WorldWideScience

Sample records for helium dilution effect

  1. Nanocrystalline silicon prepared at high growth rate using helium dilution

    Indian Academy of Sciences (India)

    Koyel Bhattacharya; Debajyoti Das

    2008-06-01

    Growth and optimization of the nanocrystalline silicon (nc-Si : H) films have been studied by varying the electrical power applied to the helium diluted silane plasma in RF glow discharge. Wide optical gap and conducting intrinsic nanocrystalline silicon network of controlled crystalline volume fraction and oriented crystallographic lattice planes have been obtained at a reasonably high growth rate from helium diluted silane plasma, without using hydrogen. Improving crystallinity in the network comprising ∼ 10 nm Si-nanocrystallites and contributing optical gap widening, conductivity ascending and that obtained during simultaneous escalation of the deposition rate, promises significant technological impact.

  2. Effects of helium impurities on superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Selle, J.E.

    1977-07-01

    A review of the literature on the effects of helium impurities on superalloys at elevated temperatures was undertaken. The actual effects of these impurities vary depending on the alloy, composition of the gas atmosphere, and temperature. In general, exposure in helium produces significant but not catastrophic changes in the structure and properties of the alloys. The effects of these treatments on the structure, creep, fatigue, and mechanical properties of the various alloys are reviewed and discussed. Suggestions for future work are presented.

  3. Effect of high-pressure helium on latex-induced activated chemiluminescence of human blood leucocytes.

    Science.gov (United States)

    Tyurin-Kuz'min, A Yu; Vdovin, A V

    2003-09-01

    High-pressure helium reduces the latex-induced activated chemiluminescence of diluted human blood. This effect is more noticeable, when lucigenin rather than luminol is used as the activator of chemiluminescence. The effect lessens in the presence of Mg2+ but not Ca2+. The data suggest the association of this effect with actin polymerization in leucocytes phagocytosing the latex particles.

  4. Development of GM cryocooler separate type liquid-helium-free 3He-4He dilution refrigerator system

    Science.gov (United States)

    Yamanaka, Y.; Ito, T.; Umeno, T.; Suzuki, Y.; Yoshida, S.; Kamioka, Y.; Maehata, K.

    2009-02-01

    We developed the new liquid-helium-free dilution refrigerator system, in which the Gifford-McMahon (GM) cycle cryocooler and dilution refrigerator (DR) unit are separated. We obtained the base temperature below 50 mK in this DR system. In usual liquid-helium-free DR systems, the DR unit directly couples with GM-cryocooler in the same vacuum chamber. Therefore the mechanical vibration of GM-cryocooler is hardly removed from DR unit. In order to eliminate the vibration problem, the separated vacuum chamber contacting the GM-cryocooler is connected with the DR unit chamber by the flexible hose with length of about 1 meter. Thin flexible tubes used for circulation of the refrigerant gas and radiation shield are installed in the connection hose. The 4He gas, cooled in the GM-cryocooler unit, transfers to the DR unit throw the thin flexible tubes. After cooling the DR unit, the gas returns to GM-cryocooler unit with cooling of the radiation shield. We expect that our separate-type dilution refrigerator becomes a useful piece of apparatus for the low temperature experiments.

  5. Development of GM cryocooler separate type liquid-helium-free {sup 3}He-{sup 4}He dilution refrigerator system

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Y; Ito, T; Umeno, T; Suzuki, Y; Yoshida, S; Kamioka, Y [Taiyo Nippon Sanso Corporation, 10 Okubo, Tsukuba-shi, 300-2611 (Japan); Maehata, K [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka-shi, 819-0395 (Japan)], E-mail: Yoshihiro.Yamanaka@tn-sanso.co.jp

    2009-02-01

    We developed the new liquid-helium-free dilution refrigerator system, in which the Gifford-McMahon (GM) cycle cryocooler and dilution refrigerator (DR) unit are separated. We obtained the base temperature below 50 mK in this DR system. In usual liquid-helium-free DR systems, the DR unit directly couples with GM-cryocooler in the same vacuum chamber. Therefore the mechanical vibration of GM-cryocooler is hardly removed from DR unit. In order to eliminate the vibration problem, the separated vacuum chamber contacting the GM-cryocooler is connected with the DR unit chamber by the flexible hose with length of about 1 meter. Thin flexible tubes used for circulation of the refrigerant gas and radiation shield are installed in the connection hose. The {sup 4}He gas, cooled in the GM-cryocooler unit, transfers to the DR unit throw the thin flexible tubes. After cooling the DR unit, the gas returns to GM-cryocooler unit with cooling of the radiation shield. We expect that our separate-type dilution refrigerator becomes a useful piece of apparatus for the low temperature experiments.

  6. Effects of helium on titanium films and the helium diffusion

    Institute of Scientific and Technical Information of China (English)

    SONG YingMin; LUO ShunZhong; LONG XingGui; AN Zhu; LIU Ning; PANG HongChao; WU XingChun; YANG BenFu; ZHENG SiXiao

    2008-01-01

    Using direct current-magnetron sputtering, Helium-trapped Ti films with a He/Ar mixture was studied. The relative helium content, helium depth profiles for the Ti films and crystallization capacity were analyzed by Enhanced Proton Backscattering Spectrometry (EPBS) and X-ray diffraction (XRD). It was found that helium diffusion enhanced as more helium trapping into Ti films, and the He holding ratios were 95.9%, 94.9%, 93.9%, 82.8% when the Ti films with the He/Ti of concentrations of 9.7 at.Q, 19.5 at.Q, 19.7 at.Q, 48.3 at.% were measured again 4 months later, respectively. The diffraction peaks be-came weak and wider, the peak of (002) plane was shifted to smaller diffraction angles and the relevant interplanar spacing d(hkl) increased gradually as more helium trapping into Ti films. The main peak was made trending to the (101) plane by both higher deposition temperature and more helium trapping.

  7. Dynamic Dilution Effects in Polymeric Networks

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard; Sommer-Larsen, Peter; Hassager, Ole

    2006-01-01

    processes, namely the reptation of linear species within the network and the arm withdrawal process of star arms in the sol fraction and of dangling single-chain ends attached to the network. The relaxation spectra are influenced by the stoichiometry to a large extent due to dynamic dilution effects caused...... by the change in the amount of dangling arms and solubles with stoichiometry. The star arm relaxation is suppressed by washing out the sol fraction which is seen as a clear example of the dynamic dilution effect arising from the small amount of non-reactive PDMS....

  8. Effect of dislocations on helium retention in deformed pure iron

    Science.gov (United States)

    Gong, Y. H.; Cao, X. Z.; Jin, S. X.; Lu, E. Y.; Hu, Y. C.; Zhu, T.; Kuang, P.; Xu, Q.; Wang, B. Y.

    2016-12-01

    The effects of dislocations created by deformation on helium retention in pure iron, including the helium atoms diffusion along the dislocation line and desorption from dislocation trapping sites, were investigated. The dislocation defect was introduced in specimens by cold-rolling, and then 5 keV helium ions were implanted into the deformed specimens. Slow positron beam technology and thermal desorption spectroscopy were used to investigate the evolution of dislocation defects and the desorption behavior of helium atoms under influence of dislocation. The behaviors of S-E, W-E and S-W plots indicate clearly that lots of helium atoms remain in the deformed specimen and helium atoms combining with dislocation change the distribution of electron density. The helium desorption plot indicates that dislocation accelerates helium desorption at 293 K-600 K and facilitates helium dissociation from HenVm (n/m = 1.8) cluster.

  9. Nitrogen dilution effect on the flammability limits for hydrocarbons.

    Science.gov (United States)

    Chen, Chan-Cheng; Wang, Tzu-Chi; Liaw, Horng-Jang; Chen, Hui-Chu

    2009-07-30

    Theoretical models to predict the upper/lower flammability limits of hydrocarbons diluted with inert nitrogen gas are proposed in this study. It is found that there are linear relations between the reciprocal of the upper/lower flammability limits and the reciprocal of the molar fraction of hydrocarbon in the hydrocarbon/inert nitrogen mixture. Such linearity is examined by experimental data reported in the literature, which include the cases of methane, propane, ethylene and propylene. The R-squared values (R(2)) of the regression lines of the cases explored are all greater than 0.989 for upper flammability limit (UFL). The theoretical slope of the predictive line for lower flammability limit (LFL) is found to be very close to zero for all explored cases; and this result successfully explains the experimental fact that adding inert nitrogen to a flammable material has very limited effect on LFL. Because limit oxygen concentration (LOC) could be taken as the intersectional point of the UFL curve and LFL curve, a LOC-based method is proposed to predict the slope of the UFL curve when experimental data of UFL are not available. This LOC-based method predicts the UFL with average error ranging from 2.17% to 5.84% and maximum error ranging from 8.58% to 12.18% for the cases explored. The predictive models for inert gas of nitrogen are also extended to the case of inert gas other than nitrogen. Through the extended models, it was found that the inert ability of an inert gas depends on its mean molar heat capacity at the adiabatic flame temperature. Theoretical calculation shows that the inert abilities of carbon dioxide, steam, nitrogen and helium are in the following order: carbon dioxide>steam>nitrogen>helium; and this sequence conforms to the existing experimental data reported in the literature.

  10. The Zeeman effect for helium atom

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The g-factors of the 23P, 21P, and 33P states of the helium atom are calculated by using the vatiational wave functions constructed from the linear combinations of Slater-type basis sets. The relativistic corrections to order α2(a.u.) and the effect of the motion of the center of mass are treated by using first-order perturbation theory. Most of our predicted results are in good agreement with recent results of Yan and Drake, which were obtained by using the wave functions with doubled Hylleraas coordinates. Based on the analysis of the convergence pattern in our calculation, we believe that our predicted value of the δgL-factor for 33P state in 4He, 2.914 15×10-7, ought to be reasonable and accurate, although there are no corresponding experimental data available in the liteature yet to be compared with.

  11. Clinical Roles of Lung Volumes Detected by Body Plethysmography and Helium Dilution in Asthmatic Patients: A Correlation and Diagnosis Analysis

    Science.gov (United States)

    Luo, Jian; Liu, Dan; Chen, Guo; Liang, Binmiao; Liu, Chuntao

    2017-01-01

    Roles of lung volumes in asthma remain controversial. We aimed to evaluate the efficacy of lung volumes in differentiating asthma severity levels. Consecutive outpatients with chronic persistent asthma were enrolled, and body plethysmography (BP) and helium dilution (HD) were performed simultaneously to extract RV%pred, TLC%pred, and RV/TLC. Significant negative correlations were found between FEV1%pred and RV%pred (r = −0.557, P TLC%pred (r = −0.387, P TLC (r = −0.485, P TLC). In mild and moderate asthma, AUC of RV%pred detected by BP and ΔTLC%pred was 0.723 (95%CI 0.571–0.874, P = 0.005) and 0.739 (95%CI 0.607–0.872, P = 0.002) with sensitivity and specificity being 79.41% and 88.24%, and 65.22% and 56.52% at cut-off of 145.40% and 14.23%, respectively. In moderate and severe asthma, AUC of RV%pred detected by BP and ΔTLC%pred was 0.782 (95%CI 0.671–0.893, P < 0.001) and 0.788 (95%CI 0.681–0.894, P < 0.002) with sensitivity and specificity being 77.78% and 97.22%, and 73.53% and 52.94% at cut-off of 179.85% and 20.22%, respectively. In conclusion, lung volumes are reliable complement of FEV1 in identifying asthma severity levels. PMID:28098214

  12. Attentional sets influence perceptual load effects, but not dilution effects.

    Science.gov (United States)

    Benoni, Hanna; Zivony, Alon; Tsal, Yehoshua

    2014-01-01

    Perceptual load theory [Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21, 451-468.; Lavie, N., & Tsal, Y. (1994) Perceptual load as a major determinant of the locus of selection in visual attention. Perception & Psychophysics, 56, 183-197.] proposes that interference from distractors can only be avoided in situations of high perceptual load. This theory has been supported by blocked design manipulations separating low load (when the target appears alone) and high load (when the target is embedded among neutral letters). Tsal and Benoni [(2010a). Diluting the burden of load: Perceptual load effects are simply dilution effects. Journal of Experimental Psychology: Human Perception and Performance, 36, 1645-1656.; Benoni, H., & Tsal, Y. (2010). Where have we gone wrong? Perceptual load does not affect selective attention. Vision Research, 50, 1292-1298.] have recently shown that these manipulations confound perceptual load with "dilution" (the mere presence of additional heterogeneous items in high-load situations). Theeuwes, Kramer, and Belopolsky [(2004). Attentional set interacts with perceptual load in visual search. Psychonomic Bulletin & Review, 11, 697-702.] independently questioned load theory by suggesting that attentional sets might also affect distractor interference. When high load and low load were intermixed, and participants could not prepare for the presentation that followed, both the low-load and high-load trials showed distractor interference. This result may also challenge the dilution account, which proposes a stimulus-driven mechanism. In the current study, we presented subjects with both fixed and mixed blocks, including a mix of dilution trials with low-load trials and with high-load trials. We thus separated the effect of dilution from load and tested the influence of attentional sets on each component. The results revealed that whereas

  13. Performance of compact liquid helium free {sup 3}He-{sup 4}He dilution refrigerator directly coupled with GM cooler in TES microcalorimeter operation

    Energy Technology Data Exchange (ETDEWEB)

    Umeno, T; Kamioka, Y; Yoshida, S [Taiyo Nippon Sanso Corporation, 1-3-26 Koyama, Shinagawa-ku, 142-8558 (Japan); Maehata, K; Ishibashi, K [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka-shi, 819-0395 (Japan); Takasaki, K [Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki-ken, 319-1194 (Japan); Tanaka, K [SII NanoTechnology Inc., 36-1 Takenoshita, Oyama-cho, Suntou-gun, Shizuoka-ken, 410-1393 (Japan)], E-mail: Takahiro.Umeno@tn-sanso.co.jp

    2009-02-01

    A superconducting transition edge thermosensor (TES) microcalorimeter was cooled by a compact liquid-helium-free {sup 3}He-{sup 4}He dilution refrigerator with loading a Gifford-McMahon (GM) cooler for detection of LX-ray photons emitted from an {sup 241}Am source. The first and second stages of the GM cooler are directly coupled with the first and the second precool heat exchangers of a stick shaped dilution unit through copper plates in the vacuum chamber, respectively. The circulating {sup 3}He-{sup 4}He gas through the precooled heat exchangers is condensed into a liquid of condense mixture by the isoenthalpic expansion through the Joule-Thomson impedance. A cascade of two mixing chambers are employed for achieving sufficient cooling power. The helium-free dilution refrigerator performs the cooling power of 20 {mu}W at 100 mK. The TES and SQUID chips suffered from mechanical vibrations induced by a reciprocating motion of the displacer of the GM cooler. Detection signals of LX-ray photons emitted from {sup 241}Am source were observed by operating the TES microcalorimeter in severe noise environment induced by mechanical vibrations.

  14. Biodiversity inhibits parasites: Broad evidence for the dilution effect.

    Science.gov (United States)

    Civitello, David J; Cohen, Jeremy; Fatima, Hiba; Halstead, Neal T; Liriano, Josue; McMahon, Taegan A; Ortega, C Nicole; Sauer, Erin Louise; Sehgal, Tanya; Young, Suzanne; Rohr, Jason R

    2015-07-14

    Infectious diseases of humans, wildlife, and domesticated species are increasing worldwide, driving the need to understand the mechanisms that shape outbreaks. Simultaneously, human activities are drastically reducing biodiversity. These concurrent patterns have prompted repeated suggestions that biodiversity and disease are linked. For example, the dilution effect hypothesis posits that these patterns are causally related; diverse host communities inhibit the spread of parasites via several mechanisms, such as by regulating populations of susceptible hosts or interfering with parasite transmission. However, the generality of the dilution effect hypothesis remains controversial, especially for zoonotic diseases of humans. Here we provide broad evidence that host diversity inhibits parasite abundance using a meta-analysis of 202 effect sizes on 61 parasite species. The magnitude of these effects was independent of host density, study design, and type and specialization of parasites, indicating that dilution was robust across all ecological contexts examined. However, the magnitude of dilution was more closely related to the frequency, rather than density, of focal host species. Importantly, observational studies overwhelmingly documented dilution effects, and there was also significant evidence for dilution effects of zoonotic parasites of humans. Thus, dilution effects occur commonly in nature, and they may modulate human disease risk. A second analysis identified similar effects of diversity in plant-herbivore systems. Thus, although there can be exceptions, our results indicate that biodiversity generally decreases parasitism and herbivory. Consequently, anthropogenic declines in biodiversity could increase human and wildlife diseases and decrease crop and forest production.

  15. Success, failure and ambiguity of the dilution effect among competitors.

    Science.gov (United States)

    Strauss, Alexander T; Civitello, David J; Cáceres, Carla E; Hall, Spencer R

    2015-09-01

    It remains challenging to predict variation in the magnitude of disease outbreaks. The dilution effect seeks to explain this variation by linking multiple host species to disease transmission. It predicts that disease risk increases for a focal host when host species diversity declines. However, when an increase in species diversity does not reduce disease, we are often unable to diagnose why. Here, we increase mechanistic and predictive clarity of the dilution effect with a general trait-based model of disease transmission in multi-host communities. Then, we parameterise and empirically test our model with a multi-generational case study of planktonic disease. The model-experiment combination shows that hosts that vary in competitive ability (R*) and potential to spread disease (R0 ) can produce three qualitatively disparate outcomes of dilution on disease: the dilution effect can succeed, fail, or be ambiguous/irrelevant.

  16. EFFECT OF ADSORPTION ON THE VISCOSITY OF DILUTE POLYMER SOLUTION

    Institute of Scientific and Technical Information of China (English)

    Rong-shi Cheng; Yu-fang Shao; Ming-zhu Liu; Rong-qing Lu

    1999-01-01

    Careful measurements of the dilute solution viscosities of polyethylene glycol and polyvinyl alcohol in water were carried out. The reduced viscosities of both polymer solutions plot upward curves at extremely dilute concentration levels similar to the phenomena observed for many polymer solutions in the early 1950's. Upon observation of the changes of the flow times of pure water in and the wall surface wettability of the viscometer after measuring solution viscosity, a view was formed that the observed viscosity abnormality at extremely dilute concentration regions is solely due to the effect of adsorption of polymer chains onto the wall surface of viscometer. A theory of adsorption effect based on the Langmuir isotherms was proposed and a mathematical analysis for data treatment was performed. The theory could adequately describe the existing viscosity data. It seems necessary to correct the viscosity result of dilute polymer solutions measured by glass capillary viscometer by taking into account the effect of adsorption in all cases.

  17. Effect of helium on tensile properties of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Billone, M.C.; Smith, D.L. [Argonne National Lab., IL (United States)

    1997-08-01

    Tensile properties of V-4Cr-4Ti (Heat BL-47), 3Ti-1Si (BL-45), and V-5Ti (BL-46) alloys after irradiation in a conventional irradiation experiment and in the Dynamic Helium Charging Experiment (DHCE) were reported previously. This paper presents revised tensile properties of these alloys, with a focus on the effects of dynamically generated helium of ductility and work-hardening capability at <500{degrees}C. After conventional irradiation (negligible helium generation) at {approx}427{degrees}C, a 30-kg heat of V-4Cr-4Ti (BL-47) exhibited very low uniform elongation, manifesting a strong susceptibility to loss of work-hardening capability. In contrast, a 15-kg heat of V-3Ti-1Si (BL -45) exhibited relatively high uniform elongation ({approx}4%) during conventional irradiation at {approx}427{degrees}C, showing that the heat is resistant to loss of work-hardening capability.

  18. Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure

    KAUST Repository

    Kailasanathan, Ranjith Kumar Abhinavam

    2014-05-20

    Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both temperature and soot measurements presented are line-of-sight averages. The results aid in understanding the kinetic and thermodynamic behavior of the soot formation and oxidation chemistry with changes in diluents, ultimately leading to possible methods of reducing soot emission from practical combustion hardware. The diluted fuel and coflow exit velocities (top-hat profiles) were matched at all pressures to minimize shear effects. In addition to the velocity-matched flow rates, the mass fluxes were held constant for all pressures. Addition of a diluent has a pronounced effect on both the soot surface temperature and volume fraction, with the helium diluted flame yielding the maximum and carbon dioxide diluted flame yielding minimum soot surface temperature and volume fraction. At low pressures, peak soot volume fraction exists at the tip of the flame, and with an increase in pressure, the location shifts lower to the wings of the flame. Due to the very high diffusivity of helium, significantly higher temperature and volume fraction are measured and explained. Carbon dioxide has the most dramatic soot suppression effect. By comparing the soot yield with previously measured soot precursor concentrations in the same flame, it is clear that the lower soot yield is a result of enhanced oxidation rates rather than a reduction in precursor formation. Copyright © 2014 Taylor & Francis Group, LLC.

  19. Effects of dietary dilution source and dilution level on feather damage, performance, behaviour, and litter condition in pullets

    NARCIS (Netherlands)

    Qaisrani, S.N.; Krimpen, van M.M.; Kwakkel, R.P.

    2013-01-01

    An experiment was conducted to investigate the effects of dietary dilution sources and levels on feather damage, performance, feeding behavior, and litter condition in rearing pullets. It was hypothesized that dietary dilution increases feeding-related behavior and improves feather condition, partic

  20. Thermoelectric and Thermomagnetic Effects in Dilute Plasmas

    CERN Document Server

    García-Colin, L S; Sandoval-Villalbazo, A

    2006-01-01

    When an electrically charged system is subjected to the action of an electromagnetic field, it responds by generating an electrical current. In the case of a multicomponent plasma other effects, the so called cross effects, influence the flow of charge as well as the heat flow. In this paper we discuss these effects and their corresponding transport coefficients in a fully ionized plasma using Boltzmann's equation. Applications to non-confined plasmas, specially to those prevailing in astrophysical systems are highlighted. Also, a detailed comparison is given with other available results.

  1. The Anisotropic Transport Effects On The Dilute Plasmas

    CERN Document Server

    Devlen, Ebru

    2012-01-01

    We examine the linear stability analysis of a hot, dilute and differentially rotating plasma by considering anisotropic transport effects. In the dilute plasmas, the ion Larmor radius is small compared with its collisional mean free path. In this case, the transport of heat and momentum along the magnetic field lines become important. This paper presents a novel linear instability that may more powerful and greater than ideal magnetothermal instability (MTI) and ideal magnetorotational instability (MRI) in the dilute astrophysical plasmas. This type of plasma is believed to be found in the intracluster medium of galaxy clusters and radiatively ineffective accretion flows around black holes. We derive the dispersion relation of this instability and obtain the instability condition. There is at least one unstable mode that is independent of the temperature gradient direction for a helical magnetic field geometry. This novel instability is driven by the gyroviscosity coupled with differential rotation. Therefore...

  2. Coffee-ring effect beyond the dilute limit

    Science.gov (United States)

    Kim, Jin Young; Ryu, Seul-A.; Kim, Hyungdae; Kim, Joon Heon; Park, Jung Su; Park, Yong Seok; Oh, Jeong Su; Weon, Byung Mook

    2015-11-01

    The coffee-ring effect, which is a natural generation of outward capillary flows inside drying coffee drops, is valid at the dilute limit of initial solute concentrations. If the solute is not dilute, the ring deposit is forced to have a non-zero width; higher initial concentration leads to a wider ring. Here we study the coffee-ring effect in the dense limit by demonstrating differences with various initial coffee concentrations from 0.1% to 60%. The coffee drops with high initial concentrations of real coffee particles show interesting evaporation dynamics: dense coffee drops tend to evaporate slowly. This result is different from the classic coffee-ring effect in the dilute limit. We suppose that the slow evaporation of dense coffee drops is associated with the ring growth dynamics. The coffee-ring effect becomes more significant in modern technologies such as self-assembly of nanoparticles, ink-jet printing, painting and ceramics. The complexity in evaporation dynamics of colloidal fluids would be able to be understood by expanding the coffee-ring effects in the dilute as well as the dense limits.

  3. The Dilution Effect and Information Integration in Perceptual Decision Making.

    Directory of Open Access Journals (Sweden)

    Jared M Hotaling

    Full Text Available In cognitive science there is a seeming paradox: On the one hand, studies of human judgment and decision making have repeatedly shown that people systematically violate optimal behavior when integrating information from multiple sources. On the other hand, optimal models, often Bayesian, have been successful at accounting for information integration in fields such as categorization, memory, and perception. This apparent conflict could be due, in part, to different materials and designs that lead to differences in the nature of processing. Stimuli that require controlled integration of information, such as the quantitative or linguistic information (commonly found in judgment studies, may lead to suboptimal performance. In contrast, perceptual stimuli may lend themselves to automatic processing, resulting in integration that is closer to optimal. We tested this hypothesis with an experiment in which participants categorized faces based on resemblance to a family patriarch. The amount of evidence contained in the top and bottom halves of each test face was independently manipulated. These data allow us to investigate a canonical example of sub-optimal information integration from the judgment and decision making literature, the dilution effect. Splitting the top and bottom halves of a face, a manipulation meant to encourage controlled integration of information, produced farther from optimal behavior and larger dilution effects. The Multi-component Information Accumulation model, a hybrid optimal/averaging model of information integration, successfully accounts for key accuracy, response time, and dilution effects.

  4. The Dilution Effect and Information Integration in Perceptual Decision Making

    Science.gov (United States)

    Hotaling, Jared M.; Cohen, Andrew L.; Shiffrin, Richard M.; Busemeyer, Jerome R.

    2015-01-01

    In cognitive science there is a seeming paradox: On the one hand, studies of human judgment and decision making have repeatedly shown that people systematically violate optimal behavior when integrating information from multiple sources. On the other hand, optimal models, often Bayesian, have been successful at accounting for information integration in fields such as categorization, memory, and perception. This apparent conflict could be due, in part, to different materials and designs that lead to differences in the nature of processing. Stimuli that require controlled integration of information, such as the quantitative or linguistic information (commonly found in judgment studies), may lead to suboptimal performance. In contrast, perceptual stimuli may lend themselves to automatic processing, resulting in integration that is closer to optimal. We tested this hypothesis with an experiment in which participants categorized faces based on resemblance to a family patriarch. The amount of evidence contained in the top and bottom halves of each test face was independently manipulated. These data allow us to investigate a canonical example of sub-optimal information integration from the judgment and decision making literature, the dilution effect. Splitting the top and bottom halves of a face, a manipulation meant to encourage controlled integration of information, produced farther from optimal behavior and larger dilution effects. The Multi-component Information Accumulation model, a hybrid optimal/averaging model of information integration, successfully accounts for key accuracy, response time, and dilution effects. PMID:26406323

  5. First-principles study of helium, carbon, and nitrogen in austenite, dilute austenitic iron alloys, and nickel

    Science.gov (United States)

    Hepburn, D. J.; Ferguson, D.; Gardner, S.; Ackland, G. J.

    2013-07-01

    An extensive set of first-principles density functional theory calculations have been performed to study the behavior of He, C, and N solutes in austenite, dilute Fe-Cr-Ni austenitic alloys, and Ni in order to investigate their influence on the microstructural evolution of austenitic steel alloys under irradiation. The results show that austenite behaves much like other face-centered cubic metals and like Ni in particular. Strong similarities were also observed between austenite and ferrite. We find that interstitial He is most stable in the tetrahedral site and migrates with a low barrier energy of between 0.1 and 0.2 eV. It binds strongly into clusters as well as overcoordinated lattice defects and forms highly stable He-vacancy (VmHen) clusters. Interstitial He clusters of sufficient size were shown to be unstable to self-interstitial emission and VHen cluster formation. The binding of additional He and V to existing VmHen clusters increases with cluster size, leading to unbounded growth and He bubble formation. Clusters with n/m around 1.3 were found to be most stable with a dissociation energy of 2.8 eV for He and V release. Substitutional He migrates via the dissociative mechanism in a thermal vacancy population but can migrate via the vacancy mechanism in irradiated environments as a stable V2He complex. Both C and N are most stable octahedrally and exhibit migration energies in the range from 1.3 to 1.6 eV. Interactions between pairs of these solutes are either repulsive or negligible. A vacancy can stably bind up to two C or N atoms with binding energies per solute atom up to 0.4 eV for C and up to 0.6 eV for N. Calculations in Ni, however, show that this may not result in vacancy trapping as VC and VN complexes can migrate cooperatively with barrier energies comparable to the isolated vacancy. This should also lead to enhanced C and N mobility in irradiated materials and may result in solute segregation to defect sinks. Binding to larger vacancy clusters

  6. The Helium Field Effect Transistor (I): Storing Surface State Electrons on Helium Films

    Science.gov (United States)

    Ashari, M.; Rees, D. G.; Kono, K.; Scheer, E.; Leiderer, P.

    2012-04-01

    We present investigations of surface state electrons on liquid helium films in confined geometry, using a suitable substrate structure microfabricated on a silicon wafer, similar to a Field Effect Transistor (FET). The sample has a source and drain region, separated by a gate structure, which consists of two gold electrodes with a narrow gap (channel) through which the transport of the surface state electrons takes place. The sample is illuminated to provide a sufficient number of free carriers in the silicon substrate, such that a well-defined potential distribution is achieved. The eventual goal of these experiments is to study the electron transport through a narrow channel in the various states of the phase diagram of the 2D electron system. In the present work we focus on storing the electrons in the source area of the FET, and investigate the spatial distribution of these electrons. It is shown that under the influence of a potential gradient in the silicon substrate the electrons accumulate in front of the potential barrier of the gate. The electron distribution, governed by Coulomb repulsion and by the substrate potential, is determined experimentally. The result is found to be in good agreement with a parallel-plate capacitor model of the system, developed with the aid of a finite element calculation of the surface potential profile of the device.

  7. Effects of helium injection mode on void formation in Fe-Ni-Cr alloys

    Science.gov (United States)

    Kimoto, T.; Lee, E. H.; Mansur, L. K.

    1988-09-01

    The effect of the helium injection mode on void formation during ion irradiation of the pure solution-annealing alloys Fe-15Ni-7Cr, Fe-35Ni-7Cr, Fe-45Ni-7Cr, Fe-10Ni-13Cr, Fe-40Ni-13Cr, Fe-45Ni-15Cr was examined. Ion irradiation was carried out with 4 MeV Ni ions at 948 K to doses of 30 to 100 dpa with: (1) no helium injection, (2) simultaneous helium injection and (3) helium preinjection and aging. Swelling variation with helium injection differed among the 7Cr alloys and 13-15Cr alloys. Only the simultaneous helium injection mode produced a bimodal cavity size distribution in the high Ni alloys. The critical radius, as estimated from the cavity size distributions appears to have increased with increasing dose, but no clear variation of the critical radius with composition was observed. Helium preinjection and one-hour aging at 948 K formed helium bubbles along the residual dislocations, while subsequent Ni irradiation caused void formation along the dislocation lines. The calculated helium concentration deduced from observable helium bubbles was low compared with the injected helium concentration in the alloys containing higher Ni and lower Cr.

  8. Orbital ordering and the dilute effect in copper fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Tatami, N. [Department of Physics, Tohoku University, Sendai, Miyagi 980-8578 (Japan)]. E-mail: tatam@iiyo.phys.tohoku.ac.jp; Ando, Y. [Department of Physics, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Niioka, S. [Department of Physics, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Kira, H. [Department of Physics, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Onodera, M. [Department of Physics, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Nakao, H. [Department of Physics, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Iwasa, K. [Department of Physics, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Murakami, Y. [Department of Physics, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Kakiuchi, T. [GraduateUniversity for Advanced Studies, Tsukuba 305-0801 (Japan); Wakabayashi, Y. [Photon Factory, IMSS, KEK, Tsukuba, Ibaraki 305-0801 (Japan); Sawa, H. [Photon Factory, IMSS, KEK, Tsukuba, Ibaraki 305-0801 (Japan); Itoh, S. [Neutron Science Laboratory, IMSS, KEK, Tsukuba, Ibaraki 305-0801 (Japan)

    2007-03-15

    We have investigated the dilute effect on a typical orbital ordering system KCuF{sub 3} by partially substituting Zn for Cu. The crystal structure has been examined as a function of Cu concentration at room temperature by X-ray diffraction. It is found that the phase transition from a tetragonal structure to a cubic one occurs with decreasing Cu concentration. This structural phase transition is confirmed to be an orbital order-disorder transition by the resonant X-ray scattering (RXS) technique.

  9. Effect of boundary conditions on the kinetics of helium release from structural materials

    Science.gov (United States)

    Zaluzhnyi, A. G.

    2015-11-01

    Gaseous products of nuclear reactions (specifically, helium) play a significant part in altering the material properties upon irradiation. It is known that atoms of inert gases promote the generation and growth of pores in irradiated materials and affect phenomena such as swelling, high-temperature irradiation embrittlement, etc. Therefore, a study of the behavior of helium (its production, accumulation, retention, and release) within structural materials is fairly topical. In order to validate the methods of express imitation of accumulation and retention of helium within structural materials under reactor irradiation, we perform a comparative analysis of the spectra of the rate of gas release from samples of austenitic steel 0Kh16N15M3B that were saturated with helium in different ways, i.e., through irradiation in a cyclotron, a magnetic massseparation setup, the IRT-2000 reactor, the BOR-60 reactor, and using the so-called tritium trick technique. The effect of the presence of dislocations and grain boundaries on the release of helium from materials is evaluated. The results of the research conducted show that the kinetics of helium release from samples saturated with helium through the bombardment with alpha particles of different energies, which ensures the simultaneous introduction of helium and radiation defects (in wide ranges of helium concentration and radiation damage) into the material lattice, is similar to the kinetics of helium release from samples irradiated in reactors.

  10. Spectrophotometry of extreme helium stars - Ultraviolet fluxes and effective temperatures

    Science.gov (United States)

    Heber, U.; Drilling, J. S.; Schoenberner, D.; Lynas-Gray, A. E.

    1984-01-01

    Ultraviolet flux distributions are presented for the extremely helium rich stars BD +10 deg 2179, HD 124448, LSS 3378, BD -9 deg 4395, LSE 78, HD 160641, LSIV -1 deg 2, BD 1 deg 3438, HD 168476, MV Sgr, LS IV-14 deg 109 (CD -35 deg 11760), LSII +33 deg 5 and BD +1 deg 4381 (LSIV +2 deg 13) obtained with the International Ultraviolet Explorer (IUE). Broadband photometry and a newly computed grid of line blanketed model atmospheres were used to determine accurate angular diameters and total stellar fluxes. The resultant effective temperatures are in most cases in satisfactory agreement with those based on broadband photometry and/or high resolution spectroscopy in the visible. For two objects, LSII +33 deg 5 and LSE 78, disagreement was found between the IUE observations and broadband photometry: the colors predict temperatures around 20,000 K, whereas the UV spectra indicate much lower photospheric temperatures of 14,000 to 15,000 K. The new temperature scale for extreme helium stars extends to lower effective temperatures than that of Heber and Schoenberner (1981) and covers the range from 8,500 K to 32,000 K. Previously announced in STAR as N83-24433

  11. Effective potentials for charge-helium and charge-singly-ionized helium interactions in a dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T.S.; Amirov, S.M.; Moldabekov, Zh.A. [Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty (Kazakhstan)

    2016-06-15

    The effective electron (proton)-He and electron (proton)-He{sup +} screened pair interaction potentials arising as a result of partial screening of the helium nucleus field by bound electrons, taking into account both screening by free charged particles and quantum diffraction effect in dense plasmas were derived. The impact of quantum effects on screening was analyzed. It was shown that plasma polarization around the atom leads to the additional repulsion (attraction) between the electron (proton) and the helium atom. The method of constructing the full electron (proton)-He and electron (proton)-He{sup +} screened pair interaction potentials as the sum of the derived potentials with the polarization potential and exchange potential is discussed. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Effects of Helium and Oxygen Common Implantation in Silicon Wafer

    Institute of Scientific and Technical Information of China (English)

    LI Bing-Sheng; ZHANG Chong-Hong; ZHOU Li-Hong; YANG Yi-Tao

    2008-01-01

    Defect engineering for SiO2 precipitation is investigated using He-ion implantation as the first stage of separation by implanted oxygen (SIMOX). Cavities are created in Si by implantation with helium ions. After thermal annealing at different temperatures, the sample is implanted with 120 keV 8.0 × 1016 cm-2 O ions. The O ion energy is chosen such that the peak of the concentration distribution is centred at the cavity band. For comparison,another sample is implanted with O ions alone. Cross-sectional transmission electron microscopy (XTEM), Fourier transform infrared absorbance spectrometry (FTIR) and atomic force microscopy (AFM) measurements are used to investigate the samples. The results show that a narrow nano-cavity layer is found to be excellent nucleation sites that effectively assisted SiO2 formation and released crystal lattice strain associated with silicon oxidation.

  13. Effect of dynamically charged helium on tensile properties of V-4Cr-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L. [Argonne National Lab., IL (United States)

    1995-04-01

    The objective of this work is to determine the effect of displacement damage and dynamically charged helium on tensile properties of V-4Cr-4Ti alloy irradiated to 18-31 dpa at 425-600{degree}C in the Dynamic Helium Charging Experiment (DHCE).

  14. The dilution effect on the extinction of wall diffusion flame

    Directory of Open Access Journals (Sweden)

    Ghiti Nadjib

    2014-12-01

    Full Text Available The dynamic process of the interaction between a turbulent jet diffusion methane flame and a lateral wall was experimentally studied. The evolution of the flame temperature field with the Nitrogen dilution of the methane jet flame was examined. The interaction between the diffusion flame and the lateral wall was investigated for different distance between the wall and the central axes of the jet flame. The dilution is found to play the central role in the flame extinction process. The flame response as the lateral wall approaches from infinity and the increasing of the dilution rate make the flame extinction more rapid than the flame without dilution, when the nitrogen dilution rate increase the flame temperature decrease.

  15. LOX Tank Helium Removal for Propellant Scavenging

    Science.gov (United States)

    Chato, David J.

    2009-01-01

    System studies have shown a significant advantage to reusing the hydrogen and oxygen left in these tanks after landing on the Moon in fuel cells to generate power and water for surface systems. However in the current lander concepts, the helium used to pressurize the oxygen tank can substantially degrade fuel cell power and water output by covering the reacting surface with inert gas. This presentation documents an experimental investigation of methods to remove the helium pressurant while minimizing the amount of the oxygen lost. This investigation demonstrated that significant quantities of Helium (greater than 90% mole fraction) remain in the tank after draining. Although a single vent cycle reduced the helium quantity, large amounts of helium remained. Cyclic venting appeared to be more effective. Three vent cycles were sufficient to reduce the helium to small (less than 0.2%) quantities. Two vent cycles may be sufficient since once the tank has been brought up to pressure after the second vent cycle the helium concentration has been reduced to the less than 0.2% level. The re-pressurization process seemed to contribute to diluting helium. This is as expected since in order to raise the pressure liquid oxygen must be evaporated. Estimated liquid oxygen loss is on the order of 82 pounds (assuming the third vent cycle is not required).

  16. Helium effects on microstructural change in RAFM steel under irradiation: Reaction rate theory modeling

    Science.gov (United States)

    Watanabe, Y.; Morishita, K.; Nakasuji, T.; Ando, M.; Tanigawa, H.

    2015-06-01

    Reaction rate theory analysis has been conducted to investigate helium effects on the formation kinetics of interstitial type dislocation loops (I-loops) and helium bubbles in reduced-activation-ferritic/martensitic steel during irradiation, by focusing on the nucleation and growth processes of the defect clusters. The rate theory model employs the size and chemical composition dependence of thermal dissociation of point defects from defect clusters. In the calculations, the temperature and the production rate of Frenkel pairs are fixed to be T = 723 K and PV = 10-6 dpa/s, respectively. And then, only the production rate of helium atoms was changed into the following three cases: PHe = 0, 10-7 and 10-5 appm He/s. The calculation results show that helium effect on I-loop formation quite differs from that on bubble formation. As to I-loops, the loop formation hardly depends on the existence of helium, where the number density of I-loops is almost the same for the three cases of PHe. This is because helium atoms trapped in vacancies are easily emitted into the matrix due to the recombination between the vacancies and SIAs, which induces no pronounced increase or decrease of vacancies and SIAs in the matrix, leading to no remarkable impact on the I-loop nucleation. On the other hand, the bubble formation depends much on the existence of helium, in which the number density of bubbles for PHe = 10-7 and 10-5 appm He/s is much higher than that for PHe = 0. This is because helium atoms trapped in a bubble increase the vacancy binding energy, and suppress the vacancy dissociation from the bubble, resulting in a promotion of the bubble nucleation. And then, the helium effect on the promotion of bubble nucleation is very strong, even the number of helium atoms in a bubble is not so large.

  17. The effects of He I 10830 on helium abundance determinations

    CERN Document Server

    Aver, Erik; Skillman, Evan D

    2015-01-01

    Observations of helium and hydrogen emission lines from metal-poor extragalactic H II regions provide an independent method for determining the primordial helium abundance, Y_p. Traditionally, the emission lines employed are in the visible wavelength range, and the number of suitable lines is limited. Furthermore, when using these lines, large systematic uncertainties in helium abundance determinations arise due to the degeneracy of physical parameters, such as temperature and density. Recently, Izotov, Thuan, & Guseva (2014) have pioneered adding the He 10830 infrared emission line in helium abundance determinations. The strong electron density dependence of He 10830 makes it ideal for better constraining density, potentially breaking the degeneracy with temperature. We revisit our analysis of the dataset published by Izotov, Thuan, & Stasinska (2007) and incorporate the newly available observations of He 10830 by scaling them using the observed-to-theoretical Paschen-gamma ratio. The solutions are b...

  18. A reassessment of the effects of helium on Charpy impact properties of ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S.; Hamilton, M.L. [Pacific Northwest National Lab., Richland, WA (United States); Hankin, G.L. [Loughborough Univ. (United Kingdom)

    1998-03-01

    To test the effect of helium on Charpy impact properties of ferritic/martensitic steels, two approaches are reviewed: quantification of results of tests performed on specimens irradiated in reactors with very different neutron spectra, and isotopic tailoring experiments. Data analysis can show that if the differences in reactor response are indeed due to helium effects, then irradiation in a fusion machine at 400 C to 100 dpa and 1000 appm He will result in a ductile to brittle transition temperature shift of over 500 C. However, the response as a function of dose and helium level is unlikely to be simply due to helium based on physical reasoning. Shear punch tests and microstructural examinations also support this conclusion based on irradiated samples of a series of alloys made by adding various isotopes of nickel in order to vary the production of helium during irradiation in HFIR. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys. However, helium itself, up to 75 appm at over 7 dpa appears to have little effect on the mechanical properties of the alloys. This behavior is instead understood to result from complex precipitation response. The database for effects of helium on embrittlement based on nickel additions is therefore probably misleading and experiments should be redesigned to avoid nickel precipitation.

  19. Stability on time-dependent domains: convective and dilution effects

    Science.gov (United States)

    Krechetnikov, R.; Knobloch, E.

    2017-03-01

    We explore near-critical behavior of spatially extended systems on time-dependent spatial domains with convective and dilution effects due to domain flow. As a paradigm, we use the Swift-Hohenberg equation, which is the simplest nonlinear model with a non-zero critical wavenumber, to study dynamic pattern formation on time-dependent domains. A universal amplitude equation governing weakly nonlinear evolution of patterns on time-dependent domains is derived and proves to be a generalization of the standard Ginzburg-Landau equation. Its key solutions identified here demonstrate a substantial variety-spatially periodic states with a time-dependent wavenumber, steady spatially non-periodic states, and pulse-train solutions-in contrast to extended systems on time-fixed domains. The effects of domain flow, such as bifurcation delay due to domain growth and destabilization due to oscillatory domain flow, on the Eckhaus instability responsible for phase slips in spatially periodic states are analyzed with the help of both local and global stability analyses. A nonlinear phase equation describing the approach to a phase-slip event is derived. Detailed analysis of a phase slip using multiple time scale methods demonstrates different mechanisms governing the wavelength changing process at different stages.

  20. Effect of dilution of stool soluble component on growth and development of Strongyloides stercoralis.

    Science.gov (United States)

    Anamnart, Witthaya; Intapan, Pewpan Maleewong; Pattanawongsa, Attarat; Chamavit, Pennapa; Kaewsawat, Supreecha; Maleewong, Wanchai

    2015-06-02

    Dispersion or dilution of stool by water from heavy rainfall may affect Strongyloides stercoralis free-living development producing infective filariform larvae (FL). This study examined effect of water dilution of stool on survival of S. stercoralis free-living development. One g of stool was prepared in water so that its soluble component was diluted sequentially from 1:2 to 1:480. Three dishes were used to compare FL production in three culture conditions: stool suspension, stool sediment deposited in soil, and isolated rhabditiform larvae (RhL) deposited in soil. The fourth dish was for developmental observation of RhL into free-living stages. Numerous FL were generated from undiluted or 1:2 diluted stool and stool sediment placed on soil. However, starting from dilution 1:5, FL production continuously decreased in both stool suspensions and stool sediments placed on soil. RhL isolated from stool dilutions placed on soil gave rise to few FL. Worm mating were seen at 24-30 hours in dilutions 1:20-1:120 only. Highest numbers of FL from indirect free-living cycle were 1/3 of those from control. FL production decreased as stool dilution increased, and reached zero production at 1:160 dilution. Rainfall may disperse or dilute stool so that nutritional supplement for S. stercoralis free-living development is insufficient.

  1. EFFECTS OF DILUTE ACID HYDROLYSIS ON COMPOSITION AND STRUCTURE OF CELLULOSE IN EULALIOPSIS BINATA

    OpenAIRE

    Jiebin Tang; Kefu Chen; Jun Xu; Jun Li; Chuanshan Zhao

    2011-01-01

    Dilute sulfuric acid hydrolysis was performed before the isolation of cellulose from Eulaliopsis binata. And then, the effects of dilute acid hydrolysis on composition and structure of the cellulose was studied in detail. The results indicated that hemicellulose was dissolved mostly and that the lignin-hemicellulose-cellulose interactions were also partially disrupted during the dilute acid hydrolysis. Cellulose in Eulaliopsis binata was identified as the cellulose I allomorph with low crysta...

  2. Synergistic effect of helium and hydrogen for bubble swelling in reduced-activation ferritic/martensitic steel under sequential helium and hydrogen irradiation at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wenhui [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Chen, Jihong; Luo, Fengfeng; Li, Tiecheng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Ren, Yaoyao [Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China); Suo, Jinping; Yang, Feng [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-04-15

    Highlights: • Helium/hydrogen synergistic effect can increase irradiation swelling of RAFM steel. • Hydrogen can be trapped to the outer surface of helium bubbles. • Too large a helium bubble can become movable. • Point defects would become mobile and annihilate at dislocations at high temperature. • The peak swelling temperature for RAFM steel is 450 °C. - Abstract: In order to investigate the synergistic effect of helium and hydrogen on swelling in reduced-activation ferritic/martensitic (RAFM) steel, specimens were separately irradiated by single He{sup +} beam and sequential He{sup +} and H{sup +} beams at different temperatures from 250 to 650 °C. Transmission electron microscope observation showed that implantation of hydrogen into the specimens pre-irradiated by helium can result in obvious enhancement of bubble size and swelling rate which can be regarded as a consequence of hydrogen being trapped by helium bubbles. But when temperature increased, Ostwald ripening mechanism would become dominant, besides, too large a bubble could become mobile and swallow many tiny bubbles on their way moving, reducing bubble number density. And these effects were most remarkable at 450 °C which was the peak bubble swelling temperature for RAMF steel. When temperature was high enough, say above 450, point defects would become mobile and annihilate at dislocations or surface. As a consequence, helium could no longer effectively diffuse and clustering in materials and bubble formation was suppressed. When temperature was above 500, helium bubbles would become unstable and decompose or migrate out of surface. Finally no bubble was observed at 650 °C.

  3. Bond-Dilution Effects on Two-Dimensional Spin-Gapped Heisenberg Antiferromagnets

    OpenAIRE

    Yasuda, Chitoshi; Todo, Synge; Matsumoto, Munehisa; Takayama, Hajime

    2001-01-01

    Bond-dilution effects on spin-1/2 spin-gapped Heisenberg antiferromagnets of coupled alternating chains on a square lattice are investigated by means of the quantum Monte Carlo method. It is found that, in contrast with the site-diluted system having an infinitesimal critical concentration, the bond-diluted system has a finite critical concentration of diluted bonds, $x_{c}$, above which the system is in an antiferromagnetic (AF) long-range ordered phase. In the disordered phase below $x_{c}$...

  4. A novel method for computing effective diffusivity: Application to helium implanted α-Fe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Aaron [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, UMI 2958 Georgia Tech CNRS, 57070 Metz (France); Agudo-Merida, Laura; Martin-Bragado, Ignacio [IMDEA Materials Institute, C/ Eric Kandel, 2, Tecnogetafe, 28906 Getafe, Madrid (Spain); McPhie, Mathieu; Cherkaoui, Mohammed [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, UMI 2958 Georgia Tech CNRS, 57070 Metz (France); Capolungo, Laurent, E-mail: laurent.capolungo@me.gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, UMI 2958 Georgia Tech CNRS, 57070 Metz (France)

    2014-05-01

    The effective diffusivity of helium in thin iron films is quantified using spatially resolved stochastic cluster dynamics and object kinetic Monte Carlo simulations. The roles of total displacement dose (in DPA), damage rate, helium to DPA ratio, layer thickness, and damage type (cascade damage vs Frenkel pair implantation) on effective He diffusivity are investigated. Helium diffusivity is found to decrease with increasing total damage and decreasing damage rate. Arrhenius plots show strongly increased helium diffusivity at high temperatures, high total implantation, and low implantation rates due to decreased vacancy and vacancy cluster concentrations. At low temperatures, effective diffusivity is weakly dependent on foil thickness while at high temperatures, narrower foils prevent defect accumulation by releasing all defects at the free surfaces. Helium to DPA ratio is not shown to strongly change helium diffusivity in the range of irradiation conditions simulated. Frenkel pair implantation is shown to cause higher effective diffusivity and more complex diffusion mechanisms than cascade implantation. The results of these simulations indicate that the differences in damage rates between implantation experiments and fission or fusion environments may result in differences in the final microstructure.

  5. Helium effects on tungsten surface morphology and deuterium retention

    NARCIS (Netherlands)

    Ueda, Y.; H. Y. Peng,; H. T. Lee,; N. Ohno,; S. Kajita,; Yoshida, N.; Doerner, R.; De Temmerman, G.; V. Alimov,; G. Wright,

    2013-01-01

    Recent experimental results on tungsten surface morphology, especially nano-structure (fuzz), induced by helium plasma exposure at temperatures between 1000 K and 2000 K are reviewed. This structure was firstly reported in 2006. In this review, most of experimental results reported

  6. Measurement of strong interaction effects in antiprotonic helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Davies, J.D.; Gorringe, T.P.; Lowe, J.; Nelson, J.M.; Playfer, S.M.; Pyle, G.J.; Squier, G.T.A. (Birmingham Univ. (UK). Dept. of Physics); Baker, C.A.; Batty, C.J.; Clark, S.A.

    1984-09-27

    The strong interaction shift and width for the 2 p level and the width for the 3d level have been measured for antiprotonic helium atoms. The results are compared with optical model calculations. The possible existence of strongly bound antiproton states in nuclei is discussed.

  7. Effect of Welding Parameters on Dilution and Weld Bead Geometry in Cladding

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of pulsed gas metal arc welding (GMAW) variables on the dilution and weld bead geometry in cladding X65 pipeline steel with 316L stainless steel was studied. Using a full factorial method, a series of experiments were carried out to know the effect of wire feed rate, welding speed, distance between gas nozzle and plate, and the vertical angle of welding on dilution and weld bead geometry. The findings indicate that the dilution of weld metal and its dimension i.e. width, height and depth increase with the feed rate, but the contact angle of the bead decreases first and then increases. Meantime, welding speed has an opposite effect except for dilution. There is an interaction effect between welding parameters at the contact angle. The results also show forehand welding or decreasing electrode extension decrease the angle of contact. Finally,a mathematical model is contrived to highlight the relationship between welding variables with dilution and weld bead geometry.

  8. Effects of diluting medium and holding time on sperm motility analysis by CASA in ram.

    Science.gov (United States)

    Mostafapor, Somayeh; Farrokhi Ardebili, Farhad

    2014-01-01

    The aim of this study was to evaluate the effects of dilution rate and holding time on various motility parameters using computer-assisted sperm analysis (CASA). The semen samples were collected from three Ghezel rams. Samples were diluted in seminal plasma (SP), phosphate-buffered saline (PBS) containing 1% bovine serum albumin (BSA) and Bioexcell. The motility parameters that computed and recorded by CASA include curvilinear velocity (VCL), straight line velocity (VSL), average path velocity (VAP), straightness (STR), linearity (LIN), amplitude of lateral head displacement (ALH), and beat cross frequency (BCF). In all diluters, there was a decrease in the average of all three parameters of sperms movement velocity as the time passed, but density of this decrease was more intensive in SP. The average of ALH between diluters indicated a significant difference, as it was more in Bioexcell in comparison with the similar amount in SP and PBS. The average of LIN in the diluted sperms in Bioexcell was less than two other diluters in all three times. The motility parameters of the diluted sperms in Bioexcell and PBS indicated an important and considerable difference with the diluted sperms in SP. According to the gained results, the Bioexcell has greater ability in preserving motility of sperm in comparison with the other diluters but as SP is considered as physiological environment for sperm. It seems that the evaluation of the motility parameters in Bioexcell and PBS cannot be an accurate and comparable evaluation with SP.

  9. Convection and segregation in directional solidification of dilute and non-dilute binary alloys: effects of ampoule and furnace design

    Energy Technology Data Exchange (ETDEWEB)

    Adornato, P.M.; Brown, R.A.

    1987-01-01

    The effect of furnace configuration and ampoule design on the temperature field, the convection in the melt, the shape of the melt-solid interface, and the segregation of solute in the crystal are analyzed for the directional solidification of several dilute and non-dilute binary semiconductor alloys. The analysis is based on numerical calculations using a Petrov-Galerkin/finite-element method for solving the free-boundary problem that describes axisymmetric convection in the melt, the interface shape, and heat transfer in melt, crystal, and ampoule in a quasi-steady state model of the vertically stabilized Bridgman-Stockbarger system and for a furnace with a uniform temperature gradient imposed over a long section of ampoule. The flow in molten germanium grown in the Bridgman-Stockbarger system has two vertically-stacked toroidal cells. The top cell moves melt upward along the ampoule wall and is driven by the radial temperature gradients caused by the junction of the adiabatic and hot zones of the furnace.

  10. Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows

    Energy Technology Data Exchange (ETDEWEB)

    He, Qingyun; Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-02-15

    Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.

  11. Effects of Substrate Temperature on Helium Content and Microstructure of Nanocrystalline Titanium Films

    Institute of Scientific and Technical Information of China (English)

    PANG Hong-Chao; ZHENG Si-Xiao; LUO Shun-Zhong; LONG Xing-Gui; AN Zhu; LIU Ning; DUAN Yan-Min; WU Xing-Chun; YANG Ben-Fu; WANG Pei-Lu

    2006-01-01

    Helium-chargej nanocrystalline titanium films have been deposited by He-Ar magnetron co-sputtering. The effects of substrate temperature on the helium content and microstructure of the nanocrystalline titanium films have been studied. The results indicate that helium atoms with a high concentration are evenly incorporated in the deposited titanium films. When the substrate temperature increases from 60°C to 350°C while the other depositionparameters are fixed, the helium content decreases gradually from 38.6 at. % to 9.2 at. %, which proves that nanocrystalline Ti films have a great helium storage capacity. The 2θ angle of the Bragg peak of (002)crystal planes of the He-charged Ti film shifts to a lower angle and that of (100) crystal plane is unchanged as compared with that of the pure Ti film, which indicates that the lattice parameter c increases and a keeps at the primitive value. The grain refining and helium damage result in the diffraction peak broadening.

  12. The effects of hydrogen dilution on Voc in a-Si:H pin solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.; Crandall, R.S.; Han, D.

    1997-07-01

    The authors study the effects of hydrogen dilution on the open circuit voltage of a-Si:H pin solar cells fabricated by rf glow discharge growth. They keep the p and n layers the same and only vary the i-layer properties. A normal a-Si:H i-layer, an H-diluted i-layer, and a thin H-diluted layer inserted between p and normal i layer are selected for this study. They measure the JV characteristics and the internal electric field distribution using a transient-null-current technique both in annealed and light soaked states. They find that hydrogen dilution does stabilize the Voc either in a bulk H-diluted i layer or in a thin layer between p and normal i layer after 100 hours Am1 sun light soaking. From dark IV measurement, both H-diluted cells show little change in current at voltage near Voc before and after light soaking; while the normal a-Si:H cell does show a noticeable change. Also the internal field measurements find a stronger electric field starting from p and i interface for both H-diluted cells compared to the normal a-Si:H cell. Furthermore, there are no measurable changes in the field profiles after 100 hour AM1 light-soaking for both H-diluted and normal a-Si cells. All these suggest that hydrogen dilution increases the field strength near p and i interface, which is the key that leads to a more stable Voc of H-diluted cells.

  13. Crystal orientation effects on implantation of low-energy hydrogen, helium and hydrogen/helium mixtures in plasma-facing tungsten surfaces

    Science.gov (United States)

    Linn, Brian C.

    The development of plasma-facing materials (PFM) is one of the major challenges in. realizing fusion reactors. Materials deployed in PFMs must be capable of withstanding the high-flux of low-energy hydrogen and helium ions omitted from the plasma. while not hindering the plasma. Tungsten is considered a promising candidate material due to desirable material properties including its high melting temperature, good thermal conductivity and relatively low physical and chemical sputtering yields. This thesis uses molecular dynamic simulations to investigate helium and hydrogen bombardment of tungsten and the underlying physical effects (e.g. sputtering, erosion, blistering). Non-cumulative and cumulative bombardment simulations of helium, hydrogen, and hydrogen/helium bombardment of tungsten were modeled using the molecular dynamics code LAMMPS. Two orientations of monocrystalline bcc tungsten surfaces were considered, (001) and (111). Simulations were performed for temperatures ranging from 600K up to 1500K and helium / hydrogen incident energies of 20eV to 100eV . The results of these simulations showed the effect of temperature and incident particle energy on retention rates and implantation/deposition profiles in tungsten.

  14. Relativistic and quantum electrodynamics effects in the helium pair potential.

    Science.gov (United States)

    Przybytek, M; Cencek, W; Komasa, J; Łach, G; Jeziorski, B; Szalewicz, K

    2010-05-01

    The helium pair potential was computed including relativistic and quantum electrodynamics contributions as well as improved accuracy adiabatic ones. Accurate asymptotic expansions were used for large distances R. Error estimates show that the present potential is more accurate than any published to date. The computed dissociation energy and the average R for the (4)He(2) bound state are 1.62+/-0.03 mK and 47.1+/-0.5 A. These values can be compared with the measured ones: 1.1(-0.2)(+0.3) mK and 52+/-4 A [R. E. Grisenti, Phys. Rev. Lett. 85, 2284 (2000)].

  15. Effect of dilution holes on the performance of a triple swirler combustor

    Directory of Open Access Journals (Sweden)

    Ding Guoyu

    2014-12-01

    Full Text Available A triple swirler combustor is considered to be a promising solution for future high temperature rise combustors. The present paper aims to study dilution holes including primary dilution holes and secondary dilution holes on the performance of a triple swirler combustor. Experimental investigations are conducted at different inlet airflow velocities (40–70 m/s and combustor overall fuel–air ratio with fixed inlet airflow temperature (473 K and atmospheric pressure. The experimental results show that the ignition is very difficult with specific performance of high ignition fuel–air ratio when the primary dilution holes are located 0.6H (where H is the liner dome heightdownstream the dome, while the other four cases have almost the same ignition performance. The position of primary dilution holes has an effect on lean blowout stability and has a large influence on combustion efficiency. The combustion efficiency is the highest when the primary dilution holes are placed 0.9H downstream the dome among the five different locations. For the secondary dilution holes, the pattern factor of Design A is better than that of Design B.

  16. Effect of dilution holes on the performance of a triple swirler combustor

    Institute of Scientific and Technical Information of China (English)

    Ding Guoyu; He Xiaomin; Zhao Ziqiang; An Bokun; Song Yaoyu; Zhu Yixiao

    2014-01-01

    A triple swirler combustor is considered to be a promising solution for future high temperature rise combustors. The present paper aims to study dilution holes including primary dilu-tion holes and secondary dilution holes on the performance of a triple swirler combustor. Experi-mental investigations are conducted at different inlet airflow velocities (40–70 m/s) and combustor overall fuel–air ratio with fixed inlet airflow temperature (473 K) and atmospheric pressure. The experimental results show that the ignition is very difficult with specific performance of high ignition fuel–air ratio when the primary dilution holes are located 0.6H (where H is the liner dome height)downstream the dome, while the other four cases have almost the same ignition performance. The position of primary dilution holes has an effect on lean blowout stability and has a large influence on combustion efficiency. The combustion efficiency is the highest when the primary dilution holes are placed 0.9H downstream the dome among the five different locations. For the secondary dilution holes, the pattern factor of Design A is better than that of Design B.

  17. Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium

    CERN Document Server

    Sun, Xiankai; Schuck, Carsten; Tang, Hong X

    2013-01-01

    Photonic nanocavities are a key component in many applications because of their capability of trapping and storing photons and enhancing interactions of light with various functional materials and structures. The maximal number of photons that can be stored in silicon photonic cavities is limited by the free-carrier and thermo-optic effects at room temperature. To reduce such effects, we performed the first experimental study of optical nonlinearities in ultrahigh-Q silicon disk nanocavities at cryogenic temperatures in a superfluid helium environment. At elevated input power, the cavity transmission spectra exhibit distinct blue-shifted bistability behavior when temperature crosses the liquid helium lambda point. At even lower temperatures, the spectra restore to symmetric Lorentzian shapes. Under this condition, we obtain a large stored intracavity photon number of about 40,000, which is limited ultimately by the local helium phase transition. These new discoveries are explained by theoretical calculations ...

  18. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium

    Science.gov (United States)

    Li, Guo; Li, He-Ping; Wang, Li-Yan; Wang, Sen; Zhao, Hong-Xin; Sun, Wen-Ting; Xing, Xin-Hui; Bao, Cheng-Yu

    2008-06-01

    Due to low gas temperatures and high densities of active species, atmospheric-pressure glow discharges (APGDs) would have potential applications in the fields of plasma-based sterilization, gene mutation, etc. In this letter, the genetic effects of helium radio-frequency APGD plasmas with the plasmid DNA and oligonucleotide as the treated biomaterials are presented. The experimental results show that it is the chemically active species, instead of heat, ultraviolet radiation, intense electric field, and/or charged particles, that break the double chains of the plasmid DNA. The genetic effects depend on the plasma operating parameters, e.g., power input, helium flow rate, processing distance, time, etc.

  19. Effect of 800 keV argon ions pre-damage on the helium blister formation of tungsten exposed to 60 keV helium ions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhe; Han, Wenjia; Yu, Jiangang; Zhu, Kaigui, E-mail: kgzhu@buaa.edu.cn

    2016-04-15

    This study aims to investigate the effect of Ar{sup 8+} ions pre-damage on the following He{sup 2+} irradiation behavior of polycrystalline tungsten. We compared the irradiation resistance performance against 60 keV He{sup 2+} ions of undamaged tungsten samples with that of pre-damaged samples which were preliminarily exposed to 800 keV Ar{sup 8+} ions at a fluence of 4 × 10{sup 19} ions m{sup −2}. The experimental results indicate that the helium blistering of tungsten could be effectively relieved by the Ar{sup 8+} ions pre-damage, while the retention of helium around low energy desorption sites in the pre-damaged tungsten was larger than that of the undamaged samples. A strong orientation dependence of blistering had been observed, with the blister occurred preferentially on the surface of grains with normal direction close to <111>. The Ar{sup 8+} ions irradiation-induced damage altered the morphology of helium bubbles in tungsten exposed to the following He{sup 2+} irradiation significantly. The intensity of helium release peaks at relatively low temperatures (<600 K) was enhanced due to Ar{sup 8+} ions pre-damage. - Highlights: • Helium blistering on the surface of W was effectively relieved by Ar{sup 8+} ions pre-damage. • Strong orientation dependence of blister formation was observed. • Low temperature helium release peaks were increased due to Ar{sup 8+} ions pre-damage.

  20. Helium irradiation effects on tritium retention and long-term tritium release properties in polycrystalline tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Nobuta, Y., E-mail: y-nobuta@eng.hokudai.ac.jp [Laboratory of Plasma Physics and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Hatano, Y.; Matsuyama, M.; Abe, S. [Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama 930-8555 (Japan); Yamauchi, Y.; Hino, T. [Laboratory of Plasma Physics and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan)

    2015-08-15

    DT{sup +} ion irradiation with energy of 0.5 and 1.0 keV was performed on helium pre-irradiated tungsten and the amount of retained tritium and the long-term release of retained tritium in vacuum was investigated using an IP technique and BIXS. Tritium retention and long-term tritium release were significantly influenced by helium pre-irradiation. The amount of retained tritium increased until it reached 1 × 10{sup 17} He/cm{sup 2}, and at 1 × 10{sup 18} He/cm{sup 2} it became smaller compared to 1 × 10{sup 17} He/cm{sup 2}. The amount of retained tritium in tungsten without helium pre-irradiation largely decreased after several weeks preservation in vacuum, and the long-term release rate during vacuum preservation was retarded by helium pre-irradiation. The results indicate that the long-term tritium release and the helium irradiation effect on it should be taken into account for more precise estimation of tritium retention in the long-term use of tungsten in fusion devices.

  1. Torsional Alfven waves in solar partially ionized plasma: effects of neutral helium and stratification

    CERN Document Server

    Zaqarashvili, T V; Soler, R

    2012-01-01

    Ion-neutral collisions may lead to the damping of Alfven waves in chromospheric and prominence plasmas. Neutral helium atoms enhance the damping in certain temperature interval, where the ratio of neutral helium and neutral hydrogen atoms is increased. Therefore, the height-dependence of ionization degrees of hydrogen and helium may influence the damping rate of Alfven waves. We aim to study the effect of neutral helium in the damping of Alfven waves in stratified partially ionized plasma of the solar chromosphere. We consider a magnetic flux tube, which is expanded up to 1000 km height and then becomes vertical due to merging with neighboring tubes, and study the dynamics of linear torsional Alfven waves in the presence of neutral hydrogen and neutral helium atoms. We start with three-fluid description of plasma and consequently derive single-fluid magnetohydrodynamic (MHD) equations for torsional Alfven waves. Thin flux tube approximation allows to obtain the dispersion relation of the waves in the lower pa...

  2. Effect of rhenium addition on tungsten fuzz formation in helium plasmas

    NARCIS (Netherlands)

    Khan, A.; De Temmerman, G.; Morgan, T. W.; M. B. Ward,

    2016-01-01

    The effect of the addition of rhenium to tungsten on the formation of a nanostructure referred to as ‘fuzz’ when exposed to helium plasmas at fusion relevant ion fluxes was investigated in the Magnum and Pilot PSI devices at the FOM Institute DIFFER. The effect rhenium had on fuzz growth was seen to

  3. Effects of helium implantation on fatigue properties of F82H-IEA heat

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, N.; Murase, Y.; Nagakawa, J. [National Research Institute for Metals, Tsukuba, Ibaraki (Japan)

    2007-07-01

    Full text of publication follows: Ferritic steels including reduced activation ones that have been recognized as attractive structural candidates for DEMO reactors and the beyond are known to be highly resistant to helium embrittlement. However, almost studies that deduced this behavior have been carried out by means of short time experiments such as tensile tests, and a few results are available concerning long term inspections, although the detrimental helium effect appears more severely in the latter. The aim of this work is to obtain further information on the influence of helium on fatigue properties of a representative reduced activation ferritic/martensitic steel F82H (8Cr2WVTa) using helium implantation technique with a cyclotron. The material examined is an IEA heat version of F82H. In order to realize a fine grain size due to thin specimens (0.08 mm thick) for ion irradiation, normalizing was conducted at rather low temperature of 1213 K, followed by tempering at 1023 K. Helium was implanted by {alpha}-particle irradiation at 823 K, a desired highest temperature of this material for first wall application, to the concentration of 100 appm He with an implantation rate of about 1.7 x 10{sup -3} appm He/s. Subsequent fatigue tests were conducted at the same temperature as that of irradiation, not only on implanted specimens but also on reference controls which were not implanted with helium but experienced the same metallurgical histories as those of irradiated ones. After fracture, samples were observed with electron microscopes. In short time periods, it has been notified that helium introduction caused no significant deterioration of both fatigue life and extension at fracture. In addition, all specimens failed in a fully trans-crystalline and ductile manner, irrespective of whether helium was present or not. Indication of grain boundary embrittlement was therefore not discerned. These facts would reflect insusceptible characteristics of this material to

  4. Reduction of matrix effects in liquid chromatography-electrospray ionization-mass spectrometry by dilution of the sample extracts: how much dilution is needed?

    Science.gov (United States)

    Stahnke, Helen; Kittlaus, Stefan; Kempe, Günther; Alder, Lutz

    2012-02-01

    In this study, the relationship between matrix concentration and suppression of electrospray ionization (matrix effects) was investigated. Ion suppression of pesticides present in QuEChERS extracts was used as an example. Residue-free extracts of four different commodities, avocado, black tea, orange, and rocket (arugula), were fortified with 39 pesticides each. For many of the resulting 156 pesticide/matrix combinations, considerable matrix effects were observed if the coextracted matrix of 8 mg of equivalent sample (in the case of tea: 1.6 mg) was injected with the undiluted extracts. The reduction of these matrix effects was measured at 10 levels of dilution up to 1000-fold. The results obtained indicate a linear correlation between matrix effects and the logarithm of matrix concentration (or dilution factor) until the zero-effect level of further dilution was reached. Using the logarithmic equations, it could be shown that a dilution of extracts by a factor of 25-40 reduces ion suppression to less than 20% if the initial suppression is ≤80%. For stronger matrix effects or complete elimination of suppression, higher dilution factors were needed. The observed correlation was independent from the two instrument platforms used, but the degree of matrix effects differed slightly between the two mass spectrometers in this study.

