WorldWideScience

Sample records for helium dilution refrigeration

  1. Helium dilution refrigerator

    International Nuclear Information System (INIS)

    1973-01-01

    A new system of continuous heat exchange for a helium dilution refrigerator is proposed. The 3 He effluent tube is concurrent with the affluent mixed helium tube in a vertical downward direction. Heat exchange efficiency is enhanced by placing in series a number of elements with an enlarged surface area

  2. HeREF-2003: Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 Cost per participant: 500.- CHF Language: Bilingual English...

  3. HeREF-2003 : Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. • Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 • Cost per participant: 500.- CHF ...

  4. Operating Manual of Helium Refrigerator (Rev. 2)

    Energy Technology Data Exchange (ETDEWEB)

    Song, K.M.; Son, S.H.; Kim, K.S.; Lee, S.K.; Kim, M.S. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    A helium refrigerator was installed as a supplier of 20K cold helium to the cryogenic distillation system of WTRF pilot plant. The operating procedures of the helium refrigerator, helium compressor and auxiliary apparatus are described for the safety and efficient operation in this manual. The function of the helium refrigerator is to remove the impurities from the compressed helium of about 250psig, to cool down the helium from ambient temperature to 20K through the heat exchanger and expansion engine and to transfer the cold helium to the cryogenic distillation system. For the smoothly operation of helium refrigerator, the preparation, the start-up, the cool-down and the shut-down of the helium refrigerator are described in this operating manual. (author). 3 refs., 14 tabs.

  5. A compact rotating dilution refrigerator

    Science.gov (United States)

    Fear, M. J.; Walmsley, P. M.; Chorlton, D. A.; Zmeev, D. E.; Gillott, S. J.; Sellers, M. C.; Richardson, P. P.; Agrawal, H.; Batey, G.; Golov, A. I.

    2013-10-01

    We describe the design and performance of a new rotating dilution refrigerator that will primarily be used for investigating the dynamics of quantized vortices in superfluid 4He. All equipment required to operate the refrigerator and perform experimental measurements is mounted on two synchronously driven, but mechanically decoupled, rotating carousels. The design allows for relative simplicity of operation and maintenance and occupies a minimal amount of space in the laboratory. Only two connections between the laboratory and rotating frames are required for the transmission of electrical power and helium gas recovery. Measurements on the stability of rotation show that rotation is smooth to around 10-3 rad s-1 up to angular velocities in excess of 2.5 rad s-1. The behavior of a high-Q mechanical resonator during rapid changes in rotation has also been investigated.

  6. Dilution Refrigeration of Multi-Ton Cold Masses

    CERN Document Server

    Wikus, P; CERN. Geneva

    2007-01-01

    Dilution refrigeration is the only means to provide continuous cooling at temperatures below 250 mK. Future experiments featuring multi-ton cold masses require a new generation of dilution refrigeration systems, capable of providing a heat sink below 10 mK at cooling powers which exceed the performance of present systems considerably. This thesis presents some advances towards dilution refrigeration of multi-ton masses in this temperature range. A new method using numerical simulation to predict the cooling power of a dilution refrigerator of a given design has been developed in the framework of this thesis project. This method does not only allow to take into account the differences between an actual and an ideal continuous heat exchanger, but also to quantify the impact of an additional heat load on an intermediate section of the dilute stream. In addition, transient behavior can be simulated. The numerical model has been experimentally verified with a dilution refrigeration system which has been designed, ...

  7. Rotary magnetic refrigerator for superfluid helium production

    International Nuclear Information System (INIS)

    Hakuraku, Y.; Ogata, H.

    1986-01-01

    A new rotary-magnetic refrigerator designed to obtain superfluid helium temperatures by executing a magnetic Carnot cycle is developed. A rotor containing 12 magnetic refrigerants (gadolinium-gallium-garnet) is immersed in liquid helium at 4.2 K and rotated at constant speed in a steady magnetic field distribution. Performance tests demonstrate that the new rotary refrigerator is capable of obtaining a temperature of 1.48 K. The maximum useful cooling power obtained at 1.8 K is 1.81 W which corresponds to a refrigeration efficiency of 34%

  8. Cryogen-free dilution refrigerators

    International Nuclear Information System (INIS)

    Uhlig, K

    2012-01-01

    We review briefly our first cryogen-free dilution refrigerator (CF-DR) which was precooled by a GM cryocooler. We then show how today's dry DRs with pulse tube precooling have developed. A few examples of commercial DRs are explained and noteworthy features pointed out. Thereby we describe the general advantages of cryogen-free DRs, but also show where improvements are still desirable. At present, our dry DR has a base temperature of 10 mK and a cooling capacity of 700 μW at a mixing chamber temperature of 100 mK. In our cryostat, in most recent work, an additional refrigeration loop was added to the dilution circuit. This 4 He circuit has a lowest temperature of about 1 K and a refrigeration capacity of up to 100 mW at temperatures slightly above 1 K; the dilution circuit and the 4 He circuit can be run separately or together. The purpose of this additional loop is to increase the cooling capacity for experiments where the cooling power of the still of the DR is not sufficient to cool cold amplifiers and cables, e.g. in studies on superconducting quantum circuits or astrophysical applications.

  9. Cryogen-free dilution refrigerators

    Science.gov (United States)

    Uhlig, K.

    2012-12-01

    We review briefly our first cryogen-free dilution refrigerator (CF-DR) which was precooled by a GM cryocooler. We then show how today's dry DRs with pulse tube precooling have developed. A few examples of commercial DRs are explained and noteworthy features pointed out. Thereby we describe the general advantages of cryogen-free DRs, but also show where improvements are still desirable. At present, our dry DR has a base temperature of 10 mK and a cooling capacity of 700 μW at a mixing chamber temperature of 100 mK. In our cryostat, in most recent work, an additional refrigeration loop was added to the dilution circuit. This 4He circuit has a lowest temperature of about 1 K and a refrigeration capacity of up to 100 mW at temperatures slightly above 1 K; the dilution circuit and the 4He circuit can be run separately or together. The purpose of this additional loop is to increase the cooling capacity for experiments where the cooling power of the still of the DR is not sufficient to cool cold amplifiers and cables, e.g. in studies on superconducting quantum circuits or astrophysical applications.

  10. Development of 18 K helium refrigeration system for CERN

    CERN Document Server

    CERN. Geneva

    2004-01-01

    The Conseil Europeen pour Ia Recherche Nucleaire (CERN) placed an order for a 1.8 K helium refrigeration system with IHI for the Large Hadron Collider project in 1999. IHI formed a consortium with Linde Kryotechnik AG (Switzerland), which has long experience with helium refrigeration systems. IHI designed and manufactured cold compressors based on leading technologies and expertise for turbo machinery. The cold compressor has the highest efficiency in the world. This paper describes the 1.8 K helium refrigeration system and performance test results at CERN. (5 refs).

  11. Helium refrigeration system for BNL colliding beam accelerator

    International Nuclear Information System (INIS)

    Brown, D.P.; Farah, Y.; Gibbs, R.J.; Schlafke, A.P.; Schneider, W.J.; Sondericker, J.H.; Wu, K.C.

    1983-01-01

    A Helium Refrigeration System which will supply the cooling required for the Colliding Beam Accelerator at Brookhaven National Laboratory is under construction. Testing of the compressor system is scheduled for late 1983 and will be followed by refrigerator acceptance tests in 1984. The refrigerator has a design capacity of 24.8 kW at a temperature level near 4K while simultaneously producing 55 kW for heat shield loads at 55K. When completed, the helium refrigerator will be the world's largest. Twenty-five oil-injected screw compressors with an installed total of 23,250 horsepower will supply the gas required. One of the unique features of the cycle is the application of three centrifugal compressors used at liquid helium temperature to produce the low temperatures (2.5K) and high flow rates (4154 g/s) required for this service

  12. Helium refrigerator for 'SULTAN'

    International Nuclear Information System (INIS)

    Arpagaus, M.; Erlach, H.; Quack, H.

    1984-01-01

    The authors describe the helium refrigerator designed for the SULTAN test facility. SULTAN (Supraleiter-Testanlage) is intended to serve for the developments and testing of high field superconducting magnets. These magnets are needed mainly for future applications in nuclear fusion. (Auth.)

  13. Screw compressor system for industrial-scale helium refrigerators or industrial ammonia screw compressors for helium refrigeration systems; Schraubenkompressor-System fuer Helium-Grosskaelteanlage oder Ammoniak-Schraubenverdichter aus Industrieanwendungen fuer Helium-Kaelteanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Fredrich, O.; Mosemann, D.; Zaytsev, D. [GEA Grasso GmbH Refrigeration Technology, Berlin (Germany)

    2007-07-01

    Material characteristics, requirements and measured data of ammonia and helium compression are compared. The compressor lines for industrial ammonia and helium refrigerators are presented, and important characteristics of the compressors are explained. The test stand for performance measurements with helium and ammonia is described, and results are presented. In spite of the different characteristics of the fluids, the compressor-specific efficiencies (supply characteristic, quality characteristic) were found to be largely identical. The values calculated for helium on the basis of NH3 test runs were found to be realistic, which means that the decades of experience with ammonia in industrial applications can be applied to helium compression as well. The design of screw compressor aggregates (skids) in industrial refrigeration is discussed and illustrated by examples. (orig.)

  14. Helium refrigeration system for hydrogen liquefaction applications

    Science.gov (United States)

    Nair, J. Kumar, Sr.; Menon, RS; Goyal, M.; Ansari, NA; Chakravarty, A.; Joemon, V.

    2017-02-01

    Liquid hydrogen around 20 K is used as cold moderator for generating “cold neutron beam” in nuclear research reactors. A cryogenic helium refrigeration system is the core upon which such hydrogen liquefaction applications are built. A thermodynamic process based on reversed Brayton cycle with two stage expansion using high speed cryogenic turboexpanders (TEX) along with a pair of compact high effectiveness process heat exchangers (HX), is well suited for such applications. An existing helium refrigeration system, which had earlier demonstrated a refrigeration capacity of 470 W at around 20 K, is modified based on past operational experiences and newer application requirements. Modifications include addition of a new heat exchanger to simulate cryogenic process load and two other heat exchangers for controlling the temperatures of helium streams leading out to the application system. To incorporate these changes, cryogenic piping inside the cold box is suitably modified. This paper presents process simulation, sizing of new heat exchangers as well as fabrication aspects of the modified cryogenic process piping.

  15. CERN Technical Training 2002: Learning for the LHC! HEREF-2002 : HELIUM REFRIGERATION TECHNIQUES

    CERN Multimedia

    Davide Vitè

    2002-01-01

    Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2002 is a new course, in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2002 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2002 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. Duration: 7 half days (5 mornings and 2 afternoons), 21-25 October, 2002. Estimated cost: 300.- CHF Language: Bilingual English-French. The course support will be in English, the ...

  16. Installation and Commissioning of the Helium Refrigeration System for the HANARO-CNS

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Young Ki; Wu, Sang Ik; Son, Woo Jung

    2009-11-01

    The cold neutron source (CNS), which will be installed in the vertical CN hole of the reflector tank at HANARO, makes thermal neutrons to moderate into the cold neutrons with the ranges of 0.1 ∼ 10 meV passing through a moderator at about 22K. A moderator to produce cold neutrons is liquid hydrogen, which liquefies by the heat transfer with cryogenic helium flowing from the helium refrigeration system. For the maintenance of liquid hydrogen in the IPA, the CNS system is mainly consisted of the hydrogen system to supply the hydrogen to the IPA, the vacuum system to keep the cryogenic liquid hydrogen in the IPA, and the helium refrigeration system to liquefy the hydrogen gas. The helium refrigeration system can be divided into two sections: one is the helium compression part from the low pressure gas to the high pressure gas and the other is the helium expansion part from the high temperature gas and pressure to low temperature and pressure gas by the expansion turbine. The helium refrigeration system except the warm helium pipe and the helium buffer tank has been manufactured by Linde Kryotechnik, AG in Switzerland and installed in the research reactor hall, HANARO. Other components have been manufactured in the domestic company. This technical report deals with the issues, its solutions, and other particular points while the helium refrigeration system was installed at site, verified its performance, and conducted its commissioning along the reactor operation. Furthermore, the operation procedure of the helium refrigeration system is included in here for the normal operation of the CNS

  17. Helium refrigerator-liquefier system for MHD generator

    International Nuclear Information System (INIS)

    Akiyama, Y.; Ishii, H.; Mori, Y.; Yamamoto, M.; Wada, R.; Ando, M.

    1974-01-01

    MHD power generators have been investigated in the Electro-Technical Laboratory as one of the National Research and Development Programmes. A helium refrigerator-liquefier system has been developed to cool the superconducting magnet for a 1000 kW class MHD power generator. The turboexpander with low temperature gas bearings and an alternator had been developed for the MHD project at the Electro-Technical Laboratory previously. The liquefaction capacity is 250 iota/h and the refrigeration power is 2.9 kW at 20 K. The superconducting magnet is 50 tons and the cryostat has a liquid helium volume of 2700 iota. The evaporation rate is 60 to 80 iota/h. It takes, in all 2 to 3 weeks to fill the cryostat with liquid helium. (author)

  18. Applicability of ASST-A helium refrigeration system for JLab End Station Refrigerator

    Science.gov (United States)

    Hasan, N.; Knudsen, P.; Ganni, V.

    2017-12-01

    The MØLLER experiment at Jefferson Lab (JLab) is a high power (5 kW) liquid hydrogen target scheduled to be operational in the 12 GeV-era. At present, cryogenic loads and targets at three of JLab’s four experimental halls are supported by the End Station Refrigerator (ESR) - a CTI/Helix 1.5 kW 4.5 K refrigerator. It is not capable of supporting the high power target load and a capacity upgrade of the ESR cryogenic system is essential. The ASST-A helium refrigeration system is a 4 kW 4.5 K refrigerator. It was designed and used for the Superconducting Super Collider Lab (SSCL) magnet string test and later obtained by JLab after the cancellation of that project. The modified ASST-A refrigeration system, which will be called ESR-II along with a support flow from JLab’s Central Helium Liquefier (CHL) is considered as an option for the End Station Refrigerator capacity upgrade. The applicability of this system for ESR-II under varying load conditions is investigated. The present paper outlines the findings of this process study.

  19. Cooling by mixing of helium isotopes

    International Nuclear Information System (INIS)

    Hansen, O.P.; Olsen, M.; Rasmussen, F.B.

    1975-01-01

    The principles of the helium dilution refrigerator are outlined. The lowest temperature attained with a continuously operated dilution refrigerator was about 10 mK, and 5 mK for a limited period when the supply of concentrated 3 He to the mixing chamber was interrupted. (R.S.)

  20. Dilution refrigeration with multiple mixing chambers

    International Nuclear Information System (INIS)

    Coops, G.M.

    1981-01-01

    A dilution refrigerator is an instrument to reach temperatures in the mK region in a continuous way. The temperature range can be extended and the cooling power can be enlarged by adding an extra mixing chamber. In this way we obtain a double mixing chamber system. In this thesis the theory of the multiple mixing chamber is presented and tested on its validity by comparison with the measurements. Measurements on a dilution refrigerator with a circulation rate up to 2.5 mmol/s are also reported. (Auth.)

  1. CERN Technical Training 2002: Learning for the LHC ! HeREF-2002 : Helium Refrigeration Techniques

    CERN Multimedia

    Davide Vitè

    2002-01-01

    Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2002 is a new course, in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2002 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2002 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. Duration: 7 half days (5 mornings and 2 afternoons), 21-25 October 2002. Estimated cost: 300.- CHF Language: Bilingual English-French. The course support will be in English, the...

  2. Continuous magnetic refrigeration in the superfluid helium range

    International Nuclear Information System (INIS)

    Lacaze, Alain.

    1982-10-01

    An experimental prototype magnetic refrigerator based on the well known adiabatic demagnetization principle is described. A continuous process is employed in which gadolinium garnet follows successive magnetization-demagnetization cycles between a hot liquid helium source at 4.2K and a cold superfluid helium source at T [fr

  3. Performance analysis of a large-scale helium Brayton cryo-refrigerator with static gas bearing turboexpander

    International Nuclear Information System (INIS)

    Zhang, Yu; Li, Qiang; Wu, Jihao; Li, Qing; Lu, Wenhai; Xiong, Lianyou; Liu, Liqiang; Xu, Xiangdong; Sun, Lijia; Sun, Yu; Xie, Xiujuan; Wang, Bingming; Qiu, Yinan; Zhang, Peng

    2015-01-01

    Highlights: • A 2 kW at 20.0 K helium Brayton cryo-refrigerator is built in China. • A series of tests have been systematically conducted to investigate the performance of the cryo-refrigerator. • Maximum heat conductance proportion (90.7%) appears in the heat exchangers of cold box rather than those of heat reservoirs. • A model of helium Brayton cryo-refrigerator/cycle is presented according to finite-time thermodynamics. - Abstract: Large-scale helium cryo-refrigerator is widely used in superconducting systems, nuclear fusion engineering, and scientific researches, etc., however, its energy efficiency is quite low. First, a 2 kW at 20.0 K helium Brayton cryo-refrigerator is built, and a series of tests have been systematically conducted to investigate the performance of the cryo-refrigerator. It is found that maximum heat conductance proportion (90.7%) appears in the heat exchangers of cold box rather than those of heat reservoirs, which is the main characteristic of the helium Brayton cryo-refrigerator/cycle different from the air Brayton refrigerator/cycle. Other three characteristics also lie in the configuration of refrigerant helium bypass, internal purifier and non-linearity of specific heat of helium. Second, a model of helium Brayton cryo-refrigerator/cycle is presented according to finite-time thermodynamics. The assumption named internal purification temperature depth (PTD) is introduced, and the heat capacity rate of whole cycle is divided into three different regions in accordance with the PTD: room temperature region, upper internal purification temperature region and lower one. Analytical expressions of cooling capacity and COP are obtained, and we found that the expressions are piecewise functions. Further, comparison between the model and the experimental results for cooling capacity of the helium cryo-refrigerator shows that error is less than 7.6%. The PTD not only helps to achieve the analytical formulae and indicates the working

  4. Analysis of cooldown performance for Isabelle helium refrigerator

    International Nuclear Information System (INIS)

    Wu, K.C.; Brown, D.P.; Moore, R.W.

    1982-01-01

    The cooldown performance for the ISABELLE Helium refrigerator is analyzed in terms of the relationship between refrigerator and its load. The flow diagram for ISABELLE with its redundant turbines and heat exchangers is given. Cycle description and procedure for cooldown is described with the relationship between a refrigerator and its load illustrated. Pressure vs. temperature for ISABELLE load and the efficiency for a turbine are illustrated. The procedure for modeling the refrigerator and the concepts of maximizing the cooldown capacity are described. The results and discussion are accompanied with T-S diagrams for initial stage of cooldown and refrigerator characteristic at various return temperatures. The ISABELLE refrigerator with its reduncant expanders properly used achieves cooldown capacity well beyond its steady-state capacity. The cooldown rate at this stage relies on the design safety margin, which for the ISABELLE is 50%

  5. Functional Analysis of the Distribution Box of the KSTAR Helium Refrigerator

    International Nuclear Information System (INIS)

    Chang, H. S.; Kim, Y. S.; Bak, J. S.

    2005-01-01

    KSTAR (Korea Superconducting Tokamak Advanced Research) is a tokamak device with 30 superconducting (SC) magnet coils. The main duty of the KSTAR helium refrigerator is to keep all cold components of KSTAR (SC magnet coils, magnet structures, SC bus-lines, current lead system, and thermal shields) at suitable temperatures in order to operate the SC magnet coils consistent with the operation scenario of KSTAR. A distribution box (D/B) which is equipped with helium-property-measuring sensors, cryogenic valves (CV's), cryogenic circulators, and heat exchangers (HX's) submerged in a huge liquid helium (LHe) bath (thermal damper), intervenes the cryogenic helium via cryogenic transfer lines (TL's) between the refrigerator cold box (C/B) and the KSTAR cold components. The major functions of the D/B can be classified as listed below: i) Supplying the proper cryogen to the respective cold components of KSTAR during various operation modes (including the idle mode). ii) Cool/re-cool down of the KSTAR cold components from any temperature down to their operating cryogenic temperature within the constraints of time and temperature difference between the components. iii) Protection of the KSTAR cold components and refrigerator from damaging in case of probable abnormal events. iv) Simulation of the temporal variation of the thermal load and pressure drops occurring in the KSTAR cold components to pre-commission the refrigerator and test the cryogenic circulators. v) SC coil/bus-line cable-in-conduit conductor (CICC) cleaning. Since the helium flow in the thermal shields (TS's) is rather routine and the current lead (CL) system has its own helium distribution system, in this proceeding mainly the supercritical helium (SHe) circuits of the SC magnets and bus-lines will be discussed

  6. KSTAR Helium Refrigeration System Design and Manufacturing

    International Nuclear Information System (INIS)

    Dauguet, P.; Briend, P.; Abe, I.; Fauve, E.; Bernhardt, J.-M.; Andrieu, F.; Beauvisage, J.

    2006-01-01

    The tokamak developed in the KSTAR (Korean Superconducting Tokamak Advanced Research) project makes intensive use of superconducting magnets operated at 4.5 K. The cold components of the KSTAR tokamak require forced flow of supercritical helium for magnets/structure, boiling liquid helium for current leads, and gaseous helium for thermal shields. The cryogenic system will provide stable operation and full automatic control. A three-pressure helium cycle composed of six turbines has been customised design for this project. The '' design '' operating mode results with a system composed of a 9 kW refrigerator (including safety margin) and using gas and liquid storages for mass balancing. During Shot/Standby mode, the heat loads are highly time-dependent. A thermal damper is used to smooth these variations and will allow stable operation. (author)

  7. Contribution to magnetic refrigeration study at liquid helium study

    International Nuclear Information System (INIS)

    Lacaze, A.

    1985-10-01

    An experimental prototype of magnetic refrigerator operates, following a Carnot cycle, with gallium gadolinium garnet, from liquid helium at 4.2 0 K. Analysis of the cyle and heat exchanges allowed to improve performance up to get more than 50% of Carnot yield at 1.8 0 K and nearly 80% at 2.1 0 K. Operation conditions of a regenerator refrigerator between 4 and 20 0 K are studied. The association of a magnetic refrigerator and a gas refrigerator is analyzed. Among different ways to realize the magnetic stage, an active regenerator cycle is chosen. An experimental device is described [fr

  8. A Cold Cycle Dilution Refrigerator for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The cold cycle dilution refrigerator is a continuous refrigerator capable of cooling to temperatures below 100 mK that makes use of a novel thermal magnetic pump....

  9. 20 K Helium Refrigeration System for NASA-JSC Chamber-A

    Science.gov (United States)

    Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhelef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.

    2013-01-01

    A new 20 K helium refrigerator installed at NASA Johnson Space Center's Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL s Chamber A to perform ground testing of the James Webb Space Telescope. The chamber previously and currently still has helium cryopumping panels (CPP) and LN2 shrouds used to create Low Earth Orbit environments. Now with the new refrigerator and new helium shrouds (45 x 65 ) the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Labs, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate a inverse coefficient of performance better than 70 W/W for a 18 KW load at 20 K (accounting for liquid nitrogen precooling power) that remains essentially constant down to 1/3 of this load. Even at 10 percent of the maximum capacity, the performance is better than 140 W/W at 20K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10kW at 15 K to 100 kW at 100K. The refrigerator is capable of operating at any load temperature from 15K to ambient with tight temperature stability. The new shroud (36 tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the process design and commissioning results.

  10. Technologies of 1.8 K / 2.4 kW helium refrigerators and cold compressors for LHC

    International Nuclear Information System (INIS)

    Saji, Nobuyoshi; Yoshinaga, Seiichirou; Asakura, Hiroshi; Shimba, Toru; Honda, Tadaaki; Mori, Mikio

    2005-01-01

    For the LHC (Large Hadron Collider) project of the CERN (Conseil Europeen pour la Recherche Nucleaire), the Swiss-Japanese consortium IHI/Linde Kryotechnik AG delivered a 1.8 K helium refrigeration system. Linde has produced many helium refrigeration systems and IHI has designed and manufactured cold compressors that utilize many advanced technologies and innovative ideas for turbo machinery. The compressor has the characteristics of the highest efficiency in the world. This paper describes the 1.8 K helium refrigeration system and performance test results at CERN. (author)

  11. D0 Silicon Upgrade: Commissioning Test Results for D-Zero's Helium Refrigerator

    International Nuclear Information System (INIS)

    Rucinski, Russ

    1997-01-01

    The test objectives are: (1) Make liquid helium and measure refrigerator capacity; (2) Measure liquid helium dewar heat leak, transfer line heat leak, and liquid nitrogen consumption rates; (3) Operate all cryogenic transfer lines; (4) Get some running time on all components; (5) Debug mechanical components, instrumentation, DMACs user interface, tune loops, and otherwise shake out any problems; (6) Get some operating time in to get familiar with system behavior; (7) Revise and/or improve operating procedures to actual practice; and (8) Identify areas for future improvement. D-Zero's stand alone helium refrigerator (STAR) liquified helium at a rate of 114 L/hr. This is consistent with other STAR installations. Refrigeration capacity was not measured due to lack of a calibrated heat load. Measured heat leaks were within design values. The helium dewar loss was measured at 2 to 4 watts or 9% per day, the solenoid and VLPC helium transfer lines had a heat leak of about 20 watts each. The liquid nitrogen consumption rates of the mobile purifier, STAR, and LN2 subcooler were measured at 20 gph, 20 to 64 gph, and 3 gph respectively. All cryogenic transfer lines including the solenoid and visible light photon counter (VLPC) transfer lines were cooled to their cryogenic operating temperatures. This included independent cooling of nitrogen shields and liquid helium components. No major problems were observed. The system ran quite well. Many problems were identified and corrected as they came up. Areas for improvement were noted and will be implemented in the future. The instrumentation and control system operated commendably during the test. The commissioning test run was a worthwhile and successful venture.

  12. Theoretical Models for the Cooling Power and Base Temperature of Dilution Refrigerators

    CERN Document Server

    Wikus, Patrick

    2010-01-01

    He-3/He-4 dilution refrigerators are widely used for applications requiring continuous cooling at temperatures below approximately 300 mK. Despite of the popularity of these devices in low temperature physics, the thermodynamic relations underlying the cooling mechanism of He-3/He-4 refrigerators are very often incorrectly used. Several thermodynamic models of dilution refrigeration have been published in the past, sometimes contradicting each other. These models are reviewed and compared with each other over a range of different He-3 flow rates. In addition, a new numerical method for the calculation of a dilution refrigerator's cooling power at arbitrary flow rates is presented. This method has been developed at CERN's Central Cryogenic Laboratory. It can be extended to include many effects that cannot easily be accounted for by any of the other models, including the degradation of heat exchanger performance due to the limited number of step heat exchanger elements, which can be considerable for some design...

  13. A miniaturized plastic dilution refrigerator

    International Nuclear Information System (INIS)

    Bindilatti, V.; Oliveira, N.F.Jr.; Martin, R.V.; Frossati, G.

    1996-01-01

    We have built and tested a miniaturized dilution refrigerator, completely contained (still, heat exchanger and mixing chamber) inside a plastic (PVC) tube of 10 mm diameter and 170 mm length. With a 25 cm 2 CuNi heat exchanger, it reached temperatures below 50 mK, for circulation rates below 70 μmol/s. The cooling power at 100 mK and 63 μmol/s was 45 μW. The experimental space could accommodate samples up to 6 mm in diameter. (author)

  14. A cryogenic axial-centrifugal compressor for superfluid helium refrigeration

    CERN Document Server

    Decker, L; Schustr, P; Vins, M; Brunovsky, I; Lebrun, P; Tavian, L

    1997-01-01

    CERN's new project, the Large Hadron Collider (LHC), will use superfluid helium as coolant for its high-field superconducting magnets and therefore require large capacity refrigeration at 1.8 K. This may only be achieved by subatmospheric compression of gaseous helium at cryogenic temperature. To stimulate development of this technology, CERN has procured from industry prototype Cold Compressor Units (CCU). This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating under low-pressure helium at ambient temperature. The machine has been commissioned and is now in operation. After describing basic constructional features of the compressor, we report on measured performance.

  15. The design of the helium refrigerator for TORE SUPRA

    International Nuclear Information System (INIS)

    Gistau, G.M.; Claudet, G.

    1984-01-01

    The special cryogenic requirements of TORE SUPRA have called for novel solutions. Pumping the 1,75 K (13 mb) helium bath is achieved by the use of a pair of centrifugal pumps operating at very low temperature, backed up by liquid rings pumps at room temperature. Four oil-lubricated screw compressors mounted in series-parallel form the main cycle helium compression set. The Joule-Thomson expansion valve is replaced by a mechanical expansion engine working with a bi-phase exhaust. The control of the refrigeration system is entirely automatic

  16. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    International Nuclear Information System (INIS)

    Ganni, V.; Knudsen, P.; Arenius, D.; Casagrande, F.

    2014-01-01

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system

  17. Dynamic Simulation of AN Helium Refrigerator

    Science.gov (United States)

    Deschildre, C.; Barraud, A.; Bonnay, P.; Briend, P.; Girard, A.; Poncet, J. M.; Roussel, P.; Sequeira, S. E.

    2008-03-01

    A dynamic simulation of a large scale existing refrigerator has been performed using the software Aspen Hysys®. The model comprises the typical equipments of a cryogenic system: heat exchangers, expanders, helium phase separators and cold compressors. It represents the 400 W @ 1.8 K Test Facility located at CEA—Grenoble. This paper describes the model development and shows the possibilities and limitations of the dynamic module of Aspen Hysys®. Then, comparison between simulation results and experimental data are presented; the simulation of cooldown process was also performed.

  18. Combined cold compressor/ejector helium refrigerator cycle

    International Nuclear Information System (INIS)

    Schlafke, A.P.; Brown, D.P.; Wu, K.C.

    1984-01-01

    This chapter demonstrates how the use of a cold compressor in series with an ejector is an effective way to produce the desired low pressure in a helium refrigeration system. The cold compressor is tentatively located at the low pressure side below the J-T heat exchanger. The ejector is the first stage and the cold compressor is the second stage of the two-stage pumping system. A centrifugal, oil-bearing type compressor was installed on the R and D refrigerator at the Brookhaven National Laboratory. It is determined that the combined cold compressor and ejector system produces a lower temperature on the same load or more cooling at the same temperature compared with a system which uses an ejector alone. Results of the test showed a gain of 20%

  19. CFD-simulations of a 4π-contiuous-mode dilution refrigerator for the CB-ELSA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Altfelde, Timo; Bornstein, Marcel; Dutz, Hartmut; Goertz, Stefan; Miebach, Roland; Reeve, Scott; Runkel, Stefan; Sommer, Marco; Streit, Benjamin [Physikalisches Institut, Bonn (Germany)

    2015-07-01

    The polarized target group at Bonn operates a dilution refrigerator for double polarization experiments at the Crystal Barrel in Bonn. To get high target polarizations and long relaxation times low temperatures are indispensable. To reach temperatures below 30 mK and to allow for the use of an internal polarization magnet, the polarized target group is building a new continuous mode dilution refrigerator. As a optimizing tool for the construction of dilution refrigerators and for a better understanding of the different incoming and outgoing fluid streams several CFD-simulations are done. First the different streams are simulated independently for different parts of the refrigerator to get a better estimation of the flow parameters. Then the simulation is extended to include the heat exchange between the different streams at the heat exchangers for different operational parameters of the refrigerator. Afterwards the precooling stages of the refrigerator will be tested to compare the predicted and the measured operational parameters.

  20. CFD-simulations of a 4π-continuous-mode dilution refrigerator for the CB-ELSA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bornstein, Marcel; Dutz, Hartmut; Goertz, Stefan; Reeve, Scott; Runkel, Stefan [Physikalisches Institut, Bonn Univ. (Germany); Collaboration: CBELSA/TAPS-Collaboration

    2016-07-01

    The polarized target group at Bonn operates a dilution refrigerator for double polarization experiments at the Crystal Barrel in Bonn. To get high target polarizations and long relaxation times low temperatures are indispensable. To reach temperatures below 30 mK and to allow for the use of an internal polarization magnet, the polarized target group is building a new continuous mode dilution refrigerator. As a optimizing tool for the construction of dilution refrigerators and for a better understanding of the different incoming and outgoing fluid streams several Computational Fluid Dynamic simulations are done. The heat exchange between the different streams of the refrigerator were simulated for the precooling stages within one simulation including a submesh for each fluid and solid. This leads to a better estimation of the flow characteristics and the operational parameter of the refrigerator. The last steps of construction and the preparation of the refrigerator for first test measurements are ongoing.

  1. Commissioning of a 20 K Helium Refrigeration System for NASA-JSC Chamber A

    Science.gov (United States)

    Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.

    2013-01-01

    A new 20 K helium refrigerator installed at NASA Johnson Space Center s Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL s Chamber A to perform ground testing of the James Webb Space Telescope (JWST). The chamber previously and currently still has helium cryo-pumping panels (CPP) and liquid nitrogen shrouds used to create low earth orbit environments. Now with the new refrigerator and new helium shrouds the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Lab, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate an inverse coefficient of performance better than 70 W/W for a 18 kW load at 20 K (accounting for liquid nitrogen pre-cooling power) that remains essentially constant down to one third of this load. Even at 10 percent of the maximum capacity, the performance is better than 150 W/W at 20 K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10 kW at 15 K to 100 kW at 100 K. The refrigerator is capable of operating at any load temperature from 15 K to ambient with tight temperature stability. The new shroud (36 tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the process design and commissioning results.

  2. A horizontal dilution refrigerator for polarized target

    International Nuclear Information System (INIS)

    Isagawa, S.; Ishimoto, S.; Masaike, A.; Morimoto, K.

    1978-01-01

    A horizontal dilution refrigerator was constructed with a view to the spin frozen target and the deuteron polarized target. High cooling power at high temperature such as 3.7 mW at 400 mK serves for overcoming a heat load of microwave to polarize the nuclear spins in the target material. The cooling power at 50 mK was 50 μW, which is sufficient to hold the high nuclear polarization for long time. The lowest temperature reached was 26 mK. The refrigerator has rather simple heat exchangers, a long stainless steel double tube heat exchanger and two coaxial type heat exchangers with sintered copper. The mixing chamber is made of polytetrafluoroethylene (TFE) and demountable so that the target material can be easily put into it. (Auth.)

  3. Optimization design of turbo-expander gas bearing for a 500W helium refrigerator

    Science.gov (United States)

    Li, S. S.; Fu, B.; Y Zhang, Q.

    2017-12-01

    Turbo-expander is the core machinery of the helium refrigerator. Bearing as the supporting element is the core technology to impact the design of turbo-expander. The perfect design and performance study for the gas bearing are essential to ensure the stability of turbo-expander. In this paper, numerical simulation is used to analyze the performance of gas bearing for a 500W helium refrigerator turbine, and the optimization design of the gas bearing has been completed. And the results of the gas bearing optimization have a guiding role in the processing technology. Finally, the turbine experiments verify that the gas bearing has good performance, and ensure the stable operation of the turbine.

  4. I. Construction of an ultralow temperature laboratory. II. Thermal relaxation in superfluid helium-3

    International Nuclear Information System (INIS)

    Neuhauser, B.J.

    1986-01-01

    The first part of this thesis describes the construction of an ultralow temperature laboratory capable of reaching temperatures below 0.002 K. Continuous refrigeration to 0.012 K is provided by a cold plate/dilution refrigerator system. Single-cycle cooling to 0.002 K is accomplished by adiabatic demagnetization of cerous magnesium nitrate (CMN), a paramagnetic salt. Thermometry is done by measuring the resistance of carbon and germanium sensors, the magnetic susceptibility of lanthanum-diluted CMN, and the anisotropy of gamma radiation from a cobalt-60 nuclear orientation thermometer. Systems have been developed to allow precise control of the temperature and pressure of the liquid helium-3 sample. Measurements of thermal relaxation of liquid helium-3 in the ultralow temperature cell following sudden magnetic cooling of the CMN refrigerant are described. Analysis of the transient response of a thermal model of the cell indicates that the ratio of the time constants immediately below and above the superfluid-to-normal transition temperature provides a close estimate of the ratio of the corresponding helium-3 heat capacities, at least in the superfluid A-phase

  5. Solutions for Liquid Nitrogen Pre-Cooling in Helium Refrigeration Cycles

    CERN Document Server

    Wagner, U

    2000-01-01

    Pre-cooling of helium by means of liquid nitrogen is the oldest and one of the most common process features used in helium liquefiers and refrigerators. Its two principle tasks are to allow or increase the rate of pure liquefaction, and to permit the initial cool-down of large masses to about 80 K. Several arrangements for the pre-cooling process are possible depending on the desired application. Each arrangement has its proper advantages and drawbacks. The aim of this paper is to review the possible process solutions for liquid nitrogen pre-cooling and their particularities.

  6. A compact dilution refrigerator with vertical heat exchangers for operation to 2 mK

    International Nuclear Information System (INIS)

    Bunkov, Yu.M.; Guenault, A.M.; Hayward, D.J.; Jackson, D.A.; Kennedy, C.J.; Nichols, T.R.; Miller, I.E.; Pickett, G.R.; Ward, M.G.

    1991-01-01

    A compactly designed dilution refrigerator with closely packed, vertical heat exchangers is described. The refrigerator reaches a temperature of 2 mK and is easily constructed, since the sintered heat exchangers are straight units. Vibrating wire resonators are employed in the mixing chamber as diagnostic tools, which may act as both thermometers and phase-boundary level indicators. There is a design problem in the vertical arrangement, namely, the sumps on the concentrated phase side that can slowly fill with dilute phase and degrade the performance. The problem is solved by draining the superfluid 4 He component in any collected dilute phase through superleaks into the mixing chamber

  7. Operational tests of the BNL 24.8 kW, 3.80K helium refrigerator

    International Nuclear Information System (INIS)

    Brown, D.P.; Farah, Y.; Gibbs, R.J.; Schlafke, A.P.; Sondericker, J.H.

    1986-01-01

    The BNL 24.8 kW refrigeration system is completely installed and major portions of the acceptance tests have been completed. So far, the equipment tested has performed at or above design levels. The room temperature helium compressor station has been completely tested and accepted. The two-stage oil injected screw compressor system exhibited an isothermal efficiency of 57% while delivering a helium flow in excess of 4400 g/s. Data on the performance of the make-up gas cryogenic purifier is also given. The refrigerator turbomachinery, 13 expanders and three cold compressors, has been tested at room temperature for mechanical integrity and control stability. The first cooldown to operating temperature will be attempted in late August, 1985

  8. The construction of a Pomeranchuk cell driven by a 4He-circulating dilution refrigerator and some related experiments

    International Nuclear Information System (INIS)

    Brandt, B. van den.

    1981-01-01

    This thesis deals with some investigations at very low temperatures in which a 4 He-circulating 3 He- 4 He dilution refrigerator and a Pomeranchuk cooling device are used. The main theme is the design and construction of a special device, a Pomeranchuk cell that is precooled and pressurized with a 4 He-circulating 3 He- 4 He dilution refrigerator, that can be used to obtain a lowest temperature of the order of 1.1 mK. Furthermore, some details of the working of such a dilution refrigerator and some properties of 3 He- 4 He mixtures at high pressures were investigated. (Auth.)

  9. Operational tests of the BNL 24.8 kW, 3.8 K helium refrigerator

    International Nuclear Information System (INIS)

    Brown, D.P.; Farah, Y.; Gibbs, R.J.

    1985-01-01

    The BNL 24.8 kW refrigeration system is completely installed and major portions of the acceptance tests have been completed. So far, the equipment tested has performed at or above design levels. The room temperature helium compressor station has been completely tested and accepted. The two-stage oil injected screw compressor system exhibited an isothermal efficiency of 57% while delivering a helium flow in excess of 4400 g/s. Data on the performance of the make-up gas cryogenic purifier is given. The refrigerator turbomachinery, 13 expanders and three cold compressors, has been tested at room temperature for mechanical integrity and control stability. The first cooldown to operating temperature will be attempted in late August, 1985. 2 refs., 5 figs

  10. Vibrations on pulse tube based Dry Dilution Refrigerators for low noise measurements

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, E. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay (France); Billard, J.; De Jesus, M.; Juillard, A. [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, F-69622 Villeurbanne (France); Leder, A. [Massachussets Institute of Technology, Laboratory for Nuclear Science, 77 Massachusetts Avenue Cambridge, MA 02139-4307 (United States)

    2017-06-21

    Dry Dilution Refrigerators (DDR) based on pulse tube cryo-coolers have started to replace Wet Dilution Refrigerators (WDR) due to the ease and low cost of operation. However these advantages come at the cost of increased vibrations, induced by the pulse tube. In this work, we present the vibration measurements performed on three different commercial DDRs. We describe in detail the vibration measurement system we assembled, based on commercial accelerometers, conditioner and DAQ, and examined the effects of the various damping solutions utilized on three different DDRs, both in the low and high frequency regions. Finally, we ran low temperature, pseudo-massive (30 and 250 g) germanium bolometers in the best vibration-performing system under study and report on the results.

  11. Second law analysis of the helium refrigerators for the HERA proton magnet ring

    International Nuclear Information System (INIS)

    Ziegler, B.O.

    1986-01-01

    Each of the three refrigerators for the HERA proton magnet ring must provide 6.775 kW of refrigeration at 4.3 0 K plus 20.5 g/s of helium at 2.5 bar and 4.5 0 K for leads cooling and 20 kW of refrigeration at 40-80 0 K for shield cooling. The capital cost of large refrigerators is small compared with operating costs. Therefore the refrigeration process was analysed on the basis of exergy. This means the irreversibility of each component is expressed as power input into the plant. The process realised consists of the turbine cycle, divided into two streams with 5 gas bearing turbines all together, and the Joule Thomson cycle. Special attention was paid to the cold end of the plant. The optimization resulted in a new configuration with two turboexpanders running in parallel on different temperature levels

  12. Design, Fabrication, Installation and Commissioning of the Helium Refrigeration system Supporting Superconducting Radio Frequency Testing at Facility for Rare Isotope Beams at Michigan State University

    Science.gov (United States)

    Casagrande, F.; Fila, A.; Nguyen, C.; Tatsumoto, H.

    2017-12-01

    The Facility for Rare Isotope Beams (FRIB) will be a scientific user facility for the Office of Nuclear Physics in the U.S. Department of Energy Office of Science (DOE-SC). The FRIB linear accelerator (LINAC) will be comprised of cryomodules each with multiple Superconducting Radio Frequency (SRF) cavities operating at 2 K. A helium refrigeration system was designed, fabricated, installed and commissioned in the SRF high bay building to test and certify these cavities and cryomodules before installation in the FRIB LINAC tunnel. The helium refrigeration system includes a helium refrigerator which has nominal capacity of 900 W at 4 K, 5000 L liquid helium storage Dewar, helium gas storage, two room temperature vacuum pumps capable of 2.5 g/s each for 2 K testing, purifier, purifier recovery compressor, and the distribution system for liquid nitrogen and helium. The helium refrigeration system is now operational supporting three below grade cavity testing Dewars and one cryomodule testing bunker meeting the required throughput of 1 cavity per day.

  13. Thermodynamic design of hydrogen liquefaction systems with helium or neon Brayton refrigerator

    Science.gov (United States)

    Chang, Ho-Myung; Ryu, Ki Nam; Baik, Jong Hoon

    2018-04-01

    A thermodynamic study is carried out for the design of hydrogen liquefaction systems with helium (He) or neon (Ne) Brayton refrigerator. This effort is motivated by our immediate goal to develop a small-capacity (100 L/h) liquefier for domestic use in Korea. Eight different cycles are proposed and their thermodynamic performance is investigated in comparison with the existing liquefaction systems. The proposed cycles include the standard and modified versions of He Brayton refrigerators whose lowest temperature is below 20 K. The Brayton refrigerator is in direct thermal contact with the hydrogen flow at atmospheric pressure from ambient-temperature gas to cryogenic liquid. The Linde-Hampson system pre-cooled by a Ne Brayton refrigerator is also considered. Full cycle analysis is performed with the real properties of fluids to estimate the figure of merit (FOM) under an optimized operation condition. It is concluded that He Brayton refrigerators are feasible for this small-scale liquefaction, because a reasonably high efficiency can be achieved with simple and safe (low-pressure) operation. The complete cycles with He Brayton refrigerator are presented for the development of a prototype, including the ortho-to-para conversion.

  14. Transition edge sensor-energy-dispersive spectrometer (TES-EDS) using a cryogen-free dilution refrigerator for material analysis

    International Nuclear Information System (INIS)

    Tanaka, Keiichi; Odawara, Akikazu; Nagata, Atsushi; Ikeda, Masanori; Baba, Yukari; Nakayama, Satoshi; Chinone, Kazuo

    2006-01-01

    A cryogen-free energy-dispersive spectrometer (EDS) using a transition edge sensor (TES) was developed for material analysis. This system can maintain a temperature at 130 mK within 30 μK, and has good energy resolution (19 eV for Mn-Kα) for long-time measurement with a drift in the DC level of less than 0.02 eV/min. This system utilizes a dilution refrigerator (φ 272 mmxheight 572 mm) and has a snout (370 mm long and φ25 mm) similar to that in a conventional EDS system. The dilution refrigerator is pre-cooled by a GM refrigerator. A flexible tube between the dilution refrigerator and GM refrigerator damps the mechanical vibration of the GM refrigerator. Two shields (4 and 80 K) thermally protect the Cu rod (φ8 mm) cooled to be 100 mK. Windows composed of polyimide+Al film allow X-ray detection above the C-Kα line. A TES (6 mmx6 mm) and array SQUID amplifier (1.5 mmx3 mm) are mounted on top of the Cu rod. For Mn-Kα, the pulse height is 5.5 μA and decay time (τ eff ) is 90 μs. The maximum count rate (1/20 τ eff ) is estimated at about 500 cps

  15. The maintenance record of the KSTAR helium refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Moon, K. M.; Joo, J. J.; Kim, N. W. [National Fusion Research Institute, Daejeon (Korea, Republic of); and others

    2013-12-15

    Korea Superconducting Tokamak Advanced Research (KSTAR) has a helium refrigeration system (HRS) with the cooling capacity of 9 kW at 4.5 K. Main cold components are composed of 300 tons of superconducting (SC) magnets, main cryostat thermal shields, and SC current feeder system. The HRS comprises six gas storage tanks, a liquid nitrogen tank, the room temperature compression sector, the cold box (C/B), the 1st stage helium distribution box (DB no.1), the PLC base local control system interconnected to central control tower and so on. Between HRS and cold components, there is another distribution box (DB#2) nearby the KSTAR device. The entire KSTAR device was constructed in 2007 and has been operated since 2008. This paper will present the maintenance result of the KSTAR HRS during the campaign and discuss the operation record and maintenance history of the KSTAR HRS.

  16. Design of a horizonal liquid helium cryostat for refrigerating a flying superconducting magnet in a wind tunnel

    Science.gov (United States)

    Wu, Y. Y.

    1982-01-01

    The design of a horizontal liquid helium cryostat for refrigerating a flying superconducting magnet in a wind tunnel is presented. The basic principles of magnetic suspension theory are described and theoretical calculations of the superconducting magnet are provided. The experimental results of the boil-off of liquid nitrogen and liquid helium in the cryostat are reported.

  17. Design of a Dry Dilution Refrigerator for MMC Gamma Detector Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Stephan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Boyd, Stephen [Univ. of New Mexico, Albuquerque, NM (United States); Cantor, Robin

    2017-04-03

    The goal of this LCP is to develop an ultra-high resolution gamma detector based on magnetic microcalorimeters (MMCs) for accurate non-destructive analysis (NDA) of nuclear materials. For highest energy resolution, we will introduce erbium-doped silver (Ag:Er) as a novel sensor material to replace current Au:Er sensors. The detector sensitivity will be increased by developing arrays of 32 Ag:Er pixels read out by 16 SQUID preamplifiers. MMC detectors require operating temperatures of ~15 mK and thus the use of a dilution refrigerator, and the desire for user-friendly operation without cryogenic liquids requires that this refrigerator use pulse-tube pre-cooling to ~4 K. For long-term reliability, we intend to re-design the heat switch that is needed to apply the magnetizing current to the Ag:Er sensor and that used to fail in earlier designs after months of operation. A cryogenic Compton veto will be installed to reduce the spectral background of the MMC, especially at low energies where ultra-high energy resolution is most important. The goals for FY16 were 1) to purchase a liquid-cryogen-free dilution refrigerator and adapt it for MMC operation, and 2) to fabricate Ag:Er-based MMC γ-detectors with improved performance and optimize their response. This report discusses the design of the instruments, and progress in MMC detector fabrication. Details of the MMC fabrication have been discussed in an April 2016 report to DOE.

  18. Commissioning and Operational Experience with 1 kW Class Helium Refrigerator/Liquefier for SST-1

    Science.gov (United States)

    Dhard, C. P.; Sarkar, B.; Misra, Ruchi; Sahu, A. K.; Tanna, V. L.; Tank, J.; Panchal, P.; Patel, J. C.; Phadke, G. D.; Saxena, Y. C.

    2004-06-01

    The helium refrigerator/liquefier (R/L) for the Steady State Super conducting Tokamak (SST-1) has been developed with very stringent specifications for the different operational modes. The total refrigeration capacity is 650 W at 4.5 K and liquefaction capacity of 200 l/h. A cold circulation pump is used for the forced flow cooling of 300 g/s supercritical helium (SHe) for the magnet system (SCMS). The R/L has been designed also to absorb a 200 W transient heat load of the SCMS. The plant consists of a compressor station, oil removal system, on-line purifier, Main Control Dewar (MCD) with associated heat exchangers, cold circulation pump and warm gas management system. An Integrated Flow Control and Distribution System (IFDCS) has been designed, fabricated and installed for distribution of SHe in the toroidal and poloidal field coils as well as liquid helium for cooling of 10 pairs of current leads. A SCADA based control system has been designed using PLC for R/L as well as IFDCS. The R/L has been commissioned and required parameters were achieved confirming to the process. All the test results and commissioning experiences are discussed in this paper.

  19. A 6 kW at 4.5 K helium refrigerator for CERN's Cryogenic Test Station

    International Nuclear Information System (INIS)

    Gistau, G.M.; Bonneton, M.

    1994-01-01

    For purposes of testing the present LEP superconducting resonant cavities and the future LHC magnets, CERN built a test station the cryogenic power of which is presently supplied by a dedicated 6 kW at 4.5 K helium refrigerator. The thermodynamic cycle is discussed and special emphasis is put on a new cryogenic expansion turbine operating in the liquid phase. Information is given about: the cycle screw compressors' performances, the general performance of the refrigerator, the expected efficiency enhancement due to the liquid turbine, an off-design turn down operation

  20. Hybrid Circuit QED with Electrons on Helium

    Science.gov (United States)

    Yang, Ge

    Electrons on helium (eHe) is a 2-dimensional system that forms naturally at the interface between superfluid helium and vacuum. It has the highest measured electron mobility, and long predicted spin coherence time. In this talk, we will first review various quantum computer architecture proposals that take advantage of these exceptional properties. In particular, we describe how electrons on helium can be combined with superconducting microwave circuits to take advantage of the recent progress in the field of circuit quantum electrodynamics (cQED). We will then demonstrate how to reliably trap electrons on these devices hours at a time, at millikelvin temperatures inside a dilution refrigerator. The coupling between the electrons and the microwave resonator exceeds 1 MHz, and can be reproduced from the design geometry using our numerical simulation. Finally, we will present our progress on isolating individual electrons in such circuits, to build single-electron quantum dots with electrons on helium.

  1. Measured Performance of Four New 18 kW@4.5 K Helium Refrigerators for the LHC Cryogenic System

    CERN Document Server

    Gruehagen, Henning

    2005-01-01

    The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include four new 4.5 K-helium refrigerators, to cover part of the cooling needs of the LHC at the 4.5-20 K and 50-75 K levels. Two refrigerators are delivered by Air Liquide, France, and two by Linde Kryotechnik, Switzerland. During the last three years, all four refrigerators have been installed and commissioned at four different points along the LHC. The specified requirements of the refrigerators are presented, with special focus on the capacities at the various temperature levels. The capacities of the refrigerators were measured using a dedicated test cryostat, and the measured performance for all four installations is presented, and compared to the guaranteed performance in the original proposal of the suppliers. Finally, the process design of the two supplies is compared, and their differences and similarities briefly analysed.

  2. Practical design of a heat exchanger for dilution refrigeration. 1

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Y; Fujii, G; Nagano, H [Tokyo Univ. (Japan). Inst. for Solid State Physics

    1978-02-01

    A compact heat exchanger for a dilution refrigerator with a high thermal efficiency is presented. Discrete heat exchangers with by-pass channels were used to decrease the flow impedance. This heat exchanger was designed so that the thermal conductance of liquid along the stream was greatly reduced. The effective thickness of the sponge material in the heat exchanger and mixer is also discussed. The obtained minimum temperatures of 12 mK was very close to the designed value of 10.8 mK. Moreover a rapid response was obtained. This is attributed to the small liquid volume of the heat exchanger.

  3. Cryogen-free dilution refrigerator for ACTPOL polarization- sensitive receiver

    Science.gov (United States)

    Shvarts, V.; Zhao, Z.; Devlin, M. J.; Klein, J.; Lungu, M.; Schmitt, B.; Thornton, R.

    2014-12-01

    We present a new cryogenic receiver for the Atacama Cosmology Telescope (ACT), a six-meter diameter off-axis Gregorian telescope located at an altitude of 5,200 meters (17,000 ft.) on Cerro Toco, in Northern Chile. The focal plane contains 3000 polarization-sensitive transition edge sensor (TES) bolometers, and is cooled to below 100 mK with a removable pulse-tube based customised JDry-100 dilution refrigerator insert. The optical tubes and the rest of the receiver are cooled with a dedicated pulse tube to below 3 K. Details of the receiver- to-telescope integration and first season on-site operation are described, including detector base temperature stability in vertical and tilted position as well as remote operation via Ethernet link.

