascades and high-concentration helium atoms not only greatly modify the tungsten microstructure, but also enhance mass flow in terms of point defect diffusion in blister caps. The mass flow ultimately aggravates the relaxation of stresses in the tungsten surface and facilitates tungsten blistering during high-energy gaseous ion implantation. We sketch out the blistering process and stress the vital importance of dynamic processes in the response of plasma-facing materials subjected to low-energy plasma penetration and high-energy neutron bombardment in fusion devices.

  15. Angular Differential Cross-Section for Ionization of Helium in C6+ Ion Collision

    Institute of Scientific and Technical Information of China (English)

    A.C.Gagyi-Pálffy; I.F.Barna; L.Gulyás; K.T(o)kési

    2004-01-01

    With the help of the density operator, the angular differential cross-section for ionization of helium is calculated within the framework of the one-centre atomic-orbital close-coupling method. We consider a naked C6+ ion as projectile with an energy of 2.5 MeV/a.u. Our result agrees well with the experimental data and the other theoretical calculations such as the first Born approximation, various Distorted Wave models and the classical trajectory Monte Carlo simulation.

  16. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Rui; Newhauser, Wayne D [Graduate School of Biomedical Sciences, University of Texas at Houston, 6767 Bertner, Houston, TX 77030 (United States); Taddei, Phillip J [Department of Radiation Physics, Unit 1202, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Fitzek, Markus M [Midwest Proton Radiotherapy Institute, 2425 Milo B Sampson Lane, Bloomington, IN 47408 (United States)], E-mail: wnewhaus@mdanderson.org

    2010-05-07

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  17. Double-differential cross sections for single ionization of helium by bare ion impact

    Science.gov (United States)

    Jana, S.; Samanta, R.; Purkait, M.

    2013-11-01

    Double-differential cross sections (DDCS) for single ionization of helium by impact of proton and highly charged carbon ion have been calculated in the framework of four-body formalism using the three-Coulomb wave model (3C-4B) and first Born approximation (FBA-4B), respectively. The correlated motion of the particles interacting through long-range Coulomb potential is properly taken into account in the final state. In this paper, the energy and angular distributions of DDCS of low- and high-energy electron emission for ground-state helium atoms have been investigated. The ejected electrons are affected by the two-center field of the target and the projectile ion. The two-center effects are confined to comparison with other theoretical results. The results obtained, both from the 3C-4B and FBA-4B models, are compared with other theoretical and experimental findings. The present results are found to reproduce the peak structure of the experimental observations. Large discrepancy occurs between the present two theories at forward and backward angles except about the emission angle 90°. The present computed results obtained by the 3C-4B model are in good agreement with the available experimental findings.

  18. Ion formation upon electron collisions with valine embedded in helium nanodroplets

    Science.gov (United States)

    Weinberger, Nikolaus; Ralser, Stefan; Renzler, Michael; Harnisch, Martina; Kaiser, Alexander; Denifl, Stefan; Böhme, Diethard K.; Scheier, Paul

    2016-04-01

    We report here experimental results for the electron ionization of large superfluid helium nanodroplets with sizes of about 105 atoms that are doped with valine and clusters of valine. Spectra of both cations and anions were monitored with high-resolution time-of-flight mass spectrometry (mass resolution >4000). Clear series of peaks with valine cluster sizes up to at least 40 and spaced by the mass of a valine molecule are visible in both the cation and anion spectra. Ion efficiency curves are presented for selected cations and anions at electron energies up to about 40 eV and these provide insight into the mode of ion formation. The measured onset of 24.59 eV for cations is indicative of valine ionization by He+ whereas broad resonances at 2, 10 and 22 eV (and beyond) in the formation of anions speak to the occurrence of various modes of dissociative electron attachment by collisions with electrons or He*- and the influence of droplet size on the relative importance of these processes. Comparisons are also made with gas phase results and these provide insight into a matrix effect within the superfluid helium nanodroplet. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  19. Spectroscopic study of energetic helium-ion irradiation effects on nuclear graphite tiles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Wan; Lee, K.W. [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of); Choi, D.M.; Noh, S.J.; Kim, H.S. [Department of Applied Physics, Dankook University, Yongin 448-701 (Korea, Republic of); Lee, Cheol Eui, E-mail: rscel@korea.ac.kr [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of)

    2016-02-01

    Highlights: • Energetic helium-ion irradiation on nuclear graphite tiles studied for plasma facing components. • XPS reveals recrystallization at low dose irradiation and DLC sites at higher doses. • Raman spectroscopy reveals increasing diamond-like defects and structural deformation. • Average inter-defect distance obtained as a function of irradiation dose from Raman intensities. - Abstract: Helium ion-irradiation effects on the nuclear graphite tiles were studied in order to understand the structural modifications and damages that can be produced by fusion reaction in tokamaks. The surface morphological changes due to increasing dose of the irradiation were examined by the field-effect scanning electron microscopy, and X-ray photoelectron spectroscopy elucidated the changes in the shallow surface bonding configurations caused by the energetic irradiation. Raman spectroscopy revealed the structural defects and diamond-like carbon sites that increased with increasing irradiation dose, and the average inter-defect distance was found from the Raman peak intensities as a function of the irradiation dose.

  20. Low-energy collisions of helium clusters with size-selected cobalt cluster ions

    Science.gov (United States)

    Odaka, Hideho; Ichihashi, Masahiko

    2017-04-01

    Collisions of helium clusters with size-selected cobalt cluster ions, Com+ (m ≤ 5), were studied experimentally by using a merging beam technique. The product ions, Com+Hen (cluster complexes), were mass-analyzed, and this result indicates that more than 20 helium atoms can be attached onto Com+ at the relative velocities of 103 m/s. The measured size distributions of the cluster complexes indicate that there are relatively stable complexes: Co2+Hen (n = 2, 4, 6, and 12), Co3+Hen (n = 3, 6), Co4+He4, and Co5+Hen (n = 3, 6, 8, and 10). These stabilities are explained in terms of their geometric structures. The yields of the cluster complexes were also measured as a function of the relative velocity (1 × 102-4 × 103 m/s), and this result demonstrates that the main interaction in the collision process changes with the increase of the collision energy from the electrostatic interaction, which includes the induced deformation of HeN, to the hard-sphere interaction. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80015-0

  1. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    Science.gov (United States)

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-07

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  2. Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography.

    Science.gov (United States)

    Melli, M; Polyakov, A; Gargas, D; Huynh, C; Scipioni, L; Bao, W; Ogletree, D F; Schuck, P J; Cabrini, S; Weber-Bargioni, A

    2013-06-12

    Optical antenna structures have revolutionized the field of nano-optics by confining light to deep subwavelength dimensions for spectroscopy and sensing. In this work, we fabricated coaxial optical antennae with sub-10-nanometer critical dimensions using helium ion lithography (HIL). Wavelength dependent transmission measurements were used to determine the wavelength-dependent optical response. The quality factor of 11 achieved with our HIL fabricated structures matched the theoretically predicted quality factor for the idealized flawless gold resonators calculated by finite-difference time-domain (FDTD). For comparison, coaxial antennae with 30 nm critical dimensions were fabricated using both HIL and the more common Ga focus ion beam lithography (Ga-FIB). The quality factor of the Ga-FIB resonators was 60% of the ideal HIL results for the same design geometry due to limitations in the Ga-FIB fabrication process.

  3. Rotational state-changing cold collisions of hydroxyl ions with helium

    CERN Document Server

    Hauser, Daniel; Carelli, Fabio; Spieler, Steffen; Lakhmanskaya, Olga; Endres, Eric S; Kumar, Sunil S; Gianturco, Franco; Wester, Roland

    2015-01-01

    Cold molecules are important for many applications, from fundamental precision measurements, quantum information processing, quantum-controlled chemistry, to understanding the cold interstellar medium. Molecular ions are known to be cooled efficiently in sympathetic collisions with cold atoms or ions. However, little knowledge is available on the elementary cooling steps, because the determination of quantum state-to-state collision rates at low temperature is prohibitively challenging for both experiment and theory. Here we present a method to manipulate molecular quantum states by non-resonant photodetachment. Based on this we provide absolute quantum scattering rate coefficients under full quantum state control for the rotationally inelastic collision of hydroxyl anions with helium. Experiment and quantum scattering theory show excellent agreement without adjustable parameters. Very similar rate coefficients are obtained for two different isotopes, which is linked to several quantum scattering resonances a...

  4. Blistering and cracking of LiTaO{sub 3} single crystal under helium ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Changdong; Lu, Fei; Ma, Yujie [Shandong University, School of Information Science and Engineering, Jinan, Shandong (China)

    2014-11-29

    Blistering and cracking in LiTaO{sub 3} surface are investigated after 200-keV helium ion implantation and subsequent post-implantation annealing. Rutherford backscattering/channeling is used to examine the lattice damage caused by ion implantation. Blistering is observed through optical microscopy in a dynamic heating process. Atomic force microscopy and scanning electron microscopy measurements are used to detect the LiTaO{sub 3} surface morphology. Experimental results show that blistering and flaking are dependent on implantation fluence, beam current, and also annealing temperature. We speculate that the surface cracking of He{sup +}-implanted LiTaO{sub 3} results from the implantation-induced stress and compression. (orig.)

  5. Membrane Thickness Dependence of Nanopore Formation with a Focused Helium Ion Beam

    Directory of Open Access Journals (Sweden)

    Furat Sawafta

    2014-05-01

    Full Text Available Solid-state nanopores are emerging as a valuable tool for the detection and characterization of individual biomolecules. Central to their success is the realization of fabrication strategies that are both rapid and flexible in their ability to achieve diverse device dimensions. In this paper, we demonstrate the membrane thickness dependence of solid-state nanopore formation with a focused helium ion beam. We vary membrane thickness in situ and show that the rate of pore expansion follows a reproducible trend under all investigated membrane conditions. We show that this trend shifts to lower ion dose for thin membranes in a manner that can be described quantitatively, allowing devices of arbitrary dimension to be realized. Finally, we demonstrate that thin, small-diameter nanopores formed with our approach can be utilized for high signal-to-noise ratio resistive pulse sensing of DNA.

  6. Influence of the ionization-energy losses of high-energy bismuth ions on the development of helium blisters in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Reutov, V. F., E-mail: reutov@jinr.ru; Dmitriev, S. N.; Sohatsky, A. S. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research (Russian Federation); Zaluzhnyi, A. G. [National Research Nuclear University “MEPhi” (Moscow Engineering Physics Institute) (Russian Federation)

    2015-10-15

    Understanding the behavior of helium in solids under conditions of intense ionizing radiation is of particular interest in solving many problems of nuclear, fusion, and space materials science and also in microelectronics. The observed effect of suppressing the formation of helium blisters on the surface of helium ion-doped silicon as a result of irradiation with high-energy bismuth ions is reported in this publication. It is suggested that a possible decrease in the concentration of helium atoms in silicon is due to their radiationinduced desorption from the area of doping in terms of the high-impact ionization of bismuth ions.

  7. Cryogenic Sample Stage for the CAMECA IMS-3f Ion Microscope.

    Science.gov (United States)

    2014-09-26

    80-0538 Task gto. NRO51-736Ln TECHNICAL REPORT NO.14 0CRYOGENIC SAMPLE STAGE FOR THE CAMECA IMS-3f ION MICROSCOPE by M.T. Bernius, S. Chandra and G.H...S. rvpg of 119CAT a PCJRIOO COvILAIE CRYOGENIC SAM4PLE STAGE FOR THE CAi4ECA IMS-3f Interim Technical Report ION MICROSCOPE 4. PeNVrCMING oto...samples at cryogenic temperatures. This is particu- larly useful-*for the ion microscopic analysis of frozen hydrated samples (biologi-.. cals), and

  8. Ion velocity distribution functions in argon and helium discharges: detailed comparison of numerical simulation results and experimental data

    Science.gov (United States)

    Wang, Huihui; Sukhomlinov, Vladimir S.; Kaganovich, Igor D.; Mustafaev, Alexander S.

    2017-02-01

    Using the Monte Carlo collision method, we have performed simulations of ion velocity distribution functions (IVDF) taking into account both elastic collisions and charge exchange collisions of ions with atoms in uniform electric fields for argon and helium background gases. The simulation results are verified by comparison with the experiment data of the ion mobilities and the ion transverse diffusion coefficients in argon and helium. The recently published experimental data for the first seven coefficients of the Legendre polynomial expansion of the ion energy and angular distribution functions are used to validate simulation results for IVDF. Good agreement between measured and simulated IVDFs shows that the developed simulation model can be used for accurate calculations of IVDFs.

  9. Radiation effects on microstructure and hardness of a titanium aluminide alloy irradiated by helium ions at room and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Tao, E-mail: tao@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science & Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW 2232 (Australia); Zhu, Hanliang [Institute of Materials Engineering, Australian Nuclear Science & Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW 2232 (Australia); Ionescu, Mihail [Institute for Environment Research, Australian Nuclear Science & Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW 2232 (Australia); Dayal, Pranesh; Davis, Joel; Carr, David; Harrison, Robert; Edwards, Lyndon [Institute of Materials Engineering, Australian Nuclear Science & Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW 2232 (Australia)

    2015-04-15

    A 45XD TiAl alloy possessing a lamellar microstructure was irradiated using 5 MeV helium ions to a fluence of 5 × 10{sup 21} ion m{sup −2} (5000 appm) with a dose of about 1 dpa (displacements per atom). A uniform helium ion stopping damage region about 17 μm deep from the target surface was achieved by applying an energy degrading wheel. Radiation damage defects including helium-vacancy clusters and small helium bubbles were found in the microstructure of the samples irradiated at room temperature. With increasing irradiation temperature to 300 °C and 500 °C helium bubbles were clearly observed in both the α{sub 2} and γ phases of the irradiated microstructure. By means of nanoindentation significant irradiation hardening was measured. For the samples irradiated at room temperature the hardness increased from 5.6 GPa to 8.5 GPa and the irradiation-hardening effect reduced to approximately 8.0 GPa for the samples irradiated at 300 °C and 500 °C.

  10. Simultaneous ion luminescence imaging and spectroscopy of individual aerosol particles with external proton or helium microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Kada, Wataru, E-mail: kada.wataru@gunma-u.ac.jp [Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Satoh, Takahiro; Yokoyama, Akihito; Koka, Masashi; Kamiya, Tomihiro [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2014-08-01

    Simultaneous microscopic imaging and spectroscopy of individual aerosol particles were performed with an external microbeam. Visible luminescence induced by the external microbeam was successfully used as a probe to detect organic contaminants in the targets. Combined ion luminescence (IL)/particle-induced X-ray emission (PIXE) analysis of the aerosol targets revealed microscopic chemical and elemental composition distributions under ambient atmospheric conditions. The simple confocal micro-optics for the IL spectroscopy and microscopic imaging were sufficiently sensitive for detecting these molecules at sub-parts per million concentrations and at a wavelength resolution of less than 5 nm. The IL spectra were monitored to prevent severe damage to the samples. Furthermore, our IL system has the advantage that it is simple to add to a conventional micro-PIXE system.

  11. Charge-sensitive deep level transient spectroscopy of helium-ion-irradiated silicon, as-irradiated and after thermal annealing

    Institute of Scientific and Technical Information of China (English)

    Li Bing-Sheng; Zhang Chong-Hong; Yang Yi-Tao; Zhou Li-Hong; Zhang Hong-Hua

    2009-01-01

    Electrically active defects in the phosphor-doped single-crystal silicon, induced by helium-ion irradiation under thermal annealing, have been investigated. Isothermal charge-sensitive deep-level transient spectroscopy was employed to study the activation energy and capture cross-section of helium-induced defects in silicon samples. It was shown that the activation energy levels produced by helium-ion irradiation first increased with increasing annealing temperature, with the maximum value of the activation energy occurring at 873 K, and reduced with further increase of the annealing temperature. The energy levels of defects in the samples annealed at 873 and I073 K are found to be located near the mid-forbidden energy gap level so that they can act as thermally stable carrier recombination centres.

  12. Control of stopping position of radioactive ion beam in superfluid helium for laser spectroscopy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.F., E-mail: yangxf@ribf.riken.jp [School of Physics, Peking University, Chengfu Road, Haidian District, Beijing 100871 (China); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Furukawa, T. [Dept. of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Wakui, T. [Cyclotron and Radioisotope Center Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Imamura, K. [Dept. of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Tetsuka, H. [Dept. of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501 (Japan); Fujita, T. [Dept. of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Yamaguchi, Y. [Dept. of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Tsutsui, Y. [Dept. of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501 (Japan); Mitsuya, Y. [Dept. of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Ichikawa, Y. [Dept. of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo152-8551 (Japan); Ishibashi, Y. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Dept. of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Yoshida, N.; Shirai, H. [Dept. of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo152-8551 (Japan); Ebara, Y.; Hayasaka, M. [Dept. of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501 (Japan); Arai, S.; Muramoto, S. [Dept. of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Hatakeyama, A. [Dept. of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Wada, M.; Sonoda, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); and others

    2013-12-15

    In order to investigate the structure of exotic nuclei with extremely low yields by measuring nuclear spins and moments, a new laser spectroscopy technique – “OROCHI” (Optical Radioisotopes Observation in Condensed Helium as Ion-catcher) has been proposed in recent years. The feasibility of this technique has been demonstrated by means of a considerable amount of offline and online studies of various atoms in superfluid helium. For in-situ laser spectroscopy of atoms in He II, trapping atoms in the observation region of laser is a key step. Therefore, a method which enables us to trap accelerated atoms at a precise position in He II is highly needed for performing experiment. In this work, a technique making use of a degrader, two plastic scintillators and a photon detection system is established for checking the stopping position of beam based on the LISE++ calculation. The method has been tested and verified by on-line experiments with the {sup 84,85,87}Rb beam. Details of the experimental setup, working procedure and testing results of this method are presented.

  13. Gas bubbles evolution peculiarities in ferritic-martensitic and austenitic steels and alloys under helium-ion irradiation

    NARCIS (Netherlands)

    Chernov, [No Value; Kalashnikov, AN; Kahn, BA; Binyukova, SY

    2003-01-01

    Transmission electron microscopy has been used to investigate the gas bubble evolution in model alloys of the Fe C system, ferritic-martensitic steels of 13Cr type, nickel and austenitic steels under 40-keV helium-ion it. radiation up to a fluence of 5 x 10(20) m(-2) at the temperature of 920 K. It

  14. A modified blister test to study the adhesion of thin coatings based on local helium ion implantation

    NARCIS (Netherlands)

    Galindo, RE; van Veen, A; Evans, JH; Schut, H; de Hosson, JTM

    2005-01-01

    A modified blister test has been developed based on helium ion implantation into selected areas of the metal substrate prior to the coating deposition. After a post-deposition thermal annealing, blisters are formed by agglomeration of the implanted gas at the ceramic-metal interface. This method can

  15. Extraction of radioactive positive ions across the surface of superfluid helium : A new method to produce cold radioactive nuclear beams

    NARCIS (Netherlands)

    Huang, WX; Dendooven, P; Gloos, K; Takahashi, N; Pekola, JP; Aysto, J

    2003-01-01

    Alpha-decay recoils Rn-219 were stopped in superfluid helium and positive ions were extracted by electric field into the vapour phase. This first quantitative observation of extraction was successfully conducted using highly sensitive radioactivity detection. The efficiency for extraction across the

  16. An effective method for trapping ion beams in superfluid helium for laser spectroscopy experiments

    Directory of Open Access Journals (Sweden)

    Yang X.F

    2014-03-01

    Full Text Available A novel laser spectroscopy technique -“OROCHI” (Optical Radioisotopes Observation in Condensed Helium as Ion-catcher has been proposed. This method aimed to investigate the structure of exotic nuclei systematically by measuring nuclear spins and moments. For in-situ laser spectroscopy of atoms in He II, a method to trap atoms precisely at the observation region of laser is highly needed. In this work, a setup composed of a degrader, two plastic scintillators and a photon detection system is further tested and verified for adjusting and checking the stopping position of 84–87Rb beam. Details of the current setup, experimental results using this method are presented.

  17. Recombination-cascade X-ray spectra of highly charged helium-like ions

    Science.gov (United States)

    Pradhan, A. K.

    1985-01-01

    It is shown that the relative intensity distribution among the X-ray spectral lines of helium-like ions from the n = 2 states produced through recombination processes such as radiative and charge transfer recombination may be given by considering in detail the radiative cascades following recombination. Model calculations are presented with predicted line ratios for Ar XVII and Fe XXV in recombination-dominated noncoronal plasmas. In particular, compared to coronal intensities, the singlet resonance line (w) should be much weaker relative to the triplet intercombination (x, y) and forbidden (z) lines, yielding large values for the ratio G = (x + y + z)/w. Accurate configuration interaction type wave functions are employed to calculate the eigenenergies, transition probabilities, and cascade coefficients. Certain relevant tokamak and astrophysical observations are discussed.

  18. Single ionization of helium atoms by energetic fully stripped carbon ions

    Institute of Scientific and Technical Information of China (English)

    Ebrahim Ghanbari-Adivi; Sadjad Eskandari

    2015-01-01

    A four-body distorted wave approximation is presented for theoretical investigations of the single ionization of ground-state helium atoms by fully stripped carbon ions at impact energies of 2 MeV/amu and 100 MeV/amu. The nine-dimensional integrals for the partial quantum-mechanical transition amplitudes of the specified reaction are reduced to some analytical expressions or one-dimensional integrals over real variables. Fully differential cross sections (FDCSs) are calculated and compared with their experimental values as well as the results obtained from other theories. Despite the simplicity and quickness of the proposed quadrature, the comparison shows that the obtained results are in reasonable agreement with the experiment and are compatible with those of other complicated theories.

  19. Effect of crystal orientation on low flux helium and hydrogen ion irradiation in polycrystalline tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fangshu [Department of Physics, Beihang University, Beijing 100191 (China); School of Material Engineering, Panzhihua University, Panzhihua 617000 (China); Ren, Haitao; Peng, Shixiang [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Zhu, Kaigui, E-mail: kgzhu@buaa.edu.cn [Department of Physics, Beihang University, Beijing 100191 (China)

    2014-08-15

    Blistering behavior in polycrystalline tungsten is investigated under low flux helium and hydrogen ion irradiation. Subsequent to irradiation, the grain orientations near (0 1 1), (1 0 1) and (1 1 1) planes on the surface are analyzed by SEM and EBSD. It is found that blister density is the greatest on the grain orientation near (1 1 1) plane, and the smallest on the grain orientation near (0 0 1) plane. Experiments suggest that blistering degree highly depends upon the grain orientation, blisters are easily formed on the grain orientation near (1 1 1) plane, and medium on the grain orientation near (1 0 1) plane, and the most rare on the grain orientation near (0 1 1) plane. The surface resistant orientation of tungsten is orientation near (0 0 1) plane. The atom binding energy in the crystal plane in combination with the channeling effect of adjacent crystal planes may play an important role for the difference of the surface morphology.

  20. Fabrication of metrology test structures with helium ion beam direct write

    Science.gov (United States)

    Lee, Chien-Lin; Chien, Sheng-Wei; Chen, Sheng-Yung; Liu, Chun-Hung; Tsai, Kuen-Yu; Li, Jia-Han; Shew, Bor-Yuan; Hong, Chit-Sung; Lee, Chao-Te

    2017-03-01

    The availability of metrology solutions, one of the key factors to drive leading edge semiconductor devices and processes, can be confronted with difficulties in the advanced node. For developing new metrology solutions, high quality test structures fabricated at specific sizes are needed. Conventional resist-based lithography have been utilized to manufacture such samples. However, it can encounter significant resolution difficulties or requiring complicated optimization process for advanced technology node. In this work, potential of helium ion beam direct milling (HIBDM) for fabricating metrology test structures with programmed imperfection is investigated. Features down to 5 nm are resolvable without implementing any optimization method. Preliminary results have demonstrated that HIBDM can be a promising alternative to fabricate metrology test structures for advanced metrology solutions in sub 10 nm node.

  1. Helium ions at the heidelberg ion beam therapy center: comparisons between FLUKA Monte Carlo code predictions and dosimetric measurements

    Science.gov (United States)

    Tessonnier, T.; Mairani, A.; Brons, S.; Sala, P.; Cerutti, F.; Ferrari, A.; Haberer, T.; Debus, J.; Parodi, K.

    2017-08-01

    In the field of particle therapy helium ion beams could offer an alternative for radiotherapy treatments, owing to their interesting physical and biological properties intermediate between protons and carbon ions. We present in this work the comparisons and validations of the Monte Carlo FLUKA code against in-depth dosimetric measurements acquired at the Heidelberg Ion Beam Therapy Center (HIT). Depth dose distributions in water with and without ripple filter, lateral profiles at different depths in water and a spread-out Bragg peak were investigated. After experimentally-driven tuning of the less known initial beam characteristics in vacuum (beam lateral size and momentum spread) and simulation parameters (water ionization potential), comparisons of depth dose distributions were performed between simulations and measurements, which showed overall good agreement with range differences below 0.1 mm and dose-weighted average dose-differences below 2.3% throughout the entire energy range. Comparisons of lateral dose profiles showed differences in full-width-half-maximum lower than 0.7 mm. Measurements of the spread-out Bragg peak indicated differences with simulations below 1% in the high dose regions and 3% in all other regions, with a range difference less than 0.5 mm. Despite the promising results, some discrepancies between simulations and measurements were observed, particularly at high energies. These differences were attributed to an underestimation of dose contributions from secondary particles at large angles, as seen in a triple Gaussian parametrization of the lateral profiles along the depth. However, the results allowed us to validate FLUKA simulations against measurements, confirming its suitability for 4He ion beam modeling in preparation of clinical establishment at HIT. Future activities building on this work will include treatment plan comparisons using validated biological models between proton and helium ions, either within a Monte Carlo

  2. Recoil ion and electronic angular asymmetry parameters for photo double ionization of helium at 99 eV

    Energy Technology Data Exchange (ETDEWEB)

    Braeuning, H. [Kansas State Univ., Physics Dept., Manhattan, KS (United States)]|[Lawrence Berkeley National Lab., Berkeley, CA (United States); Doerner, R.; Braeuning-Demian, A. [Universitaet Frankfurt, Inst. fuer Kernphysik, Frankfurt (Germany)] [and others

    1997-10-14

    Recoil ion momentum spectroscopy has been used to map the entire five-dimensional momentum space of the photo double ionization of helium at 20 eV above threshold. Angular asymmetry parameters for the relative motion of the electrons and the recoil ion have been determined and are found to be close to similar data at 1 eV above threshold. In addition the asymmetry parameter of one photoelectron is found to be in good agreement with recent theory. (author).

  3. submitter Biologically optimized helium ion plans: calculation approach and its in vitro validation

    CERN Document Server

    Mairani, A; Magro, G; Tessonnier, T; Kamp, F; Carlson, D J; Ciocca, M; Cerutti, F; Sala, P R; Ferrari, A; Böhlen, T T; Jäkel, O; Parodi, K; Debus, J; Abdollahi, A; Haberer, T

    2016-01-01

    Treatment planning studies on the biological effect of raster-scanned helium ion beams should be performed, together with their experimental verification, before their clinical application at the Heidelberg Ion Beam Therapy Center (HIT). For this purpose, we introduce a novel calculation approach based on integrating data-driven biological models in our Monte Carlo treatment planning (MCTP) tool. Dealing with a mixed radiation field, the biological effect of the primary $^4$He ion beams, of the secondary $^3$He and $^4$He (Z  =  2) fragments and of the produced protons, deuterons and tritons (Z  =  1) has to be taken into account. A spread-out Bragg peak (SOBP) in water, representative of a clinically-relevant scenario, has been biologically optimized with the MCTP and then delivered at HIT. Predictions of cell survival and RBE for a tumor cell line, characterized by ${{(\\alpha /\\beta )}_{\\text{ph}}}=5.4$ Gy, have been successfully compared against measured clonogenic survival data. The mean ...

  4. The influence of negative ions in helium-oxygen barrier discharges: I. Laser photodetachment experiment

    Science.gov (United States)

    Tschiersch, R.; Nemschokmichal, S.; Meichsner, J.

    2016-04-01

    This work is the experimental part of a comprehensive study that aims to understand the influence of negative ions on the development of atmospheric pressure barrier discharges in electronegative systems. The investigations will be complemented by a 1D numerical fluid simulation. Laser photodetachment experiments were performed in a glow-like barrier discharge operated in helium with admixtures of oxygen up to 1 vol.% at a gas pressure of 500 mbar. The discharge gap between the glass-coated electrodes was 3 mm. The discharge properties were characterized by electrical measurements and optical emission spectroscopy. Laser photodetachment of {{\\text{O}}-} , {\\text{O}}2- , and {\\text{O}}3- was studied using the fundamental and second harmonic wavelength of a Nd-YAG laser. The laser photodetachment of negative ions influences the breakdown characteristics when the laser is fired during the prephase of the discharge only. The breakdown voltage is reduced, which indicates an enhanced pre-ionization initiated by the detached electrons. Systematic variations in the laser pulse in time, the axial laser beam position, the laser pulse energy, and the laser wavelength provided detailed knowledge on this process. The investigation underlines the importance of the discharge prephase in general and aims to differentiate between the negative ion species {{\\text{O}}-} , {\\text{O}}2- , and {\\text{O}}3- .

  5. Maskless Lithography and in situ Visualization of Conductivity of Graphene using Helium Ion Microscopy

    Science.gov (United States)

    Iberi, Vighter; Vlassiouk, Ivan; Zhang, X.-G.; Matola, Brad; Linn, Allison; Joy, David C.; Rondinone, Adam J.

    2015-01-01

    The remarkable mechanical and electronic properties of graphene make it an ideal candidate for next generation nanoelectronics. With the recent development of commercial-level single-crystal graphene layers, the potential for manufacturing household graphene-based devices has improved, but significant challenges still remain with regards to patterning the graphene into devices. In the case of graphene supported on a substrate, traditional nanofabrication techniques such as e-beam lithography (EBL) are often used in fabricating graphene nanoribbons but the multi-step processes they require can result in contamination of the graphene with resists and solvents. In this letter, we report the utility of scanning helium ion lithography for fabricating functional graphene nanoconductors that are supported directly on a silicon dioxide layer, and we measure the minimum feature size achievable due to limitations imposed by thermal fluctuations and ion scattering during the milling process. Further we demonstrate that ion beams, due to their positive charging nature, may be used to observe and test the conductivity of graphene-based nanoelectronic devices in situ. PMID:26150202

  6. Helium ion beam lithography (HIBL) using HafSOx as the resist

    Science.gov (United States)

    Luo, Feixiang; Manichev, Viacheslav; Li, Mengjun; Mitchson, Gavin; Yakshinskiy, Boris; Gustafsson, Torgny; Johnson, David; Garfunkel, Eric

    2016-03-01

    Helium ion beam lithography (HIBL) is a novel alternative lithographic technique with the capacity of fabricating highresolution and high-density features. Only limited research has been performed exploring HIBL to date. HafSOx (Hf(OH)4-2x-2y(O2)x(SO4)y·qH2O) is a negative-tone inorganic resist that is one of several candidate resist materials for extreme ultraviolet lithography (EUVL) and e-beam lithography (EBL), and has been demonstrated to show high resolution, moderate sensitivity and low line-edge roughness (LER) in both EUVL and EBL. To date, no ion beam lithography work on HafSOx has been reported. In this study, we tested HafSOx as an HIBL resist and achieved a high sensitivity compared with EBL with a turn-on dose D100 ~ 2-4 μC/cm2. We obtained sub-10 nm line widths with low LER. A simple Monte Carlo simulation suggests that ionizing excitation accounts for most of the incident He ions' energy loss.

  7. Biologically optimized helium ion plans: calculation approach and its in vitro validation

    Science.gov (United States)

    Mairani, A.; Dokic, I.; Magro, G.; Tessonnier, T.; Kamp, F.; Carlson, D. J.; Ciocca, M.; Cerutti, F.; Sala, P. R.; Ferrari, A.; Böhlen, T. T.; Jäkel, O.; Parodi, K.; Debus, J.; Abdollahi, A.; Haberer, T.

    2016-06-01

    Treatment planning studies on the biological effect of raster-scanned helium ion beams should be performed, together with their experimental verification, before their clinical application at the Heidelberg Ion Beam Therapy Center (HIT). For this purpose, we introduce a novel calculation approach based on integrating data-driven biological models in our Monte Carlo treatment planning (MCTP) tool. Dealing with a mixed radiation field, the biological effect of the primary 4He ion beams, of the secondary 3He and 4He (Z  =  2) fragments and of the produced protons, deuterons and tritons (Z  =  1) has to be taken into account. A spread-out Bragg peak (SOBP) in water, representative of a clinically-relevant scenario, has been biologically optimized with the MCTP and then delivered at HIT. Predictions of cell survival and RBE for a tumor cell line, characterized by {{(α /β )}\\text{ph}}=5.4 Gy, have been successfully compared against measured clonogenic survival data. The mean absolute survival variation ({μΔ \\text{S}} ) between model predictions and experimental data was 5.3%  ±  0.9%. A sensitivity study, i.e. quantifying the variation of the estimations for the studied plan as a function of the applied phenomenological modelling approach, has been performed. The feasibility of a simpler biological modelling based on dose-averaged LET (linear energy transfer) has been tested. Moreover, comparisons with biophysical models such as the local effect model (LEM) and the repair-misrepair-fixation (RMF) model were performed. {μΔ \\text{S}} values for the LEM and the RMF model were, respectively, 4.5%  ±  0.8% and 5.8%  ±  1.1%. The satisfactorily agreement found in this work for the studied SOBP, representative of clinically-relevant scenario, suggests that the introduced approach could be applied for an accurate estimation of the biological effect for helium ion radiotherapy.

  8. Scaling of triple differential cross-sections for asymmetric (, 2) process on helium isoelectronic ions by fast electrons

    Indian Academy of Sciences (India)

    M K Srivastava

    2005-01-01

    A simple scaling law is obtained for asymmetric (, 2) process on helium isoelectronic ions by fast electrons. It is based on treating the targets as having one active electron moving in the effective Coulomb field of the atomic core with an effective charge ' = − 5/8. This effective charge is also used in the description of the scattered and ejected electrons. The model has been tested against other available (, 2) results on helium in asymmetric geometry. The scaling law is found to work reasonably well for fast incident electrons and becomes increasingly accurate as target increases.

  9. Radiation microscope for SEE testing using GeV ions.

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee; Knapp, James Arthur; Rossi, Paolo; Hattar, Khalid M.; Vizkelethy, Gyorgy; Brice, David Kenneth; Branson, Janelle V.

    2009-09-01

    Radiation Effects Microscopy is an extremely useful technique in failure analysis of electronic parts used in radiation environment. It also provides much needed support for development of radiation hard components used in spacecraft and nuclear weapons. As the IC manufacturing technology progresses, more and more overlayers are used; therefore, the sensitive region of the part is getting farther and farther from the surface. The thickness of these overlayers is so large today that the traditional microbeams, which are used for REM are unable to reach the sensitive regions. As a result, higher ion beam energies have to be used (> GeV), which are available only at cyclotrons. Since it is extremely complicated to focus these GeV ion beams, a new method has to be developed to perform REM at cyclotrons. We developed a new technique, Ion Photon Emission Microscopy, where instead of focusing the ion beam we use secondary photons emitted from a fluorescence layer on top of the devices being tested to determine the position of the ion hit. By recording this position information in coincidence with an SEE signal we will be able to indentify radiation sensitive regions of modern electronic parts, which will increase the efficiency of radiation hard circuits.

  10. Helium effects on mechanical properties and microstructure of high fluence ion-irradiated RAFM steel

    Science.gov (United States)

    Ogiwara, H.; Kohyama, A.; Tanigawa, H.; Sakasegawa, H.

    2007-08-01

    Reduced-activation ferritic/martensitic steels, RAFS, are leading candidates for the blanket and first wall of fusion reactors, and effects of displacement damage and helium production on mechanical properties and microstructures are important to these applications. Because it is the most effective way to obtain systematic and accurate information about microstructural response under fusion environment, single-(Fe 3+) and dual-(Fe 3+ + He +) irradiations were performed followed by TEM observation and nano-indentation hardness measurement. Dual-ion irradiation at 420 °C induced finer defect clusters compared to single-ion irradiation. These fine defect clusters caused large differences in the hardness increase between these irradiations. TEM analysis clarified that radiation induced precipitates were MX precipitates (M: Ta, W). Small defects invisible to TEM possibly caused the large increase in hardness, in addition to the hardness increment produced by radiation induced MX. In this work, radiation hardening and microstructural evolution accompanied by the synergistic effects to high fluences are discussed.

  11. Microscopic descriptions of high-energy heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bodmer, A.R.

    1977-01-01

    The essentials of the equation-of-motion (EOM) approach are given and some of its significant and interesting results are described. A framework for the theoretical description of high-energy heavy-ion (HE-HI) collisions is presented; specifically included are a critical assessment of various approaches--EOM calculations, Boltzmann equations/cascade calculations, and hydrodynamics--their relationships and their respective domains of applicability, if any, to HE-HI collisions. 11 figures, 3 tables. (RWR)

  12. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Hermann, E-mail: hermann.fuchs@meduniwien.ac.at [Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, Vienna 1090, Austria and Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090 (Austria); Alber, Markus [Department for Oncology, Aarhus University Hospital, Aarhus 8000 (Denmark); Schreiner, Thomas [PEG MedAustron, Wiener Neustadt 2700 (Austria); Georg, Dietmar [Department of Radiation Oncology, Division of Medical Radiation Physics, Medical University of Vienna/AKH Vienna, Vienna 1090 (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna 1090 (Austria); Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, Vienna 1090 (Austria)

    2015-09-15

    Purpose: Helium ions ({sup 4}He) may supplement current particle beam therapy strategies as they possess advantages in physical dose distribution over protons. To assess potential clinical advantages, a dose calculation module accounting for relative biological effectiveness (RBE) was developed and integrated into the treatment planning system Hyperion. Methods: Current knowledge on RBE of {sup 4}He together with linear energy transfer considerations motivated an empirical depth-dependent “zonal” RBE model. In the plateau region, a RBE of 1.0 was assumed, followed by an increasing RBE up to 2.8 at the Bragg-peak region, which was then kept constant over the fragmentation tail. To account for a variable proton RBE, the same model concept was also applied to protons with a maximum RBE of 1.6. Both RBE models were added to a previously developed pencil beam algorithm for physical dose calculation and included into the treatment planning system Hyperion. The implementation was validated against Monte Carlo simulations within a water phantom using γ-index evaluation. The potential benefits of {sup 4}He based treatment plans were explored in a preliminary treatment planning comparison (against protons) for four treatment sites, i.e., a prostate, a base-of-skull, a pediatric, and a head-and-neck tumor case. Separate treatment plans taking into account physical dose calculation only or using biological modeling were created for protons and {sup 4}He. Results: Comparison of Monte Carlo and Hyperion calculated doses resulted in a γ{sub mean} of 0.3, with 3.4% of the values above 1 and γ{sub 1%} of 1.5 and better. Treatment plan evaluation showed comparable planning target volume coverage for both particles, with slightly increased coverage for {sup 4}He. Organ at risk (OAR) doses were generally reduced using {sup 4}He, some by more than to 30%. Improvements of {sup 4}He over protons were more pronounced for treatment plans taking biological effects into account. All

  13. Dosimetric verification in water of a Monte Carlo treatment planning tool for proton, helium, carbon and oxygen ion beams at the Heidelberg Ion Beam Therapy Center.

    Science.gov (United States)

    Tessonnier, T; Böhlen, T T; Ceruti, F; Ferrari, A; Sala, P; Brons, S; Haberer, T; Debus, J; Parodi, K; Mairani, A

    2017-07-31

    The introduction of 'new' ion species in particle therapy needs to be supported by a thorough assessment of their dosimetric properties and by treatment planning comparisons with clinically used proton and carbon ion beams. In addition to the latter two ions, helium and oxygen ion beams are foreseen at the Heidelberg Ion Beam Therapy Center (HIT) as potential assets for improving clinical outcomes in the near future. We present in this study a dosimetric validation of a FLUKA-based Monte Carlo treatment planning tool (MCTP) for protons, helium, carbon and oxygen ions for spread-out Bragg peaks in water. The comparisons between the ions show the dosimetric advantages of helium and heavier ion beams in terms of their distal and lateral fall-offs with respect to protons, reducing the lateral size of the region receiving 50% of the planned dose up to 12 mm. However, carbon and oxygen ions showed significant doses beyond the target due to the higher fragmentation tail compared to lighter ions (p and He), up to 25%. The Monte Carlo predictions were found to be in excellent geometrical agreement with the measurements, with deviations below 1 mm for all parameters investigated such as target and lateral size as well as distal fall-offs. Measured and simulated absolute dose values agreed within about 2.5% on the overall dose distributions. The MCTP tool, which supports the usage of multiple state-of-the-art relative biological effectiveness models, will provide a solid engine for treatment planning comparisons at HIT.

  14. Dosimetric verification in water of a Monte Carlo treatment planning tool for proton, helium, carbon and oxygen ion beams at the Heidelberg Ion Beam Therapy Center

    Science.gov (United States)

    Tessonnier, T.; Böhlen, T. T.; Ceruti, F.; Ferrari, A.; Sala, P.; Brons, S.; Haberer, T.; Debus, J.; Parodi, K.; Mairani, A.

    2017-08-01

    The introduction of ‘new’ ion species in particle therapy needs to be supported by a thorough assessment of their dosimetric properties and by treatment planning comparisons with clinically used proton and carbon ion beams. In addition to the latter two ions, helium and oxygen ion beams are foreseen at the Heidelberg Ion Beam Therapy Center (HIT) as potential assets for improving clinical outcomes in the near future. We present in this study a dosimetric validation of a FLUKA-based Monte Carlo treatment planning tool (MCTP) for protons, helium, carbon and oxygen ions for spread-out Bragg peaks in water. The comparisons between the ions show the dosimetric advantages of helium and heavier ion beams in terms of their distal and lateral fall-offs with respect to protons, reducing the lateral size of the region receiving 50% of the planned dose up to 12 mm. However, carbon and oxygen ions showed significant doses beyond the target due to the higher fragmentation tail compared to lighter ions (p and He), up to 25%. The Monte Carlo predictions were found to be in excellent geometrical agreement with the measurements, with deviations below 1 mm for all parameters investigated such as target and lateral size as well as distal fall-offs. Measured and simulated absolute dose values agreed within about 2.5% on the overall dose distributions. The MCTP tool, which supports the usage of multiple state-of-the-art relative biological effectiveness models, will provide a solid engine for treatment planning comparisons at HIT.

  15. Differential Ion Mobility Separations in up to 100% Helium Using Microchips

    Energy Technology Data Exchange (ETDEWEB)

    Shvartsburg, Alexandre A.; Ibrahim, Yehia M.; Smith, Richard D.

    2014-01-09

    The performance of differential IMS (FAIMS) analyzers is much enhanced by gases comprising He, especially He/N2 buffers. However, electrical breakdown has limited the He fraction in those mixtures to ~50 - 75%, depending on the field strength. By Paschen law, the threshold field for breakdown increases at shorter distances. This allows FAIMS using chips with microscopic channels to utilize much stronger field intensities (E) than “full-size” analyzers with wider gaps. Here we show that those chips can employ higher He fractions up to 100%. Use of He-rich gases improves the resolution and resolution/sensitivity balance substantially, although less than for full-size analyzers. The optimum He fraction is ~80%, in line with first-principles theory. Hence one can now measure the dependences of ion mobility on E in pure He, where ion-molecule cross section calculations are much more tractable than in other gases that form deeper and more complex interaction potentials. This capability may facilitate quantitative modeling of high-field ion mobility behavior and thus FAIMS separation properties, which would enable a priori extraction of structural information about the ions from FAIMS data.

  16. Differential ion mobility separations in up to 100% helium using microchips.

    Science.gov (United States)

    Shvartsburg, Alexandre A; Ibrahim, Yehia M; Smith, Richard D

    2014-03-01

    The performance of differential IMS (FAIMS) analyzers is much enhanced by gases comprising He, especially He/N2 mixtures. However, electrical breakdown has limited the He fraction to ~50%-75%, depending on the field strength. By the Paschen law, the threshold field for breakdown increases at shorter distances. This allows FAIMS using chips with microscopic channels to utilize much stronger field intensities (E) than "full-size" analyzers with wider gaps. Here we show that those chips can employ higher He fractions up to 100%. Use of He-rich gases improves the resolution and resolution/sensitivity balance substantially, although less than for full-size analyzers. The optimum He fraction is ~80%, in line with first-principles theory. Hence, one can now measure the dependences of ion mobility on E in pure He, where ion-molecule cross section calculations are much more tractable than in other gases that form deeper and more complex interaction potentials. This capability may facilitate quantitative modeling of high-field ion mobility behavior and, thus, FAIMS separation properties, which would enable a priori extraction of structural information about the ions.

  17. Microscopic Calculation of Pre-Compound Excitation Energies for Heavy-Ion Collisions

    OpenAIRE

    2009-01-01

    We introduce a microscopic approach for calculating the excitation energies of systems formed during heavy-ion collisions. The method is based on time-dependent Hartree-Fock (TDHF) theory and allows the study of the excitation energy as a function of time or ion-ion separation distance. We discuss how this excitation energy is related to the estimate of the excitation energy using the reaction $Q$-value, as well as its implications for dinuclear pre-compound systems formed during heavy-ion co...

  18. Scaling of cross-sections for asymmetric (, 3) process on helium-like ions by fast electrons

    Indian Academy of Sciences (India)

    M K Srivastava

    2004-11-01

    An approximate simple scaling law is obtained for asymmetric (, 3) process on helium-like ions for double ionization by fast electrons. It is based on the equation $(Z'^{3} /)$ exp$[−Z' (r_{1} + r_{2})]$, $Z' = Z − (5/16)$ for ground state wave function of helium- like ions and $Z'^{2}$ scaling of energies. The scaling law is found to work very well if the lower energy electron is ejected along the momentum transfer direction and the other one is ejected in the opposite direction. It also works quite well if this electron is ejected within about 90° of the momentum transfer direction with the other electron going in the opposite direction. The scaling law becomes increasingly accurate as the target nuclear charge and the energy increase.

  19. Ions in water: the microscopic structure of concentrated hydroxide solutions.

    Science.gov (United States)

    Imberti, S; Botti, A; Bruni, F; Cappa, G; Ricci, M A; Soper, A K

    2005-05-15

    Neutron-diffraction data on aqueous solutions of hydroxides, at solute concentrations ranging from 1 solute per 12 water molecules to 1 solute per 3 water molecules, are analyzed by means of a Monte Carlo simulation (empirical potential structure refinement), in order to determine the hydration shell of the OH- in the presence of the smaller alkali metal ions. It is demonstrated that the symmetry argument between H+ and OH- cannot be used, at least in the liquid phase at such high concentrations, for determining the hydroxide hydration shell. Water molecules in the hydration shell of K+ orient their dipole moment at about 45 degrees from the K+-water oxygen director, instead of radially as in the case of the Li+ and Na+ hydration shells. The K+-water oxygen radial distribution function shows a shallower first minimum compared to the other cation-water oxygen functions. The influence of the solutes on the water-water radial distribution functions is shown to have an effect on the water structure equivalent to an increase in the pressure of the water, depending on both ion concentration and ionic radius. The changes of the water structure in the presence of charged solutes and the differences among the hydration shells of the different cations are used to present a qualitative explanation of the observed cation mobility.

  20. The effect of low energy helium ion irradiation on tungsten-tantalum (W-Ta) alloys under fusion relevant conditions

    Science.gov (United States)

    Gonderman, S.; Tripathi, J. K.; Novakowski, T. J.; Sizyuk, T.; Hassanein, A.

    2017-08-01

    Currently, tungsten remains the best candidate for plasma-facing components (PFCs) for future fusion devices because of its high melting point, low erosion, and strong mechanical properties. However, continued investigation has shown tungsten to undergo severe morphology changes under fusion-like conditions. These results motivate the study of innovative PFC materials which are resistant to surface morphology evolution. The goal of this work is to examine tungsten-tantalum (W-Ta) alloys, a potential PFC material, and their response to low energy helium ion irradiation. Specifically, W-Ta samples are exposed to 100 eV helium irradiations with a flux of 1.15 × 1021 ions m-2 s-1, at 873 K, 1023 K, and 1173 K for 1 h duration. Scanning electron microscopy (SEM) reveals significant changes in surface deterioration due to helium ion irradiation as a function of both temperature and tantalum concentration in W-Ta samples. X-Ray Diffraction (XRD) studies show a slight lattice parameter expansion in W-Ta alloy samples compared to pure W samples. The observed lattice parameter expansion in W-Ta alloy samples (proportional to increasing Ta wt.% concentrations) reflect significant differences observed in the evolution of surface morphology, i.e., fuzz development processes for both increasing Ta wt.% concentration and target temperature. These results suggest a correlation between the observed morphology differences and the induced crystal structure change caused by the presence of tantalum. Shifts in the XRD peaks before and after 100 eV helium irradiation with a flux of 1.15 × 1021 ions m-2 s-1, 1023 K, for 1 h showed a significant difference in the magnitude of the shift. This has suggested a possible link between the atomic spacing of the material and the accumulated damage. Ongoing research is needed on W-Ta alloys and other innovative materials for their application as irradiation resistant materials in future fusion or irradiation environments.

  1. K{alpha}{sub 1} radiation from heavy, helium-like ions produced in relativistic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Surzhykov, A.; Jentschura, U.D. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Stoehlker, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Fritzsche, S. [Kassel Univ. (Germany). Inst. fuer Physik

    2006-11-15

    Bound-state transitions in few-electron, heavy ions following radiative electron capture are studied within the framework of the density matrix theory and the multiconfiguration Dirac-Fock approach. Special attention is paid to the K{alpha}{sub 1}(1s{sub 1/2}2p{sub 3/2}{sup 1,3}P{sub J=1,2}{yields}1s{sub 1/2}{sup 2} {sup 1}S{sub J=0}) radiative decay of helium-like uranium U{sup 90+} projectiles. This decay has recently been observed at the GSI facility in Darmstadt, giving rise to a surprisingly isotropic angular distribution, which is inconsistent with previous experiments and calculations based on a 'one-particle' model. We show that the unexpected isotropy essentially results from the mutual cancellation of the angular distributions of the {sup 1}P{sub 1}{yields}{sup 1}S{sub 0} electric dipole and {sup 3}P{sub 2}{yields}{sup 1}S{sub 0} magnetic quadrupole transitions, both of which contribute to the K{alpha}{sub 1} radiation. Detailed computations on the anisotropy of the K{alpha}{sub 1} radiation have been carried out for a wide range of projectile energies and are compared to available experimental data. (orig.)

  2. Enhanced End-Contacts by Helium Ion Bombardment to Improve Graphene-Metal Contacts

    Directory of Open Access Journals (Sweden)

    Kunpeng Jia

    2016-08-01

    Full Text Available Low contact resistance between graphene and metals is of paramount importance to fabricate high performance graphene-based devices. In this paper, the impact of both defects induced by helium ion (He+ bombardment and annealing on the contact resistance between graphene and various metals (Ag, Pd, and Pt were systematically explored. It is found that the contact resistances between all metals and graphene are remarkably reduced after annealing, indicating that not only chemically adsorbed metal (Pd but also physically adsorbed metals (Ag and Pt readily form end-contacts at intrinsic defect locations in graphene. In order to further improve the contact properties between Ag, Pd, and Pt metals and graphene, a novel method in which self-aligned He+ bombardment to induce exotic defects in graphene and subsequent thermal annealing to form end-contacts was proposed. By using this method, the contact resistance is reduced significantly by 15.1% and 40.1% for Ag/graphene and Pd/graphene contacts with He+ bombardment compared to their counterparts without He+ bombardment. For the Pt/graphene contact, the contact resistance is, however, not reduced as anticipated with He+ bombardment and this might be ascribed to either inappropriate He+ bombardment dose, or inapplicable method of He+ bombardment in reducing contact resistance for Pt/graphene contact. The joint efforts of as-formed end-contacts and excess created defects in graphene are discussed as the cause responsible for the reduction of contact resistance.