  5. A molecular dynamics simulation study of temperature and depth effect on helium bubble releasing from Ti surface

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Li; Ma, Mingwang; Xiang, Wei; Wang, Yuan; Cheng, Yanlin; Tan, Xiaohua, E-mail: caepiee@163.com

    2015-10-05

    Highlights: • Features of helium bubble at varied depths in Ti are researched by MD simulation. • Effect of Temperature on helium bubble in Ti is researched by MD simulation. • The mechanism of helium bubble releasing from metal is clarified. - Abstract: Using molecular dynamics simulation, the effect of environment temperature and depth of helium bubble on its volume, pressure and releasing process in metal Ti is researched. First, through studying the statuses of helium bubble at different depths at 300 K, the regularity of helium bubble shape, volume and pressure is acquired. The results show that with depth augmenting, the pressure increases gradually, while the volume decreases, but these two parameters keep around some level when depth is greater than 2.6 nm. Then, the evolution of model system with helium bubble at various temperatures is simulated. On the whole, the critical releasing temperature increases with depth. Finally, the mechanism of helium bubble releasing from Ti surface is explained. It is found that the bubble would tear the Ti film above it when its pressure is greater than the tensile strength of metal film, and then helium atoms will release from the metal.

  6. Effective doping of low energy ions into superfluid helium droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Chen, Lei; Freund, William M.; Kong, Wei, E-mail: wei.kong@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)

    2015-08-21

    We report a facile method of doping cations from an electrospray ionization (ESI) source into superfluid helium droplets. By decelerating and stopping the ion pulse of reserpine and substance P from an ESI source in the path of the droplet beam, about 10{sup 4} ion-doped droplets (one ion per droplet) can be recorded, corresponding to a pickup efficiency of nearly 1 out of 1000 ions. We attribute the success of this simple approach to the long residence time of the cations in the droplet beam. The resulting size of the doped droplets, on the order of 10{sup 5}/droplet, is measured using deflection and retardation methods. Our method does not require an ion trap in the doping region, which significantly simplifies the experimental setup and procedure for future spectroscopic and diffraction studies.

  7. Relativistic Corrections to the Zeeman Effect of Helium Atom

    Institute of Scientific and Technical Information of China (English)

    关晓旭; 李白文; 王治文

    2002-01-01

    The high-order relativistic corrections to the Zeeman g-factors of the helium atom are calculated. AII the relativistic correction terms and the term describing the motion of the mass centre are treated as perturbations. Most of our results are in good agreement with those of Yah and Drake [Phys. Rev. A 50 (1994)R1980/, who used the wavefunctions constructed by Hylleraas coordinates. For the correction δg of the g-factor of the 3 3P state in 4He, our result, 2.91415 × 10-7 a.u., should be more reasonable and accurate, although there are no experimental data available in the literature to compare.

  8. Resonance effects in electron-impact ionization of helium

    Science.gov (United States)

    Fang, Yanghua; Bartschat, Klaus

    2001-07-01

    We have extended our recent work on electron-impact ionization and ionization-excitation of helium (Fang Y and Bartschat K 2001 J. Phys. B: At. Mol. Opt. Phys. 34 L19) to investigate resonance structures in the ejected-electron-residual-ion interaction. The calculations were performed using a second-order perturbative model for a `fast' incident projectile together with a convergent R-matrix with pseudo-states close-coupling model for the initial bound state and the scattering of a `slow' ejected electron in the field of the ion. The agreement with previous calculations by Marchalant et al using a similar model is satisfactory and confirms the importance of the `two-step' mechanism in these processes. However, significant discrepancies remain with experimental data by Lower and Weigold and, to a lesser extent, by McDonald and Crowe.

  9. Effect of alpha self irradiation on helium migration in (U,Pu)O{sub 2} samples

    Energy Technology Data Exchange (ETDEWEB)

    Pipon, Yves; Roudil, Daniele; Jegou, Christophe [CEA Marcoule DEN/DTCD/SECM/LMPA, BP 171 30207 Bagnols-sur-Ceze cedex (France); Khodja, Hicham; Raepsaet, Caroline [CEA Saclay DSM/IRAMIS/LPS, Point courrier 127, F-91191 Gif-Sur-Yvette cedex (France)

    2008-07-01

    The helium behavior and its migration mechanisms in nuclear spent fuel (UOX and MOX) significantly impact the possible evolution of the spent fuel matrix in a closed system during interim storage or during a disposal repository. An experimental study has been conducted on (U,Pu)O{sub 2} samples in order to investigate the impact of defects created by alpha decay on helium diffusion. One large part is devoted to thermal atomic diffusion and applied on {sup 3}He implanted samples, annealed at 850 and 1000 deg. C. The He profiles, as implanted and after annealing, were investigated with the {sup 3}He(d,p){sup 4}He nuclear reaction. Another part deals with the thermal release of {sup 4}He amassed in the samples. The measured thermal diffusion coefficients are compared with previously published values, thereby highlighting the effect of the alpha self-irradiation on helium behavior. (authors)

  10. Effect of 800 keV argon ions pre-damage on the helium blister formation of tungsten exposed to 60 keV helium ions

    Science.gov (United States)

    Chen, Zhe; Han, Wenjia; Yu, Jiangang; Zhu, Kaigui

    2016-04-01

    This study aims to investigate the effect of Ar8+ ions pre-damage on the following He2+ irradiation behavior of polycrystalline tungsten. We compared the irradiation resistance performance against 60 keV He2+ ions of undamaged tungsten samples with that of pre-damaged samples which were preliminarily exposed to 800 keV Ar8+ ions at a fluence of 4 × 1019 ions m-2. The experimental results indicate that the helium blistering of tungsten could be effectively relieved by the Ar8+ ions pre-damage, while the retention of helium around low energy desorption sites in the pre-damaged tungsten was larger than that of the undamaged samples. A strong orientation dependence of blistering had been observed, with the blister occurred preferentially on the surface of grains with normal direction close to . The Ar8+ ions irradiation-induced damage altered the morphology of helium bubbles in tungsten exposed to the following He2+ irradiation significantly. The intensity of helium release peaks at relatively low temperatures (<600 K) was enhanced due to Ar8+ ions pre-damage.

  11. Dilution Effects on Two-Dimensional Heisenberg Antiferromagnets with Non-Magnetic Spin-Gapped Ground State

    OpenAIRE

    Yasuda, Chitoshi; Todo, Synge; Matsumoto, Munehisa; Takayama, Hajime

    2002-01-01

    Dilution effects on spin-1/2 quantum Heisenberg antiferromagnets with a non-magnetic spin-gapped ground state are studied by means of the qunatum Monte Carlo simulation. In the site-diluted system, an antiferromagnetic long-range order (AF-LRO) is induced at an infinitesimal concentration of dilution due to an effective coupling $\\tilde{J}_{mn}$ between induced magnetic moments. In the bond-diluted case, on the other hand, the AF-LRO is not induced up to a certain concentration of dilution du...

  12. Effect of helium ion beam treatment on the etching rate of silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Yu.V., E-mail: y.petrov@spbu.ru; Sharov, T.V.; Baraban, A.P.; Vyvenko, O.F.

    2015-04-15

    We investigated the effect of the helium ion implantation on the etching rate of silicon nitride in hydrofluoric acid. 30 keV helium ions were implanted into a 500-nm-thick silicon nitride film on silicon. Ion fluences from 10{sup 15} to 10{sup 17} cm{sup −2} were used. Etching was performed in a hydrofluoric acid solution. All samples were investigated with a scanning electron microscope and atomic force microscope. It was found that helium ion implantation can increase the etching rate by a factor of three. This results in the formation of a well in the implanted area after etching. The maximum depth of the well is about 180 nm and is limited by the penetration depth of 30 keV helium ions. Two possible reasons for enhanced etching are suggested: enhancement by ion-induced defects and electrostatic interaction of ions of the etchant with ion-induced space charge of silicon nitride. The recombination of ion-induced defects is also discussed.

  13. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets.

    Science.gov (United States)

    Chen, Lei; Zhang, Jie; Freund, William M; Kong, Wei

    2015-07-28

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs(+) is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs(+)-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10(6) helium atoms when the source temperature is between 14 K and 17 K.

  14. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei; Zhang, Jie; Freund, William M.; Kong, Wei, E-mail: wei.kong@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)

    2015-07-28

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs{sup +} is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs{sup +}-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10{sup 6} helium atoms when the source temperature is between 14 K and 17 K.

  15. Effect of Mg, Si and Cu content on the microstructure of dilute 6000 series aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jaafar, Aiza, E-mail: cnaizza@gmail.com [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Rahmat, Azmi [School of Materials Engineering, Universiti Malaysia Perlis, Taman Muhibah, 02600 Jejawi, Arau Perlis (Malaysia); Hussain, Zuhailawati [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Zainol, Ismail [Chemistry Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak (Malaysia)

    2011-09-01

    Highlights: > The main precipitates formed in the artificially aged dilute alloys are needle-shaped. > The ageing temperature of 100 deg. C is found to be too low to form precipitates. > The number density of precipitates increases with increasing solute contents. > There is a correlation between Mg{sub 2}Si, Si and Cu content and alloys microstructure. > The precipitates kinetics is faster in the less dilute alloys. - Abstract: The effect of Mg, Si and Cu content on the microstructural development during ageing treatment of dilute 6000 series alloys have been investigated using transmission electron microscopy (TEM). Four dilute alloys were used in this study. These alloys were subjected to quenching and artificial ageing at 100 deg. C, 185 deg. C and 300 deg. C. The microstructural developments of the precipitates formed were monitored by TEM. The ageing temperature of 100 deg. C was found to be too low to form precipitates. It was found that needle or rod-shaped precipitates were formed in the alloys after ageing at 185 and 300 deg. C. Prolong ageing up to 1000 h at 300 deg. C resulted in the formation of Mg{sub 2}Si precipitate that coexists with the type of AlFeSi and Si precipitates. The results show a correlation between the Mg{sub 2}Si, Si and Cu content on the microstructure of the four dilute alloys after ageing treatment.

  16. Effect of Ionic Liquids on Organic Reactions Based on Activity Coefficients at Infinite Dilution

    Institute of Scientific and Technical Information of China (English)

    马征; 董晓霞; 胡玉峰; 张柏松; 徐长英; 刘艳升

    2013-01-01

    It is important to know how ILs (ionic liquids) influence organic reaction. In this paper, activity coeffi-cients at infinite dilution of more than 80 organic compounds in ILs are collected and analyzed systematically. Through the study on typical organic reactions happened in ILs, such as Diels-Alder, esterification and Friedel-Crafts reaction, the ratio of activity coefficients at infinite dilution of products and reactants is employed to estimate different effects of different structural ILs on the rate and selectivity of reactions.

  17. Lithium in halo stars - Constraining the effects of helium diffusion on globular cluster ages and cosmology

    Science.gov (United States)

    Deliyannis, Constantine P.; Demarque, Pierre

    1991-01-01

    Stellar evolutionary models with diffusion are used to show that observations of lithium in extreme halo stars provide crucial constraints on the magnitude of the effects of helium diffusion. The flatness of the observed Li-T(eff) relation severely constrains diffusion Li isochrones, which tend to curve downward toward higher T(eff). It is argued that Li observations at the hot edge of the plateau are particularly important in constraining the effects of helium diffusion; yet, they are currently few in number. It is proposed that additional observations are required there, as well as below 5500 K, to define more securely the morphology of the halo Li abundances. Implications for the primordial Li abundance are considered. It is suggested that a conservative upper limit to the initial Li abundance, due to diffusive effects alone, is 2.35.

  18. Effect of Bond-Diluted on Spin-3/2 Transverse Ising Model with Crystal Field

    Institute of Scientific and Technical Information of China (English)

    JIANG Wei; LU Zhan-Hong; WEI Guo-Zhu; DU An

    2002-01-01

    The magnetic properties of the bond-diluted spin-3/2 transverse Ising model with the presence of a crystalfield on the honeycomb lattice are studied within the framework of the effective field theory with correlations. Theinteractions Jij are assumed to be independent random variables with distribution P(Jij) = pδ(Jij - J) + (1 - P)δ(Jij).

  19. the effect of pellet volume, dilution rates prefreezing and at thawing ...

    African Journals Online (AJOL)

    Three experiments were conducted to examine the effects of dilution rates prefreezing and at thawing, pellet volume, and of thawing temperature on the ... Tris-75,8 mM citric acid-22,2 mM glucose-12% (v/v) egg ..... These temperatures drop-.

  20. Cluster dynamics modeling of the effect of high dose irradiation and helium on the microstructure of austenitic stainless steels

    Science.gov (United States)

    Brimbal, Daniel; Fournier, Lionel; Barbu, Alain

    2016-01-01

    A mean field cluster dynamics model has been developed in order to study the effect of high dose irradiation and helium on the microstructural evolution of metals. In this model, self-interstitial clusters, stacking-fault tetrahedra and helium-vacancy clusters are taken into account, in a configuration well adapted to austenitic stainless steels. For small helium-vacancy cluster sizes, the densities of each small cluster are calculated. However, for large sizes, only the mean number of helium atoms per cluster size is calculated. This aspect allows us to calculate the evolution of the microstructural features up to high irradiation doses in a few minutes. It is shown that the presence of stacking-fault tetrahedra notably reduces cavity sizes below 400 °C, but they have little influence on the microstructure above this temperature. The binding energies of vacancies to cavities are calculated using a new method essentially based on ab initio data. It is shown that helium has little effect on the cavity microstructure at 300 °C. However, at higher temperatures, even small helium production rates such as those typical of sodium-fast-reactors induce a notable increase in cavity density compared to an irradiation without helium.

  1. [Effects of helium-neon laser on physico-chemical properties of the bile].

    Science.gov (United States)

    Mansurov, Kh Kh; Dzhuraev, Kh Sh; Barakaev, S B; Kharina, T P; Pulatov, L I

    1990-08-01

    The influence of helium-neon laser radiation on bile physico-chemical characteristics in healthy subjects and in patients with the physico-chemical stage of gallstone disease was studied in vitro. This type of laser was found to induce positive therapeutic effects, such as: correction of hydrogen ion concentrations, surface tension and viscosity decrease and prolonged bile nucleation in patients with gallstone disease.

  2. Subtask 12G2: Effects of dynamically charged helium on tensile properties of V-4Cr-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L. [Argonne National Lab., IL (United States)

    1995-03-01

    The objective of this work is to determine the effect of displacement damage and dynamically charged helium on tensile properties of V-4Cr-4Ti alloy irradiated to 18-31 dpa at 425-600{degrees}C in the Dynamic Helium Charging Experiment (DHCE). One property of vanadium-base alloys that is not well understood in terms of their potential use as fusion reactor structural materials is the effect of simultaneous generation of helium and neutron damage under conditions relevant to fusion reactor operation. In the present Dynamic Helium Charging Experiment (DHCE), helium was produced uniformly in the specimen at linear rates of {approx}0.4 to 4.2 appm helium/dpa by the decay of tritium during irradiation to 18-31 dpa at 425-600{degrees}C in the Li-filled DHCE capsules in the Fast Flux Test Facility. This report presents results of postirradiation tests of tensile properties of V-4Cr-4Ti, an alloy identified as the most promising vanadium-base alloy for fusion reactors on the basis of its superior baseline and irradiation properties. Effects of helium on tensile strength and ductility were insignificant after irradiation and testing at >420{degrees}C. Contrary to initial expectation, room-temperature ductilities of DHCE specimens were higher than those of non-DHCE specimens (in which there was negligible helium generation), whereas strengths were lower, indicating that different types of hardening centers are produced during DHCE and non-DHCE irradiation. In strong contrast to tritium-trick experiments in which dense coalescence of helium bubbles is produced on grain boundaries in the absence of displacement damage, no intergranular fracture was observed in any tensile specimens irradiated in the DHCE. 25 refs., 2 figs., 3 tabs.

  3. Subtask 12G1: Effects of dynamically charged helium on swelling and microstructure of vanadium-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Nowicki, L.; Gazda, J.; Smith, D.L. [Argonne National Lab., IL (United States)

    1995-03-01

    The objective of this work is to determine void structure, distribution, and density changes of several vanadium-base alloys irradiated in the Dynamic Helium Charging Experiment (DHCE). Combined effects of dynamically charged helium and neutron damage on density change, void distribution, and microstructural evolution of V-4Cr-4Ti alloy have been determined after irradiation to 18-31 dpa at 425-600{degrees}C in the DHCE, and the results compared with those from a non-DHCE in which helium generation was negligible. For specimens irradiated to {approx}18-31 dpa at 500-600{degrees}C with a helium generation rate of 0.4-4.2 appm He/dpa, only a few helium bubbles were observed at the interface of grain matrices and some of the Ti(O,N,C) precipitates, and no microvoids or helium bubbles were observed either in grain matrices or near grain boundaries. Under these conditions, dynamically produced helium atoms seem to be trapped in the grain matrix without significant bubble nucleation or growth, and in accordance with this, density changes from DHCE and non-DHCE (negligible helium generation) were similar for comparable fluence and irradiation temperature. Only for specimens irradiated to {approx}31 dpa at 425{degrees}C, when helium was generated at a rate of 0.4-0.8 appm helium/dpa, were diffuse helium bubbles observed in limited regions of grain matrices and near {approx}15% of the grain boundaries in densities significantly lower than those in the extensive coalescences of helium bubbles typical of other alloys irradiated in tritium-trick experiments. Density changes of specimens irradiated at 425{degrees}C in the DHCE were significantly higher than those from non-DHCE irradiation. Microstructural evolution in V-4Cr-4Ti was similar for DHCE and non-DHCE except for helium bubble number density and distribution. As in non-DHCE, the irradiation-induced precipitation of ultrafine Ti{sub 5}Si{sub 3} was observed for DHCE at >500{degrees}C but not at 425{degrees}C.

  4. Effect of tritium and decay helium on the fracture toughness properties of stainless steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, M. J.; West, S.; Tosten, M. H. [Savannah River National Laboratory, Aiken, SC (United States)

    2008-07-15

    J-Integral fracture toughness tests were conducted on tritium-exposed-and- aged Types 304L and 21-6-9 stainless steel weldments in order to measure the combined effects of tritium and its decay product, helium-3 on the fracture toughness properties. Initially, weldments have fracture toughness values about three times higher than base-metal values. Delta-ferrite phase in the weld microstructure improved toughness provided no tritium was present in the microstructure. After a tritium-exposure-and-aging treatment that resulted in {approx}1400 atomic parts per million (appm) dissolved tritium, both weldments and base metals had their fracture toughness values reduced to about the same level. The tritium effect was greater in weldments (67 % reduction vs. 37% reduction) largely because the ductile discontinuous delta-ferrite phase was embrittled by tritium and decay helium. For both base metals and weldments, fracture toughness values decreased with increasing decay helium content in the range tested (50-800 appm). (authors)

  5. The effect of dilution on the erosive potential of maltodextrin-containing sports drinks

    Directory of Open Access Journals (Sweden)

    Michael Gomes VIDAL

    Full Text Available Abstract Introduction The increasing consumption of maltodextrin-containing sports drinks, usually acidic, during physical activity may cause dental erosion. Objective To evaluate the effect of dilution on the erosive potential of maltodextrin-containing sports drinks. Methodology Five samples of five maltodextrin-containing sports drinks [Sports Nutrition (SN, Body Action (BA, New Millen (NM, Athletica Nutrition (AN, Integral Medica (IM] were diluted with distilled water in three different proportions: as recommended by manufacturer (rec, with 20% more powder (20+ and with 20% less powder (20- than recommended. Their pH and titratable acidity (volume of 1N NaOH necessary to raise pH to 5.5 were determined. Result The pH and titratable acidity differed among the products, and pH values differed among the dilutions. All sports drinks showed pH below the critical pH for dental enamel demineralization. There was a significant negative correlation between pH and titratable acidity (p <0.01; r = -0.795. Conclusion Changes in the dilution of maltodextrin-containing sports drinks affected their pH, but not their titratable acidity.

  6. Effects of cyclic mean pressure of helium gas on performance of integral crank driven stirling cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yong Ju; Ko, Jun Seok; Kim, Hyo Bong; Park, Seong Je [Korea Institute of Machinery and Materials, Changwon (Korea, Republic of)

    2016-09-15

    An integral crank driven Stirling cryocooler is solidly based on concepts of direct IR detector mounting on the cryocooler's cold finger, and the integral construction of the cryocooler and Dewar envelope. Performance factors of the cryocooler depend on operating conditions of the cryocooler such as a cyclic mean pressure of the working fluid, a rotational speed of driving mechanism, a thermal environment, a targeted operation temperature and etc.. At given charging condition of helium gas, the cyclic mean pressure of helium gas in the cryocooler changes with temperatures of the cold end and the environment. In this study, effects of the cyclic mean pressure of helium gas on performances of the Stirling cryocooler were investigated by numerical analyses using the Sage software. The simulation model takes into account thermodynamic losses due to an inefficiency of regenerator, a pressure drop, a shuttle heat transfer and solid conductions. Simulations are performed for the performance variation according to the cyclic mean pressure induced by the temperature of the cold end and the environment. This paper presents P-V works in the compression and expansion space, cooling capacity, contribution of losses in the expansion space.

  7. Thermal Evolution of the Inhomogeneous Jovian Planets: The Effects of Helium Phase Separation

    Science.gov (United States)

    Mankovich, Christopher; Fortney, Jonathan; Moore, Kevin; Nettelmann, Nadine

    2014-11-01

    We compute evolutionary models of Jupiter and Saturn including the effects of helium phase separation in the deep interior. The aim is to simultaneously match each planet's present-day luminosity and surface helium abundance, which are at odds with homogeneous, adiabatic thermal evolution. The calculations are carried out using the open source MESA code, extended to include a modern phase diagram for hydrogen/helium mixtures at high pressures and a self-consistent radiative atmosphere grid for each planet. We find that if He redistribution proceeds much faster than a convective circulation time, then the composition gradient established between one and a few Mbar stabilizes the fluid against convection. In this region the heat is transported less efficiently by overstable double-diffusive convection, which we implement following recent 3D hydrodynamics simulations of the instability. The onset and evolution of this superadiabatic barrier region between the hot, He-rich inner adiabat and the cool, He-depleted outer adiabat bears directly on the cooling histories, especially that of Saturn. The upcoming measurement of Saturn's atmospheric He abundance expected of Cassini will place constraints on both the extent of the convectively stable region in Saturn and the general H/He phase diagram which informs the thermal evolution of all giant planets. We discuss implications for the dynamo within each planet, and ring seismology for Saturn.

  8. Effects of Diet Dilution during the Finishing Period on the Performance and Carcass Characteristics of Broiler Chickens

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    An experiment was conducted to study the response of broiler to diet dilution during the finishing period. Sixty 29-day-old commercial Avian male broiler chicks were assigned to two groups randomly, with 30 broilers each. Birds were offered a conventional finishing diet or with 10% dilution diet with ground rice hulls from 29 to 49 days of age. The result showed that there were no significant differences between the effects of diet dilution and the control on final body weight, growth rate and feed conversion efficiency. Diet dilution led to a reduction in abdominal fat weight, whereas carcass and breast muscle weight were not affected.

  9. Theoretical and experimental study of the Stark effect in the ground state of alkali atoms in helium crystals

    OpenAIRE

    2007-01-01

    This thesis work describes a detailed study of the Stark interaction in the ground state of cesium atoms trapped in a solid helium matrix. The motivation for the investigation of electric field effects on alkali species implanted in solid helium is related to the original main goal of our experimental activities, i.e., the measurement of a permanent atomic electric dipole moment (EDM). The existence of an atomic EDM simultaneously violates the discrete symmetries of time reversal (T) and pari...

  10. Modified expression for the effective viscosity in the semi-dilute shear flows of fiber suspension

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lingxin; LIN Jianzhong; SHI Xing

    2004-01-01

    The available expressions for the effective viscosity can not provide good predictions compared with the experiment data measured in the semi-dilute shear flows of fiber suspension with small aspect ratio. The departure of the theoretical prediction from the measured data increases with the decrease of the fiber aspect ratio. Therefore, by experiment for the fiber with 20 μm diameter, a new expression for the effective viscosity in the semi-dilute shear flows of fiber suspension with small aspect ratio is proposed, the relationship between the shear viscosity of fiber suspensions and the fiber concentration is given. The results show that the effective viscosity is not a linear function of the fiber concentration.

  11. Biological effects and toxicity of diluted bitumen and its constituents in freshwater systems.

    Science.gov (United States)

    Dew, William A; Hontela, Alice; Rood, Stewart B; Pyle, Greg G

    2015-11-01

    Approximately 50 billion cubic meters of bitumen resides within the oil sands region of Alberta, Canada. To facilitate the transport of bitumen from where it is extracted to where it is processed, the bitumen is diluted with natural gas condensate ('dilbit'), synthetic crude from hydrocracking bitumen ('synbit'), or a mixture of both ('dilsynbit'). A primary consideration for the effects of diluted bitumen products on freshwater organisms and ecosystems is whether it will float on the water surface or sink and interact with the stream or lake sediments. Evidence from a spill near Kalamazoo, MI, in 2010 and laboratory testing demonstrate that the nature of the spill and weathering of the dilbit, synbit or dilsynbit prior to and during contact with water will dictate whether the product floats or sinks. Subsequent toxicological data on the effects of dilbit and other diluted bitumen products on freshwater organisms and ecosystems are scarce. However, the current literature indicates that dilbit or bitumen can have significant effects on a wide variety of toxicological endpoints. This review synthesizes the currently available literature concerning the fate and effects of dilbit and synbit spilled into freshwater, and the effects of bitumen and bitumen products on aquatic organisms and ecosystems. Dilbit is likely to provide ecological impacts that are similar to and extend from those that follow from exposure to lighter crude oil, but the prospect of bitumen settling after binding to suspended sediments elevates the risk for benthic impacts in streams and lakes.

  12. Mechanical properties of neutron-irradiated nickel-containing martensitic steels: II. Review and analysis of helium-effects studies

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge National Laboratory, Metals and Ceramics Division, Building 4500S, P.O. Box 2008, MS 6151, Oak Ridge, TN 37831-6151 (United States)]. E-mail: kluehrl@ornl.gov; Hashimoto, N. [Oak Ridge National Laboratory, Metals and Ceramics Division, Building 4500S, P.O. Box 2008, MS 6151, Oak Ridge, TN 37831-6151 (United States); Sokolov, M.A. [Oak Ridge National Laboratory, Metals and Ceramics Division, Building 4500S, P.O. Box 2008, MS 6151, Oak Ridge, TN 37831-6151 (United States); Maziasz, P.J. [Oak Ridge National Laboratory, Metals and Ceramics Division, Building 4500S, P.O. Box 2008, MS 6151, Oak Ridge, TN 37831-6151 (United States); Shiba, K. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Tokai, Ibaraki 319-1195 (Japan); Jitsukawa, S. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Tokai, Ibaraki 319-1195 (Japan)

    2006-10-15

    In part I of this helium-effects study on ferritic/martensitic steels, results were presented on tensile and Charpy impact properties of 9Cr-1MoVNb (modified 9Cr-1Mo) and 12Cr-1MoVW (Sandvik HT9) steels and these steels containing 2% Ni after irradiation in the High Flux Isotope Reactor (HFIR) to 10-12 dpa at 300 and 400 deg. C and in the Fast Flux Test Facility (FFTF) to 15 dpa at 393 deg. C. The results indicated that helium caused an increment of hardening above irradiation hardening produced in the absence of helium. In addition to helium-effects studies on ferritic/martensitic steels using nickel doping, studies have also been conducted over the years using boron doping, ion implantation, and spallation neutron sources. In these previous investigations, observations of hardening and embrittlement were made that were attributed to helium. In this paper, the new results and those from previous helium-effects studies are reviewed and analyzed.

  13. IDENTIFICATION OF EFFECTIVE DILUTIONS OF DENTAL HERBAL REMEDY WITH ANTIMICROBIAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Shulga L.I.

    2015-05-01

    twofold serial dilution method (microbial load has been determined at 0.5 unit as per McFarland scale has been used. The obtained data of survey are statistically processed according to Student. Results and discussion. Inhibiting concentration of Casdent tincture diluted in (1:32 has been empathized in respect to: S. epidermidis, S. pneumoniaе, B. subtilis and candida fungi: C. albicans, C. catenulata (C. rugosa Sclar C-27, C. albicans clinical strain No. 23. For strains: S. aureus, S. haemolyticus, S. mutans clinical strain No. 45, E. coli, P. аeruginosa, the minimal inhibiting concentration value corresponds to dilution of (1:16. Although a similar trend of antimicrobial activity is ascertained at comparing the antimicrobial effect's values of Casdent tincture and those of the control: Stomatophyt, the compared preparation is valid as diluted in (1:32 only in respect to S. aureus and C. аlbicans, and in respect to other cultures – as diluted in (1:16. Additional researches of antimicrobial properties of solutions Casdent and Stomatophyt: (1:10, (1:20 have made it possible to identity the minimal inhibiting and bactericide concentration thereof. Based on the level of antimicrobial activity of Casdent tincture it is determined that it is highly competitive with the level of the imported preparation: Stomatophyt, and upon examination of values of bactericide concentration of Casdent dilutions: (1:20 for S. aureus, S. pneumoniaе, B. subtilis, somehow excels similar dilutions of Stomatophyt. Conclusion. The effective solutions of Casdent tincture are identified: 1 teaspoonful (5 ml of Casdent tincture per 100 ml of water – for bacterial static effect and 2 teaspoonfuls (10 ml in the same volume of water – for bactericide effect. The results of microbiological examinations testify to prospectivity of the developed tincture and will be taken into account when issuing the recommended application thereof in therapeutic dentistry.

  14. Effects of a new triple-$\\alpha$ reaction rate on the helium ignition of accreting white dwarfs

    CERN Document Server

    Saruwatari, Motoaki

    2010-01-01

    Effects of a new triple-alpha reaction rate on the ignition of carbon-oxygen white dwarfs accreting helium in a binary systems have been investigated. The ignition points determine the properties of a thermonuclear explosion of a Type Ia supernova. We examine the cases of different accretion rates of helium and different initial masses of the white dwarf, which was studied in detail by Nomoto. We find that for all cases from slow to intermediate accretion rates, nuclear burnings are ignited at the helium layers. As a consequence, carbon deflagration would be triggered for the lower accretion rate compared to that of $dM/dt\\simeq 4\\times10^{-8} M_{\\odot} \\rm yr^{-1}$ which has been believed to the lower limit of the accretion rate for the deflagration supernova. Furthermore, off-center helium detonation should result for intermediate and slow accretion rates and the region of carbon deflagration for slow accretion rate is disappeared.

  15. Site dilution in SrRuO3: effects on structural and magnetic properties

    Science.gov (United States)

    Gupta, Renu; Pramanik, A. K.

    2017-03-01

    We have investigated the effect of site dilution with substitution of nonmagnetic element in SrRu1‑x Ti x O3 (x  ⩽  0.7). The nature of ferromagnetic state in SrRuO3 is believed to be of itinerant type with transition temperature {{T}\\text{c}}∼ 162 K. Crystallographically, SrRuO3 has a distorted orthorhombic structure. Substitution of \\text{T}{{\\text{i}}+4} (3d 0) for Ru+4 (4d 4), however, does not introduce significant structural modification due to their matching ionic radii. This substitution, on the other hand, is expected to tune the electronic correlation effect and the d electron density in the system. With Ti substitution, we find that magnetic moment and Curie temperature decreases but T c remains unchanged which has been attributed to opposite tuning of electron correlation effect and density of states within the framework of itinerant ferromagnetism. The estimated critical exponent (β) related to magnetization implies a mean-field type of magnetic nature in SrRuO3. The value of β further increases with x which is understood from the dilution effect of magnetic lattice. The system evolves to exhibit Griffiths phase like behavior above T c which is usually realized in diluted ferromagnet following local moment model of magnetism. Our detail analysis of magnetization data indicates that magnetic state in SrRuO3 has contribution from both itinerant and local moment model of magnetism.

  16. Helium effects on irradiation dmage in V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Doraiswamy, N.; Alexander, D. [Argonne National Lab., IL (United States)

    1996-10-01

    Preliminary investigations were performed on V-4Cr-4Ti samples to observe the effects of He on the irradiation induced microstructural changes by subjecting 3 mm electropolished V-4Cr-4Ti TEM disks, with and without prior He implantation, to 200 keV He irradiation at room temperature and monitoring, in-situ, the microstructural evolution as a function of total dose with an intermediate voltage electron microscope directly connected to an ion implanter. A high density of black dot defects were formed at very low doses in both He pre-implanted and unimplanted samples.

  17. Effect of methodology, dilution, and exposure time on the tuberculocidal activity of glutaraldehyde-based disinfectants.

    OpenAIRE

    1990-01-01

    The Association of Official Analytical Chemists (AOAC) test for assessing the tuberculocidal activity of disinfectants has been shown to be variable. A modified AOAC test, which substituted Middlebrook 7H9 broth as the primary subculture medium and used neutralization by dilution, was compared with the standard AOAC method to assess the mycobactericidal activity of three glutaraldehyde-based disinfectants at 20 degrees C and various exposure times. These changes had a marked effect on results...

  18. Effect of helium-neon laser on activity and optical properties of catalase.

    Science.gov (United States)

    Artyukhov, V G; Basharina, O V; Pantak, A A; Sveklo, L S

    2000-06-01

    The effects of laser (632.8 nm) on functional and spectral properties of catalase at pH 6.0-7.4 were studied. Laser irradiation led to photoactivation of the enzyme at pH 7.1-7.4. Changes in the spectral properties of photomodified hemoprotein were found in the absorption spectrum of the protein component: apoenzyme displayed protective effects in relation to ferroporphyrin. Structural modifications of catalase induced by helium-neon laser irradiation correlated with its functional properties. These results can be used in clinical practice to design the individual management program.

  19. Liquid helium

    CERN Document Server

    Atkins, K R

    1959-01-01

    Originally published in 1959 as part of the Cambridge Monographs on Physics series, this book addresses liquid helium from the dual perspectives of statistical mechanics and hydrodynamics. Atkins looks at both Helium Three and Helium Four, as well as the properties of a combination of the two isotopes. This book will be of value to anyone with an interest in the history of science and the study of one of the universe's most fundamental elements.

  20. Ethanol production from industrial hemp: effect of combined dilute acid/steam pretreatment and economic aspects

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Svensson, Sven-Erik; Prade, Thomas;

    2014-01-01

    In the present study, combined steam (140-180 °C) and dilute-acid pre-hydrolysis (0.0-2.0%) were applied to industrial hemp (Cannabis sativa L.), as pretreatment for lignocellulosic bioethanol production. The influence of the pretreatment conditions and cultivation type on the hydrolysis and etha......In the present study, combined steam (140-180 °C) and dilute-acid pre-hydrolysis (0.0-2.0%) were applied to industrial hemp (Cannabis sativa L.), as pretreatment for lignocellulosic bioethanol production. The influence of the pretreatment conditions and cultivation type on the hydrolysis...... pretreated at the optimal conditions showed positive economic results. The type of hemp cultivation (organic or conventional) did not influence significantly the effectiveness of the pretreatment and subsequent enzymatic hydrolysis and ethanol fermentation....

  1. Effects of dilution rates, animal species and instruments on the spectrophotometric determination of sperm counts.

    Science.gov (United States)

    Rondeau, M; Rouleau, M

    1981-06-01

    Using semen from bull, boar and stallion as well as different spectrophotometers, we established the calibration curves relating the optical density of a sperm sample to the sperm count obtained on the hemacytometer. The results show that, for a given spectrophotometer, the calibration curve is not characteristic of the animal species we studied. The differences in size of the spermatozoa are probably too small to account for the anticipated specificity of the calibration curve. Furthermore, the fact that different dilution rates must be used, because of the vastly different concentrations of spermatozoa which is characteristic of those species, has no effect on the calibration curves since the dilution rate is shown to be artefactual. On the other hand, for a given semen, the calibration curve varies depending upon the spectrophotometry used. However, if two instruments have the same characteristic in terms of spectral bandwidth, the calibration curves are not statistically different.

  2. Effects of a New Triple-alpha Reaction on X-ray Bursts of a Helium Accreting Neutron Star

    CERN Document Server

    Matsuo, Y; Noda, T; Saruwatari, M; Ono, M; Hashimoto, M; Fujimoto, M

    2011-01-01

    The effects of a new triple-$\\alpha$ reaction rate (OKK rate) on the helium flash of a helium accreting neutron star in a binary system have been investigated. Since the ignition points determine the properties of a thermonuclear flash of type I X-ray bursts, we examine the cases of different accretion rates, $dM/dt (\\dot{M})$, of helium from $3\\times10^{-10} M_{\\odot} \\rm yr^{-1}$ to $3\\times10^{-8} M_{\\odot} \\rm yr^{-1}$, which could cover the observed accretion rates. We find that for the cases of low accretion rates, nuclear burnings are ignited at the helium layers of rather low densities. As a consequence, helium deflagration would be triggered for all cases of lower accretion rate than $\\dot{M}\\simeq 3\\times10^{-8} M_{\\odot} \\rm yr^{-1}$. We find that OKK rate could be barely consistent with the available observations of the X-ray bursts on the helium accreting neutron star. However this coincidence is found to depend on the properties of crustal heating and the neutron star model.We suggest that OKK r...

  3. Effect of methodology, dilution, and exposure time on the tuberculocidal activity of glutaraldehyde-based disinfectants.

    Science.gov (United States)

    Cole, E C; Rutala, W A; Nessen, L; Wannamaker, N S; Weber, D J

    1990-01-01

    The Association of Official Analytical Chemists (AOAC) test for assessing the tuberculocidal activity of disinfectants has been shown to be variable. A modified AOAC test, which substituted Middlebrook 7H9 broth as the primary subculture medium and used neutralization by dilution, was compared with the standard AOAC method to assess the mycobactericidal activity of three glutaraldehyde-based disinfectants at 20 degrees C and various exposure times. These changes had a marked effect on results, with the modified AOAC test providing more positive penicylinders per 10 replicates in 12 of the 13 comparisons that provided positive results. These differences were observed with both Mycobacterium bovis (ATCC 35743) and a clinical isolate of Mycobacterium tuberculosis. The effects of various exposure times to and dilutions of the glutaraldehyde-based disinfectants were also examined. The minimum exposure time needed to inactivate reliably M. bovis or M. tuberculosis with 2% glutaraldehyde was 20 min at 20 degrees C. Diluting 2% glutaraldehyde caused a significant decline in mycobactericidal activity. Modification of the standard AOAC test to improve its sensitivity in detecting the failure of disinfectants to inactivate mycobacteria is indicated. PMID:2116760

  4. The effective surface energy of heterogeneous solids measured by inverse gas chromatography at infinite dilution.

    Science.gov (United States)

    Sun, Chenhang; Berg, John C

    2003-04-15

    Inverse gas chromatography (IGC) at infinite dilution has been widely used to access the nonspecific surface free energy of solid materials. Since most practical surfaces are heterogeneous, the effective surface energy given by IGC at infinite dilution is somehow averaged over the whole sample surface, but the rule of averaging has thus far not been established. To address this problem, infinite dilution IGC analysis was carried out on mixtures of known heterogeneity. These materials are obtained by mixing two types of solid particles with significantly different surface energies as characterized individually with IGC, and results are obtained for binary combinations in varying proportions. It is found that when all surface components have the same accessibility by probe molecules, the effective surface energy of such a heterogeneous surface is related to the surface energy distribution by a square root linear relationship, square root sigma(eff)(LW)= summation operator (i)phi(i) square root sigma(i)(LW), where sigma(i)(LW) refers to the nonspecific (Lifshitz-van der Waals) surface energy of patches i, and phi(i) to their area fraction.

  5. Effect of heat input on dilution and heat affected zone in submerged arc welding process

    Indian Academy of Sciences (India)

    Hari Om; Sunil Pandey

    2013-12-01

    Submerged arc welding (SAW) is a fusion joining process, known for its high deposition capabilities. This process is useful in joining thick section components used in various industries. Besides joining, SAW can also be used for surfacing applications. Heat Affected Zone (HAZ) produced within the base metal as a result of tremendous heat of arc is of big concern as it affects the performance of welded/surfaced structure in service due to metallurgical changes in the affected region. This work was carried out to investigate the effect of polarity and other SAW parameters on HAZ size and dilution and to establish their correlations. Influence of heat input on dilution and heat affected zone was then carried out. Four levels of heat input were used to study their effect on % dilution and HAZ area at both the electrode positive and electrode negative polarities. Proper management of heat input in welding is important, because power sources can be used more efficiently if one knows how the same heat input can be applied to get the better results. Empirical models have been developed using statistical technique.

  6. Effects of nitrogen and helium on CNS oxygen toxicity in the rat.

    Science.gov (United States)

    Arieli, R; Ertracht, O; Oster, I; Vitenstein, A; Adir, Y

    2005-01-01

    The contribution of inert gases to the risk of central nervous system (CNS) oxygen toxicity is a matter of controversy. Therefore, diving regulations apply strict rules regarding permissible oxygen pressures (Po(2)). We studied the effects of nitrogen and helium (0, 15, 25, 40, 50, and 60%) and different levels of Po(2) (507, 557, 608, and 658 kPa) on the latency to the first electrical discharge (FED) in the EEG in rats, with repeated measurements in each animal. Latency as a function of the nitrogen pressure was not homogeneous for each rat. The prolongation of latency observed in some rats at certain nitrogen pressures, mostly in the range 100 to 500 kPa, was superimposed on the general trend for a reduction in latency as nitrogen pressure increased. This pattern was an individual trait. In contrast with nitrogen, no prolongation of latency to CNS oxygen toxicity was observed with helium, where an increase in helium pressure caused a reduction in latency. This bimodal response and the variation in the response between rats, together with a possible effect of ambient temperature on metabolic rate, may explain the conflicting findings reported in the literature. The difference between the two inert gases may be related to the difference in the narcotic effect of nitrogen. Proof through further research of a correlation between individual sensitivity to nitrogen narcosis and protection by N(2) against CNS oxygen toxicity in rat may lead to a personal O(2) limit in mixed-gas diving based on the diver sensitivity to N(2) narcosis.

  7. Gold and Helium irradiation effects in Monazite LaPO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Picot, V. [CERI, UPR 33, 45071 Orleans cedex 2 (France); Deschanels, X. [ICSM, CEA Valrho Marcoule, UMR 5257, BP 17171, 30207 Bagnols-sur Ceze (France); Peuget, S. [LMPA, CEA Valrho Marcoule, 30207 Bagnols sur Ceze (France); Glorieux, B. [PROMES, UPR 8521, Rambla de la Thermodynamique, 66100 Perpignan (France); Seydoux-Guillaume, A.M. [LMTG, UMR 5563 UR 14, 14 avenue Edouard Belin, 31400 Toulouse (France)

    2008-07-01

    Monazite ceramic is one the potential matrix in the frame of the minor actinides nuclear waste conditioning. In order to assess its specific properties relative to the behavior under irradiation, samples of LaPO{sub 4} were irradiated by gold ions and helium particles. Gold was used to study the nuclear effect of the alpha decay events, simulating the damage induced by the alpha-recoil nuclei, while helium was used to study the electronic effect of the alpha decay events, simulating the consequences of the alpha particle. Using indentation, swelling measurement, grazing incidence X-ray diffraction, micro-Raman analyses, results evidence that the electronic effect does not affect the sample's properties. But the nuclear effects on the structure and on the macroscopic properties are relatively important: for a nuclear damage over 6 dpa, the hardness drops by 59%, the swelling is about 8% and the long range ordering vanishes. These results indicate that ballistic effects predominate in the studied dose range. (authors)

  8. Post-collision interactions and the polarization effect in (e, 2e) collisions of helium

    Institute of Scientific and Technical Information of China (English)

    Zang Shuang-Shuang; Ge Zi-Ming

    2012-01-01

    A modified distorted-wave Born approximation (DWBA) method is used to calculate the triple differential cross sections (TDCSs) in a coplanar asymmetric geometry for the electron impact single ionization of a He (1s2) atom at intermediate and lower energies.The post-collision interaction and the polarization effect in (e,2e) collisions of helium are considered in the calculations.The polarization potentials from the damping method and density functional theory (DFT) arc compared.Theoretical results are compared with the recent experimental data.

  9. Effects of impurity molecules on the lifetime of antiprotonic helium atoms

    CERN Document Server

    Juhász, B; Hayano, R S; Hori, Masaki; Horváth, D; Ishikawa, T; Torii, H A; Widmann, E; Yamaguchi, H; Yamazaki, T

    2004-01-01

    Quenching of metastable antiprotonic helium atoms in collisions with hydrogen and deuterium molecules has been studied using laser spectroscopy at CERN's antiproton decelerator. The temperature dependence of the quenching cross sections of the antiprotonic states (n, l) = (37, 34), (38, 35) and (38, 37) has been investigated and a deviation from the Arrhenius law was found at low temperatures. In case of the state (38, 37) with deuterium, detailed measurements revealed that the quenching cross section levels off at low temperatures indicating a strong quantum tunneling effect. (14 refs).

  10. Effect of dilute tungsten alloying on the dynamic strength of tantalum under ramp compression

    Science.gov (United States)

    Alexander, C. S.; Brown, J. L.; Millett, J. C. F.; Whiteman, G.; Asay, J. R.; Bourne, N. K.

    2015-06-01

    The strength of tantalum and tantalum alloys are of considerable interest due to their widespread use in both military and industrial applications. Previous work has shown that strength in these materials is tied to dislocation density and mobility within the microstructure. Accordingly, strength has been observed to increase with dilute alloying which serves to increase the dislocation density. In this study, we examine the effect of alloying on the strength of a dilute tantalum-tungsten alloy (2.5 weight percent W) under ramp compression. The strength of the alloy is measured using the ``self-consistent'' technique which examines the response under longitudinal unloading from peak compression. The results are compared to previous studies of pure tantalum and dilute tantalum-tungsten alloys under both shock and ramp compression and indicate strengthening of the alloy when compared to pure tantalum. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  11. FUEL EFFECTS ON COMBUSTION WITH EGR DILUTION IN SPARK IGNITED ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Szybist, James P [ORNL

    2016-01-01

    The use of EGR as a diluent allows operation with an overall stoichiometric charge composition, and the addition of cooled EGR results in well-understood thermodynamic benefits for improved fuel consumption. This study investigates the effect of fuel on the combustion and emission response of EGR dilution in spark ignited engines. A 2.0 L GM Ecotec LNF engine equipped with the production side-mounted direct injection (DI) fueling system is used in this study. Ethanol, isooctane and certified gasoline are investigated with EGR from 0% to the EGR dilution tolerance. Constant BMEP at 2000 rpm was operated with varying CA50 from 8 CAD to 16 CAD aTDCf. The results show that ethanol gives the largest EGR tolerance at a given combustion phasing, engine load and speed. The improved EGR dilution tolerance with ethanol is attributed to a faster flame speed, which manifests itself as shorter combustion duration. Data shows that the combustion stability limit occurs at a critical combustion duration that is fuel independent. Due to different flame speeds, this critical combustion duration occurs at different EGR levels for the different fuels.

  12. Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines

    Energy Technology Data Exchange (ETDEWEB)

    Szybist, James P [ORNL

    2016-01-01

    Fuel-specific differences in exhaust gas recirculation (EGR) dilution tolerance are studied in a modern, direct-injection single-cylinder research engine. A total of 6 model fuel blends are examined at a constant research octane number (RON) of 95 using n-heptane, iso-octane, toluene, and ethanol. Laminar flame speeds for these mixtures, which were calculated two different methods (an energy fraction mixing rule and a detailed kinetic simulation), spanned a range of about 6 cm/s. A constant fueling nominal load of 350 kPa IMEPg at 2000 rpm was operated with varying CA50 from 8-20 CAD aTDCf, and with EGR increasing until a COV of IMEP of 5% is reached. The results illustrate that flame speed affects EGR dilution tolerance; fuels with increased flame speeds increase EGR tolerance. Specifically, flame speed correlates most closely to the initial flame kernel growth, measured as the time of ignition to 5% mass fraction burned. The effect of the latent heat of vaporization on the flame speed is taken into account for the ethanol-containing fuels. At a 30 vol% blend level, the increased enthalpy of vaporization of ethanol compared to conventional hydrocarbons can decrease the temperature at the time of ignition by a maximum of 15 C, which can account for up to a 3.5 cm/s decrease in flame speed. The ethanol-containing fuels, however, still exhibit a flame speed advantage, and a dilution tolerance advantage over the slower flame-speed fuels. The fuel-specific differences in dilution tolerance are significant at the condition examined, allowing for a 50% relative increase in EGR (4% absolute difference in EGR) at a constant COV of IMEP of 3%.

  13. Effect of carbon and alloying solute atoms on helium behaviors in α-Fe

    Science.gov (United States)

    Zhang, Yange; You, Yu-Wei; Xu, Yichun; Liu, C. S.; Chen, J. L.; Luo, G.-N.

    2017-02-01

    Helium bubbles could strongly degrade the mechanical properties of ferritic steels in fission and fusion systems. The formation of helium bubble is directly affected by the interactions between helium and the compositions in steels, such as solute atoms, carbon and irradiation defects. We thereby performed systematical first-principles calculations to investigate the interactions of solute-helium and carbon-solute-helium. It is found that substitutional helium is more attractive than interstitial helium to all the considered 3p, 4p, 5p and 6p solutes. The attraction between carbon and substitutional helium suggests the carbon-solute-helium complex can be formed stably. By examining the charge density difference and thermal stability, it is found that the ternary complex shows stronger attraction with He than that of solute-helium pair for some solutes (S, Se, In, Te, Pb and Bi) and the complex could existed in iron stably at 700 K. The present theoretical results may be helpful for exploring alloy additions to mitigate the formation of large helium bubbles.

  14. Biological effects of high-diluted substances and periodic table of elements

    Directory of Open Access Journals (Sweden)

    Cloe Taddei-Ferretti

    2012-09-01

    Full Text Available Background and Aims. There are several experimental evidences for the effects of high-diluted substances (see e.g. C. Taddei-Ferretti, A. Cotugno 1997, on effects of high-diluted drugs on the prevention and control of mice teratogenicity induced by purine derivatives; N.C. Sukul, C. Taddei-Ferretti, S.P. Sinha Babu, A. De, B. Nandi, A. Sukul, R. Dutta-Nag 2000, on high-diluted Nux vomica countering alcohol-induced loss of righting reflex in toads. Also the physical characterization and mechanism of action of high-diluted drugs have been studied (see e.g. N.C. Sukul, A. Sukul, High dilution effects: Physical and biochemical basis 2004. However, further experimental researches are needed to clarify how physical characteristics of a drug are linked to its global biological effects. Considerations on some high-diluted mineral remedies will be developer here. Methods. In Organon, sect. 119, S. Hahnemann writes: «As certainly each species of plants is different from every other one with regard to external appearance, way of life and growth, taste and smell, and as certainly each mineral, each salt is different from the others with regard to external, internal, physical and chemical qualities [...], so certainly all these vegetal and mineral substances have pathogenetic – and thus also curative – effects different among themselves [...]». This statement may be taken as basis for considering the characteristics of some elements, as ordered in the periodic table, in relation to those of some high-diluted mineral remedies. Conclusions. The elements were previously ordered in the periodic table according to the atomic weight chemically determined, and later more precisely according to the atomic number (number of protons. Then also the electronic configuration was taken into account: properties depending on atomic mass and deep electrons are not periodical, while chemical and several physical properties

  15. Effects of the solar wind termination shock and heliosheath on theheliospheric modulation of galactic and anomalous Helium

    Directory of Open Access Journals (Sweden)

    U. W. Langner

    2004-09-01

    Full Text Available The interest in the role of the solar wind termination shock and heliosheath in cosmic ray modulation studies has increased significantly as the Voyager 1 and 2 spacecraft approach the estimated position of the solar wind termination shock. The effect of the solar wind termination shock on charge-sign dependent modulation, as is experienced by galactic cosmic ray Helium (He++ and anomalous Helium (He+, is the main topic of this work, and is complementary to the previous work on protons, anti-protons, electrons, and positrons. The modulation of galactic and anomalous Helium is studied with a numerical model including a more fundamental and comprehensive set of diffusion coefficients, a solar wind termination shock with diffusive shock acceleration, a heliosheath and particle drifts. The model allows a comparison of modulation with and without a solar wind termination shock and is applicable to a number of cosmic ray species during both magnetic polarity cycles of the Sun. The modulation of Helium, including an anomalous component, is also done to establish charge-sign dependence at low energies. We found that the heliosheath is important for cosmic ray modulation and that its effect on modulation is very similar for protons and Helium. The local Helium interstellar spectrum may not be known at energies <~1GeV until a spacecraft actually approaches the heliopause because of the strong modulation that occurs in the heliosheath, the effect of the solar wind termination shock and the presence of anomalous Helium.

  16. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  17. Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Ananya, E-mail: banerjee.ananya2008@gmail.com; Sarkar, A. [Dept. of Physics, Bijoy Krishna Girls’ College, 5/3 M.G. Road, Howrah 711101, W.B. (India)

    2016-05-06

    The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained and agreement between theory and experiment are good.

  18. Uncertainty in reactor lattice physics calculations. The effect of dilution on the covariance of multigroup cross sections

    Energy Technology Data Exchange (ETDEWEB)

    McEwan, C.; Ball, M.; Novog, D., E-mail: mcewac2@mcmaster.ca [McMaster Univ., Hamilton, Ontario (Canada)

    2013-07-01

    Simulation results are of little use if nothing is known about the uncertainty in the results. In order to assess the uncertainty in a set of output parameters due to uncertainty in a set of input parameters, knowledge of the covariance between input parameters is required. Current practice is to apply the covariance between multigroup cross sections at infinite dilution to all cross sections including those at non-infinite dilutions. In this work, the effect of dilution on multigroup cross section covariance is investigated as well as the effect on the covariance between the few group homogenized cross sections produced by lattice code DRAGON. (author)

  19. Effect of rhenium addition on tungsten fuzz formation in helium plasmas

    Science.gov (United States)

    Khan, Aneeqa; De Temmerman, Gregory; Morgan, Thomas W.; Ward, Michael B.

    2016-06-01

    The effect of the addition of rhenium to tungsten on the formation of a nanostructure referred to as 'fuzz' when exposed to helium plasmas at fusion relevant ion fluxes was investigated in the Magnum and Pilot PSI devices at the FOM Institute DIFFER. The effect rhenium had on fuzz growth was seen to be dependent on time, temperature and flux. Initial fuzz growth was seen to be highly dependent on grain orientation, with rhenium having little effect. Once the fuzz was fully developed, the effect of grain orientation disappeared and the rhenium had an inhibiting effect on growth. This could be beneficial for inhibiting fuzz growth in a future fusion reactor, where transmutation of tungsten to rhenium is expected. It also appears that erosion or annealing of the fuzz is limiting growth of fuzz at higher temperatures in the range of ∼1340 °C.

  20. Effect of rhenium addition on tungsten fuzz formation in helium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Aneeqa, E-mail: aneeqa.khan-3@postgrad.manchester.ac.uk [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL (United Kingdom); De Temmerman, Gregory [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046 - 13067 St Paul Lez Durance Cedex (France); Morgan, Thomas W. [FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Partner in the Trilateral Euregio Cluster, Eindhoven (Netherlands); Ward, Michael B. [Institute for Materials Research, School of Chemical Process Engineering, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2016-06-15

    The effect of the addition of rhenium to tungsten on the formation of a nanostructure referred to as ‘fuzz’ when exposed to helium plasmas at fusion relevant ion fluxes was investigated in the Magnum and Pilot PSI devices at the FOM Institute DIFFER. The effect rhenium had on fuzz growth was seen to be dependent on time, temperature and flux. Initial fuzz growth was seen to be highly dependent on grain orientation, with rhenium having little effect. Once the fuzz was fully developed, the effect of grain orientation disappeared and the rhenium had an inhibiting effect on growth. This could be beneficial for inhibiting fuzz growth in a future fusion reactor, where transmutation of tungsten to rhenium is expected. It also appears that erosion or annealing of the fuzz is limiting growth of fuzz at higher temperatures in the range of ∼1340 °C.

  1. Spectroscopic study of energetic helium-ion irradiation effects on nuclear graphite tiles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Wan; Lee, K.W. [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of); Choi, D.M.; Noh, S.J.; Kim, H.S. [Department of Applied Physics, Dankook University, Yongin 448-701 (Korea, Republic of); Lee, Cheol Eui, E-mail: rscel@korea.ac.kr [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of)

    2016-02-01

    Highlights: • Energetic helium-ion irradiation on nuclear graphite tiles studied for plasma facing components. • XPS reveals recrystallization at low dose irradiation and DLC sites at higher doses. • Raman spectroscopy reveals increasing diamond-like defects and structural deformation. • Average inter-defect distance obtained as a function of irradiation dose from Raman intensities. - Abstract: Helium ion-irradiation effects on the nuclear graphite tiles were studied in order to understand the structural modifications and damages that can be produced by fusion reaction in tokamaks. The surface morphological changes due to increasing dose of the irradiation were examined by the field-effect scanning electron microscopy, and X-ray photoelectron spectroscopy elucidated the changes in the shallow surface bonding configurations caused by the energetic irradiation. Raman spectroscopy revealed the structural defects and diamond-like carbon sites that increased with increasing irradiation dose, and the average inter-defect distance was found from the Raman peak intensities as a function of the irradiation dose.

  2. Determination of effective axion masses in the helium-3 buffer of CAST

    Energy Technology Data Exchange (ETDEWEB)

    Ruz, J

    2011-11-18

    The CERN Axion Solar Telescope (CAST) is a ground based experiment located in Geneva (Switzerland) searching for axions coming from the Sun. Axions, hypothetical particles that not only could solve the strong CP problem but also be one of the favored candidates for dark matter, can be produced in the core of the Sun via the Primakoff effect. They can be reconverted into X-ray photons on Earth in the presence of strong electromagnetic fields. In order to look for axions, CAST points a decommissioned LHC prototype dipole magnet with different X-ray detectors installed in both ends of the magnet towards the Sun. The analysis of the data acquired during the first phase of the experiment yielded the most restrictive experimental upper limit on the axion-to-photon coupling constant for axion masses up to about 0.02 eV/c{sup 2}. During the second phase, CAST extends its mass sensitivity by tuning the electron density present in the magnetic field region. Injecting precise amounts of helium gas has enabled CAST to look for axion masses up to 1.2 eV/c{sup 2}. This paper studies the determination of the effective axion masses scanned at CAST during its second phase. The use of a helium gas buffer at temperatures of 1.8 K has required a detailed knowledge of the gas density distribution. Complete sets of computational fluid dynamic simulations validated with experimental data have been crucial to obtain accurate results.

  3. Spectral photometry of extreme helium stars: Ultraviolet fluxes and effective temperature

    Science.gov (United States)

    Drilling, J. S.; Schoenberner, D.; Heber, U.; Lynas-Gray, A. E.

    1982-01-01

    Ultraviolet flux distributions are presented for the extremely helium rich stars BD +10 deg 2179, HD 124448, LSS 3378, BD -9 deg 4395, LSE 78, HD 160641, LSIV -1 deg 2, BD 1 deg 3438, HD 168476, MV Sgr, LS IV-14 deg 109 (CD -35 deg 11760), LSII +33 deg 5 and BD +1 deg 4381 (LSIV +2 deg 13) obtained with the International Ultraviolet Explorer (IUE). Broad band photometry and a newly computed grid of line blanketed model atmospheres were used to determine accurate angular diameters and total stellar fluxes. The resultant effective temperatures are in most cases in satisfactory agreement with those based on broad band photometry and/or high resolution spectroscopy in the visible. For two objects, LSII +33 deg 5 and LSE 78, disagreement was found between the IUE observations and broadband photometry: the colors predict temperatures around 20,000 K, whereas the UV spectra indicate much lower photospheric temperatures of 14,000 to 15,000 K. The new temperature scale for extreme helium stars extends to lower effective temperatures than that of Heber and Schoenberner (1981) and covers the range from 8,500 K to 32,000 K.

  4. Contrasting Foraging Patterns: Testing Resource-Concentration and Dilution Effects with Pollinators and Seed Predators

    Directory of Open Access Journals (Sweden)

    Alexandria Wenninger

    2016-06-01

    Full Text Available Resource concentration effects occur when high resource density patches attract and support more foragers than low density patches. In contrast, resource dilution effects can occur if high density patches support fewer consumers. In this study, we examined the foraging rates of pollinators and seed predators on two perennial plant species (Rudbeckia triloba and Verbena stricta as functions of resource density. Specifically, we examined whether resource-dense patches (densities of flower and seeds on individual plants resulted in greater visitation and seed removal rates, respectively. We also examined whether foraging rates were context-dependent by conducting the study in two sites that varied in resource densities. For pollinators, we found negative relationships between the density of flowers per plant and visitation rates, suggesting dilution effects. For seed predators, we found positive relationships consistent with concentration effects. Saturation effects and differences in foraging behaviors might explain the opposite relationships; most of the seed predators were ants (recruitment-based foragers, and pollinators were mostly solitary foragers. We also found that foraging rates were site-dependent, possibly due to site-level differences in resource abundance and consumer densities. These results suggest that these two plant species may benefit from producing as many flowers as possible, given high levels of pollination and low seed predation.

  5. Effects of electric field on magnetic properties of MnxGe_{1-x} diluted magnetic semiconductors

    Science.gov (United States)

    Assefa, Gezahegn; Singh, P.

    2016-03-01

    We report the effect of external electric field (EEF) on the magnetic properties of MnxGe_{1-x}, diluted magnetic semiconductor. We present a Kondo Lattice Model type Hamiltonian with exchange coupling between localized spins, itinerant holes and the EEF. The magnetization, the dispersion and critical temperature (Tc) are calculated for different values of EEF parameters (α) using double time temperature-dependent Green function formalism. The enhancement of the (Tc) with the EEF is shown to be very distinct and is in agreement with recent experimental observation and much required for spintronics applications and devices.

  6. Effect of helium production on swelling of F82H irradiated in HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, E. E-mail: wakai@realab01.tokai.jaeri.go.jp; Hashimoto, N.; Miwa, Y.; Robertson, J.P.; Klueh, R.L.; Shiba, K.; Jistukawa, S

    2000-12-01

    The effects of helium production and heat treatment on the swelling of F82H steel irradiated in the HFIR to 51 dpa have been investigated using {sup 10}B, {sup 58}Ni and {sup 60}Ni-doped specimens. The swelling of tempered F82H-std and F82H doped with {sup 10}B irradiated at 400 deg. C ranged from 0.52% to 1.2%, while the swelling of the non-tempered F82H doped with {sup 58}Ni or {sup 60}Ni was less than 0.02%. At 300 deg. C the swelling in all steels was insignificant. In the F82H + Ni, a high number of density carbides formed in the matrix at these temperatures. The production of helium atoms enhanced the swelling of the F82H steel. However, the non-tempered treatment for the F82H + Ni suppressed remarkably the swelling. The cause of low swelling in the F82H + Ni may be due to the occurrence of the high density of carbides acting as sinks or the decrease of mobility of vacancies interacting with carbon atoms in matrix.

  7. Radiation effects on microstructure and hardness of a titanium aluminide alloy irradiated by helium ions at room and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Tao, E-mail: tao@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science & Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW 2232 (Australia); Zhu, Hanliang [Institute of Materials Engineering, Australian Nuclear Science & Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW 2232 (Australia); Ionescu, Mihail [Institute for Environment Research, Australian Nuclear Science & Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW 2232 (Australia); Dayal, Pranesh; Davis, Joel; Carr, David; Harrison, Robert; Edwards, Lyndon [Institute of Materials Engineering, Australian Nuclear Science & Technology Organisation, Locked Bag 2001, Kirrawee DC, Sydney, NSW 2232 (Australia)

    2015-04-15

    A 45XD TiAl alloy possessing a lamellar microstructure was irradiated using 5 MeV helium ions to a fluence of 5 × 10{sup 21} ion m{sup −2} (5000 appm) with a dose of about 1 dpa (displacements per atom). A uniform helium ion stopping damage region about 17 μm deep from the target surface was achieved by applying an energy degrading wheel. Radiation damage defects including helium-vacancy clusters and small helium bubbles were found in the microstructure of the samples irradiated at room temperature. With increasing irradiation temperature to 300 °C and 500 °C helium bubbles were clearly observed in both the α{sub 2} and γ phases of the irradiated microstructure. By means of nanoindentation significant irradiation hardening was measured. For the samples irradiated at room temperature the hardness increased from 5.6 GPa to 8.5 GPa and the irradiation-hardening effect reduced to approximately 8.0 GPa for the samples irradiated at 300 °C and 500 °C.

  8. Antiprotonic helium

    CERN Multimedia

    Eades, John

    2005-01-01

    An exotic atom in w hich an electron and an antiproton orbit a helium nucleus could reveal if there are any differences between matter and antimatter. The author describes this unusual mirror on the antiworld (5 pages)

  9. Studies on the effects of helium on the microstructural evolution of V-3.8Cr-3.9Ti

    Energy Technology Data Exchange (ETDEWEB)

    Doraiswamy, N.; Kestel, B.; Alexander, D.E. [Argonne National Labs., IL (United States)

    1997-04-01

    The favorable physical and mechanical properties of V-3.8Cr-3.9Ti (wt.%), when subjected to neutron irradiation, has lead to considerable attention being focused on it for use in fusion reactor structural applications. However, there is limited data on the effects of helium on physical and mechanical properties of this alloy. Understanding these effects are important since helium will be generated by direct {alpha}-injection or transmutation reactions in the fusion environment, typically at a rate of {approx}5 appm He/dpa. Helium has been shown to cause substantial embrittlement, even at room temperature in vanadium and its alloys. Recent simulations of the fusion environment using the Dynamic Helium Charging Experiments (DHCE) have also indicated that the mechanical properties of vanadium alloys are altered by the presence of helium in post irradiation tests performed at room temperature. While the strengths were lower, room temperature ductilities of the DHCE specimens were higher than those of non-DHCE specimens. These changes have been attributed to the formation of different types of hardening centers in these alloys due to He trapping. Independent thermal desorption experiments suggest that these hardening centers may be associated with helium-vacancy-X (where X = O, N, and C) complexes. These complexes are stable below 290{degrees}C and persist at room temperature. However, there has been no direct microstructural evidence correlating the complexes with irradiation effects. An examination of the irradiation induced microstructure in samples preimplanted with He to different levels would enable such a correlation.

  10. In vitro effect of intracanal medicaments on strict anaerobes by means of the broth dilution method

    Directory of Open Access Journals (Sweden)

    ROSA Odila Pereira da Silva

    2002-01-01

    Full Text Available The determination of bacterial susceptibility to intracanal medicaments is a necessity. Nevertheless, few studies utilize the proper methodology to carry out that evaluation with anaerobes. In this study, the steps of a broth dilution method, carried out in microplates (microdilution and tubes (macrodilution, to test the effect of traditional intracanal medicaments on anaerobic bacteria are described. The results are presented as values of minimal inhibitory and bactericidal concentrations (MIC and MBC. Standardized inocula of the anaerobic bacteria Prevotella nigrescens (ATCC 33563, Fusobacterium nucleatum (ATCC 25586 and Clostridium perfringens (ATCC 13124, in reinforced Clostridium medium (RCM and supplemented Brucella broth, were submitted to different concentrations of calcium hydroxide, chlorhexidine digluconate, camphorated paramonochlorophenol and formocresol solutions. The drugs were diluted in the same culture broths, in microplates and tubes, and were then incubated in anaerobiosis jars at 37ºC for 48 or 96 hours. The determination of MICs was carried out through visual and spectrophotometric readings, and the determination of MBCs, through the plating of aliquots on RCM-blood agar. For that kind of study, the macromethod with spectrophotometric reading should be the natural choice. MICs and MBCs obtained with the macromethod were compatible with the known clinical performance of the studied medications, and the values varied according to the bacteria and culture media employed. RCM was the most effective medium and C. perfringens, the most resistant microorganism.

  11. Isotope effect in collision between helium atom and hydrogen bromide molecule

    Institute of Scientific and Technical Information of China (English)

    Yu Chun-Ri; Cheng Xin-Lu; Yang Xiang-Dong

    2008-01-01

    The anisotropic potential developed in our previous research and the close-coupling method are applied to the HBr-3He(4He,5He,6He,7He)system,and the partial cross sections(PCSs)at the incident energy of 60 meV are calculated.Based on the calculations,the influences of the isotope helium atom on PCSs are discussed in detail.The results show that the excitation PCSs converge faster than the elastic PCSs for the collision energy and the systems considered here.Also the excitation PCSs converge more rapidly for the high-excited states.The tail effect is present only in elastic scattering and low-excited states but not in high-excited states.With the increase of reduced mass of the collision system,the converging speed of the elastic and excitation PCSs slows down,and the tail effect goes up.