  4. Cryogen-free dilution refrigerator for ACTPOL polarization- sensitive receiver

    International Nuclear Information System (INIS)

    Shvarts, V; Zhao, Z; Devlin, M J; Klein, J; Lungu, M; Schmitt, B; Thornton, R

    2014-01-01

    We present a new cryogenic receiver for the Atacama Cosmology Telescope (ACT), a six-meter diameter off-axis Gregorian telescope located at an altitude of 5,200 meters (17,000 ft.) on Cerro Toco, in Northern Chile. The focal plane contains 3000 polarization-sensitive transition edge sensor (TES) bolometers, and is cooled to below 100 mK with a removable pulse-tube based customised JDry-100 dilution refrigerator insert. The optical tubes and the rest of the receiver are cooled with a dedicated pulse tube to below 3 K. Details of the receiver- to-telescope integration and first season on-site operation are described, including detector base temperature stability in vertical and tilted position as well as remote operation via Ethernet link

  5. Relationship between CT visual score and lung volume which is measured by helium dilution method and body plethysmographic method in patients with pulmonary emphysema

    International Nuclear Information System (INIS)

    Toyoshima, Hideo; Ishibashi, Masayoshi; Senju, Syoji; Tanaka, Hideki; Aritomi, Takamichi; Watanabe, Kentaro; Yoshida, Minoru

    1997-01-01

    We examined the relationship between CT visual score and pulmonary function studies in patients with pulmonary emphysema. Lung volume was measured using helium dilution method and body plethysmographic method. Although airflow obstruction and overinflation measured by helium dilution method did not correlate with CT visual score, CO diffusing capacity per alveolar volume (DL CO /V A ) showed significant negative correlation with CT visual score (r=-0.49, p CO /V A reflect pathologic change in pulmonary emphysema. Further, both helium dilution method and body plethysmographic method are required to evaluate lung volume of pulmonary emphysema because of its ventilatory unevenness. (author)

  6. A scanning tunneling microscope for a dilution refrigerator.

    Science.gov (United States)

    Marz, M; Goll, G; Löhneysen, H v

    2010-04-01

    We present the main features of a home-built scanning tunneling microscope that has been attached to the mixing chamber of a dilution refrigerator. It allows scanning tunneling microscopy and spectroscopy measurements down to the base temperature of the cryostat, T approximately 30 mK, and in applied magnetic fields up to 13 T. The topography of both highly ordered pyrolytic graphite and the dichalcogenide superconductor NbSe(2) has been imaged with atomic resolution down to T approximately 50 mK as determined from a resistance thermometer adjacent to the sample. As a test for a successful operation in magnetic fields, the flux-line lattice of superconducting NbSe(2) in low magnetic fields has been studied. The lattice constant of the Abrikosov lattice shows the expected field dependence proportional to 1/square root of B and measurements in the scanning tunneling spectroscopy mode clearly show the superconductive density of states with Andreev bound states in the vortex core.

  7. Vibration-induced electrical noise in a cryogen-free dilution refrigerator: Characterization, mitigation, and impact on qubit coherence

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, Rachpon; Laucht, Arne; Dehollain, Juan Pablo; Bar, Daniel; Freer, Solomon; Simmons, Stephanie; Muhonen, Juha T.; Morello, Andrea, E-mail: a.morello@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, UNSW Australia, Sydney NSW 2052 (Australia)

    2016-07-15

    Cryogen-free low-temperature setups are becoming more prominent in experimental science due to their convenience and reliability, and concern about the increasing scarcity of helium as a natural resource. Despite not having any moving parts at the cold end, pulse tube cryocoolers introduce vibrations that can be detrimental to the experiments. We characterize the coupling of these vibrations to the electrical signal observed on cables installed in a cryogen-free dilution refrigerator. The dominant electrical noise is in the 5–10 kHz range and its magnitude is found to be strongly temperature dependent. We test the performance of different cables designed to diagnose and tackle the noise, and find triboelectrics to be the dominant mechanism coupling the vibrations to the electrical signal. Flattening a semi-rigid cable or jacketing a flexible cable in order to restrict movement within the cable, successfully reduces the noise level by over an order of magnitude. Furthermore, we characterize the effect of the pulse tube vibrations on an electron spin qubit device in this setup. Coherence measurements are used to map out the spectrum of the noise experienced by the qubit, revealing spectral components matching the spectral signature of the pulse tube.

  8. Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator.

    Science.gov (United States)

    MacDonald, A J R; Popowich, G G; Hauer, B D; Kim, P H; Fredrick, A; Rojas, X; Doolin, P; Davis, J P

    2015-01-01

    We have developed a system for tapered fiber measurements of optomechanical resonators inside a dilution refrigerator, which is compatible with both on- and off-chip devices. Our apparatus features full three-dimensional control of the taper-resonator coupling conditions enabling critical coupling, with an overall fiber transmission efficiency of up to 70%. Notably, our design incorporates an optical microscope system consisting of a coherent bundle of 37,000 optical fibers for real-time imaging of the experiment at a resolution of ∼1 μm. We present cryogenic optical and optomechanical measurements of resonators coupled to tapered fibers at temperatures as low as 9 mK.

  9. A plastic dilution refrigerator in a 35 T magnet

    International Nuclear Information System (INIS)

    Oliveira, N.F.Jr; Bindilatti, V.; Haar, E. ter; Martin, R.V.; McNiff, E.J.Jr.

    1996-01-01

    We have built a plastic dilution refrigerator, small enough to fit in the bore of the 35 T hybrid magnet at MIT. The base temperature at H = 0 was 20 mK, measured with a CMN thermometer. In the field, we used capacitive glass thermometers and Matsushita resistors. All data obtained were consistent with a field independent glass thermometer and a negligible magnetoresistance of the Matsushitas at high fields. The minimum temperature measured at 34 T was 25 mK. The effect of magnet vibrations as well as field sweeps (≅ 1 T/min) corresponded to less than 1 μW heating. We observed that, above 29 T, the temperature gradients existent inside the mixing chamber suddenly disappeared, with the temperature becoming homogeneous from top to bottom. We attribute this fact to the effect of the magnetic forces on the liquid. (author)

  10. A parasitic magnetic refrigerator for cooling superconducting magnet

    International Nuclear Information System (INIS)

    Nakagome, H.; Takahashi, M.; Ogiwara, H.

    1988-01-01

    The application of magnetic refrigeration principle at a liquid helium temperature (4.2K) is very useful for cooling a superconducting magnet for its potential of high efficiency. The magnetic refrigerator equipped with 14 pieces of GGG (gadolinium-gallium-garnet) single crystal unit (30mm in diameter 10mm in length) in the rotating disk operates along the gradient of the magnetic field produced by a racetrack superconducting magnet, whose maximum magnetic field is 4.5 Tesla and the minimum field is 1.1 Tesla. The final goal of their program is to liquefy gaseous helium evaporated from a liquid helium vessel of the racetrack superconducting magnet by the rotating magnetic refrigerator which operates by using the magnetic field of the superconducting magnet. A 0.12W refrigeration power in the 0.72rpm operation has been achieved under condition of 4.2K to 11.5K operation. The helium evaporation rate of this magnet system is estimated as the order of 10mW, and the achieved refrigeration power of 0.12W at 4.2K is sufficient for cooling the superconducting magnet

  11. Helium turbo-expander with an alternator

    International Nuclear Information System (INIS)

    Akiyama, Yoshitane

    1980-01-01

    Study was made on a helium turbo-expander, the heart of helium refrigerator systems, in order to develop a system which satisfies the required conditions. A helium turbo-expander with externally pressurized helium gas bearings at the temperature of liquid nitrogen and an alternator as a brake have been employed. The essential difference between a helium turbo-expander and a nitrogen turbo-expander was clarified. The gas bearing lubricated with nitrogen at room temperature and the gas bearing lubricated with helium at low temperature were tested. The flow rate of helium in a helium refrigerator for a large superconducting magnet is comparatively small, therefore a helium turbine must be small, but the standard for large turbine design can be applied to such small turbine. Using the alternator as a brake, the turbo-expander was easily controllable electrically. The prototype turbo-expander was made, and the liquefaction test with it and MHD power generation test were carried out. (Kako, I.)

  12. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields.

    Science.gov (United States)

    Misra, S; Zhou, B B; Drozdov, I K; Seo, J; Urban, L; Gyenis, A; Kingsley, S C J; Jones, H; Yazdani, A

    2013-10-01

    We describe the construction and performance of a scanning tunneling microscope capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of performance as typical machines with more modest refrigeration by measuring spectroscopic maps at base temperature both at zero field and in an applied magnetic field.

  13. Simulation of the Energy Saver refrigeration system

    International Nuclear Information System (INIS)

    Barton, H.R. Jr.; Nicholls, J.E.; Mulholland, G.T.

    1981-10-01

    The helium refrigeration for the Energy Saver is supplied by a Central Helium Liquefier and 24 Satellite Refrigerators installed over a 1-1/4 square mile area. An interactive, software simulator has been developed to calculate the refrigeration available from the cryogenic system over a wide range of operating conditions. The refrigeration system simulator incorporates models of the components which have been developed to quantitatively describe changes in system performance. The simulator output is presented in a real-time display which has been used to search for the optimal operating conditions of the Satellite-Central system, to examine the effect of an extended range of operating parameters and to identify equipment modifications which would improve the system performance

  14. Performance of large-scale helium refrigerators subjected to pulsed heat load from fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, R.; Ghosh, P.; Chowdhury, K. [Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur (India)

    2012-07-01

    The immediate effect of pulsed heat load from fusion devices in helium refrigerators is wide variation in mass flow rate of low pressure stream returning to the cold-box. In this paper, a four expander based modified Claude cycle has been analyzed in quasi steady and dynamic simulations using Aspen HYSYS to identify critical equipment that may be affected due to such flow rate fluctuations at the return stream and their transient performance. Additional constraints on process parameters over steady state design have been identified. Suitable techniques for mitigation of fluctuation of return stream have also been explored. (author)

  15. Performance of large-scale helium refrigerators subjected to pulsed heat load from fusion devices

    International Nuclear Information System (INIS)

    Dutta, R.; Ghosh, P.; Chowdhury, K.

    2012-01-01

    The immediate effect of pulsed heat load from fusion devices in helium refrigerators is wide variation in mass flow rate of low pressure stream returning to the cold-box. In this paper, a four expander based modified Claude cycle has been analyzed in quasi steady and dynamic simulations using Aspen HYSYS to identify critical equipment that may be affected due to such flow rate fluctuations at the return stream and their transient performance. Additional constraints on process parameters over steady state design have been identified. Suitable techniques for mitigation of fluctuation of return stream have also been explored. (author)

  16. Operation and control of a dilution refrigerator for spin conversion measurements with neutrons

    International Nuclear Information System (INIS)

    Guckelsberger, K.; Friedrich, H.; Hennecke, H.; Matula, S.; Mihlan, F.H.; Mugai, D.; Scherm, R.

    1984-01-01

    In order to investigate the process of spin conversion we monitor by neutron transmission the time dependent non equilibrium population of tunneling levels in molecular crystals at very low temperatures over extended periods of time. We describe the cryogenic and operational aspects of an experiment comprising a dilution refrigerator with a 12-sample container, automatic sample change, automatic refill of cryogenic fluids and a watch-dog alarm system. Thermometry for the range 10 mK to 300 K is described including computer read-out and computerized temperature control

  17. Basics of Low-temperature Refrigeration

    CERN Document Server

    Alekseev, A.

    2014-07-17

    This chapter gives an overview of the principles of low temperature refrigeration and the thermodynamics behind it. Basic cryogenic processes - Joule-Thomoson process, Brayton process as well as Claude process - are described and compared. A typical helium laboratory refrigerator based on Claude process is used as a typical example of a low-temperature refrigeration system. A description of the hardware components for helium liquefaction is an important part of this paper, because the design of the main hardware components (compressors, turbines, heat exchangers, pumps, adsorbers, etc.) provides the input for cost calculation, as well as enables to estimate the reliability of the plant and the maintenance expenses. All these numbers are necessary to calculate the economics of a low temperature application.

  18. Basics of Low-temperature Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, A [Linde AG, Munich (Germany)

    2014-07-01

    This chapter gives an overview of the principles of low temperature refrigeration and the thermodynamics behind it. Basic cryogenic processes - Joule-Thomoson process, Brayton process as well as Claude process - are described and compared. A typical helium laboratory refrigerator based on Claude process is used as a typical example of a low-temperature refrigeration system. A description of the hardware components for helium liquefaction is an important part of this paper, because the design of the main hardware components (compressors, turbines, heat exchangers, pumps, adsorbers, etc.) provides the input for cost calculation, as well as enables to estimate the reliability of the plant and the maintenance expenses. All these numbers are necessary to calculate the economics of a low temperature application.

  19. Design verification and acceptance tests of the ASST-A helium refrigeration system

    International Nuclear Information System (INIS)

    Ganni, V.; Apparao, T.V.V.R.

    1993-07-01

    Three similar helium refrigerator systems have been installed at the Superconducting Super Collider Laboratory (SSCL) N15 site; the ASST-A system, which will be used for the accelerator system's full cell string test; the N15-B system, which will be used for string testing in the tunnel; and a third plant, dedicated to magnet testing at the Magnet Testing Laboratory. The ASST-A and N15-B systems will ultimately be a part of the collider's N15 sector station equipment. Each of these three systems has many subsystems, but the design basis for the main refrigerator is the same. Each system has a guaranteed capacity of 2000 W of refrigeration and 20 g/s liquefaction at 4.5K. The testing and design verification of the ASST-A refrigeration system consisted of parametric tests on the compressors and the total system. A summary of the initial performance test data is given in this paper. The tests were conducted for two cases: in the first, all four compressors were operating; in the second, only one compressor in each stage was operating. In each case, tests were conducted in three modes of operation described later on. The process design basis supplied by the manufacturers and used in the design of the main components -- the compressor, and expanders and heat exchangers for the coldbox -- were used to reduce the actual test data using process simulation methodology. In addition, the test results and the process design submitted by the manufacturer were analyzed using exergy analysis. This paper presents both the process and the exergy analyses of the manufacturer's design and the actual test data for Case 1. The process analyses are presented in the form of T-S diagrams. The results of the exergy analyses comparing the exergy losses of each component and the total system for the manufacturer's design and the test data are presented in the tables

  20. Thermal flow regulator of refrigerant

    International Nuclear Information System (INIS)

    Dubinskij, S.I.; Savchenko, A.G.; Suplin, V.Z.

    1988-01-01

    A thermal flow regulator of refrigerant for helium flow-type temperature-controlled cryostats based on controlling the channel hydraulic resistance due to variation of the flow density and viscosity during liquid helium transformation into the gaseous state. Behind the regulator both two-phase flow and a heated gas can be produced. The regulator resolution is (7-15)x10 -4 l/mW of liquid helium

  1. Cooling with Superfluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, P; Tavian, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics.

  2. Commissioning and operational results of helium refrigeration system at JLab for the 12GeV upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Norton, Robert O. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Creel, Jonathan D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-12-01

    The new 4.5 K refrigerator system at the Jefferson Lab (JLab) Central Helium Liquefier (CHL-2) for the 12 GeV upgrade was commissioned in late spring of 2013, following the commissioning of the new compressor system, and has been supporting 12 GeV LINAC commissioning since that time. Six design modes were tested during commissioning, consisting of a maximum capacity, nominal capacity, maximum liquefaction, maximum refrigeration, maximum fill and a stand-by/reduced load condition. The maximum capacity was designed to support a 238 g/s, 30 K and 1.16 bar cold compressor return flow, a 15 g/s, 4.5 K liquefaction load and a 12.6 kW, 35-55 K shield load. The other modes were selected to ensure proper component sizing and selection to allow the cold box to operate over a wide range of conditions and capacities. The cold box system is comprised of two physically independent cold boxes with interconnecting transfer-lines. The outside (upper) 300-60 K vertical cold box has no turbines and incorporates a liquid nitrogen pre-cooler and 80-K beds. The inside (lower) 60-4.5 K horizontal cold box houses seven turbines that are configured in four expansion stages including one Joule-Thompson expander and a 20-K bed. The helium compression system has five compressors to support three pressure levels in the cold box. This paper will summarize the analysis of the test data obtained over the wide range of operating conditions and capacities which were tested.

  3. Combined He3 cryostats and He3-He4 dilution refrigerators

    International Nuclear Information System (INIS)

    Kovac, L.; Balla, J.

    1974-07-01

    A modular set of equipment was designed, which consists of a 4 He Dewar vessel with a very low evaporation rate, having a pumped 4 He bath in which either a 3 He cryostat or a dilution refrigerator within removable inserts can be placed. Any of them can be simply and rapidly connected to the versatile Dewar, auxiliary 4 He-, vacuum; and 3 He- 4 He systems. Two such sets have already been completed and can be used at temperatures from 1.5K to 0.05K for thermodynamic and neutron diffraction measurements. The performance of all inserts was stable and reliable, differences between the cryostats and runs were small - nearly all within the accuracy of temperature determination. The construction of a lot of parts is identical, allowing rapid manufacture. Assembling and repairs are simple, all parts are easily accessible. (K.A.)

  4. Performance of a Throttle Cycle Refrigerator with Nitrogen-Hydrocarbon and Argon-Hydrocarbon Mixtures

    Science.gov (United States)

    Venkatarathnam, G.; Senthil Kumar, P.; Srinivasa Murthy, S.

    2004-06-01

    Throttle cycle refrigerators are a class of vapor compression refrigerators that can provide refrigeration at cryogenic temperatures and operate with refrigerant mixtures. The performance of our prototype refrigerators with nitrogen-hydrocarbon, nitrogen-hydrocarbon-helium and argon-hydrocarbon refrigerant mixtures is presented in this paper.

  5. Modeling the dynamic response of pressures in a distributed helium refrigeration system

    International Nuclear Information System (INIS)

    Brubaker, J.C.

    1997-12-01

    A mathematical model is created of the dynamic response of pressures caused by flow inputs to an existing distributed helium refrigeration system. The dynamic system studied consists of the suction and discharge pressure headers and compressor portions of the refrigeration system used to cool the superconducting magnets of the Tevatron accelerator at the Fermi National Accelerator Laboratory. The modeling method involves identifying the system from data recorded during a series of controlled tests, with effort made to detect locational differences in pressure response around the four mile accelerator circumference. A review of the fluid mechanics associated with the system indicates linear time invariant models are suitable for the identification, particularly since the governing equations of one dimensional fluid flow are approximated by linear differential equations. An outline of the experimental design and the data acquisition system are given, followed by a detailed description of the modeling, which utilized the Matlab programming language and associated System Identification Toolbox. Two representations of the system are presented. One, a black box model, provides a multi-input, multi-output description assembled from the results of single input step function testing. This description indicates definite variation in pressure response with distance from the flow input location, and also suggests subtle differences in response with the input location itself. A second system representation is proposed which details the relation between continuous flow changes and pressure response, and provides explanation of a previously unappreciated pressure feedback internal to the system

  6. Modeling the dynamic response of pressures in a distributed helium refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, John Carl [Illinois Inst. of Technology, Chicago, IL (United States)

    1997-12-01

    A mathematical model is created of the dynamic response of pressures caused by flow inputs to an existing distributed helium refrigeration system. The dynamic system studied consists of the suction and discharge pressure headers and compressor portions of the refrigeration system used to cool the superconducting magnets of the Tevatron accelerator at the Fermi National Accelerator Laboratory. The modeling method involves identifying the system from data recorded during a series of controlled tests, with effort made to detect locational differences in pressure response around the four mile accelerator circumference. A review of the fluid mechanics associated with the system indicates linear time invariant models are suitable for the identification, particularly since the governing equations of one dimensional fluid flow are approximated by linear differential equations. An outline of the experimental design and the data acquisition system are given, followed by a detailed description of the modeling, which utilized the Matlab programming language and associated System Identification Toolbox. Two representations of the system are presented. One, a black box model, provides a multi-input, multi-output description assembled from the results of single input step function testing. This description indicates definite variation in pressure response with distance from the flow input location, and also suggests subtle differences in response with the input location itself. A second system representation is proposed which details the relation between continuous flow changes and pressure response, and provides explanation of a previously unappreciated pressure feedback internal to the system.

  7. Adopted Methodology for Cool-Down of SST-1 Superconducting Magnet System: Operational Experience with the Helium Refrigerator

    Science.gov (United States)

    Sahu, A. K.; Sarkar, B.; Panchal, P.; Tank, J.; Bhattacharya, R.; Panchal, R.; Tanna, V. L.; Patel, R.; Shukla, P.; Patel, J. C.; Singh, M.; Sonara, D.; Sharma, R.; Duggar, R.; Saxena, Y. C.

    2008-03-01

    The 1.3 kW at 4.5 K helium refrigerator / liquefier (HRL) was commissioned during the year 2003. The HRL was operated with its different modes as per the functional requirements of the experiments. The superconducting magnets system (SCMS) of SST-1 was successfully cooled down to 4.5 K. The actual loads were different from the originally predicted boundary conditions and an adjustment in the thermodynamic balance of the refrigerator was necessary. This led to enhanced capacity, which was achieved without any additional hardware. The required control system for the HRL was tuned to achieve the stable thermodynamic balance, while keeping the turbines' operating parameters at optimized conditions. An extra mass flow rate requirement was met by exploiting the margin available with the compressor station. The methodology adopted to modify the capacity of the HRL, the safety precautions and experience of SCMS cool down to 4.5 K, are discussed.

  8. Magnetic refrigeration: Materials, design, and applications. (Latest citations from the INSPEC: Information services for the Physics and Engineering Communities database). Published Search

    International Nuclear Information System (INIS)

    1993-08-01

    The bibliography contains citations concerning cryogenics using magnetic refrigerants. Refrigerant properties, magnetic materials, and thermal characteristics are discussed. Magnetic refrigerators are used for helium liquefaction, cooling superconductors, and superfluid helium production. Carnot-cycle refrigerators, reciprocating refrigerators, parasitic refrigerators, Ericsson refrigerators, and Stirling cycle refrigerators are among the types of magnetic refrigerators evaluated. (Contains a minimum of 94 citations and includes a subject term index and title list.)

  9. Construction and performance of a dilution-refrigerator based spectroscopic-imaging scanning tunneling microscope.

    Science.gov (United States)

    Singh, U R; Enayat, M; White, S C; Wahl, P

    2013-01-01

    We report on the set-up and performance of a dilution-refrigerator based spectroscopic imaging scanning tunneling microscope. It operates at temperatures below 10 mK and in magnetic fields up to 14T. The system allows for sample transfer and in situ cleavage. We present first-results demonstrating atomic resolution and the multi-gap structure of the superconducting gap of NbSe(2) at base temperature. To determine the energy resolution of our system we have measured a normal metal/vacuum/superconductor tunneling junction consisting of an aluminum tip on a gold sample. Our system allows for continuous measurements at base temperature on time scales of up to ≈170 h.

  10. Capacity enhancement of indigenous expansion engine based helium liquefier

    Science.gov (United States)

    Doohan, R. S.; Kush, P. K.; Maheshwari, G.

    2017-02-01

    Development of technology and understanding for large capacity helium refrigeration and liquefaction at helium temperature is indispensable for coming-up projects. A new version of helium liquefier designed and built to provide approximately 35 liters of liquid helium per hour. The refrigeration capacity of this reciprocating type expansion engine machine has been increased from its predecessor version with continuous improvement and deficiency debugging. The helium liquefier has been built using components by local industries including cryogenic Aluminum plate fin heat exchangers. Two compressors with nearly identical capacity have been deployed for the operation of system. Together they consume about 110 kW of electric power. The system employs liquid Nitrogen precooling to enhance liquid Helium yield. This paper describes details of the cryogenic expander design improvements, reconfiguration of heat exchangers, performance simulation and their experimental validation.

  11. A dilution refrigerator combining low base temperature, high cooling power and low heat leak for use with nuclear cooling

    International Nuclear Information System (INIS)

    Bradley, D.I.; Guenault, A.M.; Keith, V.; Miller, I.E.; Pickett, G.R.; Bradshaw, T.W.; Locke-Scobie, B.G.

    1982-01-01

    The design philosophy, design, construction and performance of a dilution refrigerator specifically intended for nuclear cooling experiments in the submillikelvin regime is described. Attention has been paid from the outset to minimizing sources of heat leaks, and to achieving a low base temperature and relatively high cooling power below 10 mK. The refrigerator uses sintered silver heat exchangers similar to those developed at Grenoble. The machine has a base temperature of 3 mK or lower and can precool a copper nuclear specimen in 6.8 T to 8 mK in 70 h. The heat leak to the innermost nuclear stage is < 30 pW after only a few days' running. (author)

  12. Performance Testing of Jefferson Lab 12 GeV Helium Screw Compressors

    Science.gov (United States)

    Knudsen, P.; Ganni, V.; Dixon, K.; Norton, R.; Creel, J.

    2015-08-01

    Oil injected screw compressors have essentially superseded all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, reliability, minimal vibration, and capability of handling helium's high heat of compression. At the present state of compressor system designs for helium refrigeration systems, typically two-thirds of the lost input power is due to the compression system. It is important to understand the isothermal and volumetric efficiencies of these machines to help properly design the compression system to match the refrigeration process. It is also important to identify those primary compressor skid exergetic loss mechanisms which may be reduced, thereby offering the possibility of significantly reducing the input power to helium refrigeration processes which are extremely energy intensive. This paper summarizes the results collected during the commissioning of the new compressor system for Jefferson Lab's (JLab's) 12 GeV upgrade. The compressor skid packages were designed by JLab and built to print by industry. They incorporate a number of modifications not typical of helium screw compressor packages and most importantly allow a very wide range of operation so that JLab's patented Floating Pressure Process can be fully utilized. This paper also summarizes key features of the skid design that allow this process and facilitate the maintenance and reliability of these helium compressor systems.

  13. Magnetic refrigeration down to 1.6 K for the future circular collider e$^+$e$^-$

    CERN Document Server

    Tkaczuk, Jakub; Millet, Francois; Rousset, Bernard; Duval, Jean Marc

    2017-01-01

    High-field superconducting rf cavities of the future circular collider e+e− may require a kW-range superfluid helium refrigeration down to 1.6 K. Magnetic refrigeration operating below 4.2 K can be an alternative to the compression/expansion helium refrigeration. A significant difference between this application and previous magnetic refrigerator studies is its large cooling power, up to 103 times larger than the other designs. Principles of magnetic refrigeration are described and various technical solutions are compared. A numerical model for the static magnetic refrigerator is presented, validated, and adapted to the needs of the positron-electron version of the future circular collider. A preliminary design of magnetic refrigerator suitable for low temperature, kW-range cooling is studied.

  14. Proposal for the award of a contract for the supply and installation of the cryogenic helium refrigeration system for the CMS experiment

    CERN Document Server

    1999-01-01

    This document concerns the award of a contract for the supply and installation of the cryogenic helium refrigeration system for the CMS Experiment. Following a market survey carried out among 22 firms in seven Member States and seven firms in two non-Member States, a call for tenders (IT-2576/EP/CMS) was sent on 17 February 1999 to two firms in two Member States and one firm in one non-Member State. By the closing date, CERN had received two tenders. The Finance Committee is invited to agree to the negotiation of a contract with AIR LIQUIDE (FR), the lowest bidder, for the supply and installation of a cryogenic helium refrigeration system for an amount of 4 552 500 euros, subject to revision, with an option for one liquid nitrogen dewar and a one-year extension of the warranty period, for an amount of 205 000 euros, subject to revision, bringing the total amount to 4 757 500 euros. At the rate of exchange given in the tender, this amount is equal to 7 612 000 Swiss francs. This procurement will be financed by...

  15. Procurement and commissioning of the CHL refrigerator at CEBAF

    International Nuclear Information System (INIS)

    Chronis, W.C.; Arenius, D.M.; Bevins, B.S.; Ganni, V.; Kashy, D.H.; Keesee, M.M.; Reid, T.R.; Wilson, J.D.

    1996-01-01

    The CEBAF Central Helium Liquefier (CHL) provides 2K refrigeration to the 338 superconducting niobium cavities in two 400 MeV linacs and one 45 MeV injector. The CHL consists of three first stage and three second stage compressors, a 4.5K cold box, a 2K cold box, liquid and gaseous helium storage, liquid nitrogen storage, and transfer lines. Figure 1 presents a block diagram of the CHL refrigerator. The system was designed to provide 4.8 kW of primary refrigeration at 2K, 12 kW of shield refrigeration at 45K for the linac cryomodules, and 10 g/s of liquid flow for the end stations. In April 1994, stable 2K operation of the previously uncommissioned cold compressors was achieved. The cold compressors are a cold vacuum pump with an inlet temperature of circa 3.0K. These compressors operate on magnetic bearing,s and therefore eliminate the possibility of contamination due to any air leaks into the system. Operational data and commissioning experience as they relate to the warm gaseous helium compressors, turbines, instrumentation and control, and the cold compressors are presented

  16. Concepts for a low-vibration and cryogen-free tabletop dilution refrigerator

    Science.gov (United States)

    Uhlig, Kurt

    2017-10-01

    The purpose of this article is to describe several concepts of how to cool a modern tabletop dilution refrigerator (DR) with a cryogen-free pulse tube cryocooler (PTC). Tabletop DRs have come more and more into the focus of scientists, recently, because they offer easy access to the mixing chamber mounting plate from all directions and because of their very short cooldown times. However, these milli-Kelvin coolers are precooled with LHe which makes their handling inconvenient and often expensive. In the paper it is explained how a cryocooler can be directly coupled to a DR unit making the use of LHe superfluous. Furthermore, concepts are discussed where a tabletop DR is cooled by a remote PTC; PTC and DR are mounted in separate vacuum containers which are connected by a stainless steel bellows tube. This kind of apparatus would offer an extremely low level of vibration at the mixing chamber mounting plate.

  17. Commissioning and operation of the CEBAF end station refrigeration system

    International Nuclear Information System (INIS)

    Arenius, D.; Bevins, B.; Chronis, W.C.; Ganni, V.

    1996-01-01

    The CEBAF End Station Helium Refrigerator (ESR) System provides refrigeration at 80 K, 20 K and 4.5 K to three End Station experimental halls. The facility consists of a two stage helium screw compressor system, 4.5 K refrigerator, cryogen distribution valve box, and transfer lines to the individual experimental halls. The 4.5 K cold box and compressors were originally part of the ESCAR 1500 W, 4 K refrigeration system at Lawrence Berkeley Laboratory which was first commissioned in 1977. The compressors, 4.5 K cold box, and control system design were modified to adapt the plant for the requirements of the CEBAF experimental halls. Additional subsystems of cryogen distribution, transfer lines, warm gas management, and computer control interface were added. This paper describes the major plant subsystems, modifications, operational experiences and performance

  18. Study of reverse Brayton cryocooler with Helium-Neon mixture for HTS cable

    Science.gov (United States)

    Dhillon, A. K.; Ghosh, P.

    2017-12-01

    As observed in the earlier studies, helium is more efficient than neon as a refrigerant in a reverse Brayton cryocooler (RBC) from the thermodynamic point of view. However, the lower molecular weight of helium leads to higher refrigerant inventory as compared to neon. Thus, helium is suitable to realize the high thermodynamic efficiency of RBC whereas neon is appropriate for the compactness of the RBC. A binary mixture of helium and neon can be used to achieve high thermodynamic efficiency in the compact reverse Brayton cycle (RBC) based cryocooler. In this paper, an attempt has been made to analyze the thermodynamic performance of the RBC with a binary mixture of helium and neon as the working fluid to provide 1 kW cooling load for high temperature superconductor (HTS) power cables working with a temperature range of 50 K to 70 K. The basic RBC is simulated using Aspen HYSYS V8.6®, a commercial process simulator. Sizing of each component based on the optimized process parameters for each refrigerant is performed based on a computer code developed using Engineering Equation Solver (EES-V9.1). The recommendation is provided for the optimum mixture composition of the refrigerant based on the trade-off factors like thermodynamic efficiency such as the exergy efficiency and equipment considerations. The outcome of this study may be useful for recommending a suitable refrigerant for the RBC operating at a temperature level of 50 K to 70 K.

  19. Sorption compressor/mechanical expander hybrid refrigeration

    Science.gov (United States)

    Jones, J. A.; Britcliffe, M.

    1987-01-01

    Experience with Deep Space Network (DSN) ground-based cryogenic refrigerators has proved the reliability of the basic two-stage Gifford-McMahon helium refrigerator. A very long life cryogenic refrigeration system appears possible by combining this expansion system or a turbo expansion system with a hydride sorption compressor in place of the usual motor driven piston compressor. To test the feasibility of this system, a commercial Gifford-McMahon refrigerator was tested using hydrogen gas as the working fluid. Although no attempt was made to optimize the system for hydrogen operation, the refrigerator developed 1.3 W at 30 K and 6.6 W at 60 K. The results of the test and of theoretical performances of the hybrid compressor coupled to these expansion systems are presented.

  20. Magnetic refrigeration down to 1.6 K for the future circular collider e^{+}e^{-}

    Directory of Open Access Journals (Sweden)

    Jakub Tkaczuk

    2017-04-01

    Full Text Available High-field superconducting rf cavities of the future circular collider e^{+}e^{-} may require a kW-range superfluid helium refrigeration down to 1.6 K. Magnetic refrigeration operating below 4.2 K can be an alternative to the compression/expansion helium refrigeration. A significant difference between this application and previous magnetic refrigerator studies is its large cooling power, up to 10^{3} times larger than the other designs. Principles of magnetic refrigeration are described and various technical solutions are compared. A numerical model for the static magnetic refrigerator is presented, validated, and adapted to the needs of the positron-electron version of the future circular collider. A preliminary design of magnetic refrigerator suitable for low temperature, kW-range cooling is studied.

  1. Stability of split Stirling refrigerators

    NARCIS (Netherlands)

    Waele, de A.T.A.M.; Liang, W.

    2009-01-01

    In many thermal systems spontaneous mechanical oscillations are generated under the influence of large temperature gradients. Well-known examples are Taconis oscillations in liquid-helium cryostats and oscillations in thermoacoustic systems. In split Stirling refrigerators the compressor and the

  2. Optimizing the Thermoacoustic Pulse Tube Refrigerator Performances

    Directory of Open Access Journals (Sweden)

    E. V. Blagin

    2014-01-01

    Full Text Available The article deals with research and optimization of the thermoacoustic pulse tube refrigerator to reach a cryogenic temperature level. The refrigerator is considered as a thermoacoustic converter based on the modified Stirling cycle with helium working fluid. A sound pressure generator runs as a compressor. Plant model comprises an inner heat exchanger, a regenerative heat exchanger, a pulse tube, hot and cold heat exchangers at its ends, an inertial tube with the throttle, and a reservoir. A model to calculate the pulse tube thermoacoustic refrigerator using the DeltaEC software package has been developed to be a basis for calculation techniques of the pulse tube refrigerator. Momentum, continuity, and energy equations for helium refrigerant are solved according to calculation algorithm taking into account the porosity of regenerator and heat exchangers. Optimization of the main geometric parameters resulted in decreasing temperature of cold heat exchanger by 41,7 K. After optimization this value became equal to 115,01 K. The following parameters have been optimized: diameters of the feeding and pulse tube and heat exchangers, regenerator, lengths of the regenerator and pulse and inertial tubes, as well as initial pressure. Besides, global minimum of temperatures has been searched at a point of local minima corresponding to the optimal values of abovementioned parameters. A global-local minima difference is 0,1%. Optimized geometric and working parameters of the thermoacoustic pulse tube refrigerator are presented.

  3. Design concept of cryogenic falling liquid film helium separator

    International Nuclear Information System (INIS)

    Kinoshita, M.; Yamanishi, T.; Bartlit, J.R.; Sherman, R.H.

    1986-01-01

    A design concept is developed for a cryogenic falling liquid film helium separator by clarifying the differences between this process and a cryogenic distillation column. The process characteristics are greatly improved by the idea of adding an H 2 gas flow to a point near the upper end of the packed section. The flow rate of tritium lost from the top is kept extremely low with an adequately short packed section, and the column pressure is reduced to 1 atm. The addition causes no appreciable increase in the protium percentage (approx. =1%) in the bottom liquid flow. A design procedure applying the Colburn-Hougen method is proposed for determining specifications of the refrigerated section. It is shown that the presence of noncondensible helium requires a significantly larger heat transfer area mainly because the mass transfer resistance increases enormously as the condensation of hydrogen isotopes proceeds. Control schemes are also proposed: The tritium concentration in the top gas is controlled by the H 2 gas flow rate. The pressure rise caused by an increase of the helium percentage within the refrigerated section, which cannot readily be eliminated by changing input specifications of the refrigerant gas, is avoided by increasing the top gas flow rate to release more helium from the top

  4. CALCULATED REGENERATOR PERFORMANCE AT 4 K WITH HELIUM-4 AND HELIUM-3

    International Nuclear Information System (INIS)

    Radebaugh, Ray; Huang Yonghua; O'Gallagher, Agnes; Gary, John

    2008-01-01

    The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transport properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies

  5. Charged particle detectors based on high quality amorphous silicon deposited with hydrogen or helium dilution of silane

    International Nuclear Information System (INIS)

    Hong, Wan-Shick; Drewery, J.S.; Jing, Tao; Lee, Hyoung-Koo; Kaplan, S.N.; Perez-Mendez, V.; Mireshghi, Ali; Kitsuno, Yu

    1994-11-01

    Electrical transport properties of the authors PECVD a-Si:H material has been improved by using hydrogen and/or helium dilution of silane and lower substrate temperature for deposition. For hydrogen-diluted material they have measured electron and hole mobilities ∼ 4 times larger, and μτ values 2-3 times higher than for their standard a-Si:H. The density of ionized dangling bonds (N D *) also showed a factor of 5-10 improvement. Due to its higher conductivity, the improved a- Si:H material is more suitable than conventional a-Si:H for TFT applications. However, it is difficult to make thick layers by H-dilution because of high internal stress. On the other hand, thick detectors can be made at a faster rate and lower stress by low temperature deposition with He-dilution and subsequent annealing. The internal stress, which causes substrate bending and delamination, was reduced by a factor of 4 to ∼90 MPa, while the electronic quality was kept as good as that of the standard material. By this technique 35 μm-thick n-i-p diodes were made without significant substrate bending, and the electronic properties, such as electron mobility and ionized dangling bond density, were suitable for detecting minimum ionizing particles

  6. Charged particle detectors based on high quality amorphous silicon deposited with hydrogen or helium dilution of silane

    International Nuclear Information System (INIS)

    Hong, W.S.; Drewery, J.S.; Jing, T.; Lee, H.; Kaplan, S.N.; Perez-Mendez, V.; Kitsuno, Y.

    1995-01-01

    Electrical transport properties of the PECVD a-Si:H material has been improved by using hydrogen and/or helium dilution of silane and lower substrate temperature for deposition. For hydrogen-diluted material the authors measured electron and hole mobilities ∼4 times larger, and microτ values 2--3 times higher than for the standard a-Si:H. The density of ionized dangling bonds (N D *) also showed a factor of 5--10 improvement. Due to its higher conductivity, the improved a-Si:H material is more suitable than conventional a-Si:H for TFT applications. However, it is difficult to make thick layers by H-dilution because of high internal stress. On the other hand, thick detectors can be made at a faster rate and lower stress by low temperature deposition with He-dilution and subsequent annealing. The internal stress, which causes substrate bending and delamination, was reduced by a factor of 4 to ∼90 MPa, while the electronic quality was kept as good as that of the standard material. By this technique 35 microm-thick n-i-p diodes were made without significant substrate bending, and the electronic properties, such as electron mobility and ionized dangling bond density, were suitable for detecting minimum ionizing particles

  7. Contribution to the study of a magnetic refrigeration between 4.2 and 1.8 kelvin

    International Nuclear Information System (INIS)

    Delpuech, Claude.

    1980-11-01

    This thesis includes three parts. (1) Construction of a study alternating refrigerator. This is essentially a double acting machine, with ancillary refrigeration by helium expansion. This refrigerator operates in a liquid helium bath at 4.2 K and the cold source is a superfluid bath whose temperature can be brought down to 1.6 K. The magnetic components, actuated by a periodic translation movement, are magnetized cyclically in the 4.2 K bath, then demagnetized in the central bath forming the cold source. The bar slides in guide bearings, isolating the central chamber of the 4.2 K bath. This can be cooled through the copper wall by the refrigeration bath. A relief valve and a level gauge enable the operation of the ancillary refrigerator to be adjusted. A temperature of under 1.8 K was obtained in a superfluid bath at atmospheric pressure. (2) Study of possible thermal exchange improvements in supercritical helium by artificially creating turbulency between two walls. This study could concern rotary machines described in an addendum. (3) Some physical properties of paramagnetic rare earth salts are also studied [fr

  8. Assessment and study of existing concepts and methods of cryogenic refrigeration for superconducting transmission cables. Final report

    International Nuclear Information System (INIS)

    Kadi, F.J.; Longsworth, R.C.

    1976-02-01

    A review of current programs to develop superconducting power transmission shows that current plans require helium refrigerators operating at 5 to 13 0 K and 3 to 15 atm pressure with compressor power input in the range of 1,300 to 3,500 HP. Future requirements will probably trend toward slightly higher temperatures and larger refrigerators. Present large helium refrigerators and APCI standard nitrogen plants were studied and an average outage frequency of about 18 per year is found to be typical for both. Cost and reliability studies of alternate refrigeration systems based on studies of components shows that the best current system which would have a failure rate of once in 20 years would consist of two full size oil flooded screw compressors in parallel, manifolded to two full size cold boxes and a liquid helium back up dewar. The principal area of development needed to implement this system is in the switch over mechanisms. These include switching to an auxillary power source in the event of power interruption, switching to the standby compressor, and switching to the back up liquid helium dewar. Costs are projected as being only slightly greater than preliminary estimates

  9. Design of a scanning gate microscope for mesoscopic electron systems in a cryogen-free dilution refrigerator.

    Science.gov (United States)

    Pelliccione, M; Sciambi, A; Bartel, J; Keller, A J; Goldhaber-Gordon, D

    2013-03-01

    We report on our design of a scanning gate microscope housed in a cryogen-free dilution refrigerator with a base temperature of 15 mK. The recent increase in efficiency of pulse tube cryocoolers has made cryogen-free systems popular in recent years. However, this new style of cryostat presents challenges for performing scanning probe measurements, mainly as a result of the vibrations introduced by the cryocooler. We demonstrate scanning with root-mean-square vibrations of 0.8 nm at 3 K and 2.1 nm at 15 mK in a 1 kHz bandwidth with our design. Using Coulomb blockade thermometry on a GaAs/AlGaAs gate-defined quantum dot, we demonstrate an electron temperature of 45 mK.

  10. The liquid helium system of ATLAS

    International Nuclear Information System (INIS)

    Nixon, J.M.; Bollinger, L.M.

    1989-01-01

    Starting in 1978 with one small refrigerator and distribution line, the LHe system of ATLAS has gradually grown into a complex network, as required by several enlargements of the superconducting linac. The cryogenic system now comprises 3 refrigerators, 11 helium compressors, /approximately/340 ft. of coaxial LHe transfer line, 3 1000-l dewars, and /approximately/76 LHe valves that deliver steady-state flowing LHe to 16 beam-line cryostats. In normal operation, the 3 refrigerators are linked so as to provide cooling where needed. LHe heat exchangers in distribution lines play an important role. This paper discusses design features of the system, including the logic of the controls that permit the coupled refrigerators to operate stably in the presence of large and sudden changes in heat load. 8 refs., 3 figs

  11. Role of expanders in helium liquefaction cycles: Parametric studies using Collins cycle

    International Nuclear Information System (INIS)

    Thomas, Rijo Jacob; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2011-01-01

    Large scale helium liquefaction/refrigeration plant is a key subsystem of fusion devices. Performance of these plants is dependent on a number of geometric and operating parameters of its constituting components such as compressors, heat exchangers, expanders, valves, etc. Expander has been chosen as the subject matter of analyses in the present study. As the sensible cold of helium vapor is lost in liquefiers, the expanders in liquefaction cycles have to provide more refrigeration than those in refrigeration cycles. The expander parameters such as rate of mass flow, operating pressure, inlet temperature, etc. are inter-dependent, and hence, it is difficult to predict the system behavior with variation of a particular parameter. This necessitates the use of process simulators. Parametric studies have been performed on Collins helium liquefaction cycle using Aspen HYSYS. Collins cycle has all the basic characteristics of a large-scale helium liquefier and the results of this study may be extrapolated to understand the behavior of large scale helium liquefiers. The study shows that the maximum liquid production is obtained when 80% of the compressor flow is diverted through the expanders and it is equally distributed between the two expanders. The relationships between the liquid production and the isentropic efficiency of expanders are almost linear and both the higher and lower temperature expanders exhibit similar trends.

  12. Role of expanders in helium liquefaction cycles: Parametric studies using Collins cycle

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Rijo Jacob, E-mail: rijojthomas@gmail.com [Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302 (India); Ghosh, Parthasarathi; Chowdhury, Kanchan [Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302 (India)

    2011-06-15

    Large scale helium liquefaction/refrigeration plant is a key subsystem of fusion devices. Performance of these plants is dependent on a number of geometric and operating parameters of its constituting components such as compressors, heat exchangers, expanders, valves, etc. Expander has been chosen as the subject matter of analyses in the present study. As the sensible cold of helium vapor is lost in liquefiers, the expanders in liquefaction cycles have to provide more refrigeration than those in refrigeration cycles. The expander parameters such as rate of mass flow, operating pressure, inlet temperature, etc. are inter-dependent, and hence, it is difficult to predict the system behavior with variation of a particular parameter. This necessitates the use of process simulators. Parametric studies have been performed on Collins helium liquefaction cycle using Aspen HYSYS. Collins cycle has all the basic characteristics of a large-scale helium liquefier and the results of this study may be extrapolated to understand the behavior of large scale helium liquefiers. The study shows that the maximum liquid production is obtained when 80% of the compressor flow is diverted through the expanders and it is equally distributed between the two expanders. The relationships between the liquid production and the isentropic efficiency of expanders are almost linear and both the higher and lower temperature expanders exhibit similar trends.

  13. Superfluid thermodynamic cycle refrigerator

    Science.gov (United States)

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  14. 300 W - 1.75 K TORE SUPRA refrigerator cold centrifugal compressors report

    International Nuclear Information System (INIS)

    Gistau, G.M.; Pecoud, Y.; Ravex, A.E.

    1988-01-01

    The centrifugal helium compressors for the TORE SUPRA tokamak refrigerator were designed and manufactured by L'Air Liquide and tested at nominal conditions on a custom test rig. The refrigerator is now installed and all acceptance tests have been completed. Other tests were carried out off design conditions with the machines installed in the TORE SUPRA refrigerator. The results of these tests, including compression ratio, efficiency, and heat losses, are discussed

  15. Assessment and study of existing concepts and methods of cryogenic refrigeration for superconducting transmission cables. Final report. Draft

    International Nuclear Information System (INIS)

    Kadi, F.J.; Longsworth, R.C.

    1976-02-01

    A review of current programs to develop superconducting power transmission shows that current plans require helium refrigerators operating at 5 to 13 0 K and 3 to 15 atm pressure with compressor power input in the range of 1300 to 3500 HP. Future requirements will probably trend towards slightly higher temperatures and larger refrigerators. Present large helium refrigerators and APCI standard nitrogen plants were studied and average outage frequency of about 18 per year is found to be typical for both. Cost and reliability studies of alternate refrigeration systems based on studies of components shows that the best current system which would have a failure rate of once in 20 y would consist of two full size oil flooded screw compressors in parallel, manifolded to two full size cold boxes and a liquid helium back up dewar. The principal area of development needed to implement this system is in the switch over mechanisms. These include switching to an auxillary power source in the event of power interruption, switching to the standby compressor, and switching to the back up liquid helium dewar. Costs are projected as being only slightly greater than preliminary estimates

  16. Cryogenic polarized-target facility. Progress report, July 1, 1981-June 30, 1982

    International Nuclear Information System (INIS)

    Gould, C.R.; Haase, D.G.

    1982-01-01

    The goal of this three-year research project is to build a cryogenically polarized target facility for measuring total neutron cross sections for polarized neutrons incident on polarized nuclei. The components of the system have been assembled at TUNL during the current contract period. These include the dilution-refrigerator support assembly, the dilution-refrigerator itself, the dewar, the beam line, the shielding cave for the neutron source, and the neutron-detector shield and rolling-cart assembly. The dilution refrigerator is presently undergoing testing at liquid-nitrogen and liquid-helium temperatures. Experiments with aluminum and copper targets are scheduled for the coming contract period

  17. Combination closed-cycle refrigerator/liquid-He4 cryostat for e- damage of bulk samples

    International Nuclear Information System (INIS)

    Johnson, E.C.

    1987-01-01

    A closed-cycle refrigerator/cryostat system for use in ultrasonic studies of electron irradiation damaged bulk specimens is described. The closed-cycle refrigerator provides a convenient means for long-term (several days) sample irradiation at low temperatures. A neon filled ''thermal diode'' is employed to permit efficient cooling, via liquid helium, of the sample below the base temperature of the refrigerator

  18. Industrial applications of refrigeration. General considerations; Applications industrielles du froid. Generalites

    Energy Technology Data Exchange (ETDEWEB)

    Marvillet, Ch. [Ecole Centrale de Lyon, 69 - Ecully (France); Groupement pour la Recherche sur les Echangeurs Thermiques, GRETh (France)

    2001-10-01

    The refrigeration process consists in the lowering of the temperature of a product or of a process below the ambient temperature. Thus, the refrigeration process implies a heat absorption process for the production of coldness. Two ways of coldness production are considered: the mechanical refrigeration using compression or absorption cycle machineries, and the cryogenic refrigeration which requires the use of industrial fluids like liquid nitrogen, helium or CO{sub 2}. This article presents the different functions of refrigeration in industrial processes and the effects of temperature on inert or living matter (influence of temperature on the physical properties, thermodynamic state, and physico-chemical transformations of solids, bodies and substances, influence of temperature on the transformation processes of food products, mechanical refrigeration and mastery of fermentation). (J.S.)

  19. Improvement of two-stage GM refrigerator performance using a hybrid regenerator

    International Nuclear Information System (INIS)

    Ke, G.; Makuuchi, H.; Hashimoto, T.; Onishi, A.; Li, R.; Satoh, T.; Kanazawa, Y.

    1994-01-01

    To improve the performance of two-stage GM refrigerators, a hybrid regenerator with magnetic materials of Er 3 Ni and ErNi 0.9 Co 0.1 was used in the 2nd stage regenerator because of its large heat exchange capacity. The largest refrigeration capacity achieved with the hybrid regenerator was 0.95W at helium liquefied temperature of 4.2K. This capacity is 15.9% greater than the 0.82W refrigerator with only Er 3 Ni as the 2nd regenerator material. Use of the hybrid regenerator not only increases the refrigeration capacity at 4.2K, but also allows the 4K GM refrigerator to be used with large 1st stage refrigeration capacity, thus making it more practical

  20. Exergetic analysis of refrigeration system of the Pelletron-Linac particle accelerator of the University of Sao Paulo

    International Nuclear Information System (INIS)

    Oliveira Filho, O.B. de

    1993-01-01

    The Pelletron-Linac accelerator of the University of Sao Paulo will use the existing electrostatic Pelletron accelerator as an injector for the linear superconducting accelerator (Linac), to increase the acceleration of the particles. The Linac uses a forced flow circulation helium system to promote continuous refrigeration for long periods of time, at temperatures below or equal to 4,9 K. This paper shows the exergetic analysis of the Pelletron-linac refrigerator, identifying the main sources of irreversibilities and evaluating energetic consumption of the system. An exergy-enthalpy diagram for the helium shows the thermodynamic processes that take place in the refrigeration plant and the exergy losses. (author)

  1. Experimental and numerical thermohydraulic study of a supercritical helium loop in forced convection under pulsed heat loads

    International Nuclear Information System (INIS)

    Lagier, Benjamin

    2014-01-01

    Future fusion reactor devices such as ITER or JT-60SA will produce thermonuclear fusion reaction in plasmas at several millions of degrees. The confinement in the center of the chamber is achieved by very intense magnetic fields generated by superconducting magnets. These coils have to be cooled down to 4.4 K through a forced flow of supercritical helium. The cyclic behavior of the machines leads to pulsed thermal heat loads which will have to be handled by the refrigerator. The HELIOS experiment built in CEA Grenoble is a scaled down model of the helium distribution system of the tokamak JT-60SA composed of a saturated helium bath and a supercritical helium loop. The thesis work explores HELIOS capabilities for experimental and numerical investigations on three heat load smoothing strategies: the use of the saturated helium bath as an open thermal buffer, the rotation speed variation of the cold circulator and the bypassing of the heated section. The developed model describes well the physical evolutions of the helium loop (pressure, temperature, mass flow) submitted to heat loads observed during experiments. Advanced controls have been tested and validated to improve the stability of the refrigerator and to optimize the refrigeration power. (author) [fr

  2. Zero boil-off methods for large-scale liquid hydrogen tanks using integrated refrigeration and storage

    Science.gov (United States)

    Notardonato, W. U.; Swanger, A. M.; E Fesmire, J.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-12-01

    NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multilayer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.

  3. Polarization-preserving confocal microscope for optical experiments in a dilution refrigerator with high magnetic field.

    Science.gov (United States)

    Sladkov, Maksym; Bakker, M P; Chaubal, A U; Reuter, D; Wieck, A D; van der Wal, C H

    2011-04-01

    We present the design and operation of a fiber-based cryogenic confocal microscope. It is designed as a compact cold-finger that fits inside the bore of a superconducting magnet, and which is a modular unit that can be easily swapped between use in a dilution refrigerator and other cryostats. We aimed at application in quantum optical experiments with electron spins in semiconductors and the design has been optimized for driving with and detection of optical fields with well-defined polarizations. This was implemented with optical access via a polarization maintaining fiber together with Voigt geometry at the cold finger, which circumvents Faraday rotations in the optical components in high magnetic fields. Our unit is versatile for use in experiments that measure photoluminescence, reflection, or transmission, as we demonstrate with a quantum optical experiment with an ensemble of donor-bound electrons in a thin GaAs film. © 2011 American Institute of Physics

  4. Quantum statistics and liquid helium 3 - helum 4 mixtures

    International Nuclear Information System (INIS)

    Cohen, E.G.D.

    1979-01-01

    The behaviour of liquid helium 3-helium 4 mixtures is considered from the point of view of manifestation of quantum statistics effects in macrophysics. The Boze=Einstein statistics is shown to be of great importance for understanding superfluid helium-4 properties whereas the Fermi-Dirac statistics is of importance for understanding helium-3 properties. Without taking into consideration the interaction between the helium atoms it is impossible to understand the basic properties of liquid helium 33 - helium 4 mixtures at constant pressure. Proposed is a simple model of the liquid helium 3-helium 4 mixture, namely the binary mixture consisting of solid spheres of two types subjecting to the Fermi-Dirac and Bose-Einstein statistics relatively. This model predicts correctly the most surprising peculiarities of phase diagrams of concentration dependence on temperature for helium solutions. In particular, the helium 4 Bose-Einstein statistics is responsible for the phase lamination of helium solutions at low temperatures. It starts in the peculiar critical point. The helium 4 Fermi-Dirac statistics results in incomplete phase lamination close to the absolute zero temperatures, that permits operation of a powerful cooling facility, namely refrigerating machine on helium solution

  5. Cryogen-free dilution refrigerator for bolometric search of ...

    Indian Academy of Sciences (India)

    of a still, a 50 mK cold plate, a MC and a series of heat exchangers, integrated with a ... flow rate of ∼1900 μmol/s beyond which the system becomes unstable). .... refrigerator with an intrinsic heat leak, ˙Q0 present in the system, ... of 1.4 mW at 120 mK, has been successfully installed and tested at TIFR, Mumbai, India.

  6. Design analysis of a Helium re-condenser

    Science.gov (United States)

    Muley, P. K.; Bapat, S. L.; Atrey, M. D.