  3. The pumping of hydrogen and helium by sputter-ion pumps

    Energy Technology Data Exchange (ETDEWEB)

    Welch, K.M.; Pate, D.J.; Todd, R.J.

    1992-01-01

    The pumping of hydrogen in diode and triode sputter-ion pumps is discussed. The type of cathode material used in these pumps is shown to have a significant impact on the effectiveness with which hydrogen is pumped. Examples of this include data for pumps with aluminum and titanium-alloy cathodes. Diode pumps with aluminum cathodes are shown to be no more effective in the pumping of hydrogen than in the pumping of helium. The use of titanium or titanium alloy anodes is also shown to measurably impact on the speed of these pumps at.very low pressures. This stems from the fact that hydrogen is [times]10[sup 6] more soluble in titanium than in stainless steel. Hydrogen becomes resident in the anodes because of fast neutral burial. Lastly, quantitative data are given for the He speeds and capacities of both noble and conventional diode and triode pumps. The effectiveness of various pump regeneration procedures, subsequent to the pumping of He, is reported.These included bakeout and N[sub 2] glow discharge cleaning. The comparative desorption of He with the subsequent pumping of N[sub 2] is reported on. The N[sub 2] speed of these pumps was used as the benchmark for defining the size of the pumps vs. their respective He speeds.

  4. The pumping of hydrogen and helium by sputter-ion pumps. Revision 3/93

    Energy Technology Data Exchange (ETDEWEB)

    Welch, K.M.; Pate, D.J.; Todd, R.J.

    1992-12-31

    The pumping of hydrogen in diode and triode sputter-ion pumps is discussed. The type of cathode material used in these pumps is shown to have a significant impact on the effectiveness with which hydrogen is pumped. Examples of this include data for pumps with aluminum and titanium-alloy cathodes. Diode pumps with aluminum cathodes are shown to be no more effective in the pumping of hydrogen than in the pumping of helium. The use of titanium or titanium alloy anodes is also shown to measurably impact on the speed of these pumps at.very low pressures. This stems from the fact that hydrogen is {times}10{sup 6} more soluble in titanium than in stainless steel. Hydrogen becomes resident in the anodes because of fast neutral burial. Lastly, quantitative data are given for the He speeds and capacities of both noble and conventional diode and triode pumps. The effectiveness of various pump regeneration procedures, subsequent to the pumping of He, is reported.These included bakeout and N{sub 2} glow discharge cleaning. The comparative desorption of He with the subsequent pumping of N{sub 2} is reported on. The N{sub 2} speed of these pumps was used as the benchmark for defining the size of the pumps vs. their respective He speeds.

  5. Transmission electron microscope interfaced with ion accelerators and its application to materials science

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroaki; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hojou, Kiichi; Furuno, Shigemi; Tsukamoto, Tetsuo

    1997-03-01

    We have developed the transmission/analytical electron microscope interfaced with two sets of ion accelerators (TEM-Accelerators Facility) at JAERI-Takasaki. The facility is expected to provide quantitative insights into radiation effects, such as damage evolution, irradiation-induced phase transformation and their stability, through in-situ observation and analysis under ion and/or electron irradiation. The TEM-Accelerators Facility and its application to materials research are reviewed. (author)

  6. Thermal stability of nanostructured TiZrSiN thin films subjected to helium ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Uglov, V.V., E-mail: uglov@bsu.by [Belarusian State University, 4 Nezavisimosti Ave., Minsk 220030 (Belarus); Tomsk Polytechnic University, 2a Lenina Ave., Tomsk 634028 (Russian Federation); Abadias, G. [Institut P’, Université de Poitiers-CNRS-ENSMA, SP2MI, Téléport 2, F86962 Chasseneuil-Futuroscope (France); Zlotski, S.V.; Saladukhin, I.A. [Belarusian State University, 4 Nezavisimosti Ave., Minsk 220030 (Belarus); Skuratov, V.A. [FLNR, JINR, Joliot-Curie Str., 6, Moscow Region, Dubna 141980 (Russian Federation); Leshkevich, S.S. [Belarusian State University, 4 Nezavisimosti Ave., Minsk 220030 (Belarus); Petrovich, S. [VINCA Institute of Nuclear Sciences, Belgrade University, Tudentski trg 1, Belgrade 11000 (Serbia)

    2015-07-01

    Highlights: • Phase formation upon Si addition in TiZrN films at the deposition temperature of 600 °C is considered. • The formation of ‘double-layer’ system and diffusion of titanium atoms under irradiation was revealed. • The formation of a secondary ZrN phase takes place. • The irradiation by helium ions leads to decomposition of the cubic TiZrN crystallites. - Abstract: The phase stability, upon vacuum annealing up to 1000 °C, of nanostructured (Ti,Zr){sub 1−x}Si{sub x}N thin films is investigated by X-ray diffraction analysis as a function of Si content (0.13 ⩽ x ⩽ 0.25) and prior irradiation with He ions (40 kV). The quaternary TiZrSiN thin films were deposited by reactive magnetron sputtering from elemental targets at the substrate temperature of 600 °C. It was found that the increase in Si content, x, results in the transformation of structure from nanocrystalline (x = 0.13, grain size of 11 nm) to nanocomposite state (0.19 < x ⩽ 0.25, grain size of 5 nm). The phase composition of the films changes from single-phase, cubic c-(Ti,Zr)N columns with (1 1 1) preferred orientation to dual-phase system consisting of c-(Ti,Zr)N crystallites and amorphous SiN{sub y}. Irradiation with He ions at the doses of 2 × 10{sup 16} and 5 × 10{sup 16} cm{sup −2} does change the phase composition of the films. It is found that the onset temperature for phase decomposition decreases from 1000 °C to 800 °C with increasing Si content for unirradiated films. The formation of a secondary ZrN phase is observed concomitantly with increased broadening of the (2 0 0) c-(Ti,Zr)N diffraction peak. For irradiated films, the subsequent annealing at 1000 °C leads to decomposition of the c-(Ti,Zr)N solid solution into TiN- and ZrN-rich phases as well as crystallization of hexagonal Si{sub 3}N{sub 4} phase.

  7. Impact of helium ion energy modulation on tungsten surface morphology and nano-tendril growth

    Science.gov (United States)

    Woller, K. B.; Whyte, D. G.; Wright, G. M.

    2017-06-01

    Time-modulated helium (He) ion energy (e.g. V Bias  =  -50  +  25·sin(2πf RF · t), f RF  =  13.56 MHz) is demonstrated to strongly affect the development of tungsten (W) surface morphology that results from He plasma irradiation in the DIONISOS linear plasma experiment. Nano-tendril bundles (NTBs), which appear as isolated ‘islands’ of nano-tendrils, can rapidly grow on an otherwise smooth W surface. This is in contrast to previously seen full-surface coverage of nano-tendril growth known as ‘fuzz’. When tall NTBs form, less than 15% of the surface contains nano-tendrils. The NTB surface coverage changes with growth conditions and the total volume of nano-tendrils in the NTBs is observed to be up to a factor of 16 larger than when fuzz is grown. This indicates that long-range W surface transport underlies nano-tendril formation. Surface temperature 870-1220 K, the DC bias potential  -30 to  -70 V, and the ion flux density 4.4  ×  1021-1.1  ×  1022 He · m-2 · s-1 are varied in the experiments. NTBs form at similar conditions as fuzz with the critical difference being the RF modulation of the ion energy bombarding the W, another indication of the importance of W surface transport. Mass loss measurements indicate net erosion with a yield of 1-8  ×  10-4 W/He when NTBs form; erosion that is not attributable to chemical or physical sputtering by He or impurities in the plasma. The erosion is correlated to the NTB growth, based on post-exposure inspection by electron microscopy indicating that NTBs are prone to loss from the surface. NTB growth is compared to the empirical growth-erosion model of fuzz, showing NTBs grow up to a factor of 100 times taller than the expected fuzz layer depth under DC bias conditions. Insights into nano-tendril growth provided by this new growth regime are discussed. Strategies to mitigate W fuzz growth may inadvertently result in rapid localized nano-tendril bundle

  8. Helium ion microscopy of enamel crystallites and extracellular tooth enamel matrix

    Directory of Open Access Journals (Sweden)

    Felicitas B Bidlack

    2014-10-01

    Full Text Available An unresolved problem in tooth enamel studies has been to analyze simultaneously and with sufficient spatial resolution both mineral and organic phases in their three dimensional (3D organization in a given specimen. This study aims to address this need using high-resolution imaging to analyze the 3D structural organization of the enamel matrix, especially amelogenin, in relation to forming enamel crystals. Chemically fixed hemi-mandibles from wild type mice were embedded in LR White acrylic resin, polished and briefly etched to expose the organic matrix in developing tooth enamel. Full-length amelogenin was labeled with specific antibodies and 10 nm immuno-gold. This allowed us to use and compare two different high-resolution imaging techniques for the analysis of uncoated samples. Helium ion microscopy (HIM was applied to study the spatial organization of organic and mineral structures, while field emission scanning electron microscopy (FE-SEM in various modes, including backscattered electron detection, allowed us to discern the gold-labeled proteins. Wild type enamel in late secretory to early maturation stage reveals adjacent to ameloblasts a lengthwise parallel alignment of the enamel matrix proteins, including full-length amelogenin proteins, which then transitions into a more heterogeneous appearance with increasing distance from the mineralization front. The matrix adjacent to crystal bundles forms a smooth and lacey sheath, whereas between enamel prisms it is organized into spherical components that are interspersed with rod-shaped protein. These findings highlight first, that the heterogeneous organization of the enamel matrix can be visualized in mineralized en bloc samples. Second, our results illustrate that the combination of these techniques is a powerful approach to elucidate the 3D structural organization of organic matrix molecules in mineralizing tissue in nanometer resolution.

  9. Helium bubble evolution in a Zr–Sn–Nb–Fe–Cr alloy during post-annealing: An in-situ investigation

    Energy Technology Data Exchange (ETDEWEB)

    Shen, H.H. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Peng, S.M.; Chen, B. [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Naab, F.N. [Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Sun, G.A.; Zhou, W. [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Xiang, X. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Sun, K., E-mail: kaisun@umich.edu [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Zu, X.T., E-mail: xtzu@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-09-15

    The formation of helium bubbles is considered to be detrimental to the mechanical performance of the nuclear materials. The growth behaviors of helium bubbles in a helium ion implanted Zr–Sn–Nb–Fe–Cr alloy with respect to the helium fluence and subsequently annealing procedure were investigated by in-situ transmission electron microscopy. In the as-implanted sample, the measured size distributions of the helium bubbles are consistent with the simulated helium concentrations. Moreover, the mean size of the helium bubbles increases with the increase of the irradiation temperatures and the helium fluence. The in-situ heating study performed in a transmission electron microscope indicates that the mean size of the helium bubbles increase slowly below 923 K and dramatically above 923 K. The coarsening mechanism of the helium bubbles in the alloy is suggested based on the study. - Highlights: • Helium bubble growth in zirconium with annealing was in-situ investigated in TEM. • The mean helium bubble size increase with helium fluence and annealing temperature. • Helium bubble size distribution is same as that of helium concentration by SRIM. • Mean bubble size increases slowly and quickly with temperature below and above 923 K. • The growth mechanism of the helium bubbles in Zr alloy has been discussed.

  10. Effects of composition and helium injection on dislocation loop development in pure FeNiCr alloys under Ni ion irradiation

    Science.gov (United States)

    Kimoto, Takayoshi

    1993-08-01

    Pure Fe35Ni7Cr, Fe45Ni7Cr, Fe40Ni13Cr and Fe45Ni15Cr alloys were irradiated by 4MeV Ni 2+ ions at 948 K to doses of about 0.05, 0.3 and 1.0 dpa without helium injection or with simultaneous helium injection. With increasing Ni content and decreasing Cr content, the diameter of radiation-induced dislocation loops increased, and the dose at which the dislocation loops disappeared to develop into dislocation networks decreased. The diameter of dislocation loops induced by Ni 2+ ions irradiation with simultaneous helium injection was larger than that without helium injection for the Fe35Ni7Cr and Fe45Ni7Cr alloys.

  11. Development and testing of a pulsed helium ion source for probing materials and warm dense matter studies

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Q., E-mail: qji@lbl.gov; Seidl, P. A.; Waldron, W. L.; Takakuwa, J. H.; Persaud, A.; Schenkel, T. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Friedman, A.; Grote, D. P.; Barnard, J. J. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-02-15

    The neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ∼1 eV using intense, short pulses (∼1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He{sup +} ions leads to more uniform energy deposition of the target material than Li{sup +} ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li{sup +} ions from a hot plate type ion source. He{sup +} beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. The accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.

  12. Microscopic formulation of nonlocal electrostatics in polar liquids embedding polarizable ions.

    Science.gov (United States)

    Buyukdagli, Sahin; Ala-Nissila, T

    2013-06-01

    Nonlocal electrostatic interactions associated with finite solvent size and ion polarizability are investigated within the mean-field linear response theory. To this end, we introduce a field-theoretic model of a polar liquid composed of linear multipole solvent molecules and embedding polarizable ions modeled as Drude oscillators. Unlike previous dipolar Poisson-Boltzmann formulations treating the solvent molecules as point dipoles, our model is able to qualitatively reproduce the non-local dielectric response behavior of polar liquids observed in molecular dynamics simulations and atomic force microscope experiments for water solvent at charged interfaces. The present theory explains the formation of the associated interfacial hydration layers in terms of a cooperative dipolar response mechanism driven by the reaction of the solvent molecules to their own polarization field. We also incorporate into the theory the relative multipole moments of water molecules obtained from quantum mechanical calculations and show that the multipolar contributions to the dielectric permittivity are largely dominated by the dipolar one. We find that this stems from the mutual cancellation of the first two interfacial hydration layers of opposite net charge for multipolar liquids. Within the same nonlocal dielectric response theory, we show that the induced ion polarizability reverses the interfacial ion density trends predicted by the Poisson-Boltzmann theory, resulting in a surface affinity of coions and exclusion of counterions. The results indicate that the consideration of the discrete charge composition of solvent molecules and ions is the key step towards a microscopic understanding of nonlocal electrostatic effects in polar solvents.

  13. State-Selective and Total Single-Capture Cross Sections for Fast Collisions of Multiply Charged Ions with Helium Atoms

    Science.gov (United States)

    Mančev, Ivan; Milojević, Nenad; Belkić, Dževad

    2013-11-01

    The four-body boundary corrected first Born approximation (CB1-4B) is used to calculate the single electron capture cross sections for collisions between fully stripped ions (He2+, Be4+, B5+ and C6+) and helium target at intermediate and high impact energies. The main goal of this study is to assess the usefulness of the CB1-4B method at intermediate and high impact energies for these collisions. Detailed comparisons with the measurements are carried out and the obtained theoretical cross sections are in reasonable agreement with the available experimental data.

  14. Operation of a high temperature ion source at the helium-jet on-line isotope separator facility HELIOS

    Energy Technology Data Exchange (ETDEWEB)

    Bruegger, M.; Hildebrand, N.; Karlewski, T.; Trautmann, N. (Mainz Univ. (Germany, F.R.). Inst. fuer Kernchemie); Mazumdar, A.K. (Marburg Univ. (Germany, F.R.). Fachbereich Physik); Herrmann, G. (Mainz Univ. (Germany, F.R.). Inst. fuer Kernchemie; Gesellschaft fuer Schwerionenforschung m.b.H., Darmstadt (Germany, F.R.))

    1985-02-01

    The performance of a high temperature ion source coupled to a helium gas-jet transport system for an efficient mass separation of neutron-rich alkaline earth and lanthanide isotopes is reported and the results of overall efficiency measurements using different cluster materials in the gas-jet are given. A fast, microprocessor controlled tape transport system for ..gamma..-spectroscopic studies on short-lived isotopes is described. Some results on the decay of 3.8sub(-s) /sup 152/Pr are presented.

  15. Energy Reflected from Solid Targets Bombarded keV Protons and Helium Ions

    DEFF Research Database (Denmark)

    Andersen, Hans Henrik; Lenskjaer, T.; Sidenius, G.

    1976-01-01

    The energy‐reflection coefficient γ has been measured for keV protons impinging on Cu, Au, and Pb and helium impinging on Si, Ag, Ta, and Pb. The results are obtained by entirely independent techniques in three different laboratories. They agree within the stated accuracies of 10%. For a given...

  16. Early stage damage of ultrafine-grained tungsten materials exposed to low energy helium ion irradiation

    NARCIS (Netherlands)

    El-Atwani, O.; Gonderman, S.; Suslov, S.; Efe, M.; De Temmerman, G.; Morgan, T.; Bystrov, K.; Hattar, K.; Allain, J. P.

    2015-01-01

    Tungsten is considered as a plasma facing component in the divertor region of the International Thermonuclear Experiment Reactor (ITER). High flux, high fluence helium (He) exposure of tungsten surfaces induces severe morphology changes and nanostructure formation, which may eventually erode tungste

  17. A calculation for radial expectation values of helium like actinide ions (Z=89-93)

    Science.gov (United States)

    Ürer, G.; Arslan, M.; Balkaya, E.; Keçeli, A.

    2016-03-01

    Radial expectation values, , for helium like actinides (ZAc=89, ZTh=90, ZPa=91, ZU=92, and ZNp=93) are reported using the Multiconfiguration Hartree-Fock (MCHF) within the framework Breit-Pauli corrections. Atomic data as energy levels, wavelengths, weighted oscillator strengths, and transition probabilities for allowed and forbidden transitions need these calculations. The obtained results are compared available works.

  18. Gas bubbles evolution peculiarities in ferritic-martensitic and austenitic steels and alloys under helium-ion irradiation

    Science.gov (United States)

    Chernov, I. I.; Kalashnikov, A. N.; Kalin, B. A.; Binyukova, S. Yu

    2003-12-01

    Transmission electron microscopy has been used to investigate the gas bubble evolution in model alloys of the Fe-C system, ferritic-martensitic steels of 13Cr type, nickel and austenitic steels under 40-keV helium-ion irradiation up to a fluence of 5 × 10 20 m -2 at the temperature of 920 K. It was shown that helium-ion irradiation at high temperature resulted in formation of bubbles with a greater size and a smaller density in Fe and ferritic-martensitic steels than those in nickel and austenitic steels. Large gaseous bubbles in ferritic component are uniformly distributed in grains body in Fe-C alloys as well as in ferritic-martensitic steels. The bubbles with a higher density and a smaller size than those in ferritic component are formed in martensitic grains of steels and Fe-C alloys with a high carbon content ( NC>0.01 wt%), which leads to a small level of swelling of martensite in comparison with that of ferrite. In addition, the bubbles in martensitic grains have a tendency to ordered distribution.

  19. Gas bubbles evolution peculiarities in ferritic-martensitic and austenitic steels and alloys under helium-ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chernov, I.I. E-mail: chernov@phm.mephi.ru; Kalashnikov, A.N.; Kalin, B.A.; Binyukova, S.Yu

    2003-12-01

    Transmission electron microscopy has been used to investigate the gas bubble evolution in model alloys of the Fe-C system, ferritic-martensitic steels of 13Cr type, nickel and austenitic steels under 40-keV helium-ion irradiation up to a fluence of 5 x 10{sup 20} m{sup -2} at the temperature of 920 K. It was shown that helium-ion irradiation at high temperature resulted in formation of bubbles with a greater size and a smaller density in Fe and ferritic-martensitic steels than those in nickel and austenitic steels. Large gaseous bubbles in ferritic component are uniformly distributed in grains body in Fe-C alloys as well as in ferritic-martensitic steels. The bubbles with a higher density and a smaller size than those in ferritic component are formed in martensitic grains of steels and Fe-C alloys with a high carbon content (N{sub C}>0.01 wt%), which leads to a small level of swelling of martensite in comparison with that of ferrite. In addition, the bubbles in martensitic grains have a tendency to ordered distribution.

  20. Effective particle energies for stopping power calculation in radiotherapy treatment planning with protons and helium, carbon, and oxygen ions

    Science.gov (United States)

    Inaniwa, T.; Kanematsu, N.

    2016-10-01

    The stopping power ratio (SPR) of body tissues relative to water depends on the particle energy. For simplicity, however, most analytical dose planning systems do not account for SPR variation with particle energy along the beam’s path, but rather assume a constant energy for SPR estimation. The range error due to this simplification could be indispensable depending on the particle species and the assumed energy. This error can be minimized by assuming a suitable energy referred to as an ‘effective energy’ in SPR estimation. To date, however, the effective energy has never been investigated for realistic patient geometries. We investigated the effective energies for proton, helium-, carbon-, and oxygen-ion radiotherapy using volumetric models of the reference male and female phantoms provided by the International Commission on Radiological Protection (ICRP). The range errors were estimated by comparing the particle ranges calculated when particle energy variations were and were not considered. The effective energies per nucleon for protons and helium, carbon, and oxygen ions were 70 MeV, 70 MeV, 131 MeV, and 156 MeV, respectively. Using the determined effective energies, the range errors were reduced to  ⩽0.3 mm for respective particle species. For SPR estimation of multiple particle species, an effective energy of 100 MeV is recommended, with which the range error is  ⩽0.5 mm for all particle species.

  1. Helium ion microscopy and ultra-high-resolution scanning electron microscopy analysis of membrane-extracted cells reveals novel characteristics of the cytoskeleton of Giardia intestinalis.

    Science.gov (United States)

    Gadelha, Ana Paula Rocha; Benchimol, Marlene; de Souza, Wanderley

    2015-06-01

    Giardia intestinalis presents a complex microtubular cytoskeleton formed by specialized structures, such as the adhesive disk, four pairs of flagella, the funis and the median body. The ultrastructural organization of the Giardia cytoskeleton has been analyzed using different microscopic techniques, including high-resolution scanning electron microscopy. Recent advances in scanning microscopy technology have opened a new venue for the characterization of cellular structures and include scanning probe microscopy techniques such as ultra-high-resolution scanning electron microscopy (UHRSEM) and helium ion microscopy (HIM). Here, we studied the organization of the cytoskeleton of G. intestinalis trophozoites using UHRSEM and HIM in membrane-extracted cells. The results revealed a number of new cytoskeletal elements associated with the lateral crest and the dorsal surface of the parasite. The fine structure of the banded collar was also observed. The marginal plates were seen linked to a network of filaments, which were continuous with filaments parallel to the main cell axis. Cytoplasmic filaments that supported the internal structures were seen by the first time. Using anti-actin antibody, we observed a labeling in these filamentous structures. Taken together, these data revealed new surface characteristics of the cytoskeleton of G. intestinalis and may contribute to an improved understanding of the structural organization of trophozoites.

  2. Heavy metal incorporated helium ion active hybrid non-chemically amplified resists: Nano-patterning with low line edge roughness

    Science.gov (United States)

    Reddy, Pulikanti Guruprasad; Thakur, Neha; Lee, Chien-Lin; Chien, Sheng-Wei; Pradeep, Chullikkattil P.; Ghosh, Subrata; Tsai, Kuen-Yu; Gonsalves, Kenneth E.

    2017-08-01

    Helium (He) ion lithography is being considered as one of the most promising and emerging technology for the manufacturing of next generation integrated circuits (ICs) at nanolevel. However, He-ion active resists are rarely reported. In this context, we are introducing a new non-chemically amplified hybrid resist (n-CAR), MAPDSA-MAPDST, for high resolution He-ion beam lithography (HBL) applications. In the resist architecture, 2.15 % antimony is incorporated as heavy metal in the form of antimonate. This newly developed resists has successfully used for patterning 20 nm negative tone features at a dose of 60 μC/cm2. The resist offered very low line edge roughness (1.27±0.31 nm) for 20 nm line features. To our knowledge, this is the first He-ion active hybrid resist for nanopatterning. The contrast (γ) and sensitivity (E0) of this resist were calculated from the contrast curve as 0.73 and 7.2 μC/cm2, respectively.

  3. Heavy metal incorporated helium ion active hybrid non-chemically amplified resists: Nano-patterning with low line edge roughness

    Directory of Open Access Journals (Sweden)

    Pulikanti Guruprasad Reddy

    2017-08-01

    Full Text Available Helium (He ion lithography is being considered as one of the most promising and emerging technology for the manufacturing of next generation integrated circuits (ICs at nanolevel. However, He-ion active resists are rarely reported. In this context, we are introducing a new non-chemically amplified hybrid resist (n-CAR, MAPDSA-MAPDST, for high resolution He-ion beam lithography (HBL applications. In the resist architecture, 2.15 % antimony is incorporated as heavy metal in the form of antimonate. This newly developed resists has successfully used for patterning 20 nm negative tone features at a dose of 60 μC/cm2. The resist offered very low line edge roughness (1.27±0.31 nm for 20 nm line features. To our knowledge, this is the first He-ion active hybrid resist for nanopatterning. The contrast (γ and sensitivity (E0 of this resist were calculated from the contrast curve as 0.73 and 7.2 μC/cm2, respectively.

  4. In situ nanomechanical testing in focused ion beam and scanning electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Gianola, D. S. [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe (Germany); Sedlmayr, A.; Moenig, R.; Kraft, O. [Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe (Germany); Volkert, C. A. [Institute for Materials Physics, Georg-August University of Goettingen, Goettingen (Germany); Major, R. C.; Cyrankowski, E.; Asif, S. A. S.; Warren, O. L. [Hysitron, Inc., Minneapolis, Minnesota 55344 (United States)

    2011-06-15

    The recent interest in size-dependent deformation of micro- and nanoscale materials has paralleled both technological miniaturization and advancements in imaging and small-scale mechanical testing methods. Here we describe a quantitative in situ nanomechanical testing approach adapted to a dual-beam focused ion beam and scanning electron microscope. A transducer based on a three-plate capacitor system is used for high-fidelity force and displacement measurements. Specimen manipulation, transfer, and alignment are performed using a manipulator, independently controlled positioners, and the focused ion beam. Gripping of specimens is achieved using electron-beam assisted Pt-organic deposition. Local strain measurements are obtained using digital image correlation of electron images taken during testing. Examples showing results for tensile testing of single-crystalline metallic nanowires and compression of nanoporous Au pillars will be presented in the context of size effects on mechanical behavior and highlight some of the challenges of conducting nanomechanical testing in vacuum environments.

  5. In situ nanomechanical testing in focused ion beam and scanning electron microscopes.

    Science.gov (United States)

    Gianola, D S; Sedlmayr, A; Mönig, R; Volkert, C A; Major, R C; Cyrankowski, E; Asif, S A S; Warren, O L; Kraft, O

    2011-06-01

    The recent interest in size-dependent deformation of micro- and nanoscale materials has paralleled both technological miniaturization and advancements in imaging and small-scale mechanical testing methods. Here we describe a quantitative in situ nanomechanical testing approach adapted to a dual-beam focused ion beam and scanning electron microscope. A transducer based on a three-plate capacitor system is used for high-fidelity force and displacement measurements. Specimen manipulation, transfer, and alignment are performed using a manipulator, independently controlled positioners, and the focused ion beam. Gripping of specimens is achieved using electron-beam assisted Pt-organic deposition. Local strain measurements are obtained using digital image correlation of electron images taken during testing. Examples showing results for tensile testing of single-crystalline metallic nanowires and compression of nanoporous Au pillars will be presented in the context of size effects on mechanical behavior and highlight some of the challenges of conducting nanomechanical testing in vacuum environments.

  6. Dynamic correlation in the electron angular distribution in ionization of helium by ion impact

    Energy Technology Data Exchange (ETDEWEB)

    Monti, J M; Fojon, O A; Rivarola, R D [Instituto de Fisica Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, IngenierIa y Agrimensura, Universidad Nacional de Rosario, Avenida Pellegrini 250, 2000 Rosario (Argentina); Hanssen, J, E-mail: rivarola@fceia.unr.edu.ar [Institut de Chimie, Physique et Materiaux, Laboratoire de Physique Moleculaire et des Collisions, Universite Paul Verlaine - Metz, 1 Bv. Arago, 57078 Metz Cedex 3 (France)

    2011-04-01

    Single ionization of helium by proton impact is investigated in terms of a four-body distorted wave model. In this approximation both electrons are considered as active, being one of them ionized whereas the other remains in a residual target bound state. The influence of dynamic correlation between electrons is investigated by comparison with a four-body uncorrelated distorted wave model. Double differential cross sections as a function of the emission angle for fixed electron energies and different collision energies are presented.

  7. Double ionization of helium by highly-charged-ion impact analyzed within the frozen-correlation approximation

    Energy Technology Data Exchange (ETDEWEB)

    Ciappina, M. F.; Kirchner, T.; Schulz, M. [ICFO-Institut de Ciences Fotoniques, 08860 Castelldefels (Barcelona) (Spain); Department of Physics and Astronomy, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3 (Canada); Department of Physics and LAMOR, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2011-09-15

    We apply the frozen-correlation approximation (FCA) to analyze double ionization of helium by energetic highly charged ions. In this model the double ionization amplitude is represented in terms of single ionization amplitudes, which we evaluate within the continuum distorted wave-eikonal initial state (CDW-EIS) approach. Correlation effects are incorporated in the initial and final states, but are neglected during the time the collision process takes place. We implement the FCA using the Monte Carlo event generator technique, which allows us to generate theoretical event files and to compare theory and experiment using the same analysis tools. The comparison with previous theoretical results and with experimental data demonstrates, on the one hand, the validity of our earlier simple models to account for higher-order mechanisms, and, on the other hand, the robustness of the FCA.

  8. Isolated attosecond pulses generation from coherent superposition state of helium ion in static electric fields and spatial nonhomogeneous fields

    Science.gov (United States)

    Liu, Hao; Zhang, Zhengzhong; Wu, Yangjiang; Jiang, Shicheng; Yu, Chao

    2016-09-01

    We present a systematic study of high-order harmonic generation (HHG) from helium ion with the initial state prepared as a coherent superposition of electronic ground state and an excited state. As a result, the conversion efficiency of the harmonic spectrum is significantly enhanced. When we add a static electric field in fundamental field, the supercontinuum region of the harmonic spectrum is distinctly extended and an isolated 100 as pulse can be generated. Moreover, we use a spatial nonhomogeneous field to increase the cutoff energy in high-order harmonic generation spectrum, which can be extended to about 700 eV, and an isolated 50 as pulse can be obtained directly by the superposition of the supercontinuum harmonics.

  9. Analysis of IMP-grown Cd sub x Hg sub 1-x Te using helium ion RBS

    Energy Technology Data Exchange (ETDEWEB)

    Avery, A.J.; Diskett, D.J. (Royal Military Coll. of Science, Shrivenham, Swindon (United Kingdom)); Gough, J.S.; Young, M.L. (Royal Signals and Radar Establishment, Malvern (United Kingdom))

    1992-02-01

    Epitaxial layers of Cd{sub x}Hg{sub 1-x}Te may be grown by the IMP (interdiffused multilayer process) technique in which alternate layers of CdTe and HgTe are deposited by metalorganic vapour phase epitaxy and interdiffused at the growth temperature. The infrared optical properties of the layers are critically dependent upon the value of x which may be tailored by controlling the relative thickness of the CdTe and HgTe sublayers. This paper describes the application of helium ion RBS to the study of the completeness of interdiffusion between sublayers and the application of channelling to the study of their crystalline quality. (orig.).

  10. The use of helium ion RBS for profiling epitaxial layers of Cd sub x Hg sub 1-x Te

    Energy Technology Data Exchange (ETDEWEB)

    Avery, A.J.; Diskett, D.J.; Lane, D.W. (Royal Military Coll. of Science, Shrivenham, Swindon, Wiltshire (UK)); Giess, J.; Irvine, S.J.C. (Royal Signals and Radar Establishment, Malvern, Worcestershire (UK))

    1990-01-01

    This paper describes the application of helium ion RBS and channelling to the characterization of an epitaxial layer of Cd{sub x}Hg{sub 1-x}Te. The layer was grown by MOVPE on a substrate of GaAs as part of a programme for developing infrared detector materials. The use of RBS with the aid of computer techniques is discussed for obtaining compositional (x) profiles both within the layers and, in particular, in the near-surface region. Conventional- and grazing-geometry measurements have been used to establish layer quality and interfacial abruptness. Variations in composition close to the surface have been correlated with the conditions under which layer growth was terminated. Channelling measurements are presented for the assessment of the layer crystalline quality. (orig.).

  11. Formation of amorphous carbon on the surface of poly(ethylene terephthalate) by helium plasma based ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Toth, A., E-mail: totha@chemres.hu [Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17 (Hungary); Veres, M. [Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 49 (Hungary); Kereszturi, K.; Mohai, M.; Bertoti, I.; Szepvoelgyi, J. [Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17 (Hungary)

    2011-08-15

    The surface modification of poly(ethylene terephthalate) (PET) by helium plasma based ion implantation (He PBII) was studied. The effect of the main process parameters (acceleration voltage, fluence and fluence rate) on the alterations of the surface chemical composition and structure were investigated by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. According to SRIM calculations, at ion energies above 2 keV the stopping power of PET for He{sup +} ions is dominated by the electronic component and the contribution of the nuclear component is relatively small. Degradation of the ester group and carbonisation were observed by XPS due to elimination of O-rich fragments. The total C-content of the modified layer increased with the increase of fluence rate and acceleration voltage of particles, enabling the purposeful alteration of the surface composition. A strong broadening was detected in the Raman spectrum between 1000 and 1700 cm{sup -1}, testifying to the intense formation of amorphous carbon. The area ratio of the D ({approx}1410 cm{sup -1}) to G ({approx}1570 cm{sup -1}) band increased with the increase of particle fluence and the increase of acceleration voltage, offering the possibility of tailoring the chemical structure of the amorphous carbon layer created by the He PBII treatment.

  12. Measurement of track structure parameters of low and medium energy helium and carbon ions in nanometric volumes

    Science.gov (United States)

    Hilgers, G.; Bug, M. U.; Rabus, H.

    2017-10-01

    Ionization cluster size distributions produced in the sensitive volume of an ion-counting wall-less nanodosimeter by monoenergetic carbon ions with energies between 45 MeV and 150 MeV were measured at the TANDEM-ALPI ion accelerator facility complex of the LNL-INFN in Legnaro. Those produced by monoenergetic helium ions with energies between 2 MeV and 20 MeV were measured at the accelerator facilities of PTB and with a 241Am alpha particle source. C3H8 was used as the target gas. The ionization cluster size distributions were measured in narrow beam geometry with the primary beam passing the target volume at specified distances from its centre, and in broad beam geometry with a fan-like primary beam. By applying a suitable drift time window, the effective size of the target volume was adjusted to match the size of a DNA segment. The measured data were compared with the results of simulations obtained with the PTB Monte Carlo code PTra. Before the comparison, the simulated cluster size distributions were corrected with respect to the background of additional ionizations produced in the transport system of the ionized target gas molecules. Measured and simulated characteristics of the particle track structure are in good agreement for both types of primary particles and for both types of the irradiation geometry. As the range in tissue of the ions investigated is within the typical extension of a spread-out Bragg peak, these data are useful for benchmarking not only ‘general purpose’ track structure simulation codes, but also treatment planning codes used in hadron therapy. Additionally, these data sets may serve as a data base for codes modelling the induction of radiation damages at the DNA-level as they almost completely characterize the ionization component of the nanometric track structure.

  13. Damage of alumina films by medium energy hydrogen and helium ions

    CERN Document Server

    Bailey, P; Liu, Y; Alexander, M R; Koroleva, E V; Skeldon, P; Thompson, G E; Habazaki, H; Shimizu, K

    2002-01-01

    Following previous observations of detachment of amorphous, anodic alumina films from aluminium by 100 keV H sup + ions, further experiments have been carried out using H sup + , D sup + , sup 3 He sup + and sup 4 He sup + ions, at energies in the range of 0.5-270 keV, to irradiate anodized aluminium with oxides of thickness from 30 to 500 nm. Surface damage was investigated by field-emission-gun scanning electron microscopy and transmission electron microscopy. Detachment of the oxide, which takes place close to, or at, the metal/oxide interface, occurred only following irradiation by H sup + and D sup + ions, with the ions being stopped in the metal rather than the oxide. The threshold fluence for initiation of detachment is approximately 3x10 sup 1 sup 5 ions cm sup - sup 2. No detachment was detected following irradiations by sup 3 He sup + and sup 4 He sup + ions with fluences up to 5x10 sup 1 sup 6 ions cm sup - sup 2 and ranges similar to those of H sup + and D sup + ions, although vacancy production i...

  14. Simultaneous quiet time observations of energetic radiation belt protons and helium ions - The equatorial alpha/p ratio near 1 MeV

    Science.gov (United States)

    Fritz, T. A.; Spjeldvik, W. N.

    1979-01-01

    Simultaneous monitoring of energetic helium ions and protons in the earth's radiation belts has been conducted with Explorer 45 in the immediate vicinity of the equatorial plane. Protons were measured from less than 1 keV to 1.6 MeV and also above 3.3 MeV in a channel responsive up to 22 MeV; helium ions were monitored in three passbands: 910 keV to 3.15 MeV, 590 to 910 keV, and 2.0 to 3.99 MeV. Alpha/proton flux ratios were found to vary significantly with energy and location in the radiation belts. At equal energy per nucleon a range of variability for alpha/p from 0.0001 to well above 0.001 was found, and at equal energy per ion the corresponding variability was from 0.001 to above 10. The latter findings emphasize the relative importance of the very energetic helium ions in the overall radiation belt ion populations.

  15. Structural response of transient heat loading on a molybdenum surface exposed to low-energy helium ion irradiation

    Science.gov (United States)

    Sinclair, G.; Tripathi, J. K.; Diwakar, P. K.; Hassanein, A.

    2016-03-01

    The advancement of fusion reactor engineering is currently inhibited by the lack of knowledge surrounding the stability of plasma facing components (PFCs) in a tokamak environment. During normal operation, events of high heat loading occur periodically where large amounts of energy are imparted onto the PFC surface. Concurrently, irradiation by low-energy helium ions present in the fusion plasma can result in the synthesis of a fibre form nanostructure on the PFC surface, called ‘fuzz’. In order to understand how this heterogeneous structure evolves and deforms in response to transient heat loading, a pulsed Nd:YAG millisecond laser is used to simulate these events on a fuzz form molybdenum (Mo) surface. Performance was analysed by three metrics: nanostructure evolution, particle emission, and improvement in optical properties. Experiments performed at the upper end of the expected range for type-I edge-localized modes (ELMs) found that the helium-induced nanostructure completely disappears after 200 pulses of the laser at 1.5 MJ m-2. In situ mass loss measurements found that the amount of particles leaving the surface increases as energy density increases and the rate of emission increases with pulse count. Finally, optical properties assisted in providing a qualitative indication of fuzz density on the Mo surface; after 400 pulses at 1.5 MJ m-2, the optical reflectivity of the damaged surface is ~90% of that of a mirror polished Mo sample. These findings provide different results than previous studies done with tungsten (W), and further help illustrate the complicated nature of how transient events of high heat loading in a tokamak environment might impact the performance and lifetime of PFCs in ITER and future DEMO devices (Ueda et al 2014 Fusion Eng. Des. 89 901-6).

  16. A review of transmission electron microscopes with in situ ion irradiation

    Science.gov (United States)

    Hinks, J. A.

    2009-12-01

    Transmission electron microscopy (TEM) with in situ ion irradiation is unique amongst experimental techniques in allowing the direct observation of the internal microstructure of materials on the nanoscale whilst they are being subjected to bombardment with energetic particles. Invaluable insights into the underlying atomistic processes at work can be gained through direct investigation of radiation induced and enhanced effects such as: phase changes and segregation; mechanical and structural changes; atomic/layer mixing and chemical disorder; compositional changes; chemical reactions; grain growth and shrinkage; precipitation and dissolution; defect/bubble formation, growth, motion, coalescence, removal and destruction; ionisation; diffusion; and collision cascades. The experimental results obtained can be used to validate the predictions of computational models which in turn can elucidate the mechanisms behind the phenomena seen in the microscope. It is 50 years since the first TEM observations of in situ ion irradiation were made by D.W. Pashley, A.E.B. Presland and J.W. Menter at the Tube Investment Laboratories in Cambridge, United Kingdom and 40 years since the first interfacing of an ion beam system with a TEM by P.A. Thackery, R.S. Nelson and H.C. Sansom at the Atomic Energy Research Establishment at Harwell, United Kingdom. In that time the field has grown with references in the literature to around thirty examples of such facilities. This paper gives an overview of the importance of the technique, especially with regard to the current challenges faced in understanding radiation damage in nuclear environments; a description of some of the important construction elements and design considerations of TEMs with in situ ion irradiation; a brief history of the development of this type of instrument; a summary of the facilities built around the world over the last half century; and finally a focus on the instruments in operation today.

  17. A review of transmission electron microscopes with in situ ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hinks, J.A., E-mail: j.a.hinks@salford.ac.u [Centre for Functional Materials, University of Salford, Salford M5 4WT (United Kingdom)

    2009-12-15

    Transmission electron microscopy (TEM) with in situ ion irradiation is unique amongst experimental techniques in allowing the direct observation of the internal microstructure of materials on the nanoscale whilst they are being subjected to bombardment with energetic particles. Invaluable insights into the underlying atomistic processes at work can be gained through direct investigation of radiation induced and enhanced effects such as: phase changes and segregation; mechanical and structural changes; atomic/layer mixing and chemical disorder; compositional changes; chemical reactions; grain growth and shrinkage; precipitation and dissolution; defect/bubble formation, growth, motion, coalescence, removal and destruction; ionisation; diffusion; and collision cascades. The experimental results obtained can be used to validate the predictions of computational models which in turn can elucidate the mechanisms behind the phenomena seen in the microscope. It is 50 years since the first TEM observations of in situ ion irradiation were made by D.W. Pashley, A.E.B. Presland and J.W. Menter at the Tube Investment Laboratories in Cambridge, United Kingdom and 40 years since the first interfacing of an ion beam system with a TEM by P.A. Thackery, R.S. Nelson and H.C. Sansom at the Atomic Energy Research Establishment at Harwell, United Kingdom. In that time the field has grown with references in the literature to around thirty examples of such facilities. This paper gives an overview of the importance of the technique, especially with regard to the current challenges faced in understanding radiation damage in nuclear environments; a description of some of the important construction elements and design considerations of TEMs with in situ ion irradiation; a brief history of the development of this type of instrument; a summary of the facilities built around the world over the last half century; and finally a focus on the instruments in operation today.

  18. Constraints on the Velocity and Spatial Distribution of Helium-like Ions in the Wind of SMC X-1 from Observations with XMM-Newton/RGS

    CERN Document Server

    Wojdowski, Patrick S; Kallman, Timothy R

    2007-01-01

    We present here X-ray spectra of the HMXB SMC X-1 obtained in an observation with the XMM observatory beginning before eclipse and ending near the end of eclipse. With the Reflection Grating Spectrometers (RGS) on board XMM, we observe emission lines from hydrogen-like and helium-like ions of nitrogen, oxygen, neon, magnesium, and silicon. Though the resolution of the RGS is sufficient to resolve the helium-like n=2->1 emission into three line components, only one of these components, the intercombination line, is detected in our data. The lack of flux in the forbidden lines of the helium-like triplets is explained by pumping by ultraviolet photons from the B0 star and, from this, we set an upper limit on the distance of the emitting ions from the star. The lack of observable flux in the resonance lines of the helium-like triplets indicate a lack of enhancement due to resonance line scattering and, from this, we derive a new observational constraint on the distribution of the wind in SMC X-1 in velocity and c...

  19. Theoretical state-selective and total cross sections for electron capture from helium atoms by fully stripped ions

    Science.gov (United States)

    Mančev, I.; Milojević, N.; Belkić, Dž.

    2015-03-01

    The four-body boundary-corrected first Born (CB1-4B) approximation is used to compute cross sections for single electron capture from helium targets by fully stripped ions. The projectile ions are H+, He2+, Li3+, Be4+, B5+, C6+, N7+, O8+, and F9+. An extensive list of theoretical state-to-state cross sections in these collisions at energies ranging from 20 to 10 000 keV/amu is given. This list includes the state-selective cross sections Qnlm for each individual triple of the usual quantum numbers { n , l , m } of the final hydrogen-like states alongside Qnl and Qn for the pertinent sub-shells and shells where the respective summations over m and { l , m } have been carried out. The maximal value of the principal quantum number n was chosen to vary from 4 (H+) to 10 (F9+) so as to satisfy the condition n ≥ZP, where ZP is the nuclear charge of the projectile. Usually, the largest cross sections stem from those values of n that match the projectile charge (n =ZP) . The total cross sections for capture summed over all the quantum numbers { n , l , m } are also tabulated. The overall goal of this study is to fill in lacunae in the existing databases of charge exchange cross sections that are needed in several inter-disciplinary fields. For example, in particle transport physics, which is of utmost importance in such emerging branches as hadron therapy, these cross sections constitute a part of the multifaceted input data for stochastic simulations of energy losses of multiply charged ions in matter, including tissue. Other significant uses of the present data are anticipated in charge exchange diagnostics within thermonuclear research project as well as in applications covering the relevant parts of plasma physics and astrophysics.

  20. A Microscopic Model for the Strongly Coupled Electron-Ion System in VO2

    Science.gov (United States)

    Lovorn, Timothy; Sarker, Sanjoy

    The metal-insulator transition (MIT) in vanadium dioxide (VO2) near 340 K is accompanied by a structural transition, suggesting strong coupling between electronic and lattice degrees of freedom. To help elucidate this relationship, we construct and analyze a microscopic model in which electrons, described by a tight-binding Hamiltonian, are dynamically coupled to Ising-like ionic degrees of freedom. A mean-field decoupling leads to an interacting two-component (pseudo) spin-1 Ising model describing the ions. An analysis of the minimal ionic model reproduces the observed M1 and M2 dimerized phases and rutile metal phase, occurring in the observed order with increasing temperature. All three transitions are first order, as observed. We further find that both dimerization and correlations play crucial roles in describing the insulating M1 phase. We discuss why dynamical coupling of electrons and ions is key to obtain a full understanding of the phenomenology of VO2, particularly in the context of the phase coexistence observed near the MIT. This research was supported by the National Science Foundation (DMR-1508680).

  1. Surface modifications induced by high fluxes of low energy helium ions.

    Science.gov (United States)

    Tanyeli, İrem; Marot, Laurent; Mathys, Daniel; van de Sanden, Mauritius C M; De Temmerman, Gregory

    2015-04-28

    Several metal surfaces, such as titanium, aluminum and copper, were exposed to high fluxes (in the range of 10(23) m(-2) s(-1)) of low energy (pillars, are observed on these metals. The differences and similarities in the development of surface morphologies are discussed in terms of the material properties and compared with the results of similar experimental studies. The results show that He ions induced void growth and physical sputtering play a significant role in surface modification using high fluxes of low energy He ions.

  2. The direct ionization processes in the collisions of partially stripped carbon and oxygen ions with helium atoms at low-to-intermediate energies

    Institute of Scientific and Technical Information of China (English)

    Zhou Chun-Lin; Shao Jian-Xiong; Chen Xi-Meng; Sun Guang-Zhi; Zou Xian-Rong

    2008-01-01

    The values of direct double- to-single ionization ratio R of helium atoms induced by Cq+,Oq+ (q=1-4) ions at incident energies from 0.2 to 8.5MeV are measured.Based on the existing model (Shao J X,Chen X M and Ding B W 2007 Phys.Rev.A 75 012701) the effective charge of the projectile is introduced to theoretically estimate the value of R for the partially stripped ions impacting on helium atoms.The results calculated from our "effective charge" model are in good agreement with the experimental data,and the dependence of the effective charge on the ionization energy of the projectile is also discussed qualitatively.

  3. A liquid-helium-free superconducting coil system forming a flat minimum-magnetic-field distribution of an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ken-ichi, E-mail: yoshida.kennichi71@jaea.go.jp; Nara, Takayuki; Saitoh, Yuichi; Yokota, Watalu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    A flat distribution of the minimum magnetic field (flat-B{sub min}) of an electron cyclotron resonance ion source (ECRIS) is expected to perform better in highly charged ion production than classical B{sub min}. To form a flat-B{sub min} structure with a liquid helium-free superconducting device, a coil system of seven coils with four current leads has been designed. The lead number was reduced by connecting the plural coils in series to maintain the flat-B{sub min} structure even when the coil currents are changed for adjustment. This coil system can be operated with a helium-free cryostat, since the estimation of heat from the leads to the coils is nearly equivalent to the existing superconducting ECRIS of a similar type.

  4. Active voltage contrast imaging of cross-sectional surface of multilayer ceramic capacitor using helium ion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, C., E-mail: SAKAI.Chikako@nims.go.jp; Ishida, N.; Masuda, H.; Nagano, S.; Kitahara, M.; Fujita, D. [National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Ogata, Y. [TAIYO YUDEN CO., LTD., Takasaki-shi, Gunma 370-3347 (Japan)

    2016-08-01

    We studied active voltage contrast (AVC) imaging using helium ion microscopy (HIM). We observed secondary electron (SE) images of the cross-sectional surface of multilayer ceramic capacitors (MLCCs) with and without a voltage applied to the internal electrodes. When no voltage was applied, we obtained an image reflecting the material contrast between the Ni internal electrode region and the BaTiO{sub 3} dielectric region of the cross-sectional surface of the MLCC. When a voltage was applied, the electrical potential difference between the grounded and the positively biased internal electrodes affected the contrast (voltage contrast). Moreover, attenuation of the SE intensity from the grounded to the positively biased internal electrodes was observed in the dielectric region. Kelvin probe force microscopy (KPFM) measurements of the contact potential difference (CPD) were performed on the same sample. By using the AVC image from the HIM observation and the CPD image from the KPFM measurement, we could quantitatively evaluate the electrical potential. We think that the results of this study will lead to an expansion in the number of applications of HIM.

  5. Measurement of ion beam angular distribution at different helium gas pressures in a plasma focus device by large-area polycarbonate detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sohrabi, M.; Habibi, M., E-mail: mortezahabibi@gmail.com; Ramezani, V. [Amirkabir University of Technology, Energy Engineering and Physics Department (Iran, Islamic Republic of)

    2017-02-15

    The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of ~4.4 × 10{sup 4} tracks/cm{sup 2} was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due to the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.