  12. Effect of diet dilution at early age on performance, carcass characteristics and blood parameters of broiler chicks

    Directory of Open Access Journals (Sweden)

    Hosna Hajati

    2010-02-01

    Full Text Available The effect of energy and protein dilution during 16 to 20 d of age, on performance, carcass characteristics and blood parameters of broiler chickens was studied in a completely randomized design with 3 treatments and 3 replicates in each treatment. A total of 144 mixed-sex chickens (Cobb 500 were randomly allocated to 9 pens. In order to dilute the diets three levels (0, 20 and 40% of rice hull was used. During the experiment feed intake, body weight gain, feed conversion ratio were measured weekly. The results indicated that dilution of diet from 16 to 20 d of age increased feed intake in this period, but adjusted feed intake (excluded rice hull was decreased (P<0.05. Restricted bird consumed more feed in the whole period of the experiment (16 to 44 d. With increasing dilution rate during restriction period, body weight gain of chickens decreased in comparison to control group (P<0.05. Due to compensatory growth after restriction period, restricted chickens had higher body weight gain than control groups at 44 d of age. Feed dilution up to 20 percent had not significant effect on feed conversion ratio in the whole period of the experiment. Diet dilution had not significant effect on carcass, breast meat, legs, proventriculus, heart and feet weight proportion. Diet dilution significantly increased gizzard weight proportion, and decreased abdominal fat pad weight, carcass crude fat, and increased carcass crude protein proportion (P<0.05. Feed dilution up to 20% increased HDL and decreased LDL concentration in plasma at 21 d of age. Diet dilution up to 40% decreased the concentrations of cholesterol, triglyceride, plasma T3, and increased the concentrations of uric acid and plasma T4 at 21 d of age (P<0.05. Diet dilution up to 20 percent increased plasma glucose concentration at 42 d of age (P<0.05. The results of the present study indicated that feed dilution with 20% rice hull during 16 to 20 d of age had not adverse effect on broiler

  13. Assessment of effective parameters on dilution using approximate reasoning methods in longwall mining method, Iran coal mines

    CERN Document Server

    Owladeghaffari, H; Saeedi, G H R

    2008-01-01

    Approximately more than 90% of all coal production in Iranian underground mines is derived directly longwall mining method. Out of seam dilution is one of the essential problems in these mines. Therefore the dilution can impose the additional cost of mining and milling. As a result, recognition of the effective parameters on the dilution has a remarkable role in industry. In this way, this paper has analyzed the influence of 13 parameters (attributed variables) versus the decision attribute (dilution value), so that using two approximate reasoning methods, namely Rough Set Theory (RST) and Self Organizing Neuro- Fuzzy Inference System (SONFIS) the best rules on our collected data sets has been extracted. The other benefit of later methods is to predict new unknown cases. So, the reduced sets (reducts) by RST have been obtained. Therefore the emerged results by utilizing mentioned methods shows that the high sensitive variables are thickness of layer, length of stope, rate of advance, number of miners, type of...

  14. Effect of modularity on the Glauber dynamics of the dilute spin glass model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong-Man [The Catholic University of Korea, Bucheon (Korea, Republic of)

    2014-11-15

    We study the Glauber dynamics of the dilute, infinite-ranged spin glass model, the so-called dilute Sherrington-Kirkpatrick (dSK) model. The dSK model has sparse couplings and can be classified by the modularity (M) of the coupling matrix. We investigate the effect of the modularity on the relaxation dynamics starting from a random initial state. By using the Glauber dynamics and the replica method, we derive the relaxation dynamics equations for the magnetization (m) and the energy per spin (r), in addition to the equation for the spin glass order parameter (q{sub α}β). In the replica symmetric (RS) analysis, we find that there are two solutions for the RS spin glass order parameter (q): q = 0 which is stable for r < 1/2 and q = (-1+4r{sup 2})/(32r{sup 4}) which is stable for r > 1/2 in the non-modular system and q = 0 which is stable for r < 1/ SQRT(8) and q = (-1+8r{sup 2})/(128r{sup 4}) which is stable for r > 1/ SQRT(8) in the completely modular system. By substituting the proper q values into the equations for r, we find that the relaxation dynamics of r depends on the modularity, M. These results suggest that, in the context of evolutionary theory, the modularity may emerge spontaneously in the point-mutation-only framework (Glauber dynamics) under a changing environment.

  15. Effect of modularity on the Glauber dynamics of the dilute spin glass model

    Science.gov (United States)

    Park, Jeong-Man

    2014-11-01

    We study the Glauber dynamics of the dilute, infinite-ranged spin glass model, the so-called dilute Sherrington-Kirkpatrick (dSK) model. The dSK model has sparse couplings and can be classified by the modularity ( M) of the coupling matrix. We investigate the effect of the modularity on the relaxation dynamics starting from a random initial state. By using the Glauber dynamics and the replica method, we derive the relaxation dynamics equations for the magnetization ( m) and the energy per spin ( r), in addition to the equation for the spin glass order parameter ( q αβ ). In the replica symmetric (RS) analysis, we find that there are two solutions for the RS spin glass order parameter ( q): q = 0which is stable for r 1/2 in the non-modular system and q = 0 which is stable for r 1/ in the completely modular system. By substituting the proper q values into the equations for r, we find that the relaxation dynamics of r depends on the modularity, M. These results suggest that, in the context of evolutionary theory, the modularity may emerge spontaneously in the point-mutation-only framework (Glauber dynamics) under a changing environment.

  16. The effect of primordial hydrogen/helium fractionation on the solar neutrino flux

    Science.gov (United States)

    Wheeler, J. C.; Cameron, A. G. W.

    1975-01-01

    If hydrogen and helium are immiscible below some critical temperature, gravitational separation could occur in the proto-sun, resulting in a nearly pure helium core and a nearly pure hydrogen shell. We have constructed solar models according to this scenario and find the neutrino flux reduced to 1.5-3 SNU.

  17. Finite Size Effects in Adsorption of Helium Mixtures by Alkali Substrates

    Science.gov (United States)

    Barranco, M.; Guilleumas, M.; Hernández, E. S.; Mayol, R.; Pi, M.; Szybisz, L.

    2004-08-01

    We investigate the behavior of mixed 3He-4He droplets on alkali surfaces at zero temperature, within the frame of Finite Range Density Functional theory. The properties of one single 3He atom on 4He_N4 droplets on different alkali surfaces are addressed, and the energetics and structure of 4He_N4+3He_N3 systems on Cs surfaces, for nanoscopic 4He drops, are analyzed through the solutions of the mean field equations for varying number N3 of 3He atoms. We discuss the size effects on the single particle spectrum of 3He atoms and on the shapes of both helium distributions.

  18. The effect of dynamical screening on helium (e, 2e) fully differential cross-sections

    Institute of Scientific and Technical Information of China (English)

    Sun Shi-Yan; Jia Xiang-Fu; Miao Xiang-Yang; Zhang Jun-Feng; Xie Yi; Li Xiong-Wei; Shi Wen-Qiang

    2009-01-01

    This paper presents the fully differential cross sections (FDCS) for 102eV electron impact single ionization of helium for both the coplanar and perpendicular plane asymmetric geometries within the framework of dynamically screened three-Coulomb-wave theory. Comparisons are made with the experimental data and those of the three-Coulomb wave function model and second-order distorted-wave Born method. The angular distribution and relative heights of the present FDCS is found to be in very good agreement with the experimental data in the perpendicular plane geometry.It is shown that dynamical screening effects are significant in this geometry. Three-body coupling is expected to be weak in the coplanar geometry, although the precise absolute value of the cross section is still sensitive to the interaction details.

  19. Effect of crystal orientation on low flux helium and hydrogen ion irradiation in polycrystalline tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fangshu [Department of Physics, Beihang University, Beijing 100191 (China); School of Material Engineering, Panzhihua University, Panzhihua 617000 (China); Ren, Haitao; Peng, Shixiang [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Zhu, Kaigui, E-mail: kgzhu@buaa.edu.cn [Department of Physics, Beihang University, Beijing 100191 (China)

    2014-08-15

    Blistering behavior in polycrystalline tungsten is investigated under low flux helium and hydrogen ion irradiation. Subsequent to irradiation, the grain orientations near (0 1 1), (1 0 1) and (1 1 1) planes on the surface are analyzed by SEM and EBSD. It is found that blister density is the greatest on the grain orientation near (1 1 1) plane, and the smallest on the grain orientation near (0 0 1) plane. Experiments suggest that blistering degree highly depends upon the grain orientation, blisters are easily formed on the grain orientation near (1 1 1) plane, and medium on the grain orientation near (1 0 1) plane, and the most rare on the grain orientation near (0 1 1) plane. The surface resistant orientation of tungsten is orientation near (0 0 1) plane. The atom binding energy in the crystal plane in combination with the channeling effect of adjacent crystal planes may play an important role for the difference of the surface morphology.

  20. Scaled experiments using the helium technique to study the vehicular blockage effect on longitudinal ventilation control in tunnels

    DEFF Research Database (Denmark)

    Alva, Wilson Ulises Rojas; Jomaas, Grunde; Dederichs, Anne

    2015-01-01

    A model tunnel (1:30 compared to a standard tunnel section) with a helium-air smoke mixture was used to study the vehicular blockage effect on longitudinal ventilation smoke control. The experimental results showed excellent agreement with full-scale data and confirmed that the critical velocity ...

  1. Experimental study of the effects of helium-neon laser radiation on repair of injured tendon

    Science.gov (United States)

    Xu, Yong-Qing; Li, Zhu-Yi; Weng, Long-Jiang; An, Mei; Li, Kai-Yun; Chen, Shao-Rong; Wang, Jian-Xin; Lu, Yu

    1993-03-01

    Despite extensive research into the biology of tendon healing, predictably restoring normal function to a digit after a flexor tendon laceration remains one of the most difficult problems facing the hand surgeon. The challenge of simultaneously achieving tendon healing while minimizing the peritendinous scar formation, which limits tendon gliding, has captured the attention of investigators for many years. It has been said that low-power density helium-neon laser radiation had effects on anti-inflammation, detumescence, progressive wound healing, and reducing intestinal adhesions. This experimental study aims at whether helium-neon laser can reduce injured tendon adhesions and improve functional recovery of the injured tendon. Fifty white Leghorn hens were used. Ten were randomly assigned as a normal control group, the other forty were used in the operation. After anesthetizing them with Amytal, a half of the profundus tendons of the second and third foretoes on both sides of the feet were cut. Postoperatively, the hens moved freely in the cages. One side of the toes operated on were randomly chosen as a treatment group, the other side served as an untreated control group. The injured tendon toes in the treatment group were irradiated for twenty minutes daily with a fiber light needle of helium-neon laser therapeutic apparatus (wavelength, 6328 angstroms) at a constant power density of 12.74 mW/cm2, the first exposure taking place 24 hours after the operation. The longest course of treatment was 3 weeks. The control group was not irradiated. At 3 days, 1, 2, 3, and 5 weeks after surgery, 8 hens were sacrificed and their tendons were examined. The experimental results: (1) active, passive flexion and tendon gliding functional recovery were significantly better in the treatment group (p tendon at the cut site were significantly smaller in the treatment group (p tendon adhesions were significantly lighter in the treatment group (p tendon extrinsic healing, reducing

  2. Summary of four scientific studies on Arsenicum album high dilution effect against Arsenic intoxication in mice

    Directory of Open Access Journals (Sweden)

    Laurence Terzan

    2012-09-01

    Full Text Available Background: Groundwater arsenic affects millions of people in about 20 countries. In West Bengal (India and Bangladesh alone over 100 million people are exposed. The arsenic concentration in contaminated groundwater in Bangladesh was above the maximum permissible level of 0.05 mg/l as recommended by WHO for developing countries [1]. Drinking water is not the only source of poisoning. In arsenic contaminated areas, crops, vegetables, cereals, poultry, cattle, etc, also contain traces of arsenic. Chronic arsenic intoxication has been associated with several diseases such as melanosis, leuco-melanosis, hyperkeratosis, oedema, skin cancer… Cazin et al [2], have demonstrated the effect of high dilutions of arsenic compounds. They noted increased arsenic elimination from blood through urine and faeces in intoxicated rats. According to these research, the aim of Khuda Buksh studies [3-4-5] was to investigate whether high dilution Arsenicum album have any effect on arsenic accumulation in different tissues and to understand also how this high dilution could produce a protective effect on all the different organs. Methodology: Firstly, the effect of Arsenicum album 30 cH on the amount of arsenic accumulation was determined by spectrophotometric analysis in four tissues namely liver, kidney and testis in mice intoxicated by arsenic. The protective effect in chronic and acute arsenic intoxicated mice of Arsenicum Album 6cH, 30cH and 200cH has been evaluated using not only the activities of enzymatic and biomarker toxicity (aspartate amino transferase (AST, alanine amino transferase (ALT, acid phosphatase (AcP, alkaline phosphatase (AlkP, lipid peroxidation (LPO and reduced glutathione (GSH but also the cytogenetical parameters (chromosome aberrations (CA, mitotic index (MI, sperm head anomaly (SHA etc., . Because, it is well demonstrated that these enzymes biomarkers reflect the degree of hepatotoxicity and oxidative stress caused by

  3. Ethanol production from industrial hemp: effect of combined dilute acid/steam pretreatment and economic aspects.

    Science.gov (United States)

    Kuglarz, Mariusz; Gunnarsson, Ingólfur B; Svensson, Sven-Erik; Prade, Thomas; Johansson, Eva; Angelidaki, Irini

    2014-07-01

    In the present study, combined steam (140-180°C) and dilute-acid pre-hydrolysis (0.0-2.0%) were applied to industrial hemp (Cannabis sativa L.), as pretreatment for lignocellulosic bioethanol production. The influence of the pretreatment conditions and cultivation type on the hydrolysis and ethanol yields was also evaluated. Pretreatment with 1% sulfuric acid at 180°C resulted in the highest glucose yield (73-74%) and ethanol yield of 75-79% (0.38-0.40 g-ethanol/g-glucose). Taking into account the costs of biomass processing, from field to ethanol facility storage, the field-dried hemp pretreated at the optimal conditions showed positive economic results. The type of hemp cultivation (organic or conventional) did not influence significantly the effectiveness of the pretreatment as well as subsequent enzymatic hydrolysis and ethanol fermentation.

  4. Comparison of dilution effects of R134a and nitrogen on flammable hydrofluorocarbons

    Institute of Scientific and Technical Information of China (English)

    Zhenming Li; Maoqiong Gong; Jianfeng Wu; Yuan Zhou

    2009-01-01

    An experimental apparatus has been built to measure the flammability limits of combustible gases based on Chi-nese national standard GB/T 12474-90. The flammability limits of four binary mixtures of R161/R134a, Ri52a/R134a, RI61/N2 and RI52a/N2 were measured with this apparatus at atmospheric pressure and ambient temperature. The fuel inertization points (FIP) of these mixtures can be found from the envelopes. Comparisons were made with the literature data; good agreement for most measurements was obtained. R134a was found to have a better dilution effect than nitrogen in reducing the flammability of hydrofluorocarbons.

  5. Balancing the dilution and oddity effects: decisions depend on body size.

    Directory of Open Access Journals (Sweden)

    Gwendolen M Rodgers

    Full Text Available BACKGROUND: Grouping behaviour, common across the animal kingdom, is known to reduce an individual's risk of predation; particularly through dilution of individual risk and predator confusion (predator inability to single out an individual for attack. Theory predicts greater risk of predation to individuals more conspicuous to predators by difference in appearance from the group (the 'oddity' effect. Thus, animals should choose group mates close in appearance to themselves (eg. similar size, whilst also choosing a large group. METHODOLOGY AND PRINCIPAL FINDINGS: We used the Trinidadian guppy (Poecilia reticulata, a well known model species of group-living freshwater fish, in a series of binary choice trials investigating the outcome of conflict between preferences for large and phenotypically matched groups along a predation risk gradient. We found body-size dependent differences in the resultant social decisions. Large fish preferred shoaling with size-matched individuals, while small fish demonstrated no preference. There was a trend towards reduced preferences for the matched shoal under increased predation risk. Small fish were more active than large fish, moving between shoals more frequently. Activity levels increased as predation risk decreased. We found no effect of unmatched shoal size on preferences or activity. CONCLUSIONS AND SIGNIFICANCE: Our results suggest that predation risk and individual body size act together to influence shoaling decisions. Oddity was more important for large than small fish, reducing in importance at higher predation risks. Dilution was potentially of limited importance at these shoal sizes. Activity levels may relate to how much sampling of each shoal was needed by the test fish during decision making. Predation pressure may select for better decision makers to survive to larger size, or that older, larger fish have learned to make shoaling decisions more efficiently, and this, combined with their size

  6. Effects of helium content of microstructural development in Type 316 stainless steel under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.

    1985-11-01

    This work investigated the sensitivity of microstructural evolution, particularly precipitate development, to increased helium content during thermal aging and during neutron irradiation. Helium (110 at. ppM) was cold preinjected into solution annealed (SA) DO-heat type 316 stainess steel (316) via cyclotron irradiation. These specimens were then exposed side by side with uninjected samples. Continuous helium generation was increased considerably relative to EBR-II irradiation by irradiation in HFIR. Data were obtained from quantitative analytical electron microscopy (AEM) in thin foils and on extraction replicas. 480 refs., 86 figs., 19 tabs.

  7. Bed system performance in helium circulation mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yean Jin; Jung, Kwang Jin; Ahn, Do Hee; Chung, Hong Suk [UST, Daejeon (Korea, Republic of); Kang, Hee Suk [KAERI, Daejeon (Korea, Republic of); Yun, Sei Hun [NFRI, Deajeon (Korea, Republic of)

    2016-05-15

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, We have conducted an experiment for storing hydrogen to depleted uranium and zirconium cobalt. The helium blanket effect has been observed in experiments using metal hydrides. The collapse of the hydrogen isotopes are accompanied by the decay heat and helium-3. Helium-3 dramatically reduces the hydrogen isotope storage capacity by surrounding the metal. This phenomenon is called a helium blanket effect. In addition the authors are working on the recovery and removal techniques of helium-3. In this paper, we discuss the equipment used to test the helium blanket effect and the results of a helium circulation experiment. The helium-3 produced surrounds the storage material surface and thus disturbs the reaction of the storage material and the hydrogen isotope. Even if the amount of helium-3 is small, the storage capacity of the SDS bed significantly drops. This phenomenon is the helium blanket effect. To resolve this phenomenon, a circulating loop was introduced. Using a circulating system, helium can be separated from the storage material. We made a helium loop that includes a ZrCo bed. Then using a metal bellows pump, we tested the helium circulation.

  8. Effects of helium and ambient water vapor on tritium release from Li2TiO3

    Science.gov (United States)

    Kobayashi, Makoto; Uchimura, Hiromichi; Toda, Kensuke; Oya, Yasuhisa

    2014-12-01

    The effects of hydrogen isotopes in tritium recovery gas and the presence of helium on the tritium release behaviors were investigated for lithium meta-titanate (Li2TiO3) to develop a tritium migration model. The tritium trapping sites as oxygen vacancies and oxygen atoms with dangling bonds were formed by energetic tritium ion implantation. Isotope exchange processes with water vapor in purge gas enhanced the recovery of tritium adsorbed on the surface of Li2TiO3 and trapped in oxygen vacancies. Replacement of tritium as hydroxyl groups with hydrogen isotopes from purge gas was hardly occurred due to the higher trapping energy of tritium as hydroxyl groups. Helium implantation would induce the formation of helium bubbles, which would occupy irradiation damages, contributing to the decrease in the densities of trapping site for tritium. Consequently, the addition of hydrogen isotopes in the tritium recovery gas and the presence of helium in tritium breeding materials can contribute to the efficient tritium recovery for tritium breeding materials.

  9. Effects of helium pre-implantation on the microstructure and mechanical properties of irradiated 316 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Toloczko, M.B.; Tedeski, G.R.; Lucas, G.E.; Odette, G.R. [Univ. of California, Santa Barbara, CA (United States). Dept. of Chemical and Nuclear Engineering; Stoller, R.E. [Oak Ridge National Lab., TN (United States); Hamilton, M.L. [Pacific Northwest Lab., Richland, WA (United States)

    1994-11-01

    Transmission electron microscopy (TEM) specimens of a First Core heat of 316 stainless steel, in both the solution annealed and 20% cold worked condition, were irradiated to 46 dpa at 420 C, to 49 dpa at 520 C, and to 34 dpa at 600 C in FFTF/MOTA. Prior to irradiation, about half of the specimens were pre-implanted with approximately 100 appm of helium, and of these, several of the solution annealed and pre-implanted specimens were aged at 800 C for 2 hr. Post-irradiation density measurements showed little difference in density between the unimplanted alloys and their helium implanted counterparts. Microstructural observations on specimens irradiated at 420 C and 520 C showed relatively minor differences in defect distributions between the unimplanted and the helium implanted materials; in all cases the defect sizes and number densities were consistent with data in the literature. Where possible, irradiation hardening of the alloys was experimentally evaluated by microhardness and shear punch; experimentally obtained values were compared to values calculated using a computer model based on barrier hardening and the microstructural data. All methods indicated relatively small effects of helium implantation, and both measured and calculated values were in agreement with the range of values reported in the literature.

  10. Effects of metastable species in helium and argon atmospheric pressure plasma jets (APPJs) on inactivation of periodontopathogenic bacteria

    Science.gov (United States)

    Yoon, Sung-Young; Kim, Kyoung-Hwa; Seol, Yang-Jo; Kim, Su-Jeong; Bae, Byeongjun; Huh, Sung-Ryul; Kim, Gon-Ho

    2016-05-01

    The helium and argon have been widely used as discharge gases in atmospheric pressure plasma jets (APPJs) for bacteria inactivation. The APPJs show apparent different in bullet propagation speed and bacteria inactivation rate apparently vary with discharge gas species. This work shows that these two distinctive features of APPJs can be linked through one factor, the metastable energy level. The effects of helium and argon metastable species on APPJ discharge mechanism for reactive oxygen nitrogen species (RONS) generation in APPJs are investigated by experiments and numerical estimation. The discharge mechanism is investigated by using the bullet velocity from the electric field which is obtained with laser induced fluorescence (LIF) measurement. The measured electric field also applied on the estimation of RONS generation, as electron energy source term in numerical particle reaction. The estimated RONS number is verified by comparing NO and OH densities to the inactivation rate of periodontitis bacteria. The characteristic time for bacteria inactivation of the helium-APPJ was found to be 1.63 min., which is significantly less than that of the argon-APPJ, 12.1 min. In argon-APPJ, the argon metastable preserve the energy due to the lack of the Penning ionization. Thus the surface temperature increase is significantly higher than helium-APPJ case. It implies that the metastable energy plays important role in both of APPJ bullet propagation and bacteria inactivation mechanism.

  11. Effects of discharge current and voltage on the high density of metastable helium atoms

    Institute of Scientific and Technical Information of China (English)

    FengXian-Ping; DAndruczyk; BWJames; KTakiyama; SNamba; TOda

    2003-01-01

    Both hollow-cathode and Penning-type discharges were adopted toexcite helium atoms to a metastable state. Experimental data indicate that Penning discharge is more suitable for generating high fractions of metastables in a low-density helium hean for laser-induced fluorescence technique in measuring electric fields at the edge of a plasma. The metastable density increases with increasing helium gas pressure in the range of 1.33×10-2-66.7Pa. The highest metastable density of 3.8×1016m-3 is observed at a static gas pressure of 66.7Pa. An approximately linear relationship between the density of metastable helium atoms and the plasma discharge current is observed. Magnetic field plays a very important role in producing a high density of metastable atoms in Penning discharge.

  12. Effects of discharge current and voltage on the high density of metastable helium atoms

    Institute of Scientific and Technical Information of China (English)

    Feng Xian-Ping(冯贤平); D Andruczyk; B W James; K Takiyama; S Namba; T Oda

    2003-01-01

    Both hollow-cathode and Penning-type discharges were adopted to excite helium atoms to a metastable state.Experimental data indicate that Penning discharge is more suitable for generating high fractions of metastables in a low-density helium beam for laser-induced fluorescence technique in measuring electric fields at the edge of a plasma.The metastable density increases with increasing helium gas pressure in the range of 1.33× 10-2-66.7Pa. The highest metastable density of 3.8 × 1016m-3 is observed at a static gas pressure of 66.7Pa. An approximately linear relationship between the density of metastable helium atoms and the plasma discharge current is observed. Magnetic field plays a very important role in producing a high density of metastable atoms in Penning discharge.

  13. Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria.

    Science.gov (United States)

    Hu, Wan-Ping; Wang, Jeh-Jeng; Yu, Chia-Li; Lan, Cheng-Che E; Chen, Gow-Shing; Yu, Hsin-Su

    2007-08-01

    Previous reports have shown that cellular functions could be influenced by visual light (400-700 nm). Recent evidence indicates that cellular proliferation could be triggered by the interaction of a helium-neon laser (He-Ne laser, 632.8 nm) with the mitochondrial photoacceptor-cytochrome c oxidase. Our previous studies demonstrated that He-Ne irradiation induced an increase in cell proliferation, but not migration, in the melanoma cell line A2058 cell. The aim of this study was to investigate the underlying mechanisms involved in photostimulatory effects induced by an He-Ne laser. Using the A2058 cell as a model for cell proliferation, the photobiologic effects induced by an He-Ne laser were studied. He-Ne irradiation immediately induced an increase in mitochondrial membrane potential (delta psi(mt)), ATP, and cAMP via enhanced cytochrome c oxidase activity and promoted phosphorylation of Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) expressions. He-Ne irradiation-induced A2058 cell proliferation was significantly abrogated by the addition of delta psi(mt) and JNK inhibitors. Moreover, treatment with an He-Ne laser resulted in delayed effects on IL-8 and transforming growth factor-beta1 release from A2058 cells. These results suggest that He-Ne irradiation elicits photostimulatory effects in mitochondria processes, which involve JNK/AP-1 activation and enhanced growth factor release, and ultimately lead to A2058 cell proliferation.

  14. The effect of dilute acid pre-treatment process in bioethanol production from durian (Durio zibethinus) seeds waste

    Science.gov (United States)

    Ghazali, K. A.; Salleh, S. F.; Riayatsyah, T. M. I.; Aditiya, H. B.; Mahlia, T. M. I.

    2016-03-01

    Lignocellulosic biomass is one of the promising feedstocks for bioethanol production. The process starts from pre-treatment, hydrolysis, fermentation, distillation and finally obtaining the final product, ethanol. The efficiency of enzymatic hydrolysis of cellulosic biomass depends heavily on the effectiveness of the pre-treatment step which main function is to break the lignin structure of the biomass. This work aims to investigate the effects of dilute acid pre-treatment on the enzymatic hydrolysis of durian seeds waste to glucose and the subsequent bioethanol fermentation process. The yield of glucose from dilute acid pre-treated sample using 0.6% H2SO4 and 5% substrate concentration shows significant value of 23.4951 g/L. Combination of dilute acid pre-treatment and enzymatic hydrolysis using 150U of enzyme able to yield 50.0944 g/L of glucose content higher compared to normal pre-treated sample of 8.1093 g/L. Dilute acid pre-treatment sample also shows stable and efficient yeast activity during fermentation process with lowest glucose content at 2.9636 g/L compared to 14.7583g/L for normal pre-treated sample. Based on the result, it can be concluded that dilute acid pre-treatment increase the yield of ethanol from bioethanol production process.

  15. The effects of dual-domain mass transfer on the tritium-helium-3 dating method.

    Science.gov (United States)

    Neumann, Rebecca B; Labolle, Eric M; Harvey, Charles F

    2008-07-01

    Diffusion of tritiated water (referred to as tritium) and helium-3 between mobile and immobile regions in aquifers (mass transfer) can affect tritium and helium-3 concentrations and hence tritium-helium-3 (3H/3He) ages that are used to estimate aquifer recharge and groundwater residence times. Tritium and helium-3 chromatographically separate during transport because their molecular diffusion coefficients differ. Simulations of tritium and helium-3 transport and diffusive mass transfer along stream tubes show that mass transfer can shift the 3H/3He age of the tritium and helium-3 concentration ([3H + 3He]) peak to dates much younger than the 1963 peak in atmospheric tritium. Furthermore, diffusive mass-transfer can cause the 3H/3He age to become younger downstream along a stream tube, even as the mean water-age must increase. Simulated patterns of [3H + 3He] versus 3H/3He age using a mass transfer model appear consistent with a variety of field data. These results suggest that diffusive mass transfer should be considered, especially when the [3H + 3He] peak is not well defined or appears younger than the atmospheric peak. 3H/3He data provide information about upstream mass-transfer processes that could be used to constrain mass-transfer models; however, uncritical acceptance of 3H/3He dates from aquifers with immobile regions could be misleading.

  16. [Radioprotective effect of helium-neon laser radiation for fibroblast cells].

    Science.gov (United States)

    Voskanian, K Sh; Mitsyn, G V; Gaevskiĭ, V N

    2007-01-01

    Effects of combined exposure to 633-nm laser waves and gamma-radiation, and laser waves and protons with the energy of 150 MeV on survivablilty of mice fibroblast cells C3H10T1/2 were compared. Cell suspension (1 - 5 x 10(5) cells/ml) was distributed in 2-ml plastic vials with 1 cm in diameter time interval between two exposures in a combination was no more than 60 s. immediately after exposure a required quantity of cells was inoculated in special vials for survivability assessment. Based on results of the experiment, preliminary and repeated laser treatment was favorable to survivability of fibroblast cells subjected to gamma- or proton irradiation (dose variation factor was within 1.3 to 2.2). Simultaneous exposure of C3H10T1/2 cells to the laser and proton beams also increased their survivability. The radioprotective effect of the helium-neon laser on fibroblasts earlier exposed to ionizing radiation is of chief interest, as most of the present-day radioprotectors are effective only if introduced into organism prior to exposure.

  17. Effect of helium nanoclusters on the spectroscopic properties of embedded SF6: Ionization, excitation and vibration

    Science.gov (United States)

    Dehdashti-Jahromi, M.; Farrokhpour, H.

    2017-02-01

    Ionization and excitation energies, IR and Raman spectra of sulfur hexafluoride (SF6), located inside helium (He) nanoclusters with different sizes (SF6@Hen; n = 20, 40, 60), were calculated. The effect of the cluster size on the spectroscopic properties of the SF6 was investigated and found that the Hen-SF6 interaction in the He clusters with large number of atoms is small so that the ionization and absorption energies of SF6 are not affected while for small He nanoclusters the Hen-SF6 interaction is more important. The effect of Hen-SF6 interaction and deformation of the fragments on the photoelectron and absorption spectra of SF6@Hen were separated theoretically and discussed in details. It was deduced that the effect of the cluster size on the IR and Raman vibrational frequencies of the SF6 is negligible for the cluster size range considered in this work. Density functional theory (DFT) employing M06-2X functional and 6-31 + G(df) basis set were used for optimizing the structures of SF6@Hen. Symmetry adapted cluster-configuration interaction (SAC-CI) methodology, with the same basis set, were used to calculate the ionization and excitation energies of the SF6@Hen structures. Using the calculated ionization and absorption energies and their intensities, the photoelectron and absorption spectra of the considered SF6@Hen structures were simulated and compared with the experiment.

  18. Helium effects on mechanical properties and microstructure of high fluence ion-irradiated RAFM steel

    Science.gov (United States)

    Ogiwara, H.; Kohyama, A.; Tanigawa, H.; Sakasegawa, H.

    2007-08-01

    Reduced-activation ferritic/martensitic steels, RAFS, are leading candidates for the blanket and first wall of fusion reactors, and effects of displacement damage and helium production on mechanical properties and microstructures are important to these applications. Because it is the most effective way to obtain systematic and accurate information about microstructural response under fusion environment, single-(Fe 3+) and dual-(Fe 3+ + He +) irradiations were performed followed by TEM observation and nano-indentation hardness measurement. Dual-ion irradiation at 420 °C induced finer defect clusters compared to single-ion irradiation. These fine defect clusters caused large differences in the hardness increase between these irradiations. TEM analysis clarified that radiation induced precipitates were MX precipitates (M: Ta, W). Small defects invisible to TEM possibly caused the large increase in hardness, in addition to the hardness increment produced by radiation induced MX. In this work, radiation hardening and microstructural evolution accompanied by the synergistic effects to high fluences are discussed.

  19. On the effects of dilute polymers on driven cavity turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Liberzon, Alex, E-mail: alexlib@eng.tau.ac.il [School of Mechanical Engineering, Tel Aviv University, International Collaboration for Turbulence Research (ICTR), Ramat Aviv 69978 (Israel)] [International Collaboration for Turbulence Research (Netherlands)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Dilute polymers alter genuine structure of turbulent lid-driven cavity flow. Black-Right-Pointing-Pointer Altered structure is identifiable via the mixed-type correlations of velocity and velocity derivatives. Black-Right-Pointing-Pointer Polymer effects 'propagate up-scale' from the smallest scales of velocity derivatives to the large velocity scales. Black-Right-Pointing-Pointer The revealed mechanism is observed in turbulent flows independently of forcing, homogeneity or presence of solid walls. - Abstract: Effects of dilute polymer solutions on a lid-driven cubical cavity turbulent flow are studied via particle image velocimetry (PIV). This canonical flow is a combination of a bounded shear flow, driven at constant velocity and vortices that change their spatial distribution as a function of the lid velocity. From the two-dimensional PIV data we estimate the time averaged spatial fields of key turbulent quantities. We evaluate a component of the vorticity-velocity correlation, namely Left-Pointing-Angle-Bracket {omega}{sub 3}v Right-Pointing-Angle-Bracket , which shows much weaker correlation, along with the reduced correlation of the fluctuating velocity components, u and v. There are two contributions to the reduced turbulent kinetic energy production - Left-Pointing-Angle-Bracket u v Right-Pointing-Angle-Bracket S{sub uv}, namely the reduced Reynolds stresses, - Left-Pointing-Angle-Bracket u v Right-Pointing-Angle-Bracket , and strongly modified pointwise correlation of the Reynolds stress and the mean rate-of-strain field, S{sub uv}. The Reynolds stresses are shown to be affected because of the derivatives of the Reynolds stresses, {partial_derivative} Left-Pointing-Angle-Bracket u v Right-Pointing-Angle-Bracket /{partial_derivative}y that are strongly reduced in the same regions as the vorticity-velocity correlation. The results, combined with the existing evidence, support the phenomenological model of

  20. The effect of ultrasound on particle size, color, viscosity and polyphenol oxidase activity of diluted avocado puree.

    Science.gov (United States)

    Bi, Xiufang; Hemar, Yacine; Balaban, Murat O; Liao, Xiaojun

    2015-11-01

    The effect of ultrasound treatment on particle size, color, viscosity, polyphenol oxidase (PPO) activity and microstructure in diluted avocado puree was investigated. The treatments were carried out at 20 kHz (375 W/cm(2)) for 0-10 min. The surface mean diameter (D[3,2]) was reduced to 13.44 μm from an original value of 52.31 μm by ultrasound after 1 min. A higher L(∗) value, ΔE value and lower a(∗) value was observed in ultrasound treated samples. The avocado puree dilution followed pseudoplastic flow behavior, and the viscosity of diluted avocado puree (at 100 s(-1)) after ultrasound treatment for 1 min was 6.0 and 74.4 times higher than the control samples for dilution levels of 1:2 and 1:9, respectively. PPO activity greatly increased under all treatment conditions. A maximum increase of 25.1%, 36.9% and 187.8% in PPO activity was found in samples with dilution ratios of 1:2, 1:5 and 1:9, respectively. The increase in viscosity and measured PPO activity might be related to the decrease in particle size. The microscopy images further confirmed that ultrasound treatment induced disruption of avocado puree structure.

  1. The use of magnetic dilution to elucidate the slow magnetic relaxation effects of a Dy2 single-molecule magnet.

    Science.gov (United States)

    Habib, Fatemah; Lin, Po-Heng; Long, Jérôme; Korobkov, Ilia; Wernsdorfer, Wolfgang; Murugesu, Muralee

    2011-06-15

    The magnetic dilution method was employed in order to elucidate the origin of the slow relaxation of the magnetization in a Dy(2) single-molecule magnet (SMM). The doping effect was studied using SQUID and micro-SQUID measurements on a Dy(2) SMM diluted in a diamagnetic Y(2) matrix. The quantum tunneling of the magnetization that can occur was suppressed by applying optimum dc fields. The dominant single-ion relaxation was found to be entangled with the neighboring Dy(III) ion relaxation within the molecule, greatly influencing the quantum tunneling of the magnetization in this complex.

  2. Helium-Abundance and Other Composition Effects on the Properties of Stellar Surface Convection in Solar-like Main-sequence Stars

    CERN Document Server

    Tanner, Joel D; Demarque, Pierre

    2013-01-01

    We investigate the effect of helium abundance and $\\alpha$-element enhancement on the properties of convection in envelopes of solar-like main-sequence stars stars using a grid of 3D radiation hydrodynamic simulations. Helium abundance increases the mean molecular weight of the gas, and alters opacity by displacing hydrogen. Since the scale of the effect of helium may depend on the metallicity, the grid consists of simulations with three helium abundances ($Y=0.1, 0.2, 0.3$), each with two metallicities ($Z=0.001, 0.020)$. We find that changing the helium mass fraction generally affects structure and convective dynamics in a way opposite to that of metallicity. Furthermore, the effect is considerably smaller than that of metallicity. The signature of helium differs from that of metallicity in the manner in which the photospheric velocity distribution is affected. \\rev{We also find that helium abundance and surface gravity behave largely in similar ways, but differ in the way they affect the mean molecular wei...

  3. Effect of wine dilution on the reliability of tannin analysis by protein precipitation

    DEFF Research Database (Denmark)

    Jensen, Jacob Skibsted; Werge, Hans Henrik Malmborg; Egebo, Max

    2008-01-01

    A reported analytical method for tannin quantification relies on selective precipitation of tannins with bovine serum albumin. The reliability of tannin analysis by protein precipitation on wines having variable tannin levels was evaluated by measuring the tannin concentration of various dilutions...... of five commercial red wines. Tannin concentrations of both very diluted and concentrated samples were systematically underestimated, which could be explained by a precipitation threshold and insufficient protein for precipitation, respectively. Based on these findings, we have defined a valid range...

  4. Effects of diluted bitumen exposure on juvenile sockeye salmon: From cells to performance.

    Science.gov (United States)

    Alderman, Sarah L; Lin, Feng; Farrell, Anthony P; Kennedy, Christopher J; Gillis, Todd E

    2017-02-01

    Diluted bitumen (dilbit; the product of oil sands extraction) is transported through freshwater ecosystems critical to Pacific salmon. This is concerning, because crude oil disrupts cardiac development, morphology, and function in embryonic fish, and cardiac impairment in salmon can have major consequences on migratory success and fitness. The sensitivity of early life-stage salmon to dilbit and its specific cardiotoxic effects are unknown. Sockeye salmon parr were exposed to environmentally relevant concentrations of the water-soluble fraction (WSF) of dilbit for 1 wk and 4 wk, followed by an examination of molecular, morphological, and organismal endpoints related to cardiotoxicity. We show that parr are sensitive to WSF of dilbit, with total polycyclic aromatic hydrocarbon (PAH) concentrations of 3.5 µg/L sufficient to induce a liver biomarker of PAH exposure, and total PAH of 16.4 µg/L and 66.7 µg/L inducing PAH biomarkers in the heart. Furthermore, WSF of dilbit induces concentration-dependent cardiac remodeling coincident with performance effects: fish exposed to 66.7 µg/L total PAH have relatively fewer myocytes and more collagen in the compact myocardium and impaired swimming performance at 4 wk, whereas the opposite changes occur in fish exposed to 3.5 µg/L total PAH. The results demonstrate cardiac sensitivity to dilbit exposure that could directly impact sockeye migratory success. Environ Toxicol Chem 2017;36:354-360. © 2016 SETAC.

  5. Effect of Confinement on the Aggregation Kinetics of Dilute Magnetorheological Fluids

    Science.gov (United States)

    Shahrivar, Keshvad; Carreón-González, Elizabeth; de Vicente, Juan

    2017-10-01

    The goal of this study is to investigate the field-driven structuration of model magnetorheological (MR) fluids in narrow gaps (below 1 mm) for high shear applications. With this in mind, we study the influence of confinement in the aggregation kinetics of dilute carbonyl iron suspensions under strong fields (λ ≈ {10}6) in rectangular microchannels using video-microscopy, image analysis and particle level dynamic simulations. Channel widths studied are ranged in the interval [75–1000 μm]. In these particular suspensions the experimental and simulation time scales according to: {t}{{s}}\\propto {λ }-1{φ }2{{D}}-2.614{W}* -0.227, where λ is the Lambda parameter, {φ }2{{D}} is the particle surface fraction and W* is the reduced microchannel width. We show that the effect of channel width is crucial in the dynamic exponent and in the saturation (long time) mean cluster size. In contrast, it has no effect in the onset of the tip-to-tip aggregation process.

  6. Elastic effects of dilute polymer solution on bubble generation in a microfluidic flow-focusing channel

    Science.gov (United States)

    Kim, Dong Young; Shim, Tae Soup; Kim, Ju Min

    2017-05-01

    Recently, two-phase flow in microfluidics has attracted much attention because of its importance in generating droplets or bubbles that can be used as building blocks for material synthesis and biological applications. However, there are many unresolved issues in understanding droplet and bubble generation processes, especially when complex fluids are involved. In this study, we investigated elastic effects on bubble generation processes in a flow-focusing geometry and the shapes of the produced bubbles flowing through a microchannel. We used dilute polymer solutions with nearly constant shear viscosities so that the shear-thinning effects on bubble generation could be precluded. We observed that a very small amount of polymer (poly(ethylene oxide) at O(10) ppm) significantly affects bubble generation. When the polymer was added to a Newtonian fluid, the fluctuation in bubble size increased notably, which was attributed to the chaotic flow dynamics in the flow-focusing region. In addition, it was demonstrated that the bubbles were thinner along the minor axis in the viscoelastic fluid than they were in the Newtonian fluid. We expect that the current results will contribute to understanding the dynamics of two-phase flow in microchannels and the design and operation of the microfluidic devices to generate microbubbles.

  7. The Helium Field Effect Transistor (II): Gated Transport of Surface-State Electrons Through Micro-constrictions

    Science.gov (United States)

    Shaban, F.; Ashari, M.; Lorenz, T.; Rau, R.; Scheer, E.; Kono, K.; Rees, D. G.; Leiderer, P.

    2016-11-01

    We present transport measurements of surface-state electrons on liquid helium films in confined geometry. The measurements are taken using split-gate devices similar to a field effect transistor. The number of electrons passing between the source and drain areas of the device can be precisely controlled by changing the length of the voltage pulse applied to the gate electrode. We find evidence that the effective driving potential depends on electron-electron interactions, as well as the electric field applied to the substrate. Our measurements indicate that the mobility of electrons on helium films can be high and that microfabricated transistor devices allow electron manipulation on length scales close to the interelectron separation. Our experiment is an important step toward investigations of surface-state electron properties at much higher densities, for which the quantum melting of the system to a degenerate Fermi gas should be observed.

  8. First principles study of the alloying effect on chemical bonding characteristics of helium in La-Ni-M tritides

    Energy Technology Data Exchange (ETDEWEB)

    Hu, C.H. [Institute of Metal Research, Chinese Academy of Science, 72 Wenhua Road, Shenyang 110016 (China); Zhang, R.J. [Institute of Metal Research, Chinese Academy of Science, 72 Wenhua Road, Shenyang 110016 (China); Shi, L.Q. [Applied Ion Bean Physics Laboratory, Fudan University, Shanghai 200433 (China); Chen, D.M. [Institute of Metal Research, Chinese Academy of Science, 72 Wenhua Road, Shenyang 110016 (China); Wang, Y.M. [Institute of Metal Research, Chinese Academy of Science, 72 Wenhua Road, Shenyang 110016 (China)]. E-mail: ymwang@imr.ac.cn; Yang, K. [Institute of Metal Research, Chinese Academy of Science, 72 Wenhua Road, Shenyang 110016 (China)

    2005-11-15

    The alloying effect on the electronic structure of La-Ni-M tritides is investigated using the first principles discrete variational X{alpha}(DV-X{alpha}) method. The calculated results show that the covalent interaction between atoms will play a much more important role in studying the alloying effect on chemical bonding characteristics in La-Ni-M tritides than ionic interaction. It is also found that in La-Ni-M tritides helium forms stronger covalent bonds with the weaker hydride forming elements than La. By analyzing the relation between the binding energy difference and bond order, our study indicates that after some alloying elements substituting for Ni locating in 3g site in tritides, the helium retention capability becomes stronger, changes as the following sequence: Al > Cr > Mn > Fe > Co > Ni, and is also very distinct for Cu although the chemical bonding between Cu atom and Ni atom is degraded drastically.

  9. Effect of helium-neon and infrared laser irradiation on wound healing in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Braverman, B.; McCarthy, R.J.; Ivankovich, A.D.; Forde, D.E.; Overfield, M.; Bapna, M.S.

    1989-01-01

    We examined the biostimulating effects of helium-neon laser radiation (HeNe; 632.8 nm), pulsed infrared laser radiation (IR; 904 nm), and the two combined on skin wound healing in New Zealand white rabbits. Seventy-two rabbits received either (1) no exposure, (2) 1.65 J/cm2 HeNe, (3) 8.25 J/cm2 pulsed IR, or (4) both HeNe and IR together to one of two dorsal full-thickness skin wounds, daily, for 21 days. Wound areas were measured photographically at periodic intervals. Tissue samples were analyzed for tensile strength, and histology was done to measure epidermal thickness and cross-sectional collagen area. Significant differences were found in the tensile strength of all laser-treated groups (both the irradiated and nonirradiated lesion) compared to group 1. No differences were found in the rate of wound healing or collagen area. Epidermal growth was greater in the HeNe-lased area compared to unexposed tissue, but the difference was not significant. Thus, laser irradiation at 632.8 nm and 904 nm alone or in combination increased tensile strength during wound healing and may have released tissue factors into the systemic circulation that increased tensile strength on the opposite side as well.

  10. Effect of helium-neon laser irradiation on hair follicle growth cycle of Swiss albino mice.

    Science.gov (United States)

    Shukla, S; Sahu, K; Verma, Y; Rao, K D; Dube, A; Gupta, P K

    2010-01-01

    We report the results of a study carried out to investigate the effect of helium-neon (He-Ne) laser (632.8 nm) irradiation on the hair follicle growth cycle of testosterone-treated and untreated mice. Both histology and optical coherence tomography (OCT) were used for the measurement of hair follicle length and the relative percentage of hair follicles in different growth phases. A positive correlation (R = 0.96) was observed for the lengths of hair follicles measured by both methods. Further, the ratios of the lengths of hair follicles in the anagen and catagen phases obtained by both methods were nearly the same. However, the length of the hair follicles measured by both methods differed by a factor of 1.6, with histology showing smaller lengths. He-Ne laser irradiation (at approximately 1 J/cm(2)) of the skin of both the control and the testosterone-treated mice was observed to lead to a significant increase (p < 0.05) in % anagen, indicating stimulation of hair growth. The study also demonstrates that OCT can be used to monitor the hair follicle growth cycle, and thus hair follicle disorders or treatment efficacy during alopecia.

  11. Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium.

    Science.gov (United States)

    Cencek, Wojciech; Przybytek, Michał; Komasa, Jacek; Mehl, James B; Jeziorski, Bogumił; Szalewicz, Krzysztof

    2012-06-14

    The adiabatic, relativistic, and quantum electrodynamics (QED) contributions to the pair potential of helium were computed, fitted separately, and applied, together with the nonrelativistic Born-Oppenheimer (BO) potential, in calculations of thermophysical properties of helium and of the properties of the helium dimer. An analysis of the convergence patterns of the calculations with increasing basis set sizes allowed us to estimate the uncertainties of the total interaction energy to be below 50 ppm for interatomic separations R smaller than 4 bohrs and for the distance R = 5.6 bohrs. For other separations, the relative uncertainties are up to an order of magnitude larger (and obviously still larger near R = 4.8 bohrs where the potential crosses zero) and are dominated by the uncertainties of the nonrelativistic BO component. These estimates also include the contributions from the neglected relativistic and QED terms proportional to the fourth and higher powers of the fine-structure constant α. To obtain such high accuracy, it was necessary to employ explicitly correlated Gaussian expansions containing up to 2400 terms for smaller R (all R in the case of a QED component) and optimized orbital bases up to the cardinal number X = 7 for larger R. Near-exact asymptotic constants were used to describe the large-R behavior of all components. The fitted potential, exhibiting the minimum of -10.996 ± 0.004 K at R = 5.608 0 ± 0.000 1 bohr, was used to determine properties of the very weakly bound (4)He(2) dimer and thermophysical properties of gaseous helium. It is shown that the Casimir-Polder retardation effect, increasing the dimer size by about 2 Å relative to the nonrelativistic BO value, is almost completely accounted for by the inclusion of the Breit-interaction and the Araki-Sucher contributions to the potential, of the order α(2) and α(3), respectively. The remaining retardation effect, of the order of α(4) and higher, is practically negligible for the bound

  12. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules.

    Science.gov (United States)

    Hensel, Karol; Kučerová, Katarína; Tarabová, Barbora; Janda, Mário; Machala, Zdenko; Sano, Kaori; Mihai, Cosmin Teodor; Ciorpac, Mitică; Gorgan, Lucian Dragos; Jijie, Roxana; Pohoata, Valentin; Topala, Ionut

    2015-06-06

    Atmospheric pressure DC-driven self-pulsing transient spark (TS) discharge operated in air and pulse-driven dielectric barrier discharge plasma jet (PJ) operated in helium in contact with water solutions were used for inducing chemical effects in water solutions, and the treatment of bacteria (Escherichia coli), mammalian cells (Vero line normal cells, HeLa line cancerous cells), deoxyribonucleic acid (dsDNA), and protein (bovine serum albumin). Two different methods of water solution supply were used in the TS: water electrode system and water spray system. The effects of both TS systems and the PJ were compared, as well as a direct exposure of the solution to the discharge with an indirect exposure to the discharge activated gas flow. The chemical analysis of water solutions was performed by using colorimetric methods of UV-VIS absorption spectrophotometry. The bactericidal effects of the discharges on bacteria were evaluated by standard microbiological plate count method. Viability, apoptosis and cell cycle were assessed in normal and cancerous cells. Viability of cells was evaluated by trypan blue exclusion test, apoptosis by Annexin V-FITC/propidium iodide assay, and cell cycle progression by propidium iodide/RNase test. The effect of the discharges on deoxyribonucleic acid and protein were evaluated by fluorescence and UV absorption spectroscopy. The results of bacterial and mammalian cell viability, apoptosis, and cell cycle clearly show that cold plasma can inactivate bacteria and selectively target cancerous cells, which is very important for possible future development of new plasma therapeutic strategies in biomedicine. The authors found that all investigated bio-effects were stronger with the air TS discharge than with the He PJ, even in indirect exposure.

  13. EFFECT OF MALTOSE CONCENTRATION IN TRIS DILUTION ON EPIDIDYMAL SPERMATOZOA QUALITY OF BALI BULL PRESERVED AT 50C

    Directory of Open Access Journals (Sweden)

    J. Wattimena

    2014-10-01

    Full Text Available The objective of research was to evaluate the effect of maltose concentration in Tris dilution onepididymal spermatozoa quality of Bali bull that preserved at 50C. Five testis of Bali bull collected fromslaughter house were used in this study. Epididymal spermatozoa were collected through slicing andflushing methods, pressing cauda epididymal was conducted in NaCl physiology (NaCl 0.9% emulsion.Spermatozoa which collected were divided into three reaction tube and each diluted by Tris dilutioncontaining: Tris dilution + 20% of yolk (control; Tris dilution + 20% of yolk + 0.3 g of maltose/100ml(M0.3; and Tris dilution + 20% of yolk + 0.6 g maltose/100 ml (M0.6. Spermatozoa qualities observedwere motile spermatozoa (MS, live-spermatozoa (LS and intact-plasma membrane (IPM thatevaluated daily in refrigerator at temperature of 5oC. Completely Randomized Design with threetreatments and five replications was used in this study. Data was analyzed by analysis of variance.Examination on fresh spermatozoa showed that spermatozoa concentration was 11,222.5 million cell/ml,motile spermatozoa was 75.00%, live-sperm was 86.75%, abnormal spermatozoa was 10.50%,cytoplasmic droplet was 14.00% and IPM was 86.75%. At the seventh day of preservation, thepercentages of MS, LS and IPM in M0.3 were 37.0 %, 49.2% and 50.4%, respectively, and M0.6 were38.05%; 51.8 % and 52.0%, respectively that were significantly higher (P<0.05 than control (29.0%;41.8% and 42.4%, respectively. It was concluded that maltose added into Tris dilution could lengthenepididymal spermatozoa quality of Bali bull which persevered at 50C.

  14. Cu(II)effect on the conformation of regenerated silk fibroin in dilute aqueous solution

    Institute of Scientific and Technical Information of China (English)

    ZONG Xiaohong; ZHOU Ping; SHAO Zhengzhong; WANG Honghai; CHUNYU Lijuan

    2005-01-01

    Much attention has been paid to the natural mechanism of silkworm spinning due to the impressive mechanical properties of the natural fibers. In this work, we studied the effect of Cu(II) ions on the secondary structure of Bombyx mori regenerated silk fibroin (SF) in dilute solution by circular dichroism (CD). The results indicate that a given amount of Cu(II) induces the SF conformational transition from random coil to β-sheet, however, further addition of Cu(II) is unfavorable for this conversion. Meanwhile, the conformational changes induced by Cu(II) follow a nucleation-dependent aggregation mechanism, which is similar to that found in Prion protein (PrP) denaturation and Aβ-pep- tide aggregations, leading to the neurodegenerative disease. This work would help one understand further the natural spinning process of silkworm. Additionally, it would be significant for the study of the nervous system diseases, because silk fibroin, extracted in large amounts from Bombyx mori silkworm gland, could be a proper model to study PrP denaturation and Aβ-peptide aggregations.

  15. Inhibition effects of dilute-acid prehydrolysate of corn stover on enzymatic hydrolysis of Solka Floc.

    Science.gov (United States)

    Kothari, Urvi D; Lee, Yoon Y

    2011-11-01

    Dilute-acid pretreatment liquor (PL) produced at NREL through a continuous screw-driven reactor was analyzed for sugars and other potential inhibitory components. Their inhibitory effects on enzymatic hydrolysis of Solka Floc were investigated. When the PL was mixed into the enzymatic hydrolysis reactor at 1:1 volume ratio, the glucan and xylan digestibility decreased by 63% and 90%, respectively. The tolerance level of the enzyme for each inhibitor was determined. Of the identified degradation components, acetic acid was found to be the strongest inhibitor for cellulase activity, as it decreased the glucan yield by 10% at 1 g/L. Among the sugars, cellobiose and glucose were found to be strong inhibitors to glucan hydrolysis, whereas xylose is a strong inhibitor to xylan hydrolysis. Xylo-oligomers inhibit xylan digestibility more strongly than the glucan digestibility. Inhibition by the PL was higher than that of the simulated mixture of the identifiable components. This indicates that some of the unidentified degradation components, originated mostly from lignin, are potent inhibitors to the cellulase enzyme. When the PL was added to a simultaneous saccharification and co-fermentation using Escherichia coli KO11, the bioprocess was severely inhibited showing no ethanol formation or cell growth.

  16. Increased avian diversity is associated with lower incidence of human West Nile infection: observation of the dilution effect.

    Directory of Open Access Journals (Sweden)

    John P Swaddle

    Full Text Available Recent infectious disease models illustrate a suite of mechanisms that can result in lower incidence of disease in areas of higher disease host diversity--the 'dilution effect'. These models are particularly applicable to human zoonoses, which are infectious diseases of wildlife that spill over into human populations. As many recent emerging infectious diseases are zoonoses, the mechanisms that underlie the 'dilution effect' are potentially widely applicable and could contribute greatly to our understanding of a suite of diseases. The dilution effect has largely been observed in the context of Lyme disease and the predictions of the underlying models have rarely been examined for other infectious diseases on a broad geographic scale. Here, we explored whether the dilution effect can be observed in the relationship between the incidence of human West Nile virus (WNV infection and bird (host diversity in the eastern US. We constructed a novel geospatial contrasts analysis that compares the small differences in avian diversity of neighboring US counties (where one county reported human cases of WNV and the other reported no cases with associated between-county differences in human disease. We also controlled for confounding factors of climate, regional variation in mosquito vector type, urbanization, and human socioeconomic factors that are all likely to affect human disease incidence. We found there is lower incidence of human WNV in eastern US counties that have greater avian (viral host diversity. This pattern exists when examining diversity-disease relationships both before WNV reached the US (in 1998 and once the epidemic was underway (in 2002. The robust disease-diversity relationships confirm that the dilution effect can be observed in another emerging infectious disease and illustrate an important ecosystem service provided by biodiversity, further supporting the growing view that protecting biodiversity should be considered in public

  17. The effect of fusion-relevant helium levels on the mechanical properties of isotopically tailored ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hankin, G.L. [Loughborough Univ. (United Kingdom); Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)] [and others

    1997-04-01

    The yield and maximum strengths of an irradiated series of isotopically tailored ferritic alloys were evaluated using the shear punch test. The composition of three of the alloys was Fe-12Cr-1.5Ni. Different balances of nickel isotopes were used in each alloy in order to produce different helium levels. A fourth alloy, which contained no nickel, was also irradiated. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys, and as expected, the strength of the alloys decreased with increasing irradiation temperature. Helium itself, up to 75 appm over 7 dpa appears to have little effect on the mechanical properties of the alloys.

  18. Effect of low-power helium-neon laser irradiation on 13-week immobilized articular cartilage of rabbits.

    Science.gov (United States)

    Bayat, Mohammad; Ansari, Anayatallah; Hekmat, Hossien

    2004-09-01

    Influence of low-power (632.8 nm, Helium-Neon, 13 J/cm2, three times a week) laser on 13-week immobilized articular cartilage was examined with rabbits knee model. Number of chondrocytes and depth of articular cartilage of experimental group were significantly higher than those of sham irradiated group. Surface morphology of sham-irradiated group had rough prominences, fibrillation and lacunae but surface morphology of experimental group had more similarities to control group than to sham irradiated group. There were marked differences between ultrastructure features of control group and experimental group in comparison with sham irradiated group. Low-power Helium-Neon laser irradiation on 13-week immobilized knee joints of rabbits neutrilized adverse effects of immobilization on articular cartilage.

  19. The effects of added hydrogen on a helium atmospheric-pressure plasma jet ambient desorption/ionization source.

    Science.gov (United States)

    Wright, Jonathan P; Heywood, Matthew S; Thurston, Glen K; Farnsworth, Paul B

    2013-03-01

    We present mass spectrometric data demonstrating the effect that hydrogen has on a helium-based dielectric-barrier discharge (DBD) atmospheric-pressure plasma jet used as an ambient desorption/ionization (ADI) source. The addition of 0.9 % hydrogen to the helium support gas in a 35-W plasma jet increased signals for a range of test analytes, with enhancement factors of up to 68, without proportional increases in background levels. The changes in signal levels result from a combination of changes in the desorption kinetics from the surface and increased ion production in the gas phase. The enhancement in ADI-MS performance despite the quenching of key plasma species reported in earlier studies suggests that ionization with a H2/He plasma jet is the result of an alternate mechanism involving the direct generation of ionized hydrogen.

  20. Different approaches to analyze the dipolar interaction effects on diluted and concentrated granular superparamagnetic systems

    Science.gov (United States)

    Moscoso-Londoño, O.; Tancredi, P.; Muraca, D.; Mendoza Zélis, P.; Coral, D.; Fernández van Raap, M. B.; Wolff, U.; Neu, V.; Damm, C.; de Oliveira, C. L. P.; Pirota, K. R.; Knobel, M.; Socolovsky, L. M.

    2017-04-01

    Controlled magnetic granular materials with different concentrations of magnetite nanoparticles immersed in a non-conducting polymer matrix were synthesized and, their macroscopic magnetic observables analyzed in order to advance towards a better understanding of the magnetic dipolar interactions and its effects on the obtained magnetic parameters. First, by means of X-ray diffraction, transmission electron microscopy, small angle X-ray scattering and X-ray absorption fine structure an accurate study of the structural properties was carried out. Then, the magnetic properties were analyzed by means of different models, including those that consider the magnetic interactions through long-range dipolar forces as: the Interacting Superparamagnetic Model (ISP) and the Vogel-Fulcher law (V-F). In systems with larger nanoparticle concentrations, magnetic results clearly indicate that the role played by the dipolar interactions affects the magnetic properties, giving rise to obtaining magnetic and structural parameters without physical meaning. Magnetic parameters as the effective anisotropic constant, magnetic moment relaxation time and mean blocking temperature, extracted from the application of the ISP model and V-F Law, were used to simulate the zero-field-cooling (ZFC) and field-cooling curves (FC). A comparative analysis of the simulated, fitted and experimental ZFC/FC curves suggests that the current models depict indeed our dilute granular systems. Notwithstanding, for concentrated samples, the ISP model infers that clustered nanoparticles are being interpreted as single entities of larger magnetic moment and volume, effect that is apparently related to a collective and complex magnetic moment dynamics within the cluster.

  1. EFFECTIVENESS OF USING DILUTE OXALIC ACID TO DISSOLVEHIGH LEVEL WASTE IRON BASED SLUDGE SIMULANT

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E

    2008-07-11

    At the Savannah River Site (SRS), near Aiken South Carolina, there is a crucial need to remove residual quantities of highly radioactive iron-based sludge from large select underground storage tanks (e.g., 19,000 liters of sludge per tank), in order to support tank closure. The use of oxalic acid is planned to dissolve the residual sludge, hence, helping in the removal. Based on rigorous testing, primarily using 4 and 8 wt% oxalic acid solutions, it was concluded that the more concentrated the acid, the greater the amount of residual sludge that would be dissolved; hence, a baseline technology on using 8 wt% oxalic acid was developed. In stark contrast to the baseline technology, reports from other industries suggest that the dissolution will most effectively occur at 1 wt% oxalic acid (i.e., maintaining the pH near 2). The driver for using less oxalic acid is that less (i.e., moles) would decrease the severity of the downstream impacts (i.e., required oxalate solids removal efforts). To determine the initial feasibility of using 1 wt% acid to dissolve > 90% of the sludge solids, about 19,000 liters of representative sludge was modeled using about 530,000 liters of 0 to 8 wt% oxalic acid solutions. With the chemical thermodynamic equilibrium based software results showing that 1 wt% oxalic acid could theoretically work, simulant dissolution testing was initiated. For the dissolution testing, existing simulant was obtained, and an approximate 20 liter test rig was built. Multiple batch dissolutions of both wet and air-dried simulant were performed. Overall, the testing showed that dilute oxalic acid dissolved a greater fraction of the stimulant and resulted in a significantly larger acid effectiveness (i.e., grams of sludge dissolved/mole of acid) than the baseline technology. With the potential effectiveness confirmed via simulant testing, additional testing, including radioactive sludge testing, is planned.

  2. Dilute ammonia pretreatment of sorghum and its effectiveness on enzyme hydrolysis and ethanol fermentation.

    Science.gov (United States)

    Salvi, Deepti A; Aita, Giovanna M; Robert, Diana; Bazan, Victor

    2010-05-01

    A new pretreatment technology using dilute ammonium hydroxide was evaluated for ethanol production on sorghum. Sorghum fibers, ammonia, and water at a ratio of 1:0.14:8 were heated to 160 degrees C and held for 1 h under 140-160 psi pressure. Approximately, 44% lignin and 35% hemicellulose were removed during the process. Hydrolysis of untreated and dilute ammonia pretreated fibers was carried out at 10% dry solids at an enzyme concentration of 60 FPU Spezyme CP and 64 CBU Novozyme 188/g glucan. Cellulose digestibility was higher (84%) for ammonia pretreated sorghum as compared to untreated sorghum (38%). Fermentations with Saccharomyces cerevisiae D(5)A resulted in 24 g ethanol /100 g dry biomass for dilute ammonia pretreated sorghum and 9 g ethanol /100 g dry biomass for untreated sorghum.

  3. Initial assessment of environmental effects on SiC/SiC composites in helium-cooled nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL

    2013-09-01

    This report summarized the information available in the literature on the chemical reactivity of SiC/SiC composites and of their components in contact with the helium coolant used in HTGR, VHTR and GFR designs. In normal operation conditions, ultra-high purity helium will have chemically controlled impurities (water, oxygen, carbon dioxide, carbon monoxide, methane, hydrogen) that will create a slightly oxidizing gas environment. Little is known from direct experiments on the reactivity of third generation (nuclear grade) SiC/SiC composites in contact with low concentrations of water or oxygen in inert gas, at high temperature. However, there is ample information about the oxidation in dry and moist air of SiC/SiC composites at high temperatures. This information is reviewed first in the next chapters. The emphasis is places on the improvement in material oxidation, thermal, and mechanical properties during three stages of development of SiC fibers and at least two stages of development of the fiber/matrix interphase. The chemical stability of SiC/SiC composites in contact with oxygen or steam at temperatures that may develop in off-normal reactor conditions supports the conclusion that most advanced composites (also known as nuclear grade SiC/SiC composites) have the chemical resistance that would allow them maintain mechanical properties at temperatures up to 1200 1300 oC in the extreme conditions of an air or water ingress accident scenario. Further research is needed to assess the long-term stability of advanced SiC/SiC composites in inert gas (helium) in presence of very low concentrations (traces) of water and oxygen at the temperatures of normal operation of helium-cooled reactors. Another aspect that needs to be investigated is the effect of fast neutron irradiation on the oxidation stability of advanced SiC/SiC composites in normal operation conditions.

  4. Effect of helium-neon laser on fast excitatory postsynaptic potential of neurons in the isolated rat superior cervical ganglia

    Science.gov (United States)

    Mo, Hua; He, Ping; Mo, Ning

    2004-08-01

    The aim of this study is to further measure the effect of 632.8-nm helium-neon laser on fast excitatory postsynaptic potential (f-EPSP) of postganglionic neurons in isolated rat superior cervical ganglia by means of intracellular recording techniques. The neurons with f-EPSP were irradiated by different power densities (1-5 mW/cm2) laser. Irradiated by the 2-mW/cm2 laser, the amplitude of the f-EPSP could augment (PEPSP could descend and last for 3-8 minutes. But the amplitude of the f-EPSP of neurons irradiated by the 5-mW/cm2 laser could depress for the irradiating periods. The results show that: 1) the variation of the amplitude of f-EPSP caused by laser is power density-dependent and time-dependent; 2) there exist the second-order phases in the interaction of the helium-neon laser with neurons. These findings may provide certain evidence in explanation of the mechanisms of clinical helium-neon laser therapy.

  5. Effect of helium-neon laser on fast excitatory postsynaptic potential of neurons in the isolated rat superior cervical ganglia

    Institute of Scientific and Technical Information of China (English)

    Hua Mo(莫华); Ping He(何萍); Ning Mo(莫宁)

    2004-01-01

    The aim of this study is to further measure the effect of 632.8-nm helium-neon laser on fast excitatory postsynaptic potential(f-EPSP)of postganglionic neurons in isolated rat superior cervical ganglia by means of intracellular recording techniques.The neurons with f-EPSP were irradiated by different power densities(1 - 5 mW/cm2)laser.Irradiated by the 2-mW/cm2 laser,the amplitude of the f-EPSP could augment(P < 0.05,paired t test)and even cause action potential at the end of the first 1 - 2 minutes,the f-EPSP could descend and last for 3 - 8 minutes.But the amplitude of the f-EPSP of neurons irradiated by the 5-mW/cm2 laser could depress for the irradiating periods.The results show that:1)the variation of the amplitude of f-EPSP caused by laser is power density-dependent and time-dependent; 2)there exist the second-order phases in the interaction of the helium-neon laser with neurons.These findings may provide certain evidence in explanation of the mechanisms of clinical helium-neon laser therapy.

  6. Effects of A Top SiO2 Surface Layer on Cavity Formation and Helium Desorption in Silicon

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Cz n-type Si (100) samples with and without a top SiO2 layer were implanted with 40 keV helium ions at the same dose of 5×1016 cm-2. Cross-sectional transmission electron microscopy (XTEM) and thermal desorption spectroscopy (THDS) were used to study the thermal evolution of cavities upon and helium thermal release, respectively. XTEM results show that the presence of the top SiO2 layer could suppress the thermal growth of cavities mainly formed in the region close to the SiO2/Si interface, which leads to the reduction in both the cavity band and cavity density. THDS results reveal that the top oxide layer could act as an effective barrier for the migration of helium atoms to the surface, and it thus gives rise to the formation of more overpresurrized bubbles and to the occurrence of a third release peak located at about 1100 K. The results were qualitively discussed by considering the role of the oxide surface layer in defect migration and evolution upon annealing.

  7. Helium and deuterium irradiation effects in W-Ta composites produced by pulse plasma compaction

    Science.gov (United States)

    Dias, M.; Catarino, N.; Nunes, D.; Fortunato, E.; Nogueira, I.; Rosinki, M.; Correia, J. B.; Carvalho, P. A.; Alves, E.

    2017-08-01

    Tungsten-tantalum composites have been envisaged for first-wall components of nuclear fusion reactors; however, changes in their microstructure are expected from severe irradiation with helium and hydrogenic plasma species. In this study, composites were produced from ball milled W powder mixed with 10 at.% Ta fibers through consolidation by pulse plasma compaction. Implantation was carried out at room temperature with He+ (30 keV) or D+ (15 keV) or sequentially with He+ and D+ using ion beams with fluences of 5 × 1021 at/m2. Microstructural changes and deuterium retention in the implanted composites were investigated by scanning electron microscopy, coupled with focused ion beam and energy dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, Rutherford backscattering spectrometry and nuclear reaction analysis. The composite materials consisted of Ta fibers dispersed in a nanostructured W matrix, with Ta2O5 layers at the interfacial regions. The Ta and Ta2O5 surfaces exhibited blisters after He+ implantation and subsequent D+ implantation worsened the blistering behavior of Ta2O5. Swelling was also pronounced in Ta2O5 where large blisters exhibited an internal nanometer-sized fuzz structure. Transmission electron microscopy revealed an extensive presence of dislocations in the metallic phases after the sequential implantation, while a relatively low density of defects was detected in Ta2O5. This behavior may be partially justified by a shielding effect from the blisters and fuzz structure developed progressively during implantation. The tungsten peaks in the X-ray diffractograms were markedly shifted after He+ implantation, and even more so after the sequential implantation, which is in agreement with the increased D retention inferred from nuclear reaction analysis.

  8. Interchain tube pressure effect in extensional flows of oligomer diluted nearly monodisperse polystyrene melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Huang, Qian

    2014-01-01

    We have derived a constitutive equation to explain the extensional dynamics of oligomer-diluted monodisperse polymers, if the length of the diluent has at least two Kuhn steps. These polymer systems have a flow dynamics which distinguish from pure monodisperse melts and solutions thereof, if the ...

  9. Precision spectroscopy of the helium atom

    Institute of Scientific and Technical Information of China (English)

    Shui-ming HU; Zheng-Tian LU; Zong-Chao YAN

    2009-01-01

    Persistent efforts in both theory and experiment have yielded increasingly precise understanding of the helium atom. Because of its simplicity, the helium atom has long been a testing ground for relativistic and quantum electrodynamic effects in few-body atomic systems theoretically and experimentally.Comparison between theory and experiment of the helium spectroscopy in ls2p3pJ can potentially extract a very precise value of the fine structure constant a. The helium atom can also be used to explore exotic nuclear structures. In this paper, we provide a brief review of the recent advances in precision calculations and measurements of the helium atom.