    2017-02-01

    Modern helium cryostats deploy a cryocooler with a re-condenser at its II stage for in-situ re-condensation of boil-off vapor. The present work is a vital step in the ongoing research work of design of cryocooler based 100 litre helium cryostat with in-situ re-condensation. The cryostat incorporates a two stage Gifford McMahon cryocooler having specified refrigerating capacity of 40 W at 43 K for I stage and 1 W at 4.2 K for II stage. Although design of cryostat ensures thermal load for cryocooler below its specified refrigerating capacity at the second stage, successful in-situ re-condensation depends on proper design of re-condenser which forms the objective of this work. The present work proposes design of helium re-condenser with straight rectangular fins. Fins are analyzed for optimization of thermal performance parameters such as condensation heat transfer coefficient, surface area for heat transfer, re-condensing capacity, efficiency and effectiveness. The present work provides design of re-condenser with 19 integral fins each of 10 mm height and 1.5 mm thickness with a gap of 1.5 mm between two fins, keeping in mind the manufacturing feasibility, having efficiency of 80.96 % and effectiveness of 10.34.

  7. Helium transport and exhaust studies in enhanced confinement regimes in DIII-D

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Hogan, J.T.; Mahdavi, M.A.; Maingi, R.; West, W.P.; Burrell, K.H.; Finkenthal, D.F.; Gohil, P.; Groebner, R.J.

    1995-02-01

    A better understanding of helium transport in the plasma core and edge in enhanced confinement regimes is now emerging from recent experimental studies on DIII-D. Overall, the results are encouraging. Significant helium exhaust (τ* He /τ E ∼ 11) has been obtained in a diverted, ELMing H-mode plasma simultaneous with a central source of helium. Detailed analysis of the helium profile evolution indicates that the exhaust rate is limited by the exhaust efficiency of the pump (∼5%) and not by the intrinsic helium transport properties of the plasma. Perturbative helium transport studies using gas puffing have shown that D He /X eff ∼1 in all confinement regimes studied to date (including H-mode and VH-mode). Furthermore, there is no evidence of preferential accumulation of helium in any of these regimes. However, measurements in the core and pumping plenum show a significant dilution of helium as it flows from the plasma core to the pumping plenum. Such dilution could be the limiting factor in the overall removal rate of helium in a reactor system

  8. Conceptual design of a 0.1 W magnetic refrigerator for operation between 10 K and 2 K

    International Nuclear Information System (INIS)

    Helvensteijn, B.P.M.; Kashani, A.

    1990-01-01

    The design of a magnetic refrigerator for space applications is discussed. The refrigerator is to operate in the temperature range of 10 K-2 K, at a 2 K cooling power of 0.10 W. As in other magnetic refrigerators operating in this temperature range GGG has been selected as the refrigerant. Crucial to the design of the magnetic refrigerator are the heat switches at both the hot and cold ends of the GGG pill. The 2 K heat switch utilizes a narrow He II filled gap. The 10 K heat switch is based on a narrow helium gas gap. For each switch, the helium in the gap is cycled by means of activated carbon pumps. The design concentrates on reducing the switching times of the pumps and the switches as a whole. A single stage system (one magnet; one refrigerant pill) is being developed. Continuous cooling requires the fully stationary system to have at least two stages running parallel/out of phase with each other. In order to conserve energy, it is intended to recycle the magnetic energy between the magnets. To this purpose, converter networks designed for superconducting magnetic energy storage are being studied. 17 refs

  9. PIPER Continuous Adiabatic Demagnetization Refrigerator

    Science.gov (United States)

    Kimball, Mark O.; Shirron, Peter J.; Canavan, Edgar R.; James, Bryan L.; Sampson, Michael A.; Letmate, Richard V.

    2017-01-01

    We report upon the development and testing of a 4-stage adiabatic demagnetization refrigerator (ADR) capable of continuous cooling at 0.100 Kelvin. This cooler is being built to cool the detector array aboard NASA's Primordial Inflation Polarization Explorer (PIPER) observatory. The goal of this balloon mission is to measure the primordial gravitational waves that should exist if the theory of cosmological inflation is correct. At altitude, the ADR will hold the array of transition-edge sensors at 100 mK continuously while periodically rejecting heat to a 1.2 K pumped helium bath. During testing on ground, the array is held at the same temperature but heat is rejected to a 4.2 K helium bath indicating the flexibility in this coolers design.

  10. Configuration and testing of a saturated vapor helium compressor

    International Nuclear Information System (INIS)

    Ludwigsen, J.L.; Iwasa, Y.; Smith, J.L.

    1986-01-01

    A saturated vapor helium compressor was designed and tested as a component of a helium-temperature refrigeration cycle. The use of the cold compressor allows reduction of both the precooling heat exchanger area and main compressor size compared to a conventional cycle due to increased pressure of the return gas. The compressor tested was a single-piston reciprocating device which was controlled with programmable hydraulic/pneumatic logic. The compressor was mounted at the cold end of a CTI Model 1400 helium liquefier. An average compression ratio of 2.4 was obtained and an average efficiency of 82% was achieved. In computing compressor efficiency, external heat leaks to the compressor were neglected

  11. Monte Carlo approach to define the refrigerator capacities for JT-60SA

    International Nuclear Information System (INIS)

    Wanner, Manfred; Barabaschi, Pietro; Lamaison, Valerie; Michel, Frederic; Reynaud, Pascal; Roussel, Pascal

    2011-01-01

    The JT-60SA cryogenic system shall provide refrigeration to keep the superconducting magnets and their structures at 4.4 K, cryo-pumps at 3.7 K, thermal shields at 80-100 K, and deliver a flow of 50 K helium to the current leads. A Monte Carlo method is proposed to determine the capacity contingencies for the refrigeration system. Attributing individual contingencies and distribution probability functions to the design variables allows the different load contributions to be statistically averaged. The total refrigeration contingency is derived for each temperature level from the 95% confidence level of the integrated distribution function.

  12. Refrigeration requirements for fusion reactors based upon the theta-pinch concept

    International Nuclear Information System (INIS)

    Williamson, K.D. Jr.; King, C.R.

    1976-01-01

    Two refrigeration systems applicable to the theta-pinch fusion concept are described. The first is a 1100 W, 4.5 K refrigerator which will be used for testing superconducting NbTi Magnetic Energy Transfer and Storage (METS) coil systems. This unit is currently being installed and is to be operational by April 1977. The second unit is applicable to the Syllac Fusion Test Reactor (SFTR) and has been conceptually designed. This liquefier-refrigerator is about 22 times larger than those in existence at present and will require 12-MW input electrical power. It will provide 3045 kg/h of liquid helium at 4.5 K

  13. 2016 German refrigeration and air conditioning meeting. Proceedings

    International Nuclear Information System (INIS)

    2016-01-01

    The following topics were dealt with: Large cryogenic facilities, relief valves, liquid helium, liquid-nitrogen and liquid hydrogen cooling, new concepts, foundations and materials of the heat-pump techniques, evaporation, phase-change materials, absorption, afterheat usage, ionic liquids, sorption, condensers, heat exchangers, back-cooling systems, refrigerants, caron dioxide, mobile applications, efficiency and optimization, air conditioning.

  14. Sonic Helium Detectors in the Fermilab Tevatron

    Science.gov (United States)

    Bossert, R. J.

    2006-04-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.

  15. Sonic helium detectors in the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Bossert, R.J.; Fermilab

    2006-01-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years

  16. Revision of the design model for a cryogenic falling liquid film helium separator

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro; Bartlit, J.R.; Sherman, R.H.

    1983-05-01

    The present paper reports revision of the design model previously developed by the authors for the cryogenic falling liquid film helium separator. The revised design procedure is composed of three steps : 1) calculation of distributions of phase flow rates, temperature and phase compositions within the refrigerated section and the packed section ; 2) calculation of more detailed distributions of these variables within the refrigerated section ; and 3) estimation of column dimensions and determination of operating conditions. It is assumed that the vacant refrigerated section has two theoretical stages for hydrogen isotope separation. The mixture within the refrigerated section is considered in step 2) as two component system of He-HD. (author)

  17. Identification of critical equipment and determination of operational limits in helium refrigerators under pulsed heat load

    Science.gov (United States)

    Dutta, Rohan; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2014-01-01

    Large-scale helium refrigerators are subjected to pulsed heat load from tokamaks. As these plants are designed for constant heat loads, operation under such varying load may lead to instability in plants thereby tripping the operation of different equipment. To understand the behavior of the plant subjected to pulsed heat load, an existing plant of 120 W at 4.2 K and another large-scale plant of 18 kW at 4.2 K have been analyzed using a commercial process simulator Aspen Hysys®. A similar heat load characteristic has been applied in both quasi steady state and dynamic analysis to determine critical stages and equipment of these plants from operational point of view. It has been found that the coldest part of both the cycles consisting JT-stage and its preceding reverse Brayton stage are the most affected stages of the cycles. Further analysis of the above stages and constituting equipment revealed limits of operation with respect to variation of return stream flow rate resulted from such heat load variations. The observations on the outcome of the analysis can be used for devising techniques for steady operation of the plants subjected to pulsed heat load.

  18. Fermilab satellite refrigerator compressors with the oil- and moisture-removal systems

    International Nuclear Information System (INIS)

    Satti, J.A.; Andrews, R.A.

    1983-08-01

    We have designed and tested a helium purification system for the Energy Doubler and the experimental areas. A purification system is installed after each screw compressor in the satellite refrigerators. The purification system removes oil mist, oil vapor, water vapor, and particulate from the compressed helium. The units were designed with consideration of modularity and necessary redundancy (i.e., guard purification). Test results which led to the final configuration are presented, along with achieved performance of the oil removal in the operating system

  19. High-efficiency pump for space helium transfer. Final Technical Report

    International Nuclear Information System (INIS)

    Hasenbein, R.; Izenson, M.G.; Swift, W.L.; Sixsmith, H.

    1991-12-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space

  20. Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid

    International Nuclear Information System (INIS)

    Kim, Yoon Jo; Kim, Sarah; Joshi, Yogendra K.; Fedorov, Andrei G.; Kohl, Paul A.

    2012-01-01

    Thermodynamics of an ionic-liquid (IL) based absorption refrigeration system has been numerically analyzed. It provides an alternative to the normally toxic working fluids, such as the ammonia in conventional absorption systems. The use of ILs also eliminates crystallization and metal-compatibility problems of the water/LiBr system. Mixtures of refrigerants and imidazolium-based ILs are theoretically explored as the working fluid pairs in a miniature absorption refrigeration system, so as to utilize waste-heat to power a refrigeration/heat pump system for electronics cooling. A non-random two-liquid (NRTL) model was built and used to predict the solubility of the mixtures. Saturation temperatures at the evaporator and condenser were set at 25 °C and 50 °C, respectively, with the power dissipation of 100 W. Water in combination with [emim][BF 4 ] (1-ethyl-3-methylimidazolium tetrafluoroborate) gave the highest coefficient of performance (COP) around 0.9. The refrigerant/IL compatibility indicated by the circulation ratio, alkyl chain length of the IL, and thermodynamic properties of the refrigerants, such as latent heat of evaporation were proven to be important factors in determining the performance of the absorption system. The negative effect of high viscosity was mitigated by dilution of the IL with the refrigerant and the use of slightly larger microfluidic channel heat exchangers. -- Highlights: ► Mixtures of refrigerant/ionic-liquid are studied for absorption system. ► We carry out comprehensive theoretical thermodynamic analysis. ► The essential factors of refrigerant/IL affecting the performance are identified. ► Water/[emim][BF 4 ] showed the best performance of COP. ► The effects of high viscosity ILs on the system performance are not significant.

  1. Modeling of a Von Platen-Munters diffusion absorption refrigeration cycle

    Science.gov (United States)

    Agostini, Bruno; Agostini, Francesco; Habert, Mathieu

    2016-09-01

    This article presents a thermodynamical model of a Von-Platen diffusion absorption refrigeration cycle for power electronics applications. It is first validated by comparison with data available in the literature for the classical water-ammonia-helium cycle for commercial absorption fridges. Then new operating conditions corresponding to specific ABB applications, namely high ambient temperature and new organic fluids combinations compatible with aluminium are simulated and discussed. The target application is to cool power electronics converters in harsh environments with high ambient temperature by providing refrigeration without compressor, for passive components losses of about 500 W, with a compact and low cost solution.

  2. Cryogenic refrigeration requirements for superconducting insertion devices in a light source

    International Nuclear Information System (INIS)

    Green, Michael A.; Green, Michael A.; Green, Michael A.

    2003-01-01

    This report discusses cryogenic cooling superconducting insertion devices for modern light sources. The introductory part of the report discusses the difference between wiggler and undulators and how the bore temperature may affect the performance of the magnets. The steps one would take to reduce the gap between the cold magnet pole are discussed. One section of the report is devoted to showing how one would calculate the heat that enters the device. Source of heat include, heat entering through the vacuum chamber, heating due to stray electrons and synchrotron radiation, heating due to image current on the bore, heat flow by conduction and radiation, and heat transfer into the cryostat through the magnet leads. A section of the report is devoted to cooling options such as small cryo-cooler and larger conventional helium refrigerators. This section contains a discussion as to when it is appropriate to use small coolers that do not have J-T circuits. Candidate small cryo-coolers are discussed in this section of the report. Cooling circuits for cooling with a conventional refrigerator are also discussed. A section of the report is devoted to vibration isolation and how this may affect how the cooling is attached to the device. Vibration isolation using straps is compared to vibration isolation using helium heat pipes. The vibration isolation of a conventional refrigeration system is also discussed. Finally, the cool down of an insertion device is discussed. The device can either be cooled down using liquid cryogenic nitrogen and liquid helium or by using the cooler used to keep the devices cold over the long haul

  3. Modelling and control of a cryogenic refrigerator: Application to the 800 W at 4.5 K cryogenic station of the CEA Grenoble

    International Nuclear Information System (INIS)

    Clavel, Fanny

    2011-01-01

    This thesis is concerned with the development of a novel control scheme on a helium refrigerator subject to high pulsed loads. Such disturbance will happen during the cooling of the superconductive magnet, used in tokamak configuration. A dynamical model of a cryogenic station, which offers a cooling capacity of 800 W at 4.5 K, has been produced. The modelling is based on the theoretical equations of thermodynamics, thermal physics and hydraulics and takes into account the non linear properties of helium at low temperature. Based on this model, a new control strategy has been developed for each of the two parts of the refrigerator: the warm compression system and the cold box. Experimental results show significant improvement with multivariable controllers as compared with the PIDs in the presence of high pulsed loads. An observer of the thermal load of the helium bath has also been developed. The model is constructed by identification using internal measures of the refrigerator. It can be used as condition monitoring tool for operators. (author)

  4. Numerical simulation of a three-stage Stirling-type pulse-tube refrigerator

    NARCIS (Netherlands)

    Etaati, M.A.

    2011-01-01

    The pulse-tube refrigerator (PTR) is a rather new device for cooling down to extremely low temperatures, i.e. below 4 K. The PTR works by the cyclic compression and expansion of helium that flows through a regenerator made of porous material, a cold heat exchanger, a tube, a hot heat exchanger and

  5. Cryo-refrigerators for CNS applications

    International Nuclear Information System (INIS)

    Clausen, J.; Lesser, J.; Sebastianutto, R.

    2001-01-01

    Cryo-refrigeration plants for cold neutron sources belong to the field of auxiliary plants or utility facilities of the reactor. In general, they are classified as non-nuclear and serve to dissipate the heat generated in the liquid hydrogen or deuterium from moderating the neutrons of the cold neutron source. Cryo-refrigeration plants for the temperature range of 20 K supply either refrigeration at constant temperature by means of evaporating the cryogenic coolant (usually hydrogen) or, as usual with cold sources, in a specific temperature range by means of warming-up the cryogenic coolant (usually helium) in the moderator or heat exchanger (condensation or subcooling of the deuterium). The operator's requirements to a refrigeration plant are, first of all, that the plant adjusts itself - at low-maintenance or maintenance-free - to the various operation modes at best thermodynamic efficiencies and that it offers as much operating convenience and operating safety as possible. Additional requirements are short times for cool-down, capacity adjustment, stand-by operation in order to avoid poisoning of the cold source and further operational requirements. However, these requirements are limited by mechanics, thermodynamics and financial means. For this reason, for each application a technical solution must be found which is optimally adapted to the competing requirements and which is based on a standard product of the manufacturer, if possible. The operator's different requirements have to be taken in account with regard to the design of the plant and choice of the components; economic aspects in addition also have to be considered. Wherever possible, proven standard components should be used. (orig.)

  6. Thermal optimization of the helium-cooled power leads for the SSC

    International Nuclear Information System (INIS)

    Demko, J.A.; Schiesser, W.E.; Carcagno, R.; McAshan, M.; McConeghy, R.

    1992-01-01

    The optimum thermal design of the power leads for the Superconducting Super Collider (SSC) will minimize the amount of Carnot work (which is a combination of refrigeration and liquefaction work) required. This optimization can be accomplished by the judicious selection of lead length and diameter. Even though an optimum set of dimensions is found, the final design must satisfy other physical constraints such as maximum allowable heat leak and helium vapor mass flow rate. A set of corresponding lengths and diameters has been determined that meets these requirements for the helium vapor-cooled, spiral-fin power lead design of the SSC. Early efforts by McFee and Mallon investigated optimizing power leads for cryogenic applications with no convection cooling. Later designs utilized the boiled-off helium vapor to cool the lead. One notable design for currents up to several thousand amps is presented by Efferson based on a series of recommendations discussed by Deiness. Buyanov presents many theoretical models and design formulae but does not demonstrate an approach to thermally optimizing the design of a vapor-cooled lead. In this study, a detailed numerical thermal model of a power lead design for the SSC has been developed. It was adapted from the dynamic model developed by Schiesser. This model was used to determine the optimum dimensions that minimize the Carnot refrigeration and liquefaction work due to the leads. Since the SSC leads will be cooled by supercritical helium, the flow of vapor is regulated by a control valve. These leads include a superconducting portion at the cold end. All of the material properties in the model are functions of temperature, and for the helium are functions of pressure and temperature. No pressure drop calculations were performed as part of this analysis. The diameter that minimizes the Carnot work was determined for four different lengths at a design current of 6600 amps

  7. Thermal optimization of the helium-cooled power leads for the SSC

    International Nuclear Information System (INIS)

    Demko, J.A.; Schiesser, W.E.; Carcagno, R.; McAshan, M.; McConeghy, R.

    1992-03-01

    The optimum thermal design of the power leads for the Superconducting Super Collider (SSC) will minimize the amount of Carnot work (which is a combination of refrigeration and liquefaction work) required. This optimization can be accomplished by the judicious selection of lead length and diameter. Even though an optimum set of dimensions is found, the final design must satisfy other physical constraints such as maximum allowable heat leak and helium vapor mass flow rate. A set of corresponding lengths and diameters has been determined that meets these requirements for the helium vapor-cooled, spiral-fin power lead design of the SSC. Early efforts by McFee and Mallon investigated optimizing power leads for cryogenic applications with no convection cooling. Later designs utilized the boiled-off helium vapor to cool the lead. One notable design for currents up to several thousand amps is presented by Efferson based on a series of recommendations discussed by Deiness. Buyanov presents many theoretical models and design formulate but does not demonstrate an approach to thermally optimizing the design of a vapor-cooled lead. A method for optimizing superconducting magnet current leads is described by Maehata et al. The approach assumes that the helium boil-off caused by heat conduction along with power lead into the low-temperature helium is used to cool the lead. The optimum solution is found when the heat flow at the cold end is minimized.. In this study, a detailed numerical thermal model of a power lead design for the SSC has been developed. It was adapted from the dynamic model developed by Schiesser. This model was used to determine the optimum dimensions that minimize the Carnot refrigeration and liquefaction work due to the leads

  8. The 4.5K refrigerators for the LHC are all present and correct!

    CERN Document Server

    2004-01-01

    Acceptance procedures for the last of the LHC 4.5 K refrigerators have been completed at Point 6. All that now remains to be done, to have the LHC refrigeration system ready by the end of 2005, is to upgrade the refrigerators recovered from LEP and install the 1.8 K cooling system. By now you will be well aware that the LHC's superconducting magnets cannot operate unless they are cooled to 1.8 K (-271°C) (see Bulletin 13-14/2002). Eight 4.5 K refrigerators, one for each sector of the LHC, are required to achieve this. In December last year the last of these refrigerators, specially designed for the LHC, was accepted at Point 6. "It is a big step forwards for the LHC's refrigeration system, as it takes its cooling capacity at 4.5 K to 140 kW, that is to say almost 40,000 litres of liquid helium per hour, a capacity never previously attained. The progress achieved since the days of LEP is impressive, particularly if one bears in mind the extent of the infrastructure required, " (see...

  9. Sealed liquid helium cryostats for mobile superconducting magnets

    International Nuclear Information System (INIS)

    Mulhall, B.E.; Rhodes, R.G.

    1976-01-01

    The predicted behaviour of the sealed cryostat system, which has been designed for the niobium-titanium superconducting coils of the on-board refrigerator of the small Wolfson electrodynamically levitated vehicle now under development, is summarized. Calculations suggest that the time taken by a sealed liquid helium cryostat to reach a specified final temperature is reasonably insensitive to the level of initial filling. Moreover, with a sufficiently large initial fill (for example, 70%) two or possibly three such temperature cycles, separated by the simple process of gas recovery, should be possible before replenishment of the helium is necessary. The useful time of operation of the cryostat between transfers of liquid helium is then not very much less than can be obtained with a freely boiling bath of liquid. For the low pressures involved the sealed cryostat is probably not much heavier or more complex than the open cryostat, and thus is ideal for a mobile application. (U.K.)

  10. Helium Inventory Management For LHC Cryogenics

    CERN Document Server

    Pyarali, Maisam

    2017-01-01

    The LHC is a 26.7 km circumference ring lined with superconducting magnets that operate at 1.9 K. These magnets are used to control the trajectory of beams of protons traveling in opposite directions and collide them at various experimental sites across the LHC where their debris is analyzed. The focus of this paper is the cryogenic system that allows the magnets to operate in their superconducting states. It aims to highlight the operating principles of helium refrigeration and liquefaction, with and without nitrogen pre-cooling; discuss the various refrigerators and liquefiers used at CERN for both LHC and Non-LHC applications, with their liquefaction capacities and purposes; and finally to deliberate the management of the LHC inventory and how it contributes to the strategic decision CERN makes regarding the inventory management during the Year-End Technical Stop (YETS), Extended Year-End Technical Stop (EYETS) and long shutdowns.

  11. The Local Helium Compound Transfer Lines for the Large Hadron Collider Cryogenic System

    CERN Document Server

    Parente, C; Munday, A; Wiggins, P

    2006-01-01

    The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include twelve new local helium transfer lines distributed among five LHC points in underground caverns. These lines, being manufactured and installed by industry, will connect the cold boxes of the 4.5-K refrigerators and the 1.8-K refrigeration units to the cryogenic interconnection boxes. The lines have a maximum of 30-m length and may possess either small or large re-distribution units to allow connection to the interface ports. Due to space restrictions the lines may have complex routings and require several elbowed sections. The lines consist of a vacuum jacket, a thermal shield and either three or four helium process pipes. Specific internal and external supporting and compensation systems were designed for each line to allow for thermal contraction of the process pipes (or vacuum jacket, in case of a break in the insulation vacuum) and to minimise the forces applied to the interface equipment. Whenever possible, f...

  12. Ab Initio Values of the Thermophysical Properties of Helium as Standards

    Science.gov (United States)

    Hurly, John J.; Moldover, Michael R.

    2000-01-01

    Recent quantum mechanical calculations of the interaction energy of pairs of helium atoms are accurate and some include reliable estimates of their uncertainty. We combined these ab initio results with earlier published results to obtain a helium-helium interatomic potential that includes relativistic retardation effects over all ranges of interaction. From this potential, we calculated the thermophysical properties of helium, i.e., the second virial coefficients, the dilute-gas viscosities, and the dilute-gas thermal conductivities of 3He, 4He, and their equimolar mixture from 1 K to 104 K. We also calculated the diffusion and thermal diffusion coefficients of mixtures of 3He and 4He. For the pure fluids, the uncertainties of the calculated values are dominated by the uncertainties of the potential; for the mixtures, the uncertainties of the transport properties also include contributions from approximations in the transport theory. In all cases, the uncertainties are smaller than the corresponding experimental uncertainties; therefore, we recommend the ab initio results be used as standards for calibrating instruments relying on these thermophysical properties. We present the calculated thermophysical properties in easy-to-use tabular form. PMID:27551630

  13. Recent investigations on refrigerants for magnetic refrigerators

    International Nuclear Information System (INIS)

    Hashimoto, T.

    1986-01-01

    In development of the magnetic refrigerator, an important problem is selection of magnetic materials as refrigerants. The main purpose of the present paper is to discuss the magnetic and thermal properties necessary for these refrigerants and to report recent investigations. Magnetic refrigerants can be expediently divided into two groups, one for the Carnottype magnetic refrigerator below 20 K and the other for the Ericsson-type refrigerator. The required physical properties of refrigerants in each type of the magnetic refrigerator are first discussed. And then, the results of recent investigations on the magnetic, thermal and magnetocaloric characters of several promising magnetic refrigerants are shown. Finally, a brief prospect of the magnetic refrigerants and refrigerators is given

  14. Dependence of helium transport on plasma current and ELM frequency in H-mode discharges in DIII-D

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Hogan, J.T.; Finkenthal, D.F.; West, W.P.; Burrell, K.H.; Seraydarian, R.P.

    1993-05-01

    The removal of helium (He) ash from the plasma core with high efficiency to prevent dilution of the D-T fuel mixture is of utmost importance for future fusion devices, such as the International Thermonuclear Experimental Reactor (ITER). A variety of measurements in L-mode conditions have shown that the intrinsic level of helium transport from the core to the edge may be sufficient to prevent sufficient dilution (i.e., τ He /τ E < 5). Preliminary measurements in biased-induced, limited H-mode discharges in TEXTOR suggest that the intrinsic helium transport properties may not be as favorable. If this trend is shown also in diverted H-mode plasmas, then scenarios based on ELMing H-modes would be less desirable. To further establish the database on helium transport in H-mode conditions, recent studies on the DIII-D tokamak have focused on determining helium transport properties in H-mode conditions and the dependence of these properties on plasma current and ELM frequency

  15. Commissioning of the helium cryogenic system for the HIE- ISOLDE accelerator upgrade at CERN

    CERN Document Server

    Delruelle, N; Leclercq, Y; Pirotte, O; Williams, L

    2015-01-01

    The High Intensity and Energy ISOLDE (HIE-ISOLDE) project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities at CERN. The most significant improvement will come from replacing the existing REX accelerating structure by a superconducting linear accelerator (SC linac) composed ultimately of six cryo-modules installed in series, each containing superconducting RF cavities and solenoids operated at 4.5 K. In order to provide the cooling capacity at all temperature levels between 300 K and 4.5 K for the six cryo-modules, an existing helium refrigerator, manufactured in 1986 and previously used to cool the ALEPH magnet during LEP operation from 1989 to 2000, has been refurbished, reinstalled and recommissioned in a dedicated building located next to the HIE-ISOLDE experimental hall. This helium refrigerator has been connected to a new cryogenic distribution line, consisting of a 30-meter long vacuum-insulated transfer line, a 2000-liter storage dewar and six interconnecting valve boxes, one for eac...

  16. Low-temperature measurement system based on a closed-cycle refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Mitsuyuki; Kawamata, Shuichi; Ishida, Takekazu; Okayasu, Satoru; Hojou, Kiichi

    2003-05-01

    We have built a new torque magnetometer with a closed-cycle helium refrigerator. The temperature can be lowered down to 1.5 K by pumping liquefied helium in sample space. The temperature can be stabilized within {+-}0.01 K by using the two-independent PID loops. A piezoresistor bridge configured with a silicon cantilever surface is used to detect a torque. A transeverse magnetic field, which is fabricated by the several pieces of the permanent magnets, can produce a field up to 10 kG in any direction. The system has complete control from a computer by coding a LabVIEW. We have demonstrated the torque curves of a single crystal YBa{sub 2}Cu{sub 4}O{sub 8} successfully even at 1.6 K.

  17. Low-temperature measurement system based on a closed-cycle refrigerator

    International Nuclear Information System (INIS)

    Tsuji, Mitsuyuki; Kawamata, Shuichi; Ishida, Takekazu; Okayasu, Satoru; Hojou, Kiichi

    2003-01-01

    We have built a new torque magnetometer with a closed-cycle helium refrigerator. The temperature can be lowered down to 1.5 K by pumping liquefied helium in sample space. The temperature can be stabilized within ±0.01 K by using the two-independent PID loops. A piezoresistor bridge configured with a silicon cantilever surface is used to detect a torque. A transeverse magnetic field, which is fabricated by the several pieces of the permanent magnets, can produce a field up to 10 kG in any direction. The system has complete control from a computer by coding a LabVIEW. We have demonstrated the torque curves of a single crystal YBa 2 Cu 4 O 8 successfully even at 1.6 K

  18. Specific-heat measurements on dilute 3He-4He mixtures

    International Nuclear Information System (INIS)

    Zeeuw, H.C.M. van der.

    1985-01-01

    The author measured the specific heat of dilute 3 He- 4 He mixtures in the concentration range from X = 1 x 10 -3 to X = 3 x 10 -3 and in the temperature range from 100 mK to 600 mK. This has been done by means of a thermal relaxation method. This method provides some interesting features and is applied, to our knowledge, for the first time to dilute 3 He- 4 He mixtures. To reach the required temperature range for our experiments a 4 He circulating 3 He- 4 He dilution refrigerator has been constructed. The results confirm the deviation of the 3 He contribution to the specific heat from the ideal Fermi gas behaviour. (Auth.)

  19. 2016 German refrigeration and air conditioning meeting. Proceedings; Deutsche Kaelte- und Klimatagung 2016. Tagungsbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-01

    The following topics were dealt with: Large cryogenic facilities, relief valves, liquid helium, liquid-nitrogen and liquid hydrogen cooling, new concepts, foundations and materials of the heat-pump techniques, evaporation, phase-change materials, absorption, afterheat usage, ionic liquids, sorption, condensers, heat exchangers, back-cooling systems, refrigerants, caron dioxide, mobile applications, efficiency and optimization, air conditioning.

  20. Exergy analysis of helium liquefaction systems based on modified Claude cycle with two-expanders

    Science.gov (United States)

    Thomas, Rijo Jacob; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2011-06-01

    Large-scale helium liquefaction systems, being energy-intensive, demand judicious selection of process parameters. An effective tool for design and analysis of thermodynamic cycles for these systems is exergy analysis, which is used to study the behavior of a helium liquefaction system based on modified Claude cycle. Parametric evaluation using process simulator Aspen HYSYS® helps to identify the effects of cycle pressure ratio and expander flow fraction on the exergetic efficiency of the liquefaction cycle. The study computes the distribution of losses at different refrigeration stages of the cycle and helps in selecting optimum cycle pressures, operating temperature levels of expanders and mass flow rates through them. Results from the analysis may help evolving guidelines for designing appropriate thermodynamic cycles for practical helium liquefaction systems.

  1. Atomic resolution scanning tunneling microscopy in a cryogen free dilution refrigerator at 15 mK

    International Nuclear Information System (INIS)

    Haan, A. M. J. den; Wijts, G. H. C. J.; Galli, F.; Oosterkamp, T. H.; Usenko, O.; Baarle, G. J. C. van; Zalm, D. J. van der

    2014-01-01

    Pulse tube refrigerators are becoming more common, because they are cost efficient and demand less handling than conventional (wet) refrigerators. However, a downside of a pulse tube system is the vibration level at the cold-head, which is in most designs several micrometers. We implemented vibration isolation techniques which significantly reduced vibration levels at the experiment. These optimizations were necessary for the vibration sensitive magnetic resonance force microscopy experiments at milli-kelvin temperatures for which the cryostat is intended. With these modifications we show atomic resolution scanning tunneling microscopy on graphite. This is promising for scanning probe microscopy applications at very low temperatures

  2. Computer automation of a dilution cryogenic system

    International Nuclear Information System (INIS)

    Nogues, C.

    1992-09-01

    This study has been realized in the framework of studies on developing new technic for low temperature detectors for neutrinos and dark matter. The principles of low temperature physics and helium 4 and dilution cryostats, are first reviewed. The cryogenic system used and the technic for low temperature thermometry and regulation systems are then described. The computer automation of the dilution cryogenic system involves: numerical measurement of the parameter set (pressure, temperature, flow rate); computer assisted operating of the cryostat and the pump bench; numerical regulation of pressure and temperature; operation sequence full automation allowing the system to evolve from a state to another (temperature descent for example)

  3. TRANSPORT PROPERTIES FOR REFRIGERANT MIXTURES

    Directory of Open Access Journals (Sweden)

    V. Geller

    2014-06-01

    Full Text Available A set of models to predict viscosity and thermal conductivity of refrigerant mixtures is developed. A general model for viscosity and thermal conductivity use the three contributions sum form (the dilute-gas terms, the residual terms, and the liquid terms. The corresponding states model is recommended to predict the dense gas transport properties over a range of reduced density from 0 to 2. It is shown that the RHS model provides the most reliable results for the saturated-liquid and the compressed-liquid transport properties over a range of given temperatures from 0,5 to 0,95.

  4. Superconducting cable cooling system by helium gas at two pressures

    International Nuclear Information System (INIS)

    Dean, J.W.

    1977-01-01

    Thermally contacting, oppositely streaming, cryogenic fluid streams in the same enclosure in a closed cycle changes the fluid from a cool high pressure helium gas to a cooler reduced pressure helium gas in an expander so as to be at different temperature ranges and pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T 1 . By first circulating the fluid from a refrigerator at one end of the line as a cool gas at a temperature range T 2 to T 3 in the go leg, then circulating the gas through an expander at the other end of the line where the gas becomes a cooler gas at a reduced pressure and at a reduced temperature T 4 and finally by circulating the cooler gas back again to the refrigerator in a return leg at a temperature range T 4 to T 5 , while in thermal contact with the gas in the go leg, and in the same enclosure therewith for compression into a higher pressure gas at T 2 in a closed cycle, where T 2 greater than T 3 and T 5 greater than T 4 , the fluid leaves the enclosure in the go leg as a gas at its coldest point in the go leg, and the temperature distribution is such that the line temperature decreases along its length from the refrigerator due to the cooling from the gas in the return leg

  5. Structure design and simulation research of active magnetic bearing for helium centrifugal cold compressor

    Science.gov (United States)

    Y Zhang, S.; Pan, W.; Wei, C. B.; Wu, J. H.

    2017-12-01

    Helium centrifugal cold compressors are utilized to pump gaseous helium from saturated liquid helium tank to obtain super-fluid helium in cryogenic refrigeration system, which is now being developed at TIPC, CAS. Active magnetic bearing (AMB) is replacing traditional oil-fed bearing as the optimal supporting assembly for cold compressor because of its many advantages: free of contact, high rotation speed, no lubrication and so on. In this paper, five degrees of freedom for AMB are developed for the helium centrifugal cold compressor application. The structure parameters of the axial and radial magnetic bearings as well as hardware and software of the electronic control system is discussed in detail. Based on modal analysis and critical speeds calculation, a control strategy combining PID arithmetic with other phase compensators is proposed. Simulation results demonstrate that the control method not only stables AMB system but also guarantees good performance of closed-loop behaviour. The prior research work offers important base and experience for test and application of AMB experimental platform for system centrifugal cold compressor.

  6. The multipurpose helium refrigerators/liquefiers for the new CERN experimental area

    CERN Document Server

    Eber, N; Kurtcuoglu, K; Senn, A

    1979-01-01

    The helium plants described have a nominal capacity of 100 liters/hour or 400 Watts at 4.4K and can also be operated in mixed duty over the whole performance range. The plants feature oilfree labyrinth-piston compressors and turboexpanders with self-supporting gas bearings plus magnetic auxiliary bearings. The greatest peculiarity of the new plants is the first time combined use of cold and warm ejectors. (1 refs).

  7. The design, fabrication, operation and maintenance of (41) 400 H.P.-600 SCFM helium screw compressor systems (Five-year operation report)

    International Nuclear Information System (INIS)

    Pallaver, C.

    1988-12-01

    Fermi National Accelerator Laboratory (Fermilab) uses thirty-four (34) identical compressor systems connected to a common header to supply clean high pressure helium gas feeding 26 refrigerators supplying liquid helium to 777 super conducting magnets. There are seven (7) similar compressor packages in other locations. The purpose of this paper is (after five years of operation) to present all the problems, modifications and experiences associated with the design and operation of these compressor systems

  8. Low Global Warming Potential Refrigerants for Commercial Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sharma, Vishaldeep [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Environmental concerns are driving regulations for the heating, ventilating, air-conditioning and refrigeration (HVAC&R) industry towards lower GWP alternatives to HFC refrigerants. Existing lower GWP refrigerant alternatives include hydrocarbons, such as propane (R-290) and isobutane (R-600a), as well as carbon dioxide (R-744), ammonia (R-717), and R-32. In addition, new lower GWP refrigerant alternatives are currently being developed by refrigerant manufacturers, including hydrofluoro-olefin (HFO) and unsaturated hydrochlorofluorocarbon (HCFO) refrigerants. The selection of an appropriate refrigerant for a given refrigeration application should be based on several factors, including the GWP of the refrigerant, the energy consumption of the refrigeration system over its operating lifetime, and leakage of refrigerant over the system lifetime. For example, focusing on energy efficiency alone may overlook the significant environmental impact of refrigerant leakage; while focusing on GWP alone might result in lower efficiency systems that result in higher indirect impact over the equipment lifetime. Thus, the objective of this Collaborative Research and Development Agreement (CRADA) between

  9. Simulation of the SSC refrigeration system using the ASPEN/SP process simulator

    International Nuclear Information System (INIS)

    Rasson, J.; Dweck, J.

    1990-01-01

    The SSC Magnet must be maintained at a superconducting temperature of 4 K. The proposed refrigeration cooling processes consist of fairly simple closed cycles which take advantage of the Joule-Thompson effect via a series of expansions and compressions of helium gas which has been precooled by liquid nitrogen. The processes currently under consideration consist of three cycles, the 20 K shield cooling, the 4.0 K helium refrigerator and the helium liquefier. The process units which are to be employed are compressors, turbines, expanders, mixers, flashes, two stream heat exchangers and multiple stream heat exchangers. The cycles are to be operated at or near steady state. Due to the large number of competing cooling sector designs to be considered and the high capital and operating costs of the proposed processes, the SSC Laboratory requires a software tool for the validation and optimization of the individual designs and for the performance of cost-benefit analyses among competing designs. Since these processes are steady state flow processes involving primarily standard unit operations, a decision was made to investigate the application of a commercial process simulator to the task. Several months of internal evaluations by the SSC Laboratory revealed that while the overall structure and calculation approach of a number of the commercial simulators were appropriate for this task, all were lacking essential capabilities in the areas of thermodynamic property calculations for cryogenic systems and modeling of complex, multiple stream heat exchangers. An acceptable thermodynamic model was provided and a series of simple, but three software vendors. Based on the results of the benchmark tests, the ASPEN/SP process simulator was selected for future modeling work. 2 refs., 4 figs

  10. Method and refrigerants for replacing existing refrigerants in centrifugal compressors

    International Nuclear Information System (INIS)

    Kopko, W.L.

    1991-01-01

    This patent describes a method for replacing an existing refrigerant in a centrifugal compressor. It comprises selecting a desired impeller Mach number for the centrifugal compressor; selecting a base refrigerant constituent; combining at least one additive refrigerant constituent with the base refrigerant constituent to form a replacement refrigerant having at least one physical or chemical property different from the existing refrigerant and substantially providing the desired impeller Mach number in the centrifugal compressor; and replacing the existing refrigerant with the replacement refrigerant

  11. Dynamic modeling and simulation of the superconducting super collider cryogenic helium system

    International Nuclear Information System (INIS)

    Hartzog, D.G.; Fox, V.G.; Mathias, P.M.; Nahmias, D.; McAshan, M.; Carcagno, R.

    1989-01-01

    To study the operation of the Superconducting Super Collider (SSC) cryogenic system during transient operating conditions, they have developed and programmed in FORTRAN, a time-dependent, nonlinear, homogeneous, lumped-parameter simulation model of the SSC cryogenic system. This dynamic simulator has a modular structure so that process flowsheet modifications can be easily accommodated with minimal recoding. It uses the LSODES integration package to advance the solution in time. For helium properties it uses Air Products implementation of the standard thermodynamic model developed by the NBS. Two additional simplified helium thermodynamic models developed by Air Products are available as options to reduce computation time. To facilitate the interpretation of output, they have linked the simulator to the speakeasy conversational language. The authors present a flowsheet of the process simulated, and the material and energy balances used in the engineering models. They then show simulation results for three transient operating scenarios: startup of the refrigeration system from standby to full load; the loss of 4K refrigeration caused by the tripping of one of two parallel compressors in a sector; and a full-field quench of a single magnet half-cell. They discuss the response of the fluid within the cryogenic circuits during these scenarios. 14 refs., 19 figs., 2 tabs

  12. Effect of Dynamic Pressure on the Performance of Thermoacoustic Refrigerator with Aluminium (Al) Resonator

    Science.gov (United States)

    Arya, Bheemsha; Nayak, B. Ramesh; Shivakumara, N. V.

    2018-04-01

    In practice the refrigerants are being used in the conventional refrigeration system to get the required cooling effect. These refrigerants produce Chlorofluorocarbons (CFCs) and Hydro chlorofluorocarbons (HCFCs) which are highly harmful to the environment, particularly depleting of ozone layers resulting in green house emissions. In order to overcome these effects, the research needs to be focused on the development of an ecofriendly refrigeration system. The thermoacoustic refrigeration system is one among such system where the sound waves are used to compress and expand the gas particles. This study focuses on the effect of dynamic pressure on the thermoacoustic refrigerator made of aluminium with overall length of 748.82 mm, and the entire inner surface of the resonator tube was coated with 2mm thickness of polyurethane to minimize the heat losses to the atmosphere. Experiments were conducted with different stack geometries i.e. parallel plates having 0.119 mm thick with spacing between the plates maintained at 0.358 mm, 1mm diameter pipes, 2mm diameter pipes and 4 mm diameter pipes. Experiments were also conducted with different drive ratios of 0.6%, 1% and 1.6% for a constant dynamic pressure of 2 bar and 10 bar for helium and air as working medium. The results were plotted with the help of graphs, the variation of coefficient of performance (COP) and the relative coefficient of performance (COPR) for the above said conditions were calculated.

  13. Commissioning of the helium cryogenic system for the HIE- ISOLDE accelerator upgrade at CERN

    International Nuclear Information System (INIS)

    Delruelle, N; Inglese, V; Leclercq, Y; Pirotte, O; Williams, L

    2015-01-01

    The High Intensity and Energy ISOLDE (HIE-ISOLDE) project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities at CERN. The most significant improvement will come from replacing the existing REX accelerating structure by a superconducting linear accelerator (SC linac) composed ultimately of six cryo-modules installed in series, each containing superconducting RF cavities and solenoids operated at 4.5 K. In order to provide the cooling capacity at all temperature levels between 300 K and 4.5 K for the six cryo-modules, an existing helium refrigerator, manufactured in 1986 and previously used to cool the ALEPH magnet during LEP operation from 1989 to 2000, has been refurbished, reinstalled and recommissioned in a dedicated building located next to the HIE-ISOLDE experimental hall. This helium refrigerator has been connected to a new cryogenic distribution line, consisting of a 30-meter long vacuum-insulated transfer line, a 2000-liter storage dewar and six interconnecting valve boxes, one for each cryo-module. This paper describes the whole cryogenic system and presents the commissioning results including the preliminary operation at 4.5 K of the first cryo- module in the experimental hall. (paper)

  14. Performance of an auto refrigerant cascade refrigerator operating in gas refrigerant supply (GRS) mode with nitrogen-hydrocarbon and argon-hydrocarbon refrigerants

    Science.gov (United States)

    Gurudath Nayak, H.; Venkatarathnam, G.

    2009-07-01

    There is a worldwide interest in the development of auto refrigerant cascade (ARC) refrigerators operating with refrigerant mixtures. Both flammable and non-flammable refrigerant mixtures can be used in these systems. The performance of an ARC system with optimum nitrogen-hydrocarbon and argon-hydrocarbon mixtures between 90 and 160 K is presented in this paper.

  15. 5-year operation experience with the 1.8 K refrigeration units of the LHC cryogenic system

    CERN Document Server

    Ferlin, G; Claudet, S; Pezzetti, M

    2015-01-01

    Since 2009, the Large Hadron Collider (LHC) is in operation at CERN. The LHC superconducting magnets distributed over eight sectors of 3.3-km long are cooled at 1.9 K in pressurized superfluid helium. The nominal operating temperature of 1.9 K is produced by eight 1.8-K refrigeration units based on centrifugal cold compressors (3 or 4 stages depending to the vendor) combined with warm volumetric screw compressors with sub-atmospheric suction. After about 5 years of continuous operation, we will present the results concerning the availability for the final user of these refrigeration units and the impact of the design choice on the recovery time after a system trip. We will also present the individual results for each rotating machinery in terms of failure origin and of Mean Time between Failure (MTBF), as well as the consolidations and upgrades applied to these refrigeration units.

  16. 5-year operation experience with the 1.8 K refrigeration units of the LHC cryogenic system

    Science.gov (United States)

    Ferlin, G.; Tavian, L.; Claudet, S.; Pezzetti, M.

    2015-12-01

    Since 2009, the Large Hadron Collider (LHC) is in operation at CERN. The LHC superconducting magnets distributed over eight sectors of 3.3-km long are cooled at 1.9 K in pressurized superfluid helium. The nominal operating temperature of 1.9 K is produced by eight 1.8-K refrigeration units based on centrifugal cold compressors (3 or 4 stages depending to the vendor) combined with warm volumetric screw compressors with sub-atmospheric suction. After about 5 years of continuous operation, we will present the results concerning the availability for the final user of these refrigeration units and the impact of the design choice on the recovery time after a system trip. We will also present the individual results for each rotating machinery in terms of failure origin and of Mean Time between Failure (MTBF), as well as the consolidations and upgrades applied to these refrigeration units.

  17. Development of helium transfer coupling of 1 MW-class HTS motor for podded ship propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Kosuge, Eiji; Gocho, Yoshitsugu; Okumura, Kagao; Yamaguchi, Mitsugi [JapaneseSuperconductivity Organization, 135-8533, Tokyo (Japan); Umemoto, Katsuya; Aizawa, Kiyoshi; Yokoyama, Minoru; Takao, Satoru, E-mail: gocho@jso--new-scm.co.j [Kawasaki Heavy Industries LTD., 673-8666, Hyogo (Japan)

    2010-06-01

    Research and development of 1 MW superconducting motor are being made aiming at the efficiency improvement for the podded type ship propulsion. The basic machine configuration is similar to steam turbine generators, having a rotating horizontal shaft. As for the motor composed of rotating superconducting field, one of the most critical issues is to provide a technically viable helium transfer coupling (HTC). The field winding of 1 MW motor is cooled with cryogenic helium gas. The HTC needs to supply the cryogenic helium gas with an appropriate flow rate from the stationary part to the rotating field winding region through a hollowed shaft in order not to lose superconducting state of the winding. A full size prototype of HTC was developed prior to the actual one to demonstrate its technical acceptability. The fundamental data with regard to the supply of the refrigerated helium gas were successfully obtained at the rated speed. This work has been supported by New Energy, and Industrial Technology Development Organization (NEDO).

  18. Performance of V-type Stirling-cycle refrigerator for different working fluids

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Yusuf; Ataer, Omer Ercan [Erciyes University, Engineering Faculty, Mechanical Engineering Department, Melikgazi, 38 039 Kayseri (Turkey)

    2010-01-15

    The thermodynamic analysis of a V-type Stirling-cycle Refrigerator (VSR) is performed for air, hydrogen and helium as the working fluid and the performance of the VSR is investigated. The V-type Stirling-cycle refrigerator consists of expansion and compression spaces, cooler, heater and regenerator, and it is assumed that the control volumes are subjected to a periodic mass flow. The basic equations of the VSR are derived for per unit crank angle, so time does not appear in the equations. A computer program is prepared in FORTRAN, and the basic equations are solved iteratively. The mass, temperature and density of working fluid in each control volume are calculated for different charge pressures, engine speeds, and for fixed heater and cooler surface temperatures. The work, instantaneous pressure and the COP of the VSR are calculated. The results are obtained for different working fluids, and given by diagrams. (author)

  19. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Caleb [CTA Architects Engineers, Boise, ID (United States); Reis, Chuck [CTA Architects Engineers, Boise, ID (United States); Nelson, Eric [CTA Architects Engineers, Boise, ID (United States); Armer, James [CTA Architects Engineers, Boise, ID (United States); Arthur, Rob [CTA Architects Engineers, Boise, ID (United States); Heath, Richard [CTA Architects Engineers, Boise, ID (United States); Rono, James [CTA Architects Engineers, Boise, ID (United States); Hirsch, Adam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Doebber, Ian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  20. Quantum dissipative dynamics and decoherence of dimers on helium droplets

    International Nuclear Information System (INIS)

    Schlesinger, Martin

    2011-01-01

    In this thesis, quantum dynamical simulations are performed in order to describe the vibrational motion of diatomic molecules in a highly quantum environment, so-called helium droplets. We aim to reproduce and explain experimental findings which were obtained from dimers on helium droplets. Nanometer-sized helium droplets contain several thousands of 4 He atoms. They serve as a host for embedded atoms or molecules and provide an ultracold ''refrigerator'' for them. Spectroscopy of molecules in or on these droplets reveals information on both the molecule and the helium environment. The droplets are known to be in the superfluid He II phase. Superfluidity in nanoscale systems is a steadily growing field of research. Spectra obtained from full quantum simulations for the unperturbed dimer show deviations from measurements with dimers on helium droplets. These deviations result from the influence of the helium environment on the dimer dynamics. In this work, a well-established quantum optical master equation is used in order to describe the dimer dynamics effectively. The master equation allows to describe damping fully quantum mechanically. By employing that equation in the quantum dynamical simulation, one can study the role of dissipation and decoherence in dimers on helium droplets. The effective description allows to explain experiments with Rb 2 dimers on helium droplets. Here, we identify vibrational damping and associated decoherence as the main explanation for the experimental results. The relation between decoherence and dissipation in Morse-like systems at zero temperature is studied in more detail. The dissipative model is also used to investigate experiments with K 2 dimers on helium droplets. However, by comparing numerical simulations with experimental data, one finds that further mechanisms are active. Here, a good agreement is obtained through accounting for rapid desorption of dimers. We find that decoherence occurs in the electronic manifold of the

  1. Exergy Analysis of the Cryogenic Helium Distribution System for the Large Hadron Collider (LHC)

    CERN Document Server

    Claudet, S; Tavian, L; Wagner, U

    2010-01-01

    The Large Hadron Collider (LHC) at CERN features the world’s largest helium cryogenic system, spreading over the 26.7 km circumference of the superconducting accelerator. With a total equivalent capacity of 145 kW at 4.5 K including 18 kW at 1.8 K, the LHC refrigerators produce an unprecedented exergetic load, which must be distributed efficiently to the magnets in the tunnel over the 3.3 km length of each of the eight independent sectors of the machine. We recall the main features of the LHC cryogenic helium distribution system at different temperature levels and present its exergy analysis, thus enabling to qualify second-principle efficiency and identify main remaining sources of irreversibility..

  2. EXERGY ANALYSIS OF THE CRYOGENIC HELIUM DISTRIBUTION SYSTEM FOR THE LARGE HADRON COLLIDER (LHC)

    International Nuclear Information System (INIS)

    Claudet, S.; Lebrun, Ph.; Tavian, L.; Wagner, U.

    2010-01-01

    The Large Hadron Collider (LHC) at CERN features the world's largest helium cryogenic system, spreading over the 26.7 km circumference of the superconducting accelerator. With a total equivalent capacity of 145 kW at 4.5 K including 18 kW at 1.8 K, the LHC refrigerators produce an unprecedented exergetic load, which must be distributed efficiently to the magnets in the tunnel over the 3.3 km length of each of the eight independent sectors of the machine. We recall the main features of the LHC cryogenic helium distribution system at different temperature levels and present its exergy analysis, thus enabling to qualify second-principle efficiency and identify main remaining sources of irreversibility.

  3. Integrated Refrigeration and Storage for Advanced Liquid Hydrogen Operations

    Science.gov (United States)

    Swanger, A. M.; Notardonato, W. U.; Johnson, W. L.; Tomsik, T. M.

    2016-01-01

    NASA has used liquefied hydrogen (LH2) on a large scale since the beginning of the space program as fuel for the Centaur and Apollo upper stages, and more recently to feed the three space shuttle main engines. The LH2 systems currently in place at the Kennedy Space Center (KSC) launch pads are aging and inefficient compared to the state-of-the-art. Therefore, the need exists to explore advanced technologies and operations that can drive commodity costs down, and provide increased capabilities. The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) was developed at KSC to pursue these goals by demonstrating active thermal control of the propellant state by direct removal of heat using a cryocooler. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The key technology challenge was efficiently integrating the cryogenic refrigerator into the LH2 storage tank. A Linde LR1620 Brayton cycle refrigerator is used to produce up to 900W cooling at 20K, circulating approximately 22 g/s gaseous helium through the hydrogen via approximately 300 m of heat exchanger tubing. The GODU-LH2 system is fully operational, and is currently under test. This paper will discuss the design features of the refrigerator and storage system, as well as the current test results.

  4. RECENT PROGRESS IN DYNAMIC PROCESS SIMULATION OF CRYOGENIC REFRIGERATORS

    International Nuclear Information System (INIS)

    Kuendig, A.

    2008-01-01

    At the CEC 2005 a paper with the title ''Helium refrigerator design for pulsed heat load in Tokamaks'' was presented. That paper highlighted the control requirements for cryogenic refrigerators to cope with the expected load variations of future nuclear fusion reactors. First dynamic computer simulations have been presented.In the mean time, the computer program is enhanced and a new series of process simulations are available. The new program considers not only the heat flows and the temperature variations within the heat exchangers, but also the variation of mass flows and pressure drops. The heat transfer numbers now are calculated in dependence of the flow speed and the gas properties. PI-controllers calculate the necessary position of specific valves for maintaining pressures, temperatures and the rotation speed of turbines.Still unsatisfactory is the fact, that changes in the process arrangement usually are attended by adjustments in the program code. It is the main objective of the next step of development a more flexible code which enables that any user defined process arrangements can be assembled by input data

  5. Reduction of hydrocarbon impurities in 200 l/h helium liquefier-refrigerator system

    Science.gov (United States)

    Yamada, Shuichi; Mito, Toshiyuki; Nishimura, Arata; Takahata, Kazuya; Satoh, Sadao; Yamamoto, Junya; Yamamura, Hidemasa; Masuda, Kaoru; Kashihara, Shinichirou; Fukusada, Katsuaki

    1993-11-01

    A cryogenic system with the capacity of 200 l/h or 500 W at 4.4 K was developed in order to supply the superconducting conductors and coils of the LHD. As a by-product of operating the cryogenic system, the impurity densities of hydrocarbon gases in the circulating helium gas became much larger than the expected values for this cryogenic system. So much larger in fact, that it became necessary to carefully monitor the operational conditions of the circulating compressor by means of gas chromatography. Impurity gas densities of oxygen, nitrogen, and ethane increased significantly when the output capacity of the compressor was reduced. In a two-stage oil injected compression system, with a variable stroke mechanism for a first stage, a reduction in the capacity of the first stage leads to a larger compression ratio for the second stage, and the temperature of the injected oil becomes higher. The production of the impurities in the helium might be caused by decomposition of the injected oil in the compressor. The compressor, therefore, was reconstructed such that the injection oil is supplied sufficiently, and the compression ratio division becomes even for each stage. It was confirmed that the impurities were not produced after the modification.