  6. Influence of crystal orientation on damages of tungsten exposed to helium plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Noriyasu, E-mail: ohno@ees.nagoya-u.ac.jp [Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya 464-8603 (Japan); Hirahata, Yuki; Yamagiwa, Masato [Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya 464-8603 (Japan); Kajita, Shin [EcoTopia Science Institute, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya 464-8603 (Japan); Takagi, Makoto [Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya 464-8603 (Japan); Yoshida, Naoaki; Yoshihara, Reiko [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Tokunaga, Tomonori [Interdisciplinary Graduate School of Eng. Sci., Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Tokitani, Masayuki [NIFS, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan)

    2013-07-15

    The effect of crystallographic orientation on the morphology change of tungsten (W) has been investigated in the linear plasma device, NAGDIS-I by exposing high density helium plasma to ITER grade W. After helium plasma exposure, the surface of specimens was analyzed by scanning electron microscope and orientation imaging microscope. The internal structure was analyzed with transmission electron microscope after the sample was milled by focused ion beam procedure. A clear difference in the surface morphology was observed on different crystal grains. Regular wavy structure were observed on crystal grains of {0 0 1}, {1 1 2}, {1 0 1}, and {1 1 1} surface, but there were no clear wavy structure on the crystal grains of {1 0 3}, {1 0 2}, {4 0 7} and {2 0 3}. The experimental results indicate that the angle between a slip face and face of each grains are important to determine the helium induced surface morphology change of tungsten.

  7. Young-type interference in collisions between hydrogen molecular ions and helium.

    Science.gov (United States)

    Schmidt, L Ph H; Schössler, S; Afaneh, F; Schöffler, M; Stiebing, K E; Schmidt-Böcking, H; Dörner, R

    2008-10-24

    The dissociative electron transfer from He into 10 keV H2+ was measured in a kinematically complete experiment by using the cold target recoil ion momentum spectroscopy imaging technique in combination with a highly resolving molecular fragment imaging technique. The electron transfer into the dissociative b(3)Sigma+_(u) state of H2 could be selected by kinematic conditions. We find a striking double slit interference pattern in the transverse momentum transfer which we can modify by selecting different internuclear distances. Compared to an optical double slit, interference minima and maxima are interchanged. The latter is the result of a phase shift in the electronic part of the wave function.

  8. Experimental Study of Single- and Double-Electron Detachment for Negative Carbon Ions Incident on Helium

    Institute of Scientific and Technical Information of China (English)

    HUANG Yong-Yi; WU Shi-Min; ZHANG Xue-Mei; LI Guang-Wu; LU Fu-Quan; YANG Fu-Jia

    2004-01-01

    Using the growth rate method, we obtain the single-electron detachment (SED) cross-sections for 5-30keV C-+He, and double-electron detachment (DED) cross-sections for 5-15keV C--+He. The SED cross-sections first increase with the increasing incident ion energy, and then decrease with further increase of the energy. The DED cross-sections increase with the increasing incident energy in the 5-15keV region.

  9. The luminescence of sapphire subjected to the irradiation of energetic hydrogen and helium ions

    Energy Technology Data Exchange (ETDEWEB)

    Jardin, C.; Canut, B.; Ramos, S.M.M. [Lyon-1 Univ., 69 - Villeurbanne (France)

    1996-08-14

    The luminescence of {alpha}-Al{sub 2}O{sub 3} during He{sup +} and H{sup +} irradiation was measured in the 190-820 nm wavelength range. The luminescence evolution with the ion fluence exhibits two behaviours: (i) at low fluence, the amount of F{sup +} centres increases; (ii) at high fluences, these defects are completely (F centres) or partially (F{sup +} centres) annihilated. This phenomenon results from two concomittant mechanisms: a conversion between F and F{sup +} defects and a destruction of both luminescent species resulting from the radiation-induced damage. By using a simple model we have determined the cross sections associated with creation ({sigma}{sub c}) and annihilation ({sigma}{sub a}) of the F{sup +} centres. The irradiated samples were also investigated by cathodoluminescence and Auger electron spectroscopy. A higher concentration of structural defects and F{sup +} centres is evidenced at the sample area previously irradiated by ions, leading to an unsteady regime of the surface potential under electron excitation. (author).

  10. Relativistic correction to the 1ssigma and 2psigma electronic states of the H2 + molecular ion and the moleculelike states of the antiprotonic helium He+ -p.

    Science.gov (United States)

    Tsogbayar, Ts; Korobov, V I

    2006-07-14

    Effective potentials of the relativistic Breit-Pauli corrections for the 1ssigma(g) and 2psigma(u) electron states of the H(2) (+) molecular ion and the 1ssigma, 2ssigma, and 3psigma states of the antiprotonic helium atom He(+)(-)p are calculated within the Born-Oppenheimer approximation. The variational expansion with randomly chosen exponents has been used for numerical studies. The results obtained for the Breit-Pauli effective potentials are accurate up to ten significant digits for the H(2) (+) molecular ion and eight digits for the He(+)(-)p atom.

  11. Microscopic model for the non-linear fluctuating hydrodynamic of {sup 4} He superfluid helium deduced by maximum entropy method; Modelo microscopico para la hidrodinamica fluctuante no lineal del {sup 4}He superfluido deducido mediante el metodo de maxima entropia

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J.T

    1998-10-01

    This thesis presents a microscopic model for the non-linear fluctuating hydrodynamic of superfluid helium ({sup 4} He), model developed by means of the Maximum Entropy Method (Maxent). In the chapter 1, it is demonstrated the necessity to developing a microscopic model for the fluctuating hydrodynamic of the superfluid helium, starting from to show a brief overview of the theories and experiments developed in order to explain the behavior of the superfluid helium. On the other hand, it is presented the Morozov heuristic method for the construction of the non-linear hydrodynamic fluctuating of simple fluid. Method that will be generalized for the construction of the non-linear fluctuating hydrodynamic of the superfluid helium. Besides, it is presented a brief summary of the content of the thesis. In the chapter 2, it is reproduced the construction of a Generalized Fokker-Planck equation, (GFP), for a distribution function associated with the coarse grained variables. Function defined with aid of a nonequilibrium statistical operator {rho}hut{sub FP} that is evaluated as Wigneris function through {rho}{sub CG} obtained by Maxent. Later this equation of GFP is reduced to a non-linear local FP equation from considering a slow and Markov process in the coarse grained variables. In this equation appears a matrix D{sub mn} defined with a nonequilibrium coarse grained statistical operator {rho}hut{sub CG}, matrix elements are used in the construction of the non-linear fluctuating hydrodynamics equations of the superfluid helium. In the chapter 3, the Lagrange multipliers are evaluated for to determine {rho}hut{sub CG} by means of the local equilibrium statistical operator {rho}hut{sub l}-tilde with the hypothesis that the system presents small fluctuations. Also are determined the currents associated with the coarse grained variables and furthermore are evaluated the matrix elements D{sub mn} but with aid of a quasi equilibrium statistical operator {rho}hut{sub qe} instead

  12. Microscopic heavy-ion theory. Final Report. February 2014-June 2015

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, David J. [Vanderbilt Univ., Nashville, TN (United States); Oberacker, Volker E. [Vanderbilt Univ., Nashville, TN (United States); Umar, A. Sait [Vanderbilt Univ., Nashville, TN (United States)

    2015-06-30

    The Vanderbilt nuclear theory group conducts research in the areas of low-energy nuclear reactions and in neutrino oscillations. Specically, we study dynamics of nuclear reactions microscopically, in particular for neutron-rich nuclei which will be accessible with current and future radioactive ion beam facilities. The neutrino work concentrates on constructing computational tools for analyzing neutrino oscillation data. The most important of these is the analysis of the Super K atmospheric data. Our research concentrates on the following topics which are part of the DOE Long-Range Plan: STUDIES OF LOW-ENERGY REACTIONS OF EXOTIC NUCLEI (Professors Umar and Oberacker), including sub-barrier fusion cross sections, capture cross sections for superheavy element production, and nuclear astrophysics applications. Our theory project is strongly connected to experiments at RIB facilities around the world, including NSCL-FRIB (MSU) and ATLAS-CARIBU (Argonne). PHENOMENOLOGY OF NEUTRINO OSCILLATIONS (Prof. Ernst), extracting information from existing neutrino oscillation experiments and proposing possible future experiments in order to better understand the oscillation phenomenon.

  13. Ionization and single electron capture in collision of highly charged Ar16+ ions with helium

    Institute of Scientific and Technical Information of China (English)

    Wang Fei; Gou Bing-Cong

    2008-01-01

    This paper uses the two-centre atomic orbital close-coupling method to study the ionization and the single electron capture in collision of highly charged Ar16+ ions with He atoms in the velocity range of 1.2-1.9 a.u.. The relative importance of single ionization (SI) to single capture (SC) is explored. The comparison between the calculation and experimental data shows that the SI/SC cross section ratios from this work are in good agreement with experimental data. The total single electron ionization cross sections and the total single electron capture cross sections are also given for this collision. The investigation of the partial electron capture cross section shows a general tendency of capture to larger n and l with increasing velocity from 1.2 to 1.9 a.u..

  14. Investigation of acoustic waves generated in an elastic solid by a pulsed ion beam and their application in a FIB based scanning ion acoustic microscope

    Energy Technology Data Exchange (ETDEWEB)

    Akhmadaliev, C.

    2004-12-01

    The aim of this work is to investigate the acoustic wave generation by pulsed and periodically modulated ion beams in different solid materials depending on the beam parameters and to demonstrate the possibility to apply an intensity modulated focused ion beam (FIB) for acoustic emission and for nondestructive investigation of the internal structure of materials on a microscopic scale. The combination of a FIB and an ultrasound microscope in one device can provide the opportunity of nondestructive investigation, production and modification of micro- and nanostructures simultaneously. This work consists of the two main experimental parts. In the first part the process of elastic wave generation during the irradiation of metallic samples by a pulsed beam of energetic ions was investigated in an energy range from 1.5 to 10 MeV and pulse durations of 0.5-5 {mu}s, applying ions with different masses, e.g. oxygen, silicon and gold, in charge states from 1{sup +} to 4{sup +}. The acoustic amplitude dependence on the ion beam parameters like the ion mass and energy, the ion charge state, the beam spot size and the pulse duration were of interest. This work deals with ultrasound transmitted in a solid, i.e. bulk waves, because of their importance for acoustic transmission microscopy and nondestructive inspection of internal structure of a sample. The second part of this work was carried out using the IMSA-100 FIB system operating in an energy range from 30 to 70 keV. The scanning ion acoustic microscope based on this FIB system was developed and tested. (orig.)

  15. The influence of negative ions in helium-oxygen barrier discharges: II. 1D fluid simulation and adaption to the experiment

    Science.gov (United States)

    Nemschokmichal, Sebastian; Tschiersch, Robert; Meichsner, Jürgen

    2016-10-01

    A 1D fluid simulation was developed to investigate the influence of negative ions in a helium-oxygen barrier discharge between two glass plates at a distance of 3~\\text{mm} . The paper describes setting up the simulation for a pressure of 500~\\text{mbar} and an admixture of 400~\\text{ppm} oxygen to helium. In order to enable the comparison with laser photodetachment experiments, the simulation is adapted to the experimentally observed discharge current and gap voltage by varying gas temperature, flux of thermally desorpted electrons and secondary electron emission coefficients. The discharge is characterized by evaluation of the most important elementary collision processes as well as the kinetics of the charged species. Besides, the influence of long-living species on the discharge behavior is taken into account by long-time simulations. The negative ions are characterized by their spatio-temporal distribution in the gap and their production and loss processes. The comparison between simulations without and with consideration of negative ions reveals the importance of negative ions on the discharge development.

  16. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions

    Science.gov (United States)

    Stanford, Michael G.; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam J.; Ivanov, Ilia N.; Ward, T. Zac; Rack, Philip D.

    2016-01-01

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices. PMID:27263472

  17. Comparative study of depth and lateral distributions of electron excitation between scanning ion and scanning electron microscopes.

    Science.gov (United States)

    Ohya, Kaoru; Ishitani, Tohru

    2003-01-01

    In order to study the contrast difference between scanning ion microscopes (SIM) and scanning electron microscopes (SEM), the depth and lateral distributions of secondary electrons escaped from surfaces of 17 metals with atomic numbers, Z2, of 4-79 were calculated for bombardment with 30 keV Ga ions and for 10 keV electrons. For both projectiles, the excitation depth generally decreased with increasing Z2, while showing the same periodic change as the secondary-electron yield. However, an opposite trend in Z2 dependence between the Ga ion and electron bombardments was calculated with the lateral distribution of secondary electrons escaped from the surface. Except for low Z2 metals, the lateral distribution, which is much narrower for 30 keV Ga ions than for 10 keV electrons, indicates that the spatial resolution of the secondary-electron images is better for SIM than for SEM, if zero-sized probe beams are assumed. Furthermore, the present calculation reveals important effects of electron excitation by recoiled material atoms and reflected electrons on the lateral distribution, as well as the secondary-electron yield, for the Ga ion and electron bombardments, respectively.

  18. Detection of helium in irradiated Fe9Cr alloys by coincidence Doppler broadening of slow positron annihilation

    Science.gov (United States)

    Cao, Xingzhong; Zhu, Te; Jin, Shuoxue; Kuang, Peng; Zhang, Peng; Lu, Eryang; Gong, Yihao; Guo, Liping; Wang, Baoyi

    2017-03-01

    An element analysis method, coincidence Doppler broadening spectroscopy of slow positron annihilation, was employed to detect helium in ion-irradiated Fe9Cr alloys. Spectra with higher peak to background ratio were recorded using a two-HPGe detector coincidence measuring system. It means that information in the high-momentum area of the spectra can be used to identify helium in metals. This identification is not entirely dependent on the helium concentration in the specimens, but is related to the structure and microscopic arrangement of atoms surrounding the positron annihilation site. The results of Doppler broadening spectroscopy and transmission electron microscopy show that vacancies and dislocations were formed in ion-irradiated specimens. Thermal helium desorption spectrometry was performed to obtain the types of He traps.

  19. Microstructural development and helium bubble formation in Cu/W(Re) nanometer multilayer films irradiated by He{sup +} ion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shunli [Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Liu, Bo, E-mail: liubo2009@scu.edu.cn [Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Lin, Liwei, E-mail: linliwei@scu.edu.cn [Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Jiao, Guohua [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China)

    2015-07-01

    A series of 60 keV He{sup +} implantations was conducted on Cu/W(Re, 5.9 at.%) multilayered structures with ion doses from 5 × 10{sup 19} to 5 × 10{sup 21} m{sup 2} under different temperature. Three distinct, temperature-dependent He release mechanisms were found by subsequent X-ray diffraction (XRD) and scanning electron microscope (SEM) investigations. Firstly, with implantation at 300 K (about T/T{sub m} {sub (Cu)} = 0.22), a certain degree of blistering was observed with a critical dose higher than 5 × 10{sup 21} m{sup −2}. But, at higher temperature irradiation (about T/T{sub m} {sub (Cu)} = 0.35), samples implanted were characterized by extensive blisters at the dose of 2 × 10{sup 21} m{sup −2}. Finally, at 673 K (about T/T{sub m} {sub (Cu)} = 0.5), the specimen flaked and a rough, porous surface formed when the dose was higher than 1 × 10{sup 21} m{sup −2}. The mechanisms involved have been analyzed based on the detailed characterization studies.

  20. Liquid helium

    CERN Document Server

    Atkins, K R

    1959-01-01

    Originally published in 1959 as part of the Cambridge Monographs on Physics series, this book addresses liquid helium from the dual perspectives of statistical mechanics and hydrodynamics. Atkins looks at both Helium Three and Helium Four, as well as the properties of a combination of the two isotopes. This book will be of value to anyone with an interest in the history of science and the study of one of the universe's most fundamental elements.

  1. Application of the in-beam PET therapy monitoring on precision irradiations with helium ions; Anwendung des in-beam PET Therapiemonitorings auf Praezisionsbestrahlungen mit Helium-Ionen

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, F.

    2008-02-19

    The main goal of the present dissertation was to extend the in-beam PET method to new ion types. It was shown that the in-beam PET method can also be applied for {sup 3}He irradiations. For this experiments on a {sup 3}He beam were performed. The activity yield is at equal applied dose about three times larger than at {sup 12}C irradiations. The reachable range resolution is smaller than 1 mm. At the irradiation of an inhomogeneous phantom it was shown that a contrast between different materials is resolvable. From the experimentally determined reaction rates cross sections for the reactions leading to positron emitters were performed. The data taken in the {sup 3}He experiments were compared those obtained in carbon-ion experiments as well as literature data for proton irradiations. A comparison with the calculations of the simulation program SHIELD-HIT was performed. A collection of cross-section models and the established requirements for a simulation program applicable for in-beam PET are preparing for further work.

  2. Effects of indirect actions and oxygen on relative biological effectiveness: estimate of DSB induction and conversion induced by gamma rays and helium ions.

    Science.gov (United States)

    Tsai, Ju-Ying; Chen, Fang-Hsin; Hsieh, Tsung-Yu; Hsiao, Ya-Yun

    2015-07-01

    Clustered DNA damage other than double-strand breaks (DSBs) can be detrimental to cells and can lead to mutagenesis or cell death. In addition to DSBs induced by ionizing radiation, misrepair of non-DSB clustered damage contributes extra DSBs converted from DNA misrepair via pathways for base excision repair and nucleotide excision repair. This study aimed to quantify the relative biological effectiveness (RBE) when DSB induction and conversion from non-DSB clustered damage misrepair were used as biological endpoints. The results showed that both linear energy transfer (LET) and indirect action had a strong impact on the yields for DSB induction and conversion. RBE values for DSB induction and maximum DSB conversion of helium ions (LET = 120 keV/μm) to (60)Co gamma rays were 3.0 and 3.2, respectively. These RBE values increased to 5.8 and 5.6 in the absence of interference of indirect action initiated by addition of 2-M dimethylsulfoxide. DSB conversion was ∼1-4% of the total non-DSB damage due to gamma rays, which was lower than the 10% estimate by experimental measurement. Five to twenty percent of total non-DSB damage due to helium ions was converted into DSBs. Hence, it may be possible to increase the yields of DSBs in cancerous cells through DNA repair pathways, ultimately enhancing cell killing.

  3. submitter Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams

    CERN Document Server

    Dokic, Ivana; Niklas, Martin; Zimmermann, Ferdinand; Chaudhri, Naved; Krunic, Damir; Tessonnier, Thomas; Ferrari, Alfredo; Parodi, Katia; Jäkel, Oliver; Debus, Jürgen; Haberer, Thomas; Abdollahi, Amir

    2016-01-01

    The growing number of particle therapy facilities worldwide landmarks a novel era of precision oncology. Implementation of robust biophysical readouts is urgently needed to assess the efficacy of different radiation qualities. This is the first report on biophysical evaluation of Monte Carlo simulated predictive models of prescribed dose for four particle qualities i.e., proton, helium-, carbon- or oxygen ions using raster-scanning technology and clinical therapy settings at HIT. A high level of agreement was found between the in silico simulations, the physical dosimetry and the clonogenic tumor cell survival. The cell fluorescence ion track hybrid detector (Cell-Fit-HD) technology was employed to detect particle traverse per cell nucleus. Across a panel of radiobiological surrogates studied such as late ROS accumulation and apoptosis (caspase 3/7 activation), the relative biological effectiveness (RBE) chiefly correlated with the radiation species-specific spatio-temporal pattern of DNA double strand break ...

  4. The prospects of a subnanometer focused neon ion beam.

    Science.gov (United States)

    Rahman, F H M; McVey, Shawn; Farkas, Louis; Notte, John A; Tan, Shida; Livengood, Richard H

    2012-01-01

    The success of the helium ion microscope has encouraged extensions of this technology to produce beams of other ion species. A review of the various candidate ion beams and their technical prospects suggest that a neon beam might be the most readily achieved. Such a neon beam would provide a sputtering yield that exceeds helium by an order of magnitude while still offering a theoretical probe size less than 1-nm. This article outlines the motivation for a neon gas field ion source, the expected performance through simulations, and provides an update of our experimental progress.

  5. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  6. High-dose neutron induced radiation swelling simulated by heavy ion irradiation and its microscopic study with positron annihilation technique

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    70 MeV-carbon-ion irradiation is used to simulate the radiation swelling induced by neutron irradiation of 3.2×1022 n·cm-2 in domestically-made 316 austenitic stainless steels modified by a 20%-cold-working and Ti-adding from room temperature to 802°C. The created swelling is microscopically examined by the positron annihilation lifetime technique. A radiation swelling peak is observed at 580°C and the corresponding void has an average diameter of 0.7nm which is hardly probed by macroscopic methods.

  7. The effect of carbon impurities on molybdenum surface morphology evolution under high-flux low-energy helium ion irradiation

    Science.gov (United States)

    Tripathi, J. K.; Novakowski, T. J.; Gonderman, S.; Bharadwaj, N.; Hassanein, A.

    2016-09-01

    We report on the role of carbon (C) impurities, in molybdenum (Mo) fuzz evolutions on Mo surface during 100 eV He+ ion irradiations. In this study we considered 0.01, 0.05, and 0.5% C+ ion impurities in He+ ion irradiations. For introducing such tiny C+ ion impurities, gas mixtures of He and CH4 have been chosen in following ratios; 99.95: 0.05, 99.75: 0.25, and 97.5: 2.5. Apart from these three cases, two additional cases, 100% He+ ion (for Mo fuzz growth due to only He+ ions) and 100% H+ ion (for confirming the significance of tiny 0.04-2.0% H+ ions in terms of Mo fuzz evolutions on Mo surface, if any), have also been considered. Ion energy (100 eV), ion fluence (2.6 × 1024 ions m-2), and target temperature (923 K) were kept constant for each experiment and their selections were based on our previous studies [1,2]. Our study shows homogeneously populated and highly dense Mo fuzz evolutions on entire Mo surface for 100% He+ ion irradiation case. Enhancement of C+ ion impurities in He+ ions causes a sequential reduction in Mo fuzz evolutions, leading to almost complete prevention of Mo fuzz evolutions for 0.5% C+ ion impurity concentrations. Additionally, no fuzz formation for 100% H+ ion irradiation at all, were seen (apart from some tiny nano-structuring, in very limited regions). This indicates that there is no significant role of H+ ions in Mo fuzz evolutions (at least for such tiny amount, 0.04-2.0% H+ ions). The study is significant to understand the behavior of potential high-Z plasma facing components (PFCs), in the, presence of tiny amount of C impurities, for nuclear fusion relevant applications.

  8. Effects of autoionization in electron loss from helium-like highly charged ions in collisions with photons and fast atomic particles

    CERN Document Server

    Lyashchenko, K N; Voitkiv, A B

    2016-01-01

    We study theoretically single electron loss from helium-like highly charged ions involving excitation and decay of autoionizing states of the ion. Electron loss is caused by either photo absorption or the interaction with a fast atomic particle (a bare nucleus, a neutral atom, an electron). The interactions with the photon field and the fast particles are taken into account in the first order of perturbation theory. Two initial states of the ion are considered: $1s^2$ and $(1s2s)_{J=0}$. We analyze in detail how the shape of the emission pattern depends on the atomic number $Z_{I}$ of the ion discussing, in particular, the inter-relation between electron loss via photo absorption and due to the impact of atomic particles in collisions at modest relativistic and extreme relativistic energies. According to our results, in electron loss from the $1s^2$ state autoionization may substantially influence the shape of the emission spectra only up to $Z_{I} \\approx 35-40$. A much more prominent role is played by autoi...

  9. Antiprotonic helium

    CERN Multimedia

    Eades, John

    2005-01-01

    An exotic atom in w hich an electron and an antiproton orbit a helium nucleus could reveal if there are any differences between matter and antimatter. The author describes this unusual mirror on the antiworld (5 pages)

  10. Alkali-helium snowball complexes formed on helium nanodroplets.

    Science.gov (United States)

    Müller, S; Mudrich, M; Stienkemeier, F

    2009-07-28

    We systematically investigate the formation and stability of snowballs formed by femtosecond photoionization of small alkali clusters bound to helium nanodroplets. For all studied alkali species Ak = (Na,K,Rb,Cs) we observe the formation of snowballs Ak(+)He(N) when multiply doping the droplets. Fragmentation of clusters Ak(N) upon ionization appears to enhance snowball formation. In the case of Na and Cs we also detect snowballs Ak(2) (+)He(N) formed around Ak dimer ions. While the snowball progression for Na and K is limited to less than 11 helium atoms, the heavier atoms Rb and Cs feature wide distributions at least up to Ak(+)He(41). Characteristic steps in the mass spectra of Cs-doped helium droplets are found at positions consistent with predictions on the closure of the first shell of helium atoms around the Ak(+) ion based on variational Monte Carlo simulations.

  11. Light and Electron Microscopic Evaluation of Hydrogen Ion-Induced Brain Necrosis

    OpenAIRE

    Petito, C. K.; Kraig, R.P.; Pulsinelli, W. A.

    1987-01-01

    Excessive accumulation of hydrogen ions in the brain may play a pivotal role in initiating the necrosis seen in infarction and following hyperglycemic augmentation of ischemic brain damage. To examine possible mechanisms involved in hydrogen ion-induced necrosis, sequential structural changes in rat brain were examined following intracortical injection of sodium lactate solution (pH 4.5), as compared with injections at pH 7.3. Following pH 7.3 injection, neuronal swelling developed between 1 ...

  12. Microscopic study on proton elastic scattering of helium and lithium isotopes at energy range up to 160 MeV/nucleon.

    Directory of Open Access Journals (Sweden)

    Farag M. Y. H.

    2014-03-01

    Full Text Available The proton elastic scattering data on 4,6,8 He and 6,7,9,11Li nuclei at energies below 160 MeV/nucleon are analyzed using the optical model. The optical potential (OP is taken microscopically, with few and limited fitting parameters, using the single folding model for the real part and high-energy approximation (HEA for the imaginary one. Clear dependencies of the volume integrals on energy and rms radii are obtained from the results. The calculated differential and the reaction cross sections are in good agreement with the available experimental data. In general, this OP with few and limited fitting parameters, which have a systematic behavior with incident energy and matter radii, successfully describes the proton elastic scattering data with stable and exotic light nuclei at energies up to 160 MeV/nucleon.

  13. Non-relativistic contributions in order $\\alpha^5m_\\mu c^2$ to the Lamb shift in muonic hydrogen, deuterium and helium ion

    CERN Document Server

    Karshenboim, S G; Korzinin, E Yu; Shelyuto, V A

    2010-01-01

    Contributions to the energy levels in light muonic atoms and, in particular, to the Lamb shift fall into a few well-distinguished classes. The related diagrams are calculated using different approaches. In particular, there is a specific kind of non-relativistic contributions. Here we consider such corrections to the Lamb shift in order $\\alpha^5m_\\mu$. These contributions are due to free vacuum polarization loops as well as to various effects of light-by-light scattering. The closed loop in the related diagrams is an electronic one, which allows a non-relativistic consideration of the muon. Both kinds of contributions have been known for a while, however, the results obtained up to date are only partial ones. We complete a calculation of the $\\alpha^5m_\\mu$ contributions for muonic hydrogen. The results are also adjusted for muonic deuterium and muonic helium ion.

  14. Fine structure and ionization energy of the 1s2s2p 4P state of the helium negative ion He-.

    Science.gov (United States)

    Wang, Liming; Li, Chun; Yan, Zong-Chao; Drake, G W F

    2014-12-31

    The fine structure and ionization energy of the 1s2s2p (4)P state of the helium negative ion He(-) are calculated in Hylleraas coordinates, including relativistic and QED corrections up to O(α(4)mc(2)), O((μ/M)α(4)mc(2)), O(α(5)mc(2)), and O((μ/M)α(5)mc(2)). Higher order corrections are estimated for the ionization energy. A comparison is made with other calculations and experiments. We find that the present results for the fine structure splittings agree with experiment very well. However, the calculated ionization energy deviates from the experimental result by about 1 standard deviation. The estimated theoretical uncertainty in the ionization energy is much less than the experimental accuracy.

  15. Comparative effects of 60Co gamma-rays and neon and helium ions on cycle duration and division probability of EMT 6 cells. A time-lapse cinematography study.

    Science.gov (United States)

    Collyn-d'Hooghe, M; Hemon, D; Gilet, R; Curtis, S B; Valleron, A J; Malaise, E P

    1981-03-01

    Exponentially growing cultures of EMT 6 cells were irradiated in vitro with neon ions, helium ions or 60Co gamma-rays. Time-lapse cinematography allowed the determination, for individual cells, of cycle duration, success of the mitotic division and the age of the cell at the moment of irradiation. Irradiation induced a significant mitotic delay increasing proportionally with the delivered dose. Using mitotic delay as an endpoint, the r.b.e. for neon ions with respect to 60Co gamma-rays was 3.3 +/- 0.2 while for helium ions it was 1.2 +/- 0.1. Mitotic delay was greatest in those cells that had progressed furthest in their cycle at the time of irradiation. No significant mitotic delay was observed in the post-irradiation generation. Division probability was significantly reduced by irradiation both in the irradiated and in the post-irradiated generation. The reduction in division probability obtained with 3 Gy of neon ions was similar to that obtained after irradiation with 6 Gy of helium ions or 60Co gamma-rays.

  16. First-principles study of the threshold effect in the electronic stopping power of LiF and SiO2 for low-velocity protons and helium ions

    Science.gov (United States)

    Mao, Fei; Zhang, Chao; Dai, Jinxia; Zhang, Feng-Shou

    2014-02-01

    Nonadiabatic dynamics simulations are performed to investigate the electronic stopping power of LiF and SiO2-cristobalite-high crystalline thin films when protons and helium ions are hyperchanneling in the axis. In this theoretical framework, ab initio time-dependent density-functional theory calculations for electrons are combined with molecular dynamics simulations for ions in real time and real space. The energy transfer process between the ions and the electronic subsystem of LiF and SiO2 nanostructures is studied. The velocity-proportional stopping power of LiF and SiO2 for protons and helium ions is predicted in the low-energy range. The measured velocity thresholds of protons in LiF and SiO2, and helium ions in LiF are reproduced. The convergence of the threshold effect with respect to the separation of grid points is confirmed. The underlying physics of the threshold effect is clarified by analyzing the conduction band electron distribution. In addition, the electron transfer processes between the projectile ions and solid atoms in hyperchanneling condition are studied, and its effects on the energy loss is investigated.

  17. Ion-sputtering deposition of Ca-P-O films for microscopic imaging of osteoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Ananda Sagari, A.R. [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyvaeskylae (Finland)]. E-mail: ananda.sagari@phys.jyu.fi; Lautaret, Claire [ENSICAEN, 6 Boulevard Marechal Juin, F-14050 CAEN Cedex 04 (France); Gorelick, Sergey [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyvaeskylae (Finland); Laitinen, Mikko [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyvaeskylae (Finland); Rahkila, Paavo [Department of Health Sciences, P.O. Box 35 (L), FIN-40014 University of Jyvaeskylae (Finland); Putkonen, Matti [Beneq Oy, Ensimmaeinen savu, FI-01510 Vantaa (Finland); Arstila, Kai [Instituut voor Kern- en Stralingsfysica, K.U.Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Sajavaara, Timo [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyvaeskylae (Finland); Cheng, Sulin [Department of Health Sciences, P.O. Box 35 (L), FIN-40014 University of Jyvaeskylae (Finland); Whitlow, Harry J. [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyvaeskylae (Finland)

    2007-08-15

    An ion-beam sputtering technique was used to produce Ca-P-O films on borosilicate glass at room temperature from hydroxyapatite targets using nitrogen, argon and krypton beams at different acceleration voltages. The sputtering target was pressed from high purity hydroxyapatite powder or mixture of high purity hydroxyapatite powder and red phosphorus in order to optimise the film composition. The film composition, determined using time-of-flight elastic recoil detection analysis (TOF-ERDA), was found to be strongly dependent on the ion energy used for deposition. By extra doping of the target with P the correct Ca/P atomic ratio in the deposited films was reached. The films deposited on Si were amorphous even after annealing at 800 deg, C. The biocompatibility of the films was investigated using osteoblast-like cells. The film deposited under optimal conditions exhibited dendritic growth, indicative of more realistic chemical signalling than for other substratum e.g. polystyrene or plain glass.

  18. Carbonation of wollastonite(001) competing hydration: microscopic insights from ion spectroscopy and density functional theory.

    Science.gov (United States)

    Longo, Roberto C; Cho, Kyeongjae; Brüner, Philipp; Welle, Alexander; Gerdes, Andreas; Thissen, Peter

    2015-03-04

    In this paper, we report about the influence of the chemical potential of water on the carbonation reaction of wollastonite (CaSiO3) as a model surface of cement and concrete. Total energy calculations based on density functional theory combined with kinetic barrier predictions based on nudge elastic band method show that the exposure of the water-free wollastonite surface to CO2 results in a barrier-less carbonation. CO2 reacts with the surface oxygen and forms carbonate (CO3(2-)) complexes together with a major reconstruction of the surface. The reaction comes to a standstill after one carbonate monolayer has been formed. In case one water monolayer is covering the wollastonite surface, the carbonation is no more barrier-less, yet ending in a localized monolayer. Covered with multilayers of water, the thermodynamic ground state of the wollastonite completely changes due to a metal-proton exchange reaction (also called early stage hydration) and Ca(2+) ions are partially removed from solid phase into the H2O/wollastonite interface. Mobile Ca(2+) reacts again with CO2 and forms carbonate complexes, ending in a delocalized layer. By means of high-resolution time-of-flight secondary-ion mass spectrometry images, we confirm that hydration can lead to a partially delocalization of Ca(2+) ions on wollastonite surfaces. Finally, we evaluate the impact of our model surface results by the meaning of low-energy ion-scattering spectroscopy combined with careful discussion about the competing reactions of carbonation vs hydration.

  19. Role of anharmonicities and non-linearities in heavy ion collisions a microscopic approach

    CERN Document Server

    Lanza, E G; Catara, F; Chomaz, P; Volpe, C; Chomaz, Ph.

    1996-01-01

    Using a microscopic approach beyond RPA to treat anharmonicities, we mix two-phonon states among themselves and with one-phonon states. We also introduce non-linear terms in the external field. These non-linear terms and the anharmonicities are not taken into account in the "standard" multiphonon picture. Within this framework we calculate Coulomb excitation of 208Pb and 40Ca by a 208Pb nucleus at 641 and 1000MeV/A. We show with different examples the importance of the non-linearities and anharmonicities for the excitation cross section. We find an increase of 10 % for 208Pb and 20 % for 40Ca of the excitation cross section corresponding to the energy region of the double giant dipole resonance with respect to the "standard" calculation. We also find important effects in the low energy region. The predicted cross section in the DGDR region is found to be rather close to the experimental observation.

  20. Growth of microscopic cones on titanium cathodes of sputter-ion pumps driven by sorption of large argon quantities

    Energy Technology Data Exchange (ETDEWEB)

    Porcelli, Tommaso, E-mail: tommaso-porcelli@saes-group.com [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria, 16, 20133 Milano, Italy and SAES Getters S.p.A., viale Italia, 77, 20020 Lainate, Milan (Italy); Siviero, Fabrizio; Bongiorno, Gero A. [SAES Getters S.p.A., viale Italia, 77, 20020 Lainate, Milan (Italy); Michelato, Paolo [INFN-LASA, via fratelli Cervi, 201, 20090 Segrate, Milan (Italy); Pagani, Carlo [Dipartimento di Fisica, Università degli Studi di Milano, via Celoria, 16, 20133 Milano, Italy and INFN-LASA, via fratelli Cervi, 201, 20090 Segrate, Milan (Italy)

    2015-09-15

    Microscopic cones have been observed on titanium cathodes of sputter-ion pumps (SIPs) after pump operation. The cones were studied by means of scanning electron microscopy and energy dispersive x-ray analysis. Size and morphology of these cones are clearly correlated with the nature and the relative amount of each gas species pumped by each SIP during its working life. In particular, their growth was found to be fed by sputtering mechanisms, mostly during Ar pumping, and to be driven by the electromagnetic field applied to the Penning cells of each SIP. Experimental findings suggest that the formation and extent of such conic structures on cathode surfaces might play a leading role in the onset of phenomena typically related to the functioning of SIPs, e.g., the so-called argon instability.

  1. Interaction between short fatigue cracks and grain boundaries. Systematic experiments with focussed ion beam microscope and microstructural tomography; Ueber die Wechselwirkung kurzer Ermuedungsrisse mit Korngrenzen. Systematische Experimente mit Focussed Ion Beam Microscope und mikrostruktureller Tomographie

    Energy Technology Data Exchange (ETDEWEB)

    Schaef, Wolfgang

    2011-04-15

    Increasing the microstructural resistance of metallic materials to short fatigue crack growth is a major task of today's materials science. In this regard, grain boundaries and precipitates are well known to decelerate short cracks, but a quantitative understanding of the blocking effect is still missing. This is due to the fact that crack deceleration is influenced by many parameters: cyclic load, crack length, distance to obstacles, orientations of grains and obstacles. Even the examination of a huge number of short cracks would not be sufficient to identify the effect of these parameters independently, especially since fatigue crack growth is a 3D problem and investigations of the sub surface orientation of cracks and grain boundaries are scarce. The Focused Ion Beam Microscope (FIB) offers new methods for systematic experiments and 3D-investigation of short fatigue cracks that will help to quantify the microstructural impact on short fatigue crack growth. The ion beam is used to cut micro notches in selected grains on the surface of samples characterised by Electron Backscatter Diffraction (EBSD). Plane fatigue cracks initiate under cyclic loading in defined distances to the grain boundaries. By this technique it is possible for the first time to present quantitative data to describe the effect of grain boundaries on short fatigue cracks in nickel based superalloys (CMSX-4) as well as in mild steels.

  2. Monte Carlo simulations of nanoscale focused neon ion beam sputtering.

    Science.gov (United States)

    Timilsina, Rajendra; Rack, Philip D

    2013-12-13

    A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.

  3. Light and electron microscopic evaluation of hydrogen ion-induced brain necrosis.

    Science.gov (United States)

    Petito, C K; Kraig, R P; Pulsinelli, W A

    1987-10-01

    Excessive accumulation of hydrogen ions in the brain may play a pivotal role in initiating the necrosis seen in infarction and following hyperglycemic augmentation of ischemic brain damage. To examine possible mechanisms involved in hydrogen ion-induced necrosis, sequential structural changes in rat brain were examined following intracortical injection of sodium lactate solution (pH 4.5), as compared with injections at pH 7.3. Following pH 7.3 injection, neuronal swelling developed between 1 and 6 h, but only a needle track wound surrounded by a thin rim of necrotic neurons and vacuolated neuropil was present 24 h after injection. In contrast, pH 4.5 injection produced neuronal necrosis as soon as 1 h after injection, followed by necrosis of astrocytes and intravascular thrombi at 3 and 6 h. Alterations common to both groups included vascular permeability to horseradish peroxidase, dilation of extracellular spaces, astrocyte swelling, capillary compression, and vascular stasis. These data suggest that neurons, astrocytes, and endothelia can be directly damaged by increased acid in the interstitial space. Lethal injury initially appeared to affect neurons, while subsequent astrocyte necrosis and vascular occlusion may damage tissue by secondary ischemia.

  4. Microscopic dynamics simulations of heavy-ion fusion reactions induced by neutron-rich nuclei

    CERN Document Server

    Wang, Ning; Zhang, Yingxun; Li, Zhuxia

    2014-01-01

    The heavy-ion fusion reactions induced by neutron-rich nuclei are investigated with the improved quantum molecular dynamics (ImQMD) model. With a subtle consideration of the neutron skin thickness of nuclei and the symmetry potential, the stability of nuclei and the fusion excitation functions of heavy-ion fusion reactions $^{16}$O+$^{76}$Ge, $^{16}$O+$^{154}$Sm, $^{40}$Ca+$^{96}$Zr and $^{132}$Sn+$^{40}$Ca are systematically studied. The fusion cross sections of these reactions at energies around the Coulomb barrier can be well reproduced by using the ImQMD model. The corresponding slope parameter of the symmetry energy adopted in the calculations is $L \\approx 78$ MeV and the surface energy coefficient is $g_{\\rm sur}=18\\pm 1.5$ MeVfm$^2$. In addition, it is found that the surface-symmetry term significantly influences the fusion cross sections of neutron-rich fusion systems. For sub-barrier fusion, the dynamical fluctuations in the densities of the reaction partners and the enhanced surface diffuseness at ...

  5. Microscopical characterizations of nanofiltration membranes for the removal of nickel ions from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Agboola, Oluranti; Maree, Jannie; Mbaya, Richard; Kolesnikov, Andrei; Sadiku, Rotimi [Tshwane University of Technology, Pretoria (South Africa); Verliefde, Arne; D' Haese, Arnout [Ghent University, Gent (Belgium)

    2015-04-15

    The nanofiltration (NF) process is electrostatically governed and the surface free energy plays a key role in the separation of particulates, macromolecules, and dissolved ionic species. Streaming potential measurement and the surface charge mapping by Kelvin probe atomic force microscopy (AFM) have been carried out. Forces of interaction near the surface of nanofiltration membranes were further studied by a force spectroscopy using atomic force microscopy. The two membranes used are more negatively charged at high pH values; hence the higher the solution chemistry, the higher and faster will be adhesion of ions on the surface of the nanofiltration membranes. It was observed that the three acquired signals from non-contact AFM (contact potential difference, amplitude and phase) were rigorously connected to the surface structure of the nanofiltration membranes. In addition to the surface structure (roughness), electrostatic interactions can also enhance initial particle adhesion to surfaces of nanofiltration membranes. The performance of the NF membranes was further investigated for the removal of nickel ions from aqueous solution, and the results were correlated to the mechanical responses of the nanofiltration membranes obtained from AFM and the streaming potential measurement.

  6. Development of electron optical system using annular pupils for scanning transmission electron microscope by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Matsutani, Takaomi, E-mail: matutani@ele.kindai.ac.jp [Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Yasumoto, Tsuchika; Tanaka, Takeo [Osaka Sangyo University, 3-1-1 Nakagaito, Daito, Osaka 574-8530 (Japan); Kawasaki, Tadahiro; Ichihashi, Mikio [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ikuta, Takashi [Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530 (Japan)

    2012-02-01

    Annular pupils for electron optics were produced using a focused ion beam (FIB), enabling an increase in the depth of focus and allowing for aberration-free imaging and separation of the amplitude and phase images in a scanning transmission electron microscope (STEM). Simulations demonstrate that an increased focal depth is advantageous for three-dimensional tomography in the STEM. For a 200 kV electron beam, the focal depth is increased to approximately 100 nm by using an annular pupil with inner and outer semi-angles of 29 and 30 mrad, respectively. Annular pupils were designed with various outer diameters of 40-120 {mu}m and the inner diameter was designed at 80% of the outer diameter. A taper angle varying from 1 Degree-Sign to 20 Degree-Sign was applied to the slits of the annular pupils to suppress the influence of high-energy electron scattering. The fabricated annular pupils were inspected by scanning ion beam microscopy and scanning electron microscopy. These annular pupils were loaded into a STEM and no charge-up effects were observed in the scintillator projection images recorded by a CCD camera.

  7. High-performance atom-probe field ion microscope study of segregation and hydrogen cracking in Fe-0. 29 Ti

    Energy Technology Data Exchange (ETDEWEB)

    Kuk, Y.; Pickering, H.W.; Sakurai, T.

    1980-01-01

    With the greatly improved resolution now available in energy focused atom probes, hydrogen can be readily resolved even when combined with metals having several isotopes. In addition to finding that H, H/sub 2/, FeH and TiH/sub 2/ accumulate at segregated grain boundaries in Fe-0.29 wt % Ti, a striking observation was made - the formation and propagation of a microcrack when the (field ion microscope) tip was exposed to hydrogen gas at elevated temperature. A small crack (approx. 200 A in length) was first noticed at a grain-boundary intersection during field ion imaging. This was an open crack, formed by detachment of metal between the intersecting grain boundaries, which was observed to be much larger after the tip was reheated to 1300/sup 0/K for 10 min. in the presence of 10/sup 2/ Pa (1 torr) H/sub 2/. This crack could be easily reduced in size by gradually field evaporating the surface. Its propagation was repeated several times and reproducible results were obtained. Hydrogen was identified in quantity in the crack surface, though not elsewhere. The observation of H/sub 2/ is taken to mean that H/sub 2/ gas was trapped in the grain boundary. The grain boundary was also observed to be enriched in Ti, O, C and S, in agreement with earlier results for Fe-Ti.

  8. SU-E-T-539: Maximum Energy of Helium and Carbon Ions Clinically Needed for Spine, Lung, Prostate and Pancreas Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pompos, A; Choy, H; Jia, X; Jiang, S; Timmerman, R [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)

    2015-06-15

    Purpose: Maximum available kinetic energy of accelerated heavy ions is a critical parameter to consider during the establishment of a heavy ion therapy center. It dictates the maximum range in tissue and determines the size and cost of ion gantry. We have started planning our heavy ion therapy center and we report on the needed ion range. Methods: We analyzed 50 of random SBRT-spine, SBRT- lung, prostate and pancreatic cancer patients from our photon clinic. In the isocentric axial CT cut we recorded the maximum water equivalent depth (WED4Field) of PTV’s most distal edge in four cardinal directions and also in a beam direction that required the largest penetration, WEDGantry. These depths were then used to calculate the percentage of our patients we would be able to treat as a function of available maximum carbon and helium beam energy. Based on the Anterior-Posterior WED for lung patients and the maximum available ion energy we estimated the largest possible non-coplanar beam entry angle φ (deviation from vertical) in the isocentric vertical sagittal plane. Results: We found that if 430MeV/u C-12, equivalently 220MeV/u He-4, beams are available, more than 96% (98%) of all patients can be treated without any gantry restrictions (in cardinals angles only) respectively. If the energy is reduced to 400MeV/u C-12, equivalently 205MeV/u He-4, the above fractions reduce to 80% (87%) for prostate and 88% (97%) for other sites. This 7% energy decrease translates to almost 5% gantry size and cost decrease for both ions. These energy limits in combination with the WED in the AP direction for lung patients resulted in average non-coplanar angles of φ430MeV/u = 68°±8° and φ400MeV/u = 65°±10° if nozzle clearance permits them. Conclusion: We found that the two worldwide most common maximum carbon beam energies will treat above 80% of all our patients.

  9. Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams

    Science.gov (United States)

    Niklas, Martin; Zimmermann, Ferdinand; Chaudhri, Naved; Krunic, Damir; Tessonnier, Thomas; Ferrari, Alfredo; Parodi, Katia; Jäkel, Oliver; Debus, Jürgen; Haberer, Thomas; Abdollahi, Amir

    2016-01-01

    The growing number of particle therapy facilities worldwide landmarks a novel era of precision oncology. Implementation of robust biophysical readouts is urgently needed to assess the efficacy of different radiation qualities. This is the first report on biophysical evaluation of Monte Carlo simulated predictive models of prescribed dose for four particle qualities i.e., proton, helium-, carbon- or oxygen ions using raster-scanning technology and clinical therapy settings at HIT. A high level of agreement was found between the in silico simulations, the physical dosimetry and the clonogenic tumor cell survival. The cell fluorescence ion track hybrid detector (Cell-Fit-HD) technology was employed to detect particle traverse per cell nucleus. Across a panel of radiobiological surrogates studied such as late ROS accumulation and apoptosis (caspase 3/7 activation), the relative biological effectiveness (RBE) chiefly correlated with the radiation species-specific spatio-temporal pattern of DNA double strand break (DSB) formation and repair kinetic. The size and the number of residual nuclear γ-H2AX foci increased as a function of linear energy transfer (LET) and RBE, reminiscent of enhanced DNA-damage complexity and accumulation of non-repairable DSB. These data confirm the high relevance of complex DSB formation as a central determinant of cell fate and reliable biological surrogates for cell survival/RBE. The multi-scale simulation, physical and radiobiological characterization of novel clinical quality beams presented here constitutes a first step towards development of high precision biologically individualized radiotherapy. PMID:27494855

  10. Double excitation of helium by ion impact. 2: Experiment and theory for 2-3 MeV proton impact

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A.; Moretto-Capelle, P.; Gleizes, A. [Toulouse-3 Univ., 31 (France); Andriamonje, S. [Bordeaux-1 Univ., 33 - Gradignan (France). Centre d`Etudes Nucleaires]|[Institut National de Physique Nucleaire et Physique des Particules, 33 - Gradignan (France); Martin, F. [Universidad Autonoma de Madrid (Spain). Dept. de Quimica; Salin, A. [Bordeaux-1 Univ., 33 -Talence (France). Lab. des Collisions Atomiques

    1995-02-28

    Experimental and theoretical studies of the double excitation of helium by 2-3 MeV proton impact are presented. A detailed angular dependence of the lineshapes and intensities of the first 2l2l` resonances is discussed. The resonances are characterized by the Shore parameters A and B and the Fano parameter Q. Calculations within Born-I approximation describe approximately the excitation of the 2s{sup 2} {sup 1}S and 2s2p {sup 1}P resonances whereas they fail to reproduce the experimental findings for the 2p{sup 2} {sup 1}D one. On the other hand, close-coupling calculations improve the description of the excitation of the 2s2p{sup 1}P and explains very nicely the 2p{sup 2} {sup 1}D one. Weak discrepancies in the description of the 2s{sup 2} {sup 1}S and 2s2p {sup 1}P excitation in the forward direction are thought to be the signature of a residual post-collisional effect. It is shown that it does not affect the observed lineshapes in our collision velocity range. The integration of the resonance parameters over the emission angle of the electron allows us to deduce total electron yields and to connect the resulting profile with photoionization data. (author).

  11. Partial photoionization of helium into the 2s{sup 2}S and 2p{sup 2}P ion states in the 3lnl' doubly-excited states region

    Energy Technology Data Exchange (ETDEWEB)

    Harries, James R [Photon Factory, IMSS, KEK, 1-1 Oho, Tsukuba 305-0081 (Japan); Sullivan, James P [Photon Factory, IMSS, KEK, 1-1 Oho, Tsukuba 305-0081 (Japan); Obara, Satoshi [Photon Factory, IMSS, KEK, 1-1 Oho, Tsukuba 305-0081 (Japan); Azuma, Yoshiro [Photon Factory, IMSS, KEK, 1-1 Oho, Tsukuba 305-0081 (Japan); Lambourne, J G [LDIAM, Universite P and M Curie, 75252 Paris 5 (France); Penent, F [LDIAM, Universite P and M Curie, 75252 Paris 5 (France); Hall, R I [LDIAM, Universite P and M Curie, 75252 Paris 5 (France); Lablanquie, P [LURE, Bat.209D, Centre Universitaire Paris-Sud, BP34, 91898 ORSAY Cedex (France); Bucar, K [J Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Zitnik, M [J Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Hammond, Peter [CAMSP, School of Physics, University of Western Australia, Crawlay, WA 6009, Perth (Australia)

    2005-05-28

    We present experimental observations of the auto-ionization of 3lnl' doubly-excited states of helium into the 2s{sup 2}S and 2p{sup 2}P excited ion final-state channels using time-resolved detection techniques to separate the decay routes. A qualitative comparison to previously published theoretical results is given. (letter to the editor)

  12. Microscopic insight into role of protein flexibility during ion exchange chromatography by nuclear magnetic resonance and quartz crystal microbalance approaches.

    Science.gov (United States)

    Hao, Dongxia; Ge, Jia; Huang, Yongdong; Zhao, Lan; Ma, Guanghui; Su, Zhiguo

    2016-03-18

    Driven by the prevalent use of ion exchange chromatography (IEC) for polishing therapeutic proteins, many rules have been formulated to summarize the different dependencies between chromatographic data and various operational parameters of interest based on statically determined interactions. However, the effects of the unfolding of protein structures and conformational stability are not as well understood. This study focuses on how the flexibility of proteins perturbs retention behavior at the molecular scale using microscopic characterization approaches, including hydrogen-deuterium (H/D) exchange detected by NMR and a quartz crystal microbalance (QCM). The results showed that a series of chromatographic retention parameters depended significantly on the adiabatic compressibility and structural flexibility of the protein. That is, softer proteins with higher flexibility tended to have longer retention times and stronger affinities on SP Sepharose adsorbents. Tracing the underlying molecular mechanism using NMR and QCM indicated that an easily unfolded flexible protein with a more compact adsorption layer might contribute to the longer retention time on adsorbents. The use of NMR and QCM provided a previously unreported approach for elucidating the effect of protein structural flexibility on binding in IEC systems.