  10. Methods for evaluation of helium/oxygen delivery through non-rebreather facemasks

    Directory of Open Access Journals (Sweden)

    Martin Andrew R

    2012-12-01

    Full Text Available Abstract Background Inhalation of low-density helium/oxygen mixtures has been used both to lower the airway resistance and work of breathing of patients with obstructive lung disease and to transport pharmaceutical aerosols to obstructed lung regions. However, recent clinical investigations have highlighted the potential for entrainment of room air to dilute helium/oxygen mixtures delivered through non-rebreather facemasks, thereby increasing the density of the inhaled gas mixture and limiting intended therapeutic effects. This article describes the development of benchtop methods using face models for evaluating delivery of helium/oxygen mixtures through facemasks. Methods Four face models were used: a flat plate, a glass head manikin, and two face manikins normally used in life support training. A mechanical test lung and ventilator were employed to simulate spontaneous breathing during delivery of 78/22 %vol helium/oxygen through non-rebreather facemasks. Based on comparison of inhaled helium concentrations with available clinical data, one face model was selected for measurements made during delivery of 78/22 or 65/35 %vol helium/oxygen through three different masks as tidal volume varied between 500 and 750 ml, respiratory rate between 14 and 30 breaths/min, the inspiratory/expiratory ratio between 1/2 and 1/1, and the supply gas flow rate between 4 and 15 l/min. Inhaled helium concentrations were measured both with a thermal conductivity analyzer and using a novel flow resistance method. Results Face models borrowed from life support training provided reasonably good agreement with available clinical data. After normalizing for the concentration of helium in the supply gas, no difference was noted in the extent of room air entrainment when delivering 78/22 versus 65/35 %vol helium/oxygen. For a given mask fitted to the face in a reproducible manner, delivered helium concentrations were primarily determined by the ratio of supply gas

  11. Effect of ethanol, temperature, and gas flow rate on volatile release from aqueous solutions under dynamic headspace dilution conditions.

    Science.gov (United States)

    Tsachaki, Maroussa; Gady, Anne-Laure; Kalopesas, Michalis; Linforth, Robert S T; Athès, Violaine; Marin, Michele; Taylor, Andrew J

    2008-07-09

    On the basis of a mechanistic model, the overall and liquid mass transfer coefficients of aroma compounds were estimated during aroma release when an inert gas diluted the static headspace over simple ethanol/water solutions (ethanol concentration = 120 mL x L(-1)). Studied for a range of 17 compounds, they were both increased in the ethanol/water solution compared to the water solution, showing a better mass transfer due to the presence of ethanol, additively to partition coefficient variation. Thermal imaging results showed differences in convection of the two systems (water and ethanol/water) arguing for ethanol convection enhancement inside the liquid. The effect of ethanol in the solution on mass transfer coefficients at different temperatures was minor. On the contrary, at different headspace dilution rates, the effect of ethanol in the solution helped to maintain the volatile headspace concentration close to equilibrium concentration, when the headspace was replenished 1-3 times per minute.

  12. Temperature and magnetization-dependent band-gap renormalization and optical many-body effects in diluted magnetic semiconductors

    OpenAIRE

    2005-01-01

    We calculate the Coulomb interaction induced density, temperature and magnetization dependent many-body band-gap renormalization in a typical diluted magnetic semiconductor GaMnAs in the optimally-doped metallic regime as a function of carrier density and temperature. We find a large (about 0.1 eV) band gap renormalization which is enhanced by the ferromagnetic transition. We also calculate the impurity scattering effect on the gap narrowing. We suggest that the temperature, magnetization, an...

  13. Seebeck effect in dilute two-dimensional electron systems: temperature dependencies of diffusion and phonon-drag thermoelectric powers

    OpenAIRE

    Liu, S Y; Lei, X. L.; Horing, Norman J. M.

    2011-01-01

    Considering screeening of electron scattering interactions in terms of the finite-temperature STLS theory and solving the linearized Boltzmann equation (with no appeal to a relaxation time approximation), we present a theoretical analysis of the low-temperature Seebeck effect in two-dimensional semiconductors with dilute electron densities. We find that the temperature ($T$) dependencies of the diffusion and phonon-drag thermoelectric powers ($S_d$ and $S_g$) can no longer be described by the...

  14. Dilution effect and identity effect by wildlife in the persistence and recurrence of bovine tuberculosis

    NARCIS (Netherlands)

    Huang, Z.Y.X.; Xu, C.; Langevelde, van F.; Prins, H.H.T.; Jebara, Ben K.; Boer, de W.F.

    2014-01-01

    Current theories on disease-diversity relationships predict a strong influence of host richness on disease transmission. In addition, identity effect, caused by the occurrence of particular species, can also modify disease risk.We tested the richness effect and the identity effects of mammal species

  15. Effect of temperature on the dilution enthalpies of {alpha},{omega}-amino acids in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Romero, C.M., E-mail: cmromeroi@unal.edu.co [Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia); Cadena, J.C., E-mail: jccadena@unal.edu.co [Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia); Lamprecht, I., E-mail: ingolf.lamprecht@t-online.de [Institut fuer Biologie, Freie Universitaet Berlin, Berlin (Germany)

    2011-10-15

    Highlights: > The dilution of 3-amino propanoic acid, 4-amino butanoic acid, 5-amino pentanoic acid, and 6-amino hexanoic acid in water is an exothermic process at T = (293.15, 298.15, 303.15, and 308.15) K. > The limiting experimental slopes of the enthalpies of dilution with respect to the molality change {Delta}m, are negative suggesting that the solutes interact with water primarily through their alkyl groups. > The value of the pairwise coefficient is positive at the temperatures considered, and the magnitude increases linearly with the number of methylene groups. > The comparison between the pairwise interaction coefficients for {alpha},{omega}-amino acids and {alpha}-amino acids shows that the change in the enthalpic interaction coefficient is related to the relative position of the polar groups. - Abstract: Dilution enthalpies of aqueous solutions of 3-amino propanoic acid, 4-amino butanoic acid, 5-amino pentanoic acid, and 6-amino hexanoic acid were determined at T = (293.15, 298.15, 303.15, and 308.15) K using an LKB flow microcalorimeter. The homotactic interaction coefficients were obtained according to the McMillan-Mayer theory from the experimental data. For all the systems studied, the dilution of {alpha},{omega}-amino acids in water is an exothermic process; the pair coefficients have positive values which increases with chain length. The obtained values of the interaction coefficients are interpreted in terms of solute-solvent and solute-solute interactions and are used as indicative of hydrophobic behavior of the amino acid studied.

  16. Study the Effect of SiO2 Based Flux on Dilution in Submerged Arc Welding

    Science.gov (United States)

    kumar, Aditya; Maheshwari, Sachin

    2017-08-01

    This paper highlights the method for prediction of dilution in submerged arc welding (SAW). The most important factors of weld bead geometry are governed by the weld dilution which controls the chemical and mechanical properties. Submerged arc welding process is used generally due to its very easy control of process variables, good penetration, high weld quality, and smooth finish. Machining parameters, with suitable weld quality can be achieved with the different composition of the flux in the weld. In the present study Si02-Al2O3-CaO flux system was used. In SiO2 based flux NiO, MnO, MgO were mixed in various proportions. The paper investigates the relationship between the process parameters like voltage, % of flux constituents and dilution with the help of Taguchi’s method. The experiments were designed according to Taguchi L9 orthogonal array, while varying the voltage at two different levels in addition to alloying elements. Then the optimal results conditions were verified by confirmatory experiments.

  17. Effective particle energies for stopping power calculation in radiotherapy treatment planning with protons and helium, carbon, and oxygen ions

    Science.gov (United States)

    Inaniwa, T.; Kanematsu, N.

    2016-10-01

    The stopping power ratio (SPR) of body tissues relative to water depends on the particle energy. For simplicity, however, most analytical dose planning systems do not account for SPR variation with particle energy along the beam’s path, but rather assume a constant energy for SPR estimation. The range error due to this simplification could be indispensable depending on the particle species and the assumed energy. This error can be minimized by assuming a suitable energy referred to as an ‘effective energy’ in SPR estimation. To date, however, the effective energy has never been investigated for realistic patient geometries. We investigated the effective energies for proton, helium-, carbon-, and oxygen-ion radiotherapy using volumetric models of the reference male and female phantoms provided by the International Commission on Radiological Protection (ICRP). The range errors were estimated by comparing the particle ranges calculated when particle energy variations were and were not considered. The effective energies per nucleon for protons and helium, carbon, and oxygen ions were 70 MeV, 70 MeV, 131 MeV, and 156 MeV, respectively. Using the determined effective energies, the range errors were reduced to  ⩽0.3 mm for respective particle species. For SPR estimation of multiple particle species, an effective energy of 100 MeV is recommended, with which the range error is  ⩽0.5 mm for all particle species.

  18. Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen

    Science.gov (United States)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Shut'ko, Yu. V.

    2010-04-01

    Runaway electron beam parameters and current-voltage characteristics of discharge in helium, hydrogen, and nitrogen at pressures in the range of several Torr to several hundred Torr have been studied. It is found that the maximum amplitudes of supershort avalanche electron beams (SAEBs) with a pulse full width at half maximum (FWHM) of ˜100 ps are achieved in helium, hydrogen, and nitrogen at a pressure of ˜60, ˜30, and ˜10 Torr, respectively. It is shown that, as the gas pressure is increased in the indicated range, the breakdown voltage of the gas-filled gap decreases, which leads to a decrease in the SAEB current amplitude. At pressures of helium within 20-60 Torr, hydrogen within 10-30 Torr, and nitrogen within 3-10 Torr, the regime of the runaway electron beam generation changes and, by varying the pressure in the gas-filled diode in the indicated intervals, it is possible to smoothly control the current pulse duration (FWHM) from ˜100 to ˜500 ps, while the beam current amplitude increases by a factor of 1.5-3.

  19. Temperature variation of the size effect in dilute AlMg and AlCa alloys: Measurement and theory

    Science.gov (United States)

    Gilder, H. M.; Asty, M.; Audit, Ph.

    1980-12-01

    Optical-interferometric-differential-length and x-ray lattice-parameter measurements performed at low temperatures in dilute AlMg and AlCa alloys indicate that the temperature variation of the size effect corresponds to a relatively large difference between the intrinsic coefficient of thermal expansion βi of the solute atom structure and that, β, of the solvent. This result is another example of the surprising expansive properties of point defects previously described by Gilder and co-workers (high-temperature vacancy diffusion) and more recently by Ganne (low-temperature dilatometry on irradiated specimens). Specifically, in the temperature range 0.2AlCa. The calculated values of Δβ(Mg)Ci, Ci being the solute concentration, and βi(Mg) fall between the measured values in the two AlMg alloys studied. The calculation of Δβ(Ca)Ci and βi(Ca) is not possible due to a lack of elastic-constants data for pure, metallic calcium. Inasmuch as, in the case of Mg, solute-solute interactions are apparent in the measured values of the size effect, ΔβCi and βi, even at Ci(Mg)~0.2 at.%, extreme care must be exercised when comparing experimental data for dilute alloys with calculations of infinitely dilute alloy properties.

  20. Homogeneous nucleation rate measurements of 1-propanol in helium: the effect of carrier gas pressure.

    Science.gov (United States)

    Brus, David; Zdímal, Vladimír; Stratmann, Frank

    2006-04-28

    Kinetics of homogeneous nucleation in supersaturated vapor of 1-propanol was studied using an upward thermal diffusion cloud chamber. Helium was used as a noncondensable carrier gas and the influence of its pressure on observed nucleation rates was investigated. The isothermal nucleation rates were determined by a photographic method that is independent on any nucleation theory. In this method, the trajectories of growing droplets are recorded using a charge coupled device camera and the distribution of local nucleation rates is determined by image analysis. The nucleation rate measurements of 1-propanol were carried out at four isotherms 260, 270, 280, and 290 K. In addition, the pressure dependence was investigated on the isotherms 290 K (50, 120, and 180 kPa) and 280 K (50 and 120 kPa). The isotherm 270 K was measured at 25 kPa and the isotherm 260 K at 20 kPa. The experiments confirm the earlier observations from several thermal diffusion chamber investigations that the homogeneous nucleation rate of 1-propanol tends to increase with decreasing total pressure in the chamber. In order to reduce the possibility that the observed phenomenon is an experimental artifact, connected with the generally used one-dimensional description of transfer processes in the chamber, a recently developed two-dimensional model of coupled heat, mass, and momentum transfer inside the chamber was used and results of both models were compared. It can be concluded that the implementation of the two-dimensional model does not explain the observed effect. Furthermore the obtained results were compared both to the predictions of the classical theory and to the results of other investigators using different experimental devices. Plotting the experimental data on the so-called Hale plot shows that our data seem to be consistent both internally and also with the data of others. Using the nucleation theorem the critical cluster sizes were obtained from the slopes of the individual isotherms

  1. Comparison of nitrogen narcosis and helium pressure effects on striatal amino acids: a microdialysis study in rats.

    Science.gov (United States)

    Vallée, Nicolas; Rostain, Jean-Claude; Boussuges, Alain; Risso, Jean-Jacques

    2009-05-01

    Exposure to nitrogen-oxygen mixture at high pressure induces narcosis, which can be considered as a first step toward general anaesthesia. Narcotic potencies of inert gases are attributed to their lipid solubility. Nitrogen narcosis induces cognitive and motor disturbances that occur from 0.3 MPa in man and from 1 MPa in rats. Neurochemical studies performed in rats up to 3 MPa have shown that nitrogen pressure decreases striatal dopamine release like argon, another inert gas, or nitrous oxide, an anaesthetic gas. Striatal dopamine release is under glutamatergic and other amino acid neurotransmission regulations. The aim of this work was to study the effects of nitrogen at 3 MPa on striatal amino acid levels and to compare to those of 3 MPa of helium which is not narcotic at this pressure, by using a new technique of microdialysis samples extraction under hyperbaric conditions, in freely moving rats. Amino acids were analysed by HPLC coupled to fluorimetric detection in order to appreciate glutamate, aspartate, glutamine and asparagine levels. Nitrogen-oxygen mixture exposure at 3 MPa decreased glutamate, glutamine and asparagine concentrations. In contrast, with helium-oxygen mixture, glutamate and aspartate levels were increased during the compression phase but not during the stay at maximal pressure. Comparison between nitrogen and helium highlighted the narcotic effects of nitrogen at pressure. As a matter of fact, nitrogen induces a reduction in glutamate and in other amino acids that could partly explain the decrease in striatal dopamine level as well as the motor and cognitive disturbances reported in nitrogen narcosis.

  2. Growing Chlorella vulgaris in Photobioreactor by Continuous Process Using Concentrated Desalination: Effect of Dilution Rate on Biochemical Composition

    Directory of Open Access Journals (Sweden)

    Ângelo Paggi Matos

    2014-01-01

    Full Text Available Desalination wastewater, which contains large amount of salt waste, might lead to severely environmental pollution. This study evaluated the effect of dilution rate (0.1≤D≤0.3 day−1 on microalgal biomass productivity, lipid content, and fatty acid profile under steady-state condition of Chlorella vulgaris supplemented with concentrated desalination. Continuous culture was conducted for 55 days. Results show that the biomass productivity (Px varied from 57 to 126 mg L−1 d−1 (dry mass when the dilution rate ranged from 0.1 to 0.3 day−1. At lowest dilution rate (D=0.1 day−1, the continuous culture regime ensured the highest values of maximum biomass concentration (Xm=570±20 mL−1 and protein content (52%. Biomass lipid content was an increasing function of D. The most abundant fatty acids were the palmitic (25.3±0.6% at D=0.1 day−1 and the gamma-linolenic acid (23.5±0.1% at D=0.3 day−1 ones. These fatty acids present 14 to 18 carbons in the carbon chain, being mainly saturated and polyunsaturated, respectively. Overall, the results show that continuous culture is a powerful tool to investigate the cell growth kinetics and physiological behaviors of the algae growing on desalination wastewater.

  3. Effect of Hydrogen Dilution on Growth of Silicon Nanocrystals Embedded in Silicon Nitride Thin Film bv Plasma-Enhanced CVD

    Institute of Scientific and Technical Information of China (English)

    DING Wenge; ZHEN Lanfang; ZHANG Jiangyong; LI Yachao; YU Wei; FU Guangsheng

    2007-01-01

    An investigation was conducted into the effect of hydrogen dilution on the mi-crostructure and optical properties of silicon nanograins embedded in silicon nitride (Si/SiNx) thin film deposited by the helicon wave plasma-enhanced chemical vapour deposition technique. With Ar-diluted SiH4 and N2 as the reactant gas sources in the fabrication of thin film, the film was formed at a high deposition rate. There was a high density of defect at the amorphous silicon (a-Si)/SiNx interface and a relative low optical gap in the film. An addition of hydrogen into the reactant gas reduced the film deposition rate sharply. The silicon nanograins in the SiNx matrix were in a crystalline state, and the density of defects at the silicon nanocrystals (nc-Si)/SiNx interface decreased significantly and the optical gap of the films widened. These results suggested that hydrogen activated by the plasma could not only eliminate in the defects between the interface of silicon nanograins and SiNx matrix, but also helped the nanograins transform from the amorphous into crystalline state. By changing the hydrogen dilution ratio in the reactant gas sources, a tunable band gap from 1.87 eV to 3.32 eV was obtained in the Si/SiNx film.

  4. Evolution of long-lived globular cluster stars. III. Effect of the initial helium spread on the position of stars in a synthetic Hertzsprung-Russell diagram

    Science.gov (United States)

    Chantereau, W.; Charbonnel, C.; Meynet, G.

    2016-08-01

    Context. Globular clusters host multiple populations of long-lived low-mass stars whose origin remains an open question. Several scenarios have been proposed to explain the associated photometric and spectroscopic peculiarities. They differ, for instance, in the maximum helium enrichment they predict for stars of the second population, which these stars can inherit at birth as the result of the internal pollution of the cluster by different types of stars of the first population. Aims: We present the distribution of helium-rich stars in present-day globular clusters as it is expected in the original framework of the fast-rotating massive stars scenario (FRMS) as first-population polluters. We focus on NGC 6752. Methods: We completed a grid of 330 stellar evolution models for globular cluster low-mass stars computed with different initial chemical compositions corresponding to the predictions of the original FRMS scenario for [Fe/H] = -1.75. Starting from the initial helium-sodium relation that allows reproducing the currently observed distribution of sodium in NGC 6752, we deduce the helium distribution expected in that cluster at ages equal to 9 and 13 Gyr. We distinguish the stars that are moderately enriched in helium from those that are very helium-rich (initial helium mass fraction below and above 0.4, respectively), and compare the predictions of the FRMS framework with other scenarios for globular cluster enrichment. Results: The effect of helium enrichment on the stellar lifetime and evolution reduces the total number of very helium-rich stars that remain in the cluster at 9 and 13 Gyr to only 12% and 10%, respectively, from an initial fraction of 21%. Within this age range, most of the stars still burn their hydrogen in their core, which widens the MS band significantly in effective temperature. The fraction of very helium-rich stars drops in the more advanced evolution phases, where the associated spread in effective temperature strongly decreases. These

  5. Effects of a helium/oxygen mixture on individuals’ lung function and metabolic cost during submaximal exercise for participants with obstructive lung diseases

    Directory of Open Access Journals (Sweden)

    Häussermann S

    2015-09-01

    Full Text Available Sabine Häussermann,1 Anja Schulze,1 Ira M Katz,2,3 Andrew R Martin,4 Christiane Herpich,1 Theresa Hunger,1 Joëlle Texereau2 1Inamed GmbH, Gauting, Germany; 2Medical R&D, Air Liquide Santé International, Centre de Recherche Paris-Saclay, Les Loges-en-Josas, France; 3Department of Mechanical Engineering, Lafayette College, Easton, PA, USA; 4Department of Mechanical Engineering, University of Alberta, Edmonton, AB, CanadaBackground: Helium/oxygen therapies have been studied as a means to reduce the symptoms of obstructive lung diseases with inconclusive results in clinical trials. To better understand this variability in results, an exploratory physiological study was performed comparing the effects of helium/oxygen mixture (78%/22% to that of medical air.Methods: The gas mixtures were administered to healthy, asthmatic, and chronic obstructive pulmonary disease (COPD participants, both moderate and severe (6 participants in each disease group, a total of 30; at rest and during submaximal cycling exercise with equivalent work rates. Measurements of ventilatory parameters, forced spirometry, and ergospirometry were obtained.Results: There was no statistical difference in ventilatory and cardiac responses to breathing helium/oxygen during submaximal exercise. For asthmatics, but not for the COPD participants, there was a statistically significant benefit in reduced metabolic cost, determined through measurement of oxygen uptake, for the same exercise work rate. However, the individual data show that there were a mixture of responders and nonresponders to helium/oxygen in all of the groups.Conclusion: The inconsistent response to helium/oxygen between individuals is perhaps the key drawback to the more effective and widespread use of helium/oxygen to increase exercise capacity and for other therapeutic applications. Keywords: helium/oxygen, inspiratory capacity, oxygen uptake, COPD, asthma, obstructive airway diseases, exercise, heliox

  6. [Effect of low-energy helium-neon laser on the biological properties of Mycobacterium tuberculosis].

    Science.gov (United States)

    Dolzhanskiĭ, V M; Kaliuk, A N; Maliev, B M; Levchenko, T N

    1990-01-01

    The results of experimental studies of M. tuberculosis biological properties tested in guinea pigs which were subjected to different doses of helium-neon laser radiation are given. The functional evidence is compared with the results of electron microscopic study of the irradiated culture. The investigation revealed that laser radiation caused changes in biological properties of M. tuberculosis. A decrease in growth properties and virulence was found to be related to a radiation dose. It is suggested that a drop in the biological activity of M. tuberculosis under laser radiation be associated with its influence on the Mycobacterium lipid layer which contains a cord-factor and responsible for their virulence.

  7. THE VISCOELASTIC EFFECT ON THE FORMATION OF MESO-GLOBULAR PHASE OF DILUTE HETEROPOLYMER SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    Chi Wu

    2003-01-01

    Linear homopolymer chains in poor solvent exist either as individual crumpled single chain globules or as macroscopic precipitate, depending on whether the solution is in the one- or the two-phase region. However, linear heteropolymer chains in dilute solution might be able to form stable mesoglobules made up of a limited number of chains if the degree of amphiphilicity of the chain is sufficiently high and the experimental conditions are appropriate. The selfassembly of block copolymers in a selective solvent is typical of such examples. In practice, the formation of stable mesoglobules can be directly related to the formation of novel polymeric nanoparticles in solution. In this article, we will address the formation of mesoglobular phase not only on the basis of thermodynamics, but also from a kinetic point of view,which leads to the discussion of how viscoelasticity can affect the phase behavior of heteropolymer chains in dilute solution.The formation and stabilization of several different kinds of novel polymeric nanoparticles will be used to illustrate our discussion.

  8. THE VISCOELASTIC EFFECT ON THE FORMATION OF MESO—GLOBULAR PHASE OF DILUTE HETEROPOLYMER SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    ChiWu

    2003-01-01

    Linear Homopolymer chains in poor solvent exist either as individual crumpled single chain globules or as macroscopic precipitate,depending on whether the solution is in the one- or the two-phase region.However,linear heteropolymer chains in dilute solution might be able to form stable mesoglobules made up of a limited number of chains if the degree of amphiphilicity of the chain is sufficiently high and the experimental conditions are appropriate.The selfassembly of block copolymers in a selective solvent is typical of such examples.In practice,the formation of stable mesoglobules can be directly related to the formation of novel polymeric nanoparticles in solution.In this article,we will address the formation of mesoglobular phase not only on the basis of thermodynamics,but also from a kinetic point of view,which leads to the discussion of how viscoelasticity can affect the phase behavior of heteropolymer chains in dilute solution.The formation and stabilization of several different kinds of novel polymeric nanoparticles will be used to illustrate our discussion.

  9. Effect of bombardment with iron ions on the evolution of helium, hydrogen, and deuterium blisters in silicon

    Science.gov (United States)

    Reutov, V. F.; Dmitriev, S. N.; Sokhatskii, A. S.; Zaluzhnyi, A. G.

    2017-02-01

    The effect of bombardment with iron ions on the evolution of gas porosity in silicon single crystals has been studied. Gas porosity has been produced by implantation hydrogen, deuterium, and helium ions with energies of 17, 12.5, and 20 keV, respectively, in identical doses of 1 × 1017 cm-2 at room temperature. For such energy of bombarding ions, the ion doping profiles have been formed at the same distance from the irradiated surface of the sample. Then, the samples have been bombarded with iron Fe10+ ions with energy of 150 keV in a dose of 5.9 × 1014 cm-2. Then 30-min isochoric annealing has been carried out with an interval of 50°C in the temperature range of 250-900°C. The samples have been analyzed using optical and electron microscopes. An extremely strong synergetic effect of sequential bombardment of silicon single crystals with gas ions and iron ions at room temperature on the nucleation and growth of gas porosity during postradiation annealing has been observed. For example, it has been shown that the amorphous layer formed in silicon by additional bombardment with iron ions stimulates the evolution of helium blisters, slightly retards the evolution of hydrogen blisters, and completely suppresses the evolution of deuterium blisters. The results of experiments do not provide an adequate explanation of the reason for this difference; additional targeted experiments are required.

  10. On Ultra-High Dilutions: Global Effects Caused by Minimal Quantities

    Directory of Open Access Journals (Sweden)

    Alvaro Vannucci

    2011-09-01

    Full Text Available Introduction: The role played by minimum quantities, generating large scale effects, and even of catastrophic consequence, is very commonly observed in many areas of science. In Physics, for example, the doping of impurities in materials like silicon (as low as one atom per billion results in spectacular semiconductor properties. In Biology, the effects of pheromones produced by insects and other animals are so dramatic that females of the emperor moth can attract mating males from kilometers away. And, concerning human health, severe body reactions may occur following the ingestion of very diminutive quantity of some allergic food. In this paper, the question of how Nature provides mechanisms for developing such dramatic and many times unexpected results, from very faint stimulus, will be proposed and discussed. In particular, a model for the controversial issue of how homeopathic remedies can influence and impose organic responses will also be addressed. This model particularly rely on the here named infotrans mechanism, which is based on a type of resonant property that may induce living organisms to promptly over-react after a pseudo environmental aggression. Finally, arguments will be provided to demonstrate that water, mainly due to its very high dielectric constant, can be considered a very good mediator for the infotrans. The Role of Water in Important Biological Mechanisms: Assuming that water molecules can indeed rearrange themselves to form larger clusters, it is reasonable to accept that different external excitations might induce these structures to assemble in distinctive ways. As matter of fact, experimental evidences already exist in literature showing that ultra-high dilutions of different substances, when compared to pure water, do exhibit relevant physico-chemical differences. More recently, investigations have shown that water plays a crucial role in biological systems such as the protein folding process or the twisting

  11. The effect of helium, radiation damage and irradiation temperature on the mechanical properties of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Fabritsiev, S.A. [D.V. Efremov Scientific Research Inst., St. Petersburg (Russian Federation); Pokrovsky, A.S.

    1998-01-01

    In this work different RF beryllium grades were irradiated in the BOR-60 reactor to a dose of {approx}5-10 dpa at irradiation temperatures 350, 420, 500, 800degC. Irradiation at temperatures of 350-400degC is shown to result in Be hardening due to the accumulation of radiation defect complexes. Hardening is accompanied with a sharp drop in plasticity at T{sub test} {<=} 300degC. A strong anisotropy in plasticity has been found at a mechanical testing temperature of 400degC and this parameter may be preferable when the samples are cut crosswise to the pressing direction. High-temperature irradiation (T{sub irr} = 780degC) gives rise to large helium pores over the grain boundaries and smaller pores in the grain body. Fracture is brittle and intercrystallite at T{sub test} {>=} 600degC. Helium embrittlement is accompanied as well with a drop in the Be strength properties. (author)

  12. Effect of an electric field on superfluid helium scintillation produced by α-particle sources

    Science.gov (United States)

    Ito, T. M.; Clayton, S. M.; Ramsey, J.; Karcz, M.; Liu, C.-Y.; Long, J. C.; Reddy, T. G.; Seidel, G. M.

    2012-04-01

    We report a study of the intensity and time dependence of scintillation produced by weak α-particle sources in superfluid helium in the presence of an electric field (0-45 kV/cm) in the temperature range of 0.2 to 1.1 K at the saturated vapor pressure. Both the prompt and the delayed components of the scintillation exhibit a reduction in intensity with the application of an electric field. The reduction in the intensity of the prompt component is well approximated by a linear dependence on the electric field strength with a reduction of 15% at 45 kV/cm. When analyzed using the Kramers theory of columnar recombination, this electric field dependence leads to the conclusion that roughly 40% of the scintillation results from species formed from atoms originally promoted to excited states and 60% from excimers created by ionization and subsequent recombination with the charges initially having a cylindrical Gaussian distribution about the α track of 60 nm radius. The intensity of the delayed component of the scintillation has a stronger dependence on the electric field strength and on temperature. The implications of these data on the mechanisms affecting scintillation in liquid helium are discussed.

  13. Application of Cryocoolers to a Vintage Dilution Refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Richard; Smith, Gary; Ruschman, Mark; /Fermilab; Beaty, Jim; /Minnesota U.

    2011-06-06

    A dilution refrigerator is required for 50mK detector operation of CDMS (Cryogenic Dark Matter Search). Besides shielding the dilution refrigerator itself, the liquid nitrogen shield and liquid helium bath in the refrigerator cool the detector cryostat heat shields and cool electronics, resulting in significant external heat loads at 80K and at 4K. An Oxford Instruments Kelvinox 400 has served this role for ten years but required daily transfers of liquid nitrogen and liquid helium. Complicating the cryogen supply is the location 800 meters below ground in an RF shielded, class 10000 clean room at Soudan, MN. Nitrogen and helium re-liquefiers using cryocoolers were installed outside the clean room and continuously condense room temperature gas and return the liquids to the dilution refrigerator through a transfer line. This paper will describe the design, installation, controls and performance of liquefaction systems.

  14. Application of cryocoolers to a vintage dilution refrigerator

    Science.gov (United States)

    Schmitt, Richard L.; Smith, Gary; Ruschman, Mark; Beaty, Jim

    2012-06-01

    A dilution refrigerator is required for 50 mK detector operation of CDMS (Cryogenic Dark Matter Search). Besides shielding the dilution refrigerator itself, the liquid nitrogen shield and liquid helium bath in the refrigerator cool the detector cryostat heat shields and cool electronics, resulting in significant external heat loads at 80 K and at 4 K. An Oxford Instruments Kelvinox 400 has served this role for ten years but required daily transfers of liquid nitrogen and liquid helium. Complicating the cryogen supply is the location 800 meters below ground in an RF shielded, class 10000 clean room at Soudan, MN. Nitrogen and helium re-liquefiers using cryocoolers were installed outside the clean room and continuously condense room temperature gas and return the liquids to the dilution refrigerator through a transfer line. This paper will describe the design, installation, controls and performance of liquefaction systems.

  15. Effect of thermal exposure in helium on mechanical properties and microstructure of 316L and P91

    Science.gov (United States)

    Kunzova, Klara; Berka, Jan; Siegl, Jan; Hausild, Petr

    2016-04-01

    In this paper, the effects of high temperature exposure in air as well as in impure He on mechanical properties of 316L and P91 steels were investigated. The experimental programme was part of material design of new experimental facility - high temperature helium loop. Some of the specimens were exposed in air at 750 °C for up to 1000 h. Another set of specimens were exposed in impure helium containing 1 ppmv CO2, 2 ppmv O2, 35 ppmv CH4, 250 ppmv CO and 400 ppmv H2 at 750 °C for up to 1000 h. Metalographical analysis, tensile tests, fracture toughness and hardness tests of exposed and non-exposed specimens were carried out. After the exposure both in air and He, the ultimate tensile strength of P91 decreased significantly more than that of 316L. After the exposure in He, the fracture toughness of 316L was reduced to 60% while fracture toughness of P91 showed no significant changes. The hardness of P91 decreased with exposure time in air. The measurement of the hardness of 316L was very scattered the most probably due to the heterogeneities in microstructure, the trend was not possible to evaluate.

  16. Effect of diluted and preheated oxidizer on the emission of methane flameless combustion

    Science.gov (United States)

    Hosseini, Seyed Ehsan; Salehirad, Saber; Wahid, M. A.; Sies, Mohsin Mohd; Saat, Aminuddin

    2012-06-01

    In combustion process, reduction of emissions often accompanies with output efficiency reduction. It means, by using current combustion technique it is difficult to obtainlow pollution and high level of efficiency in the same time. In new combustion system, low NOxengines and burners are studied particularly. Recently flameless or Moderate and Intensive Low oxygen Dilution (MILD) combustion has received special attention in terms of low harmful emissions and low energy consumption. Behavior of combustion with highly preheated air was analyzed to study the change of combustion regime and the reason for the compatibility of high performance and low NOx production. Sustainability of combustion under low oxygen concentration was examined when; the combustion air temperature was above the self-ignition temperature of the fuel. This paper purposes to analyze the NOx emission quantity in conventional combustion and flameless combustion by Chemical Equilibrium with Applications (CEA) software.

  17. Homogeneous and heterogeneous photoredox-catalyzed hydroxymethylation of ketones and keto esters: catalyst screening, chemoselectivity and dilution effects

    Directory of Open Access Journals (Sweden)

    Axel G. Griesbeck

    2014-05-01

    Full Text Available The homogeneous titanium- and dye-catalyzed as well as the heterogeneous semiconductor particle-catalyzed photohydroxymethylation of ketones by methanol were investigated in order to evaluate the most active photocatalyst system. Dialkoxytitanium dichlorides are the most efficient species for chemoselective hydroxymethylation of acetophenone as well as other aromatic and aliphatic ketones. Pinacol coupling is the dominant process for semiconductor catalysis and ketone reduction dominates the Ti(OiPr4/methanol or isopropanol systems. Application of dilution effects on the TiO2 catalysis leads to an increase in hydroxymethylation at the expense of the pinacol coupling.

  18. An effective method for trapping ion beams in superfluid helium for laser spectroscopy experiments

    Directory of Open Access Journals (Sweden)

    Yang X.F

    2014-03-01

    Full Text Available A novel laser spectroscopy technique -“OROCHI” (Optical Radioisotopes Observation in Condensed Helium as Ion-catcher has been proposed. This method aimed to investigate the structure of exotic nuclei systematically by measuring nuclear spins and moments. For in-situ laser spectroscopy of atoms in He II, a method to trap atoms precisely at the observation region of laser is highly needed. In this work, a setup composed of a degrader, two plastic scintillators and a photon detection system is further tested and verified for adjusting and checking the stopping position of 84–87Rb beam. Details of the current setup, experimental results using this method are presented.

  19. CFD Modeling of Helium Pressurant Effects on Cryogenic Tank Pressure Rise Rates in Normal Gravity

    Science.gov (United States)

    Grayson, Gary; Lopez, Alfredo; Chandler, Frank; Hastings, Leon; Hedayat, Ali; Brethour, James

    2007-01-01

    A recently developed computational fluid dynamics modeling capability for cryogenic tanks is used to simulate both self-pressurization from external heating and also depressurization from thermodynamic vent operation. Axisymmetric models using a modified version of the commercially available FLOW-3D software are used to simulate actual physical tests. The models assume an incompressible liquid phase with density that is a function of temperature only. A fully compressible formulation is used for the ullage gas mixture that contains both condensable vapor and a noncondensable gas component. The tests, conducted at the NASA Marshall Space Flight Center, include both liquid hydrogen and nitrogen in tanks with ullage gas mixtures of each liquid's vapor and helium. Pressure and temperature predictions from the model are compared to sensor measurements from the tests and a good agreement is achieved. This further establishes the accuracy of the developed FLOW-3D based modeling approach for cryogenic systems.

  20. The effect of semen collection method and level of egg yolk on capability of dilution and storage of buck semen

    Directory of Open Access Journals (Sweden)

    N.N. Dhaher

    2013-12-01

    Full Text Available The study was conducted to evaluate the effect of semen collection method for reduction of the deleterious interaction between the enzymes of bulbourethral gland and egg yolk during the dilution and storage of buck semen by three different level of egg yolk. Ten bucks were used in this study; the bucks were divided into two groups (five bucks in each group. Semen samples were collected once a week for four weeks from the bucks in first group using an artificial vagina, and from the animals in second group using an electroejaculator. The collected semen samples were diluted with sodium citrate extender with three different level of egg yolk (5, 10 and 20%. Extend semen samples were stored at 5 °C for three days. Computer assisted sperm analysis and Sperm Class Analyzer® were used for evaluation of the buck semen samples. Sperm motility parameters were evaluated which includes; percentage of motile sperm, percentage of progressive motile sperm, the value of the linear velocity (VSL, the value of the average velocity (VAP, the value of the curvilinear velocity (VCL, and the amplitude of lateral movement of the head (ALH. Results showed that all sperm motility parameters under the different level of egg yolk in semen samples that collected by artificial vagina were significantly higher than those which collected by electroejaculator. The percentage of motile sperm and progressive motile sperm of samples that collected by artificial vagina were higher at 10% of egg yolk, while these motility parameters were higher at 5% of egg yolk for semen samples that collected by electroejaculator. The differences between the two methods of semen collection in VCL and ALH were clear and the values were higher in samples that collected using the artificial vagina. The values of VSL, VAP and VCL of semen samples that collected by artificial vagina were higher at the second day than first day of semen storage under 10% of egg yolk. In conclusion, there are effects

  1. Effect of helium/neon laser irradiation on nerve growth factor synthesis and secretion in skeletal muscle cultures.

    Science.gov (United States)

    Schwartz, Fidi; Brodie, Chaya; Appel, Elana; Kazimirsky, Gila; Shainberg, Asher

    2002-04-01

    Low energy laser irradiation therapy in medicine is widespread but the mechanisms are not fully understood. The aim of the present study was to elucidate the mechanism by which the light might induce therapeutic effects. Skeletal muscle cultures were chosen as a target for light irradiation and nerve growth factor (NGF) was the biochemical marker for analysis. It was found that there is a transient elevation of intracellular calcium in the myotubes immediately after irradiation (Phelium/neon irradiation (633 nm) with an energy of 3 J/cm(2). In addition, helium/neon irradiation augmented the level of NGF mRNA fivefold and increased NGF release to the medium of the myotubes. Thus, it is speculated that transient changes in calcium caused by light can modulate NGF release from the myotubes and also affect the nerves innervating the muscle. The NGF is probably responsible for the beneficial effects of low-level light.

  2. The Effect of Dilution on Microsegregation in AWS ER NiCrMo-14 Alloy Welding Claddings

    Science.gov (United States)

    Miná, Émerson Mendonça; da Silva, Yuri Cruz; Dille, Jean; Silva, Cleiton Carvalho

    2016-12-01

    Dilution and microsegregation are phenomena inherent to claddings, which, in turn, directly affect their main properties. This study evaluated microsegregation in the fusion zone with different dilution levels. The overlays were welded by the TIG cold wire feed process. Dilution was calculated from the geometric characteristics of the claddings and from the conservation of mass equation using chemical composition measurements. Microsegregation was calculated using energy dispersive X-ray spectroscopy measurements of the dendrites and the chemical composition of the fusion zone. The dilution of the claddings was increased by reducing the wire feed rate. Fe showed potential to be incorporated into the solid phase ( k > 1), and this increased with the increase of dilution. Mo, in turn, was segregated into the liquid phase ( k < 1) and also increased with the increase of dilution. However, Cr and W showed a slight decrease in their partition coefficients ( k) with the increase of dilution.

  3. Pore-scale analysis on the effects of compound-specific dilution on transient transport and solute breakthrough

    DEFF Research Database (Denmark)

    Rolle, Massimo; Kitanidis, Peter

    Compound-specific diffusivities significantly impact solute transport and mixing at different scales. Although diffusive processes occur at the small pore scale, their effects propagate and remain important at larger macroscopic scales [1]. In this pore-scale modeling study in saturated porous...... media we show that compound-specific effects are important not only at steady-state and for the lateral displacement of solutes with different diffusivities but also for transient transport and solute breakthrough [2]. We performed flow and transport simulations in two-dimensional pore-scale domains...... significant effects of aqueous diffusion on solute breakthrough curves. However, the magnitude of such effects can be masked by the flux-averaging approach used to measure solute breakthrough and can hinder the correct interpretation of the true dilution of different solutes. We propose, as a metric of mixing...

  4. Effects of Temperature and Hydraulic Residence Time (HRT) on Treatment of Dilute Wastewater in a Carrier Anaerobic Baffled Reactor

    Institute of Scientific and Technical Information of China (English)

    HUA-JUN FENG; LI-FANG HU; DAN SHAN; CHENG-RAN FANG; DONG-SHENG SHEN

    2008-01-01

    To examine the effect of hydraulic residence time (HRT) on the performance and stability,to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR),and hence to gain a deeper insight into microbial responses to hydraulic shocks on the base of the relationships among macroscopic performance,catabolic intermediate,and microcosmic alternation.Methods COD,VFAs,and microbial activity were detected with constant feed strength (300 mg/L) at different HRTs (9-18 h) and temperatures (10℃-28℃) in a CABR.Results The removal efficiencies declined with the decreases of HRTs and temperatures.However,the COD removal load was still higher at short HRT than at long HRT.Devastating reactor performance happened at temperature of 10℃ and at HRT of 9 h.HRTs had effect on the VFAs in the reactor slightly both at high and low temperatures,but the reasons differed from each other.Microbial activity was sensitive to indicate changes of environmental and operational parameters in the reactor.Conclusion The CABR offers to certain extent an application to treat dilute wastewater under a hydraulic-shock at temperatures from 10℃ to 28℃.

  5. Dissipative particle dynamics simulation of dilute polymer solutions—Inertial effects and hydrodynamic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Tongyang; Wang, Xiaogong, E-mail: wxg-dce@mail.tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Jiang, Lei [Department of Physics, University of Michigan, Ann Arbor, Michigan (United States); Larson, Ronald G., E-mail: rlarson@umich.edu [Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan (United States)

    2014-07-01

    We examine the accuracy of dissipative particle dynamics (DPD) simulations of polymers in dilute solutions with hydrodynamic interaction (HI), at the theta point, modeled by setting the DPD conservative interaction between beads to zero. We compare the first normal-mode relaxation time extracted from the DPD simulations with theoretical predictions from a normal-mode analysis for theta chains. We characterize the influence of bead inertia within the coil by a ratio L{sub m}/R{sub g}, where L{sub m} is the ballistic distance over which bead inertia is lost, and R{sub g} is the radius of gyration of the polymer coil, while the HI strength per bead h* is determined by the ratio of bead hydrodynamic radius (r{sub H}) to the equilibrium spring length. We show how to adjust h* through the spring length and monomer mass, and how to optimize the accuracy of DPD for fixed h* by increasing the friction coefficient (γ ≥ 9) and by incorporating a nonlinear distance dependence into the frictional interaction. Even with this optimization, DPD simulations exhibit deviations of over 20% from the theoretical normal-mode predictions for high HI strength with h* ≥ 0.20, for chains with as many as 100 beads, which is a larger deviation than is found for Stochastic rotation dynamics simulations for similar chains lengths and values of h*.

  6. EFFECT OF RADIATION ON HIGH-CHARGE-DENSITY POLYDIALLY-DIMETHYL AMMONIUM CHLORIDE IN DILUTE AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    Ya-long Zhang; Min Yi; Jing Ren; Hong-fei Ha

    2003-01-01

    The effect of radiation on high-charge-density cationic polymer, polydiallyl-dimethyl ammonium chloride (polyDADMAC), in dilute aqueous solution was investigated. The irradiated samples were characterized in terms of reduced viscosity and electric conductivity. The crosslinking reaction of polyDADMAC chains occurs preferentially in the irradiated samples at a concentration of polyDADMAC higher than 1.3 g/100 mL that was induced indirectly by the OH radicals, one of the radiolysis products of water. In more dilute samples (less than 0.8 g/100 mL) the chain scission of macro radicals appears to be the main reaction. N2O atmosphere enhances the erosslinking due to the extra OH radicals produced by reaction between N2O and eaq, another radiolysis products of water. Methanol and some mineral salts such as KC1, KBr inhibit the crosslinking to a certain extent. The mechanism of sensitization and inhibition is discussed in detail.

  7. Plausibility of the implausible: is it possible that ultra-high dilutions ‘without biological activity’ cause adverse effects?

    Directory of Open Access Journals (Sweden)

    Marcus Zulian Teixeira

    2013-06-01

    Full Text Available Dear Editor, The homeopathic scientific model suffers constant criticism due to employ different assumptions and antagonistic to conventional scientific model, despite constantly develop studies confirming their premises [1-3]. The preferred target of the critics and skeptics rests on the principle of similitude curative (‘like cures like’ and the use of ultra-high dilutions (dynamized medicines. While the principle of similitude is scientifically grounded in the rebound effect (paradoxical reaction of conventional drugs [4,5], being recently proposed its therapeutic application by modern pharmacology (‘paradoxical pharmacology’ [6-8], several studies show clinical, biological and physical-chemistry activities of ultra-high dilutions in experimental models [9]. Despite these evidences, many skeptics questioning the ‘plausibility’ of the homeopathic model. Disregarding the biological effect of the homeopathic medicines, they gathered in public squares from different countries with the purpose of ingesting large doses of these ‘implausible’ ultra-high diluted drugs and show that nothing will happen, because they would not have the power to cause adverse events as the conventional drugs. Although they have not notified any disorder after this massive ingestion of dynamized homeopathic medicines, a recent systematic review suggests that they must have suffered serious consequences, as we have suggested in the past. [10] In order to counteract the widespread idea that homeopathy ‘is safe to use’, Posadzki et al. [11] conducted a systematic review to critically evaluate the evidence regarding the adverse effects (AEs of homeopathy described in published case reports and case series. In a total of 38 reports analyzed, 30 pertained to direct AEs of homeopathic medicines encompassing 1142 patients submitted to various medicines and forms of treatment (mostly, complex homeopathic medicines in low potencies. Reporting that “in 94

  8. Ground state energy of dilute neutron matter at next-to-leading order in lattice chiral effective field theory

    CERN Document Server

    Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G

    2008-01-01

    We present lattice calculations for the ground state energy of dilute neutron matter at next-to-leading order in chiral effective field theory. This study follows a series of recent papers on low-energy nuclear physics using chiral effective field theory on the lattice. In this work we introduce an improved spin- and isospin-projected leading-order action which allows for a perturbative treatment of corrections at next-to-leading order and smaller estimated errors. Using auxiliary fields and Euclidean-time projection Monte Carlo, we compute the ground state of 8, 12, and 16 neutrons in a periodic cube, covering a density range from 2% to 10% of normal nuclear density.

  9. Dilute neutron matter on the lattice at next-to-leading order in chiral effective field theory

    CERN Document Server

    Borasoy, Bugra; Krebs, Hermann; Lee, Dean; Meißner, Ulf-G

    2007-01-01

    We discuss lattice simulations of the ground state of dilute neutron matter at next-to-leading order in chiral effective field theory. In a previous paper the coefficients of the next-to-leading-order lattice action were determined by matching nucleon-nucleon scattering data for momenta up to the pion mass. Here the same lattice action is used to simulate the ground state of up to 12 neutrons in a periodic cube using Monte Carlo. We explore the density range from 2% to 8% of normal nuclear density and analyze the ground state energy as an expansion about the unitarity limit with corrections due to finite scattering length, effective range, and P-wave interactions.

  10. Ab initio study of the effects of dilute defects on the local structure of unalloyed δ-plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Sarah Christine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kisiel, Elliot Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Freibert, Franz Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-22

    We used density functional theory to examine the effects impurities and vacancies in the dilute limit in order to explore the effects on the local structure of the unalloyed face centered cubic δ-Pu lattice. The impurities considered are the radioactive daughter U or stabilizers in δ-phase stabilizer Ga. These impurities were placed at various interstitial sites, including octahedral, tetrahedral, and split interstitial along the (100) direction, as well as substitutional lattice sites. Self-interstitials, mono and di-vacancies were also considered. In addition we examined impurity-vacancy complexes at first and second nearest neighboring distances from each other. Radial distribution functions were plotted to gauge the local structural variations around the defect within the lattice and volume change with structural variation quantifies influence on thermodynamics. These local distortions will be discussed in this report.

  11. Room-temperature anomalous Hall effect and magnetroresistance in (Ga, Co)-codoped ZnO diluted magnetic semiconductor films

    Institute of Scientific and Technical Information of China (English)

    Liu Xue-Chao; Chen Zhi-Zhan; Shi Er-Wei; Liao Da-Qian; Zhou Ke-Jin

    2011-01-01

    This paper reports that the (Ga, Co)-codoped ZnO thin films have been grown by inductively coupled plasma enhanced physical vapour deposition. Room-temperature ferromagnetism is observed for the as-grown thin films. The x-ray absorption fine structure characterization reveals that Co2+ and Ga3+ ions substitute for Zn2+ ions in the ZnO lattice and exclude the possibility of extrinsic ferromagnetism origin. The ferromagnetic (Ga, Co)-codoped ZnO thin films exhibit carrier concentration dependent anomalous Hall effect and positive magnetoresistance at room temperature. The mechanism of anomalous Hall effect and magneto-transport in ferromagnetic ZnO-based diluted magnetic semiconductors is discussed.

  12. Organ protection by the noble gas helium

    NARCIS (Netherlands)

    Smit, K.F.

    2017-01-01

    The aims of this thesis were to investigate whether helium induces preconditioning in humans, and to elucidate the mechanisms behind this possible protection. First, we collected data regarding organ protective effects of noble gases in general, and of helium in particular (chapters 1-3). In chapter

  13. Effect of an electric field on superfluid helium scintillation produced by alpha-particle sources

    CERN Document Server

    Ito, T M; Ramsey, J; Karcz, M; Liu, C -Y; Long, J C; Reddy, T G; Seidel, G M

    2012-01-01

    We report a study of the intensity and time dependence of scintillation produced by weak alpha particle sources in superfluid helium in the presence of an electric field (0 - 45 kV/cm) in the temperature range of 0.2 K to 1.1 K at the saturated vapor pressure. Both the prompt and the delayed components of the scintillation exhibit a reduction in intensity with the application of an electric field. The reduction in the intensity of the prompt component is well approximated by a linear dependence on the electric field strength with a reduction of 15% at 45 kV/cm. When analyzed using the Kramers theory of columnar recombination, this electric field dependence leads to the conclusion that roughly 40% of the scintillation results from species formed from atoms originally promoted to excited states and 60% from excimers created by ionization and subsequent recombination with the charges initially having a cylindrical Gaussian distribution about the alpha track of 60 nm radius. The intensity of the delayed component...

  14. Effects of helium and deuterium irradiation on SPS sintered W–Ta composites at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mateus, R., E-mail: rmateus@ipfn.ist.utl.pt [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Dias, M. [ITN, Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém (Portugal); Lopes, J. [ITN, Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém (Portugal); ISEL, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa (Portugal); Rocha, J.; Catarino, N.; Franco, N. [ITN, Instituto Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém (Portugal); Livramento, V. [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 1649-038 Lisboa (Portugal); and others

    2013-11-15

    Energetic He{sup +} and D{sup +} ions were implanted into different W–Ta composites in order to investigate their stability under helium and deuterium irradiation. The results were compared with morphological and chemical modifications arising from exposure of pure W and Ta. Special attention was given to tantalum hydride (Ta{sub 2}H) formation due to its implications for tritium inventory. Three W–Ta composites with 10 and 20 at.% Ta were prepared from elemental W powder and Ta fibre or powder through low-energy ball milling in argon atmosphere. Spark plasma sintering (SPS) was used as the consolidation process in the temperature range from 1473 to 1873 K. The results obtained from pure elemental samples and composites are similar. However, Ta{sub 2}H is easily formed in pure Ta by using a pre-implantation stage of He{sup +}, whereas in W–Ta composites the same reaction is clearly reduced, and it can be inhibited by controlling the sintering temperature.

  15. Seasonal variation of the effect of extremely diluted agitated gibberellic acid (10-30 on wheat seedling development

    Directory of Open Access Journals (Sweden)

    Peter Christian Endler

    2011-07-01

    Full Text Available Objective: Performing a study on a wheat growth bio assay with a homeopathic dilution of gibberellic acid at different seasons of the year. Methods: Grains of winter wheat (Triticum aestivum, Capo variety were observed under the influence of extremely diluted gibberellic acid (10-30, 30x. Analogously prepared water was used for control. 15 experiments were performed, 9 in autumn season (5 researchers, 4,440 grains per group, and 6 in winter / spring (4 researchers, with 3,140 grains per group. Results: All 9 autumn experiments showed less stalk growth in the verum group (p > 0.01 in 4 cases, p > 0.05 in 3, trend in 2 cases. Mean stalk lengths (mm were 46.97 + 20.50 for verum and 50.66 + 19.77 for control at grain level (N = 4,440 per group and + 3.87 and + 3.38 respectively at dish level (217 cohorts of 20 or 25 grains per treatment group. Verum stalk length (92.72% was 7.28% smaller than control stalk length (100%. In contrast, no reliable effect was found in experiments performed in winter / spring (less stalk growth in 1 case, no difference in 1, more growth in 3 cases. Overall verum stalk length (103.64% was 3.64% slightly greater than control stalk length (100%. Data were found to be homogeneous within the control groups as well as within the verum groups. Conclusion: Results suggest that especially in the experiments performed in autumn, there was an influence of gibberellic acid 30x on wheat seedling development. The effect size is small when calculation is done on the basis of grains (d = 0.18 but high when done on the basis of dishes (d = 1.02. In contrast, no reliable effect was found in experiments performed in winter / spring. Further experiments should thus be performed in the autumn season.

  16. Effect of dynamically charged helium on tensile properties of V-5Ti, V-4Cr-4Ti, and V-3Ti-1Si

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L. [Argonne National Laboratory, Chicago, IL (United States)

    1996-04-01

    In the Dynamic Helium Charging Experiment (DHCE), helium was produced uniformly in the specimen at linear rates of {approx}0.4 to 4.2 appm He/dpa by the decay of tritium during irradiation to 18-31 dpa at 424-600{degrees}C in the lithium-filled DHCE capsules in the Fast Flux Test Facility. This report presents results of postirradiation tests of tensile properties of V-5Ti, V-4Cr-4Ti, V-3Ti-1Si. The effect of helium on tensile strength and ductility was insignificant after irradiation and testing at >420{degrees}C. Contrary to initial expectation, room temperature ductility of DHCE specimens was higher than that on non-DHCE specimens, whereas strength was lower, indicating that different types of hardening centers are produced during DHCE and non-DHCE irradiation. In strong contrast to results of tritium-trick experiments, in which dense coalescence of helium bubbles is produced on grain boundaries in the absence of displacement damage, no intergranular fracture was observed in any tensile specimens irradiated in the DHCE.

  17. Creep behavior of alloy 617 in high temperature air and helium environments-effect of oxidation damage

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Chang Heui; Kim, Sung Hwan [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Sah, Injin; Kim, Dae Jong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The creep behavior of a nickel-base superalloy, Alloy 617, which is considered as a candidate material for the very high temperature gas cooled reactor, was studied. Creep rupture tests were carried out at 800°C, 900°C and 1000°C in static and flowing helium environments as well as in air. Creep rupture life in static helium was longer than that in air, while it was shorter in flowing helium environments. Microstructure observation of the creep tested specimens showed that the shorter creep rupture life in flowing helium was associated with the thicker oxide layer, greater decarburization depth, and deeper internal oxidation happened during the creep tests. The degree of such oxidation damage was quantified for the creep tested specimens and correlated with the creep rupture life in different environments.

  18. Measurements of the Critical Casimir Effect and Superfluid Density in Saturated Helium-4 Films near T(lambda)

    Science.gov (United States)

    Abraham, John Bishoy Sam

    Saturated thick films of 4Helium adsorbed on a copper substrate are studied experimentally. The film thickness is measured with an ultra-sensitive capacitance bridge capable of resolving sub-Angstrom changes in film thickness. Through the use of this capacitance bridge, the critical Casimir effect in the films is studied in the vicinity of the lambda transition. Additionally, the copper substrate assembly is used to generate and detect third sound in the film. Measurements are made of the third sound speed and attenuation in thick film from 1.6 K to the Kosterlitz-Thouless transition in the films. The position of the Kosterlitz-Thouless transition relative to the critical Casimir effect in the films is identifieded. It is discovered that the Kosterlitz-Thouless transition occurs at the beginning of the dip in film thickness due to the critical Casimir effect. When the temperature of the system is swept extremely slowly across the lambda transition, a step in film thickness is observed. This step is possibly a non-universal critical Casimir effect. A model of thermal second sound excitations is developed to describe this new observation.

  19. Effects of high-temperature diluted-H2 annealing on effective mobility of 4H-SiC MOSFETs with thermally-grown SiO2

    Science.gov (United States)

    Hirai, Hirohisa; Kita, Koji

    2016-04-01

    The impact of post-oxidation annealing (POA) in diluted-H2 ambient on a 4H-SiC/SiO2 interface was investigated with a cold wall furnace. Effective mobility (μeff) was extracted from lateral metal-oxide-semiconductor field-effect transistors (MOSFETs) by applying the split capacitance-voltage (C-V) technique to the determination of charge density and a calibration technique using two MOSFETs with different gate lengths to minimize the contribution of parasitic components. POA at 1150 °C in diluted-H2 ambient resulted in an enhancement of μeff compared with that for POA in N2 ambient. It was indicated that the effects of POA in diluted H2 should be attributed to the reduction in the density of near interface traps, which disturb the electron transportation in the inversion channel, from the measurement temperature dependence of μeff as well as from the C-V curves of MOS capacitors fabricated on n-type SiC.

  20. Paramagnetic Attraction of Impurity-Helium Solids

    Science.gov (United States)

    Bernard, E. P.; Boltnev, R. E.; Khmelenko, V. V.; Lee, D. M.

    2003-01-01

    Impurity-helium solids are formed when a mixture of impurity and helium gases enters a volume of superfluid helium. Typical choices of impurity gas are hydrogen deuteride, deuterium, nitrogen, neon and argon, or a mixture of these. These solids consist of individual impurity atoms and molecules as well as clusters of impurity atoms and molecules covered with layers of solidified helium. The clusters have an imperfect crystalline structure and diameters ranging up to 90 angstroms, depending somewhat on the choice of impurity. Immediately following formation the clusters aggregate into loosely connected porous solids that are submerged in and completely permeated by the liquid helium. Im-He solids are extremely effective at stabilizing high concentrations of free radicals, which can be introduced by applying a high power RF dis- charge to the impurity gas mixture just before it strikes the super fluid helium. Average concentrations of 10(exp 19) nitrogen atoms/cc and 5 x 10(exp 18) deuterium atoms/cc can be achieved this way. It shows a typical sample formed from a mixture of atomic and molecular hydrogen and deuterium. It shows typical sample formed from atomic and molecular nitrogen. Much of the stability of Im-He solids is attributed to their very large surface area to volume ratio and their permeation by super fluid helium. Heat resulting from a chance meeting and recombination of free radicals is quickly dissipated by the super fluid helium instead of thermally promoting the diffusion of other nearby free radicals.

  1. Formation of the helium EUV resonance lines

    CERN Document Server

    Golding, Thomas Peter; Carlsson, Mats

    2016-01-01

    Context: While classical models successfully reproduce intensities of many transition region lines, they predict helium EUV line intensities roughly an order of magnitude lower than the observed value. Aims: To determine the relevant formation mechanism(s) of the helium EUV resonance lines, capable of explaining the high intensities under quiet sun conditions. Methods: We synthesise and study the emergent spectra from a 3D radiation-magnetohydrodynamics simulation model. The effects of coronal illumination and non-equilibrium ionisation of hydrogen and helium are included self-consistently in the numerical simulation. Results: Radiative transfer calculations result in helium EUV line intensities that are an order of magnitude larger than the intensities calculated under the classical assumptions. The enhanced intensity of He I 584 is primarily caused by He II recombination cascades. The enhanced intensity of He II 304 and He II 256 is caused primarily by non-equilibrium helium ionisation. Conclusion: The anal...

  2. Evidence of the Importance of Host Habitat Use in Predicting the Dilution Effect of Wild Boar for Deer Exposure to Anaplasma spp

    Science.gov (United States)

    Estrada-Peña, Agustín; Acevedo, Pelayo; Ruiz-Fons, Francisco; Gortázar, Christian; de la Fuente, José

    2008-01-01

    Foci of tick-borne pathogens occur at fine spatial scales, and depend upon a complex arrangement of factors involving climate, host abundance and landscape composition. It has been proposed that the presence of hosts that support tick feeding but not pathogen multiplication may dilute the transmission of the pathogen. However, models need to consider the spatial component to adequately explain how hosts, ticks and pathogens are distributed into the landscape. In this study, a novel, lattice-derived, behavior-based, spatially-explicit model was developed to test how changes in the assumed perception of different landscape elements affect the outcome of the connectivity between patches and therefore the dilution effect. The objective of this study was to explain changes in the exposure rate (ER) of red deer to Anaplasma spp. under different configurations of suitable habitat and landscape fragmentation in the presence of variable densities of the potentially diluting host, wild boar. The model showed that the increase in habitat fragmentation had a deep impact on Habitat Sharing Ratio (HSR), a parameter describing the amount of habitat shared by red deer and wild boar, weighted by the probability of the animals to remain together in the same patch (according to movement rules), the density of ticks and the density of animals at a given vegetation patch, and decreased the dilution effect of wild boar on deer Anaplasma ER. The model was validated with data collected on deer, wild boar and tick densities, climate, landscape composition, host vegetation preferences and deer seropositivity to Anaplasma spp. (as a measure of ER) in 10 study sites in Spain. However, although conditions were appropriate for a dilution effect, empirical results did not show a decrease in deer ER in sites with high wild boar densities. The model showed that the HSR was the most effective parameter to explain the absence of the dilution effect. These results suggest that host habitat usage may

  3. Evidence of the importance of host habitat use in predicting the dilution effect of wild boar for deer exposure to Anaplasma spp.

    Directory of Open Access Journals (Sweden)

    Agustín Estrada-Peña

    Full Text Available Foci of tick-borne pathogens occur at fine spatial scales, and depend upon a complex arrangement of factors involving climate, host abundance and landscape composition. It has been proposed that the presence of hosts that support tick feeding but not pathogen multiplication may dilute the transmission of the pathogen. However, models need to consider the spatial component to adequately explain how hosts, ticks and pathogens are distributed into the landscape. In this study, a novel, lattice-derived, behavior-based, spatially-explicit model was developed to test how changes in the assumed perception of different landscape elements affect the outcome of the connectivity between patches and therefore the dilution effect. The objective of this study was to explain changes in the exposure rate (ER of red deer to Anaplasma spp. under different configurations of suitable habitat and landscape fragmentation in the presence of variable densities of the potentially diluting host, wild boar. The model showed that the increase in habitat fragmentation had a deep impact on Habitat Sharing Ratio (HSR, a parameter describing the amount of habitat shared by red deer and wild boar, weighted by the probability of the animals to remain together in the same patch (according to movement rules, the density of ticks and the density of animals at a given vegetation patch, and decreased the dilution effect of wild boar on deer Anaplasma ER. The model was validated with data collected on deer, wild boar and tick densities, climate, landscape composition, host vegetation preferences and deer seropositivity to Anaplasma spp. (as a measure of ER in 10 study sites in Spain. However, although conditions were appropriate for a dilution effect, empirical results did not show a decrease in deer ER in sites with high wild boar densities. The model showed that the HSR was the most effective parameter to explain the absence of the dilution effect. These results suggest that host

  4. Cooling with Superfluid Helium

    CERN Document Server

    Lebrun, P

    2014-01-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics

  5. Effect of two homeopathic remedies at different degrees of dilutions on the wound closure of 3T3 fibroblasts in in vitro scratch assay

    Directory of Open Access Journals (Sweden)

    Reinhard Saller

    2012-09-01

    Full Text Available Background: Since ancient times, preparations from traditional medicinal plants e.g. Arnica montana, Calendula officinalis or Hypericum perforatum have been used for different wound healing purposes. The aim of this study was to investigate the efficacy of the commercial low dilution homeopathic remedy Similasan® Arnica plus Spray, a preparation of Arnica montana 4x, Calendula officinalis 4x, Hypericum perforatum 4x and Symphytum officinale 6x (0712-2 and medium diluted SIM WuS (Petroleum 15x, Arnica montana 15x, Calcium fluoratum 12x, Calendula officinalis 12x, Hepar sulfuris 12x and Mercurius solubilis 15x; 1101-4, on the wound healing in cultured NIH 3T3 fibroblasts. Both remedies were from Similasan AG (Jonen, Switzerland and prepared according the German Homoeopathic Pharmacopoeia (GHP following descriptions 4a for arnica, 3a for marigold and St. John’s wort, 2a for comfrey, 5a for petroleum, and 6 for calcium fluoride, hepar sulfuris and mercurius solubilis. Materials and Methods: Cell proliferation, migration and wound closure promoting effect of the preparations (0712-2, 1101- 4 and their succussed solvents (0712-1, 1101-3 were investigated on mouse NIH 3T3 fibroblasts. Cell viability was determined by WST-1 assay, cell growth using BrdU uptake, cell migration by chemotaxis assay and wound closure by CytoSelect ™Wound Healing Assay Kit which generated a defined wound area. All assays were performed in three independent controlled experiments. In some experiments diluted unsuccussed alcohol (0712-3 was also investigated. Results: Preparations (0712-1, (0712-2, (0712-3, (1101-3 and (1101-4 were investigated at decimal dilution steps from 1x to 4x. Cell viabilty was not affected by any of the substances and (0712-1 and (0712-2 showed no stimulating effect on cell proliferation. Preparation (0712-2 exerted a stimulating effect on fibroblast migration (31.7% vs 15% with succussed solvent (0712-1 at 1

  6. Effect of initial-state target polarization on the single ionization of helium by 1-keV electron impact

    Institute of Scientific and Technical Information of China (English)

    Sun Shi-Yan; Ma Xiao-Yan; Li Xia; Miao Xiang-Yang; Jia Xiang-Fu

    2012-01-01

    We report new results of triple differential cross sections for the single ionization of helium by 1-KeV electron impact at the ejection energy of 10 eV.Investigations have been made for both the perpendicular plane and the plane perpendicular to the momentum transfer geometries.The present calculation is based on the three-Coulomb wave function.Here we have also incorporated the effect of target polarization in the initial state.A comparison is made between the present calculation with the results of other theoretical methods and a recent experiment [Diirr M,Dimopoulou C,Najjari B,Dorn A,Bartschat K,Bray I,Fursa D V,Chen Z,Madison D H and Ullrich J 2008 Phys.Rev.A 77 032717(]).At an impact energy of l KeV,the target polarization is found to induce a substantial change of the cross section for the ionization process.We observe that the effect of target polarization plays a dominant role in deciding the shape of triple differential cross sections.

  7. Effects of dietary supplementation of Aspergillus originated prebiotic (Fermacto on performance and small intestinal morphology of broiler chickens fed diluted diets

    Directory of Open Access Journals (Sweden)

    Zarbakht Ansari Pirsaraei

    2010-02-01

    Full Text Available Fermacto, that it is commercially a fermentation product of Aspergillus orizae, is proven to increase digestion efficiency of the gut. In this experiment, 450 one day old Cobb 500 broiler chicks (mixed-sex were used in a completely randomized design with 3×2 factorial arrangement. There were three levels of Fermacto (0, 0.15 and 0.3% for 42 days and two levels of diet dilution using rice hulls (0 and 40% at 10-21 days of age. The treatments consisted of 3 replicates with 25 chicks per each. Administration of Fermacto did not influence feed intake or feed conversion ratio, but the daily weight gain improved. Diluted diets significantly increased body weights and decreased feed intake; however, this manipulation didn’t affect feed conversion ratios. There was no interaction between prebiotic supplementation and experimental diets dilution for performance traits. Diet dilution significantly decreased abdominal fat pad, villi height and increased epithelial thickness and goblet cell numbers. Dietary supplementation using Fermacto significantly decreased the abdominal fat pad and goblet cell numbers but increased the small intestinal villus heights. There were some conflicting observations for different segments of the small intestine. The 0.3% Fermacto inclusion in experimental diets caused more beneficial effects. Contrary to previous reports on more efficiency of Fermacto on low protein diets, this trend is not seen for the whole diluted diets.

  8. Maternal exposure to diluted diesel engine exhaust alters placental function and induces intergenerational effects in rabbits

    NARCIS (Netherlands)

    Valentino, Sarah A; Tarrade, Anne; Aioun, Josiane; Mourier, Eve; Richard, Christophe; Dahirel, Michèle; Rousseau-Ralliard, Delphine; Fournier, Natalie; Aubrière, Marie-Christine; Lallemand, Marie-Sylvie; Camous, Sylvaine; Guinot, Marine; Charlier, Madia; Aujean, Etienne; Al Adhami, Hala; Fokkens, Paul H; Agier, Lydiane; Boere, John A; Cassee, Flemming R; Slama, Rémy; Chavatte-Palmer, Pascale

    2016-01-01

    BACKGROUND: Airborne pollution is a rising concern in urban areas. Epidemiological studies in humans and animal experiments using rodent models indicate that gestational exposure to airborne pollution, in particular diesel engine exhaust (DE), reduces birth weight, but effects depend on exposure

  9. Calculated Regenerator Performance at 4 K with HELIUM-4 and HELIUM-3

    Science.gov (United States)

    Radebaugh, Ray; Huang, Yonghua; O'Gallagher, Agnes; Gary, John

    2008-03-01

    The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transport properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies.

  10. Helium diffusion in carbonates

    Science.gov (United States)

    Amidon, W. H.; Cherniak, D. J.; Watson, E. B.; Hobbs, D.