  6. Characterization of new a-Si:H detectors fabricated from amorphous silicon deposited at high rate by helium enhanced PECVD

    International Nuclear Information System (INIS)

    Pochet, T.; Ilie, A.; Foulon, F.

    1993-01-01

    This paper is concerned with the characterization of new detectors fabricated from a-Si:H films deposited at high rates through the dilution of SiH 4 in helium. Rates of up to ten times (5.5 micrometer/h) that of the standard technique are obtained, allowing for the feasible fabrication of detectors having thickness up to 100 micrometers. The electrical characteristics (depletion voltage, residual space charge density) of the helium diluted material, have been investigated and compared to that of the standard material. The response of detectors, made from both materials, to 5.5 MeV alpha particles are compared. 6 figs., 5 tabs., 13 refs

  7. Mobile refrigeration system for precool and warm up of superconducting magnets

    Science.gov (United States)

    Gandla, S. K.; Longsworth, R. C.

    2017-12-01

    Conservation of helium has become more important in recent years due to global shortages in supply. Magnetic resonance imaging (MRI) superconducting magnets use approximately 20% of the world’s helium reserves in liquid form to cool down and maintain operating temperatures at 4 K. This paper describes a mobile cryogenic refrigeration system, which has been developed by Sumitomo (SHI) Cryogenics of America, Inc. to conserve helium by shipping MRI magnets warm and cooling them down or servicing them on site at a medical facility. The system can cool a typical magnet from room temperature to below 40K in less than a week. The system consists of four single stage Displex®-type Gifford-McMahon (GM) expanders in a cryostat with heat exchangers integrated on the cold ends that cool the helium gas, which is circulated in a closed-loop system through the magnet by a cryogenic fan. The system is configured with heaters on the heat exchangers to effectively warm up a magnet. The system includes a scroll vacuum pump, which is used to evacuate the helium circuit with or without the magnet and turbo pump to evacuate the cryostat. Vacuum-jacketed transfer lines connect the cryostat to the magnet. The system is designed with its own controller for continuous operation of precool, warm up and evacuation processes with automatic and manual controls. The cryostat, pumps and gas controls are mounted on a dewar cart. One compressor and the system controller are mounted on a compressor and control cart, and the other three compressors are mounted on separate carts.

  8. Estimation of the minimum Prandtl number for binary gas mixtures formed with light helium and certain heavier gases: Application to thermoacoustic refrigerators

    International Nuclear Information System (INIS)

    Campo, Antonio; Papari, Mohammad M.; Abu-Nada, Eiyad

    2011-01-01

    This paper addresses a detailed procedure for the accurate estimation of low Prandtl numbers of selected binary gas mixtures. In this context, helium (He) is the light primary gas and the heavier secondary gases are nitrogen (N 2 ), oxygen (O 2 ), xenon (Xe), carbon dioxide (CO 2 ), methane (CH 4 ), tetrafluoromethane or carbon tetrafluoride (CF 4 ) and sulfur hexafluoride (SF 6 ). The three thermophysical properties forming the Prandtl number of binary gas mixtures Pr mix are heat capacity at constant pressure C p,mix (thermodynamic property), viscosity η mix (transport property) and thermal conductivity λ mix (transport property), which in general depend on temperature T and molar gas composition w. The precise formulas for the calculation of the trio C p,mix , η mix , and λ mix are gathered from various dependable sources. When the set of computed Pr mix values for the seven binary gas mixtures He + N 2 , He + O 2 , He + Xe, He + CO 2 , He + CH 4 , He + CF 4 , He + SF 6 at atmospheric conditions T = 300 K, p = 1 atm is plotted against the molar gas composition w on the w-domain [0,1], the family of Pr mix (w) curves exhibited distinctive concave shapes. In the curves format, all Pr mix (w) curves initiate with Pr ∼ 0.7 at w = 0 (associated with light primary He). Forthwith, each Pr mix (w) curve descends to a unique minimum and thereafter ascend back to Pr ∼ 0.7 at the terminal point w = 1 (connected to heavier secondary gases). Overall, it was found that among the seven binary gas mixtures tested, the He + Xe gas mixture delivered the absolute minimum Prandtl number Pr mix,min = 0.12 at the optimal molar gas composition w opt = 0.975. - Highlights: →Accurate estimation of low Prandtl numbers for some helium-based binary gas mixtures. →The thermophysical properties of the gases are calculated with precise formulas. →The absolute minimum Prandtl number is delivered by the He + Xe binary gas mixture. →Application to experimental thermoacoustic

  9. Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure

    KAUST Repository

    Kailasanathan, Ranjith Kumar Abhinavam

    2014-05-20

    Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both temperature and soot measurements presented are line-of-sight averages. The results aid in understanding the kinetic and thermodynamic behavior of the soot formation and oxidation chemistry with changes in diluents, ultimately leading to possible methods of reducing soot emission from practical combustion hardware. The diluted fuel and coflow exit velocities (top-hat profiles) were matched at all pressures to minimize shear effects. In addition to the velocity-matched flow rates, the mass fluxes were held constant for all pressures. Addition of a diluent has a pronounced effect on both the soot surface temperature and volume fraction, with the helium diluted flame yielding the maximum and carbon dioxide diluted flame yielding minimum soot surface temperature and volume fraction. At low pressures, peak soot volume fraction exists at the tip of the flame, and with an increase in pressure, the location shifts lower to the wings of the flame. Due to the very high diffusivity of helium, significantly higher temperature and volume fraction are measured and explained. Carbon dioxide has the most dramatic soot suppression effect. By comparing the soot yield with previously measured soot precursor concentrations in the same flame, it is clear that the lower soot yield is a result of enhanced oxidation rates rather than a reduction in precursor formation. Copyright © 2014 Taylor & Francis Group, LLC.

  10. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1998-03-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to thermophysical properties, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air conditioning and refrigeration equipment. It also references documents addressing compatibility of refrigerants and lubricants with other materials.

  11. Thermoacoustic refrigeration

    Science.gov (United States)

    Garrett, Steven L.; Hofler, Thomas J.

    1991-12-01

    A new refrigerator which uses resonant high amplitude sound in inert gases to pump heat is described and demonstrated. The phasing of the thermoacoustic cycle is provided by thermal conduction. This 'natural' phasing allows the entire refrigerator to operate with only one moving part (the loudspeaker diaphragm). The thermoacoustic refrigerator has no sliding seals, requires no lubrication, uses only low-tolerance machine parts, and contains no expensive components. Because the compressor moving mass is typically small and the oscillation frequency is high, the small amount of vibration is very easily isolated. This low vibration and lack of sliding seals makes thermoacoustic refrigeration an excellent candidate for food refrigeration and commercial/residential air conditioning applications. The design, fabrication, and performance of the first practical, autonomous thermoacoustic refrigerator, which will be flown on the Space Shuttle (STS-42), are described, and designs for terrestrial applications are presented.

  12. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1997-02-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alterative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on various refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  13. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1999-01-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilities access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  14. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1996-07-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  15. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1996-11-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  16. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1996-04-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates. Citations in this report are divided into the following topics: thermophysical properties; materials compatibility; lubricants and tribology; application data; safety; test and analysis methods; impacts; regulatory actions; substitute refrigerants; identification; absorption and adsorption; research programs; and miscellaneous documents. Information is also presented on ordering instructions for the computerized version.

  17. Reduction of hydrocarbon impurities in 200 L/H helium liquefier-refrigerator system

    International Nuclear Information System (INIS)

    Yamada, Shuichi; Mito, Toshiyuki; Nishimura, Arata

    1993-11-01

    A cryogenic system with the capacity of 200 1/h or 500 W at 4.4 K has been operated to develop the superconducting conductors and coils for the LHD. The system has contributed in various superconducting technologies along with the dc 75kA power supply and 10 MN mechanical testing machine, and completed the basic R and D works of the LHD. On the way of operating the cryogenic system, impurity densities of hydrocarbon gases in circulating helium gas became much larger than the expected values for this cryogenic system, so that the densities of some impurity gases were carefully monitored in reference to the operational conditions of circulating compressor by using a gas chromatography. Impurity gas densities of oxygen, nitrogen and ethane increased obviously, when the output capacity of the compressor was reduced. In a two-stage oil injected compression system with a variable stroke mechanism for a first stage, a reduction in the capacity of the first stage leads to a larger compression ratio for the second stage, and the temperature of the injected oil becomes higher. The production of the impurities in the helium might be caused by cracking a part of injected oil in the compressor. The compressor, therefore, was reconstructed such that the injection oil is supplied sufficiently and the compression ratio division becomes even for each stage. It was confirmed that the impurities are not produced now after modification. (author)

  18. Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure

    KAUST Repository

    Kailasanathan, Ranjith Kumar Abhinavam; Zhang, Ji; Fang, Tiegang; Roberts, William L.

    2014-01-01

    Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both

  19. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1998-08-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufactures and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on many refrigerants including propane, ammonia, water, carbon dioxide, propylene, ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  20. Operational history of Fermilab's 1500 W refrigerator used for energy saver magnet production testing

    International Nuclear Information System (INIS)

    Bianchi, A.J.; Barger, R.K.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.W.; Cooper, W.E.

    1985-09-01

    The 1500 W helium refrigerator system utilizes two oil-injected screw compressors staged to feed a liquid nitrogen pre-cooled cold box. Refrigeration is provided by two Sulzer TGL-22 magnetic/gas bearing turbines. The refrigerator feeds six magnet test stands via a 10,000 L dewar and subcooler equipped distribution box. The design of the controls has permitted the system to be routinely operated 24 hours/day, seven days/week with only five operators. It has operated approximately 90% of the 4-1/2 years prior to shutting down in 1984 for a period of one year to move the compressor skid. Scheduled maintenance, failures, repairs and holidays are about equal to the 10% off time. The equipment described was used to test approximately 1200 superconducting magnets for the Fermilab accelerator ring. The seven year operating experience is presented as an equipment and technique review. Compressor hours currently exceed 42,000 and turbine hours exceed 39,000 each. Failure rates, causes, preventive maintenance, monitoring practices and equipment, and modifications are examined along with notes on some of the more successful applications of technique and equipment. 4 refs

  1. Macroscopic Refrigeration Using Superconducting Tunnel Junctions

    Science.gov (United States)

    Lowell, Peter; O'Neil, Galen; Underwood, Jason; Zhang, Xiaohang; Ullom, Joel

    2014-03-01

    Sub-kelvin temperatures are often a prerequisite for modern scientific experiments, such as quantum information processing, astrophysical missions looking for dark energy signatures and tabletop time resolved x-ray spectroscopy. Existing methods of reaching these temperatures, such as dilution refrigerators, are bulky and costly. In order to increase the accessibility of sub-Kelvin temperatures, we have developed a new method of refrigeration using normal-metal/insulator/superconductor (NIS) tunnel junctions. NIS junctions cool the electrons in the normal metal since the hottest electrons selectively tunnel from the normal metal into the superconductor. By extending the normal metal onto a thermally isolated membrane, the cold electrons can cool the phonons through the electron-phonon coupling. When these junctions are combined with a pumped 3He system, they provide a potentially inexpensive method of reaching these temperatures. Using only three devices, each with a junction area of approximately 3,500 μm2, we have cooled a 2 cm3 Cu plate from 290 mK to 256 mK. We will present these experimental results along with recent modeling predictions that strongly suggest that further refinements will allow cooling from 300 mK to 120 mK. This work is supported by the NASA APRA program.

  2. Nonmetallic and composite materials as solid superleaks

    International Nuclear Information System (INIS)

    Goldschvartz, J.M.

    1982-01-01

    This chapter discusses the devices in general solid porous materials in which the so-called diameter of the pores, gaps, inter-crystalline spaces, or small channels, etc, are equal or smaller than 100 0 A. Examines silicon carbide, wonderstone, talc-stone, rocks as superleaks, magnetic superleaks, the onset point of a superleak, determination of the onset point, and some applications of superleaks (as a filter, as an isotope separator, as a separator in the 3 He- 4 He dilution refrigerator, in a vortex refrigerator, in a servo-valve for liquid helium two (the cocatron), method of measuring the size of sub-microscopic pores, ultra cold neutrons, superconductors pressed into porous materials)

  3. Study of a magnetic refrigeration cycle by active regeneration between 15 and 4.2 kelvins

    International Nuclear Information System (INIS)

    Bredy, P.

    1989-01-01

    Magnetic refrigeration with active regeneration cycles was realized on a test bench. From a hot source at 14K cold power near 20 mW is reached on liquid helium at 4.2 K. Efficiency of the cooling loop is around 0.20. Different geometries are tested and a part of observed physical phenomena are simulated with a numerical model. Interest of ferromagnetic cryogenic materials for the range 4-15 K is evidenced by measurement of thermomagnetic properties of europium sulfide [fr

  4. Process Control Migration of 50 LPH Helium Liquefier

    Science.gov (United States)

    Panda, U.; Mandal, A.; Das, A.; Behera, M.; Pal, Sandip

    2017-02-01

    Two helium liquefier/refrigerators are operational at VECC while one is dedicated for the Superconducting Cyclotron. The first helium liquefier of 50 LPH capacity from Air Liquide has already completed fifteen years of operation without any major trouble. This liquefier is being controlled by Eurotherm PC3000 make PLC. This PLC has become obsolete since last seven years or so. Though we can still manage to run the PLC system with existing spares, risk of discontinuation of the operation is always there due to unavailability of spare. In order to eliminate the risk, an equivalent PLC control system based on Siemens S7-300 was thought of. For smooth migration, total programming was done keeping the same field input and output interface, nomenclature and graphset. New program is a mix of S7-300 Graph, STL and LAD languages. One to one program verification of the entire process graph was done manually. The total program was run in simulation mode. Matlab mathematical model was also used for plant control simulations. EPICS based SCADA was used for process monitoring. As of now the entire hardware and software is ready for direct replacement with minimum required set up time.

  5. Simulation of the SSC [Superconducting Super Collider] refrigeration system using the ASPEN/SP process simulator

    International Nuclear Information System (INIS)

    Rasson, J.; Dweck, J.

    1990-08-01

    The SSC Magnet must maintain at a super conducting temperature of 4 K. The proposed refrigeration cooling processes consist of fairly simple closed cycles which take advantage of the Joule-Thompson effect via a series of expansions and compressions of helium gas which has been precooled by liquid nitrogen. The processes currently under consideration consist of three cycles, the 20 K shield cooling, the 45 K helium refrigerator and the helium liquefier. The process units which are to be employed are compressors, turbines, expanders, mixers, flashes, two stream heat exchangers and multiple stream heat exchangers. The cycles are to be operated at or near steady state. Due to the large number of competing cooling sector designs to be considered and the high capital and operating costs of the proposed processes, the SSC Laboratory requires a software tool for the validation and optimization of the individual designs and for the performance of cost-benefit analyses among competing designs. Since these processes are steady state flow processes involving primarily standard unit operations, a decision was made to investigate the application of a commercial process simulator to the task. Several months of internal evaluations by the SSC Laboratory revealed that while the overall structure and calculation approach of number of the commercial simulators were appropriate for this task, all were lacking essential capabilities in the areas of thermodynamic property calculations for cryogenic systems and modeling of complex, multiple stream heat exchangers. An acceptable thermodynamics model was provided and a series of simple, but representative benchmark problems developed. The model and problems were provided to three software vendors. Based on the results of the benchmark test, the ASPEN/SP process simulator was selected for future modeling work

  6. Dynamic simulation of a 1.8K refrigeration unit for the LHC

    CERN Document Server

    Bradu, B; Niculescu, S I

    2009-01-01

    A new simulation toolkit has been successfully developed at the European Organization for Nuclear Research (CERN) and applied to existing cryogenic installations as, for example, the 1.3kW @ 4.5K cold-box of the Compact Muon Solenoid (CMS) experiment and the central CERN helium liquefier. The simulator is based on different interconnected simulation tools and provides simulations of cryogenic systems with their control and supervision. In this paper, we present an application to a complete 2.4kW @ 1.8K refrigeration unit for the LHC. It includes the cryogenic centrifugal compressors coupled to the warm compression station.

  7. When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study.

    Science.gov (United States)

    Haidari, Leila A; Brown, Shawn T; Wedlock, Patrick; Connor, Diana L; Spiker, Marie; Lee, Bruce Y

    2017-04-19

    Gavi recommends solar refrigerators for vaccine storage in areas with less than eight hours of electricity per day, and WHO guidelines are more conservative. The question remains: Can solar refrigerators provide value where electrical outages are less frequent? Using a HERMES-generated computational model of the Mozambique routine immunization supply chain, we simulated the use of solar versus electric mains-powered refrigerators (hereafter referred to as "electric refrigerators") at different locations in the supply chain under various circumstances. At their current price premium, the annual cost of each solar refrigerator is 132% more than each electric refrigerator at the district level and 241% more at health facilities. Solar refrigerators provided savings over electric refrigerators when one-day electrical outages occurred more than five times per year at either the district level or the health facilities, even when the electric refrigerator holdover time exceeded the duration of the outage. Two-day outages occurring more than three times per year at the district level or more than twice per year at the health facilities also caused solar refrigerators to be cost saving. Lowering the annual cost of a solar refrigerator to 75% more than an electric refrigerator allowed solar refrigerators to be cost saving at either level when one-day outages occurred more than once per year, or when two-day outages occurred more than once per year at the district level or even once per year at the health facilities. Our study supports WHO and Gavi guidelines. In fact, solar refrigerators may provide savings in total cost per dose administered over electrical refrigerators when electrical outages are less frequent. Our study identified the frequency and duration at which electrical outages need to occur for solar refrigerators to provide savings in total cost per dose administered over electric refrigerators at different solar refrigerator prices. Copyright © 2017. Published

  8. Portable refrigerant charge meter and method for determining the actual refrigerant charge in HVAC systems

    Science.gov (United States)

    Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.

    2017-08-08

    A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.

  9. Influence of MHD effects and edge conditions on ITER helium ash accumulation and sustained ignition

    International Nuclear Information System (INIS)

    Redi, M.H.; Cohen, S.A.

    1990-06-01

    Dilution of reacting species by build-up of helium ash and its effect on ignition in the ITER tokamak have been studies in a series of simulations with the one-dimensional BALDUR transport code. Thermal diffusivities, obtained from ITER scaling laws and with radial variations observed in JET, gave τ E ∼ 2--4 sec. Refueling of deuterium and tritium maintained constant electron density, while carbon recycling was 100% and the helium ash recycling was varied from 1.0 to 0.5. Including MHD effects, specifically sawteeth and beta limits, we find that ignition can be sustained for 200 seconds with R helium = 0.95. These simulations, the only non-zero-dimensional, time-dependent simulations thus far made for ITER plasmas, emphasize that edge plasma conditions, MHD behavior, and helium particle transport are critical synergistic issues for sustained ignition. 27 refs., 2 figs., 1 tab

  10. Reverse convection in helium and other fluids in the high speed rotating frame: negative and positive buoyancy effects

    International Nuclear Information System (INIS)

    Igra, R.; Scurlock, R.G.; Wu, Y.Y.

    1986-01-01

    Experimental studies of thermo-syphon flows in radial tubes and loops between the axis and the periphery of a rotating helium cryostat have shown that when heat is supplied at an intermediate radius, the heat is carried radially inwards as A flow and radially outwards as B flow. The results with helium suggest that while the steady state patterns of the A and B flows are complex, the heat is divided approximately equally between the conventional A flow and the reverse B flow. A model of convective heating in the rotating frame is presented and two necessary conditions for reverse convection are identified and discussed. The model predicts reverse convection in liquid nitrogen and this is confirmed by experimental measurement. An array of radial ducts is proposed for the cooling of a superconducting AC generator in order to counter the effects of reverse convection in the helium refrigerant

  11. High level helium leak testing methods developed at ICSI Rm. Valcea

    International Nuclear Information System (INIS)

    Saros, Gili; Armeanu, Adrian; Saros, Irina; Ciortea, Constantin

    2007-01-01

    Full text: Helium leak detection is one of the most widely used methods of nondestructive testing in use today. In principle two methods are applied for leak testing and localization of leaks, the 'Vacuum method' and the 'Overpressure method'. In case of the 'Vacuum method' the object to be examined for leaks is evacuated and filled instead with Helium. The gas penetrates through any leaks found in the object and is detected by the leak test instrument. In case of the 'Overpressure method' the object to be examined for leaks is filled with Helium, under slight overpressure. The gas escapes through any leaks present and it is detected by a detector probe. This detector probe sometimes called a 'sniffer' acting as a gas sampling probe. Varian 979 Helium Leak Detector has a built-in turbo pump and an externally mounted dry forepump located below the system. The leak detector is configured for the evacuation type leak testing. In this case, the vacuum system under test is evacuated by the leak detector. Helium is then sprayed on the outside of the vacuum system and is pumped into the leak detector if a leak is present. The leak detector is capable to detect leaks down to 10 -9 atm-cc/sec range. The Specton 300E is a strong, rugged leak detector designed to operate in dirty industrial conditions as well as clean research areas. A number of applications are mentioned: - Generators; - Buried Pipelines; - Chemical and power plants; - Vacuum furnace installations; - Heat Exchangers; - Tank Floors; - Nuclear research centers; - Refrigeration installations; - Any type of industrial vacuum system. (authors)

  12. Application of Cascade Refrigeration System with Mixing Refrigerant in Cold Air Cutting

    Science.gov (United States)

    Yang, Y.; Tong, M. W.; Yang, G.; Wang, X. P.

    In the mechanical cutting process, the replacement of traditional cutting solution with cold air can avoid the pollution of environment. In order to high efficient the refrigerating device and flexible adjust the temperature of cold air, it is necessary to use cascade refrigeration system to supply cool quantity for the compressed air. The introduction of a two-component non-azeotropic mixing refrigerant into the cryogenic part of the cascade system, can effectively solve the problems of the system working at too high pressure and the volume expanding of refrigerant in case of the cascade refrigeration sets closed down. However, the filling ratio of mixing refrigerants impact on the relationships among the closing down pressure, refrigerating output and refrigerating efficiency. On the basis of computing and experiment, the optimal mixing ratio of refrigerant R22/R13 and a low temperature of -60° were obtained in this study. A cold air injecting device possessing high efficiency in energy saving has also been designed and manufactured. The cold air, generated from this cascade system and employed in a cutting process, takes good comprehensive effects on machining and cutting.

  13. The condition of existence of the Bose-Einstein condensation in the superfluid liquid helium

    International Nuclear Information System (INIS)

    Minasyan, V.N.; Samoilov, V.N.

    2010-01-01

    The condition for the Bose-Einstein transition in the superfluid liquid helium is presented due to the formation of a free neutron spinless pairs in a liquid helium-dilute neutron gas mixture. We show that the term, of the interaction between the excitations of the Bose gas and the density modes of the neutron, meditate an attractive interaction via the neutron modes, which in turn leads to a bound state on a spinless neutron pair. The lambda transition point is defined by a condition for the Bose-Einstein transition, which transforms reflected neutron pair modes to single neutron modes.

  14. When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study☆

    Science.gov (United States)

    Haidari, Leila A.; Brown, Shawn T.; Wedlock, Patrick; Connor, Diana L.; Spiker, Marie; Lee, Bruce Y.

    2017-01-01

    Background Gavi recommends solar refrigerators for vaccine storage in areas with less than eight hours of electricity per day, and WHO guidelines are more conservative. The question remains: Can solar refrigerators provide value where electrical outages are less frequent? Methods Using a HERMES-generated computational model of the Mozambique routine immunization supply chain, we simulated the use of solar versus electric mains-powered refrigerators (hereafter referred to as “electric refrigerators”) at different locations in the supply chain under various circumstances. Results At their current price premium, the annual cost of each solar refrigerator is 132% more than each electric refrigerator at the district level and 241% more at health facilities. Solar refrigerators provided savings over electric refrigerators when one-day electrical outages occurred more than five times per year at either the district level or the health facilities, even when the electric refrigerator holdover time exceeded the duration of the outage. Two-day outages occurring more than three times per year at the district level or more than twice per year at the health facilities also caused solar refrigerators to be cost saving. Lowering the annual cost of a solar refrigerator to 75% more than an electric refrigerator allowed solar refrigerators to be cost saving at either level when one-day outages occurred more than once per year, or when two-day outages occurred more than once per year at the district level or even once per year at the health facilities. Conclusion Our study supports WHO and Gavi guidelines. In fact, solar refrigerators may provide savings in total cost per dose administered over electrical refrigerators when electrical outages are less frequent. Our study identified the frequency and duration at which electrical outages need to occur for solar refrigerators to provide savings in total cost per dose administered over electric refrigerators at different solar

  15. Functional Dependence of Thermodynamic and Thermokinetic Parameters of Refrigerants Used in Mine Air Refrigerators. Part 1 - Refrigerant R407C

    Science.gov (United States)

    Nowak, Bernard; Życzkowski, Piotr; Łuczak, Rafał

    2017-03-01

    The authors of this article dealt with the issue of modeling the thermodynamic and thermokinetic properties (parameters) of refrigerants. The knowledge of these parameters is essential to design refrigeration equipment, to perform their energy efficiency analysis, or to compare the efficiency of air refrigerators using different refrigerants. One of the refrigerants used in mine air compression refrigerators is R407C. For this refrigerant, 23 dependencies were developed, determining its thermodynamic and thermokinetic parameters in the states of saturated liquid, dry saturated vapour, superheated vapor, subcooled liquid, and in the two-phase region. The created formulas have been presented in Tables 2, 5, 8, 10 and 12, respectively. It should be noted that the scope of application of these formulas is wider than the range of changes of that refrigerant during the normal operation of mine refrigeration equipment. The article ends with the statistical verification of the developed dependencies. For this purpose, for each model correlation coefficients and coefficients of determination were calculated, as well as absolute and relative deviations between the given values from the program REFPROP 7 (Lemmon et al., 2002) and the calculated ones. The results of these calculations have been contained in Tables 14 and 15.

  16. Cryogen free low temperature sample environment for neutron scattering experiments

    International Nuclear Information System (INIS)

    Kirichek, O; Evans, B E; Down, R B E; Bowden, Z A

    2009-01-01

    Recent increase in liquid helium cost caused by global helium supply problems rose significant concern about affordability of conventional cryogenic equipment. Luckily the progress in cryo-cooler technology offers a new generation of cryogenic systems with significantly reduced consumption and in some cases nearly complete elimination of cryogens. These cryogen-free systems also offer the advantage of operational simplicity and require less space than conventional cryogen-cooled systems. The ISIS facility carries on an internal development program intended to substitute gradually all conventional cryogenic systems with cryogen free systems preferably based on pulse tube refrigerators. A unique feature of this cryo-cooler is the absence of cold moving parts. This considerably reduces vibrations and increases the reliability of the cold head. The program includes few development projects which are aiming to deliver range of cryogen free equipment including top-loading cryostat, superconducting magnets and dilution refrigerators. Here we are going to describe the design of these systems and discuss the results of prototypes testing.

  17. Review of magnetic refrigeration system as alternative to conventional refrigeration system

    Science.gov (United States)

    Mezaal, N. A.; Osintsev, K. V.; Zhirgalova, T. B.

    2017-10-01

    The refrigeration system is one of the most important systems in industry. Developers are constantly seeking for how to avoid the damage to the environment. Magnetic refrigeration is an emerging, environment-friendly technology based on a magnetic solid that acts as a refrigerant by magneto-caloric effect (MCE). In the case of ferromagnetic materials, MCE warms as the magnetic moments of the atom are aligned by the application of a magnetic field. There are two types of magnetic phase changes that may occur at the Curie point: first order magnetic transition (FOMT) and second order magnetic transition (SOMT). The reference cycle for magnetic refrigeration is AMR (Active Magnetic Regenerative cycle), where the magnetic material matrix works both as a refrigerating medium and as a heat regenerating medium, while the fluid flowing in the porous matrix works as a heat transfer medium. Regeneration can be accomplished by blowing a heat transfer fluid in a reciprocating fashion through the regenerator made of magnetocaloric material that is alternately magnetized and demagnetized. Many magnetic refrigeration prototypes with different designs and software models have been built in different parts of the world. In this paper, the authors try to shed light on the magnetic refrigeration and show its effectiveness compared with conventional refrigeration methods.

  18. Helium production by 10 MeV neutrons in iron, nickel and copper

    International Nuclear Information System (INIS)

    Haight, R.C.; Kneff, D.W.; Oliver, B.M.; Greenwood, L.R.; Vonach, H.

    1994-01-01

    Helium production cross sections for the elements Fe, Ni, and Cu and for the isotopes 56 Fe, 58 Ni and 60 Ni have been measured for 10-MeV neutrons. Samples were irradiated with an intense neutron source from the 1 H(t,n) reaction using a rotating gas cell. The generated helium was determined by isotope dilution gas mass spectrometry. Induced radioactivities and known cross sections were used together with calculations based on the source reaction to deduce the neutron fluence at each sample position. The results are in fair agreement with literature values for (n,α) cross sections measured by α-particle detection and integrated over the α-particle energies and angular distributions

  19. A Possible 1.8 K Refrigeration Cycle for the Large Hadron Collider

    CERN Document Server

    Millet, F; Tavian, L; Wagner, U

    1998-01-01

    The Large Hadron Collider (LHC) under construction at the European Laboratory for Particle Physics, CERN, will make use of superconducting magnets operating below 2.0 K. This requires, for each of the eight future cryogenic installations, an isothermal cooling capacity of up to 2.4 kW obtained by vaporisation of helium II at 1.6 kPa and 1.8 K. The process design for this cooling duty has to satisfy several demands. It has to be adapted to four already existing as well as to four new refrigerators. It must cover a dynamic range of one to three, and it must to allow continuous pump-down from 4.5 K to 1.8 K. A possible solution, as presented in this paper, includes a combination of cold centrifugal and warm volumetric compressors. It is characterised by a low thermal load on the refrigerator, and a large range of adaptability to different operation modes. The expected power factor for 1.8 K cooling is given, and the proposed control strategy is explained.

  20. Refrigeration and global warming

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Some aspects of global warming in general, and the implications for refrigerants and refrigerator efficiency in particular, are briefly considered in a question and answer format. The concepts of Global Warming Potential (GWP) and Total Equivalent Warming Impact (TEWI) are explained. GWP is an index which allows a simple comparison to be make between the warming effects of different gases on a kg to kg basis relative to carbon. The GWP depends both on the lifetime of a substance in the atmosphere and its infra-red absorption capacity. The overall warming effect of operating a refrigeration system for its entire life is measured by its TEWI. Chloroflourocarbons (CFCs) which have been widely used as refrigerants are powerful greenhouse gases with high GWPs. Because of the bank of CFCs in refrigerating systems, their levels in the atmosphere are still increasing and it will be some time before refrigerant changes will be effective in reducing the warming effects of refrigerant releases. Hydrocarbons, hydroflourocarbons and ammonia all have a part to play as substitute refrigerants. Refrigerator efficiency is very important in terms of reducing CO 2 emissions. (UK)

  1. Design, construction and start up by Air Liquide of two 18 kW at 45 K helium refrigerators for the new CERN accelerator (LHC)

    CERN Document Server

    Dauguet, P; Delcayre, F; Ghisolfi, A; Gistau-Baguer, Guy M; Guerin, C A; Hilbert, B; Marot, G; Monneret, E

    2004-01-01

    CERN in Switzerland is presently building a new particle accelerator labeled as the LHC. This 27 km accelerator will, for the first time at such a large scale, operate at cryogenic temperatures with superconducting magnets and radio-frequency cavities. For that purpose, Air Liquide has designed, constructed and started up two custom designed refrigerators. The cryogenic power of each of these refrigerators is equivalent to 18 kW at 4.5 K. In order to produce the cryogenic power requested by the LHC accelerator at the different temperature levels with a very high efficiency, a custom design thermodynamic cycle has been chosen. This cycle, the major components of the refrigerators and the results obtained during the reception tests of the refrigerators are presented in this paper.

  2. Cryogenic forced convection refrigerating system

    International Nuclear Information System (INIS)

    Klee, D.J.

    1988-01-01

    This patent describes the method of refrigerating products by contact with a refrigerating gas which comprises introducing product into a refrigeration zone, contacting the product with the refrigerating gas for a sufficient time to refrigerate it to the appropriate extent and removing the refrigerated product. The improvement for producing the refrigeration gas from a liquid cryogen such that essentially all of the liquid cryogen is fully vaporized before contacting the product comprises: (a) introducing the liquid cryogen, selected from the group consisting of liquid air and liquid nitrogen, at elevated pressure into an ejector as the motive fluid to accelerate a portion of a warm refrigerating gas through the ejector while mixing the cryogen and gas to effect complete vaporization of the liquid cryogen and substantial cooling of the portion of the refrigerating gas resulting in a cold discharge gas which is above the liquefaction temperature of the cryogen; (b) introducing the cold discharge gas into a forced circulation pathway of refrigerating gas and producing a cold refrigerating gas which contacts and refrigerates product and is then at least partially recirculated; (c) sensing the temperature of the refrigerating gas in the forced circulation pathway and controlling the introduction of liquid cryogen with regard to the sensed temperature to maintain the temperature of the discharge gas above the liquefacton temperature of the cryogen utilized

  3. Advances in cryogenic engineering. Volume 27 - Proceedings of the Cryogenic Engineering Conference, San Diego, CA, August 11-14, 1981

    Science.gov (United States)

    Fast, R. W.

    Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar. For individual items see A83-43221 to A83-43250

  4. Relationship between composition of mixture charged and that in circulation in an auto refrigerant cascade and a J-T refrigerator operating in liquid refrigerant supply mode

    Science.gov (United States)

    Sreenivas, Bura; Nayak, H. Gurudath; Venkatarathnam, G.

    2017-01-01

    The composition of the refrigerant mixture in circulation during steady state operation of J-T and allied refrigerators is not the same as that charged due to liquid hold up in the heat exchangers and phase separators, as well as the differential solubility of different refrigerant components in the compressor lubricating oil. The performance of refrigerators/liquefiers operating on mixed refrigerant cycles is dependent on the mixture composition. It is therefore important to charge the right mixture that results in an optimum composition in circulation during steady state operation. The relationship between the charged and circulating composition has been experimentally studied in a J-T refrigerator operating in the liquid refrigerant supply (LRS) mode and an auto refrigerant cascade refrigerator (with a phase separator) operating in the gas refrigerant supply (GRS) mode. The results of the study are presented in this work. The results show that the method presented earlier for J-T refrigerators operating in GRS mode is also applicable in the case of refrigerators studied in this work.

  5. Flammable refrigerants

    NARCIS (Netherlands)

    Gerwen, R.J.M. van; Verwoerd, M.; Oostendorp, P.A.

    1999-01-01

    Hydrocarbons are promising alternatives for CFC, HCFC and HFC refrigerants. Due to their flammable nature, safety aspects have to be considered carefully. The world-wide situation concerning acceptability and practical application of flammable refrigerants is becoming more and more complex and

  6. Thermal fluid dynamic behavior of coolant helium gas in a typical reactor VHTGR channel of prismatic core

    International Nuclear Information System (INIS)

    Belo, Allan Cavalcante

    2016-01-01

    The current studies about the thermal fluid dynamic behavior of the VHTGR core reactors of 4 th generation are commonly developed in 3-D analysis in CFD (computational fluid dynamics), which often requires considerable time and complex mathematical calculations for carrying out these analysis. The purpose of this project is to achieve thermal fluid dynamic analysis of flow of gas helium refrigerant in a typical channel of VHTGR prismatic core reactor evaluating magnitudes of interest such as temperature, pressure and fluid velocity and temperature distribution in the wall of the coolant channel from the development of a computer code in MATLAB considering the flow on one-dimensional channel, thereby significantly reducing the processing time of calculations. The model uses three different references to the physical properties of helium: expressions given by the KTA (German committee of nuclear safety standards), the computational tool REFPROP and a set of constant values for the entire channel. With the use of these three references it is possible to simulate the flow treating the gas both compressible and incompressible. The results showed very close values for the interest quantities and revealed that there are no significant differences in the use of different references used in the project. Another important conclusion to be observed is the independence of helium in the gas compressibility effects on thermal fluid dynamic behavior. The study also indicated that the gas undergoes no severe effects due to high temperature variations in the channel, since this goes in the channel at 914 K and exits at approximately 1263 K, which shows the excellent use of helium as a refrigerant fluid in reactor channels VHTGR. The comparison of results obtained in this work with others in the literature served to confirm the effectiveness of the one-dimensional consideration of method of gas flow in the coolant channel to replace the models made in 3-D for the pressure range and

  7. Performance of refrigerating machineries with new refrigerants; Performance des machines frigorifiques avec les nouveaux refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Bailly, A; Jurkowski, R [CIAT, 01 - Culoz (France)

    1998-12-31

    This paper reports on a comparative study of the thermal performances of different refrigerants like R-22, R-134a, R-404A and R-407C when used as possible substitutes for the HCFC22 refrigerant in a given refrigerating machinery equipped with compact high performance plate exchangers. Thermal performances are compared in identical operating conditions. The behaviour of the two-phase exchange coefficient is analyzed with respect to the different parameters. The composition of the mixture after one year of operation has been analyzed too and the influence of oil on the performances is studied. (J.S.)

  8. Performance of refrigerating machineries with new refrigerants; Performance des machines frigorifiques avec les nouveaux refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Bailly, A.; Jurkowski, R. [CIAT, 01 - Culoz (France)

    1997-12-31

    This paper reports on a comparative study of the thermal performances of different refrigerants like R-22, R-134a, R-404A and R-407C when used as possible substitutes for the HCFC22 refrigerant in a given refrigerating machinery equipped with compact high performance plate exchangers. Thermal performances are compared in identical operating conditions. The behaviour of the two-phase exchange coefficient is analyzed with respect to the different parameters. The composition of the mixture after one year of operation has been analyzed too and the influence of oil on the performances is studied. (J.S.)

  9. submitter Superconducting instrumentation for high Reynolds turbulence experiments with low temperature gaseous helium

    CERN Document Server

    Pietropinto, S; Baudet, C; Castaing, B; Chabaud, B; Gagne, Y; Hébral, B; Ladam, Y; Lebrun, P; Pirotte, O; Roche, P

    2003-01-01

    Turbulence is of common experience and of high interest for industrial applications, despite its physical grounds is still not understood. Cryogenic gaseous helium gives access to extremely high Reynolds numbers (Re). We describe an instrumentation hosted in CERN, which provides a 6 kW @ 4.5 K helium refrigerator directly connected to the experiment. The flow is a round jet; the flow rates range from 20 g/s up to 260 g/s at 4.8 K and about 1.2 bar, giving access to the highest controlled Re flow ever developed. The experimental challenge lies in the range of scales which have to be investigated: from the smallest viscous scale η, typically 1 μm at Re=107 to the largest L∼10 cm. The corresponding frequencies: f=v/η can be as large as 1 MHz. The development of an original micrometric superconducting anemometer using a hot spot and its characteristics will be discussed together with its operation and the perspectives associated with superconducting anemometry.

  10. Experimental evidence for the suitability of ELMing H-mode operation in ITER with regard to core transport of helium

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Burrell, K.H.

    1996-09-01

    Studies have been conducted in DIII-D to assess the viability of the ITER design with regard to helium ash removal, including both global helium exhaust studies and detailed helium transport studies. With respect to helium ash accumulation, the results are encouraging for successful operation of ITER in ELMing H-mode plasmas with conventional high-recycling divertor operation. Helium can be removed from the plasma core with a characteristic time constant of ∼ 8 energy confinement times, even with a central source of helium. Furthermore, the exhaust rate is limited by the pumping efficiency of the system and not by transport of helium within the plasma core. Helium transport studies have shown that D He /X eff ∼ 1 in all confinement regimes studied to date and there is little dependence of D He /X eff on normalized gyroradius in dimensionless scaling studies, suggesting that D He /X eff will be ∼ 1 in ITER. These observations suggest that helium transport within the plasma core should be sufficient to prevent unacceptable fuel dilution in ITER. However, helium exhaust is also strongly dependent on many factors (e.g., divertor plasma conditions, plasma and baffling geometry, flux amplification, pumping speed, etc.) that are difficult to extrapolate. Studies have revealed the helium diffusivity decreases as the plasma density increases, which is unfavorable to ITER's extremely high density operation

  11. A fundamental study of a regenerator for an Ericsson magnetic refrigerator

    International Nuclear Information System (INIS)

    Matsumoto, K.; Ito, T.; Numazawa, T.; Hashimoto, T.; Kuriyama, T.; Nakagome, H.

    1986-01-01

    The authors studied an Ericsson magnetic refrigerator above 20 K. The magnetic working material passes through the regenerator during internal heat transfer processes. In the temperature range above 20 K, a solid is indispensable for a regenerator in need of the large volumetric heat capacity. Therefore lead is used for the testing regenerator. As thermal conduction of gaseous helium is expected to be useful for the heat transfer between the regenerator and the working material, the authors have made the gap between them small in order to achieve good heat transfer. They investigated the heat transfer process between working material and regenerator experimentally in the temperature from 25 K to 55 K

  12. Behavior of FFC refrigerants in the presence of refrigerant oils. Oelverhalten chlorfreier Kaeltemittel

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M.; Kruse, H. (Hannover Univ. (Germany, F.R.). Inst. fuer Kaeltetechnik und Angewandte Waermetechnik)

    1990-01-01

    Looking for substitutes for the ozone-depleting refrigerants R12 and R22, investigations were made of the miscibility of FFC refrigerants (R23 - trifluoromethane CHF{sub 3}, R134a - tetrafluoroethane CH{sub 3}-CHF{sub 2}, and R152a - difluoroethane CH{sub 3}-CHF{sub 2}) with refrigerator oils. First experimental results reveal the refrigerants' behavior when mixed with mineral oils, alkylbenzene, PAG and ester-based oils. Mixtures of above refrigerants, especially R134a/R152a and R23/R152a as binary nonazeotropic mixtures, are considered conceivable substitutes. While addition of R23 reduces the mixture's flammability, addition of R152a improves the solubility of R134a in refrigerant oils. (orig./HW).

  13. Refrigerants and environment

    Science.gov (United States)

    Tsvetkov, O. B.; Laptev, Yu A.

    2017-11-01

    The refrigeration and air-conditioning industries are important sectors of the economy and represents about 15 % of global electricity consumptions. The chlorofluorocarbons also called CFCs are a class of refrigerants containing the halogens chlorine and/or fluorine on a carbon skeleton. Because of their environmental impact the Montreal Protocol was negotiated in 1987 to limit the production of certain CFCs and hydrochlirofluorocarbons (HCFCs) in developed and developing countries. The halogenated refrigerants are depleting the ozone layer also major contribution to the greenhouse effect. To be acceptable as a refrigerant a fluid must satisfy a variety of thermodynamic criteria and should be environment friendly with zero Ozone Depletion Potential and low Global Warming Potential. The perspective of a future phase down of HFCs is considered in this report taking into account a strategy for the phase out of HCFCs and perspective of choosing of various refrigerant followed by safety issues.

  14. Prediction of Dangerous Time in Case Hydrocarbon Refrigerant Leaks into Household Refrigerator Cabinet

    Science.gov (United States)

    Meguro, Takatoshi; Kaji, Nobufuji; Miyake, Kunihiro

    Hydrocarbon refrigerators are now on sale in European countries. However, hydrocarbons are flammable. A common claim is that concentration of hydrocarbon in the refrigerator could exceed the lower explosive limit by a sudden leak and then a spark ignites a flame causing overpressure. There is the need of the studies on potential risks originated from the use of flammable refrigerants. Thus, the flow rate of the fresh air into the refrigerator cabinet has been defined experimentally, and the spatial average concentration in the refrigerator cabinet has been analyzed theoretically to predict the dangerous time in excess of the lower explosive limit.

  15. Theoretical study on a novel dual-nozzle ejector enhanced refrigeration cycle for household refrigerator-freezers

    International Nuclear Information System (INIS)

    Zhou, Mengliu; Wang, Xiao; Yu, Jianlin

    2013-01-01

    Highlights: • A novel dual-nozzle ejector enhanced refrigeration cycle is proposed. • The novel cycle is evaluated by using the developed mathematical model. • The results show the performances of the novel cycle could be significantly improved. • The novel cycle shows its promise in household refrigerator-freezers applications. - Abstract: In this study, a novel dual-nozzle ejector enhanced refrigeration cycle is presented for dual evaporator household refrigerator-freezers. The proposed ejector equipped with two nozzles can efficiently recover the expansion work from cycle throttling processes and enhance cycle performances. The performances of the novel cycle are evaluated by using the developed mathematical model, and then compared with that of the conventional ejector enhanced refrigeration cycle and basic vapor-compression refrigeration cycle. The simulation results show that for the given operating conditions, the coefficient of performance (COP) of the novel cycle using refrigerant R134a is improved by 22.9–50.8% compared with that of the basic vapor-compression refrigeration cycle, and the COP improvement is 10.5–30.8% larger than that of the conventional ejector enhanced refrigeration cycle. The further simulation results of the novel cycle using refrigerant R600a indicate that the cycle COP and volumetric refrigeration capacity could be significantly improved

  16. Developments in magnetocaloric refrigeration

    International Nuclear Information System (INIS)

    Brueck, Ekkes

    2005-01-01

    Modern society relies on readily available refrigeration. Magnetic refrigeration has three prominent advantages compared with compressor-based refrigeration. First, there are no harmful gases involved; second, it may be built more compactly as the working material is a solid; and third, magnetic refrigerators generate much less noise. Recently a new class of magnetic refrigerant-materials for room-temperature applications was discovered. These new materials have important advantages over existing magnetic coolants: they exhibit a large magnetocaloric effect (MCE) in conjunction with a magnetic phase-transition of first order. This MCE is larger than that of Gd metal, which is used in the demonstration refrigerators built to explore the potential of this evolving technology. In the present review we compare the different materials considering both scientific aspects and industrial applicability. Because fundamental aspects of MCE are not so widely discussed, we also give some theoretical considerations. (topical review)

  17. Recent run-time experience and investigation of impurities in turbines circuit of Helium plant of SST-1

    International Nuclear Information System (INIS)

    Panchal, P.; Panchal, R.; Patel, R.

    2013-01-01

    One of the key sub-systems of Steady State superconducting Tokamak (SST-1) is cryogenic 1.3 kW at 4.5 K Helium refrigerator/liquefier system. The helium plant consists of 3 nos. of screw compressors, oil removal system, purifier and cold-box with 3 turbo expanders (turbines) and helium cold circulator. During the recent SST-1 plasma campaigns, we observed high pressure drop of the order of 3 bar between the wheel outlet of turbine A and the wheel inlet of turbine - B. This was significant higher values of pressures drop across turbines, which reduced the speed of turbine A and B and in turn reduced the overall plant capacity. The helium circuits in the plant have 10-micron filter at the mouth of turbine - B. Initially, major suspects of such high blockage are assumed to be air-impurity, dust particles or collapse of filter. Several breaks in plant operation have been taken to warm up the turbines circuits up to 90 K to remove condensation of air-impurities at filter. Still this exercise did not solve blockage of filter in turbine circuits. A detailed investigation exercise with air/water regeneration and rinsing of cold box as well as purification of helium gas in buffer tanks are carried out to remove air impurities from cold-box. A trial run of cold box was executed in liquefier mode with turbines up to cryogenic temperatures and solved blockage in turbine circuits. The paper describes run-time experience of helium plant with helium impurity in turbine circuits, methods to remove impurity, demonstration of turbine performance and lessons learnt during this operation. (author)

  18. Energy performance of supermarket refrigeration and air conditioning integrated systems working with natural refrigerants

    International Nuclear Information System (INIS)

    Cecchinato, Luca; Corradi, Marco; Minetto, Silvia

    2012-01-01

    The current trends in commercial refrigeration aim at reducing the synthetic refrigerant charge, either by minimising the internal volume of the circuit or by utilising natural refrigerants, and at energy saving. The energy efficiency of supermarkets can be improved by optimising components design, recovering thermal and refrigerating energy, adopting innovative technology solutions, integrating the HVAC system with medium temperature and low temperature refrigeration plants and, finally, reducing thermal loads on refrigerated cases. This study aims at investigating the performance of different lay-out and technological solutions where only natural refrigerants are used and at finding the potential for improving energy efficiency over the traditional systems in different climates. In the analysis, chillers and heat pumps working with ammonia or propane, medium temperature systems working with ammonia or propane and carbon dioxide as heat transfer fluid or with carbon dioxide as the refrigerant and low temperature systems working with carbon dioxide are considered and benchmarked with a state-of-the-art HFCs based plant. The most efficient investigated solution enables an annual energy saving higher than 15% with respect to the baseline solution for all the considered climates. - Highlights: ► Different natural refrigerants supermarket HVAC and R integrated systems are analysed. ► Some of the proposed solutions offer a significant benefit over the baseline one. ► Up to 18.7% energy saving is achieved in the considered climates. ► The refrigeration unit condensation by the AC chiller offers the poorest results.

  19. COP improvement of refrigerator/freezers, air-conditioners, and heat pumps using nonazeotropic refrigerant mixtures

    Science.gov (United States)

    Westra, Douglas G.

    1993-01-01

    With the February, 1992 announcement by President Bush to move the deadline for outlawing CFC (chloro-fluoro-carbon) refrigerants from the year 2000 to the year 1996, the refrigeration and air-conditioning industries have been accelerating their efforts to find alternative refrigerants. Many of the alternative refrigerants being evaluated require synthetic lubricants, are less efficient, and have toxicity problems. One option to developing new, alternative refrigerants is to combine existing non-CFC refrigerants to form a nonazeotropic mixture, with the concentration optimized for the given application so that system COP (Coefficient Of Performance) may be maintained or even improved. This paper will discuss the dilemma that industry is facing regarding CFC phase-out and the problems associated with CFC alternatives presently under development. A definition of nonazeotropic mixtures will be provided, and the characteristics and COP benefits of nonazeotropic refrigerant mixtures will be explained using thermodynamic principles. Limitations and disadvantages of nonazeotropic mixtures will be discussed, and example systems using such mixtures will be reviewed.

  20. Fermilab tevatron five refrigerator system tests

    International Nuclear Information System (INIS)

    Rode, C.; Ferry, R.; Leiniger, M.; Makara, J.; Misek, J.; Mizicko, D.; Richied, D.; Theilacker, J.

    1982-01-01

    The Fermilab Tevatron refrigeration system is described with the layout illustrated. The compressor control loops, the refrigerator control loops, and magnet control loops (two per refrigerator) are described and each illustrated. The mobile purifier is described. A five refrigerator test is presented, using two compressor buildings, satellite refrigerator concept test and the test current to the writing. The configuration of the five refrigerator test is diagramed

  1. Software development kit for a compact cryo-refrigerator

    Science.gov (United States)

    Gardiner, J.; Hamilton, J.; Lawton, J.; Knight, K.; Wilson, A.; Spagna, S.

    2017-12-01

    This paper introduces a Software Development Kit (SDK) that enables the creation of custom software applications that automate the control of a cryo-refrigerator (Quantum Design model GA-1) in third party instruments. A remote interface allows real time tracking and logging of critical system diagnostics such as pressures, temperatures, valve states and run modes. The helium compressor scroll capsule speed and Gifford-McMahon (G-M) cold head speed can be manually adjusted over a serial communication line via a CAN interface. This configuration optimizes cooling power, while reducing wear on moving components thus extending service life. Additionally, a proportional speed control mode allows for automated throttling of speeds based on temperature or pressure feedback from a 3rd party device. Warm up and cool down modes allow 1st and 2nd stage temperatures to be adjusted without the use of external heaters.

  2. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Cain, J.M. (Calm (James M.), Great Falls, VA (United States))

    1993-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.

  3. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1994-05-27

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  4. Self-bound droplets of a dilute magnetic quantum liquid

    Science.gov (United States)

    Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman

    2016-11-01

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 108 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.

  5. Magnon-driven quantum dot refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan; Huang, Chuankun; Liao, Tianjun; Chen, Jincan, E-mail: jcchen@xmu.edu.cn

    2015-12-18

    Highlights: • A three-terminal quantum dot refrigerator is proposed. • The effects of magnetic field, applied voltage, and polarization are considered. • The region that the system can work as a refrigerator is determined. • Two different magnon-driven quantum dot refrigerators are compared. - Abstract: A new model of refrigerator consisting of a spin-splitting quantum dot coupled with two ferromagnetic reservoirs and a ferromagnetic insulator is proposed. The rate equation is used to calculate the occupation probabilities of the quantum dot. The expressions of the electron and magnon currents are obtained. The region that the system can work in as a refrigerator is determined. The cooling power and coefficient of performance (COP) of the refrigerator are derived. The influences of the magnetic field, applied voltage, and polarization of two leads on the performance are discussed. The performances of two different magnon-driven quantum dot refrigerators are compared.

  6. A study of alternative refrigerants for the refrigeration and air conditioning sector in Mauritius

    Science.gov (United States)

    Dreepaul, R. K.

    2017-11-01

    The most frequently used refrigerants in the refrigeration and air conditioning (RAC) sector in Mauritius are currently hydrochlorofluorocarbons (HCFC) and hydrofluorocarbons (HFC). However, because of their strong influence on global warming and the impact of HCFCs on the ozone layer, refrigerants such as ammonia (NH3), carbon dioxide (CO2) and Hydrocarbons (HC), having minimal impact on the environment, are being considered. So far, HCs have only been safely used in domestic refrigeration. Ammonia has been used mainly for industrial refrigeration whereas CO2 is still under study. In this paper, a comparative study of the various feasible alternatives is presented in a survey that was undertaken with major stake holders in the field. The retrofitting possibility of existing equipment was assessed and safety issues associated with each refrigerant were analysed. The major setback of hydrocarbons as a widely accepted refrigerant is its flammability which was considered as a major safety hazard by the majority of respondents in the survey and the main advantages are the improved equipment coefficient of performance (COP) and better TEWI factor. This resulted in a 12 % drop in energy consumption. Despite the excellent thermodynamic properties of ammonia, its use has mainly been confined to industrial refrigeration due to its toxicity. In Mauritius, the performance of ammonia in air conditioning is being evaluated on a pilot basis. The major setback of carbon dioxide as a refrigerant is the high operating pressure which is considered a safety hazard. The high initial investment cost and the lack of qualified maintenance technician is also an issue. The use of CO2 is mainly being considered in the commercial refrigeration sector.