  13. Enhanced Radiation-tolerant Oxide Dispersion Strengthened Steel and its Microstructure Evolution under Helium-implantation and Heavy-ion Irradiation

    Science.gov (United States)

    Lu, Chenyang; Lu, Zheng; Wang, Xu; Xie, Rui; Li, Zhengyuan; Higgins, Michael; Liu, Chunming; Gao, Fei; Wang, Lumin

    2017-01-01

    The world eagerly needs cleanly-generated electricity in the future. Fusion reactor is one of the most ideal energy resources to defeat the environmental degradation caused by the consumption of traditional fossil energy. To meet the design requirements of fusion reactor, the development of the structural materials which can sustain the elevated temperature, high helium concentration and extreme radiation environments is the biggest challenge for the entire material society. Oxide dispersion strengthened steel is one of the most popular candidate materials for the first wall/blanket applications in fusion reactor. In this paper, we evaluate the radiation tolerance of a 9Cr ODS steel developed in China. Compared with Ferritic/Martensitic steel, this ODS steel demonstrated a significantly higher swelling resistance under ion irradiation at 460 °C to 188 displacements per atom. The role of oxides and grain boundaries on void swelling has been explored. The results indicated that the distribution of higher density and finer size of nano oxides will lead a better swelling resistance for ODS alloy. The original pyrochlore-structured Y2Ti2O7 particles dissolved gradually while fine Y-Ti-O nano clusters reprecipitated in the matrix during irradiation. The enhanced radiation tolerance is attributed to the reduced oxide size and the increased oxide density.

  14. Structure-property and composition-property relationships for poly(ethylene terephthalate) surfaces modified by helium plasma-based ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Toth, A., E-mail: totha@chemres.hu [Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17 (Hungary); Veres, M. [Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 49 (Hungary); Kereszturi, K.; Mohai, M.; Bertoti, I.; Szepvoelgyi, J. [Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17 (Hungary)

    2011-10-01

    The surfaces of untreated and helium plasma-based ion implantation (He PBII) treated poly(ethylene terephthalate) (PET) samples were characterised by reflectance colorimetry, contact angle studies and measurements of surface electrical resistance. The results were related to the structural and compositional data obtained by the authors earlier on parallel samples by XPS and Raman spectroscopy. Inverse correlations between lightness and I{sub D}/I{sub G} ratio and between chroma and I{sub D}/I{sub G} ratio were obtained, suggesting that the PBII-treated PET samples darken and their colourfulness decreases with the increase of the portion of aromatic sp{sup 2} carbon rings in the chemical structure of the modified layer. Direct correlation between water contact angle and the I{sub D}/I{sub G} ratio and inverse correlations between surface energy and I{sub D}/I{sub G} ratio and between dispersive component of surface energy and I{sub D}/I{sub G} ratio were found, reflecting that surface wettability, surface energy and its dispersive component decrease with the formation of surface structure, characterised again by enhanced portion of aromatic sp{sup 2} carbon rings. The surface electrical resistance decreased with the increase of the surface C-content determined by XPS and also with the increase of the surface concentration of conjugated double bonds, reflected by the increase of the {pi} {yields} {pi}* shake-up satellite of the C 1s peak.

  15. Enhanced Radiation-tolerant Oxide Dispersion Strengthened Steel and its Microstructure Evolution under Helium-implantation and Heavy-ion Irradiation.

    Science.gov (United States)

    Lu, Chenyang; Lu, Zheng; Wang, Xu; Xie, Rui; Li, Zhengyuan; Higgins, Michael; Liu, Chunming; Gao, Fei; Wang, Lumin

    2017-01-12

    The world eagerly needs cleanly-generated electricity in the future. Fusion reactor is one of the most ideal energy resources to defeat the environmental degradation caused by the consumption of traditional fossil energy. To meet the design requirements of fusion reactor, the development of the structural materials which can sustain the elevated temperature, high helium concentration and extreme radiation environments is the biggest challenge for the entire material society. Oxide dispersion strengthened steel is one of the most popular candidate materials for the first wall/blanket applications in fusion reactor. In this paper, we evaluate the radiation tolerance of a 9Cr ODS steel developed in China. Compared with Ferritic/Martensitic steel, this ODS steel demonstrated a significantly higher swelling resistance under ion irradiation at 460 °C to 188 displacements per atom. The role of oxides and grain boundaries on void swelling has been explored. The results indicated that the distribution of higher density and finer size of nano oxides will lead a better swelling resistance for ODS alloy. The original pyrochlore-structured Y2Ti2O7 particles dissolved gradually while fine Y-Ti-O nano clusters reprecipitated in the matrix during irradiation. The enhanced radiation tolerance is attributed to the reduced oxide size and the increased oxide density.

  16. 低能氦离子辐照对钨和钼材料的表面损伤作用%Low-energy helium-ion irradiation on the surface damage of tungsten and molybdenum

    Institute of Scientific and Technical Information of China (English)

    李月; 范红玉; 杨铭; 张义武; 牛金海

    2015-01-01

    钨和钼材料具有高熔点、高热导率、低溅射率等优点成为国际热核实验反应堆计划中面向等离子体材料的候选材料。因此研究钨和钼材料的辐照损伤行为对于认识面向等离子体材料的辐照损伤机制具有重要意义。本文采用120 eV的 He+在873 K对钨和钼材料进行辐照实验,利用纳米压痕仪与导电模式原子力显微镜(Conductive Atomic Force Microscopy, CAFM)相结合,原位比较了钨和钼材料在辐照前后的表面形貌、表面微结构以及表层缺陷分布的变化特征。结果表明,低能He+辐照会导致钨和钼材料的近表面产生纳米量级氦泡缺陷,这些氦泡缺陷的存在使得样品表面产生绒毛或波浪状结构。纳米压痕深度分析和扫描电镜的分析结果表明,低能He+辐照会对Mo材料产生明显的刻蚀作用。本工作对于进一步认识低能氦离子辐照对面向等离子体材料的辐照损伤作用具有一定的科学参考意义。%Background: Due to their high melting point, high thermal conductivity, low sputtering yield, tungsten (W) and molybdenum (Mo) have been regarded as the potential candidates for plasma facing materials in fusion reactors.Purpose: This study aims to understand the irradiation damage behavior of W and Mo for the development of key fusion reactors materials. Methods: Polycrystalline W and Mo materials have been irradiated by 120-eV He ions with the irradiation temperature at 873 K.In situ analysis of these samples was carried out using nano-identation masked technique and non-destructive conductive atomic force microscopy (CAFM). The morphology, microscopic evolution and distribution of defects of these samples before and after irradiation are compared.Results:Analysis indicated that a large number of nanometer-sized helium bubbles were formed near the sample surface. Over-high internal pressure of nanometer-sized helium bubbles may result in forming protuberances of

  17. Effect of dislocations on helium retention in deformed pure iron

    Science.gov (United States)

    Gong, Y. H.; Cao, X. Z.; Jin, S. X.; Lu, E. Y.; Hu, Y. C.; Zhu, T.; Kuang, P.; Xu, Q.; Wang, B. Y.

    2016-12-01

    The effects of dislocations created by deformation on helium retention in pure iron, including the helium atoms diffusion along the dislocation line and desorption from dislocation trapping sites, were investigated. The dislocation defect was introduced in specimens by cold-rolling, and then 5 keV helium ions were implanted into the deformed specimens. Slow positron beam technology and thermal desorption spectroscopy were used to investigate the evolution of dislocation defects and the desorption behavior of helium atoms under influence of dislocation. The behaviors of S-E, W-E and S-W plots indicate clearly that lots of helium atoms remain in the deformed specimen and helium atoms combining with dislocation change the distribution of electron density. The helium desorption plot indicates that dislocation accelerates helium desorption at 293 K-600 K and facilitates helium dissociation from HenVm (n/m = 1.8) cluster.

  18. Evolution of dopant-induced helium nanoplasmas

    CERN Document Server

    Krishnan, S R; Fechner, L; Sharma, V; Kremer, M; Fischer, B; Camus, N; Pfeifer, T; Jha, J; Krishnamurthy, M; Schroeter, C -D; Ullrich, J; Stienkemeier, F; Moshammer, R; Fennel, Th; Mudrich, M

    2012-01-01

    Two-component nanoplasmas generated by strong-field ionization of doped helium nanodroplets are studied in a pump-probe experiment using few-cycle laser pulses in combination with molecular dynamics simulations. High yields of helium ions and a pronounced, droplet size-dependent resonance structure in the pump-probe transients reveal the evolution of the dopant-induced helium nanoplasma. The pump-probe dynamics is interpreted in terms of strong inner ionization by the pump pulse and resonant heating by the probe pulse which controls the final charge states detected via the frustration of electron-ion recombination.

  19. Proton, Helium and Minor Ion Interactions with Circularly Polarized Alfven and Ion-cyclotron waves in the Expanding Solar Wind: Hybrid Simulations

    Science.gov (United States)

    Velli, M.; Liewer, P. C.; Goldstein, B. E.

    2000-05-01

    We present simulations of parallel propagating Alfvén waves in the accelerating solar wind and their interactions with protons, alpha particles, and minor ions using an expanding box hybrid code (Liewer et al., 1999). In this model, the average solar wind flow speed is a given external function, and the simulation domain follows a plasma parcel as it expands both in the radial and transverse directions accordingly: the decrease of Alfvén speed and density with distance from the Sun are taken into account self-consistently. It is therefore possible to carry out a detailed study of frequency drifting and the coming into resonance with the waves at different radial locations of particles with differing charge to mass ratios. Simulations of monochromatic waves as well as waves with well-developed spectra are presented for plasmas with one, two and three ion species. We observe preferential heating and acceleration of protons and minor ions. Under some conditions, we obtain the scaling observed in coronal hole solar wind: the heavy ion temperature is proportional to its mass (Liewer et al., 2000). A comparison with predictions from models based on such quasi-linear or linear analyses will also be presented. P. C. Liewer, M. Velli and B. E. Goldstein, in Solar Wind Nine, S. Habbal, R. Esser, J. V. Hollweg, P. A. Isenberg, eds., (AIP Conference Proceedings 471, 1999) 449. P. C. Liewer, M. Velli, and B. E. Goldstein, in Proc. ACE 2000 Conference (2000) to be published.

  20. Fully differential cross sections in single ionization of helium by ion impact: Assessing the role of correlated wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Ciappina, M.F. [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, D-01187, Dresden (Germany)], E-mail: ciappi@pks.mpg.de; Cravero, W.R. [CONICET and Departamento de Fisica, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB, Bahia Blanca (Argentina)

    2008-02-15

    We study the effect of final state dynamic correlation in single ionization of atoms by ion impact analyzing fully differential cross sections (FDCS). We use a distorted wave model where the final state is represented by a {phi}{sub 2} type correlated function, solution of a non-separable three body continuum Hamiltonian. This final state wave function partially includes the correlation of electron-projectile and electron-recoil relative motion as coupling terms of the wave equation. A comparison of fully differential results using this model with other theories and experimental data reveals that inclusion of dynamic correlation effects have little influence on FDCS, and do not contribute to a better description of available data in the case of electronic emission out-of scattering plane.

  1. Post-prior discrepancies in the continuum distorted wave-eikonal initial state approximation for ion-helium ionization

    Energy Technology Data Exchange (ETDEWEB)

    Ciappina, M F [CONICET and Departamento de Fisica, Universidad Nacional del Sur, 8000 Bahia Blanca (Argentina); Cravero, W R [CONICET and Departamento de Fisica, Universidad Nacional del Sur, 8000 Bahia Blanca (Argentina); Garibotti, C R [CONICET and Division Colisiones Atomicas, Centro Atomico Bariloche, 8400 Bariloche (Argentina)

    2003-09-28

    We have explored post-prior discrepancies within continuum distorted wave-eikonal initial state theory for ion-atom ionization. Although there are no post-prior discrepancies when electron-target initial and final states are exact solutions of the respective Hamiltonians, discrepancies do arise for multielectronic targets, when a hydrogenic continuum with effective charge is used for the final electron-residual target wavefunction. We have found that the prior version calculations give better results than the post version, particularly for highly charged projectiles. We have explored the reasons for this behaviour and found that the prior version shows less sensitivity to the choice of the final state. The fact that the perturbation potentials operate upon the initial state suggests that the selection of the initial bound state is relatively more important than the final continuum state for the prior version.

  2. Microscopic Polyangiitis

    Science.gov (United States)

    ... are here: Home / Types of Vasculitis / Microscopic Polyangiitis Microscopic Polyangiitis First Description Who gets Microscopic Polyangiitis (the “ ... differences as to justify separate classifications. Who gets Microscopic Polyangiitis? A typical patient MPA can affect individuals ...

  3. Global helium particle balance in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Motojima, G., E-mail: motojima.gen@lhd.nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Masuzaki, S.; Tokitani, M.; Kasahara, H.; Yoshimura, Y.; Kobayashi, M.; Sakamoto, R.; Morisaki, T.; Miyazawa, J.; Akiyama, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Ohno, N. [Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan); Mutoh, T.; Yamada, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2015-08-15

    Global helium particle balance in long-pulse discharges is analyzed for the first time in the Large Helical Device (LHD) with the plasma-facing components of the first wall and the divertor tiles composed of stainless steel and carbon, respectively. During the 2-min discharge sustained by ion cyclotron resonance heating (ICRH) and electron cyclotron heating (ECH), helium is observed to be highly retained in the wall (regarded as both the first wall and the divertor tiles). Almost all (about 96%) puffed helium particles (1.3 × 10{sup 22} He) are absorbed in the wall near the end of the discharge. Even though a dynamic retention is eliminated, 56% is still absorbed. The analysis is also applied to longer pulse discharges over 40 min by ICRH and ECH, indicating that the helium wall retention is dynamically changed in time. At the initial phase of the discharge, a mechanism for adsorbing helium other than dynamical retention is invoked.

  4. Helium-3 and Helium-4 acceleration by high power laser pulses for hadron therapy

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Leemans, W P; Bulanov, S V; Margarone, D; Korn, G; Haberer, T

    2015-01-01

    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (Magnetic Vortex Acceleration and hole-boring Radiation Pressure Acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the ...

  5. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    Directory of Open Access Journals (Sweden)

    S. S. Bulanov

    2015-06-01

    Full Text Available The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He^{3} ions, having almost the same penetration depth as He^{4} with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.

  6. Initial yields of DNA double-strand breaks and DNA Fragmentation patterns depend on linear energy transfer in tobacco BY-2 protoplasts irradiated with helium, carbon and neon ions.

    Science.gov (United States)

    Yokota, Yuichiro; Yamada, Shinya; Hase, Yoshihiro; Shikazono, Naoya; Narumi, Issay; Tanaka, Atsushi; Inoue, Masayoshi

    2007-01-01

    The ability of ion beams to kill or mutate plant cells is known to depend on the linear energy transfer (LET) of the ions, although the mechanism of damage is poorly understood. In this study, DNA double-strand breaks (DSBs) were quantified by a DNA fragment-size analysis in tobacco protoplasts irradiated with high-LET ions. Tobacco BY-2 protoplasts, as a model of single plant cells, were irradiated with helium, carbon and neon ions having different LETs and with gamma rays. After irradiation, DNA fragments were separated into sizes between 1600 and 6.6 kbp by pulsed-field gel electrophoresis. Information on DNA fragmentation was obtained by staining the gels with SYBR Green I. Initial DSB yields were found to depend on LET, and the highest relative biological effectiveness (about 1.6) was obtained at 124 and 241 keV/microm carbon ions. High-LET carbon and neon ions induced short DNA fragments more efficiently than gamma rays. These results partially explain the large biological effects caused by high-LET ions in plants.

  7. Thermal Annealing Behavior of Helium in Ti Films Deposited by Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; HE Zhi-Jiang; LIU Chao-Zhuo; WANG Xu-Fei; SHI Li-Qun

    2012-01-01

    Helium contents of up to 30at.% are prepared in sputter-deposited Ti Silms. Isochronal annealing behaviors of helium including the depth profiles and the evolution of helium bubbles in the fi1ms at different temperatures are examined by ion beam analysis including Rutherford backscattering spectrometry (RBS) and elastic recoil detection analysis (ERDA), as well as thermal helium desorption spectroscopy (THDS). It is found that the energy spreading induced by structural inhomogeneities in the spectra of RBS and ERDA as well as the increment in the width of spectra occurs, which corresponds to the change of stopping cross-section of helium atoms in the Ti 61m due to the change of physical-state of helium in the evolution of helium bubble. The ion beam analysis on the helium evolution is consistent with the THDS measurement. Ion beam technique opens interesting possibilities in the characterizing on the growth of helium bubbles.%Helium contents of up to 30at.% are prepared in sputter-deposited Ti films.Isochronal annealing behaviors of helium including the depth profiles and the evolution of helium bubbles in the films at different temperatures are examined by ion beam analysis including Rutherford backscattering spectrometry (RBS) and elastic recoil detection analysis (ERDA),as well as thermal helium desorption spectroscopy (THDS).It is found that the energy spreading induced by structural inhomogeneities in the spectra of RBS and ERDA as well as the increment in the width of spectra occurs,which corresponds to the change of stopping cross-section of helium atoms in the Ti film due to the change of physical-state of helium in the evolution of helium bubble.The ion beam analysis on the helium evolution is consistent with the THDS measurement.Ion beam technique opens interesting possibilities in the characterizing on the growth of helium bubbles.

  8. Nanostructure formation on silicon surfaces by using low energy helium plasma exposure

    Science.gov (United States)

    Takamura, Shuichi; Kikuchi, Yusuke; Yamada, Kohei; Maenaka, Shiro; Fujita, Kazunobu; Uesugi, Yoshihiko

    2016-12-01

    A new technology for obtaining nanostructure on silicon surface for potential applications to optical devices is represented. Scanning electron microscope analysis indicated a grown nanostructure of dense forest consisting of long cylindrical needle cones with a length of approximately 300 nm and a mutual distance of approximately 200 nm. Raman spectroscopy and spectrophotometry showed a good crystallinity and photon trapping, and reduced light reflectance after helium plasma exposure. The present technique consists of a simple maskless process that circumvents the use of chemical etching liquid, and utilizes soft ion bombardment on silicon substrate, keeping a good crystallinity.

  9. Amorphous silicon carbonitride diaphragm for environmental-cell transmission electron microscope fabricated by low-energy ion beam induced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Matsutani, Takaomi, E-mail: matutani@ele.kindai.ac.jp [Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502 (Japan); Yamasaki, Kayo [Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502 (Japan); Imaeda, Norihiro; Kawasaki, Tadahiro [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-12-15

    An amorphous silicon carbonitride (a-SiCN) diaphragm for an environmental-cell transmission electron microscope (E-TEM) was fabricated by low-energy ion beam induced chemical vapor deposition (LEIBICVD) with hexamethyldisilazane (HMDSN). The films were prepared by using gaseous HMDSN and N{sub 2}{sup +} ions with energies ranging from 300 to 600 eV. The diaphragms were applied to Si (1 0 0) and a Cu grid with 100-μm-diameter holes. With increasing ion energy, these diaphragms became perfectly smooth surfaces (RMS = 0.43 nm at 600 eV), as confirmed by atomic force microscopy and TEM. The diaphragms were amorphous and transparent to 200 kV electrons, and no charge-up was observed. Fourier transform infrared spectra and X-ray photoelectron spectra revealed that the elimination of organic compounds and formation of Si–N and C–N bonds can be promoted in diaphragms by increasing the ion impact energy. The resistance to electron beams and reaction gases in the E-cell was improved when the diaphragm was formed with high ion energy.

  10. Mass Spectra and Yields of Intact Charged Biomolecules Ejected by Massive Cluster Impact for Bioimaging in a Time-of-Flight Secondary Ion Microscope.

    Science.gov (United States)

    Zhang, Jitao; Franzreb, Klaus; Aksyonov, Sergei A; Williams, Peter

    2015-11-03

    Impacts of massive, highly charged glycerol clusters (≳10(6) Da, ≳ ± 100 charges) have been used to eject intact charged molecules of peptides, lipids, and small proteins from pure solid samples, enabling imaging using these ion species in a time-of-flight secondary ion microscope with few-micrometer spatial resolution. Here, we report mass spectra and useful ion yields (ratio of intact charged molecules detected to molecules sputtered) for several molecular species-two peptides, bradykinin and angiotensin II; two lipids, phosphatidylcholine and sphingomyelin; Irganox 1010 (a detergent); insulin; and rhodamine B-and show that useful ion yields are high enough to enable bioimaging of peptides and lipids in biological samples with few-micrometer resolution and acceptable signals. For example, several hundred molecular ion counts should be detectable from a 3 × 3 μm(2) area of a pure lipid bilayer given appropriate instrumentation or tens of counts from a minor constituent of such a layer.

  11. Helium anion formation inside helium droplets

    Science.gov (United States)

    Maalouf, Elias Jabbour Al; Reitshammer, Julia; Ribar, Anita; Scheier, Paul; Denifl, Stephan

    2016-07-01

    The formation of He∗- is examined with improved electron energy resolution of about 100 meV utilizing a hemispherical electron monochromator. The work presented provides a precise determination of the three previously determined resonance peak positions that significantly contribute to the formation of He∗- inside helium nanodroplets in the energy range from 20 eV to 29.5 eV. In addition, a new feature is identified located at 27.69 ± 0.18 eV that we assign to the presence of O2 as a dopant inside the droplet. With increasing droplet size a small blue shift of the resonance positions is observed. Also for the relatively low electron currents used in the present study (i.e., 15-70 nA) a quadratic dependence of the He∗- ion yield on the electron current is observed. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  12. Modification Of Normal Microscope To Magneto-Optical Microscope

    Directory of Open Access Journals (Sweden)

    Nurazlin Ahmad

    2015-04-01

    Full Text Available Abstract The present work reports on the modification of polarizing microscope to a magnetic domain imaging microscope based on Faraday Effect. Sample used in this research is a ferromagnetic garnet BiTmNa3FeGa5O12. The halogen lamp in the microscope is replaced by helium-neon HeNe laser as a light source. To reduce the laser spatial coherent effect thin transparent plastics placed in the laser path. The plastics are rotated at certain velocity. Other factors to be considered are the plastic rotation velocity the laser intensity and the laser alignment. Typical magnetic domain pattern is obtained with the new system.

  13. Effects of helium implantation on fatigue properties of F82H-IEA heat

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, N.; Murase, Y.; Nagakawa, J. [National Research Institute for Metals, Tsukuba, Ibaraki (Japan)

    2007-07-01

    Full text of publication follows: Ferritic steels including reduced activation ones that have been recognized as attractive structural candidates for DEMO reactors and the beyond are known to be highly resistant to helium embrittlement. However, almost studies that deduced this behavior have been carried out by means of short time experiments such as tensile tests, and a few results are available concerning long term inspections, although the detrimental helium effect appears more severely in the latter. The aim of this work is to obtain further information on the influence of helium on fatigue properties of a representative reduced activation ferritic/martensitic steel F82H (8Cr2WVTa) using helium implantation technique with a cyclotron. The material examined is an IEA heat version of F82H. In order to realize a fine grain size due to thin specimens (0.08 mm thick) for ion irradiation, normalizing was conducted at rather low temperature of 1213 K, followed by tempering at 1023 K. Helium was implanted by {alpha}-particle irradiation at 823 K, a desired highest temperature of this material for first wall application, to the concentration of 100 appm He with an implantation rate of about 1.7 x 10{sup -3} appm He/s. Subsequent fatigue tests were conducted at the same temperature as that of irradiation, not only on implanted specimens but also on reference controls which were not implanted with helium but experienced the same metallurgical histories as those of irradiated ones. After fracture, samples were observed with electron microscopes. In short time periods, it has been notified that helium introduction caused no significant deterioration of both fatigue life and extension at fracture. In addition, all specimens failed in a fully trans-crystalline and ductile manner, irrespective of whether helium was present or not. Indication of grain boundary embrittlement was therefore not discerned. These facts would reflect insusceptible characteristics of this material to

  14. Argon broad ion beam tomography in a cryogenic scanning electron microscope: a novel tool for the investigation of representative microstructures in sedimentary rocks containing pore fluid.

    Science.gov (United States)

    Desbois, G; Urai, J L; Pérez-Willard, F; Radi, Z; Offern, S; Burkart, I; Kukla, P A; Wollenberg, U

    2013-03-01

    The contribution describes the implementation of a broad ion beam (BIB) polisher into a scanning electron microscope (SEM) functioning at cryogenic temperature (cryo). The whole system (BIB-cryo-SEM) provides a first generation of a novel multibeam electron microscope that combines broad ion beam with cryogenic facilities in a conventional SEM to produce large, high-quality cross-sections (up to 2 mm(2)) at cryogenic temperature to be imaged at the state-of-the-art SEM resolution. Cryogenic method allows detecting fluids in their natural environment and preserves samples against desiccation and dehydration, which may damage natural microstructures. The investigation of microstructures in the third dimension is enabled by serial cross-sectioning, providing broad ion beam tomography with slices down to 350 nm thick. The functionalities of the BIB-cryo-SEM are demonstrated by the investigation of rock salts (synthetic coarse-grained sodium chloride synthesized from halite-brine mush cold pressed at 150 MPa and 4.5 GPa, and natural rock salt mylonite from a salt glacier at Qom Kuh, central Iran). In addition, results from BIB-cryo-SEM on a gas shale and Boom Clay are also presented to show that the instrument is suitable for a large range of sedimentary rocks. For the first time, pore and grain fabrics of preserved host and reservoir rocks can be investigated at nm-scale range over a representative elementary area. In comparison with the complementary and overlapping performances of the BIB-SEM method with focused ion beam-SEM and X-ray tomography methods, the BIB cross-sectioning enables detailed insights about morphologies of pores at greater resolution than X-ray tomography and allows the production of large representative surfaces suitable for FIB-SEM investigations of a specific representative site within the BIB cross-section.

  15. Catching proteins in liquid helium droplets

    CERN Document Server

    Kupser, Peter; Meijer, Gerard; von Helden, Gert

    2010-01-01

    An experimental approach is presented that allows for the incorporation of large mass/charge selected ions in liquid helium droplets. It is demonstrated that droplets can be efficiently doped with a mass/charge selected amino acid as well as with the much bigger m$\\approx$12 000 amu protein Cytochrome C in selected charge states. The sizes of the ion-doped droplets are determined via electrostatic deflection. Under the experimental conditions employed, the observed droplet sizes are very large and range, dependent on the incorporated ion, from 10$^{10}$ helium atoms for protonated Phenylalanine to 10$^{12}$ helium atoms for Cytochrome C. As a possible explanation, a simple model based on the size- and internal energy-dependence of the pickup efficiency is given.

  16. Blistering and flaking of amorphous alloys bombarded with He ions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The blistering and flaking behavior of many kinds of amorphous al loys under helium ion bombardment at room temperature was investigated. Helium ions with energies of 40keV and 60keV were implanted within the fluence range (1.0~4.0)×1018ions/cm2. The surface topography of samples after irradiation was observed by using a scanning electron microscope. The diameter of blister and the thickness of exfoliated blister lids were measured. The results showed that many kinds of surface topography characteristics appeared for different fluences, energies and amorphous alloys, such as flaking, blistering, exfoliation, blister rupture, secondgeneration blistering and porous structure. The dependdence of surface damage modesand the critical fluence for the onset of blistering and flaking on the sort of materials and ion energy was discussed.

  17. In Beam Tests of Implanted Helium Targets

    CERN Document Server

    McDonald, J E; Ahmed, M W; Blackston, M A; Delbar, T; Gai, M; Kading, T J; Parpottas, Y; Perdue, B A; Prior, R M; Rubin, D A; Spraker, M C; Yeomans, J D; Weissman, L; Weller, H R; Delbar, Th.; Conn, LNS/U; Duke, TUNL/

    2006-01-01

    Targets consisting of 3,4He implanted into thin aluminum foils (approximately 100, 200 or 600 ug/cm^2) were prepared using intense (a few uA) helium beams at low energy (approximately 20, 40 or 100 keV). Uniformity of the implantation was achieved by a beam raster across a 12 mm diameter tantalum collimator at the rates of 0.1 Hz in the vertical direction and 1 Hz in the horizontal direction. Helium implantation into the very thin (approximately 80-100 ug/cm^2) aluminum foils failed to produce useful targets (with only approximately 10% of the helium retained) due to an under estimation of the range by the code SRIM. The range of low energy helium in aluminum predicted by Northcliffe and Shilling and the NIST online tabulation are observed on the other hand to over estimate the range of low energy helium ions in aluminum. An attempt to increase the amount of helium by implanting a second deeper layer was also carried out, but it did not significantly increase the helium content beyond the blistering limit (ap...

  18. Charged Condensate and Helium Dwarf Stars

    CERN Document Server

    Gabadadze, Gregory

    2008-01-01

    White dwarf stars composed of carbon, oxygen or heavier elements are expected to crystallize as they cool down below certain temperatures. Yet, simple arguments suggest that the helium white dwarf cores may not solidify, mostly because of zero-point oscillations of the helium ions that would dissolve the crystalline structure. We argue that the interior of the helium dwarfs may instead form a macroscopic quantum state in which the charged helium-4 nuclei are in a Bose-Einstein condensate, while the relativistic electrons form a neutralizing degenerate Fermi liquid. We discuss the electric charge screening, and the spectrum of this substance, showing that the bosonic long-wavelength fluctuations exhibit a mass gap. Hence, there is a suppression at low temperatures of the boson contribution to the specific heat -- the latter being dominated by the specific heat of the electrons near the Fermi surface. This state of matter may have observational signatures.

  19. Variable - temperature scanning optical and force microscope

    OpenAIRE

    2004-01-01

    The implementation of a scanning microscope capable of working in confocal, atomic force and apertureless near field configurations is presented. The microscope is designed to operate in the temperature range 4 - 300 K, using conventional helium flow cryostats. In AFM mode, the distance between the sample and an etched tungsten tip is controlled by a self - sensing piezoelectric tuning fork. The vertical position of both the AFM head and microscope objective can be accurately controlled using...

  20. Development of a helium cryostat for laser spectroscopy of atoms with unstable nuclei in superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Kei, E-mail: kimamura@riken.jp [Department of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571 (Japan); Furukawa, Takeshi [Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Wakui, Takashi [Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai, Miyagi 980-8578 (Japan); Yang, Xiaofei [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); School of Physics, Peking University, Chengfu Road, Haidian District, Beijing 100871 (China); Yamaguchi, Yasuhiro [Department of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571 (Japan); Tetsuka, Hiroki [Department of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501 (Japan); Mitsuya, Yosuke [Department of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571 (Japan); Tsutsui, Yoshiki [Department of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501 (Japan); Fujita, Tomomi [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Ebara, Yuta; Hayasaka, Miki [Department of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501 (Japan); Arai, Shino; Muramoto, Sosuke [Department of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571 (Japan); Ichikawa, Yuichi [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tokyo Instutute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Ishibashi, Yoko [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); and others

    2013-12-15

    We are developing a new nuclear laser spectroscopic technique for the study of nuclear structure that can be applied to short-lived low-yield atoms with unstable nuclei. The method utilizes superfluid helium (He II) as a trapping medium for high-energy ion beams. A liquid helium cryostat with optical windows is a key apparatus for this type of experiment. We describe the design and the performance of the cryostat which is developed for the present project.

  1. Energetic ionized helium in the quiet time radiation belts - Theory and comparison with observation

    Science.gov (United States)

    Spjeldvik, W. N.; Fritz, T. A.

    1978-01-01

    Theoretical calculations of helium ion distributions in the inner magnetosphere are compared to observations made by ATS-6 and Explorer-45. Coupled transport equations for equatorially mirroring singly and doubly ionized helium ions in the steady state limit with an outer boundary of L = 7 are solved. Radial profiles and energy spectra are computed at all lower L values. Theoretical quiet time predictions are compared to satellite observations of energetic helium ions in the lower MeV range. It is found that the theory adequately represents the principal characteristics of the radiation belt helium ion population.

  2. Simulation study of radiation damage induced by energetic helium nuclei

    CERN Document Server

    Hoang Dac Luc; Hoang Dac Dat

    2003-01-01

    High energy alpha particles produced by neutron-induced nuclear reactions can damage severely reactor materials. Simulation of this process is described using theoretical calculation and ion irradiation experiments at different displacement doses and Helium doses.

  3. Cooling with Superfluid Helium

    CERN Document Server

    Lebrun, P

    2014-01-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics

  4. Space and time resolved spectroscopy of laser-produced plasmas: A study of density-sensitive x-ray transitions in helium-like and neon-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Young, Bruce Kai Fong

    1988-09-01

    The determination of level populations and detailed population mechanisms in dense plasmas has become an increasingly important problem in atomic physics. In this work, the density variation of line intensities and level populations in aluminum K-shell and molybdenum and silver L-shell emission spectra have been measured from high-powered, laser-produced plasmas. For each case, the density dependence of the observed line emission is due to the effect of high frequency electron-ion collisions on metastable levels. The density dependent line intensities vary greatly in laser-produced plasmas and can be used to extract detailed information concerning the population kinetics and level populations of the ions. The laser-plasmas had to be fully characterized in order to clearly compare the observed density dependence with atomic theory predictions. This has been achieved through the combined use of new diagnostic instruments and microdot targets which provided simultaneously space, time, and spectrally resolved data. The plasma temperatures were determined from the slope of the hydrogen-like recombination continuum. The time resolved electron density profiles were measured using multiple frame holographic interferometry. Thus, the density dependence of K-shell spectral lines could be clearly examined, independent of assumptions concerning the dynamics of the plasma. In aluminum, the electron density dependence of various helium-like line intensity ratios were measured. Standard collisional radiative equilibrium models fail to account for the observed density dependence measured for the ''He/sub ..cap alpha..//IC'' ratio. Instead, a quasi-steady state atomic model based on a purely recombining plasma is shown to accurately predict the measured density dependence. This same recombining plasma calculation successfully models the density dependence of the high-n ''He/sub ..gamma..//He/sub ..beta../'' and ''He/sub delta

  5. Interatomic Coulombic decay in helium nanodroplets

    DEFF Research Database (Denmark)

    Shcherbinin, Mykola; Laforge, Aaron; Sharma, Vandana

    2017-01-01

    Interatomic Coulombic decay (ICD) is induced in helium nanodroplets by photoexciting the n=2 excited state of He+ using XUV synchrotron radiation. By recording multiple-coincidence electron and ion images we find that ICD occurs in various locations at the droplet surface, inside the surface region...

  6. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  7. Helium-Charged Titanium Films Deposited by Pulsed Laser Deposition in an Electron-Cyclotron-Resonance Helium Plasma Environment

    Institute of Scientific and Technical Information of China (English)

    金钦华; 胡佩钢; 凌浩; 吴嘉达; 施立群; 周筑颖

    2003-01-01

    Titanium thin films incorporated with helium are produced by pulsed laser deposition in an electron cyclotron resonance helium plasma environment. Helium is distributed evenly in the film and a relatively high He/Ti atomic ratio (~ 20%) is obtained from the proton backscattering spectroscopy. This high concentration ofhelium leads to a surface blistering which is observed by scanning electron microscopy. Laser repetition rate has little influence on film characters. Substrate bias voltage is also changed for the helium incorporating mechanism study, and this is a helium ion implantation process during the film growth. Choosing suitable substrate bias voltage, one can avoid the damage produced by ion implantation, which is always present in general implantation case.

  8. Microscope basics.

    Science.gov (United States)

    Sluder, Greenfield; Nordberg, Joshua J

    2013-01-01

    This chapter provides information on how microscopes work and discusses some of the microscope issues to be considered in using a video camera on the microscope. There are two types of microscopes in use today for research in cell biology-the older finite tube-length (typically 160mm mechanical tube length) microscopes and the infinity optics microscopes that are now produced. The objective lens forms a magnified, real image of the specimen at a specific distance from the objective known as the intermediate image plane. All objectives are designed to be used with the specimen at a defined distance from the front lens element of the objective (the working distance) so that the image formed is located at a specific location in the microscope. Infinity optics microscopes differ from the finite tube-length microscopes in that the objectives are designed to project the image of the specimen to infinity and do not, on their own, form a real image of the specimen. Three types of objectives are in common use today-plan achromats, plan apochromats, and plan fluorite lenses. The concept of mounting video cameras on the microscope is also presented in the chapter. Copyright © 2003 Elsevier Inc. All rights reserved.

  9. Helium the disappearing element

    CERN Document Server

    Sears, Wheeler M

    2015-01-01

    The subject of the book is helium, the element, and its use in myriad applications including MRI machines, particle accelerators, space telescopes, and of course balloons and blimps. It was at the birth of our Universe, or the Big Bang, where the majority of cosmic helium was created; and stellar helium production continues. Although helium is the second most abundant element in the Universe, it is actually quite rare here on Earth and only exists because of radioactive elements deep within the Earth. This book includes a detailed history of the discovery of helium, of the commercial industry built around it, how the helium we actually encounter is produced within the Earth, and the state of the helium industry today. The gas that most people associate with birthday party balloons is running out. “Who cares?” you might ask. Well, without helium, MRI machines could not function, rockets could not go into space, particle accelerators such as those used by CERN could not operate, fiber optic cables would not...

  10. Uptake of Ra during the recrystallization of barite: a microscopic and time of flight-secondary ion mass spectrometry study.

    Science.gov (United States)

    Klinkenberg, Martina; Brandt, Felix; Breuer, Uwe; Bosbach, Dirk

    2014-06-17

    A combined macroscopic and microanalytical approach was applied on two distinct barite samples from Ra uptake batch experiments using time of flight-secondary ion mass spectrometry (ToF-SIMS) and detailed scanning electron microscopy (SEM) investigations. The experiments were set up at near to equilibrium conditions to distinguish between two possible scenarios for the uptake of Ra by already existent barite: (1) formation of a Ba1-xRaxSO4 solid solution surface layer on the barite or (2) a complete recrystallization, leading to homogeneous Ba1-xRaxSO4 crystals. It could be clearly shown that Ra uptake in all barite particles analyzed within this study is not limited to the surface but extends to the entire solid. For most grains a homogeneous distribution of Ra could be determined, indicating a complete recrystallization of barite into a Ba1-xRaxSO4 solid solution. The maxima of the Ra/Ba intensity ratio distribution histograms calculated from ToF-SIMS are identical with the expected Ra/Ba ratios calculated from mass balance assuming a complete recrystallization. In addition, the role of Ra during the recrystallization of barite was examined via detailed SEM investigations. Depending on the type of barite used, an additional coarsening effect or a strong formation of oriented aggregates was observed compared to blank samples without Ra. In conclusion, the addition of Ra to a barite at close to equilibrium conditions has a major impact on the system leading to a fast re-equilibration of the solid to a Ba1-xRaxSO4 solid solution and visible effects on the particle size distribution, even at room temperature.

  11. Microwave Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Makes ultra-high-resolution field measurements. The Microwave Microscope (MWM) has been used in support of several NRL experimental programs involving sea...

  12. Effects of helium injection mode on void formation in Fe-Ni-Cr alloys

    Science.gov (United States)

    Kimoto, T.; Lee, E. H.; Mansur, L. K.

    1988-09-01

    The effect of the helium injection mode on void formation during ion irradiation of the pure solution-annealing alloys Fe-15Ni-7Cr, Fe-35Ni-7Cr, Fe-45Ni-7Cr, Fe-10Ni-13Cr, Fe-40Ni-13Cr, Fe-45Ni-15Cr was examined. Ion irradiation was carried out with 4 MeV Ni ions at 948 K to doses of 30 to 100 dpa with: (1) no helium injection, (2) simultaneous helium injection and (3) helium preinjection and aging. Swelling variation with helium injection differed among the 7Cr alloys and 13-15Cr alloys. Only the simultaneous helium injection mode produced a bimodal cavity size distribution in the high Ni alloys. The critical radius, as estimated from the cavity size distributions appears to have increased with increasing dose, but no clear variation of the critical radius with composition was observed. Helium preinjection and one-hour aging at 948 K formed helium bubbles along the residual dislocations, while subsequent Ni irradiation caused void formation along the dislocation lines. The calculated helium concentration deduced from observable helium bubbles was low compared with the injected helium concentration in the alloys containing higher Ni and lower Cr.

  13. Imaging of intracellular spherical lamellar structures and tissue gross morphology by a focused ion beam/scanning electron microscope (FIB/SEM)

    Energy Technology Data Exchange (ETDEWEB)

    Drobne, Damjana [Department of Biology, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia)], E-mail: damjana.drobne@bf.uni-lj.si; Milani, Marziale [Materials Science Department, University of Milano-Bicocca, Via Cozzi 53, I-20125 Milano (Italy); Leser, Vladka [Department of Biology, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia); Tatti, Francesco [FEI Italia, Via Cervi 40, I-00139 Roma (Italy); Zrimec, Alexis [Institute of Physical Biology, Velika Loka 90, SI-1290 Grosuplje (Slovenia); Znidarsic, Nada; Kostanjsek, Rok; Strus, Jasna [Department of Biology, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia)

    2008-06-15

    We report the use of a focused ion beam/scanning electron microscope (FIB/SEM) for simultaneous investigation of digestive gland epithelium gross morphology and ultrastructure of multilamellar intracellular structures. Digestive glands of a terrestrial isopod (Porcellio scaber, Isopoda, Crustacea) were examined by FIB/SEM and by transmission electron microscopy (TEM). The results obtained by FIB/SEM and by TEM are comparable and complementary. The FIB/SEM shows the same ultrastructural complexity of multilamellar intracellular structures as indicated by TEM. The term lamellar bodies was used for the multillamellar structures in the digestive glands of P. scaber due to their structural similarity to the lamellar bodies found in vertebrate lungs. Lamellar bodies in digestive glands of different animals vary in their abundance, and number as well as the thickness of concentric lamellae per lamellar body. FIB/SEM revealed a connection between digestive gland gross morphological features and the structure of lamellar bodies. Serial slicing and imaging of cells enables easy identification of the contact between a lamellar body and a lipid droplet. There are frequent reports of multilamellar intracellular structures in different vertebrate as well as invertebrate cells, but laminated cellular structures are still poorly known. The FIB/SEM can significantly contribute to the structural knowledge and is always recommended when a link between gross morphology and ultrastrucutre is investigated, especially when cells or cellular inclusions have a dynamic nature due to normal, stressed or pathological conditions.

  14. Advances in Helium Cryogenics

    Science.gov (United States)

    Sciver, S. W. Van

    This review provides a survey of major advances that have occurred in recent years in the area of helium cryogenics. Helium-temperature cryogenics is the enabling technology for a substantial and growing number of low-temperature systems from superconducting magnets to space-based experimental facilities. In recent years there have been many advances in the technology of low-temperature helium, driven mostly by new applications. However, to keep the review from being too broad, this presentation focuses mainly on three of the most significant advances. These are: (1) the development of large-scale recuperative refrigeration systems mainly for superconducting magnet applications in accelerators and other research facilities; (2) the use of stored superfluid helium (He II) as a coolant for spacebased astrophysics experiments; and (3) the application of regenerative cryocoolers operating at liquid helium temperatures primarily for cooling superconducting devices. In each case, the reader should observe that critical technologies were developed to facilitate these applications. In addition to these three primary advances, other significant helium cryogenic technologies are briefly reviewed at the end of this chapter, along with some vision for future developments in these areas.

  15. General mechanism for helium blistering involving displaced atom transport

    Energy Technology Data Exchange (ETDEWEB)

    McDonell, W.R.

    1979-01-01

    A mechanism developed to account for formation of vertically elongated blisters in high displacement environments produced by /sup 252/Cf alpha particles and fission fragments has been extended to formation of done-shaped blisters in the low displacement environments produced by simple helium ion beams. In this mechanism, transport of displaced atoms to relieve compressive stresses in the helium-implanted layer allows interconnections of small, subsurface bubbles to form the blister cavity. The same transport may cause thickening of the blister caps at low implantation energies. The transition from dome-shaped to vertically elongated blistering occurs between the 300 and 3000 displacements per helium atom produced by simple helium ions and /sup 252/Cf radiations respectively.

  16. Effect of impurities on the transition concentration of helium-3 ions in (3He)-H tokamak plasmas heated with ICRH

    CERN Document Server

    Kazakov, Ye O; Van Eester, D

    2013-01-01

    Hydrogen majority plasmas will be used in the initial non-activated phase of ITER operation. Optimizing ion cyclotron resonance heating (ICRH) in such scenarios will help in achieving H-mode in these plasmas. Past JET experiments with the carbon wall revealed a significant impact of intrinsic impurities on the ICRH performance in (3He)-H plasmas. High plasma contamination with carbon impurities resulted in the appearance of a supplementary mode conversion layer and significant reduction in the transition concentration of 3He minority ions, defined as the concentration at which the change from minority heating to mode conversion regime occurs. In view of the installation of the new ITER-like wall at JET, it is important to evaluate the effect of Be and W impurities on ICRH scenarios in (3He)-H plasmas. In this paper, an approximate analytical expression for the transition concentration of 3He minority ions is derived as a function of plasma and ICRH parameters, and accounting for typical impurity species at JE...

  17. Competitive Deprotonation and Superoxide [O2 -•] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions

    Science.gov (United States)

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B.

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O•) preferentially form superoxide radical-anion (O2 -•) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2 -•) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2 -• adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O•) to generate the superoxide radical-anion ( m/z 32) or the deprotonated amide [ m/z (M - H)-], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.

  18. Microscopic techniques bridging between nanoscale and microscale with an atomically sharpened tip - field ion microscopy/scanning probe microscopy/ scanning electron microscopy.

    Science.gov (United States)

    Tomitori, Masahiko; Sasahara, Akira

    2014-11-01

    Over a hundred years an atomistic point of view has been indispensable to explore fascinating properties of various materials and to develop novel functional materials. High-resolution microscopies, rapidly developed during the period, have taken central roles in promoting materials science and related techniques to observe and analyze the materials. As microscopies with the capability of atom-imaging, field ion microscopy (FIM), scanning tunneling microscopy (STM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) can be cited, which have been highly evaluated as methods to ultimately bring forward the viewpoint of reductionism in materials science. On one hand, there have been difficulties to derive useful and practical information on large (micro) scale unique properties of materials using these excellent microscopies and to directly advance the engineering for practical materials. To make bridges over the gap between an atomic scale and an industrial engineering scale, we have to develop emergence science step-by-step as a discipline having hierarchical structures for future prospects by combining nanoscale and microscale techniques; as promising ways, the combined microscopic instruments covering the scale gap and the extremely sophisticated methods for sample preparation seem to be required. In addition, it is noted that spectroscopic and theoretical methods should implement the emergence science.Fundamentally, the function of microscope is to determine the spatial positions of a finite piece of material, that is, ultimately individual atoms, at an extremely high resolution with a high stability. To define and control the atomic positions, the STM and AFM as scanning probe microscopy (SPM) have successfully demonstrated their power; the technological heart of SPM lies in an atomically sharpened tip, which can be observed by FIM and TEM. For emergence science we would like to set sail using the tip as a base. Meanwhile, it is significant

  19. Development and implementation of scanning ion conductance microscope%扫描离子电导显微镜的研制与实现

    Institute of Scientific and Technical Information of China (English)

    李鹏; 张常麟; 王文学; 刘连庆

    2014-01-01

    High- resolution imaging of living cell at the micro- /nano- scale is important for life science research. It may help to observe biological activities of cells, and to detect cell responses to external stimuli and even movements of some protein molecules in cell membranes. However, there have not been effective methods to realize such objectives yet. Scanning ion conductance microscope (SICM) has been widely applied in many fields and is receiving increasing attention due to its non- contact, force- free, and high- resolution imaging features. Herein, a design of SICM, including hardware integration and scanning algorithms, was introduced from the point of view of system firstly; then the feasibility and effectiveness of the system was evaluated through comparison of PDMS gratings measurements by SICM and AFM;finally, in situ experiments of living- cell imaging in physiological environment had been carried out, and the topography of living neuro- 2A cell had been successfully obtained. The well- established scanning ion conductance microscope will provide an effective tool for investigating functional mechanism and micro-structure on the surface of living biological samples.%在微纳米尺度上对活细胞高分辨率成像对生命科学研究具有重要的意义,其将有助于再现正在发生的生命过程、检测细胞对外界刺激做出的响应,甚至观测某些蛋白簇在细胞膜表面的运动。然而直到今天,仍然没有很好的实现上述目标。扫描离子电导显微镜(SICM)由于其真正的非接触、高分辨、无损独特成像方式,规避了扫描过程中探针与样品表面发生力的接触,得到越来越多的关注和广泛的应用。从系统的角度阐述自制SICM系统的设计、硬件集成及跳跃模式扫描算法的实现,并通过对聚二甲基硅氧烷(PDMS)栅格成像以及与原子力显微镜(AFM)成像结果的对比,验证了系统功能的正确性和有效性;最后开展了

  20. Cosmic Ray Helium Hardening

    CERN Document Server

    Ohira, Yutaka

    2010-01-01

    Recent observations by CREAM, ATIC-2 and PAMELA experiments suggest that (1) the spectrum of cosmic ray (CR) helium is harder than that of CR proton below the knee $10^15 eV$ and (2) all CR spectra become hard at $\\gtrsim 10^{11} eV/n$. We propose a new picture that higher energy CRs are generated in more helium-rich region to explain the hardening (1) without introducing different sources for CR helium. The helium to proton ratio at $\\sim 100$ TeV exceeds the Big Bang abundance $Y=0.25$ by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in the chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium when escaping from the supernova remnant (SNR) shock. We provide a simple analytical spectrum that also fits well the hardening (2) because of the decreasing Mach number in the hot superbubble with $\\sim 10^6$ K. Our model predicts hard and con...

  1. Martian Microscope

    Science.gov (United States)

    2004-01-01

    The microscopic imager (circular device in center) is in clear view above the surface at Meridiani Planum, Mars, in this approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity. The image was taken on the 9th sol of the rover's journey. The microscopic imager is located on the rover's instrument deployment device, or arm. The arrow is pointing to the lens of the instrument. Note the dust cover, which flips out to the left of the lens, is open. This approximated color image was created using the camera's violet and infrared filters as blue and red.

  2. Microscopic colitis

    DEFF Research Database (Denmark)

    Münch, A; Aust, D; Bohr, Jakob

    2012-01-01

    Microscopic colitis (MC) is an inflammatory bowel disease presenting with chronic, non-bloody watery diarrhoea and few or no endoscopic abnormalities. The histological examination reveals mainly two subtypes of MC, lymphocytic or collagenous colitis. Despite the fact that the incidence in MC has...... been rising over the last decades, research has been sparse and our knowledge about MC remains limited. Specialists in the field have initiated the European Microscopic Colitis Group (EMCG) with the primary goal to create awareness on MC. The EMCG is furthermore a forum with the intention to promote...

  3. Martian Microscope

    Science.gov (United States)

    2004-01-01

    The microscopic imager (circular device in center) is in clear view above the surface at Meridiani Planum, Mars, in this approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity. The image was taken on the 9th sol of the rover's journey. The microscopic imager is located on the rover's instrument deployment device, or arm. The arrow is pointing to the lens of the instrument. Note the dust cover, which flips out to the left of the lens, is open. This approximated color image was created using the camera's violet and infrared filters as blue and red.