    2013-12-01

    The abundance and large grain size of carbonate minerals make them a potentially attractive target for 4He thermochronology and 3He cosmogenic dating, although the diffusive properties of helium in carbonates remain poorly understood. This work characterizes helium diffusion in calcite and dolomite to better understand the crystal-chemical factors controlling He transport and retentivity. Slabs of cleaved natural calcite and dolomite, and polished sections of calcite cut parallel or normal to c, were implanted with 3He at 3 MeV with a dose of 5x1015/cm2. Implanted carbonates were heated in 1-atm furnaces, and 3He distributions following diffusion anneals were profiled with Nuclear Reaction Analysis using the reaction 3He(d,p)4He. For 3He transport normal to cleavage surfaces in calcite, we obtain the following Arrhenius relation over the temperature range 78-300°C: Dcalcite = 9.0x10-9exp(-55 × 6 kJ mol-1/RT) m2sec-1. Diffusion in calcite exhibits marked anisotropy, with diffusion parallel to c about two orders of magnitude slower than diffusion normal to cleavage faces. He diffusivities for transport normal to the c-axis are similar in value to those normal to cleavage surfaces. Our findings are broadly consistent with helium diffusivities from step-heating measurements of calcite by Copeland et al. (2007); these bulk degassing data may reflect varying effects of diffusional anisotropy. Helium diffusion normal to cleavage surfaces in dolomite is significantly slower than diffusion in calcite, and has a much higher activation energy for diffusion. For dolomite, we obtain the following Arrhenius relation for He diffusion over the temperature range 150-400°C: Ddolomite = 9.0x10-8exp(-92 × 9 kJ mol-1/RT) m2sec-1. The role of crystallographic structure in influencing these differences among diffusivities was evaluated using the maximum aperture approach of Cherniak and Watson (2011), in which crystallographic structures are sectioned along possible diffusion

  11. Spin-orbit dilution effects on the magnetism of frustrated spinel Ge(Co1-xMgx)2O4

    Science.gov (United States)

    Agata, Ryotaro; Takita, Shota; Ishikawa, Takashi; Watanabe, Tadataka

    2015-03-01

    We investigated magnetic properties of spinel oxides Ge(Co1-xMgx)2O4 with x = 0 ~ 0.5 to study the spin-orbit dilution effects on the magnetism of spin-orbit frustrated spinel GeCo2O4. We discovered that the magnetic moment per single Co2+ ion is decreased with increasing nonmagnetic Mg2+ concentration, which indicates the spin-orbit decoupling caused by the spin-orbit dilution. Additionally, small-amount substitution of Mg2+ for Co2+ causes the rapid increase of the positive Weiss temperature indicating the enhancement of ferromagnetic interactions, while the Mg2+ substitution suppresses the antiferromagnetic ordering resulting in the appearance of spin glass behavior. The present results suggest that the spin-orbit dilution causes the spin-orbit decoupling and the reinforcement of ferromagnetic frustration in GeCo2O4.

  12. Seasonal Variation of the Effect of Extremely Diluted Agitated Gibberellic Acid (10e-30) on Wheat Stalk Growth: A Multiresearcher Study

    Science.gov (United States)

    Endler, Peter Christian; Matzer, Wolfgang; Reich, Christian; Reischl, Thomas; Hartmann, Anna Maria; Thieves, Karin; Pfleger, Andrea; Hofäcker, Jürgen; Lothaller, Harald; Scherer-Pongratz, Waltraud

    2011-01-01

    The influence of a homeopathic high dilution of gibberellic acid on wheat growth was studied at different seasons of the year. Seedlings were allowed to develop under standardized conditions for 7 days; plants were harvested and stalk lengths were measured. The data obtained confirm previous findings, that ultrahigh diluted potentized gibberellic acid affects stalk growth. Furthermore, the outcome of the study suggests that experiments utilizing the bioassay presented should best be performed in autumn season. In winter and spring, respectively, no reliable effects were found. PMID:22125426

  13. Seasonal Variation of the Effect of Extremely Diluted Agitated Gibberellic Acid (10e-30 on Wheat Stalk Growth: A Multiresearcher Study

    Directory of Open Access Journals (Sweden)

    Peter Christian Endler

    2011-01-01

    Full Text Available The influence of a homeopathic high dilution of gibberellic acid on wheat growth was studied at different seasons of the year. Seedlings were allowed to develop under standardized conditions for 7 days; plants were harvested and stalk lengths were measured. The data obtained confirm previous findings, that ultrahigh diluted potentized gibberellic acid affects stalk growth. Furthermore, the outcome of the study suggests that experiments utilizing the bioassay presented should best be performed in autumn season. In winter and spring, respectively, no reliable effects were found.

  14. Anomalous Hall effect in a diluted p-InAs〈Mn〉 magnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Arslanov, R. K., E-mail: arslanovr@gmail.com; Arslanov, T. R.; Daunov, M. I. [Russian Academy of Sciences, Institute of Physics, Dagestan Scientific Center (Russian Federation)

    2017-03-15

    The dependences of the electrical resistivity and the Hall coefficient of single-crystal p-InAs〈Mn〉 bulk samples with an acceptor concentration of about 10{sup 18} cm{sup –3} on uniform pressure P = 4–6 GPa at T = 300 K in the region of impurity conduction are quantitatively analyzed. The anomalous Hall effect is shown to occur in p-InAs〈Mn〉. Its contribution is negative and correlates with the deionization of acceptors and an increase in the magnetic susceptibility.

  15. Effect of Nutrient Dilution and Glutamine Supplementation on Growth Performance, Small Intestine Morphology and Immune Response of Broilers

    Directory of Open Access Journals (Sweden)

    majid gheshlagh olyayee

    2016-11-01

    Full Text Available Introduction Glutamine (Gln, a semi-essential or conditionally essential amino acid, is an abundant amino acid in plasma and skeletal muscle. It is the main energy substrate for cells that undergo intense replication, such as enterocytes, lymphocytes, macrophages, neutrophils and kidney cells and plays an important role in their function and homeostasis. Apart from providing nitrogen for protein synthesis, Gln is a precursor for nucleic acids, nucleotides, hexose amines, the nitric oxide precursor arginine (Arg, and the major antioxidant-glutathione. It plays a central role in nitrogen transport between tissues, specifically from muscle to gut, kidney, and liver. In addition to its role as a gluconeogenic substrate in the liver, kidney, and intestine, Gln is involved in the renal handling of ammonia, serving as a regulator of acid base homeostasis. So the aim of this study was to evaluate the effect of nutrient dilution and L- glutamine (Gln supplementation on growth performance, intestine morphology and immune response of broilers during starter (0 to 10 days, growth (11 to 24 days and finisher (25 to 42 days periods. Materials and methods A total of 320 one-day-old male Ross 308 broiler chicks were randomly assigned to eight treatments with 4 replicates and 10 chicks per each. In this study two levels of nutrient dilution (Ross 308 broiler nutrition recommendation and 5% diluted and 4 levels of Gln supplementation (0, 0.5, 1 and 1.5% were used in a completely randomized design as factorial arrangement 2×4. Growth performance was measured periodically. In order to investigate jejenual histomorphology such as villus height, depth of crypt, villus height to depth of crypt ratio, villus width, muscle layer thickness and epithelium thickness, on day 42 after 4 h fasting, one bird per each replicate was randomly selected, slaughtered and 1 cm of middle section of jejenum was cut. Cellular immune response was assessed in 40-d-old chick using the in

  16. Pretreatment of Sugar Beet Pulp with Dilute Sulfurous Acid is Effective for Multipurpose Usage of Carbohydrates.

    Science.gov (United States)

    Kharina, M; Emelyanov, V; Mokshina, N; Ibragimova, N; Gorshkova, T

    2016-05-01

    Sulfurous acid was used for pretreatment of sugar beet pulp (SBP) in order to achieve high efficiency of both extraction of carbohydrates and subsequent enzymatic hydrolysis of the remaining solids. The main advantage of sulfurous acid usage as pretreatment agent is the possibility of its regeneration. Application of sulfurous acid as hydrolyzing agent in relatively low concentrations (0.6-1.0 %) during a short period of time (10-20 min) and low solid to liquid ratio (1:3, 1:6) allowed effective extraction of carbohydrates from SBP and provided positive effect on subsequent enzymatic hydrolysis. The highest obtained concentration of reducing substances (RS) in hydrolysates was 8.5 %; up to 33.6 % of all carbohydrates present in SBP could be extracted. The major obtained monosaccharides were arabinose and glucose (9.4 and 7.3 g/l, respectively). Pretreatment of SBP with sulfurous acid increased 4.6 times the yield of glucose during subsequent enzymatic hydrolysis of remaining solids with cellulase cocktail, as compared to the untreated SBP. Total yield of glucose during SBP pretreatment and subsequent enzymatic hydrolysis amounted to 89.4 % of the theoretical yield. The approach can be applied directly to the wet SBP. Hydrolysis of sugar beet pulp with sulfurous acid is recommended for obtaining of individual monosaccharides, as well as nutritional media.

  17. SOFC 5 kW{sub e} CHP field unit: effect of the methane dilution

    Energy Technology Data Exchange (ETDEWEB)

    Santarelli, M.; Gariglio, M.; Delloro, F.; Cali, M. [Dipartimento di Energetica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Benedictis, F. de [Dipartimento di Energetica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); TurboCare S.p.A., Corso Romania 661, 10156 Torino (Italy); Orsello, G. [TurboCare S.p.A., Corso Romania 661, 10156 Torino (Italy)

    2010-06-15

    TurboCare and Politecnico di Torino (Italy) have installed an SOFC laboratory in order to analyse the operation of two SOFC generators (Project EOS-100 kW and EBE-5 kW) built by Siemens Power Corporation (SPC). In the EBE project the installation of the SFC5 SOFC generator (3.5 kW{sub e} and 3 kW{sub th}) was carried out. To date, it has operated in the workshop canteen for more than 15,984 h with very high reliability. The real stack is a complex system not installed in a laboratory environment, and has several effects of non-homogeneity in terms of electrochemical response to fuel or air management modifications. Moreover, many of the parameters of the stack are not directly measurable, and have to be inferred by indirect measurements. In this paper, the analysis of the non-homogeneous behaviour of the different segments of the complete stack is performed, through an experimental session using a non-conventional fuel. The obtained data have been analysed using the ANOVA for every dependent variable and a non-linear regression model for the voltage. Those models were used to evaluate the effect of the fuel modification on the local fuel utilisation in different sectors of the stack. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Effect of diluting Marek's disease vaccines on the outcomes of Marek's disease virus infection when challenged with highly virulent Marek's disease viruses.

    Science.gov (United States)

    Gimeno, Isabel M; Cortes, Aneg L; Montiel, Enrique R; Lemiere, Stephane; Pandiri, Arun K R

    2011-06-01

    Dilution of Marek's disease (MD) vaccines is a common practice in the field to reduce the cost associated with vaccination. In this study we have evaluated the effect of diluting MD vaccines on the protection against MD, vaccine and challenge MD virus (MDV) kinetics, and body weight when challenged with strains Md5 (very virulent MDV) and 648A (very virulent plus MDV) by contact at day of age. The following four vaccination protocols were evaluated in meat-type chickens: turkey herpesvirus (HVT) at manufacturer-recommended full dose; HVT diluted 1:10; HVT + SB-1 at the manufacturer-recommended full dose; and HVT + SB-1 diluted 1:10 for HVT and 1:5 for SB-1. Vaccine was administered at hatch subcutaneously. One-day-old chickens were placed in floor pens and housed together with ten 15-day-old chickens that had been previously inoculated with 500 PFU of either Md5 or 648A MDV strains. Chickens were individually identified with wing bands, and for each chicken samples of feather pulp and blood were collected at 1, 3, and 8 wk posthatch. Body weights were recorded at 8 wk for every chicken. Viral DNA load of wild-type MDV, SB-1, and HVT were evaluated by real time-PCR. Our results showed that dilution of MD vaccines can lead to reduced MD protection, reduced relative body weights, reduced vaccine DNA during the first 3 wk, and increased MDV DNA load. The detrimental effect of vaccine dilution was more evident in females than in males and was more evident when the challenge virus was 648A. However, lower relative body weights and higher MDV DNA load could be detected in chickens challenged with strain Md5, even in the absence of obvious differences in protection.

  19. Effect of Subsequent Dilute Acid and Enzymatic Hydrolysis on Reducing Sugar Production from Sugarcane Bagasse and Spent Citronella Biomass

    Directory of Open Access Journals (Sweden)

    Robinson Timung

    2016-01-01

    Full Text Available This work was aimed at investigating the effect of process parameters on dilute acid pretreatment and enzymatic hydrolysis of spent citronella biomass (after citronella oil extraction and sugarcane bagasse on total reducing sugar (TRS yield. In acid pretreatment, the parameters studied were acid concentration, temperature, and time. At the optimized condition (0.1 M H2SO4, 120°C, and 120 min, maximum TRS obtained was 452.27 mg·g−1 and 487.50 mg·g−1 for bagasse and citronella, respectively. Enzymatic hydrolysis of the pretreated biomass using Trichoderma reesei 26291 showed maximum TRS yield of 226.99 mg·g−1 for citronella and 282.85 mg·g−1 for bagasse at 10 FPU, 50°C, and 48 hr. The maximum crystallinity index (CI of bagasse and citronella after acid pretreatment obtained from X-ray diffraction analysis was 64.41% and 56.18%, respectively. Decreased CI after enzymatic hydrolysis process to 37.28% and 34.16% for bagasse and citronella, respectively, revealed effective conversion of crystalline cellulose to glucose. SEM analysis of the untreated and treated biomass revealed significant hydrolysis of holocellulose and disruption of lignin.

  20. Comparative study of helium effects on EU-ODS EUROFER and EUROFER97 by nanoindentation and TEM

    Energy Technology Data Exchange (ETDEWEB)

    Roldán, M., E-mail: marcelo.roldan@ciemat.es [National Fusion Laboratory – CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain); Fernández, P. [National Fusion Laboratory – CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain); Rams, J. [Departamento de Matemática Aplicada, Ciencia e Ingeniería de Materiales y Tecnología Electrónica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, Madrid 28933 (Spain); Jiménez-Rey, D. [Centre for Micro-Analysis of Materials (CMAM, UAM), C/Faraday 3, 28049 Madrid (Spain); Materna-Morris, E.; Klimenkov, M. [Karlsruhe Institute of Technology (KIT), Institute for Advanced Materials (IAM-AWP), Hermann-von-Helmholtz-Platz, 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe (Germany)

    2015-05-15

    Highlights: • EU-ODS EUROFER has been studied before and after He implantation by nanoindentation. • Specimens implanted in stair-like profile from 15 to 2 MeV (750 to 350 appm He). • Exhaustive comparison of nanoindentation results with EUROFER97 is presented. • TEM on EUROFER97 and EU-ODSEUROFER to correlate microstructure with hardness results. - Abstract: Helium effects on EU-ODS EUROFER were studied by means of nanoindentation and TEM. The results were compared with those of EUROFER97. Both steels were implanted in a stair-like profile configuration using energies from 2 MeV (maximum He content ∼750 appm He) to 15 MeV (minimum He ∼350 appm He) at room temperature. The nanoindentation tests on He implanted samples showed a hardness increase that depended on the He concentration. The maximum hardness increase observed at 5 mN was 21% in EU-ODS EUROFER and 41% in EUROFER97; it corresponded with the zone with the highest He concentration which was around 750 appm, according to MARLOWE simulation. In addition, FIB lamellae were prepared from EUROFER97 and EU-ODS EUROFER containing the aforementioned zones with maximum (750 appm) and minimum (300 appm) He. TEM investigations carried out showed small and homogeneously distributed He nanobubbles on both alloys in the zone corresponding with maximum He content. These microstructural features seem to be the cause of the hardness increase measured by nanoindentation.

  1. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet.

    Science.gov (United States)

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Chung, T H; Kang, Tae-Hong

    2014-10-16

    The atmospheric pressure helium plasma jet driven by pulsed dc voltage was utilized to treat human lung cancer cells in vitro. The properties of plasma plume were adjusted by the injection type and flow rate of additive oxygen gas in atmospheric pressure helium plasma jet. The plasma characteristics such as plume length, electric current and optical emission spectra (OES) were measured at different flow rates of additive oxygen to helium. The plasma plume length and total current decreased with an increase in the additive oxygen flow rate. The electron excitation temperature estimated by the Boltzmann plot from several excited helium emission lines increased slightly with the additive oxygen flow. The oxygen atom density in the gas phase estimated by actinometry utilizing argon was observed to increase with the additive oxygen flow. The concentration of intracellular reactive oxygen species (ROS) measured by fluorescence assay was found to be not exactly proportional to that of extracellular ROS (measured by OES), but both correlated considerably. It was also observed that the expression levels of p53 and the phospho-p53 were enhanced in the presence of additive oxygen flow compared with those from the pure helium plasma treatment.

  2. Comparison of the effectiveness of exposure to low LET helium particles (4He) and gamma rays (137Cs) on the disruption of cognitive performance

    Science.gov (United States)

    Rats were exposed to either Helium (4He) particles (1000 MeV/n; 0.1 – 10 cGy; head-only) or Cesium 137Cs gamma rays (50 – 400 cGy; whole body) and the effects of irradiation on cognitive performance evaluated. The results indicated that exposure to doses of 4He particles as low as 0.1 cGy disrupted...

  3. Effects of aerodynamic particle interaction in turbulent non-dilute particle-laden flow

    DEFF Research Database (Denmark)

    Salewski, Mirko; Fuchs, Laszlo

    2008-01-01

    decreases by more than 40% in the dense particle region in the near-field of the jet due to the introduction of aerodynamic four-way coupling. The jet of monodisperse particles therefore penetrates further into the crossflow in this case. The strength of the counterrotating vortex pair (CVP) and turbulence...... is applied to simulate monodisperse, rigid, and spherical particles injected into crossflow as an idealization of a spray jet in crossflow. A domain decomposition technique reduces the computational cost of the aerodynamic particle interaction model. It is shown that the average drag on such particles...... particles under such conditions is suggested. In this idealized atomizing mixture, the effect of aerodynamic four-way coupling reverses: The aerodynamic particle interaction results in a stronger CVP and enhances turbulence levels....

  4. Rarefaction effects in dilute granular Poiseuille flow: Knudsen minimum and temperature bimodality

    Science.gov (United States)

    Mahajan, Achal; Alam, Meheboob

    2015-11-01

    The gravity-driven flow of smooth inelastic hard-disks through a channel, analog of granular Poiseuille flow, is analysed using event-driven simulations. We find that the variation of the mass-flow rate (Q) with Knudsen number (Kn) can be non-monotonic in the elastic limit (i.e. the restitution coefficient en --> 1) in channels with very smooth walls. The Knudsen minimum effect (i.e. the minimum flow rate occurring at Kn ~ O (1) for the Poiseuille flow of a molecular gas) is found to be absent in a granular gas with en competition between dissipation and rarefaction seems to be responsible for the observed dependence of both mass-flow rate and temperature bimodality on Kn and en . [Alam etal. 2015, JFM (revised)].

  5. Effects of nutrient dilution and nonstarch polysaccharide concentration in rearing and laying diets on eating behavior and feather damage of rearing and laying hens

    NARCIS (Netherlands)

    Krimpen, van M.M.; Kwakkel, R.P.; Peet-Schwering, van der C.M.C.; Hartog, den L.A.; Verstegen, M.W.A.

    2009-01-01

    An experiment was conducted with 768 non-cage-housed ISA Brown pullets, of which 576 hens were followed during the laying period, to investigate the separate effects of dietary energy dilution and non-starch polysaccharides (NSP) concentration (oat hulls as NSP source) on eating behavior and feather

  6. Effects of nutrient dilution and nonstarch polysaccharide concentration in rearing and laying diets on eating behavior and feather damage of rearing and laying hens

    NARCIS (Netherlands)

    Krimpen, van M.M.; Kwakkel, R.P.; Peet-Schwering, van der C.M.C.; Hartog, den L.A.; Verstegen, M.W.A.

    2009-01-01

    An experiment was conducted with 768 non-cage-housed ISA Brown pullets, of which 576 hens were followed during the laying period, to investigate the separate effects of dietary energy dilution and non-starch polysaccharides (NSP) concentration (oat hulls as NSP source) on eating behavior and feather

  7. Effects of ionic strength on the enzymatic hydrolysis of diluted and concentrated whey protein isolate.

    Science.gov (United States)

    Butré, Claire I; Wierenga, Peter A; Gruppen, Harry

    2012-06-06

    To identify the parameters that affect enzymatic hydrolysis at high substrate concentrations, whey protein isolate (1-30% w/v) was hydrolyzed by Alcalase and Neutrase at constant enzyme-to-substrate ratio. No changes were observed in the solubility and the aggregation state of the proteins. With increasing concentration, both the hydrolysis rate and the final DH decreased, from 0.14 to 0.015 s(-1) and from 24 to 15%, respectively. The presence of 0.5 M NaCl decreased the rate of hydrolysis for low concentrations (to 0.018 s(-1) for 1% WPI), resulting in similar rates of hydrolysis for all substrate concentrations. The conductivity increase (by increasing the protein concentration, or by addition of NaCl) has significant effects on the hydrolysis kinetics, but the reason for this is not yet well understood. The results show the importance of conductivity as a factor that influences the kinetics of the hydrolysis, as well as the composition of the hydrolysates.

  8. Effect of pelleting on the recalcitrance and bioconversion of dilute-acid pretreated corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Allison E Ray; Amber Hoover; Gary Gresham

    2012-07-01

    Background: Knowledge regarding the performance of densified biomass in biochemical processes is limited. The effects of densification on biochemical conversion are explored here. Methods: Pelleted corn stover samples were generated from bales that were milled to 6.35 mm. Low-solids acid pretreatment and simultaneous saccharification and fermentation were performed to evaluate pretreatment efficacy and ethanol yields achieved for pelleted and ground stover (6.35 mm and 2 mm) samples. Both pelleted and 6.35-mm ground stover were evaluated using a ZipperClave® reactor under high-solids, process-relevant conditions for multiple pretreatment severities (Ro), followed by enzymatic hydrolysis of the washed, pretreated solids. Results: Monomeric xylose yields were significantly higher for pellets (approximately 60%) than for ground formats (approximately 38%). Pellets achieved approximately 84% of theoretical ethanol yield (TEY); ground stover formats had similar profiles, reaching approximately 68% TEY. Pelleting corn stover was not detrimental to pretreatment efficacy for both low- and high-solids conditions, and even enhanced ethanol yields.

  9. Effects of dilute aqueous NaCl solution on caffeine aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhanita; Paul, Sandip, E-mail: sandipp@iitg.ernet.in [Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam (India)

    2013-11-21

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.

  10. Effects of dilute aqueous NaCl solution on caffeine aggregation

    Science.gov (United States)

    Sharma, Bhanita; Paul, Sandip

    2013-11-01

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.

  11. Effect of added polymer in free jets of a dilute polymer solution

    Science.gov (United States)

    Renoult, Marie-Charlotte; Charpentier, Jean-Baptiste; Crumeyrolle, Olivier; Mutabazi, Innocent

    2016-11-01

    The instability of a free viscoelastic jet is experimentally investigated by extruding an aqueous solution containing five parts per million of Poly(ethylene oxide) into air from a sixty micrometers orifice at relative low speeds. A method of image analysis was developed to quantify the effect of the added polymer on the morphology and the stability of the jet breakup. Three main representations were considered: the area versus perimeter relation for all liquid objects detected on the images, i.e. jets and jet fragments, the equivalent diameter distribution of jet fragments and the standard deviation curve of jets profiles. The former two provide information on the morphology of jet fragments: distinction of two classes, products and residues, and existence of coalescence. The latter gives information on the jet breakup stability: measurement of the growth rate and initial amplitude of the jet instability and detection of beads-on-a-string structures in the jet interface deformation. Experimental results will be presented and compared to theory.

  12. Effect of spin-orbit scattering on transport properties of low-dimensional dilute alloys

    Energy Technology Data Exchange (ETDEWEB)

    Heers, Swantje

    2011-09-21

    bulk in the first part of the thesis. In the third part, we investigate spin-orbit induced effects on thin (001) and (111) copper and gold films with focus on spin-relaxation mechanisms. We consider both symmetric and asymmetric systems, where the asymmetry of the latter ones is created by covering one side of the film with one layer of Zn. For the symmetric films, spin-mixing parameters and momentum- and spin-relaxation times due to scattering at self-adatoms are calculated. Whereas the largest spin-mixing in (111) films has been obtained for the surface states, on the Fermi surfaces of the (001) films spin hot spots occur, which are caused by anticrossings of bands and lead to locally very high spin mixing. In the asymmetric films, the situation is qualitatively different, as the spin-orbit coupling results in a splitting of all bands and the formation of local effective magnetic fields, the so-called spin-orbit fields. The precession of the electron spin around these axes together with momentum scattering, resulting in a change of the precession axis after each scattering event, is known to lead to spin dephasing. Spin-orbit fields for (001) and (111) copper and gold films are presented. Large fields have been obtained for both surface orientations especially for bulk-like states at the outer boundaries of the Brillouin zone. Furthermore, for the (111) surface states, we find a Rashba-splitting which agrees with experiment and previous calculations. (orig.)

  13. Effects of pollen dilution on infection of Nosema ceranae in honey bees.

    Science.gov (United States)

    Jack, Cameron J; Uppala, Sai Sree; Lucas, Hannah M; Sagili, Ramesh R

    2016-04-01

    Multiple stressors are currently threatening honey bee health, including pests and pathogens. Among honey bee pathogens, Nosema ceranae is a microsporidian found parasitizing the western honey bee (Apis mellifera) relatively recently. Honey bee colonies are fed pollen or protein substitute during pollen dearth to boost colony growth and immunity against pests and pathogens. Here we hypothesize that N. ceranae intensity and prevalence will be low in bees receiving high pollen diets, and that honey bees on high pollen diets will have higher survival and/or increased longevity. To test this hypothesis we examined the effects of different quantities of pollen on (a) the intensity and prevalence of N. ceranae and (b) longevity and nutritional physiology of bees inoculated with N. ceranae. Significantly higher spore intensities were observed in treatments that received higher pollen quantities (1:0 and 1:1 pollen:cellulose) when compared to treatments that received relatively lower pollen quantities. There were no significant differences in N. ceranae prevalence among different pollen diet treatments. Interestingly, the bees in higher pollen quantity treatments also had significantly higher survival despite higher intensities of N. ceranae. Significantly higher hypopharyngeal gland protein was observed in the control (no Nosema infection, and receiving a diet of 1:0 pollen:cellulose), followed by 1:0 pollen:cellulose treatment that was inoculated with N. ceranae. Here we demonstrate that diet with higher pollen quantity increases N. ceranae intensity, but also enhances the survival or longevity of honey bees. The information from this study could potentially help beekeepers formulate appropriate protein feeding regimens for their colonies to mitigate N. ceranae problems.

  14. Helium the disappearing element

    CERN Document Server

    Sears, Wheeler M

    2015-01-01

    The subject of the book is helium, the element, and its use in myriad applications including MRI machines, particle accelerators, space telescopes, and of course balloons and blimps. It was at the birth of our Universe, or the Big Bang, where the majority of cosmic helium was created; and stellar helium production continues. Although helium is the second most abundant element in the Universe, it is actually quite rare here on Earth and only exists because of radioactive elements deep within the Earth. This book includes a detailed history of the discovery of helium, of the commercial industry built around it, how the helium we actually encounter is produced within the Earth, and the state of the helium industry today. The gas that most people associate with birthday party balloons is running out. “Who cares?” you might ask. Well, without helium, MRI machines could not function, rockets could not go into space, particle accelerators such as those used by CERN could not operate, fiber optic cables would not...

  15. Simplicity works for superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bowley, Roger [University of Nottingham, Nottingham (United Kingdom)

    2000-02-01

    The famous philosopher Karl Popper once said that ''science is the art of systematic oversimplification''. Indeed, when faced with a new puzzle the trick is to simplify it without losing the essential physics - something that is easier said than done. However, this approach has paid off recently in low-temperature physics. Last year Richard Packard, Seamus Davis and co-workers at the University of California at Berkeley encountered a puzzling new phenomenon in superfluid helium-3, a quantum fluid that remains a liquid close to absolute zero and exhibits unusual properties such as the ability to flow without friction (A Machenkov et al. 1999 Phys. Rev. Lett. 83 3860). Previous experiments had revealed that certain effects in liquid helium are analogous to effects observed in superconductors, materials that lose all resistance to electric current at low temperatures. When the Berkeley researchers connected two reservoirs of superfluid helium-3, the superfluid flowed back and forth through apertures that formed a ''weak link'' between the two containers. This behaviour is similar to the oscillatory current of electrons that can flow across an insulating gap separating two superconductors - a device that is known as a Josephson junction. What was puzzling about the Berkeley results was that the helium-3 had two different stable configurations, both of which behaved in an unconventional way compared with a Josephson junction. This puzzle has now been solved independently by Sidney Yip at the National Center for Theoretical Sciences in Taiwan, and by Janne Viljas and Erkki Thuneberg at the Helsinki University of Technology in Finland (Phys. Rev. Lett. 1999 83 3864 and 3868). In this article the author describes the latest research on superfluid helium. (UK)

  16. The effect of temperature on radiolysis of iodide ion diluted aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gorbovitskaya, T.; Tiliks, J. [Latvia Univ., Lab. of Radiation Chemistry, Riga (Latvia)

    1996-12-01

    To investigate the radiolysis of iodine containing aqueous solutions a flow type facility (ITF) has a possibility to irradiate aqueous solutions in the steel vessel with {sup 60}Co {gamma}-rays and continuously (on line) to analyze the products of radiolysis both in liquid and in gaseous phases. By means of ITF the formation of I{sub ox} (I{sub 2} + I{sub 3}{sup -} + HOI), IO{sub 3}{sup -}, H{sub 2}O{sub 2} was studied in 10{sup -5} - 10{sup -3} mol/dm{sup 3} CsI aqueous solutions by their radiolysis at dose rate 4.5 kGv/h for six hours in region of temperatures from 313 to 404 K. Some experiments in glass ampoules were also performed. The steady-state concentrations of I{sub ox} and IO{sub 3}{sup -} decreased with increasing temperature as linear function of inverted temperature. The effect decreased with decreasing concentration of iodide ion. As the result, at high temperatures (T{>=}380 K) the steady-state concentration of I{sub ox} does not depend essentially on the iodide ion initial concentration. Molecular iodine (I{sub 2}) released from the solution was the main radiolysis product in gaseous phase. Its steady-state concentration increased with increasing temperature because of iodine solubility in the water and decreased at the same time because the radiolytic iodine concentrations decreased. Therefore the most volatility of irradiated 10{sup -3} and 10{sup -4}M CsI solutions was observed at the temperature about 350 K. The volatility of 10{sup -5}M solutions gradually decreased with increasing temperature. The experimental data were explained on the base of the hypothesis that the reaction between I{sub 2} and radiolytic H{sub 2}O{sub 2} was the limit one determining the temperature dependence of I{sub ox} and IO{sub 3}{sup -}steady-state concentrations. Its activation energy was estimated to be 27,5 kcal.mol{sup -1}. The temperature dependence for reaction (IO{sup -} + H{sub 2}O{sub 2}) was also estimated. (author) 8 figs., 1 tab., 17 refs.

  17. Systematic effects in the measurement of the negatively charged pion mass using laser spectroscopy of pionic helium atoms

    CERN Document Server

    Obreshkov, Boyan

    2016-01-01

    The collision-induced shift and broadening of selected dipole transition lines of pionic helium in gaseous helium at low temperatures up to $T=12$ K and pressure up to a few bar are calculated within variable phase function approach. We predict blue shift of the resonance frequencies of the $(n,l)=(16,15) \\rightarrow (16,14) $ and $(16,15) \\rightarrow (17,14)$ unfavored transitions and red shift for the favored transition $(17,16) \\rightarrow (16,15)$. The result may be helpful in reducing the systematic error in proposed future experiments for determination of the negatively charged pion mass from laser spectroscopy of metastable pionic helium atoms.

  18. Effects of operational factors on soluble microbial products in a carrier anaerobic baffled reactor treating dilute wastewater

    Institute of Scientific and Technical Information of China (English)

    FENG Huajun; HU Lifang; SHAN Dan; FANG Chengran; HE Yonghua; SHEN Dongsheng

    2008-01-01

    The effects of feed strength,hydraulic residence time(HRT),and operational temperatures on soluble microbial product(SMP) production were investigated,to gain insights into the production mechanism.A carrier anaerobic batfled reactor (CABR) treating dilute wastewater was operated under a wide range of operational conditions,namely,feed strengths of 300-600 mg/L,HRTs of 9-18 h,and temperatures of 10-28℃.Generally, SMP production increased with increasing feed strength and decreasing temperature.At high temperature (28℃),SMP production increased with decreasing HRT. As the temperature Was decreased to 18 and 10℃.the SMP production was at its peak for 12 h HRT Therefore,temperature could be an important determinant of SMP production along with HRT. A higher SMP to soluble chemical oxygen demand (SCOD) ratio Was found at high temperature and long HRT because of complete volatile fatty acid degradation.SMP accounted for 50%-75% of the SCOD in the last chamber of the CABR.As a secondary metabolite.some SMP could be consumed at lower feed strength.

  19. Effect of Coulomb friction on orientational correlation and velocity distribution functions in a sheared dilute granular gas.

    Science.gov (United States)

    Gayen, Bishakhdatta; Alam, Meheboob

    2011-08-01

    From particle simulations of a sheared frictional granular gas, we show that the Coulomb friction can have dramatic effects on orientational correlation as well as on both the translational and angular velocity distribution functions even in the Boltzmann (dilute) limit. The dependence of orientational correlation on friction coefficient (μ) is found to be nonmonotonic, and the Coulomb friction plays a dual role of enhancing or diminishing the orientational correlation, depending on the value of the tangential restitution coefficient (which characterizes the roughness of particles). From the sticking limit (i.e., with no sliding contact) of rough particles, decreasing the Coulomb friction is found to reduce the density and spatial velocity correlations which, together with diminished orientational correlation for small enough μ, are responsible for the transition from non-gaussian to gaussian distribution functions in the double limit of small friction (μ→0) and nearly elastic particles (e→1). This double limit in fact corresponds to perfectly smooth particles, and hence the maxwellian (gaussian) is indeed a solution of the Boltzmann equation for a frictional granular gas in the limit of elastic collisions and zero Coulomb friction at any roughness. The high-velocity tails of both distribution functions seem to follow stretched exponentials even in the presence of Coulomb friction, and the related velocity exponents deviate strongly from a gaussian with increasing friction.

  20. Calculation and measurement of helium generation and solid transmutations in Cu-Zn-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Oliver, B.M.; Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States); Muroga, T. [National Inst. of Fusion Science, Nagoya (Japan)

    1998-03-01

    A method was recently proposed by Garner and Greenwood that would allow the separation of the effects of solid and gaseous transmutation for Cu-Zn-Ni alloys. Pure copper produces zinc and nickel during neutron irradiation. {sup 63}Cu transmutes to {sup 64}Ni and {sup 64}Zn, in about a 2-to-1 ratio, and {sup 65}Cu transmutes to {sup 66}Zn. The {sup 64}Zn further transmutes to {sup 65}Zn which has been shown to have a high thermal neutron (n,{alpha}) cross-section. Since a three-step reaction sequence is required for natural copper, the amount of helium produced is much smaller than would be produced for the two-step, well-known {sup 58}Ni (n,{gamma}) {sup 59}Ni (n,{alpha}) reaction sequence. The addition of natural Zn and Ni to copper leads to greatly increased helium production in neutron spectra with a significant thermal component. Using a suitable Cu-Zn-Ni alloy matrix and comparative irradiation of thermal neutron-shielded and unshielded specimens, it should be possible to distinguish the separate influences of the solid and gaseous transmutants. Whereas helium generation rates have been previously measured for natural nickel and copper, they have not been measured for natural Zn or Cu-Ni-Zn alloys. The (N,{alpha}) cross section for {sup 65}Zn was inferred from helium measurements made with natural copper. By comparing helium production in Cu and Cu-Zn alloys, this cross section can be determined more accurately. In the current study, both the solid and helium transmutants were measured for Cu, Cu-5Ni, Cu-3.5Zn and Cu-5Ni-2Zn, irradiated in each of two positions in the HFIR JP-23 test. Highly accurate helium measurements were performed on these materials by isotope dilution mass spectrometry using a facility that was recently moved from Rockwell International to PNNL. It is shown that both the helium and solid transmutants for Cu-zn-Ni alloys can be calculated with reasonable certainty, allowing the development of a transmutation experiment as proposed by

  1. Effect of dilution rate and methanol-glycerol mixed feeding on heterologous Rhizopus oryzae lipase production with Pichia pastoris Mut(+) phenotype in continuous culture.

    Science.gov (United States)

    Canales, Christian; Altamirano, Claudia; Berrios, Julio

    2015-01-01

    The induction using substrate mixtures is an operational strategy for improving the productivity of heterologous protein production with Pichia pastoris. Glycerol as a cosubstrate allows for growth at a higher specific growth rate, but also has been reported to be repressor of the expression from the AOX1 promoter. Thus, further insights about the effects of glycerol are required for designing the induction stage with mixed substrates. The production of Rhizopus oryzae lipase (ROL) was used as a model system to investigate the application of methanol-glycerol feeding mixtures in fast metabolizing methanol phenotype. Cultures were performed in a simple chemostat system and the response surface methodology was used for the evaluation of both dilution rate and methanol-glycerol feeding composition as experimental factors. Our results indicate that productivity and yield of ROL are strongly affected by dilution rate, with no interaction effect between the involved factors. Productivity showed the highest value around 0.04-0.06 h(-1) , while ROL yield decreased along the whole dilution rate range evaluated (0.03-0.1 h(-1) ). Compared to production level achieved with methanol-only feeding, the highest specific productivity was similar in mixed feeding (0.9 UA g-biomass(-1) h(-1) ), but volumetric productivity was 70% higher. Kinetic analysis showed that these results are explained by the effects of dilution rate on specific methanol uptake rate, instead of a repressor effect caused by glycerol feeding. It is concluded that despite the effect of dilution rate on ROL yield, mixed feeding strategy is a proper process option to be applied to P. pastoris Mut(+) phenotype for heterologous protein production.

  2. A review of surface effects in Kapitza's experiments on heat transfer between solids and helium II (Review Article)

    Science.gov (United States)

    Amrit, Jay

    2016-08-01

    In a recent paper, it is shown that the thermal boundary Kapitza resistance between a solid and superfluid helium is explained by resonant scattering of phonons from surface roughness heights, as described in the Adamenko and Fuks (AF) model. We reexamine the original experiments of thermal transfer between a solid (platinum and copper) and superfluid helium conducted by Kapitza in 1940. In particular, we analyze his experimental results for the different surface treatments of the solid in light of the AF model. Time scales for diffuse scattering of phonons at the interface are estimated. Also the role of a layer of varnish on a copper surface is reinterpreted.

  3. Role of dissolved gas in optical breakdown of water: differences between effects due to helium and other gases.

    Science.gov (United States)

    Bunkin, N F; Ninham, B W; Babenko, V A; Suyazov, N V; Sychev, A A

    2010-06-17

    It is shown that water contains defects in the form of heterogeneous optical breakdown centers. Long-living complexes composed of gas and liquid molecules may serve as nuclei for such centers. A new technique for removing dissolved gas from water is developed. It is based on a "helium washing" routine. The structure of helium-washed water is very different from that of water containing dissolved atmospheric gas. It is able to withstand higher optical intensities and temperatures of superheating compared with the nonprocessed ones. The characteristics of plasma spark and values of the breakdown thresholds for processed and nonprocessed samples are given.

  4. Generation of reactive oxygen and nitrogen species and its effects on DNA damage in lung cancer cells exposed to atmospheric pressure helium/oxygen plasma jets

    Science.gov (United States)

    Chung, Tae Hun; Joh, Hea Min; Kim, Sun Ja; Choi, Ji Ye; Kang, Tae-Hong

    2016-09-01

    We investigated the effects of the operating parameters on the generation of reactive oxygen and nitrogen species (RONS) in the gas and liquid phases exposed to atmospheric pressure a pulsed-dc helium plasma jets. The densities of reactive species including OH radicals were obtained at the plasma-liquid surface and inside the plasma-treated liquids using ultraviolet absorption spectroscopy and chemical probe method. And the nitrite concentration was detected by Griess assay. The data are very suggestive that there is a strong correlation among the production of RONS in the plasmas and liquids. Exposure of plasma to cancer cells increases the cellular levels of RONS, which has been linked to apoptosis and the damage of cellular proteins, and may also indirectly cause structural damage to DNA. To identify the correlation between the production of RONS in cells and plasmas, various assay analyses were performed on plasma treated human lung cancer cells (A549) cells. In addition, the effect of additive oxygen gas on the plasma-induced oxidative stress in cancer cells was investigated. It was observed that DNA damage was significantly increased with helium/oxygen plasma compared to with pure helium plasma.

  5. Effects of indirect actions and oxygen on relative biological effectiveness: estimate of DSB induction and conversion induced by gamma rays and helium ions.

    Science.gov (United States)

    Tsai, Ju-Ying; Chen, Fang-Hsin; Hsieh, Tsung-Yu; Hsiao, Ya-Yun

    2015-07-01

    Clustered DNA damage other than double-strand breaks (DSBs) can be detrimental to cells and can lead to mutagenesis or cell death. In addition to DSBs induced by ionizing radiation, misrepair of non-DSB clustered damage contributes extra DSBs converted from DNA misrepair via pathways for base excision repair and nucleotide excision repair. This study aimed to quantify the relative biological effectiveness (RBE) when DSB induction and conversion from non-DSB clustered damage misrepair were used as biological endpoints. The results showed that both linear energy transfer (LET) and indirect action had a strong impact on the yields for DSB induction and conversion. RBE values for DSB induction and maximum DSB conversion of helium ions (LET = 120 keV/μm) to (60)Co gamma rays were 3.0 and 3.2, respectively. These RBE values increased to 5.8 and 5.6 in the absence of interference of indirect action initiated by addition of 2-M dimethylsulfoxide. DSB conversion was ∼1-4% of the total non-DSB damage due to gamma rays, which was lower than the 10% estimate by experimental measurement. Five to twenty percent of total non-DSB damage due to helium ions was converted into DSBs. Hence, it may be possible to increase the yields of DSBs in cancerous cells through DNA repair pathways, ultimately enhancing cell killing.

  6. Silicon-Germanium Films Deposited by Low Frequency PE CVD: Effect of H2 and Ar Dilution

    Energy Technology Data Exchange (ETDEWEB)

    Kosarev, A; Torres, A; Hernandez, Y; Ambrosio, R; Zuniga, C; Felter, T E; Asomoza, R R; Kudriavtsev, Y; Silva-Gonzalez, R; Gomez-Barojas, E; Ilinski, A; Abramov, A S

    2005-09-22

    We have studied structure and electrical properties of Si{sub 1-Y}Ge{sub Y}:H films deposited by low frequency PE CVD over the entire composition range from Y=0 to Y=1. The deposition rate of the films and their structural and electrical properties were measured for various ratios of the germane/silane feed gases and with and without dilution by Ar and by H{sub 2}. Structure and composition was studied by Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS) and Fourier transform infrared (FTIR) spectroscopy. Surface morphology was characterized by atomic force microscopy (AFM). We found: (1) The deposition rate increased with Y maximizing at Y=1 without dilution. (2) The relative rate of Ge and Si incorporation is affected by dilution. (3) Hydrogen preferentially bonds to silicon. (4) Hydrogen content decreases for increasing Y. In addition, optical measurements showed that as Y goes for 0 to 1, the Fermi level moves from mid gap to the conduction band edge, i.e. the films become more n-type. No correlation was found between the pre-exponential and the activation energy of conductivity. The behavior of the conductivity {gamma}-factor suggests a local minimum in the density of states at E {approx} 0.33 eV for the films grown with or without H-dilution and E {approx} 0.25 eV for the films with Ar dilution.

  7. The effect of dilution and L-malic acid addition on bio-hydrogen production with Rhodopseudomonas palustris from effluent of an acidogenic anaerobic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Azbar, Nuri; Cetinkaya Dokgoz, F.Tuba [Ege University, Faculty of Engineering, Bioengineering Department, 35100 Izmir (Turkey)

    2010-05-15

    In this study, H{sub 2} was produced from cheese whey wastewater in a two-stage biological process: i) first stage; thermophilic dark fermentation ii) second stage; the photo fermentation using Rhodopseudomonas palustris strain DSM 127 (R. palustris). The effect of both dilution and addition of L-malic acid on the hydrogen production was investigated. Among the dilution rates used, 1/5 dilution ratio was found to produce the best hydrogen production (349 ml H{sub 2}/g COD{sub fed}). On the other hand, It was seen that the mixing the effluent with L-malic acid at increasing ratios had further positive effect and improved the hydrogen production significantly. It was concluded that dilution of the feeding helps to reduce the nitrogen content and the volatile fatty acid content that might be otherwise harmful to the photo-heterotrophic organisms. Overall hydrogen production yield (for dark + photo fermentation) was found to vary 2 and 10 mol H{sub 2}/mol lactose. Second conclusion is that cheese whey effluent should be mixed with a co-substrate containing L-malic acid such as apple juice processing effluents before fed into the photo fermentation reactor. (author)

  8. Study of the matrix effects and sample dilution influence on the LC-ESI-MS/MS analysis using four derivatization reagents.

    Science.gov (United States)

    Oldekop, Maarja-Liisa; Herodes, Koit; Rebane, Riin

    2014-09-15

    For liquid chromatographic analysis of amino acids involving derivatization and mass-spectrometric detection, it becomes more important to evaluate the presence of matrix effects in complex samples. This is somewhat complicated for amino acid analysis where analyte free sample matrix is often unavailable. In this work, matrix effects were investigated using post-column infusion method for 9-fluorenylmethyl chloroformate (FMOC-Cl) derivatives of β-Ala, Gly and Phe and diethyl ethoxymethylenemalonate (DEEMM) derivative of β-Ala. While for DEEMM derivatives, the main signal suppression was due to the borate buffer, in case of FMOC-Cl, other FMOC-derivatives caused signal suppression. Analysis of amino acids in tea and honey with DEEMM, FMOC-Cl, p-N,N,N-trimethylammonioanilyl N'-hydroxysuccinimidyl carbamate iodide (TAHS) and dansyl chloride (DNS) showed that amino acid concentrations found with different reagents do not agree well. Sample dilution experiments indicated that the sample matrix affected the analysis results obtained with DEEMM the least, but with FMOC-Cl, TAHS and DNS, sample dilution had an influence on the results. When sample dilution and extrapolative dilution approach were applied on the latter results, an agreement of amino acid concentrations measured with different reagents was achieved within relative standard deviation (RSD) of 22% for most cases.

  9. The effects of topical tripeptide copper complex and helium-neon laser on wound healing in rabbits.

    Science.gov (United States)

    Gul, Nihal Y; Topal, Ayse; Cangul, I Taci; Yanik, Kemal

    2008-02-01

    The aim of this study was to compare the clinical and histopathological effects of tripeptide copper complex (TCC) and two different doses of laser application (helium-neon laser, 1 and 3 J cm(-2)) on wound healing with untreated control wounds. Experimental wounds were created on a total of 24 New Zealand white rabbits and topical TCC or laser was applied for 28 days. The wounds were observed daily, and planimetry was performed on days 7, 14, 21 and 28 to measure the unhealed wound area and percentage of total wound healing. Biopsies were taken weekly to evaluate the inflammatory response and the level of neovascularization. The median time for the first observable granulation tissue was shorter (P < 0.05) in the low and high dose laser groups than in the control group (3 and 2.66 vs. 4.5 days), but was not different between the TCC and control groups (4.16 vs. 4.5 days). Filling of the open wound to skin level with granulation tissue was faster (P < 0.05) in the TCC and high dose laser groups than in the control group (14 and 16 vs. 25 days), but was not different between the low dose laser and control groups (23 vs. 25 days). The average time for healing was shorter (P < 0.05) in the TCC and high dose laser groups (29.8 and 30.2 vs. 34.6 days), but was not different between the low dose laser and control groups (33.8 vs. 34.6 days). Histopathologically, wound healing was characterized by a decrease in the neutrophil counts and an increase in neovascularization. The TCC and high dose laser groups had greater neutrophil and vessel counts than in the control group, suggesting a more beneficial effect for wound healing.

  10. Stick-slip behavior identified in helium cluster growth in the subsurface of tungsten: effects of cluster depth

    Science.gov (United States)

    Wang, Jinlong; Niu, Liang-Liang; Shu, Xiaolin; Zhang, Ying

    2015-10-01

    We have performed a molecular dynamics study on the growth of helium (He) clusters in the subsurface of tungsten (W) (1 0 0) at 300 K, focusing on the role of cluster depth. Irregular ‘stick-slip’ behavior exhibited during the evolution of the He cluster growth is identified, which is due to the combined effects of the continuous cluster growth and the loop punching induced pressure relief. We demonstrate that the He cluster grows via trap-mutation and loop punching mechanisms. Initially, the self-interstitial atom SIA clusters are almost always attached to the He cluster; while they are instantly emitted to the surface once a critical cluster pressure is reached. The repetition of this process results in the He cluster approaching the surface via a ‘stop-and-go’ manner and the formation of surface adatom islands (surface roughening), ultimately leading to cluster bursting and He escape. We reveal that, for the Nth loop punching event, the critical size of the He cluster to trigger loop punching and the size of the emitted SIA clusters are correspondingly increased with the increasing initial cluster depth. We tentatively attribute the observed depth effects to the lower formation energies of Frenkel pairs and the greatly reduced barriers for loop punching in the stress field of the W subsurface. In addition, some intriguing features emerge, such as the morphological transformation of the He cluster from ‘platelet-like’ to spherical, to ellipsoidal with a ‘bullet-like’ tip, and finally to a ‘bottle-like’ shape after cluster rupture.

  11. The effect of low-level helium-neon laser on oral wound healing

    Directory of Open Access Journals (Sweden)

    Farimah Sardari

    2016-01-01

    Conclusion: This study showed that He-Ne laser had no beneficial effects on incisional oral wound healing particularly in 5 days after laser therapy. Future research in the field of laser effects on oral wound healing in human is recommended.

  12. The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples

    Science.gov (United States)

    Mckee, Anna M.; Spear, Stephen F.; Pierson, Todd W.

    2015-01-01

    Isolation of environmental DNA (eDNA) is an increasingly common method for detecting presence and assessing relative abundance of rare or elusive species in aquatic systems via the isolation of DNA from environmental samples and the amplification of species-specific sequences using quantitative PCR (qPCR). Co-extracted substances that inhibit qPCR can lead to inaccurate results and subsequent misinterpretation about a species’ status in the tested system. We tested three treatments (5-fold and 10-fold dilutions, and spin-column purification) for reducing qPCR inhibition from 21 partially and fully inhibited eDNA samples collected from coastal plain wetlands and mountain headwater streams in the southeastern USA. All treatments reduced the concentration of DNA in the samples. However, column purified samples retained the greatest sensitivity. For stream samples, all three treatments effectively reduced qPCR inhibition. However, for wetland samples, the 5-fold dilution was less effective than other treatments. Quantitative PCR results for column purified samples were more precise than the 5-fold and 10-fold dilutions by 2.2× and 3.7×, respectively. Column purified samples consistently underestimated qPCR-based DNA concentrations by approximately 25%, whereas the directional bias in qPCR-based DNA concentration estimates differed between stream and wetland samples for both dilution treatments. While the directional bias of qPCR-based DNA concentration estimates differed among treatments and locations, the magnitude of inaccuracy did not. Our results suggest that 10-fold dilution and column purification effectively reduce qPCR inhibition in mountain headwater stream and coastal plain wetland eDNA samples, and if applied to all samples in a study, column purification may provide the most accurate relative qPCR-based DNA concentrations estimates while retaining the greatest assay sensitivity.

  13. Mode-selective promotion and isotope effects of concerted double-hydrogen tunneling in porphycene embedded in superfluid helium nanodroplets.

    Science.gov (United States)

    Vdovin, Alexander; Waluk, Jacek; Dick, Bernhard; Slenczka, Alkwin

    2009-03-23

    Intramolecular double-hydrogen tunneling in porphycene (see picture) is investigated. Low-temperature conditions are ensured by doping of single molecules into superfluid helium nanodroplets. The investigation of fluorescence excitation and dispersed emission spectra and the highly dissipative environment allows the observation of mode-selective tunneling splitting and reveals a purely concerted tunneling mechanism for all isotopic variants of porphycene.

  14. Effects of oxygen cover gas and NaOH dilution on gas generation in tank 241-SY-101 waste

    Energy Technology Data Exchange (ETDEWEB)

    Person, J.C.

    1996-05-30

    Laboratory studies are reported of gas generation in heated waste from tank 241-SY-101. The rates of gas generation and the compositions of product gas were measured. Three types of tests are compared. The tests use: undiluted waste, waste diluted by a 54% addition of 2.5 M NaOH, and undiluted waste with a reactive cover gas of 30% Oxygen in He. The gas generation rate is reduced by dilution, increased by higher temperatures (which determines activation energies), and increased by reactions of Oxygen (these primarily produce H{sub 2}). Gases are generated as reduction products oxidation of organic carbon species by nitrite and oxygen.

  15. Effect of the dilution rate on microbial competition: r-strategist can win over k-strategist at low substrate concentration

    Science.gov (United States)

    Winkler, Mari.-K. H.; Boets, Pieter; Hahne, Birk; Goethals, Peter; Volcke, Eveline I. P.

    2017-01-01

    The conditions present in both in vitro and in vivo ecosystems determine the microbial population harbouring it. One commonly accepted theory is that a species with a high substrate affinity and low growth rate (k-strategist) will win the competition against a second species with a lower substrate affinity and higher growth rate (r-strategist) if both species are subjected to low substrate concentrations. In this study two nitrite oxidizing bacteria (NOB), Nitrospira defluvii (k-strategist) and Nitrobacter vulgaris (r-strategist), were cultivated in a continuous reactor systems. The minimal hydraulic retention time (HRT) required for maintaining the slower growing Nitrospira was first determined. A reactor containing Nitrobacter was set to the same HRT and Nitrospira was injected to evaluate the effect of the dilution rate on the competition between both species. By following the microbial population dynamics with qPCR analysis, it was shown that not only the substrate affinity drives the competition between k- and r-strategists but also the dilution rate. Experimental data and numerical simulations both revealed that the washout of Nitrobacter was significantly delayed at dilution rates close to the μmax of Nitrospira. The competition could be even reverted towards Nitrobacter (r-strategist) despite of low nitrite concentrations and dilution rates lower than the μmax of Nitrospira. PMID:28333960

  16. Effect of the dilution rate on microbial competition: r-strategist can win over k-strategist at low substrate concentration.

    Science.gov (United States)

    Winkler, Mari-K H; Boets, Pieter; Hahne, Birk; Goethals, Peter; Volcke, Eveline I P

    2017-01-01

    The conditions present in both in vitro and in vivo ecosystems determine the microbial population harbouring it. One commonly accepted theory is that a species with a high substrate affinity and low growth rate (k-strategist) will win the competition against a second species with a lower substrate affinity and higher growth rate (r-strategist) if both species are subjected to low substrate concentrations. In this study two nitrite oxidizing bacteria (NOB), Nitrospira defluvii (k-strategist) and Nitrobacter vulgaris (r-strategist), were cultivated in a continuous reactor systems. The minimal hydraulic retention time (HRT) required for maintaining the slower growing Nitrospira was first determined. A reactor containing Nitrobacter was set to the same HRT and Nitrospira was injected to evaluate the effect of the dilution rate on the competition between both species. By following the microbial population dynamics with qPCR analysis, it was shown that not only the substrate affinity drives the competition between k- and r-strategists but also the dilution rate. Experimental data and numerical simulations both revealed that the washout of Nitrobacter was significantly delayed at dilution rates close to the μmax of Nitrospira. The competition could be even reverted towards Nitrobacter (r-strategist) despite of low nitrite concentrations and dilution rates lower than the μmax of Nitrospira.

  17. Solid helium, a superfluid?; L'helium solide, un superfluide?

    Energy Technology Data Exchange (ETDEWEB)

    Balibar, S. [Centre National de la Recherche Scientifique (CNRS), Lab. de Physique Statistique de l' Ecole Normale Superieure, 75 - Paris (France)

    2007-06-15

    At very low temperature, liquid helium becomes superfluid, meaning that it can flow practically without any friction. But what about solid helium? A recent experiment carried out at the Ecole Normale Superieure of Paris (France) has given amazing results: in some conditions some matter can flow through helium without friction. This article makes a synthesis of the experiments carried out on solid helium since the end of the 1960's and which have tried to explain this 'super-solidity' effect. The recent results indicate that the super-solidity of solid helium is linked to its disorder and probably localized at the grain joints, but is not a fundamental property of its crystalline state. (J.S.)

  18. Diffusion behavior of helium in titanium and the effect of grain boundaries revealed by molecular dynamics simulation

    Science.gov (United States)

    Gui-Jun, Cheng; Bao-Qin, Fu; Qing, Hou; Xiao-Song, Zhou; Jun, Wang

    2016-07-01

    The microstructures of titanium (Ti), an attractive tritium (T) storage material, will affect the evolution process of the retained helium (He). Understanding the diffusion behavior of He at the atomic scale is crucial for the mechanism of material degradation. The novel diffusion behavior of He has been reported by molecular dynamics (MD) simulation for the bulk hcp-Ti system and the system with grain boundary (GB). It is observed that the diffusion of He in the bulk hcp-Ti is significantly anisotropic (the diffusion coefficient of the [0001] direction is higher than that of the basal plane), as represented by the different migration energies. Different from convention, the GB accelerates the diffusion of He in one direction but not in the other. It is observed that a twin boundary (TB) can serve as an effective trapped region for He. The TB accelerates diffusion of He in the direction perpendicular to the twinning direction (TD), while it decelerates the diffusion in the TD. This finding is attributable to the change of diffusion path caused by the distortion of the local favorable site for He and the change of its number in the TB region. Project supported by the National Natural Science Foundation of China (Grant No. 51501119), the Scientific Research Starting Foundation for Younger Teachers of Sichuan University, China (Grant No. 2015SCU11058), the National Magnetic Confinement Fusion Science Program of China (Grant No. 2013GB109002), and the Cooperative Research Project “Research of Diffusion Behaviour of He in Grain Boundary of HCP-Titanium”, China.

  19. Evaluation of matrix effect in isotope dilution mass spectrometry based on quantitative analysis of chloramphenicol residues in milk powder

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiu Qin; Yang, Zong; Zhang, Qing He, E-mail: qhzhang204@gmail.com; Li, Hong Mei

    2014-01-07

    Graphical abstract: -- Highlights: •We develop a strategy to evaluate matrix effect and its impact on the IDMS results. •Matrix effect and IDMS correction factor from different conditions are evaluated. •Ion suppression effect is observed in LLE and HLB pre-treated sample solutions. •Ion enhancement effect is found in MCX pre-treated sample solution. •IDMS correction factor in HLB and MCX solutions in three instruments is close to 1 -- Abstract: In the present study, we developed a comprehensive strategy to evaluate matrix effect (ME) and its impact on the results of isotope dilution mass spectrometry (IDMS) in analysis of chloramphenicol (CAP) residues in milk powder. Stable isotope-labeled internal standards do not always compensate ME, which brings the variation of the ratio (the peak area of analyte/the peak area of isotope). In our investigation, impact factors of this variation were studied in the extraction solution of milk powder using three mass spectrometers coupled with different ion source designs, and deuterium-labeled chloramphenicol (D5-CAP) was used as the internal standard. ME from mobile phases, sample solvents, pre-treatment methods, sample origins and instruments was evaluated, and its impact on the results of IDMS was assessed using the IDMS correction factor (θ). Our data showed that the impact of ME of mobile phase on the correction factor was significantly greater than that of sample solvent. Significant ion suppression and enhancement effects were observed in different pre-treated sample solutions. The IDMS correction factor in liquid–liquid extraction (LLE) and molecular imprinted polymer (MIP) extract with different instruments was greater or less 1.0, and the IDMS correction factor in hydrophilic lipophilic balance (HLB) and mix-mode cation exchange (MCX) extract with different instruments was all close to 1.0. To the instrument coupled with different ion source design, the impact of ME on IDMS quantitative results was

  20. Storm Sewage Dilution in Smaller Streams

    DEFF Research Database (Denmark)

    Larsen, Torben; Vestergaard, Kristian

    1987-01-01

    A numerical model has been used to show how dilution in smaller streams can be effected by unsteady hydraulic conditions caused by a storm sewage overflow.......A numerical model has been used to show how dilution in smaller streams can be effected by unsteady hydraulic conditions caused by a storm sewage overflow....

  1. Interactions of Heavy Metal Ions with Paddy Soils as Inferred from Wien Effect Measurements in Dilute Suspensions

    Institute of Scientific and Technical Information of China (English)

    JIANG Jun; LI Cheng-Bao; ZHAO An-Zhen; XU Ren-Kou; WANG Yu-Jun; S. P. FRIEDMAN

    2006-01-01

    Interactions of three heavy metal ions, Cu2+, Cd2+, and Pb2+, and, for comparison, Na+ with electrodialytic clay fractions (less than 2 pm in diameter) of four paddy soils as well as a yellow-brown soil as a control soil were evaluated based on measurements of the Wien effect in dilute suspensions with a clay concentration of 10 g kg-1 in four nitrate solutions of 2 × 10-4/z mol L-1, where z is the cation valence, and a nitric acid solution of 3 × 10-5 mol L-1. Field strengths ranging from 15 to 230 kV cm-1 were applied for measuring the electrical conductivities (ECs) of the suspensions. The mean free binding energies between the various cations and all of the soils determined from exchange equilibrium increased in the order: Na+ < Cd2+ < Cu2+ < Pb2+. In general, the ECs of the suspensions in the sodium nitrate solution were smaller than those of the suspensions in the heavy metal solutions because of the lower electrophoretic mobility of sodium compared to the divalent cations. In terms of relative electrical conductivity-field strength relationships, relative electrical conductivity (REC) of suspensions containing various cations at field strengths larger than about 50 kV cm-1 were in the descending order: Na+ > Cu2+ > Cd2+ > Pb2+ for all tested soils. A characteristic parameter of the REC-field strength curves, AREC200, REC at a field strength of 200 kV cm-1 minus that at the local minimum of the concave segment of the REC-field strength curves, characterized the strength of adsorption of the cations stripped off by the applied strong electrical field, and for all soils the values of AREC200 were generally in the order: Na+ < Cu2+ < Cd2+ < Pb2+.

  2. Calculation of the effect of inertia on the dynamic viscosity of dilute emulsions in a pure straining motion

    NARCIS (Netherlands)

    Oosterbroek, M.; Tropper, R.; Mellema, J.

    1980-01-01

    The dynamic viscosity of a dilute emulsion is calculated for a pure straining motion. The emulsion consists of almost spherical drops of a Newtonian fluid immersed in another Newtonian fluid. The oscillating velocity field of the flow is derived from the Navier-Stokes equation, in which the linear

  3. Constant interchain pressure effect in extensional flows of oligomer diluted polystyrene and poly(methyl methacrylate) melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Huang, Qian

    2017-01-01

    The constant ‘interchain pressure’ idea has been addressed, to evaluate if it is an adequate quantitative assumption to describe the fluid mechanics of oligomer diluted entangled NMMD polymer systems. The molecular stress function constitutive framework has been used with the constant interchain ...

  4. EFFECT OF PROTEINE CONTENT IN BOAR SEMINAL PLASMA ON THE SPERM MOTILITY IN DILUTED SEMEN STORED FOR 3 DAYS

    Directory of Open Access Journals (Sweden)

    Jelena Apić

    2015-02-01

    Full Text Available Recently, it was frequently demonstrated that fertility of sows after artificially inseminated is lower than after mating. This is associated with a reduced fertilization capacity of overdiluted insemination doses. The aim of this study was to investigate the sperm motility in the semen samples, forming from the ejaculates with high or low protein content, stored in vitro on 17oC for 3 days. Progressive motility was significantly higher (p<0.01 in the ejaculates with high, compared to the ejaculates with low protein content (82% vs. 76%. After 3 days of storage, in the1:4 dilution proportion, the average progressive motility was significantly (p<0.01 decreased in relation to this value in native semen from the boars with high (82% to64%, as well from the boars with low protein content in seminal plasma (76% to48%. However, the average diluted semen progressive motility was significantly greater (p<0.01 in the boars with high (64%, compared to the boars with low protein content in seminal plasma (48%. The number of good diluted semen samples (≥65% progressive motility, was also significantly (p<0.01 greater in the boars with high (41%, compared to the boars with low protein content in seminal plasma (12%. These results show that seminal plasma proteins play an important role in maintaining the sperm progressive motility of diluted semen in vitro stored for 3 days.

  5. Heat capacity of helium in cylindrical environments

    Science.gov (United States)

    Gatica, S. M.; Hernández, E. S.; Szybisz, L.

    2003-10-01

    We perform a systematic investigation of the structure, elementary, and phonon excitations of quantum fluid 4He adsorbed in the interior of carbon nanotubes. We show that the helium fluid inside the cylinder behaves exactly as in planar films on a graphite substrate, presenting the same kind of layering transition. This tendency is confirmed by the behavior of a single 3He impurity diluted into adsorbed 4He. We also present a simple description of the lowest excitation modes of the adsorbed fluid and compute the low-temperature contribution of the phonon spectrum to the specific heat, which displays the dimensionality characteristics reported in previous works.

  6. Effects of dilution and centrifugation on the survival of spermatozoa and the structure of motile sperm cell subpopulations in refrigerated Catalonian donkey semen.

    Science.gov (United States)

    Miró, J; Taberner, E; Rivera, M; Peña, A; Medrano, A; Rigau, T; Peñalba, A

    2009-11-01

    The aim of this work was to study the effects of dilution and centrifugation (i.e., two methods of reducing the influence of the seminal plasma) on the survival of spermatozoa and the structure of motile sperm cell subpopulations in refrigerated Catalonian donkey (Equus asinus) semen. Fifty ejaculates from nine Catalonian jackasses were collected. Gel-free semen was diluted 1:1, 1:5 or 1:10 with Kenney extender. Another sample of semen was diluted 1:5, centrifuged, and then resuspended with Kenney extender until a final dilution of 25x10(6) sperm/ml was achieved (C). After 24 h, 48 h or 72 h of refrigerated storage at 5 degrees C, aliquots of these semen samples were incubated at 37 degrees C for 5 min. The percentage of viable sperm was determined by staining with eosin-nigrosin. The motility characteristics of the spermatozoa were examined using the CASA system (Microptic, Barcelona, Spain). At 24h, more surviving spermatozoa were seen in the more diluted and in the centrifuged semen samples (1:1 48.71%; 1:5 56.58%, 1:10 62.65%; C 72.40%). These differences were maintained at 48 h (1:1 34.31%, 1:5 40.56%, 1:10 48.52%, C 66.30%). After 72 h, only the C samples showed a survival rate of above 25%. The four known donkey motile sperm subpopulations were maintained by refrigeration. However, the percentage of motile sperms in each subpopulation changed with dilution. Only the centrifuged samples, and only at 24h, showed exactly the same motile sperm subpopulation proportions as recorded for fresh sperm. However, the 1:10 dilutions at 24 and 48 h, and the centrifuged semen at 48 h, showed few variations compared to fresh sperm. These results show that the elimination of seminal plasma increases the survival of spermatozoa and the maintenance of motility patterns. The initial sperm concentration had a significant (P<0.05) influence on centrifugation efficacy, but did not influence the number of spermatozoa damaged by centrifugation. In contrast, the percentage of live

  7. On the effect of helium enhancement on bolometric corrections and Teff-colour relations

    CERN Document Server

    Girardi, L; Bertelli, G; Nasi, E

    2007-01-01

    We evaluate the effects that variations in He content have on bolometric corrections and Teff-colour relations. To this aim, we compute ATLAS9 model atmospheres and spectral energy distributions for effective temperatures ranging from 3500 K to 40000 K for dwarfs and from 3500 K to 8000 K for giants, considering both ``He-non enhanced'' and ``He-enhanced'' compositions. The considered variations in He content are of DeltaY = +0.1 and +0.2 for the metallicity [M/H]=+0.5 and DeltaY=+0.1 for [M/H]=-0.5 and -1.5. Then, synthetic photometry is performed in the UBVRIJHK system. We conclude that the changes in bolometric corrections, caused by the adopted He-enhancements are in general too small (less than 0.01 mag), for both dwarfs and giants, to be affecting present-day tables of bolometric corrections at a significant level. The only possible exceptions are found for the U-band at Teff between 4000 K and 8000 K, where |Delta BC_U| amounts to ~0.02 mag, and for Teff equal to 3500 K, where |Delta BC_lambda| values ...

  8. Effect of diet dilution ratio at early age on growth performance, carcass characteristics and hepatic lipogenesis of Pekin ducks

    Directory of Open Access Journals (Sweden)

    L Wu

    2012-03-01

    Full Text Available This study was conducted to test the hypothesis that proper diet dilution ratio at early age might improve feed conversion ratio (FCR and reduce body fat deposition of meat-type ducks. One hundred and fifty 1-day-old male and female White Pekin ducks (44.5±1.0 g were randomly assigned into three treatments with five replicates (pens of 10 birds each, respectively representing the experimental diets with 0 (control, 40 or 60% rice hulls inclusion in the basal diet between 8 and 14 d of age. The basal diet was fed before and after this period. The results showed that diluting the diet with 40% rice hulls increased (p 0.05 as the controls at 42 d of age. The diet diluted with 60% rice hulls resulted in lower (p < 0.05 body weight at market age than the other treatments. The diet with 40% rice hulls reduced (p < 0.05 skin with fat and abdominal fat pad, crude fat content in the carcass and in breast meat, and increased (p < 0.05 carcass crude protein at 42 d of age. These changes may be explained by the lower (p < 0.05 activities of hepatic malic dehydrogenase (MDH, glucose-6-phosphate dehydrogenase (G-6-PDH and fatty acid synthetase (FAS enzymes both at 14 and 42 d of age in birds fed the diluted diets relative to the control birds. The results of this study indicate that feeding diets diluted with 40% rice hulls to Pekin ducks between 8 to 14 d of age may induce compensatory growth during the following recovery period, and may be used to improve FCR and to reduce body fat deposition at market age.