  7. Henry's law and accumulation of weak source for crust-derived helium: A case study of Weihe Basin, China

    Directory of Open Access Journals (Sweden)

    Yuhong Li

    2017-12-01

    Full Text Available Crust-derived helium is generated from the radioactive decay of uranium, thorium and other radioactive elements in geological bodies. Compared with conventional natural gas, helium is a typical weak source gas as a result of extremely slow generation rate and absence of helium-generating peak. It is associated with methane or carbon dioxide reservoirs frequently and related to groundwater closely. Helium can meet the industry standard with 0.1% in volume fraction. In order to study the accumulation mechanism of helium, the previous research on Henry's coefficient and solubility of helium, nitrogen and methane are summarized and the key roles of Henry's Law in the helium migration, accumulation and preservation are discussed by simulating calculation taking Weihe Basin as an example. According to the Law, the gas solubility in dilute solution is controlled by the gas partial pressure and the Henry's coefficient. Compared with the carrier gases, the Henry's constant of helium is high, with striking difference at low and high temperature. In addition, the helium partial pressure is greatly different in helium source rocks and gas reservoirs, resulting in the great differences of helium solubility in the two places. The accumulation progresses are as follows. Firstly, helium can dissolve into water and migrate out of helium source rocks due to the high helium solubility, which is caused by high helium partial pressure and high temperature in source rock. Secondly, when dissolved helium is transported to the shallow gas reservoir, it is prone to be out of solution and into reservoir due to the extremely low partial pressure and low temperature. Meanwhile part of carrier gases dissolves into water, as if helium is “replaced” out. Furthermore, the low concentration funnel of dissolved helium is formed near the gas reservoir, then other dissolved helium continues to migrate towards the gas reservoir, which greatly improves the helium accumulation

  8. Test Results of a 1.2 kg/s Centrifugal Liquid Helium Pump for the ATLAS Superconducting Toroid Magnet System

    CERN Document Server

    Pengo, R; Passardi, Giorgio; Pirotte, O; ten Kate, H H J

    2002-01-01

    The toroid superconducting magnet of ATLAS-LHC experiment at CERN will be indirectly cooled by means of forced flow of liquid helium at about 4.5 K. A centrifugal pump will be used, providing a mass flow of 1.2 kg/s and a differential pressure of 40 kPa (ca. 400 mbar) at about 4300 rpm. Two pumps are foreseen, one for redundancy, in order to feed in parallel the cooling circuits of the Barrel and the two End-Caps toroid magnets. The paper describes the tests carried out at CERN to measure the characteristic curves, i.e. the head versus the mass flow at different rotational speeds, as well as the pump total efficiency. The pump is of the "fullemission" type, i.e. with curved blades and it is equipped with an exchangeable inducer. A dedicated pump test facility has been constructed at CERN, which includes a Coriolis-type liquid helium mass flow meter. This facility is connected to the helium refrigerator used for the tests at CERN of the racetrack magnets of the Barrel and of the End-Cap toroids.

  9. Thermodynamic performance of an auto-cascade ejector refrigeration cycle with mixed refrigerant R32 + R236fa

    International Nuclear Information System (INIS)

    Tan, Yingying; Wang, Lin; Liang, Kunfeng

    2015-01-01

    In this paper, an auto-cascade ejector refrigeration cycle (ACERC) is proposed to obtain lower refrigeration temperature based on conventional ejector refrigeration and auto-cascade refrigeration principle. The thermodynamic performance of ACERC is investigated theoretically. The zeotropic refrigerant mixture R32 + R236fa is used as its working fluid. A parametric analysis is conducted to evaluate the effects of some thermodynamic parameters on the cycle performance. The study shows that refrigerant mixture composition, condenser outlet temperature and evaporation pressure have effects on performance of ACERC. The theoretical results also indicate that the ACERC can achieve the lowest refrigeration temperature at the temperature level of −30 °C. The application of zeotropic refrigerant mixture auto-cascade refrigeration in the ejector refrigeration cycle can provide a new way to obtain lower refrigeration temperature utilizing low-grade thermal energy. - Highlights: • An auto-cascade ejector refrigerator with R32 + R236fa mixed refrigerant is proposed. • The cycle can obtain a refrigeration temperature at −30 °C temperature range. • The effects of some thermodynamic parameters on the cycle performance are evaluated

  10. A multi-stage traveling-wave thermoacoustically-driven refrigeration system operating at liquefied natural gas temperature

    Science.gov (United States)

    Luo, K.; Sun, D. M.; Zhang, J.; Shen, Q.; Zhang, N.

    2017-12-01

    This study proposes a multi-stage travelling-wave thermoacoustically refrigeration system (TAD-RS) operating at liquefied natural gas temperature, which consists of two thermoacoustic engines (TAE) and one thermoacoustic refrigerator (TAR) in a closed-loop configuration. Three thermoacoustic units connect each other through a resonance tube of small cross-sectional area, achieving “self-matching” for efficient thermoacoustic conversion. Based on the linear thermoacoustic theory, a model of the proposed system has been built by using DeltaEC program to show the acoustic field characteristics and performance. It is shown that with pressurized 5 MPa helium as working gas, the TAEs are able to build a stable and strong acoustic field with a frequency of about 85 Hz. When hot end temperature reaches 923 K, this system can provide about 1410 W cooling power at 110 K with an overall exergy efficiency of 15.5%. This study indicates a great application prospect of TAD-RS in the field of natural gas liquefaction with a large cooling capacity and simple structure.

  11. High Efficiency, Low Emission Refrigeration System

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

    2016-08-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Methods for reducing refrigerant leakage and energy consumption are available, but underutilized. Further work needs to be done to reduce costs of advanced system designs to improve market utilization. In addition, refrigeration system retrofits that result in reduced energy consumption are needed since the majority of applications address retrofits rather than new stores. The retrofit market is also of most concern since it involves large-volume refrigerant systems with high leak rates. Finally, alternative refrigerants for new and retrofit applications are needed to reduce emissions and reduce the impact on the environment. The objective of this Collaborative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory and Hill Phoenix is to develop a supermarket refrigeration system that reduces greenhouse gas emissions and has 25 to 30 percent lower energy consumption than existing systems. The outcomes of this project will include the design of a low emission, high efficiency commercial refrigeration system suitable for use in current U.S. supermarkets. In addition, a prototype low emission, high efficiency supermarket refrigeration system will be produced for

  12. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Science.gov (United States)

    2010-01-01

    ... functional characteristics that affect energy consumption. Commercial refrigerator, freezer, and refrigerator... formed by the plane of the door, when the equipment is viewed in cross-section; and (2) For equipment...

  13. Dilution Confusion: Conventions for Defining a Dilution

    Science.gov (United States)

    Fishel, Laurence A.

    2010-01-01

    Two conventions for preparing dilutions are used in clinical laboratories. The first convention defines an "a:b" dilution as "a" volumes of solution A plus "b" volumes of solution B. The second convention defines an "a:b" dilution as "a" volumes of solution A diluted into a final volume of "b". Use of the incorrect dilution convention could affect…

  14. Ultimate refrigerating conditions, behavior turning and a thermodynamic analysis for absorption–compression hybrid refrigeration cycle

    International Nuclear Information System (INIS)

    Zheng Danxing; Meng Xuelin

    2012-01-01

    Highlights: ► Two novel fundamental concepts of the absorption refrigeration cycle were proposed. ► The interaction mechanism of compressor pressure increasing with other key-parameters was investigated. ► A set of optimal operating condition of hybrid refrigeration cycle was found. ► A simulation and investigation for R134a-DMF hybrid refrigeration cycle was performed. - Abstract: The absorption–compression hybrid refrigeration cycle has been considered as an effective approach to reduce the mechanical work consumption by using low-grade heat, such as solar energy. This work aims at studying the thermodynamic mechanism of the hybrid refrigeration cycle. Two fundamental concepts have been proposed, which are the ultimate refrigerating temperature (or the ultimate temperature lift) and the behavior turning. On the basis of that, the interaction mechanism of compressor pressure increasing with other key-parameters and the impact of compressor pressure increasing on the cycle performance have been investigated. The key-parameters include the concentration difference, the circulation ratio of working fluid, etc. The work points out that the hybrid refrigeration cycle performance varies with the change of compressor outlet pressure and depends on which one achieves dominance in the hybrid refrigeration cycle, the absorption sub-system or the compression sub-system. The behavior turning point during parameters changing corresponds to a maximum value of the heat powered coefficient of performance. In this case, the hybrid refrigeration cycle performance is optimal because the low-grade heat utilization is the most effective. In addition, to validate the theoretical analysis, a solar hybrid refrigeration cycle with R134a–DMF as working pair was simulated. The Peng–Robinson equation of state was adopted to calculate thermophysical properties when the reliability assessment of the prediction models on the available literature data of R134a–DMF system had been

  15. Cryogenic filter method produces super-pure helium and helium isotopes

    Science.gov (United States)

    Hildebrandt, A. F.

    1964-01-01

    Helium is purified when cooled in a low pressure environment until it becomes superfluid. The liquid helium is then filtered through iron oxide particles. Heating, cooling and filtering processes continue until the purified liquid helium is heated to a gas.

  16. Thermoelectric refrigerator having improved temperature stabilization means

    International Nuclear Information System (INIS)

    Falco, C.M.

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized

  17. Environment-friendly refrigeration - Switzerland moves forward

    International Nuclear Information System (INIS)

    Stohler, F.

    2003-01-01

    This article presents an interview with Silvan Schaller, president of the Swiss Refrigeration Society SVK and head of a leading Swiss industrial refrigeration company, on the subject of the implementation of new Swiss materials legislation that regulates the use of various refrigerants. In particular, the co-operation between the Society and the regulatory authorities is stressed. The reasons behind the regulations - the protection of the environment and, in particular, the ozone layer - are discussed as are the efforts required by industry to meet them. Future refrigeration technologies and the choice of refrigerants are examined. Measures that will have to be taken by the companies in the refrigeration sector, such as the additional training of personnel and the monitoring of the disposal of wastes, are examined. For the future, the goal of reducing the energy consumption of refrigeration installations is noted

  18. A Dual Operational Refrigerator/Flow Cryostat with Wide Bore Medium Field Magnet for Application Demonstration

    Science.gov (United States)

    Young, E. A.; Bailey, W. O. S.; Al-Mosawi, M. K.; Beduz, C.; Yang, Y.; Chappell, S.; Twin, A.

    Since stand alone cryocooler systems have become more widely available, there has been increased commercial interest in superconductor applications in the temperature range intermediate to liquid helium and liquid nitrogen. There are however few facilities that have large in-field bore size with variable temperatures. A large bore system can reduce costs associated with full scale demonstration magnets by testing smaller coils and qualify medium length (up to meters) conductors. A 5 T, wide bore, (170 mm) Nb3Sn Oxford Instrument magnet has been integrated into a custom built dual mode refrigerator/helium flow cryostat with 600A HTS current leads. In one mode the system can be used with zero field without cost of liquid helium relying for cooling on a Sumitomo GM cryocooler with 1.5W at 4.2K: (no He) this can be used either as the sole characterisation method, or as a preliminary check before more expensive and extensive measurements are taken. The first measurements using MgB2 wire from 10 to 20K were made using a transient current step of ∼5s duration, as opposed to a DC measurement. This has the advantage of not requiring thermal equilibrium to be achieved at nominal current. The feasibility of this technique for determining critical transport properties is discussed.

  19. Fault diagnosis and refrigerant leak detection in vapour compression refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Tassou, S.A.; Grace, I.N. [Brunel University, Uxbridge (United Kingdom). Department of Mechanical Engineering

    2005-08-01

    The environmental impact of refrigeration systems can be reduced by operation at higher efficiency and reduction of refrigerant leakage. Refrigerant loss contributes both directly and indirectly to global warming through inefficient system operation, increased power consumption and greenhouse gas emissions and higher maintenance costs. Existing sensor-based leak detection methods are limited by the inability to detect gradual leakage and the need for careful sensor location. There is a requirement for a real-time performance monitoring approach to leak detection and fault diagnosis which overcomes these disadvantages. This paper reports on the development of a fault diagnosis and refrigerant leak detection system based on artificial intelligence and real-time performance monitoring. The system has been used successfully to distinguish between faulty and fault free operation, steady-state and transient operation, leakage and over charge conditions. Work currently underway is aimed at testing additional fault conditions and establishing further rules to distinguish between these patterns. (author)

  20. Regulating Power from Supermarket Refrigeration

    DEFF Research Database (Denmark)

    O'Connell, Niamh; Madsen, Henrik; Pinson, Pierre

    2014-01-01

    the Danfoss refrigeration test centre. The complexities of modelling demand response are demonstrated through simulation. Simulations are conducted by placing the identified model in a direct-control demand response architecture, with power reference tracking using model predictive control. The energylimited......This paper presents an analysis of the demand response capabilities of a supermarket refrigeration system, with a particular focus on the suitability for participation in the regulating power market. An ARMAX model of a supermarket refrigeration system is identified using experimental data from...... nature of demand response from refrigeration is identified as the key consideration when considering participation in the regulating power market. It is demonstrated that by restricting the operating regions of the supermarket refrigeration system, a simple relationship can be found between the available...

  1. Transition to New Refrigerants

    Science.gov (United States)

    Overview page provides information on the refrigerants that motor vehicle air conditioners have used over time, with information on environmental impacts, refrigerant fitting sizes, label colors, and alternatives to ozone-depleting substances.

  2. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  3. Influence of the nozzle angle on refrigeration performance of a gas wave refrigerator

    Science.gov (United States)

    Liu, P.; Zhu, Y.; Wang, H.; Zhu, C.; Zou, J.; Wu, J.; Hu, D.

    2017-05-01

    A gas wave refrigerator (GWR) is a novel refrigerating device that refrigerates a medium by shock waves and expansion waves generated by gas pressure energy. In a typical GWR, the injection energy losses between the nozzle and the expansion tube are essential factors which influence the refrigeration efficiency. In this study, numerical simulations are used to analyze the underlying mechanism of the injection energy losses. The results of simulations show that the vortex loss, mixing energy loss, and oblique shock wave reflection loss are the main factors contributing to the injection energy losses in the expansion tube. Furthermore, the jet angle of the gas is found to dominate the injection energy losses. Therefore, the optimum jet angle is theoretically calculated based on the velocity triangle method. The value of the optimum jet angle is found to be 4^{circ }, 8^{circ }, and 12^{circ } when the refrigeration efficiency is the first-order, second-order, and third-order maximum value over all working ranges of jet frequency, respectively. Finally, a series of experiments are conducted with the jet angle ranging from -4^{circ } to 12^{circ } at a constant expansion ratio. The results indicate the optimal jet angle obtained by the experiments is in good agreement with the calculated value. The isentropic refrigeration efficiency increased by about 4 % after the jet angle was optimized.

  4. Refrigeration generation using expander-generator units

    Science.gov (United States)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  5. Efficiency improvement of commercial refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Denecke, Julius [NTNU, Trondheim (Norway); Hafner, Armin [SINTEF Energy Research, Trondheim (Norway)

    2011-07-01

    This work presents a historical review of carbon dioxide refrigeration systems. Further a literature survey is carried out to get a status of existing refrigeration technology related to supermarkets. In the next step various energy saving options are stated. A heat recovery model, basing on a R744 booster refrigeration system is established and described. Simplified demand curves for refrigeration, air conditioning and heating will base this model to calculate different heat recovery layouts. Supermarket future trends will be considered and integrated in the calculation. Finally the calculated energy consumptions will be compared with real energy consumptions of selected supermarket refrigeration systems.

  6. THERMODYNAMIC PROPERTIES OF SELECTED HFC REFRIGERANTS

    Science.gov (United States)

    Hydrofluorocarbon (HFC) refrigerants are possible alternatives to replace ozone-depleting chlorofluorocarbon and hydrochlorofluorocarbon (HCFC) refrigerants. The flammability of a proposed new refrigerant is a major consideration in assessing its utility for a particular applicat...

  7. Liquid helium

    CERN Document Server

    Atkins, K R

    1959-01-01

    Originally published in 1959 as part of the Cambridge Monographs on Physics series, this book addresses liquid helium from the dual perspectives of statistical mechanics and hydrodynamics. Atkins looks at both Helium Three and Helium Four, as well as the properties of a combination of the two isotopes. This book will be of value to anyone with an interest in the history of science and the study of one of the universe's most fundamental elements.

  8. Applications of closed cycle refrigerator for some physical experiments

    International Nuclear Information System (INIS)

    Simkin, V.G.; Pokotilovski, Yu.N.

    2006-01-01

    Full text: It is known that CCRs give a good possibility to conduct various experiments in a wide range of temperatures from 2.5 K up to 500 deg. C. These do not need nor liquid helium, nor liquid nitrogen and create a quick, precise and stable conditions for researchers. Some applications of such CCRs from Lake Shore corporation will be consider ed in this communication. The first one is a measurement of temperature dependence of the viscosity by drop-falling method of some special liquids which can be used in ultra cold neutron investigations. The second one is an experiment for receiving the perfect solid crystals of methane which are need in producing ultra cold neutrons in medium power reactors. For these experiments some special arrangements were installed on the cold head of refrigerator with long vertical or small round windows on the screens through which the processes studied were visually observed and measured. (authors)

  9. Design of refrigeration system using refrigerant R134a for macro compartment

    Science.gov (United States)

    Rani, M. F. H.; Razlan, Z. M.; Shahriman, A. B.; Yong, C. K.; Harun, A.; Hashim, M. S. M.; Faizi, M. K.; Ibrahim, I.; Kamarrudin, N. S.; Saad, M. A. M.; Zunaidi, I.; Wan, W. K.; Desa, H.

    2017-10-01

    The main objective of this study is to analyse and design an optimum cooling system for macro compartment. Current product of the refrigerator is not specified for single function and not compact in size. Hence, a refrigeration system using refrigerant R134a is aimed to provide instant cooling in a macro compartment with sizing about 150 × 150 × 250 mm. The macro compartment is purposely designed to fit a bottle or drink can, which is then cooled to a desired drinking temperature of about 8°C within a period of 1 minute. The study is not only concerned with analysing of heat load of the macro compartment containing drink can, but also focused on determining suitable heat exchanger volume for both evaporator and condenser, calculating compressor displacement value and computing suitable resistance value of the expansion valve. Method of optimization is used to obtain the best solution of the problem. Mollier diagram is necessary in the process of developing the refrigeration system. Selection of blower is made properly to allow air circulation and to increase the flow rate for higher heat transfer rate. Property data are taken precisely from thermodynamic property tables. As the main four components, namely condenser, compressor, evaporator and expansion valve are fully developed, the refrigeration system is complete.

  10. Overall performance of the duplex Stirling refrigerator

    International Nuclear Information System (INIS)

    Erbay, L. Berrin; Ozturk, M. Mete; Doğan, Bahadır

    2017-01-01

    Highlights: • Overall performance coefficient of duplex Stirling refrigerator was investigated. • A definite region for the coefficient of performance of the refrigerator in duplex Stirling is identified. • A definite region for the thermal efficiency of the heat engine in duplex Stirling is identified. • Benchmark values and design bounds of the duplex Stirling refrigerator were obtained. - Abstract: The duplex Stirling refrigerator is an integrated refrigerator consists of Stirling cycle engine and Stirling cycle refrigerator used for cooling. The equality of the work generation of the heat engine to the work consumption of the refrigerator is the primary constraint of the duplex Stirling. The duplex Stirling refrigerator is investigated thermodynamically by considering the effects of constructional and operational parameters which are namely the temperature ratios for heat engine and refrigerator, and the compression ratios for both sides. The primary concern is given to the parametric effects on the overall coefficient of performance of the duplex Stirling refrigerator. The given diagrams provide a design bounds and benchmark results that allows seeing the big picture about the cooling load and heat input relation. Moreover they ease to determine the corresponding work rate to the target cooling load. As regard to the obtained results, a definite region for coefficient of performance of the refrigerator and a definite region for the thermal efficiency of the heat engine of the duplex Stirling are identified.

  11. An experimental investigation on a novel ejector enhanced refrigeration cycle applied in the domestic refrigerator-freezer

    International Nuclear Information System (INIS)

    Wang, Xiao; Yu, Jianlin

    2015-01-01

    This paper presents an experimental investigation on a NERC (novel ejector enhanced refrigeration cycle) applied in the domestic refrigerator-freezer (BCD-249). Experimental studies were conducted to validate the NERC system feasibility in a practical NERC based refrigerator-freezer prototype. The system performances of energy consumption, ejector pressure lift ratio and compressor power were compared under different combinations of system configuration parameters. The results showed that the NERC system could effectively reduce the thermodynamic losses in the throttle processing. The minimum energy consumption of 0.520 kWh 24 h"−"1 was obtained for the NERC prototype, indicating 5.45% energy consumption reduction compared with the conventional domestic refrigerator-freezer. Furthermore, the effects of system configuration parameters including the refrigerant charge amount, the compressor displacement and the length of capillary tube were investigated. This study aims at providing deep insight into ejector-expansion technology applied in domestic refrigerator-freezers. - Highlights: • A NERC (novel ejector enhanced refrigeration cycle) was experimentally studied. • 73 experimental data points with different system configuration were acquired. • Energy consumption could be reduced with optimum system configuration. • 5.45% energy consumption reduction is obtained compared with the conventional system.

  12. Energy and exergy analyses of the diffusion absorption refrigeration system

    International Nuclear Information System (INIS)

    Yıldız, Abdullah; Ersöz, Mustafa Ali

    2013-01-01

    This paper describes the thermodynamic analyses of a DAR (diffusion absorption refrigeration) cycle. The experimental apparatus is set up to an ammonia–water DAR cycle with helium as the auxiliary inert gas. A thermodynamic model including mass, energy and exergy balance equations are presented for each component of the DAR cycle and this model is then validated by comparison with experimental data. In the thermodynamic analyses, energy and exergy losses for each component of the system are quantified and illustrated. The systems' energy and exergy losses and efficiencies are investigated. The highest energy and exergy losses occur in the solution heat exchanger. The highest energy losses in the experimental and theoretical analyses are found 25.7090 W and 25.4788 W respectively, whereas those losses as to exergy are calculated 13.7933 W and 13.9976 W. Although the values of energy efficiencies obtained from both the model and experimental studies are calculated as 0.1858, those values, in terms of exergy efficiencies are found 0.0260 and 0.0356. - Highlights: • The diffusion absorption refrigerator system is designed manufactured and tested. • The energy and exergy analyses of the system are presented theoretically and experimentally. • The energy and exergy losses are investigated for each component of the system. • The highest energy and exergy losses occur in the solution heat exchanger. • The energy and the exergy performances are also calculated

  13. Improving the energy efficiency of industrial refrigeration systems

    International Nuclear Information System (INIS)

    Oh, Jin-Sik; Binns, Michael; Park, Sangmin; Kim, Jin-Kuk

    2016-01-01

    Various retrofit design options are available for improving the energy efficiency and economics of industrial refrigeration systems. This study considers a novel retrofit option using a mixed refrigerant (MR) in refrigeration cycles designed for use with a pure refrigerant (PR). In this way energy savings can be realized by switching refrigerants without requiring extensive and expensive reconfiguration of equipment. Hence, the aim here is to test the common thinking that equipment should always be extensively reconfigured when switching from pure to mixed refrigerants. To determine the most energy-efficient operating conditions for each refrigeration design an optimization framework is utilized linking a process simulator with an external optimization method. A case study is presented to demonstrate how the proposed process modeling and optimization framework can be applied and to illustrate the economic benefits of using the retrofit design options considered here. For the case considered in this paper, savings of shaft power required for the refrigeration cycle can be achieved from 16.3% to 27.2% when the pure refrigerant is replaced with mixed refrigerants and operating conditions are re-optimized. - Highlights: • Design methods for the design of refrigeration cycles in retrofit cases. • Consideration of mixed refrigerants to the existing multi-level pure-refrigerant cycles. • Optimization of refrigeration cycles with integrated use of a process simulator with an optimizer.

  14. Optimization of Helium Vessel Design for ILC Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Fratangelo, Enrico [Univ. of Pisa (Italy)

    2009-01-01

    The ILC (International Linear Collider) is a proposed new major particle accelerator. It consists of two 20 km long linear accelerators colliding electrons and positrons at an energy exceeding 500 GeV, Achieving this collision energy while keeping reasonable accelerator dimensions requires the use of high electric field superconducting cavities as the main acceleration element. These cavities are operated at l.3 GHz inside an appropriate container (He vessel) at temperatures as low as 1.4 K using superfluid Helium as the refrigerating medium. The purpose of this thesis, in the context of the ILC R&D activities currently in progress at Fermilab (Fermi National Accelerator Laboratory), is the mechanical study of an ILC superconducting cavity and Helium vessel prototype. The main goals of these studies are the determination of the limiting working conditions of the whole He vessel assembly, the simulation of the manufacturing process of the cavity end-caps and the assessment of the Helium vessel's efficiency. In addition this thesis studies the requirements to certify the compliance with the ASME Code of the whole cavity/vessel assembly. Several Finite Elements Analyses were performed by the candidate himself in order to perform the studies listed above and described in detail in Chapters 4 through 8. ln particular the candidate has developed an improved procedure to obtain more accurate results with lower computational times. These procedures will be accurately described in the following chapters. After an introduction that briefly describes the Fennilab and in particular the Technical Division (where all the activities concerning with this thesis were developed), the first part of this thesis (Chapters 2 and 3) explains some of the main aspects of modem particle accelerators. Moreover it describes the most important particle accelerators working at the moment and the basic features of the ILC project. Chapter 4 describes all the activities that were done to

  15. New helium spectrum variable and a new helium-rich star

    International Nuclear Information System (INIS)

    Walborn, N.R.

    1974-01-01

    HD 184927, known previously as a helium-rich star, has been found to have a variable helium spectrum; the equivalent widths of five He I lines are larger by an average of 46 percent on a 1974 spectrogram than on one obtained with the same equipment in 1970. HD 186205 has been found to be a new, pronounced helium-rich star. (auth)

  16. Magnetocaloric refrigeration near room temperature (invited)

    International Nuclear Information System (INIS)

    Brueck, E.; Tegus, O.; Thanh, D.T.C.; Buschow, K.H.J.

    2007-01-01

    Modern society relies on readily available refrigeration. The ideal cooling machine would be a compact, solid state, silent and energy-efficient heat pump that does not require maintenance. Magnetic refrigeration has three prominent advantages compared to compressor-based refrigeration. First, there are no harmful gases involved, second it may be built more compact as the working material is a solid and third magnetic refrigerators generate much less noise. Recently, a new class of magnetic refrigerant materials for room-temperature applications was discovered. These new materials have important advantages over existing magnetic coolants: They exhibit a large magnetocaloric effect (MCE) in conjunction with a magnetic phase transition of first order. This MCE is, larger than that of Gd metal, which is used in the demonstration refrigerators built to explore the potential of this evolving technology. In the present review, we compare the different materials considering both scientific aspects and industrial applicability

  17. Analysis of Refrigeration Cycle Performance with an Ejector

    Directory of Open Access Journals (Sweden)

    Wani J. R.

    2016-01-01

    Full Text Available A conventional refrigeration cycle uses expansion device between the condenser and the evaporator which has losses during the expansion process. A refrigeration cycle with ejector is a promising modification to improve the performance of conventional refrigeration cycle. The ejector is used to recover some of the available work so that the compressor suction pressure increases. To investigate the enhancement a model with R134a refrigerant was developed. To solve the set of equations and simulate the cycle performance a subroutine was written on engineering equation solver (EES environment. At specific conditions, the refrigerant properties are obtained from EES. At the design conditions the ejector refrigeration cycle achieved 5.141 COP compared to 4.609 COP of the conventional refrigeration cycle. This means that ejector refrigeration cycle offers better COP with 10.35% improvement compared to conventional refrigeration cycle. Parametric analysis of ejector refrigeration cycle indicated that COP was influenced significantly by evaporator and condenser temperatures, entrainment ratio and diffuser efficiency.

  18. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Vineyard, Edward Allan [ORNL

    2012-01-01

    Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; system performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.

  19. 49 CFR 173.174 - Refrigerating machines.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Refrigerating machines. 173.174 Section 173.174 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Refrigerating machines. A refrigerating machine assembled for shipment and containing 7 kg (15 pounds) or less...

  20. Thermodynamic analysis of hydrocarbon refrigerants in a sub-cooling refrigeration system

    Directory of Open Access Journals (Sweden)

    BUKOLA O. BOLAJI

    2013-06-01

    Full Text Available In this study, the performance simulation of some hydrocarbon refrigerants (R290, R600 and R600a as alternatives to R134a in refrigeration system with sub-cooling is conducted by thermodynamic calculation of performance parameters using the REFPROP software. The results obtained showed that the saturated vapour pressure and temperature characteristic profiles for R600 and R600a are very close to that of R134a. The three hydrocarbon refrigerants exhibited very high refrigerating effect and condenser duty than R134a. The best of these parameters was obtained using R600. The discharge temperatures obtained using R600 and R600a were low, while that of R290 was very much higher. The highest coefficient of performance (COP and relative capacity index were obtained using R600. Average COPs of R600 and R600a are 4.6 and 2.2% higher than that of R134a, respectively. The performances of R600 and R600a in system were better than those of R134a and R290. The best performance was obtained using R600 in the system.

  1. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1992-11-09

    The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R- 717 (ammonia), ethers, and others as well as azeotropic and zeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents on compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. A computerized version is available that includes retrieval software.

  2. Data-Driven Control of Refrigeration System

    DEFF Research Database (Denmark)

    Vinther, Kasper

    Refrigeration is used in a wide range of applications, e.g., for storage of food at low temperatures to prolong shelf life and in air conditioning for occupancy comfort. The main focus of this thesis is control of supermarket refrigeration systems. This market is very competitive and it is import......Refrigeration is used in a wide range of applications, e.g., for storage of food at low temperatures to prolong shelf life and in air conditioning for occupancy comfort. The main focus of this thesis is control of supermarket refrigeration systems. This market is very competitive...... traditionally are a pressure and a temperature sensor. In this thesis, a novel maximum slope-seeking (MSS) control method is developed. This has resulted in a control implementation, which successfully has been able to control the evaporator superheat in four widely different refrigeration system test...... problems. The method utilizes the qualitative nonlinearity in the system and harmonic analysis of a perturbation signal to reach an unknown, but suitable, operating point. Another important control task in refrigeration systems is to maintain the temperature of the refrigerated space or foodstuff within...

  3. Thermoacoustic refrigerator for space applications

    Science.gov (United States)

    Garrett, Steven L.; Adeff, Jay A.; Hofler, Thomas J.

    1993-10-01

    A new spacecraft cryocooler which uses resonant high-amplitude sound waves in inert gases to pump heat is described. The phasing of the thermoacoustic cycle is provided by thermal conduction. This 'natural' phasing allows the entire refrigerator to operate with only one moving part (the loudspeaker diaphragm). A space-qualified thermoacoustic refrigerator was flown on the Space Shuttle Discovery (STS-42) in January, 1992. It was entirely autonomous, had no sliding seals, required no lubrication, used mostly low-tolerance machined parts, and contained no expensive components. Thermoacoustics is shown to be a competitive candidate for food refrigerator/freezers and commercial/residential air conditioners. The design and performance of the Space Thermo/Acoustic Refrigerator (STAR) is described.

  4. Helium the disappearing element

    CERN Document Server

    Sears, Wheeler M

    2015-01-01

    The subject of the book is helium, the element, and its use in myriad applications including MRI machines, particle accelerators, space telescopes, and of course balloons and blimps. It was at the birth of our Universe, or the Big Bang, where the majority of cosmic helium was created; and stellar helium production continues. Although helium is the second most abundant element in the Universe, it is actually quite rare here on Earth and only exists because of radioactive elements deep within the Earth. This book includes a detailed history of the discovery of helium, of the commercial industry built around it, how the helium we actually encounter is produced within the Earth, and the state of the helium industry today. The gas that most people associate with birthday party balloons is running out. “Who cares?” you might ask. Well, without helium, MRI machines could not function, rockets could not go into space, particle accelerators such as those used by CERN could not operate, fiber optic cables would not...

  5. A miniature adsorption3HE refrigerator

    International Nuclear Information System (INIS)

    Duband, L.; Ravex, A.; Lange, A.

    1991-01-01

    A self-contained, recyclable laboratory 3 He refrigerator has been developed. The refrigerator is very compact, portable and is designed to be safe and reliable. The unit can easily be installed on the cold plate of a superfluid 4 He cryostat. Once bolted on the cold plate, operation of the refrigerator is controlled by a single heater. In this new design the refrigerator has a cylindrical geometry. The adsorption pump is placed above the condensation point to prevent convection during the condensation phase and to improve the pumping speed. The inhibition of convection reduces the load on the 4 He bath and increases the condensation efficiency. This refrigeration technique has great potential for space applications. The absence of moving parts makes the system reliable and vibration free. Its simplicity and the absence of external components facilitate its integration on a cryostat. In fact, a rocket-borne 3 He refrigerator has already been successfully flown and has demonstrated the feasibility of this method

  6. Not all counterclockwise thermodynamic cycles are refrigerators

    Science.gov (United States)

    Dickerson, R. H.; Mottmann, J.

    2016-06-01

    Clockwise cycles on PV diagrams always represent heat engines. It is therefore tempting to assume that counterclockwise cycles always represent refrigerators. This common assumption is incorrect: most counterclockwise cycles cannot be refrigerators. This surprising result is explored here for quasi-static ideal gas cycles, and the necessary conditions for refrigeration cycles are clarified. Three logically self-consistent criteria can be used to determine if a counterclockwise cycle is a refrigerator. The most fundamental test compares the counterclockwise cycle with a correctly determined corresponding Carnot cycle. Other criteria we employ include a widely accepted description of the functional behavior of refrigerators, and a corollary to the second law that limits a refrigerator's coefficient of performance.

  7. Cryogenic mixed refrigerant processes

    CERN Document Server

    Venkatarathnam, Gadhiraju

    2010-01-01

    Teaches the need for refrigerant mixtures, the type of mixtures that can be used for different refrigeration and liquefaction applications, the different processes that can be used and the methods to be adopted for choosing the components of a mixture and their concentration for different applications.

  8. Thermoacoustic engines and refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  9. United States: refrigeration industry blows hot

    International Nuclear Information System (INIS)

    Crawford, J.

    1997-01-01

    In the framework of the Kyoto convention on global warming, the american refrigeration industries have undertaken several organizations and contacts with governments and agencies in order to explain the real issues concerning the effects of refrigerant utilization in refrigerating machines on the greenhouse effect, taking into consideration the commercial impact that a ban on certain refrigerants could have on the industry's business. They argue that HFC utilization in this industry is fundamentally non-emissive and that important improvements have been realized concerning tightness and energy consumption

  10. Liquid helium target

    International Nuclear Information System (INIS)

    Fujii, Y.; Kitami, T.; Torikoshi, M.

    1984-12-01

    A liquid helium target system has been built and used for the experiment on the reaction 4 He(γ, p). The target system has worked satisfactorily; the consumption rate of liquid helium is 360 ml/h and the cryogenic system retains liquid helium for about ten hours. The structure, operation and performance of the target system are reported. (author)

  11. Exergy analysis of large-scale helium liquefiers: Evaluating design trade-offs

    Science.gov (United States)

    Thomas, Rijo Jacob; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2014-01-01

    It is known that higher heat exchanger area, more number of expanders with higher efficiency and more involved configuration with multi-pressure compression system increase the plant efficiency of a helium liquefier. However, they involve higher capital investment and larger size. Using simulation software Aspen Hysys v 7.0 and exergy analysis as the tool of analysis, authors have attempted to identify various trade-offs while selecting the number of stages, the pressure levels in compressor, the cold-end configuration, the heat exchanger surface area, the maximum allowable pressure drop in heat exchangers, the efficiency of expanders, the parallel/series connection of expanders etc. Use of more efficient cold ends reduces the number of refrigeration stages and the size of the plant. For achieving reliability along with performance, a configuration with a combination of expander and Joule-Thomson valve is found to be a better choice for cold end. Use of multi-pressure system is relevant only when the number of refrigeration stages is more than 5. Arrangement of expanders in series reduces the number of expanders as well as the heat exchanger size with slight expense of plant efficiency. Superior heat exchanger (having less pressure drop per unit heat transfer area) results in only 5% increase of plant performance even when it has 100% higher heat exchanger surface area.

  12. Formation of Singlet Fermion Pairs in the Dilute Gas of Boson-Fermion Mixture

    Directory of Open Access Journals (Sweden)

    Minasyan V.

    2010-10-01

    Full Text Available We argue the formation of a free neutron spinless pairs in a liquid helium -dilute neutron gas mixture. We show that the term, of the interaction between the excitations of the Bose gas and the density modes of the neutron, meditate an attractive interaction via the neutron modes, which in turn leads to a bound state on a spinless neutron pair. Due to presented theoretical approach, we prove that the electron pairs in superconductivity could be discovered by Frölich earlier then it was made by the Cooper.

  13. Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials.

    Science.gov (United States)

    Jäger, Benjamin; Bich, Eckard

    2017-06-07

    A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac-Coulomb and Dirac-Coulomb-Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved.

  14. 46 CFR 154.702 - Refrigerated carriage.

    Science.gov (United States)

    2010-10-01

    ... Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1) Have enough capacity to maintain the cargo vapor pressure in each cargo tank served by the system below... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...

  15. Solar Refrigerators Store Life-Saving Vaccines

    Science.gov (United States)

    2014-01-01

    Former Johnson Space Center engineer David Bergeron used his experience on the Advanced Refrigeration Technology Team to found SunDanzer Refrigeration Inc., a company specializing in solar-powered refrigerators. The company has created a battery-free unit that provides safe storage for vaccines in rural and remote areas around the world.

  16. Simulation of absorption refrigeration system for automobile application

    Directory of Open Access Journals (Sweden)

    Ramanathan Anand

    2008-01-01

    Full Text Available An automotive air-conditioning system based on absorption refrigeration cycle has been simulated. This waste heat driven vapor absorption refrigeration system is one alternate to the currently used vapour compression refrigeration system for automotive air-conditioning. Performance analysis of vapor absorption refrigeration system has been done by developing a steady-state simulation model to find the limitation of the proposed system. The water-lithium bromide pair is used as a working mixture for its favorable thermodynamic and transport properties compared to the conventional refrigerants utilized in vapor compression refrigeration applications. The pump power required for the proposed vapor absorption refrigeration system was found lesser than the power required to operate the compressor used in the conventional vapor compression refrigeration system. A possible arrangement of the absorption system for automobile application is proposed.

  17. A liquid helium saver

    International Nuclear Information System (INIS)

    Avenel, O.; Der Nigohossian, G.; Roubeau, P.

    1976-01-01

    A cryostat equipped with a 'liquid helium saver' is described. A mass flow rate M of helium gas at high pressure is injected in a counter-flow heat exchanger extending from room to liquid helium temperature. After isenthalpic expansion through a calibrated flow impedance this helium gas returns via the low pressure side of the heat exchanger. The helium boil-off of the cryostat represents a mass flow rate m, which provides additional precooling of the incoming helium gas. Two operating regimes appear possible giving nearly the same efficiency: (1) high pressure (20 to 25 atm) and minimum flow (M . L/W approximately = 1.5) which would be used in an open circuit with helium taken from a high pressure cylinder; and (2) low pressure (approximately = 3 atm), high flow (M . L/W > 10) which would be used in a closed circuit with a rubber diaphragm pumping-compressing unit; both provide a minimum theoretical boil-off factor of about 8%. Experimental results are reported. (U.K.)

  18. Next Generation Refrigeration Lubricants for Low Global Warming Potential/Low Ozone Depleting Refrigeration and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hessell, Edward

    2013-12-31

    The goal of this project is to develop and test new synthetic lubricants that possess high compatibility with new low ozone depleting (LOD) and low global warming potential (LGWP) refrigerants and offer improved lubricity and wear protection over current lubricant technologies. The improved compatibility of the lubricants with the refrigerants, along with improved lubricating properties, will resulted in lower energy consumption and longer service life of the refrigeration systems used in residential, commercial and industrial heating, ventilating and air-conditioning (HVAC) and refrigeration equipment.

  19. Research ampersand development of a helium-4 based solar neutrino detector

    International Nuclear Information System (INIS)

    Lanou, R.E.; Maris, H.J.; Seidel, G.M.

    1989-12-01

    This Progress Report covers the first six months of our May 1989 Continuation Grant. The purpose of the project is to develop and test a new detection technique for neutrinos using 4 He in the superfluid state. Based upon the expected test results it should be possible to design a practical detector leading to the ultimate goal of detecting low energy solar neutrinos. During the last six months the construction phase has moved ahead substantially. Among the areas of progress discussed in the report are: the construction of the cryostat and dilution refrigerators; the gas handling systems; computer system design; tests for radioactivity of construction materials and roton pulse simulation by computer. 5 figs

  20. An Evaluation of the Environmental Impact of Different Commercial Supermarket Refrigeration Systems Using Low Global Warming Potential Refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01

    Commercial refrigeration systems consumed 1.21 Quads of primary energy in 2010 and are known to be a major source for refrigerant charge leakage into the environment. Thus, it is important to study the environmental impact of commercial supermarket refrigeration systems and improve their design to minimize any adverse impacts. The system s Life Cycle Climate Performance (LCCP) was presented as a comprehensive metric with the aim of calculating the equivalent mass of carbon dioxide released into the atmosphere throughout its lifetime, from construction to operation and destruction. In this paper, an open source tool for the evaluation of the LCCP of different air-conditioning and refrigeration systems is presented and used to compare the environmental impact of a typical multiplex direct expansion (DX) supermarket refrigeration systems based on three different refrigerants as follows: two hydrofluorocarbon (HFC) refrigerants (R-404A, and R-407F), and a low global warming potential (GWP) refrigerant (N-40). The comparison is performed in 8 US cities representing different climates. The hourly energy consumption of the refrigeration system, required for the calculation of the indirect emissions, is calculated using a widely used building energy modeling tool (EnergyPlus). A sensitivity analysis is performed to determine the impact of system charge and power plant emission factor on the LCCP results. Finally, we performed an uncertainty analysis to determine the uncertainty in total emissions for both R-404A and N-40 operated systems. We found that using low GWP refrigerants causes a considerable drop in the impact of uncertainty in the inputs related to direct emissions on the uncertainty of the total emissions of the system.

  1. Review of investigations in eco-friendly thermoacoustic refrigeration system

    Directory of Open Access Journals (Sweden)

    Raut Ashish S.

    2017-01-01

    Full Text Available To reduce greenhouse gas emissions, internationally research and development is intended to improve the performance of conventional refrigeration system also growth of new-fangled refrigeration technology of potentially much lesser ecological impact. This paper gives brief review of research and development in thermoacoustic refrigeration also the existing situation of thermoacoustic refrigeration system. Thermoacoustic refrigerator is a novel sort of energy conversion equipment which converts acoustic power into heat energy by thermoacoustic effect. Thermoacoustic refrigeration is an emergent refrigeration technology in which there are no moving elements or any environmentally injurious refrigerants during its working. The concept of thermoacoustic refrigeration system is explained, the growth of thermoacoustic refrigeration, various investigations into thermoacoustic refrigeration system, various optimization techniques to improve coefficient of performance, different stacks and resonator tube designs to improve heat transfer rate, various gases, and other parameters like sound generation have been reviewed.

  2. Detection of the scintillation light emitted from direct-bandgap compound semiconductors by a Si avalanche photodiode at 150 mK

    International Nuclear Information System (INIS)

    Yasumune, Takashi; Takayama, Nobuyasu; Maehata, Keisuke; Ishibashi, Kenji; Umeno, Takahiro

    2008-01-01

    In this work, the direct-bandgap compound semiconductor materials are irradiated by α particles emitted from 241 Am for the detection of scintillation light at the temperature of 150 mK. For the irradiation experiment, two disk shaped samples were fabricated from an epoxy resin mixed with the powder of PbI 2 and CuI, respectively. Each disk-samples was cooled down to 150 mK by a compact liquid helium-free dilution refrigerator. A Si avalanche photodiode (APD) was employed for detecting the scintillation light emitted from the disk-sample inside the refrigerator. The detection signal current of Si APD was converted into the voltage pulses by a charge sensitive preamplifier. The voltage pulses of the scintillation light emitted from the direct-bandgap semiconductors were observed at the temperature of 150 mK. (author)

  3. A new compressed air energy storage refrigeration system

    International Nuclear Information System (INIS)

    Wang Shenglong; Chen Guangming; Fang Ming; Wang Qin

    2006-01-01

    In this study, a new compressed air energy storage (CAES) refrigeration system is proposed for electrical power load shifting application. It is a combination of a gas refrigeration cycle and a vapor compression refrigeration cycle. Thermodynamic calculations are conducted to investigate the performance of this system. Economic analysis is performed to study the operating cost of the system, and comparison is made with a vapor compression refrigeration system and an ice storage refrigeration system. The results indicate that the CAES refrigeration system has the advantages of simple structure, high efficiency and low operating cost

  4. Thermodynamic analysis and economical evaluation of two 310-80 K pre-cooling stage configurations for helium refrigeration and liquefaction cycle

    Science.gov (United States)

    Zhu, Z. G.; Zhuang, M.; Jiang, Q. F.; Y Zhang, Q.; Feng, H. S.

    2017-12-01

    In 310-80 K pre-cooling stage, the temperature of the HP helium stream reduces to about 80 K where nearly 73% of the enthalpy drop from room temperature to 4.5 K occurs. Apart from the most common liquid nitrogen pre-cooling, another 310-80 K pre-cooling configuration with turbine is employed in some helium cryoplants. In this paper, thermodynamic and economical performance of these two kinds of 310-80 K pre-cooling stage configurations has been studied at different operating conditions taking discharge pressure, isentropic efficiency of turbines and liquefaction rate as independent parameters. The exergy efficiency, total UA of heat exchangers and operating cost of two configurations are computed. This work will provide a reference for choosing 310-80 K pre-cooling stage configuration during design.

  5. Canada's helium output rising fast

    Energy Technology Data Exchange (ETDEWEB)

    1966-12-01

    About 12 months from now, International Helium Limited will be almost ready to start up Canada's second helium extraction plant at Mankota, in Saskatchewan's Wood Mountain area about 100 miles southwest of Moose Jaw. Another 80 miles north is Saskatchewan's (and Canada's) first helium plant, operated by Canadian Helium and sitting on a gas deposit at Wilhelm, 9 miles north of Swift Current. It contains almost 2% helium, some COD2U, and the rest nitrogen. One year in production was apparently enough to convince Canadian Helium that the export market (it sells most of its helium in W. Europe) can take a lot more than it's getting. Construction began this summer on an addition to the Swift Current plant that will raise its capacity from 12 to 36MMcf per yr when it goes on stream next spring. Six months later, International Helium's 40 MMcf per yr plant to be located about 4 miles from its 2 Wood Mountain wells will double Canada's helium output again.

  6. Diffusion of helium and nucleation-growth of helium-bubbles in metallic materials

    International Nuclear Information System (INIS)

    Zhang Chonghong; Chen Keqin; Wang Yinshu

    2001-01-01

    Studies of diffusion and aggregation behaviour of helium in metallic materials are very important to solve the problem of helium embrittlement in structural materials used in the environment of nuclear power. Experimental studies on helium diffusion and aggregation in austenitic stainless steels in a wide temperature range have been performed in authors' research group and the main results obtained are briefly summarized. The mechanism of nucleation-growth of helium-bubbles has been discussed and some problems to be solved are also given

  7. Suitability criterion for a refrigerant for use in solar operated sorption refrigerator

    International Nuclear Information System (INIS)

    Tabassum, S.A.; Mir, M.S.

    1996-01-01

    The thermodynamics of a sorption refrigeration cycle has been discussed representing the cycle on a clapeyron digram. The minimum generation temperature required has been determined using the 'd-a' equation which represents the sorption equilibrium of the pair, and Gibbs free energy relation. The mathematical relation developed provides a totally new basis for determination of suitability of a particular refrigerant. (author)

  8. Suitability criterion for a refrigerant for use in solar operated sorption refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Tabassum, S A; Mir, M S [University of Engineering and Technology, Lahore (Pakistan). Dept. of Mechanical Engineering

    1996-06-01

    The thermodynamics of a sorption refrigeration cycle has been discussed representing the cycle on a clapeyron digram. The minimum generation temperature required has been determined using the `d-a` equation which represents the sorption equilibrium of the pair, and Gibbs free energy relation. The mathematical relation developed provides a totally new basis for determination of suitability of a particular refrigerant. (author).

  9. Coldness generation and heat revalorization: cryogenic machines; Production de froid et revalorisation de la chaleur: machines cryogeniques

    Energy Technology Data Exchange (ETDEWEB)

    Feidt, M. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France)

    2005-12-01

    This study treats more particularly of the generation and use of very low temperatures (typically below -100 deg. C). Such temperatures involve different techniques and new physical principles which are examined in this document. The high temperature re-valorization of heat remains poorly explored and is just evoked in this document. Content: 1 - temperature range of cryogenics; 2 - cascade cycles; 3 - gases liquefaction: liquid air, liquid helium, particular properties of helium and refrigeration (Pomaranchuk effect, helium refrigerators); 4 - thermomagnetic effects: basic principles, magnetic refrigerating machine; 5 - conclusions and perspectives about cryogenics. (J.S.)

  10. SIMULATION OF NON-AZEOTROPIC REFRIGERANT MIXTURES FOR USE IN A DUAL-CIRCUIT REFRIGERATOR/FREEZER WITH COUNTERCURRENT HEAT EXCHANGES

    Science.gov (United States)

    The paper discusses a refrigerator/freezer (RF) system that has two complete and independent refrigeration cycles for the two compartments. It uses a non-azeotropic refrigerant mixture (NARM) in each cycle and countercurrent heat exchangers throughout. This RF is housed in a stan...

  11. Polyhalogenated hydrocarbon refrigerants and refrigerant oils colored with fluorescent dyes and method for their use as leak detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, M.

    1988-07-19

    A leak detectable refrigeration composition is described comprising: (A) a refrigeration liquid selection from the group consisting of: (1) a polyhalogenated hydrocarbon refrigerant; (2) a refrigeration oil selected from the group consisting of naphthenic oils, paraffinic oils, alkylated benzenes, silicones, polyglycols, diesters or triesters of dicarboxylic or tricarboxylic acids, and polyalkyl silicate oils, and (3) a mixture of A(1) and A(2), and (B) a fluorescent dye compound or composition comprising the dye selected from the group consisting of: (1) a fluorescent dye selected from the group consisting of perylene, naphthoxanthene, monocyclic aromatic compounds having an organometallic compound, (2) a solution of fluorescent dye in a solvent, and (3) a mixture of B(1) and B(2). The fluorescent dye compound or composition is soluble in the refrigeration liquid. The concentration of the dye being at least 0.001 grams per 100 grams of the refrigeration liquid.

  12. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  13. Refrigerant charge management in a heat pump water heater

    Science.gov (United States)

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  14. Refrigeration: Introducing energy saving opportunities for business

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-04-15

    In some industries, most notably food and drink and chemicals, refrigeration accounts for a significant proportion of overall site energy costs. For instance, in the industrial handling of meat, poultry and fish, it often accounts for 50% of total energy costs. In ice-cream production the proportion is 70%. In a number of commercial sectors, refrigeration also represents a significant proportion of overall energy costs. For example: Cold storage 90%; Food supermarkets 50%; Small shops with refrigerated cabinets 70% or over; Pubs and clubs 30%. Against these high costs, even a small reduction in refrigeration energy use can offer significant cost savings, resulting in increased profits. Energy saving need not be expensive. Energy savings of up to 20% can be realised in many refrigeration plant through actions that require little or no investment. In addition, improving the efficiency and reducing the load on a refrigeration plant can improve reliability and reduce the likelihood of a breakdown. Most organisations can save energy and money on refrigeration by: More efficient equipment; Good maintenance; Housekeeping and control. This publication provides an understanding of the operation of refrigeration systems, identifies where savings can be realised and will enable readers to present an informed case on energy savings to key decision makers within their organisation. (GB)

  15. Environmentally benign working pairs for adsorption refrigeration

    International Nuclear Information System (INIS)

    Cui Qun; Tao Gang; Chen Haijun; Guo Xinyue; Yao Huqing

    2005-01-01

    This paper begins from adsorption working pairs: water and ethanol were selected as refrigerants; 13x molecular sieve, silica gel, activated carbon, adsorbent NA and NB, proposed by authors, were selected as adsorbents, and the performance of adsorption working pairs in adsorption refrigeration cycle was studied. The adsorption isotherms of adsorbents (NA and NB) were obtained by high-vacuum gravimetric method. Desorption properties of adsorbents were analyzed and compared by thermal analysis method. The performance of adsorption refrigeration was studied on simulation device of adsorption refrigeration cycle. After presentation of adsorption isotherms, the thermodynamic performance for their use in adsorption refrigeration system was calculated. The results show: (1) the maximum adsorption capacity of water on adsorbent NA reaches 0.7 kg/kg, and the maximum adsorption capacity of ethanol on adsorbent NB is 0.68 kg/kg, which is three times that of ethanol on activated carbon, (2) the refrigeration capacity of NA-water working pair is 922 kJ/kg, the refrigeration capacity of NB-ethanol is 2.4 times that of activated carbon-methanol, (3) as environmental friendly and no public hazard adsorption working pair, NA-H 2 O and NB-ethanol can substitute activated carbon-methanol in adsorption refrigeration system using low-grade heat source

  16. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    Science.gov (United States)

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  17. 2014 German refrigeration and air conditioning meeting. Proceedings

    International Nuclear Information System (INIS)

    2014-01-01

    The proceedings of the 2014 German refrigeration and air conditioning meeting contain contributions on the following topics: cryotechnology, fundamentals and materials for the refrigeration and heat pump technology, devices and components for the refrigeration and heat pump technology, applications of refrigeration technologies, air conditioning technology and heat pump applications, cryotechnology in biology and medicine, heat transfer and ventilation, guidelines and legal topics, refrigerant fluid - oil mixtures, control and surveillance, simulation and control, ambient air.

  18. Control of the Tevatron Satellite Refrigeration system

    International Nuclear Information System (INIS)

    Theilacker, J.; Chapman, L.; Gannon, J.; Hentges, M.; Martin, M.; Rode, C.H.; Zagel, J.

    1984-01-01

    This chapter describes a computerized control system for 24 satellite refrigerators which cool a six kilometer ring of superconducting magnets. The control system consists of 31 independent microprocessors operating over 400 servo loops, and a central computer system which provides monitoring, alarms, logging and changing of parameters. Topics considered include pressure measurement, flow measurement, temperature measurement, gas analysis, control valves, expansion engine controllers, and control loops. Each refrigerator has 12 active microprocessor based control loops which tune the refrigerator to one of its four operating modes: satellite, liquefier, refrigerator, and stand-by. It is suggested that optimizing the refrigerator control loops and quench recovery scheme will minimize the accelerator down time

  19. Performance characteristics of a quantum Diesel refrigeration cycle

    International Nuclear Information System (INIS)

    He Jizhou; Wang Hao; Liu Sanqiu

    2009-01-01

    The Diesel refrigeration cycle using an ideal quantum gas as the working substance is called quantum Diesel refrigeration cycle, which is different from Carnot, Ericsson, Brayton, Otto and Stirling refrigeration cycles. For ideal quantum gases, a corrected equation of state, which considers the quantum behavior of gas particles, is used instead of the classical one. The purpose of this paper is to investigate the effect of quantum gas as the working substance on the performance of a quantum Diesel refrigeration cycle. It is found that coefficients of performance of the cycle are not affected by the quantum degeneracy of the working substance, which is the same as that of the classical Diesel refrigeration cycle. However, the refrigeration load is different from those of the classical Diesel refrigeration cycle. Lastly, the influence of the quantum degeneracy on the performance characteristics of the quantum Diesel refrigeration cycle operated in different temperature regions is discussed

  20. ARTI refrigerant database. Quarterly report, March--May 1997

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1997-05-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information an older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date.