  4. Annealing Behaviour of Helium Bubbles in Titanium Films by Thermal Desorption Spectroscopy and Positron Beam Analysis

    Institute of Scientific and Technical Information of China (English)

    LIU Chao-Zhuo; ZHOU Zhu-Ying; SHI Li-Qun; WANG Bao-Yi; HAO Xiao-Peng; ZHAO Guo-Qing

    2007-01-01

    @@ Helium-containing Ti films are prepared using magnetron sputtering in the helium-argon atmosphere. Isochronal annealing at different temperatures for an hour is employed to reveal the behaviour of helium bubble growth. Ion beam analysis is used to measure the retained helium content. Helium can release largely when annealing above 970 K. A thermal helium desorption spectroscopy system is constructed for assessment of the evolution of helium bubbles in the annealed samples by linear heating (0.4K/s) from room temperature to 1500K. Also, Doppler broadening measurements of positron annihilation radiation spectrum are performed by using changeable energy positron beam. Bubble coarsening evolves gradually below 680K, migration and coalescence of small bubbles dominates in the range of 680-970K, and the Ostwald ripening mechanism enlarges the bubbles with a massive release above 970K.

  5. Helium transport in the core and stochastic edge layer in LHD

    Science.gov (United States)

    Ida, K.; Yoshinuma, M.; Goto, M.; Schmitz, O.; Dai, S.; Bader, A.; Kobayashi, M.; Kawamura, G.; Moon, C.; Nakamura, Y.; The LHD Experiment Group

    2016-07-01

    Radial profiles of the density ratio of helium to hydrogen ions are measured using charge exchange spectroscopy with a two-wavelength spectrometer in the large helical device. Helium transport at the last closed flux surface (LCFS) and stochastic magnetic field layer outside the LCFS as well as in the core plasma is studied for a wide range of helium fractions, i.e. from hydrogen-dominated plasmas up to helium-dominated plasmas. The helium density profile becomes more peaked and inward convection velocity increases in the hydrogen-dominant plasma, while it becomes flat or hollow and the convection velocity is in the outward direction in the helium-dominant plasmas. The density gradient of helium at the LCFS is twice that of hydrogen and becomes steeper as the hydrogen becomes more dominant.

  6. Microscopic colitis.

    Science.gov (United States)

    Ianiro, Gianluca; Cammarota, Giovanni; Valerio, Luca; Annicchiarico, Brigida Eleonora; Milani, Alessandro; Siciliano, Massimo; Gasbarrini, Antonio

    2012-11-21

    Microscopic colitis may be defined as a clinical syndrome, of unknown etiology, consisting of chronic watery diarrhea, with no alterations in the large bowel at the endoscopic and radiologic evaluation. Therefore, a definitive diagnosis is only possible by histological analysis. The epidemiological impact of this disease has become increasingly clear in the last years, with most data coming from Western countries. Microscopic colitis includes two histological subtypes [collagenous colitis (CC) and lymphocytic colitis (LC)] with no differences in clinical presentation and management. Collagenous colitis is characterized by a thickening of the subepithelial collagen layer that is absent in LC. The main feature of LC is an increase of the density of intra-epithelial lymphocytes in the surface epithelium. A number of pathogenetic theories have been proposed over the years, involving the role of luminal agents, autoimmunity, eosinophils, genetics (human leukocyte antigen), biliary acids, infections, alterations of pericryptal fibroblasts, and drug intake; drugs like ticlopidine, carbamazepine or ranitidine are especially associated with the development of LC, while CC is more frequently linked to cimetidine, non-steroidal antiinflammatory drugs and lansoprazole. Microscopic colitis typically presents as chronic or intermittent watery diarrhea, that may be accompanied by symptoms such as abdominal pain, weight loss and incontinence. Recent evidence has added new pharmacological options for the treatment of microscopic colitis: the role of steroidal therapy, especially oral budesonide, has gained relevance, as well as immunosuppressive agents such as azathioprine and 6-mercaptopurine. The use of anti-tumor necrosis factor-α agents, infliximab and adalimumab, constitutes a new, interesting tool for the treatment of microscopic colitis, but larger, adequately designed studies are needed to confirm existing data.

  7. Microscopic colitis

    Institute of Scientific and Technical Information of China (English)

    Gianluca Ianiro; Giovanni Cammarota; Luca Valerio; Brigida Eleonora Annicchiarico; Alessandro Milani; Massimo Siciliano; Antonio Gasbarrini

    2012-01-01

    Microscopic colitis may be defined as a clinical syndrome,of unknown etiology,consisting of chronic watery diarrhea,with no alterations in the large bowel at the endoscopic and radiologic evaluation.Therefore,a definitive diagnosis is only possible by histological analysis.The epidemiological impact of this disease has become increasingly clear in the last years,with most data coming from Western countries.Microscopic colitis includes two histological subtypes [collagenous colitis (CC) and lymphocytic colitis (LC)] with no differences in clinical presentation and management.Collagenous colitis is characterized by a thickening of the subepithelial collagen layer that is absent in LC.The main feature of LC is an increase of the density of intra-epitll lial lymphocytes in the surface epithelium.A number of pathogenetic theories have been proposed over the years,involving the role of luminal agents,autoimmunity,eosinophils,genetics (human leukocyte antigen),biliary acids,infections,alterations of pericryptal fibroblasts,and drug intake; drugs like ticlopidine,carbamazepine or ranitidine are especially associated with the development of LC,while CC is more frequently linked to cimetidine,non-steroidal antiinflammatory drugs and lansoprazole.Microscopic colitis typically presents as chronic or intermittent watery diarrhea,that may be accompanied by symptoms such as abdominal pain,weight loss and incontinence.Recent evidence has added new pharmacological options for the treatment of microscopic colitis:the role of steroidal therapy,especially oral budesonide,has gained relevance,as well as immunosuppressive agents such as azathioprine and 6-mercaptopurine.The use of anti-tumor necrosis factor-α agents,infliximab and adalimumab,constitutes a new,interesting tool for the treatment of microscopic colitis,but larger,adequately designed studies are needed to confirm existing data.

  8. The neon gas field ion source-a first characterization of neon nanomachining properties

    Energy Technology Data Exchange (ETDEWEB)

    Livengood, Richard H., E-mail: richard.h.livengood@intel.com [Intel Corporation, Intel Architecture Group, Santa Clara, CA (United States); Tan, Shida; Hallstein, Roy [Intel Corporation, Intel Architecture Group, Santa Clara, CA (United States); Notte, John; McVey, Shawn; Faridur Rahman, F.H.M. [Carl Zeiss SMT, Nano Technology Systems Division, Peabody, MA (United States)

    2011-07-21

    At the Charged Particle Optics Conference (CPO7) in 2006, a novel trimer based helium gas field ion source (GFIS) was introduced for use in a new helium ion microscope (HIM), demonstrating the novel source performance attributes and unique imaging applications of the HIM (Hill et al., 2008 ; Livengood et al., 2008). Since that time there have been numerous enhancements to the HIM source and platform demonstrating resolution scaling into the sub 0.5 nm regime (Scipioni et al., 2009 ; Pickard et al., 2010). At this Charged Particle Optics Conference (CPO8) we will be introducing a neon version of the trimer-GFIS co-developed by Carl Zeiss SMT and Intel Corporation. The neon source was developed as a possible supplement to the gallium liquid metal ion source (LMIS) used today in most focused ion beam (FIB) systems (Abramo et al., 1994 ; Young et al.,1998). The neon GFIS source has low energy spread ({approx}1 eV) and a small virtual source size (sub-nanometer), similar to that of the helium GFIS. However neon does differ from the helium GFIS in two significant ways: neon ions have high sputtering yields (e.g. 1 Si atom per incident ion at 20 keV); and have relatively shallow implant depth (e.g. 46 nm in silicon at 20 keV). Both of these are limiting factors for helium in many nanomachining applications. In this paper we will present both simulation and experimental results of the neon GFIS used for imaging and nanomachining applications.

  9. A self-circulation helium liquefaction system with five 4 K G-M cryocoolers

    Science.gov (United States)

    Xu, Dong; Gong, Linghui; Li, Laifeng; Xu, Xiangdong; Xie, Zuqi; Zhao, Hongwei; Guo, Xiaohong

    2011-06-01

    A self-circulation helium liquefaction system (SCHLS) with five 4 K G-M cryocoolers is developed to supply liquid helium (LHe) for SECRAL (a superconducting ECR ion source used in Lanzhou city, China). LHe is vaporized in SECRAL and warmed up to room temperature. SCHLS will re-liquefy the helium gas at a rate of 83.2 L/day under normal atmosphere pressure. With SCHLS, SECRAL system can run online without any interruption of refilling LHe.

  10. Broken symmetry makes helium

    CERN Multimedia

    Gray, P L

    2003-01-01

    "The subatomic pion particle breaks the charge symmetry rule that governs both fusion and decay. In experiments performed at the Indiana University Cyclotron Laboratory, physicists forced heavy hydrogen (1 proton + 1 neutron) to fuse into helium in a controlled, measurable environment" (1 paragraph).

  11. On the role of helium molecules in atmospheric pressure discharges

    Science.gov (United States)

    Carbone, Emile; Schregel, Christian; Luggenhölscher, Dirk; Czarnetzki, Uwe

    2016-09-01

    Despite their intrinsic simplicity, helium plasma kinetics are still not fully understood and quantitatively described. This is particularly the case at high pressures when various molecular helium species (i.e. ions, excimer(s) and Rydberg states) are formed. In this contribution, the absolute density of helium Rydberg molecules is measured for the first time by a combination of laser photo-ionization and Thomson scattering experiments. The experiments are performed on a parallel plate, nanosecond pulsed, DC discharge at 700 mbar. The results are combined with electron and helium metastable densities measurements and compared with a kinetic model of the discharge. The source of He2 molecules in the discharge and afterglow phases are identified and discussed. The present experimental data and kinetic model solve several inconsistencies between reaction paths proposed in the literature.

  12. Electron induced break-up of helium. Benchmark experiments on a dynamical four-body Coulomb system

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, M.

    2006-07-05

    This work presents an experimental study of fragmentation of helium by electron impact, in which absolute fully differential cross sections for single ionization, ionization-excitation and double ionization were determined. By applying a charged-particle imaging technique, the so-called 'reaction microscope', a large fraction of the final-state momentum space is covered, and the major limitations of previous experimental methods applied in this field could be overcome. Decisive modifications of the previous reaction microscope were undertaken, the most important one being the arrangement of the projectile beam parallel to the imaging-fields. For single ionization on helium an enhanced electron emission outside the projectile scattering plane is observed at both considered impact energies (102 eV and 1 keV), which is similar to the result found for ion-impact (M. Schulz et al., Nature (London) 422, 48 (2003)). The angle resolved cross sections obtained for double ionization at 105 eV impact energy reveal, that the process is dominated by the mutual repulsion of the three final-state continuum electrons. However, signatures of more complex dynamics are also observed. The data provide an ultimate benchmark for recently developed theories treating the dynamical three- and four-body Coulomb problem. (orig.)

  13. Cluster SIMS Microscope Mode Mass Spectrometry Imaging

    CERN Document Server

    Kiss, András; Jungmann, Julia H; Heeren, Ron M A

    2013-01-01

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source is combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The mass spectral and imaging performance of the system is tested with various benchmark samples and thin tissue sections. We show that the high secondary ion yield (with respect to traditional monatomic primary ion sources) of the C60 primary ion ...

  14. Graphene nanoribbon superlattices fabricated via He ion lithography

    Energy Technology Data Exchange (ETDEWEB)

    Archanjo, Braulio S., E-mail: bsarchanjo@inmetro.gov.br [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Fragneaud, Benjamin [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-330 (Brazil); Gustavo Cançado, Luiz [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30123-970 (Brazil); Winston, Donald [Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304 (United States); Miao, Feng [Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304 (United States); National Laboratory of Solid State Microstructures, School of Physics, National Center of Microstructures and Quantum Manipulation, Nanjing University, Nanjing 210093 (China); Alberto Achete, Carlos [Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de janeiro, Rio de Janeiro RJ 21941-972 (Brazil); Medeiros-Ribeiro, Gilberto [Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30123-970 (Brazil); Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304 (United States)

    2014-05-12

    Single-step nano-lithography was performed on graphene sheets using a helium ion microscope. Parallel “defect” lines of ∼1 μm length and ≈5 nm width were written to form nanoribbon gratings down to 20 nm pitch. Polarized Raman spectroscopy shows that crystallographic orientation of the nanoribbons was partially maintained at their lateral edges, indicating a high-fidelity lithography process. Furthermore, Raman analysis of large exposure areas with different ion doses reveals that He ions produce point defects with radii ∼ 2× smaller than do Ga ions, demonstrating that scanning-He{sup +}-beam lithography can texture graphene with less damage.

  15. Microscopic evaluation of the absolute fluence distribution of a large-area uniform ion beam using the track-etching technique

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Akane, E-mail: ogawa.akane@jaea.go.jp [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Yamaki, Tetsuya [High Performance Polymer Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Yuri, Yosuke [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Sawada, Shin-ichi [High Performance Polymer Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Yuyama, Takahiro [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2013-11-01

    The absolute fluence distribution of a large-area uniform beam was investigated microscopically via track etching of an Ar-irradiated polyethylene terephthalate (PET) film. The irradiated sample was divided equally into 64 pieces, for each of which the track-pore densities were counted over a 12 × 17 μm{sup 2} microscopic area near the center. For comparison, the relative intensity distribution was obtained by measuring the optical density of a similarly irradiated Gafchromic film at a resolution of 500 × 500 μm{sup 2} and then taking the measured value at the center of each of the 64 areas. The relative standard deviations of the distributions were in good agreement despite the difference in the observed resolution area and the small sample number. It was, therefore, confirmed that track etching is a reliable technique for evaluating absolute fluence and that a uniform intensity distribution of the beam was microscopically realized.

  16. Education in Helium Refrigeration

    Science.gov (United States)

    Gistau Baguer, G. M.

    2004-06-01

    On the one hand, at the end of the time I was active in helium refrigeration, I noticed that cryogenics was stepping into places where it was not yet used. For example, a conventional accelerator, operating at room temperature, was to be upgraded to reach higher particle energy. On the other hand, I was a little bit worried to let what I had so passionately learned during these years to be lost. Retirement made time available, and I came gradually to the idea to teach about what was my basic job. I thought also about other kinds of people who could be interested in such lessons: operators of refrigerators or liquefiers who, often by lack of time, did not get a proper introduction to their job when they started, young engineers who begin to work in cryogenics… and so on. Consequently, I have assembled a series of lessons about helium refrigeration. As the audiences have different levels of knowledge in the field of cryogenics, I looked for a way of teaching that is acceptable for all of them. The course is split into theory of heat exchangers, refrigeration cycles, technology and operation of main components, process control, and helium purity.

  17. Evolution Law of Helium Bubbles in Hastelloy N Alloy on Post-Irradiation Annealing Conditions

    Directory of Open Access Journals (Sweden)

    Jie Gao

    2016-10-01

    Full Text Available This work reports on the evolution law of helium bubbles in Hastelloy N alloy on post-irradiation annealing conditions. After helium ion irradiation at room temperature and subsequent annealing at 600 °C (1 h, the transmission electron microscopy (TEM micrograph indicates the presence of helium bubbles with size of 2 nm in the depth range of 0–300 nm. As for the sample further annealed at 850 °C (5 h, on one hand, a “Denuded Zone” (0–38 nm with rare helium bubbles forms due to the decreased helium concentration. On the other hand, the “Ripening Zone” (38–108 nm and “Coalescence Zone” (108–350 nm with huge differences in size and separation of helium bubbles, caused by different coarsening rates, are observed. The mechanisms of “Ostwald ripening” and “migration and coalescence”, experimentally proved in this work, may explain these observations.

  18. Helium in Earth's early core

    Science.gov (United States)

    Bouhifd, M. A.; Jephcoat, Andrew P.; Heber, Veronika S.; Kelley, Simon P.

    2013-11-01

    The observed escape of the primordial helium isotope, 3He, from the Earth's interior indicates that primordial helium survived the energetic process of planetary accretion and has been trapped within the Earth to the present day. Two distinct reservoirs in the Earth's interior have been invoked to account for variations in the 3He/4He ratio observed at the surface in ocean basalts: a conventional depleted mantle source and a deep, still enigmatic, source that must have been isolated from processing throughout Earth history. The Earth's iron-based core has not been considered a potential helium source because partitioning of helium into metal liquid has been assumed to be negligible. Here we determine helium partitioning in experiments between molten silicates and iron-rich metal liquids at conditions up to 16GPa and 3,000K. Analyses of the samples by ultraviolet laser ablation mass spectrometry yield metal-silicate helium partition coefficients that range between 4.7×10-3 and 1.7×10-2 and suggest that significant quantities of helium may reside in the core. Based on estimated concentrations of primordial helium, we conclude that the early core could have incorporated enough helium to supply deep-rooted plumes enriched in 3He throughout the age of the Earth.

  19. Multiple ionization of argon by helium ions

    Science.gov (United States)

    Montanari, C. C.; Miraglia, J. E.

    2016-09-01

    We apply the continuum distorted-wave eikonal initial state and the independent electron model to describe the multiple ionization of Ar by He2+ and He+ in the energy range 0.1-10 Mev amu-1. Auger-like post collisional processes are included, which enhance the high energy multiple ionization cross sections via ionization of the inner shells. All Ar electrons (K, L and M-shells) have been included in these calculations. The results agree well with the experimental data at high energies, where the post-collisional ionization is the main contribution. At intermediate impact energies the description is also good though it tends to overestimate the triple and quadruple ionization data at intermediate energies. We analyze this by comparing the present results for He+2 in Ar, with previous ones for He+2 in Ne and Kr. It was found that the theoretical description improves from Ne to Ar and Kr, with the latter being nicely described even at intermediate energies. The present formalism is also tested for Ar inner shell and total ionization cross sections. In all the cases the results above 0.1 MeV amu-1 are quite reasonable, as compared with the experimental data available and with the ECPSSR values.

  20. Atomically resolved phase transition of fullerene cations solvated in helium droplets

    Science.gov (United States)

    Kuhn, M.; Renzler, M.; Postler, J.; Ralser, S.; Spieler, S.; Simpson, M.; Linnartz, H.; Tielens, A. G. G. M.; Cami, J.; Mauracher, A.; Wang, Y.; Alcamí, M.; Martín, F.; Beyer, M. K.; Wester, R.; Lindinger, A.; Scheier, P.

    2016-11-01

    Helium has a unique phase diagram and below 25 bar it does not form a solid even at the lowest temperatures. Electrostriction leads to the formation of a solid layer of helium around charged impurities at much lower pressures in liquid and superfluid helium. These so-called `Atkins snowballs' have been investigated for several simple ions. Here we form HenC60+ complexes with n exceeding 100 via electron ionization of helium nanodroplets doped with C60. Photofragmentation of these complexes is measured by merging a tunable narrow-bandwidth laser beam with the ions. A switch from red- to blueshift of the absorption frequency of HenC60+ on addition of He atoms at n=32 is associated with a phase transition in the attached helium layer from solid to partly liquid (melting of the Atkins snowball). Elaborate molecular dynamics simulations using a realistic force field and including quantum effects support this interpretation.

  1. High Efficiency Regenerative Helium Compressor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Helium plays several critical rolls in spacecraft propulsion. High pressure helium is commonly used to pressurize propellant fuel tanks. Helium cryocoolers can be...

  2. Cavitation in liquid helium

    Energy Technology Data Exchange (ETDEWEB)

    Finch, R. D.; Kagiwada, R.; Barmatz, M.; Rudnick, I.

    1963-11-15

    Ultrasonic cavitation was induced in liquid helium over the temperature range 1.2 to 2.3 deg K, using a pair of identical transducers. The transducers were calibrated using a reciprocity technique and the cavitation threshold was determined at 90 kc/s. It was found that this threshold has a sharp peak at the lambda point, but is, at all temperatures quite low, with an approximate range of 0.001 to 0.01 atm. The significance of the results is discussed. (auth)

  3. Magnetostructural correlations for Fe2+ ions at orthorhombic sites in FeCl2·4H2O and FeF2·4H2O crystals modeled by microscopic spin Hamiltonian approach

    Science.gov (United States)

    Zając, Magdalena; Lipiński, Ignacy Eryk; Rudowicz, Czesław

    2016-03-01

    The microscopic spin Hamiltonian (MSH) theory developed up to the fourth-order perturbation theory for 3d4 and 3d6 ions with spin S=2 within the 5D approximation is employed to predict the zero field splitting (ZFS) parameters and the Zeeman electronic (Ze) ones. The SH parameters, measurable by electron magnetic resonance (EMR), are expressed in terms of the microscopic parameters, i.e. the spin-orbit (λ), spin-spin (ρ) coupling constants, and the crystal-field (ligands-field) energy levels (∆i) within the 5D multiplet. The energies, ∆i, are indirectly related with structural data, thus enabling investigation of magnetostructural correlations. As a case study Fe2+ (3d6; S=2) ions at orthorhombic sites in FeCl2·4H2O and FeF2·4H2O crystals are considered. Calculations of the ZFS and Ze parameters are carried out for wide ranges of values of the microscopic parameters using the package MSH/VBA. Dependence of the theoretically determined ZFS parameters bkq (in the Stevens notation) and the Zeeman factors gi on λ, ρ, and ∆i is examined and suitable graphs are presented. The absolute value of dominant ZFS parameter |b20| is predicted to be in the range from nearly 8.5 to 1.4 cm-1. Matching the theoretical SH parameters and the experimental ones enables determination of the suitable values of λ, ρ, and ∆i. The fourth-rank ZFS parameters and the ρ(spin-spin)-related contributions, considered for the first time here, are found important. The MSH predictions may be verified and fine-tuned by high-magnetic field and high-frequency EMR measurements. The method employed here and the present results may be also useful for other structurally related systems.

  4. Cycle flux algebra for ion and water flux through the KcsA channel single-file pore links microscopic trajectories and macroscopic observables.

    Science.gov (United States)

    Oiki, Shigetoshi; Iwamoto, Masayuki; Sumikama, Takashi

    2011-01-31

    In narrow pore ion channels, ions and water molecules diffuse in a single-file manner and cannot pass each other. Under such constraints, ion and water fluxes are coupled, leading to experimentally observable phenomena such as the streaming potential. Analysis of this coupled flux would provide unprecedented insights into the mechanism of permeation. In this study, ion and water permeation through the KcsA potassium channel was the focus, for which an eight-state discrete-state Markov model has been proposed based on the crystal structure, exhibiting four ion-binding sites. Random transitions on the model lead to the generation of the net flux. Here we introduced the concept of cycle flux to derive exact solutions of experimental observables from the permeation model. There are multiple cyclic paths on the model, and random transitions complete the cycles. The rate of cycle completion is called the cycle flux. The net flux is generated by a combination of cyclic paths with their own cycle flux. T.L. Hill developed a graphical method of exact solutions for the cycle flux. This method was extended to calculate one-way cycle fluxes of the KcsA channel. By assigning the stoichiometric numbers for ion and water transfer to each cycle, we established a method to calculate the water-ion coupling ratio (CR(w-i)) through cycle flux algebra. These calculations predicted that CR(w-i) would increase at low potassium concentrations. One envisions an intuitive picture of permeation as random transitions among cyclic paths, and the relative contributions of the cycle fluxes afford experimental observables.

  5. Regimes Of Helium Burning

    CERN Document Server

    Timmes, F X

    2000-01-01

    The burning regimes encountered by laminar deflagrations and ZND detonations propagating through helium-rich compositions in the presence of buoyancy-driven turbulence are analyzed. Particular attention is given to models of X-ray bursts which start with a thermonuclear runaway on the surface of a neutron star, and the thin shell helium instability of intermediate-mass stars. In the X-ray burst case, turbulent deflagrations propagating in the lateral or radial directions encounter a transition from the distributed regime to the flamlet regime at a density of 10^8 g cm^{-3}. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than 10^6 g cm^{-3}. Self-sustained laminar deflagrations travelling in the radial direction cannot exist below this density. Similarily, the planar ZND detonation width becomes larger than the pressure scale height at 10^7 g cm^{-3}, suggesting that a steady-state, self-sustained detonations cannot come into exista...

  6. Helium diffusion in carbonates

    Science.gov (United States)

    Amidon, W. H.; Cherniak, D. J.; Watson, E. B.; Hobbs, D.

    2013-12-01

    The abundance and large grain size of carbonate minerals make them a potentially attractive target for 4He thermochronology and 3He cosmogenic dating, although the diffusive properties of helium in carbonates remain poorly understood. This work characterizes helium diffusion in calcite and dolomite to better understand the crystal-chemical factors controlling He transport and retentivity. Slabs of cleaved natural calcite and dolomite, and polished sections of calcite cut parallel or normal to c, were implanted with 3He at 3 MeV with a dose of 5x1015/cm2. Implanted carbonates were heated in 1-atm furnaces, and 3He distributions following diffusion anneals were profiled with Nuclear Reaction Analysis using the reaction 3He(d,p)4He. For 3He transport normal to cleavage surfaces in calcite, we obtain the following Arrhenius relation over the temperature range 78-300°C: Dcalcite = 9.0x10-9exp(-55 × 6 kJ mol-1/RT) m2sec-1. Diffusion in calcite exhibits marked anisotropy, with diffusion parallel to c about two orders of magnitude slower than diffusion normal to cleavage faces. He diffusivities for transport normal to the c-axis are similar in value to those normal to cleavage surfaces. Our findings are broadly consistent with helium diffusivities from step-heating measurements of calcite by Copeland et al. (2007); these bulk degassing data may reflect varying effects of diffusional anisotropy. Helium diffusion normal to cleavage surfaces in dolomite is significantly slower than diffusion in calcite, and has a much higher activation energy for diffusion. For dolomite, we obtain the following Arrhenius relation for He diffusion over the temperature range 150-400°C: Ddolomite = 9.0x10-8exp(-92 × 9 kJ mol-1/RT) m2sec-1. The role of crystallographic structure in influencing these differences among diffusivities was evaluated using the maximum aperture approach of Cherniak and Watson (2011), in which crystallographic structures are sectioned along possible diffusion

  7. Development of a low-cost small-sized scanning transmission ion microscope of moderate resolution with educational and other potential applications

    Science.gov (United States)

    Pallone, Arthur

    2009-03-01

    Scanning transmission ion microscopy (STIM) has applications in many fields of study such as materials and device engineering, biological and geological sciences, and the arts. Since STIM is practiced at ion beam facilities, many persons outside of the ion beam community who could benefit from STIM are unaware of its potential. In an effort to better educate the public about STIM, an inexpensive portable demonstration unit suitable for interactive classroom use and public outreach events is under development. The required parts are readily available, mostly at local electronics and office supply stores. Progress toward completion of the demonstration unit and future efforts to modify the unit to support thin film research will be discussed. Activities that demonstrate the three modes of STIM will also be presented.

  8. Helium in near Earth orbit

    CERN Document Server

    Alcaraz, J; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Babucci, E; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Béné, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Bizzaglia, S; Blasko, S; Bölla, G; Boschini, M; Bourquin, Maurice; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Casadei, D; Casaus, J; Castellini, G; Cecchi, C; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Chuang, Y L; Cindolo, F; Commichau, V; Contin, A; Cristinziani, M; Da Cunha, J P; Dai, T S; Deus, J D; Dinu, N; Djambazov, L; D'Antone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, Pierre; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Huang, M A; Hungerford, W; Ionica, M; Ionica, R; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kenny, J; Kim, W; Klimentov, A; Kossakowski, R; Koutsenko, V F; Kräber, M H; Laborie, G; Laitinen, T; Lamanna, G; Laurenti, G; Lebedev, A; Lee, S C; Levi, G; Levchenko, P M; Liu, C L; Liu Hong Tao; Lopes, I; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Mourão, A M; Mujunen, A; Palmonari, F; Papi, A; Park, I H; Pauluzzi, M; Pauss, Felicitas; Perrin, E; Pesci, A; Pevsner, A; Pimenta, M; Plyaskin, V; Pozhidaev, V; Pohl, M; Postolache, V; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Röser, U; Roissin, C; Sagdeev, R; Sartorelli, G; Schultz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shoutko, V; Shoumilov, E; Siedling, R; Son, D; Song, T; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Trümper, J E; Ulbricht, J; Urpo, S; Usoskin, I; Valtonen, E; Van den Hirtz, J; Velcea, F; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, Gert M; Vitè, Davide F; Von Gunten, H P; Waldmeier-Wicki, S; Wallraff, W; Wang, B C; Wang, J Z; Wang, Y H; Wiik, K; Williams, C; Wu, S X; Xia, P C; Yan, J L; Yan Lu Guang; Yang, C G; Yang, M; Ye Shu Wei; Yeh, P; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B; Zuccon, P

    2000-01-01

    The helium spectrum from 0.1 to 100 GeV/nucleon was measured by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at altitudes near 380 km. Above the geomagnetic cutoff the spectrum is parameterized by a power law. Below the geomagnetic cutoff a second helium spectrum was observed. In the second helium spectra over the energy range 0.1 to 1.2 GeV/nucleon the flux was measured to be (6.3+or-0.9)*10/sup -3/ (m/sup 2/ sec sr)/sup -1/ and more than ninety percent of the helium was determined to be /sup 3/He (at the 90% CL). Tracing helium from the second spectrum shows that about half of the /sup 3/He travel for an extended period of time in the geomagnetic field and that they originate from restricted geographic regions similar to protons and positrons. (22 refs).

  9. Effects of helium on titanium films and the helium diffusion

    Institute of Scientific and Technical Information of China (English)

    SONG YingMin; LUO ShunZhong; LONG XingGui; AN Zhu; LIU Ning; PANG HongChao; WU XingChun; YANG BenFu; ZHENG SiXiao

    2008-01-01

    Using direct current-magnetron sputtering, Helium-trapped Ti films with a He/Ar mixture was studied. The relative helium content, helium depth profiles for the Ti films and crystallization capacity were analyzed by Enhanced Proton Backscattering Spectrometry (EPBS) and X-ray diffraction (XRD). It was found that helium diffusion enhanced as more helium trapping into Ti films, and the He holding ratios were 95.9%, 94.9%, 93.9%, 82.8% when the Ti films with the He/Ti of concentrations of 9.7 at.Q, 19.5 at.Q, 19.7 at.Q, 48.3 at.% were measured again 4 months later, respectively. The diffraction peaks be-came weak and wider, the peak of (002) plane was shifted to smaller diffraction angles and the relevant interplanar spacing d(hkl) increased gradually as more helium trapping into Ti films. The main peak was made trending to the (101) plane by both higher deposition temperature and more helium trapping.

  10. Summary of results from the TEXTOR helium self-pumping experiment

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, J.N.; Krauss, A. [Argonne National Lab., IL (United States); Nygren, R.E.; Doyle, B.L. [Sandia National Labs., Albuquerque, NM (United States); Dippel, K.H.; Finken, K.H. [Association Euratom-Kernforschungsanlage Juelich (Germany). Inst. fuer Plasmaphysik

    1992-03-01

    Helium removal experiments were conducted in TEXTOR with a small helium self-pumping module located in a modified ALT-I limiter head. The module contained two heated nickel alloy trapping plates, a nickel deposition filament array, a Langmuir probe, flux probe, and thermocouples. The experiment examined plasma helium removal via trapping of helium ions in the deposited nickel surfaces. Such helium removal was successfully observed, with about 10% of the helium He/D plasma being removed in a {approximately}1 s period. The module was found to be compatible with overall tokamak operation with essentially no sputtered nickel entering the core plasma. The temperature rise on the ion-exposed inner trapping plate, during a plasma shot, is consistent with a nickel a local sheath potential of {approximately}3 kT{sub e}. Post-tokamak test examination of the trapping plates shows helium atom concentrations in the deposited nickel consistent with the observed helium removal, and shows very small D concentrations.

  11. M-line spectroscopic, spectroscopic ellipsometric and microscopic measurements of optical waveguides fabricated by MeV-energy N{sup +} ion irradiation for telecom applications

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O.B. 49, H-1525, Budapest (Hungary); Berneschi, S. [“Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Fried, M.; Lohner, T. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O.B. 49, H-1525, Budapest (Hungary); Conti, G. Nunzi; Righini, G.C.; Pelli, S. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Zolnai, Z. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O.B. 49, H-1525, Budapest (Hungary)

    2013-08-31

    Irradiation with N{sup +} ions of the 1.5–3.5 MeV energy range was applied to optical waveguide formation. Planar and channel waveguides have been fabricated in an Er-doped tungsten–tellurite glass, and in both types of bismuth germanate (BGO) crystals: Bi{sub 4}Ge{sub 3}O{sub 12} (eulytine) and Bi{sub 12}GeO{sub 20} (sillenite). Multi-wavelength m-line spectroscopy and spectroscopic ellipsometry were used for the characterisation of the ion beam irradiated waveguides. Planar waveguides fabricated in the Er-doped tungsten–tellurite glass using irradiation with N{sup +} ions at 3.5 MeV worked even at the 1550 nm telecommunication wavelength. 3.5 MeV N{sup +} ion irradiated planar waveguides in eulytine-type BGO worked up to 1550 nm and those in sillenite-type BGO worked up to 1330 nm. - Highlights: ► Waveguides were fabricated in glass and crystals using MeV energy N{sup +} ions. ► SRIM simulation and spectroscopic ellipsometry yielded similar waveguide structures. ► Multi-wavelength m-line spectroscopy was used to study the waveguides. ► Waveguides fabricated in an Er-doped tungsten–tellurite glass worked up to 1.5 μm. ► Waveguides in Bi{sub 12}GeO{sub 20} remained operative up to 1.5 μm.

  12. Submersion of potassium clusters in helium nanodroplets

    Science.gov (United States)

    An der Lan, Lukas; Bartl, Peter; Leidlmair, Christian; Schöbel, Harald; Denifl, Stephan; Märk, Tilmann D.; Ellis, Andrew M.; Scheier, Paul

    2012-03-01

    Small alkali clusters do not submerge in liquid helium nanodroplets but instead survive predominantly in high spin states that reside on the surface of the nanodroplet. However, a recent theoretical prediction by Stark and Kresin [Phys. Rev. BPLRBAQ1098-012110.1103/PhysRevB.81.085401 81, 085401 (2010)], based on a classical description of the energetics of bubble formation for a fully submerged alkali cluster, suggests that the alkali clusters can submerge on energetic grounds when they exceed a critical size. Following recent work on sodium clusters, where ion yield data from electron impact mass spectrometry was used to obtain the first experimental evidence for alkali cluster submersion, we report here on similar experiments for potassium clusters. Evidence is presented for full cluster submersion at n>80 for Kn clusters, which is in good agreement with the recent theoretical prediction. In an additional observation, we report “magic number” sizes for both Kn+ and Kn2+ ions derived from helium droplets, which are found to be consistent with the jellium model.

  13. Photoionizaton of Pure and Doped Helium Nanodroplets

    CERN Document Server

    Mudrich, M

    2014-01-01

    Helium nanodroplets, commonly regarded as the "nearly ideal spectroscopic matrix", are being actively studied for more than two decades now. While they mostly serve as cold, weakly perturbing and transparent medium for high-resolution spectroscopy of embedded molecules, their intrinsic quantum properties such as microscopic superfluidity still are subject-matter of current research. This article reviews recent work on pure and doped He nanodroplets using PI spectroscopy, an approach which has greatly advanced in the past years. While the notion of the ideal spectroscopic matrix mostly no longer holds in this context, photoionization techniques provide detailed insights into the photo-physical properties of pure and doped He nanodroplets and their relaxation dynamics following electronic excitation. Exploiting nowadays available high laser fields, even highly ionized states of matter on the nanoscale can be formed. Our particular focus lies on recent experimental progress including fs time-resolved spectroscop...

  14. Characterizing uniform discharge in atmospheric helium by numerical modelling

    Institute of Scientific and Technical Information of China (English)

    Lü Bo; Wang Xin-Xin; Luo Hai-Yun; Liang Zhuo

    2009-01-01

    One-dimensional fluid model of dielectric barrier discharge (DBD) in helium at atmospheric pressure was estab-lished and the discharge was numerically simulated. It was found that not only the spatial distributions of the internal parameters such as the electric field, the electron density and ion density are similar to those in a low-pressure glow discharge, but also the visually apparent attribute (light emission) is exactly the same as the observable feature of a low-pressure glow discharge. This confirms that the uniform DBD in atmosphcric helium is a glow type discharge. The fact that the thickness of the cathode fall layer is about 0.5 ram, much longer than that of a normal glow dischargc in helium at atmospheric pressure, indicates the discharge being a sub-normal glow discharge close to normal one. The multipulse phenomenon was reproduced in the simulation and a much less complicated explanation for this phenomenon was given.

  15. Electronic properties of physisorbed helium

    Energy Technology Data Exchange (ETDEWEB)

    Kossler, Sarah

    2011-09-22

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  16. Transferring superfluid helium in space

    Science.gov (United States)

    Kittel, Peter

    1986-01-01

    A simple thermodynamic model of a transfer system for resupplying liquid helium in space is presented, with application to NASA projects including the Space Infrared Telescope Facility, the Large Deployable Reflector, and the Hubble Space Telescope. The relations between different thermodynamic regimes that can be expected in the transfer line are used to study the relative efficiencies of various possible transfer techniques. Low heat leak into the transfer line, particularly at point sources such as the coupling, is necesssary for efficient transfer of liquid helium, and proper selection of supply tank temperature is important during helium resupply.

  17. Trapping fermionic and bosonic helium atoms

    NARCIS (Netherlands)

    Stas, R.J.W.

    2005-01-01

    This thesis presents experimental and theoretical work performed at the Laser Centre of the Vrije Universiteit in Amsterdam to study laser-cooled metastable triplet helium atoms. Samples containing about 3x10^8 helium atoms-either fermionic helium-3 atoms, bosonic helium-4 atoms or mixtures thereof

  18. Trapping fermionic and bosonic helium atoms

    NARCIS (Netherlands)

    Stas, R.J.W.

    2005-01-01

    This thesis presents experimental and theoretical work performed at the Laser Centre of the Vrije Universiteit in Amsterdam to study laser-cooled metastable triplet helium atoms. Samples containing about 3x10^8 helium atoms-either fermionic helium-3 atoms, bosonic helium-4 atoms or mixtures thereof

  19. Resistor monitors transfer of liquid helium

    Science.gov (United States)

    Hesketh, W. D.

    1966-01-01

    Large resistance change of a carbon resistor at the liquid helium temperature distinguishes between the transfer of liquid helium and gaseous helium into a closed Dewar. The resistor should be physically as small as possible to reduce the heat load to the helium.

  20. Trapping fermionic and bosonic helium atoms

    NARCIS (Netherlands)

    Stas, R.J.W.

    2005-01-01

    This thesis presents experimental and theoretical work performed at the Laser Centre of the Vrije Universiteit in Amsterdam to study laser-cooled metastable triplet helium atoms. Samples containing about 3x10^8 helium atoms-either fermionic helium-3 atoms, bosonic helium-4 atoms or mixtures

  1. Diffusion and retention of helium in titanium carbide

    Science.gov (United States)

    Agarwal, S.; Trocellier, P.; Vaubaillon, S.; Miro, S.

    2014-05-01

    The knowledge of helium migration in TiC is an important issue due to its possible use as fuel coating in fission reactors and as first wall material coating in fusion reactors. Helium release measurements and diffusion coefficient calculations of helium in polycrystalline TiC have been carried out in the temperature range (1000-1600 °C) for the time period of 2 h. Polished bars of TiC were implanted with 3 MeV 3He+ ions in normal incidence at a dose of 5 × 1020 at./m2 at room temperature. Helium depth profile was measured at each step using the 3He(d, p0)4He nuclear reaction by varying the incident deuteron energy from 900 to 1800 keV. Effective diffusion coefficients vary from 4.20 × 10-18 to 2.59 × 10-17 m2 s-1 and activation energy values obtained are in the range 0.8-2.5 eV. Due to scarce availability of stoichiometric TiC, challenges in this study came from native vacancies present in the samples. The helium distribution and its release were affected by the presence of grain boundaries. He is considered to undergo two distinct populations into the sample and different values of diffusion coefficient have been determined for each population.

  2. Diffusion and retention of helium in titanium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, S., E-mail: shradha.agarwal@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Trocellier, P. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Vaubaillon, S. [CEA, INSTN, UEPTN, Laboratoire JANNUS, F-91191 Gif sur Yvette (France); Miro, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2014-05-01

    The knowledge of helium migration in TiC is an important issue due to its possible use as fuel coating in fission reactors and as first wall material coating in fusion reactors. Helium release measurements and diffusion coefficient calculations of helium in polycrystalline TiC have been carried out in the temperature range (1000–1600 °C) for the time period of 2 h. Polished bars of TiC were implanted with 3 MeV {sup 3}He{sup +} ions in normal incidence at a dose of 5 × 10{sup 20} at./m{sup 2} at room temperature. Helium depth profile was measured at each step using the {sup 3}He(d, p{sub 0}){sup 4}He nuclear reaction by varying the incident deuteron energy from 900 to 1800 keV. Effective diffusion coefficients vary from 4.20 × 10{sup −18} to 2.59 × 10{sup −17} m{sup 2} s{sup −1} and activation energy values obtained are in the range 0.8–2.5 eV. Due to scarce availability of stoichiometric TiC, challenges in this study came from native vacancies present in the samples. The helium distribution and its release were affected by the presence of grain boundaries. He is considered to undergo two distinct populations into the sample and different values of diffusion coefficient have been determined for each population.

  3. Growing ultracold sodium clusters by using helium nanodroplets

    Science.gov (United States)

    Vongehr, S.; Scheidemann, A. A.; Wittig, C.; Kresin, V. V.

    2002-02-01

    The aggressive doping of helium droplets (˜10 5 atoms) with sodium vapor results in the growth of sodium clusters having up to at least 13 atoms, as determined by a Penning ionization technique. Signatures of electronic shell effects are observed in Na k+ cluster ions, including an odd-even intensity oscillation and an enhanced Na 9+ peak, which is a magic number effect. The size distributions are consistent with cluster ion fragmentation rather than simply sequential pickup statistics. The dependence of ion yield on mean ionizing electron energy suggests that neutral alkali clusters are located preferentially on the droplet surfaces.

  4. Field Ionization detection of supersonic helium atom beams

    Science.gov (United States)

    Doak, R. B.

    2003-10-01

    Field ionization detectors (FID) may offer near-unity detection efficiency and nanoscale spatial resolution. To date, FID detection of molecular beams has been limited to effusive beams of broad Maxwellian velocity distributions. We report FID measurements on monoenergetic helium beams, including intensity measurements and time-of-flight measurements. The FID tips were carefully prepared and characterized in a field ionization microscope prior to use. With the supersonic helium beam we find a much smaller effective detection area ( 50 sq. nm) than was reported in the effusive helium beam experiments ( 200,000 sq. nm). This suggests that the FID ionization yield depends strongly on energy loss by the impinging atom during its initial collision with the FID surface: Our thermal energy, monoenergetic helium beam atoms likely lose little or no energy upon scattering from the clean tungsten FID surface, allowing the scattered atoms to escape the FID polarization field and therby reducing the ionization yield. To improve signal levels, inelastic scattering might be enhanced by use of lower beam velocities (present in the tails of a Maxwellian) or by adsorbing an overlayer on the FID tip (present at cryogenic tip temperatures). These factors likely explain the higher detection yields measured in the effusive beam experiments.

  5. ITER helium ash accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. (Oak Ridge National Lab., TN (USA)); Dippel, K.H.; Finken, K.H. (Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1990-01-01

    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  6. Trapping and diffusion of helium in lunar minerals

    Science.gov (United States)

    Harris-Kuhlman, Kimberly Renae

    1998-12-01

    The goal of the research performed in this dissertation is to improve the understanding of the trapping and diffusion of helium in lunar minerals, especially ilmenite. The Moon is the most promising source of large amounts of 3He needed for future fusion fuel, and 3He seems to be preferentially trapped in lunar ilmenite. The parabolic differential equation for diffusion was combined with solar wind data from Pioneer 10 and a description of the lunar environment to create a computational model of helium implantation and diffusion in the lunar regolith. This computational approach established an upper bound of 3 x 10-25 cm2/s for the diffusivity of He in the lunar regolidi at 400K, the maximum lunar temperature. The diffusivity of He isotopes in ilmenite, a mineral known for its helium retention capability, was measured experimentally. Samples of several terrestrial ilmenites, were analyzed using electron probe microanalysis to determine the closest analog of lunar ilmenite. The most suitable simulants were ilmenite from Quebec and New York. These samples were implanted with 4He to 1016 ions/cm2/ 3He to 1013 ions/cm2 and H from 10 14 ions/cm2 to 1017 ions/cm2 at solar-wind energies using Plasma Source Ion Implantation (PSII). Isochronal annealing with mass spectroscopy of the evolved 4He demonstrated release behavior similar to that of the Apollo 11 regoliths. Moderate fluences of H were seen to retard 3He release, while a high fluence of H had little effect. A three-dimensional computational code, ANNEAL, was developed for calculating diffusivity from the results of these annealing experiments. The helium (both 3He and 4He) diffusion in these samples is characterized by four distinct activation energies, E1 = 0.26 eV, E2 ≅ 0.5 eV, E3 ≅ 1.5 eV and E4 > 2.2 eV. These energies are characteristic of diffusion through two amorphous layers and detrapping from oxygen vacancies and constitutional vacancies, respectively. The diffusivity of 3He was seen to be at least a

  7. Helium-3 Generation from the Interaction of Deuterium Plasma inside a Hydrogenated Lattice: Red Fusion

    Science.gov (United States)

    Leal-Quiros, Edbertho; Leal-Escalante, David A.

    2015-03-01

    Helium-3 has been created in a nuclear fusion reaction by fusing deuterium ions from deuterium plasma with hydrogen ions in a “RED” (the Spanish word for net) or crystal lattice, a method we called red fusion ("Fusion en la red cristalina"), because is a new method to make nuclear fusion reaction. In this paper, it will be show the experimental results where the helium-3 has been generated for the first time in this kind of new method to confine deuterium and hydrogen inside the RED or lattice of the hydrogenated crystal and that confinement inside the RED facilitated overcoming the Coulomb barrier between them and helium-3 and phonons are produced in this fusion reaction. The results of a long time research in which helium-3, has been created in a fusion reaction inside the lattice or RED of the crystal that contained hydrogen after adequate interaction of deuterium plasma at appropriate high temperature and magnetic confinement of the Mirror/Cusp Plasma Machine at Polytechnic University of Puerto Rico, designed by the authors. Several mass spectra and visible light spectrum where the presence of helium-3 was detected are shown. The experiment was repeated more than 200 times showing always the generation of helium-3. In this experiment no gamma rays were detected. For this experiment several diagnostic instruments were used. The data collection with these control instrumentation are shown. Thus, it is an important new way to generate Helium-3. reserved.

  8. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets.

    Science.gov (United States)

    Chen, Lei; Zhang, Jie; Freund, William M; Kong, Wei

    2015-07-28

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs(+) is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs(+)-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10(6) helium atoms when the source temperature is between 14 K and 17 K.

  9. Production of zero energy radioactive beams through extraction across superfluid helium surface

    NARCIS (Netherlands)

    Takahashi, N; Huang, WX; Gloos, K; Dendooven, P; Pekola, JP; Aysto, J

    2003-01-01

    A radioactive Ra-223 source was immersed in superfluid helium at 1.2-1.7 K. Electric fields transported recoiled Rn-219 ions in the form of snowballs to the surface and further extracted them across the surface. The ions were focussed onto an aluminium foil and alpha particle spectra were taken with

  10. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei; Zhang, Jie; Freund, William M.; Kong, Wei, E-mail: wei.kong@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)

    2015-07-28

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs{sup +} is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs{sup +}-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10{sup 6} helium atoms when the source temperature is between 14 K and 17 K.

  11. Genetic changes in Mammalian cells transformed by helium cells

    Energy Technology Data Exchange (ETDEWEB)

    Durante, M.; Grossi, G. (Naples Univ. (Italy). Dipt. di Scienze Fisiche); Yang, T.C.; Roots, R. (Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    Midterm Syrian Hamster embryo (SHE) cells were employed to study high LET-radiation induced tumorigenesis. Normal SHE cells (secondary passage) were irradiated with accelerated helium ions at an incident energy of 22 MeV/u (9--10 keV/{mu}m). Transformed clones were isolated after growth in soft agar of cells obtained from the foci of the initial monolayer plated postirradiation. To study the progression process of malignant transformation, the transformed clones were followed by monolayer subculturing for prolonged periods of time. Subsequently, neoplasia tests in nude mice were done. In this work, however, we have focused on karyotypic changes in the banding patterns of the chromosomes during the early part of the progressive process of cell transformation for helium ion-induced transformed cells. 26 refs., 5 figs., 2 tabs.

  12. Optical spectroscopy and current detection during warm-up and destruction of impurity-helium condensates

    Science.gov (United States)

    Krushinskaya, I. N.; Boltnev, R. E.; Bykhalo, I. B.; Pelmenev, A. A.; Khmelenko, V. V.; Lee, D. M.

    2015-06-01

    New experimental results on detection of optical spectra and ion currents during destruction of impurity-helium condensates (IHCs) have been obtained. It is shown that emission during IHC sample destruction is accompanied by current pulses, pressure peaks and temperature changes. The molecular bands of excimer molecules XeO* are assigned to molecules stabilized in films of molecular nitrogen covering the heavier cores of impurity clusters which form impurity-helium condensates.

  13. Radiation induced microstructures in ODS 316 austenitic steel under dual-beam ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, He Ken [Department of Mechanical and Materials Engineering, Queen’s University, Kingston K7L3N6, Ontario (Canada); Yao, Zhongwen, E-mail: yaoz@me.queensu.ca [Department of Mechanical and Materials Engineering, Queen’s University, Kingston K7L3N6, Ontario (Canada); Zhou, Zhangjian; Wang, Man [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Kaitasov, Odile [Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, Orsay 91405 (France); Daymond, Mark R. [Department of Mechanical and Materials Engineering, Queen’s University, Kingston K7L3N6, Ontario (Canada)

    2014-12-15

    An ODS 316 austenitic steel was fabricated and irradiated using dual ion beams (1 MeV Kr{sup +} and 15 keV He{sup +}) with in-situ transmission electron microscope (TEM) observation. Cavities formed at a low dose in samples irradiated with simultaneous helium injection. It was found that Y–Ti–O particles acted as strong traps for cavity formation at low doses. Helium exhibited a significant effect on cavity development. Cavities were also preferentially nucleated along grain boundaries, phase boundaries and twin boundaries. Irradiation induced lattice defects mainly consisted of small 1/2〈1 1 0〉 perfect loops and 1/3〈1 1 1〉 Frank loops. An increment of helium injection rate also greatly enhanced the Frank loop growth. Small (<10 nm) Y–Ti–O particles were found to be unstable after irradiation to high doses. M{sub 23}C{sub 6} precipitates were observed after irradiation and helium might play a major role in their formation.

  14. Effects of ionizing radiation on the light sensing elements of the retina. [Structural and physiological effects of carbon, helium, and neon ions on rods and cones of salamanders and mice

    Energy Technology Data Exchange (ETDEWEB)

    Malachowski, M.J.