  9. Transmission of Helium Isotopes through Graphdiyne Pores: Tunneling versus Zero Point Energy Effects.

    Science.gov (United States)

    Hernández, Marta I; Bartolomei, Massimiliano; Campos-Martínez, José

    2015-10-29

    Recent progress in the production of new two-dimensional (2D) nanoporous materials is attracting considerable interest for applications to isotope separation in gases. In this paper we report a computational study of the transmission of (4)He and (3)He through the (subnanometer) pores of graphdiyne, a recently synthesized 2D carbon material. The He-graphdiyne interaction is represented by a force field parametrized upon ab initio calculations, and the (4)He/(3)He selectivity is analyzed by tunneling-corrected transition state theory. We have found that both zero point energy (of the in-pore degrees of freedom) and tunneling effects play an extraordinary role at low temperatures (≈20-30 K). However, both quantum features work in opposite directions in such a way that the selectivity ratio does not reach an acceptable value. Nevertheless, the efficiency of zero point energy is in general larger, so that (4)He tends to diffuse faster than (3)He through the graphdiyne membrane, with a maximum performance at 23 K. Moreover, it is found that the transmission rates are too small in the studied temperature range, precluding practical applications. It is concluded that the role of the in-pore degrees of freedom should be included in computations of the transmission probabilities of molecules through nanoporous materials.

  10. Full Scale Thermo-hydraulic Simulation of a Helium-Helium Printed Circuit Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Injun; Hong, Sungyull; Bai, Cheolho; Shim, Jaesool [Yeungnam Univ., Gyeongsan (Korea, Republic of); Kim, Chansoo; Hong, Sungdeok; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, the thermo-hydraulic full scale simulation is performed to study the temperature distributions, thermal stress, pressure drop and outlet temperature in a Helium-Helium printed circuit heat exchanger (PCHE) in a VHTR simulate helium loop. The entire PCHE is composed of 40 stacks of rectangular shaped micro-channels for helium gas [type A] (inlet temperature, 400 .deg. C) and 40 stacks of semi-ellipse shaped micro-channels for helium [type B] (inlet temperature, 300 .deg. C). The experimental result is compared to that of computer simulation, COMSOL multi-physics software. The Helium-Helium PCHE is considered a prototype of the newly developed PCHE by Korea Atomic Energy Research Institute (KAERI). The full scale thermo-hydraulic simulation was successfully performed to obtain temperature distribution, pressure drop and thermal stress in 40 sets of flow channel stacks in a helium-helium printed circuit heat exchanger in a VHTR simulate helium loop. We obtained a quite similar temperature distribution with the 3D measured infrared temperature distribution. To our knowledge, this is the first full scale numerical study on the PCHE, which considers all microchannels, that the convection effect on the outside surfaces of the PCHE is applied. The very high-temperature reactor (VHTR) or high-temperature gas-cooled reactor(HTGR) is a fourth-generation nuclear power reactor that uses the ceramic coated fuel, TRISO, in which the fission gas does not leak even at temperatures higher than 1600 .deg. C. The VHTR necessarily requires an intermediate loop composed of a hot gas duct (HGD), an intermediate heat exchanger (IHX) and a process heat exchanger (PHE). The IHX is one of the important components of VHTR system because the IHX transfers the 950 .deg. C of high temperature massive heat to a hydrogen production plant or power conversion unit at high system pressure.

  11. Advances in Helium Cryogenics

    Science.gov (United States)

    Sciver, S. W. Van

    This review provides a survey of major advances that have occurred in recent years in the area of helium cryogenics. Helium-temperature cryogenics is the enabling technology for a substantial and growing number of low-temperature systems from superconducting magnets to space-based experimental facilities. In recent years there have been many advances in the technology of low-temperature helium, driven mostly by new applications. However, to keep the review from being too broad, this presentation focuses mainly on three of the most significant advances. These are: (1) the development of large-scale recuperative refrigeration systems mainly for superconducting magnet applications in accelerators and other research facilities; (2) the use of stored superfluid helium (He II) as a coolant for spacebased astrophysics experiments; and (3) the application of regenerative cryocoolers operating at liquid helium temperatures primarily for cooling superconducting devices. In each case, the reader should observe that critical technologies were developed to facilitate these applications. In addition to these three primary advances, other significant helium cryogenic technologies are briefly reviewed at the end of this chapter, along with some vision for future developments in these areas.

  12. The Carlina-type diluted telescope: Stellar fringes on Deneb

    CERN Document Server

    Coroller, H Le; Hespeels, F; Arnold, L; Andersen, T; Deram, P; Ricci, D; Berio, P; Blazit, A; Clausse, J-M; Guillaume, C; Meunier, J-P; Regal, X; Sottile, R

    2014-01-01

    Context. The performance of interferometers has largely been increased over the last ten years. But the number of observable objects is still limited due to the low sensitivity and imaging capability of the current facilities. Studies have been done to propose a new generation of interferometers. Aims. The Carlina concept studied at the Haute-Provence Observatory consists in an optical interferometer configured as a diluted version of the Arecibo radio telescope: above the diluted primary mirror made of fixed co-spherical segments, a helium balloon or cables suspended between two mountains and/or pylons, carries a gondola containing the focal optics. This concept does not require delay lines. Methods. Since 2003, we have been building a technical demonstrator of this diluted telescope. The main goals of this project were to find the opto-mechanical solutions to stabilize the optics attached under cables at several tens of meters above the ground, and to characterize this diluted telescope under real condition...

  13. Experimental studies of antiprotonic helium

    CERN Document Server

    Widmann, E

    1998-01-01

    This talk describes the experimental studies of metastable antiprotonic helium "atomcules" pHe/sup +/ (a neutral exotic atom consisting of a helium nucleus, an antiproton and an electron) performed at CERN-LEAR, and future plans for experiments at the forthcoming Antiproton Decelerator (AD) at CERN. Laser spectroscopy experiments are reviewed which led to the observation of a total of 13 resonant transitions of the antiproton in both p/sup 4/He/sup +/ and p/sup 3/He/sup +/, and revealed a hyperfine splitting in one transition. A level of precision has been reached where the most accurate 3-body calculations need to include QED effects like the Lamb-shift to come close to the experimental results. (52 refs).

  14. Effect of the permeability of the porous shell on the vapor film thickness during boiling of superfluid helium in microgravity

    Science.gov (United States)

    Korolev, P. V.; Kryukov, A. P.; Puzina, Yu. Yu.

    2015-07-01

    This paper presents a theoretically study of the boiling of superfluid helium on a cylindrical heater placed in a coaxial porous shell in microgravity. Steady-state transfer processes at the interface are studied using molecular-kinetic methods. The Boltzmann transport equation is solved by the moment method based on the four-moment approximation in the form of a two-sided Maxwellian. The obtained solution is used to calculate the heat flux density in film boiling on a cylindrical heating surface in the case where the film thickness is comparable to the diameter of the heater. The motion of the normal component of the superfluid liquid in pores is described by equations that take into account heat and mass transfer in superfluid helium. The relation between the vapor film thickness and the structural characteristics and geometrical dimensions of the porous shell is obtained. Analysis of the results of the calculations is given.

  15. The effect of low energy helium ion irradiation on tungsten-tantalum (W-Ta) alloys under fusion relevant conditions

    Science.gov (United States)

    Gonderman, S.; Tripathi, J. K.; Novakowski, T. J.; Sizyuk, T.; Hassanein, A.

    2017-08-01

    Currently, tungsten remains the best candidate for plasma-facing components (PFCs) for future fusion devices because of its high melting point, low erosion, and strong mechanical properties. However, continued investigation has shown tungsten to undergo severe morphology changes under fusion-like conditions. These results motivate the study of innovative PFC materials which are resistant to surface morphology evolution. The goal of this work is to examine tungsten-tantalum (W-Ta) alloys, a potential PFC material, and their response to low energy helium ion irradiation. Specifically, W-Ta samples are exposed to 100 eV helium irradiations with a flux of 1.15 × 1021 ions m-2 s-1, at 873 K, 1023 K, and 1173 K for 1 h duration. Scanning electron microscopy (SEM) reveals significant changes in surface deterioration due to helium ion irradiation as a function of both temperature and tantalum concentration in W-Ta samples. X-Ray Diffraction (XRD) studies show a slight lattice parameter expansion in W-Ta alloy samples compared to pure W samples. The observed lattice parameter expansion in W-Ta alloy samples (proportional to increasing Ta wt.% concentrations) reflect significant differences observed in the evolution of surface morphology, i.e., fuzz development processes for both increasing Ta wt.% concentration and target temperature. These results suggest a correlation between the observed morphology differences and the induced crystal structure change caused by the presence of tantalum. Shifts in the XRD peaks before and after 100 eV helium irradiation with a flux of 1.15 × 1021 ions m-2 s-1, 1023 K, for 1 h showed a significant difference in the magnitude of the shift. This has suggested a possible link between the atomic spacing of the material and the accumulated damage. Ongoing research is needed on W-Ta alloys and other innovative materials for their application as irradiation resistant materials in future fusion or irradiation environments.

  16. Effect of dilution and L-malic acid addition on bio-hydrogen production with Rhodopseudomonas palustris from effluent of an acidogenic anaerobic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Azbar, N.; Tuba, F.; Dokgoz, C. [Bioengineering Dept., Faculty of Engineering, Ege Univ., Izmir (Turkey)], E-mail: nuri.azbar@ege.edu.tr

    2009-07-01

    In this study, H{sub 2} was produced in a two-stage biological process: I) first stage; the dark fermentation of cheese whey wastewater, which is rich in lactose, by mixed anaerobic culture grown at thermophilic temperature in a continuously running fermentor and ii) second stage; the photo-fermentation of the residual medium by R. palustris strain (DSM 127) at 31{sup o}C under illumination of 150 W in batch mode, respectively. In the first part of the study, the effluent from the dark fermentation reactor was used either as it is (no dilution) or after dilution with distilled water at varying ratios such as 1/2 , 1/5, 1/10 (1 volume effluent/5 volume distilled water) before used in photo-fermentation experiments. In the second part of the study, L-malic acid at varying amounts was added into the hydrogen production medium in order to have L-malic acid concentrations ranging from 0 to 4 g/l. Non-diluted and pre-diluted mediums with or without L-malic acid addition were also tested for comparison purpose (as controls). Prior to the hydrogen production experiments, all samples were subjected to pH adjustment, (pH 6.7) and sterilized by autoclave at 121{sup o}C for 15 min. In regards to the experiments in which the effect of dilution of the effluent from dark fermentation was studied, it was observed that dilution of the effluent from dark fermentation resulted in much better hydrogen productions. Among the dilution rates used, the experiments operated with 1/5 dilution ratio produced the best hydrogen production (241 ml H{sub 2}/ g COD{sub fed}). On the other hand, it was seen that the mixing the effluent with L-malic acid (0 - 4 g/l) at increasing ratios (studied from 0% L-malic acid up to 100% by volume in the mixture) had further positive effect and improved the hydrogen production. The bioreactors containing only L-malic acid media resulted in the best hydrogen production (438 ml H{sub 2} / g COD{sub fed}). It was found that, undiluted raw cheese whey wastewater

  17. Effect of low-level helium-neon laser therapy on histological and ultrastructural features of immobilized rabbit articular cartilage.

    Science.gov (United States)

    Bayat, Mohammad; Ansari, Enayatallah; Gholami, Narges; Bayat, Aghdas

    2007-05-25

    The present study investigates whether low-level helium-neon laser therapy can increase histological parameters of immobilized articular cartilage in rabbits or not. Twenty five rabbits were divided into three groups: the experiment group, which received low-level helium-neon laser therapy with 13J/cm(2) three times a week after immobilization of their right knees; the control group which did not receive laser therapy after immobilization of their knees; and the normal group which received neither immobilization nor laser therapy. Histological and electron microscopic examinations were performed at 4 and 7 weeks after immobilization. Depth of the chondrocyte filopodia in four-week immobilized experiment group, and depth of articular cartilage in seven-week immobilized experiment group were significantly higher than those of relevant control groups (exact Fisher test, p=0.001; student's t-test, p=0.031, respectively). The surfaces of articular cartilages of the experiment group were relatively smooth, while those of the control group were unsmooth. It is therefore concluded that low-level helium-neon laser therapy had significantly increased the depth of the chondrocyte filopodia in four-week immobilized femoral articular cartilage and the depth of articular cartilage in seven-week immobilized knee in comparison with control immobilized articular cartilage.

  18. Photography of shock waves during excimer laser ablation of the cornea. Effect of helium gas on propagation velocity.

    Science.gov (United States)

    Krueger, R R; Krasinski, J S; Radzewicz, C; Stonecipher, K G; Rowsey, J J

    1993-07-01

    Shadow photography of shock waves excited by means of a xenon chloride excimer laser was performed to determine the shock wave propagation velocity in air, nitrogen and helium. Energy densities between 500 and 2,000 mJ/cm2 were used to ablate a rotating rubber cylindrical target and porcine corneas. In ablating the rubber cylinder, a shock wave velocity of 3.3 km/s was generated in air and nitrogen at 40 ns; this decreased to 1.4 km/s at 320 ns. When helium was blown on the target, the velocity increased by a factor of approximately two, to 5.9 km/s at 40 ns and 2.7 km/s at 320 ns. We suggest that blowing helium on the surface of the cornea during excimer laser ablation may speed the dissipation of high-energy acoustic waves and gaseous particles, and thus reduce the exposure and transfer of heat energy to the surrounding tissue.

  19. Effect of dilution and ash supplement on the bio-methane potential of palm oil mill effluent (POME)

    Science.gov (United States)

    Jijai, Sunwanee; Muleng, Saina; Siripatana, Chairat

    2017-08-01

    This study aimed to evaluate the bio-methane potential of POME at different dilutions (100, 80, 60, 40, and 20 percent of initial POME) and different pH dues to different levels of ash supplement. Five different amounts of ash were added to digesters (0, 2, 4, 6, and 8 grams of ash were added to 170 ml of POME respectively). The digesters were operated in batch anaerobic digestion systems at room temperature (28-30 °C) and the experiments were performed in duplicate manner. The results showed that POME without dilution gave highest cumulative biogas (950 ml). However, 80% dilution from original POME gave the highest methane yield (45.83 mL CH4/ gCODadded or 103.13 mL CH4/ gCODremoved). Finally, the results of experiment 2, this adding ash into POME increased pH as well as enhanced the biogas production. It was found that adding ash at the ash:POME ratio of 2 g: 170 ml gave the highest both the cumulative biogas and methane yield (1,520 mL and 218.79 mL CH4/ gCODremoved respectively). The addition of ash in the raw waste of POME gave the pH in the range of criteria and highest bio-methane potential. The modified Gompertz equation, Schnute as well as Monod kinetic models were used to compare the data from the experiments. It was found that the factors that affected included, the bio-methane production and the kinetic parameters (the maximum specific methane production rates (Rm ml/day) and the methane production potential (P, mL)), initial COD, nutrients, levels of dilution, and initial pH (by adding different level of ash). However, λ (lag phase period) was not affected by initial COD and other factors. While Monod kinetics provides valuable insight in explaining what could happen behind the systematic trends.

  20. Effect of diluents on soot precursor formation and temperature in ethylene laminar diffusion flames

    KAUST Repository

    Abhinavam Kailasanathan, Ranjith Kumar

    2013-03-01

    Soot precursor species concentrations and flame temperature were measured in a diluted laminar co-flow jet diffusion flame at pressures up to eight atmospheres while varying diluent type. The objective of this study was to gain a better understanding of soot production and oxidation mechanisms, which could potentially lead to a reduction in soot emissions from practical combustion devices. Gaseous samples were extracted from the centerline of an ethylene-air laminar diffusion flame, which was diluted individually with four diluents (argon, helium, nitrogen, and carbon dioxide) to manipulate flame temperature and transport properties. The diluted fuel and co-flow exit velocities (top-hat profiles) were matched at all pressures to minimize shear-layer effects, and the mass fluxes were fixed over the pressure range to maintain constant Reynolds number. The flame temperature was measured using a fine gauge R-type thermocouple at pressures up to four atmospheres. Centerline concentration profiles of major non-fuel hydrocarbons collected via extractive sampling with a quartz microprobe and quantification using GC/MS+FID are reported within. The measured hydrocarbon species concentrations are vary dramatically with pressure and diluent, with the helium and carbon dioxide diluted flames yielding the largest and smallest concentrations of soot precursors, respectively. In the case of C2H2 and C6H6, two key soot precursors, helium diluted flames had concentrations more than three times higher compared with the carbon dioxide diluted flame. The peak flame temperature vary with diluents tested, as expected, with carbon dioxide diluted flame being the coolest, with a peak temperature of 1760K at 1atm, and the helium diluted flame being the hottest, with a peak temperature of 2140K. At four atmospheres, the helium diluted flame increased to 2240K, but the CO2 flame temperature increased more, decreasing the difference to approximately 250K. © 2012 The Combustion Institute.

  1. The Effects of Host Diversity on Vector-Borne Disease: The Conditions under Which Diversity Will Amplify or Dilute the Disease Risk

    Science.gov (United States)

    Miller, Ezer; Huppert, Amit

    2013-01-01

    Multihost vector-borne infectious diseases form a significant fraction of the global infectious disease burden. In this study we explore the relationship between host diversity, vector behavior, and disease risk. To this end, we have developed a new dynamic model which includes two distinct host species and one vector species with variable preferences. With the aid of the model we were able to compute the basic reproductive rate, R0, a well-established measure of disease risk that serves as a threshold parameter for disease outbreak. The model analysis reveals that the system has two different qualitative behaviors: (i) the well-known dilution effect, where the maximal R0 is obtained in a community which consists a single host (ii) a new amplification effect, denoted by us as diversity amplification, where the maximal R0 is attained in a community which consists both hosts. The model analysis extends on previous results by underlining the mechanism of both, diversity amplification and the dilution, and specifies the exact conditions for their occurrence. We have found that diversity amplification occurs where the vector prefers the host with the highest transmission ability, and dilution is obtained when the vector does not show any preference, or it prefers to bite the host with the lower transmission ability. The mechanisms of dilution and diversity amplification are able to account for the different and contradictory patterns often observed in nature (i.e., in some cases disease risk is increased while in other is decreased when the diversity is increased). Implication of the diversity amplification mechanism also challenges current premises about the interaction between biodiversity, climate change, and disease risk and calls for retrospective thinking in planning intervention policies aimed at protecting the preferred host species. PMID:24303003

  2. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity

    Science.gov (United States)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2014-01-01

    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  3. Cosmic Ray Helium Hardening

    CERN Document Server

    Ohira, Yutaka

    2010-01-01

    Recent observations by CREAM, ATIC-2 and PAMELA experiments suggest that (1) the spectrum of cosmic ray (CR) helium is harder than that of CR proton below the knee $10^15 eV$ and (2) all CR spectra become hard at $\\gtrsim 10^{11} eV/n$. We propose a new picture that higher energy CRs are generated in more helium-rich region to explain the hardening (1) without introducing different sources for CR helium. The helium to proton ratio at $\\sim 100$ TeV exceeds the Big Bang abundance $Y=0.25$ by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in the chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium when escaping from the supernova remnant (SNR) shock. We provide a simple analytical spectrum that also fits well the hardening (2) because of the decreasing Mach number in the hot superbubble with $\\sim 10^6$ K. Our model predicts hard and con...

  4. Investigations of levitated helium drops

    Science.gov (United States)

    Whitaker, Dwight Lawrence

    1999-11-01

    We report on the development of two systems capable of levitating drops of liquid helium. Helium drops of ˜20 mum have been levitated with the radiation pressure from two counter-propagating Nd:YAG laser beams. Drops are produced with a submerged piezoelectric transducer, and could be held for up to three minutes in our optical trap. Calculations show that Brillouin and Raman scattering of the laser light in the liquid helium produces a negligible rate of evaporation of the drop. Evaporation caused by the enhanced vapor pressure of the curved drop surfaces appears to be a significant effect limiting the drop lifetimes. Helium drops as large as 2 cm in diameter have been suspended in the earth's gravitational field with a magnetic field. A commercial superconducting solenoid provides the necessary field, field-gradient product required to levitate the drops. Drops are cooled to 0.5 K with a helium-3 refrigerator, and can be held in the trap indefinitely. We have found that when two or more drops are levitated in the same magnetic trap, the drops often remain in a state of apparent contact without coalescing. This effect is a result of the evaporation of liquid from between the two drops, and is found to occur only for normal fluid drops. We can induce shape oscillations in charged, levitated drops with an applied ac electric field. We have measured the resonance frequencies and damping rates for the l = 2 mode of oscillation as function of temperature. We have also developed a theory to describe the small amplitude shape oscillations of a He II drop surrounded by its saturated vapor. In our theory, we have considered two sets of boundary conditions---one where the drop does not evaporate and another in which the liquid and vapor are in thermodynamic equilibrium. We have found that both solutions give a frequency that agrees well with experiment, but that the data for the damping rate agree better with the solution without evaporation.

  5. The Combined Effect of Periodic Signals and Noise on the Dilution of Precision of GNSS Station Velocity Uncertainties

    Science.gov (United States)

    Klos, Anna; Olivares, German; Teferle, Felix Norman; Bogusz, Janusz

    2016-04-01

    Station velocity uncertainties determined from a series of Global Navigation Satellite System (GNSS) position estimates depend on both the deterministic and stochastic models applied to the time series. While the deterministic model generally includes parameters for a linear and several periodic terms the stochastic model is a representation of the noise character of the time series in form of a power-law process. For both of these models the optimal model may vary from one time series to another while the models also depend, to some degree, on each other. In the past various power-law processes have been shown to fit the time series and the sources for the apparent temporally-correlated noise were attributed to, for example, mismodelling of satellites orbits, antenna phase centre variations, troposphere, Earth Orientation Parameters, mass loading effects and monument instabilities. Blewitt and Lavallée (2002) demonstrated how improperly modelled seasonal signals affected the estimates of station velocity uncertainties. However, in their study they assumed that the time series followed a white noise process with no consideration of additional temporally-correlated noise. Bos et al. (2010) empirically showed for a small number of stations that the noise character was much more important for the reliable estimation of station velocity uncertainties than the seasonal signals. In this presentation we pick up from Blewitt and Lavallée (2002) and Bos et al. (2010), and have derived formulas for the computation of the General Dilution of Precision (GDP) under presence of periodic signals and temporally-correlated noise in the time series. We show, based on simulated and real time series from globally distributed IGS (International GNSS Service) stations processed by the Jet Propulsion Laboratory (JPL), that periodic signals dominate the effect on the velocity uncertainties at short time scales while for those beyond four years, the type of noise becomes much more

  6. Helium vs. Proton Induced Displacement Damage in Electronic Materials

    Science.gov (United States)

    Ringo, Sawnese; Barghouty, A. F.

    2010-01-01

    In this project, the specific effects of displacement damage due to the passage of protons and helium nuclei on some typical electronic materials will be evaluated and contrasted. As the electronic material absorbs the energetic proton and helium momentum, degradation of performance occurs, eventually leading to overall failure. Helium nuclei traveling at the same speed as protons are expected to impart more to the material displacement damage; due to the larger mass, and thus momentum, of helium nuclei compared to protons. Damage due to displacement of atoms in their crystalline structure can change the physical properties and hence performance of the electronic materials.

  7. Effects of aging in high temperature helium environments on room temperature tensile properties of nickel-base superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daejong [Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Nuclear Materials Technology Development Division, KAERI, 150 Deogjin-dong, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Sah, Injin [Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Jang, Changheui, E-mail: chjang@kaist.ac.kr [Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2011-01-25

    Research highlights: {yields} Haynes 230 is susceptible to carburization, but Alloy 617 to decarburization and inter-granular oxidation. {yields} Decarburization of Nickel-base superalloys can be accelerated in impure helium with H{sub 2}. {yields} Aging heat treatment causes inter-granular fracture primarily along inter-granular oxide and grain boundary carbides, which results in the loss of ductility. {yields} Thin-plate specimen of Alloy 617 tends to favor failure by glide plane fracture when it is heavily decarburized. - Abstract: The influence of high temperature aging treatment on room temperature tensile properties of wrought nickel-base superalloys Alloy 617 and Haynes 230 was investigated. A significant decrease in elongation was observed for Alloy 617 exposed to a heavily oxidizing and decarburizing condition because of coarsening of grain boundary carbides and extensive inter-granular oxidation. On the other hand, Haynes 230 showed much lower ductility when exposed to a heavily carburizing condition, especially at 1000 deg. C because extensive carburization occurred due to a reaction with tungsten. Considerable loss of ductility for Alloy 617 and Haynes 230 was also observed in He-H{sub 2}-H{sub 2}O-CO-CO{sub 2}-CH{sub 4} and He-H{sub 2}O-CO-CO{sub 2} environments, which were the slightly oxidizing and decarburizing conditions. Loss of ductility was predominantly associated with brittle inter-granular cracking, while the extent of loss of ductility decreased depending on the decarburization depth. Decarburization was observed more extensively in helium with H{sub 2}-H{sub 2}O-CO-CO{sub 2}-CH{sub 4} than helium with H{sub 2}O-CO-CO{sub 2}, and for Alloy 617 than for Haynes 230. Finally, the role of H{sub 2} in accelerating decarburization is discussed.

  8. Magnetic response of dilute cobalt nanoparticles in an organic matrix : the effects of aging and interface chemistry.

    Energy Technology Data Exchange (ETDEWEB)

    Provencio, Paula Polyak; Wilcoxon, Jess Patrick; Venturini, Eugene Leo

    2003-06-01

    We report studies of the magnetic response of dilute frozen solutions of nanocrystalline Co particles grown in inverse micelles. Crystalline nanoclusters which initially exhibit only a small fraction of the bulk saturation moment restructure in solution without any change in cluster size or blocking temperature over a period of {approx}30-60 days, finally yielding a moment/atom which exceeds that of bulk Co. The saturation magnetism maintains its enhanced value for temperatures up to the melting point of the solvent matrix, but is strongly dependent on surface active additives and molecular oxygen.

  9. Interplay between effects of external pressure and dilution of the U sublattice in UCoAl-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.V. [Institute of Physics, Academy of Sciences, Na Slovance 2, Prague 18221 (Czech Republic)]. E-mail: andreev@mag.mff.cuni.cz; Koyama, K. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai 980-8578 (Japan); Mushnikov, N.V. [Institute of Metal Physics, Academy of Sciences, Kovalevskaya 18, Ekaterinburg 620219 (Russian Federation); Sechovsky, V. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 12116 (Czech Republic); Shiokawa, Y. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai 980-8578 (Japan); Satoh, I. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai 980-8578 (Japan); Watanabe, K. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai 980-8578 (Japan)

    2007-08-30

    Substitution of Y for U in the itinerant 5f-electron metamagnet, UCoAl, transforms the system to a ferromagnetic state. Application of external hydrostatic pressure above 0.3 GPa suppresses the ferromagnetism and restores the 'UCoAl-type' metamagnetism back. However, the metamagnetic transition becomes of the second order instead of the first order one in parent UCoAl. This is attributed to enhancement of fluctuations of the U magnetic moment upon dilution of the U sublattice.

  10. Effect of helium-neon laser on fast excitatory postsynaptic potential (f-EPSP) of neurons in the isolated rat superior cervical ganglia

    Science.gov (United States)

    Hua, Mo; Ping, He; Ning, Mo

    2002-06-01

    Single electrical stimulation of the cervical sympathetic trunk elicits in the ganglion cells an excitatory postsynaptic potential (EPSP) or multiple EPSPs of varying latencies, among which a fast excitatory postsynaptic potential (f-EPSP) is the main type of ganglionic transmission in the sympathetic neurons. In previous work, we studied the effects of Helium-Neon laser with wavelength 632.8 nm on membrane conductance of neurons with stable f- EPSP in isolated rat superior cervical ganglia. The aim of this study is to further measure the effect of Helium-Neon Laser with wavelength 632.8 nm on fast excitatory postsynaptic potential of postganglionic neurons in the isolated rate superior cervical ganglia by means of intracellular recording techniques. The neurons with fast excitatory postsynaptic potential were irradiated by different power densities (1 and 5 mW/cm2), pulse frequency of 1 Hz laser. Irradiated by the 2 mW/cm2 laser, the amplitude of the f-EPSP could augment (PEPSP could descend and lasted for 3- 8 minutes later.

  11. A possible formation channel for blue hook stars in globular cluster - II. Effects of metallicity, mass ratio, tidal enhancement efficiency and helium abundance

    CERN Document Server

    Lei, Zhenxin; Zeng, Aihua; Shen, Lihua; Lan, Zhongjian; Jiang, Dengkai; Han, Zhanwen

    2016-01-01

    Employing tidally enhanced stellar wind, we studied in binaries the effects of metallicity, mass ratio of primary to secondary, tidal enhancement efficiency and helium abundance on the formation of blue hook (BHk) stars in globular clusters (GCs). A total of 28 sets of binary models combined with different input parameters are studied. For each set of binary model, we presented a range of initial orbital periods that is needed to produce BHk stars in binaries. All the binary models could produce BHk stars within different range of initial orbital periods. We also compared our results with the observation in the Teff-logg diagram of GC NGC 2808 and {\\omega} Cen. Most of the BHk stars in these two GCs locate well in the region predicted by our theoretical models, especially when C/N-enhanced model atmospheres are considered. We found that mass ratio of primary to secondary and tidal enhancement efficiency have little effects on the formation of BHk stars in binaries, while metallicity and helium abundance would...

  12. Influence of catalyst dilution by inert particles on the effectivity of a catalytical process in a fluidized bed. [Increasing selectivity by decreasing local reaction kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Augenblick, A.A. (Karpov Physico-Chemical Inst., Moscow, USSR); Kernerman, V.A.; Abayev, G.N.; Slin' ko, M.G.; Sergeev, Yu.A.

    1983-01-01

    The method of the increasing a selectivity of catalytic processes in fluidized bed reactor by decreasing local chemical reaction rates together with increasing a reactive volume is discussed. Based on the two-phase model of a fluidized bed it is shown that the dilution of a catalyst by inert particles leads to an increasing of effective interphase exchange coefficients and a decreasing of effective axial mixing coefficients. Restrictions to applications of the method connected with local features of a bed structure are discussed. 3 figures.

  13. Hybridizing pines with diluted pollen

    Science.gov (United States)

    Robert Z. Callaham

    1967-01-01

    Diluted pollens would have many uses by the tree breeder. Dilutions would be particularly advantageous in making many controlled pollinations with a limited amount of pollen. They also would be useful in artificial mass pollinations of orchards or single trees. Diluted pollens might help overcome troublesome genetic barriers to crossing. Feasibility o,f using diluted...

  14. Numerical modelling of the effect of dry air traces in a helium parallel plate dielectric barrier discharge

    Science.gov (United States)

    Lazarou, C.; Belmonte, T.; Chiper, A. S.; Georghiou, G. E.

    2016-10-01

    A validated numerical model developed for the study of helium barrier discharges in the presence of dry air impurities is presented in this paper. The model was used to numerically investigate the influence of air traces on the evolution of the helium dielectric barrier discharge (DBD). The level of dry air used as impurity was in the range from 0 to 1500 ppm, which corresponds to the most commonly encountered range in atmospheric pressure discharge experiments. The results presented in this study clearly show that the plasma chemistry and consequently the discharge evolution is highly affected by the concentration level of impurities in the mixture. In particular, it was observed that air traces assist the discharge ignition at low concentration levels (~55 ppm), while on the other hand, they increase the burning voltage at higher concentration levels (~1000 ppm). Furthermore, it was found that the discharge symmetry during the voltage cycle highly depends on the concentration of air. For the interpretation of the results, a detailed analysis of the processes that occur in the discharge gap is performed and the main reaction pathways of ion production are described. Thanks to this approach, useful insight into the physics behind the evolution of the discharge is obtained.

  15. The effect of helium accretion efficiency on rates of Type Ia supernovae: double-detonations in accreting binaries

    CERN Document Server

    Ruiter, Ashley J; Sim, Stuart A; Seitenzahl, Ivo R; Kwiatkowski, Damian

    2014-01-01

    The double-detonation explosion scenario of Type Ia supernovae has gained increased support from the SN Ia community as a viable progenitor model, making it a promising candidate alongside the well-known single degenerate and double degenerate scenarios. We present delay times of double-detonation SNe, in which a sub-Chandrasekhar mass carbon-oxygen white dwarf accretes non-dynamically from a helium-rich companion. One of the main uncertainties in quantifying SN rates from double-detonations is the (assumed) retention efficiency of He-rich matter. Therefore, we implement a new prescription for the treatment of accretion/accumulation of He-rich matter on white dwarfs. In addition, we test how the results change depending on which criteria are assumed to lead to a detonation in the helium shell. In comparing the results to our standard case (Ruiter et al. 2011), we find that regardless of the adopted He accretion prescription, the SN rates are reduced by only 25% if low-mass He shells (< 0.05 Msun) are suffi...

  16. Helium and Sulfur Hexafluoride in Musical Instruments

    Science.gov (United States)

    Forinash, Kyle; Dixon, Cory L.

    2014-01-01

    The effects of inhaled helium on the human voice were investigated in a recent article in "The Physics Teacher." As mentioned in that article, demonstrations of the effect are a popular classroom activity. If the number of YouTube videos is any indication, the effects of sulfur hexafluoride on the human voice are equally popular.…

  17. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions

    Science.gov (United States)

    Stanford, Michael G.; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam J.; Ivanov, Ilia N.; Ward, T. Zac; Rack, Philip D.

    2016-01-01

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices. PMID:27263472

  18. Effect of high power CO2 and Yb:YAG laser radiation on the characteristics of TIG arc in atmospherical pressure argon and helium

    Science.gov (United States)

    Wu, Shikai; Xiao, Rongshi

    2015-04-01

    The effects of laser radiation on the characteristics of the DC tungsten inert gas (TIG) arc were investigated by applying a high power slab CO2 laser and a Yb:YAG disc laser. Experiment results reveal that the arc voltage-current curve shifts downwards, the arc column expands, and the arc temperature rises while the high power CO2 laser beam vertically interacts with the TIG arc in argon. With the increase of the laser power, the voltage-current curve of the arc shifts downwards more significantly, and the closer the laser beam impingement on the arc to the cathode, the more the decrease in arc voltage. Moreover, the arc column expansion and the arc temperature rise occur mainly in the region between the laser beam incident position and the anode. However, the arc characteristics hardly change in the cases of the CO2 laser-helium arc and YAG laser-arc interactions. The reason is that the inverse Bremsstrahlung absorption coefficients are greatly different due to the different electron densities of the argon and helium arcs and the different wave lengths of CO2 and YAG lasers.

  19. Broken symmetry makes helium

    CERN Multimedia

    Gray, P L

    2003-01-01

    "The subatomic pion particle breaks the charge symmetry rule that governs both fusion and decay. In experiments performed at the Indiana University Cyclotron Laboratory, physicists forced heavy hydrogen (1 proton + 1 neutron) to fuse into helium in a controlled, measurable environment" (1 paragraph).

  20. Effect of Insulin Dilution on Lowering Glycemic Variability in Pump-Treated Young Children with Inadequately Controlled Type 1 Diabetes.

    Science.gov (United States)

    Mianowska, Beata; Fendler, Wojciech; Tomasik, Bartłomiej; Młynarski, Wojciech; Szadkowska, Agnieszka

    2015-09-01

    We investigated whether in young children with inadequately controlled type 1 diabetes and technical problems with continuous subcutaneous infusion of insulin at 100 units/mL the switch to insulin diluted to 10 units/mL (U10) can limit technical problems and improve glycemic control. Diluted U10 insulin was started in three children 3.8, 3.2, and 1.3 years old with a hemoglobin A1c (HbA1c) level (mean±SD) of 8.1±0.17% (65±1.7 mmol/mol) and insulin dose of 8.80±2.93 units/day. Patients were evaluated with continuous glucose monitoring (iPro™2; Medtronic Minimed, Northridge, CA) and a quality of life questionnaire (PedsQL™; www.pedsql.org/ ) and surveyed for pump-related problems at baseline and after 3 and 9 months of U10 insulin therapy. Continuous glucose monitoring records showed that glycemic variability assessed by SD and M100 decreased significantly (P=0.0085 and P=0.0482, respectively). HbA1c levels dropped to 7.3±1.00% (56±11.0 mmol/mol) after 3 months and to 6.7±0.55% (50±6.1 mmol/mol) after 9 months (P=0.12). Technical difficulties were minimized. These results suggest that the use of U10 insulin decreases glycemic variability and improves hampered pump therapy in young children with inadequately controlled type 1 diabetes.

  1. Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys.

    Science.gov (United States)

    Shang, S L; Zacherl, C L; Fang, H Z; Wang, Y; Du, Y; Liu, Z K

    2012-12-19

    A systematic study of stacking fault energy (γ(SF)) resulting from induced alias shear deformation has been performed by means of first-principles calculations for dilute Ni-base superalloys (Ni(23)X and Ni(71)X) for various alloying elements (X) as a function of temperature. Twenty-six alloying elements are considered, i.e., Al, Co, Cr, Cu, Fe, Hf, Ir, Mn, Mo, Nb, Os, Pd, Pt, Re, Rh, Ru, Sc, Si, Ta, Tc, Ti, V, W, Y, Zn, and Zr. The temperature dependence of γ(SF) is computed using the proposed quasistatic approach based on a predicted γ(SF)-volume-temperature relationship. Besides γ(SF), equilibrium volume and the normalized stacking fault energy (Γ(SF) = γ(SF)/Gb, with G the shear modulus and b the Burgers vector) are also studied as a function of temperature for the 26 alloying elements. The following conclusions are obtained: all alloying elements X studied herein decrease the γ(SF) of fcc Ni, approximately the further the alloying element X is from Ni on the periodic table, the larger the decrease of γ(SF) for the dilute Ni-X alloy, and roughly the γ(SF) of Ni-X decreases with increasing equilibrium volume. In addition, the values of γ(SF) for all Ni-X systems decrease with increasing temperature (except for Ni-Cr at higher Cr content), and the largest decrease is observed for pure Ni. Similar to the case of the shear modulus, the variation of γ(SF) for Ni-X systems due to various alloying elements is traceable from the distribution of (magnetization) charge density: the spherical distribution of charge density around a Ni atom, especially a smaller sphere, results in a lower value of γ(SF) due to the facility of redistribution of charges. Computed stacking fault energies and the related properties are in favorable accord with available experimental and theoretical data.

  2. The antibacterial activity of diluted Tualang honey

    Directory of Open Access Journals (Sweden)

    N. A. Roslan

    2015-05-01

    Full Text Available Tualang honey (TH is a Malaysian jungle honey obtained from the wild. The honey is produced by the rock bee (Apis dorsata, which builds hives on branches of tall Tualang (Koompassia excelsa (Becc. Taub trees located mainly in the north-western region of Peninsular Malaysia. Limited information is available on the antibacterial mechanism of local honey. The present study was conducted to determine the antibacterial activity of diluted ?Tualang? honey against Escherichia coli (E. coli. Three different Tualang honey concentrations, namely, 20, 30 and 40% were used to examine the effect of diluting Tualang honey on its antibacterial effect towards E. coli. The 40% diluted honey was the most effective in inhibiting the growth of E. coli, followed by honey diluted at 20 and 30%. The high antibacterial activity of honey towards E. Coli was thought to arise from the production of hydrogen peroxide, but requires further study to validate the action.

  3. Atomistic simulations of the effect of embedded hydrogen and helium on the tensile properties of monocrystalline and nanocrystalline tungsten

    Science.gov (United States)

    Chen, Zhe; Kecskes, Laszlo J.; Zhu, Kaigui; Wei, Qiuming

    2016-12-01

    Uniaxial tensile properties of monocrystalline tungsten (MC-W) and nanocrystalline tungsten (NC-W) with embedded hydrogen and helium atoms have been investigated using molecular dynamics (MD) simulations in the context of radiation damage evolution. Different strain rates have been imposed to investigate the strain rate sensitivity (SRS) of the samples. Results show that the plastic deformation processes of MC-W and NC-W are dominated by different mechanisms, namely dislocation-based for MC-W and grain boundary-based activities for NC-W, respectively. For MC-W, the SRS increases and a transition appears in the deformation mechanism with increasing embedded atom concentration. However, no obvious embedded atom concentration dependence of the SRS has been observed for NC-W. Instead, in the latter case, the embedded atoms facilitate GB sliding and intergranular fracture. Additionally, a strong strain enhanced He cluster growth has been observed. The corresponding underlying mechanisms are discussed.

  4. Effect of diamagnetic contribution of water on harmonics distribution in a dilute solution of iron oxide nanoparticles measured using high-T{sub c} SQUID magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Saari, Mohd Mawardi, E-mail: en19463@s.okayama-u.ac.jp; Tsukamoto, Yuya; Kusaka, Toki; Ishihara, Yuichi; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji

    2015-11-15

    The magnetization curve of iron oxide nanoparticles in low-concentration solutions was investigated by a highly sensitive high-T{sub c} superconducting quantum interference device (SQUID) magnetometer. The diamagnetic contribution of water that was used as the carrier liquid was observed in the measured magnetization curves in the high magnetic field region over 100 mT. The effect of the diamagnetic contribution of water on the generation of harmonics during the application of AC and DC magnetic fields was simulated on the basis of measured magnetization curves. Although the diamagnetic effect depends on concentration, a linear relation was observed between the detected harmonics and concentration in the simulated and measured results. The simulation results suggested that improvement could be expected in harmonics generation because of the diamagnetic effect when the iron concentration was lower than 72 μg/ml. The use of second harmonics with an appropriate bias of the DC magnetic field could be utilized for realization of a fast and highly sensitive detection of magnetic nanoparticles in a low-concentration solution. - Highlights: • We measured iron oxide nanoparticles solutions using a high-T{sub c} SQUID magnetometer. • Diamagnetic contribution of water in diluted solutions was observed. • Improvement in harmonics generation due to diamagnetism of water could be expected. • Linear relation between harmonics and concentration in diluted solutions was shown. • Detection using second harmonics showed high sensitivity.

  5. Helium accreting CO white dwarfs with rotation: helium novae instead of double detonation

    CERN Document Server

    Yoon, S C

    2004-01-01

    We present evolutionary models of helium accreting carbon-oxygen white dwarfs in which we include the effects of the spin-up of the accreting star induced by angular momentum accretion, rotationally induced chemical mixing and rotational energy dissipation. Initial masses of 0.6 Msun and 0.8 Msun and constant accretion rates of a few times 10^{-8} Msun/yr of helium rich matter have been considered, which is typical for the sub-Chandrasekhar mass progenitor scenario for Type Ia supernovae. It is found that the helium envelope in an accreting white dwarf is heated efficiently by friction in the differentially rotating spun-up layers. As a result, helium ignites much earlier and under much less degenerate conditions compared to the corresponding non-rotating case. Consequently, a helium detonation may be avoided, which questions the sub-Chandrasekhar mass progenitor scenario for Type Ia supernovae. We discuss implications of our results for the evolution of helium star plus white dwarf binary systems as possible...

  6. An experimental and numerical investigation on the influence of external gas recirculation on the HCCI autoignition process in an engine: Thermal, diluting, and chemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim; Cavadias, Simeon [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, FRT, Institut Jean Le Rond D' Alembert, 2, place de la Gare de Ceinture, 78210 St Cyr l' Ecole (France); Guibert, Philippe [UPMC Universite Paris 06, FRT, Institut Jean Le Rond D' Alembert, 2, place de la Gare de Ceinture, 78210 St Cyr l' Ecole (France)

    2008-11-15

    In order to contribute to the solution of controlling the autoignition in a homogeneous charge compression ignition (HCCI) engine, parameters linked to external gas recirculation (EGR) seem to be of particular interest. Experiments performed with EGR present some difficulties in interpreting results using only the diluting and thermal aspect of EGR. Lately, the chemical aspect of EGR is taken more into consideration, because this aspect causes a complex interaction with the dilution and thermal aspects of EGR. This paper studies the influence of EGR on the autoignition process and particularly the chemical aspect of EGR. The diluents present in EGR are simulated by N{sub 2} and CO{sub 2}, with dilution factors going from 0 to 46 vol%. For the chemically active species that could be present in EGR, the species CO, NO, and CH{sub 2}O are used. The initial concentration in the inlet mixture of CO and NO is varied between 0 and 170 ppm, while that of CH{sub 2}O alters between 0 and 1400 ppm. For the investigation of the effect of the chemical species on the autoignition, a fixed dilution factor of 23 vol% and a fixed EGR temperature of 70 C are maintained. The inlet temperature is held at 70 C, the equivalence ratios between 0.29 and 0.41, and the compression ratio at 10.2. The fuels used for the autoignition are n-heptane and PRF40. It appeared that CO, in the investigated domain, did not influence the ignition delays, while NO had two different effects. At concentrations up until 45 ppm, NO advanced the ignition delays for the PRF40 and at higher concentrations, the ignition delayed. The influence of NO on the autoignition of n-heptane seemed to be insignificant, probably due to the higher burn rate of n-heptane. CH{sub 2}O seemed to delay the ignition. The results suggested that especially the formation of OH radicals or their consumption by the chemical additives determines how the reactivity of the autoignition changed. (author)

  7. Effects of the technique of cryopreservation and dilution/centrifugation after thawing on the motility and vitality of spermatozoa of oligoasthenozoospermic men

    Directory of Open Access Journals (Sweden)

    Esteves Sandro C.

    2003-01-01

    Full Text Available OBJECTIVE: Comparing in human semen samples with low initial quality, the effects of 2 techniques of cryopreservation and dilution/centrifugation after thawing on the spermatic motility and vitality. MATERIALS AND METHODS: Semen samples from 15 oligo and/or asthenozoospermic individuals assisted in the infertility sector of a tertiary hospital were obtained through masturbation. The samples were divided into 2 portions of equal volume, and diluted (1:1; v/v with the cryoprotector containing glycerol (Test yolk buffer. One portion was frozen through the technique of liquid nitrogen vapor with static phases (group I - GI, while the other was frozen through a programmable biological freezer with linear speed (Planer, Kryo 10, series III (group II - GII. The following parameters were assessed before freezing and after thawing: percentage of spermatozoa with progressive motility (Prog% and percentage of live spermatozoa (Vit%. After defrosting, Prog% was assessed before and after removal of cryoprotector diluent, in different time intervals (zero, 3 h, and 24 h. The statistical analysis has been accomplished by using the non-parametric tests of Wilcoxon and Friedman. RESULTS: There was significant reduction of Prog% and Vit% from before freezing to after defrosting in both groups, I and II (p < 0.001. Values of Prog% and Vit% were not statistically different between groups, after thawing. It has been observed a significant reduction in Prog% among portions frozen with the automated technique after dilution and centrifugation for removal of cryoprotector (p = 0.006. After cryoprotector removal, Prog% has been kept unaltered, in both groups, during the first 3 hours of incubation, although being superior in group I (p = 0,04. There was a significant decrease in Prog% after 24 hours of incubation, in both groups (p < 0,01. CONCLUSION: For human semen samples with low initial quality, freezing through vapor technique or through the automated technique

  8. The muonic helium lamb shift experiment

    Energy Technology Data Exchange (ETDEWEB)

    Goetzfried, Johannes; Krauth, Julian [Max-Planck-Institute of Quantum Optics, Garching (Germany); Collaboration: CREMA collaboration

    2014-07-01

    Because of its high sensitivity on finite size effects of the nucleus, the measurement of the Lamb shift in exotic atoms has been on the wish-list of atomic and nuclear physics for a long time. Our previous experiment allowed to determine the proton radius with an order of magnitude higher precision compared to spectroscopic measurements of ordinary hydrogen. The successor experiment in muonic helium is currently performed at the Paul-Scherrer-Institute in Switzerland. Using a low energy muon beam line muons are stopped within low pressure helium gas, where exotic atoms are created. Here we measure the 2S-2P transition frequency of muonic helium illuminated by a pulsed TiSa-laser system pumped with a newly developed Yb-YAG thin disk laser. This measurement will ultimately improve the values of the charge radii of {sup 3}He{sup +} and {sup 4}He{sup +} by an order of magnitude.

  9. The problem of dose in homeopathy: evaluation of the effect of high dilutions of Arsenicum album 30cH on rats intoxicated with arsenic.

    Directory of Open Access Journals (Sweden)

    Gabriela Cristina Gomes Rodrigues

    2010-12-01

    Full Text Available Background: Although scientific studies have confirmed the action of homeopathic high dilutions in living organisms an endless debate on the choice of the most fitting dilution, the frequency of administration and the dose (amount of medicine still remains. Aims: This study sought to assess the in vivo effect of 2 different concentrations of Arsenicum album 30cH in order to elucidate some problems in the homeopathic notion of dose. Methods: Male Wistar rats previously intoxicated with sodium arsenate by peritoneal injection were treated with undiluted Ars 30cH and Ars 30cH in 1% solution administered by oral route. Atomic absorption spectroscopy was employed to measure the levels of arsenic retained in the animals as well as the amounts eliminated through urine. Urine samples were collected before and after and during treatment. A positive control group (intoxicated animals and negative control group (non-intoxicated animals were administered only the vehicle used to prepare the medicine (ethanol. Results: The groups treated with undiluted Ars 30cH and Ars 30cH in 1% solution eliminated significant amounts of arsenic through urine when compared to the control groups. The group treated with undiluted Ars 30cH eliminated significantly higher amounts of arsenic than the group treated with the same medicine in 1% solution. Conclusion: These results suggest that undiluted Ars 30cH was more effective than in 1% solution in this experimental model.

  10. Effective enzymatic in situ saccharification of bamboo shoot shell pretreated by dilute alkalic salts sodium hypochlorite/sodium sulfide pretreatment under the autoclave system.

    Science.gov (United States)

    Chong, Gang-Gang; He, Yu-Cai; Liu, Qiu-Xiang; Kou, Xiao-Qin; Huang, Xiao-Jun; Di, Jun-Hua; Ma, Cui-Luan

    2017-10-01

    In this study, dilute alkali salts (0.6% NaClO, 0.067% Na2S) pretreatment at 10% sulfidity under the autoclave system at 120°C for 40min was used for pretreating bamboo shoot shell (BSS). Furthermore, FT-IR, XRD and SEM were employed to characterize the changes in the cellulose structural characteristics (porosity, morphology, and crystallinity) of the pretreated BSS solid residue. After 72h, the reducing sugars and glucose from the enzymatic in situ hydrolysis of 50g/L pretreated BSS in dilute NaClO/Na2S media could be obtained at 31.11 and 20.32g/L, respectively. Finally, the obtained BSS-hydrolysates containing alkalic salt NaClO/Na2S resulted in slightly negative effects on the ethanol production. Glucose in BSS-hydrolysates was fermented from 20.0 to 0.17g/L within 48h, and an ethanol yield of 0.41g/g glucose, which represents 80.1% of the theoretical yield, was obtained. This study provided an effective strategy for potential utilization of BSS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effect of Cr Content on the Properties of Magnetic Field Processed Cr-Doped ZnO-Diluted Magnetic Semiconductors

    Directory of Open Access Journals (Sweden)

    Shiwei Wang

    2012-01-01

    Full Text Available Cr-doped ZnO-diluted magnetic semiconductor (DMS nanocrystals with various Cr contents were synthesized by hydrothermal method under high magnetic field. The result indicated that both the amount of Cr contents and high magnetic field significantly influenced crystal structure, morphology, and magnetic property of Cr-doped ZnO DMSs. When the Cr contents increased from 1 at% to 5 at%, the morphology of grains sequentially changed from flower-like to rod-like and then to the flake-like form. All the samples remained hexagonal wurtzite structure after Cr ions were doped into the ZnO crystal lattice. The Cr doping led to the increasing amount of defects and even enhanced the magnetic property of the matrix materials. All the Cr-doped ZnO DMSs obtained under high magnetic field exhibited obvious ferromagnetic behavior at room temperature. The results have also shown the successful substitution of the Cr3+ ions for the Zn2+ ions in the crystal lattice.

  12. Effect of Aging Temperature on Corrosion Behavior of Sintered 17-4 PH Stainless Steel in Dilute Sulfuric Acid Solution

    Science.gov (United States)

    Szewczyk-Nykiel, Aneta; Kazior, Jan

    2017-07-01

    The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.

  13. Effects of the pulse width on the reactive species production and DNA damage in cancer cells exposed to atmospheric pressure microsecond-pulsed helium plasma jets

    Science.gov (United States)

    Joh, Hea Min; Choi, Ji Ye; Kim, Sun Ja; Kang, Tae Hong; Chung, T. H.

    2017-08-01

    Plasma-liquid and plasma-cell interactions were investigated using an atmospheric pressure dc microsecond-pulsed helium plasma jet. We investigated the effects of the electrical parameters such as applied voltage and pulse width (determined by the pulse frequency and duty ratio) on the production of reactive species in the gas/liquid phases and on the DNA damage responses in the cancer cells. The densities of reactive species including OH radicals were estimated inside the plasma-treated liquids using a chemical probe method, and the nitrite concentration was detected by Griess assay. Importantly, the more concentration of OH resulted in the more DNA base oxidation and breaks in human lung cancer A549 cells. The data are very suggestive that there is strong correlation between the production of OH in the plasmas/liquids and the DNA damage.

  14. The effects of proton irradiation on the microstructural and mechanical property evolution of inconel X-750 with high concentrations of helium

    Science.gov (United States)

    Judge, C. D.; Bhakhri, V.; Jiao, Z.; Klassen, R. J.; Was, G.; Botton, G. A.; Griffiths, M.

    2017-08-01

    Ni-based alloys, which are used in nuclear applications with a high thermal flux, are shown to contain a high density of helium bubbles within the matrix and aligned along grain boundaries, resulting in lost strength and ductility. In the current investigation, material with and without helium is irradiated with protons up to approximately 60 dpa and 18 000 appm helium. With the use of advanced microscopy and nano-indentation, the microstructural evolution and mechanical hardening has been characterized. The addition of helium decreases the rate of disordering of the gamma prime phase, and suppresses void swelling by forming a region with a high density of helium bubbles, and thereby inhibiting the mobility of freely-migrating point defects. Mechanical hardening from proton-irradiation is consistent with neutron-irradiated Inconel X-750 and Alloy 718.

  15. The effect of MC and MN stabilizer additions on the creep rupture properties of helium implanted Fe-25% Ni-15% Cr austenitic alloy

    Science.gov (United States)

    Yamamoto, Norikazu; Nagakawa, Johsei; Shiraishi, Haruki

    1995-10-01

    Helium embrittlement resistance of Fe-25% Ni-15% Cr austenitic alloys with various MX (M = V, Ti, Nb, Zr; X = C, N) stabilizers was compared through post helium implantation creep testing at 923 K. While significant deterioration by helium in terms of creep rupture time and elongation occurred for all materials investigated, the suppression of the deterioration, especially in rupture time, was discerned for the materials in which semi-coherent MC (M = Ti, Ti + Nb, V + Ti) particles were distributed at high density. The material which contains the incoherent M 23C 6 as predominant precipitates seems to be less degraded by helium than those containing the MXs (M = Zr, V; X = C, N), if compared at the same number density of precipitates. Therefore, it is suggested that the high density dispersion of incoherent M 23C 6 as well as semi-coherent Ti containing MC particles would be beneficial in reducing the detrimental helium influences on mechanical properties.

  16. Education in Helium Refrigeration

    Science.gov (United States)

    Gistau Baguer, G. M.

    2004-06-01

    On the one hand, at the end of the time I was active in helium refrigeration, I noticed that cryogenics was stepping into places where it was not yet used. For example, a conventional accelerator, operating at room temperature, was to be upgraded to reach higher particle energy. On the other hand, I was a little bit worried to let what I had so passionately learned during these years to be lost. Retirement made time available, and I came gradually to the idea to teach about what was my basic job. I thought also about other kinds of people who could be interested in such lessons: operators of refrigerators or liquefiers who, often by lack of time, did not get a proper introduction to their job when they started, young engineers who begin to work in cryogenics… and so on. Consequently, I have assembled a series of lessons about helium refrigeration. As the audiences have different levels of knowledge in the field of cryogenics, I looked for a way of teaching that is acceptable for all of them. The course is split into theory of heat exchangers, refrigeration cycles, technology and operation of main components, process control, and helium purity.

  17. Electron g-factor in diluted magnetic semiconductor quantum well with parabolic potential in the presence of Rashba effect and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Babanli, Arif M. [Azerbaijan National Academy of Sciences, Baku (Azerbaijan). Inst. of Physics; Sueleyman Demirel Univ., Isparta (Turkey). Dept. of Physics; Artunc, Ekrem [Sueleyman Demirel Univ., Isparta (Turkey). Dept. of Physics; Kasalak, Turgut F. [Akdeniz Univ., Antalya (Turkey). Dept. of Informatics

    2015-07-01

    We have studied the Rashba spin-orbital effect on a diluted magnetic semiconductor (DMS) quantum well with parabolic potential in the presence of a magnetic field parallel to the z axis, taking into account the Zeeman coupling and the s-d exchange interaction between the carriers and the magnetic ions. We have obtained an analytical expression for the electron energy spectrum, which depends on the magnetic ion concentration, temperature, and strength of magnetic field. By using the obtained energy spectrum, we calculated the electron effective g{sup *}-factor. We have found that effective g{sup *}-factor increases when the magnetic field increases; by increasing the strength of spin-orbit interaction, the electron g{sup *}-factor decreases and by increasing the temperature, the electron g{sup *}-factor increases.

  18. A comparison of an optimised sequential extraction procedure and dilute acid leaching of elements in anoxic sediments, including the effects of oxidation on sediment metal partitioning.

    Science.gov (United States)

    Larner, Bronwyn L; Palmer, Anne S; Seen, Andrew J; Townsend, Ashley T

    2008-02-11

    The effect of oxidation of anoxic sediment upon the extraction of 13 elements (Cd, Sn, Sb, Pb, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As) using the optimised Community Bureau of Reference of the European Commission (BCR) sequential extraction procedure and a dilute acid partial extraction procedure (4h, 1 molL(-1) HCl) was investigated. Elements commonly associated with the sulfidic phase, Cd, Cu, Pb, Zn and Fe exhibited the most significant changes under the BCR sequential extraction procedure. Cd, Cu, Zn, and to a lesser extent Pb, were redistributed into the weak acid extractable fraction upon oxidation of the anoxic sediment and Fe was redistributed into the reducible fraction as expected, but an increase was also observed in the residual Fe. For the HCl partial extraction, sediments with moderate acid volatile sulfide (AVS) levels (1-100 micromolg(-1)) showed no significant difference in element partitioning following oxidation, whilst sediments containing high AVS levels (>100 micromolg(-1)) were significantly different with elevated concentrations of Cu and Sn noted in the partial extract following oxidation of the sediment. Comparison of the labile metals released using the BCR sequential extraction procedure (SigmaSteps 1-3) to labile metals extracted using the dilute HCl partial extraction showed that no method was consistently more aggressive than the other, with the HCl partial extraction extracting more Sn and Sb from the anoxic sediment than the BCR procedure, whilst the BCR procedure extracted more Cr, Co, Cu and As than the HCl extraction.

  19. Molecular properties and intermolecular forces--factors balancing the effect of carbon surface chemistry in adsorption of organics from dilute aqueous solutions.

    Science.gov (United States)

    Terzyk, Artur P

    2004-07-01

    Presented paper recapitulates the results of 6 years' study concerning the effect of carbon surface chemical composition on adsorption of paracetamol, phenol, acetanilide, and aniline from dilute aqueous solutions on carbons. Adsorption-desorption isotherms, enthalpy, and kinetics of adsorption data are shown for the measurements performed at three temperatures (300, 310, and 320 K) at two pH levels (1.5 and 7) on commercial activated carbons. The data were obtained for four carbons: the initial carbon D43/1 and forms modified by applying concentrated HNO3, fuming H2SO4, and gaseous NH3. The modification procedures do not change the porosity in a drastic way, but lead to drastic changes of the composition of carbon surface layer. By applying MOPAC (a general-purpose semiempirical molecular orbital package), the physicochemical constants characterizing the molecules of adsorbates are calculated, including the distribution of the Mulliken charges, the dipole moments and ionization potentials, and the energies of interaction with the unique positive and negative charges. They are correlated with the parameters characterizing the adsorption (and kinetics) process of studied molecules on the mentioned above carbons. The mechanisms proposed in the literature for the description of adsorption from dilute aqueous solutions are verified, and a general mechanism of adsorption is proposed.

  20. Helium anion formation inside helium droplets

    Science.gov (United States)

    Maalouf, Elias Jabbour Al; Reitshammer, Julia; Ribar, Anita; Scheier, Paul; Denifl, Stephan

    2016-07-01

    The formation of He∗- is examined with improved electron energy resolution of about 100 meV utilizing a hemispherical electron monochromator. The work presented provides a precise determination of the three previously determined resonance peak positions that significantly contribute to the formation of He∗- inside helium nanodroplets in the energy range from 20 eV to 29.5 eV. In addition, a new feature is identified located at 27.69 ± 0.18 eV that we assign to the presence of O2 as a dopant inside the droplet. With increasing droplet size a small blue shift of the resonance positions is observed. Also for the relatively low electron currents used in the present study (i.e., 15-70 nA) a quadratic dependence of the He∗- ion yield on the electron current is observed. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  1. Recalculation of data from 1990 to 2010 on the effects of highly diluted thyroxine on the metamorphosis of highland amphibians

    Directory of Open Access Journals (Sweden)

    Peter Christian Endler

    2011-09-01

    Full Text Available Experiments on amphibian metamorphosis can vary considerably in duration. The authors had set themselves the task of defining a generally applicable pooling method for metamorphosis experiments [1]. Normalization with respect to time was done on the assumption that differences in speed of metamorphosis attributable to treatment would override differences in duration between experiments. The problem of artificial differences in variability when comparing and pooling data from several experiments was approached by normalization with respect to time based on the development of both the test and the control animals. The range from 0% to 100% over which the fraction of four-legged animals progresses in the course of an experiment is divided into 10%-intervals and mapped onto a corresponding relative scale. Each measurement is then assigned to the point on the 10%-scale to which it is closest. In this way each reference point is assigned a value giving the number or percentage of four-legged animals at that point. These values are aggregated over all experiments within the test- and control-group. The results of experiments performed over the course of two decades (1990 - 2010 on highland Rana temporaria treated with a homeopathically prepared high dilution of thyroxine (“30x” are presented in full detail based on this normalization method[1]. It was found that differences between treatment groups thus calculated were in line with those obtained with other pooling methods [2]. Thyroxine 30x does slow down metamorphosis in inert highland amphibians. This was observed by 5 researchers in 20 sub-experiments, and it seems to be the most reliable bio-assay found in amphibian research on homeopathy so far2. When experiments were performed with highland animals pretreated by hyperstimulation with molecular thyroxine, slowing down of metamorphosis was again observed (by 3 of 4 researchers in most of 10 sub-experiments.

  2. Effects of feeding time and organic loading in an anaerobic sequencing batch biofilm reactor (ASBBR) treating diluted whey.

    Science.gov (United States)

    Damasceno, Leonardo H S; Rodrigues, José A D; Ratusznei, Suzana M; Zaiat, Marcelo; Foresti, Eugênio

    2007-12-01

    An investigation was carried out on the performance of an anaerobic sequencing batch biofilm reactor (ASBBR) treating diluted cheese whey when submitted to different feed strategies and volumetric organic loads (VOL). Polyurethane foam cubes were used as support for biomass immobilization and stirring was provided by helix impellers. The reactor with a working volume of 3 L treated 2 L of wastewater in 8-h cycles at 500 rpm and 30 degrees C. The organic loads applied were 2, 4, 8 and 12 g COD L(-1) d(-1), obtained by increasing the feed concentration. Alkalinity was supplemented at a ratio of 50% NaHCO(3)/COD. For each organic load applied three feed strategies were tested: (a) batch operation with 8-h cycle; (b) 2-h fed-batch operation followed by 6-h batch; and (c) 4-h fed-batch followed by 4-h batch. The 2-h fed-batch operation followed by 6-h batch presented the best results for the organic loads of 2 and 4 g COD L(-1) d(-1), whereas the 4-h fed-batch operation followed by 4-h batch presented results slightly inferior for the same organic loads and the best results at organic loads of 8 and 12 g COD L(-1) d(-1). The concentration of total volatile acids varied with fill time. For the higher fill times maximum concentrations were obtained at the end of the cycle. Moreover, no significant difference was detected in the maximum concentration of total volatile acids for any of the investigated conditions. However, the maximum values of propionic acid tended to decrease with increasing fill time considering the same organic load. Microbiological analyses revealed the presence of Methanosaeta-like structures and methanogenic hydrogenotrophic-like fluorescent bacilli. No Methanosarcina-like structures were observed in the samples.

  3. Effect of grain size on the behavior of hydrogen/helium retention in tungsten: a cluster dynamics modeling

    Science.gov (United States)

    Zhao, Zhe; Li, Yonggang; Zhang, Chuanguo; Pan, Guyue; Tang, Panfei; Zeng, Zhi

    2017-08-01

    Reducing ion retention in materials is a key factor in the management of tritium inventory, the selection of compatible plasma-facing materials (PFMs), and thus the future development of fusion reactors. In this work, by introducing the cellular sink strength of grain boundaries (GBs) into the cluster dynamics model, the behavior of hydrogen (H) and helium (He) retention in W with different grain sizes is studied under various irradiation conditions systematically. It is found that the H/He retention increases dramatically with decreasing grain size at typical service temperatures, due to the enhancement of H/He capture ratio by GBs. Generally, He retention exists in three forms: He in GBs, in dislocations and in clusters (He m V n , He n and He n I). Our further study shows that, under the irradiation of low energy and low fluence ions, the contribution of He in clusters is negligible. The total He retention is thus dominated by the competing absorption of GBs and dislocations, that is, changing from the dislocation-based to grain boundary-based retention with decreasing grain size. H retention also presents the same behavior. In view of these grain size-related behaviors of H/He retention in W, it is suggested that coarse-grained crystals should be selected for W-based PFMs in practice.

  4. Helium in Earth's early core

    Science.gov (United States)

    Bouhifd, M. A.; Jephcoat, Andrew P.; Heber, Veronika S.; Kelley, Simon P.

    2013-11-01

    The observed escape of the primordial helium isotope, 3He, from the Earth's interior indicates that primordial helium survived the energetic process of planetary accretion and has been trapped within the Earth to the present day. Two distinct reservoirs in the Earth's interior have been invoked to account for variations in the 3He/4He ratio observed at the surface in ocean basalts: a conventional depleted mantle source and a deep, still enigmatic, source that must have been isolated from processing throughout Earth history. The Earth's iron-based core has not been considered a potential helium source because partitioning of helium into metal liquid has been assumed to be negligible. Here we determine helium partitioning in experiments between molten silicates and iron-rich metal liquids at conditions up to 16GPa and 3,000K. Analyses of the samples by ultraviolet laser ablation mass spectrometry yield metal-silicate helium partition coefficients that range between 4.7×10-3 and 1.7×10-2 and suggest that significant quantities of helium may reside in the core. Based on estimated concentrations of primordial helium, we conclude that the early core could have incorporated enough helium to supply deep-rooted plumes enriched in 3He throughout the age of the Earth.

  5. Cryogen-free dilution refrigerator with separate 1K cooling circuit.

    Science.gov (United States)

    Uhlig, Kurt

    2012-06-01

    Helium-3,4 dilution refrigeration is indispensable for low temperature science and engineering as it is the only method which provides temperatures between 0.3 K and 0.005 K for unlimited working periods. Cryogen-free dilution refrigerators are about to replace traditional cryostats with liquid helium precooling. The dilution circuit is always precooled by a two-stage pulse tube cryocooler; therefore, refrigeration capacities are available to the experimentalist at the temperatures of the two stages of the pulse tube cooler, and furthermore at three temperatures of the dilution circuit (~ 0.7 K - still, 0.1 K - heat exchanger, ~ 0.01 K - mixing chamber). However, there are quite a few applications (e.g. quantum information processing or astro-physics) where the cooling power of the still near ~ 1K is not sufficient to cool amplifiers and electric lines. In our work we present a dilution refrigerator where a He-4 cooling circuit has been added in the cryostat to the dilution circuit. This He-4 circuit provides up to 60 mW of refrigeration capacity in addition to the cooling capacity of ~ 30 mW of the still. The dilution circuit and the 1Kcircuit can be operated together or separately.

  6. A closed cycle 3He- 4He dilution refrigerator insensitive to gravity

    Science.gov (United States)

    Martin, Florian; Vermeulen, Gerard; Camus, Philippe; Benoit, Alain

    2010-09-01

    The cooling power and the lifetime of an open cycle dilution refrigerator as developed for the Planck mission (100 nW at 100 mK during 30 months) are limited by the quantity of the helium isotopes carried on the satellite at launch, because the helium mixture obtained after the dilution process is rejected into space. Future space missions require to increase the cooling power and lifetime significantly (1 μW at 50 mK during 5 years). Therefore we are extending the open cycle dilution refrigerator with a helium isotope separator operating at 1 K to close the cycle. A first prototype to demonstrate the principle of the closed cycle dilution refrigerator has been tested and a cooling power of 1 μW at temperatures below 60 mK has been obtained. We present the apparatus and the experimental results and give some elements for its integration in a complete cooling chain. The advantages (continuous operation, absence of magnetic field, less weight) of a closed cycle dilution refrigerator with respect to an adiabatic demagnetization refrigerator are also discussed.

  7. Effects of raw and diluted municipal sewage effluent with micronutrient foliar sprays on the growth and nutrient concentration of foxtail millet in southeast Iran.