  1. Development of a proof of concept low temperature 4He Superfluid Magnetic Pump

    Science.gov (United States)

    Jahromi, Amir E.; Miller, Franklin K.

    2017-03-01

    We describe the development and experimental results of a proof of concept Superfluid Magnetic Pump in this work. This novel low temperature, no moving part pump can replace the existing bellows-piston driven 4He or 3He-4He mixture compressor/circulators used in various sub Kelvin refrigeration systems such as dilution, Superfluid pulse tube, Stirling, or active magnetic regenerative refrigerators. Due to the superior thermal transport properties of sub-Lambda 4He this pump can also be used as a simple circulator to distribute cooling over large surface areas. Our pump was experimentally shown to produce a maximum flow rate of 440 mg/s (averaged over cycle), 665 mg/s (peak) and produced a maximum pressure difference of 2323 Pa using only the more common isotope of helium, 4He. This pump worked in an ;ideal; thermodynamic state: The experimental results matched with the theoretical values predicted by a computer model. Pump curves were developed to map the performance of this pump. This successful demonstration will enable this novel pump to be implemented in suitable sub Kelvin refrigeration systems.

  2. Optimum operating regimes of common paramagnetic refrigerants

    CERN Document Server

    Wikus, P; Figueroa-Feliciano, E

    2011-01-01

    Adiabatic Demagnetization Refrigerators (ADRs) are commonly used in cryogenic laboratories to achieve subkelvin temperatures. ADRs are also the technology of choice for several space borne instruments which make use of cryogenic microcalorimeters or bolometers {[}1-4]. For these applications, refrigerants with high ratios of cooling capacity to volume, or cooling capacity to mass are usually required. In this manuscript, two charts for the simple selection of the most suitable of several common refrigerants (CAA, CMN, CPA, DGG, FAA, GGG, GLF and MAS) are presented. These graphs are valid for single stage cycles. The selection of the refrigerants is uniquely dependent on the starting conditions of the refrigeration cycle (temperature and magnetic field density) and the desired final temperature. Only thermodynamic properties of the refrigerants have been taken into account, and other important factors such as availability and manufacturability have not been considered. (C) 2011 Elsevier Ltd. All rights reserve...

  3. Influence of Post-Mortem Sperm Recovery Method and Extender on Unstored and Refrigerated Rooster Sperm Variables.

    Science.gov (United States)

    Villaverde-Morcillo, S; Esteso, M C; Castaño, C; Santiago-Moreno, J

    2016-02-01

    Many post-mortem sperm collection techniques have been described for mammalian species, but their use in birds is scarce. This paper compares the efficacy of two post-mortem sperm retrieval techniques - the flushing and float-out methods - in the collection of rooster sperm, in conjunction with the use of two extenders, i.e., L&R-84 medium and Lake 7.1 medium. To determine whether the protective effects of these extenders against refrigeration are different for post-mortem and ejaculated sperm, pooled ejaculated samples (procured via the massage technique) were also diluted in the above extenders. Post-mortem and ejaculated sperm variables were assessed immediately at room temperature (0 h), and after refrigeration at 5°C for 24 and 48 h. The flushing method retrieved more sperm than the float-out method (596.5 ± 75.4 million sperm vs 341.0 ± 87.6 million sperm; p < 0.05); indeed, the number retrieved by the former method was similar to that obtained by massage-induced ejaculation (630.3 ± 78.2 million sperm). For sperm collected by all methods, the L&R-84 medium provided an advantage in terms of sperm motility variables at 0 h. In the refrigerated sperm samples, however, the Lake 7.1 medium was associated with higher percentages of viable sperm, and had a greater protective effect (p < 0.05) with respect to most motility variables. In conclusion, the flushing method is recommended for collecting sperm from dead birds. If this sperm needs to be refrigerated at 5°C until analysis, Lake 7.1 medium is recommended as an extender. © 2015 Blackwell Verlag GmbH.

  4. Compatibility of refrigerants and lubricants with elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, G.R.; Seiple, R.H.

    1993-01-01

    The information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. 97% of the swell measurements have been made to date. The other 3% of the measurements are contingent on availability of additional R-32. Swell behavior in the fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

  5. Refrigeration a history

    CERN Document Server

    Gantz, Carroll

    2015-01-01

    For thousands of years, humans coped with heat by harvesting and storing natural ice and devising natural cooling systems that utilized ventilation and evaporation. By the mid 1800s, people began developing huge refrigeration machines to manufacture ice. By the early 1900s, engineers developed electric domestic refrigerators, which by 1927 were affordable convenient household appliances. By then, an increasingly sophisticated public demanded more modern-looking appliances than engineers could produce, and a new breed of designers entered the manufacturing world to provide them. During the Depr

  6. Refrigerating liquid prototype for LED's thermal management

    International Nuclear Information System (INIS)

    Faranda, Roberto; Guzzetti, Stefania; Lazaroiu, George Cristian; Leva, Sonia

    2012-01-01

    The heat management is the critical factor for high performance operation of LED. A new heat management application of refrigerating liquid integrated within a fabricated prototype is proposed and investigated. A series of experiments considering different heights of liquid level were performed to evaluate the heat dissipation performance and optical characteristics of the refrigerating liquid based prototype. The results reveal that the junction temperature decreases as the level of refrigerating liquid increases. The experimental results report that the refrigerating liquid reduces the junction temperature, and can positively influence the luminous radiation performances. An optimization investigation of the proposed solution was carried out to find an optimum thermal performance. The experiments indicated that refrigerating liquid cooling is a powerful way for heat dissipation of high power LEDs, and the fabrication of prototype was feasible and useful. - Highlights: ► New heat management application of refrigerating liquid on a fabricated LED prototype. ► Thermal models setup and comparison between the classical and the new solutions. ► The impact of refrigerating liquid level on LED thermal and luminous performances. ► The relationship between different levels of liquid with LED prototype performances.

  7. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, VAN

    2003-05-19

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case

  8. Economics of Large Helium Cryogenic Systems experience from Recent Projects at CERN

    CERN Document Server

    Claudet, S; Lebrun, P; Tavian, L; Wagner, U

    1999-01-01

    Large projects based on applied superconductivity, such as particle accelerators, tokamaks or SMES, require powerful and complex helium cryogenic systems, the cost of which represents a significant, if not dominant fraction of the total capital and operational expenditure. It is therefore important to establish guidelines and scaling laws for costing such systems, based on synthetic estimators of their size and performance. Although such data has already been published for many years, the experience recently gathered at CERN with the LEP and LHC projects, which have de facto turned the laboratory into a major world cryogenic center, can be exploited to update this information and broaden the range of application of the scaling laws. We report on the economics of 4.5 K and 1.8 K refrigeration, cryogen distribution and storage systems, and indicate paths towards their cost-to-performance optimisation.

  9. Self-trapping of helium in metals

    International Nuclear Information System (INIS)

    Wilson, W.D.; Bisson, C.L.; Baskes, M.I.

    1981-01-01

    Atomistic calculations are presented which demonstrate that helium atoms in a metal lattice are able to cluster with each other, producing vacancies and nearby self-interstitial defects. Even a small number of helium atoms is found to be sufficient to create these large distortions. As few as five interstitial helium can spontaneously produce a lattice vacancy and nearby self-interstitial. An eight-helium-atom cluster gives rise to two such defects, and 16 helium atoms to more than five self-interstitial vacancy pairs. It was noted that the self-interstitials prefer to agglomerate on the same ''side'' of the helium cluster rather than to spread themselves out uniformly. The binding energy of each additional helium atom to these clusters increases with helium concentration and the trap is apparently unsaturable. A rate theory using these atomistic binding energies has been used to calculate the kinetics of helium-bubble nucleation and growth. The results are consistent with measurements of the properties of helium resulting from tritium decay

  10. Energy optimisation of domestic refrigerators

    DEFF Research Database (Denmark)

    Jakobsen, Arne; Rasmussen, Bjarne D.

    1998-01-01

    This paper describes the main results of a research project with the objective of reducing the energy consumption of domestic refrigerators by increasing the efficiency of the refrigeration system. The improvement of the system efficiency was to be obtained by:1) Introducing continuous operation ...

  11. Manufacturing A Refrigerator with Heat Recovery Unit

    Directory of Open Access Journals (Sweden)

    Mustafa Mohammed Kadhim

    2018-02-01

    Full Text Available This study aims to exploite the rejected heating energy from condenser and benefit from it to reheat the foods and other materials. It can also be employed to improve the coefficient of performance of a refrigerator at the same time by using approximately the same consumption electrical energy used to operate the compressor and refrigerator in general. This idea has been implemented by manufacturing of a refrigerator with using additional part has the same metal and condenser pipe diameters but its surface area does not exceed 40% from total surface area of the condenser and its design as an insulated cabinet from all sides to prevent heat leakage through it and located between the compressor and the condenser. Small electrical fan has been added inside this cabinet to provide a suitable air circulation and a homogenous temperature distribution inside the cabinet space. It is expected that the super heating energy of refrigerant (R134a which comes out of the compressor would be removed  inside this cabinet and this insist to condensate the refrigerant (cooling fluid with a rate higher than that used in the normal refrigerator only. Three magnetic valves have been used in order to control the refrigerant flow in state of operation the refrigerator only or to gather with heating cabinet. To measure the temperatures at each process of the simple vapor compression refrigeration cycle, nine temperature sensors at input and output of each compressor, condenser and an evaporator in additional to input of cabinet and inside it and on evaporator surface have been provided. Five pressure gages have been used to measure the value of pressure and compare it for the two states of operation. The consumption of electrical energy  can be calculated by adding an ammeter and a voltmeter and compare between the consumption energy of both states. The obtained results show that there is an improvement in the coeffecient of performance in state of operation the

  12. HFC perspectives in air-conditioning and refrigeration; Perspectives HFC en A/C et refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Fauvarque, P [ELF Atochem, Centre d` Application de Lavallois, 92 (France)

    1998-12-31

    This paper is a series of transparencies dealing with the development of substitutes for the replacement of the R-22 refrigerant in air-conditioning systems (R-134a, R-407C, R-410A), and in industrial refrigeration systems of agriculture and food industry (R-134a and R-404A). (J.S.)

  13. HFC perspectives in air-conditioning and refrigeration; Perspectives HFC en A/C et refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Fauvarque, P. [ELF Atochem, Centre d`Application de Lavallois, 92 (France)

    1997-12-31

    This paper is a series of transparencies dealing with the development of substitutes for the replacement of the R-22 refrigerant in air-conditioning systems (R-134a, R-407C, R-410A), and in industrial refrigeration systems of agriculture and food industry (R-134a and R-404A). (J.S.)

  14. Modeling and calculation of open carbon dioxide refrigeration system

    International Nuclear Information System (INIS)

    Cai, Yufei; Zhu, Chunling; Jiang, Yanlong; Shi, Hong

    2015-01-01

    Highlights: • A model of open refrigeration system is developed. • The state of CO 2 has great effect on Refrigeration capacity loss by heat transfer. • Refrigeration capacity loss by remaining CO 2 has little relation to the state of CO 2 . • Calculation results are in agreement with the test results. - Abstract: Based on the analysis of the properties of carbon dioxide, an open carbon dioxide refrigeration system is proposed, which is responsible for the situation without external electricity unit. A model of open refrigeration system is developed, and the relationship between the storage environment of carbon dioxide and refrigeration capacity is conducted. Meanwhile, a test platform is developed to simulation the performance of the open carbon dioxide refrigeration system. By comparing the theoretical calculations and the experimental results, several conclusions are obtained as follows: refrigeration capacity loss by heat transfer in supercritical state is much more than that in two-phase region and the refrigeration capacity loss by remaining carbon dioxide has little relation to the state of carbon dioxide. The results will be helpful to the use of open carbon dioxide refrigeration

  15. Tests of cold helium compressors at Fermilab

    International Nuclear Information System (INIS)

    Peterson, T.J.; Fuerst, J.D.

    1987-10-01

    Fermilab has tested two cold helium compressors for possible installation in the satellite refrigerator buildings of the Tevatron cryogenic system. Operating conditions required to obtain an overall Tevatron energy upgrade from 900 to 1000 GeV are (for each of 24 machines): 52 g/s mass flow rate, 0.7 atm inlet pressure, 1.4 atm exhaust pressure. Acceptable efficiency is in the 60% range. Both Creare, Inc., and Cryogenic Consultants, Inc. (CCI), have supplied units for evaluation. The Creare machine is a high speed centrifugal pump/compressor which yielded 60% adiabatic efficiency (including an approximately 20 watt heat leak) with a 1.0 atm inlet pressure and 55 g/s flow rate. Certain mechanical difficulties were present, chiefly the device's inability to withstand two-phase flow. CCI supplied a reciprocating unit which, after initial testing and modification, achieved 59% efficiency with an approximate 35 watt heat leak at a 0.7 atm inlet pressure and 48 g/s flow rate. Although the device lacks the smooth, quiet operating characteristics of a turbomachine, it has endured mechanically throughout testing and is entirely insensitive to two-phase flow

  16. New magnetic refrigeration materials for the liquefaction of hydrogen

    International Nuclear Information System (INIS)

    Gschneidner, K.A.; Takeya, H.; Moorman, J.O.; Pecharsky, V.K.; Malik, S.K.; Zimm, C.B.

    1994-01-01

    Five heavy lanthanide ferromagnetic intermetallic compounds were studied as potential magnetic refrigerants for the liquefaction of hydrogen gas. (Dy 0.5 Er 0.5 )Al 2 and TbNi 2 appear to be better refrigerants than GdPd for a Joule-Brayton cycle refrigerator, while (Gd 0.54 Er 0.46 )AlNi seems to be a suitable refrigerant for an Ericsson cycle refrigerator

  17. Reasearch and Evaluation of Electromagnetic Fields of Refrigerators

    Directory of Open Access Journals (Sweden)

    Pranas Baltrėnas

    2013-12-01

    Full Text Available The use of refrigerators causes the occurence of electromagnetic fields that are invisible and intangible, which therefore makes difficulties in protecting ourselves from them. A refrigerator is an irreplaceable item in domestic household and thus can be hardly ignored by a modern way of human life. In order to preserve the characteristics of products, the refrigerator must operate continuously (24 hrs a day, regardless of the time of the year. This results in a huge increase in electricity consumption, which leads to energy consumption related pollution of the environment emitting CO2 gas. On these grounds, it is necessary to assess electromagnetic fields created by the refrigerator. Studies on electromagnetic fields produced by refrigerators were conducted in domestic premises where people spent a significant part of the day. For comparison purposes, five different power refrigerators were chosen (1 – 0.20 kW; 2 – 0.25 kW; 3 – 0.30 kW; 4 – 0.35 kW; 5 – 0.40 kW. The obtained results, according to the parameters of their electromagnetic fields, were presented in graphs and charts and showed that the values of electric and magnetic intensity of refrigerators depended on the distance and the power of the refrigerator. The conducted research also disclosed that none of tested refrigerators exceeded the permissible limits of electromagnetic fields.Article in Lithuanian

  18. Convective mixing in helium white dwarfs

    International Nuclear Information System (INIS)

    Vauclair, G.; Fontaine, G.

    1979-01-01

    The conditions under which convective mixing episodes take place between the helium envelopes and the underlying carbon layers in helium-rich white dwarfs are investigated. It is found that, for essentially any value of the initial helium content less than the maximum mass a helium convection zone can have, mixing does occur, and leads, in the vast majority of cases, to an almost pure carbon superficial composition. Mixing products that show only traces of carbon while retaining helium-dominated envelopes are possible only if the initial helium content is quite close to the maximum possible mass of the helium convection zone. In the presence of turbulence, this restriction could be relaxed, however, and the helium-rich lambda4670 stars may possibly be explained in this fashion

  19. Krypton based adsorption type cryogenic refrigerator

    Science.gov (United States)

    Jones, Jack A. (Inventor); Schember, Helene R. (Inventor)

    1989-01-01

    Krypton and a monolithic porous carbon such as Saran carbon are used respectively as the sorbate and sorbent of an adsorption type refrigerator to improve refrigeration efficiency and operational longevity.

  20. Auto-refrigerating cascade for superconducting applications

    International Nuclear Information System (INIS)

    Forrest, S.M.; Hall, P.H.; Missimer, D.J.

    1987-01-01

    Extremely low temperatures, in the range of 230 to 90 K, are achieved in a single circuit compression refrigeration system operated by a conventional compressor. The system relies upon a series of intermediate cooling stages. The refrigerant is a mixture and the system employs fractional condensation, distillation, phase separation and intermediate heat transfer. Each stage includes the steps of withdrawing a portion of the liquid condensate from the compressed vapor-liquid refrigerant mixture which enters the stage. The withdrawn condensate is then throttled to a lower pressure and is mixed with the refrigerant being recycled to the compressor from the final evaporator. Evaporating the throttled condensate absorbs heat from and at least partially condenses the compressed uncondensed vapor in the compressed mixture

  1. Development and performance evaluation of high speed cryogenic turboexpanders at BARC, India

    Science.gov (United States)

    Chakravarty, A.; Menon, R. S.; Goyal, M.; Ahmed, N.; Jadhav, M.; Rane, T.; Nair, S. R.; Kumar, J.; Kumar, N.; Bharti, S. K.; Jain, A.; Joemon, V.

    2017-12-01

    Turboexpanders are a key focus area for Bhabha Atomic Research Centre (BARC), Mumbai, India in the program for development of helium refrigerators and liquefiers for intra departmental requirements. To start with, a turbine impeller with major diameter 16 mm and design speed of 264,000 RPM, suited for use in the 1st stage of a modified Claude cycle/reverse Brayton cycle based standard helium liquefier/refrigerator, is developed. Later on, a second series of turboexpander with the same major diameter (16 mm) and design speed of 260,000 RPM is developed with “splitter” blades at the major diameter end. Yet another turboexpander series, size 16.5 mm and design speed 168,000 RPM, is also developed suited for use in the 2nd stage of a standard helium liquefier/refrigerator. The present article describes these turboexpander development efforts at BARC, including results obtained during field trials with the BARC helium refrigerator and liquefier.

  2. Cryogenics for the Large Hadron Collider

    CERN Document Server

    Lebrun, P

    2000-01-01

    The Large Hadron Collider (LHC), a 26.7 km circumference superconducting accelerator equipped with high-field magnets operating in superfluid helium below 1.9 K, has now fully entered construction at CERN, the European Laboratory for Particle Physics. The heart of the LHC cryogenic system is the quasi-isothermal magnet cooling scheme, in which flowing two-phase saturated superfluid helium removes the heat load from the 36000 ton cold mass, immersed in some 400 m/sup 3/ static pressurised superfluid helium. The LHC also makes use of supercritical helium for nonisothermal cooling of the beam screens which intercept most of the dynamic heat loads at higher temperature. Although not used in normal operation, liquid nitrogen will provide the source of refrigeration for precooling the machine. Refrigeration for the LHC is produced in eight large refrigerators, each with an equivalent capacity of about 18 kW at 4.5 K, completed by 1.8 K refrigeration units making use of several stages of hydrodynamic cold compressor...

  3. ATLAS' major cooling project

    CERN Multimedia

    2005-01-01

    In 2005, a considerable effort has been put into commissioning the various units of ATLAS' complex cryogenic system. This is in preparation for the imminent cooling of some of the largest components of the detector in their final underground configuration. The liquid helium and nitrogen ATLAS refrigerators in USA 15. Cryogenics plays a vital role in operating massive detectors such as ATLAS. In many ways the liquefied argon, nitrogen and helium are the life-blood of the detector. ATLAS could not function without cryogens that will be constantly pumped via proximity systems to the superconducting magnets and subdetectors. In recent weeks compressors at the surface and underground refrigerators, dewars, pumps, linkages and all manner of other components related to the cryogenic system have been tested and commissioned. Fifty metres underground The helium and nitrogen refrigerators, installed inside the service cavern, are an important part of the ATLAS cryogenic system. Two independent helium refrigerators ...

  4. Magnetic entropy and cooling

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl; Kuhn, Luise Theil; Bahl, Christian Robert Haffenden

    2010-01-01

    Some manifestations of magnetism are well-known and utilized on an everyday basis, e.g. using a refrigerator magnet for hanging that important note on the refrigerator door. Others are, so far, more exotic, such as cooling by making use of the magnetocaloric eect. This eect can cause a change...... in the temperature of a magnetic material when a magnetic eld is applied or removed. For many years, experimentalists have made use of dilute paramagnetic materials to achieve milliKelvin temperatures by use of the magnetocaloric eect. Also, research is done on materials, which might be used for hydrogen, helium...... or nitrogen liquefaction or for room-temperature cooling. The magnetocaloric eect can further be used to determine phase transition boundaries, if a change in the magnetic state occurs at the boundary.In this talk, I will introduce the magnetocaloric eect (MCE) and the two equations, which characterize...

  5. 46 CFR 147.90 - Refrigerants.

    Science.gov (United States)

    2010-10-01

    .../ASHRAE 34-78 may be carried as ships' stores. (b) Refrigerants contained in a vessel's operating system... 46 Shipping 5 2010-10-01 2010-10-01 false Refrigerants. 147.90 Section 147.90 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other...

  6. Friendly fermions of helium-three

    International Nuclear Information System (INIS)

    Leggatt, T.

    1976-01-01

    The importance of helium in showing up the effects of atomic indistinguishability and as a material by which to test some of the most fundamental principles of quantum mechanics is discussed. Helium not only remains liquid down to zero temperature but of the two isotopes helium-three has intrinsic spin 1/2 and should therefore obey the Pauli principle, while helium-four has spin zero and is expected to undergo Bose condensation. Helium-three becomes superfluid at temperatures of a few thousandths of a degree above absolute zero by the bulk liquid collecting its atoms into spinning pairs. There are three different superfluid phases, now conveniently called A, B and A 1 and each is characterised by a different behaviour of the spin and/or relative angular motion of the atoms composing the Cooper pairs. Problems surrounding the complicated physical system of helium-three are discussed. It is suggested that the combined coherence and directionality of superfluid helium-three should create some fascinating physics. (U.K.)

  7. 46 CFR 111.79-15 - Receptacles for refrigerated containers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Receptacles for refrigerated containers. 111.79-15... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-15 Receptacles for refrigerated containers. Receptacles for refrigerated containers must meet one of the following: (a) Each receptacle for refrigerated...

  8. THE STIRLING GAS REFRIGERATING MACHINE MECHANICAL DESIGN IMPROVING

    Directory of Open Access Journals (Sweden)

    V. V. Trandafilov

    2016-06-01

    Full Text Available To improve the mechanical design of the piston Stirling gas refrigeration machine the structural optimization of rotary vane Stirling gas refrigeration machine is carried out. This paper presents the results of theoretical research. Analysis and prospects of rotary vane Stirling gas refrigeration machine for domestic and industrial refrigeration purpose are represented. The results of a patent search by mechanisms of transformation of rotary vane machines are discussed.

  9. THE STIRLING GAS REFRIGERATING MACHINE MECHANICAL DESIGN IMPROVING

    Directory of Open Access Journals (Sweden)

    V. V. Trandafilov

    2016-02-01

    Full Text Available To improve the mechanical design of the piston Stirling gas refrigeration machine the structural optimization of rotary vane Stirling gas refrigeration machine is carried out. This paper presents the results of theoretical research. Analysis and prospects of rotary vane Stirling gas refrigeration machine for domestic and industrial refrigeration purpose are represented. The results of a patent search by mechanisms of transformation of rotary vane machines are discussed

  10. Adsorption refrigeration technology theory and application

    CERN Document Server

    Wang, Ruzhu; Wu, Jingyi

    2014-01-01

    Gives readers a detailed understanding of adsorption refrigeration technology, with a focus on practical applications and environmental concerns Systematically covering the technology of adsorption refrigeration, this book provides readers with a technical understanding of the topic as well as detailed information on the state-of-the-art from leading researchers in the field. Introducing readers to background on the development of adsorption refrigeration, the authors also cover the development of adsorbents, various thermodynamic theories, the design of adsorption systems and adsorption refri

  11. Refrigeration plants using carbon dioxide as refrigerant: measuring and modelling the solubility and diffusion of carbon dioxide in polymers used as sealing materials

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Kristensen, Jakob

    2010-01-01

    Because of increased environmental pressure, there is currently a movement away from more traditional refrigerants such as HCFC's toward refrigerants with lower global warming potential such as carbon dioxide (CO2). However, the use of CO2 as a refrigerant requires a refrigeration cycle...

  12. Refrigerated display cabinets; Butikskyla

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, Per

    2000-07-01

    This report summarizes experience from SP research and assignments regarding refrigerated transport and storage of food, mainly in the retail sector. It presents the fundamentals of heat and mass transfer in display cabinets with special focus on indirect systems and secondary refrigerants. Moreover, the report includes a brief account of basic food hygiene and the related regulations. The material has been compiled for educational purposes in the Masters program at Chalmers Technical University.

  13. Helium in inert matrix dispersion fuels

    International Nuclear Information System (INIS)

    Veen, A. van; Konings, R.J.M.; Fedorov, A.V.

    2003-01-01

    The behaviour of helium, an important decay product in the transmutation chains of actinides, in dispersion-type inert matrix fuels is discussed. A phenomenological description of its accumulation and release in CERCER and CERMET fuel is given. A summary of recent He-implantation studies with inert matrix metal oxides (ZrO 2 , MgAl 2 O 4 , MgO and Al 2 O 3 ) is presented. A general picture is that for high helium concentrations helium and vacancy defects form helium clusters which convert into over-pressurized bubbles. At elevated temperature helium is released from the bubbles. On some occasions thermal stable nano-cavities or nano-pores remain. On the basis of these results the consequences for helium induced swelling and helium storage in oxide matrices kept at 800-1000 deg. C will be discussed. In addition, results of He-implantation studies for metal matrices (W, Mo, Nb and V alloys) will be presented. Introduction of helium in metals at elevated temperatures leads to clustering of helium to bubbles. When operational temperatures are higher than 0.5 melting temperature, swelling and helium embrittlement might occur

  14. Refrigeration system having standing wave compressor

    Science.gov (United States)

    Lucas, Timothy S.

    1992-01-01

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  15. Two-phase flow in refrigeration systems

    CERN Document Server

    Gu, Junjie; Gan, Zhongxue

    2013-01-01

    Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b

  16. The Liquid Nitrogen System for Chamber A: A Change from Original Forced Flow Design to a Natural Flow (Thermo Siphon) System

    Science.gov (United States)

    Homan, Jonathan; Montz, Michael; Sidi-Yekhlef, Ahmed; Ganni, Venkatarao (Rao); Knudsen, Peter; Garcia, Sam; Linza, Robert; Meagher, Daniel; Lauterbauch, John

    2008-01-01

    NASA Johnson Space Center (JSC) in Houston is currently supplementing its 20K helium refrigeration system to meet the new requirements for testing the James Web Space Telescope in the environmental control Chamber-A (65 dia x 120 high) in Building 32. The new system is required to meet the various operating modes which include a high 20K heat load, a required temperature stability at the load, rapid (but controlled) cool down and warm up and bake out of the chamber. This paper will present the proposed modifications to the existing helium system(s) to incorporate the new requirements and the integration of the new helium refrigerator with the existing two 3.5KW 20K helium refrigerators. In addition, the floating pressure process control philosophy to achieve high efficiency over the operating range (40% to 100% of the refrigeration system capacity), and the required temperature stability of +/- 0.25 K at the load will be discussed. The refrigeration systems ability to naturally seek the operating conditions under various loads and thus minimizing operator involvement and the over all improvements to the system operability and the reliability will be explained.

  17. Development of the cryogenic system of AEgIS at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Derking, J. H.; Bremer, J.; Burghart, G.; Doser, M.; Dudarev, A.; Haider, S. [Technology Department, CERN, Geneva 23, CH-1211 (Switzerland)

    2014-01-29

    The AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment is located at the antiproton decelerator complex of CERN. The main goal of the experiment is to perform the first direct measurement of the Earth’s gravitational acceleration on antihydrogen atoms within 1% precision. The antihydrogen is produced in a cylindrical Penning trap by combining antiprotons with positrons. To reach the precision of 1%, the antihydrogen has to be cooled to 100 mK to reduce its random velocity. A dilution refrigerator is selected to deliver the necessary cooling capacity of 100 μW at 50 mK. The AEgIS cryogenic system basically consists of cryostats for a 1-T and for a 5-T superconducting magnet, a central region cryostat, a dilution refrigerator cryostat and a measurement cryostat with a Moiré deflectometer to measure the gravitational acceleration. In autumn 2012, the 1-T cryostat, 5-T cryostat and central region cryostat were assembled and commissioned. The apparatus is cooled down in eight days using 2500 L of liquid helium and liquid nitrogen. During operation, the average consumption of liquid helium is 150 L⋅day{sup −1} and of liquid nitrogen 5 L⋅day{sup −1}. The temperature sensors at the Penning traps measured 12 K to 18 K, which is higher than expected. Simulations show that this is caused by a bad thermalization of the trap wiring. The implementation of the sub-kelvin region is foreseen for mid-2015. The antihydrogen will be cooled down to 100 mK in an ultra-cold trap consisting of multiple high-voltage electrodes made of sapphire with gold plated electrode sectors.

  18. The disappearance of HCFC 22 and the search for the ideal refrigerant; La disparition du HCFC-22 et le recherche du refrigerant ideal

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, C. [Ville de Montreal, PQ (Canada). Direction des Immeubles Gestion de l' Energie et du Genie Climatique

    2003-03-01

    The City of Montreal, Quebec is searching for the optimum refrigerant, and has determined that ammonia, carbon dioxide, hydrocarbons and refrigerant-mixes in the 400 series are to be considered for general refrigeration and in skating rinks in the next years. The refrigerants of the 400 series contribute to the greenhouse effect and it is not possible to utilize them in sunk type systems. The City of Montreal has 12 per cent of ice surfaces in Quebec. The Montreal Protocol, a United Nations document calls for the gradual elimination of the refrigerant monochlorodifluoromethane (HCFC 22) starting in 2004 and that none will be made after 2020 in order to protect the ozone layer. In this document, the author discussed the following topics: (1) supply problems, regulations, international index used to compare refrigeration systems, (2) the origin of refrigerants available on the market and why the chemical industry is incapable of producing the miracle refrigerant, and (3) a proposal for an action plan for the control and the reduction of HCFC 22 leaks, the replacement of entire refrigeration systems and the preparation for the period following the availability of HCFC 22. The author offered twelve conclusions. 10 refs., 9 figs.

  19. Relation between the conditions of helium ion implantation and helium void equilibrium parameters

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Rybalko, V.F.; Ruzhitskij, V.V.; Tolstolutskaya, G.D.

    1981-01-01

    The conditions of helium thermodynamic equilibrium in a system of voids produced by helium ion bombardment of a metal sample are studied. As an initial equation for description of the equilibrium the Clapeyron equation was used. The equation is obtained relating basic parameters of helium voids (average diameter and density) to irradiation parameters (dose, ion energy (straggling)) and properties of the metal (surface tension coefficient, yield strength). Comparison of the calculations with experimental data on helium in nickel found in literature shows that the equation yields satisfactory resutls for the dose range 1.10 16 -1x10 17 cm -2 and temperatures T [ru

  20. Refrigerated Warehouse Demand Response Strategy Guide

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Doug [VaCom Technologies, San Luis Obispo, CA (United States); Castillo, Rafael [VaCom Technologies, San Luis Obispo, CA (United States); Larson, Kyle [VaCom Technologies, San Luis Obispo, CA (United States); Dobbs, Brian [VaCom Technologies, San Luis Obispo, CA (United States); Olsen, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-11-01

    This guide summarizes demand response measures that can be implemented in refrigerated warehouses. In an appendix, it also addresses related energy efficiency opportunities. Reducing overall grid demand during peak periods and energy consumption has benefits for facility operators, grid operators, utility companies, and society. State wide demand response potential for the refrigerated warehouse sector in California is estimated to be over 22.1 Megawatts. Two categories of demand response strategies are described in this guide: load shifting and load shedding. Load shifting can be accomplished via pre-cooling, capacity limiting, and battery charger load management. Load shedding can be achieved by lighting reduction, demand defrost and defrost termination, infiltration reduction, and shutting down miscellaneous equipment. Estimation of the costs and benefits of demand response participation yields simple payback periods of 2-4 years. To improve demand response performance, it’s suggested to install air curtains and another form of infiltration barrier, such as a rollup door, for the passageways. Further modifications to increase efficiency of the refrigeration unit are also analyzed. A larger condenser can maintain the minimum saturated condensing temperature (SCT) for more hours of the day. Lowering the SCT reduces the compressor lift, which results in an overall increase in refrigeration system capacity and energy efficiency. Another way of saving energy in refrigerated warehouses is eliminating the use of under-floor resistance heaters. A more energy efficient alternative to resistance heaters is to utilize the heat that is being rejected from the condenser through a heat exchanger. These energy efficiency measures improve efficiency either by reducing the required electric energy input for the refrigeration system, by helping to curtail the refrigeration load on the system, or by reducing both the load and required energy input.

  1. Helium behaviour in nuclear glasses

    International Nuclear Information System (INIS)

    Fares, T.

    2011-01-01

    The present thesis focuses on the study of helium behavior in R7T7 nuclear waste glass. Helium is generated by the minor actinides alpha decays incorporated in the glass matrix. Therefore, four types of materials were used in this work. These are non radioactive R7T7 glasses saturated with helium under pressure, glasses implanted with 3 He + ions, glasses doped with curium and glasses irradiated in nuclear reactor. The study of helium solubility in saturated R7T7 glass has shown that helium atoms are inserted in the glass free volume. The results yielded a solubility of about 10 16 at. cm -3 atm. -1 . The incorporation limit of helium in this type of glass has been determined; its value amounted to about 2*10 21 at. cm -3 , corresponding to 2.5 at.%. Diffusion studies have shown that the helium migration is controlled by the single population dissolved in the glass free volume. An ideal diffusion model was used to simulate the helium release data which allowed to determine diffusion coefficients obeying to the following Arrhenius law: D = D 0 exp(-E a /kBT), where D 0 = 2.2*10 -2 and 5.4*10 -3 cm 2 s -1 and E a = 0.61 eV for the helium saturated and the curium doped glass respectively. These results reflect a thermally activated diffusion mechanism which seems to be not influenced by the glass radiation damage and helium concentrations studied in the present work (up to 8*10 19 at. g -1 , corresponding to 0.1 at.%). Characterizations of the macroscopic, structural and microstructural properties of glasses irradiated in nuclear reactor did not reveal any impact associated with the presence of helium at high concentrations. The observed modifications i.e. a swelling of 0.7 %, a decrease in hardness by 38 %, an increase between 8 and 34 % of the fracture toughness and a stabilization of the glass structure under irradiation, were attributed to the glass nuclear damage induced by the irradiation in reactor. Characterizations by SEM and TEM of R7T7 glasses implanted

  2. Performance comparison of a refrigerator system using R134a and hydrocarbon refrigerant (HCR134a) with different expansion devices

    Science.gov (United States)

    Aziz, A.; Izzudin; Mainil, A. K.

    2017-09-01

    The objective of this study is to compare the performance of refrigerator system using working fluid between R134a refrigerant and HCR134a as hydrocarbon refrigerant for substitution of R134a. The use of capillary tube (CT) 1.5 m with HCR134a showed that slightly better COP than among the others, due to the lower pressure of condenser, conversely thermostatic expansion valve (TEV) showed that better COP than among the others with R134a. COP of CT 1.25 m and CT 1.5 m using HCR134a increase about 42.89% and 18.09% compared to R134a, where the electric current of refrigerator system decrease about 11.63% and 10.98%. However, the COP of HCR134a with CT 2.7 m and TEV were obtained lower than R134a about 16.2% and 17.06% and the use of electric current is higher than R134a about 12.98% and 16.5%. The use of HCR134a provides a higher refrigeration effect than R134a about 66.71%-88.27% for various types of expansion devices. The results confirmed that HCR134a could be an alternative refrigerant for replacement of R134a refrigerant.

  3. REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS

    Science.gov (United States)

    Large refrigeration systems are found in several applications including supermarkets, cold storage warehouses, and industrial processes. The sizes of these systems are a contributing factor to their problems of high refrigerant leak rates because of the thousands of connections, ...

  4. Bed system performance in helium circulation mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yean Jin; Jung, Kwang Jin; Ahn, Do Hee; Chung, Hong Suk [UST, Daejeon (Korea, Republic of); Kang, Hee Suk [KAERI, Daejeon (Korea, Republic of); Yun, Sei Hun [NFRI, Deajeon (Korea, Republic of)

    2016-05-15

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, We have conducted an experiment for storing hydrogen to depleted uranium and zirconium cobalt. The helium blanket effect has been observed in experiments using metal hydrides. The collapse of the hydrogen isotopes are accompanied by the decay heat and helium-3. Helium-3 dramatically reduces the hydrogen isotope storage capacity by surrounding the metal. This phenomenon is called a helium blanket effect. In addition the authors are working on the recovery and removal techniques of helium-3. In this paper, we discuss the equipment used to test the helium blanket effect and the results of a helium circulation experiment. The helium-3 produced surrounds the storage material surface and thus disturbs the reaction of the storage material and the hydrogen isotope. Even if the amount of helium-3 is small, the storage capacity of the SDS bed significantly drops. This phenomenon is the helium blanket effect. To resolve this phenomenon, a circulating loop was introduced. Using a circulating system, helium can be separated from the storage material. We made a helium loop that includes a ZrCo bed. Then using a metal bellows pump, we tested the helium circulation.

  5. Quantum-Circuit Refrigerator

    Science.gov (United States)

    MöTtöNen, Mikko; Tan, Kuan Y.; Masuda, Shumpei; Partanen, Matti; Lake, Russell E.; Govenius, Joonas; Silveri, Matti; Grabert, Hermann

    Quantum technology holds great potential in providing revolutionizing practical applications. However, fast and precise cooling of the functional quantum degrees of freedom on demand remains a major challenge in many solid-state implementations, such as superconducting circuits. We demonstrate direct cooling of a superconducting resonator mode using voltage-controllable quantum tunneling of electrons in a nanoscale refrigerator. In our first experiments on this type of a quantum-circuit refrigerator, we measure the drop in the mode temperature by electron thermometry at a resistor which is coupled to the resonator mode through ohmic losses. To eliminate unwanted dissipation, we remove the probe resistor and directly observe the power spectrum of the resonator output in agreement with the so-called P(E) theory. We also demonstrate in microwave reflection experiments that the internal quality factor of the resonator can be tuned by orders of magnitude. In the future, our refrigerator can be integrated with different quantum electric devices, potentially enhancing their performance. For example, it may prove useful in the initialization of superconducting quantum bits and in dissipation-assisted quantum annealing. We acknowledge European Research Council Grant SINGLEOUT (278117) and QUESS (681311) for funding.

  6. Solar-Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  7. Solar Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  8. Critical Temperature of Randomly Diluted Two-Dimensional Heisenberg Ferromagnet, K2CuxZn(1-x)F4

    Science.gov (United States)

    Okuda, Yuichi; Tohi, Yasuto; Yamada, Isao; Haseda, Taiichiro

    1980-09-01

    The susceptibility of randomly diluted two-dimensional Heisenberg-like ferromagnet K2CuxZn(1-x)F4 was measured down to 50 mK, using the 3He-4He dilution refrigerator and a SQUID magnetometer. The ferromagnetic critical temperature Tc(x) was obtained for x{=}0.98, 0.94, 0.85, 0.82, 0.68, 0.60, 0.54, 0.50 and 0.42. The value of [1/Tc(1)][(d/dx)Tc(x)]x=1 was approximately 3.0. The critical temperature versus x curve exhibits a noticeable tail near the critical concentration, which may stem from the second nearest-neighbor interaction. The critical concentration xc, below which concentration there is no long range order down to T{=}0 K, was estimated to be 0.45˜0.50. The susceptibility of sample with x{=}0.42 behaves as if it obeys the Curie law down to 50 mK.

  9. Improvement of a thermoelectric and vapour compression hybrid refrigerator

    International Nuclear Information System (INIS)

    Astrain, D.; Martínez, A.; Rodríguez, A.

    2012-01-01

    This paper presents the improvement in the performance of a domestic hybrid refrigerator that combines vapour compression technology for the cooler and freezer compartments, and thermoelectric technology for a new compartment. The heat emitted by the Peltier modules is discharged into the freezer compartment, forming a cascade refrigeration system. This configuration leads to a significant improvement in the coefficient of operation. Thus, the electric power consumption of the modules and the refrigerator decreases by 95% and 20% respectively, with respect to those attained with a cascade refrigeration system connected with the cooler compartment. The optimization process is based on a computational model that simulates the behaviour of the whole refrigerator. Two prototypes have been built and tested. Experimental results indicate that the temperature of the new compartment is easily set up at any value between 0 and −4 °C, the oscillation of this temperature is always lower than 0.4 °C, and the electric power consumption is low enough to include this hybrid refrigerator into energy efficiency class A, according European rules and regulations. - Highlights: ► Optimization of a vapour compression and thermoelectric hybrid refrigerator. ► Two prototypes built and tested. Computational model for the whole refrigerator. ► Electric power consumption of the modules and the refrigerator 95% and 20% lower. ► New compartment refrigerated with thermoelectric technology. ► Inner temperature adjustable from 0 to −4 °C. Oscillations lower than ±0.2 °C.

  10. The climate change implications of manufacturing refrigerants. A calculation of 'production' energy contents of some common refrigerants

    International Nuclear Information System (INIS)

    Campbell, N.J.; McCulloch, A.

    1998-01-01

    Total Equivalent Warming Impact (TEWI) analysis has been shown to be a useful aid to quantifying the climate change effect of potential emissions from the operation of systems that involve the use of greenhouse gases and consume energy, so generating CO 2 emissions. It enables these systems to be optimized for minimum global warming impact. In previous studies, the energies required to manufacture the greenhouse gases themselves were not included; by analogy with other chemical manufacturing processes they were assumed to be small in the context of climate change. In the work described here, climate change impacts from the energy used to produce a number of common refrigerant fluids are evaluated. These impacts are compared with the potential impact on global warming from the other components of TEWI: use and disposal of the refrigerants, including direct release into the environment. It is shown that the implications for climate change of the production of traditional refrigerants like ammonia, hydrocarbons or CFC-12 and new refrigerating fluids, such as HFC-134a, are truly insignificant in comparison with other stages of the life cycle of a refrigerator and have no role in TEWI. (author)

  11. Component-wise exergy and energy analysis of vapor compression refrigeration system using mixture of R134a and LPG as refrigerant

    Science.gov (United States)

    Gill, Jatinder; Singh, Jagdev

    2017-11-01

    In this work, the experimental examination was carried out using a mixture of R134a and LPG refrigerant (consisting of R134a and LPG in a proportion of 28:72 by weight) as a replacement for R134a in a vapor compression refrigeration system. Exergy and energy tests were carried out at different evaporator and condenser temperatures with controlled environmental conditions. The results showed that the exergy destruction in the compressor, condenser, evaporator, and a capillary tube of the R134a / LPG refrigeration system was found lower by approximately 11.13-3.41%, 2.24-3.43%, 12.02-13.47% and 1.54-5.61% respectively. The compressor exhibits the highest level of destruction, accompanied by a condenser, an evaporator and a capillary tube in refrigeration systems. The refrigeration capacity, COP and power consumption of the compressor of the R134a /LPG refrigeration system were detected higher and lower compared to the R134a refrigeration system by about 7.04-11.41%, 15.1-17.82%, and 3.83-8.08% respectively. Also, the miscibility of R134a and LPG blend with mineral oil discovered good. The R134a and LPG refrigerant mixture proposed in this study perform superior to R134a from component-wise exergy and energy analyses under similar experimental conditions.

  12. Component-wise exergy and energy analysis of vapor compression refrigeration system using mixture of R134a and LPG as refrigerant

    Science.gov (United States)

    Gill, Jatinder; Singh, Jagdev

    2018-05-01

    In this work, the experimental examination was carried out using a mixture of R134a and LPG refrigerant (consisting of R134a and LPG in a proportion of 28:72 by weight) as a replacement for R134a in a vapor compression refrigeration system. Exergy and energy tests were carried out at different evaporator and condenser temperatures with controlled environmental conditions. The results showed that the exergy destruction in the compressor, condenser, evaporator, and a capillary tube of the R134a / LPG refrigeration system was found lower by approximately 11.13-3.41%, 2.24-3.43%, 12.02-13.47% and 1.54-5.61% respectively. The compressor exhibits the highest level of destruction, accompanied by a condenser, an evaporator and a capillary tube in refrigeration systems. The refrigeration capacity, COP and power consumption of the compressor of the R134a /LPG refrigeration system were detected higher and lower compared to the R134a refrigeration system by about 7.04-11.41%, 15.1-17.82%, and 3.83-8.08% respectively. Also, the miscibility of R134a and LPG blend with mineral oil discovered good. The R134a and LPG refrigerant mixture proposed in this study perform superior to R134a from component-wise exergy and energy analyses under similar experimental conditions.

  13. Helium supply demand in future years

    International Nuclear Information System (INIS)

    Laverick, C.

    1975-01-01

    Adequate helium will be available to the year 2000 AD to meet anticipated helium demands for present day applications and the development of new superconducting technologies of potential importance to the nation. It is almost certain that there will not be enough helium at acceptable financial and energy cost after the turn of the century to meet the needs of the many promising helium based technologies now under development. Serious consideration should be given to establishing priorities in development and application based upon their relative value to the country. In the first half of the next century, three ways of estimating helium demand lead to cumulative ranges of from 75 to 125 Gcf (economic study), 89 to 470 Gcf (projected national energy growth rates) and 154 to 328 Gcf (needs for new technologies). These needs contrast with estimated helium resources in natural gas after 2000 AD which may be as low as 10 or 126 Gcf depending upon how the federal helium program is managed and the nation's natural gas resources are utilized. The technological and financial return on a modest national investment in further helium storage and a rational long term helium program promises to be considerable

  14. Correlation of refrigerant mass flow rate through adiabatic capillary tubes using mixture refrigerant carbondioxide and ethane for low temperature applications

    Science.gov (United States)

    Nasruddin, Syaka, Darwin R. B.; Alhamid, M. Idrus

    2012-06-01

    Various binary mixtures of carbon dioxide and hydrocarbons, especially propane or ethane, as alternative natural refrigerants to Chlorofluorocarbons (CFCs) or Hydro fluorocarbons (HFCs) are presented in this paper. Their environmental performance is friendly, with an ozone depletion potential (ODP) of zero and Global-warming potential (GWP) smaller than 20. The capillary tube performance for the alternative refrigerant HFC HCand mixed refrigerants have been widely studied. However, studies that discuss the performance of the capillary tube to a mixture of natural refrigerants, in particular a mixture of azeotrope carbon dioxide and ethane is still undeveloped. A method of empirical correlation to determine the mass flow rate and pipe length has an important role in the design of the capillary tube for industrial refrigeration. Based on the variables that effect the rate of mass flow of refrigerant in the capillary tube, the Buckingham Pi theorem formulated eight non-dimensional parameters to be developed into an empirical equations correlation. Furthermore, non-linear regression analysis used to determine the co-efficiency and exponent of this empirical correlation based on experimental verification of the results database.

  15. Refrigeration systems and applications

    CERN Document Server

    Dincer, Ibrahim

    2010-01-01

    Refrigeration Systems and Applications, 2nd edition offers a comprehensive treatise that addresses real-life technical and operational problems, enabling the reader to gain an understanding of the fundamental principles and the practical applications of refrigeration technology. New and unique analysis techniques (including exergy as a potential tool), models, correlations, procedures and applications are covered, and recent developments in the field are included - many of which are taken from the author's own research activities in this area. The book also includes so

  16. Literature survey of heat transfer enhancement techniques in refrigeration applications

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M.K.; Shome, B. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics

    1994-05-01

    A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

  17. Control Methods for Energy Management of Refrigeration Systems

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan

    is decreased as the method does not need an explicit model of the system and, at the same time, the desired load following performance is attained. Recent research findings indicate that the refrigeration system commonly employed in food transportation can account for 40% of the total greenhouse gas emissions...... from the corresponding vehicle engines. Finally, the problem of optimization of a hybrid transport refrigeration system is addressed here. The hybrid refrigeration system is made by the integration of conventional refrigeration technology with thermal energy storage devices....

  18. Surface electrons of helium films

    International Nuclear Information System (INIS)

    Studart, N.; Hipolito, O.

    1986-01-01

    Theoretical calculations of some properties of two-dimensional electrons on a liquid helium film adsorbed on a solid substrate are reviewed. We describe the spectrum of electron bound states on bulk helium as well on helium films. The correlational properties, such as the structure factor and correlation energy, are determined as functions of the film thickness for different types of substrates in the framework of a Generalized Random-Phase Approximation. The collective excitations of this system are also described. The results for electrons on the surface of thin films and bulk helium are easily obtained. we examine the electron interaction with the excitations of the liquid helium surface resulting in a new polaron state, which was observed very recently. The ground state energy and the effective mass of this polaron are determined by using the path-integral formalism and unitary-transformation method. Recent speculations about the phase diagram of electrons on the helium film are also discussed. (Author) [pt

  19. Prediction of thermodynamic properties of refrigerants using data mining

    International Nuclear Information System (INIS)

    Kuecueksille, Ecir Ugur; Selbas, Resat; Sencan, Arzu

    2011-01-01

    The analysis of vapor compression refrigeration systems requires the availability of simple and efficient mathematical formulations for the determination of thermodynamic properties of refrigerants. The aim of this study is to determine thermodynamic properties as enthalpy, entropy and specific volume of alternative refrigerants using data mining method. Alternative refrigerants used in the study are R134a, R404a, R407c and R410a. The results obtained from data mining have been compared to actual data from the literature. The study shows that the data mining methodology is successfully applicable to determine enthalpy, entropy and specific volume values for any temperature and pressure of refrigerants. Therefore, computation time reduces and simulation of vapor compression refrigeration systems is fairly facilitated.

  20. Exergy analysis of refrigerators for large scale cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Loehlein, K [Sulzer Cryogenics, Winterthur (Switzerland); Fukano, T [Nippon Sanso Corp., Kawasaki (Japan)

    1993-01-01

    Facilities with superconducting magnets require cooling capacity at different temperature levels and of different types (refrigeration or liquefaction). The bigger the demand for refrigeration, the more investment for improved efficiency of the refrigeration plant is justified and desired. Refrigeration cycles are built with discrete components like expansion turbines, cold compressors, etc. Therefore the exergetic efficiency for producing refrigeration on a distinct temperature level is significantly dependent on the 'thermodynamic arrangement' of these components. Among a variety of possibilities, limited by the range of applicability of the components, one has to choose the best design for higher efficiency on every level. Some influences are being quantified and aspects are given for a optimal integration of the refrigerator into the whole cooling system. (orig.).

  1. 46 CFR 154.1720 - Indirect refrigeration.

    Science.gov (United States)

    2010-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Special Design and Operating Requirements § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene...

  2. Evaluation of Virtual Refrigerant Mass Flow Sensors

    OpenAIRE

    Kim, Woohyun; Braun, James E.

    2012-01-01

    Refrigerant mass flow rate is an important measurement for monitoring equipment performance and enabling fault detection and diagnostics. However, a traditional mass flow meter is expensive to purchase and install. A virtual refrigerant mass flow sensor (VRMF) uses a mathematical model to estimate flow rate using low-cost measurements and can potentially be implemented at low cost. This study evaluates three VRMFs for estimating refrigerant mass flow rate. The first model uses a compressor ma...

  3. Backscattered Helium Spectroscopy in the Helium Ion Microscope: Principles, Resolution and Applications

    NARCIS (Netherlands)

    van Gastel, Raoul; Hlawacek, G.; Dutta, S.; Poelsema, Bene

    2015-01-01

    We demonstrate the possibilities and limitations for microstructure characterization using backscattered particles from a sharply focused helium ion beam. The interaction of helium ions with matter enables the imaging, spectroscopic characterization, as well as the nanometer scale modification of

  4. Energy consumption of small refrigerators - Information leaflet; Merkblatt Kleinkuehlschrank

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    In this leaflet published by the Swiss Federal Office of Energy (SFOE), the energy consumption of small refrigerators with a capacity of less than 100 litres is reported on. Such small refrigerators are often used in hotel rooms or in campers. It is noted that, in comparison, a typical, 150 litre class A++ domestic refrigerator uses only a fraction of the amount of energy used by such small refrigerators. The results of measurements made according to EN 153 and ISO 15502 norms are discussed. Recommendations are made on the purchase and operation of these small refrigerators.

  5. Compatibility of refrigerants and lubricants with elastomers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, G.R.; Seiple, R.H.; Taikum, Orawan

    1994-01-01

    The information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. In part I of the program the swell behavior in the test fluids has been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 and 24 hours for samples removed fro the refrigerant test fluids and 24 hours after removal from the lubricants. Part II of the testing program includes the evaluation of tensile strength, hardness, weight, and dimensional changes after immersion aging in refrigerant/lubricant mixtures of selected elastomer formulations at elevated temperature and pressure.

  6. Helium localization around the microscopic impurities embedded to liquid helium

    International Nuclear Information System (INIS)

    Gordon, E.B.; Shestakov, A.F.

    2000-01-01

    The structure and properties of the environment round the impurity atoms (Im) embedded in liquid helium are considered. It is shown that there are two qualitatively different types of structure of the He atom layer next to Im - attraction and repulsion structures. For the center attraction structure (strong Im-He interaction) the Im-He separation is longer than the equilibrium one for the pair Im-He potential, and the density and localization of He atoms are higher than in the bulk. It this case the He atom content in the layer, n, is almost independent of applied pressure. In the repulsion structure realized for alkaline metal atoms the Im-He separation is shorter than the equilibrium one and the density is lower than in the helium bulk. At T approx 1 K occupied are several states with different n and their energies differ only by approx 0.1 K, an increase in pressure resulting in a considerable reduction of n. The optical and EPR spectra of the atoms embedded to liquid and solid helium are interpreted on the basis of the analysis carried out. A simple model is proposed to evaluate the helium surroundings characteristics from the experimental pressure dependences of atomic line shifts in the absorption and emission spectra. The attraction structures in 3 He - 4 He mixtures are suggested to be highly enriched by 4 He atoms which the repulsion structures - by 3 He atoms. a possibility for existence of phase transitions in helium shells surrounding impurity atoms is considered

  7. A rotary permanent magnet magnetic refrigerator based on AMR cycle

    International Nuclear Information System (INIS)

    Aprea, C.; Cardillo, G.; Greco, A.; Maiorino, A.; Masselli, C.

    2016-01-01

    Magnetic refrigeration is an emerging, environment-friendly technology based on a magnetic solid that acts as a refrigerant by magneto-caloric effect (MCE). The reference cycle for magnetic refrigeration is AMR (Active Magnetic Regenerative refrigeration). In order to demonstrate the potential of magnetic refrigeration to provide useful cooling in the near room temperature range, a novel Rotary Permanent Magnet Magnetic Refrigerator (RPMMR) is described in this paper. Gadolinium has been selected as magnetic refrigerant and demineralized water has been employed as regenerating fluid. The total mass of gadolinium (1.20 kg), shaped as packed bed spheres, is housed in 8 regenerators. A magnetic system, based on a double U configuration of permanent magnets, provides a magnetic flux density of 1.25 T with an air gap of 43 mm. A rotary vane pump forces the regenerating fluid through the regenerators. The operational principle of the magnetic refrigerator and initial experimental results are reported and analyzed.