    1978-07-01

    This investigation was undertaken to quantitate possible morphological and physiological effects of particles of high linear energy transfer on the retina, in comparison with x-ray effects. The particles used were accelerated atomic nuclei of helium, carbon, and neon at kinetic energies of several hundred MeV/nucleon. For morphological studies, scanning and transmission electron microscopy and light microscopy were used. Physiological studies consisted of autoradiographic data of the rate of incorporation of labeled protein in the structures (opsin) of the outer segment of visual cells. Structural changes were found in the nuclei, as well as the inner and outer segments of visual cells, rods and cones. At a low dose of 10 rad, x rays and helium had no statistically significant morphological effects, but carbon and neon beams did cause significant degeneration of individual cells, pointing to the existence of a linear dose--effect relationship. At high doses of several hundred rads, a Pathologic Index determined the relative biological effectiveness of neon against alpha particles to have a value of greater than 6. The severity of effects per particle increased with atomic number. Labeling studies demonstrated a decreased rate of incorporation of labeled proteins in the structural organization of the outer segments of visual rods. The rate of self-renewal of visual rod discs was punctuated by irradiation and the structures themselves were depleted of amino acids. A model of rod discs (metabolic and catabolic) was postulated for correlated early and late effects to high and low doses.

  15. Microscopic Theory of Supercapacitors

    Science.gov (United States)

    Skinner, Brian Joseph

    As new energy technologies are designed and implemented, there is a rising demand for improved energy storage devices. At present the most promising class of these devices is the electric double-layer capacitor (EDLC), also known as the supercapacitor. A number of recently created supercapacitors have been shown to produce remarkably large capacitance, but the microscopic mechanisms that underlie their operation remain largely mysterious. In this thesis we present an analytical, microscopic-level theory of supercapacitors, and we explain how such large capacitance can result. Specifically, we focus on four types of devices that have been shown to produce large capacitance. The first is a capacitor composed of a clean, low-temperature two-dimensional electron gas adjacent to a metal gate electrode. Recent experiments have shown that such a device can produce capacitance as much as 40% larger than that of a conventional plane capacitor. We show that this enhanced capacitance can be understood as the result of positional correlations between electrons and screening by the gate electrode in the form of image charges. Thus, the enhancement of the capacitance can be understood primarily as a classical, electrostatic phenomenon. Accounting for the quantum mechanical properties of the electron gas provides corrections to the classical theory, and these are discussed. We also present a detailed numerical calculation of the capacitance of the system based on a calculation of the system's ground state energy using the variational principle. The variational technique that we develop is broadly applicable, and we use it here to make an accurate comparison to experiment and to discuss quantitatively the behavior of the electrons' correlation function. The second device discussed in this thesis is a simple EDLC composed of an ionic liquid between two metal electrodes. We adopt a simple description of the ionic liquid and show that for realistic parameter values the capacitance

  16. Electron impact ionization of helium isoelectronic systems

    Energy Technology Data Exchange (ETDEWEB)

    Talukder, M.R. [Rajshahi Univ., Dept. of Applied Physics and Electronic Engineering (Bangladesh)

    2008-09-15

    The electron impact single ionization cross sections, on the helium isoelectronic He, Li{sup 1+}, B{sup 3+}, C{sup 4+} N{sup 5+} O{sup 6+} Ne{sup 8+}, Na{sup 9+}. Ar{sup +16}, Fe{sup 24+}, Mo{sup 41+} Ag{sup 45+}, and U{sup 90+} targets, are calculated modifying the simplified Bell (SBELL) model [Eur. Phys. J. D 46, 281 (2008)]. The results of the present analysis are compared with the available experimental and theoretical data. The modified SBELL (MSBELL) model, incorporating the ionic correction factor in it, produces excellent agreement with the experimental data and theoretical calculations for all the two-electron systems, neutral or ions. This model may be a prudent choice in plasma modeling due to its simple inherent structure. (authors)

  17. Photoionization of helium dimers; Photoionisation von Heliumdimeren

    Energy Technology Data Exchange (ETDEWEB)

    Havermeier, Tilo

    2010-06-09

    The helium dimer is one of the most weakly bound systems in the universe. This makes it an interesting quantum mechanical object for investigation. These Van der Waals Clusters can be produced in an expansion of a cryogenic gas jet through a small nozzle into vacuum. In the present experiment we examine the interaction of He dimers with synchrotron radiation at an energy range from 64 to 78 eV. We observed different pathways leading to single ionization of both He atoms of the dimer compound. This two close standing ions begin now to dissociate in cause of their coulomb potential. All charged fragments were detected in coincidence with a COLTRIMS system. Especially Interatomic Coulombic Decay (ICD) and the two step process (TS1) were clearly identified. Furthermore a distribution of the internuclear distance was obtained from the measured Kinetic Energy Release (KER). (orig.)

  18. Bed system performance in helium circulation mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yean Jin; Jung, Kwang Jin; Ahn, Do Hee; Chung, Hong Suk [UST, Daejeon (Korea, Republic of); Kang, Hee Suk [KAERI, Daejeon (Korea, Republic of); Yun, Sei Hun [NFRI, Deajeon (Korea, Republic of)

    2016-05-15

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, We have conducted an experiment for storing hydrogen to depleted uranium and zirconium cobalt. The helium blanket effect has been observed in experiments using metal hydrides. The collapse of the hydrogen isotopes are accompanied by the decay heat and helium-3. Helium-3 dramatically reduces the hydrogen isotope storage capacity by surrounding the metal. This phenomenon is called a helium blanket effect. In addition the authors are working on the recovery and removal techniques of helium-3. In this paper, we discuss the equipment used to test the helium blanket effect and the results of a helium circulation experiment. The helium-3 produced surrounds the storage material surface and thus disturbs the reaction of the storage material and the hydrogen isotope. Even if the amount of helium-3 is small, the storage capacity of the SDS bed significantly drops. This phenomenon is the helium blanket effect. To resolve this phenomenon, a circulating loop was introduced. Using a circulating system, helium can be separated from the storage material. We made a helium loop that includes a ZrCo bed. Then using a metal bellows pump, we tested the helium circulation.

  19. Effects of Helium and Oxygen Common Implantation in Silicon Wafer

    Institute of Scientific and Technical Information of China (English)

    LI Bing-Sheng; ZHANG Chong-Hong; ZHOU Li-Hong; YANG Yi-Tao

    2008-01-01

    Defect engineering for SiO2 precipitation is investigated using He-ion implantation as the first stage of separation by implanted oxygen (SIMOX). Cavities are created in Si by implantation with helium ions. After thermal annealing at different temperatures, the sample is implanted with 120 keV 8.0 × 1016 cm-2 O ions. The O ion energy is chosen such that the peak of the concentration distribution is centred at the cavity band. For comparison,another sample is implanted with O ions alone. Cross-sectional transmission electron microscopy (XTEM), Fourier transform infrared absorbance spectrometry (FTIR) and atomic force microscopy (AFM) measurements are used to investigate the samples. The results show that a narrow nano-cavity layer is found to be excellent nucleation sites that effectively assisted SiO2 formation and released crystal lattice strain associated with silicon oxidation.

  20. Dynamics of water and ions in clays of type montmorillonite by microscopic simulation and quasi-elastic neutron scattering; Dynamique de l'eau et des ions dans des argiles de type montmorillonite par simulation microscopique et diffusion quasi-elastique des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Malikova, N

    2005-09-15

    Montmorillonite clays in low hydration states, with Na{sup +} and Cs{sup +} compensating counter ions, are investigated by a combination of microscopic simulation and quasi-elastic neutron scattering to obtain information on the local structure and dynamics of water and ions in the interlayer. At first predictions of simulation into the dynamics of water and ions at elevate temperatures are shown (0 deg C 80 deg C, pertinent for the radioactive waste disposal scenario) Marked difference is observed between the modes of diffusion of the Na{sup +} and C{sup +} counter ions. In water dynamics, a significant step towards bulk water behaviour is seen on transition from the mono- to bilayer states. Secondly, a detailed comparison between simulation and quasi-elastic neutron scattering (Neutron Spin Echo and Time-of-Flight) regarding ambient temperature water dynamics is presented. Overall, the approaches are found to be in good agreement with each other and limitations of each of the methods are clearly shown. (author)

  1. STIRAP on helium: Excitation to Rydberg states

    Science.gov (United States)

    Yuan, Deqian

    Research in optically induced transitions between dierent atomic levels has a long history. For transitions between states driven by a coherent optical eld, the theoretical eciency could be ideally high as 100% but there could be many factors preventing this. In the three state helium atom excitation process, i.e. 23S→33P→nL , the stimulated emission from intermediate state makes it hard to achieve ecient population transfer to the nal state through an intuitive excitation order. One technique to achieve a higher eciency is Stimulated Raman Adiabatic Passage (STIRAP) which is being studied and under research in our lab. Unlike traditional three level excitation processes, STIRAP actually uses a counter intuitive pulsed laser beams timing arrangement. The excitation objects are metastable helium atoms traveling in a vacuum system with a longitudinal velocity of ~ 1070 m/s. We are using a 389 nm UV laser to connect the 23S and the 33P state and a frequency tunable ~790 nm IR laser to connect the 33P state and the dierent Rydberg states. A third 1083 nm wavelength laser beam drives the 23S → 23P transition to transversely separate the residual metastable atoms and the Rydberg atoms for eciency measurements. The data is taken by a stainless steel detector in the vacuum system. As the Rydberg atoms will get ionized by blackbody radiation under room temperature, we can utilize this for their detection. An ion detector sitting on the eld plate is capable to collect the ion signals of the Rydberg atoms for detection. So far the whole system has not been ready for data collection and measurement, so here we are using data and results from previous theses for discussions. The highest transition frequency that has ever been achieved in our lab is around 70% after corrections.

  2. Synergistic effect of helium and hydrogen for bubble swelling in reduced-activation ferritic/martensitic steel under sequential helium and hydrogen irradiation at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wenhui [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Chen, Jihong; Luo, Fengfeng; Li, Tiecheng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Ren, Yaoyao [Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China); Suo, Jinping; Yang, Feng [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-04-15

    Highlights: • Helium/hydrogen synergistic effect can increase irradiation swelling of RAFM steel. • Hydrogen can be trapped to the outer surface of helium bubbles. • Too large a helium bubble can become movable. • Point defects would become mobile and annihilate at dislocations at high temperature. • The peak swelling temperature for RAFM steel is 450 °C. - Abstract: In order to investigate the synergistic effect of helium and hydrogen on swelling in reduced-activation ferritic/martensitic (RAFM) steel, specimens were separately irradiated by single He{sup +} beam and sequential He{sup +} and H{sup +} beams at different temperatures from 250 to 650 °C. Transmission electron microscope observation showed that implantation of hydrogen into the specimens pre-irradiated by helium can result in obvious enhancement of bubble size and swelling rate which can be regarded as a consequence of hydrogen being trapped by helium bubbles. But when temperature increased, Ostwald ripening mechanism would become dominant, besides, too large a bubble could become mobile and swallow many tiny bubbles on their way moving, reducing bubble number density. And these effects were most remarkable at 450 °C which was the peak bubble swelling temperature for RAMF steel. When temperature was high enough, say above 450, point defects would become mobile and annihilate at dislocations or surface. As a consequence, helium could no longer effectively diffuse and clustering in materials and bubble formation was suppressed. When temperature was above 500, helium bubbles would become unstable and decompose or migrate out of surface. Finally no bubble was observed at 650 °C.

  3. Rogue mantle helium and neon.

    Science.gov (United States)

    Albarède, Francis

    2008-02-15

    The canonical model of helium isotope geochemistry describes the lower mantle as undegassed, but this view conflicts with evidence of recycled material in the source of ocean island basalts. Because mantle helium is efficiently extracted by magmatic activity, it cannot remain in fertile mantle rocks for long periods of time. Here, I suggest that helium with high 3He/4He ratios, as well as neon rich in the solar component, diffused early in Earth's history from low-melting-point primordial material into residual refractory "reservoir" rocks, such as dunites. The difference in 3He/4He ratios of ocean-island and mid-ocean ridge basalts and the preservation of solar neon are ascribed to the reservoir rocks being stretched and tapped to different extents during melting.

  4. Transmission positron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Doyama, Masao [Teikyo University of Science and Technology, Uenohara, Yamanashi 409-0193 (Japan)]. E-mail: doyama@ntu.ac.jp; Kogure, Yoshiaki [Teikyo University of Science and Technology, Uenohara, Yamanashi 409-0193 (Japan); Inoue, Miyoshi [Teikyo University of Science and Technology, Uenohara, Yamanashi 409-0193 (Japan); Kurihara, Toshikazu [Institute of Materials Structure Science (IMSS), High Energy Accelerator, Research Organization (KEK), Ohno 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Yoshiie, Toshimasa [Reactor Research Institute, Kyoto University, Noda, Kumatori, Osaka 590-0451 (Japan); Oshima, Ryuichiro [Research Institute for Advanced Science and Technology, Osaka Prefecture University (Japan); Matsuya, Miyuki [Electron Optics Laboratory (JEOL) Ltd., Musashino 3-1-2, Akishima 196-0021 (Japan)

    2006-02-28

    Immediate and near-future plans for transmission positron microscopes being built at KEK, Tsukuba, Japan, are described. The characteristic feature of this project is remolding a commercial electron microscope to a positron microscope. A point source of electrons kept at a negative high voltage is changed to a point source of positrons kept at a high positive voltage. Positional resolution of transmission microscopes should be theoretically the same as electron microscopes. Positron microscopes utilizing trapping of positrons have always positional ambiguity due to the diffusion of positrons.

  5. Pierre Gorce working on a helium pump.

    CERN Multimedia

    1975-01-01

    This type of pump was designed by Mario Morpurgo, to circulate liquid helium in superconducting magnets wound with hollow conductors. M. Morpurgo, Design and construction of a pump for liquid helium, CRYIOGENICS, February 1977, p. 91

  6. Helium release during shale deformation: Experimental validation

    Science.gov (United States)

    Bauer, Stephen J.; Gardner, W. Payton; Heath, Jason E.

    2016-07-01

    This work describes initial experimental results of helium tracer release monitoring during deformation of shale. Naturally occurring radiogenic 4He is present in high concentration in most shales. During rock deformation, accumulated helium could be released as fractures are created and new transport pathways are created. We present the results of an experimental study in which confined reservoir shale samples, cored parallel and perpendicular to bedding, which were initially saturated with helium to simulate reservoir conditions, are subjected to triaxial compressive deformation. During the deformation experiment, differential stress, axial, and radial strains are systematically tracked. Release of helium is dynamically measured using a helium mass spectrometer leak detector. Helium released during deformation is observable at the laboratory scale and the release is tightly coupled to the shale deformation. These first measurements of dynamic helium release from rocks undergoing deformation show that helium provides information on the evolution of microstructure as a function of changes in stress and strain.

  7. The cosmic production of Helium

    CERN Document Server

    Jiménez, R; MacDonald, J; Gibson, B K; Jimenez, Raul; Flynn, Chris; Donald, James Mac; Gibson, Brad K.

    2003-01-01

    We estimate the cosmic production rate of helium relative to metals ($\\Delta Y/\\Delta Z$) using K dwarf stars in the Hipparcos catalog with accurate spectroscopic metallicities. The best fitting value is $\\Delta Y/\\Delta Z=2.1 \\pm 0.4$ at the 68% confidence level. Our derived value agrees with determinations from HII regions and with theoretical predictions from stellar yields with standard assumptions for the initial mass function. The amount of helium in stars determines how long they live and therefore how fast they will enrich the insterstellar medium with fresh material.

  8. Helium in atmospheres of binary stars

    Energy Technology Data Exchange (ETDEWEB)

    Leushin, V.V. (Rostovskij-na-Donu Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Fiziki)

    The helium abundances were obtained for 25 bright components of binary stars by model atmosphere analysis. The helium abundance for binary stars that lie on the main sequence are larger in the average than in single normal stars. The stars on the Hertzsppung - russel diagram lie at a larger distance from the zero age line than those with normal helium abundance.

  9. Helium resources of Mare Tranquillitatis

    Science.gov (United States)

    Cameron, Eugene N.

    Wisconsin Center for Space Automation and Robotics, Univ. of Wisc., Madison, Wisc. Mare Tranquillitatis, about 300000 sq km in area, is currently the most promising lunar source of He-3 for fueling fusion power plants on Earth. About 60 pct. of the mare regolith consists of particles 100 microns or less in diameter. Helium and other gases derived from the solar wind are concentrated in the fine size fractions. Studies of very small craters indicate that the average regolith exceeds 3 m in areas away from larger craters and other mare features not amenable to mining. There is no evidence of decrease of helium content of regolith and depth. Helium is known to be enriched in regoliths that are high in TiO2 content. Remote sensing indicates that about 90 pct. of Mare Tranquillitatis is covered by regolith ranging from about 6 to +7.5 pct. TiO2; inferred He contents range from 20 to at least 45 wppm total helium (7 to 18 wppb He-3). Detailed studies of craters and inferred ejecta halos displayed on high resolution photographs of the Apollo 11 and Ranger 8 areas suggest that as much as 50 pct. of the mare regolith may be physically minable, on average, with appropriate mining equipment. Assuming that the average thickness of regolith is 3 m, and that 50 pct. of the mare area is minable, the He-3 content of minable regolith containing 20 to 45 wppm total He is estimated at about 94,000 tonnes.

  10. Surface studies and implanted helium measurements following NOVA high-yield DT experiments

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, M.A.; Hudson, G.B.

    1997-02-18

    This paper presents the results of three March 6, 1996 direct-drive high-yield DT NOVA experiments and provides `proof-of-principal` results for the quantitative measurement of energetic He ions. Semiconductor quality Si wafers and an amorphous carbon wafer were exposed to NOVA high-yield implosions. Surface damage was sub-micron in general, although the surface ablation was slightly greater for the carbon wafer than for the Si wafers. Melting of a thin ({approx} 0.1{mu}) layer of Si was evident from microscopic investigation. Electron microscopy indicated melted blobs of many different metals (e.g. Al, Au, Ta, Fe alloys, Cu and even Cd) on the surfaces. The yield measured by determining the numbers of atoms of implanted {sup 4}He and {sup 3}He indicate the number of DT fusions to be 9.1({plus_minus}2.3) X 10{sup 12} and DD fusions to be 4.8({plus_minus}1.0) x 10{sup 10}, respectively. The helium DT fusion yield is slightly lower than that of the Cu activation measurement, which was 1.3({plus_minus}0.l) x 10{sup 13} DT fusions.

  11. Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams

    Energy Technology Data Exchange (ETDEWEB)

    He, Yunteng; Zhang, Jie; Li, Yang; Freund, William M.; Kong, Wei, E-mail: wei.kong@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)

    2015-08-15

    We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He{sub 2}{sup +} and He{sub 4}{sup +}, which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl{sub 4} doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He){sub n}C{sup +}, (He){sub n}Cl{sup +}, and (He){sub n}CCl{sup +}. Using both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets.

  12. Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams.

    Science.gov (United States)

    He, Yunteng; Zhang, Jie; Li, Yang; Freund, William M; Kong, Wei

    2015-08-01

    We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He2(+) and He4(+), which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl4 doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He)(n)C(+), (He)(n)Cl(+), and (He)(n)CCl(+). Using both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets.

  13. Simplicity works for superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bowley, Roger [University of Nottingham, Nottingham (United Kingdom)

    2000-02-01

    The famous philosopher Karl Popper once said that ''science is the art of systematic oversimplification''. Indeed, when faced with a new puzzle the trick is to simplify it without losing the essential physics - something that is easier said than done. However, this approach has paid off recently in low-temperature physics. Last year Richard Packard, Seamus Davis and co-workers at the University of California at Berkeley encountered a puzzling new phenomenon in superfluid helium-3, a quantum fluid that remains a liquid close to absolute zero and exhibits unusual properties such as the ability to flow without friction (A Machenkov et al. 1999 Phys. Rev. Lett. 83 3860). Previous experiments had revealed that certain effects in liquid helium are analogous to effects observed in superconductors, materials that lose all resistance to electric current at low temperatures. When the Berkeley researchers connected two reservoirs of superfluid helium-3, the superfluid flowed back and forth through apertures that formed a ''weak link'' between the two containers. This behaviour is similar to the oscillatory current of electrons that can flow across an insulating gap separating two superconductors - a device that is known as a Josephson junction. What was puzzling about the Berkeley results was that the helium-3 had two different stable configurations, both of which behaved in an unconventional way compared with a Josephson junction. This puzzle has now been solved independently by Sidney Yip at the National Center for Theoretical Sciences in Taiwan, and by Janne Viljas and Erkki Thuneberg at the Helsinki University of Technology in Finland (Phys. Rev. Lett. 1999 83 3864 and 3868). In this article the author describes the latest research on superfluid helium. (UK)

  14. Precision spectroscopy of the helium atom

    Institute of Scientific and Technical Information of China (English)

    Shui-ming HU; Zheng-Tian LU; Zong-Chao YAN

    2009-01-01

    Persistent efforts in both theory and experiment have yielded increasingly precise understanding of the helium atom. Because of its simplicity, the helium atom has long been a testing ground for relativistic and quantum electrodynamic effects in few-body atomic systems theoretically and experimentally.Comparison between theory and experiment of the helium spectroscopy in ls2p3pJ can potentially extract a very precise value of the fine structure constant a. The helium atom can also be used to explore exotic nuclear structures. In this paper, we provide a brief review of the recent advances in precision calculations and measurements of the helium atom.

  15. Charge and Energy Dependences of Ionization and Transfer for Helium in Collisions with Fast Charged Projectiles

    Institute of Scientific and Technical Information of China (English)

    FU Hong-Bin; WANG Bao-Hong; DING Bao-Wei; LIU Zhao-Yuan

    2009-01-01

    The classical method within the independent electron model is employed to investigate (i) charge dependences of single and double ionization for helium by various charged ions Aq+ (q = 1 - 8) at impact energies of 0.64 and 1.44 MeV/u, respectively, (ii) energy dependences of transfer ionization for helium by 0.5-3 MeV/u A8,9+ ions impact. The Lenz-Jensen model of the atom is applied instead of the Bohr model of the atom, and the impact-parameter dependences are also introduced into the calculations. Satisfactory agreement is found between theoretical and experimental data.

  16. Analyzing the Role of Biofilm in Weathering Processes in the Rhizosphere with Various Microscopic Techniques

    Science.gov (United States)

    Niedziela, S.; Greenberg, K. A.; Dohnalkova, A.; Arey, B.; Balogh-Brunstad, Z.

    2011-12-01

    Biofilm is thought to have a significant role in biological weathering of minerals in the rhizosphere (root systems). The goal of our study is to examine the characteristics of rhizospheric biofilms under a range of base cation limitations and determine the best microscopic techniques to analyze the biofilm-microbe-fungus-mineral interface. We hypothesized that tree-fungus-bacteria association increases biofilm formation under severe base cation limitations that enhance mineral weathering rate and improve potassium and calcium retention and transport to the trees. Our hypothesis was tested in samples from a growth column experiment. Red pine (Pinus resinosa) trees were grown in leach tubes in quartz sand amended with 1 wt% biotite and anorthite. Half of the trees were inoculated with Suillus tomentosus and a group of soil bacteria, and the other half were left without microbial inoculation. Columns without any biology added served as controls. Calcium and potassium were supplied in irrigation water in 0, 30, 60 and 100% of an amount for healthy tree growth and the concentration of all other nutrients stayed constant in all solutions. After four weeks, the columns were destructively sampled and the root systems were analyzed by various microscopic techniques such as helium ion microscopy (HeIM), scanning electron microscopy (SEM) coupled with focused ion beam (FIB) and energy dispersive x-ray spectroscopy (EDS), cryo-SEM, and high resolution transmission electron microscopy (TEM) also coupled with EDS. These techniques were employed to collect the most information about the biofilm-microbe-fungus-mineral interface. The HeIM uses a beam of helium ions to produce 3-D high resolution images with greater depth of field than SEM and produces detailed surface topography results. The SEM coupled with EDS gives detailed chemical distribution of elements on a surface topography. The SEM coupled with FIB produces a cross-section of the analyzed material and allows a view

  17. Helium-Implantation-Induced Damage in NHS Steel Investigated by Slow-Positron Annihilation Spectroscopy

    Science.gov (United States)

    Li, Yuan-Fei; Shen, Tie-Long; Gao, Xing; Gao, Ning; Yao, Cun-Feng; Sun, Jian-Rong; Wei, Kong-Fang; Li, Bing-Sheng; Zhang, Peng; Cao, Xing-Zhong; Zhu, Ya-Bin; Pang, Li-Long; Cui, Ming-Huan; Chang, Hai-Long; Wang, Ji; Zhu, Hui-Ping; Wang, Dong; Song, Peng; Sheng, Yan-Bin; Zhang, Hong-Peng; Hu, Bi-Tao; Wang, Zhi-Guang

    2014-03-01

    Evolutions of defects and helium contained defects produced by atomic displacement and helium deposition with helium implantation at different temperatures in novel high silicon (NHS) steel are investigated by a slow positron beam. Differences of the defect information among samples implanted by helium to a fluence of 1 × 1017 ions/cm2 at room temperature, 300°C, 450°C and 750°C are discussed. It is found that the mobility of vacancies and vacancy clusters, a recombination of vacancy-type defects and the formation of the He-V complex lead to the occurrence of these differences. At high temperature irradiations, a change of the diffusion mechanism of He atoms/He bubbles might be one of the reasons for the change of the S-parameter.

  18. HeREF-2003: Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 Cost per participant: 500.- CHF Language: Bilingual English...

  19. HeREF-2003 : Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. • Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 • Cost per participant: 500.- CHF ...

  20. Phase separation of metallic hydrogen-helium alloys

    Science.gov (United States)

    Straus, D. M.; Ashcroft, N. W.; Beck, H.

    1977-01-01

    Calculations are presented for the thermodynamic functions and phase-separation boundaries of solid metallic hydrogen-helium alloys at temperatures between zero and 19,000 K and at pressures between 15 and 90 Mbar. Expressions for the band-structure energy of a randomly disordered alloy (including third order in the electron-ion interaction) are derived and evaluated. Short- and long-range orders are included by the quasi-chemical method, and lattice dynamics in the virtual-crystal harmonic approximation. It is concluded that at temperatures below 4000 K, there is essentially complete phase separation of hydrogen-helium alloys and that a miscibility gap remains at the highest temperatures and pressures considered. The relevance of these results to models of the deep interior of Jupiter is briefly discussed.

  1. Interaction of Helium Rydberg State Molecules with Dense Helium.

    Science.gov (United States)

    Bonifaci, Nelly; Li, Zhiling; Eloranta, Jussi; Fiedler, Steven L

    2016-11-17

    The interaction potentials of the He2(*) excimer, in the a(3)Σu, b(3)Πg, c(3)Σg, and d(3)Σu electronic states with a ground state helium atom are presented. The symmetry of the interaction potentials closely follows the excimer Rydberg electron density with pronounced short-range minima appearing along the nodal planes of the Rydberg orbital. In such cases, a combination of the electrostatic short-range attraction combined with Pauli repulsion leads to the appearance of unusual long-range maxima in the potentials. Bosonic density functional calculations show that the (3)d state excimer resides in a localized solvation bubble in dense helium at 4.5 K, with radii varying from 12.7 Å at 0.1 MPa to 10.8 Å at 2.4 MPa. The calculated (3)d → (3)b pressure-induced fluorescence band shifts are in good agreement with experimental results determined by application of corona discharge. The magnitude of the spectral shifts indicate that the observed He2(*) molecules emit from dense helium whereas the corresponding fluorescence signal from the discharge zone appears quenched. This implies that fluorescence spectroscopy involving this electronic transition can only be used to probe the state of the surrounding medium rather than the discharge zone itself.

  2. Investigation on Retention and Release Behaviors of Hydrogen and Helium in Vanadium Alloy

    Institute of Scientific and Technical Information of China (English)

    Liu Xiang; Tsuyoshi Yamada; Yuji Yamauchi; Yuko Hirohata; Tomoaki Hino; Nobuaki Noda

    2005-01-01

    Vanadium alloy is proposed as an attractive candidate for first wall and blanketstructural material of fusion reactors. The retention and release behaviors of hydrogen and heliumin vanadium alloy may be an important issue. In the present work, 1.7 keV deuterium and 5keV helium ions are respectively implanted into V-4Cr-4Ti and V-4Ti at room temperature. Theretention and release of deuterium and helium are measured with thermal desorption spectroscopy(TDS). When the helium ion fluence is larger than 3 × 1017 He/cm2, the retained helium saturateswith a value of approximately 2.5 × 1017 He/cm2. However, when the ion fluence is 1 × 1019 D/cm2,the hydrogen saturation in vanadium alloy does not take place. Experimental results indicatesthat hydrogen and helium retention in vanadium alloy may lead to serious problems and specialattention should be paid when it is applied to fusion reactors.

  3. Helium Retention and Desorption Behaviour of Reduced Activation Ferritic/Martenstic Steel

    Science.gov (United States)

    Wang, Pinghuai; Nobuta, Yuji; Hino, Tomoaki; Yamauchi, Yuji; Chen, Jiming; Xu, Zengyu; Li, Xiongwei; Liu, Shi

    2009-04-01

    The reduced activation ferritic/martenstic steel CLF-1 prepared by the Southwestern Institute of Physics in China was irradiated by helium ions with an energy of 5 keV at room temperature using an electron cyclotron resonance (ECR) ion irradiation apparatus. After the irradiation, the helium retention and desorption were investigated using a technique of thermal desorption spectroscopy (TDS). The experiment was conducted with both the normal and welded samples. Blisters were observed after the helium ion irradiation, and the surface density of blisters in the welded samples was lower than that in the non-welded samples. Three desorption peaks were observed in both the non-welded and welded samples. These desorption peaks corresponded to those of blister ruptures and the helium release from the inner bubbles and the defects. The amount of helium retained in the welded samples was approximately the same as that in the non-welded samples, which was much less than other reduced activation materials, such as vanadium alloy and SiC/SiC composites.

  4. Experimental mechanistic investigation of the nanostructuring of tungsten with low energy helium plasmas

    Science.gov (United States)

    Fiflis, P.; Connolly, N.; Ruzic, D. N.

    2016-12-01

    Helium ion bombardment of tungsten at temperatures between approximately one third and one half of its melting point has shown growth of nanostructures colloquially referred to as "fuzz". The nanostructures take the form of thin tendrils of diameter about 30 nm and grow out of the bulk material. Tungsten will and does compose one of the key materials for plasma facing components (PFCs) in fusion reactors. The formation of nanostructured fuzz layers on PFCs would be detrimental to the performance of the reactor, and must therefore be avoided. Previous experiments have shown evidence that tungsten fuzz is initially grown by loop punching of helium bubbles created in the bulk. However, once the tendrils grow to sufficient length, the tendrils should intercept the entire helium flux, halting the production of fuzz. Fuzz continues to grow though. To increase the understanding of the mechanisms of tungsten fuzz formation, and thereby aid the avoidance of its production, a series of tests were performed to examine the validity of several theories regarding later stage tungsten fuzz growth. Tests showed that the fuzz formation was dependent solely on the bombardment of helium ions, and not on electric fields, or adatom diffusion. Experiments employing a tungsten coated molybdenum sample indicate the presence of a strong mixing layer and strongly suggest that tungsten fuzz growth continues to occur from the bottom up even as the tendrils grow in size. Tests also show a similarity between different metals exposed to helium ion fluxes where the ratio of bubble diameter to tendril diameter is constant.

  5. Helium Retention and Desorption Behaviour of Reduced Activation Ferritic/Martenstic Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Pinghuai; NOBUTA Yuji; HINO Tomoaki; YAMAUCHI Yuji; CHEN Zilning; XU Zengyu; LI Xiongwei; LIU Shi

    2009-01-01

    The reduced activation ferritic/martenstic steel CLF-1 prepared by the Southwest-ern Institute of Physics in China was irradiated by helium ions with an energy of 5 keV at room temperature using an electron cyclotron resonance (ECR) ion irradiation apparatus. After the irradiation, the helium retention and desorption were investigated using a technique of thermal desorption spectroscopy (TDS). The experiment was conducted with both the normal and welded samples. Blisters were observed after the helium ion irradiation, and the surface density of blisters in the welded samples was lower than that in the non-welded samples. Three desorption peaks were observed in both the non-welded and welded samples. These desorption peaks corresponded to those of blister ruptures and the helium release from the inner bubbles and the defects. The amount of helium retained in the welded samples was approximately the same as that in the non-welded samples, which was much less than other reduced activation materials, such as vanadium alloy and SiC/SiC composites.

  6. Production of helium projectile fragments in 16O-emulsion interactions at 4.5 A GeV/c

    Institute of Scientific and Technical Information of China (English)

    Zhang Dong-Hai; Li Zhen-Yu; Li Jun-Sheng; Wu Feng-Juan

    2004-01-01

    The measurements of partial production cross sections of the multiple helium projectile fragments emitted at 4.5A GeV/c 16O-Em interactions are reported. We have studied the production rate of helium projectile fragments due to fragmentation of 16O ions and compared it with that obtained from different projectiles at various energies. The dependence of on the mass number of the incident beams is formulated. The multiplicity distributions of the helium fragments produced in 16O-Em interactions at different energies exhibit Koba-Nielson-Olesen (KNO) scaling.The correlation of helium projectile fragments and target fragments is also investigated and it is found that the average of target fragments is increased with the decrease of the number of helium fragments in peripheral interactions.

  7. Confined helium on Lagrange meshes

    CERN Document Server

    Baye, Daniel

    2015-01-01

    The Lagrange-mesh method has the simplicity of a calculation on a mesh and can have the accuracy of a variational method. It is applied to the study of a confined helium atom. Two types of confinement are considered. Soft confinements by potentials are studied in perimetric coordinates. Hard confinement in impenetrable spherical cavities is studied in a system of rescaled perimetric coordinates varying in [0,1] intervals. Energies and mean values of the distances between electrons and between an electron and the helium nucleus are calculated. A high accuracy of 11 to 15 significant figures is obtained with small computing times. Pressures acting on the confined atom are also computed. For sphere radii smaller than 1, their relative accuracies are better than $10^{-10}$. For larger radii up to 10, they progressively decrease to $10^{-3}$, still improving the best literature results.

  8. Helium atom scattering from surfaces

    CERN Document Server

    1992-01-01

    High resolution helium atom scattering can be applied to study a number of interesting properties of solid surfaces with great sensitivity and accuracy. This book treats in detail experimental and theoretical aspects ofthis method as well as all current applications in surface science. The individual chapters - all written by experts in the field - are devoted to the investigation of surface structure, defect shapes and concentrations, the interaction potential, collective and localized surface vibrations at low energies, phase transitions and surface diffusion. Over the past decade helium atom scattering has gained widespread recognitionwithin the surface science community. Points in its favour are comprehensiveunderstanding of the scattering theory and the availability of well-tested approximation to the rigorous theory. This book will be invaluable to surface scientists wishing to make an informed judgement on the actual and potential capabilities of this technique and its results.

  9. Experimental studies of antiprotonic helium

    CERN Document Server

    Widmann, E

    1998-01-01

    This talk describes the experimental studies of metastable antiprotonic helium "atomcules" pHe/sup +/ (a neutral exotic atom consisting of a helium nucleus, an antiproton and an electron) performed at CERN-LEAR, and future plans for experiments at the forthcoming Antiproton Decelerator (AD) at CERN. Laser spectroscopy experiments are reviewed which led to the observation of a total of 13 resonant transitions of the antiproton in both p/sup 4/He/sup +/ and p/sup 3/He/sup +/, and revealed a hyperfine splitting in one transition. A level of precision has been reached where the most accurate 3-body calculations need to include QED effects like the Lamb-shift to come close to the experimental results. (52 refs).

  10. Rapidly pulsed helium droplet source

    Energy Technology Data Exchange (ETDEWEB)

    Pentlehner, Dominik; Riechers, Ricarda; Dick, Bernhard; Slenczka, Alkwin [Institute for Physical and Theoretical Chemistry, University of Regensburg, 93053 Regensburg (Germany); Even, Uzi; Lavie, Nachum; Brown, Raviv; Luria, Kfir [Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv (Israel)

    2009-04-15

    A pulsed valve connected to a closed-cycle cryostat was optimized for producing helium droplets. The pulsed droplet beam appeared with a bimodal size distribution. The leading part of the pulse consists of droplets suitable for doping with molecules. The average size of this part can be varied between 10{sup 4} and 10{sup 6} helium atoms, and the width of the distribution is smaller as compared to a continuous-flow droplet source. The system has been tested in a single pulse mode and at repetition rates of up to 500 Hz with almost constant intensity. The droplet density was found to be increased by more than an order of magnitude as compared to a continuous-flow droplet source.

  11. Elusive structure of helium trimers

    CERN Document Server

    Stipanović, Petar; Boronat, Jordi

    2016-01-01

    Over the years many He-He interaction potentials have been developed, some very sophisticated, including various corrections beyond Born-Oppenheimer approximation. Most of them were used to predict properties of helium dimers and trimers, examples of exotic quantum states, whose experimental study proved to be very challenging. Recently, detailed structural properties of helium trimers were measured for the first time, allowing a comparison with theoretical predictions and possibly enabling the evaluation of different interaction potentials. The comparisons already made included adjusting the maxima of both theoretical and experimental correlation functions to one, so the overall agreement between theory and experiment appeared satisfactory. However, no attempt was made to evaluate the quality of the interaction potentials used in the calculations. In this work, we calculate the experimentally measured correlation functions using both new and old potentials, compare them with experimental data and rank the po...

  12. Cryogenic immersion microscope

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  13. Particle detection using superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, S.R.; Lanou, R.E.; Maris, H.J.; More, T.; Porter, F.S.; Seidel, G.M.; Torii, R.

    1991-01-01

    We have observed 5 MeV {alpha} particles stopped in volumes-up to two liters of liquid helium at 70 mK. A fraction of the kinetic energy of an {alpha} particle is converted to elementary excitations (rotons and phonons), which progagate ballistically in isotopically pure {sup 4}He below 0.1 K. Most of these excitations have sufficient energy to evaporate helium atoms on hitting a free surface. The evaporated helium atoms can be detected calorimetrically when adsorbed on a thin silicon wafer ({approximately}1.7 g, 35 cm{sup 2}) suspended above the liquid. Temperature changes of the silicon are measured with a NTD germanium bolometer. For the geometry studied the observed temperature change of the silicon resulting from an {alpha} event in the liquid is approximately 5% of the temperature rise from an {alpha} hitting the silicon directly. The implications of these measurements will be discussed as they relate to the possible construction of a large scale detector of solar neutrinos.

  14. Particle detection using superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, S.R.; Lanou, R.E.; Maris, H.J.; More, T.; Porter, F.S.; Seidel, G.M.; Torii, R.

    1991-12-31

    We have observed 5 MeV {alpha} particles stopped in volumes-up to two liters of liquid helium at 70 mK. A fraction of the kinetic energy of an {alpha} particle is converted to elementary excitations (rotons and phonons), which progagate ballistically in isotopically pure {sup 4}He below 0.1 K. Most of these excitations have sufficient energy to evaporate helium atoms on hitting a free surface. The evaporated helium atoms can be detected calorimetrically when adsorbed on a thin silicon wafer ({approximately}1.7 g, 35 cm{sup 2}) suspended above the liquid. Temperature changes of the silicon are measured with a NTD germanium bolometer. For the geometry studied the observed temperature change of the silicon resulting from an {alpha} event in the liquid is approximately 5% of the temperature rise from an {alpha} hitting the silicon directly. The implications of these measurements will be discussed as they relate to the possible construction of a large scale detector of solar neutrinos.

  15. Analytical Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — The Titan 80-300 is a transmission electron microscope (TEM) equipped with spectroscopic detectors to allow chemical, elemental, and other analytical measurements to...

  16. Investigations of levitated helium drops

    Science.gov (United States)

    Whitaker, Dwight Lawrence

    1999-11-01

    We report on the development of two systems capable of levitating drops of liquid helium. Helium drops of ˜20 mum have been levitated with the radiation pressure from two counter-propagating Nd:YAG laser beams. Drops are produced with a submerged piezoelectric transducer, and could be held for up to three minutes in our optical trap. Calculations show that Brillouin and Raman scattering of the laser light in the liquid helium produces a negligible rate of evaporation of the drop. Evaporation caused by the enhanced vapor pressure of the curved drop surfaces appears to be a significant effect limiting the drop lifetimes. Helium drops as large as 2 cm in diameter have been suspended in the earth's gravitational field with a magnetic field. A commercial superconducting solenoid provides the necessary field, field-gradient product required to levitate the drops. Drops are cooled to 0.5 K with a helium-3 refrigerator, and can be held in the trap indefinitely. We have found that when two or more drops are levitated in the same magnetic trap, the drops often remain in a state of apparent contact without coalescing. This effect is a result of the evaporation of liquid from between the two drops, and is found to occur only for normal fluid drops. We can induce shape oscillations in charged, levitated drops with an applied ac electric field. We have measured the resonance frequencies and damping rates for the l = 2 mode of oscillation as function of temperature. We have also developed a theory to describe the small amplitude shape oscillations of a He II drop surrounded by its saturated vapor. In our theory, we have considered two sets of boundary conditions---one where the drop does not evaporate and another in which the liquid and vapor are in thermodynamic equilibrium. We have found that both solutions give a frequency that agrees well with experiment, but that the data for the damping rate agree better with the solution without evaporation.

  17. The mean excitation energy of atomic ions

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Oddershede, Jens

    2015-01-01

    A method for calculation of the mean excitation energies of atomic ions is presented, making the calculation of the energy deposition of fast ions to plasmas, warm, dense matter, and complex biological systems possible. Results are reported to all ions of helium, lithium, carbon, neon, aluminum...

  18. Charging dynamics of dopants in helium nanoplasmas

    DEFF Research Database (Denmark)

    Heidenreich, Andreas; Grüner, Barbara; Schomas, Dominik

    2017-01-01

    We present a combined experimental and theoretical study of the charging dynamics of helium nanodroplets doped with atoms of different species and irradiated by intense near-infrared laser pulses (≤1015 W cm−2). In particular, we elucidate the interplay of dopant ionization inducing the ignition...... of a helium nanoplasma, and the charging of the dopant atoms driven by the ionized helium host. Most efficient nanoplasma ignition and charging is found when doping helium droplets with xenon atoms, in which case high charge states of both helium (He2+) and of xenon (Xe21+) are detected. In contrast, only low...... charge states of helium and dopants are measured when doping with potassium and calcium atoms. Classical molecular dynamics simulations which include focal averaging generally reproduce the experimental results and provide detailed insights into the correlated charging dynamics of guest and host clusters....

  19. Critical Landau velocity in helium nanodroplets.

    Science.gov (United States)

    Brauer, Nils B; Smolarek, Szymon; Loginov, Evgeniy; Mateo, David; Hernando, Alberto; Pi, Marti; Barranco, Manuel; Buma, Wybren J; Drabbels, Marcel

    2013-10-11

    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective excitations of the helium atoms in the liquid. In the present work we determine to what extent this concept can still be applied to nanometer-scale, finite size helium systems. To this end, atoms and molecules embedded in helium nanodroplets of various sizes are accelerated out of the droplets by means of optical excitation, and the speed distributions of the ejected particles are determined. The measurements reveal the existence of a critical velocity in these systems, even for nanodroplets consisting of only a thousand helium atoms. Accompanying theoretical simulations based on a time-dependent density functional description of the helium confirm and further elucidate this experimental finding.

  20. Nanobubble Fragmentation and Bubble-Free-Channel Shear Localization in Helium-Irradiated Submicron-Sized Copper.

    Science.gov (United States)

    Ding, Ming-Shuai; Tian, Lin; Han, Wei-Zhong; Li, Ju; Ma, Evan; Shan, Zhi-Wei

    2016-11-18

    Helium bubbles are one of the typical radiation microstructures in metals and alloys, significantly influencing their deformation behavior. However, the dynamic evolution of helium bubbles under straining is less explored so far. Here, by using in situ micromechanical testing inside a transmission electron microscope, we discover that the helium bubble not only can coalesce with adjacent bubbles, but also can split into several nanoscale bubbles under tension. Alignment of the splittings along a slip line can create a bubble-free channel, which appears softer, promotes shear localization, and accelerates the failure in the shearing-off mode. Detailed analyses unveil that the unexpected bubble fragmentation is mediated by the combination of dislocation cutting and internal surface diffusion, which is an alternative microdamage mechanism of helium irradiated copper besides the bubble coalescence.

  1. Microstructural observation of helium implanted and creep ruptured Fe 25%Ni 15%Cr alloys containing various MC and MN formers

    Science.gov (United States)

    Yamamoto, Norikazu; Nagakawa, Johsei; Murase, Yoshiharu; Shiraishi, Haruki

    1998-10-01

    Transmission electron microscopic observations have been carried out on Fe-25%Ni-15%Cr austenitic alloys with various MX (M=V, Ti, Nb, Zr; X=C, N) stabilizers after helium implantation and creep rupture at 923 K. It is shown that suppression of helium embrittlement can be achieved through a higher dispersion density of incoherent precipitates because of their high capability of bubble entrapment. A good agreement between the average distance of grain boundary bubbles exceeding the minimum critical size and the spacing of cavity traces on intergranularly fractured surfaces is obtained. This suggests that the enhancement of grain boundary decohesion by helium is a result of unstable growth of super-critical helium bubbles.

  2. Mailing microscope slides

    Science.gov (United States)

    Many insects feed agriculturally important crops, trees, and ornamental plants and cause millions of dollars of damage annually. Identification for some of these require the preparation of a microscope slide for examination. There are times when a microscope slide may need to be sent away to a speci...

  3. Surface imaging microscope

    Science.gov (United States)

    Rogala, Eric W.; Bankman, Isaac N.

    2008-04-01

    The three-dimensional shapes of microscopic objects are becoming increasingly important for battlespace CBRNE sensing. Potential applications of microscopic 3D shape observations include characterization of biological weapon particles and manufacturing of micromechanical components. Aerosol signatures of stand-off lidar systems, using elastic backscatter or polarization, are dictated by the aerosol particle shapes and sizes that must be well characterized in the lab. A low-cost, fast instrument for 3D surface shape microscopy will be a valuable point sensor for biological particle sensing applications. Both the cost and imaging durations of traditional techniques such as confocal microscopes, atomic force microscopes, and electron scanning microscopes are too high. We investigated the feasibility of a low-cost, fast interferometric technique for imaging the 3D surface shape of microscopic objects at frame rates limited only by the camera in the system. The system operates at two laser wavelengths producing two fringe images collected simultaneously by a digital camera, and a specialized algorithm we developed reconstructs the surface map of the microscopic object. The current implementation assembled to test the concept and develop the new 3D reconstruction algorithm has 0.25 micron resolution in the x and y directions, and about 0.1 micron accuracy in the z direction, as tested on a microscopic glass test object manufactured with etching techniques. We describe the interferometric instrument, present the reconstruction algorithm, and discuss further development.

  4. Behaviour of helium after implantation in molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Viaud, C. [Commissariat a l' Energie Atomique (CEA), Cadarache (France)], E-mail: viaud@dircad.cea.fr; Maillard, S.; Carlot, G.; Valot, C. [Commissariat a l' Energie Atomique (CEA), Cadarache (France); Gilabert, E. [Chimie Nucleaire Analytique and Bio-environnementale (CNAB), Gradignan (France); Sauvage, T. [CEMHTI-CNRS, Orleans (France); Peaucelle, C.; Moncoffre, N. [Institut de Physique Nucleaire de Lyon (IPNL), Lyon (France)

    2009-03-31

    This study deals with the behaviour of helium in a molybdenum liner dedicated to the retention of fission products. More precisely this work contributes to evaluate the release of implanted helium when the gas has precipitated into nanometric bubbles close to the free surface. A simple model dedicated to calculate the helium release in such a condition is presented. The specificity of this model lays on the assumption that the gas is in equilibrium with a simple distribution of growing bubbles. This effort is encouraging since the calculated helium release fits an experimental dataset with a set of parameters in good agreement with the literature.

  5. Mass separation of deuterium and helium with conventional quadrupole mass spectrometer by using varied ionization energy

    Science.gov (United States)

    Yu, Yaowei; Hu, Jiansheng; Wan, Zhao; Wu, Jinhua; Wang, Houyin; Cao, Bin

    2016-03-01

    Deuterium pressure in deuterium-helium mixture gas is successfully measured by a common quadrupole mass spectrometer (model: RGA200) with a resolution of ˜0.5 atomic mass unit (AMU), by using varied ionization energy together with new developed software and dedicated calibration for RGA200. The new software is developed by using MATLAB with the new functions: electron energy (EE) scanning, deuterium partial pressure measurement, and automatic data saving. RGA200 with new software is calibrated in pure deuterium and pure helium 1.0 × 10-6-5.0 × 10-2 Pa, and the relation between pressure and ion current of AMU4 under EE = 25 eV and EE = 70 eV is obtained. From the calibration result and RGA200 scanning with varied ionization energy in deuterium and helium mixture gas, both deuterium partial pressures (PD2) and helium partial pressure (PHe) could be obtained. The result shows that deuterium partial pressure could be measured if PD2 > 10-6 Pa (limited by ultimate pressure of calibration vessel), and helium pressure could be measured only if PHe/PD2 > 0.45, and the measurement error is evaluated as 15%. This method is successfully employed in EAST 2015 summer campaign to monitor deuterium outgassing/desorption during helium discharge cleaning.

  6. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak

    Science.gov (United States)

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  7. Effect of rhenium addition on tungsten fuzz formation in helium plasmas

    NARCIS (Netherlands)

    Khan, A.; De Temmerman, G.; Morgan, T. W.; M. B. Ward,

    2016-01-01

    The effect of the addition of rhenium to tungsten on the formation of a nanostructure referred to as ‘fuzz’ when exposed to helium plasmas at fusion relevant ion fluxes was investigated in the Magnum and Pilot PSI devices at the FOM Institute DIFFER. The effect rhenium had on fuzz growth was seen to

  8. Helium, iron and electron particle transport and energy transport studies on the TFTR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Grek, B.; Hill, K.W.; Hulse, R.A.; Johnson, D.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Redi, M.H.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Kissick, M.W. [Wisconsin Univ., Madison, WI (United States)

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  9. REQUIREMENTS FOR COLLISION DATA ON THE SPECIES HELIUM, BERYLLIUM AND BORON IN MAGNETIC CONFINEMENT FUSION

    NARCIS (Netherlands)

    SUMMERS, HP; VONHELLERMANN, M; DEHEER, FJ; HOEKSTRA, R

    1992-01-01

    Requirements for collision data on helium, beryllium and boron are reviewed in the light of the directions of present and planned tokamak fusion experiments. The occurrence of the atoms and ions of these species and their roles in plasma behaviour and diagnostic measurements are described. Special e

  10. Electrical breakdown in helium cells at low temperature

    Science.gov (United States)

    Sethumadhavan, Bhaskar

    2007-05-01

    We have encountered a new phenomenon in the development of a prototype detector of solar neutrinos using liquid helium in which recoil electrons from neutrino scattering are to be detected by extracting them from the liquid and accelerating them in the vacuum by an electric field. In order to understand the possible constraints on such a particle detector using superfluid helium, we have studied the currents produced by a radioactive source in a helium cell having a liquid/vacuum interface at 100 mK. A number of phenomena have been observed that have not been described in the literature. These include the following. (1) The current at very low voltages, V ˜ 0, in a cell having a free surface can be up to 100 times greater than in a filled cell. (2) There is a large amplification of current in modest electric fields with a free surface present in the cell. (3) The amplification becomes sufficiently large such that a breakdown occurs at potential differences across the vacuum on the order of 1000 V. The results for a partially filled cell can be understood in terms of Penning ionization of excimers on the surface of the helium and the subsequent acceleration of electrons across the vacuum. Triplet excimers are created in the liquid by the radioactive source. These excimers propagate with a mean free path that is determined by scattering from 3He atoms and quasiparticles in the superfluid He. If an excimer reaches the surface, it is bound there but is free to move in the plane of the surface. Once bound to the surface these mobile excimers become distributed uniformly over all surfaces (bulk liquid and the film). They move about and annihilate in pairs through the Penning ionization process to create electrons and positive helium ions in the vacuum. An electron in the vacuum in the presence of an electric field is always destined to hit liquid helium, either the bulk liquid or the film on the top surface of the cell. If the energy of the electron is sufficient to

  11. The effects of ion irradiation on the micromechanical fracture strength and hardness of a self-passivating tungsten alloy

    Science.gov (United States)

    Lessmann, Moritz T.; Sudić, Ivan; Fazinić, Stjepko; Tadić, Tonči; Calvo, Aida; Hardie, Christopher D.; Porton, Michael; García-Rosales, Carmen; Mummery, Paul M.