    Science.gov (United States)

    Asgharipour, Mohammad Reza; Reza Azizmoghaddam, Hamid

    2012-10-01

    In this study, the effect of irrigation with raw or diluted municipal sewage effluent accompanied by foliar micronutrient fertilizer sprays was examined on the growth, dry matter accumulation, grain yield, and mineral nutrients in foxtail millet plants. The experimental design was a split plot with three irrigation sources: raw sewage, 50% diluted sewage, and well water comprising the main treatments, and four combinations of Mn and Zn foliar sprays as sub-treatments that were applied with four replications. The experiment was conducted in 2009 at the Zabol University research farm in Zabol, south Iran. The applied municipal sewage effluent contained higher levels of micronutrients and macronutrients and exhibited greater degrees of electrical conductivity compared to well water. Because of the small scale of industrial activities in Zabol, the amount of heavy metals in the sewage was negligible (below the limits set for irrigation water in agricultural lands); these contaminants would not be severely detrimental to crop growth. The experimental results indicated that irrigation of plants with raw or diluted sewage stimulates the measured growth and productivity parameters of foxtail millet plants. The concentrations of micronutrients and macronutrients were also positively affected. These stimulations were attributed to the presence of high levels of such essential nutrients as N, P, and organic matter in wastewater. Supplied in sewage water alone, Mn and Zn were not able to raise the productivity of millet to the level obtained using fertilizers at the recommended values; this by itself indicated that additional nutrients from fertilizers are required to obtain higher levels of millet productivity with sewage farming. Despite the differences in nutrient concentrations among the different irrigation water sources, the micronutrient foliar sprays did not affect the concentrations of micronutrients and macronutrients in foxtail millet plants. These results suggested

  8. High Efficiency Regenerative Helium Compressor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Helium plays several critical rolls in spacecraft propulsion. High pressure helium is commonly used to pressurize propellant fuel tanks. Helium cryocoolers can be...

  9. Cavitation in liquid helium

    Energy Technology Data Exchange (ETDEWEB)

    Finch, R. D.; Kagiwada, R.; Barmatz, M.; Rudnick, I.

    1963-11-15

    Ultrasonic cavitation was induced in liquid helium over the temperature range 1.2 to 2.3 deg K, using a pair of identical transducers. The transducers were calibrated using a reciprocity technique and the cavitation threshold was determined at 90 kc/s. It was found that this threshold has a sharp peak at the lambda point, but is, at all temperatures quite low, with an approximate range of 0.001 to 0.01 atm. The significance of the results is discussed. (auth)

  10. Inhibition effect of 2-amino-5-ethyl-1, 3, 4-thiadiazole on corrosion behaviour of austenitic stainless steel type 304 in dilute HCl solution

    Institute of Scientific and Technical Information of China (English)

    Roland T Loto; Cleophas A Loto; Abimbola P Popoola; Tatiana Fedotova

    2016-01-01

    The corrosion inhibition of type 304 austenitic stainless steel by 2-amino-5-ethyl-1, 3, 4-thiadiazole (TTD) compound and the electrochemical behaviour in dilute HCl solution were investigated through potentiodynamic polarization test, mass loss techniques and potential measurements. The results show that the organic derivative is highly effective with a maximum inhibition efficiency of 70.22% from mass loss analysis, while 74.2% is obtained from polarization tests. Observation of the scanning electron micrographs shows the absence of corrosion products due to electrochemical influence of TTD on the surface morphology of the steel. X-ray diffractometry reveals the absence of phase compounds and complexes on the steel samples after exposure. TTD adsorption on the steel surface obeys the Langmuir, Frumkin and Freundlich adsorption isotherms. Corrosion thermodynamic calculations reveal the inhibition mechanism occurs through chemisorption process and results from statistical analysis depict the strong influence of inhibitor concentration on the electrochemical performance of the TTD.

  11. Nano-sized Domain Wall Pinning Effects in Dilute Cu-Doped Perovskite LaMn1-x CuxO3 Manganites

    Institute of Scientific and Technical Information of China (English)

    GAO Tian; CAO Shi-Xun; ZHANG Jin-Cang; YU Li-Ming; KANG Bao-Juan; YUAN Shu-Juan

    2008-01-01

    Magnetic properties of Cu-doped LaMn1-x Cux O3 (x =0.05-0.30) systems are carefully studied in the temperature range of 2-300 K. A visible unexpected drop is observed in the ac susceptibility and the zero-field cooled dc magnetization curves for the dilute x ≤0.10 near 100 K, which depends on the measuring frequency and magnetic field. Measurements on frequency dependence of ac susceptibility, observation of magnetic relaxation, and the existence of critical field indicate that the anomaly can be attributed to the domain wall pinning effects. This is directly proven by the results of ball milled nano-sized powder counterparts compared with the bulk materials.

  12. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis.

    Science.gov (United States)

    Zeng, Jijiao; Tong, Zhaohui; Wang, Letian; Zhu, J Y; Ingram, Lonnie

    2014-02-01

    The structure of lignin after dilute phosphoric acid plus steam explosion pretreatment process of sugarcane bagasse in a pilot scale and the effect of the lignin extracted by ethanol on subsequent cellulose hydrolysis were investigated. The lignin structural changes caused by pretreatment were identified using advanced nondestructive techniques such as gel permeation chromatography (GPC), quantitative (13)C, and 2-D nuclear magnetic resonance (NMR). The structural analysis revealed that ethanol extractable lignin preserved basic lignin structure, but had relatively lower amount of β-O-4 linkages, syringyl/guaiacyl units ratio (S/G), p-coumarate/ferulate ratio, and other ending structures. The results also indicated that approximately 8% of mass weight was extracted by pure ethanol. The bagasse after ethanol extraction had an approximate 22% higher glucose yield after enzyme hydrolysis compared to pretreated bagasse without extraction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Engineering correlations of variable-property effects on laminar forced convection mass transfer for dilute vapor species and small particles in air

    Science.gov (United States)

    Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    A simple engineering correlation scheme is developed to predict the variable property effects on dilute species laminar forced convection mass transfer applicable to all vapor molecules or Brownian diffusing small particle, covering the surface to mainstream temperature ratio of 0.25 T sub W/T sub e 4. The accuracy of the correlation is checked against rigorous numerical forced convection laminar boundary layer calculations of flat plate and stagnation point flows of air containing trace species of Na, NaCl, NaOH, Na2SO4, K, KCl, KOH, or K2SO4 vapor species or their clusters. For the cases reported here the correlation had an average absolute error of only 1 percent (maximum 13 percent) as compared to an average absolute error of 18 percent (maximum 54 percent) one would have made by using the constant-property results.

  14. Effects of composition and helium injection on dislocation loop development in pure FeNiCr alloys under Ni ion irradiation

    Science.gov (United States)

    Kimoto, Takayoshi

    1993-08-01

    Pure Fe35Ni7Cr, Fe45Ni7Cr, Fe40Ni13Cr and Fe45Ni15Cr alloys were irradiated by 4MeV Ni 2+ ions at 948 K to doses of about 0.05, 0.3 and 1.0 dpa without helium injection or with simultaneous helium injection. With increasing Ni content and decreasing Cr content, the diameter of radiation-induced dislocation loops increased, and the dose at which the dislocation loops disappeared to develop into dislocation networks decreased. The diameter of dislocation loops induced by Ni 2+ ions irradiation with simultaneous helium injection was larger than that without helium injection for the Fe35Ni7Cr and Fe45Ni7Cr alloys.

  15. Regimes Of Helium Burning

    CERN Document Server

    Timmes, F X

    2000-01-01

    The burning regimes encountered by laminar deflagrations and ZND detonations propagating through helium-rich compositions in the presence of buoyancy-driven turbulence are analyzed. Particular attention is given to models of X-ray bursts which start with a thermonuclear runaway on the surface of a neutron star, and the thin shell helium instability of intermediate-mass stars. In the X-ray burst case, turbulent deflagrations propagating in the lateral or radial directions encounter a transition from the distributed regime to the flamlet regime at a density of 10^8 g cm^{-3}. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than 10^6 g cm^{-3}. Self-sustained laminar deflagrations travelling in the radial direction cannot exist below this density. Similarily, the planar ZND detonation width becomes larger than the pressure scale height at 10^7 g cm^{-3}, suggesting that a steady-state, self-sustained detonations cannot come into exista...

  16. Helium-3 Microscopic Optical Model Potential Based on Skyrme Interaction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The helium-3 microscopic optical potential is obtained by Green function method through nuclear matter approximation and local density approximation based on the effective Skyrme interaction. The reaction cross

  17. Helium in near Earth orbit

    CERN Document Server

    Alcaraz, J; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Babucci, E; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Béné, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Bizzaglia, S; Blasko, S; Bölla, G; Boschini, M; Bourquin, Maurice; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Casadei, D; Casaus, J; Castellini, G; Cecchi, C; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Chuang, Y L; Cindolo, F; Commichau, V; Contin, A; Cristinziani, M; Da Cunha, J P; Dai, T S; Deus, J D; Dinu, N; Djambazov, L; D'Antone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, Pierre; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Huang, M A; Hungerford, W; Ionica, M; Ionica, R; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kenny, J; Kim, W; Klimentov, A; Kossakowski, R; Koutsenko, V F; Kräber, M H; Laborie, G; Laitinen, T; Lamanna, G; Laurenti, G; Lebedev, A; Lee, S C; Levi, G; Levchenko, P M; Liu, C L; Liu Hong Tao; Lopes, I; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Mourão, A M; Mujunen, A; Palmonari, F; Papi, A; Park, I H; Pauluzzi, M; Pauss, Felicitas; Perrin, E; Pesci, A; Pevsner, A; Pimenta, M; Plyaskin, V; Pozhidaev, V; Pohl, M; Postolache, V; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Röser, U; Roissin, C; Sagdeev, R; Sartorelli, G; Schultz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shoutko, V; Shoumilov, E; Siedling, R; Son, D; Song, T; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Trümper, J E; Ulbricht, J; Urpo, S; Usoskin, I; Valtonen, E; Van den Hirtz, J; Velcea, F; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, Gert M; Vitè, Davide F; Von Gunten, H P; Waldmeier-Wicki, S; Wallraff, W; Wang, B C; Wang, J Z; Wang, Y H; Wiik, K; Williams, C; Wu, S X; Xia, P C; Yan, J L; Yan Lu Guang; Yang, C G; Yang, M; Ye Shu Wei; Yeh, P; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B; Zuccon, P

    2000-01-01

    The helium spectrum from 0.1 to 100 GeV/nucleon was measured by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at altitudes near 380 km. Above the geomagnetic cutoff the spectrum is parameterized by a power law. Below the geomagnetic cutoff a second helium spectrum was observed. In the second helium spectra over the energy range 0.1 to 1.2 GeV/nucleon the flux was measured to be (6.3+or-0.9)*10/sup -3/ (m/sup 2/ sec sr)/sup -1/ and more than ninety percent of the helium was determined to be /sup 3/He (at the 90% CL). Tracing helium from the second spectrum shows that about half of the /sup 3/He travel for an extended period of time in the geomagnetic field and that they originate from restricted geographic regions similar to protons and positrons. (22 refs).

  18. High resolution spectroscopy of six new extreme helium stars

    Science.gov (United States)

    Heber, U.; Jones, G.; Drilling, J. S.

    1986-01-01

    High resolution spectra of six newly discovered extreme helium stars are presented. LSS 5121 is shown to be a spectroscopical twin of the hot extreme helium star HD 160641. A preliminary LTE analysis of LSS 3184 yielded an effective temperature of 22,000 K and a surface gravity of log g = 3.2. Four stars form a new subgroup, classified by sharp-lined He I spectra and pronounced O II spectra, and it is conjectured that these lie close to the Eddington limit. The whole group of extreme helium stars apparently is inhomogeneous with respect to luminosity to mass ratio and chemical composition.

  19. Effects of ionizing radiation on the light sensing elements of the retina. [Structural and physiological effects of carbon, helium, and neon ions on rods and cones of salamanders and mice

    Energy Technology Data Exchange (ETDEWEB)

    Malachowski, M.J.

    1978-07-01

    This investigation was undertaken to quantitate possible morphological and physiological effects of particles of high linear energy transfer on the retina, in comparison with x-ray effects. The particles used were accelerated atomic nuclei of helium, carbon, and neon at kinetic energies of several hundred MeV/nucleon. For morphological studies, scanning and transmission electron microscopy and light microscopy were used. Physiological studies consisted of autoradiographic data of the rate of incorporation of labeled protein in the structures (opsin) of the outer segment of visual cells. Structural changes were found in the nuclei, as well as the inner and outer segments of visual cells, rods and cones. At a low dose of 10 rad, x rays and helium had no statistically significant morphological effects, but carbon and neon beams did cause significant degeneration of individual cells, pointing to the existence of a linear dose--effect relationship. At high doses of several hundred rads, a Pathologic Index determined the relative biological effectiveness of neon against alpha particles to have a value of greater than 6. The severity of effects per particle increased with atomic number. Labeling studies demonstrated a decreased rate of incorporation of labeled proteins in the structural organization of the outer segments of visual rods. The rate of self-renewal of visual rod discs was punctuated by irradiation and the structures themselves were depleted of amino acids. A model of rod discs (metabolic and catabolic) was postulated for correlated early and late effects to high and low doses.

  20. Behaviors of helium in vanadium:Stability, diffusion, vacancy trapping and ideal tensile strength

    Institute of Scientific and Technical Information of China (English)

    Lijiang Gui; Yuelin Liu; Weitian Wang; Yinan Liu; Kameel Arshad; Ying Zhang; Guanghong Lu; Junen Yao

    2013-01-01

    The behaviors of helium in vanadium including stability, diffusion, and its interaction with vacancy as well as its effects on the ideal tensile strength was investigated by a first-principles method. The activation energy barrier of helium was calculated to be 0.09 eV, which is consistent with the experimental result. The results indicated that the vacancy can lead to a directed helium segregation into the vacancy to form a helium cluster since the vacancy provides a “lower atomic and electron density region”as a large driving force for helium binding. It is easy for a mono-vacancy to trap helium and form a HenV complex. The first-principles computational tensile test demonstrates that helium obviously decreased the tensile strength of vanadium.

  1. Effect of Low-Power Helium-Neon Laser Radiation on the Healing of Deep Second-degree Burns in Rats

    Directory of Open Access Journals (Sweden)

    Bayat M

    2004-01-01

    Full Text Available Introduction: This paper presents the results of a study on the effects of two differentdoses of low-power laser irradiation on healing of deep second degree burns. Material and Methods: 60 rats were randomly allocated to one of four groups. Adeep second-degree burn was inflicted in each rat. In the control group (CG burns remained untreated; in Groups LG1 and LG2 the burns were irradiated with low-power Helium Neon laser with energy densities of 1.2 J/cm2 and 2.4 J/cm2 respectively. In the fourth group (G4 the burns were treated topically with 0.2% nitrofurazone cream. The response to treatments was assessed histologically at 7, 16 and 30 days after burning and microbiologically at Day 15. Results: The number of macrophages and the depth of new epidermis was significantly lessin the laser treated groups compared to control and nitrofuorazone treated groups. Staphylococcus epidermidis was found in the wounds of all rats in the laser treated groups. Conclusion: Irradiation of deep second-degree burn with low-power laser produced no beneficial effects on healing of burns.

  2. Diluting ferric carboxymaltose in sodium chloride infusion solution (0.9% w/v) in polypropylene bottles and bags: effects on chemical stability

    OpenAIRE

    Philipp, Erik; Braitsch, Michaela; Bichsel, Tobias; Mühlebach, Stefan

    2015-01-01

    Objectives This study was designed to assess the physicochemical stability of colloidal ferric carboxymaltose solution (Ferinject) when diluted and stored in polypropylene (PP) bottles and bags for infusion. Methods Two batches of ferric carboxymaltose solution (Ferinject) were diluted (500 mg, 200 mg and 100 mg iron in 100 mL saline) in PP bottles or bags under aseptic conditions. The diluted solutions were stored at 30°C and 75%±5% relative humidity (rH) for 72 h, and samples were withdrawn...

  3. Study of Thermal Desorption of Helium from Hydrogenated Zirconium

    Institute of Scientific and Technical Information of China (English)

    SUN Wei-Ming; WEI Yu-Cheng; SHI Li-Qun

    2006-01-01

    @@ A new method prepared for helium and hydrogen co-containing Zr films is presented to simulate aging metal tritides, in which direct current magnetron sputtering with a He/H/Ar mixture is used. The retained amount and depth profiles of helium and hydrogen are determined by elastic recoil detection analysis. Thermal desorption spectrometry is applied to investigate He thermal release and the effect of hydrogen. It is found that the hightemperature peaks with a large mount of helium release obviously shifted toward lower temperature at high hydrogen concentration, especially at the hydride transformation region, and that the shapes of the release peaks also changed due to the additional hydrogen. However, at the low-temperature releasing region the peak intense decreases when phase transformation takes place. The mechanism of helium thermal release and the effect of hydrogen are also discussed.

  4. D{sub 2}O−H{sub 2}O solvent isotope effects on the enthalpies of bicaret hydration and dilution of its aqueous solutions at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Evgeniy V., E-mail: evi@isc-ras.ru [Laboratory of Thermodynamics of Solutions of Non-electrolytes and Biologically Active Substances, G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo (Russian Federation); Batov, Dmitriy V. [Incorporated Physicochemical Center of Solution Researches, G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Str., 153045, Ivanovo (Russian Federation); Ivanovo' s State University of Chemistry and Technology, 7 Sheremetevsky Ave, 153000 Ivanovo (Russian Federation); Gazieva, Galina A.; Kravchenko, Angelina N. [Laboratory of Nitrogen-containing Compounds, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 199119 Moscow (Russian Federation); Abrosimov, Vladimir K. [Laboratory of Thermodynamics of Solutions of Non-electrolytes and Biologically Active Substances, G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo (Russian Federation)

    2014-08-20

    Graphical abstract: - Highlights: • Enthalpies of solution of bicaret (tetraethylglycoluril) in H{sub 2}O and D{sub 2}O were measured. • D{sub 2}O–H{sub 2}O enthalpy-isotopic effect is negative and decreasing with temperature. • Enthalpic coefficients h{sub 22} for pairwise solute–solute interactions were derived. • Quantity of h{sub 22} is negative and becoming the more negative in heavy water. • Prevailingly hydrophobic hydration of bicaret is weakened with rising temperature. - Abstract: The molar enthalpies of solution of bicaret or 2,4,6,8-tetraethyl-2,4,6,8-tatraazabicyclo[3.3.0]octane-3,7-dione in ordinary (H{sub 2}O) and heavy (D{sub 2}O) water at (278.15, 288.15, 298.15, 308.15, and 318.15) K as well as the enthalpies for dilution of its H/D isotopically distinguishable aqueous solutions at 298.15 K were measured calorimetrically. The standard (at infinite dilution) molar enthalpies and heat capacities of solution, and the enthalpic coefficients for pair (h{sub 22}) and triplet (h{sub 222}) interactions between hydrated solute molecules, along with D{sub 2}O–H{sub 2}O solvent isotope effects (IEs) on the studied quantities were computed. The enthalpic effects of bicaret dissolution and corresponding IEs were found to be negative and decreasing in magnitude with increasing temperature. On the contrary, the h{sub 22} and h{sub 222} values as well as IEs on them were found to be positive. These facts indicate that the bicaret hydration being predominantly hydrophobic is enhanced in the D{sub 2}O medium. The hydration behavior of the solute considered was discussed in comparison with that for mebicar or 2,4,6,8-tetramethyl-2,4,6,8-tatraazabicyclo[3.3.0]octane-3,7-dione using the previously obtained data.

  5. Alkali-helium snowball complexes formed on helium nanodroplets.

    Science.gov (United States)

    Müller, S; Mudrich, M; Stienkemeier, F

    2009-07-28

    We systematically investigate the formation and stability of snowballs formed by femtosecond photoionization of small alkali clusters bound to helium nanodroplets. For all studied alkali species Ak = (Na,K,Rb,Cs) we observe the formation of snowballs Ak(+)He(N) when multiply doping the droplets. Fragmentation of clusters Ak(N) upon ionization appears to enhance snowball formation. In the case of Na and Cs we also detect snowballs Ak(2) (+)He(N) formed around Ak dimer ions. While the snowball progression for Na and K is limited to less than 11 helium atoms, the heavier atoms Rb and Cs feature wide distributions at least up to Ak(+)He(41). Characteristic steps in the mass spectra of Cs-doped helium droplets are found at positions consistent with predictions on the closure of the first shell of helium atoms around the Ak(+) ion based on variational Monte Carlo simulations.

  6. Electronic properties of physisorbed helium

    Energy Technology Data Exchange (ETDEWEB)

    Kossler, Sarah

    2011-09-22

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  7. Transferring superfluid helium in space

    Science.gov (United States)

    Kittel, Peter

    1986-01-01

    A simple thermodynamic model of a transfer system for resupplying liquid helium in space is presented, with application to NASA projects including the Space Infrared Telescope Facility, the Large Deployable Reflector, and the Hubble Space Telescope. The relations between different thermodynamic regimes that can be expected in the transfer line are used to study the relative efficiencies of various possible transfer techniques. Low heat leak into the transfer line, particularly at point sources such as the coupling, is necesssary for efficient transfer of liquid helium, and proper selection of supply tank temperature is important during helium resupply.

  8. Temperature effects on the retention of n-alkanes and arenes in helium-squalane gas-liquid chromatography. Experiment and molecular simulation.

    Science.gov (United States)

    Wick, Collin D; Siepman, J Ilja; Klotz, Wendy L; Schure, Mark R

    2002-04-19

    Experiments and molecular simulations were carried out to study temperature effects (in the range of 323 to 383 K) on the absolute and relative retention of n-hexane, n-heptane, n-octane, benzene, toluene and the three xylene isomers in gas-liquid chromatography. Helium and squalane were used as the carrier gas and retentive phase, respectively. Both the experiments and the simulations show a markedly different temperature dependence of the retention for the n-alkanes compared to the arenes. For example, over the 60 K temperature range studied, the Kovats retention index of benzene is found to increase by about 16 or 18+/-10 retention index units determined from the experiments or simulations, respectively. For toluene and the xylenes, the experimentally measured increases are similar in magnitude and range from 14 to 17 retention index units for m-xylene to o-xylene. The molecular simulation data provide an independent method of obtaining the transfer enthalpies and entropies. The change in retention indices is shown to be the result of the larger entropic penalty and the larger heat capacity for the transfer of the alkane molecules.

  9. Effect of discharge polarity on the propagation of atmospheric-pressure helium plasma jets and the densities of OH, NO, and O radicals.

    Science.gov (United States)

    Yonemori, Seiya; Ono, Ryo

    2015-06-01

    The atmospheric-pressure helium plasma jet is an emerging technology for plasma biomedical applications. In this paper, the authors focus on the effect of discharge polarity on propagation of the discharge and the densities of OH, NO, and O radicals. The plasma jet is applied to a glass surface placed on a grounded metal plate. Positive or negative voltage pulses with 25 μs duration, 8 kV amplitude, and 10 kpps repetition rate are used for the plasma jet. The plasma propagation is measured using a short-gated ICCD camera. The light emission intensity of the discharge generated at the rising phase of the voltage pulse is approximately equivalent for both polarities, while that generated during the falling phase is much higher for the negative discharge than the positive one. The shape of the discharge changes with the discharge polarity. The OH, NO, and O densities in the plasma jet are also measured for both polarities. It is found that the OH density is almost the same regardless the discharge polarity. Conversely, the negative discharge produces more O atoms and the positive discharge produces more NO molecules. These results indicate that the polarity of the discharge affects the densities of some reactive species produced in the plasma jet.

  10. Trapping fermionic and bosonic helium atoms

    NARCIS (Netherlands)

    Stas, R.J.W.

    2005-01-01

    This thesis presents experimental and theoretical work performed at the Laser Centre of the Vrije Universiteit in Amsterdam to study laser-cooled metastable triplet helium atoms. Samples containing about 3x10^8 helium atoms-either fermionic helium-3 atoms, bosonic helium-4 atoms or mixtures thereof

  11. Trapping fermionic and bosonic helium atoms

    NARCIS (Netherlands)

    Stas, R.J.W.

    2005-01-01

    This thesis presents experimental and theoretical work performed at the Laser Centre of the Vrije Universiteit in Amsterdam to study laser-cooled metastable triplet helium atoms. Samples containing about 3x10^8 helium atoms-either fermionic helium-3 atoms, bosonic helium-4 atoms or mixtures thereof

  12. Resistor monitors transfer of liquid helium

    Science.gov (United States)

    Hesketh, W. D.

    1966-01-01

    Large resistance change of a carbon resistor at the liquid helium temperature distinguishes between the transfer of liquid helium and gaseous helium into a closed Dewar. The resistor should be physically as small as possible to reduce the heat load to the helium.

  13. Trapping fermionic and bosonic helium atoms

    NARCIS (Netherlands)

    Stas, R.J.W.

    2005-01-01

    This thesis presents experimental and theoretical work performed at the Laser Centre of the Vrije Universiteit in Amsterdam to study laser-cooled metastable triplet helium atoms. Samples containing about 3x10^8 helium atoms-either fermionic helium-3 atoms, bosonic helium-4 atoms or mixtures

  14. Helium Plasma Damage of Low-k Carbon Doped Silica Film: the Effect of Si Dangling Bonds on the Dielectric Constant

    Institute of Scientific and Technical Information of China (English)

    LI Hailing; WANG Qing; BA Dechun

    2014-01-01

    The low-k carbon doped silica film has been modified by radio frequency helium plasma at 5 Pa pressure and 80 W power with subsequent XPS,FTIR and optical emission spectroscopy analysis.XPS data indicate that helium ions have broken Si-C bonds,leading to Si-C scission with C(1s) lost seriously.The Si(2p),O(1s),peak obviously shifted to higher binding energies,indicating an increasingly oxidized Si(2p).FTIR data also show that the silanol formation increased with longer exposure time up to a week.Contrarily,the CH3 stretch,Si-C stretching bond and the ratio of the Si-O-Si cage and Si-O-Si network peak sharply decreased upon exposure to helium plasma.The OES result indicates that monovalent helium ions in plasma play a key role in damaging carbon doped silica film.So it can be concluded that the monovalent helium ions besides VUV photons can break the weak Si-C bonds to create Si dangling bonds and free methyl radicals,and the latter easily reacts with O2 from the atmosphere to generate CO2 and H2O.The bonds change is due to the Si dangling bonds combining with H2O,thereby,increasing the dielectric constant k value.

  15. Corrections to the Nonrelativistic Ground Energy of a Helium Atom

    Institute of Scientific and Technical Information of China (English)

    段一士; 刘玉孝; 张丽杰

    2004-01-01

    Considering the nuclear motion, we present the nonrelativistic ground energy of a helium atom by using a simple effective variational wavefunction with a flexible parameter k. Based on the result, the relativistic and radiative corrections to the nonrelativistic Hamiltonian are discussed. The high precision value of the helium ground energy is evaluated to be -2.90338 a.u. With the relative error 0.00034%.

  16. Seasonal Variation of the Effect of Extremely Diluted Agitated Gibberellic Acid (10e-30) on Wheat Stalk Growth: A Multiresearcher Study

    OpenAIRE

    Peter Christian Endler; Wolfgang Matzer; Christian Reich; Thomas Reischl; Anna Maria Hartmann; Karin Thieves; Andrea Pfleger; Jürgen Hofäcker; Harald Lothaller; Waltraud Scherer-Pongratz

    2011-01-01

    The influence of a homeopathic high dilution of gibberellic acid on wheat growth was studied at different seasons of the year. Seedlings were allowed to develop under standardized conditions for 7 days; plants were harvested and stalk lengths were measured. The data obtained confirm previous findings, that ultrahigh diluted potentized gibberellic acid affects stalk growth. Furthermore, the outcome of the study suggests that experiments utilizing the bioassay presented should best be performed...

  17. Effect of P-anion codoping on the Curie temperature of GaMnAs diluted magnetic semiconductors

    Science.gov (United States)

    Bouzerar, Richard; Máca, Frantisek; Kudrnovský, Josef; Bergqvist, Lars

    2010-07-01

    Recent measurements of GaMnAs alloy samples with a very small content of P atoms prepared by ion-implanted pulsed laser melting (II-PLM) [Phys. Rev. Lett. 101, 087203 (2008)10.1103/PhysRevLett.101.087203] have shown surprisingly low Curie temperature as compared to undoped samples. An explanation based on a possible metal-insulator transition at constant Mn doping was proposed based on a dramatic increase of the sample resistivity. However, no quantitative calculations supporting such a picture as concerns the Curie temperature were shown. We will present a parameter-free theory of the Curie temperature (TC) which assumes that possible defects due to the II-PLM such as, e.g., space inhomogeneities, vacancies, clustering, and also conventional compensating defects will reduce the sample hole concentration. Their effect was first qualitatively modeled in the framework of the rigid-band model by adjusting the system Fermi level due to the reduction of the carrier concentration which is considered as a parameter of the theory. In addition, the effect of possible conventional compensating defects, such as, e.g., As and P antisites or P and Mn interstitials was also investigated. TC ’s are calculated within the self-consistent local RPA (SCLRPA) and Monte Carlo (MC) simulations. We will demonstrate that a reasonable agreement of calculated and measured TC can be obtained for reduced hole concentrations which are known to exist in GaMnAs samples. As concerns possible specific defects, we have shown that P and Mn interstitials are particularly effective in the reduction of the sample Curie temperature.

  18. Effect of simultaneous cooling on microwave-assisted wet digestion of biological samples with diluted nitric acid and O{sub 2} pressure

    Energy Technology Data Exchange (ETDEWEB)

    Bizzi, Cezar A. [Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul 97105-900 (Brazil); Nóbrega, Joaquim A. [Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905 (Brazil); Barin, Juliano S. [Departamento de Tecnologia e Ciência dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul 97105-900 (Brazil); Oliveira, Jussiane S.S.; Schmidt, Lucas; Mello, Paola A. [Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul 97105-900 (Brazil); Flores, Erico M.M., E-mail: ericommf@gmail.br [Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul 97105-900 (Brazil)

    2014-07-21

    Highlights: • Simultaneously cooling during microwave heating for improving digestion efficiency. • Maximum MW power delivered into cavity, improving the temperature in liquid phase. • Temperature gradient increases regeneration reaction of HNO{sub 3} in O{sub 2} rich atmosphere. • Digestion of several matrices using diluted HNO{sub 3} combined with O{sub 2} pressure. - Abstract: The present work evaluates the influence of vessel cooling simultaneously to microwave-assisted digestion performed in a closed system with diluted HNO{sub 3} under O{sub 2} pressure. The effect of outside air flow-rates (60–190 m{sup 3} h{sup −1}) used for cooling of digestion vessels was evaluated. An improvement in digestion efficiency caused by the reduction of HNO{sub 3} partial pressure was observed when using higher air flow-rate (190 m{sup 3} h{sup −1}), decreasing the residual carbon content for whole milk powder from 21.7 to 9.3% (lowest and highest air flow-rate, respectively). The use of high air flow-rate outside the digestion vessel resulted in a higher temperature gradient between liquid and gas phases inside the digestion vessel and improved the efficiency of sample digestion. Since a more pronounced temperature gradient was obtained, it contributed for increasing the condensation rate and thus allowed a reduction in the HNO{sub 3} partial pressure of the digestion vessel, which improved the regeneration of HNO{sub 3}. An air flow-rate of 190 m{sup 3} h{sup −1} was selected for digestion of animal fat, bovine liver, ground soybean, non fat milk powder, oregano leaves, potato starch and whole milk powder samples, and a standard reference material of apple leaves (NIST 1515), bovine liver (NIST 1577) and whole milk powder (NIST 8435) for further metals determination by inductively coupled plasma atomic emission spectroscopy (ICP-OES). Results were in agreement with certified values and no interferences caused by matrix effects during the determination step

  19. Assessing potential effects of highway runoff on receiving-water quality at selected sites in Oregon with the Stochastic Empirical Loading and Dilution Model (SELDM)

    Science.gov (United States)

    Risley, John C.; Granato, Gregory E.

    2014-01-01

    In 2012, the U.S. Geological Survey and the Oregon Department of Transportation began a cooperative study to demonstrate use of the Stochastic Empirical Loading and Dilution Model (SELDM) for runoff-quality analyses in Oregon. SELDM can be used to estimate stormflows, constituent concentrations, and loads from the area upstream of a stormflow discharge site, from the site of interest and in the receiving waters downstream of the discharge. SELDM also can be used to assess the potential effectiveness of best management practices (BMP) for mitigating potential effects of runoff in receiving waters. Nominally, SELDM is a highway-runoff model, but it is well suited for analysis of runoff from other land uses as well. This report provides case studies and examples to demonstrate stochastic-runoff modeling concepts and to demonstrate application of the model. Basin characteristics from six Oregon highway study sites were used to demonstrate various applications of the model. The highway catchment and upstream basin drainage areas of these study sites ranged from 3.85 to 11.83 acres and from 0.16 to 6.56 square miles, respectively. The upstream basins of two sites are urbanized, and the remaining four sites are less than 5 percent impervious. SELDM facilitates analysis by providing precipitation, pre-storm streamflow, and other variables by region or from hydrologically similar sites. In Oregon, there can be large variations in precipitation and streamflow among nearby sites. Therefore, spatially interpolated geographic information system data layers containing storm-event precipitation and pre-storm streamflow statistics specific to Oregon were created for the study using Kriging techniques. Concentrations and loads of cadmium, chloride, chromium, copper, iron, lead, nickel, phosphorus, and zinc were simulated at the six Oregon highway study sites by using statistics from sites in other areas of the country. Water‑quality datasets measured at hydrologically similar

  20. Cost-effective Chlorella biomass production from dilute wastewater using a novel photosynthetic microbial fuel cell (PMFC).

    Science.gov (United States)

    Ma, Jinxing; Wang, Zhiwei; Zhang, Junyao; Waite, T David; Wu, Zhichao

    2017-01-01

    While microalgae have been suggested as a promising substitute to conventional fossil fuels, their cost effective cultivation and harvesting constitutes a major challenge. In the work described here, a novel photosynthetic microbial fuel cell (PMFC) in which a stainless steel mesh with biofilm formed on it serves as both the cathode and filtration material has been developed. Results of this study reveal that, in addition to inducing oxygen reduction reactions under illumination, the biocathode is effective in preventing the washout of algae during continuous operation, resulting in retained biomass concentrations reaching 3.5-6.5 g L(-1). The maximum output current density reached ∼200 mA m(-2) under irradiation, which is comparable with recent PMFC studies. Microbial diversity analyses targeting 16S and 18S rRNA genes indicated that the eukaryotic species belonging to the genus Chlorella was able to sustain its community dominance (>96%) over other competing species over the course of the studies. In the absence of catalysts such as Pt, a consortium of photosynthetic organisms including plant growth-promoting bacteria such as Azospirillum and Rhizobium were overrepresented in the biofilm, with these organisms most likely contributing to cathodic electron transfer. Energy flow analysis suggested that the PMFC system held the potential to achieve theoretical energy balance in simultaneous algae production and wastewater treatment.

  1. Temperature effects on quasi-isolated conjugated polymers as revealed by temperature-dependent optical spectra of 16-mer oligothiophene diluted in a sold matrix.

    Science.gov (United States)

    Kanemoto, Katsuichi; Akai, Ichiro; Sugisaki, Mitsuru; Hashimoto, Hideki; Karasawa, Tsutomu; Negishi, Nobukazu; Aso, Yoshio

    2009-06-21

    Temperature dependences (4-300 K) of photoluminescence (PL) and absorption spectra of 16-mer oligothiophene (16 T) extremely diluted in polypropylene (PP) have been investigated in order to clarify temperature effects on quasi-isolated conjugated polymers. The PL and absorption spectra are found to blueshift with increasing temperature. The reason for the blueshift is discussed by comparing models based on the refractive index of the solvent (PP) and on the thermal conformational change of 16 T. The blueshift is concluded to result from the thermal conformational change. Time-resolved PL spectra show a redshift of PL band following photoexcitation (spectral migration). The amount of the migration is shown to increase with increasing temperature. The increased migration is concluded to be due to the thermal conformational change. The temperature dependence of the effective conjugation length (ECL) of 16 T is calculated for the absorption and PL transitions. The calculation suggests that ECL is reduced at room temperature to two-thirds of the intrinsic chain length. The activation energy of the conformational change is estimated to be 22.4 meV from the temperature dependence of ECL. We demonstrate that the steady-state PL spectra are well reproduced by simple Franck-Condon analyses using a single Huang-Ryes factor over a wide temperature range. The analyses reveal features of temperature dependence in important spectral parameters such as the Stokes shift, linewidth, and Huang-Ryes factor.

  2. Band-Structure Effects in the High-Field Magnetization of Pd and Dilute Pd-Rh and Pd-Ag Alloys

    DEFF Research Database (Denmark)

    Andersen, O. Krogh

    1970-01-01

    be derived solely from the band density of states N(E). The previously reported Pd band-structure calculations, which were in excellent agreement with the de Haas-van Alphen data, have been extended to yield DeltaB(sigma) for Pd and, using the rigid band model, also for dilute Pd[Single Bond]Rh and Pd......From Stoner theory we show that the magnetic field-vs-spin magnetization has the form B(sigma)=sigma/chi(0)+DeltaB(sigma). The low-field susceptibility chi(0) is exchange-enhanced but, if the effective exchange potential does not depend on magnetization, the deviation from linearity DeltaB may......; moreover, the experimental data have previously been analyzed according to a power series expansion of sigma(B) that neither separates the effect of band structure from that of exchange enhancement nor applies when van Hove singularities are important. Our formulation suggests a way of analyzing...

  3. Chemically sprayed ZnO:F thin films deposited from diluted solutions: Effect of the time of aging on physical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Tirado-Guerra, S. [Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional, Apdo. Postal 75-544, Mexico D. F., 07300 (Mexico); de la L. Olvera, M.; Maldonado, A. [Departamento de Ingenieria Electrica, SEES, CINVESTAV-IPN, Apdo. Postal 14-740, Mexico D. F., 07000 (Mexico); Castaneda, L. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, 04510, D.F. (Mexico)

    2006-09-22

    Transparent and conductive fluorine-doped zinc oxide (ZnO:F) thin films were deposited on glass substrates by the chemical-spray technique starting from a diluted solution of zinc acetate and hydrofluoric acid. The effect of the aging time of the starting solution on the electrical, structural, morphological and optical characteristics of ZnO:F thin films was observed and analyzed. The resistivity of the ZnO:F thin films decreases as a more aged solution is used, reaching a saturation value of 6x10{sup -2}{omega}cm. X-ray diffraction reveals that the films are polycrystalline in nature with a (100) preferential growth in almost all the cases. High-resolution scanning electron microscopy clearly reveals that the films are composed of nanoparticles of spherical shape, whose average diameter is in the order of 15nm that matches well with the crystallite size calculated from X-ray diffraction. This result shows that fluorine incorporation effectively inhibits grain growth. This, in turn, produces a porous structure. Also, the increase in the time of aging enhances slightly the transmittance of the films. (author)

  4. Effect of pretreatment severity on accumulation of major degradation products from dilute acid pretreated corn stover and subsequent inhibition of enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Um, Byung-Hwan; van Walsum, G Peter

    2012-09-01

    The concept of reaction severity, which combines residence time and temperature, is often used in the pulp and paper and biorefining industries. The influence of corn stover pretreatment severity on yield of sugar and major degradation products and subsequent effects on enzymatic cellulose hydrolysis was investigated. The pretreatment residence time and temperature, combined into the severity factor (Log R(o)), were varied with constant acid concentration. With increasing severity, increasing concentrations of furfural and 5-hydroxymethylfurfural (5-HMF) coincided with decreasing yields of oligosaccharides. With further increase in severity factor, the concentrations of furans decreased, while the formation of formic acid and lactic acid increased. For example, from severity 3.87 to 4.32, xylose decreased from 6.39 to 5.26 mg/mL, while furfural increased from 1.04 to 1.33 mg/mL; as the severity was further increased to 4.42, furfural diminished to 1.23 mg/mL as formate rose from 0.62 to 1.83 mg/mL. The effects of dilute acid hydrolyzate, acetic acid, and lignin, in particular, on enzymatic hydrolysis were investigated with a rapid microassay method. The microplate method gave considerable time and cost savings compared to the traditional assay protocol, and it is applicable to a broad range of lignocellulosic substrates.

  5. Heterologous expression of tyrosinase recapitulates the misprocessing and mistrafficking in oculocutaneous albinism type 2: effects of altering intracellular pH and pink-eyed dilution gene expression.

    Science.gov (United States)

    Ni-Komatsu, Li; Orlow, Seth J

    2006-03-01

    The processing and trafficking of tyrosinase, a melanosomal protein essential for pigmentation, was investigated in a human epithelial 293 cell line that stably expresses the protein. The effects of the pink-eyed dilution (p) gene product, in which mutations result in oculocutaneous albinism type 2 (OCA2), on the processing and trafficking of tyrosinase in this cell line were studied. The majority of tyrosinase was retained in the endoplasmic reticulum-Golgi intermediate compartment and the early Golgi compartment in the 293 cells expressing the protein. Coexpression of p could partially correct the mistrafficking of tyrosinase in 293 cells. Tyrosinase was targeted to the late endosomal and lysosomal compartments after treatment of the cells with compounds that correct the tyrosinase mistrafficking in albino melanocytes, most likely through altering intracellular pH, while the substrate tyrosine had no effect on the processing of tyrosinase. Remarkably, this heterologous expression system recapitulates the defective processing and mistrafficking of tyrosinase observed in OCA2 albino melanocytes and certain amelanotic melanoma cells. Coexpression of other melanosomal proteins in this heterologous system may further aid our understanding of the details of normal and pathologic processing of melanosomal proteins.

  6. First-principles study of the threshold effect in the electronic stopping power of LiF and SiO2 for low-velocity protons and helium ions

    Science.gov (United States)

    Mao, Fei; Zhang, Chao; Dai, Jinxia; Zhang, Feng-Shou

    2014-02-01

    Nonadiabatic dynamics simulations are performed to investigate the electronic stopping power of LiF and SiO2-cristobalite-high crystalline thin films when protons and helium ions are hyperchanneling in the axis. In this theoretical framework, ab initio time-dependent density-functional theory calculations for electrons are combined with molecular dynamics simulations for ions in real time and real space. The energy transfer process between the ions and the electronic subsystem of LiF and SiO2 nanostructures is studied. The velocity-proportional stopping power of LiF and SiO2 for protons and helium ions is predicted in the low-energy range. The measured velocity thresholds of protons in LiF and SiO2, and helium ions in LiF are reproduced. The convergence of the threshold effect with respect to the separation of grid points is confirmed. The underlying physics of the threshold effect is clarified by analyzing the conduction band electron distribution. In addition, the electron transfer processes between the projectile ions and solid atoms in hyperchanneling condition are studied, and its effects on the energy loss is investigated.

  7. 燃料稀释对传统型和高预热空气稀释型燃烧炉性能的影响的数值研究%Numerical Investigation of Fuel Dilution Effects on the Performance of the Conventional and the Highly Preheated and Diluted Air Combustion Furnaces

    Institute of Scientific and Technical Information of China (English)

    Kiomars Abbasi Khazaei; Ali Asghar Hamidi; Masoud Rahimi

    2009-01-01

    This numerical study investigates the effects of using a diluted fuel (50% natural gas and 50% N_2) in an industrial furnace under several cases of conventional combustion (air with 21% O_2 at 300 and 1273 K) and the highly preheated and diluted air (1273 K with 10% O_2 and 90% N_2) combustion (HPDAC) conditions using an in-house computer program. It was found that by applying a combined diluted fuel and oxidant instead of their un-combined and/or undiluted states, the best condition is obtained for the establishment of HPDAC's main unique features. These features are low mean and maximum gas temperature and high radiation/total heat transfer to gas and tubes; as well as more uniformity of theirs distributions which results in decrease in NO_x pollutant formation and increase in furnace efficiency or energy saving. Moreover, a variety of chemical flame shape, the process fluid and tubes walls temperatures profiles, the required regenerator efficiency and finally the concentration and velocity patterns have been also qualitatively/quantitatively studied.

  8. Confluence Model or Resource Dilution Hypothesis?

    DEFF Research Database (Denmark)

    Jæger, Mads

    Studies on family background often explain the negative effect of sibship size on educational attainment by one of two theories: the Confluence Model (CM) or the Resource Dilution Hypothesis (RDH). However, as both theories – for substantively different reasons – predict that sibship size should...

  9. Daylong Effect of Rinsing with Water Diluted Antiplaque®Toothpaste Combined with Toothbrushing on Volatile Sulphur Compound Levels

    Directory of Open Access Journals (Sweden)

    Anandina Irmagita

    2013-07-01

    Full Text Available Halitosis, complained by most adult population, is a common oral condition. About 8%% of the cases happened because of the microbia activity in the oral cavity that produces Volatile Sulphur Compound (VSC which has unpleasant odour. Daily oral prophylaxis can reduce the oral VSC levels. Objective: to determine the daylong effect of Antiplque® toothpaste in daily oral prophylaxis: as dentrifice for tooth brushing and, in modified way, as oral rinse; on the VSC level. Methods: a double blind, clinical experimental study, involving 120 subjects with or without halitosis complain, divided in 2 treatment groups (oral rinse group and the combination of tooth brushing and oral rinse group, using Antiplaque® toothpaste and 2 control groups (same procedure using placebo toothpaste. The daylong VSC levels measure with halimeter were taken twice, in the afternoon day I and day II. Results: there are significant reduction of daylong VSC levels (Wilcoxon signed rank test P<0.0%, but not in the treatment groups using the placebo toothpaste. The result on conbination of tooth brushing and oral rinse using Antiplaque® toothpaste are significant compared to the oral rinse treatment using Antiplaque® toothpaste alone (Mann Whitney, P<0.05. Conclusion: tooth brushing with Antiplaque® toothpaste combined with oral rinse using the modified Antiplaque® toothpaste can significantly reduce daylong VSC levels.DOI: 10.14693/jdi.v16i2.94

  10. The effect of Ce dilution on the ferromagnetic ordering and Kondo behavior of CeRuPO

    Science.gov (United States)

    Noorafshan, M.; Nourbakhsh, Z.

    2017-03-01

    The structural, electronic and magnetic properties and Kondo behavior of Ce1-xLax RuPO (x=0, 0.25, 0.5, 0.75 and 1) alloys are investigated using density functional theory by utilizing Wien2k package. The exchange-correlation potential is treated with the generalized gradient approximation (GGA). Moreover, the GGA+U approach (where U is the Hubbard correlation term) is employed to treat the f-electrons properly. We also present a comparative study between the electronic structure and magnetic properties of these alloys within GGA and GGA+U approaches. The calculated lattice parameters and bulk moduli of these alloys as a function of x are in the best agreement with Vegard's linear rule. The total and partial electron density of states and linear coefficient of electronic specific heat of these alloy within GGA and GGA+U are investigated and compared. The effect of La substitution on the Kondo behavior of CeRuPO compound is investigated.

  11. Effects of chronic exposure to diluted automotive exhaust gas on the CNS of normotensive and hypertensive rats.

    Science.gov (United States)

    Roggendorf, W; Thron, N L; Ast, D; Köhler, P R

    1981-01-01

    Regarding the potential impact of traffic-born air pollutants on public health, attention during the last years has been increasingly focused on the possible effects in high-risk groups of the population. In order to evaluated this point further, the combined influence of both, chronic arterial hypertension and long-time exhaust gas exposure on the CNS has been studied. Both, normotensive Wistar) and spontaneously hypertensive rats (SHR) of either sex were exposed 5 X 8 hours per week for up to 18 months to atmospheres polluted by the emissions of an idling Otto engine with CO concentrations held constant at about 0,90 and 250 ppm, respectively. Biochemical data, body weight, and blood pressure were checked regularly. Characteristic histomorphological findings in the non-exposed SHR brains were hyalinosis and hyperplasia of intracerebral arterioles and -- in some cases -- small focal hemorrhages and infarcts. In the exposed SHR brains, large infarcts of the hemisphere and in the basal ganglia were found, which possibly corresponds to the increase of the mortality rate in SHR. We assume that the increase hematocrit plays an important role in the disturbance of microcirculation of the CNS.

  12. Turbine flowmeter for liquid helium with the rotor magnetically levitated

    Science.gov (United States)

    Rivetti, A.; Martini, G.; Goria, R.; Lorefice, S.

    A turbine flowmeter with no mechanical contact between rotor and body is described, to be used as a reference standard in our liquid helium flow rate calibration facility. The absence of contact, zeroing the bearings friction factor, ensures a good measurement repeatability, even at very low liquid helium flow rate values. The rotor is magnetically suspended by the Meissner effect: at liquid helium temperatures two magnetic fields generate sustaining forces against the surface of the two rotor ends, which are made of niobium. Due to the repulsive nature of the acting forces, the rotor equilibrium is intrinsically stable and no external electronics are required for its levitation. A particular configuration of the superconducting windings and of the rotor ends allow the rotor to levitate and hold good axial and radial stability. A detailed description of the solutions adopted for the realization of the prototype and the operation conditions are reported. The first results, made with the absolute liquid helium calibration facility, are shown.

  13. Path integral molecular dynamics combined with discrete-variable-representation approach: the effect of solvation structures on vibrational spectra of Cl 2 in helium clusters

    Science.gov (United States)

    Takayanagi, Toshiyuki; Shiga, Motoyuki

    2002-08-01

    The structures and vibrational frequencies of Cl 2-helium clusters have been studied using the path integral molecular dynamics method combined with the discrete-variable-representation approach. It is found that the Cl 2-helium clusters form clear shell structures comprised of rings around the Cl 2 bond. The vibrational frequencies calculated show a monotonically increasing red shift with an increase in cluster size. It can be concluded that the first solvation shell and its density around T-shaped configurations play the most important role in the observed frequency shifts.

  14. Cluster dynamics modeling of accumulation and diffusion of helium in neutron irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.G.; Zhou, W.H.; Huang, L.F. [Key Laboratory for Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zeng, Z., E-mail: zzeng@theory.issp.ac.cn [Key Laboratory for Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Ju, X. [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2012-12-15

    A cluster dynamics model based on rate theory has been developed to study the accumulation and diffusion processes of helium in tungsten under synergistic effects of helium implantation and neutron irradiation. By including self-interstitial atoms, vacancies and helium atoms as well as their clusters and further using more reliable parameters, the evolution of different types of defects with time and depth is investigated. The calculated results are comparable with experiments. The cases of helium plasma corresponding to the first wall and to the divertor are taken into account. The accumulation and diffusion behaviors of helium in tungsten are illustrated by the time and depth dependence of helium concentration in tungsten with or without the neutron irradiation, the contribution of different types of helium clusters/complexes to helium concentration and the depth profiles of different mobile defects and helium-vacancy complexes. It is concluded that the competition of trapping and diffusion effects dominates the behavior of helium atoms in tungsten for these two typical cases. Understanding these mechanisms is important for estimating damages to the plasma-facing materials.

  15. Effect of dilute alkaline pretreatment on the conversion of different parts of corn stalk to fermentable sugars and its application in acetone-butanol-ethanol fermentation.

    Science.gov (United States)

    Cai, Di; Li, Ping; Luo, Zhangfeng; Qin, Peiyong; Chen, Changjing; Wang, Yong; Wang, Zheng; Tan, Tianwei

    2016-07-01

    To investigate the effect of dilute alkaline pretreatment on different parts of biomass, corn stalk was separated into flower, leaf, cob, husk and stem, which were treated by NaOH in range of temperature and chemical loading. The NaOH-pretreated solid was then enzymatic hydrolysis and used as the substrate for batch acetone-butanol-ethanol (ABE) fermentation. The results demonstrated the five parts of corn stalk could be used as potential feedstock separately, with vivid performances in solvents production. Under the optimized conditions towards high product titer, 7.5g/L, 7.6g/L, 9.4g/L, 7g/L and 7.6g/L of butanol was obtained in the fermentation broth of flower, leaf, cob, husk and stem hydrolysate, respectively. Under the optimized conditions towards high product yield, 143.7g/kg, 126.3g/kg, 169.1g/kg, 107.7g/kg and 116.4g/kg of ABE solvent were generated, respectively.

  16. Effects of oxygen vacancy location on the electronic structure and spin density of Co-doped rutile TiO2 dilute magnetic semiconductors

    Institute of Scientific and Technical Information of China (English)

    Sun Yun-Bin; Zhang Xiang-Qun; Li Guo-Ke; Cheng Zhao-Hua

    2012-01-01

    According to density functional theory (DFT) using the plane wave base and pseudo-potential,we investigate the effects of the specific location of oxygen vacancy (V(O)) in a (Ti,Co)O6 distorted octahedron on the spin density and magnetic properties of Co-doped rutile TiO2 dilute magnetic semiconductors.Our calculations suggest that the VO location has a significant influence on the magnetic moment of individual Co cations.In the case where two Co atoms are separated far away from each other,when the V(O) is located at the equatorial site of a Co-contained octahedron,the ground state of the two Co cations is d6(t(32)g ↑,(t32)g ↓) without any magnetic moment.However,if the V(O) is located at the apical site,these two Co sites have different ground states and magnetic moments.The spin densities are also observed to be modified by the exchange coupling between the Co cations and the location of V(O).Some positive spin polarization is induced around the adjacent O ions.

  17. Chain length effect on dynamical structure of poly(vinyl pyrrolidone)–polar solvent mixtures in dilute solution of dioxane studied by microwave dielectric relaxation measurement

    Indian Academy of Sciences (India)

    R J Sengwa; Sonu Sankhila

    2006-08-01

    Dielectric relaxation study of the binary mixtures of poly(vinyl pyrrolidone) (PVP) (Mw = 24000, 40000 and 360000 g mol-1) with ethyl alcohol (EA) and poly(ethylene glycol)s (PEGs) (Mw = 200 and 400 g mol-1) in dilute solutions of dioxane were carried out at 10.1 GHz and 35°} C. The relaxation time of PVP–EA mixtures was interpreted by the consideration of a wait-and-switch model in the local structure of self-associated ethyl alcohol molecules and also the PVP chain length as a geometric constraint for the reorientational motion of ethyl alcohol molecules. The formation of complexes and effect of PVP chain length on the molecular dynamics, chain flexibility and stretching of PEG molecules in PVP–PEG mixtures were explored from the comparative values of dielectric relaxation time. Further, relaxation time values in dioxane and benzene solvent confirm the viscosity independent molecular dynamics in PVP–EA mixtures but the values vary significantly with the non-polar solvent environment.

  18. Effects of Gravity on the Double-Diffusive Convection during Directional Solidification of a Non-Dilute Alloy with Application to the HgCdTe

    Science.gov (United States)

    Bune, Andris; Gillies, Donald; Lehoczky, Sandor

    1999-01-01

    General 2-D and 3-D finite element model of non-dilute alloy solidification was used to simulate growth of HgCdTe in terrestrial and microgravity conditions. Parametric research was undertaken to investigate effects of gravity level, gravity vector orientation and growth velocity on the pattern of melt convection, shape of crystal/melt interface and radial thermal gradient. Verification of the model was undertaken by comparison with previously published results. For low growth velocities plane front solidification occurs. The location and the shape of the interface was determined using melting temperatures obtained from the HgCdTe liquidus curve. The low thermal conductivity of the solid HgCdTe causes thermal short circuit through the ampoule walls, resulting in curved isotherms in the vicinity of the interface. Double-diffusive convection in the melt is caused by radial temperature gradients and by material density inversion with temperature. Cooling from below and the rejection at the solid-melt interface of the heavier HgTe-rich solute each tend to reduce convection. Because of these complicating factors dimensional rather then non-dimensional modeling was performed. For gravity levels higher then 10(exp -7) of terrestrial one it was found that the maximum convection velocity is extremely sensitive to gravity vector orientation and can be reduced at least by 50% by choosing proper orientation of the ampoule. The predicted interface shape is in agreement with one obtained experimentally by quenching.

  19. Effects of Gravity on the Double-Diffusive Convection During Directional Solidification of a Non-Dilute Alloy with Application to HgCdTe

    Science.gov (United States)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1999-01-01

    A general 2-D and 3-D finite element model of non-dilute alloy solidification was used to simulate growth of HgCdTe in terrestrial and microgravity conditions. Verification of the 3-D model was undertaken by comparison with previously published results on convection in an inclined cylinder. For low growth velocities, plane front solidification occurs. The location and the shape of the interface were determined using melting temperatures obtained from the HgCdTe liquidus curve. The low thermal conductivity of the solid HgCdTe causes a thermal short circuit through the ampoule walls, resulting in curved isotherms in the vicinity of the interface. Double-diffusive convection in the melt is caused by radial temperature gradients and by material density inversion due to the combined effects of composition and temperature. Cooling from below and the rejection at the solid-melt interface of the heavier HgTe-rich solute each tend to reduce convection. Because of these complicating factors, dimensional rather than non-dimensional modeling was performed. the predicted interface shape is in agreement with one obtained experimentally by quenching.

  20. Effect of dilution rate and light intensity on growth of a diatom Chaetoceros calcitrans under continuous cultivation in flat-panel photobioreactor

    Directory of Open Access Journals (Sweden)

    Kutako, M.

    2006-09-01

    Full Text Available Batch and continuous cultures of a marine diatom Chaetoceros calcitrans were conducted in flatpanel photobioreactors. The photobioreactor was made of transparent plastic sheet filled with 5.5 L of Guillard's F/2 culture medium (prepared with 30 PSU salinity seawater. The photobioreactor was continuously illuminated at 16 µmol photon m-2 s-1 with fluorescence lamps and operated under ambient room temperature (26-38ºC. With batch cultivation, C. calcitrans had the maximum cell density of 160x104 cells ml-1 and maximum specific growth rate of 1.03 day-1. During continuous cultivation, addition of fresh medium and removal of diatom cells were conducted using a peristaltic pump. The dilution rate was varied from 0.52 to 1.97 day-1 in 12 steps. The results showed that the highest cell density of 193x104 cells ml-1 was obtained at the lowest dilution rate (0.52 day-1. When the dilution rate was increased to 1.97 day-1, cell density of the diatom at steady state was decreased to 6x104 cells ml-1. However, the highest productivity was obtained at 0.98 day-1 dilution rates which provided cell productivity of 132x104 cell ml-1 day-1. In addition, increase in light intensity from 16 to 40 µmol photon m-2 s-1 resulted in an increase of the diatom growth and productivity, especially at low dilution rate. With this study, the recommended dilution rate for continuous cultivation of C. calcitrans was approximately 0.8 day-1. At this dilution rate, cell productivity of approximately 112x104 cells ml-1 day-1 or cell dry weight productivity of 64 mg L-1 day-1 could be expected.

  1. Helium segregation on surfaces of plasma-exposed tungsten.

    Science.gov (United States)

    Maroudas, Dimitrios; Blondel, Sophie; Hu, Lin; Hammond, Karl D; Wirth, Brian D

    2016-02-17

    We report a hierarchical multi-scale modeling study of implanted helium segregation on surfaces of tungsten, considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations based on a reliable interatomic interaction potential, including molecular-statics simulations to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile He n (1⩽  n  ⩽  7) clusters in the near-surface region are attracted to the surface due to an elastic interaction force that provides the thermodynamic driving force for surface segregation. This elastic interaction force induces drift fluxes of these mobile He n clusters, which increase substantially as the migrating clusters approach the surface, facilitating helium segregation on the surface. Moreover, the clusters' drift toward the surface enables cluster reactions, most importantly trap mutation, in the near-surface region at rates much higher than in the bulk material. These near-surface cluster dynamics have significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure. We integrate the findings of such atomic-scale simulations into a properly parameterized and validated spatially dependent, continuum-scale reaction-diffusion cluster dynamics model, capable of predicting implanted helium evolution, surface segregation, and its near-surface effects in tungsten. This cluster-dynamics model sets the stage for development of fully atomistically informed coarse-grained models for computationally efficient simulation predictions of helium surface segregation, as well as helium retention and surface morphological evolution, toward optimal design of plasma facing components.

  2. Formation of the helium extreme-UV resonance lines

    Science.gov (United States)

    Golding, T. P.; Leenaarts, J.; Carlsson, M.

    2017-01-01

    Context. While classical models successfully reproduce intensities of many transition region lines, they predict helium extreme-UV (EUV) line intensities roughly an order of magnitude lower than the observed value. Aims: Our aim is to determine the relevant formation mechanism(s) of the helium EUV resonance lines capable of explaining the high intensities under quiet Sun conditions. Methods: We synthesised and studied the emergent spectra from a 3D radiation-magnetohydrodynamics simulation model. The effects of coronal illumination and non-equilibrium ionisation of hydrogen and helium are included self-consistently in the numerical simulation. Results: Radiative transfer calculations result in helium EUV line intensities that are an order of magnitude larger than the intensities calculated under the classical assumptions. The enhanced intensity of He iλ584 is primarily caused by He ii recombination cascades. The enhanced intensity of He iiλ304 and He iiλ256 is caused primarily by non-equilibrium helium ionisation. Conclusions: The analysis shows that the long standing problem of the high helium EUV line intensities disappears when taking into account optically thick radiative transfer and non-equilibrium ionisation effects.

  3. Helium-cooling in fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; Baxi, C.B.; Hamilton, C.J.; Schleicher, R.W.; Streckert, H.

    1994-11-01

    This paper reviews different helium-cooled first wall and blanket designs; and compares the selection of structural materials. The authors found that the solid breeder, SiC-composite material option generates the lowest amount of induced radioactivity and afterheat and has the highest temperature capability. When combined with the direct cycle gas turbine system, it has the potential to be the most economical fusion system and can compete with advanced fission reactors. When compared to martensitic steel and V-alloy, SiC-composite is the least developed of these three structural materials, a focused development effort will be needed. Fundamental research has begun in addressing the issues of optimized composite materials, irradiation effects, leak tightness and low activation braze materials. Development of helium-cooled high heat flux components and further development of the direct cycle gas turbine system will also be needed.

  4. Effects of CO_2 Dilution on Methane Ignition in Moderate or Intense Low-oxygen Dilution(MILD) Combustion:A Numerical Study

    Institute of Scientific and Technical Information of China (English)

    曹甄俊; 朱彤

    2012-01-01

    Homogeneous mixtures of CH4/air under moderate or intense low-oxygen dilution(MILD) combustion conditions were numerically studied to clarify the fundamental effects of exhaust gas recirculation(EGR),espe-cially CO2 in EGR gases,on ignition characteristics.Specifically,effects of CO2 addition on autoignition delay time were emphasized at temperature between 1200 K and 1600 K for a wide range of the lean-to-rich equivalence ratio(0.2~2).The results showed that the ignition delay time increased with equivalence ratio or CO2 dilution ratio.Fur-thermore,ignition delay time was seen to be exponentially related with the reciprocal of initial temperature.Special concern was given to the chemical effects of CO2 on the ignition delay time.The enhancement of ignition delay time with CO2 addition can be mainly ascribed to the decrease of H,O and OH radicals.The predictions of tem-perature profiles and mole fractions of CO and CO2 were strongly related to the chemical effects of CO2.A single ignition time correlation was obtained in form of Arrhenius-type for the entire range of conditions as a function of temperature,CH4 mole fraction and O2 mole fraction.This correlation could successfully capture the complex be-haviors of ignition of CH4/air/CO2 mixture.The results can be applied to MILD combustion as "reference time",for example,to predict ignition delay time in turbulent reacting flow.

  5. Laser Spectroscopy of Antiprotonic Helium Atoms

    CERN Multimedia

    2002-01-01

    %PS205 %title\\\\ \\\\Following the discovery of metastable antiprotonic helium atoms ($\\overline{p}He^{+} $) at KEK in 1991, systematic studies of their properties were made at LEAR from 1991 to 1996. In the first two years the lifetime of $\\overline{p}He^{+}$ in liquid and gaseous helium at various temperatures and pressures was measured and the effect of foreign gases on the lifetime of these atoms was investigated. Effects were also discovered which gave the antiproton a 14\\% longer lifetime in $^4$He than in $^3$He, and resulted in important differences in the shape of the annihilation time spectra in the two isotopes.\\\\ \\\\Since 1993 laser spectroscopy of the metastable $\\overline{p}He^{+}$ atoms became the main focus of PS205. Transitions were stimulated between metastable and non-metastable states of the $\\overline{p}He^{+}$ atom by firing a pulsed dye laser beam into the helium target every time an identified metastable atom was present (Figure 1). If the laser frequency matched the transition energy, the...

  6. ITER helium ash accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. (Oak Ridge National Lab., TN (USA)); Dippel, K.H.; Finken, K.H. (Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1990-01-01

    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  7. Toxicity of contaminated sediments in dilution series with control sediments

    Science.gov (United States)

    Nelson, M.K.; Landrum, P.F.; Burton, G.A.; Klaine, S.J.; Crecelius, E.A.; Byl, T.D.; Gossiaux, Duane C.; Tsymbal, V.N.; Cleveland, L.; Ingersoll, Christopher G.; Sasson-Brickson, G.

    1993-01-01

    The use of dilutions has been the foundation of our approach for assessing contaminated water, and accordingly, it may be important to establish similar or parallel approaches for sediment dilutions. Test organism responses to dilution gradients can identify the degree of necessary sediment alteration to reduce the toxicity. Using whole sediment dilutions to represent the complex interactions of in situ sediments can identify the toxicity, but the selection of the appropriate diluent for the contaminated sediment may affect the results and conclusions drawn. Contaminated whole sediments were examined to evaluate the toxicity of dilutions of sediments with a diversity of test organisms. Dilutions of the contaminated sediments were prepared with differing diluents that varied in organic carbon content, particle size distribution, and volatile solids. Studies were conducted using four macroinvertebrates and a vascular, rooted plant. Responses by some test organisms followed a sigmoidal dose-response curve, but others followed a U-shaped curve. Initial dilutions reduced toxicity as expected, but further dilution resulted in an increase in toxicity. The type of diluent used was an important factor in assessing the sediment toxicity, because the control soil reduced toxicity more effectively than sand as a diluent of the same sediment. Using sediment chemical and physical characteristics as an indicator of sediment dilution may not be as useful as chemical analysis of contaminants, but warrants further investigation.

  8. Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin-loaded poly-L-lactic acid microspheres using a Helios gun system.

    Science.gov (United States)

    Uchida, Masaki; Natsume, Hideshi; Kobayashi, Daisuke; Sugibayashi, Kenji; Morimoto, Yasunori

    2002-05-01

    We investigated the effects of the particle size of indomethacin-loaded poly-L-lactic acid microspheres (IDM-loaded PLA MS), the helium pressure used to accelerate the particles, and the bombardment dose of PLA MS on the plasma concentration of IDM after bombarding with IDM-loaded PLA MS of different particle size ranges, 20-38, 44-53 and 75-100 microm, the abdomen of hairless rats using the Helios gene gun system (Helios gun system). Using larger particles and a higher helium pressure, produced an increase in the plasma IDM concentration and the area under the plasma concentration-time curve (AUC) and resultant F (relative bioavailability with respect to intracutaneous injection) of IDM increased by an amount depending on the particle size and helium pressure. Although a reduction in the bombardment dose led to a decrease in C(max) and AUC, F increased on decreasing the bombardment dose. In addition, a more efficient F was obtained after bombarding with IDM-loaded PLA MS of 75-100 microm in diameter at each low dose in different sites of the abdomen compared with that after bolus bombardment with a high dose (dose equivalent). These results suggest that the bombardment injection of drug-loaded microspheres by the Helios gun system is a very useful tool for delivering a variety of drugs in powder form into the skin and systemic circulation.

  9. Suspension of superfluid helium using cesium-coated surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C.; Giese, C.F.; Halley, J.W. [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    1996-03-01

    We report results of an experiment which demonstrates that a layer of superfluid helium can be suspended over a cesium-coated orifice. By measuring the layer thickness with a capacitance bridge, we have shown in two runs that fluid layers up to 2 mm thick were suspended over a 70-{mu}m-diam cesium-coated orifice in a platinum foil for over 2 h in a cryostat held at 1.2 K. The effect depends on the recently established fact that superfluid helium does not wet cesium-coated surfaces. As a consequence, superfluid helium is expected to form a stable meniscus across such a cesium-coated hole. The observed depths of suspended helium are consistent with a simple theoretical model based on this picture. We briefly discuss the possible application of this method to the performance of a proposed experiment to study quantum coherence in superfluid helium by directing pulsed beams of helium atoms at such a suspended layer of fluid. {copyright} {ital 1996 The American Physical Society.}

  10. Many-body effects in the mobility and diffusivity of interstitial solute in a crystalline solid: The case of helium in BCC tungsten

    Science.gov (United States)

    Wen, Haohua; Semenov, A. A.; Woo, C. H.

    2017-09-01

    The many-body dynamics of a crystalline solid containing an interstitial solute atom (ISA) is usually interpreted within the one-particle approximation as a random walker hopping among trapping centers at periodic lattice sites. The corresponding mobility and diffusivity can be formulated based on the transition-state theory in the form of the Arrhenius law. Possible issues arising from the many-body nature of the dynamics may need to be understood and resolved both scientifically and technologically. Noting the congruence between the dynamics of the many-body and stochastic systems within the Mori-Zwanzig theory, we analyzed the dynamics of a model particle subjected to a saw-tooth potential in a noisy medium. The ISA mobility is found to be governed by two sources of dissipative friction: that which is produced by the scattering of lattice waves by the moving ISA (phonon wind), and that which is derived from the energy dissipation associated with overcoming the migration barrier screened by lattice waves (i.e., phonon screened). The many-body effect in both cases increases with temperature, so that the first component of the friction is important at high temperatures and the second component is important at low temperatures. A formulation built on this mechanistic structure of the dissipative friction requires the mobility and diffusivity to be expressed not only in terms of the migration enthalpy and entropy, but also of the phonon drag coefficient. As a test, the complex temperature dependence of the mobility and diffusivity of interstitial helium in BCC W obtained from molecular-dynamics simulation is very well reproduced.

  11. The effects of breathing a helium-oxygen gas mixture on maximal pulmonary ventilation and maximal oxygen consumption during exercise in acute moderate hypobaric hypoxia.

    Science.gov (United States)

    Ogawa, Takeshi; Calbet, Jose A L; Honda, Yasushi; Fujii, Naoto; Nishiyasu, Takeshi

    2010-11-01

    To test the hypothesis that maximal exercise pulmonary ventilation (VE max) is a limiting factor affecting maximal oxygen uptake (VO2 max) in moderate hypobaric hypoxia (H), we examined the effect of breathing a helium-oxygen gas mixture (He-O(2); 20.9% O(2)), which would reduce air density and would be expected to increase VE max. Fourteen healthy young male subjects performed incremental treadmill running tests to exhaustion in normobaric normoxia (N; sea level) and in H (atmospheric pressure equivalent to 2,500 m above sea level). These exercise tests were carried out under three conditions [H with He-O(2), H with normal air and N] in random order. VO2 max and arterial oxy-hemoglobin saturation (SaO(2)) were, respectively, 15.2, 7.5 and 4.0% higher (all p max, 171.9 ± 16.1 vs. 150.1 ± 16.9 L/min; VO2 max, 52.50 ± 9.13 vs. 48.72 ± 5.35 mL/kg/min; arterial oxyhemoglobin saturation (SaO(2)), 79 ± 3 vs. 76 ± 3%). There was a linear relationship between the increment in VE max and the increment in VO2 max in H (r = 0.77; p VO2 max, both groups showed increased VE max and SaO(2) in H with He-O(2), but VO2 max was increased only in the high VO2 max group. These findings suggest that in acute moderate hypobaric hypoxia, air-flow resistance can be a limiting factor affecting VE max; consequently, VO2 max is limited in part by VE max especially in subjects with high VO2 max.