  8. Test of a cryogenic helium pump

    International Nuclear Information System (INIS)

    Lue, J.W.; Miller, J.R.; Walstrom, P.L.; Herz, W.

    1981-01-01

    The design of a cryogenic helium pump for circulating liquid helium in a magnet and the design of a test loop for measuring the pump performance in terms of mass flow vs pump head at various pump speeds are described. A commercial cryogenic helium pump was tested successfully. Despite flaws in the demountable connections, the piston pump itself has performed satisfactorily. A helium pump of this type is suitable for the use of flowing supercritical helium through Internally Cooled Superconductor (ICS) magnets. It has pumped supercritical helium up to 7.5 atm with a pump head up to 2.8 atm. The maximum mass flow rate obtained was about 16 g/s. Performance of the pump was degraded at lower pumping speeds

  9. Cryogenic system for TRISTAN superconducting RF cavity

    International Nuclear Information System (INIS)

    Hosoyama, K.; Hara, K.; Kabe, A.; Kojima, Yuuji; Ogitsu, T.; Sakamoto, Y.; Kawamura, S.; Ishimaru, Y.

    1990-01-01

    A cryogenic system consisting of a helium refrigerator (4 kW at 4.4 K) and a liquid helium distribution transfer system for TRISTAN 508 MHz 32 x 5-cell superconducting RF cavities was designed and constructed. After the performance test of the cryogenic system, 16 x 5-cell superconducting RF cavities in 8 cryostats were installed in underground TRISTAN electron-positron collider and connected to the helium refrigerator on the ground level through the transfer line (total length about 330 m) and cooled by liquid helium pool boiling in parallel. The cryogenic system and its operation experience are described. (author)

  10. Cavity optomechanics in a levitated helium drop

    Science.gov (United States)

    Childress, L.; Schmidt, M. P.; Kashkanova, A. D.; Brown, C. D.; Harris, G. I.; Aiello, A.; Marquardt, F.; Harris, J. G. E.

    2017-12-01

    We describe a proposal for a type of optomechanical system based on a drop of liquid helium that is magnetically levitated in vacuum. In the proposed device, the drop would serve three roles: its optical whispering-gallery modes would provide the optical cavity, its surface vibrations would constitute the mechanical element, and evaporation of He atoms from its surface would provide continuous refrigeration. We analyze the feasibility of such a system in light of previous experimental demonstrations of its essential components: magnetic levitation of mm-scale and cm-scale drops of liquid He , evaporative cooling of He droplets in vacuum, and coupling to high-quality optical whispering-gallery modes in a wide range of liquids. We find that the combination of these features could result in a device that approaches the single-photon strong-coupling regime, due to the high optical quality factors attainable at low temperatures. Moreover, the system offers a unique opportunity to use optical techniques to study the motion of a superfluid that is freely levitating in vacuum (in the case of 4He). Alternatively, for a normal fluid drop of 3He, we propose to exploit the coupling between the drop's rotations and vibrations to perform quantum nondemolition measurements of angular momentum.

  11. Post-giant evolution of helium stars

    International Nuclear Information System (INIS)

    Schoenberner, D.

    1977-01-01

    Extremely hydrogen deficient stars (helium stars and R Coronae Borealis variables) are considered to be remnants of double shell source stars (of the asymptotic giant branch). The evolution of stars with a condensed C/O-core and a helium envelope is followed numerically from the red giant stage to the white dwarf domain, crossing the regions of R CrB- and helium stars (so far analyzed). They have typically masses M/M(sun) = 0.7 and luminosities log L/L(sun) = 4.1. The time for crossing the helium star domain is some 10 3 years. The corresponding times in the R CrB-region amounts up to several 10 4 years. The lower limit of the death rate of helium stars is estimated to be 4 x 10 -14 pc -3 yr -1 . This value is only a factor of ten lower than the birth rate of all non-DA white dwarfs. It is therefore possible that the helium stars are the precursors of helium rich white dwarfs. As a consequence, a significant fraction of all stars which end their lives as white dwarfs should pass through the helium star phase. (orig.) [de

  12. Fault detection and diagnosis for refrigerator from compressor sensor

    Science.gov (United States)

    Keres, Stephen L.; Gomes, Alberto Regio; Litch, Andrew D.

    2016-12-06

    A refrigerator, a sealed refrigerant system, and method are provided where the refrigerator includes at least a refrigerated compartment and a sealed refrigerant system including an evaporator, a compressor, a condenser, a controller, an evaporator fan, and a condenser fan. The method includes monitoring a frequency of the compressor, and identifying a fault condition in the at least one component of the refrigerant sealed system in response to the compressor frequency. The method may further comprise calculating a compressor frequency rate based upon the rate of change of the compressor frequency, wherein a fault in the condenser fan is identified if the compressor frequency rate is positive and exceeds a condenser fan fault threshold rate, and wherein a fault in the evaporator fan is identified if the compressor frequency rate is negative and exceeds an evaporator fan fault threshold rate.

  13. Investigation of impurity-helium solid phase decomposition

    International Nuclear Information System (INIS)

    Boltnev, R.E.; Gordon, E.B.; Krushinskaya, I.N.; Martynenko, M.V.; Pel'menev, A.A.; Popov, E.A.; Khmelenko, V.V.; Shestakov, A.F.

    1997-01-01

    The element composition of the impurity-helium solid phase (IHSP), grown by injecting helium gas jet, involving Ne, Ar, Kr, and Xe atoms and N 2 molecules, into superfluid helium, has been studied. The measured stoichiometric ratios, S = N H e / N I m, are well over the values expected from the model of frozen together monolayer helium clusters. The theoretical possibility for the freezing of two layers helium clusters is justified in the context of the model of IHSP helium subsystem, filled the space between rigid impurity centers. The process of decomposition of impurity-helium (IH)-samples taken out of liquid helium in the temperature range 1,5 - 12 K and the pressure range 10-500 Torr has been studied. It is found that there are two stages of samples decomposition: a slow stage characterized by sample self cooling and a fast one accompanied by heat release. These results suggest, that the IHSP consists of two types of helium - weakly bound and strongly bound helium - that can be assigned to the second and the first coordination helium spheres, respectively, formed around heavy impurity particles. A tendency for enhancement of IHSP thermo stability with increasing the impurity mass is observed. Increase of helium vapor pressure above the sample causes the improvement of IH sample stability. Upon destruction of IH samples, containing nitrogen atoms, a thermoluminescence induced by atom recombination has been detected in the temperature region 3-4,5 K. This suggests that numerous chemical reactions may be realized in solidified helium

  14. Brookhaven program to develop a helium-cooled power transmission system

    International Nuclear Information System (INIS)

    Forsyth, E.B.

    1975-01-01

    The particular system under design consists of flexible cables installed in a cryogenic enclosure at room temperature and cooled to the range 6 to 9 0 K by supercritical helium, contraction of the cable is accommodated by proper choice of helix angles of the components of the cable. The superconductor is Nb 3 Sn and at the present time the dielectric insulation is still the subject of intensive development. Two good choices appear to be forms of polyethylene and polycarbonate. Sample cables incorporating various dielectrics have been manufactured commercially in lengths of 1500 ft and tested in laboratory cryostats in shorter sections of about 70 ft. A test facility is under construction to evaluate cables and cryogenic components for this type of service, the first refrigerator uses a 350 H.P. screw compressor and three turbo-expander stages. It is hoped to achieve reliability of a very high order. The first three-phase tests will be conducted at 69 kV, although it appears that 230 to 345 kV is the most likely voltage range for future applications. (auth)

  15. Mixed helium-3 - helium-4 calorimeter. Very low temperature calorimetry; Calorimetre mixte a helium-3 et helium-4. Calorimetrie a tres basse temperature

    Energy Technology Data Exchange (ETDEWEB)

    Testard, O [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-06-01

    A description is given of a double-racket calorimeter using helium-4 and helium-3 as the cryogenic fluids and making it possible to vary the temperature continuously from 0.35 K to 4.2 K. By using an electric thermal regulator together with liquid hydrogen it is possible to extend this range up to about 30 K. In the second part, a review is made of the various, methods available for measuring specific heats. The method actually used in the apparatus previously described is described in detail. The difficulties arising from the use of an exchange gas for the thermal contact have been solved by the use of adsorption pumps. (author) [French] On decrit un calorimetre a double enceinte utilisant comme fluide cryogenique l'helium-4 et l'helium-3 et permettant de varier continuement la temperature de 0,35 K a 4,2 K. L'utilisation d'un regulateur thermique electrique ainsi que celle d'hydrogene, liquide permettent d'etendre cette gamme jusqu'a 30 K environ. Dans une deuxieme partie, on passe en revue les diverses methodes de mesure des chaleurs specifiques. La methode concrete utilisee dans l'appareil precedemment decrit est exposee en detail. Les difficultes inherentes a l'utilisation de gaz d'echange comme agent de contact thermique ont ete levees par la mise en oeuvre de pompes a adsorbant. (auteur)

  16. Performance Analysis of Multipurpose Refrigeration System (MRS on Fishing Vessel

    Directory of Open Access Journals (Sweden)

    Ust Y.

    2016-04-01

    Full Text Available The use of efficient refrigerator/freezers helps considerably to reduce the amount of the emitted greenhouse gas. A two-circuit refrigerator-freezer cycle (RF reveals a higher energy saving potential than a conventional cycle with a single loop of serial evaporators, owing to pressure drop in each evaporator during refrigeration operation and low compression ratio. Therefore, several industrial applications and fish storage systems have been utilized by using multipurpose refrigeration cycle. That is why a theoretical performance analysis based on the exergetic performance coefficient, coefficient of performance (COP, exergy efficiency and exergy destruction ratio criteria, has been carried out for a multipurpose refrigeration system by using different refrigerants in serial and parallel operation conditions. The exergetic performance coefficient criterion is defined as the ratio of exergy output to the total exergy destruction rate (or loss rate of availability. According to the results of the study, the refrigerant R32 shows the best performance in terms of exergetic performance coefficient, COP, exergy efficiency, and exergy destruction ratio from among the other refrigerants (R1234yf, R1234ze, R404A, R407C, R410A, R143A and R502. The effects of the condenser, freezer-evaporator and refrigerator-evaporator temperatures on the exergetic performance coefficient, COP, exergy efficiency and exergy destruction ratios have been fully analyzed for the refrigerant R32.

  17. A feasibility analysis of replacing the standard ammonia refrigeration device with the cascade NH3/CO2 refrigeration device in the food industry

    Directory of Open Access Journals (Sweden)

    Jankovich Dennis

    2015-01-01

    Full Text Available The thermodynamic analysis demonstrates the feasibility of replacing the standard ammonia refrigeration device with the cascade NH3/CO2 refrigeration device in the food industry. The main reason for replacement is to reduce the total amount of ammonia in spaces like deep-freezing chambers, daily chambers, working rooms and technical passageways. An ammonia-contaminated area is hazardous to human health and the safety of food products. Therefore the preferred reduced amount of ammonia is accumulated in the Central Refrigeration Engine Room, where the cascade NH3/CO2 device is installed as well. Furthermore, the analysis discusses and compares two left Carnot¢s refrigeration cycles, one for the standard ammonia device and the other for the cascade NH3/CO2 device. Both cycles are processes with two-stage compression and two-stage throttling. The thermodynamic analysis demonstrates that the selected refrigeration cycle is the most cost-effective process because it provides the best numerical values for the total refrigeration factor with respect to the observed refrigeration cycle. The chief analyzed influential parameters of the cascade device are: total refrigeration load, total reactive power, mean temperature of the heat exchanger, evaporating and condensing temperature of the low-temperature part.

  18. Ecological optimization for generalized irreversible Carnot refrigerators

    International Nuclear Information System (INIS)

    Chen Lingen; Zhu Xiaoqin; Sun Fengrui; Wu Chih

    2005-01-01

    The optimal ecological performance of a Newton's law generalized irreversible Carnot refrigerator with the losses of heat resistance, heat leakage and internal irreversibility is derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the exergy output rate and exergy loss rate (entropy production rate) of the refrigerator. Numerical examples are given to show the effects of heat leakage and internal irreversibility on the optimal performance of generalized irreversible refrigerators

  19. Defrost Temperature Termination in Supermarket Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with implementing demand defrost strategies to defrost supermarket refrigerated display case evaporators, as compared to the widely accepted current practice of controlling display case defrost cycles with a preset timer. The defrost heater energy use of several representative display case types was evaluated. In addition, demand defrost strategies for refrigerated display cases as well as those used in residential refrigerator/freezers were evaluated. Furthermore, it is anticipated that future work will include identifying a preferred defrost strategy, with input from Retail Energy Alliance members. Based on this strategy, a demand defrost system will be designed which is suitable for supermarket refrigerated display cases. Limited field testing of the preferred defrost strategy will be performed in a supermarket environment.

  20. Shuttle Kit Freezer Refrigeration Unit Conceptual Design

    Science.gov (United States)

    Copeland, R. J.

    1975-01-01

    The refrigerated food/medical sample storage compartment as a kit to the space shuttle orbiter is examined. To maintain the -10 F in the freezer kit, an active refrigeration unit is required, and an air cooled Stirling Cycle refrigerator was selected. The freezer kit contains two subsystems, the refrigeration unit, and the storage volume. The freezer must provide two basic capabilities in one unit. One requirement is to store 215 lbs of food which is consumed in a 30-day period by 7 people. The other requirement is to store 128.3 lbs of medical samples consisting of both urine and feces. The unit can be mounted on the lower deck of the shuttle cabin, and will occupy four standard payload module compartments on the forward bulkhead. The freezer contains four storage compartments.

  1. Public Refrigerated Warehouses

    Data.gov (United States)

    Department of Homeland Security — The International Association of Refrigerated Warehouses (IARW) came into existence in 1891 when a number of conventional warehousemen took on the demands of storing...

  2. Evaporation of new refrigerants on tubes with improved surfaces; Evaporation de nouveaux refrigerants sur des tubes a surface amelioree

    Energy Technology Data Exchange (ETDEWEB)

    Kattan, N.; Favrat, D.; Thome, J. R.; Nidegger, E.; Zuercher, O. [Ecole Polytechnique Federale, Lab. d` Energetique Industrielle (LENI), Lausanne (Switzerland)

    1995-07-15

    The substitution of old refrigerants in refrigeration systems, heat pumps and organic Rankine cycles for heat recovery, request a good knowledge of heat transfer properties of substitute fluids. The test measurements in LENI test facility (concentric tubes with water flowing in a counter-current flow) with new refrigerants like HFC134a, HCFC123, R-404A, R-402A, have established a new data bank with new refrigerants, a comparison with old refrigerants like CFC11, CFC12 CFC/HCFC502 and with existent correlations. Correlations were programmed to calculate and compare heat transfer coefficient during the tests. To develop a new correlation based on flow regimes, a high speed Sony video tape camera is used to observe and identify flow patterns. Important images are captured, digitalized, stored for later analysis and sent to a color plotter. Several flow pattern maps were programmed and compared to flow regimes observed on the test rig. Local flow boiling heat transfer coefficients were measured for HFC134a and HCFC123 evaporating inside a microfin tube. In addition, microfin heat transfer augmentation relative to plain tube test data was investigated. The presence of oil in the evaporator has an effect on heat transfer coefficient. Local flow boiling heat transfer coefficients were measured for refrigerant HFC134a-oil ester (Mobil EAL Arctic 68). A new thermodynamic approach for modeling mixtures of refrigerants and lubricating oils is developed. A very high accuracy, straight vibrating tube type of density flowmeter is used to measure oil concentrations of flowing HFC134a-oil mixtures. (author) 28 figs., 25 refs.

  3. Time-Temperature Profiling of United Kingdom Consumers' Domestic Refrigerators.

    Science.gov (United States)

    Evans, Ellen W; Redmond, Elizabeth C

    2016-12-01

    Increased consumer demand for convenience and ready-to-eat food, along with changes to consumer food purchase and storage practices, have resulted in an increased reliance on refrigeration to maximize food safety. Previous research suggests that many domestic refrigerators operate at temperatures exceeding recommendations; however, the results of several studies were determined by means of one temperature data point, which, given temperature fluctuation, may not be a true indicator of actual continual operating temperatures. Data detailing actual operating temperatures and the effects of consumer practices on temperatures are limited. This study has collated the time-temperature profiles of domestic refrigerators in consumer kitchens (n = 43) over 6.5 days with concurrent self-reported refrigerator usage. Overall, the findings established a significant difference (P < 0.05) between one-off temperature (the recording of one temperature data point) and mean operating temperature. No refrigerator operated at ≤5.0°C for the entire duration of the study. Mean temperatures exceeding 5.0°C were recorded in the majority (91%) of refrigerators. No significant associations or differences were determined for temperature profiles and demographics, including household size, or refrigerator characteristics (age, type, loading, and location). A positive correlation (P < 0.05) between room temperature and refrigerator temperature was determined. Reported door opening frequency correlated with temperature fluctuation (P < 0.05). Thermometer usage was determined to be infrequent. Cumulatively, research findings have established that the majority of domestic refrigerators in consumer homes operate at potentially unsafe temperatures and that this is influenced by consumer usage. The findings from this study may be utilized to inform the development of shelf-life testing based on realistic domestic storage conditions. Furthermore, the data can inform the development of future

  4. Efficiency analysis of alternative refrigerants for ejector cooling cycles

    International Nuclear Information System (INIS)

    Gil, Bartosz; Kasperski, Jacek

    2015-01-01

    Highlights: • Advantages of using alternative refrigerants as ejector refrigerants were presumed. • Computer software basing on theoretical model of Huang et al. (1999) was prepared. • Optimal temperature range of primary vapor for each working fluid was calculated. - Abstract: Computer software, basing on the theoretical model of Huang et al. with thermodynamic properties of selected refrigerants, was prepared. Investigation was focused on alternative refrigerants that belong to two groups of substances: common solvents (acetone, benzene, cyclopentane, cyclohexane and toluene) and non-flammable synthetic refrigerants applied in Organic Rankine Cycle (ORC) (R236ea, R236fa, R245ca, R245fa, R365mfc and RC318). Refrigerants were selected to detect a possibility to use them in ejector cooling system powered by a high-temperature heat source. A series of calculations were carried out for the generator temperature between 70 and 200 °C, with assumed temperatures of evaporation 10 °C and condensation 40 °C. Investigation revealed that there is no single refrigerant that ensures efficient operation of the system in the investigated temperature range of primary vapor. Each substance has its own maximum entrainment ratio and COP at its individual temperature of the optimum. The use of non-flammable synthetic refrigerants allows obtaining higher COP in the low primary vapor temperature range. R236fa was the most beneficial among the non-flammable synthetic refrigerants tested. The use of organic solvents can be justified only for high values of motive steam temperature. Among the solvents, the highest values of entrainment ratio and COP throughout the range of motive temperature were noted for cyclopentane. Toluene was found to be an unattractive refrigerant from the ejector cooling point of view

  5. Magnetic refrigerator for hydrogen liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, T [National Institute for Materials Science, Tsukuba (Japan); Kamlya, K. [Japan Atomic Energy Agency, Naka (Japan); Utaki, T. [Osaka University, Osaka (Japan); Matsumoto, K. [Kanazawa University, Kanazawa (Japan)

    2013-06-15

    This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

  6. Thermal fluid dynamic behavior of coolant helium gas in a typical reactor VHTGR channel of prismatic core; Comportamento termofluidodinamico do gas refrigerante helio em um canal topico de reator VHTGR de nucleo prismatico

    Energy Technology Data Exchange (ETDEWEB)

    Belo, Allan Cavalcante

    2016-08-01

    The current studies about the thermal fluid dynamic behavior of the VHTGR core reactors of 4{sup th} generation are commonly developed in 3-D analysis in CFD (computational fluid dynamics), which often requires considerable time and complex mathematical calculations for carrying out these analysis. The purpose of this project is to achieve thermal fluid dynamic analysis of flow of gas helium refrigerant in a typical channel of VHTGR prismatic core reactor evaluating magnitudes of interest such as temperature, pressure and fluid velocity and temperature distribution in the wall of the coolant channel from the development of a computer code in MATLAB considering the flow on one-dimensional channel, thereby significantly reducing the processing time of calculations. The model uses three different references to the physical properties of helium: expressions given by the KTA (German committee of nuclear safety standards), the computational tool REFPROP and a set of constant values for the entire channel. With the use of these three references it is possible to simulate the flow treating the gas both compressible and incompressible. The results showed very close values for the interest quantities and revealed that there are no significant differences in the use of different references used in the project. Another important conclusion to be observed is the independence of helium in the gas compressibility effects on thermal fluid dynamic behavior. The study also indicated that the gas undergoes no severe effects due to high temperature variations in the channel, since this goes in the channel at 914 K and exits at approximately 1263 K, which shows the excellent use of helium as a refrigerant fluid in reactor channels VHTGR. The comparison of results obtained in this work with others in the literature served to confirm the effectiveness of the one-dimensional consideration of method of gas flow in the coolant channel to replace the models made in 3-D for the pressure range

  7. Determination of helium in beryl minerals

    International Nuclear Information System (INIS)

    Souza Barcellos, E. de.

    1985-08-01

    In order to obtain the diffusion coefficients of helium in beryl and phenacite samples at various temperatures, helium leak rates were measured in these minerals at these temperatures. Mass spectrometry (MS) was used to obtain helium leak rates and the gas flow was plotted against time. The gas quantity determined by MS was first obtained at various temperatures until no helium leak rate was detected. After that, these samples were irradiated with fast neutrons to produce helium which was measured again. This procedure was used to estimate the experimental error. The quantity of helium produced by interaction of gamma radiation with beryl minerals was theoretically calculated from the amount of thorium-232 at the neighbourhood of the samples. The quantity of helium produced in the minerals due to uranium and thorium decay was calculated using the amount of these heavy elements, and the results were compared with the amounts determined by MS. The amount of potassium-40 was determined in order to derive the quantity of argonium-40, since some workers found argonium in excess in these minerals. The quantity of helium in the beryl samples (s) was determined in the center and in the surface of the samples in order to obtain informations about the effectiveness of the Be(α, η) He reaction. Beryl and phenacite minerals were choosen in this research since they are opposite each other with respect to the helium contents. Both have beryllium in their compositon but beryl hold a large amount of helium while phenacite, in spite of having about three times more beryllium than beryl, do not hold the gas. (author) [pt

  8. Classification of refrigerants; Classification des fluides frigorigenes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This document was made from the US standard ANSI/ASHRAE 34 published in 2001 and entitled 'designation and safety classification of refrigerants'. This classification allows to clearly organize in an international way the overall refrigerants used in the world thanks to a codification of the refrigerants in correspondence with their chemical composition. This note explains this codification: prefix, suffixes (hydrocarbons and derived fluids, azeotropic and non-azeotropic mixtures, various organic compounds, non-organic compounds), safety classification (toxicity, flammability, case of mixtures). (J.S.)

  9. Helium localisation in tritides

    International Nuclear Information System (INIS)

    Flament, J.L.; Lozes, G.

    1982-06-01

    Study of titanium and LaNi 5 type alloys tritides lattice parameters evolution revealed that helium created by tritium decay remains in interstitial sites up to a limit material dependant concentration. Beyond this one exceeding helium precipites in voids [fr

  10. Measurement of OH density and air-helium mixture ratio in an atmospheric-pressure helium plasma jet

    International Nuclear Information System (INIS)

    Yonemori, Seiya; Ono, Ryo; Nakagawa, Yusuke; Oda, Tetsuji

    2012-01-01

    The absolute density of OH radicals in an atmospheric-pressure helium plasma jet is measured using laser-induced fluorescence (LIF). The plasma jet is generated in room air by applying a pulsed high voltage onto a quartz tube with helium gas flow. The time-averaged OH density is 0.10 ppm near the quartz tube nozzle, decreasing away from the nozzle. OH radicals are produced from water vapour in the helium flow, which is humidified by water adsorbed on the inner surface of the helium line and the quartz tube. When helium is artificially humidified using a water bubbler, the OH density increases with humidity and reaches 2.5 ppm when the water vapour content is 200 ppm. Two-dimensional distribution of air-helium mixture ratio in the plasma jet is also measured using the decay rate of the LIF signal waveform which is determined by the quenching rate of laser-excited OH radicals. (paper)

  11. Cooling of electrically insulated high voltage electrodes down to 30 mK Kühlung von elektrisch isolierten Hochspannungselektroden bis 30 mK

    CERN Document Server

    Eisel, Thomas; Bremer, J

    2011-01-01

    The Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEGIS) at the European Organization for Nuclear Research (CERN) is an experiment investigating the influence of earth’s gravitational force upon antimatter. To perform precise measurements the antimatter needs to be cooled to a temperature of 100 mK. This will be done in a Penning trap, formed by several electrodes, which are charged with several kV and have to be individually electrically insulated. The trap is thermally linked to a mixing chamber of a 3He-4He dilution refrigerator. Two link designs are examined, the Rod design and the Sandwich design. The Rod design electrically connects a single electrode with a heat exchanger, immersed in the helium of the mixing chamber, by a copper pin. An alumina ring and the helium electrically insulate the Rod design. The Sandwich uses an electrically insulating sapphire plate sandwiched between the electrode and the mixing chamber. Indium layers on the sapphire plate are applied to improve the ther...

  12. Computer modeling of commercial refrigerated warehouse facilities

    International Nuclear Information System (INIS)

    Nicoulin, C.V.; Jacobs, P.C.; Tory, S.

    1997-01-01

    The use of computer models to simulate the energy performance of large commercial refrigeration systems typically found in food processing facilities is an area of engineering practice that has seen little development to date. Current techniques employed in predicting energy consumption by such systems have focused on temperature bin methods of analysis. Existing simulation tools such as DOE2 are designed to model commercial buildings and grocery store refrigeration systems. The HVAC and Refrigeration system performance models in these simulations tools model equipment common to commercial buildings and groceries, and respond to energy-efficiency measures likely to be applied to these building types. The applicability of traditional building energy simulation tools to model refrigerated warehouse performance and analyze energy-saving options is limited. The paper will present the results of modeling work undertaken to evaluate energy savings resulting from incentives offered by a California utility to its Refrigerated Warehouse Program participants. The TRNSYS general-purpose transient simulation model was used to predict facility performance and estimate program savings. Custom TRNSYS components were developed to address modeling issues specific to refrigerated warehouse systems, including warehouse loading door infiltration calculations, an evaporator model, single-state and multi-stage compressor models, evaporative condenser models, and defrost energy requirements. The main focus of the paper will be on the modeling approach. The results from the computer simulations, along with overall program impact evaluation results, will also be presented

  13. New possibilities for non-CFC refrigeration

    International Nuclear Information System (INIS)

    Lorentzen, G.; Pettersen, J.

    1992-01-01

    There is a widespread belief that the only viable refrigerants in most applications are new fluorocarbon chemicals. This trend will eventually result in emissions of several hundred thousand tons of new chemicals to the atmosphere each year, involving potential risk of unforeseen environmental effects. A number of other options exist, or may be developed. By using substances which already have a natural role in our ecosystems, some uncertainty related to the critical issue of our future environment can be avoided. By development and practical testing of a laboratory prototype it has been documented that carbon dioxide is a viable refrigerant in automobile air conditioners, completely solving all environmental problems associated with such systems. General use of CO 2 as a refrigerant may provide a number of advantages in the present situation, both from an environmental and practical point of view. It is our considered opinion that the old carbon dioxide offers a key to the complete solution of the environmental problems in many areas of refrigeration usage. 19 refs., 8 figs., 5 tabs

  14. Effect of low-pressure plasma treatment on the color and oxidative stability of raw pork during refrigerated storage.

    Science.gov (United States)

    Ulbin-Figlewicz, Natalia; Jarmoluk, Andrzej

    2016-06-01

    The effect of low-pressure plasma on quality attributes of meat is an important aspect, which must be considered before application in food. The aim of this study was to determine the color, fatty acid composition, lipid oxidation expressed as thiobarbituric acid reactive substances and total antioxidant capacity of raw pork samples exposed to helium low-pressure plasma treatment (20 kPa) for 0, 2, 5, and 10 min during the storage period. The thiobarbituric acid reactive substance concentrations of all plasma-treated samples during storage were in the range from 0.26 to 0.61 mg malondialdehyde/kg. Exposure time caused significant changes only in total color difference, hue angle, and chroma after 10 min of treatment. Ferric reducing ability of plasma values of meat samples decreased from 1.93 to 1.40 mmol Trolox Eq/kg after 14 days of storage. The storage period significantly affected proportion of polyunsaturated fatty acids, with an increase about 3% after 14 days of refrigeration storage while the content of saturated fatty acids was at the same level. Helium low-pressure plasma does not induce oxidative processes. Application of this decontamination technique while maintaining product quality is possible in food industry. © The Author(s) 2015.

  15. ESO2 Optimization of Supermarket Refrigeration Systems

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Madsen, Henrik; Heerup, Christian

    Supermarket refrigeration systems consists of a number of display cases, cooling cabinets and cold rooms connected to a central compressor pack. This configuration saves energy compared to placing a compressor at each cooling site. The classical control setup of a supermarket refrigeration system...... in the supermarket. The first approach to solve this problem is to design an overall control system which coordinates the compressor capacity and the current refrigeration load. The drawback of this approach is the complexity of the single controller. The solution is investigated in the first part of the report...

  16. RESEARCH OF REFRIGERATION SYSTEMS FAILURES IN POLISH FISHING VESSELS

    Directory of Open Access Journals (Sweden)

    Waldemar KOSTRZEWA

    2013-07-01

    Full Text Available Temperature is a basic climatic parameter deciding about the quality change of fishing products. Time, after which qualitative changes of caught fish don’t exceed established, acceptable range, is above all the temperature function. Temperature reduction by refrigeration system of the cargo hold is a basic technical method, which allows extend transport time. Failures of refrigeration systems in fishing vessels have a negative impact on the environment in relation to harmful refrigerants emission. The paper presents the statistical analysis of failures occurred in the refrigeration systems of Polish fishing vessels in 2007‐2011 years. Analysis results described in the paper can be a base to draw up guidelines, both for designers as well as operators of the marine refrigeration systems.

  17. Resistivity studies of interstitial helium mobility in niobium

    International Nuclear Information System (INIS)

    Chen, C.G.; Birnbaum, H.K.; Johnson, A.B. Jr.

    1979-01-01

    The mobility of interstitial helium in Nb and Nb-O alloys was studied in the temperature range of 10-383 K using resistivity measurements. The helium was introduced by radioactive decay of solute tritium (approximately 1 at%). At T < 100 K the resistivity increased due to conversion of tritium trapped at oxygen interstititals to helium. The formation of helium caused a very significant resistance increase at room temperature and above. The results suggest that helium is mobile at temperatures above 295 K and that the precipitation of large helium bubbles occurs along grain boundaries. The mobile helium species may either be single interstitials or small helium clusters. The activation enthalpy for the diffusion of the mobile helium species was estimated to be about 55 kJ/mol (0.66 eV). (Auth.)

  18. Helium-induced hardening effect in polycrystalline tungsten

    Science.gov (United States)

    Kong, Fanhang; Qu, Miao; Yan, Sha; Zhang, Ailin; Peng, Shixiang; Xue, Jianming; Wang, Yugang

    2017-09-01

    In this paper, helium induced hardening effect of tungsten was investigated. 50 keV He2+ ions at fluences vary from 5 × 1015 cm-2 to 5 × 1017 cm-2 were implanted into polycrystalline tungsten at RT to create helium bubble-rich layers near the surface. The microstructure and mechanical properties of the irradiated specimens were studied by TEM and nano-indentor. Helium bubble rich layers are formed in near surface region, and the layers become thicker with the rise of fluences. Helium bubbles in the area of helium concentration peak are found to grow up, while the bubble density is almost unchanged. Obvious hardening effect is induced by helium implantation in tungsten. Micro hardness increases rapidly with the fluence firstly, and more slowly when the fluence is above 5 × 1016 cm-2. The hardening effect of tungsten can be attributed to helium bubbles, which is found to be in agreement with the Bacon-Orowan stress formula. The growing diameter is the major factor rather than helium bubbles density (voids distance) in the process of helium implantation at fluences below 5 × 1017 cm-2.

  19. Low helium flux from the mantle inferred from simulations of oceanic helium isotope data

    Science.gov (United States)

    Bianchi, Daniele; Sarmiento, Jorge L.; Gnanadesikan, Anand; Key, Robert M.; Schlosser, Peter; Newton, Robert

    2010-09-01

    The high 3He/ 4He isotopic ratio of oceanic helium relative to the atmosphere has long been recognized as the signature of mantle 3He outgassing from the Earth's interior. The outgassing flux of helium is frequently used to normalize estimates of chemical fluxes of elements from the solid Earth, and provides a strong constraint to models of mantle degassing. Here we use a suite of ocean general circulation models and helium isotope data obtained by the World Ocean Circulation Experiment to constrain the flux of helium from the mantle to the oceans. Our results suggest that the currently accepted flux is overestimated by a factor of 2. We show that a flux of 527 ± 102 mol year - 1 is required for ocean general circulation models that produce distributions of ocean ventilation tracers such as radiocarbon and chlorofluorocarbons that match observations. This new estimate calls for a reevaluation of the degassing fluxes of elements that are currently tied to the helium fluxes, including noble gases and carbon dioxide.

  20. Observation of visible emission from the molecular helium ion in the afterglow of a dense helium Z-pinch plasma

    International Nuclear Information System (INIS)

    Tucker, J.E.; Brake, M.L.; Gilgenbach, R.M.

    1986-01-01

    The authors present the results of axial and radial time resolved visible emission spectroscopy from the afterglow of a dense helium Z-pinch. These results show that the visible emissions in the pinch afterglow are dominated by line emissions from molecular helium and He II. Axial spectroscopy measurements show the occurrence of several absorption bands which cannot be identified as molecular or atomic helium nor impurities from the discharge chamber materials. The authors believe that these absorption bands are attributable to the molecular helium ion which is present in the discharge. The molecular ion has been observed by others in low pressure and temperature helium discharges directly by means of mass spectrometry and indirectly by the presence of helium atoms in the 2/sup 3/S state, (the He 2/sup 3/S state is believed to result from molecular helium ion recombination). However, the molecular helium ion has not previously been observed spectroscopically

  1. Prediction of thermophysical properties of mixed refrigerants using artificial neural network

    International Nuclear Information System (INIS)

    Sencan, Arzu; Koese, Ismail Ilke; Selbas, Resat

    2011-01-01

    The determination of thermophysical properties of the refrigerants is very important for thermodynamic analysis of vapor compression refrigeration systems. In this paper, an artificial neural network (ANN) is proposed to determine properties as heat conduction coefficient, dynamic viscosity, kinematic viscosity, thermal diffusivity, density, specific heat capacity of refrigerants. Five alternative refrigerants are considered: R413A, R417A, R422A, R422D and R423A. The training and validation were performed with good accuracy. The thermophysical properties of the refrigerants are formulated using artificial neural network (ANN) methodology. Liquid and vapor thermophysical properties of refrigerants with new formulation obtained from ANN can be easily estimated. The method proposed offers more flexibility and therefore thermodynamic analysis of vapor compression refrigeration systems is fairly simplified.

  2. Condensation of nano-refrigerant inside a horizontal tube

    Science.gov (United States)

    Darzi, Milad; Sadoughi, M. K.; Sheikholeslami, M.

    2018-05-01

    In this paper, condensing pressure drop of refrigerant-based nanofluid inside a tube is studied. Isobutene was selected as the base fluid while CuO nanoparticles were utilized to prepare nano-refrigerant. However, for the feasibility of nanoparticle dispersion into the refrigerant, Polyester oil (POE) was utilized as lubricant oil and added to the pure refrigerant by 1% mass fraction. Various values of mass flux, vapor quality, concentration of nanoparticle are investigated. Results indicate that adding nanoparticles leads to enhance frictional pressure drop. Nanoparticles caused larger pressure drop penalty at relatively lower vapor qualities which may be attributed to the existing condensation flow pattern such that annular flow is less influenced by nanoparticles compared to intermittent flow regime.

  3. Helium Extraction from LNG End Flash

    OpenAIRE

    Kim, Donghoi

    2014-01-01

    Helium is an invaluable element as it is widely used in industry such as cryo-genics and welding due to its unique properties. However, helium shortage is expected in near future because of increasing demand and the anxiety of sup-ply. Consequently, helium production has attracted the attention of industry. The main source of He is natural gas and extracting it from LNG end-flash is considered as the most promising way of producing crude helium. Thus, many process suppliers have proposed proc...

  4. SBIR Grant:No-Vibration Agile Cryogenic Optical Refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard

    2013-04-09

    Optical refrigeration is currently the only all-solid-state cryocooling technology that has been demonstrated. Optical cryocoolers are devices that use laser light to cool small crystal or glass cooling elements. The cooling element absorbs the laser light and reradiates it at higher energy, an example of anti-Stokes fluorescence. The dif-ference between the energy of the outgoing and incoming light comes from the thermal energy of the cooling element, which in turn becomes colder. Entitled No-Vibration Agile Cryocoolers using Optical Refrigeration, this Phase I proposal directly addressed the continued development of the optical refrigerator components necessary to transition this scientific breakthrough into National Nu-clear Security Administration (NNSA) sensor applications in line with the objectives of topic 50b. ThermoDynamic Films LLC (TDF), in collaboration with the University of New Mexico (UNM), cooled an optical-refrigerator cooling element comprised of an ytterbium-doped yttrium lithium fluoride (Yb:YLF) crystal from room tempera-ture to 123 K with about 2% efficiency. This is the world record in optical refrigera-tion and an important step toward revolutionizing cryogenic systems for sensor ap-plications. During this period, they also designed and analyzed the crucial elements of a prototype optical refrigerator including the thermal link that connects the cool-ing element with the load.

  5. REFRIGERANT/LUBRICANT MIXTURES: PROBLEMS OF APPLICATION AND PROPERTY RESEARCH

    Directory of Open Access Journals (Sweden)

    Yu. Semenyuk

    2013-10-01

    Full Text Available The results and generalizations of thermophysical property research for the refrigerant/lubricant mixtures are summarized. The methodological aspects of the experimental studies of the thermal properties of real working media for vapor compression refrigeration machines and the general principles of the thermodynamic properties simulation for such solutions are analyzed. It is shown that the admixtures of compressor oil in the refrigerant make the efficiency parameters of compressor systems much lower. The question of a selective solubility of the multicomponent refrigerants in compressor oils is discussed.

  6. Features of the spectroscopic determination of the isotope composition of trace amounts of hydrogen in helium

    International Nuclear Information System (INIS)

    Nemets, V.M.; Petrov, A.A.; Solov'ev, A.A.

    1986-01-01

    The investigation of the magnitude of the isotope effect in the intensiti of the beta lines of the Balmer series was carried out with the excitation of a high-frequency discharge in a quartz tube having a diameter of ca.6.5 at pressures of the gaseous mixture ranging from 1 to 70 kPa. From the experimental results here it follows that as the isotopes of hydrogen are diluted with helium, the value of K decreases from 1.2-1.1 to 0.84-0.86, and the maximum of the plots of K= f(P) broaden and move toward higher pressures. In order to account for the laws obtained, the authors examined a set of elementary processes and reactions for which the isotope-related differences in the rate constants (alpha) can influence the relative concentrations of the excited atoms of the isotopes of hydrogen in a discharge. The physical model presented in this paper of the shaping of the isotope effects in the atomic spectrum of hydrogen makes it possible to account for the observed laws governing the excitation of a discharge in a mixture of the isotopes of hydrogen with helium and thus greatly facilitates the selection of the optimal conditions for the excitation of the analytical spectrum in devising procedures for the spectroscopic isotope determination of trace impurities of hydrogen in helium

  7. Thermodynamic investigation of a booster-assisted ejector refrigeration system

    International Nuclear Information System (INIS)

    Zhao, Hongxia; Zhang, Ke; Wang, Lei; Han, Jitian

    2016-01-01

    Highlights: • COP based on thermal input increases with booster outlet pressure. • Both entrainment ratio and area ratio increase with booster outlet pressure. • COP based on work is larger than compressor-based refrigeration system. • An optimum booster outlet pressure obtains maximum COP based on work. • Exergy destruction occurs mainly in ejector, condenser, evaporator and generator. - Abstract: In order to improve performance of ejector refrigeration system, a booster is added before an ejector to enhance secondary flow pressure, which is called a booster assisted refrigeration system. Based on mass, momentum and energy conservation, a 1D model of ejector for optimal performance prediction was presented and validated with experimental data. A detailed study of working characteristics of the booster assisted ejector refrigeration system was carried out and compared against conventional ejector refrigeration system and compressor based refrigeration system, on the basis of first and second laws of thermodynamics. Effects of booster outlet pressure on COP_t_h based on thermal energy and COP_w based on work input, and also on entrainment ratio and area ratio of ejector were studied. The exergy destruction rates were also computed and analyzed for components of the booster-assisted ejector refrigeration system. Ways to reduce exergy destruction were discussed.

  8. Theoretical research on the performance of the transcritical ejector refrigeration cycle with various refrigerants

    International Nuclear Information System (INIS)

    Wang, F.; Li, D.Y.; Zhou, Y.

    2015-01-01

    The transcritical ejector refrigeration cycle (TERC), which has shown an attractive alternative to the ejector refrigeration systems, can better match large variable-temperature heat sources and yields higher COP. In this paper, in order to find a proper working fluid for the TERC, the performance of the TERC with CO_2 and various working fluids with low critical temperatures including R1270, R32, R143a, R125 and R115 are studied and compared. A thermodynamic model for ejector is set up to simulate the ejector by introducing the real properties of refrigerants. The results indicate that R1270 has the highest COP at the same heat source condition and medium working pressures, and is one of environment-friendly working fluids, hence R1270 is the most proper one. The COP of the transcritical cycle is higher than that of the subcritical cycle, and The effective performance coefficient COP_m of the transcritical cycle is also better. When the heater outlet temperature is increased, its system COP_m improves, but its system COP almost does not change. - Highlights: • A thermodynamic model is used to simulate the ejector with real properties. • The performance of the TERC with various refrigerants is compared. • The environment-friendly working fluid of R1270 shows the most proper one. • The COP of the transcritical cycle is higher than that of the subcritical cycle.

  9. Use of separating nozzles or ultra-centrifuges for obtaining helium from gas mixtures containing helium

    International Nuclear Information System (INIS)

    Reimann, T.

    1987-01-01

    To obtain helium from gas mixtures containing helium, particularly from natural gas, it is proposed to match the dimensions of the separation devices for a ratio of the molecular weights to be separated of 4:1 of more, which ensures a higher separation factor and therefore a smaller number of separation stages to be connected in series. The process should make reasonably priced separation of helium possible. (orig./HP) [de

  10. Helium diffusion in nickel at high temperatures

    International Nuclear Information System (INIS)

    Philipps, V.

    1980-09-01

    Helium has been implanted at certain temperatures between 800 and 1250 0 C into single and polycrystalline Ni-samples with implantation depths between 15 and 90 μm. Simultaneously the helium reemission from the sample is measured by a mass-spectrometer. It has been shown that the time dependence of the observed reemission rate is governed by volume diffusion of the helium. Measuring this time dependence as a function of temperature the helium diffusion constant has been determined. The He-diffusion is interpreted as a interstitial diffusion hindered by thermal vacancies. Depending on the implantation depth more or less of the implanted helium remains in the sample and forms large helium bubbles. (orig./GSCH)

  11. Neutron-induced helium implantation in GCFR cladding

    International Nuclear Information System (INIS)

    Yamada, H.; Poeppel, R.B.; Sevy, R.H.

    1980-10-01

    The neutron-induced implantation of helium atoms on the exterior surfaces of the cladding of a prototypic gas-cooled fast reactor (GCFR) has been investigated analytically. A flux of recoil helium particles as high as 4.2 x 10 10 He/cm 2 .s at the cladding surface has been calculated at the peak power location in the core of a 300-MWe GCFR. The calculated profile of the helium implantation rates indicates that although some helium is implanted as deep as 20 μm, more than 99% of helium particles are implanted in the first 2-μm-deep layer below the cladding surface. Therefore, the implanted helium particles should mainly affect surface properties of the GCFR cladding

  12. Refrigeration plants for the SSCL

    International Nuclear Information System (INIS)

    McAshan, M.; Ganni, V.; Than, R.; Niehaus, T.

    1991-03-01

    The basic requirements and operating features of the collider cryogenic system have already been described in other publications. The general arrangement of the refrigeration plant and its subsystems is presented, and the issue of how to provide redundancy in the cryogenic system is addressed, and some of the basic features of the refrigeration plants are described. The collider cryogenic system design is not final yet, and this report only reflects the direction and current status of the cryogenic system design

  13. Refrigeration processes a practical handbook on the physical properties of refrigerants and their applications

    CERN Document Server

    Meacock, H M

    1979-01-01

    A comprehensive applications-oriented treatment of the subject in two parts. The first part forms a useful introduction to basic principles dealing with the definitions of the physical properties and outlines the method of their calculation. The second part is devoted to calculated data on a range of refrigerants by means of extensive tables and diagrams. The treatment takes the form of a data sheet, one for each of about thirty refrigerants; this data sheet gives the essential information from which close approximations of pressure, temperature, volume and enthalpy can be made for any predict

  14. THE RESULTS OF THE STUDY BOILING POINT OUT OZONE-SAFE REFRIGERANT R410A IN THE EVAPORATORS OF REFRIGERATING MACHINES

    Directory of Open Access Journals (Sweden)

    V. G. Bukin

    2012-01-01

    Full Text Available The results of experimental research boiling heat transfer of ozone-friendly R410A refrigerant in evaporators machines and the possibility of its use in place of the prohibited refrigerant R22.

  15. Computer model of the refrigeration system of an ice rink

    Energy Technology Data Exchange (ETDEWEB)

    Teyssedou, G.; Zmeureanu, R. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering; Giguere, D. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Technology Centre

    2008-07-01

    This paper presented a refrigeration system model of an existing ice rink using a component approach. The chillers, the ice-concrete slab and the controller were the 3 main components used in the simulations which were performed using both open and closed loop systems. The simulated ice rink refrigeration system was based on measurements taken in an existing indoor ice rink located in Montreal, Quebec. Measurements of the refrigeration system included electricity demand; heat flux on the ice sheet; exterior air temperature; ice temperature; return brine temperature; brine temperature at the pump; brine temperature at both evaporator exits; and refrigerant temperature and pressure at the expansion and condenser valve exits. Simulation results and measurements were found to be in good agreement. A computer model of the refrigeration system was developed using the TRNSYS 16 program. The refrigeration system was composed of 2 chillers using refrigerant R-22. The impact of heat recovery from the condensers on the energy demand for sanitary water heating was also estimated. The potential reduction of equivalent carbon dioxide emissions was calculated using the total equivalent warming impact (TEWI) criterion in an effort to estimate the refrigeration impact on global warming. 12 refs., 4 tabs., 12 figs.

  16. High Efficiency Regenerative Helium Compressor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Helium plays several critical rolls in spacecraft propulsion. High pressure helium is commonly used to pressurize propellant fuel tanks. Helium cryocoolers can be...

  17. Magnetic refrigeration--towards room-temperature applications

    International Nuclear Information System (INIS)

    Brueck, E.; Tegus, O.; Li, X.W.; Boer, F.R. de; Buschow, K.H.J.

    2003-01-01

    Modern society relies very much on readily available cooling. Magnetic refrigeration based on the magneto-caloric effect (MCE) has become a promising competitive technology for the conventional gas-compression/expansion technique in use today. Recently, there have been two breakthroughs in magnetic-refrigeration research: one is that American scientists demonstrated the world's first room-temperature, permanent-magnet, magnetic refrigerator; the other one is that we discovered a new class of magnetic refrigerant materials for room-temperature applications. The new materials are manganese-iron-phosphorus-arsenic (MnFe(P,As)) compounds. This new material has important advantages over existing magnetic coolants: it exhibits a huge MCE, which is larger than that of Gd metal; and its operating temperature can be tuned from about 150 to about 335 K by adjusting the P/As ratio. Here we report on further improvement of the materials by increasing the Mn content. The large entropy change is attributed to a field-induced first-order phase transition enhancing the effect of the applied magnetic field. Addition of Mn reduces the thermal hysteresis, which is intrinsic to the first-order transition. This implies that already moderate applied magnetic fields of below 2 T may suffice

  18. Analysis of a combined Rankine-vapour-compression refrigeration cycle

    International Nuclear Information System (INIS)

    Aphornratana, Satha; Sriveerakul, Thanarath

    2010-01-01

    This paper describes a theoretical analysis of a heat-powered refrigeration cycle, a combined Rankine-vapour-compression refrigeration cycle. This refrigeration cycle combines an Organic Rankine Cycle and a vapour-compression cycle. The cycle can be powered by low grade thermal energy as low as 60 deg. C and can produce cooling temperature as low as -10 deg. C. In the analysis, two combined Rankine-vapour-compression refrigeration cycles were investigated: the system with R22 and the system with R134a. Calculated COP values between 0.1 and 0.6 of both the systems were found.

  19. Seismological measurement of solar helium abundance

    International Nuclear Information System (INIS)

    Vorontsov, S.V.; Pamyatnykh, A.A.

    1991-01-01

    The internal structure and evolution of the Sun depends on its chemical composition, particularly the helium abundance. In addition, the helium abundance in the solar envelope is thought to represent the protosolar value, making it a datum of cosmological significance. Spectroscopic measurements of the helium abundance are uncertain, and the most reliable estimates until now have come from the calibration of solar evolutionary models. The frequencies of solar acoustic oscillations are sensitive, however, to the behaviour of the speed of sound in the Sun's helium ionization zone, which allows a helioseismological determination of the helium abundance. Sound-speed inversion of helioseismological data can be used for this purpose, but precise frequency measurements of high-degree oscillation modes are needed. Here we describe a new approach based on an analysis of the phase shift of acoustic waves of intermediate-degree modes. From the accurate intermediate-mode data now available, we obtain a helium mass fraction Y=0.25±0.01 in the solar convection zone, significantly smaller than the value Y=0.27-0.29 predicted by recent solar evolutionary models. The discrepancy indicates either that initial helium abundance was reduced in the envelope by downward diffusion or that the protosolar value was lower than currently accepted. (author)

  20. Commissioning of cryogenic system for China Spallation Neutron Source

    Science.gov (United States)

    Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun

    2017-12-01

    China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.

  1. Review of Membranes for Helium Separation and Purification

    Directory of Open Access Journals (Sweden)

    Colin A. Scholes

    2017-02-01

    Full Text Available Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources.

  2. Food Safety Practices Linked with Proper Refrigerator Temperatures in Retail Delis.

    Science.gov (United States)

    Brown, Laura G; Hoover, Edward Rickamer; Faw, Brenda V; Hedeen, Nicole K; Nicholas, David; Wong, Melissa R; Shepherd, Craig; Gallagher, Daniel L; Kause, Janell R

    2018-05-01

    Listeria monocytogenes (L. monocytogenes) causes the third highest number of foodborne illness deaths annually. L. monocytogenes contamination of sliced deli meats at the retail level is a significant contributing factor to L. monocytogenes illness. The Centers for Disease Control and Prevention's Environmental Health Specialists Network (EHS-Net) conducted a study to learn more about retail delis' practices concerning L. monocytogenes growth and cross-contamination prevention. This article presents data from this study on the frequency with which retail deli refrigerator temperatures exceed 41°F, the Food and Drug Administration (FDA)-recommended maximum temperature for ready-to-eat food requiring time and temperature control for safety (TCS) (such as retail deli meat). This provision was designed to control bacterial growth in TCS foods. This article also presents data on deli and staff characteristics related to the frequency with which retail delis refrigerator temperatures exceed 41°F. Data from observations of 445 refrigerators in 245 delis showed that in 17.1% of delis, at least one refrigerator was >41°F. We also found that refrigeration temperatures reported in this study were lower than those reported in a related 2007 study. Delis with more than one refrigerator, that lacked refrigerator temperature recording, and had a manager who had never been food safety certified had greater odds of having a refrigerator temperature >41°F. The data from this study suggest that retail temperature control is improving over time. They also identify a food safety gap: some delis have refrigerator temperatures that exceed 41°F. We also found that two food safety interventions were related to better refrigerated storage practices: kitchen manager certification and recording refrigerated storage temperatures. Regulatory food safety programs and the retail industry may wish to consider encouraging or requiring kitchen manager certification and recording refrigerated

  3. Applications of magnetic refrigeration and its assessment. A feasibility study - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kitanovski, A.; Diebold, M.; Vuarnoz, D.; Gonin, C.; Egolf, P. W.

    2008-04-15

    Magnetic refrigeration has the potential to replace conventional refrigeration systems - with often problematic refrigerants - in several niche markets or even some main markets of the refrigeration domain. Based on this insight the Swiss Federal Office of Energy has asked a division of the University of Applied Sciences of Western Switzerland (HEIG-VD) in Yverdon-les-Bains to list all possible refrigeration technologies and to evaluate the potential of magnetic refrigeration for these specific applications. The HEIG-VD researchers have developed a calculation tool to determine the coefficient of performance (COP) value and the exergy efficiency as a function of the magnetic field strength and the rotation frequency of a rotary type of magnetic refrigerator. The considered machine design is based on a patent, which was deposited by these scientists. Based on this work, it is found that especially two applications are very interesting for a closer investigation: the household refrigerator without a freezing compartment and the central chilling unit, which may be of large size. In the domains of refrigeration, where magnetic refrigeration could be successfully applied, the costs for magnetic refrigeration machines would be a little higher than those of the conventional ones. On the other hand the study shows possibilities how the magnetic refrigeration machines could reach higher COP values than those of the corresponding gas compression/expansion machines. Therefore, for magnetic refrigeration one may assume lower costs of operation. For large systems - as e.g. chiller units - it should be studied, if superconducting magnets could be economically applied. (author)

  4. Development of automatic control method for cryopump system for JT-60 neutral beam injector

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Akino, Noboru; Dairaku, Masayuki; Ohuchi, Yutaka; Shibata, Takemasa

    1991-10-01

    A cryopump system for JT-60 neutral beam injector (NBI) is composed of 14 cryopumps with the largest total pumping speed of 20000 m 3 /s in the world, which are cooled by liquid helium through a long-distance liquid helium transferline of about 500 m from a helium refrigerator with the largest capacity of 3000 W at 3.6 K in Japan. An automatic control method of the cryopump system has been developed and tested. Features of the automatic control method are as follows. 1) Suppression control of the thermal imbalance in cooling-down of the 14 cryopumps. 2) Stable cooling control of the cryopump due to liquid helium supply to six cryopanels by natural circulation in steady-state mode. 3) Stable liquid helium supply control for the cryopumps from the liquid helium dewar in all operation modes of the cryopumps, considering the helium quantities held in respective components of the closed helium loop. 4) Stable control of the helium refrigerator for the fluctuation in thermal load from the cryopumps and the change of operation mode of the cryopumps. In the automatic operation of the cryopump system by the newly developed control method, the cryopump system including the refrigerator was stably operated for all operation modes of the cryopumps, so that the cool-down of 14 cryopumps was completed in 16 hours from the start of cool-down of the system and the cryopumps was stably cooled by natural circulation cooling in steady-state mode. (author)

  5. Separation of compressor oil from helium

    International Nuclear Information System (INIS)

    Strauss, R.; Perrotta, K.A.