    2017-04-01

    An ultra-fine grained self-passivating tungsten alloy (W88-Cr10-Ti2 in wt.%) has been implanted with iodine ions to average doses of 0.7 and 7 dpa, as well as with helium ions to an average concentration of 650 appm. Pile-up corrected Berkovich nanoindentation reveals significant irradiation hardening, with a maximum hardening of 1.9 GPa (17.5%) observed. The brittle fracture strength of the material in all implantation conditions was measured through un-notched cantilever bending at the microscopic scale. All cantilever beams failed catastrophically in an intergranular fashion. A statistically confirmed small decrease in strength is observed after low dose implantation (-6%), whilst the high dose implantation results in a significant increase in fracture strength (+9%), further increased by additional helium implantation (+16%). The use of iodine ions as the implantation ion type is justified through a comparison of the hardening behaviour of pure tungsten under tungsten and iodine implantation.

  12. Microscopic molecular superfluid response: theory and simulations

    Science.gov (United States)

    Zeng, Tao; Roy, Pierre-Nicholas

    2014-04-01

    Since its discovery in 1938, superfluidity has been the subject of much investigation because it provides a unique example of a macroscopic manifestation of quantum mechanics. About 60 years later, scientists successfully observed this phenomenon in the microscopic world though the spectroscopic Andronikashvili experiment in helium nano-droplets. This reduction of scale suggests that not only helium but also para-H2 (pH2) can be a candidate for superfluidity. This expectation is based on the fact that the smaller number of neighbours and surface effects of a finite-size cluster may hinder solidification and promote a liquid-like phase. The first prediction of superfluidity in pH2 clusters was reported in 1991 based on quantum Monte Carlo simulations. The possible superfluidity of pH2 was later indirectly observed in a spectroscopic Andronikashvili experiment in 2000. Since then, a growing number of studies have appeared, and theoretical simulations have been playing a special role because they help guide and interpret experiments. In this review, we go over the theoretical studies of pH2 superfluid clusters since the experiment of 2000. We provide a historical perspective and introduce the basic theoretical formalism along with key experimental advances. We then present illustrative results of the theoretical studies and comment on the possible future developments in the field. We include sufficient theoretical details such that the review can serve as a guide for newcomers to the field.

  13. Helium stratification in HD 145792: a new Helium strong star

    CERN Document Server

    Catanzaro, G

    2007-01-01

    In this paper we report on the real nature of the star HD 145792, classified as He weak in {\\it ``The General Catalogue of Ap and Am stars''}. By means of FEROS@ESO1.52m high resolution spectroscopic data, we refined the atmospheric parameters of the star, obtaining: T$_{\\rm eff}$ = 14400 $\\pm$ 400 K, $\\log g$ = 4.06 $\\pm$ 0.08 and $\\xi$ = 0 $^{+0.6}$ km s$^{-1}$. These values resulted always lower than those derived by different authors with pure photometric approaches. Using our values we undertook an abundance analysis with the aim to derive, for the first time, the chemical pattern of the star's atmosphere. For metals a pure LTE synthesis (ATLAS9 and SYNTHE) has been used, while for helium a hybrid approach has been preferred (ATLAS9 and SYNSPEC). The principal result of our study is that HD 145792 belongs to He strong class contrary to the previous classification. Moreover, helium seems to be vertically stratified in the atmosphere, decreasing toward deepest layers. For what that concerns metals abundanc...

  14. Molecular mechanism of water permeation in a helium impermeable graphene and graphene oxide membrane.

    Science.gov (United States)

    Raghav, Nallani; Chakraborty, Sudip; Maiti, Prabal K

    2015-08-28

    Layers of graphene oxide (GO) are found to be good for the permeation of water but not for helium (Science, 2012, 335(6067), 442-444) suggesting that the GO layers are dynamic in the formation of a permeation route depending on the environment they are in (i.e., water or helium). To probe the microscopic origin of this observation we calculate the potential of mean force (PMF) of GO sheets (with oxidized and reduced parts), with the inter-planar distance as a reaction coordinate in helium and water. Our PMF calculation shows that the equilibrium interlayer distance between the oxidized part of the GO sheets in helium is at 4.8 Å leaving no space for helium permeation. In contrast, the PMF of the oxidized part of the GO in water shows two minima, one at 4.8 Å and another at 6.8 Å, corresponding to no water and a water filled region, thus giving rise to a permeation path. The increased electrostatic interaction between water with the oxidized part of the sheet helps the sheet open up and pushes water inside. Based on the entropy calculations for water trapped between graphene sheets and oxidized graphene sheets at different inter-sheet spacings, we also show the thermodynamics of filling.

  15. Helium transfer line installation details.

    CERN Multimedia

    G. Perinic

    2007-01-01

    A particularity of the 32 m long four in one helium transfer line in between the cold box in USC55 and the cavern UX5 is the fact that the transfer line passes through a hole in the crane rail support beam. In order to ensure the alignment of the suspension rail in the interconnecting tunnel with the hole in the rail support as well as the connection points at both ends required precise measurements of the given geometries as well as the installation of a temporary target for the verification of the theoretical predictions.

  16. Helium II level measurement techniques

    Science.gov (United States)

    Celik, D.; Hilton, D. K.; Zhang, T.; Van Sciver, S. W.

    2001-05-01

    In this paper, a survey of cryogenic liquid level measurement techniques applicable to superfluid helium (He II) is given. The survey includes both continuous and discrete measurement techniques. A number of different probes and controlling circuits for this purpose have been described in the literature. They fall into one of the following categories: capacitive liquid level gauges, superconducting wire liquid level gauges, thermodynamic (heat transfer-based) liquid level gauges, resistive gauges, ultrasound and transmission line-based level detectors. The present paper reviews these techniques and their suitability for He II service. In addition to these methods, techniques for measuring the total liquid volume and mass gauging are also discussed.

  17. Crystal orientation effects on implantation of low-energy hydrogen, helium and hydrogen/helium mixtures in plasma-facing tungsten surfaces

    Science.gov (United States)

    Linn, Brian C.

    The development of plasma-facing materials (PFM) is one of the major challenges in. realizing fusion reactors. Materials deployed in PFMs must be capable of withstanding the high-flux of low-energy hydrogen and helium ions omitted from the plasma. while not hindering the plasma. Tungsten is considered a promising candidate material due to desirable material properties including its high melting temperature, good thermal conductivity and relatively low physical and chemical sputtering yields. This thesis uses molecular dynamic simulations to investigate helium and hydrogen bombardment of tungsten and the underlying physical effects (e.g. sputtering, erosion, blistering). Non-cumulative and cumulative bombardment simulations of helium, hydrogen, and hydrogen/helium bombardment of tungsten were modeled using the molecular dynamics code LAMMPS. Two orientations of monocrystalline bcc tungsten surfaces were considered, (001) and (111). Simulations were performed for temperatures ranging from 600K up to 1500K and helium / hydrogen incident energies of 20eV to 100eV . The results of these simulations showed the effect of temperature and incident particle energy on retention rates and implantation/deposition profiles in tungsten.

  18. [Microscopic colitis: update 2014].

    Science.gov (United States)

    Burgmann, Konstantin; Fraga, Montserrat; Schoepfer, Alain M; Yun, Pu

    2014-09-03

    Microscopic colitis, which includes lymphocytic colitis and collagenous colitis, represents a frequent cause of chronic watery diarrhea especially in the elderly population. Several medications, such as nonsteroidal antiinflammatory drugs, proton pump inhibitors or antidepressants, as well as cigarette smoking have been recognized as risk factors for microscopic colitis. The diagnosis of microscopic colitis is based on a macroscopically normal ileo-colonoscopy and several biopsies from the entire colon, which demonstrate the pathognomonic histopathologic findings. Therapy is mainly based on the use of budesonide. Other medications, such as mesalazine, cholestyramine and bismuth, have been evaluated as well but the evidence is less solid.

  19. Organ protection by the noble gas helium

    NARCIS (Netherlands)

    Smit, K.F.

    2017-01-01

    The aims of this thesis were to investigate whether helium induces preconditioning in humans, and to elucidate the mechanisms behind this possible protection. First, we collected data regarding organ protective effects of noble gases in general, and of helium in particular (chapters 1-3). In chapter

  20. LOX Tank Helium Removal for Propellant Scavenging

    Science.gov (United States)

    Chato, David J.

    2009-01-01

    System studies have shown a significant advantage to reusing the hydrogen and oxygen left in these tanks after landing on the Moon in fuel cells to generate power and water for surface systems. However in the current lander concepts, the helium used to pressurize the oxygen tank can substantially degrade fuel cell power and water output by covering the reacting surface with inert gas. This presentation documents an experimental investigation of methods to remove the helium pressurant while minimizing the amount of the oxygen lost. This investigation demonstrated that significant quantities of Helium (greater than 90% mole fraction) remain in the tank after draining. Although a single vent cycle reduced the helium quantity, large amounts of helium remained. Cyclic venting appeared to be more effective. Three vent cycles were sufficient to reduce the helium to small (less than 0.2%) quantities. Two vent cycles may be sufficient since once the tank has been brought up to pressure after the second vent cycle the helium concentration has been reduced to the less than 0.2% level. The re-pressurization process seemed to contribute to diluting helium. This is as expected since in order to raise the pressure liquid oxygen must be evaporated. Estimated liquid oxygen loss is on the order of 82 pounds (assuming the third vent cycle is not required).

  1. Paramagnetic Attraction of Impurity-Helium Solids

    Science.gov (United States)

    Bernard, E. P.; Boltnev, R. E.; Khmelenko, V. V.; Lee, D. M.

    2003-01-01

    Impurity-helium solids are formed when a mixture of impurity and helium gases enters a volume of superfluid helium. Typical choices of impurity gas are hydrogen deuteride, deuterium, nitrogen, neon and argon, or a mixture of these. These solids consist of individual impurity atoms and molecules as well as clusters of impurity atoms and molecules covered with layers of solidified helium. The clusters have an imperfect crystalline structure and diameters ranging up to 90 angstroms, depending somewhat on the choice of impurity. Immediately following formation the clusters aggregate into loosely connected porous solids that are submerged in and completely permeated by the liquid helium. Im-He solids are extremely effective at stabilizing high concentrations of free radicals, which can be introduced by applying a high power RF dis- charge to the impurity gas mixture just before it strikes the super fluid helium. Average concentrations of 10(exp 19) nitrogen atoms/cc and 5 x 10(exp 18) deuterium atoms/cc can be achieved this way. It shows a typical sample formed from a mixture of atomic and molecular hydrogen and deuterium. It shows typical sample formed from atomic and molecular nitrogen. Much of the stability of Im-He solids is attributed to their very large surface area to volume ratio and their permeation by super fluid helium. Heat resulting from a chance meeting and recombination of free radicals is quickly dissipated by the super fluid helium instead of thermally promoting the diffusion of other nearby free radicals.

  2. Helium abundances and the helium isotope anomaly of sdB stars

    CERN Document Server

    Geier, S; Edelmann, H; Morales-Rueda, L; Kilkenny, D; O'Donoghue, D; Marsh, T R; Copperwheat, C

    2011-01-01

    Helium abundances and atmospheric parameters have been determined from high resolution spectra for a new sample of 46 bright hot subdwarf B (sdB) stars. The helium abundances have been measured with high accuracy. We confirm the correlation of helium abundance with temperature and the existence of two distinct sequences in helium abundance found previously. We focused on isotopic shifts of helium lines and found helium-3 to be strongly enriched in 8 of our programme stars. Most of these stars cluster in a small temperature range between 27000 K and 31000 K very similar to the known helium-3-rich main sequence B stars, which cluster at somewhat lower temperatures. This phenomenon is most probably related to diffusion processes in the atmosphere, but poses a challenge to diffusion models.

  3. Hyperspectral confocal microscope.

    Science.gov (United States)

    Sinclair, Michael B; Haaland, David M; Timlin, Jerilyn A; Jones, Howland D T

    2006-08-20

    We have developed a new, high performance, hyperspectral microscope for biological and other applications. For each voxel within a three-dimensional specimen, the microscope simultaneously records the emission spectrum from 500 nm to 800 nm, with better than 3 nm spectral resolution. The microscope features a fully confocal design to ensure high spatial resolution and high quality optical sectioning. Optical throughput and detection efficiency are maximized through the use of a custom prism spectrometer and a backside thinned electron multiplying charge coupled device (EMCCD) array. A custom readout mode and synchronization scheme enable 512-point spectra to be recorded at a rate of 8300 spectra per second. In addition, the EMCCD readout mode eliminates curvature and keystone artifacts that often plague spectral imaging systems. The architecture of the new microscope is described in detail, and hyperspectral images from several specimens are presented.

  4. Microscopic approach to polaritons

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1981-01-01

    contrary to experimental experience. In order to remove this absurdity the semiclassical approach must be abandoned and the electromagnetic field quantized. A simple microscopic polariton model is then derived. From this the wave function for the interacting exciton-photon complex is obtained...... of light of the crystal. The introduction of damping smears out the excitonic spectra. The wave function of the polariton, however, turns out to be very independent of damping up to large damping values. Finally, this simplified microscopic polariton model is compared with the exact solutions obtained...... for the macroscopic polariton model by Hopfield. It is seen that standing photon and exciton waves must be included in an exact microscopic polariton model. However, it is concluded that for practical purposes, only the propagating waves are of importance and the simple microscopic polariton wave function derived...

  5. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope. Specifications / Capabilities: Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  6. The Correlation Confocal Microscope

    CERN Document Server

    Simon, D S

    2010-01-01

    A new type of confocal microscope is described which makes use of intensity correlations between spatially correlated beams of light. It is shown that this apparatus leads to significantly improved transverse resolution.

  7. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  8. Elusive structure of helium trimers

    Science.gov (United States)

    Stipanović, Petar; Vranješ Markić, Leandra; Boronat, Jordi

    2016-09-01

    Over the years many He-He interaction potentials have been developed, some very sophisticated, including various corrections beyond the Born-Oppenheimer approximation. Most of them were used to predict properties of helium dimers and trimers, examples of exotic quantum states, whose experimental study proved to be very challenging. Recently, detailed structural properties of helium trimers were measured for the first time, allowing a comparison with theoretical predictions and possibly enabling the evaluation of different interaction potentials. The comparisons already made included adjusting the maxima of both theoretical and experimental correlation functions to one, so the overall agreement between theory and experiment appeared satisfactory. However, no attempt was made to evaluate the quality of the interaction potentials used in the calculations. In this work, we calculate the experimentally measured correlation functions using both new and old potentials, compare them with experimental data and rank the potentials. We use diffusion Monte Carlo simulations at T = 0, which give within statistical noise exact results of the ground state properties. All models predict both trimers 4He3 and 4He{}2{}3He to be in a quantum halo state.

  9. Photochemistry inside superfluid helium nano droplets

    Energy Technology Data Exchange (ETDEWEB)

    Slenczka, Alkwin; Vdovin, Alexander; Dick, Bernhard [Inst. fuer Physikalische und Theoretische Chemie, Univ. Regensburg (Germany)

    2007-07-01

    Superfluid helium nano droplets serve as the most gentle cyrogenic matrix for creating isolated and cold molecules. High resolution electronic spectroscopy is sensitive for the investigation of the very weak perturbation of the helium droplet on the embedded molecule. Fluorescence excitation spectra, dispersed emission spectra and pump--probe-spectra show details of the salvation of molecules in helium droplets which were attributed to relaxation processes of the first solvation layer around the dopant. Photochemistry such as ESIPT, tautomerization by proton transfer and charge transfer are highly sensitive on intermolecular perturbations. We have studies such processes in superfluid helium droplets. The comparison with the respective gas phase experiments and quantum chemical calculations reveals further details on the photochemistry as well as on the perturbation by the superfluid helium droplet.

  10. Permeability of Hollow Microspherical Membranes to Helium

    Science.gov (United States)

    Zinoviev, V. N.; Kazanin, I. V.; Pak, A. Yu.; Vereshchagin, A. S.; Lebiga, V. A.; Fomin, V. M.

    2016-01-01

    This work is devoted to the study of the sorption characteristics of various hollow microspherical membranes to reveal particles most suitable for application in the membrane-sorption technologies of helium extraction from a natural gas. The permeability of the investigated sorbents to helium and their impermeability to air and methane are shown experimentally. The sorption-desorption dependences of the studied sorbents have been obtained, from which the parameters of their specific permeability to helium are calculated. It has been established that the physicochemical modification of the original particles exerts a great influence on the coefficient of the permeability of a sorbent to helium. Specially treated cenospheres have displayed high efficiency as membranes for selective extraction of helium.

  11. Gemini helium closed cycle cooling system

    Science.gov (United States)

    Lazo, Manuel; Galvez, Ramon; Rogers, Rolando; Solis, Hernan; Tapia, Eduardo; Maltes, Diego; Collins, Paul; White, John; Cavedoni, Chas; Yamasaki, Chris; Sheehan, Michael P.; Walls, Brian

    2008-07-01

    The Gemini Observatory presents the Helium Closed Cycle Cooling System that provides cooling capacity at cryogenic temperatures for instruments and detectors. It is implemented by running three independent helium closed cycle cooling circuits with several banks of compressors in parallel to continuously supply high purity helium gas to cryocoolers located about 100-120 meters apart. This poster describes how the system has been implemented, the required helium pressures and gas flow to reach cryogenic temperature, the performance it has achieved, the helium compressors and cryocoolers in use and the level of vibration the cryocoolers produce in the telescope environment. The poster also describes the new technology for cryocoolers that Gemini is considering in the development of new instruments.

  12. Formation of the helium EUV resonance lines

    CERN Document Server

    Golding, Thomas Peter; Carlsson, Mats

    2016-01-01

    Context: While classical models successfully reproduce intensities of many transition region lines, they predict helium EUV line intensities roughly an order of magnitude lower than the observed value. Aims: To determine the relevant formation mechanism(s) of the helium EUV resonance lines, capable of explaining the high intensities under quiet sun conditions. Methods: We synthesise and study the emergent spectra from a 3D radiation-magnetohydrodynamics simulation model. The effects of coronal illumination and non-equilibrium ionisation of hydrogen and helium are included self-consistently in the numerical simulation. Results: Radiative transfer calculations result in helium EUV line intensities that are an order of magnitude larger than the intensities calculated under the classical assumptions. The enhanced intensity of He I 584 is primarily caused by He II recombination cascades. The enhanced intensity of He II 304 and He II 256 is caused primarily by non-equilibrium helium ionisation. Conclusion: The anal...

  13. Microscopic colitis: a review.

    Science.gov (United States)

    Farrukh, A; Mayberry, J F

    2014-12-01

    In recent years, microscopic colitis has been increasingly diagnosed. This review was carried out to evaluate demographic factors for microscopic colitis and to perform a systematic assessment of available treatment options. Relevant publications up to December 2013 were identified following searches of PubMed and Google Scholar using the key words 'microscopic colitis', 'collagenous colitis' and 'lymphocytic colitis'. Two-hundred and forty-eight articles were identified. The term microscopic colitis includes lymphocytic colitis and collagenous colitis. Both have common clinical symptoms but are well defined histopathologically. The clinical course is usually benign, but serious complications, including death, may occur. A peak incidence from 60 to 70 years of age with a female preponderance is observed. Although most cases are idiopathic, associations with autoimmune disorders, such as coeliac disease and hypothyroidism, as well as with exposure to nonsteroidal anti-inflammatory drugs and proton-pump inhibitors, have been observed. The incidence and prevalence of microscopic colitis is rising and good-quality epidemiological research is needed. Treatment is currently largely based on anecdotal evidence and on results from limited clinical trials of budesonide. Long-term follow-up of these patients is not well established. The review synthesizes work on the definition of microscopic colitis and the relationship between collagenous and lymphocytic colitis. It reviews the international epidemiology and work on aetiology. In addition, it critically considers the efficacy of a range of treatments. Colorectal Disease © 2014 The Association of Coloproctology of Great Britain and Ireland.

  14. Stark profiles of forbidden and allowed transitions in a dense, laser produced helium plasma.

    Science.gov (United States)

    Ya'akobi, B.; George, E. V.; Bekefi, G.; Hawryluk, R. J.

    1972-01-01

    Comparisons of experimental and theoretical Stark profiles of the allowed 2(1)P-3(1)D helium line at 6678 A and of the forbidden 2(1)P-3(1)P component at 6632 A in a dense plasma were carried out. The plasma was produced by optical breakdown of helium by means of a repetitive, high power CO2 laser. The allowed line shows good agreement with conventional theory, but discrepancies are found around the centre of the forbidden component. When normally neglected ion motions are taken into consideration, the observed discrepancies are partially removed. Tables of the Stark profiles for the pair of lines are given.

  15. On the stability of cationic complexes of neon with helium--solving an experimental discrepancy.

    Science.gov (United States)

    Bartl, Peter; Denifl, Stephan; Scheier, Paul; Echt, Olof

    2013-10-21

    Helium nanodroplets are doped with neon and ionized by electrons. The size-dependence of the ion abundance of HenNex(+), identified in high-resolution mass spectra, is deduced for complexes containing up to seven neon atoms and dozens of helium atoms. Particularly stable ions are inferred from anomalies in the abundance distributions. Two pronounced anomalies at n = 11 and 13 in the HenNe(+) series confirm drift-tube data reported by Kojima et al. [T. M. Kojima et al., Z. Phys. D, 1992, 22, 645]. The discrepancy with previously published spectra of neon-doped helium droplets, which did not reveal any abundance anomalies [T. Ruchti et al., J. Chem. Phys., 1998, 109, 10679-10687; C. A. Brindle et al., J. Chem. Phys., 2005, 123, 064312], is most likely due to limited mass resolution, which precluded unambiguous analysis of contributions from different ions with identical nominal mass. However, calculated dissociation energies of HenNe(+) reported so far do not correlate with the present data, possibly because of challenges in correctly treating the linear, asymmetric [He-Ne-He](+) ionic core in HenNe(+). Anomalies identified in the distributions of HenNex(+) for x > 1, including prominent ones at He12Ne2(+) and He14Ne2(+), may help to better understand solvation of Ne(+) and Nex(+) in helium.

  16. Exotic helium molecules; Molecules exotiques d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Portier, M

    2007-12-15

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  17. FINAL TECHNICAL REPORT FOR DE-FG02-05ER64097 Systems and Methods for Injecting Helium Beams into a Synchrotron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bush, David A

    2008-09-30

    A research grant was approved to fund development of requirements and concepts for extracting a helium-ion beam at the LLUMC proton accelerator facility, thus enabling the facility to better simulate the deep space environment via beams sufficient to study biological effects of accelerated helium ions in living tissues. A biologically meaningful helium-ion beam will be accomplished by implementing enhancements to increase the accelerator's maximum proton beam energy output from 250MeV to 300MeV. Additional benefits anticipated from the increased energy include the capability to compare possible benefits from helium-beam radiation treatment with proton-beam treatment, and to provide a platform for developing a future proton computed tomography imaging system.

  18. Retention behaviour of deuterium and helium in beryllium under single D{sup +} and dual He{sup +}/D{sup +} exposure

    Energy Technology Data Exchange (ETDEWEB)

    Mateus, R., E-mail: rmateus@ipfn.ist.utl.pt; Franco, N.; Alves, E.

    2015-10-15

    Beryllium plates were irradiated with single deuterium and dual helium plus deuterium energetic ions with fluences of 1e17 ions/cm{sup 2} and 5e17 ions/cm{sup 2}, and annealed afterwards in vacuum at 523, 723 and 923 K for 10 min. The surfaces were analysed with electron microscopy, X-ray diffraction and ion beam techniques. The results are consistent with well-established outcomes arising from helium irradiation, evidencing that the degassing mechanisms depend of the microstructure evolution. They point to a supersaturation of the implanted zone by helium in the samples exposed to fluences of 5e17 He{sup +}/cm{sup 2}. In this case, it is observed a simultaneous release of helium and deuterium at lower temperatures, evidencing the formation of a porous microstructure from primary gas bubbles. In the absence of a porous structure, the helium degassing occurs at a higher temperature range, while it depends on the migration of helium-vacancy clusters. The supersaturation of beryllium was never reached under single deuterium irradiation, being the release of deuterium controlled by ion-induced trap sites.

  19. Extreme ultraviolet spectroscopy of low pressure helium microwave driven discharges

    Science.gov (United States)

    Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Alves, Luis Lemos

    2016-09-01

    Surface wave driven discharges are reliable plasma sources that can produce high levels of vacuum and extreme ultraviolet radiation (VUV and EUV). The richness of the emission spectrum makes this type of discharge a possible alternative source in EUV/VUV radiation assisted applications. However, due to challenging experimental requirements, publications concerning EUV radiation emitted by microwave plasmas are scarce and a deeper understanding of the main mechanisms governing the emission of radiation in this spectral range is required. To this end, the EUV radiation emitted by helium microwave driven plasmas operating at 2.45 GHz has been studied for low pressure conditions. Spectral lines from excited helium atoms and ions were detected via emission spectroscopy in the EUV/VUV regions. Novel data concerning the spectral lines observed in the 23 - 33 nm wavelength range and their intensity behaviour with variation of the discharge operational conditions are presented. The intensity of all the spectral emissions strongly increases with the microwave power delivered to the plasma up to 400 W. Furthermore, the intensity of all the ion spectral emissions in the EUV range decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar. Work funded by FCT - Fundacao para a Ciencia e a Tecnologia, under Project UID/FIS/50010/2013 and grant SFRH/BD/52412/2013 (PD-F APPLAuSE).

  20. Neoclassical flows in deuterium-helium plasma density pedestals

    CERN Document Server

    Buller, Stefan; Newton, Sarah; Omotani, John

    2016-01-01

    In tokamak transport barriers, the radial scale of profile variations can be comparable to a typical ion orbit width, which makes the coupling of the distribution function across flux surfaces important in the collisional dynamics. We use the radially global steady-state neoclassical {\\delta}f code Perfect to calculate poloidal and toroidal flows, and radial fluxes, in the pedestal. In particular, we have studied the changes in these quantities as the plasma composition is changed from a deuterium bulk species with a helium impurity to a helium bulk with a deuterium impurity, under specific profile similarity assumptions. The poloidally resolved radial fluxes are not divergence-free in isolation in the presence of sharp radial profile variations, which leads to the appearance of poloidal return-flows. These flows exhibit a complex radial-poloidal structure that extends several orbit widths into the core and is sensitive to abrupt radial changes in the ion temperature gradient. We find that a sizable neoclassi...

  1. Electronic Structure of Helium Atom in a Quantum Dot

    Science.gov (United States)

    Saha, Jayanta K.; Bhattacharyya, S.; Mukherjee, T. K.

    2016-03-01

    Bound and resonance states of helium atom have been investigated inside a quantum dot by using explicitly correlated Hylleraas type basis set within the framework of stabilization method. To be specific, precise energy eigenvalues of bound 1sns (1Se) (n = 1-6) states and the resonance parameters i.e. positions and widths of 1Se states due to 2sns (n = 2-5) and 2pnp (n = 2-5) configurations of confined helium below N = 2 ionization threshold of He+ have been estimated. The two-parameter (Depth and Width) finite oscillator potential is used to represent the confining potential due to the quantum dot. It has been explicitly demonstrated that the electronic structural properties become sensitive functions of the dot size. It is observed from the calculations of ionization potential that the stability of an impurity ion within a quantum dot may be manipulated by varying the confinement parameters. A possibility of controlling the autoionization lifetime of doubly excited states of two-electron ions by tuning the width of the quantum cavity is also discussed here. TKM Gratefully Acknowledges Financial Support under Grant No. 37(3)/14/27/2014-BRNS from the Department of Atomic Energy, BRNS, Government of India. SB Acknowledges Financial Support under Grant No. PSW-160/14-15(ERO) from University Grants Commission, Government of India

  2. Electronic structure of helium atom in a quantum dot

    CERN Document Server

    Saha, Jayanta K; Mukherjee, T K

    2015-01-01

    Bound and resonance states of helium atom have been investigated inside a quantum dot by using explicitly correlated Hylleraas type basis set within the framework of stabilization method. To be specific, precise energy eigenvalues of bound 1sns (1Se) [n = 1-6] states and the resonance parameters i.e. positions and widths of 1Se states due to 2sns [n = 2-5] and 2pnp [n = 2-5] configuration of confined helium below N = 2 ionization threshold of He+ have been estimated. The two-parameter (Depth and Width) finite oscillator potential is used to represent the confining potential representing the quantum dot. It has been explicitly demonstrated that electronic structure properties become a sensitive function of the dot size. It is observed from the calculations of ionization potential that the stability of an impurity ion within quantum dot may be manipulated by varying the confinement parameters. A possibility of controlling the autoionization lifetime of doubly excited states of two-electron ions by tuning the wi...

  3. Helium and neon abundances and compositions in cometary matter.

    Science.gov (United States)

    Marty, Bernard; Palma, Russell L; Pepin, Robert O; Zimmermann, Laurent; Schlutter, Dennis J; Burnard, Peter G; Westphal, Andrew J; Snead, Christopher J; Bajt, Sasa; Becker, Richard H; Simones, Jacob E

    2008-01-04

    Materials trapped and preserved in comets date from the earliest history of the solar system. Particles captured by the Stardust spacecraft from comet 81P/Wild 2 are indisputable cometary matter available for laboratory study. Here we report measurements of noble gases in Stardust material. Neon isotope ratios are within the range observed in "phase Q," a ubiquitous, primitive organic carrier of noble gases in meteorites. Helium displays 3He/4He ratios twice those in phase Q and in Jupiter's atmosphere. Abundances per gram are surprisingly large, suggesting implantation by ion irradiation. The gases are probably carried in high-temperature igneous grains similar to particles found in other Stardust studies. Collectively, the evidence points to gas acquisition in a hot, high ion-flux nebular environment close to the young Sun.

  4. Resonance effects in electron-impact ionization of helium

    Science.gov (United States)

    Fang, Yanghua; Bartschat, Klaus

    2001-07-01

    We have extended our recent work on electron-impact ionization and ionization-excitation of helium (Fang Y and Bartschat K 2001 J. Phys. B: At. Mol. Opt. Phys. 34 L19) to investigate resonance structures in the ejected-electron-residual-ion interaction. The calculations were performed using a second-order perturbative model for a `fast' incident projectile together with a convergent R-matrix with pseudo-states close-coupling model for the initial bound state and the scattering of a `slow' ejected electron in the field of the ion. The agreement with previous calculations by Marchalant et al using a similar model is satisfactory and confirms the importance of the `two-step' mechanism in these processes. However, significant discrepancies remain with experimental data by Lower and Weigold and, to a lesser extent, by McDonald and Crowe.

  5. Study of damage and helium diffusion in fluoro-apatites; Etude de l'endommagement et de la diffusion de l'helium dans des fluoroapatites

    Energy Technology Data Exchange (ETDEWEB)

    Miro, S

    2004-12-15

    This work lies within the scope of the study of the radionuclides containment matrices. The choice of the fluoro-apatites as potential matrices of containment was suggested by the notable properties of these latter (thermal and chemical stability even under radioactive radiation). By irradiations with heavy ions and a helium implantation we simulated the effects related to the alpha radioactivity and to the spontaneous nuclear fission of the radionuclides. Thanks to the study of Durango fluoro-apatite single crystals and fluoro-apatite sintered ceramics, we evidenced that the damage fraction as well as the unit cell deformations increase with the electronic energy loss and with the substitution. These effects are followed at high fluences by a phenomenon of re-crystallization. The study of the helium diffusion points out that the thermal diffusion process improves with the substitution and strongly increases with heavy ions irradiation. (author)

  6. Electric response in superfluid helium

    Science.gov (United States)

    Chagovets, Tymofiy V.

    2016-05-01

    We report an experimental investigation of the electric response of superfluid helium that arises in the presence of a second sound standing wave. It was found that the signal of the electric response is observed in a narrow range of second sound excitation power. The linear dependence of the signal amplitude has been derived at low excitation power, however, above some critical power, the amplitude of the signal is considerably decreased. It was established that the rapid change of the electric response is not associated with a turbulent regime generated by the second sound wave. A model of the appearance of the electric response as a result of the oscillation of electron bubbles in the normal fluid velocity field in the second sound wave is presented. Possible explanation for the decrease of the electric response are presented.

  7. Laser cooling and control of excitations in superfluid helium

    CERN Document Server

    Harris, G I; Sheridan, E; Sachkou, Y; Baker, C; Bowen, W P

    2015-01-01

    Superfluidity is an emergent quantum phenomenon which arises due to strong interactions between elementary excitations in liquid helium. These excitations have been probed with great success using techniques such as neutron and light scattering. However measurements to-date have been limited, quite generally, to average properties of bulk superfluid or the driven response far out of thermal equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of superfluid excitations in real-time. Furthermore, strong light-matter interactions allow both laser cooling and amplification of the thermal motion. This provides a new tool to understand and control the microscopic behaviour of superfluids, including phonon-phonon interactions, quantised vortices and two-dimensional quantum phenomena such as the Berezinskii-Kosterlitz-Thouless transition. The third sound modes studied here also offer a pathway towards quantum optomechanics with thin superfluid films, including femtogram effective masses, high me...

  8. Non-equilibrium helium ionization in an MHD simulation of the solar atmosphere

    CERN Document Server

    Golding, Thomas Peter; Carlsson, Mats

    2015-01-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilbrium hydrogen ionization by performing a 2D radiation-magneto-hydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyman-$\\alpha$ and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with LTE ionization shows that non-equilibrium helium ionization leads to higher temperatures in wave fronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behaviour with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. ...

  9. Resonant two-photon ionization spectroscopy of Al atoms and dimers solvated in helium nanodroplets

    Energy Technology Data Exchange (ETDEWEB)

    Krasnokutski, Serge A.; Huisken, Friedrich [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany)

    2015-02-28

    Resonant two-photon ionization (R2PI) spectroscopy has been applied to investigate the solvation of Al atoms in helium droplets. The R2PI spectra reveal vibrational progressions that can be attributed to Al–He{sub n} vibrations. It is found that small helium droplets have very little chance to pick up an aluminum atom after collision. However, the pick-up probability increases with the size of the helium droplets. The absorption band that is measured by monitoring the ions on the mass of the Al dimer is found to be very little shifted with respect to the Al monomer band (∼400 cm{sup −1}). However, using the same laser wavelength, we were unable to detect any Al{sub n} photoion with n larger than two.

  10. Resonant two-photon ionization spectroscopy of Al atoms and dimers solvated in helium nanodroplets.

    Science.gov (United States)

    Krasnokutski, Serge A; Huisken, Friedrich

    2015-02-28

    Resonant two-photon ionization (R2PI) spectroscopy has been applied to investigate the solvation of Al atoms in helium droplets. The R2PI spectra reveal vibrational progressions that can be attributed to Al-He(n) vibrations. It is found that small helium droplets have very little chance to pick up an aluminum atom after collision. However, the pick-up probability increases with the size of the helium droplets. The absorption band that is measured by monitoring the ions on the mass of the Al dimer is found to be very little shifted with respect to the Al monomer band (∼400 cm(-1)). However, using the same laser wavelength, we were unable to detect any Al(n) photoion with n larger than two.

  11. Superlensing Microscope Objective Lens

    CERN Document Server

    Yan, Bing; Parker, Alan; Lai, Yukun; Thomas, John; Yue, Liyang; Monks, James

    2016-01-01

    Conventional microscope objective lenses are diffraction limited, which means that they cannot resolve features smaller than half the illumination wavelength. Under white light illumination, such resolution limit is about 250-300 nm for an ordinary microscope. In this paper, we demonstrate a new superlensing objective lens which has a resolution of about 100 nm, offering at least two times resolution improvement over conventional objectives in resolution. This is achieved by integrating a conventional microscope objective lens with a superlensing microsphere lens using a 3D printed lens adaptor. The new objective lens was used for label-free super-resolution imaging of 100 nm-sized engineering and biological samples, including a Blu-ray disc sample, semiconductor chip and adenoviruses. Our work creates a solid base for developing a commercially-viable superlens prototype, which has potential to transform the field of optical microscopy and imaging.

  12. Integrated elastic microscope device

    Science.gov (United States)

    Lee, W. M.; Wright, D.; Watkins, R.; Cen, Zi

    2015-03-01

    The growing power of imaging and computing power of smartphones is creating the possibility of converting your smartphone into a high power pocket microscopy system. High quality miniature microscopy lenses attached to smartphone are typically made with glass or plastics that can only be produce at low cost with high volume. To revise the paradigm of microscope lenses, we devised a simple droplet lens fabrication technique that which produces low cost and high performance lens. Each lens is integrated into thin 3-D printed holder with complimentary light emitted diode (LEDs) that clips onto majority of smartphones. The integrated device converts a smartphone into a high power optical microscope/dermatoscope at around $2. This low cost device has wide application in a multitude of practical uses such as material inspection, dermascope and educational microscope.

  13. Enhancement of helium exhaust by resonant magnetic perturbation fields at LHD and TEXTOR

    Science.gov (United States)

    Schmitz, O.; Ida, K.; Kobayashi, M.; Bader, A.; Brezinsek, S.; Evans, T. E.; Funaba, H.; Goto, M.; Mitarai, O.; Morisaki, T.; Motojima, G.; Nakamura, Y.; Narushima, Y.; Nicolai, D.; Samm, U.; Tanaka, H.; Yamada, H.; Yoshinuma, M.; Xu, Y.; TEXTOR, the; LHD Experiment Groups

    2016-10-01

    The ability to exhaust helium as the fusion born plasma impurity is a critical requirement for burning plasmas. We demonstrate in this paper that resonant magnetic perturbation (RMP) fields can be used to actively manipulate helium exhaust characteristics. We present results from puff/pump studies at TEXTOR as example for a tokamak with a pumped limiter and from the Large Helical Device (LHD) with the closed helical divertor as example for a heliotron/stellarator device. For LHD, the effective helium confinement time τ p,\\text{He}\\ast is a factor of 7-8 higher in the low and high density regimes explored when compared to TEXTOR discharges. This is attributed to ion root impurity transport which is one particular impurity transport regime assessed experimentally at LHD and which facilitates helium penetration to the plasma core. However, when an edge magnetic island is induced by externally applied RMP fields, τ p,\\text{He}\\ast is decreased by up to 30% and hence τ p,\\text{He}\\ast values closer to those of TEXTOR can be established. The combination of TEXTOR and LHD results suggest that a magnetic island induced by the RMP field in the plasma source region is an important ingredient for improving helium exhaust. The reduction in τ p,\\text{He}\\ast seen is caused by a combination of improved helium exhaust due to an enhanced coupling to the pumping systems, increased outward transport and a reduced fueling efficiency for the helium injected and recycling from the wall elements.

  14. Particle detection by evaporation from superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, S.R.; Lanou, R.E.; Maris, H.J.; More, T.; Porter, F.S.; Seidel, G.M.; Torii, R.H. (Department of Physics, Brown University, Providence, Rhode Island 02912 (United States))

    1992-04-20

    We report the first experiments in which 5-MeV alpha particles are detected via evaporation from a bath of superfluid helium. The {alpha} excites phonons and rotons in the liquid helium, and these excitations are sufficiently energetic to evaporate helium atoms when they reach the free surface of the liquid. The approximate overall efficiency of this process has been determined, and we compare this with expectations. We have also been able to detect evaporation induced by a flux of {gamma}'s from a {sup 137}Cs source.

  15. Electron microscope studies

    Energy Technology Data Exchange (ETDEWEB)

    Crewe, A.V.; Kapp, O.H.

    1992-07-01

    This is a report covering the research performed in the Crewe laboratory between 1964 and 1992. Because of limitations of space we have provided relatively brief summaries of the major research directions of the facility during these years. A complete bibliography has been included and we have referenced groups of pertinent publications at the beginning of each section. This report summarizes our efforts to develop better electron microscopes and chronicles many of the experimental programs, in materials science and biology, that acted both as a stimulus to better microscope design and also as a testing ground for many instrumental innovations.

  16. Helium irradiation effects on tritium retention and long-term tritium release properties in polycrystalline tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Nobuta, Y., E-mail: y-nobuta@eng.hokudai.ac.jp [Laboratory of Plasma Physics and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Hatano, Y.; Matsuyama, M.; Abe, S. [Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama 930-8555 (Japan); Yamauchi, Y.; Hino, T. [Laboratory of Plasma Physics and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan)

    2015-08-15

    DT{sup +} ion irradiation with energy of 0.5 and 1.0 keV was performed on helium pre-irradiated tungsten and the amount of retained tritium and the long-term release of retained tritium in vacuum was investigated using an IP technique and BIXS. Tritium retention and long-term tritium release were significantly influenced by helium pre-irradiation. The amount of retained tritium increased until it reached 1 × 10{sup 17} He/cm{sup 2}, and at 1 × 10{sup 18} He/cm{sup 2} it became smaller compared to 1 × 10{sup 17} He/cm{sup 2}. The amount of retained tritium in tungsten without helium pre-irradiation largely decreased after several weeks preservation in vacuum, and the long-term release rate during vacuum preservation was retarded by helium pre-irradiation. The results indicate that the long-term tritium release and the helium irradiation effect on it should be taken into account for more precise estimation of tritium retention in the long-term use of tungsten in fusion devices.

  17. Torsional Alfven waves in solar partially ionized plasma: effects of neutral helium and stratification

    CERN Document Server

    Zaqarashvili, T V; Soler, R

    2012-01-01

    Ion-neutral collisions may lead to the damping of Alfven waves in chromospheric and prominence plasmas. Neutral helium atoms enhance the damping in certain temperature interval, where the ratio of neutral helium and neutral hydrogen atoms is increased. Therefore, the height-dependence of ionization degrees of hydrogen and helium may influence the damping rate of Alfven waves. We aim to study the effect of neutral helium in the damping of Alfven waves in stratified partially ionized plasma of the solar chromosphere. We consider a magnetic flux tube, which is expanded up to 1000 km height and then becomes vertical due to merging with neighboring tubes, and study the dynamics of linear torsional Alfven waves in the presence of neutral hydrogen and neutral helium atoms. We start with three-fluid description of plasma and consequently derive single-fluid magnetohydrodynamic (MHD) equations for torsional Alfven waves. Thin flux tube approximation allows to obtain the dispersion relation of the waves in the lower pa...

  18. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Golding, Thomas Peter; Carlsson, Mats [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Leenaarts, Jorrit, E-mail: thomas.golding@astro.uio.no, E-mail: mats.carlsson@astro.uio.no, E-mail: jorrit.leenaarts@astro.su.se [Institute for Solar Physics, Department of Astronomy, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden)

    2016-02-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.

  19. IMPROVED LIGHT MICROSCOPIC DEMONSTRATION OF D-AMINO-ACID OXIDASE ACTIVITY IN CRYOTOME SECTIONS USING CERIUM IONS AS CAPTURING AND AMPLIFYING AGENT - THE CE/CE-H2O2-DAB PROCEDURE

    NARCIS (Netherlands)

    HALBHUBER, KJ; FEUERSTEIN, H; ZIMMERMANN, N; KLINGER, M; KALICHARAN, D; HUPFER, U

    1991-01-01

    The light microscopical demonstration of D-amino acid oxidase (AAOX) activity with cerium (Ce III) as the capturing agent was improved. The incubation medium was stabilized by the employment of triethanolamine and detrane complexed cerium. A considerable increase in intensity of the reaction was

  20. Design of a scanning gate microscope in a cryogen-free dilution refrigerator

    Science.gov (United States)

    Pelliccione, Matthew; Sciambi, Adam; Goldhaber-Gordon, David

    2011-03-01

    We report on our design of an ultra-low temperature scanning gate microscope housed in a system with no liquid helium bath. The recent increase in efficiency of pulse-tube cryocoolers and pending scarcity of liquid helium have made ``cryogen-free'' dewars popular in recent years. However, this new style of dewar presents challenges for performing scanning measurements, most notably the increased vibrations introduced by the cryocooler. We will highlight the tradeoffs made in choosing such a system to house a scanner, and describe our efforts to achieve a stability suitable for measurements on mesoscopic systems.

  1. Calculated Regenerator Performance at 4 K with HELIUM-4 and HELIUM-3

    Science.gov (United States)

    Radebaugh, Ray; Huang, Yonghua; O'Gallagher, Agnes; Gary, John

    2008-03-01

    The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transport properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies.

  2. Microscopic plasma Hamiltonian

    Science.gov (United States)

    Peng, Y.-K. M.

    1974-01-01

    A Hamiltonian for the microscopic plasma model is derived from the Low Lagrangian after the dual roles of the generalized variables are taken into account. The resulting Hamilton equations are shown to agree with the Euler-Lagrange equations of the Low Lagrangian.

  3. Microscope on Mars

    Science.gov (United States)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  4. Microscope on Mars

    Science.gov (United States)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  5. ASACUSA Anti-protonic Helium_Final

    CERN Multimedia

    CERN Audiovisual Production Service; CERN AD; Paola Catapano; Julien Ordan, Arzur Catel; Paola Catapano; ASACUSA COLLABORATION

    2016-01-01

    Latest precision measurement of the mass of the proton and the anti proton though the production of antiprotonic helium by the ASACUSA experiment at CERN's antimatter factory, with a beam from the Antiproton Decelerator

  6. Charging dynamics of dopants in helium nanoplasmas

    OpenAIRE

    Heidenreich, Andreas; Grüner, Barbara; Schomas, Dominik; Stienkemeier, Frank; Krishnan, Siva Rama; Mudrich, Marcel

    2016-01-01

    We present a combined experimental and theoretical study of the charging dynamics of helium nanodroplets doped with atoms of different species and irradiated by intense near-infrared (NIR) laser pulses (

  7. Helium-Hydrogen Recovery System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Immense quantities of expensive liquefied helium are required at Stennis and Kennedy Space Centers for pre-cooling rocket engine propellant systems prior to filling...

  8. Primary helium heater for propellant pressurization systems

    Science.gov (United States)

    Reichmuth, D. M.; Nguyen, T. V.; Pieper, J. L.

    1991-01-01

    The primary helium heater is a unique design that provides direct heating of pressurant gas for large pressure fed propulsion systems. It has been conceptually designed to supply a heated (800-1000 R) pressurization gas to both a liquid oxygen and an RP-1 propellant tank. This pressurization gas is generated within the heater by mixing super critical helium (40-300 R and 3000-1600 psi) with an appropriate amount of combustion products from a 4:1 throttling stoichiometric LO2/LH2 combustor. This simple, low cost and reliable mixer utilizes the large quantity of helium to provide stoichiometric combustor cooling, extend the throttling limits and enhance the combustion stability margin. Preliminary combustion, thermal, and CFD analyses confirm that this low-pressure-drop direct helium heater can provide the constant-temperature pressurant suitable for tank pressurization of both fuel and oxidizer tanks of large pressure fed vehicles.

  9. Helium liquefier cycles with saturated vapor compression

    Science.gov (United States)

    Minta, M.; Smith, J. L., Jr.

    The three refrigeration stages of the conventional helium liquefaction cycle are related to liquid nitrogen precooling, the use of expansion engines, and a J-T expansion. For an operation of helium refrigerators at temperatures below 4.2 K reduced pressure levels are required. Such an operation makes it necessary to enhance the compressor size and the heat exchanger surface area. In the case of 1.8 K refrigerators, practical cycles with three pressure levels are employed. It is pointed out that the saturated-vapor-compression (SVC) helium cycle provides an alternative solution to these problems. The present investigation is concerned with the design study of a SVC helium liquifier operating at elevated pressures. The study was conducted to demonstrate the potential of the SVC cycle on the basis of a direct comparison with a conventional cycle using the same precooling expanders and a supercritical wet expander instead of a J-T valve.

  10. Multiple Population Theory: Extreme helium population problem

    OpenAIRE

    Yi, Sukyoung K.

    2009-01-01

    The spreads in chemical abundances inferred by recent precision observations suggest that some or possibly all globular clusters can no longer be considered as simple stellar populations. The most striking case is omega Cen in the sense that its bluest main-sequence despite its high metallicity demands an extreme helium abundance of Y > 0.4. I focus on this issue of "the extreme helium population problem" in this review.

  11. Cosmogenic helium in a terrestrial igneous rock

    Science.gov (United States)

    Kurz, M. D.

    1986-01-01

    New helium isotopic measurements on samples from the Kula formation of Haleakala volcano of Hawaii are presented that are best explained by an in situ cosmogenic origin for a significant fraction of the He-3. Results from crushing and stepwise heating experiments, and consideration of the exposure age of the sample at the surface and the cosmic ray fluxes strongly support this hypothesis. Although crustal cosmogenic helium has been proposed previously, this represents its first unambiguous identification in a terrestrial sample.

  12. Effects of helium impurities on superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Selle, J.E.

    1977-07-01

    A review of the literature on the effects of helium impurities on superalloys at elevated temperatures was undertaken. The actual effects of these impurities vary depending on the alloy, composition of the gas atmosphere, and temperature. In general, exposure in helium produces significant but not catastrophic changes in the structure and properties of the alloys. The effects of these treatments on the structure, creep, fatigue, and mechanical properties of the various alloys are reviewed and discussed. Suggestions for future work are presented.

  13. Helium Reionization in From New Sightlines

    Science.gov (United States)

    Syphers, David

    2017-01-01

    A very small number of sightlines to z~3 quasars have been studied in detail to show the progress of helium reionization. Although studying the same sightlines with each new UV spectrograph lead to a better understanding of them, the sightline variance is very strong during this patchy and extended process. We discuss detailed R>10,000 COS data from new sightlines, and what they reveal about the progress and end of helium reionization.

  14. Analysis of the time-domain spectrum of hydrogen in electric field near helium surface

    Institute of Scientific and Technical Information of China (English)

    Xiaoqing Gong; Guangcan Yang

    2011-01-01

    The Ryderberg electronic wave packet dynamics of hydrogen atom near helium surface in an electric field is investigated using the semiclassical method. The autocorrelation function is calculated when the photoionized electron is excited by a short laser pulse for different atom-surface separations. The results show that new recurrences appear because of the helium surface, and the number of recurrent peaks increases with the decrease in atom-surface distance. The new feature is ascribed to the bifurcation of new closed orbits in the classical dynamics of the photoionized electron. Therefore, surface properties have a significant effect on the spectrum of nearby atoms or ions.%@@ The Ryderberg electronic wave packet dynamics of hydrogen atom near helium surface in an electric field is investigated using the semiclassical method.The autocorrelation function is calculated when the photoionized electron is excited by a short laser pulse for different atom-surface separations.The results show that new recurrences appear because of the helium surface, and the number of recurrent peaks increases with the decrease in atom-surface distance.The new feature is ascribed to the bifurcation of new closed orbits in the classical dynamics of the photoionized electron.Therefore, surface properties have a significant effect on the spectrum of nearby atoms or ions.

  15. Heavy ion therapy: Bevalac epoch

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R.

    1993-10-01

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered. (GHH)

  16. Doubly excited helium. From strong correlation to chaos

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yuhai

    2006-03-15

    In the present dissertation, the double excitation states of helium including the autoionization decay of these states were studied experimentally and theoretically in a broad energy region, which includes the transition from strong correlation below the low single ionization thresholds (SIT) to the region of quantum chaos at energies very close to the double-ionization threshold. Two kind of experiments were performed, namely total-ion-yield measurements with the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measurements to obtain partial cross sections (PCS) as well as angular distribution parameters (ADP). Both types of measurements were performed at the third generation synchrotron radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I{sub 15}, and they were found to be in in excellent agreement with state-of-the-art complex-rotation calculations performed recently by D. Delande. These experimental and theoretical data on the TCSs were analyzed in order to study quantum chaos in doubly excited helium, and interesting signatures of quantum chaos were found. The TOF technique allowed to measure PCSs and ADPs in the energy regions from I{sub 5} to I{sub 9} and I{sub 7}, respectively. These experimental data provide a critical assessment of theoretical models that can be used to explore the dynamics of strong correlation as well as quantum chaos in helium. In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below I{sub 4} were calculated employing the R-matrix method. The present theoretical results agree well with a recent experimental study of l-specific PCSs below I{sub 4} by J.R. Harries et al. An analysis of patterns in the PCSs and ADPs on the basis of the present experimental and theoretical l-specific data allowed to improve the present understanding of autoionization decay dynamics in this two-electron atom. (orig.)

  17. Pyridine Aggregation in Helium Nanodroplets

    Science.gov (United States)

    Nieto, Pablo; Poerschke, Torsten; Habig, Daniel; Schwaab, Gerhard; Havenith, Martina

    2012-06-01

    Pyridine crystals show the unusual property of isotopic polymorphism. Experimentally it has been observed that deuterated pyridine crystals exist in two phases while non-deuterated pyridine does not show a phase transition. Therefore, although isotopic substitution is the smallest possible modification of a molecule it greatly affects the stability of pyridine crystals. A possible experimental approach in order to understand this striking effect might be the study of pyridine aggregation for small clusters. By embedding the clusters in helium nanodroplets the aggregates can be stabilized and studied by means of Infrared Depletion Spectroscopy. Pyridine oligomers were investigated in the C-H asymmetric vibration region (2980-3100 cm-1) using this experimental technique. The number of molecules for the clusters responsibles for each band were determined by means of pick-up curves as well as mass sensitive depletion spectra. Furthermore, the intensity dependence of the different bands on applying a dc electric field was studied. The assignment of the different structures for pyridine clusters on the basis of these measurements were also carried out. S. Crawford et al., Angew. Chem. Int. Ed., 48, 755 (2009).

  18. Photoionization rates for helium: update

    CERN Document Server

    Sokół, Justyna M

    2014-01-01

    The NIS He gas has been observed at a few AU to the Sun almost from the beginning of the space age. To model its flow an estimate of the loss rates due to ionization by solar extreme-ultraviolet (EUV) flux is needed. The EUV irradiance has been measured directly from mid 1990-ties, but with high temporal and spectral resolution only from 2002. Beforehand only EUV proxies are available. A new method of reconstruction of the Carrington rotation averaged photoionization rates for neutral interstellar helium (NIS He) in the ecliptic at 1 AU to the Sun before 2002 is presented. We investigate the relation between the solar rotation averaged time series of the ionization rates for NIS He at 1 AU derived from TIMED measurements of EUV irradiance and the solar 10.7 cm flux (F10.7) only. We perform a weighted iterative fit of a nonlinear model to data split into sectors. The obtained formula allows to reconstruct the solar rotation averages of photoionization rates for He between ~1947 and 2002 with an uncertainty ran...

  19. Helium and Neon in Comets

    Science.gov (United States)

    Jewitt, David

    1996-01-01

    Two comets were observed with EUVE in late 1994. Both comet Mueller and comet Borrelly are short-period comets having well established orbital elements and accurate ephemerides. Spectra of 40 ksec were taken of each. No evidence for emission lines from either Helium or Neon was detected. We calculated limits on the production rates of these atoms (relative to solar) assuming a standard isotropic outflow model, with a gas streaming speed of 1 km/s. The 3-sigma (99.7% confidence) limits (1/100,000 for He, 0.8 for Ne) are based on a conservative estimate of the noise in the EUVE spectra. They are also weakly dependent on the precise pointing and tracking of the EUVE field of view relative to the comet during the integrations. These limits are consistent with ice formation temperatures T greater than or equal to 30 K, as judged from the gas trapping experiments of Bar-Nun. For comparison, the solar abundances of these elements are He/O = 110, Ne/O = 1/16. Neither limit was as constraining as we had initially hoped, mainly because comets Mueller and Borrelly were intrinsically less active than anticipated.

  20. Simulation of alpha decay of actinides in iron phosphate glasses by ion irradiation

    Science.gov (United States)

    Dube, Charu L.; Stennett, Martin C.; Gandy, Amy S.; Hyatt, Neil C.

    2016-03-01

    A surrogate approach of ion beam irradiation is employed to simulate alpha decay of actinides in iron phosphate nuclear waste glasses. Bismuth and helium ions of different energies have been selected for simulating glass matrix modification owing to radiolysis and ballistic damage due to recoil atoms. Structural modification and change in coordination number of network former were probed by employing Reflectance Fourier-Transform Infrared (FT-IR), and Raman spectroscopies as a consequence of ion irradiation. Depolymerisation is observed in glass sample irradiated at intermediate energy of 2 MeV. Helium blisters of micron size are seen in glass sample irradiated at low helium ion energy of 30 keV.

  1. Anisotropic Contrast Optical Microscope

    CERN Document Server

    Peev, D; Kananizadeh, N; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-01-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. We demonstrate the anisotropic contrast optical microscope by mea...

  2. Femtosecond scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A.J.; Donati, G.P.; Rodriguez, G.; Gosnell, T.R.; Trugman, S.A.; Some, D.I.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). By combining scanning tunneling microscopy with ultrafast optical techniques we have developed a novel tool to probe phenomena on atomic time and length scales. We have built and characterized an ultrafast scanning tunneling microscope in terms of temporal resolution, sensitivity and dynamic range. Using a novel photoconductive low-temperature-grown GaAs tip, we have achieved a temporal resolution of 1.5 picoseconds and a spatial resolution of 10 nanometers. This scanning tunneling microscope has both cryogenic and ultra-high vacuum capabilities, enabling the study of a wide range of important scientific problems.

  3. Microscopic Halftone Image Segmentation

    Institute of Scientific and Technical Information of China (English)

    WANG Yong-gang; YANG Jie; DING Yong-sheng

    2004-01-01

    Microscopic halftone image recognition and analysis can provide quantitative evidence for printing quality control and fault diagnosis of printing devices, while halftone image segmentation is one of the significant steps during the procedure. Automatic segmentation on microscopic dots by the aid of the Fuzzy C-Means (FCM) method that takes account of the fuzziness of halftone image and utilizes its color information adequately is realized. Then some examples show the technique effective and simple with better performance of noise immunity than some usual methods. In addition, the segmentation results obtained by the FCM in different color spaces are compared, which indicates that the method using the FCM in the f1f2f3 color space is superior to the rest.

  4. Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1987-04-01

    A color laser microscope utilizing a new color laser imaging system has been developed for the visual inspection of semiconductors. The light source, produced by three lasers (Red; He-Ne, Green; Ar, Blue; He-Cd), is deflected horizontally by an AOD (Acoustic Optical Deflector) and vertically by a vibration mirror. The laser beam is focused in a small spot which is scanned over the sample at high speed. The light reflected back from the sample is reformed to contain linear information by returning to the original vibration mirror. The linear light is guided to the CCD image sensor where it is converted into a video signal. Individual CCD image sensors are used for each of the three R, G, or B color image signals. The confocal optical system with its laser light source yields a color TV monitor image with no flaring and a much sharper resolution than that of the conventional optical microscope. The AOD makes possible a high speed laser scan and a NTSC or PAL TV video signal is produced in real time without any video memory. Since the light source is composed of R, G, and B laser beams, color separation superior to that of white light illumination is achieved. Because of the photometric linearity of the image detector, the R, G, and B outputs of the system are most suitably used for hue analysis. The CCD linear image sensors in the optical system produce no geometrical distortion, and good color registration is available principally. The output signal can be used for high accuracy line width measuring. The many features of the color laser microscope make it ideally suited for the visual inspection of semiconductor processing. A number of these systems have already been installed in such a capacity. The Color Laser Microscope can also be a very useful tool for the fields of material engineering and biotechnology.

  5. Microscopic enteritis: Bucharest consensus.

    Science.gov (United States)

    Rostami, Kamran; Aldulaimi, David; Holmes, Geoffrey; Johnson, Matt W; Robert, Marie; Srivastava, Amitabh; Fléjou, Jean-François; Sanders, David S; Volta, Umberto; Derakhshan, Mohammad H; Going, James J; Becheanu, Gabriel; Catassi, Carlo; Danciu, Mihai; Materacki, Luke; Ghafarzadegan, Kamran; Ishaq, Sauid; Rostami-Nejad, Mohammad; Peña, A Salvador; Bassotti, Gabrio; Marsh, Michael N; Villanacci, Vincenzo

    2015-03-07

    Microscopic enteritis (ME) is an inflammatory condition of the small bowel that leads to gastrointestinal symptoms, nutrient and micronutrient deficiency. It is characterised by microscopic or sub-microscopic abnormalities such as microvillus changes and enterocytic alterations in the absence of definite macroscopic changes using standard modern endoscopy. This work recognises a need to characterize disorders with microscopic and submicroscopic features, currently regarded as functional or non-specific entities, to obtain further understanding of their clinical relevance. The consensus working party reviewed statements about the aetiology, diagnosis and symptoms associated with ME and proposes an algorithm for its investigation and treatment. Following the 5(th) International Course in Digestive Pathology in Bucharest in November 2012, an international group of 21 interested pathologists and gastroenterologists formed a working party with a view to formulating a consensus statement on ME. A five-step agreement scale (from strong agreement to strong disagreement) was used to score 21 statements, independently. There was strong agreement on all statements about ME histology (95%-100%). Statements concerning diagnosis achieved 85% to 100% agreement. A statement on the management of ME elicited agreement from the lowest rate (60%) up to 100%. The remaining two categories showed general agreement between experts on clinical presentation (75%-95%) and pathogenesis (80%-90%) of ME. There was strong agreement on the histological definition of ME. Weaker agreement on management indicates a need for further investigations, better definitions and clinical trials to produce quality guidelines for management. This ME consensus is a step toward greater recognition of a significant entity affecting symptomatic patients previously labelled as non-specific or functional enteropathy.

  6. Virtual pinhole confocal microscope

    Energy Technology Data Exchange (ETDEWEB)

    George, J.S.; Rector, D.M.; Ranken, D.M. [Los Alamos National Lab., NM (United States). Biophysics Group; Peterson, B. [SciLearn Inc. (United States); Kesteron, J. [VayTech Inc. (United States)

    1999-06-01

    Scanned confocal microscopes enhance imaging capabilities, providing improved contrast and image resolution in 3-D, but existing systems have significant technical shortcomings and are expensive. Researchers at Los Alamos National Laboratory have developed a novel approach--virtual pinhole confocal microscopy--that uses state of the art illumination, detection, and data processing technologies to produce an imager with a number of advantages: reduced cost, faster imaging, improved efficiency and sensitivity, improved reliability and much greater flexibility. Work at Los Alamos demonstrated proof of principle; prototype hardware and software have been used to demonstrate technical feasibility of several implementation strategies. The system uses high performance illumination, patterned in time and space. The authors have built functional confocal imagers using video display technologies (LCD or DLP) and novel scanner based on a micro-lens array. They have developed a prototype system for high performance data acquisition and processing, designed to support realtime confocal imaging. They have developed algorithms to reconstruct confocal images from a time series of spatially sub-sampled images; software development remains an area of active development. These advances allow the collection of high quality confocal images (in fluorescence, reflectance and transmission modes) with equipment that can inexpensively retrofit to existing microscopes. Planned future extensions to these technologies will significantly enhance capabilities for microscopic imaging in a variety of applications, including confocal endoscopy, and confocal spectral imaging.

  7. Thimble microscope system

    Science.gov (United States)

    Kamal, Tahseen; Rubinstein, Jaden; Watkins, Rachel; Cen, Zijian; Kong, Gary; Lee, W. M.

    2016-12-01

    Wearable computing devices, e.g. Google Glass, Smart watch, embodies the new human design frontier, where technology interfaces seamlessly with human gestures. During examination of any subject in the field (clinic, surgery, agriculture, field survey, water collection), our sensory peripherals (touch and vision) often go hand-in-hand. The sensitivity and maneuverability of the human fingers are guided with tight distribution of biological nerve cells, which perform fine motor manipulation over a range of complex surfaces that is often out of sight. Our sight (or naked vision), on the other hand, is generally restricted to line of sight that is ill-suited to view around corner. Hence, conventional imaging methods are often resort to complex light guide designs (periscope, endoscopes etc) to navigate over obstructed surfaces. Using modular design strategies, we constructed a prototype miniature microscope system that is incorporated onto a wearable fixture (thimble). This unique platform allows users to maneuver around a sample and take high resolution microscopic images. In this paper, we provide an exposition of methods to achieve a thimble microscopy; microscope lens fabrication, thimble design, integration of miniature camera and liquid crystal display.

  8. Identification of Fragile Microscopic Structures during Mineral Transformations in Wet Supercritical CO2

    Energy Technology Data Exchange (ETDEWEB)

    Arey, Bruce W.; Kovarik, Libor; Qafoku, Odeta; Wang, Zheming; Hess, Nancy J.; Felmy, Andrew R.

    2013-04-01

    In this study we examine the nature of highly fragile reaction products that form in low water content super critical carbon dioxide (scCO2) using a combination of scanning electron microscopy/focus ion beam (SEM/FIB), confocal Raman spectroscopy, helium ion microscopy (HeIM), and transmission electron microscopy (TEM). HeIM images show these precipitates to be fragile rosettes that can readily decompose even under slight heating from an electron beam. Using the TEM revealed details on the interfacial structure between the newly formed surface precipitates and the underlying initial solid phases. The detailed microscopic analysis revealed that the growth of the precipitates either followed a tip growth mechanism with precipitates forming directly on the forsterite surface if the initial solid was non-porous (natural forsterite) or growth from the surface of the precipitates where fluid was conducted through the porous (nanoforsterite) agglomerates to the growth center. The mechanism of formation of the hydrated/hydroxylated magnesium carbonate compound (HHMC) phases offers insight into the possible mechanisms of carbonate mineral formation from scCO2 solutions which has recently received a great deal of attention as the result of the potential for CO2 to act as an atmospheric greenhouse gas and impact overall global warming. The techniques used here to examine these fragile structures an also be used to examine a wide range of fragile material surfaces. SEM and FIB technologies have now been brought together in a single instrument, which represents a powerful combination for the studies in biological, geological and materials science.

  9. Characterization of a cryogenic ion guide at IGISOL

    NARCIS (Netherlands)

    Saastamoinen, A.; Moore, I. D.; Ranjan, M.; Dendooven, P.; Penttila, H.; Perajarvi, K.; Popov, A.; Aysto, J.

    2012-01-01

    A small volume cryogenic ion guide has been characterized at the IGISOL facility, Jyvaskyla, as a prototype to verify whether there are any major obstacles to the use of high-density cryogenic helium gas for the stopping and extraction of high-energy ions from a large volume cryogenic ion catcher.

  10. Characterization of a cryogenic ion guide at IGISOL

    NARCIS (Netherlands)

    Saastamoinen, A.; Moore, I. D.; Ranjan, M.; Dendooven, P.; Penttila, H.; Perajarvi, K.; Popov, A.; Aysto, J.

    2012-01-01

    A small volume cryogenic ion guide has been characterized at the IGISOL facility, Jyvaskyla, as a prototype to verify whether there are any major obstacles to the use of high-density cryogenic helium gas for the stopping and extraction of high-energy ions from a large volume cryogenic ion catcher. T

  11. Hydrogen isotope accumulation in the helium implantation zone in tungsten

    Science.gov (United States)

    Markelj, S.; Schwarz-Selinger, T.; Založnik, A.

    2017-06-01

    The influence of helium (He) on deuterium (D) transport and retention was studied experimentally in tungsten (W). Helium was implanted 1 µm deep into W to a maximum calculated concentration of 3.4 at.%. To minimize the influence of displacement damage created during the He implantation on D retention, so-called self-damaged W was used. W was damaged by 20 MeV W ion bombardment and defects were populated by low-temperature D plasma at room temperature before He implantation. Deuterium depth profiling was performed in situ during isochronal annealing in the temperature range from 300 K to 800 K. It is shown for the first time unambiguously that He attracts D and locally increases D trapping. Deuterium retention increased by a factor of two as compared to a non-He implanted W reference after sample annealing at 450 K. Rate equation modelling can explain the measured D depth profiles quantitatively when keeping the de-trapping parameters unchanged but only increasing the number of traps in the He zone. This bolsters the confidence in the theoretical calculations predicting that more hydrogen isotopes can be stored around a He cluster zone.

  12. Partial cross sections of helium satellites at medium photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Wehlitz, R.; Sellin, I.A. [Univ. of Tennessee, Knoxville, TN (United States); Hemmers, O. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    Still of current interest is the important role of single ionization with excitation compared to single ionization alone. The coupling between the electrons and the incoming photon is a single-particle operator. Thus, an excitation in addition to an ionization, leading to a so-called satellite line in a photoelectron spectrum, is entirely due to electron-electron interaction and probes the electron correlation in the ground and final state. Therefore the authors have undertaken the study of the intensity of helium satellites He{sup +}nl (n = 2 - 6) relative to the main photoline (n = 1) as a function of photon energy at photon energies well above threshold up to 900 eV. From these results they could calculate the partial cross-sections of the helium satellites. In order to test the consistency of their satellite-to-1s ratios with published double-to-single photoionization ratios, the authors calculated the double-to-single photoionization ratio from their measured ratios using the theoretical energy-distribution curves of Chang and Poe and Le Rouzo and Dal Cappello which proved to be valid for photon energies below 120 eV. These calculated double-to-single ionization ratios agree fairly well with recent ion measurements. In the lower photon energy range the authors ratios agree better with the ratios of Doerner et al. while for higher photon energies the agreement is better with the values of Levin et al.

  13. Solid helium, a superfluid?; L'helium solide, un superfluide?

    Energy Technology Data Exchange (ETDEWEB)

    Balibar, S. [Centre National de la Recherche Scientifique (CNRS), Lab. de Physique Statistique de l' Ecole Normale Superieure, 75 - Paris (France)

    2007-06-15

    At very low temperature, liquid helium becomes superfluid, meaning that it can flow practically without any friction. But what about solid helium? A recent experiment carried out at the Ecole Normale Superieure of Paris (France) has given amazing results: in some conditions some matter can flow through helium without friction. This article makes a synthesis of the experiments carried out on solid helium since the end of the 1960's and which have tried to explain this 'super-solidity' effect. The recent results indicate that the super-solidity of solid helium is linked to its disorder and probably localized at the grain joints, but is not a fundamental property of its crystalline state. (J.S.)

  14. Digging gold: keV He+ ion interaction with Au

    Directory of Open Access Journals (Sweden)

    Vasilisa Veligura

    2013-07-01

    Full Text Available Helium ion microscopy (HIM was used to investigate the interaction of a focused He+ ion beam with energies of several tens of kiloelectronvolts with metals. HIM is usually applied for the visualization of materials with extreme surface sensitivity and resolution. However, the use of high ion fluences can lead to significant sample modifications. We have characterized the changes caused by a focused He+ ion beam at normal incidence to the Au{111} surface as a function of ion fluence and energy. Under the influence of the beam a periodic surface nanopattern develops. The periodicity of the pattern shows a power-law dependence on the ion fluence. Simultaneously, helium implantation occurs. Depending on the fluence and primary energy, porous nanostructures or large blisters form on the sample surface. The growth of the helium bubbles responsible for this effect is discussed.

  15. Mechanical properties of neutron-irradiated nickel-containing martensitic steels: II. Review and analysis of helium-effects studies

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge National Laboratory, Metals and Ceramics Division, Building 4500S, P.O. Box 2008, MS 6151, Oak Ridge, TN 37831-6151 (United States)]. E-mail: kluehrl@ornl.gov; Hashimoto, N. [Oak Ridge National Laboratory, Metals and Ceramics Division, Building 4500S, P.O. Box 2008, MS 6151, Oak Ridge, TN 37831-6151 (United States); Sokolov, M.A. [Oak Ridge National Laboratory, Metals and Ceramics Division, Building 4500S, P.O. Box 2008, MS 6151, Oak Ridge, TN 37831-6151 (United States); Maziasz, P.J. [Oak Ridge National Laboratory, Metals and Ceramics Division, Building 4500S, P.O. Box 2008, MS 6151, Oak Ridge, TN 37831-6151 (United States); Shiba, K. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Tokai, Ibaraki 319-1195 (Japan); Jitsukawa, S. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Tokai, Ibaraki 319-1195 (Japan)

    2006-10-15

    In part I of this helium-effects study on ferritic/martensitic steels, results were presented on tensile and Charpy impact properties of 9Cr-1MoVNb (modified 9Cr-1Mo) and 12Cr-1MoVW (Sandvik HT9) steels and these steels containing 2% Ni after irradiation in the High Flux Isotope Reactor (HFIR) to 10-12 dpa at 300 and 400 deg. C and in the Fast Flux Test Facility (FFTF) to 15 dpa at 393 deg. C. The results indicated that helium caused an increment of hardening above irradiation hardening produced in the absence of helium. In addition to helium-effects studies on ferritic/martensitic steels using nickel doping, studies have also been conducted over the years using boron doping, ion implantation, and spallation neutron sources. In these previous investigations, observations of hardening and embrittlement were made that were attributed to helium. In this paper, the new results and those from previous helium-effects studies are reviewed and analyzed.

  16. Full Scale Thermo-hydraulic Simulation of a Helium-Helium Printed Circuit Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Injun; Hong, Sungyull; Bai, Cheolho; Shim, Jaesool [Yeungnam Univ., Gyeongsan (Korea, Republic of); Kim, Chansoo; Hong, Sungdeok; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, the thermo-hydraulic full scale simulation is performed to study the temperature distributions, thermal stress, pressure drop and outlet temperature in a Helium-Helium printed circuit heat exchanger (PCHE) in a VHTR simulate helium loop. The entire PCHE is composed of 40 stacks of rectangular shaped micro-channels for helium gas [type A] (inlet temperature, 400 .deg. C) and 40 stacks of semi-ellipse shaped micro-channels for helium [type B] (inlet temperature, 300 .deg. C). The experimental result is compared to that of computer simulation, COMSOL multi-physics software. The Helium-Helium PCHE is considered a prototype of the newly developed PCHE by Korea Atomic Energy Research Institute (KAERI). The full scale thermo-hydraulic simulation was successfully performed to obtain temperature distribution, pressure drop and thermal stress in 40 sets of flow channel stacks in a helium-helium printed circuit heat exchanger in a VHTR simulate helium loop. We obtained a quite similar temperature distribution with the 3D measured infrared temperature distribution. To our knowledge, this is the first full scale numerical study on the PCHE, which considers all microchannels, that the convection effect on the outside surfaces of the PCHE is applied. The very high-temperature reactor (VHTR) or high-temperature gas-cooled reactor(HTGR) is a fourth-generation nuclear power reactor that uses the ceramic coated fuel, TRISO, in which the fission gas does not leak even at temperatures higher than 1600 .deg. C. The VHTR necessarily requires an intermediate loop composed of a hot gas duct (HGD), an intermediate heat exchanger (IHX) and a process heat exchanger (PHE). The IHX is one of the important components of VHTR system because the IHX transfers the 950 .deg. C of high temperature massive heat to a hydrogen production plant or power conversion unit at high system pressure.

  17. Ultra-precise holographic beam shaping for microscopic quantum control

    OpenAIRE

    Zupancic, Philip; Preiss, Philipp M.; Ma, Ruichao; Lukin, Alexander; Tai, M. Eric; Rispoli, Matthew; Islam, Rajibul; Greiner, Markus

    2016-01-01

    High-resolution addressing of individual ultracold atoms, trapped ions or solid state emitters allows for exquisite control in quantum optics experiments. This becomes possible through large aperture magnifying optics that project microscopic light patterns with diffraction limited performance. We use programmable amplitude holograms generated on a digital micromirror device to create arbitrary microscopic beam shapes with full phase and amplitude control. The system self-corrects for aberrat...

  18. Model for describing non-equilibrium helium plasma energy level population

    Science.gov (United States)

    Kavyrshin, D. I.; Chinnov, V. F.; Ageev, A. G.

    2015-11-01

    A new method for calculating the population of excited levels of helium atoms and ions is suggested. The method is based on direct solution of a system of balance equations for all energy levels for which it was possible to obtain process speed constants. The equations include terms for the processes of particle loss and income by excitation and deexcitation, ionization and recombination as well as losses due to diffusion and radiation. The challenge of solution of such large system is also discussed.

  19. [Effects of helium-neon laser on physico-chemical properties of the bile].

    Science.gov (United States)

    Mansurov, Kh Kh; Dzhuraev, Kh Sh; Barakaev, S B; Kharina, T P; Pulatov, L I

    1990-08-01

    The influence of helium-neon laser radiation on bile physico-chemical characteristics in healthy subjects and in patients with the physico-chemical stage of gallstone disease was studied in vitro. This type of laser was found to induce positive therapeutic effects, such as: correction of hydrogen ion concentrations, surface tension and viscosity decrease and prolonged bile nucleation in patients with gallstone disease.

  20. Thermal Performance of the XRS Helium Insert

    Science.gov (United States)

    Breon, Susan R.; DiPirro, Michael J.; Tuttle, James G.; Shirron, Peter J.; Warner, Brent A.; Boyle, Robert F.; Canavan, Edgar R.

    1999-01-01

    The X-Ray Spectrometer (XRS) is an instrument on the Japanese Astro-E satellite, scheduled for launch early in the year 2000. The XRS Helium Insert comprises a superfluid helium cryostat, an Adiabatic Demagnetization Refrigerator (ADR), and the XRS calorimeters with their cold electronics. The calorimeters are capable of detecting X-rays over the energy range 0.1 to 10 keV with a resolution of 12 eV. The Helium Insert completed its performance and verification testing at Goddard in January 1999. It was shipped to Japan, where it has been integrated with the neon dewar built by Sumitomo Heavy Industries. The Helium Insert was given a challenging lifetime requirement of 2.0 years with a goal of 2.5 years. Based on the results of the thermal performance tests, the predicted on-orbit lifetime is 2.6 years with a margin of 30%. This is the result of both higher efficiency in the ADR cycle and the low temperature top-off, more than compensating for an increase in the parasitic heat load. This paper presents a summary of the key design features and the results of the thermal testing of the XRS Helium Insert.

  1. Helium release from radioisotope heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.E.; Early, J.W.; Starzynski, J.S.; Land, C.C.

    1984-05-01

    Diffusion of helium in /sup 238/PuO/sub 2/ fuel was characterized as a function of the heating rate and the fuel microstructure. The samples were thermally ramped in an induction furnace and the helium release rates measured with an automated mass spectrometer. The diffusion constants and activation energies were obtained from the data using a simple diffusion model. The release rates of helium were correlated with the fuel microstructure by metallographic examination of fuel samples. The release mechanism consists of four regimes, which are dependent upon the temperature. Initially, the release is controlled by movement of point defects combined with trapping along grain boundaries. This regime is followed by a process dominated by formation and growth of helium bubbles along grain boundaries. The third regime involves volume diffusion controlled by movement of oxygen vacancies. Finally, the release at the highest temperatures follows the diffusion rate of intragranular bubbles. The tendency for helium to be trapped within the grain boundaries diminishes with small grain sizes, slow thermal pulses, and older fuel.

  2. Hydrodynamic simulations of the core helium flash

    CERN Document Server

    Mocak, M; Weiss, A; Kifonidis, K; 10.1017/S1743921308022813

    2009-01-01

    We describe and discuss hydrodynamic simulations of the core helium flash using an initial model of a 1.25 M_sol star with a metallicity of 0.02 near at its peak. Past research concerned with the dynamics of the core helium flash is inconclusive. Its results range from a confirmation of the standard picture, where the star remains in hydrostatic equilibrium during the flash (Deupree 1996), to a disruption or a significant mass loss of the star (Edwards 1969; Cole & Deupree 1980). However, the most recent multidimensional hydrodynamic study (Dearborn 2006) suggests a quiescent behavior of the core helium flash and seems to rule out an explosive scenario. Here we present partial results of a new comprehensive study of the core helium flash, which seem to confirm this qualitative behavior and give a better insight into operation of the convection zone powered by helium burning during the flash. The hydrodynamic evolution is followed on a computational grid in spherical coordinates using our new version of th...

  3. SIMS as a new methodology to depth profile helium in as-implanted and annealed pure bcc metals?

    Science.gov (United States)

    Gorondy-Novak, S.; Jomard, F.; Prima, F.; Lefaix-Jeuland, H.

    2017-05-01

    Reliable He profiles are highly desirable for better understanding helium behavior in materials for future nuclear applications. Recently, Secondary Ions Mass Spectrometry (SIMS) allowed the characterization of helium distribution in as-implanted metallic systems. The Cs+ primary ion beam coupled with CsHe+ molecular detector appeared to be a promising technique which overcomes the very high He ionization potential. In this study, 4He depth profiles in pure body centered cubic (bcc) metals (V, Fe, Ta, Nb and Mo) as-implanted and annealed, were obtained by SIMS. All as-implanted samples exhibited a projected range of around 200 nm, in agreement with SRIM theoretical calculations. After annealing treatment, SIMS measurements evidenced the evolution of helium depth profile with temperature. The latter SIMS results were compared to the helium bubble distribution obtained by Transmission Electron Microscopy (TEM). This study confirmed the great potential of this experimental procedure as a He-depth profiling technique in bcc metals. Indeed, the methodology described in this work could be extended to other materials including metallic and non-metallic compounds. Nevertheless, the quantification of helium concentration after annealing treatment by SIMS remains uncertain probably due to the non-uniform ionization efficiency in samples containing large bubbles.

  4. SIMS as a new methodology to depth profile helium in as-implanted and annealed pure bcc metals?

    Energy Technology Data Exchange (ETDEWEB)

    Gorondy-Novak, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Jomard, F. [Groupe d' Etude de la Matière Condensée, CNRS, UVSQ, 45 avenue des Etats-Unis, 78035 Versailles cedex (France); Prima, F. [PSL Research University, Chimie ParisTech – CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Lefaix-Jeuland, H., E-mail: helene.lefaix@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France)

    2017-05-01

    Reliable He profiles are highly desirable for better understanding helium behavior in materials for future nuclear applications. Recently, Secondary Ions Mass Spectrometry (SIMS) allowed the characterization of helium distribution in as-implanted metallic systems. The Cs{sup +} primary ion beam coupled with CsHe{sup +} molecular detector appeared to be a promising technique which overcomes the very high He ionization potential. In this study, {sup 4}He depth profiles in pure body centered cubic (bcc) metals (V, Fe, Ta, Nb and Mo) as-implanted and annealed, were obtained by SIMS. All as-implanted samples exhibited a projected range of around 200 nm, in agreement with SRIM theoretical calculations. After annealing treatment, SIMS measurements evidenced the evolution of helium depth profile with temperature. The latter SIMS results were compared to the helium bubble distribution obtained by Transmission Electron Microscopy (TEM). This study confirmed the great potential of this experimental procedure as a He-depth profiling technique in bcc metals. Indeed, the methodology described in this work could be extended to other materials including metallic and non-metallic compounds. Nevertheless, the quantification of helium concentration after annealing treatment by SIMS remains uncertain probably due to the non-uniform ionization efficiency in samples containing large bubbles.

  5. A simple design for a helium scattering apparatus

    Science.gov (United States)

    Maier, F.; Kneitz, S.; Koschel, H.; Steinrück, H.-P.

    1997-04-01

    We have designed a simple helium scattering apparatus for gas-surface scattering experiments. The effusive source is a glass multicapillary array, operated at large Knudsen numbers which produces a highly collimated thermal He beam (FWHM ≈ 3°) with a Maxwellian velocity distribution. The detector is a Bayard Alpert ionization gauge, mounted in a tube that is separated from the main UHV chamber via a second multicapillary array. This setup allows one to select only those He atoms that are reflected by the sample in the specular direction and thus to measure the reflectivity of the surface. Examples of its performance are presented for the adsorption of CO on Ru(001), and for thermal annealing of a Ru(001) surface sputtered with argon ions at different energies.

  6. Global model including multistep ionizations in helium plasmas

    Science.gov (United States)

    Oh, Seung-Ju; Lee, Hyo-Chang; Chung, Chin-Wook

    2016-12-01

    Particle and power balance equations including stepwise ionizations are derived and solved in helium plasmas. In the balance equations, two metastable states (21S1 in singlet and 23S1 triplet) are considered and the followings are obtained. The plasma density linearly increases and the electron temperature is relatively in a constant value against the absorbed power. It is also found that the contribution to multi-step ionization with respect to the single-step ionization is in the range of 8%-23%, as the gas pressure increases from 10 mTorr to 100 mTorr. Compared to the results in the argon plasma, there is little variation in the collisional energy loss per electron-ion pair created (ɛc) with absorbed power and gas pressure due to the small collision cross section and higher inelastic collision threshold energy.

  7. Light ion irradiation for unfavorable soft tissue sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Linstadt, D.; Castro, J.R.; Phillips, T.L.; Petti, P.L.; Collier, J.M.; Daftari, I.; Schoethaler, R.; Rayner, A.

    1990-09-01

    Between 1978 and 1989, 32 patients with unfavorable soft tissue sarcoma underwent light ion (helium, neon) irradiation with curative intent at Lawrence Berkeley Laboratory. The tumors were located in the trunk in 22 patients and head and neck in 10. Macroscopic tumor was present in 22 at the time of irradiation. Two patients had tumors apparently induced by previous therapeutic irradiation. Follow-up times for surviving patients ranged from 4 to 121 months (median 27 months). The overall 3-year actuarial local control rate was 62%; the corresponding survival rate was 50%. The 3-year actuarial control rate for patients irradiated with macroscopic tumors was 48%, while none of the patients with microscopic disease developed local recurrence (100%). The corresponding 3-year actuarial survival rates were 40% (macroscopic) and 78% (microscopic). Patients with retroperitoneal sarcoma did notably well; the local control rate and survival rate were 64% and 62%, respectively. Complications were acceptable; there were no radiation related deaths, while two patients (6%) required operations to correct significant radiation-related injuries. These results appear promising compared to those achieved by low -LET irradiation, and suggest that this technique merits further investigation.

  8. Development of a high vacuum sample preparation system for helium mass spectrometer

    Science.gov (United States)

    Kumar, P.; Das, N. K.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    A high vacuum sample preparation system for the 3He/4He ratio mass spectrometer (Helix SFT) has been developed to remove all the gaseous constituents excluding helium from the field gases. The sample preparation system comprises of turbo molecular pump, ion pump, zirconium getter, pipettes and vacuum gauges with controller. All these are fitted with cylindrical SS chamber using all metal valves. The field samples are initially treated with activated charcoal trap immersed in liquid nitrogen to cutoff major impurities and moisture present in the sample gas. A sample of 5 ml is collected out of this stage at a pressure of 10-2 mbar. This sample is subsequently purified at a reduced pressure of 10-7 mbar before it is injected into the ion source of the mass spectrometer. The sample pressure was maintained below 10-7 mbar with turbo molecular vacuum pumps and ion pumps. The sample gas passes through several getter elements and a cold finger with the help of manual high vacuum valves before it is fed to the mass spectrometer. Thus the high vacuum sample preparation system introduces completely clean, dry and refined helium sample to the mass spectrometer for best possible analysis of isotopic ratio of helium.

  9. Nanosecond electron microscopes

    Science.gov (United States)

    Bostanjoglo; Elschner; Mao; Nink; Weingartner

    2000-04-01

    Combining electron optics, fast electronics and pulsed lasers, a transmission and a photoelectron emission microscope were built, which visualize events in thin films and on surfaces with a time resolution of several nanoseconds. The high-speed electron microscopy is capable to track fast laser-induced processes in metals below the ablation threshold, which are difficult to detect by other imaging techniques. The material response to nano- and femtosecond laser pulses was found to be very different. It was dominated by thermo/chemocapillary flow and chemical reactions in the case of nanosecond pulses, and by mechanical deformations and non-thermal electron emission after a femtosecond pulse.

  10. Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  11. Krypton and helium irradiation damage in neodymium-zirconolite

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, M., E-mail: m.gilbert@imperial.ac.uk [Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Davoisne, C. [Laboratoire de Reactivite et Chimie des Solides, CNRS-UMR 6007, Universite de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens (France); Stennett, M.; Hyatt, N. [Immobilisation Science Laboratory, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom); Peng, N.; Jeynes, C. [Surrey Ion Beam Centre, Nodus Laboratory, University of Surrey, Guildford, GU2 7XH Surrey (United Kingdom); Lee, W.E. [Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2011-09-01

    A leading candidate for the immobilisation of actinides, zirconolite's suitability as a potential ceramic host for plutonium disposition, both in storage and geological disposal, has been the subject of much research. One key aim of this study is to understand the effects of radiation damage and noble gas accommodation within the zirconolite material. To this end, a series of ex situ irradiations have been performed on polycrystalline (Ca{sub 0.8}Nd{sub 0.2})Zr(Ti{sub 1.8}Al{sub 0.2})O{sub 7} zirconolite samples. Zirconolite samples, doped with Nd{sup 3+} (as a Pu surrogate) on the Ca-site and charge-balanced by substituting Al{sup 3+} onto the Ti-site, were irradiated with {sup 36}Kr{sup +} (2 MeV) ions at fluences of 1 x 10{sup 14} and 5 x 10{sup 15} cm{sup -2} and {sup 4}He{sup +} (200 keV) ions at fluences of 1 x 10{sup 14}, 5 x 10{sup 15} and 1 x 10{sup 17} cm{sup -2} to simulate the impact of alpha decay on the microstructure. Microstructural analysis revealed no damage present at the lower Kr{sup +} fluence, but that the higher {sup 36}Kr{sup +} fluence rendered the zirconolite completely amorphous. Similarly, evidence of helium accumulation was only seen at the highest {sup 4}He{sup +} fluence (1 x 10{sup 17} cm{sup -2}). Monte Carlo simulations using the TRIM code predict the highest concentration of helium accumulating at a depth of 720 nm, in good agreement with the experimental observations.

  12. The Lamb-shift experiment in Muonic helium

    Energy Technology Data Exchange (ETDEWEB)

    Nebel, T., E-mail: tbn@mpq.mpg.de [Max-Planck-Institut fuer Quantenoptik (Germany); Amaro, F. D. [Universidade de Coimbra, Departamento de Fisica (Portugal); Antognini, A. [Eidgenoessische Technische Hochschule Zuerich, Institut fuer Teilchenphysik (Switzerland); Biraben, F. [CNRS and Universite P. et M. Curie, Laboratoire Kastler Brossel, Ecole Normale Superieure (France); Cardoso, J. M. R. [Universidade de Coimbra, Departamento de Fisica (Portugal); Covita, D. S. [Universidade de Aveiro, I3N, Departamento de Fisica (Portugal); Dax, A. [University of Tokyo, Department of Physics (Japan); Fernandes, L. M. P.; Gouvea, A. L. [Universidade de Coimbra, Departamento de Fisica (Portugal); Graf, T. [Universitaet Stuttgart, Institut fuer Strahlwerkzeuge (Germany); Haensch, T. W. [Max-Planck-Institut fuer Quantenoptik (Germany); Hildebrandt, M. [Paul Scherrer Institut (Switzerland); Indelicato, P.; Julien, L. [CNRS and Universite P. et M. Curie, Laboratoire Kastler Brossel, Ecole Normale Superieure (France); Kirch, K.; Kottmann, F. [Eidgenoessische Technische Hochschule Zuerich, Institut fuer Teilchenphysik (Switzerland); Liu, Y.-W. [National Tsing Hua University, Physics Department (China); Monteiro, C. M. B. [Universidade de Coimbra, Departamento de Fisica (Portugal); and others

    2012-12-15

    We propose to measure several transition frequencies between the 2S and the 2P states (Lamb shift) in muonic helium ions ({mu}{sup 4}He{sup + } and {mu}{sup 3}He{sup + }) by means of laser spectroscopy, in order to determine the alpha-particle and helion root-mean-square (rms) charge radius. In addition, the fine and hyperfine structure components will be revealed, and the magnetic moment distribution radius will be determined. The contribution of the finite size effect to the Lamb shift (2S - 2P energy difference) in {mu}He{sup + } is as high as 20 %. Therefore a measurement of the transition frequencies with a moderate (for laser spectroscopy) precision of 50 ppm (corresponding to 1/20 of the linewidth) will lead to a determination of the nuclear rms charge radii with a relative accuracy of 3 Multiplication-Sign 10{sup - 4} (equivalent to 0.0005 fm). The limiting factor for the extraction of the radii from the Lamb shift measurements is given by the uncertainty of the nuclear polarizability contribution. Combined with an ongoing experiment at MPQ aiming to measure the 1S - 2S transition frequency in the helium ion, the Lamb shift measurement in {mu}He{sup + } will lead to a sensitive test of problematic and challenging bound-state QED terms. This measurement will also help to clarify the discrepancy found in our previous {mu}{sub p} experiment. Additionally, a precise knowledge of the absolute nuclear radii of the He isotopes and the hyperfine splitting of {mu}{sup 3}He{sup + } provide a relevant test of few-nucleon theories.

  13. Feasibility of lunar Helium-3 mining

    Science.gov (United States)

    Kleinschneider, Andreas; Van Overstraeten, Dmitry; Van der Reijnst, Roy; Van Hoorn, Niels; Lamers, Marvin; Hubert, Laurent; Dijk, Bert; Blangé, Joey; Hogeveen, Joel; De Boer, Lennaert; Noomen, Ron

    With fossil fuels running out and global energy demand increasing, the need for alternative energy sources is apparent. Nuclear fusion using Helium-3 may be a solution. Helium-3 is a rare isotope on Earth, but it is abundant on the Moon. Throughout the space community lunar Helium-3 is often cited as a major reason to return to the Moon. Despite the potential of lunar Helium-3 mining, little research has been conducted on a full end-to-end mission. This abstract presents the results of a feasibility study conducted by students from Delft University of Technology. The goal of the study was to assess whether a continuous end-to-end mission to mine Helium-3 on the Moon and return it to Earth is a viable option for the future energy market. The set requirements for the representative end-to-end mission were to provide 10% of the global energy demand in the year 2040. The mission elements have been selected with multiple trade-offs among both conservative and novel concepts. A mission architecture with multiple decoupled elements for each transportation segment (LEO, transfer, lunar surface) was found to be the best option. It was found that the most critical element is the lunar mining operation itself. To supply 10% of the global energy demand in 2040, 200 tons of Helium-3 would be required per year. The resulting regolith mining rate would be 630 tons per second, based on an optimistic concentration of 20 ppb Helium-3 in lunar regolith. Between 1,700 to 2,000 Helium-3 mining vehicles would be required, if using University of Wisconsin’s Mark III miner. The required heating power, if mining both day and night, would add up to 39 GW. The resulting power system mass for the lunar operations would be in the order of 60,000 to 200,000 tons. A fleet of three lunar ascent/descent vehicles and 22 continuous-thrust vehicles for orbit transfer would be required. The costs of the mission elements have been spread out over expected lifetimes. The resulting profits from Helium

  14. Primary neutral helium in the heliosphere

    CERN Document Server

    Mueller, Hans-Reinhard

    2012-01-01

    Two years of neutral measurements by IBEX-Lo have yielded several direct observations of interstellar neutral helium and oxygen during preferred viewing seasons. Besides the interstellar signal, there are indications of the presence of secondary neutral helium and oxygen created in the heliosphere. Detailed modeling of these particle species is necessary to connect the measured fluxes to the pristine local interstellar medium while accounting for loss and production of neutral particles during their path through the heliosphere. In this contribution, global heliosphere models are coupled to analytic calculations of neutral trajectories to obtain detailed estimates of the neutral distribution function of primary interstellar helium atoms in the heliosphere, in particular in the inner heliosphere.

  15. The muonic helium lamb shift experiment

    Energy Technology Data Exchange (ETDEWEB)

    Goetzfried, Johannes; Krauth, Julian [Max-Planck-Institute of Quantum Optics, Garching (Germany); Collaboration: CREMA collaboration

    2014-07-01

    Because of its high sensitivity on finite size effects of the nucleus, the measurement of the Lamb shift in exotic atoms has been on the wish-list of atomic and nuclear physics for a long time. Our previous experiment allowed to determine the proton radius with an order of magnitude higher precision compared to spectroscopic measurements of ordinary hydrogen. The successor experiment in muonic helium is currently performed at the Paul-Scherrer-Institute in Switzerland. Using a low energy muon beam line muons are stopped within low pressure helium gas, where exotic atoms are created. Here we measure the 2S-2P transition frequency of muonic helium illuminated by a pulsed TiSa-laser system pumped with a newly developed Yb-YAG thin disk laser. This measurement will ultimately improve the values of the charge radii of {sup 3}He{sup +} and {sup 4}He{sup +} by an order of magnitude.

  16. Helium corona-assisted air discharge

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Nan; Gao Lei; Ji Ailing; Cao Zexian [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-10-15

    Operation of atmospheric discharge of electronegative gases including air at low voltages yet without consuming any inert gas will enormously promote the application of non-thermal plasmas. By taking advantage of the low onset voltage for helium corona, air discharge was successfully launched at much reduced voltages with a needle-plate system partly contained in a helium-filled glass bulb--for a needle-plate distance of 12 mm, 1.0 kV suffices. Ultraviolet emission from helium corona facilitates the discharging of air, and the discharge current manifests distinct features such as relatively broad Trichel pulses in both half periods. This design allows safe and economic implementation of atmospheric discharge of electronegative gases, which will find a broad palette of applications in surface modification, plasma medicine and gas treatment, etc.

  17. Superfluid helium-4 in one dimensional channel

    Science.gov (United States)

    Kim, Duk Y.; Banavar, Samhita; Chan, Moses H. W.; Hayes, John; Sazio, Pier

    2013-03-01

    Superfluidity, as superconductivity, cannot exist in a strict one-dimensional system. However, the experiments employing porous media showed that superfluid helium can flow through the pores of nanometer size. Here we report a study of the flow of liquid helium through a single hollow glass fiber of 4 cm in length with an open id of 150 nm between 1.6 and 2.3 K. We found the superfluid transition temperature was suppressed in the hollow cylinder and that there is no flow above the transition. Critical velocity at temperature below the transition temperature was determined. Our results bear some similarity to that found by Savard et. al. studying the flow of helium through a nanohole in a silicon nitrite membrane. Experimental study at Penn State is supported by NSF Grants No. DMR 1103159.

  18. Commissioning of the PRIOR proton microscope

    CERN Document Server

    Varentsov, D; Bakhmutova, A; Barnes, C W; Bogdanov, A; Danly, C R; Efimov, S; Endres, M; Fertman, A; Golubev, A A; Hoffmann, D H H; Ionita, B; Kantsyrev, A; Krasik, Ya E; Lang, P M; Lomonosov, I; Mariam, F G; Markov, N; Merrill, F E; Mintsev, V B; Nikolaev, D; Panyushkin, V; Rodionova, M; Schanz, M; Schoenberg, K; Semennikov, A; Shestov, L; Skachkov, V S; Turtikov, V; Udrea, S; Vasylyev, O; Weyrich, K; Wilde, C; Zubareva, A

    2015-01-01

    Recently a new high energy proton microscopy facility PRIOR (Proton Microscope for FAIR) has been designed, constructed and successfully commissioned at GSI Helmholtzzentrum f\\"ur Schwerionenforschung (Darmstadt, Germany). As a result of the experiments with 3.5-4.5 GeV proton beams delivered by the heavy ion synchrotron SIS-18 of GSI, 30 um spatial and 10 ns temporal resolutions of the proton microscope have been demostrated. A new pulsed power setup for studying properties of matter under extremes has been developed for the dynamic commissioning of the PRIOR facility. This paper describes the PRIOR setup as well as the results of the first static and dynamic proton radiography experiments performed at GSI.

  19. On the size and structure of helium snowballs formed around charged atoms and clusters of noble gases.

    Science.gov (United States)

    Bartl, Peter; Leidlmair, Christian; Denifl, Stephan; Scheier, Paul; Echt, Olof

    2014-09-18

    Helium nanodroplets doped with argon, krypton, or xenon are ionized by electrons and analyzed in a mass spectrometer. HenNgx(+) ions containing up to seven noble gas (Ng) atoms and dozens of helium atoms are identified; the high resolution of the mass spectrometer combined with advanced data analysis make it possible to unscramble contributions from isotopologues that have the same nominal mass but different numbers of helium or Ng atoms, such as the magic He20(84)Kr2(+) and the isobaric, nonmagic He41(84)Kr(+). Anomalies in these ion abundances reveal particularly stable ions; several intriguing patterns emerge. Perhaps most astounding are the results for HenAr(+), which show evidence for three distinct, solid-like solvation shells containing 12, 20, and 12 helium atoms. This observation runs counter to the common notion that only the first solvation shell is solid-like but agrees with calculations by Galli et al. for HenNa(+) [J. Phys. Chem. A 2011, 115, 7300] that reveal three shells of icosahedral symmetry. HenArx(+) (2 ≤ x ≤ 7) ions appear to be especially stable if they contain a total of n + x = 19 atoms. A sequence of anomalies in the abundance distribution of HenKrx(+) suggests that rings of six helium atoms are inserted into the solvation shell each time a krypton atom is added to the ionic core, from Kr(+) to Kr3(+). Previously reported strong anomalies at He12Kr2(+) and He12Kr3(+) [Kim , J. H.; et al. J. Chem. Phys. 2006, 124, 214301] are attributed to a contamination. Only minor local anomalies appear in the distributions of HenXex(+) (x ≤ 3). The distributions of HenKr(+) and HenXe(+) show strikingly similar, broad features that are absent from the distribution of HenAr(+); differences are tentatively ascribed to the very different fragmentation dynamics of these ions.

  20. Super-Maxwellian helium evaporation from pure and salty water.

    Science.gov (United States)

    Hahn, Christine; Kann, Zachary R; Faust, Jennifer A; Skinner, J L; Nathanson, Gilbert M

    2016-01-28

    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4-8.5 molal LiCl and LiBr at 232-252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the density profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He-water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He-water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.