  12. Effect of the dilution factor on {sup 18}FDG and Na{sup 18}F samples for bacterial endotoxin test using PTS (portable test system)

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Marina B.; Costa, Flavia M.; Ferreira, Soraya Z., E-mail: mbs@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Unidade de Pesquisa e Producao de Radiofarmacos

    2011-07-01

    {sup 18}FDG and Na{sup 18}F are radiopharmaceuticals produced as sterile solutions suitable for intravenous administration, which must contain no more than 175 EV/V. The most commonly used approach to detect endotoxins is the gelclot technique that requires 60 minutes for results. For radiopharmaceuticals containing short-life radionuclides, such as {sup 18}F, there is an increasing interest for faster quality control methods. FDA licensed the Endosafe, PTS, a kinetic chromogenic endotoxin detection system that takes about 15 minutes for results. As other techniques, PTS test is susceptible to interferences which can be solved by product dilution. The aim of this study was to establish the best dilution of {sup 18}FDG and Na{sup 18}F for PTS analysis. Two different dilution factors for {sup 18}FDG and 1:10 for Na{sup 18}F were essayed: 1:10 and 1:100. {sup 18}FDG and Na{sup 18} solutions were prepared by the addition of LAL reagent water. Considering the assay acceptance criteria, the best dilution factor was 1:100 for {sup 18}FDG and 1:10 for Na{sup 18}F. The recovery of the product positive control was 98-12% for {sup 18}FDG 1:100 and 104-120% for Na{sup 18}F 1:10, which were, in both cases, within the specification (50-200%) and very close to 100%. Results obtained with these dilution studies were important to establish the most appropriate and non-interfering dilution factor for {sup 18}FDG and Na{sup 18}F routine endotoxin test. (author)

  13. Vacuum polarization in the ground states of bi-muonic helium atoms

    Science.gov (United States)

    Frolov, Alexei M.

    2004-11-01

    The energies and bound-state properties of the bi-muonic helium-3 and helium-4 atoms in their ground 11(S = 0)-states are determined to very high accuracy. It is shown that the lowest order QED (and relativistic) effects play a significantly larger role in the case of bi-muonic 3Heμ2 and 4Heμ2 atoms than in the two-electron He-atoms. In particular, the effect of vacuum polarization and corresponding energy shifts for the ground 11(S = 0)-states in the bi-muonic helium-3 and helium-4 atoms have been evaluated.

  14. Efficient isolation of multiphoton processes and detection of collective states in dilute samples

    CERN Document Server

    Bruder, Lukas; Stienkemeier, Frank

    2015-01-01

    A novel technique to sensitively and selectively isolate multiple-quantum coherences in a femtosecond pump-probe setup is presented. Detecting incoherent observables and imparting lock-in amplification, even weak signals of highly dilute samples can be acquired. Applying this method, efficient isolation of one- and two-photon transitions in a rubidium-doped helium droplet beam experiment is demonstrated and collective resonances up to fourth order are observed in a potassium vapor for the first time. Our approach provides new perspectives for coherent experiments in the deep UV and novel multidimensional spectroscopy schemes, in particular when selective detection of particles in dilute gas-phase targets is possible.

  15. ITSTUDIES ON THE EFFECT OF UREA ON THE COMPATIBILITY OF PMMA/PVC MIXTURES IN DMF BY A DILUTE- SOLUTION VISCOMETRY METHOD

    Institute of Scientific and Technical Information of China (English)

    Rajai Baraka; Jamil K.J. Salem; Hani Hilles; Omar Melad

    2002-01-01

    The interaction between poly(methymethacrylate) (PMMA) and poly(vinyl chloride) (PVC) has been studied in dilute urea solutions of dimethylformamide (DMF) at 28℃ using a dilute solution viscometry method. The results show that the polymer mixtures are compatible in DMF solution in the absence of urea. The influence of urea addition on the degree of compatibility of the polymer mixtures has been studied in terms of the compatibility parameters (Abm and A[r]m). It was found that the compatibility of the polymer mixtures is decreased with increasing urea addition, passing through a minimum at 0.5 M urea.

  16. Effects of helium-neon laser irradiation and local anesthetics on potassium channels in pond snail neurons.

    Science.gov (United States)

    Ignatov, Yu D; Vislobokov, A I; Vlasov, T D; Kolpakova, M E; Mel'nikov, K N; Petrishchev, I N

    2005-10-01

    Intracellular dialysis and membrane voltage clamping were used to show that He-Ne laser irradiation of a pond snail neuron at a dose of 0.7 x 10(-4) J (power density 1.5 x 10(2) W/m2) increases the amplitude of the potential-dependent slow potassium current, while a dose of 0.7 x 10(-3) J decreases this current. Bupivacaine suppresses the potassium current. Combined application of laser irradiation at a dose of 0.7 x 10(-3) J increased the blocking effect of 10 microM bupivacaine on the slow potassium current, while an irradiation dose of 0.7 x 10(-4) J weakened the effect of bupivacaine.

  17. Photodissociation of Cl 2 in helium clusters: an application of hybrid method of quantum wavepacket dynamics and path integral centroid molecular dynamics

    Science.gov (United States)

    Takayanagi, Toshiyuki; Shiga, Motoyuki

    2003-04-01

    The photodissociation dynamics of Cl 2 embedded in helium clusters is studied by numerical simulation with an emphasis on the effect of quantum character of helium motions. The simulation is based on the hybrid model in which Cl-Cl internuclear dynamics is treated in a wavepacket technique, while the helium motions are described by a path integral centroid molecular dynamics approach. It is found that the cage effect largely decreases when the helium motion is treated quantum mechanically. The mechanism is affected not only by the zero-point vibration in the helium solvation structure, but also by the quantum dynamics of helium.

  18. Pyridine Aggregation in Helium Nanodroplets

    Science.gov (United States)

    Nieto, Pablo; Poerschke, Torsten; Habig, Daniel; Schwaab, Gerhard; Havenith, Martina

    2012-06-01

    Pyridine crystals show the unusual property of isotopic polymorphism. Experimentally it has been observed that deuterated pyridine crystals exist in two phases while non-deuterated pyridine does not show a phase transition. Therefore, although isotopic substitution is the smallest possible modification of a molecule it greatly affects the stability of pyridine crystals. A possible experimental approach in order to understand this striking effect might be the study of pyridine aggregation for small clusters. By embedding the clusters in helium nanodroplets the aggregates can be stabilized and studied by means of Infrared Depletion Spectroscopy. Pyridine oligomers were investigated in the C-H asymmetric vibration region (2980-3100 cm-1) using this experimental technique. The number of molecules for the clusters responsibles for each band were determined by means of pick-up curves as well as mass sensitive depletion spectra. Furthermore, the intensity dependence of the different bands on applying a dc electric field was studied. The assignment of the different structures for pyridine clusters on the basis of these measurements were also carried out. S. Crawford et al., Angew. Chem. Int. Ed., 48, 755 (2009).

  19. Dynamic dilution exponent in monodisperse entangled polymer solutions

    DEFF Research Database (Denmark)

    Shahid, T.; Huang, Qian; Oosterlinck, F.

    2017-01-01

    We study and model the linear viscoelastic properties of several entangled semi-dilute and concentrated solutions of linear chains of different molar masses and at different concentrations dissolved in their oligomers. We discuss the dilution effect of the oligomers on the entangled long chains...... of the long chain extremities. Then we discuss the influence of the polymer concentration on the terminal relaxation time of the solutions and how this can be modelled by the enhanced contour length fluctuation process (CR-CLF). We point out that this larger dilution effect is not only a function...... of concentration but also depends on the molar mass of the chains. While the proposed approach successfully explains the viscoelastic properties of a large number of semi-dilute solutions of polymers in their own oligomers, important discrepancies are found for semi-dilute entangled polymers in small...

  20. Vitamin A equivalency of beta-carotene in healthy adults: limitation of the extrinsic dual-isotope dilution technique to measure matrix effect.

    Science.gov (United States)

    Van Loo-Bouwman, Carolien A; West, Clive E; van Breemen, Richard B; Zhu, Dongwei; Siebelink, Els; Versloot, Pieter; Hulshof, Paul J M; van Lieshout, Machteld; Russel, Frans G M; Schaafsma, Gertjan; Naber, Ton H J

    2009-06-01

    Data on the vitamin A equivalency of beta-carotene in food are inconsistent. We quantified the vitamin A equivalency (microg) of beta-carotene in two diets using the dual-isotope dilution technique and the oral-faecal balance technique. A diet-controlled, cross-over intervention study was conducted in twenty-four healthy adults. Each subject followed two diets for 3 weeks each: a diet containing vegetables low in beta-carotene with supplemental beta-carotene in salad dressing oil ('oil diet') and a diet containing vegetables and fruits high in beta-carotene ('mixed diet'). During all 6 weeks, each subject daily consumed a mean of 55 (sd 0.5) microg [13C10]beta-carotene and 55 (sd 0.5) microg [13C10]retinyl palmitate in oil capsules. The vitamin A equivalency of beta-carotene was calculated as the dose-corrected ratio of [13C5]retinol to [13C10]retinol in serum and from apparent absorption by oral-faecal balance. Isotopic data quantified a vitamin A equivalency of [13C10]beta-carotene in oil of 3.4 microg (95 % CI 2.8, 3.9), thus the bio-efficacy of the beta-carotene in oil was 28 % in the presence of both diets. However, data from oral-faecal balance estimated vitamin A equivalency as 6:1 microg (95 % CI 4, 7) for beta-carotene in the 'oil diet'. beta-Carotene in the 'oil diet' had 2.9-fold higher vitamin A equivalency than beta-carotene in the 'mixed diet'. In conclusion, this extrinsic labelling technique cannot measure effects of mixed vegetables and fruits matrices, but can measure precisely the vitamin A equivalency of the beta-carotene in oil capsules.

  1. Seasonal and inter-annual turbidity variability in the Río de la Plata from 15 years of MODIS: El Niño dilution effect

    Science.gov (United States)

    Dogliotti, A. I.; Ruddick, K.; Guerrero, R.

    2016-12-01

    Spatio-temporal variability of turbidity in the Río de la Plata (RdP) estuary (Argentina) at seasonal and inter-annual timescales is analyzed from 15 years (2000-2014) of MODIS data and explained in terms of river discharges and the El Niño Southern Oscillation (ENSO). Satellite estimates were first validated using in situ turbidity measurements and then the time series of monthly averages were analyzed to assess the seasonal and inter-annual variability of turbidity. A strong seasonal variability was found in the upper and middle estuary with high turbidity from March to May and low turbidity from June to January. It was found that this variability is highly correlated to the seasonal cycle of the water discharge of the Bermejo river with a one-month delay between its peak and turbidity in the upper RdP estuary. On inter-annual time scales the influence of ENSO shows low turbidity amplitudes in the upper and middle estuary during moderate El Niño years, while the opposite pattern is observed in some La Niña years. A dilution effect during El Niño years is observed given that the main tributaries, which provide ∼92% of the liquid discharge, show water discharge increases due to excess in rain, while the Bermejo river, which provides ∼70% of the solid discharge and only 2% of the liquid discharge to the RdP, does not show this inter-decadal periodicity. In turn, increased turbidities are observed when negative RdP water discharge anomalies occurred, but this is not always related to La Niña events, since these events are not the only predictor for drought in this region.

  2. Modeling of helium bubble nucleation and growth in neutron irradiated boron doped RAFM steels

    Energy Technology Data Exchange (ETDEWEB)

    Dethloff, Christian, E-mail: christian.dethloff@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gaganidze, Ermile [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Svetukhin, Vyacheslav V. [Ulyanovsk State University, Leo Tolstoy Str. 42, 432970 Ulyanovsk (Russian Federation); Aktaa, Jarir [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-07-15

    Reduced activation ferritic/martensitic (RAFM) steels are promising candidates for structural materials in future fusion technology. In addition to other irradiation defects, the transmuted helium is believed to strongly influence material hardening and embrittlement behavior. A phenomenological model based on kinetic rate equations is developed to describe homogeneous nucleation and growth of helium bubbles in neutron irradiated RAFM steels. The model is adapted to different {sup 10}B doped EUROFER97 based heats, which already had been studied in past irradiation experiments. Simulations yield bubble size distributions, whereby effects of helium generation rate, surface energy, helium sinks and helium density are investigated. Peak bubble diameters under different conditions are compared to preliminary microstructural results on irradiated specimens. Helium induced hardening was calculated by applying the Dispersed Barrier Hardening model to simulated cluster size distributions. Quantitative microstructural investigations of unirradiated and irradiated specimens will be used to support and verify the model.

  3. Non-WKB Models of the FIP Effect: Implications for Solar Coronal Heating and the Coronal Helium and Neon Abundances

    CERN Document Server

    Laming, J Martin

    2009-01-01

    We revisit in more detail a model for element abundance fractionation in the solar chromosphere, that gives rise to the "FIP Effect" in the solar corona and wind. Elements with first ionization potential below about 10 eV, i.e. those that are predominantly ionized in the chromosphere, are enriched in the corona by a factor 3-4. We model the propagation of Alfven waves through the chromosphere using a non-WKB treatment, and evaluate the ponderomotive force associated with these waves. Under solar conditions, this is generally pointed upwards in the chromosphere, and enhances the abundance of chromospheric ions in the corona. Our new approach captures the essentials of the solar coronal abundance anomalies, including the depletion of He relative to H, and also the putative depletion of Ne, recently discussed in the literature. We also argue that the FIP effect provides the strongest evidence to date for energy fluxes of Alfven waves sufficient to heat the corona. However it appears that these waves must also be...

  4. Effect of low intensity helium-neon (HeNe) laser irradiation on experimental paracoccidioidomycotic wound healing dynamics.

    Science.gov (United States)

    Ferreira, Maria Carolina; Gameiro, Jacy; Nagib, Patrícia Resende Alo; Brito, Vânia Nieto; Vasconcellos, Elza da Costa Cruz; Verinaud, Liana

    2009-01-01

    The effect of HeNe laser on the extracellular matrix deposition, chemokine expression and angiogenesis in experimental paracoccidioidomycotic lesions was investigated. At days 7, 8 and 9 postinfection the wound of each animal was treated with a 632.8 nm HeNe laser at a dose of 3 J cm(-2). At day 10 postinfection, the wounds were examined by using histologic and immunohistochemical methods. Results revealed that laser-treated lesions were lesser extensive than untreated ones, and composed mainly by macrophages and lymphocytes. High IL-1beta expression was shown in the untreated group whereas in laser-treated animals the expression was scarce. On the other hand, the expression of CXCL-10 was found to be reduced in untreated animals and quite intensive and well distributed in the laser-treated ones. Also, untreated lesions presented vascular endothelial growth factor (VEGF) in a small area near the center of the lesion and high immunoreactivity for hypoxia-inducible factor-1 (HIF-1), whereas laser-treated lesions expressed VEGF surrounding blood vessels and little immunoreactivity for HIF-1. Laser-treated lesions presented much more reticular fibers and collagen deposition when compared with the untreated lesion. Our results show that laser was efficient in minimizing the local effects observed in paracoccidioidomycosis and can be an efficient tool in the treatment of this infection, accelerating the healing process.

  5. Vitamin A equivalency of beta-carotene in healthy adults: limitation of the extrinsic dual-isotope dilution technique to measure matrix effect.

    NARCIS (Netherlands)

    Loo-Bouwman, C.A. Van; West, C.E.; Breemen, R.B. van; Zhu, D.; Siebelink, E.; Versloot, P.; Hulshof, P.J.; Lieshout, Machteld van; Russel, F.G.M.; Schaafsma, G.; Naber, T.H.

    2009-01-01

    Data on the vitamin A equivalency of beta-carotene in food are inconsistent. We quantified the vitamin A equivalency (microg) of beta-carotene in two diets using the dual-isotope dilution technique and the oral-faecal balance technique. A diet-controlled, cross-over intervention study was conducted

  6. Vitamin A equivalency of ß-carotene in healthy adults: limitation of the extrinsic dual-isotope dilution technique to measure matrix effect

    NARCIS (Netherlands)

    Bouwman, C.A.; West, C.E.; Breemen, van R.B.; Zhu, D.; Siebelink, E.; Versloot, P.; Hulshof, P.J.M.; Lieshout, van M.; Russel, F.G.M.; Schaafsma, G.; Naber, T.H.J.

    2009-01-01

    Data on the vitamin A equivalency of ß-carotene in food are inconsistent. We quantified the vitamin A equivalency (¿g) of ß-carotene in two diets using the dual-isotope dilution technique and the oral¿faecal balance technique. A diet-controlled, cross-over intervention study was conducted in twenty-

  7. Effect of low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis on the production of fermentable substrates and the release of inhibitory compounds

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Lignos, G.D.; Bakker, R.R.C.; Koukios, E.G.

    2012-01-01

    The objective of this work was to investigate the feasibility of combining low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis for the high production of fermentable substrates and the low release of inhibitory compounds. For most of the pretreatments at 160

  8. Effects of Low Energy and High Flux Helium/Hydrogen Plasma Irradiation on Tungsten as Plasma Facing Material

    Institute of Scientific and Technical Information of China (English)

    Ye Minyou

    2005-01-01

    The High-Z material tungsten (W) has been considered as a plasma facing material in the divertor region of ITER (International Thermonuclear Experimental Reactor). In ITER, the divertor is expected to operate under high particle fluxes (> 1023 m-2s-1) from the plasma as well as from intrinsic impurities with a very low energy (< 200 eV). During the past dacade, the effects of plasma irradiation on tungsten have been studied extensively as functions of the ion energy,fluence and surface temperature in the burning plasma conditions. In this paper, recent results concerning blister and bubble formations on the tungsten surface under low energy (< 100 eV) and high flux (> 1021 m-2s-1) He/H plasma irradiation are reviewed to gain a better understanding of the performance of tungsten as a plasma facing material under the burning plasma conditions.

  9. Phase diagrams of diluted transverse Ising nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Bouhou, S.; Essaoudi, I. [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Ainane, A., E-mail: ainane@pks.mpg.de [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Max-Planck-Institut für Physik Complexer Systeme, Nöthnitzer Str. 38 D-01187 Dresden (Germany); Saber, M. [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Max-Planck-Institut für Physik Complexer Systeme, Nöthnitzer Str. 38 D-01187 Dresden (Germany); Ahuja, R. [Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, 75120 Uppsala (Sweden); Dujardin, F. [Laboratoire de Chimie et Physique des Milieux Complexes (LCPMC), Institut de Chimie, Physique et Matériaux (ICPM), 1 Bd. Arago, 57070 Metz (France)

    2013-06-15

    In this paper, the phase diagrams of diluted Ising nanowire consisting of core and surface shell coupling by J{sub cs} exchange interaction are studied using the effective field theory with a probability distribution technique, in the presence of transverse fields in the core and in the surface shell. We find a number of characteristic phenomena. In particular, the effect of concentration c of magnetic atoms, the exchange interaction core/shell, the exchange in surface and the transverse fields in core and in surface shell of phase diagrams are investigated. - Highlights: ► We use the EFT to investigate the phase diagrams of Ising transverse nanowire. ► Ferrimagnetic and ferromagnetic cases are investigated. ► The effects of the dilution and the transverse fields in core and shell are studied. ► Behavior of the transition temperature with the exchange interaction is given.

  10. Rogue mantle helium and neon.

    Science.gov (United States)

    Albarède, Francis

    2008-02-15

    The canonical model of helium isotope geochemistry describes the lower mantle as undegassed, but this view conflicts with evidence of recycled material in the source of ocean island basalts. Because mantle helium is efficiently extracted by magmatic activity, it cannot remain in fertile mantle rocks for long periods of time. Here, I suggest that helium with high 3He/4He ratios, as well as neon rich in the solar component, diffused early in Earth's history from low-melting-point primordial material into residual refractory "reservoir" rocks, such as dunites. The difference in 3He/4He ratios of ocean-island and mid-ocean ridge basalts and the preservation of solar neon are ascribed to the reservoir rocks being stretched and tapped to different extents during melting.

  11. Study of the Energy Dependence of the Anomalous Mean Free Path Effect by Means of High-energy ($\\geq$12 GeV/nucleon) Helium Nuclei

    CERN Multimedia

    2002-01-01

    The proposal concerns an extension to higher energies of previous experiments which have provided evidence for anomalously short reaction mean free paths among projectile fragments from heavy ion interactions.\\\\ \\\\ It is intended to provide information on the interaction properties of projectile fragments, mainly 3He, P, D, T as well as of scattered 4He nuclei in passive detectors exposed to beams of energies exceeding those available in previous experim factor of about 7. \\\\ \\\\ Interaction mean free paths and event topologies will be measured in a nuclear emulsion stack (LBL) of 7.5~cm~x~5~cm~x~25~cm dimensions. Decay effects will be recorded by comparing the activity of spallation residues in dense and diluted copper target assemblies (Marburg). Target fragmentation will be studied in a stack of silverchloride crystal foils (Frankfurt) of about 7~cm~x~6~cm~x~1~cm dimensions. The \\alpha beam ejected at EJ~62 will be used to provide both exposures at high intensity of 10|1|2 alphas on th and at low intensity ...

  12. Turbulence of Dilute Polymer Solution

    CERN Document Server

    Xi, Heng-Dong; Xu, Haitao

    2013-01-01

    In fully developed three dimensional fluid turbulence the fluctuating energy is supplied at large scales, cascades through intermediate scales, and dissipates at small scales. It is the hallmark of turbulence that for intermediate scales, in the so called inertial range, the average energy flux is constant and independent of viscosity [1-3]. One very important question is how this range is altered, when an additional agent that can also transport energy is added to the fluid. Long-chain polymers dissolved at very small concentrations in the fluid are such an agent [4,5]. Based on prior work by de Gennes and Tabor [6,7] we introduce a theory that balances the energy flux through the turbulent cascade with that of the energy flux into the elastic degrees of freedom of the dilute long-chain polymer solution. We propose a refined elastic length scale, $r_\\varepsilon$, which describes the effect of polymer elasticity on the turbulence energy cascade. Our experimental results agree excellently with this new energy ...

  13. Pierre Gorce working on a helium pump.

    CERN Multimedia

    1975-01-01

    This type of pump was designed by Mario Morpurgo, to circulate liquid helium in superconducting magnets wound with hollow conductors. M. Morpurgo, Design and construction of a pump for liquid helium, CRYIOGENICS, February 1977, p. 91

  14. Helium release during shale deformation: Experimental validation

    Science.gov (United States)

    Bauer, Stephen J.; Gardner, W. Payton; Heath, Jason E.

    2016-07-01

    This work describes initial experimental results of helium tracer release monitoring during deformation of shale. Naturally occurring radiogenic 4He is present in high concentration in most shales. During rock deformation, accumulated helium could be released as fractures are created and new transport pathways are created. We present the results of an experimental study in which confined reservoir shale samples, cored parallel and perpendicular to bedding, which were initially saturated with helium to simulate reservoir conditions, are subjected to triaxial compressive deformation. During the deformation experiment, differential stress, axial, and radial strains are systematically tracked. Release of helium is dynamically measured using a helium mass spectrometer leak detector. Helium released during deformation is observable at the laboratory scale and the release is tightly coupled to the shale deformation. These first measurements of dynamic helium release from rocks undergoing deformation show that helium provides information on the evolution of microstructure as a function of changes in stress and strain.

  15. THE ROLE OF ELECTRON CONFIGURATION ON PROPERTIES IN DILUTE SOLID SOLUTION ALLOYS

    Science.gov (United States)

    THE ROLE OF ELECTRON CONFIGURATION ON THE PROPERTIES OF DILUTE SOLID SOLUTION ALLOYS IS DISCUSSED IN TERMS OF THE EFFECT OF DILUTE IMPURITIES ON THE RECRYSTALLIZATION CHARACTERISTICS OF PURE METALLIC ELEMENTS.

  16. The cosmic production of Helium

    CERN Document Server

    Jiménez, R; MacDonald, J; Gibson, B K; Jimenez, Raul; Flynn, Chris; Donald, James Mac; Gibson, Brad K.

    2003-01-01

    We estimate the cosmic production rate of helium relative to metals ($\\Delta Y/\\Delta Z$) using K dwarf stars in the Hipparcos catalog with accurate spectroscopic metallicities. The best fitting value is $\\Delta Y/\\Delta Z=2.1 \\pm 0.4$ at the 68% confidence level. Our derived value agrees with determinations from HII regions and with theoretical predictions from stellar yields with standard assumptions for the initial mass function. The amount of helium in stars determines how long they live and therefore how fast they will enrich the insterstellar medium with fresh material.

  17. Negative ions in liquid helium

    Science.gov (United States)

    Khrapak, A. G.; Schmidt, W. F.

    2011-05-01

    The structure of negative ions in liquid 4He is analyzed. The possibility of cluster or bubble formation around impurity ions of both signs is discussed. It is shown that in superfluid helium, bubbles form around negative alkaline earth metal ions and clusters form around halogen ions. The nature of "fast" and "exotic" negative ions is also discussed. It is assumed that "fast" ions are negative ions of helium excimer molecules localized inside bubbles. "Exotic" ions are stable negative impurity ions, which are always present in small amounts in gas discharge plasmas. Bubbles or clusters with radii smaller the radius of electron bubbles develop around these ions.

  18. Evolution of long-lived globular cluster stars III. Effect of the initial helium spread on the position of stars in a synthetic Hertzsprung-Russel diagram

    CERN Document Server

    Chantereau, William; Meynet, Georges

    2016-01-01

    Context. Globular clusters host multiple populations of long-lived low-mass stars whose origin remains an open question. Several scenarios have been proposed to explain the associated photometric and spectroscopic peculiarities. They differ, for instance, in the maximum helium enrichment they predict for stars of the second population, which these stars can inherit at birth as the result of the internal pollution of the cluster by different types of stars of the first population. Aims. We present the distribution of helium-rich stars in present-day globular clusters as it is expected in the original framework of the fast-rotating massive stars scenario (FRMS) as first-population polluters. We focus on NGC 6752. (to be continued)

  19. COMPARISON BETWEEN TWO URINE DILUTION TESTS: THEIR ADVANTAGES AND DISADVANTAGES

    Directory of Open Access Journals (Sweden)

    Musso CG

    2015-05-01

    Full Text Available The main physiological test currently used for evaluating renal dilution capability is the hypotonic infusion test (HIT, which also evaluates proximal and thick ascending limb of Henle´s loops (TALH function. There is another urine dilution test: oral water load test, and it is simpler than HIT. However, it has not been documented yet if oral water load test performs an adequate evaluation of proximal tubule and TAHL activity, as HIT does. Thus, we decided to evaluate if there was any significant difference between both tests by evaluating: maximum urinary dilution capability, proximal sodium clearance, and TAHL sodium reabsorption. Materials and Method: Both urine dilution evaluating tests were prospectively performed to forty healthy volunteers with the aim of measuring the following physiological parameters by them: maximum urine hypotonicity, free water clearance, proximal tubule sodium clearance, and TALH sodium reabsorption. Results: All volunteers were able to maximally dilute their urine during HIT, while only 4 volunteers (10% were not able to do it during the oral water load tests. No significant difference was documented in the three studied parameters between both tests, in those patients who were able to maximally dilute their urine (n: 36 (p= NS. In conclusion this study has documented that HIT and oral water load test showed to be adequate studies for evaluating urine dilution capability, proximal and TAHL function. However, while HIT was more effective in obtaining the maximal dilution status, the oral water load test showed to be a simpler study.

  20. Evolution of long-lived globular cluster stars III. Effect of the initial helium spread on the position of stars in a synthetic Hertzsprung-Russell diagram

    OpenAIRE

    Chantereau, William; Charbonnel, Corinne; Meynet, Georges

    2016-01-01

    Context. Globular clusters host multiple populations of long-lived low-mass stars whose origin remains an open question. Several scenarios have been proposed to explain the associated photometric and spectroscopic peculiarities. They differ, for instance, in the maximum helium enrichment they predict for stars of the second population, which these stars can inherit at birth as the result of the internal pollution of the cluster by different types of stars of the first population. Aims. We pre...

  1. Bond diluted anisotropic quantum Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Akıncı, Ümit, E-mail: umit.akinci@deu.edu.tr

    2013-10-15

    Effects of the bond dilution on the critical temperatures, phase diagrams and the magnetization behaviors of the isotropic and anisotropic quantum Heisenberg model have been investigated in detail. For the isotropic case, bond percolation threshold values have been determined for several numbers of two (2D) and three (3D) dimensional lattices. In order to investigate the effect of the anisotropy in the exchange interaction on the results obtained for the isotropic model, a detailed investigation has been made on a honeycomb lattice. Some interesting results, such as second order reentrant phenomena in the phase diagrams have been found. - Highlights: • Anisotropic quantum Heisenberg model with bond dilution investigated. • Bond percolation threshold values given for 2D and 3D lattices in isotropic case. • Phase diagrams and ground state magnetizations investigated in detail. • Variation of the bond percolation threshold values with anisotropy determined.

  2. Helium in atmospheres of binary stars

    Energy Technology Data Exchange (ETDEWEB)

    Leushin, V.V. (Rostovskij-na-Donu Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Fiziki)

    The helium abundances were obtained for 25 bright components of binary stars by model atmosphere analysis. The helium abundance for binary stars that lie on the main sequence are larger in the average than in single normal stars. The stars on the Hertzsppung - russel diagram lie at a larger distance from the zero age line than those with normal helium abundance.

  3. Performance of the Helium Circulation System on a Commercialized MEG

    Science.gov (United States)

    T, Takeda; M, Okamoto; T, Miyazaki; K, Katagiri

    2012-12-01

    We report the performance of a helium circulation system (HCS) mounted on a MEG (Magnetoencephalography) at Nagoya University, Japan. This instrument is the first commercialized version of an HCS. The HCS collects warm helium gas at approximately 300 K and then cools it to approximately 40 K. The gas is returned to the neck tube of a Dewar of the MEG to keep it cold. It also collects helium gas in the region just above the liquid helium surface while it is still cold, re-liquefies the gas and returns it to the Dewar. A special transfer tube (TT) of approximately 3 m length was developed to allow for dual helium streams. This tube separates the HCS using a MEG to reduce magnetic noise. A refiner was incorporated to effectively collect contaminating gases by freezing them. The refiner was equipped with an electric heater to remove the frozen contaminants as gases into the air. A gas flow controller was also developed, which automatically controlled the heater and electric valves to clean up contamination. The developed TT exhibited a very low heat inflow of less than 0.1 W/m to the liquid helium, ensuring efficient operation. The insert tube diameter, which was 1.5 in. was reduced to a standard 0.5 in. size. This dimensional change enabled the HCS to mount onto any commercialized MEG without any modifications to the MEG. The HCS can increase liquid helium in the Dewar by at least 3 liters/Day using two GM cryocoolers (SRDK-415D, Sumitomo Heavy Industries, Ltd.). The noise levels were virtually the same as before this installation.

  4. Bench and mathematical modeling of the effects of breathing a helium/oxygen mixture on expiratory time constants in the presence of heterogeneous airway obstructions

    Directory of Open Access Journals (Sweden)

    Martin Andrew R

    2012-05-01

    Full Text Available Abstract Background Expiratory time constants are used to quantify emptying of the lung as a whole, and emptying of individual lung compartments. Breathing low-density helium/oxygen mixtures may modify regional time constants so as to redistribute ventilation, potentially reducing gas trapping and hyperinflation for patients with obstructive lung disease. In the present work, bench and mathematical models of the lung were used to study the influence of heterogeneous patterns of obstruction on compartmental and whole-lung time constants. Methods A two-compartment mechanical test lung was used with the resistance in one compartment held constant, and a series of increasing resistances placed in the opposite compartment. Measurements were made over a range of lung compliances during ventilation with air or with a 78/22% mixture of helium/oxygen. The resistance imposed by the breathing circuit was assessed for both gases. Experimental results were compared with predictions of a mathematical model applied to the test lung and breathing circuit. In addition, compartmental and whole-lung time constants were compared with those reported by the ventilator. Results Time constants were greater for larger minute ventilation, and were reduced by substituting helium/oxygen in place of air. Notably, where time constants were long due to high lung compliance (i.e. low elasticity, helium/oxygen improved expiratory flow even for a low level of resistance representative of healthy, adult airways. In such circumstances, the resistance imposed by the external breathing circuit was significant. Mathematical predictions were in agreement with experimental results. Time constants reported by the ventilator were well-correlated with those determined for the whole-lung and for the low-resistance compartment, but poorly correlated with time constants determined for the high-resistance compartment. Conclusions It was concluded that breathing a low-density gas mixture, such

  5. Creep behavior of reduced activation martensitic steel F82H injected with a large amount of helium

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, N. E-mail: yamamoto.norikazu@nims.go.jp; Murase, Y.; Nagakawa, J.; Shiba, K

    2002-12-01

    Creep response against DEMO reactor level helium was examined on F82H steel, a candidate structural material for advanced fusion systems. Helium was injected into the material at 823 K to a concentration of about 1000 appm utilizing {alpha}-particle irradiation with a cyclotron. Post-injection creep rupture tests were conducted at the same temperature. It has been demonstrated that helium brought about no significant effect on a variety of creep properties (lifetime, rupture elongation and minimum creep rate). In parallel with this, it did not cause any influence on fracture appearance. Both helium implanted and unimplanted samples were failed in a completely transcrystalline and ductile fashion. No symptom of helium induced grain boundary separation was thereby observed even after high concentration helium introduction. These facts hint a fairly good resistance of this material toward high temperature helium embrittlement even for long-time service in fusion reactors.

  6. Helium resources of Mare Tranquillitatis

    Science.gov (United States)

    Cameron, Eugene N.

    Wisconsin Center for Space Automation and Robotics, Univ. of Wisc., Madison, Wisc. Mare Tranquillitatis, about 300000 sq km in area, is currently the most promising lunar source of He-3 for fueling fusion power plants on Earth. About 60 pct. of the mare regolith consists of particles 100 microns or less in diameter. Helium and other gases derived from the solar wind are concentrated in the fine size fractions. Studies of very small craters indicate that the average regolith exceeds 3 m in areas away from larger craters and other mare features not amenable to mining. There is no evidence of decrease of helium content of regolith and depth. Helium is known to be enriched in regoliths that are high in TiO2 content. Remote sensing indicates that about 90 pct. of Mare Tranquillitatis is covered by regolith ranging from about 6 to +7.5 pct. TiO2; inferred He contents range from 20 to at least 45 wppm total helium (7 to 18 wppb He-3). Detailed studies of craters and inferred ejecta halos displayed on high resolution photographs of the Apollo 11 and Ranger 8 areas suggest that as much as 50 pct. of the mare regolith may be physically minable, on average, with appropriate mining equipment. Assuming that the average thickness of regolith is 3 m, and that 50 pct. of the mare area is minable, the He-3 content of minable regolith containing 20 to 45 wppm total He is estimated at about 94,000 tonnes.

  7. Radiation damage in gallium-stabilized δ-plutonium with helium bubbles

    Science.gov (United States)

    Wu, FengChao; Wang, Pei; Liu, XiaoYi; Wu, HengAn

    2017-02-01

    To understand the role of helium on self-irradiation effects in δ-plutonium, microstructure evolutions due to α-decay events near pre-existing helium bubbles in gallium-stabilized δ-plutonium are investigated using molecular dynamics simulations. Bubble promoting effect plays a dominating role in point defects production, resulting in increasing number of point defects. When lightweight helium atoms act as media, energy transfer discrepancy and altered spatial morphology of point defects induced by mass effect are revealed. The evolution of stacking faults surrounding the disordered core is studied and their binding effect on the propagation of point defects are presented. The cascade-induced bubble coalescence, resolution and re-nucleation driven by internal pressure are obtained in the investigation on helium behaviors. The intrinsic tendency in our simulated self-irradiation with helium bubbles is significant for understanding the underlying mechanism of aging in plutonium and its alloys.

  8. Limitations of superfluid helium droplets as host system revealed by electronic spectroscopy of embedded molecules

    Energy Technology Data Exchange (ETDEWEB)

    Premke, Tobias

    2016-02-19

    Superfluid helium nanodroplets serve a unique cryogenic host system ideal to prepare cold molecules and clusters. Structures as well as dynamic processes can be examined by means of high resolution spectroscopy. Dopant spectra are accompanied by helium-induced spectroscopic features which reveal information on the dopant to helium interaction. For this reason the experimental research focuses on the investigation of such helium-induced effects in order to provide new information on the microsolvation inside the droplets. Since the quantitative understanding of helium-induced spectral features is essential to interpret molecular spectra recorded in helium droplets, this study contributes further experimental details on microsolvation in superfluid helium droplets. For this purpose two contrary systems were examined by means of high resolution electronic spectroscopy. The first one, phthalocyanine (Pc), is a planar organic molecule offering a huge and planar surface to the helium atoms and thus, the non-superfluid helium solvation layer can form different structures. The second system is iodine and in contrast to Pc it is of simple molecular shape. That means that in this case different complex structures of the non-superfluid helium solvation layer and the dopant can be expected to be avoided. Thus, both molecules should show clear differences in their microsolvation behavior. In this work a detailed examination of different spectroscopic properties of phthalocyanine is given by means of fluorescence excitation and dispersed emission spectroscopy. It raises legitimate doubts about the assignment of experimentally observed signals to features predicted by the model of the microsolvation. Even though there are no experimental observations which disprove the empirical model for the solvation in helium droplets, an unambiguous assignment of the helium-induced spectroscopic structures is often not possible. In the second part of this work, the investigation of the

  9. Contribution to the experimental study of the polarized liquid helium-3; Contributions a l'etude experimentale de l'helium-3 liquide polarise

    Energy Technology Data Exchange (ETDEWEB)

    Villard, B

    1999-07-15

    Spin-polarized liquid helium-3 is prepared by laser optical pumping in low magnetic field and at room temperature, prior to fast liquefaction of the polarized sample. The use of a new helium-3 cryostat enabled us to obtain liquid helium-3 with polarization rates up to 25 % at well-stabilized temperatures (around 0.5 K). We could thereby study the effect of nuclear polarization on liquid-vapour equilibrium, and particularly on the saturated vapour pressure. Very sensitive capacitive gauges were developed. We estimated (to first order in M{sup 2}) the expected effects when the polarization M is suddenly destroyed. These effects were experimentally observed in helium-3/helium-4 mixtures, in pure helium-3, only a transient increase in pressure has been recorded. We then describe in a third part a preliminary experiment which aimed at determining the longitudinal relaxation time T1 in mixtures. Relaxation on the walls is efficiently reduced by a cesium coating and T1s of order 20 minutes were observed. A careful determination of the helium-3 concentration in the liquid phase was made. Finally we studied the effects of dipolar field on transverse polarisation decay in our strongly polarized samples. We observed the free precession of polarization after a NMR pulse, and analysed in detail its decay time constant as a function of different parameters. This time constant drastically varied with the tipping angle, an effect which could be linked to NMR dynamical instabilities. (author)

  10. Lamb shift in muonic helium ion

    CERN Document Server

    Martynenko, A P

    2006-01-01

    The Lamb shift (2P_{1/2}-2S_{1/2}) in the muonic helium ion (mu ^4_2He)^+ is calculated with the account of contributions of orders alpha^3, alpha^4, alpha^5 and alpha^6. Special attention is given to corrections of the electron vacuum polarization, the nuclear structure and recoil effects. The obtained numerical value of the Lamb shift 1381.716 meV can be considered as a reliable estimate for the comparison with experimental data.

  11. Inelastic collisions of excited helium atoms with normal rubidium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Blagoev, K.B.; Kasyanenko, S.V.; Krauze, U.; Tolmachev, Y.A.

    1986-05-01

    The afterglow of helium lines in a helium--rubidium mixture excited by a pulsed electron beam has been studied. The effective quenching probabilities at different concentrations of rubidium have been measured, and the rate constants and effective quenching cross sections have been determined. An analysis of possible mechanisms of an inelastic collision is given. A major role of the ionic term in the interaction of the particles during collisions is indicated. The experimental values of the cross sections are compared with the results of a calculation in different approximations.

  12. Luminescence properties of dilute bismide systems

    Energy Technology Data Exchange (ETDEWEB)

    Breddermann, B., E-mail: benjamin.breddermann@physik.uni-marburg.de [Faculty of Physics, Philipps-Universität Marburg, 35032 Marburg (Germany); Bäumner, A.; Koch, S.W.; Ludewig, P.; Stolz, W.; Volz, K. [Faculty of Physics, Philipps-Universität Marburg, 35032 Marburg (Germany); Hader, J.; Moloney, J.V. [Nonlinear Control Strategies Inc, 3542 N. Geronimo Ave., Tucson, AZ 85705 (United States); Broderick, C.A.; O' Reilly, E.P. [Tyndall National Institute, Lee Maltings, Dyke Parade, Cork (Ireland); Department of Physics, University College Cork, Cork (Ireland)

    2014-10-15

    Systematic photoluminescence measurements on a series of GaBi{sub x}As{sub 1−x} samples are analyzed theoretically using a fully microscopic approach. Based on sp{sup 3}s{sup ⁎} tight-binding calculations, an effective k·p model is set up and used to compute the band structure and dipole matrix elements for the experimentally investigated samples. With this input, the photoluminescence spectra are calculated using a systematic microscopic approach based on the semiconductor luminescence equations. The detailed theory-experiment comparison allows us to quantitatively characterize the experimental structures and to extract important sample parameters. - Highlights: • Measurement of photoluminescence spectra of a home grown series of dilute bismides. • Fully microscopic calculation of luminescence spectra from detailed band structure. • Quantitative experiment-theory comparison of luminescence spectra. • Thorough understanding of optoelectronic properties of dilute bismide material system. • Promising perspectives for the development of new device applications.

  13. Analysis of a low-temperature magnetic helium pump

    Science.gov (United States)

    Prenger, Coyne; Stewart, Walter

    In an effort to improve reliability of cryocoolers, concepts involving no moving parts are being investigated. One concept utilizes an Active Magnetic Regenerator, AMR, to produce refrigeration. However, circulation of the helium working fluid is required for operation of the device. Currently available helium pumps have moving parts and; therefore, result in poor reliability. We propose a magnetically driven pump to provide the helium circulation for the AMR. The pump utilizes the magnetocaloric effect to produce an oscillatory helium flow and; has no moving parts. An analytical model has been developed to analyze the pump's performance in conjunction with an AMR operating between 7 and 20 K. At a frequency of 1 Hz a 0.5 liter pump can produce a 0.75 g/s flow rate at 20 K at an operating pressure of 5 atm. At the liquid helium temperature a two-phase version of this pump would perform substantially better than the single-phase version. A design concept has been developed and will be presented along with the model results.

  14. Diffusion and retention of helium in titanium carbide

    Science.gov (United States)

    Agarwal, S.; Trocellier, P.; Vaubaillon, S.; Miro, S.

    2014-05-01

    The knowledge of helium migration in TiC is an important issue due to its possible use as fuel coating in fission reactors and as first wall material coating in fusion reactors. Helium release measurements and diffusion coefficient calculations of helium in polycrystalline TiC have been carried out in the temperature range (1000-1600 °C) for the time period of 2 h. Polished bars of TiC were implanted with 3 MeV 3He+ ions in normal incidence at a dose of 5 × 1020 at./m2 at room temperature. Helium depth profile was measured at each step using the 3He(d, p0)4He nuclear reaction by varying the incident deuteron energy from 900 to 1800 keV. Effective diffusion coefficients vary from 4.20 × 10-18 to 2.59 × 10-17 m2 s-1 and activation energy values obtained are in the range 0.8-2.5 eV. Due to scarce availability of stoichiometric TiC, challenges in this study came from native vacancies present in the samples. The helium distribution and its release were affected by the presence of grain boundaries. He is considered to undergo two distinct populations into the sample and different values of diffusion coefficient have been determined for each population.

  15. Diffusion and retention of helium in titanium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, S., E-mail: shradha.agarwal@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Trocellier, P. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Vaubaillon, S. [CEA, INSTN, UEPTN, Laboratoire JANNUS, F-91191 Gif sur Yvette (France); Miro, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2014-05-01

    The knowledge of helium migration in TiC is an important issue due to its possible use as fuel coating in fission reactors and as first wall material coating in fusion reactors. Helium release measurements and diffusion coefficient calculations of helium in polycrystalline TiC have been carried out in the temperature range (1000–1600 °C) for the time period of 2 h. Polished bars of TiC were implanted with 3 MeV {sup 3}He{sup +} ions in normal incidence at a dose of 5 × 10{sup 20} at./m{sup 2} at room temperature. Helium depth profile was measured at each step using the {sup 3}He(d, p{sub 0}){sup 4}He nuclear reaction by varying the incident deuteron energy from 900 to 1800 keV. Effective diffusion coefficients vary from 4.20 × 10{sup −18} to 2.59 × 10{sup −17} m{sup 2} s{sup −1} and activation energy values obtained are in the range 0.8–2.5 eV. Due to scarce availability of stoichiometric TiC, challenges in this study came from native vacancies present in the samples. The helium distribution and its release were affected by the presence of grain boundaries. He is considered to undergo two distinct populations into the sample and different values of diffusion coefficient have been determined for each population.

  16. Study of helium embrittlement in boron doped EUROFER97 steels

    Science.gov (United States)

    Gaganidze, E.; Petersen, C.; Aktaa, J.

    2009-04-01

    To simulate helium effects in Reduced Activation Ferritic/Martensitic steels, experimental heats ADS2, ADS3 and ADS4 with the basic composition of EUROFER97 (9%Cr-WVTa) were doped with different contents of natural boron and separated 10B-isotope (0.008-0.112 wt.%) and irradiated in High Flux Reactor (HFR) Petten up to 16.3 dpa at 250-450 °C and in Bor-60 fast reactor in Dimitrovgrad up to 31.8 dpa at 332-338 °C. The embrittlement and hardening are investigated by instrumented Charpy-V tests with subsize specimens. Complete burn-up of 10B isotope under neutron irradiation in HFR Petten led to generation of 84, 432 and 5580 appm He and partial boron-to-helium transformation in Bor-60 led to generation of 9, 46, 880 appm He in ADS2, ADS3 and ADS4 heats, respectively. At low irradiation temperatures Tirr ⩽ 340 °C the boron doped steels show progressive embrittlement with increasing helium amount. Irradiation induced DBTT shift of EUROFER97 based heat doped with 1120 wppm separated 10B isotope could not be quantified due to large embrittlement found in the investigated temperature range. At Tirr ⩽ 340 °C helium induced extra embrittlement is attributed to material hardening induced by helium bubbles and described in terms of phenomenological model.

  17. 2017 Status report-Tritium aging studies on stainless steel: Effect of hydrogen, tritium and decay helium on the fracture-toughness properties of stem, cup and block forgings

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Michael J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-28

    The materials of construction of tritium reservoirs are forged stainless steels. During service, the structural properties of the stainless steel change over time because of the diffusion of tritium into the reservoir wall and its radioactive decay to helium-3. This aging effect can cause cracks to initiate and grow which could result in a tritium leak or delayed failure of a tritium reservoir. Numerous factors affect the tendency for crack formation and propagation and are being investigated in this program. The goal of the research is to provide relevant fracture mechanics data that can be used by the design agencies in their assessments of tritium reservoir structural integrity. In this status report, new experimental results are presented on the effects of tritium and decay helium on the cracking properties of specimens taken from actual tritium reservoir forgings instead of the experimental forgings of past programs. The properties measured are more representative of actual reservoir properties because the microstructure of the specimens tested are more like that of the actual tritium reservoirs. The program was designed to measure the effects of material variables on tritium compatibility and includes two stainless steels (Type 304L and 316L stainless steel), multiple yield strengths (360-500 MPa), and multiple forging shapes (Stem, Cup, and Block).

  18. HeREF-2003: Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 Cost per participant: 500.- CHF Language: Bilingual English...

  19. HeREF-2003 : Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. • Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 • Cost per participant: 500.- CHF ...

  20. Observation of a helium ion energy threshold for retention in tungsten exposed to hydrogen/helium mixture plasma

    Science.gov (United States)

    Thompson, M.; Deslandes, A.; Morgan, T. W.; Elliman, R. G.; De Temmerman, G.; Kluth, P.; Riley, D.; Corr, C. S.

    2016-10-01

    Helium retention is measured in tungsten samples exposed to mixed H/He plasma in the Magnum-PSI linear plasma device. It is observed that there is very little He retention below helium ion impact energies of 9.0+/- 1.4 eV, indicating the existence of a potential barrier which must be overcome for implantation to occur. The helium retention in samples exposed to plasma at temperatures  >1000 K is strongly correlated with nano-bubble formation measured using grazing incidence small-angle x-ray scattering. The diameters of nano-bubbles were not found to increase with increasing helium concentration, indicating that additional helium must be accommodated by increasing the bubble concentration or an increase in bubble pressure. For some samples pre-irradiation with heavy ions of 2.0 MeV energy is investigated to simulate the effects of neutron damage. It is observed that nano-bubble sizes are comparable between samples pre-irradiated with heavy-ions, and those without heavy-ion pre-irradiation.

  1. Infiltration as Ventilation: Weather-Induced Dilution

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Turner, William J.N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-06-01

    The purpose of outdoor air ventilation is to dilute or remove indoor contaminants to which occupants are exposed. It can be provided by mechanical or natural means. In most homes, especially older homes, weather-driven infiltration provides the dominant fraction of the total ventilation. As we seek to provide good indoor air quality at minimum energy cost, it is important to neither over-ventilate nor under-ventilate. Thus, it becomes critically important to evaluate correctly the contribution infiltration makes to the total outdoor air ventilation rate. Because weather-driven infiltration is dependent on building air leakage and weather-induced pressure differences, a given amount of air leakage will provide different amounts of infiltration. Varying rates of infiltration will provide different levels of contaminant dilution and hence effective ventilation. This paper derives these interactions and then calculates the impact of weather-driven infiltration for different climates. A new “N-factor” is introduced to provide a convenient method for calculating the ventilation contribution of infiltration for over 1,000 locations across North America. The results of this work could be used in indoor air quality standards (specifically ASHRAE 62.2) to account for the contribution of weather-driven infiltration towards the dilution of indoor pollutants.

  2. Condensation stage of a pulse tube pre-cooled dilution refrigerator

    Science.gov (United States)

    Uhlig, Kurt

    2008-03-01

    In our article, experiments with a pulse tube (PTR) pre-cooled dilution refrigerator (DR) are presented, where an upgraded 3He condensation stage has been tested. The DR had a 3He flow rate of up to 1.1 mmol/s. The 3He gas entering the refrigerator was first pre-cooled to a temperature of ˜50 K at the first stage of the PTR. In the next cooling step, the 3He was run through a recently installed heat exchanger, which was attached to the regenerator of the second stage of the pulse tube cryocooler; at the outlet of this heat exchanger the temperature of the 3He was as low as ˜4 K. Due to the non-ideality of the helium gas, the second regenerator of a two stage PTR has excess cooling power which can be made use of without affecting the base temperature of this stage, and it is this effect which was put to work, here. Finally, the 3He was further cooled in a heat exchanger, mounted at the second stage of the PTR, before it entered the dilution unit of the cryostat. The installation of a heat exchanger at the regenerator of the second stage of the PTR is especially important for the construction of DRs with high refrigeration capacities; in addition, it allows for a plain design of the subsequent Joule-Thomson (JT) stage, and herewith facilitates considerably the construction of "dry" DRs. The condensation rate of the 3,4He mash prior to an experiment was increased. The pressure during condensation could be kept near 1 bar, and thus a compressor was no longer necessary with the modified apparatus.

  3. Two phase coexistence for the hydrogen-helium mixture

    CERN Document Server

    Fantoni, Riccardo

    2015-01-01

    We use our newly constructed quantum Gibbs ensemble Monte Carlo algorithm to perform computer experiments for the two phase coexistence of a hydrogen-helium mixture. Our results are in quantitative agreement with the experimental results of C. M. Sneed, W. B. Streett, R. E. Sonntag, and G. J. Van Wylen. The difference between our results and the experimental ones is in all cases less than 15% relative to the experiment, reducing to less than 5% in the low helium concentration phase. At the gravitational inversion between the vapor and the liquid phase, at low temperatures and high pressures, the quantum effects become relevant. At extremely low temperature and pressure the first component to show superfluidity is the helium in the vapor phase.

  4. Interaction of Helium Rydberg State Molecules with Dense Helium.

    Science.gov (United States)

    Bonifaci, Nelly; Li, Zhiling; Eloranta, Jussi; Fiedler, Steven L

    2016-11-17

    The interaction potentials of the He2(*) excimer, in the a(3)Σu, b(3)Πg, c(3)Σg, and d(3)Σu electronic states with a ground state helium atom are presented. The symmetry of the interaction potentials closely follows the excimer Rydberg electron density with pronounced short-range minima appearing along the nodal planes of the Rydberg orbital. In such cases, a combination of the electrostatic short-range attraction combined with Pauli repulsion leads to the appearance of unusual long-range maxima in the potentials. Bosonic density functional calculations show that the (3)d state excimer resides in a localized solvation bubble in dense helium at 4.5 K, with radii varying from 12.7 Å at 0.1 MPa to 10.8 Å at 2.4 MPa. The calculated (3)d → (3)b pressure-induced fluorescence band shifts are in good agreement with experimental results determined by application of corona discharge. The magnitude of the spectral shifts indicate that the observed He2(*) molecules emit from dense helium whereas the corresponding fluorescence signal from the discharge zone appears quenched. This implies that fluorescence spectroscopy involving this electronic transition can only be used to probe the state of the surrounding medium rather than the discharge zone itself.

  5. Mantle-derived helium in foreland basins in Xinjiang, Northwest China

    Science.gov (United States)

    Xu, Sheng; Zheng, Guodong; Zheng, Jianjing; Zhou, Shixin; Shi, Pilong

    2017-01-01

    Hydrocarbon-rich natural gases from the Tarim, Junggar, Turpan-Hami and Santanghu basins in Xinjiang, Northwest China have measured 3He/4He ratios from 0.01 to 0.6 times higher than the atmospheric value, indicating 0-7% helium derived from the mantle. The mantle-derived helium is high in foreland basins associated with the Tianshan, Kunlun and Zhayier-Halalate orogenic mountains, but low towards the center of basins. This spatial distribution suggests that the mantle-derived helium originates either from fluids or small scale melts in the upper asthenospheric or lithospheric mantle which have found pathways into the root zones of the major faults defining these mountains, but do not significantly move into the basins themselves. During upward transport to near the surface, the mantle-derived helium is significantly diluted by radiogenic helium produced in the crust. Despite the lack of recent magmatic activity or extensional tectonics within the basins, this pattern shows strong evidence that the major faults play an important role in mantle-derived components degassing from the mantle to the surface.

  6. The Initiation and Propagation of Helium Detonations in White Dwarf Envelopes

    CERN Document Server

    Shen, Ken J

    2014-01-01

    Detonations in helium-rich envelopes surrounding white dwarfs have garnered attention as triggers of faint thermonuclear ".Ia" supernovae and double detonation Type Ia supernovae. However, recent studies have found that the minimum size of a hotspot that can lead to a helium detonation is comparable to, or even larger than, the white dwarf's pressure scale height, casting doubt on the successful ignition of helium detonations in these systems. In this paper, we examine the previously neglected effects of C/O pollution and a full nuclear reaction network, and we consider hotspots with spatially constant pressure in addition to constant density hotspots. We find that the inclusion of these effects significantly decreases the minimum hotspot size for helium-rich detonation ignition, making detonations far more plausible during turbulent shell convection or during double white dwarf mergers. The increase in burning rate also decreases the minimum shell mass in which a helium detonation can successfully propagate ...

  7. INVESTIGATION STUDIES ON SUB-COOLING OF CRYOGENIC LIQUIDS USING HELIUM INJECTION METHOD

    Directory of Open Access Journals (Sweden)

    T. Ramesh

    2014-01-01

    Full Text Available In cryogenic propellants, the sub-cooling of cryogenic propellants contained in tanks is an important and effective method for bringing down the lift-off mass of launch vehicle and thus the performance of the rocket engine is greatly improved. This study presents the technical and experimental studies conducted on cryogenic liquids such as Liquid Oxygen, Liquid Nitrogen and Liquid Hydrogen using helium injection method. The influence of cooled Helium on the degree of sub-cooling and the variation in flow rate of Helium gas admitted are discussed. The experimental and theoretical studies indicate that the sub-cooling technique using helium injection is a very simple method and can be very well adopted in propellant tanks used for ground and launch vehicle applications. The overall cooling effect for rocket application is also discussed. The critical values of the non-dimensional parameters and injected helium temperatures are also estimated.

  8. Evaluating the effectiveness of dilution of the recovered uranium with depleted uranium and low-enriched uranium to obtain fuel for VVER reactors

    Science.gov (United States)

    Smirnov, A. Yu; Sulaberidze, G. A.; Dudnikov, A. A.; Nevinitsa, V. A.

    2016-09-01

    The possibility of the recovered uranium enrichment in a cascade of gas centrifuges with three feed flows (depleted uranium, low-enriched uranium, recovered uranium) with simultaneous dilution of U-232,234,236 isotopes was shown. A series of numerical experiments were performed for different content of U-235 in low-enriched uranium. It has been demonstrated that the selected combination of diluents can simultaneously reduce the cost of separative work and the consumption of natural uranium, not only with respect to the previously used multi-flow cascade schemes, but also in comparison to the standard cascade for uranium enrichment.

  9. The effect of osmotic swelling and hemolysis of erythrocytes on the transmission spectra of radiation by a layer of diluted blood

    Science.gov (United States)

    Naumenko, E. K.; Davydovskii, A. G.

    2010-08-01

    We study how the degree of violation of osmotic equilibrium affects the spectral characteristics of radiation scattered by erythrocyte suspensions in media of various osmolarity. The transmission spectra were measured in the wavelength range of 450-860 nm for blood samples diluted with NaCl water solutions of various concentration. From an analysis of numerical simulation results and experimental data, we show that measuring the light scattering characteristics constitutes the basis of a new optical method for determining erythrocyte osmotic resistance. The method excludes the necessity of strong action on erythrocytes, differs in its simplicity and expressivity, and can be implemented using standard spectrometers.

  10. The Carlina-type diluted telescope. Stellar fringes on Deneb

    Science.gov (United States)

    Le Coroller, H.; Dejonghe, J.; Hespeels, F.; Arnold, L.; Andersen, T.; Deram, P.; Ricci, D.; Berio, P.; Blazit, A.; Clausse, J.-M.; Guillaume, C.; Meunier, J. P.; Regal, X.; Sottile, R.

    2015-01-01

    Context. The performance of interferometers has been much increased over the past ten years. But the number of observable objects is still limited by the low sensitivity and imaging capability of the current facilities. Studies have been conducted with the aim to propose a new generation of interferometers. Aims: The Carlina concept studied at the Haute-Provence Observatory consists of an optical interferometer configured as a diluted version of the Arecibo radio telescope: above the diluted primary mirror made of fixed co-spherical segments, a helium balloon or cables that are suspended between two mountains and/or pylons carry a gondola containing the focal optics. This concept does not require delay lines. Methods: Since 2003, we have been building a technical demonstrator of this diluted telescope. The main goals of this project were to find opto-mechanical solutions to stabilize the optics attached to cables at several tens of meters above the ground, and to characterize this diluted telescope under real conditions. In 2012, we obtained metrology fringes, and co-spherized the primary mirrors within one micron accuracy. In 2013, we tested the whole optical train: servo loop, metrology, and the focal gondola. Results: We obtained stellar fringes on Deneb in September 2013. We here present the characteristics of these observations: quality of the guiding, signal-to-noise ratio reached, and possible improvements for a future system. Conclusions: By detecting fringes on Deneb, we confirm that the entire system conceptually has worked correctly. It also proves that when the primary mirrors are aligned using the metrology system, we can directly record fringes in the focal gondola, even in blind operation. It is an important step that demonstrates the feasibility of building a diluted telescope using cables strained between cliffs or pylons. Carlina, like the Multiple Mirror Telescope (MMT) or Large Binocular Telescope (LBT), could be one of the first members of a

  11. Operation of an opamp at liquid helium temperature.

    Science.gov (United States)

    Ng, K.-W.

    1994-02-01

    The stray capacitance between long wires in a cryogenics systems will slow down measurement rate, and also introduce unnecessary noise pick up. It is necessary to install the preamplifier as close to the signal source as possible to diminish the capacitive coupling effects. The most commonly used semiconducting device for this purpose is the MOSFET, which can function at liquid helium temperatures. Under special operation procedures, an all MOSFET operational amplifier can also be operated at liquid helium temperature. The use of opamp will simplify the construction of more complicated circuitry for low temperature applications.

  12. Confined helium on Lagrange meshes

    CERN Document Server

    Baye, Daniel

    2015-01-01

    The Lagrange-mesh method has the simplicity of a calculation on a mesh and can have the accuracy of a variational method. It is applied to the study of a confined helium atom. Two types of confinement are considered. Soft confinements by potentials are studied in perimetric coordinates. Hard confinement in impenetrable spherical cavities is studied in a system of rescaled perimetric coordinates varying in [0,1] intervals. Energies and mean values of the distances between electrons and between an electron and the helium nucleus are calculated. A high accuracy of 11 to 15 significant figures is obtained with small computing times. Pressures acting on the confined atom are also computed. For sphere radii smaller than 1, their relative accuracies are better than $10^{-10}$. For larger radii up to 10, they progressively decrease to $10^{-3}$, still improving the best literature results.

  13. Helium atom scattering from surfaces

    CERN Document Server

    1992-01-01

    High resolution helium atom scattering can be applied to study a number of interesting properties of solid surfaces with great sensitivity and accuracy. This book treats in detail experimental and theoretical aspects ofthis method as well as all current applications in surface science. The individual chapters - all written by experts in the field - are devoted to the investigation of surface structure, defect shapes and concentrations, the interaction potential, collective and localized surface vibrations at low energies, phase transitions and surface diffusion. Over the past decade helium atom scattering has gained widespread recognitionwithin the surface science community. Points in its favour are comprehensiveunderstanding of the scattering theory and the availability of well-tested approximation to the rigorous theory. This book will be invaluable to surface scientists wishing to make an informed judgement on the actual and potential capabilities of this technique and its results.

  14. Rapidly pulsed helium droplet source

    Energy Technology Data Exchange (ETDEWEB)

    Pentlehner, Dominik; Riechers, Ricarda; Dick, Bernhard; Slenczka, Alkwin [Institute for Physical and Theoretical Chemistry, University of Regensburg, 93053 Regensburg (Germany); Even, Uzi; Lavie, Nachum; Brown, Raviv; Luria, Kfir [Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv (Israel)

    2009-04-15

    A pulsed valve connected to a closed-cycle cryostat was optimized for producing helium droplets. The pulsed droplet beam appeared with a bimodal size distribution. The leading part of the pulse consists of droplets suitable for doping with molecules. The average size of this part can be varied between 10{sup 4} and 10{sup 6} helium atoms, and the width of the distribution is smaller as compared to a continuous-flow droplet source. The system has been tested in a single pulse mode and at repetition rates of up to 500 Hz with almost constant intensity. The droplet density was found to be increased by more than an order of magnitude as compared to a continuous-flow droplet source.

  15. Elusive structure of helium trimers

    CERN Document Server

    Stipanović, Petar; Boronat, Jordi

    2016-01-01

    Over the years many He-He interaction potentials have been developed, some very sophisticated, including various corrections beyond Born-Oppenheimer approximation. Most of them were used to predict properties of helium dimers and trimers, examples of exotic quantum states, whose experimental study proved to be very challenging. Recently, detailed structural properties of helium trimers were measured for the first time, allowing a comparison with theoretical predictions and possibly enabling the evaluation of different interaction potentials. The comparisons already made included adjusting the maxima of both theoretical and experimental correlation functions to one, so the overall agreement between theory and experiment appeared satisfactory. However, no attempt was made to evaluate the quality of the interaction potentials used in the calculations. In this work, we calculate the experimentally measured correlation functions using both new and old potentials, compare them with experimental data and rank the po...

  16. Dilution thermodynamics of the biologically relevant cation mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kaczyński, Marek, E-mail: marek.kaczynski@pwr.wroc.pl; Borowik, Tomasz, E-mail: office@novel-id.pl; Przybyło, Magda, E-mail: magdalena.przybylo@pwr.wroc.pl; Langner, Marek, E-mail: marek.langner@pwr.wroc.pl

    2014-01-10

    Graphical abstract: - Highlights: • Dilution energetics of Ca{sup 2+} can be altered by the aqueous phase ionic composition. • Dissipated heat upon Ca{sup 2+} dilution is drastically reduced in the K{sup +} presence. • Reduction of the enthalpy change upon Ca{sup 2+} dilution is K{sup +} concentration dependent. • The cooperativity of Ca{sup 2+} hydration might be of great biological relevance providing a thermodynamic argument for the specific ionic composition of the intracellular environment. - Abstract: The ionic composition of intracellular space is rigorously controlled by a variety of processes consuming large quantities of energy. Since the energetic efficiency is an important evolutional criterion, therefore the ion fluxes within the cell should be optimized with respect to the accompanying energy consumption. In the paper we present the experimental evidence that the dilution enthalpies of the biologically relevant ions; i.e. calcium and magnesium depend on the presence of monovalent cations; i.e. sodium and potassium. The heat flow generated during the dilution of ionic mixtures was measured with the isothermal titration calorimetry. When calcium was diluted together with potassium the dilution enthalpy was drastically reduced as the function of the potassium concentration present in the solution. No such effect was observed when the potassium ions were substituted with sodium ones. When the dilution of magnesium was investigated the dependence of the dilution enthalpy on the accompanying monovalent cation was much weaker. In order to interpret experimental evidences the ionic cluster formation is postulated. The specific organization of such cluster should depend on ions charges, sizes and organization of the hydration layers.

  17. Particle detection using superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, S.R.; Lanou, R.E.; Maris, H.J.; More, T.; Porter, F.S.; Seidel, G.M.; Torii, R.

    1991-01-01

    We have observed 5 MeV {alpha} particles stopped in volumes-up to two liters of liquid helium at 70 mK. A fraction of the kinetic energy of an {alpha} particle is converted to elementary excitations (rotons and phonons), which progagate ballistically in isotopically pure {sup 4}He below 0.1 K. Most of these excitations have sufficient energy to evaporate helium atoms on hitting a free surface. The evaporated helium atoms can be detected calorimetrically when adsorbed on a thin silicon wafer ({approximately}1.7 g, 35 cm{sup 2}) suspended above the liquid. Temperature changes of the silicon are measured with a NTD germanium bolometer. For the geometry studied the observed temperature change of the silicon resulting from an {alpha} event in the liquid is approximately 5% of the temperature rise from an {alpha} hitting the silicon directly. The implications of these measurements will be discussed as they relate to the possible construction of a large scale detector of solar neutrinos.

  18. Particle detection using superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, S.R.; Lanou, R.E.; Maris, H.J.; More, T.; Porter, F.S.; Seidel, G.M.; Torii, R.

    1991-12-31

    We have observed 5 MeV {alpha} particles stopped in volumes-up to two liters of liquid helium at 70 mK. A fraction of the kinetic energy of an {alpha} particle is converted to elementary excitations (rotons and phonons), which progagate ballistically in isotopically pure {sup 4}He below 0.1 K. Most of these excitations have sufficient energy to evaporate helium atoms on hitting a free surface. The evaporated helium atoms can be detected calorimetrically when adsorbed on a thin silicon wafer ({approximately}1.7 g, 35 cm{sup 2}) suspended above the liquid. Temperature changes of the silicon are measured with a NTD germanium bolometer. For the geometry studied the observed temperature change of the silicon resulting from an {alpha} event in the liquid is approximately 5% of the temperature rise from an {alpha} hitting the silicon directly. The implications of these measurements will be discussed as they relate to the possible construction of a large scale detector of solar neutrinos.

  19. Helium and Sulfur Hexafluoride in Musical Instruments

    Science.gov (United States)

    Forinash, Kyle; Dixon, Cory L.

    2014-11-01

    The effects of inhaled helium on the human voice were investigated in a recent article in The Physics Teacher.1 As mentioned in that article, demonstrations of the effect are a popular classroom activity. If the number of YouTube videos is any indication, the effects of sulfur hexafluoride on the human voice are equally popular. However, there appears to be little information available on the effects of either of these gases on musical instruments.2 We describe here the results of a student project that involved measuring the frequency shifts in an organ pipe, a trumpet, and a trombone as the result of filling the instruments with these two gases. The project was one of several possible end-of-semester projects required in an elective science of sound course for non-science majors.

  20. Pressure-Volume-Temperature (PVT) Gauging of an Isothermal Cryogenic Propellant Tank Pressurized with Gaseous Helium

    Science.gov (United States)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2014-01-01

    Results are presented for pressure-volume-temperature (PVT) gauging of a liquid oxygen/liquid nitrogen tank pressurized with gaseous helium that was supplied by a high-pressure cryogenic tank simulating a cold helium supply bottle on a spacecraft. The fluid inside the test tank was kept isothermal by frequent operation of a liquid circulation pump and spray system, and the propellant tank was suspended from load cells to obtain a high-accuracy reference standard for the gauging measurements. Liquid quantity gauging errors of less than 2 percent of the tank volume were obtained when quasi-steady-state conditions existed in the propellant and helium supply tanks. Accurate gauging required careful attention to, and corrections for, second-order effects of helium solubility in the liquid propellant plus differences in the propellant/helium composition and temperature in the various plumbing lines attached to the tanks. On the basis of results from a helium solubility test, a model was developed to predict the amount of helium dissolved in the liquid as a function of cumulative pump operation time. Use of this model allowed correction of the basic PVT gauging calculations and attainment of the reported gauging accuracy. This helium solubility model is system specific, but it may be adaptable to other hardware systems.