    1982-01-01

    Compression of helium by an oil-sealed rorary screw compressor entrains as much as 4000 parts per million by weight of liquid and vapor oil impurities in the gas. The reduction below about 0.1 ppm for cryogenic applications is discussed. Oil seperation equipment designed for compressed air must be modified significantly to produce the desired results with helium. The main differences between air and helium filtration are described. A description of the coalescers is given with the continuous coalescing of liquid mist from air or other gas illustrated. Oil vapor in helium is discussed in terms of typical compressor oils, experimental procedure for measuring oil vapor concentration, measured volatile hydrocarbons in the lubricants, and calculated concentration of oil vapor in Helium. Liquid oil contamination in helium gas can be reduced well below 0.1 ppm by a properly designed multiple state coalescing filter system containing graded efficiency filter elements. The oil vapor problem is best attached by efficiently treating the oil to remove most of the colatiles before charging the compressor

  6. Designing a magnet for magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerk, R

    2010-03-15

    This thesis investigates the design and optimization of a permanent magnet assembly for use in a magnetic refrigeration device. The heart of magnetic refrigeration is the adiabatic temperature change in the magnetocaloric material which is caused by the magnetic field. In order to design an ideal magnet assembly the magnetocaloric materials and the refrigeration process itself and their properties and performance as a function of magnetic field are investigated. For the magnetocaloric materials it is the magnetization, specific heat capacity and adiabatic temperature that are investigated as functions of the magnetic field. Following this the process utilized by a magnetic refrigerator to provide cooling is investigated using a publicly available one dimensional numerical model. This process is called active magnetic regeneration (AMR). The aim is to determine the performance of the AMR as a function of the magnetic field in order to learn the properties of the optimal magnet assembly. The performance of the AMR as a function of the synchronization and width of the magnetic field with respect to the AMR cycle, the ramp rate and maximum value of the magnetic field are investigated. Other published magnet designs used in magnetic refrigeration devices are also evaluated, using a figure of merit based on the properties of the investigated magnetocaloric materials, to learn the properties of the best magnet designs to date. Following this investigation the Halbach cylinder, which is a hollow permanent magnet cylinder with a rotating remanent flux density, is investigated in detail as it forms the basis of many magnet designs used in magnetic refrigeration. Here the optimal dimensions of a Halbach cylinder, as well as analytical calculations of the magnetic field for a Halbach cylinder of infinite length, are presented. Once it has been determined which properties are desirable for a magnet used in magnetic refrigeration the design of a new magnet is described. This is

  7. Hydrophilic structures for condensation management in refrigerator appliances

    Science.gov (United States)

    Kuehl, Steven John; Vonderhaar, John J; Wu, Guolian; Wu, Mianxue

    2014-10-21

    A refrigerator appliance that includes a freezer compartment having a freezer compartment door, and a refrigeration compartment having at least one refrigeration compartment door. The appliance further includes a mullion with an exterior surface. The mullion divides the compartments and the exterior surface directs condensation toward a transfer point. The appliance may also include a cabinet that houses the compartments and has two sides, each with an exterior surface. Further, at least one exterior surface directs condensation toward a transfer point.

  8. Nuclear fuel rod helium leak inspection apparatus and method

    International Nuclear Information System (INIS)

    Ahmed, H.J.

    1991-01-01

    This patent describes an inspection apparatus for testing nuclear fuel rods for helium leaks. It comprises a test chamber being openable and closable for receiving at least one nuclear fuel rod; means separate from the fuel rod for supplying helium and constantly leaking helium at a predetermined known positive value into the test chamber to constantly provide an atmosphere of helium at the predetermined known positive value in the test chamber; and means for sampling the atmosphere within the chamber and measuring the helium in the atmosphere such that a measured helium value below a preset minimum helium value substantially equal to the predetermined known positive value of the atmosphere of helium being constantly provided in the test chamber indicates a malfunction in the inspection apparatus, above a preset maximum helium value greater than the predetermined known positive in the test chamber indicates the existence of a helium leak from the fuel rod, or between the preset minimum and maximum helium values indicates the absence of a helium leak from the fuel rod

  9. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  10. Data mining techniques for thermophysical properties of refrigerants

    International Nuclear Information System (INIS)

    Kuecueksille, Ecir Ugur; Selbas, Resat; Sencan, Arzu

    2009-01-01

    This study presents ten modeling techniques within data mining process for the prediction of thermophysical properties of refrigerants (R134a, R404a, R407c and R410a). These are linear regression (LR), multi layer perception (MLP), pace regression (PR), simple linear regression (SLR), sequential minimal optimization (SMO), KStar, additive regression (AR), M5 model tree, decision table (DT), M5'Rules models. Relations depending on temperature and pressure were carried out for the determination of thermophysical properties as the specific heat capacity, viscosity, heat conduction coefficient, density of the refrigerants. Obtained model results for every refrigerant were compared and the best model was investigated. Results indicate that use of derived formulations from these techniques will facilitate design and optimize of heat exchangers which is component of especially vapor compression refrigeration system

  11. Helium storage and control system for the PBMR

    International Nuclear Information System (INIS)

    Verkerk, E.C.

    1997-01-01

    The power conversion unit will convert the heat energy in the reactor core to electrical power. The direct-closed cycle recuperated Brayton Cycle employed for this concept consists of a primary helium cycle with helium powered turbo compressors and a power turbine. The helium is actively cooled with water before the compression stages. A recuperator is used to preheat the helium before entering the core. The start of the direct cycle is initiated by a mass flow from the helium inventory and control system via a jet pump. When the PBMR is connected to the grid, changes in power demand can be followed by changing the helium flow and pressure inside the primary loop. Small rapid adjustments can be performed without changing the helium inventory of the primary loop. The stator blade settings on the turbines and compressors are adjustable and it is possible to bypass reactor and turbine. This temporarily reduces the efficiency at which the power conversion unit is operating. Larger or long term adjustments require storage or addition of helium in order to maintain a sufficient level of efficiency in the power conversion unit. The helium will be temporarily stored in high pressure tanks. After a rise in power demand it will be injected back into the system. Some possibilities how to store the helium are presented in this paper. The change of helium inventory will cause transients in the primary helium loop in order to acquire the desired power level. At this stage, it seems that the change of helium inventory does not strongly effect the stability of the power conversion unit. (author)

  12. OPTIONS FOR REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS

    Science.gov (United States)

    The report was prepared to assist personnel responsible for the design, construction, and maintenance of retail food refrigeration equipment in making knowledgeable decisions regarding the implementation of refrigerant-emissions-reducing practices and technologies. It characteriz...

  13. Critical Temperature Differences of a Standing Wave Thermoacoustic Prime Mover with Various Helium-Based Binary Mixture Working Gases

    Science.gov (United States)

    Setiawan, Ikhsan; Nohtomi, Makoto; Katsuta, Masafumi

    2015-06-01

    Thermoacoustic prime movers are energy conversion devices which convert thermal energy into acoustic work. The devices are environmentally friendly because they do not produce any exhaust gases. In addition, they can utilize clean energy such as solar-thermal energy or waste heat from internal combustion engines as the heat sources. The output mechanical work of thermoacoustic prime movers are usually used to drive a thermoacoustic refrigerator or to generate electricity. A thermoacoustic prime mover with low critical temperature difference is desired when we intend to utilize low quality of heat sources such as waste heat and sun light. The critical temperature difference can be significantly influenced by the kinds of working gases inside the resonator and stack's channels of the device. Generally, helium gas is preferred as the working gas due to its high sound speed which together with high mean pressure will yield high acoustic power per unit volume of the device. Moreover, adding a small amount of a heavy gas to helium gas may improve the efficiency of thermoacoustic devices. This paper presents numerical study and estimation of the critical temperature differences of a standing wave thermoacoustic prime mover with various helium-based binary-mixture working gases. It is found that mixing helium (He) gas with other common gases, namely argon (Ar), nitrogen (N2), oxygen (O2), and carbon dioxide (CO2), at appropriate pressures and molar compositions, reduce the critical temperature differences to lower than those of the individual components of the gas mixtures. In addition, the optimum mole fractions of Hegas which give the minimum critical temperature differences are shifted to larger values as the pressure increases, and tends to be constant at around 0.7 when the pressure increases more than 2 MPa. However, the minimum critical temperature differences slightly increase as the pressure increases to higher than 1.5 MPa. Furthermore, we found that the lowest

  14. Effect of evaporator temperature on vapor compression refrigeration system

    Directory of Open Access Journals (Sweden)

    Abdullah A.A.A. Al-Rashed

    2011-12-01

    Full Text Available This paper presents a comparable evaluation of R600a (isobutane, R290 (propane, R134a, R22, for R410A, and R32 an optimized finned-tube evaporator, and analyzes the evaporator effect on the system coefficient of performance (COP. Results concerning the response of a refrigeration system simulation software to an increase in the amount of oil flowing with the refrigerant are presented. It is shown that there is optima of the apparent overheat value, for which either the exchanged heat or the refrigeration coefficient of performance (COP is maximized: consequently, it is not possible to optimize both the refrigeration COP and the evaporator effect. The obtained evaporator optimization results were incorporated in a conventional analysis of the vapor compression system. For a theoretical cycle analysis without accounting for evaporator effects, the COP spread for the studied refrigerants was as high as 11.7%. For cycle simulations including evaporator effects, the COP of R290 was better than that of R22 by up to 3.5%, while the remaining refrigerants performed approximately within a 2% COP band of the R22 baseline for the two condensing temperatures considered.

  15. Water, a Refrigerant (L`eau, un Frigorigène)

    DEFF Research Database (Denmark)

    Paul, Joachim

    2003-01-01

    In the light of the ongoing discussions about the availability and the future of synthetic or natural refrigerants "water" is the most attractive fluid for chillers and icemakers because of the low energy demand, the intrinsic safety and the low costs both for the fluid itself and for the install......In the light of the ongoing discussions about the availability and the future of synthetic or natural refrigerants "water" is the most attractive fluid for chillers and icemakers because of the low energy demand, the intrinsic safety and the low costs both for the fluid itself...... since many years any refrigerant with OPD and GWP, Denmark has put up a law in 2001 which includes hefty taxes on HFC. This tax is added to the price of refrigerants and lies between 17 and 44 EURO/kg for the common fluids. The goal of taxation is clear: To make GWP refrigerants unattractive because...... of their price. In conjunction with tax comes a phase-out scenario which shall be effective from 2006. The options for "natural" refrigerants without ODP and GWP are limited to five fluids which are ammonia (toxic), carbon dioxide (very high pressures), hydrocarbons (flammable), air (relatively low efficiencies...

  16. Refrigeration Cycle Design for Refrigerant Mixtures by Molecular Simulation

    Czech Academy of Sciences Publication Activity Database

    Smith, W.R.; Francová, Magda; Kowalski, M.; Nezbeda, Ivo

    2010-01-01

    Roč. 75, č. 4 (2010), s. 383-391 ISSN 0010-0765 R&D Projects: GA AV ČR IAA400720710 Grant - others:NSERC(CA) OGP1041 Institutional research plan: CEZ:AV0Z40720504 Keywords : refrigerants * molecular simulation s * vapor–liquid equilibrium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.853, year: 2010

  17. Helium behaviour in aluminium under hydrostatic pressure

    International Nuclear Information System (INIS)

    Sokurskij, Yu.N.; Tebus, V.N.; Zudilin, V.A.; Tumanova, G.M.

    1989-01-01

    Effect of hydrostatic compression on equilibrium helium bubbles in low aluminium-lithium alloy irradiated in reactor at 570 K is investigated. Measurements of hydrostatic density and electron-microscopic investigations have shown, that application of up to 2 GPa pressure reduces equilibrium size of helium bubbles and reduces helium swelling. Kinetics and thermodynamics of the process are considered with application of 'rigid sphere' equation which describes helium state in bubbles

  18. Load forecasting for supermarket refrigeration

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Aalborg Nielsen, Henrik

    This report presents a study of models for forecasting the load for supermarket refrigeration. The data used for building the forecasting models consists of load measurements, local climate measurements and weather forecasts. The load measurements are from a supermarket located in a village...... in Denmark. The load for refrigeration is the sum of all cabinets in the supermarket, both low and medium temperature cabinets, and spans a period of one year. As input to the forecasting models the ambient temperature observed near the supermarket together with weather forecasts are used. Every hour...

  19. Preliminary Overview of a Helium Cooling System for the Secondary Helium Loop in VHTR-based SI Hydrogen Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Cho, Mintaek; Kim, Dahee; Lee, Taehoon; Lee, Kiyoung; Kim, Yongwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Nuclear hydrogen production facilities consist of a very high temperature gas-cooled nuclear reactor (VHTR) system, intermediate heat exchanger (IHX) system, and a sulfur-iodine (SI) thermochemical process. This study focuses on the coupling system between the IHX system and SI thermochemical process. To prevent the propagation of the thermal disturbance owing to the abnormal operation of the SI process components from the IHX system to the VHTR system, a helium cooling system for the secondary helium of the IHX is required. In this paper, the helium cooling system has been studied. The temperature fluctuation of the secondary helium owing to the abnormal operation of the SI process was then calculated based on the proposed coupling system model. Finally, the preliminary conceptual design of the helium cooling system with a steam generator and forced-draft air-cooled heat exchanger to mitigate the thermal disturbance has been carried out. A conceptual flow diagram of a helium cooling system between the IHX and SI thermochemical processes in VHTR-based SI hydrogen production facilities has been proposed. A helium cooling system for the secondary helium of the IHX in this flow diagram prevents the propagation of the thermal disturbance from the IHX system to the VHTR system, owing to the abnormal operation of the SI process components. As a result of a dynamic simulation to anticipate the fluctuations of the secondary helium temperature owing to the abnormal operation of the SI process components with a hydrogen production rate of 60 mol·H{sub 2}/s, it is recommended that the maximum helium cooling capacity to recover the normal operation temperature of 450 .deg. C is 31,933.4 kJ/s. To satisfy this helium cooling capacity, a U-type steam generator, which has a heat transfer area of 12 m{sup 2}, and a forced-draft air-cooled condenser, which has a heat transfer area of 12,388.67 m{sup 2}, are required for the secondary helium cooling system.

  20. Influence of Oil on Refrigerant Evaporator Performance

    Science.gov (United States)

    Kim, Jong-Soo; Nagata, Karsuya; Katsuta, Masafumi; Tomosugi, Hiroyuki; Kikuchi, Kouichiro; Horichi, Toshiaki

    In vapor compression refrigeration system using oil-lubricated compressors, some amount of oil is always circulated through the system. Oil circulation can have a significant influence on the evaporator performance of automotive air conditioner which is especially required to cool quickly the car interior after a period standing in the sun. An experimental investigation was carried out an electrically heated horizontal tube to measure local heat transfer coefficients for various flow rates and heat fluxes during forced convection boiling of pure refrigerant R12 and refrigerant-oil mixtures (0-11% oil concentration by weight) and the results were compared with oil free performance. Local heat transfer coefficients increased at the region of low vapor quality by the addition of oil. On the other hand, because the oil-rich liquid film was formed on the heat transfer surface, heat transfer coefficients gradually decreased as the vapor quality became higher. Average heat transfer coefficient reached a maximum at about 4% oil concentration and this trend agreed well with the results of Green and Furse. Previous correlations, using the properties of the refrigerant-oil mixture, could not predict satisfactorily the local heat transfer coefficients data. New correlation modified by oil concentration factor was developed for predicting the corresponding heat transfer coefficient for refrigerant-oil mixture convection boiling. The maximum percent deviation between predicted and measured heat transfer coefficient was within ±30%.

  1. Nucleation path of helium bubbles in metals during irradiation

    International Nuclear Information System (INIS)

    Morishita, Kazunori

    2008-01-01

    Thermodynamical formalization is made for description of the nucleation and growth of helium bubbles in metals during irradiation. The proposed formalization is available or evaluating both microstructural changes in fusion first wall materials where helium is produced by (n, α) nuclear transmutation reactions, and those in fusion divertor materials where helium particles with low energy are directly implanted. Calculated nucleation barrier is significantly reduced by the presence of helium, showing that a helium bubble with an appropriate number of helium atoms depending on bubble size can nucleate without any large nucleation barriers, even at a condition where an empty void has very large nucleation barrier without helium. With the proposed thermodynamical formalization, the nucleation and growth process of helium bubbles in iron during irradiation is simulated by the kinetic Monte-Carlo (KMC) technique. It shows the nucleation path of a helium bubble on the (N He , N V ) space as functions of temperatures and the concentration of helium in the matrix, where N He and N V are the number of helium atoms and vacancies in the helium bubble, respectively. Bubble growth rates depend on the nucleation path and suggest that two different mechanisms operate for bubble growth: one is controlled by vacancy diffusion and the other is controlled by interstitial helium diffusion. (author)

  2. Automated modelling of complex refrigeration cycles through topological structure analysis

    International Nuclear Information System (INIS)

    Belman-Flores, J.M.; Riesco-Avila, J.M.; Gallegos-Munoz, A.; Navarro-Esbri, J.; Aceves, S.M.

    2009-01-01

    We have developed a computational method for analysis of refrigeration cycles. The method is well suited for automated analysis of complex refrigeration systems. The refrigerator is specified through a description of flows representing thermodynamic sates at system locations; components that modify the thermodynamic state of a flow; and controls that specify flow characteristics at selected points in the diagram. A system of equations is then established for the refrigerator, based on mass, energy and momentum balances for each of the system components. Controls specify the values of certain system variables, thereby reducing the number of unknowns. It is found that the system of equations for the refrigerator may contain a number of redundant or duplicate equations, and therefore further equations are necessary for a full characterization. The number of additional equations is related to the number of loops in the cycle, and this is calculated by a matrix-based topological method. The methodology is demonstrated through an analysis of a two-stage refrigeration cycle.

  3. Carnot type magnetic refrigeration below 4.2 K - computer simulation

    International Nuclear Information System (INIS)

    Hashimoto, T.; Numazawa, T.; Maro, T.

    1984-01-01

    Cooling devices based on a utilization of the Carnot type magnetic refrigeration cycle are usually selected for the temperature range from 20 K to 1.8 K. However, the refrigeration power in the case of such devices is frequently limited by the heat transfer coefficient between the heat source and the magnetic working substance. Thus, in a magnetic refrigerator studied by Delpuech et al. (1981), the refrigeration power is mainly restricted by the heat transfer coefficient in the isothermal magnetization process at 4.2 K. The present investigation is concerned with the development of a method for achieving high refrigeration power on the basis of a study utilizing computer simulation. One of two methods considered for enhancing refrigeration power is related to the change in the magnetic field, while the other method involves an enlargement of the effective area of gadolinium-gallium-garnet (GGG) with the aid of deep grooves in the surface. 6 references

  4. Refrigerator retirement and replacement programs : lessons learned and application to an Ontario wide program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    The best practices in refrigerator retirement programs in North America were identified in an effort to develop a concept for an Ontario-wide provincial refrigerator retirement program. The report focused on describing refrigerator retirement programs, namely those programs that focused on getting rid of old secondary refrigerators. The report excluded refrigerator replacement programs, which encourage householders to retire their refrigerators early and replace them with an energy star refrigerator. However, it was noted that in several regions, both replacement and retirement programs are offered at the same time. The report provided background information on energy use by refrigerators as well as refrigerator retirement and replacement programs. Types of refrigerator retirement and replacement programs and the environmental benefits of these programs were also described. The report also addressed the potential energy impact of an Ontario-wide refrigerator retirement program as well as consumer incentive and bounties initiatives to encourage households to retire units. Other topics covered in the report included the design of typical refrigerator retirement and replacement programs; collection and recycling of retired refrigerators; reported costs of refrigerator retirement and replacement programs; as well as marketing and advertising. The role of retailers and manufacturers and reported lessons learned from refrigerator retirement and replacement were also presented. 14 refs., 6 tabs., 6 appendices.

  5. Helium mobility in advanced nuclear ceramics

    International Nuclear Information System (INIS)

    Agarwal, Shradha

    2014-01-01

    The main goal of this work is to improve our knowledge on the mechanisms able to drive the helium behaviour in transition metal carbides and nitrides submitted to thermal annealing or ion irradiation. TiC, TiN and ZrC polycrystals were implanted with 3 MeV 3 He ions at room temperature in the fluence range 2 * 10 15 et 6 * 10 16 cm -2 . Some of them have been pre-irradiated with self-ions (14 MeV Ti or Zr). Fully controlled thermal annealing tests were subsequently carried out in the temperature range 1000 - 1600 C for two hours. The evolution of the helium depth distribution in function of implantation dose, temperature and pre-irradiation dose was measured thanks to the deuteron-induced nuclear reaction 3 He(d, p 0 ) 4 He between 900 keV and 1.8 MeV. The microstructure of implanted and annealed samples was investigated by transmission electron microscopy on thin foils prepared using the FIB technique. Additional characterization tools, as X-ray diffraction and Raman microspectrometry, have been also applied in order to obtain complementary information. Among the most relevant results obtained, the following have to be outlined: - double-peak helium depth profile was measured on as implanted sample for the three compounds. The first peak is located near the end of range and includes the major part of helium, a second peak located close to the surface corresponds to the helium atoms trapped by the native vacancies; - the helium retention capacity in transition metal carbides and nitrides submitted to fully controlled thermal treatments varies according to ZrC 0.92 ≤ TiC 0.96 ≤ TiN 0.96 ; - whatever the investigated material, a self-ion-induced pre-damaging does not modify the initial helium profile extent. The influence of the post-implantation thermal treatment remains preponderant in any case; - the apparent diffusion coefficient of helium is in the range 4 * 10 -18 - 2 * 10 -17 m 2 s -1 in TiC0.96 and 3.5 * 10 -19 - 5.3 * 10 -18 m 2 s -1 in TiN 0.96 between

  6. Measurement of helium production cross sections of iron for d-T neutrons by helium accumulation method

    Energy Technology Data Exchange (ETDEWEB)

    Takao, Yoshiyuki; Kanda, Yukinori; Nagae, Koji; Fujimoto, Toshihiro [Kyushu Univ., Fukuoka (Japan); Ikeda, Yujiro

    1997-03-01

    Helium production cross sections of Iron were measured by helium accumulation method for neutron energies from 13.5 to 14.9 MeV. Iron samples were irradiated with FNS, an intense d-T neutron source of JAERI. As the neutron energy varies according to the emission angle at the neutron source, the samples were set around the neutron source and were irradiated by neutrons of different energy depending on each sample position. The amount of helium produced in a sample was measured by Helium Atoms Measurement System at Kyushu University. The results of this work are in good agreement with other experimental data in the literature and also compared with the evaluated values in JENDL-3. (author)

  7. High-temperature helium-loop facility

    International Nuclear Information System (INIS)

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100 0 F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system. The experimental capabilities and test conand presents the results that have been obtained. The study has been conducted using a four-phase approach. The first phase develops the solution to the steady-state radon-diffusion equation in one-dimensieered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent f water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, BB, a 200 mK. In case 2), x-ray studies of isotopic phase separation in 3 He-- 4 He bcc solids were carried out by B. A. Fraass

  8. The estimation of energy efficiency for hybrid refrigeration system

    International Nuclear Information System (INIS)

    Gazda, Wiesław; Kozioł, Joachim

    2013-01-01

    Highlights: ► We present the experimental setup and the model of the hybrid cooling system. ► We examine impact of the operating parameters of the hybrid cooling system on the energy efficiency indicators. ► A comparison of the final and the primary energy use for a combination of the cooling systems is carried out. ► We explain the relationship between the COP and PER values for the analysed cooling systems. -- Abstract: The concept of the air blast-cryogenic freezing method (ABCF) is based on an innovative hybrid refrigeration system with one common cooling space. The hybrid cooling system consists of a vapor compression refrigeration system and a cryogenic refrigeration system. The prototype experimental setup for this method on the laboratory scale is discussed. The application of the results of experimental investigations and the theoretical–empirical model makes it possible to calculate the cooling capacity as well as the final and primary energy use in the hybrid system. The energetic analysis has been carried out for the operating modes of the refrigerating systems for the required temperatures inside the cooling chamber of −5 °C, −10 °C and −15 °C. For the estimation of the energy efficiency the coefficient of performance COP and the primary energy ratio PER for the hybrid refrigeration system are proposed. A comparison of these coefficients for the vapor compression refrigeration and the cryogenic refrigeration system has also been presented.

  9. Indirect refrigeration systems with natural refrigerants

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Christensen, Kim Gardø; Jensen, Per Henrik

    1998-01-01

    Heat transfer for boiling and condensing carbon dioxide has been investigated.Heat transfer for carbon dioxide evaporating inside pipe has been measured and compared with Shah's correlation. The measured heat transfer coefficient is much higher than the value determined with the correlation.A shell......-and-tube heat exchanger with carbon dioxide on the shell side and flow ice inside the tubes has been used to investigate the heat transfer for condensing carbon dioxide.At leats is mentioned results obtained with a frozen food display case using carbone dioxide as refrigerant....

  10. 49 CFR 176.93 - Vehicles having refrigerating or heating equipment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vehicles having refrigerating or heating equipment... Transported on Board Ferry Vessels § 176.93 Vehicles having refrigerating or heating equipment. (a) A transport vehicle fitted with refrigerating or heating equipment using a flammable liquid or Division 2.1...

  11. Effect of helium on void swelling in vanadium

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1975-01-01

    Little difference in void microstructural swelling of vanadium is observed when helium is injected simultaneously with a 46- or 5-MeV nickel beam as compared to no helium injection, at least at high dose rates. At lower dose rates, a strong helium effect is seen when the helium is injected prior to heavy ion bombardment. The effect of the helium is shown to be a strong function of the overall displacement damage rate

  12. Experimental studies in solid state and low temperature physics. Progress report, 1975

    International Nuclear Information System (INIS)

    Goldman, A.M.; Weyhmann, W.V.; Zimmermann, W. Jr.

    1975-09-01

    Experimental investigations are being carried out in a broad area of low-temperature and solid-state physics which includes superconductivity, magnetism in metals and liquid and solid helium. The pair-field susceptibility of superconductors is being studied. A propagating mode in the phase of the superconducting order parameter has been found. Heat capacities of superconducting films in the vicinity of T/sub c/ are also being investigated. An investigation in the time-dependent high conductivity of dilute solid solutions of sodium in ammonia has been initiated. Nuclear orientation studies of the dilute magnetic impurity problem in metals in the 1 mK temperature region are being carried out. Refrigeration requirements for this work are being met using enhanced hyperfine nuclear cooling. Measurements of the differential osmotic pressure of 3 He/ 4 He liquid mixtures near the tricritical point have shown a peak in the ''concentration susceptibility'' at the lambda line. Data obey a simple tricritical scaling relation. The dynamics of superfluid flow through submicron pores are being studied in both pure 4 He and in 3 He/ 4 He mixtures in an apparatus provided with a 3 He refrigerator. The quantization of circulation in superfluid liquid 4 He is being investigated using the Vinen method. The low temperature heat capacity of bcc solid 3 He is being studied

  13. SolarChill - a solar PV refrigerator without battery

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, P.H.; Poulsen, S.; Katic, I. [Danish Technological Inst., Taastrup (Denmark)

    2004-07-01

    A solar powered refrigerator (SolarChill) has been developed in an international project involving Greenpeace International, GTZ, UNICEF, UNEP, WHO, industrial partners and Danish Technological Institute. The refrigerator is able to operate directly on solar PV panels, without battery or additional electronics, and is therefore suitable for locations where little maintenance and reliable operation is mandatory. The main objective of the SolarChill Project is to help deliver vaccines and refrigeration to the rural poor. To achieve this objective, the SolarChill Project developed - and plans to make freely available a versatile refrigeration technology that is environmentally sound, technologically reliable, and affordable. SolarChill does not use any fluorocarbons in its cooling system or in the insulation. For domestic and small business applications, another type of solar refrigerator is under development. This is an upright type, suitable for cool storage of food and beverages in areas where grid power is non-existent or unstable. The market potential for this type is thus present in industrialised countries as well as in countries under development. The unique feature of SolarChill is that energy is stored in ice instead of in batteries. An ice compartment keeps the cabinet at desired temperatures during the night. The paper describes the product development, possible SolarChill applications and experience with the two types of solar refrigerators, as well as results from the laboratory and field test. (orig.)

  14. Refrigeration Playbook. Heat Reclaim; Optimizing Heat Rejection and Refrigeration Heat Reclaim for Supermarket Energy Conservation

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Chuck [CTA Architects Engineers, Boise, ID (United States); Nelson, Eric [CTA Architects Engineers, Boise, ID (United States); Armer, James [CTA Architects Engineers, Boise, ID (United States); Johnson, Tim [CTA Architects Engineers, Boise, ID (United States); Hirsch, Adam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Doebber, Ian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    The purpose of this playbook and accompanying spreadsheets is to generalize the detailed CBP analysis and to put tools in the hands of experienced refrigeration designers to evaluate multiple applications of refrigeration waste heat reclaim across the United States. Supermarkets with large portfolios of similar buildings can use these tools to assess the impact of large-scale implementation of heat reclaim systems. In addition, the playbook provides best practices for implementing heat reclaim systems to achieve the best long-term performance possible. It includes guidance on operations and maintenance as well as measurement and verification.

  15. Designing a magnet for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    This thesis investigates the design and optimization of a permanent magnet assembly for use in a magnetic refrigeration device. The heart of magnetic refrigeration is the adiabatic temperature change in the magnetocaloric material which is caused by the magnetic field. In order to design an ideal...... magnet assembly the magnetocaloric materials and the refrigeration process itself and their properties and performance as a function of magnetic field are investigated. For the magnetocaloric materials it is the magnetization, specific heat capacity and adiabatic temperature that are investigated...... as a function of the magnetic field in order to learn the properties of the optimal magnet assembly. The performance of the AMR as a function of the synchronization and width of the magnetic field with respect to the AMR cycle, the ramp rate and maximum value of the magnetic field are investigated. Other...

  16. Modelling refrigerant distribution in microchannel evaporators

    DEFF Research Database (Denmark)

    Brix, Wiebke; Kærn, Martin Ryhl; Elmegaard, Brian

    2009-01-01

    of the refrigerant distribution is carried out for two channels in parallel and for two different cases. In the first case maldistribution of the inlet quality into the channels is considered, and in the second case a non-uniform airflow on the secondary side is considered. In both cases the total mixed superheat...... out of the evaporator is kept constant. It is shown that the cooling capacity of the evaporator is reduced significantly, both in the case of unevenly distributed inlet quality and for the case of non-uniform airflow on the outside of the channels.......The effects of refrigerant maldistribution in parallel evaporator channels on the heat exchanger performance are investigated numerically. For this purpose a 1D steady state model of refrigerant R134a evaporating in a microchannel tube is built and validated against other evaporator models. A study...

  17. Load leveling on industrial refrigeration systems

    Science.gov (United States)

    Bierenbaum, H. S.; Kraus, A. D.

    1982-01-01

    A computer model was constructed of a brewery with a 2000 horsepower compressor/refrigeration system. The various conservation and load management options were simulated using the validated model. The savings available for implementing the most promising options were verified by trials in the brewery. Result show that an optimized methodology for implementing load leveling and energy conservation consisted of: (1) adjusting (or tuning) refrigeration systems controller variables to minimize unnecessary compressor starts, (2) The primary refrigeration system operating parameters, compressor suction pressure, and discharge pressure are carefully controlled (modulated) to satisfy product quality constraints (as well as in-process material cooling rates and temperature levels) and energy evaluating the energy cost savings associated with reject heat recovery, and (4) a decision is made to implement the reject heat recovery system based on a cost/benefits analysis.

  18. Clustering of Helium Atoms at a ½

    NARCIS (Netherlands)

    Berg, F. v.d.; Heugten, W. v.; Caspers, L.M.; Veen, A. v.; Hosson, J.Th.M. de

    1977-01-01

    Atomistic calculations on a ½<111>{110} edge dislocation show a restricted tendency of clustering of helium atom along this dislocation. Clusters with up to 4 helium atoms have been studied. A cluster with 3 helium proved to be most stable.

  19. Thermal investigations of a room temperature magnetic refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Smaili, Arezki; Chiba, Younes [Ecole Nationale Polytechnique d' Alger (Algeria)], email: arezki.smaili@enp.edu.dz

    2011-07-01

    Magnetic refrigeration is a concept based on the magnetocaloric effect that some materials exhibit when the external magnetic field changes. The aim of this paper is to assess the performance of a numerical model in predicting parameters of an active magnetic regenerator refrigerator. Numerical simulations were conducted to perform a thermal analysis on an active magnetic regenerator refrigerator operating near room temperature with and without applied cooling load. Curves of temperature span, cooling capacity and thermal efficiency as functions of the operating conditions were drawn and are presented in this paper. Results showed that at fixed frequency Ql versus mf has an optimum and COP was increased with cycle frequency values. This study demonstrated that the proposed numerical model could be used to predict parameters of an active magnetic regenerator refrigerator as it provides consistent results.

  20. Power Consumption in Refrigeration Systems - Modeling for Optimization

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Larsen, Lars F. S.; Skovrup, Morten Juel

    2011-01-01

    Refrigeration systems consume a substantial amount of energy. Taking for instance supermarket refrigeration systems as an example they can account for up to 50−80% of the total energy consumption in the supermarket. Due to the thermal capacity made up by the refrigerated goods in the system...... there is a possibility for optimizing the power consumption by utilizing load shifting strategies. This paper describes the dynamics and the modeling of a vapor compression refrigeration system needed for sufficiently realistic estimation of the power consumption and its minimization. This leads to a non-convex function...... with possibly multiple extrema. Such a function can not directly be optimized by standard methods and a qualitative analysis of the system’s constraints is presented. The description of power consumption contains nonlinear terms which are approximated by linear functions in the control variables and the error...

  1. Toxicity Data to Determine Refrigerant Concentration Limits

    Energy Technology Data Exchange (ETDEWEB)

    Calm, James M.

    2000-09-30

    This report reviews toxicity data, identifies sources for them, and presents resulting exposure limits for refrigerants for consideration by qualified parties in developing safety guides, standards, codes, and regulations. It outlines a method to calculate an acute toxicity exposure limit (ATEL) and from it a recommended refrigerant concentration limit (RCL) for emergency exposures. The report focuses on acute toxicity with particular attention to lethality, cardiac sensitization, anesthetic and central nervous system effects, and other escape-impairing effects. It addresses R-11, R-12, R-22, R-23, R-113, R-114, R-116, R-123, R-124, R-125, R-134, R-134a, R-E134, R-141b, R-142b, R-143a, R-152a, R-218, R-227ea, R-236fa, R-245ca, R-245fa, R-290, R-500, R-502, R-600a, R-717, and R-744. It summarizes additional data for R-14, R-115, R-170 (ethane), R-C318, R-600 (n-butane), and R-1270 (propylene) to enable calculation of limits for blends incorporating them. The report summarizes the data a nd related safety information, including classifications and flammability data. It also presents a series of tables with proposed ATEL and RCL concentrations-in dimensionless form and the latter also in both metric (SI) and inch-pound (IP) units of measure-for both the cited refrigerants and 66 zerotropic and azeotropic blends. They include common refrigerants, such as R-404A, R-407C, R-410A, and R-507A, as well as others in commercial or developmental status. Appendices provide profiles for the cited single-compound refrigerants and for R-500 and R-502 as well as narrative toxicity summaries for common refrigerants. The report includes an extensive set of references.

  2. Effect of helium on void formation in nickel

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1977-01-01

    This study examines the influence of helium on void formation in self-ion irradiated nickel. Helium was injected either simultaneously with, or prior to, the self-ion bombardment. The void microstructure was characterized as a function of helium deposition rate and the total heavy-ion dose. In particular, at 575 0 C and 5 X 10 -3 displacements per atom per second the void density is found to be proportional to the helium deposition rate. The dose dependence of swelling is initially dominated by helium driven nucleation. The void density rapidly saturates after which swelling continues with increasing dose only from void growth. It is concluded that helium promotes void nucleation in nickel with either helium implantation technique, pre-injection or simultaneous injection. Qualitative differences, however, are recognized. (Auth.)

  3. The installation of helium auxiliary systems in HTGR

    International Nuclear Information System (INIS)

    Qin Zhenya; Fu Xiaodong

    1993-01-01

    The inert gas Helium was chosen as reactor coolant in high temperature gas coolant reactor, therefore a set of Special and uncomplex helium auxiliary systems will be installed, the safe operation of HTR-10 can be safeguarded. It does not effect the inherent safety of HTR-10 MW if any one of all those systems were damaged during operation condition. This article introduces the design function and the system principle of all helium auxiliary systems to be installed in HTR-10. Those systems include: helium purification and its regeneration system, helium supply and storage system, pressure control and release system of primary system, dump system for helium auxiliary system and fuel handling, gaseous waste storage system, water extraction system for helium auxiliary systems and evacuation system for primary system

  4. Displacer Diameter Effect in Displacer Pulse Tube Refrigerator

    Science.gov (United States)

    Zhu, Shaowei

    2017-12-01

    Gas driving displacer pulse tube refrigerators are one of the work recovery type of pulse tube refrigerators whose theoretical efficiency is the same as Stirling refrigerators'. Its cooling power is from the displacement of the displacer. Displace diameter, rod diameter and pressure drop of the regenerator influence the displacement, which are investigated by numerical simulation. It is shown that the displacement ratio of the displacer over the piston is almost not affected by the displacer diameter at the same rod diameter ratio, or displacer with different diameters almost has the same performance.

  5. Design and expected performance of a compact and continuous nuclear demagnetization refrigerator for sub-mK applications

    Science.gov (United States)

    Toda, Ryo; Murakawa, Satoshi; Fukuyama, Hiroshi

    2018-03-01

    Sub-mK temperatures are achievable by a copper nuclear demagnetization refrigerator (NDR). Recently, research demands for such an ultra-low temperature environment are increasing not only in condensed matter physics but also in astrophysics. A standard NDR requires a specially designed room, a high-field superconducting magnet, and a high-power dilution refrigerator (DR). And it is a one-shot cooling apparatus. To reduce these requirements, we are developing a compact and continuous NDR with two PrNi5 nuclear stages which occupies only a small space next to an appropriate pre-cooling stage such as DR. PrNi5 has a large magnetic-field enhancement on Pr3+ nuclei due to the strong hyperfine coupling. This enables us to enclose each stage in a miniature superconducting magnet and to locate two such sets in close proximity by surrounding them with high-permeability magnetic shields. The two stages are thermally connected in series to the pre-cooling stage by two Zn superconducting heat switches. A numerical analysis taking account of thermal resistances of all parts and an eddy current heating shows that the lowest sample temperature of 0.8 mK can be maintained continuously under a 10 nW ambient heat leak.

  6. Being everything to anyone: Applicability of thermoacoustic technology in the commercial refrigeration market

    Science.gov (United States)

    Poese, Matthew E.; Smith, Robert W. M.; Garrett, Steven L.

    2005-09-01

    This talk will compare electrodynamically driven thermoacoustic refrigeration technology to some common implementations of low-lift vapor-compression technology. A rudimentary explanation of vapor-compression refrigeration will be presented along with some of the implementation problems faced by refrigeration engineers using compressor-based systems. These problems include oil management, compressor slugging, refrigerant leaks and the environmental impact of refrigerants. Recently, the method of evaluating this environmental impact has been codified to include the direct effects of the refrigerants on global warming as well as the so-called ``indirect'' warming impact of the carbon dioxide released during the generation (at the power plant) of the electrical power consumed by the refrigeration equipment. It is issues like these that generate commercial interest in an alternative refrigeration technology. However, the requirements of a candidate technology for adoption in a mature and risk-averse commercial refrigeration industry are as hard to divine as they are to meet. Also mentioned will be the state of other alternative refrigeration technologies like free-piston Stirling, thermoelectric and magnetocaloric as well as progress using vapor compression technology with alternative refrigerants like hydrocarbons and carbon dioxide.

  7. Thirty years of screw compressors for helium; Dreissig Jahre Schraubenkompressoren fuer Helium

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, H. [Kaeser Kompressoren GmbH, Coburg (Germany). Technisches Buero/Auftragskonstruktion

    2007-07-01

    KAESER helium compressors, as well as their other industrial compressors, will be further developed with the intention to improve the availability and reliability of helium liquefaction systems. Further improvement of compressor and control system efficiency will ensure a low and sustainable operating cost. Fast supply of replacement parts with several years of warranty is ensured by a world-wide distribution system and is also worked on continuously. (orig.)

  8. Commercial helium reserves, continental rifting and volcanism

    Science.gov (United States)

    Ballentine, C. J.; Barry, P. H.; Hillegonds, D.; Fontijn, K.; Bluett, J.; Abraham-James, T.; Danabalan, D.; Gluyas, J.; Brennwald, M. S.; Pluess, B.; Seneshens, D.; Sherwood Lollar, B.

    2017-12-01

    Helium has many industrial applications, but notably provides the unique cooling medium for superconducting magnets in medical MRI scanners and high energy beam lines. In 2013 the global supply chainfailed to meet demand causing significant concern - the `Liquid Helium Crisis' [1]. The 2017 closure of Quatar borders, a major helium supplier, is likely to further disrupt helium supply, and accentuates the urgent need to diversify supply. Helium is found in very few natural gas reservoirs that have focused 4He produced by the dispersed decay (a-particle) of U and Th in the crust. We show here, using the example of the Rukwa section of the Tanzanian East African Rift, how continental rifting and local volcanism provides the combination of processes required to generate helium reserves. The ancient continental crust provides the source of 4He. Rifting and associated magmatism provides the tectonic and thermal mechanism to mobilise deep fluid circulation, focusing flow to the near surface along major basement faults. Helium-rich springs in the Tanzanian Great Rift Valley were first identified in the 1950's[2]. The isotopic compositions and major element chemistry of the gases from springs and seeps are consistent with their release from the crystalline basement during rifting [3]. Within the Rukwa Rift Valley, helium seeps occur in the vicinity of trapping structures that have the potential to store significant reserves of helium [3]. Soil gas surveys over 6 prospective trapping structures (1m depth, n=1486) show helium anomalies in 5 out of the 6 at levels similar to those observed over a known helium-rich gas reservoir at 1200m depth (7% He - Harley Dome, Utah). Detailed macroseep gas compositions collected over two days (n=17) at one site allows us to distinguish shallow gas contributions and shows the deep gas to contain between 8-10% helium, significantly increasing resource estimates based on uncorrected values (1.8-4.2%)[2,3]. The remainder of the deep gas is

  9. Refrigeration Performance and Entropy Generation Analysis for Reciprocating Magnetic Refrigerator with Gd Plates

    Directory of Open Access Journals (Sweden)

    Yonghua You

    2018-06-01

    Full Text Available In the current work, a novel 2D numerical model of stationary grids was developed for reciprocating magnetic refrigerators, with Gd plates, in which the magneto-caloric properties, derived from the Weiss molecular field theory, were adopted for the built-in energy source of the magneto-caloric effect. The numerical simulation was conducted under the conditions of different structural and operational parameters, and the effects of the relative fluid displacement (φ on the specific refrigeration capacity (qref and the Coefficient of Performance (COP were obtained. Besides the variations of entropy, the generation rate and number were studied and the contours of the local entropy generation rate are presented for discussion. From the current work, it is found that with an increase in φ, both the qref and COP followed the convex variation trend, while the entropy generation number (Ns varied concavely. As for the current cases, the maximal qref and COP were equal to 151.2 kW/m3 and 9.11, respectively, while the lowest Ns was the value of 2.4 × 10−4 K−1. However, the optimal φ for the largest qref and COP, and for the lowest Ns, were inconsistent, thus, some compromises need be made in the optimization of magnetic refrigerators.

  10. OPTIMAL SYSNTHESIS PROCESSES OF LOW-TEMPERATURE CONDENSATION ASSOCIATED OIL GAS PLANT REFRIGERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    O. Ostapenko

    2015-10-01

    Full Text Available Design of modern high-efficient systems is a key priority for the Energy Sector of Ukraine. The cooling technological streams of gas and oil refineries, including air coolers, water cooling and refrigeration systems for specific refrigerants are the objectives of the present study. Improvement of the refrigeration unit with refrigerant separation into fractions is mandatory in order to increase cooling capacity, lowering the boiling point of coolant and increasing the coefficient of target hydrocarbons extraction from the associated gas flow. In this paper it is shown that cooling temperature plays significant role in low-temperature condensation process. Two operation modes for refrigeration unit were proposed: permanent, in which the concentration of the refrigerant mixture does not change and dynamic, in which the concentration of refrigerant mixtures depends on the ambient temperature. Based on the analysis of exergy losses the optimal concentration of refrigerant mixtures propane/ethane for both modes of operation of the refrigeration unit has been determined. On the basis of the conducted pinch-analysis the modification of refrigeration unit with refrigerant separation into fractions was developed. Additional recuperative heat exchangers for utilization heat were added to the scheme. Several important measures to increase the mass flow rate of refrigerant through the second section of the refrigeration centrifugal compressor from 22.5 to 25 kg/s without violating the agreed operational mode of the compressor sections were implemented.

  11. Performance characteristics of low global warming potential R134a alternative refrigerants in ejector-expansion refrigeration system

    Directory of Open Access Journals (Sweden)

    Mishra Shubham

    2016-12-01

    Full Text Available Performance assessment of ejector-expansion vapor compression refrigeration system with eco-friendly R134a alternative refrigerants (R152a, R1234yf, R600a, R600, R290, R161, R32, and propylene is presented for air-conditioning application. Ejector has been modeled by considering experimental data based correlations of component efficiencies to take care of all irreversibilities. Ejector area ratio has been optimized based on maximum coefficient of performance (COP for typical air-conditioner operating temperatures. Selected refrigerants have been compared based on area ratio, pressure lift ratio, entrainment ratio, COP, COP improvement and volumetric cooling capacity. Effects of normal boiling point and critical point on the performances have been studied as well. Using ejector as an expansion device, maximum improvement in COP is noted in R1234yf (10.1%, which reduces the COP deviation with R134a (4.5% less in basic cycle and 2.5% less in ejector cycle. Hence, R1234yf seems to be best alternative for ejector expansion system due to its mild flammability and comparable volumetric capacity and cooling COP. refrigerant R161 is superior to R134a in terms of both COP and volumetric cooling capacity, although may be restricted for low capacity application due to its flammability.

  12. Performance characteristics of low global warming potential R134a alternative refrigerants in ejector-expansion refrigeration system

    Science.gov (United States)

    Mishra, Shubham; Sarkar, Jahar

    2016-12-01

    Performance assessment of ejector-expansion vapor compression refrigeration system with eco-friendly R134a alternative refrigerants (R152a, R1234yf, R600a, R600, R290, R161, R32, and propylene) is presented for air-conditioning application. Ejector has been modeled by considering experimental data based correlations of component efficiencies to take care of all irreversibilities. Ejector area ratio has been optimized based on maximum coefficient of performance (COP) for typical air-conditioner operating temperatures. Selected refrigerants have been compared based on area ratio, pressure lift ratio, entrainment ratio, COP, COP improvement and volumetric cooling capacity. Effects of normal boiling point and critical point on the performances have been studied as well. Using ejector as an expansion device, maximum improvement in COP is noted in R1234yf (10.1%), which reduces the COP deviation with R134a (4.5% less in basic cycle and 2.5% less in ejector cycle). Hence, R1234yf seems to be best alternative for ejector expansion system due to its mild flammability and comparable volumetric capacity and cooling COP. refrigerant R161 is superior to R134a in terms of both COP and volumetric cooling capacity, although may be restricted for low capacity application due to its flammability.

  13. Mass spectrometric analysis of helium in stainless steel

    International Nuclear Information System (INIS)

    Isagawa, Hiroto; Wada, Yukio; Asakura, Yoshiro; Tsuji, Nobuo; Sato, Hitoshi; Tsutsumi, Kenichi

    1974-01-01

    Vacuum fusion mass-spectrometry was adopted for the analysis of helium in stainless steel. Samples were heated in a vacuum crucible, and helium in the samples was extracted and collected into a reservoir tank. The gas was then introduced through an orifice into a mass spectrometer, where the amount of helium was determined. The maspeq 070 quadrupole type mass spectrometer made by Shimazu Seisakusho, Ltd. was used. The resolving power was 150, and the mass range of the apparatus was 0-150. The determination limit of helium was about 2 x 10 -3 μg when standard helium gas was analyzed, and was about 10 -2 μg when the helium in stainless steel was analyzed. The relative standard deviation of helium intensity in repetitive measurement was about 2% in the amount of helium of 0.05 μg. Helium was injected into stainless steel by means of alpha particle irradiation with a cyclotron. The amount of helium in stainless steel was then determined. The energy of alpha particles was 34 MeV, and the beam area was 10 mm x 10 mm. The experimental data were higher than the expected value in one case, and were lower in the other case. This difference was attributable to the fluctuation of alpha particle beam, misplacement of sample plates, and unevenness of the alpha beam. (Fukutomi, T.)

  14. Energy efficient control of a refrigeration plant

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Larsen, Lars F. S.

    2009-01-01

    This paper proposes a novel method for superheat and capacity control of refrigeration systems. The new idea is to control the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed and used in a backstepping design...... and the methods are evaluated with respect to energy efficiency....

  15. Advanced exergoeconomic analysis of the multistage mixed refrigerant systems

    International Nuclear Information System (INIS)

    Mehrpooya, Mehdi; Ansarinasab, Hojat

    2015-01-01

    Highlights: • Advanced exergoeconomic analysis is performed for mixed refrigerant systems. • Cost of investment is divided into avoidable/unavoidable and endogenous/exogenous. • Results show that interactions between the components is not considerable. - Abstract: Advanced exergoeconomic analysis is applied on three multi stage mixed refrigerant liquefaction processes. They are propane precooled mixed refrigerant, dual mixed refrigerant and mixed fluid cascade. Cost of investment and exergy destruction for the components with high inefficiencies are divided into avoidable/unavoidable and endogenous/exogenous parts. According to the avoidable exergy destruction cost in propane precooled mixed refrigerant process, C-2 compressor with 455.5 ($/h), in dual mixed refrigerant process, C-1 compressor with 510.8 ($/h) and in mixed fluid cascade process, C-2/1 compressor with 338.8 ($/h) should be considered first. A comparison between the conventional and advanced exergoeconomic analysis is done by three important parameters: Exergy efficiency, exergoeconomic factor and total costs. Results show that interactions between the process components are not considerable because cost of investment and exergy destruction in most of them are endogenous. Exergy destruction cost of the compressors is avoidable while heat exchangers and air coolers destruction cost are unavoidable. Investment cost of heat exchangers and air coolers are avoidable while compressor’s are unavoidable

  16. Analysis of energy saving performance for household refrigerator with thermal storage of condenser and evaporator

    International Nuclear Information System (INIS)

    Cheng, Wen-long; Ding, Miao; Yuan, Xu-dong; Han, Bing-Chuan

    2017-01-01

    Highlights: • A novel refrigerator with both HSC and CSE is proposed. • The operational characteristics of novel refrigerator is analyzed. • The comparison of CSE, HSC and DES refrigerators is analyzed. • DES refrigerator has a largest off-time to on-time ratio of 4.3. • DES refrigerator has the best electrical energy saving performance (32%). - Abstract: The heat transfer performances of evaporators and condensers significantly affect the efficiency of household refrigerators. For enhancing heat transfer of the condensers and evaporators, a novel dual energy storage (DES) refrigerator with both heat storage condenser (HSC) and cold storage evaporator (CSE) is proposed. The performance comparison of three kinds of energy storage refrigerators: HSC refrigerator, CSE refrigerator and DES refrigerator is analyzed by establishing dynamic simulation models. According to the simulation results, the DES refrigerator combines the advantage of HSC refrigerator and CSE refrigerator, it has more balanced operational cycle and higher evaporation pressure and temperature. The DES refrigerator shows a best energy saving performance among the three energy storage refrigerators with largest off-time to on-time ratio of 4.3 and the electrical consumption saving can reach 32%, which is greater than the sum (28%) of the other two kinds of energy storage refrigerators.

  17. Helium trapping in aluminum and sintered aluminum powders

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.; Rossing, T.

    1975-01-01

    The surface erosion of annealed aluminum and of sintered aluminum powder (SAP) due to blistering from implantation of 100-keV 4 He + ions at room temperature has been investigated. A substantial reduction in the blistering erosion rate in SAP was observed from that in pure annealed aluminum. In order to determine whether the observed reduction in blistering is due to enhanced helium trapping or due to helium released, the implanted helium profiles in annealed aluminum and in SAP have been studied by Rutherford backscattering. The results show that more helium is trapped in SAP than in aluminum for identical irradiation conditions. The observed reduction in erosion from helium blistering in SAP is more likely due to the dispersion of trapped helium at the large Al-Al 2 O 3 interfaces and at the large grain boundaries in SAP than to helium release

  18. Fluid Induced Vibration Analysis of a Cooling Water Pipeline for the HANARO CNS

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Lee, Young Sub; Kim, Ik Soo; Kim, Young Ki

    2007-01-01

    CNS is the initial of Cold Neutron Source and the CNS facility system consists of hydrogen, a vacuum, a gas blanketing, a helium refrigeration and a cooling water supply system. Out of these subsystems, the helium refrigeration system has the function of removal of heat from a thermal neutron under reactor operation. Therefore, HRS (helium refrigeration system) must be under normal operation for the production of cold neutron. HRS is mainly made up of a helium compressor and a coldbox. This equipment is in need of cooling water to get rid of heat generation under stable operation and a cooling water system is essential to maintain the normal operation of a helium compressor and a coldbox. The main problem for the cooling water system is the vibration issue in the middle of operation due to a water flow in a pipeline. In order to suppress the vibration problem for a pipeline, the characteristics of a pipeline and fluid flow must be analyzed in detail. In this paper, fluid induced vibration of a cooling water pipe is analyzed numerically and the stability of the cooling water pipeline is investigated by using pipe dynamic theory

  19. Helium cooling of fusion reactors

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Baxi, C.; Bourque, R.; Dahms, C.; Inamati, S.; Ryder, R.; Sager, G.; Schleicher, R.

    1994-01-01

    On the basis of worldwide design experience and in coordination with the evolution of the International Thermonuclear Experimental Reactor (ITER) program, the application of helium as a coolant for fusion appears to be at the verge of a transition from conceptual design to engineering development. This paper presents a review of the use of helium as the coolant for fusion reactor blanket and divertor designs. The concept of a high-pressure helium cooling radial plate design was studied for both ITER and PULSAR. These designs can resolve many engineering issues, and can help with reaching the goals of low activation and high performance designs. The combination of helium cooling, advanced low-activation materials, and gas turbine technology may permit high thermal efficiency and reduced costs, resulting in the environmental advantages and competitive economics required to make fusion a 21st century power source. ((orig.))

  20. Quantum heat engines and refrigerators: continuous devices.

    Science.gov (United States)

    Kosloff, Ronnie; Levy, Amikam

    2014-01-01

    Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath.