WorldWideScience

Sample records for helium burst biolistic

  1. Helium bubble bursting in tungsten

    International Nuclear Information System (INIS)

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-01-01

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz

  2. Evaluation of biolistic gene transfer methods in vivo using non-invasive bioluminescent imaging techniques

    Directory of Open Access Journals (Sweden)

    Daniell Henry

    2011-06-01

    Full Text Available Abstract Background Gene therapy continues to hold great potential for treating many different types of disease and dysfunction. Safe and efficient techniques for gene transfer and expression in vivo are needed to enable gene therapeutic strategies to be effective in patients. Currently, the most commonly used methods employ replication-defective viral vectors for gene transfer, while physical gene transfer methods such as biolistic-mediated ("gene-gun" delivery to target tissues have not been as extensively explored. In the present study, we evaluated the efficacy of biolistic gene transfer techniques in vivo using non-invasive bioluminescent imaging (BLI methods. Results Plasmid DNA carrying the firefly luciferase (LUC reporter gene under the control of the human Cytomegalovirus (CMV promoter/enhancer was transfected into mouse skin and liver using biolistic methods. The plasmids were coupled to gold microspheres (1 μm diameter using different DNA Loading Ratios (DLRs, and "shot" into target tissues using a helium-driven gene gun. The optimal DLR was found to be in the range of 4-10. Bioluminescence was measured using an In Vivo Imaging System (IVIS-50 at various time-points following transfer. Biolistic gene transfer to mouse skin produced peak reporter gene expression one day after transfer. Expression remained detectable through four days, but declined to undetectable levels by six days following gene transfer. Maximum depth of tissue penetration following biolistic transfer to abdominal skin was 200-300 μm. Similarly, biolistic gene transfer to mouse liver in vivo also produced peak early expression followed by a decline over time. In contrast to skin, however, liver expression of the reporter gene was relatively stable 4-8 days post-biolistic gene transfer, and remained detectable for nearly two weeks. Conclusions The use of bioluminescence imaging techniques enabled efficient evaluation of reporter gene expression in vivo. Our results

  3. Nano-biolistics: a method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles

    Directory of Open Access Journals (Sweden)

    Lummis Sarah CR

    2011-06-01

    Full Text Available Abstract Background Biolistic transfection is proving an increasingly popular method of incorporating DNA or RNA into cells that are difficult to transfect using traditional methods. The technique routinely uses 'microparticles', which are ~1 μm diameter projectiles, fired into tissues using pressurised gas. These microparticles are efficient at delivering DNA into cells, but cannot efficiently transfect small cells and may cause significant tissue damage, thus limiting their potential usefulness. Here we describe the use of 40 nm diameter projectiles - nanoparticles - in biolistic transfections to determine if they are a suitable alternative to microparticles. Results Examination of transfection efficiencies in HEK293 cells, using a range of conditions including different DNA concentrations and different preparation procedures, reveals similar behaviour of microparticles and nanoparticles. The use of nanoparticles, however, resulted in ~30% fewer damaged HEK293 cells following transfection. Biolistic transfection of mouse ear tissue revealed similar depth penetration for the two types of particles, and also showed that 20% in microparticle-transfected samples. Visualising details of small cellular structures was also considerably enhanced when using nanoparticles. Conclusions We conclude that nanoparticles are as efficient for biolistic transfection as microparticles, and are more appropriate for use in small cells, when examining cellular structures and/or where tissue damage is a problem.

  4. X-Ray Reflection and an Exceptionally Long Thermonuclear Helium Burst from IGR J17062-6143

    Energy Technology Data Exchange (ETDEWEB)

    Keek, L.; Strohmayer, T. E. [X-ray Astrophysics Laboratory, Astrophysics Science Division, NASA/GSFC, Greenbelt, MD 20771 (United States); Iwakiri, W.; Serino, M. [MAXI team, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ballantyne, D. R. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430 (United States); Zand, J. J. M. in’t, E-mail: laurens.keek@nasa.gov [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands)

    2017-02-10

    Thermonuclear X-ray bursts from accreting neutron stars power brief but strong irradiation of their surroundings, providing a unique way to study accretion physics. We analyze MAXI /Gas Slit Camera and Swift /XRT spectra of a day-long flash observed from IGR J17062-6143 in 2015. It is a rare case of recurring bursts at a low accretion luminosity of 0.15% Eddington. Spectra from MAXI , Chandra , and NuSTAR observations taken between the 2015 burst and the previous one in 2012 are used to determine the accretion column. We find it to be consistent with the burst ignition column of 5×10{sup 10} g cm{sup −2}, which indicates that it is likely powered by burning in a deep helium layer. The burst flux is observed for over a day, and decays as a straight power law: F ∝ t {sup −1.15}. The burst and persistent spectra are well described by thermal emission from the neutron star, Comptonization of this emission in a hot optically thin medium surrounding the star, and reflection off the photoionized accretion disk. At the burst peak, the Comptonized component disappears, when the burst may dissipate the Comptonizing gas, and it returns in the burst tail. The reflection signal suggests that the inner disk is truncated at ∼10{sup 2} gravitational radii before the burst, but may move closer to the star during the burst. At the end of the burst, the flux drops below the burst cooling trend for 2 days, before returning to the pre-burst level.

  5. Biolistic transformation of tobacco and maize suspension cells using bacterial cells as microprojectiles.

    Science.gov (United States)

    Rasmussen, J L; Kikkert, J R; Roy, M K; Sanford, J C

    1994-01-01

    We have used both Escherichia coli cells and Agrobacterium tumefaciens cells as microprojectiles to deliver DNA into suspension-cultured tobacco (Nicotiana tabacum L. line NT1) cells using a helium powered biolistic device. In addition, E. coli cells were used as microprojectiles for the transformation of suspension-cultured maize (Zea mays cv. Black Mexican Sweet) cells. Pretreating the bacterial cells with phenol at a concentration of 1.0%, and combining the bacterial cells with tungsten particles increased the rates of transformation. In N. tabacum, we obtained hundreds of transient transformants per bombardment, but were unable to recover any stable transformants. In Z. mays we obtained thousands of transient transformants and an average of six stable transformants per bombardment. This difference is discussed.

  6. INTEGRAL monitoring of unusually long X-ray bursts

    DEFF Research Database (Denmark)

    of the accreted material, these bursts may be explained by either the unstable burning of a large pile of mixed hydrogen and helium, or the ignition of a thick pure helium layer. Long duration bursts are particularly expected at very low accretion rates and make possible to study the transition from a hydrogen......Thermonuclear bursts on the surface of accreting neutron stars in low mass X-ray binaries have been studied for many years and have in a few cases confirmed theoretical models of nuclear ignition and burning mechanisms. The large majority of X-ray bursts last less than 100s. A good number......-rich bursting regime to a pure helium regime. Moreover, a handful of long bursts have shown, before the extended decay phase, an initial spike similar to a normal short X-ray burst. Such twofold bursts might be a sort of link between short and super-bursts, where the premature ignition of a carbon layer could...

  7. IGR J17254-3257, a new bursting neutron star

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Falanga, M.; Kuulkers, E.

    2007-01-01

    Aims. The study of the observational properties of uncommonly long bursts from low luminosity sources is important when investigating the transition from a hydrogen - rich bursting regime to a pure helium regime and from helium burning to carbon burning as predicted by current burst theories. On ...

  8. INTEGRAL monitoring of unusually long X-ray bursts

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Falanga, M.; Kuulkers, E.

    2008-01-01

    of exceptional burst events lasting more than ~10 minutes. Half of the dozen so-called intermediate long bursts registered so far have been observed by INTEGRAL. The goal is to derive a comprehensive picture of the relationship between the nuclear ignition processes and the accretion states of the system leading...... up to such long bursts. Depending on the composition of the accreted material, these bursts may be explained by either the unstable burning of a large pile of mixed hydrogen and helium, or the ignition of a thick pure helium layer. Intermediate long bursts are particularly expected to occur at very...

  9. Agrobacterium- and Biolistic-Mediated Transformation of Maize B104 Inbred.

    Science.gov (United States)

    Raji, Jennifer A; Frame, Bronwyn; Little, Daniel; Santoso, Tri Joko; Wang, Kan

    2018-01-01

    Genetic transformation of maize inbred genotypes remains non-routine for many laboratories due to variations in cell competency to induce embryogenic callus, as well as the cell's ability to receive and incorporate transgenes into the genome. This chapter describes two transformation protocols using Agrobacterium- and biolistic-mediated methods for gene delivery. Immature zygotic embryos of maize inbred B104, excised from ears harvested 10-14 days post pollination, are used as starting explant material. Disarmed Agrobacterium strains harboring standard binary vectors and the biolistic gun system Bio-Rad PDS-1000/He are used as gene delivery systems. The herbicide resistant bar gene and selection agent bialaphos are used for identifying putative transgenic type I callus events. Using the step-by-step protocols described here, average transformation frequencies (number of bialaphos resistant T 0 callus events per 100 explants infected or bombarded) of 4% and 8% can be achieved using the Agrobacterium- and biolistic-mediated methods, respectively. An estimated duration of 16-21 weeks is needed using either protocol from the start of transformation experiments to obtaining putative transgenic plantlets with established roots. In addition to laboratory in vitro procedures, detailed greenhouse protocols for producing immature ears as transformation starting material and caring for transgenic plants for seed production are also described.

  10. Long X-ray burst monitoring with INTEGRAL

    DEFF Research Database (Denmark)

    X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in low mass X-ray binary systems. In the frame of the INTEGRAL observational Key Programme over the Galactic Center a good number of the known X-ray bursters are frequently being monitored. An international...... collaboration lead by the JEM-X team at the Danish National Space Center has proposed to exploit the improved sensitivity of the INTEGRAL instruments to investigate the observational properties and physics up to high energies of exceptional burst events lasting between a few tens of minutes and several hours....... Of special interest are low luminosity bursting sources that exhibit X-ray bursts of very different durations allowing to study the transition from a hydrogen-rich bursting regime to a pure helium regime and from helium burning to carbon burning. I will present results obtained from INTEGRAL archive data...

  11. Efficient biolistic transformation of the moss Physcomitrella patens

    Czech Academy of Sciences Publication Activity Database

    Šmídková, Markéta; Holá, M.; Angelis, Karel

    2010-01-01

    Roč. 54, č. 4 (2010), s. 777-780 ISSN 0006-3134 R&D Projects: GA ČR GA521/04/0971; GA AV ČR IBS5038304; GA MŠk 1M0505; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Keywords : Helios biolistic gun * moss protonemal tissue * particle size Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.582, year: 2010

  12. Biolistic- and Agrobacterium-mediated transformation protocols for wheat.

    Science.gov (United States)

    Tamás-Nyitrai, Cecília; Jones, Huw D; Tamás, László

    2012-01-01

    After rice, wheat is considered to be the most important world food crop, and the demand for high-quality wheat flour is increasing. Although there are no GM varieties currently grown, wheat is an important target for biotechnology, and we anticipate that GM wheat will be commercially available in 10-15 years. In this chapter, we summarize the main features and challenges of wheat transformation and then describe detailed protocols for the production of transgenic wheat plants both by biolistic and Agrobacterium-mediated DNA-delivery. Although these methods are used mainly for bread wheat (Triticum aestivum L.), they can also be successfully applied, with slight modifications, to tetraploid durum wheat (T. turgidum L. var. durum). The appropriate size and developmental stage of explants (immature embryo-derived scutella), the conditions to produce embryogenic callus tissues, and the methods to regenerate transgenic plants under increasing selection pressure are provided in the protocol. To illustrate the application of herbicide selection system, we have chosen to describe the use of the plasmid pAHC25 for biolistic transformation, while for Agrobacterium-mediated transformation the binary vector pAL156 (incorporating both the bar gene and the uidA gene) has been chosen. Beside the step-by-step methodology for obtaining stably transformed and normal fertile plants, procedures for screening and testing transgenic wheat plants are also discussed.

  13. Biolistic transformation of Carrizo citrange (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.).

    Science.gov (United States)

    Wu, Hao; Acanda, Yosvanis; Jia, Hongge; Wang, Nian; Zale, Janice

    2016-09-01

    The development of transgenic citrus plants by the biolistic method. A protocol for the biolistic transformation of epicotyl explants and transgenic shoot regeneration of immature citrange rootstock, cv. Carrizo (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) and plant regeneration is described. Immature epicotyl explants were bombarded with a vector containing the nptII selectable marker and the gfp reporter. The number of independent, stably transformed tissues/total number of explants, recorded by monitoring GFP fluorescence 4 weeks after bombardment was substantial at 18.4 %, and some fluorescing tissues regenerated into shoots. Fluorescing GFP, putative transgenic shoots were micro-grafted onto immature Carrizo rootstocks in vitro, confirmed by PCR amplification of nptII and gfp coding regions, followed by secondary grafting onto older rootstocks grown in soil. Southern blot analysis indicated that all the fluorescing shoots were transgenic. Multiple and single copies of nptII integrations were confirmed in five regenerated transgenic lines. There is potential to develop a higher throughput biolistics transformation system by optimizing the tissue culture medium to improve shoot regeneration and narrowing the window for plant sampling. This system will be appropriate for transformation with minimal cassettes.

  14. Thermonuclear model for γ-ray bursts

    International Nuclear Information System (INIS)

    Woosley, S.E.

    1981-01-01

    The evolution of magnetized neutron stars with field strengths of approx. 10 12 gauss that are accreting mass onto kilometer-sized polar regions at a rate of approx. 13 M 0 yr -1 is examined. Based on the results of one-dimensional calculations, one finds that stable hydrogen burning, mediated by the hot CNO-cycle, will lead to a critical helium mass in the range 10 20 to 10 22 g km -2 . Owing to the extreme degeneracy of the electron gas providing pressure support, helium burning occurs as a violent thermonuclear runaway which may propagate either as a convective deflagration (Type I burst) or as a detonation wave (Type II burst). Complete combustion of helium into 56 Ni releases from 10 38 to 10 40 erg km -2 and pushes hot plasma with β > 1 above the surface of the neutron star. Rapid expansion of the plasma channels a substantial fraction of the explosion energy into magnetic field stress. Spectral properties are expected to be complex with emission from both thermal and non-thermal processes. The hard γ-outburst of several seconds softens as the event proceeds and is followed by a period, typically of several minutes duration, of softer x-ray emission as the subsurface ashes of the thermonuclear explosion cool. In this model, most γ-ray bursts currently being observed are located at a distance of several hundred parsecs and should recur on a timescale of months to centuries with convective deflagrations (Type I bursts) being the more common variety. An explanation for Jacobson-like transients is also offered

  15. Helium-burning flashes on accreting neutron stars: effects of stellar mass, radius, and magnetic field

    International Nuclear Information System (INIS)

    Joss, P.C.; Li, F.K.

    1980-01-01

    We have computed the evolution of the helium-burning shell in an accreting neutron star for various values of the stellar mass (M), radius (R), and surface magnetic fields strength (B). As shown in previous work, the helium-burning shell is often unstable and undergoes thermonuclear flashes that result in the emission of X-ray bursts from the neutron-star surface. The dependence of the properties of these bursts upon the values of M and R can be described by simple scaling relations. A strong magnetic field decreases the radiative and conductive opacities and inhibits convection in the neutron-star surface layers. For B 12 gauss, these effects are unimportant; for B> or approx. =10 13 gauss, the enhancement of the electron thermal conductivity is sufficiently large to stabilize the helium-burning shell against thermonuclear flashes. For intermediate values of B, the reduced opacities increase the recurrence intervals between bursts and the energy released per burst, while the inhibition of convection increases the burst rise times to about a few seconds. If the magnetic field funnels the accreting matter onto the magnetic polar caps, the instability of the helium-burning shell will be very strongly suppressed. These results suggest that it may eventually be possible to extract information on the macroscopic properties of neutron stars from the observed features of X-ray burst sources

  16. In situ DNA transfer to chicken embryos by biolistics

    Directory of Open Access Journals (Sweden)

    Luciana A. Ribeiro

    1999-12-01

    Full Text Available Fertilized chicken eggs were bombarded with a biolistic device. Transient expression of the lacZ gene under the control of a human cytomegalovirus (CMV promoter was assessed after in situ gene transfer using this approach. The influence of different pressures, vacuum levels and particles was tested. Survival rate improved as particle velocity decreased, but resulted in lower levels of expression. The best survival and expression were obtained with gold particles, a helium gas pressure of 600 psi and a vacuum of 600 mmHg. Under these conditions, all bombarded embryos showed b-galactosidase activity, indicating that this was an effective method for transformation of chicken embryos.Ovos fertilizados de galinha foram bombardeados através da técnica de biobalística. A expressão transiente do gene lacZ, sob o controle do promotor humano citomegalovírus, foi verificada após a transferência in situ. Diferentes níveis de pressão de gás hélio, vácuo e tipos de partículas foram testados. A taxa de sobrevivência aumentou à medida que a velocidade das partículas diminuíram, entretanto, o nível de expressão foi menor. Os melhores resultados, combinando taxa de sobrevivência e expressão, foram obtidos com partículas de ouro, 600 libras por polegada ao quadrado de hélio e 600 mmHg de vácuo. Nestas condições, todos os embriões bombardeados apresentaram atividade da b-galactosidase, indicando que esta técnica é eficiente para a transformação de embriões de galinhas.

  17. Plastid transformation in lettuce (Lactuca sativa L.) by biolistic DNA delivery.

    Science.gov (United States)

    Ruhlman, Tracey A

    2014-01-01

    The interest in producing pharmaceutical proteins in a nontoxic plant host has led to the development of an approach to express such proteins in transplastomic lettuce (Lactuca sativa L.). A number of therapeutic proteins and vaccine antigen candidates have been stably integrated into the lettuce plastid genome using biolistic DNA delivery. High levels of accumulation and retention of biological activity suggest that lettuce may provide an ideal platform for the production of biopharmaceuticals.

  18. HvCKX2 gene silencing by biolistic or Agrobacterium-mediated transformation in barley leads to different phenotypes.

    Science.gov (United States)

    Zalewski, Wojciech; Orczyk, Wacław; Gasparis, Sebastian; Nadolska-Orczyk, Anna

    2012-11-07

    CKX genes encode cytokinin dehydrogenase enzymes (CKX), which metabolize cytokinins in plants and influence developmental processes. The genes are expressed in different tissues and organs during development; however, their exact role in barley is poorly understood. It has already been proven that RNA interference (RNAi)-based silencing of HvCKX1 decreased the CKX level, especially in those organs which showed the highest expression, i.e. developing kernels and roots, leading to higher plant productivity and higher mass of the roots [1]. The same type of RNAi construct was applied to silence HvCKX2 and analyze the function of the gene. Two cultivars of barley were transformed with the same silencing and selection cassettes by two different methods: biolistic and via Agrobacterium. The mean Agrobacterium-mediated transformation efficiency of Golden Promise was 3.47% (±2.82). The transcript level of HvCKX2 in segregating progeny of T(1) lines was decreased to 34%. The reduction of the transcript in Agrobacterium-derived plants resulted in decreased CKX activity in the developing and developed leaves as well as in 7 DAP (days after pollination) spikes. The final phenotypic effect was increased productivity of T(0) plants and T(1) lines. Higher productivity was the result of the higher number of seeds and higher grain yield. It was also correlated with the higher 1000 grain weight, increased (by 7.5%) height of the plants and higher (from 0.5 to 2) numbers of spikes. The transformation efficiency of Golden Promise after biolistic transformation was more than twice as low compared to Agrobacterium. The transcript level in segregating progeny of T(1) lines was decreased to 24%. Otherwise, the enzyme activity found in the leaves of the lines after biolistic transformation, especially in cv. Golden Promise, was very high, exceeding the relative level of the control lines. These unbalanced ratios of the transcript level and the activity of the CKX enzyme negatively

  19. Model Atmospheres for X-ray Bursting Neutron Stars

    OpenAIRE

    Medin, Zach; von Steinkirch, Marina; Calder, Alan C.; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of t...

  20. Molecular dynamics and density functional simulations of tungsten nanostructure formation by helium plasma irradiation

    International Nuclear Information System (INIS)

    Ito, A.M.; Takayama, A.; Oda, Y.

    2014-10-01

    For the purposes of long-term use of tungsten diverter walls, it is necessary to suppress the surface deterioration due to the helium ash which induces the formations of helium bubbles and tungsten fuzzy nanostructures. In the present paper, the formation mechanisms of helium bubbles and tungsten fuzzy nanostructures were explained by the four-step process which is composed of the penetration process, the diffusion and agglomeration process, the helium bubble growth process and the tungsten fuzzy nanostructure formation process. The first to third step processes of the four-step process were investigated by using binary collision approximation, density functional theory and molecular dynamics, respectively. Furthermore, newly developed molecular dynamics and Monte-Carlo hybrid simulation has successfully reproduced the early formation process of tungsten fuzzy nanostructure. From these simulations, we here suggest the following key mechanisms of the formations of helium bubbles and tungsten fuzzy nanostructures: (1) By comparison between helium, neon, argon and hydrogen, the noble gas atoms can agglomerate limitlessly not only at a vacancy but also at an interstitial site. In particular, at the low incident energy, only helium atoms bring about the nucleation for helium bubble. (2) In the helium bubble growth process, the strain of the tungsten material around a helium atom is released as a dislocation loop, which is regarded as the loop punching phenomenon. (3) In the tungsten nanostructure formation process, the bursting of a helium bubble forms cavity and convexity in the surface. The helium bubbles tend to be grown and to burst at the cavity region, and then the difference of height between the cavity and convexity on the surface are enhanced. Consequently, the tungsten fuzzy nanostructure is formed. (author)

  1. THE POPULATION OF HELIUM-MERGER PROGENITORS: OBSERVATIONAL PREDICTIONS

    International Nuclear Information System (INIS)

    Fryer, Chris L.; Belczynski, Krzysztof; Bulik, Tomasz; Berger, Edo; Thöne, Christina; Ellinger, Carola

    2013-01-01

    The helium-merger gamma-ray burst (GRB) progenitor is produced by the rapid accretion onto a compact remnant (neutron star or black hole) when it undergoes a common envelope inspiral with its companion's helium core. This merger phase produces a very distinct environment around these outbursts and recent observations suggest that, in some cases, we are detecting the signatures of the past merger in the GRB afterglow. These observations allow us, for the first time, to study the specific features of the helium-merger progenitor. In this paper, we couple population synthesis calculations to our current understanding of GRB engines and common envelope evolution to make observational predictions for the helium-merger GRB population. Many mergers do not produce GRB outbursts and we discuss the implications of these mergers with the broader population of astrophysical transients.

  2. Biolistic transformation of Schistosoma mansoni: Studies with modified reporter-gene constructs containing regulatory regions of protease genes

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Jan; Beckmann, S.; Lim, K.-C.; Engel, J. C.; Grevelding, C. G.; McKerrow, J. H.; Caffrey, C. R.

    2010-01-01

    Roč. 170, č. 1 (2010), s. 37-40 ISSN 0166-6851 Institutional research plan: CEZ:AV0Z60220518 Keywords : Schistosoma * Protease * Transgene * Gene promoter * Biolistics * Electroporation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.875, year: 2010

  3. Intermediate long X-ray bursts from the ultra-compact binary candidate SLX1737-282

    DEFF Research Database (Denmark)

    Falanga, M.; Chenevez, Jérôme; Cumming, A.

    2008-01-01

    . The observed intermediate long burst properties from SLX 1737-282 are consistent with helium ignition at the column depth of 5-8 × 109 g cm-2 and a burst energy release of 1041 erg. The apparent recurrence time of ≃86 days between the intermediate long bursts from SLX 1737-282 suggests a regime of unstable...... bursts. Methods: Up to now only four bursts, all with duration between ≃15{-}30 min, have been recorded for SLX 1737-282. The properties of three of these intermediate long X-ray bursts observed by INTEGRAL are investigated and compared to other burster sources. The broadband spectrum of the persistent...

  4. Tungsten surface evolution by helium bubble nucleation, growth and rupture

    International Nuclear Information System (INIS)

    Sefta, Faiza; Wirth, Brian D.; Hammond, Karl D.; Juslin, Niklas

    2013-01-01

    Molecular dynamics simulations reveal sub-surface mechanisms likely involved in the initial formation of nanometre-sized ‘fuzz’ in tungsten exposed to low-energy helium plasmas. Helium clusters grow to over-pressurized bubbles as a result of repeated cycles of helium absorption and Frenkel pair formation. The self-interstitials either reach the surface as isolated adatoms or trap at the bubble periphery before organizing into prismatic 〈1 1 1〉 dislocation loops. Surface roughening occurs as single adatoms migrate to the surface, prismatic loops glide to the surface to form adatom islands, and ultimately as over-pressurized gas bubbles burst. (paper)

  5. MILLIHERTZ QUASI-PERIODIC OSCILLATIONS AND THERMONUCLEAR BURSTS FROM TERZAN 5: A SHOWCASE OF BURNING REGIMES

    Energy Technology Data Exchange (ETDEWEB)

    Linares, M.; Chakrabarty, D. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Altamirano, D. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam and Center for High-Energy Astrophysics, P.O. BOX 94249, 1090 GE Amsterdam (Netherlands); Cumming, A. [Department of Physics, McGill University, 3600 Rue University, Montreal, QC H3A 2T8 (Canada); Keek, L. [School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

    2012-04-01

    We present a comprehensive study of the thermonuclear bursts and millihertz quasi-periodic oscillations (mHz QPOs) from the neutron star (NS) transient and 11 Hz X-ray pulsar IGR J17480-2446, located in the globular cluster Terzan 5. The increase in burst rate that we found during its 2010 outburst, when persistent luminosity rose from 0.1 to 0.5 times the Eddington limit, is in qualitative agreement with thermonuclear burning theory yet contrary to all previous observations of thermonuclear bursts. Thermonuclear bursts gradually evolved into a mHz QPO when the accretion rate increased, and vice versa. The mHz QPOs from IGR J17480-2446 resemble those previously observed in other accreting NSs, yet they feature lower frequencies (by a factor {approx}3) and occur when the persistent luminosity is higher (by a factor 4-25). We find four distinct bursting regimes and a steep (close to inverse cubic) decrease of the burst recurrence time with increasing persistent luminosity. We compare these findings to nuclear burning models and find evidence for a transition between the pure helium and mixed hydrogen/helium ignition regimes when the persistent luminosity was about 0.3 times the Eddington limit. We also point out important discrepancies between the observed bursts and theory, which predicts brighter and less frequent bursts, and suggest that an additional source of heat in the NS envelope is required to reconcile the observed and expected burst properties. We discuss the impact of NS magnetic field and spin on the expected nuclear burning regimes, in the context of this particular pulsar.

  6. Biolistic transformation of Scoparia dulcis L.

    Science.gov (United States)

    Srinivas, Kota; Muralikrishna, Narra; Kumar, Kalva Bharath; Raghu, Ellendula; Mahender, Aileni; Kiranmayee, Kasula; Yashodahara, Velivela; Sadanandam, Abbagani

    2016-01-01

    Here, we report for the first time, the optimized conditions for microprojectile bombardment-mediated genetic transformation in Vassourinha (Scoparia dulcis L.), a Plantaginaceae medicinal plant species. Transformation was achieved by bombardment of axenic leaf segments with Binary vector pBI121 harbouring β-glucuronidase gene (GUS) as a reporter and neomycin phosphotransferase II gene (npt II) as a selectable marker. The influence of physical parameters viz., acceleration pressure, flight distance, gap width & macroprojectile travel distance of particle gun on frequency of transient GUS and stable (survival of putative transformants) expressions have been investigated. Biolistic delivery of the pBI121 yielded the best (80.0 %) transient expression of GUS gene bombarded at a flight distance of 6 cm and rupture disc pressure/acceleration pressure of 650 psi. Highest stable expression of 52.0 % was noticed in putative transformants on RMBI-K medium. Integration of GUS and npt II genes in the nuclear genome was confirmed through primer specific PCR. DNA blot analysis showed more than one transgene copy in the transformed plantlet genomes. The present study may be used for metabolic engineering and production of biopharmaceuticals by transplastomic technology in this valuable medicinal plant.

  7. Simulating X-ray bursts during a transient accretion event

    Science.gov (United States)

    Johnston, Zac; Heger, Alexander; Galloway, Duncan K.

    2018-06-01

    Modelling of thermonuclear X-ray bursts on accreting neutron stars has to date focused on stable accretion rates. However, bursts are also observed during episodes of transient accretion. During such events, the accretion rate can evolve significantly between bursts, and this regime provides a unique test for burst models. The accretion-powered millisecond pulsar SAX J1808.4-3658 exhibits accretion outbursts every 2-3 yr. During the well-sampled month-long outburst of 2002 October, four helium-rich X-ray bursts were observed. Using this event as a test case, we present the first multizone simulations of X-ray bursts under a time-dependent accretion rate. We investigate the effect of using a time-dependent accretion rate in comparison to constant, averaged rates. Initial results suggest that using a constant, average accretion rate between bursts may underestimate the recurrence time when the accretion rate is decreasing, and overestimate it when the accretion rate is increasing. Our model, with an accreted hydrogen fraction of X = 0.44 and a CNO metallicity of ZCNO = 0.02, reproduces the observed burst arrival times and fluences with root mean square (rms) errors of 2.8 h, and 0.11× 10^{-6} erg cm^{-2}, respectively. Our results support previous modelling that predicted two unobserved bursts and indicate that additional bursts were also missed by observations.

  8. COSMOLOGICAL IMPLICATIONS OF FAST RADIO BURST/GAMMA-RAY BURST ASSOCIATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Wei; Zhang, Bing, E-mail: deng@physics.unlv.edu, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States)

    2014-03-10

    If a small fraction of fast radio bursts (FRBs) are associated with gamma-ray bursts (GRBs), as recently suggested by Zhang, the combination of redshift measurements of GRBs and dispersion measure (DM) measurements of FRBs opens a new window to study cosmology. At z < 2 where the universe is essentially fully ionized, detections of FRB/GRB pairs can give an independent measurement of the intergalactic medium portion of the baryon mass fraction, Ω {sub b} f {sub IGM}, of the universe. If a good sample of FRB/GRB associations are discovered at higher redshifts, the free electron column density history can be mapped, which can be used to probe the reionization history of both hydrogen and helium in the universe. We apply our formulation to GRBs 101011A and 100704A that each might have an associated FRB, and constrained Ω {sub b} f {sub IGM} to be consistent with the value derived from other methods. The methodology developed here is also applicable, if the redshifts of FRBs not associated with GRBs can be measured by other means.

  9. COSMOLOGICAL IMPLICATIONS OF FAST RADIO BURST/GAMMA-RAY BURST ASSOCIATIONS

    International Nuclear Information System (INIS)

    Deng, Wei; Zhang, Bing

    2014-01-01

    If a small fraction of fast radio bursts (FRBs) are associated with gamma-ray bursts (GRBs), as recently suggested by Zhang, the combination of redshift measurements of GRBs and dispersion measure (DM) measurements of FRBs opens a new window to study cosmology. At z < 2 where the universe is essentially fully ionized, detections of FRB/GRB pairs can give an independent measurement of the intergalactic medium portion of the baryon mass fraction, Ω b f IGM , of the universe. If a good sample of FRB/GRB associations are discovered at higher redshifts, the free electron column density history can be mapped, which can be used to probe the reionization history of both hydrogen and helium in the universe. We apply our formulation to GRBs 101011A and 100704A that each might have an associated FRB, and constrained Ω b f IGM to be consistent with the value derived from other methods. The methodology developed here is also applicable, if the redshifts of FRBs not associated with GRBs can be measured by other means

  10. HELIUM IN NATAL H II REGIONS: THE ORIGIN OF THE X-RAY ABSORPTION IN GAMMA-RAY BURST AFTERGLOWS

    International Nuclear Information System (INIS)

    Watson, Darach; Andersen, Anja C.; Fynbo, Johan P. U.; Hjorth, Jens; Krühler, Thomas; Laursen, Peter; Leloudas, Giorgos; Malesani, Daniele; Zafar, Tayyaba; Gorosabel, Javier; Jakobsson, Páll

    2013-01-01

    Soft X-ray absorption in excess of Galactic is observed in the afterglows of most gamma-ray bursts (GRBs), but the correct solution to its origin has not been arrived at after more than a decade of work, preventing its use as a powerful diagnostic tool. We resolve this long-standing problem and find that absorption by He in the GRB's host H II region is responsible for most of the absorption. We show that the X-ray absorbing column density (N H X ) is correlated with both the neutral gas column density and with the optical afterglow's dust extinction (A V ). This correlation explains the connection between dark bursts and bursts with high N H X values. From these correlations, we exclude an origin of the X-ray absorption which is not related to the host galaxy, i.e., the intergalactic medium or intervening absorbers are not responsible. We find that the correlation with the dust column has a strong redshift evolution, whereas the correlation with the neutral gas does not. From this, we conclude that the column density of the X-ray absorption is correlated with the total gas column density in the host galaxy rather than the metal column density, in spite of the fact that X-ray absorption is typically dominated by metals. The strong redshift evolution of N H X /A V is thus a reflection of the cosmic metallicity evolution of star-forming galaxies and we find it to be consistent with measurements of the redshift evolution of metallicities for GRB host galaxies. We conclude that the absorption of X-rays in GRB afterglows is caused by He in the H II region hosting the GRB. While dust is destroyed and metals are stripped of all of their electrons by the GRB to great distances, the abundance of He saturates the He-ionizing UV continuum much closer to the GRB, allowing it to remain in the neutral or singly-ionized state. Helium X-ray absorption explains the correlation with total gas, the lack of strong evolution with redshift, as well as the absence of dust, metal or

  11. Thermonuclear Bursts with Short Recurrence Times from Neutron Stars Explained by Opacity-driven Convection

    Energy Technology Data Exchange (ETDEWEB)

    Keek, L. [X-ray Astrophysics Laboratory, Astrophysics Science Division, NASA/GSFC, Greenbelt, MD 20771 (United States); Heger, A., E-mail: laurens.keek@nasa.gov [Monash Center for Astrophysics, School of Physics and Astronomy, Monash University, Victoria, 3800 (Australia)

    2017-06-20

    Thermonuclear flashes of hydrogen and helium accreted onto neutron stars produce the frequently observed Type I X-ray bursts. It is the current paradigm that almost all material burns in a burst, after which it takes hours to accumulate fresh fuel for the next burst. In rare cases, however, bursts are observed with recurrence times as short as minutes. We present the first one-dimensional multi-zone simulations that reproduce this phenomenon. Bursts that ignite in a relatively hot neutron star envelope leave a substantial fraction of the fuel unburned at shallow depths. In the wake of the burst, convective mixing events driven by opacity bring this fuel down to the ignition depth on the observed timescale of minutes. There, unburned hydrogen mixes with the metal-rich ashes, igniting to produce a subsequent burst. We find burst pairs and triplets, similar to the observed instances. Our simulations reproduce the observed fraction of bursts with short waiting times of ∼30%, and demonstrate that short recurrence time bursts are typically less bright and of shorter duration.

  12. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    International Nuclear Information System (INIS)

    Medin, Zach; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.; Steinkirch, Marina von; Calder, Alan C.

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  13. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Medin, Zach; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Steinkirch, Marina von; Calder, Alan C. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2016-12-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  14. Two-phase X-ray burst from GX 3+1 observed by INTEGRAL

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Falanga, M.F.; Brandt, Søren

    2006-01-01

    INTEGRAL detected on August 31, 2004, an unusual thermonuclear X-ray burst from the low-mass X-ray binary GX 3 3+1. Its duration was 30 min, which is between the normal burst durations for this source (less than or similar to 10 s) and the superburst observed in 1998 ( several hours). We see...... emission up to 30 keV energy during the first few seconds of the burst where the bolometric peak luminosity approaches the Eddington limit. This peculiar burst is characterized by two distinct phases: an initial short spike of similar to 6 s consistent with being similar to a normal type I X-ray burst...... in the present case); and 3) limited carbon burning at an unusually shallow depth triggered by unstable helium ignition. Though none of these provide a satisfactory description of this uncommon event, the former one seems the most probable....

  15. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins.

    Science.gov (United States)

    Liang, Zhen; Chen, Kunling; Zhang, Yi; Liu, Jinxing; Yin, Kangquan; Qiu, Jin-Long; Gao, Caixia

    2018-03-01

    This protocol is an extension to: Nat. Protoc. 9, 2395-2410 (2014); doi:10.1038/nprot.2014.157; published online 18 September 2014In recent years, CRISPR/Cas9 has emerged as a powerful tool for improving crop traits. Conventional plant genome editing mainly relies on plasmid-carrying cassettes delivered by Agrobacterium or particle bombardment. Here, we describe DNA-free editing of bread wheat by delivering in vitro transcripts (IVTs) or ribonucleoprotein complexes (RNPs) of CRISPR/Cas9 by particle bombardment. This protocol serves as an extension of our previously published protocol on genome editing in bread wheat using CRISPR/Cas9 plasmids delivered by particle bombardment. The methods we describe not only eliminate random integration of CRISPR/Cas9 into genomic DNA, but also reduce off-target effects. In this protocol extension article, we present detailed protocols for preparation of IVTs and RNPs; validation by PCR/restriction enzyme (RE) and next-generation sequencing; delivery by biolistics; and recovery of mutants and identification of mutants by pooling methods and Sanger sequencing. To use these protocols, researchers should have basic skills and experience in molecular biology and biolistic transformation. By using these protocols, plants edited without the use of any foreign DNA can be generated and identified within 9-11 weeks.

  16. Time delay between singly and doubly ionizing wavepackets in laser-driven helium

    International Nuclear Information System (INIS)

    Parker, J S; Doherty, B J S; Meharg, K J; Taylor, K T

    2003-01-01

    We present calculations of the time delay between single and double ionization of helium, obtained from full-dimensionality numerical integrations of the helium-laser Schroedinger equation. The notion of a quantum mechanical time delay is defined in terms of the interval between correlated bursts of single and double ionization. Calculations are performed at 390 and 780 nm in laser intensities that range from 2 x 10 14 to 14 x 10 14 Wcm -2 . We find results consistent with the rescattering model of double ionization but supporting its classical interpretation only at 780 nm. (letter to the editor)

  17. Hybrid simulation research on formation mechanism of tungsten nanostructure induced by helium plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Atsushi M., E-mail: ito.atsushi@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Takayama, Arimichi; Oda, Yasuhiro [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Tamura, Tomoyuki; Kobayashi, Ryo; Hattori, Tatsunori; Ogata, Shuji [Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Ohno, Noriyasu; Kajita, Shin [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yajima, Miyuki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Noiri, Yasuyuki [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yoshimoto, Yoshihide [University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Saito, Seiki [Kushiro National College of Technology, Kushiro, Hokkaido 084-0916 (Japan); Takamura, Shuichi [Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392 (Japan); Murashima, Takahiro [Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-Ward, Sendai 980-8578 (Japan); Miyamoto, Mitsutaka [Shimane University, Matsue, Shimane 690-8504 (Japan); Nakamura, Hiroaki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-08-15

    The generation of tungsten fuzzy nanostructure by exposure to helium plasma is one of the important problems for the use of tungsten material as divertor plates in nuclear fusion reactors. In the present paper, the formation mechanisms of the helium bubble and the tungsten fuzzy nanostructure were investigated by using several simulation methods. We proposed the four-step process which is composed of penetration step, diffusion and agglomeration step, helium bubble growth step, and fuzzy nanostructure formation step. As the fourth step, the formation of the tungsten fuzzy nanostructure was successfully reproduced by newly developed hybrid simulation combining between molecular dynamics and Monte-Carlo method. The formation mechanism of tungsten fuzzy nanostructure observed by the hybrid simulation is that concavity and convexity of the surface are enhanced by the bursting of helium bubbles in the region around the concavity.

  18. Biolistic-mediated transient gene expression in shoot apical meristems of the prickly-pear (Opuntia ficus-indica

    Directory of Open Access Journals (Sweden)

    Romulo Marino Llamoca-Zárate

    1999-01-01

    Full Text Available We have demonstrated the transient expression of the GUS gene in cells of the meristematic apical dome of Opuntia ficus-indica. DNA delivery into the cells was achieved using a biolistic PDS-1000He instrument from Bio-Rad Laboratories. The transforming DNA was coated in tungsten particles with diameter of 1.3 m m and the distance between the flying disk and the target tissue was 7.5cm and the shooting pressure was adjusted to 1200 psi. This is the first demonstration that the biolistic transformation system can be used to express a transgene in a member of the Cactaceae.Nós demonstramos a expressão transiente do gene GUS nas células do meristema apical de Opuntia ficus-indica. A introdução do DNA nas células foi realizada através de um sistema de biolística PDS-1000He da Bio-Rad Laboratories. Para transformação, partículas de tungstenio com diâmetro de 1,3 µm foram cobertas com DNA e a distância entre o disco das partículas e o tecido alvo foi de 7,5cm, a pressão de tiro foi 1200 psi. Esta é a primeira demonstração que o sistema de biolística de transformação pode ser usado para a expressão de transgenes nas cactáceas.

  19. Star bursts and giant HII regions

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1990-01-01

    Massive star formation bursts occur in a variety of galactic environments and can temporarily dominate the light output of a galaxy even when a relatively small proportion of its mass is involved. Inferences about their ages, the IMF and its dependence on chemical composition are still somewhat wobbly owing to an excess of unknowns, but certain things can be deduced from emission spectra of associated H II regions when due regard is paid to the effects of chemical composition and ionization parameter: In particular, largest ionization parameters and effective temperatures of exciting stars, at any given oxygen abundance, are anti-correlated with the abundance, and the second effect suggests an increasing proportion of more massive stars at lower abundances, although this is not yet satisfactorily quantified. A new blue compact galaxies could be very young, but it is equally possible that there is an older population of low surface brightness. Some giant H II regions may be self-polluted with nitrogen and helium due to winds from massive stars in the associated burst. (orig.)

  20. Structure and micro-mechanical properties of helium-implanted layer on Ti by plasma-based ion implantation

    International Nuclear Information System (INIS)

    Ma Xinxin; Li Jinlong; Sun Mingren

    2008-01-01

    The present paper concentrates on structure and micro-mechanical properties of the helium-implanted layer on titanium treated by plasma-based ion implantation with a pulsed voltage of -30 kV and doses of 3, 6, 9 and 12 x 10 17 ions/cm 2 , respectively. X-ray photoelectron spectroscopy and transmission electron microscopy are employed to characterize the structure of the implanted layer. The hardnesses at different depths of the layer were measured by nano-indentation. We found that helium ion implantation into titanium leads to the formation of bubbles with a diameter from a few to more than 10 nm and the bubble size increases with the increase of dose. The primary existing form of Ti is amorphous in the implanted layer. Helium implantation also enhances the ingress of O, C and N and stimulates the formations of TiO 2 , Ti 2 O 3 , TiO, TiC and TiN in the near surface layer. And the amount of the ingressed oxygen is obviously higher than those of nitrogen and carbon due to its higher activity. At the near surface layer, the hardnesses of all implanted samples increases remarkably comparing with untreated one and the maximum hardness has an increase by a factor of up to 3.7. For the samples implanted with higher doses of 6, 9 and 12 x 10 17 He/cm 2 , the local displacement bursts are clearly found in the load-displacement curves. For the samples implanted with a lower dose of 3 x 10 17 He/cm 2 , there is no obvious displacement burst found. Furthermore, the burst width increases with the increase of the dose

  1. Starbursts and the chemical evolution of HII galaxies: ages of bursts VS local environmental pollution

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1987-01-01

    Results previously published for oxygen, nitrogen and helium abundances in HII galaxies are revised to allow for collisional contributions to the helium lines and a few further objects added. The relationships found are similar in general to those found previously, though with fewer objects departing from the dY/dZ relation derived by Peimbert and his colleagues, and are confirmed by a principal component analysis which shows that O/H accounts for about half of the variation in helium but N/H for essentially all of it. These effects are consistent with an additional component of helium and secondary nitrogen, superposed on primary nitrogen, with the additional component either coming from low-mass stars made in very old bursts or resulting from local pollution of the observed HII regions by winds from massive stars within them. Evidence from different regions of POX 4 and NGC 5253 gives some slight support to the latter hypothesis

  2. Helium hammer in superfluid transfer

    Science.gov (United States)

    Tward, E.; Mason, P. V.

    1984-01-01

    Large transient pressure pulses, referred to as a helium hammer, which occurred in the transfer line of the main cryogenic tank during the development tests of the Infrared Astronomical Satellite, launched on January 25, 1983, are analyzed, and the measures taken to prevent a failure described. The modifications include an installation of a 2.3-liter surge tank upstream, and a back-up relief valve downstream, of a burst disk. The surge tank is designed to attenuate a 0.33-MPa pressure pulse at the inlet down to 0.092 MPa at the outlet. A mechanism of the pulse generation is suggested, which involves flashing and rapid recondensation of the small amount of liquid entering the warm section of a transition to room temperature.

  3. Transformation of triploid bermudagrass (Cynodon dactylon x C. transvaalensis cv. TifEagle) by means of biolistic bombardment.

    Science.gov (United States)

    Zhang, G; Lu, S; Chen, T A; Funk, C R; Meyer, W A

    2003-06-01

    A transformation system for triploid bermudagrass ( Cynodon dactylon x C. transvaalensis cv. TifEagle) was established with a biolistic bombardment delivery system. Embryogenic callus was induced from stolons and maintained on Murashige and Skoog's medium supplemented with 30 microM dicamba, 20 microM benzylaminopurine, and 100 mg/l myo-inositol. Using the hygromycin phosphotransferase ( hpt) gene as the selectable marker gene, we obtained 75 transgenic lines from 18 petri dishes bombarded. Integration of the hpt gene into genomic DNA and transcription of hpt was confirmed by Southern and Northern blot analyses, respectively. Through suspension culture screening, we obtained homogeneously transformed plants showing stable transcription of the hpt gene.

  4. Black Hole Accretion in Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Agnieszka Janiuk

    2017-02-01

    Full Text Available We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of matter powers the relativistic jets, responsible for the gamma ray prompt emission. The significant number density of neutrons in the disk and outflowing material will cause subsequent formation of heavier nuclei. We study the process of nucleosynthesis and its possible observational consequences. We also apply our scenario to the recent observation of the gravitational wave signal, detected on 14 September 2015 by the two Advanced LIGO detectors, and related to an inspiral and merger of a binary black hole system. A gamma ray burst that could possibly be related with the GW150914 event was observed by the Fermi satellite. It had a duration of about 1 s and appeared about 0.4 s after the gravitational-wave signal. We propose that a collapsing massive star and a black hole in a close binary could lead to the event. The gamma ray burst was powered by a weak neutrino flux produced in the star remnant’s matter. Low spin and kick velocity of the merged black hole are reproduced in our simulations. Coincident gravitational-wave emission originates from the merger of the collapsed core and the companion black hole.

  5. NICER Eyes on Bursting Stars

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    What happens to a neutron stars accretion disk when its surface briefly explodes? A new instrument recently deployed at the International Space Station (ISS) is now watching bursts from neutron stars and reporting back.Deploying a New X-Ray MissionLaunch of NICER aboard a Falcon 9 rocket in June 2017. [NASA/Tony Gray]In early June of 2017, a SpaceX Dragon capsule on a Falcon 9 rocket launched on a resupply mission to the ISS. The pressurized interior of the Dragon contained the usual manifest of crew supplies, spacewalk equipment, and vehicle hardware. But the unpressurized trunk of the capsule held something a little different: the Neutron star Interior Composition Explorer (NICER).In the two weeks following launch, NICER was extracted from the SpaceX Dragon capsule and installed on the ISS. And by the end of the month, the instrument was already collecting its first data set: observations of a bright X-ray burst from Aql X-1, a neutron star accreting matter from a low-mass binary companion.Impact of BurstsNICERs goal is to provide a new view of neutron-star physics at X-ray energies of 0.212 keV a window that allows us to explore bursts of energy that neutron stars sometimes emit from their surfaces.Artists impression of an X-ray binary, in which a compact object accretes material from a companion star. [ESA/NASA/Felix Mirabel]In X-ray burster systems, hydrogen- and helium-rich material from a low-mass companion star piles up in an accretion disk around the neutron star. This material slowly funnels onto the neutron stars surface, forming a layer that gravitationally compresses and eventually becomes so dense and hot that runaway nuclear fusion ignites.Within seconds, the layer of material is burned up, producing a burst of emission from the neutron star that outshines even the inner regions of the hot accretion disk. Then more material funnels onto the neutron star and the process begins again.Though we have a good picture of the physics that causes these bursts

  6. Flux decay during thermonuclear X-ray bursts analysed with the dynamic power-law index method

    Science.gov (United States)

    Kuuttila, J.; Kajava, J. J. E.; Nättilä, J.; Motta, S. E.; Sánchez-Fernández, C.; Kuulkers, E.; Cumming, A.; Poutanen, J.

    2017-08-01

    The cooling of type-I X-ray bursts can be used to probe the nuclear burning conditions in neutron star envelopes. The flux decay of the bursts has been traditionally modelled with an exponential, even if theoretical considerations predict power-law-like decays. We have analysed a total of 540 type-I X-ray bursts from five low-mass X-ray binaries observed with the Rossi X-ray Timing Explorer. We grouped the bursts according to the source spectral state during which they were observed (hard or soft), flagging those bursts that showed signs of photospheric radius expansion (PRE). The decay phase of all the bursts were then fitted with a dynamic power-law index method. This method provides a new way of probing the chemical composition of the accreted material. Our results show that in the hydrogen-rich sources the power-law decay index is variable during the burst tails and that simple cooling models qualitatively describe the cooling of presumably helium-rich sources 4U 1728-34 and 3A 1820-303. The cooling in the hydrogen-rich sources 4U 1608-52, 4U 1636-536, and GS 1826-24, instead, is clearly different and depends on the spectral states and whether PRE occurred or not. Especially the hard state bursts behave differently than the models predict, exhibiting a peculiar rise in the cooling index at low burst fluxes, which suggests that the cooling in the tail is much faster than expected. Our results indicate that the drivers of the bursting behaviour are not only the accretion rate and chemical composition of the accreted material, but also the cooling that is somehow linked to the spectral states. The latter suggests that the properties of the burning layers deep in the neutron star envelope might be impacted differently depending on the spectral state.

  7. On the blister formation in copper alloys due to the helium ion implantation

    International Nuclear Information System (INIS)

    Moreno, D.; Eliezer, D.

    1997-01-01

    Structural materials in fusion reactors will be exposed to alpha radiation and helium implantation over a broad range of energies. A new approach to the blister-formation phenomenon is discussed by means of the mathematical solution on a uniformly loaded circular plate with clamped edges (circular diaphragm). In the present investigation, it was found that blister formation depends on the mechanical properties of the alloys and the near-surface concentration of the implanted gas, which itself is contingent on the crystallographic orientation by means of the stopping power of the implanted atoms. The reported model is based on the fact that at certain depths from the surface, the pressure in the cavities approaches the yield stress of the metal and blistering starts. The thickness of this thin film depends on the mechanical properties of the specific metal. Once a blister cavity is formed, the deformation of the thin film to form a blister cap depends on the buildup of pressure in the cavity contingent on the implanted dose. For the present model, it is sufficient to say that the thickness of the blister's cap cannot be correlated with the projected range of the implantation, as assumed by other authors. The implanted helium concentration needed to build up enough gas pressure to create a blister at a depth which is close to the projected range is higher by 50 times than the gas helium concentration in the cavity. Experimental results, such as the fact that the blisters have burst at the edge of the circular skin, where the maximum stresses are developed, and the fact that at high implantation energy (large projected range), the bursting of the blisters occurs by multilayer caps, support the present model

  8. Tritium and helium retention and release from irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Longhurst, G.R.; Oates, M.A.; Pawelko, R.J. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1998-01-01

    This paper reports the results of an experimental effort to anneal irradiated beryllium specimens and characterize them for steam-chemical reactivity experiments. Fully-dense, consolidated powder metallurgy Be cylinders, irradiated in the EBR-II to a fast neutron (>0.1 MeV) fluence of {approx}6 x 10{sup 22} n/cm{sup 2}, were annealed at temperatures from 450degC to 1200degC. The releases of tritium and helium were measured during the heat-up phase and during the high-temperature anneals. These experiments revealed that, at 600degC and below, there was insignificant gas release. Tritium release at 700degC exhibited a delayed increase in the release rate, while the specimen was at 700degC. For anneal temperatures of 800degC and higher, tritium and helium release was concurrent and the release behavior was characterized by gas-burst peaks. Essentially all of the tritium and helium was released at temperatures of 1000degC and higher, whereas about 1/10 of the tritium was released during the anneals at 700degC and 800degC. Measurements were made to determine the bulk density, porosity and specific surface area for each specimen before and after annealing. These measurements indicated that annealing caused the irradiated Be to swell, by as much as 14% at 700degC and 56% at 1200degC. Kr gas adsorption measurements for samples annealed at 1000degC and 1200degC determined specific surface areas between 0.04 m{sup 2}/g and 0.1 m{sup 2}/g for these annealed specimens. The tritium and helium gas release measurements and the specific surface area measurements indicated that annealing of irradiated Be caused a porosity network to evolve and become surface-connected to relieve internal gas pressure. (author)

  9. Transfer of hydrogen and helium through corrugated, flexible tubes

    International Nuclear Information System (INIS)

    Schippl, K.

    2001-01-01

    The transfer of liquid gas or cold gas through corrugated tubes is an alternative to rigid systems for the use in reactor technique. Advantages: flexibility for easy installation; these tubes together with their associated terminations and hardware are assembled, leak-tested and evacuated at the factory. This permits simple and cost saving installation on site. All tubes are helium leak-tested with a sensitivity of 10E -9 mbar 1/sec. Following the leak test, the vacuum space is pumped down to the operation vacuum level and properly sealed. The vacuum integrity is guaranteed as a result of the high degree of cleanliness observed during production and from the use of a specially selected better material inside the vacuum space. Disadvantage: pressure is limited to 20 bar. To fulfil all rules of the reactor safety, different tests have to be done. Because of the longitudinal weld of the corrugated tube, a bursting test of different sizes gives the best information of the liability of this kind of tube. It can be shown that the bursting pressure of such a tube is more than 5 times higher than the max. working pressure

  10. Neutron stars as X-ray burst sources. II. Burst energy histograms and why they burst

    International Nuclear Information System (INIS)

    Baan, W.A.

    1979-01-01

    In this work we explore some of the implications of a model for X-ray burst sources where bursts are caused by Kruskal-Schwarzschild instabilities at the magnetopause of an accreting and rotating neutron star. A number of simplifying assumptions are made in order to test the model using observed burst-energy histograms for the rapid burster MXB 1730--335. The predicted histograms have a correct general shape, but it appears that other effects are important as well, and that mode competition, for instance, may suppress the histograms at high burst energies. An explanation is ventured for the enhancement in the histogram at the highest burst energies, which produces the bimodal shape in high accretion rate histograms. Quantitative criteria are given for deciding when accreting neutron stars are steady sources or burst sources, and these criteria are tested using the X-ray pulsars

  11. Cryogenic filter method produces super-pure helium and helium isotopes

    Science.gov (United States)

    Hildebrandt, A. F.

    1964-01-01

    Helium is purified when cooled in a low pressure environment until it becomes superfluid. The liquid helium is then filtered through iron oxide particles. Heating, cooling and filtering processes continue until the purified liquid helium is heated to a gas.

  12. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  13. NICER Detection of Strong Photospheric Expansion during a Thermonuclear X-Ray Burst from 4U 1820–30

    Science.gov (United States)

    Keek, L.; Arzoumanian, Z.; Chakrabarty, D.; Chenevez, J.; Gendreau, K. C.; Guillot, S.; Güver, T.; Homan, J.; Jaisawal, G. K.; LaMarr, B.; Lamb, F. K.; Mahmoodifar, S.; Markwardt, C. B.; Okajima, T.; Strohmayer, T. E.; in ’t Zand, J. J. M.

    2018-04-01

    The Neutron Star Interior Composition Explorer (NICER) on the International Space Station (ISS) observed strong photospheric expansion of the neutron star in 4U 1820–30 during a Type I X-ray burst. A thermonuclear helium flash in the star’s envelope powered a burst that reached the Eddington limit. Radiation pressure pushed the photosphere out to ∼200 km, while the blackbody temperature dropped to 0.45 keV. Previous observations of similar bursts were performed with instruments that are sensitive only above 3 keV, and the burst signal was weak at low temperatures. NICER's 0.2–12 keV passband enables the first complete detailed observation of strong expansion bursts. The strong expansion lasted only 0.6 s, and was followed by moderate expansion with a 20 km apparent radius, before the photosphere finally settled back down at 3 s after the burst onset. In addition to thermal emission from the neutron star, the NICER spectra reveal a second component that is well fit by optically thick Comptonization. During the strong expansion, this component is six times brighter than prior to the burst, and it accounts for 71% of the flux. In the moderate expansion phase, the Comptonization flux drops, while the thermal component brightens, and the total flux remains constant at the Eddington limit. We speculate that the thermal emission is reprocessed in the accretion environment to form the Comptonization component, and that changes in the covering fraction of the star explain the evolution of the relative contributions to the total flux.

  14. Liquid helium

    CERN Document Server

    Atkins, K R

    1959-01-01

    Originally published in 1959 as part of the Cambridge Monographs on Physics series, this book addresses liquid helium from the dual perspectives of statistical mechanics and hydrodynamics. Atkins looks at both Helium Three and Helium Four, as well as the properties of a combination of the two isotopes. This book will be of value to anyone with an interest in the history of science and the study of one of the universe's most fundamental elements.

  15. CALCULATED REGENERATOR PERFORMANCE AT 4 K WITH HELIUM-4 AND HELIUM-3

    International Nuclear Information System (INIS)

    Radebaugh, Ray; Huang Yonghua; O'Gallagher, Agnes; Gary, John

    2008-01-01

    The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transport properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies

  16. New helium spectrum variable and a new helium-rich star

    International Nuclear Information System (INIS)

    Walborn, N.R.

    1974-01-01

    HD 184927, known previously as a helium-rich star, has been found to have a variable helium spectrum; the equivalent widths of five He I lines are larger by an average of 46 percent on a 1974 spectrogram than on one obtained with the same equipment in 1970. HD 186205 has been found to be a new, pronounced helium-rich star. (auth)

  17. Cosmic gamma-ray burst

    International Nuclear Information System (INIS)

    Yamagami, Takamasa

    1985-01-01

    Ballon experiments for searching gamma-ray burst were carried out by employing rotating-cross modulation collimators. From a very long observation of total 315 hours during 1975 to 1979, three gamma-ray intensity anomalies were observed which were speculated as a gamma-ray burst. As for the first gamma-ray intensity anomaly observed in 1975, the burst source could be located precisely but the source, heavenly body, could not be specified. Gamma-ray burst source estimation was made by analyzing distribution of burst source in the celestial sphere, burst size distribution, and burst peak. Using the above-mentioned data together with previously published ones, apparent inconsistency was found between the observed results and the adopted theory that the source was in the Galaxy, and this inconsistency was found due to the different time profiles of the burst observed with instruments of different efficiency. It was concluded by these analysis results that employment of logN - logP (relation between burst frequency and burst count) was better than that of logN - logS (burst size) in the examination of gamma-ray burst because the former was less uncertain than the latter. Analyzing the author's observed gamma-ray burst data and the related published data, it was clarified that the burst distribution was almost P -312 for the burst peak value larger than 10 -6 erg/cm 2 .sec. The author could indicate that the calculated celestial distribution of burst source was consistent with the observed results by the derivation using the logN - logP relationship and that the burst larger than 10 -6 erg/cm 2 .sec happens about one thousand times a year, about ten times of the previous value. (Takagi, S.)

  18. Helium the disappearing element

    CERN Document Server

    Sears, Wheeler M

    2015-01-01

    The subject of the book is helium, the element, and its use in myriad applications including MRI machines, particle accelerators, space telescopes, and of course balloons and blimps. It was at the birth of our Universe, or the Big Bang, where the majority of cosmic helium was created; and stellar helium production continues. Although helium is the second most abundant element in the Universe, it is actually quite rare here on Earth and only exists because of radioactive elements deep within the Earth. This book includes a detailed history of the discovery of helium, of the commercial industry built around it, how the helium we actually encounter is produced within the Earth, and the state of the helium industry today. The gas that most people associate with birthday party balloons is running out. “Who cares?” you might ask. Well, without helium, MRI machines could not function, rockets could not go into space, particle accelerators such as those used by CERN could not operate, fiber optic cables would not...

  19. Swift pointing and gravitational-wave bursts from gamma-ray burst events

    International Nuclear Information System (INIS)

    Sutton, Patrick J; Finn, Lee Samuel; Krishnan, Badri

    2003-01-01

    The currently accepted model for gamma-ray burst phenomena involves the violent formation of a rapidly rotating solar-mass black hole. Gravitational waves should be associated with the black-hole formation, and their detection would permit this model to be tested. Even upper limits on the gravitational-wave strength associated with gamma-ray bursts could constrain the gamma-ray burst model. This requires joint observations of gamma-ray burst events with gravitational and gamma-ray detectors. Here we examine how the quality of an upper limit on the gravitational-wave strength associated with gamma-ray bursts depends on the relative orientation of the gamma-ray-burst and gravitational-wave detectors, and apply our results to the particular case of the Swift Burst-Alert Telescope (BAT) and the LIGO gravitational-wave detectors. A result of this investigation is a science-based 'figure of merit' that can be used, together with other mission constraints, to optimize the pointing of the Swift telescope for the detection of gravitational waves associated with gamma-ray bursts

  20. Liquid helium target

    International Nuclear Information System (INIS)

    Fujii, Y.; Kitami, T.; Torikoshi, M.

    1984-12-01

    A liquid helium target system has been built and used for the experiment on the reaction 4 He(γ, p). The target system has worked satisfactorily; the consumption rate of liquid helium is 360 ml/h and the cryogenic system retains liquid helium for about ten hours. The structure, operation and performance of the target system are reported. (author)

  1. Quantum key based burst confidentiality in optical burst switched networks.

    Science.gov (United States)

    Balamurugan, A M; Sivasubramanian, A

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks.

  2. Quantum Key Based Burst Confidentiality in Optical Burst Switched Networks

    Directory of Open Access Journals (Sweden)

    A. M. Balamurugan

    2014-01-01

    Full Text Available The optical burst switching (OBS is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS. This paper deals with employing RC4 (stream cipher to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks.

  3. A liquid helium saver

    International Nuclear Information System (INIS)

    Avenel, O.; Der Nigohossian, G.; Roubeau, P.

    1976-01-01

    A cryostat equipped with a 'liquid helium saver' is described. A mass flow rate M of helium gas at high pressure is injected in a counter-flow heat exchanger extending from room to liquid helium temperature. After isenthalpic expansion through a calibrated flow impedance this helium gas returns via the low pressure side of the heat exchanger. The helium boil-off of the cryostat represents a mass flow rate m, which provides additional precooling of the incoming helium gas. Two operating regimes appear possible giving nearly the same efficiency: (1) high pressure (20 to 25 atm) and minimum flow (M . L/W approximately = 1.5) which would be used in an open circuit with helium taken from a high pressure cylinder; and (2) low pressure (approximately = 3 atm), high flow (M . L/W > 10) which would be used in a closed circuit with a rubber diaphragm pumping-compressing unit; both provide a minimum theoretical boil-off factor of about 8%. Experimental results are reported. (U.K.)

  4. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    Science.gov (United States)

    Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.

    2013-10-01

    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.

  5. Canada's helium output rising fast

    Energy Technology Data Exchange (ETDEWEB)

    1966-12-01

    About 12 months from now, International Helium Limited will be almost ready to start up Canada's second helium extraction plant at Mankota, in Saskatchewan's Wood Mountain area about 100 miles southwest of Moose Jaw. Another 80 miles north is Saskatchewan's (and Canada's) first helium plant, operated by Canadian Helium and sitting on a gas deposit at Wilhelm, 9 miles north of Swift Current. It contains almost 2% helium, some COD2U, and the rest nitrogen. One year in production was apparently enough to convince Canadian Helium that the export market (it sells most of its helium in W. Europe) can take a lot more than it's getting. Construction began this summer on an addition to the Swift Current plant that will raise its capacity from 12 to 36MMcf per yr when it goes on stream next spring. Six months later, International Helium's 40 MMcf per yr plant to be located about 4 miles from its 2 Wood Mountain wells will double Canada's helium output again.

  6. Diffusion of helium and nucleation-growth of helium-bubbles in metallic materials

    International Nuclear Information System (INIS)

    Zhang Chonghong; Chen Keqin; Wang Yinshu

    2001-01-01

    Studies of diffusion and aggregation behaviour of helium in metallic materials are very important to solve the problem of helium embrittlement in structural materials used in the environment of nuclear power. Experimental studies on helium diffusion and aggregation in austenitic stainless steels in a wide temperature range have been performed in authors' research group and the main results obtained are briefly summarized. The mechanism of nucleation-growth of helium-bubbles has been discussed and some problems to be solved are also given

  7. THE FERMI-GBM X-RAY BURST MONITOR: THERMONUCLEAR BURSTS FROM 4U 0614+09

    International Nuclear Information System (INIS)

    Linares, M.; Chakrabarty, D.; Connaughton, V.; Bhat, P. N.; Briggs, M. S.; Preece, R.; Jenke, P.; Kouveliotou, C.; Wilson-Hodge, C. A.; Van der Horst, A. J.; Camero-Arranz, A.; Finger, M.; Paciesas, W. S.; Beklen, E.; Von Kienlin, A.

    2012-01-01

    Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the NS interior. During the first year of a systematic all-sky search for X-ray bursts using the Gamma-ray Burst Monitor aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09 when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12 ± 3 days (68% confidence interval) between 2010 March and 2011 March, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 days (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bursters and briefly discuss the constraints on ignition models. Interestingly, we find that the burst energies in 4U 0614+09 are on average between those of normal duration bursts and those measured in long/intermediate bursts. Such a continuous distribution in burst energy provides a new observational link between normal and long/intermediate bursts. We suggest that the apparent bimodal distribution that defined normal and long/intermediate duration bursts during the last decade could be due to an observational bias toward detecting only the longest and most energetic bursts from slowly accreting NSs.

  8. Fuzzy-Based Adaptive Hybrid Burst Assembly Technique for Optical Burst Switched Networks

    Directory of Open Access Journals (Sweden)

    Abubakar Muhammad Umaru

    2014-01-01

    Full Text Available The optical burst switching (OBS paradigm is perceived as an intermediate switching technology for future all-optical networks. Burst assembly that is the first process in OBS is the focus of this paper. In this paper, an intelligent hybrid burst assembly algorithm that is based on fuzzy logic is proposed. The new algorithm is evaluated against the traditional hybrid burst assembly algorithm and the fuzzy adaptive threshold (FAT burst assembly algorithm via simulation. Simulation results show that the proposed algorithm outperforms the hybrid and the FAT algorithms in terms of burst end-to-end delay, packet end-to-end delay, and packet loss ratio.

  9. Development of highly regenerable callus lines and biolistic transformation of turf-type common bermudagrass [Cynodon dactylon (L.) Pers.].

    Science.gov (United States)

    Li, L; Qu, R

    2004-01-01

    Common bermudagrass, Cynodon dactylon, is a widely used warm-season turf and forage species in the temperate and tropical regions of the world. Improvement of bermudagrass via biotechnology depends on improved tissue culture responses, especially in plant regeneration, and a successful scheme to introduce useful transgenes. When the concentration of 6-benzylaminopurine was adjusted in the culture medium, yellowish, compact calluses were observed from young inflorescence tissue culture of var. J1224. Nine long-term, highly regenerable callus lines (including a suspension-cultured line) were subsequently established, of which six were used for biolistic transformation. Five independent transgenic events, with four producing green plants, were obtained following hygromycin B selection from one callus line. Three transgenic events displayed resistance to the herbicide glufosinate, and one of these showed beta-glucuronidase activity since the co-transformation vector used in the experiments contained both the gusA and bar genes.

  10. Screw compressor system for industrial-scale helium refrigerators or industrial ammonia screw compressors for helium refrigeration systems; Schraubenkompressor-System fuer Helium-Grosskaelteanlage oder Ammoniak-Schraubenverdichter aus Industrieanwendungen fuer Helium-Kaelteanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Fredrich, O.; Mosemann, D.; Zaytsev, D. [GEA Grasso GmbH Refrigeration Technology, Berlin (Germany)

    2007-07-01

    Material characteristics, requirements and measured data of ammonia and helium compression are compared. The compressor lines for industrial ammonia and helium refrigerators are presented, and important characteristics of the compressors are explained. The test stand for performance measurements with helium and ammonia is described, and results are presented. In spite of the different characteristics of the fluids, the compressor-specific efficiencies (supply characteristic, quality characteristic) were found to be largely identical. The values calculated for helium on the basis of NH3 test runs were found to be realistic, which means that the decades of experience with ammonia in industrial applications can be applied to helium compression as well. The design of screw compressor aggregates (skids) in industrial refrigeration is discussed and illustrated by examples. (orig.)

  11. Self-trapping of helium in metals

    International Nuclear Information System (INIS)

    Wilson, W.D.; Bisson, C.L.; Baskes, M.I.

    1981-01-01

    Atomistic calculations are presented which demonstrate that helium atoms in a metal lattice are able to cluster with each other, producing vacancies and nearby self-interstitial defects. Even a small number of helium atoms is found to be sufficient to create these large distortions. As few as five interstitial helium can spontaneously produce a lattice vacancy and nearby self-interstitial. An eight-helium-atom cluster gives rise to two such defects, and 16 helium atoms to more than five self-interstitial vacancy pairs. It was noted that the self-interstitials prefer to agglomerate on the same ''side'' of the helium cluster rather than to spread themselves out uniformly. The binding energy of each additional helium atom to these clusters increases with helium concentration and the trap is apparently unsaturable. A rate theory using these atomistic binding energies has been used to calculate the kinetics of helium-bubble nucleation and growth. The results are consistent with measurements of the properties of helium resulting from tritium decay

  12. QKD-Based Secured Burst Integrity Design for Optical Burst Switched Networks

    Science.gov (United States)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2016-03-01

    The field of optical transmission has undergone numerous advancements and is still being researched mainly due to the fact that optical data transmission can be done at enormous speeds. It is quite evident that people prefer optical communication when it comes to large amount of data involving its transmission. The concept of switching in networks has matured enormously with several researches, architecture to implement and methods starting with Optical circuit switching to Optical Burst Switching. Optical burst switching is regarded as viable solution for switching bursts over networks but has several security vulnerabilities. However, this work exploited the security issues associated with Optical Burst Switching with respect to integrity of burst. This proposed Quantum Key based Secure Hash Algorithm (QKBSHA-512) with enhanced compression function design provides better avalanche effect over the conventional integrity algorithms.

  13. The genesis of period-adding bursting without bursting-chaos in the Chay model

    International Nuclear Information System (INIS)

    Yang Zhuoqin; Lu Qishao; Li Li

    2006-01-01

    According to the period-adding firing patterns without chaos observed in neuronal experiments, the genesis of the period-adding 'fold/homoclinic' bursting sequence without bursting-chaos is explored by numerical simulation, fast/slow dynamics and bifurcation analysis of limit cycle in the neuronal Chay model. It is found that each periodic bursting, from period-1 to 7, is separately generated by the corresponding periodic spiking pattern through two period-doubling bifurcations, except for the period-1 bursting occurring via a Hopf bifurcation. Consequently, it can be revealed that this period-adding bursting bifurcation without chaos has a compound bifurcation structure with transitions from spiking to bursting, which is closely related to period-doubling bifurcations of periodic spiking in essence

  14. A repeating fast radio burst.

    Science.gov (United States)

    Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-03-10

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  15. Convective mixing in helium white dwarfs

    International Nuclear Information System (INIS)

    Vauclair, G.; Fontaine, G.

    1979-01-01

    The conditions under which convective mixing episodes take place between the helium envelopes and the underlying carbon layers in helium-rich white dwarfs are investigated. It is found that, for essentially any value of the initial helium content less than the maximum mass a helium convection zone can have, mixing does occur, and leads, in the vast majority of cases, to an almost pure carbon superficial composition. Mixing products that show only traces of carbon while retaining helium-dominated envelopes are possible only if the initial helium content is quite close to the maximum possible mass of the helium convection zone. In the presence of turbulence, this restriction could be relaxed, however, and the helium-rich lambda4670 stars may possibly be explained in this fashion

  16. Friendly fermions of helium-three

    International Nuclear Information System (INIS)

    Leggatt, T.

    1976-01-01

    The importance of helium in showing up the effects of atomic indistinguishability and as a material by which to test some of the most fundamental principles of quantum mechanics is discussed. Helium not only remains liquid down to zero temperature but of the two isotopes helium-three has intrinsic spin 1/2 and should therefore obey the Pauli principle, while helium-four has spin zero and is expected to undergo Bose condensation. Helium-three becomes superfluid at temperatures of a few thousandths of a degree above absolute zero by the bulk liquid collecting its atoms into spinning pairs. There are three different superfluid phases, now conveniently called A, B and A 1 and each is characterised by a different behaviour of the spin and/or relative angular motion of the atoms composing the Cooper pairs. Problems surrounding the complicated physical system of helium-three are discussed. It is suggested that the combined coherence and directionality of superfluid helium-three should create some fascinating physics. (U.K.)

  17. The genesis of period-adding bursting without bursting-chaos in the Chay model

    International Nuclear Information System (INIS)

    Yang Zhuoqin; Lu Qishao; Li Li

    2006-01-01

    According to the period-adding firing patterns without chaos observed in neuronal experiments, the genesis of the period-adding 'fold/homoclinic' bursting sequence without bursting-chaos is explored by numerical simulation, fast/slow dynamics and bifurcation analysis of limit cycle in the neuronal Chay model. It is found that each periodic bursting, from period-1 to period-7, is separately generated by the corresponding periodic spiking pattern through two period-doubling bifurcations, except for the period-1 bursting occurring via a Hopf bifurcation. Consequently, it can be revealed that this period-adding bursting bifurcation without chaos has a compound bifurcation structure with transitions from spiking to bursting, which is closely related to period-doubling bifurcations of periodic spiking in essence

  18. INVESTIGATION OF PRIMORDIAL BLACK HOLE BURSTS USING INTERPLANETARY NETWORK GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Ukwatta, T. N. [Director' s Postdoctoral Fellow, Space and Remote Sensing (ISR-2), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hurley, K. [University of California, Berkeley, Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); MacGibbon, J. H. [Department of Physics, University of North Florida, Jacksonville, FL 32224 (United States); Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Pal' shin, V. D. [Ioffe Physical Technical Institute, St. Petersburg, 194021 (Russian Federation); Goldsten, J. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States); Boynton, W. [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States); Kozyrev, A. S. [Space Research Institute, 84/32, Profsoyuznaya, Moscow 117997 (Russian Federation); Rau, A.; Kienlin, A. von; Zhang, X. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, Postfach 1312, Garching, D-85748 (Germany); Connaughton, V. [University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Yamaoka, K. [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 229-8558 (Japan); Ohno, M. [Department of Physics, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Ohmori, N. [Department of Applied Physics, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki-shi, Miyazaki 889-2192 (Japan); Feroci, M. [INAF/IAPS-Roma, via Fosso del Cavaliere 100, I-00133, Roma (Italy); Frontera, F., E-mail: tilan@lanl.gov [Department of Physics and Earth Science, University of Ferrara, via Saragat 1, I-44122 Ferrara (Italy); and others

    2016-07-20

    The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected by the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 10{sup 13}–10{sup 18} cm (7–10{sup 5} au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.

  19. Helium turbo-expander with an alternator

    International Nuclear Information System (INIS)

    Akiyama, Yoshitane

    1980-01-01

    Study was made on a helium turbo-expander, the heart of helium refrigerator systems, in order to develop a system which satisfies the required conditions. A helium turbo-expander with externally pressurized helium gas bearings at the temperature of liquid nitrogen and an alternator as a brake have been employed. The essential difference between a helium turbo-expander and a nitrogen turbo-expander was clarified. The gas bearing lubricated with nitrogen at room temperature and the gas bearing lubricated with helium at low temperature were tested. The flow rate of helium in a helium refrigerator for a large superconducting magnet is comparatively small, therefore a helium turbine must be small, but the standard for large turbine design can be applied to such small turbine. Using the alternator as a brake, the turbo-expander was easily controllable electrically. The prototype turbo-expander was made, and the liquefaction test with it and MHD power generation test were carried out. (Kako, I.)

  20. Helium in inert matrix dispersion fuels

    International Nuclear Information System (INIS)

    Veen, A. van; Konings, R.J.M.; Fedorov, A.V.

    2003-01-01

    The behaviour of helium, an important decay product in the transmutation chains of actinides, in dispersion-type inert matrix fuels is discussed. A phenomenological description of its accumulation and release in CERCER and CERMET fuel is given. A summary of recent He-implantation studies with inert matrix metal oxides (ZrO 2 , MgAl 2 O 4 , MgO and Al 2 O 3 ) is presented. A general picture is that for high helium concentrations helium and vacancy defects form helium clusters which convert into over-pressurized bubbles. At elevated temperature helium is released from the bubbles. On some occasions thermal stable nano-cavities or nano-pores remain. On the basis of these results the consequences for helium induced swelling and helium storage in oxide matrices kept at 800-1000 deg. C will be discussed. In addition, results of He-implantation studies for metal matrices (W, Mo, Nb and V alloys) will be presented. Introduction of helium in metals at elevated temperatures leads to clustering of helium to bubbles. When operational temperatures are higher than 0.5 melting temperature, swelling and helium embrittlement might occur

  1. Operating Manual of Helium Refrigerator (Rev. 2)

    Energy Technology Data Exchange (ETDEWEB)

    Song, K.M.; Son, S.H.; Kim, K.S.; Lee, S.K.; Kim, M.S. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    A helium refrigerator was installed as a supplier of 20K cold helium to the cryogenic distillation system of WTRF pilot plant. The operating procedures of the helium refrigerator, helium compressor and auxiliary apparatus are described for the safety and efficient operation in this manual. The function of the helium refrigerator is to remove the impurities from the compressed helium of about 250psig, to cool down the helium from ambient temperature to 20K through the heat exchanger and expansion engine and to transfer the cold helium to the cryogenic distillation system. For the smoothly operation of helium refrigerator, the preparation, the start-up, the cool-down and the shut-down of the helium refrigerator are described in this operating manual. (author). 3 refs., 14 tabs.

  2. Gamma Ray Bursts - Observations

    Science.gov (United States)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  3. Role of Helium-Hydrogen ratio on energetic interchange mode behaviour and its effect on ion temperature and micro-turbulence in LHD

    Science.gov (United States)

    Michael, C. A.; Tanaka, K.; Akiyama, T.; Ozaki, T.; Osakabe, M.; Sakakibara, S.; Yamaguchi, H.; Murakami, S.; Yokoyama, M.; Shoji, M.; Vyacheslavov, L. N.; LHD Experimental Group

    2018-04-01

    In the Large helical device, a change of energetic particle mode is observed as He concentration is varied in ion-ITB type experiments, having constant electron density and input heating power but with a clear increase of central ion temperature in He rich discharges. This activity consists of bursty, but damped energetic interchange modes (EICs, Du et al 2015 Phys. Rev. Lett. 114 155003), whose occurrence rate is dramatically lower in the He-rich discharges. Mechanisms are discussed for the changes in drive and damping of the modes with He concentration. These EIC bursts consist of marked changes in the radial electric field, which is derived from the phase velocity of turbulence measured with the 2D phase contrast imaging (PCI) system. Similar bursts are detected in edge fast ion diagnostics. Ion thermal transport by gyro-Bohm scaling is recognised as a contribution to the change in ion temperature, though fast ion losses by these EIC modes may also contribute to the ion temperature dependence on He concentration, most particularly controlling the height of an ‘edge-pedestal’ in the Ti profile. The steady-state level of fast ions is shown to be larger in helium rich discharges on the basis of a compact neutral particle analyser (CNPA), and the fast-ion component of the diamagnetic stored energy. These events also have an influence on turbulence and transport. The large velocity shear induced produced during these events transiently improves confinement and suppresses turbulence, and has a larger net effect when bursts are more frequent in hydrogen discharges. This exactly offsets the increased gyro-Bohm related turbulence drive in hydrogen which results in the same time-averaged turbulence level in hydrogen as in helium.

  4. Heterogeneity in Short Gamma-Ray Bursts

    Science.gov (United States)

    Norris, Jay P.; Gehrels Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of approx 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (approx 6 X 10(exp -10) erg / sq cm/ s) is approx > 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (approx 60,000 s) is approx 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently p()wers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  5. HETEROGENEITY IN SHORT GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Norris, Jay P.; Gehrels, Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample is comprised of 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales-durations, pulse structure widths, and peak intervals-for EE bursts are factors of ∼2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts-the anti-correlation of pulse intensity and width-continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition, we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/X-Ray Telescope (XRT). The median flux of the initial XRT detections for EE bursts (∼6x10 -10 erg cm -2 s -1 ) is ∼>20x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (∼60,000 s) is ∼30x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into denser environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  6. Relation between the conditions of helium ion implantation and helium void equilibrium parameters

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Rybalko, V.F.; Ruzhitskij, V.V.; Tolstolutskaya, G.D.

    1981-01-01

    The conditions of helium thermodynamic equilibrium in a system of voids produced by helium ion bombardment of a metal sample are studied. As an initial equation for description of the equilibrium the Clapeyron equation was used. The equation is obtained relating basic parameters of helium voids (average diameter and density) to irradiation parameters (dose, ion energy (straggling)) and properties of the metal (surface tension coefficient, yield strength). Comparison of the calculations with experimental data on helium in nickel found in literature shows that the equation yields satisfactory resutls for the dose range 1.10 16 -1x10 17 cm -2 and temperatures T [ru

  7. Helium behaviour in nuclear glasses

    International Nuclear Information System (INIS)

    Fares, T.

    2011-01-01

    The present thesis focuses on the study of helium behavior in R7T7 nuclear waste glass. Helium is generated by the minor actinides alpha decays incorporated in the glass matrix. Therefore, four types of materials were used in this work. These are non radioactive R7T7 glasses saturated with helium under pressure, glasses implanted with 3 He + ions, glasses doped with curium and glasses irradiated in nuclear reactor. The study of helium solubility in saturated R7T7 glass has shown that helium atoms are inserted in the glass free volume. The results yielded a solubility of about 10 16 at. cm -3 atm. -1 . The incorporation limit of helium in this type of glass has been determined; its value amounted to about 2*10 21 at. cm -3 , corresponding to 2.5 at.%. Diffusion studies have shown that the helium migration is controlled by the single population dissolved in the glass free volume. An ideal diffusion model was used to simulate the helium release data which allowed to determine diffusion coefficients obeying to the following Arrhenius law: D = D 0 exp(-E a /kBT), where D 0 = 2.2*10 -2 and 5.4*10 -3 cm 2 s -1 and E a = 0.61 eV for the helium saturated and the curium doped glass respectively. These results reflect a thermally activated diffusion mechanism which seems to be not influenced by the glass radiation damage and helium concentrations studied in the present work (up to 8*10 19 at. g -1 , corresponding to 0.1 at.%). Characterizations of the macroscopic, structural and microstructural properties of glasses irradiated in nuclear reactor did not reveal any impact associated with the presence of helium at high concentrations. The observed modifications i.e. a swelling of 0.7 %, a decrease in hardness by 38 %, an increase between 8 and 34 % of the fracture toughness and a stabilization of the glass structure under irradiation, were attributed to the glass nuclear damage induced by the irradiation in reactor. Characterizations by SEM and TEM of R7T7 glasses implanted

  8. BurstMem: A High-Performance Burst Buffer System for Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Teng [Auburn University, Auburn, Alabama; Oral, H Sarp [ORNL; Wang, Yandong [Auburn University, Auburn, Alabama; Settlemyer, Bradley W [ORNL; Atchley, Scott [ORNL; Yu, Weikuan [Auburn University, Auburn, Alabama

    2014-01-01

    The growth of computing power on large-scale sys- tems requires commensurate high-bandwidth I/O system. Many parallel file systems are designed to provide fast sustainable I/O in response to applications soaring requirements. To meet this need, a novel system is imperative to temporarily buffer the bursty I/O and gradually flush datasets to long-term parallel file systems. In this paper, we introduce the design of BurstMem, a high- performance burst buffer system. BurstMem provides a storage framework with efficient storage and communication manage- ment strategies. Our experiments demonstrate that BurstMem is able to speed up the I/O performance of scientific applications by up to 8.5 on leadership computer systems.

  9. Cooling with Superfluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, P; Tavian, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics.

  10. Bed system performance in helium circulation mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yean Jin; Jung, Kwang Jin; Ahn, Do Hee; Chung, Hong Suk [UST, Daejeon (Korea, Republic of); Kang, Hee Suk [KAERI, Daejeon (Korea, Republic of); Yun, Sei Hun [NFRI, Deajeon (Korea, Republic of)

    2016-05-15

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, We have conducted an experiment for storing hydrogen to depleted uranium and zirconium cobalt. The helium blanket effect has been observed in experiments using metal hydrides. The collapse of the hydrogen isotopes are accompanied by the decay heat and helium-3. Helium-3 dramatically reduces the hydrogen isotope storage capacity by surrounding the metal. This phenomenon is called a helium blanket effect. In addition the authors are working on the recovery and removal techniques of helium-3. In this paper, we discuss the equipment used to test the helium blanket effect and the results of a helium circulation experiment. The helium-3 produced surrounds the storage material surface and thus disturbs the reaction of the storage material and the hydrogen isotope. Even if the amount of helium-3 is small, the storage capacity of the SDS bed significantly drops. This phenomenon is the helium blanket effect. To resolve this phenomenon, a circulating loop was introduced. Using a circulating system, helium can be separated from the storage material. We made a helium loop that includes a ZrCo bed. Then using a metal bellows pump, we tested the helium circulation.

  11. Helium supply demand in future years

    International Nuclear Information System (INIS)

    Laverick, C.

    1975-01-01

    Adequate helium will be available to the year 2000 AD to meet anticipated helium demands for present day applications and the development of new superconducting technologies of potential importance to the nation. It is almost certain that there will not be enough helium at acceptable financial and energy cost after the turn of the century to meet the needs of the many promising helium based technologies now under development. Serious consideration should be given to establishing priorities in development and application based upon their relative value to the country. In the first half of the next century, three ways of estimating helium demand lead to cumulative ranges of from 75 to 125 Gcf (economic study), 89 to 470 Gcf (projected national energy growth rates) and 154 to 328 Gcf (needs for new technologies). These needs contrast with estimated helium resources in natural gas after 2000 AD which may be as low as 10 or 126 Gcf depending upon how the federal helium program is managed and the nation's natural gas resources are utilized. The technological and financial return on a modest national investment in further helium storage and a rational long term helium program promises to be considerable

  12. Surface electrons of helium films

    International Nuclear Information System (INIS)

    Studart, N.; Hipolito, O.

    1986-01-01

    Theoretical calculations of some properties of two-dimensional electrons on a liquid helium film adsorbed on a solid substrate are reviewed. We describe the spectrum of electron bound states on bulk helium as well on helium films. The correlational properties, such as the structure factor and correlation energy, are determined as functions of the film thickness for different types of substrates in the framework of a Generalized Random-Phase Approximation. The collective excitations of this system are also described. The results for electrons on the surface of thin films and bulk helium are easily obtained. we examine the electron interaction with the excitations of the liquid helium surface resulting in a new polaron state, which was observed very recently. The ground state energy and the effective mass of this polaron are determined by using the path-integral formalism and unitary-transformation method. Recent speculations about the phase diagram of electrons on the helium film are also discussed. (Author) [pt

  13. Helium dilution refrigerator

    International Nuclear Information System (INIS)

    1973-01-01

    A new system of continuous heat exchange for a helium dilution refrigerator is proposed. The 3 He effluent tube is concurrent with the affluent mixed helium tube in a vertical downward direction. Heat exchange efficiency is enhanced by placing in series a number of elements with an enlarged surface area

  14. A search for optical bursts from the repeating fast radio burst FRB 121102

    Science.gov (United States)

    Hardy, L. K.; Dhillon, V. S.; Spitler, L. G.; Littlefair, S. P.; Ashley, R. P.; De Cia, A.; Green, M. J.; Jaroenjittichai, P.; Keane, E. F.; Kerry, P.; Kramer, M.; Malesani, D.; Marsh, T. R.; Parsons, S. G.; Possenti, A.; Rattanasoon, S.; Sahman, D. I.

    2017-12-01

    We present a search for optical bursts from the repeating fast radio burst FRB 121102 using simultaneous observations with the high-speed optical camera ULTRASPEC on the 2.4-m Thai National Telescope and radio observations with the 100-m Effelsberg Radio Telescope. A total of 13 radio bursts were detected, but we found no evidence for corresponding optical bursts in our 70.7-ms frames. The 5σ upper limit to the optical flux density during our observations is 0.33 mJy at 767 nm. This gives an upper limit for the optical burst fluence of 0.046 Jy ms, which constrains the broad-band spectral index of the burst emission to α ≤ -0.2. Two of the radio pulses are separated by just 34 ms, which may represent an upper limit on a possible underlying periodicity (a rotation period typical of pulsars), or these pulses may have come from a single emission window that is a small fraction of a possible period.

  15. Cosmic gamma bursts

    International Nuclear Information System (INIS)

    Ehstulin, I.V.

    1980-01-01

    A brief consideration is being given to the history of cosmic gamma burst discovery and modern knowledge of their properties. The time dependence of gamma bursts is described and their possible sources are discussed

  16. Detection circuit for gamma-ray burst

    International Nuclear Information System (INIS)

    Murakami, Hiroyuki; Yamagami, Takamasa; Mori, Kunishiro; Uchiyama, Sadayuki.

    1982-01-01

    A new gamma-ray burst detection system is described. The system was developed as an environmental monitor of an accelerator, and can be used as the burst detection system. The system detects the arrival time of burst. The difference between the arrival times detected at different places will give information on the burst source. The frequency of detecting false burst was estimated, and the detection limit under the estimated frequency of false burst was also calculated. Decision whether the signal is false or true burst was made by the statistical treatment. (Kato, T.)

  17. Backscattered Helium Spectroscopy in the Helium Ion Microscope: Principles, Resolution and Applications

    NARCIS (Netherlands)

    van Gastel, Raoul; Hlawacek, G.; Dutta, S.; Poelsema, Bene

    2015-01-01

    We demonstrate the possibilities and limitations for microstructure characterization using backscattered particles from a sharply focused helium ion beam. The interaction of helium ions with matter enables the imaging, spectroscopic characterization, as well as the nanometer scale modification of

  18. HeREF-2003: Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 Cost per participant: 500.- CHF Language: Bilingual English...

  19. HeREF-2003 : Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. • Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 • Cost per participant: 500.- CHF ...

  20. Gamma-ray burst models.

    Science.gov (United States)

    King, Andrew

    2007-05-15

    I consider various possibilities for making gamma-ray bursts, particularly from close binaries. In addition to the much-studied neutron star+neutron star and black hole+neutron star cases usually considered good candidates for short-duration bursts, there are also other possibilities. In particular, neutron star+massive white dwarf has several desirable features. These systems are likely to produce long-duration gamma-ray bursts (GRBs), in some cases definitely without an accompanying supernova, as observed recently. This class of burst would have a strong correlation with star formation and occur close to the host galaxy. However, rare members of the class need not be near star-forming regions and could have any type of host galaxy. Thus, a long-duration burst far from any star-forming region would also be a signature of this class. Estimates based on the existence of a known progenitor suggest that this type of GRB may be quite common, in agreement with the fact that the absence of a supernova can only be established in nearby bursts.

  1. Helium localization around the microscopic impurities embedded to liquid helium

    International Nuclear Information System (INIS)

    Gordon, E.B.; Shestakov, A.F.

    2000-01-01

    The structure and properties of the environment round the impurity atoms (Im) embedded in liquid helium are considered. It is shown that there are two qualitatively different types of structure of the He atom layer next to Im - attraction and repulsion structures. For the center attraction structure (strong Im-He interaction) the Im-He separation is longer than the equilibrium one for the pair Im-He potential, and the density and localization of He atoms are higher than in the bulk. It this case the He atom content in the layer, n, is almost independent of applied pressure. In the repulsion structure realized for alkaline metal atoms the Im-He separation is shorter than the equilibrium one and the density is lower than in the helium bulk. At T approx 1 K occupied are several states with different n and their energies differ only by approx 0.1 K, an increase in pressure resulting in a considerable reduction of n. The optical and EPR spectra of the atoms embedded to liquid and solid helium are interpreted on the basis of the analysis carried out. A simple model is proposed to evaluate the helium surroundings characteristics from the experimental pressure dependences of atomic line shifts in the absorption and emission spectra. The attraction structures in 3 He - 4 He mixtures are suggested to be highly enriched by 4 He atoms which the repulsion structures - by 3 He atoms. a possibility for existence of phase transitions in helium shells surrounding impurity atoms is considered

  2. Test of a cryogenic helium pump

    International Nuclear Information System (INIS)

    Lue, J.W.; Miller, J.R.; Walstrom, P.L.; Herz, W.

    1981-01-01

    The design of a cryogenic helium pump for circulating liquid helium in a magnet and the design of a test loop for measuring the pump performance in terms of mass flow vs pump head at various pump speeds are described. A commercial cryogenic helium pump was tested successfully. Despite flaws in the demountable connections, the piston pump itself has performed satisfactorily. A helium pump of this type is suitable for the use of flowing supercritical helium through Internally Cooled Superconductor (ICS) magnets. It has pumped supercritical helium up to 7.5 atm with a pump head up to 2.8 atm. The maximum mass flow rate obtained was about 16 g/s. Performance of the pump was degraded at lower pumping speeds

  3. Solar microwave bursts - A review

    Science.gov (United States)

    Kundu, M. R.; Vlahos, L.

    1982-01-01

    Observational and theoretical results on the physics of microwave bursts that occur in the solar atmosphere are reviewed. Special attention is given to the advances made in burst physics over the last few years with the great improvement in spatial and time resolution, especially with instruments like the NRAO three-element interferometer, the Westerbork Synthesis Radio Telescope, and more recently the Very Large Array. Observations made on the preflare build-up of an active region at centimeter wavelengths are reviewed. Three distinct phases in the evolution of cm bursts, namely the impulsive phase, the post-burst phase, and the gradual rise and fall, are discussed. Attention is also given to the flux density spectra of centimeter bursts. Descriptions are given of observations of fine structures with temporal resolution of 10-100 ms in the intensity profiles of cm-wavelength bursts. High spatial resolution observations are analyzed, with special reference to the one- and two-dimensional maps of cm burst sources.

  4. Post-giant evolution of helium stars

    International Nuclear Information System (INIS)

    Schoenberner, D.

    1977-01-01

    Extremely hydrogen deficient stars (helium stars and R Coronae Borealis variables) are considered to be remnants of double shell source stars (of the asymptotic giant branch). The evolution of stars with a condensed C/O-core and a helium envelope is followed numerically from the red giant stage to the white dwarf domain, crossing the regions of R CrB- and helium stars (so far analyzed). They have typically masses M/M(sun) = 0.7 and luminosities log L/L(sun) = 4.1. The time for crossing the helium star domain is some 10 3 years. The corresponding times in the R CrB-region amounts up to several 10 4 years. The lower limit of the death rate of helium stars is estimated to be 4 x 10 -14 pc -3 yr -1 . This value is only a factor of ten lower than the birth rate of all non-DA white dwarfs. It is therefore possible that the helium stars are the precursors of helium rich white dwarfs. As a consequence, a significant fraction of all stars which end their lives as white dwarfs should pass through the helium star phase. (orig.) [de

  5. Investigation of impurity-helium solid phase decomposition

    International Nuclear Information System (INIS)

    Boltnev, R.E.; Gordon, E.B.; Krushinskaya, I.N.; Martynenko, M.V.; Pel'menev, A.A.; Popov, E.A.; Khmelenko, V.V.; Shestakov, A.F.

    1997-01-01

    The element composition of the impurity-helium solid phase (IHSP), grown by injecting helium gas jet, involving Ne, Ar, Kr, and Xe atoms and N 2 molecules, into superfluid helium, has been studied. The measured stoichiometric ratios, S = N H e / N I m, are well over the values expected from the model of frozen together monolayer helium clusters. The theoretical possibility for the freezing of two layers helium clusters is justified in the context of the model of IHSP helium subsystem, filled the space between rigid impurity centers. The process of decomposition of impurity-helium (IH)-samples taken out of liquid helium in the temperature range 1,5 - 12 K and the pressure range 10-500 Torr has been studied. It is found that there are two stages of samples decomposition: a slow stage characterized by sample self cooling and a fast one accompanied by heat release. These results suggest, that the IHSP consists of two types of helium - weakly bound and strongly bound helium - that can be assigned to the second and the first coordination helium spheres, respectively, formed around heavy impurity particles. A tendency for enhancement of IHSP thermo stability with increasing the impurity mass is observed. Increase of helium vapor pressure above the sample causes the improvement of IH sample stability. Upon destruction of IH samples, containing nitrogen atoms, a thermoluminescence induced by atom recombination has been detected in the temperature region 3-4,5 K. This suggests that numerous chemical reactions may be realized in solidified helium

  6. Optical observations of Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Hjorth, J.; Pian, E.; Fynbo, J.P.U.

    2004-01-01

    We briefly review the status and recent progress in the field of optical observations of gamma-ray burst afterglows. We will focus on the fundamental observational evidence for the relationship between gamma-ray bursts and the final evolutionary phases of massive stars. In particular, we will address (i) gamma-ray burst host galaxies, (ii) optically dark gamma-ray burst afterglows, (iii) the gamma-ray burst-supernova connection, and (iv) the relation between X-ray flashes, gamma-ray bursts, and supernovae

  7. Mixed helium-3 - helium-4 calorimeter. Very low temperature calorimetry; Calorimetre mixte a helium-3 et helium-4. Calorimetrie a tres basse temperature

    Energy Technology Data Exchange (ETDEWEB)

    Testard, O [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-06-01

    A description is given of a double-racket calorimeter using helium-4 and helium-3 as the cryogenic fluids and making it possible to vary the temperature continuously from 0.35 K to 4.2 K. By using an electric thermal regulator together with liquid hydrogen it is possible to extend this range up to about 30 K. In the second part, a review is made of the various, methods available for measuring specific heats. The method actually used in the apparatus previously described is described in detail. The difficulties arising from the use of an exchange gas for the thermal contact have been solved by the use of adsorption pumps. (author) [French] On decrit un calorimetre a double enceinte utilisant comme fluide cryogenique l'helium-4 et l'helium-3 et permettant de varier continuement la temperature de 0,35 K a 4,2 K. L'utilisation d'un regulateur thermique electrique ainsi que celle d'hydrogene, liquide permettent d'etendre cette gamme jusqu'a 30 K environ. Dans une deuxieme partie, on passe en revue les diverses methodes de mesure des chaleurs specifiques. La methode concrete utilisee dans l'appareil precedemment decrit est exposee en detail. Les difficultes inherentes a l'utilisation de gaz d'echange comme agent de contact thermique ont ete levees par la mise en oeuvre de pompes a adsorbant. (auteur)

  8. Solar Radio Bursts and Space Weather

    Science.gov (United States)

    Gopalswamy, Natchimuthuk,

    2012-01-01

    Radio bursts from the Sun are produced by electron accelerated to relativistic energies by physical processes on the Sun such as solar flares and coronal mass ejections (CMEs). The radio bursts are thus good indicators of solar eruptions. Three types of nonthermal radio bursts are generally associated with CMEs. Type III bursts due to accelerated electrons propagating along open magnetic field lines. The electrons are thought to be accelerated at the reconnection region beneath the erupting CME, although there is another view that the electrons may be accelerated at the CME-driven shock. Type II bursts are due to electrons accelerated at the shock front. Type II bursts are also excellent indicators of solar energetic particle (SEP) events because the same shock is supposed accelerate electrons and ions. There is a hierarchical relationship between the wavelength range of type /I bursts and the CME kinetic energy. Finally, Type IV bursts are due to electrons trapped in moving or stationary structures. The low frequency stationary type IV bursts are observed occasionally in association with very fast CMEs. These bursts originate from flare loops behind the erupting CME and hence indicate tall loops. This paper presents a summary of radio bursts and their relation to CMEs and how they can be useful for space weather predictions.

  9. Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns

    International Nuclear Information System (INIS)

    Gu Hua-Guang; Chen Sheng-Gen; Li Yu-Ye

    2015-01-01

    We investigated the synchronization dynamics of a coupled neuronal system composed of two identical Chay model neurons. The Chay model showed coexisting period-1 and period-2 bursting patterns as a parameter and initial values are varied. We simulated multiple periodic and chaotic bursting patterns with non-(NS), burst phase (BS), spike phase (SS), complete (CS), and lag synchronization states. When the coexisting behavior is near period-2 bursting, the transitions of synchronization states of the coupled system follows very complex transitions that begins with transitions between BS and SS, moves to transitions between CS and SS, and to CS. Most initial values lead to the CS state of period-2 bursting while only a few lead to the CS state of period-1 bursting. When the coexisting behavior is near period-1 bursting, the transitions begin with NS, move to transitions between SS and BS, to transitions between SS and CS, and then to CS. Most initial values lead to the CS state of period-1 bursting but a few lead to the CS state of period-2 bursting. The BS was identified as chaos synchronization. The patterns for NS and transitions between BS and SS are insensitive to initial values. The patterns for transitions between CS and SS and the CS state are sensitive to them. The number of spikes per burst of non-CS bursting increases with increasing coupling strength. These results not only reveal the initial value- and parameter-dependent synchronization transitions of coupled systems with coexisting behaviors, but also facilitate interpretation of various bursting patterns and synchronization transitions generated in the nervous system with weak coupling strength. (paper)

  10. Gamma-ray burst spectra

    International Nuclear Information System (INIS)

    Teegarden, B.J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events

  11. Determination of helium in beryl minerals

    International Nuclear Information System (INIS)

    Souza Barcellos, E. de.

    1985-08-01

    In order to obtain the diffusion coefficients of helium in beryl and phenacite samples at various temperatures, helium leak rates were measured in these minerals at these temperatures. Mass spectrometry (MS) was used to obtain helium leak rates and the gas flow was plotted against time. The gas quantity determined by MS was first obtained at various temperatures until no helium leak rate was detected. After that, these samples were irradiated with fast neutrons to produce helium which was measured again. This procedure was used to estimate the experimental error. The quantity of helium produced by interaction of gamma radiation with beryl minerals was theoretically calculated from the amount of thorium-232 at the neighbourhood of the samples. The quantity of helium produced in the minerals due to uranium and thorium decay was calculated using the amount of these heavy elements, and the results were compared with the amounts determined by MS. The amount of potassium-40 was determined in order to derive the quantity of argonium-40, since some workers found argonium in excess in these minerals. The quantity of helium in the beryl samples (s) was determined in the center and in the surface of the samples in order to obtain informations about the effectiveness of the Be(α, η) He reaction. Beryl and phenacite minerals were choosen in this research since they are opposite each other with respect to the helium contents. Both have beryllium in their compositon but beryl hold a large amount of helium while phenacite, in spite of having about three times more beryllium than beryl, do not hold the gas. (author) [pt

  12. Helium localisation in tritides

    International Nuclear Information System (INIS)

    Flament, J.L.; Lozes, G.

    1982-06-01

    Study of titanium and LaNi 5 type alloys tritides lattice parameters evolution revealed that helium created by tritium decay remains in interstitial sites up to a limit material dependant concentration. Beyond this one exceeding helium precipites in voids [fr

  13. Measurement of OH density and air-helium mixture ratio in an atmospheric-pressure helium plasma jet

    International Nuclear Information System (INIS)

    Yonemori, Seiya; Ono, Ryo; Nakagawa, Yusuke; Oda, Tetsuji

    2012-01-01

    The absolute density of OH radicals in an atmospheric-pressure helium plasma jet is measured using laser-induced fluorescence (LIF). The plasma jet is generated in room air by applying a pulsed high voltage onto a quartz tube with helium gas flow. The time-averaged OH density is 0.10 ppm near the quartz tube nozzle, decreasing away from the nozzle. OH radicals are produced from water vapour in the helium flow, which is humidified by water adsorbed on the inner surface of the helium line and the quartz tube. When helium is artificially humidified using a water bubbler, the OH density increases with humidity and reaches 2.5 ppm when the water vapour content is 200 ppm. Two-dimensional distribution of air-helium mixture ratio in the plasma jet is also measured using the decay rate of the LIF signal waveform which is determined by the quenching rate of laser-excited OH radicals. (paper)

  14. Analysis of historic bursts and burst detection in water supply areas of different size

    NARCIS (Netherlands)

    Bakker, M.; Trietsch, E.A.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Pipe bursts in water distribution networks lead to water losses and a risk of damaging the urban environment. We studied hydraulic data and customer contact records of 44 real bursts for a better understanding of the phenomena. We found that most bursts were reported to the water company shortly

  15. Fermi/GAMMA-RAY BURST MONITOR OBSERVATIONS OF SGR J0501+4516 BURSTS

    International Nuclear Information System (INIS)

    Lin Lin; Zhang Shuangnan; Kouveliotou, Chryssa; Baring, Matthew G.; Van der Horst, Alexander J.; Finger, Mark H.; Guiriec, Sylvain; Preece, Robert; Chaplin, Vandiver; Bhat, Narayan; Woods, Peter M.; Goegues, Ersin; Kaneko, Yuki; Scargle, Jeffrey; Granot, Jonathan; Von Kienlin, Andreas; Watts, Anna L.; Wijers, Ralph A. M. J.; Gehrels, Neil; Harding, Alice

    2011-01-01

    We present our temporal and spectral analyses of 29 bursts from SGR J0501+4516, detected with the gamma-ray burst monitor on board the Fermi Gamma-ray Space Telescope during 13 days of the source's activation in 2008 (August 22- September 3). We find that the T 90 durations of the bursts can be fit with a log-normal distribution with a mean value of ∼123 ms. We also estimate for the first time event durations of soft gamma repeater (SGR) bursts in photon space (i.e., using their deconvolved spectra) and find that these are very similar to the T 90 values estimated in count space (following a log-normal distribution with a mean value of ∼124 ms). We fit the time-integrated spectra for each burst and the time-resolved spectra of the five brightest bursts with several models. We find that a single power law with an exponential cutoff model fits all 29 bursts well, while 18 of the events can also be fit with two blackbody functions. We expand on the physical interpretation of these two models and we compare their parameters and discuss their evolution. We show that the time-integrated and time-resolved spectra reveal that E peak decreases with energy flux (and fluence) to a minimum of ∼30 keV at F = 8.7 x 10 -6 erg cm -2 s -1 , increasing steadily afterward. Two more sources exhibit a similar trend: SGRs J1550-5418 and 1806-20. The isotropic luminosity, L iso , corresponding to these flux values is roughly similar for all sources (0.4-1.5 x 10 40 erg s -1 ).

  16. PWR clad ballooning: The effect of circumferential clad temperature variations on the burst strain/burst temperature relationship

    International Nuclear Information System (INIS)

    Barlow, P.

    1983-01-01

    By experiment, it has been shown by other workers that there is a reduction in the creep ductility of Zircaloy 4 in the α+β phase transition region. Results from single rod burst tests also show a reduction in burst strain in the α+β phase region. In this report it is shown theoretically that for single rod burst tests in the presence of circumferential temperature gradients, the temperature dependence of the mean burst strain is not determined by temperature variations in creep ductility, but is governed by the temperature sensitivity of the creep strain rate, which is shown to be a maximum in the α+β phase transition region. To demonstrate this effect, the mean clad strain at burst was calculated for creep straining at different temperature levels in the α, α+β and β phase regions. Cross-pin temperature gradients were applied which produced strain variations around the clad which were greatest in the α+β phase region. The mean strain at burst was determined using a maximum local burst strain (i.e. a creep ductility) which is independent of temperature. By assuming cross-pin temperature gradients which are typical of those observed during burst tests, then the calculated mean burst strain/burst temperature relationship gave good agreement with experiment. The calculations also show that when circumferential temperature differences are present, the calculated mean strain at burst is not sensitive to variations in the magnitude of the assumed creep ductility. This reduces the importance of the assumed burst criterion in the calculations. Hence a temperature independent creep ductility (e.g. 100% local strain) is adequate as a burst criterion for calculations under PWR LOCA conditions. (author)

  17. Resistivity studies of interstitial helium mobility in niobium

    International Nuclear Information System (INIS)

    Chen, C.G.; Birnbaum, H.K.; Johnson, A.B. Jr.

    1979-01-01

    The mobility of interstitial helium in Nb and Nb-O alloys was studied in the temperature range of 10-383 K using resistivity measurements. The helium was introduced by radioactive decay of solute tritium (approximately 1 at%). At T < 100 K the resistivity increased due to conversion of tritium trapped at oxygen interstititals to helium. The formation of helium caused a very significant resistance increase at room temperature and above. The results suggest that helium is mobile at temperatures above 295 K and that the precipitation of large helium bubbles occurs along grain boundaries. The mobile helium species may either be single interstitials or small helium clusters. The activation enthalpy for the diffusion of the mobile helium species was estimated to be about 55 kJ/mol (0.66 eV). (Auth.)

  18. Helium-induced hardening effect in polycrystalline tungsten

    Science.gov (United States)

    Kong, Fanhang; Qu, Miao; Yan, Sha; Zhang, Ailin; Peng, Shixiang; Xue, Jianming; Wang, Yugang

    2017-09-01

    In this paper, helium induced hardening effect of tungsten was investigated. 50 keV He2+ ions at fluences vary from 5 × 1015 cm-2 to 5 × 1017 cm-2 were implanted into polycrystalline tungsten at RT to create helium bubble-rich layers near the surface. The microstructure and mechanical properties of the irradiated specimens were studied by TEM and nano-indentor. Helium bubble rich layers are formed in near surface region, and the layers become thicker with the rise of fluences. Helium bubbles in the area of helium concentration peak are found to grow up, while the bubble density is almost unchanged. Obvious hardening effect is induced by helium implantation in tungsten. Micro hardness increases rapidly with the fluence firstly, and more slowly when the fluence is above 5 × 1016 cm-2. The hardening effect of tungsten can be attributed to helium bubbles, which is found to be in agreement with the Bacon-Orowan stress formula. The growing diameter is the major factor rather than helium bubbles density (voids distance) in the process of helium implantation at fluences below 5 × 1017 cm-2.

  19. Low helium flux from the mantle inferred from simulations of oceanic helium isotope data

    Science.gov (United States)

    Bianchi, Daniele; Sarmiento, Jorge L.; Gnanadesikan, Anand; Key, Robert M.; Schlosser, Peter; Newton, Robert

    2010-09-01

    The high 3He/ 4He isotopic ratio of oceanic helium relative to the atmosphere has long been recognized as the signature of mantle 3He outgassing from the Earth's interior. The outgassing flux of helium is frequently used to normalize estimates of chemical fluxes of elements from the solid Earth, and provides a strong constraint to models of mantle degassing. Here we use a suite of ocean general circulation models and helium isotope data obtained by the World Ocean Circulation Experiment to constrain the flux of helium from the mantle to the oceans. Our results suggest that the currently accepted flux is overestimated by a factor of 2. We show that a flux of 527 ± 102 mol year - 1 is required for ocean general circulation models that produce distributions of ocean ventilation tracers such as radiocarbon and chlorofluorocarbons that match observations. This new estimate calls for a reevaluation of the degassing fluxes of elements that are currently tied to the helium fluxes, including noble gases and carbon dioxide.

  20. Observations of short gamma-ray bursts.

    Science.gov (United States)

    Fox, Derek B; Roming, Peter W A

    2007-05-15

    We review recent observations of short-hard gamma-ray bursts and their afterglows. The launch and successful ongoing operations of the Swift satellite, along with several localizations from the High-Energy Transient Explorer mission, have provoked a revolution in short-burst studies: first, by quickly providing high-quality positions to observers; and second, via rapid and sustained observations from the Swift satellite itself. We make a complete accounting of Swift-era short-burst localizations and proposed host galaxies, and discuss the implications of these observations for the distances, energetics and environments of short bursts, and the nature of their progenitors. We then review the physical modelling of short-burst afterglows: while the simplest afterglow models are inadequate to explain the observations, there have been several notable successes. Finally, we address the case of an unusual burst that threatens to upset the simple picture in which long bursts are due to the deaths of massive stars, and short bursts to compact-object merger events.

  1. Observation of visible emission from the molecular helium ion in the afterglow of a dense helium Z-pinch plasma

    International Nuclear Information System (INIS)

    Tucker, J.E.; Brake, M.L.; Gilgenbach, R.M.

    1986-01-01

    The authors present the results of axial and radial time resolved visible emission spectroscopy from the afterglow of a dense helium Z-pinch. These results show that the visible emissions in the pinch afterglow are dominated by line emissions from molecular helium and He II. Axial spectroscopy measurements show the occurrence of several absorption bands which cannot be identified as molecular or atomic helium nor impurities from the discharge chamber materials. The authors believe that these absorption bands are attributable to the molecular helium ion which is present in the discharge. The molecular ion has been observed by others in low pressure and temperature helium discharges directly by means of mass spectrometry and indirectly by the presence of helium atoms in the 2/sup 3/S state, (the He 2/sup 3/S state is believed to result from molecular helium ion recombination). However, the molecular helium ion has not previously been observed spectroscopically

  2. X-ray bursts: Observation versus theory

    Science.gov (United States)

    Lewin, W. H. G.

    1981-01-01

    Results of various observations of common type I X-ray bursts are discussed with respect to the theory of thermonuclear flashes in the surface layers of accreting neutron stars. Topics covered include burst profiles; irregular burst intervals; rise and decay times and the role of hydrogen; the accuracy of source distances; accuracy in radii determination; radius increase early in the burst; the super Eddington limit; temperatures at burst maximum; and the role of the magnetic field.

  3. Helium Extraction from LNG End Flash

    OpenAIRE

    Kim, Donghoi

    2014-01-01

    Helium is an invaluable element as it is widely used in industry such as cryo-genics and welding due to its unique properties. However, helium shortage is expected in near future because of increasing demand and the anxiety of sup-ply. Consequently, helium production has attracted the attention of industry. The main source of He is natural gas and extracting it from LNG end-flash is considered as the most promising way of producing crude helium. Thus, many process suppliers have proposed proc...

  4. Use of separating nozzles or ultra-centrifuges for obtaining helium from gas mixtures containing helium

    International Nuclear Information System (INIS)

    Reimann, T.

    1987-01-01

    To obtain helium from gas mixtures containing helium, particularly from natural gas, it is proposed to match the dimensions of the separation devices for a ratio of the molecular weights to be separated of 4:1 of more, which ensures a higher separation factor and therefore a smaller number of separation stages to be connected in series. The process should make reasonably priced separation of helium possible. (orig./HP) [de

  5. Secured Hash Based Burst Header Authentication Design for Optical Burst Switched Networks

    Science.gov (United States)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2017-12-01

    The optical burst switching (OBS) is a promising technology that could meet the fast growing network demand. They are featured with the ability to meet the bandwidth requirement of applications that demand intensive bandwidth. OBS proves to be a satisfactory technology to tackle the huge bandwidth constraints, but suffers from security vulnerabilities. The objective of this proposed work is to design a faster and efficient burst header authentication algorithm for core nodes. There are two important key features in this work, viz., header encryption and authentication. Since the burst header is an important in optical burst switched network, it has to be encrypted; otherwise it is be prone to attack. The proposed MD5&RC4-4S based burst header authentication algorithm runs 20.75 ns faster than the conventional algorithms. The modification suggested in the proposed RC4-4S algorithm gives a better security and solves the correlation problems between the publicly known outputs during key generation phase. The modified MD5 recommended in this work provides 7.81 % better avalanche effect than the conventional algorithm. The device utilization result also shows the suitability of the proposed algorithm for header authentication in real time applications.

  6. Helium diffusion in nickel at high temperatures

    International Nuclear Information System (INIS)

    Philipps, V.

    1980-09-01

    Helium has been implanted at certain temperatures between 800 and 1250 0 C into single and polycrystalline Ni-samples with implantation depths between 15 and 90 μm. Simultaneously the helium reemission from the sample is measured by a mass-spectrometer. It has been shown that the time dependence of the observed reemission rate is governed by volume diffusion of the helium. Measuring this time dependence as a function of temperature the helium diffusion constant has been determined. The He-diffusion is interpreted as a interstitial diffusion hindered by thermal vacancies. Depending on the implantation depth more or less of the implanted helium remains in the sample and forms large helium bubbles. (orig./GSCH)

  7. Neutron-induced helium implantation in GCFR cladding

    International Nuclear Information System (INIS)

    Yamada, H.; Poeppel, R.B.; Sevy, R.H.

    1980-10-01

    The neutron-induced implantation of helium atoms on the exterior surfaces of the cladding of a prototypic gas-cooled fast reactor (GCFR) has been investigated analytically. A flux of recoil helium particles as high as 4.2 x 10 10 He/cm 2 .s at the cladding surface has been calculated at the peak power location in the core of a 300-MWe GCFR. The calculated profile of the helium implantation rates indicates that although some helium is implanted as deep as 20 μm, more than 99% of helium particles are implanted in the first 2-μm-deep layer below the cladding surface. Therefore, the implanted helium particles should mainly affect surface properties of the GCFR cladding

  8. Quantum statistics and liquid helium 3 - helum 4 mixtures

    International Nuclear Information System (INIS)

    Cohen, E.G.D.

    1979-01-01

    The behaviour of liquid helium 3-helium 4 mixtures is considered from the point of view of manifestation of quantum statistics effects in macrophysics. The Boze=Einstein statistics is shown to be of great importance for understanding superfluid helium-4 properties whereas the Fermi-Dirac statistics is of importance for understanding helium-3 properties. Without taking into consideration the interaction between the helium atoms it is impossible to understand the basic properties of liquid helium 33 - helium 4 mixtures at constant pressure. Proposed is a simple model of the liquid helium 3-helium 4 mixture, namely the binary mixture consisting of solid spheres of two types subjecting to the Fermi-Dirac and Bose-Einstein statistics relatively. This model predicts correctly the most surprising peculiarities of phase diagrams of concentration dependence on temperature for helium solutions. In particular, the helium 4 Bose-Einstein statistics is responsible for the phase lamination of helium solutions at low temperatures. It starts in the peculiar critical point. The helium 4 Fermi-Dirac statistics results in incomplete phase lamination close to the absolute zero temperatures, that permits operation of a powerful cooling facility, namely refrigerating machine on helium solution

  9. Solar Drift-Pair Bursts

    Science.gov (United States)

    Stanislavsky, A.; Volvach, Ya.; Konovalenko, A.; Koval, A.

    2017-08-01

    In this paper a new sight on the study of solar bursts historically called drift pairs (DPs) is presented. Having a simple morphology on dynamic spectra of radio records (two short components separated in time, and often they are very similar) and discovered at the dawn of radio astronomy, their features remain unexplained totally up to now. Generally, the DPs are observed during the solar storms of type III bursts, but not every storm of type III bursts is linked with DPs. Detected by ground-based instruments at decameter and meter wavelengths, the DP bursts are limited in frequency bandwidth. They can drift from high frequencies to low ones and vice versa. Their frequency drift rate may be both lower and higher than typical rates of type III bursts at the same frequency range. The development of low-frequency radio telescopes and data processing provide additional possibilities in the research. In this context the fresh analysis of DPs, made from recent observations in the summer campaign of 2015, are just considered. Their study was implemented by updated tools of the UTR-2 radio telescope at 9-33 MHz. During 10-12 July of 2015, DPs forming the longest patterns on dynamic spectra are about 7% of the total number of recorded DPs. Their marvelous resemblance in frequency drift rates with the solar S-bursts is discussed.

  10. High Efficiency Regenerative Helium Compressor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Helium plays several critical rolls in spacecraft propulsion. High pressure helium is commonly used to pressurize propellant fuel tanks. Helium cryocoolers can be...

  11. 30 CFR 57.3461 - Rock bursts.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons to...

  12. The Drift Burst Hypothesis

    OpenAIRE

    Christensen, Kim; Oomen, Roel; Renò, Roberto

    2016-01-01

    The Drift Burst Hypothesis postulates the existence of short-lived locally explosive trends in the price paths of financial assets. The recent US equity and Treasury flash crashes can be viewed as two high profile manifestations of such dynamics, but we argue that drift bursts of varying magnitude are an expected and regular occurrence in financial markets that can arise through established mechanisms such as feedback trading. At a theoretical level, we show how to build drift bursts into the...

  13. Seismological measurement of solar helium abundance

    International Nuclear Information System (INIS)

    Vorontsov, S.V.; Pamyatnykh, A.A.

    1991-01-01

    The internal structure and evolution of the Sun depends on its chemical composition, particularly the helium abundance. In addition, the helium abundance in the solar envelope is thought to represent the protosolar value, making it a datum of cosmological significance. Spectroscopic measurements of the helium abundance are uncertain, and the most reliable estimates until now have come from the calibration of solar evolutionary models. The frequencies of solar acoustic oscillations are sensitive, however, to the behaviour of the speed of sound in the Sun's helium ionization zone, which allows a helioseismological determination of the helium abundance. Sound-speed inversion of helioseismological data can be used for this purpose, but precise frequency measurements of high-degree oscillation modes are needed. Here we describe a new approach based on an analysis of the phase shift of acoustic waves of intermediate-degree modes. From the accurate intermediate-mode data now available, we obtain a helium mass fraction Y=0.25±0.01 in the solar convection zone, significantly smaller than the value Y=0.27-0.29 predicted by recent solar evolutionary models. The discrepancy indicates either that initial helium abundance was reduced in the envelope by downward diffusion or that the protosolar value was lower than currently accepted. (author)

  14. Review of Membranes for Helium Separation and Purification

    Directory of Open Access Journals (Sweden)

    Colin A. Scholes

    2017-02-01

    Full Text Available Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources.

  15. Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Fryer, Chris L.; Woosley, S. E.; Hartmann, Dieter H.

    1999-01-01

    The cosmological origin of at least an appreciable fraction of classical gamma-ray bursts (GRBs) is now supported by redshift measurements for a half-dozen faint host galaxies. Still, the nature of the central engine (or engines) that provide the burst energy remains unclear. While many models have been proposed, those currently favored are all based upon the formation of and/or rapid accretion into stellar-mass black holes. Here we discuss a variety of such scenarios and estimate the probability of each. Population synthesis calculations are carried out using a Monte Carlo approach in which the many uncertain parameters intrinsic to such calculations are varied. We estimate the event rate for each class of model as well as the propagation distances for those having significant delay between formation and burst production, i.e., double neutron star (DNS) mergers and black hole-neutron star (BH/NS) mergers. One conclusion is a 1-2 order of magnitude decrease in the rate of DNS and BH/NS mergers compared to that previously calculated using invalid assumptions about common envelope evolution. Other major uncertainties in the event rates and propagation distances include the history of star formation in the universe, the masses of the galaxies in which merging compact objects are born, and the radii of the hydrogen-stripped cores of massive stars. For reasonable assumptions regarding each, we calculate a daily event rate in the universe for (1) merging neutron stars: ∼100 day-1; (2) neutron star-black hole mergers: ∼450 day-1; (3) collapsars: ∼104 day-1; (4) helium star black hole mergers: ∼1000 day-1; and (5) white dwarf-black hole mergers: ∼20 day-1. The range of uncertainty in these numbers, however, is very large, typically 2-3 orders of magnitude. These rates must additionally be multiplied by any relevant beaming factor (f Ω <1) and sampling fraction (if the entire universal set of models is not being observed). Depending upon the mass of the host

  16. Separation of compressor oil from helium

    International Nuclear Information System (INIS)

    Strauss, R.; Perrotta, K.A.

    1982-01-01

    Compression of helium by an oil-sealed rorary screw compressor entrains as much as 4000 parts per million by weight of liquid and vapor oil impurities in the gas. The reduction below about 0.1 ppm for cryogenic applications is discussed. Oil seperation equipment designed for compressed air must be modified significantly to produce the desired results with helium. The main differences between air and helium filtration are described. A description of the coalescers is given with the continuous coalescing of liquid mist from air or other gas illustrated. Oil vapor in helium is discussed in terms of typical compressor oils, experimental procedure for measuring oil vapor concentration, measured volatile hydrocarbons in the lubricants, and calculated concentration of oil vapor in Helium. Liquid oil contamination in helium gas can be reduced well below 0.1 ppm by a properly designed multiple state coalescing filter system containing graded efficiency filter elements. The oil vapor problem is best attached by efficiently treating the oil to remove most of the colatiles before charging the compressor

  17. X-ray bursts observed with JEM-X

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Chenevez, Jérôme; Lund, Niels

    2006-01-01

    We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found.......We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found....

  18. Nuclear fuel rod helium leak inspection apparatus and method

    International Nuclear Information System (INIS)

    Ahmed, H.J.

    1991-01-01

    This patent describes an inspection apparatus for testing nuclear fuel rods for helium leaks. It comprises a test chamber being openable and closable for receiving at least one nuclear fuel rod; means separate from the fuel rod for supplying helium and constantly leaking helium at a predetermined known positive value into the test chamber to constantly provide an atmosphere of helium at the predetermined known positive value in the test chamber; and means for sampling the atmosphere within the chamber and measuring the helium in the atmosphere such that a measured helium value below a preset minimum helium value substantially equal to the predetermined known positive value of the atmosphere of helium being constantly provided in the test chamber indicates a malfunction in the inspection apparatus, above a preset maximum helium value greater than the predetermined known positive in the test chamber indicates the existence of a helium leak from the fuel rod, or between the preset minimum and maximum helium values indicates the absence of a helium leak from the fuel rod

  19. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  20. Helium storage and control system for the PBMR

    International Nuclear Information System (INIS)

    Verkerk, E.C.

    1997-01-01

    The power conversion unit will convert the heat energy in the reactor core to electrical power. The direct-closed cycle recuperated Brayton Cycle employed for this concept consists of a primary helium cycle with helium powered turbo compressors and a power turbine. The helium is actively cooled with water before the compression stages. A recuperator is used to preheat the helium before entering the core. The start of the direct cycle is initiated by a mass flow from the helium inventory and control system via a jet pump. When the PBMR is connected to the grid, changes in power demand can be followed by changing the helium flow and pressure inside the primary loop. Small rapid adjustments can be performed without changing the helium inventory of the primary loop. The stator blade settings on the turbines and compressors are adjustable and it is possible to bypass reactor and turbine. This temporarily reduces the efficiency at which the power conversion unit is operating. Larger or long term adjustments require storage or addition of helium in order to maintain a sufficient level of efficiency in the power conversion unit. The helium will be temporarily stored in high pressure tanks. After a rise in power demand it will be injected back into the system. Some possibilities how to store the helium are presented in this paper. The change of helium inventory will cause transients in the primary helium loop in order to acquire the desired power level. At this stage, it seems that the change of helium inventory does not strongly effect the stability of the power conversion unit. (author)

  1. UWB dual burst transmit driver

    Science.gov (United States)

    Dallum, Gregory E [Livermore, CA; Pratt, Garth C [Discovery Bay, CA; Haugen, Peter C [Livermore, CA; Zumstein, James M [Livermore, CA; Vigars, Mark L [Livermore, CA; Romero, Carlos E [Livermore, CA

    2012-04-17

    A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.

  2. Solar X-ray bursts

    International Nuclear Information System (INIS)

    Urnov, A.M.

    1980-01-01

    In the popular form the consideration is given to the modern state tasks and results of X-ray spectrometry of solar bursts. The operation of X-ray spectroheliograph is described. Results of spectral and polarization measurings of X-ray radiation of one powerful solar burst are presented. The conclusion has been drawn that in the process of burst development three characteristic stages may be distingwished: 1) the initial phase; just in this period processes which lead to observed consequences-electromagnetic and corpuscular radiation are born; 2) the impulse phase, or the phase of maximum, is characterised by sharp increase of radiation flux. During this phase the main energy content emanates and some volumes of plasma warm up to high temperatures; 3) the phase of burst damping, during which plasma cools and reverts to the initial condition

  3. Helium behaviour in aluminium under hydrostatic pressure

    International Nuclear Information System (INIS)

    Sokurskij, Yu.N.; Tebus, V.N.; Zudilin, V.A.; Tumanova, G.M.

    1989-01-01

    Effect of hydrostatic compression on equilibrium helium bubbles in low aluminium-lithium alloy irradiated in reactor at 570 K is investigated. Measurements of hydrostatic density and electron-microscopic investigations have shown, that application of up to 2 GPa pressure reduces equilibrium size of helium bubbles and reduces helium swelling. Kinetics and thermodynamics of the process are considered with application of 'rigid sphere' equation which describes helium state in bubbles

  4. Preliminary Overview of a Helium Cooling System for the Secondary Helium Loop in VHTR-based SI Hydrogen Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Cho, Mintaek; Kim, Dahee; Lee, Taehoon; Lee, Kiyoung; Kim, Yongwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Nuclear hydrogen production facilities consist of a very high temperature gas-cooled nuclear reactor (VHTR) system, intermediate heat exchanger (IHX) system, and a sulfur-iodine (SI) thermochemical process. This study focuses on the coupling system between the IHX system and SI thermochemical process. To prevent the propagation of the thermal disturbance owing to the abnormal operation of the SI process components from the IHX system to the VHTR system, a helium cooling system for the secondary helium of the IHX is required. In this paper, the helium cooling system has been studied. The temperature fluctuation of the secondary helium owing to the abnormal operation of the SI process was then calculated based on the proposed coupling system model. Finally, the preliminary conceptual design of the helium cooling system with a steam generator and forced-draft air-cooled heat exchanger to mitigate the thermal disturbance has been carried out. A conceptual flow diagram of a helium cooling system between the IHX and SI thermochemical processes in VHTR-based SI hydrogen production facilities has been proposed. A helium cooling system for the secondary helium of the IHX in this flow diagram prevents the propagation of the thermal disturbance from the IHX system to the VHTR system, owing to the abnormal operation of the SI process components. As a result of a dynamic simulation to anticipate the fluctuations of the secondary helium temperature owing to the abnormal operation of the SI process components with a hydrogen production rate of 60 mol·H{sub 2}/s, it is recommended that the maximum helium cooling capacity to recover the normal operation temperature of 450 .deg. C is 31,933.4 kJ/s. To satisfy this helium cooling capacity, a U-type steam generator, which has a heat transfer area of 12 m{sup 2}, and a forced-draft air-cooled condenser, which has a heat transfer area of 12,388.67 m{sup 2}, are required for the secondary helium cooling system.

  5. Nucleation path of helium bubbles in metals during irradiation

    International Nuclear Information System (INIS)

    Morishita, Kazunori

    2008-01-01

    Thermodynamical formalization is made for description of the nucleation and growth of helium bubbles in metals during irradiation. The proposed formalization is available or evaluating both microstructural changes in fusion first wall materials where helium is produced by (n, α) nuclear transmutation reactions, and those in fusion divertor materials where helium particles with low energy are directly implanted. Calculated nucleation barrier is significantly reduced by the presence of helium, showing that a helium bubble with an appropriate number of helium atoms depending on bubble size can nucleate without any large nucleation barriers, even at a condition where an empty void has very large nucleation barrier without helium. With the proposed thermodynamical formalization, the nucleation and growth process of helium bubbles in iron during irradiation is simulated by the kinetic Monte-Carlo (KMC) technique. It shows the nucleation path of a helium bubble on the (N He , N V ) space as functions of temperatures and the concentration of helium in the matrix, where N He and N V are the number of helium atoms and vacancies in the helium bubble, respectively. Bubble growth rates depend on the nucleation path and suggest that two different mechanisms operate for bubble growth: one is controlled by vacancy diffusion and the other is controlled by interstitial helium diffusion. (author)

  6. Monitoring burst (M-burst) — A novel framework of failure localization in all-optical mesh networks

    KAUST Repository

    Ali, Mohammed L.; Ho, Pin-Han; Wu, Bin; Tapolcai, Janos; Shihada, Basem

    2011-01-01

    Achieving instantaneous and precise failure localization in all-optical wavelength division multiplexing (WDM) networks has been an attractive feature of network fault management systems, and is particularly important when failure-dependent protection is employed. The paper introduces a novel framework of real-time failure localization in all-optical WDM mesh networks, called monitoring-burst (m-burst), which aims to initiate a graceful compromise between consumed monitoring resources and monitoring delay. Different from any previously reported solution, the proposed m-burst framework has a single monitoring node (MN) which launches optical bursts along a set of pre-defined close-loop routes, called monitoring cycles (m-cycles), to probe the links along the m-cycles. Bursts along different m-cycles are kept non-overlapping through any link of the network. By identifying the lost bursts due to single link failure events only, the MN can unambiguously localize the failed link in at least 3-connected networks. We will justify the feasibility and applicability of the proposed m-burst framework in the scenario of interest. To avoid possible collision among optical bursts launched by the MN, we define the problem of collision-free scheduling and formulate it into an integer linear program (ILP) in order to minimize the monitoring delay. Numerical results demonstrate the effectiveness of the proposed framework and the proposed solution.

  7. Monitoring burst (M-burst) — A novel framework of failure localization in all-optical mesh networks

    KAUST Repository

    Ali, Mohammed L.

    2011-10-10

    Achieving instantaneous and precise failure localization in all-optical wavelength division multiplexing (WDM) networks has been an attractive feature of network fault management systems, and is particularly important when failure-dependent protection is employed. The paper introduces a novel framework of real-time failure localization in all-optical WDM mesh networks, called monitoring-burst (m-burst), which aims to initiate a graceful compromise between consumed monitoring resources and monitoring delay. Different from any previously reported solution, the proposed m-burst framework has a single monitoring node (MN) which launches optical bursts along a set of pre-defined close-loop routes, called monitoring cycles (m-cycles), to probe the links along the m-cycles. Bursts along different m-cycles are kept non-overlapping through any link of the network. By identifying the lost bursts due to single link failure events only, the MN can unambiguously localize the failed link in at least 3-connected networks. We will justify the feasibility and applicability of the proposed m-burst framework in the scenario of interest. To avoid possible collision among optical bursts launched by the MN, we define the problem of collision-free scheduling and formulate it into an integer linear program (ILP) in order to minimize the monitoring delay. Numerical results demonstrate the effectiveness of the proposed framework and the proposed solution.

  8. Helium mobility in advanced nuclear ceramics

    International Nuclear Information System (INIS)

    Agarwal, Shradha

    2014-01-01

    The main goal of this work is to improve our knowledge on the mechanisms able to drive the helium behaviour in transition metal carbides and nitrides submitted to thermal annealing or ion irradiation. TiC, TiN and ZrC polycrystals were implanted with 3 MeV 3 He ions at room temperature in the fluence range 2 * 10 15 et 6 * 10 16 cm -2 . Some of them have been pre-irradiated with self-ions (14 MeV Ti or Zr). Fully controlled thermal annealing tests were subsequently carried out in the temperature range 1000 - 1600 C for two hours. The evolution of the helium depth distribution in function of implantation dose, temperature and pre-irradiation dose was measured thanks to the deuteron-induced nuclear reaction 3 He(d, p 0 ) 4 He between 900 keV and 1.8 MeV. The microstructure of implanted and annealed samples was investigated by transmission electron microscopy on thin foils prepared using the FIB technique. Additional characterization tools, as X-ray diffraction and Raman microspectrometry, have been also applied in order to obtain complementary information. Among the most relevant results obtained, the following have to be outlined: - double-peak helium depth profile was measured on as implanted sample for the three compounds. The first peak is located near the end of range and includes the major part of helium, a second peak located close to the surface corresponds to the helium atoms trapped by the native vacancies; - the helium retention capacity in transition metal carbides and nitrides submitted to fully controlled thermal treatments varies according to ZrC 0.92 ≤ TiC 0.96 ≤ TiN 0.96 ; - whatever the investigated material, a self-ion-induced pre-damaging does not modify the initial helium profile extent. The influence of the post-implantation thermal treatment remains preponderant in any case; - the apparent diffusion coefficient of helium is in the range 4 * 10 -18 - 2 * 10 -17 m 2 s -1 in TiC0.96 and 3.5 * 10 -19 - 5.3 * 10 -18 m 2 s -1 in TiN 0.96 between

  9. Measurement of helium production cross sections of iron for d-T neutrons by helium accumulation method

    Energy Technology Data Exchange (ETDEWEB)

    Takao, Yoshiyuki; Kanda, Yukinori; Nagae, Koji; Fujimoto, Toshihiro [Kyushu Univ., Fukuoka (Japan); Ikeda, Yujiro

    1997-03-01

    Helium production cross sections of Iron were measured by helium accumulation method for neutron energies from 13.5 to 14.9 MeV. Iron samples were irradiated with FNS, an intense d-T neutron source of JAERI. As the neutron energy varies according to the emission angle at the neutron source, the samples were set around the neutron source and were irradiated by neutrons of different energy depending on each sample position. The amount of helium produced in a sample was measured by Helium Atoms Measurement System at Kyushu University. The results of this work are in good agreement with other experimental data in the literature and also compared with the evaluated values in JENDL-3. (author)

  10. High-temperature helium-loop facility

    International Nuclear Information System (INIS)

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100 0 F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system. The experimental capabilities and test conand presents the results that have been obtained. The study has been conducted using a four-phase approach. The first phase develops the solution to the steady-state radon-diffusion equation in one-dimensieered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent f water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, BB, a 200 mK. In case 2), x-ray studies of isotopic phase separation in 3 He-- 4 He bcc solids were carried out by B. A. Fraass

  11. Effect of helium on void swelling in vanadium

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1975-01-01

    Little difference in void microstructural swelling of vanadium is observed when helium is injected simultaneously with a 46- or 5-MeV nickel beam as compared to no helium injection, at least at high dose rates. At lower dose rates, a strong helium effect is seen when the helium is injected prior to heavy ion bombardment. The effect of the helium is shown to be a strong function of the overall displacement damage rate

  12. Clustering of Helium Atoms at a ½

    NARCIS (Netherlands)

    Berg, F. v.d.; Heugten, W. v.; Caspers, L.M.; Veen, A. v.; Hosson, J.Th.M. de

    1977-01-01

    Atomistic calculations on a ½<111>{110} edge dislocation show a restricted tendency of clustering of helium atom along this dislocation. Clusters with up to 4 helium atoms have been studied. A cluster with 3 helium proved to be most stable.

  13. Effect of helium on void formation in nickel

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1977-01-01

    This study examines the influence of helium on void formation in self-ion irradiated nickel. Helium was injected either simultaneously with, or prior to, the self-ion bombardment. The void microstructure was characterized as a function of helium deposition rate and the total heavy-ion dose. In particular, at 575 0 C and 5 X 10 -3 displacements per atom per second the void density is found to be proportional to the helium deposition rate. The dose dependence of swelling is initially dominated by helium driven nucleation. The void density rapidly saturates after which swelling continues with increasing dose only from void growth. It is concluded that helium promotes void nucleation in nickel with either helium implantation technique, pre-injection or simultaneous injection. Qualitative differences, however, are recognized. (Auth.)

  14. The installation of helium auxiliary systems in HTGR

    International Nuclear Information System (INIS)

    Qin Zhenya; Fu Xiaodong

    1993-01-01

    The inert gas Helium was chosen as reactor coolant in high temperature gas coolant reactor, therefore a set of Special and uncomplex helium auxiliary systems will be installed, the safe operation of HTR-10 can be safeguarded. It does not effect the inherent safety of HTR-10 MW if any one of all those systems were damaged during operation condition. This article introduces the design function and the system principle of all helium auxiliary systems to be installed in HTR-10. Those systems include: helium purification and its regeneration system, helium supply and storage system, pressure control and release system of primary system, dump system for helium auxiliary system and fuel handling, gaseous waste storage system, water extraction system for helium auxiliary systems and evacuation system for primary system

  15. Localization of Gamma-Ray Bursts Using the Fermi Gamma-Ray Burst Monitor

    NARCIS (Netherlands)

    Connaughton, V.; Briggs, M.S.; Goldstein, A.; Meegan, C.A.; Paciesas, W.S.; Preece, R.D.; Wilson-Hodge, C.A.; Gibby, M.H.; Greiner, J.; Gruber, D.; Jenke, P.; Kippen, R.M.; Pelassa, V.; Xiong, S.; Yu, H-F.; Bhat, P.N.; Burgess, J.M.; Byrne, D.; Fitzpatrick, G.; Foley, S.; Giles, M.M.; Guiriec, S.; van der Horst, A.J.; von Kienlin, A.; McBreen, S.; McGlynn, S.; Tierney, D.; Zhang, B..B.

    2015-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the

  16. Prompt burst energetics experiments: fresh oxide/sodium series

    International Nuclear Information System (INIS)

    Reil, K.O.; Young, M.F.

    1978-08-01

    A series of in-pile experiments has been performed to provide information on thermal energy to work conversion under prompt burst excursion (PBE) conditions. These consisted of single pin tests using fresh uranium oxide or uranium carbide fuel in a capsule geometry, with either stagnant sodium or helium in the coolant channel. The experiments were irradiated with single or double pulses in the Annular Core Pulse Reactor (ACPR) to provide energy depositions up to 2900 J/g. This report covers the seven single and five double pulse UO 2 sodium-in tests. Experimental data includes pressure and linear motion transducer histories, measured work-energy conversion efficiencies, and post-irradiation examination. Analysis includes derived work-energy conversion efficiencies (up to 0.54%), pin failure modeling, hydrodynamic analysis of pressure pulse propagation in the channel, and piston stopping effects. Initial pressure events in the single pulse experiments appear to be dominated by fuel vapor pressure. Definite fuel-coolant interactions were observed in several experiments, including some that were coincident with stopping of the linear motion transducer piston, suggesting a possible triggering effect by the deceleration pressure

  17. Thirty years of screw compressors for helium; Dreissig Jahre Schraubenkompressoren fuer Helium

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, H. [Kaeser Kompressoren GmbH, Coburg (Germany). Technisches Buero/Auftragskonstruktion

    2007-07-01

    KAESER helium compressors, as well as their other industrial compressors, will be further developed with the intention to improve the availability and reliability of helium liquefaction systems. Further improvement of compressor and control system efficiency will ensure a low and sustainable operating cost. Fast supply of replacement parts with several years of warranty is ensured by a world-wide distribution system and is also worked on continuously. (orig.)

  18. Commercial helium reserves, continental rifting and volcanism

    Science.gov (United States)

    Ballentine, C. J.; Barry, P. H.; Hillegonds, D.; Fontijn, K.; Bluett, J.; Abraham-James, T.; Danabalan, D.; Gluyas, J.; Brennwald, M. S.; Pluess, B.; Seneshens, D.; Sherwood Lollar, B.

    2017-12-01

    Helium has many industrial applications, but notably provides the unique cooling medium for superconducting magnets in medical MRI scanners and high energy beam lines. In 2013 the global supply chainfailed to meet demand causing significant concern - the `Liquid Helium Crisis' [1]. The 2017 closure of Quatar borders, a major helium supplier, is likely to further disrupt helium supply, and accentuates the urgent need to diversify supply. Helium is found in very few natural gas reservoirs that have focused 4He produced by the dispersed decay (a-particle) of U and Th in the crust. We show here, using the example of the Rukwa section of the Tanzanian East African Rift, how continental rifting and local volcanism provides the combination of processes required to generate helium reserves. The ancient continental crust provides the source of 4He. Rifting and associated magmatism provides the tectonic and thermal mechanism to mobilise deep fluid circulation, focusing flow to the near surface along major basement faults. Helium-rich springs in the Tanzanian Great Rift Valley were first identified in the 1950's[2]. The isotopic compositions and major element chemistry of the gases from springs and seeps are consistent with their release from the crystalline basement during rifting [3]. Within the Rukwa Rift Valley, helium seeps occur in the vicinity of trapping structures that have the potential to store significant reserves of helium [3]. Soil gas surveys over 6 prospective trapping structures (1m depth, n=1486) show helium anomalies in 5 out of the 6 at levels similar to those observed over a known helium-rich gas reservoir at 1200m depth (7% He - Harley Dome, Utah). Detailed macroseep gas compositions collected over two days (n=17) at one site allows us to distinguish shallow gas contributions and shows the deep gas to contain between 8-10% helium, significantly increasing resource estimates based on uncorrected values (1.8-4.2%)[2,3]. The remainder of the deep gas is

  19. Mass spectrometric analysis of helium in stainless steel

    International Nuclear Information System (INIS)

    Isagawa, Hiroto; Wada, Yukio; Asakura, Yoshiro; Tsuji, Nobuo; Sato, Hitoshi; Tsutsumi, Kenichi

    1974-01-01

    Vacuum fusion mass-spectrometry was adopted for the analysis of helium in stainless steel. Samples were heated in a vacuum crucible, and helium in the samples was extracted and collected into a reservoir tank. The gas was then introduced through an orifice into a mass spectrometer, where the amount of helium was determined. The maspeq 070 quadrupole type mass spectrometer made by Shimazu Seisakusho, Ltd. was used. The resolving power was 150, and the mass range of the apparatus was 0-150. The determination limit of helium was about 2 x 10 -3 μg when standard helium gas was analyzed, and was about 10 -2 μg when the helium in stainless steel was analyzed. The relative standard deviation of helium intensity in repetitive measurement was about 2% in the amount of helium of 0.05 μg. Helium was injected into stainless steel by means of alpha particle irradiation with a cyclotron. The amount of helium in stainless steel was then determined. The energy of alpha particles was 34 MeV, and the beam area was 10 mm x 10 mm. The experimental data were higher than the expected value in one case, and were lower in the other case. This difference was attributable to the fluctuation of alpha particle beam, misplacement of sample plates, and unevenness of the alpha beam. (Fukutomi, T.)

  20. Helium trapping in aluminum and sintered aluminum powders

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.; Rossing, T.

    1975-01-01

    The surface erosion of annealed aluminum and of sintered aluminum powder (SAP) due to blistering from implantation of 100-keV 4 He + ions at room temperature has been investigated. A substantial reduction in the blistering erosion rate in SAP was observed from that in pure annealed aluminum. In order to determine whether the observed reduction in blistering is due to enhanced helium trapping or due to helium released, the implanted helium profiles in annealed aluminum and in SAP have been studied by Rutherford backscattering. The results show that more helium is trapped in SAP than in aluminum for identical irradiation conditions. The observed reduction in erosion from helium blistering in SAP is more likely due to the dispersion of trapped helium at the large Al-Al 2 O 3 interfaces and at the large grain boundaries in SAP than to helium release

  1. Helium cooling of fusion reactors

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Baxi, C.; Bourque, R.; Dahms, C.; Inamati, S.; Ryder, R.; Sager, G.; Schleicher, R.

    1994-01-01

    On the basis of worldwide design experience and in coordination with the evolution of the International Thermonuclear Experimental Reactor (ITER) program, the application of helium as a coolant for fusion appears to be at the verge of a transition from conceptual design to engineering development. This paper presents a review of the use of helium as the coolant for fusion reactor blanket and divertor designs. The concept of a high-pressure helium cooling radial plate design was studied for both ITER and PULSAR. These designs can resolve many engineering issues, and can help with reaching the goals of low activation and high performance designs. The combination of helium cooling, advanced low-activation materials, and gas turbine technology may permit high thermal efficiency and reduced costs, resulting in the environmental advantages and competitive economics required to make fusion a 21st century power source. ((orig.))

  2. Microstructural observation on helium injected and creep ruptured JPCA

    International Nuclear Information System (INIS)

    Yamamoto, N.; Shiraishi, H.; Hishinuma, A.

    1986-01-01

    Detailed and quantitative TEM observation was performed on high temperature helium injected and creep ruptured JPCA to seek the prominent TiC distribution developed for suppression of helium embrittlement. Three different preinjection treatments were adopted for changing the TiC distribution. Considerable degradation in creep rupture strength by helium occurred in solution-annealed specimens, although there was much less effect of other treatments which included aging prior to injection. The concentration of helium at grain boundaries and the promotion of precipitation by helium during injection were responsible for the degradation. Therefore, the presence of TiC precipitates before helium introduction will help prevent degradation. On the other hand, the rupture elongation was reduced by helium after all treatments, although helium trapping by TiC precipitates in the matrix was successfully achieved. Consequently, the combined use of several methods may be necessary for further suppression of helium embrittlement. (orig.)

  3. Helium induced fine structure in the electronic spectra of anthracene derivatives doped into superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Pentlehner, D.; Slenczka, A.

    2015-01-01

    Electronic spectra of organic molecules doped into superfluid helium nanodroplets show characteristic features induced by the helium environment. Besides a solvent induced shift of the electronic transition frequency, in many cases, a spectral fine structure can be resolved for electronic and vibronic transitions which goes beyond the expected feature of a zero phonon line accompanied by a phonon wing as known from matrix isolation spectroscopy. The spectral shape of the zero phonon line and the helium induced phonon wing depends strongly on the dopant species. Phonon wings, for example, are reported ranging from single or multiple sharp transitions to broad (Δν > 100 cm −1 ) diffuse signals. Despite the large number of example spectra in the literature, a quantitative understanding of the helium induced fine structure of the zero phonon line and the phonon wing is missing. Our approach is a systematic investigation of related molecular compounds, which may help to shed light on this key feature of microsolvation in superfluid helium droplets. This paper is part of a comparative study of the helium induced fine structure observed in electronic spectra of anthracene derivatives with particular emphasis on a spectrally sharp multiplet splitting at the electronic origin. In addition to previously discussed species, 9-cyanoanthracene and 9-chloroanthracene will be presented in this study for the first time

  4. The future of helium as a natural resource

    CERN Document Server

    Glowacki, Bartek A; Nuttall, William J

    2012-01-01

    The book reveals the changing dynamics of the helium industry on both the supply-side and the demand-side. The helium industry has a long-term future and this important gas will have a role to play for many decades to come. Major new users of helium are expected to enter the market, especially in nuclear energy (both fission and fusion). Prices and volumes supplied and expected to rise and this will prompt greater efforts towards the development of new helium sources and helium conservation and recycling.

  5. Electronic properties of physisorbed helium

    International Nuclear Information System (INIS)

    Kossler, Sarah

    2011-01-01

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  6. Electronic properties of physisorbed helium

    Energy Technology Data Exchange (ETDEWEB)

    Kossler, Sarah

    2011-09-22

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  7. X-Ray Bursts from NGC 6652

    Science.gov (United States)

    Morgan, Edward

    The possibly transient X-ray Source in the globular cluster NGC 6652 has been seen by BeppoSax and the ASM on RXTE to undergo X-ray bursts, possibly Type I. Very little is known about this X-ray source, and confirmation of its bursts type-I nature would identify it as a neutron star binary. Type I bursts in 6 other sources have been shown to exhibit intervals of millisecond ocsillation that most likely indicate the neutron star spin period. Radius-expansion bursts can reveal information about the mass and size of the neutron star. We propose to use the ASM to trigger an observation of this source to maximize the probability of catching a burst in the PCA.

  8. Transitions to Synchrony in Coupled Bursting Neurons

    Science.gov (United States)

    Dhamala, Mukeshwar; Jirsa, Viktor K.; Ding, Mingzhou

    2004-01-01

    Certain cells in the brain, for example, thalamic neurons during sleep, show spike-burst activity. We study such spike-burst neural activity and the transitions to a synchronized state using a model of coupled bursting neurons. In an electrically coupled network, we show that the increase of coupling strength increases incoherence first and then induces two different transitions to synchronized states, one associated with bursts and the other with spikes. These sequential transitions to synchronized states are determined by the zero crossings of the maximum transverse Lyapunov exponents. These results suggest that synchronization of spike-burst activity is a multi-time-scale phenomenon and burst synchrony is a precursor to spike synchrony.

  9. Transitions to synchrony in coupled bursting neurons

    International Nuclear Information System (INIS)

    Dhamala, Mukeshwar; Jirsa, Viktor K.; Ding Mingzhou

    2004-01-01

    Certain cells in the brain, for example, thalamic neurons during sleep, show spike-burst activity. We study such spike-burst neural activity and the transitions to a synchronized state using a model of coupled bursting neurons. In an electrically coupled network, we show that the increase of coupling strength increases incoherence first and then induces two different transitions to synchronized states, one associated with bursts and the other with spikes. These sequential transitions to synchronized states are determined by the zero crossings of the maximum transverse Lyapunov exponents. These results suggest that synchronization of spike-burst activity is a multi-time-scale phenomenon and burst synchrony is a precursor to spike synchrony

  10. Laser spectroscopy of antiprotonic helium

    CERN Document Server

    Hori, M

    2005-01-01

    When antiprotons (i.e. the antimatter counterpart of protons) are stopped in helium gas, 97% of them annihilate within picoseconds by reacting with the helium nuclei; a 3% fraction, however, survive with an anomalously long lifetime of several microseconds. This longevity is due to the formation of antiprotonic helium, which is a three-body Rydberg atom composed of an antiproton, electron, and helium nucleus. The ASACUSA experimental collaboration has recently synthesized large numbers of these atoms using CERN's Antiproton Decelerator facility, and measured the atom's transition frequencies to 60 parts per billion by laser spectroscopy. By comparing the experimental results with recent three-body QED calculations and the known antiproton cyclotron frequency, we were able to show that the antiproton mass and charge are the same as the corresponding proton values to a precision of 10 parts per billion. Ongoing and future series of experiments will further improve the experimental precision by using chirp-compe...

  11. X-ray burst studies with the JENSA gas jet target

    Directory of Open Access Journals (Sweden)

    Schmidt Konrad

    2017-01-01

    Full Text Available When a neutron star accretes hydrogen and helium from the outer layers of its companion star, thermonuclear burning enables the αp-process as a break out mechanism from the hot CNO cycle. Model calculations predict (α, p reaction rates significantly affect both the light curves and elemental abundances in the burst ashes. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA gas jet target enables the direct measurement of previously inaccessible (α,p reactions with radioactive beams provided by the rare isotope re-accelerator ReA3 at the National Superconducting Cyclotron Laboratory (NSCL, USA. JENSA is going to be the main target for the Recoil Separator for Capture Reactions (SECAR at the Facility for Rare Isotope Beams (FRIB. Commissioning of JENSA and first experiments at Oak Ridge National Laboratory (ORNL showed a highly localized, pure gas target with a density of ∼1019 atoms per square centimeter. Preliminary results are presented from the first direct cross section measurement of the 34Ar(α, p37 K reaction at NSCL.

  12. Femtosecond spectroscopy on alkali-doped helium nanodroplets; Femtosekundenspektroskopie an alkalidotierten Helium-Nanotroepfchen

    Energy Technology Data Exchange (ETDEWEB)

    Claas, P.

    2006-01-15

    In the present thesis first studies on the short-time dynamics in alkali dimers and microclusters, which were bound on the surface of superfluid helium droplets, were presented. The experiments comprehended pump-probe measurements on the fs scale on the vibration dynamics on the dimers and on the fragmentation dynamics on the clusters. Generally by the studies it was shown that such extremely short slopes can also be observed on helium droplets by means of the femtosecond spectroscopy.

  13. The Second SWIFT Burst Alert Telescope (BAT) Gamma-Ray Burst Catalog

    Science.gov (United States)

    Sakamoto, T.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; hide

    2012-01-01

    We present the second Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts. (GRBs), which contains 476 bursts detected by the BAT between 2004 December 19 and 2009 December 21. This catalog (hereafter the BAT2 catalog) presents burst trigger time, location, 90% error radius, duration, fluence, peak flux, time-averaged spectral parameters and time-resolved spectral parameters measured by the BAT. In the correlation study of various observed parameters extracted from the BAT prompt emission data, we distinguish among long-duration GRBs (L-GRBs), short-duration GRBs (S-GRBs), and short-duration GRBs with extended emission (S-GRBs with E.E.) to investigate differences in the prompt emission properties. The fraction of L-GRBs, S-GRBs and S-GRBs with E.E. in the catalog are 89%, 8% and 2% respectively. We compare the BAT prompt emission properties with the BATSE, BeppoSAX and HETE-2 GRB samples.. We also correlate the observed prompt emission properties with the redshifts for the GRBs with known redshift. The BAT T(sub 90) and T(sub 50) durations peak at 70 s and 30 s, respectively. We confirm that the spectra of the BAT S-GRBs are generally harder than those of the L-GRBs.

  14. Stimulus induced bursts in severe postanoxic encephalopathy.

    Science.gov (United States)

    Tjepkema-Cloostermans, Marleen C; Wijers, Elisabeth T; van Putten, Michel J A M

    2016-11-01

    To report on a distinct effect of auditory and sensory stimuli on the EEG in comatose patients with severe postanoxic encephalopathy. In two comatose patients admitted to the Intensive Care Unit (ICU) with severe postanoxic encephalopathy and burst-suppression EEG, we studied the effect of external stimuli (sound and touch) on the occurrence of bursts. In patient A bursts could be induced by either auditory or sensory stimuli. In patient B bursts could only be induced by touching different facial regions (forehead, nose and chin). When stimuli were presented with relatively long intervals, bursts persistently followed the stimuli, while stimuli with short intervals (encephalopathy can be induced by external stimuli, resulting in stimulus-dependent burst-suppression. Stimulus induced bursts should not be interpreted as prognostic favourable EEG reactivity. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Stellar Sources of Gamma-ray Bursts

    OpenAIRE

    Luchkov, B. I.

    2011-01-01

    Correlation analysis of Swift gamma-ray burst coordinates and nearby star locations (catalog Gliese) reveals 4 coincidences with good angular accuracy. The random probability is 4\\times 10^{-5}, so evidencing that coincident stars are indeed gamma-ray burst sources. Some additional search of stellar gamma-ray bursts is discussed.

  16. Helium 3 precipitation in AISI 316L stainless steel induced by radioactive decay of tritium: Microstructural study of helium bubble precipitation

    International Nuclear Information System (INIS)

    Brass, A.M.; Chene, J.

    1994-01-01

    The development of the thermonuclear technology has given rise to a renewed interest in the study of the behavior of helium in metals. A great amount of work is still required for the understanding of the role of helium on the mechanical properties of structural materials for fusion technology, especially austenitic stainless steels. This article deals with the study of the influence of thermomechanical heat treatments, aging conditions (temperature and time), and helium concentration of helium bubble precipitation in a 316L austenitic steel. Helium was generated by the radioactive decay of tritium (tritium trick). Helium bubbles impede the grain growth in 316L steel aged at 1,373 K and also the recrystallization reaction at this temperature if cold working is performed prior to aging. Transmission electron microscopy (TEM) observations indicated a weak helium precipitation at 1,073 and 1,223 K, presumably due to the presence of trapping sites for tritium, and no bubble growth after aging up to 100 hours. Precipitation sites are mainly dislocations in the matrix at 1,073 K and grain boundaries and individual dislocations in the matrix at 1,223 K. The large bubble size (50 nm) observed at 1,373 K, even for short aging times (0.083), can partly be attributed to bubble dragging by dislocations toward the grain boundaries. Cold deformation prior to aging leads to a larger bubble size due to growth enhancement during recrystallization. Decreasing the helium content leads to a smaller helium bubble size and density. Tritium trapping at helium bubbles may favor helium 3 accumulation on defects such as grain boundaries, as observed by tritium autoradiography

  17. The adsorption of helium atoms on coronene cations

    Energy Technology Data Exchange (ETDEWEB)

    Kurzthaler, Thomas; Rasul, Bilal; Kuhn, Martin; Scheier, Paul, E-mail: Paul.Scheier@uibk.ac.at, E-mail: andrew.ellis@le.ac.uk [Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck (Austria); Lindinger, Albrecht [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Ellis, Andrew M., E-mail: Paul.Scheier@uibk.ac.at, E-mail: andrew.ellis@le.ac.uk [Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2016-08-14

    We report the first experimental study of the attachment of multiple foreign atoms to a cationic polycyclic aromatic hydrocarbon (PAH). The chosen PAH was coronene, C{sub 24}H{sub 12}, which was added to liquid helium nanodroplets and then subjected to electron bombardment. Using mass spectrometry, coronene cations decorated with helium atoms were clearly seen and the spectrum shows peaks with anomalously high intensities (“magic number” peaks), which represent ion-helium complexes with added stability. The data suggest the formation of a rigid helium layer consisting of 38 helium atoms that completely cover both faces of the coronene ion. Additional magic numbers can be seen for the further addition of 3 and 6 helium atoms, which are thought to attach to the edge of the coronene. The observation of magic numbers for the addition of 38 and 44 helium atoms is in good agreement with a recent path integral Monte Carlo prediction for helium atoms on neutral coronene. An understanding of how atoms and molecules attach to PAH ions is important for a number of reasons including the potential role such complexes might play in the chemistry of the interstellar medium.

  18. Neutrino burst identification in underground detectors

    International Nuclear Information System (INIS)

    Fulgione, W.; Mengotti-Silva, N.; Panaro, L.

    1996-01-01

    We discuss the problem of neutrino burst identification in underground ν-telescopes. First the usual statistical analysis based on the time structure of the events is reviewed, with special attention to the statistical significance of burst candidates. Next, we propose a second level analysis that can provide independent confirmation of burst detection. This exploits the spatial distribution of the single events of a burst candidate, and uses the formalism of the entropy of information. Examples of both techniques are shown, based on the LVD experiment at Gran Sasso. (orig.)

  19. Swift: A gamma ray burst MIDEX

    International Nuclear Information System (INIS)

    Barthelmy, Scott

    2001-01-01

    Swift is a first of its kind multiwavelength transient observatory for gamma-ray burst astronomy. It has the optimum capabilities for the next breakthroughs in determining the origin of gamma-ray bursts and their afterglows as well as using bursts to probe the early Universe. Swift will also perform the first sensitive hard X-ray survey of the sky. The mission is being developed by an international collaboration and consists of three instruments, the Burst Alert Telescope (BAT), the X-ray Telescope (XRT), and the Ultraviolet and Optical Telescope (UVOT). The BAT, a wide-field gamma-ray detector, will detect ∼1 gamma-ray burst per day with a sensitivity 5 times that of BATSE. The sensitive narrow-field XRT and UVOT will be autonomously slewed to the burst location in 20 to 70 seconds to determine 0.3-5.0 arcsec positions and perform optical, UV, and X-ray spectrophotometry. On-board measurements of redshift will also be done for hundreds of bursts. Swift will incorporate superb, low-cost instruments using existing flight-spare hardware and designs. Strong education/public outreach and follow-up programs will help to engage the public and astronomical community. Swift has been selected by NASA for development and launch in late 2003

  20. SGR J1550-5418 Bursts Detected with the Fermi Gamma-Ray Burst Monitor during Its Most Prolific Activity

    Science.gov (United States)

    vanderHorst, A. J.; Kouveliotou, C.; Gorgone, N. M.; Kaneko, Y.; Baring, M. G.; Guiriec, S.; Gogus, E,; Granot, J.; Watts, A. L.; Lin, L.; hide

    2012-01-01

    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in 2009 January, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties.We determine the durations, emission times, duty cycles, and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J15505418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law (PL) with an exponential cutoff (Comptonized model), and two blackbody (BB) functions (BB+BB). In the spectral fits with the Comptonized model, we find a mean PL index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized E(sub peak) and the burst fluence and average flux. For the BB+BBfits, we find that the fluences and emission areas of the two BB functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high temperature BB has a much smaller area and shows an anti-correlation between emission area and temperature.We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.

  1. Helium release from radioisotope heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.E.; Early, J.W.; Starzynski, J.S.; Land, C.C.

    1984-05-01

    Diffusion of helium in /sup 238/PuO/sub 2/ fuel was characterized as a function of the heating rate and the fuel microstructure. The samples were thermally ramped in an induction furnace and the helium release rates measured with an automated mass spectrometer. The diffusion constants and activation energies were obtained from the data using a simple diffusion model. The release rates of helium were correlated with the fuel microstructure by metallographic examination of fuel samples. The release mechanism consists of four regimes, which are dependent upon the temperature. Initially, the release is controlled by movement of point defects combined with trapping along grain boundaries. This regime is followed by a process dominated by formation and growth of helium bubbles along grain boundaries. The third regime involves volume diffusion controlled by movement of oxygen vacancies. Finally, the release at the highest temperatures follows the diffusion rate of intragranular bubbles. The tendency for helium to be trapped within the grain boundaries diminishes with small grain sizes, slow thermal pulses, and older fuel.

  2. Recent developments in liquid helium 3

    International Nuclear Information System (INIS)

    Ramarao, I.

    1977-01-01

    The current status of the theories for the ground state of liquid helium 3, are reviewed. To begin with, a brief summary of the experimental results on the thermodynamic properties of liquid helium 3 including its recently discovered superfulid phases is given. The basic ideas of the Landau theory of a normal Fermi liquid are then introduced. A qualitative discussion of the current understanding of the anisotropic phases of superfluid helium 3 is given, the microscopic calculaations for the binding energy of liquid helium 3 are reviewed and the results obtained for the two-body contributions to the binding energy using the Brueckner-Goldstone formulation and that of Mohling and his collaborators are summarized and discussed. The importance of a proper estimate of the three-body contributions to the binding energy is stressed. The results obtained in the literature using variational methods and constrained variational methods are discussed. A critical analysis of the results by various methods is given. Despite much effort the basic problem of the ground state of liquid helium 3, remains unresolved. (author)

  3. Helium release from radioisotope heat sources

    International Nuclear Information System (INIS)

    Peterson, D.E.; Early, J.W.; Starzynski, J.S.; Land, C.C.

    1984-05-01

    Diffusion of helium in 238 PuO 2 fuel was characterized as a function of the heating rate and the fuel microstructure. The samples were thermally ramped in an induction furnace and the helium release rates measured with an automated mass spectrometer. The diffusion constants and activation energies were obtained from the data using a simple diffusion model. The release rates of helium were correlated with the fuel microstructure by metallographic examination of fuel samples. The release mechanism consists of four regimes, which are dependent upon the temperature. Initially, the release is controlled by movement of point defects combined with trapping along grain boundaries. This regime is followed by a process dominated by formation and growth of helium bubbles along grain boundaries. The third regime involves volume diffusion controlled by movement of oxygen vacancies. Finally, the release at the highest temperatures follows the diffusion rate of intragranular bubbles. The tendency for helium to be trapped within the grain boundaries diminishes with small grain sizes, slow thermal pulses, and older fuel

  4. Cosmological helium production simplified

    International Nuclear Information System (INIS)

    Bernstein, J.; Brown, L.S.; Feinberg, G.

    1988-01-01

    We present a simplified model of helium synthesis in the early universe. The purpose of the model is to explain clearly the physical ideas relevant to the cosmological helium synthesis, in a manner that does not overlay these ideas with complex computer calculations. The model closely follows the standard calculation, except that it neglects the small effect of Fermi-Dirac statistics for the leptons. We also neglect the temperature difference between photons and neutrinos during the period in which neutrons and protons interconvert. These approximations allow us to express the neutron-proton conversion rates in a closed form, which agrees to 10% accuracy or better with the exact rates. Using these analytic expressions for the rates, we reduce the calculation of the neutron-proton ratio as a function of temperature to a simple numerical integral. We also estimate the effect of neutron decay on the helium abundance. Our result for this quantity agrees well with precise computer calculations. We use our semi-analytic formulas to determine how the predicted helium abundance varies with such parameters as the neutron life-time, the baryon to photon ratio, the number of neutrino species, and a possible electron-neutrino chemical potential. 19 refs., 1 fig., 1 tab

  5. Low-temperature centrifugal helium compressor

    International Nuclear Information System (INIS)

    Kawada, M.; Togo, S.; Akiyama, Y.; Wada, R.

    1974-01-01

    A centrifugal helium compressor with gas bearings, which can be operated at the temperature of liquid nitrogen, has been investigated. This compressor has the advantages that the compression ratio should be higher than the room temperature operation and that the contamination of helium could be eliminated. The outer diameter of the rotor is 112 mm. The experimental result for helium gas at low temperature shows a flow rate of 47 g/s and a compression ratio of 1.2 when the inlet pressure was 1 ata and the rotational speed 550 rev/s. The investigation is now focused on obtaining a compression ratio of 1.5. (author)

  6. Bursting synchronization in scale-free networks

    International Nuclear Information System (INIS)

    Batista, C.A.S.; Batista, A.M.; Pontes, J.C.A. de; Lopes, S.R.; Viana, R.L.

    2009-01-01

    Neuronal networks in some areas of the brain cortex present the scale-free property, i.e., the neuron connectivity is distributed according to a power-law, such that neurons are more likely to couple with other already well-connected ones. Neuron activity presents two timescales, a fast one related to action-potential spiking, and a slow timescale in which bursting takes place. Some pathological conditions are related with the synchronization of the bursting activity in a weak sense, meaning the adjustment of the bursting phase due to coupling. Hence it has been proposed that an externally applied time-periodic signal be applied in order to control undesirable synchronized bursting rhythms. We investigated this kind of intervention using a two-dimensional map to describe neurons with spiking-bursting activity in a scale-free network.

  7. BATSE/OSSE Rapid Burst Response

    National Research Council Canada - National Science Library

    Matz, S. M; Grove, J. E; Johnson, W. N; Kurfess, J. D; Share, G. H; Fishman, G. J; Meegan, Charles A

    1995-01-01

    ...) slew the OSSE detectors to burst locations determined on-board by BATSE. This enables OSSE to make sensitive searches for prompt and delayed post-burst line and continuum emission above 50 keV...

  8. Retention of hydrogen isotopes and helium in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Mitsumasa; Sato, Rikiya; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    In the present study, a thin foil of nickel was irradiated by H{sub 2}{sup +}, D{sub 2}{sup +} and He{sup +} to a fluence of 1.2-6.0x10{sup 20}/m{sup 2} using the TBTS (Tritium Beam Test System) apparatus. The thermal desorption spectroscopy (TDS) technique was employed to evaluate the total amount of retained hydrogen isotope and helium atoms in nickel. In the spectra, two peaks appeared at 440-585K and 720-735K for helium. Hydrogen isotopes irradiation after helium preirradiation were found to enhance the helium release and to decrease the peak temperatures. Helium irradiation after hydrogen isotopes preirradiation were found to enhance the helium release, but the peak temperature showed little difference from that without preirradiation. (author)

  9. Some polarization features of solar microwave bursts

    Energy Technology Data Exchange (ETDEWEB)

    Uralov, A M; Nefed' ev, V P [AN SSSR, Irkutsk. Sibirskij Inst. Zemnogo Magnetizma Ionosfery i Rasprostraneniya Radiovoln

    1977-01-01

    Consequences of the thermal microwave burst model proposed earlier have been considered. According to the model the centimeter burst is generated at the heat propagation to the upper atmosphere. The polarization features of the burst are explained: a change of the polarization sign in a frequency range, a rapid change of the polarization sign in the development of a burst at a fixed frequency, a lack of time coincidence of the moments of the burst maximum of the polarization and of the total flux. From the model the consequences are obtained, which are still not confirmed by experiment. An ordinary-type wave prevails in the burst radiation, in the course of which the polarization degree falls on the ascending branch of bursts development. At the change of the polarization sign at the fixed frequency prior to the sign change an ordinary-type wave should be present in excess and later an extreordinary type wave.

  10. Gamma Ray Bursts-Afterglows and Counterparts

    Science.gov (United States)

    Fishman, Gerald J

    1998-01-01

    Several breakthrough discoveries were made last year of x-ray, optical and radio afterglows and counterparts to gamma-ray bursts, and a redshift has been associated with at least one of these. These discoveries were made possible by the fast, accurate gamma-ray burst locations of the BeppoSAX satellite. It is now generally believed that the burst sources are at cosmological distances and that they represent the most powerful explosions in the Universe. These observations also open new possibilities for the study of early star formation, the physics of extreme conditions and perhaps even cosmology. This session will concentrate on recent x-ray, optical and radio afterglow observations of gamma-ray bursts, associated redshift measurements, and counterpart observations. Several review and theory talks will also be presented, along with a summary of the astrophysical implications of the observations. There will be additional poster contributions on observations of gamma-ray burst source locations at wavelengths other than gamma rays. Posters are also solicited that describe new observational capabilities for rapid follow-up observations of gamma-ray bursts.

  11. Helium sources to groundwater in active volcanic terrain, and implications for tritium-helium dating at Mount St. Helens

    Energy Technology Data Exchange (ETDEWEB)

    Gates, John B. [Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, 217 Bessey Hall, Lincoln NE 68588 (United States)

    2013-07-01

    Groundwater helium sources and residence times were investigated using groundwater discharging from springs surrounding Mount St. Helens in the Cascades region of the United States. Significant contributions of mantle helium were found in all samples and are attributable to interaction between groundwater and magmatic gases. Bounding calculations for residence times were made on the basis of helium isotope mixing plots and historical tritium data. (authors)

  12. Explosive helium burning in white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Khokhlov, A.M. (AN SSSR, Moscow. Astronomicheskij Sovet)

    1984-04-01

    Helium burning kinetics in white dwarfs has been considered at constant temperatures T >= 10/sup 9/ K and densities rho >10/sup 5/ g/cm/sup 3/. It is found, that helium detonation in white dwarfs does not lead to formation of light (A < 56) elements. Thus, helium white dwarf model for supernova 1 is inconsistent with observations.

  13. A new helium gas recovery and purification system

    International Nuclear Information System (INIS)

    Yamamotot, T.; Suzuki, H.; Ishii, J.; Hamana, I.; Hayashi, S.; Mizutani, S.; Sanjo, S.

    1974-01-01

    A helium gas recovery and purification system, based on the principle of gas permeation through a membrane, is described. The system can be used for the purification of helium gas containing air as a contaminant. The apparatus, operating at ambient temperature does not need constant attention, the recovery ratio of helium gas is satisfactory and running costs are low. Gases other than helium can be processed with the apparatus. (U.K.)

  14. SGR J1550-5418 BURSTS DETECTED WITH THE FERMI GAMMA-RAY BURST MONITOR DURING ITS MOST PROLIFIC ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Van der Horst, A. J.; Finger, M. H. [Universities Space Research Association, NSSTC, Huntsville, AL 35805 (United States); Kouveliotou, C. [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Gorgone, N. M. [Connecticut College, New London, CT 06320 (United States); Kaneko, Y.; Goegues, E.; Lin, L. [Sabanc Latin-Small-Letter-Dotless-I University, Orhanl Latin-Small-Letter-Dotless-I -Tuzla, Istanbul 34956 (Turkey); Baring, M. G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Guiriec, S.; Bhat, P. N.; Chaplin, V. L.; Goldstein, A. [University of Alabama, Huntsville, CSPAR, Huntsville, AL 35805 (United States); Granot, J. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Watts, A. L. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Bissaldi, E.; Gruber, D. [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, Postfach 1312, 85748 Garching (Germany); Gehrels, N.; Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gibby, M. H.; Giles, M. M., E-mail: A.J.VanDerHorst@uva.nl [Jacobs Technology, Inc., Huntsville, AL (United States); and others

    2012-04-20

    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in 2009 January, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties. We determine the durations, emission times, duty cycles, and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J1550-5418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law (PL) with an exponential cutoff (Comptonized model), and two blackbody (BB) functions (BB+BB). In the spectral fits with the Comptonized model, we find a mean PL index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized E{sub peak} and the burst fluence and average flux. For the BB+BB fits, we find that the fluences and emission areas of the two BB functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high-temperature BB has a much smaller area and shows an anti-correlation between emission area and temperature. We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.

  15. Helium leak and chemical impurities control technology in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Shimizu, Atsushi; Hamamoto, Shimpei; Sakaba, Nariaki

    2014-01-01

    Japan Atomic Energy Agency (JAEA) has designed and developed high-temperature gas-cooled reactor (HTGR) hydrogen cogeneration system named gas turbine high-temperature reactor (GTHTR300C) as a commercial HTGR. Helium gas is used as the primary coolant in HTGR. Helium gas is easy to leak, and the primary helium leakage should be controlled tightly from the viewpoint of preventing the release of radioactive materials to the environment. Moreover from the viewpoint of preventing the oxidization of graphite and metallic material, the helium coolant chemistry should be controlled tightly. The primary helium leakage and the helium coolant chemistry during the operation is the major factor in the HTGR for commercialization of HTGR system. This paper shows the design concept and the obtained operational experience on the primary helium leakage control and primary helium impurity control in the high-temperature engineering test reactor (HTTR) of JAEA. Moreover, the future plan to obtain operational experience of these controls for commercialization of HTGR system is shown. (author)

  16. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant

    Science.gov (United States)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.

    1975-01-01

    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  17. A reciprocating liquid helium pump used for forced flow of supercritical helium

    International Nuclear Information System (INIS)

    Krafft, G.; Zahn, G.

    1978-01-01

    The performance of a small double acting piston pump for circulating helium in a closed heat transfer loop is described. The pump was manufactured by LINDE AG, Munich, West Germany. The measured flow rate of supercritical helium was about 17 gs -1 (500 lhr -1 ) with a differential pressure of Δp = 0.5 x 10 5 Nm -2 at a working pressure of p = 6 x 10 5 Nm -2 . At differential pressures beyond 0.5 x 10 5 Nm -2 the volumetric efficiency decreases. (author)

  18. THE FIVE YEAR FERMI/GBM MAGNETAR BURST CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Collazzi, A. C. [SciTec, Inc., 100 Wall Street, Princeton, NJ 08540 (United States); Kouveliotou, C.; Horst, A. J. van der; Younes, G. A. [Department of Physics, The George Washington University, 725 21st Street NW, Washington, DC 20052 (United States); Kaneko, Y.; Göğüş, E. [Sabancı University, Orhanlı-Tuzla, İstanbul 34956 (Turkey); Lin, L. [François Arago Centre, APC, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris (France); Granot, J. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Raanana 43537 (Israel); Finger, M. H. [Universities Space Research Association, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Chaplin, V. L. [School of Medicine, Vanderbilt University, 1161 21st Avenue S, Nashville, TN 37232 (United States); Huppenkothen, D. [Center for Data Science, New York University, 726 Broadway, 7th Floor, New York, NY 10003 (United States); Watts, A. L. [Anton Pannekoek Institute, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Kienlin, A. von [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Baring, M. G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Gruber, D. [Planetarium Südtirol, Gummer 5, I-39053 Karneid (Italy); Bhat, P. N. [CSPAR, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Gibby, M. H., E-mail: acollazzi@scitec.com [Jacobs Technology, Inc., Huntsville, AL (United States); and others

    2015-05-15

    Since launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has detected many hundreds of bursts from magnetar sources. While the vast majority of these bursts have been attributed to several known magnetars, there is also a small sample of magnetar-like bursts of unknown origin. Here, we present the Fermi/GBM magnetar catalog, providing the results of the temporal and spectral analyses of 440 magnetar bursts with high temporal and spectral resolution. This catalog covers the first five years of GBM magnetar observations, from 2008 July to 2013 June. We provide durations, spectral parameters for various models, fluences, and peak fluxes for all the bursts, as well as a detailed temporal analysis for SGR J1550–5418 bursts. Finally, we suggest that some of the bursts of unknown origin are associated with the newly discovered magnetar 3XMM J185246.6+0033.7.

  19. Investigation of helium-induced embrittlement

    International Nuclear Information System (INIS)

    Sabelova, V.; Slugen, V.; Krsjak, V.

    2014-01-01

    In this work, the hardness of Fe-9%(wt.) Cr binary alloy implanted by helium ions up to 1000 nm was investigated. The implantations were performed using linear accelerator at temperatures below 80 grad C. Isochronal annealing up to 700 grad C with the step of 100 grad C was applied on the helium implanted samples in order to investigate helium induced embrittlement of material. Obtained results were compared with theoretical calculations of dpa profiles. Due to the results, the nano-hardness technique results to be an appropriate approach to the hardness determination of thin layers of implanted alloys. Both, experimental and theoretical calculation techniques (SRIM) show significant correlation of measured results of induced defects. (authors)

  20. Hierarchic Analysis Method to Evaluate Rock Burst Risk

    Directory of Open Access Journals (Sweden)

    Ming Ji

    2015-01-01

    Full Text Available In order to reasonably evaluate the risk of rock bursts in mines, the factors impacting rock bursts and the existing grading criterion on the risk of rock bursts were studied. By building a model of hierarchic analysis method, the natural factors, technology factors, and management factors that influence rock bursts were analyzed and researched, which determined the degree of each factor’s influence (i.e., weight and comprehensive index. Then the grade of rock burst risk was assessed. The results showed that the assessment level generated by the model accurately reflected the actual risk degree of rock bursts in mines. The model improved the maneuverability and practicability of existing evaluation criteria and also enhanced the accuracy and science of rock burst risk assessment.

  1. Observation of gamma-ray bursts with GINGA

    International Nuclear Information System (INIS)

    Murakami, Toshio; Fujii, Masami; Nishimura, Jun

    1989-01-01

    Gamma-ray Burst Detector System (GBD) on board the scientific satellite 'GINGA' which was launched on Feb. 5, 1987, was realized as an international cooperation between ISAS and LANL. It has recorded more than 40 Gamma-Ray Burst candidates during 20 months observation. Although many observational evidences were accumulated in past 20 years after the discovery of gamma-ray burst by LANL scientists, there are not enough evidence to determine the origin and the production mechanism of the gamma-ray burst. GBD consists of a proportional counter and a NaI scintillation counter so that it became possible to observe energy spectrum of the gamma-ray burst with high energy resolution over wide range of energy (1.5-380 keV) together with high time resolution. As the result of observation, the following facts are obtained: (1) A large fraction of observed gamma-ray bursts has a long X-ray tail after the harder part of gamma-ray emission has terminated. (2) Clear spectral absorption features with harmonic in energy was observed in some of the energy spectrum of gamma-ray bursts. These evidences support the hypothesis that the strongly magnetized neutron star is the origin of gamma-ray burst. (author)

  2. The TEXTOR helium self-pumping experiment: Design, plans, and supporting ion-beam data on helium retention in nickel

    International Nuclear Information System (INIS)

    Brooks, J.N.; Krauss, A.; Mattas, R.F.; Smith, D.L.; Nygren, R.E.; Doyle, B.L.; McGrath, R.T.; Walsh, D.; Dippel, K.H.; Finken, K.H.

    1990-01-01

    A proof-of-principle experiment to demonstrate helium self-pumping in a tokamak is being undertaken in TEXTOR. The experiment will use a helium self-pumping module installed in a modified ALT-I limiter head. The module consists of two, ≅ 25x25 cm 2 heated nickel alloy trapping plates, a nickel deposition filament array, and associated diagnostics. Between plasma shots a coating of ≅ 50A nickel will be deposited on the two trapping plates. During a shot helium and hydrogen ions will impinge on the plates through a ≅ 3 cm wide entrance slot. The helium removal capability, due to trapping in the nickel, will be assessed for a variety of plasma conditions. In support of the tokamak experiment, the trapping of helium over a range of ion fluences and surface temperatures, and detrapping during subsequent exposure to hydrogen, were measured in ion beam experiments using evaporated nickel surfaces similar to that expected in TEXTOR. Also, the retention of H and He after exposure of a nickel surface to mixed He/H plasmas has been measured. The results appear favorable, showing high helium trapping (≅ 10-50% He/Ni) and little or no detrapping by hydrogen. The TEXTOR experiment is planned to begin in 1991. (orig.)

  3. The TEXTOR helium self-pumping experiment: Design, plans, and supporting ion-beam data on helium retention in nickel

    International Nuclear Information System (INIS)

    Brooks, J.N.; Krauss, A.; Mattas, R.F.; Smith, D.L.; Nygren, R.E.; Doyle, B.L.; McGrath, R.T.; Walsh, D.; Dippel, K.H.; Finken, K.H.

    1990-01-01

    A proof-of-principle experiment to demonstrate helium self-pumping in a tokamak is being undertaken in TEXTOR. The experiment will use a helium self-pumping module installed in a modified ALT-I limiter head. The module consists of two, ∼25 x 25 cm 2 heated nickel alloy trapping plates, a nickel deposition filament array, and associated diagnostics. Between plasma shots a coating of ∼50 angstrom nickel will be deposited on the two trapping plates. During a shot helium and hydrogen ions will impinge on the plates through a ∼3 cm wide entrance slot. The helium removal capability, due to trapping in the nickel, will be assessed for a variety of plasma conditions. In support of the tokamak experiment, the trapping of helium over a range of ion fluences and surface temperatures, and detrapping during subsequent exposure to hydrogen, were measured in ion beam experiments using evaporated nickel surfaces similar to that expected in TEXTOR. Also, the retention of H and He after exposure of a nickel surface to mixed He/H plasmas has bee measured. The results appear favorable, showing high helium trapping (∼10--50% He/Ni) and little or no detrapping by hydrogen. The TEXTOR experiment is planned to begin in 1991. 12 refs., 2 figs., 2 tabs

  4. Swift Burst Alert Telescope (BAT) Instrument Response

    International Nuclear Information System (INIS)

    Parsons, A.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Hullinger, D.; Krimm, H.; Markwardt, C.; Tueller, J.; Fenimore, E.; Palmer, D.; Sato, G.; Takahashi, T.; Nakazawa, K.; Okada, Y.; Takahashi, H.; Suzuki, M.; Tashiro, M.

    2004-01-01

    The Burst Alert Telescope (BAT), a large coded aperture instrument with a wide field-of-view (FOV), provides the gamma-ray burst triggers and locations for the Swift Gamma-Ray Burst Explorer. In addition to providing this imaging information, BAT will perform a 15 keV - 150 keV all-sky hard x-ray survey based on the serendipitous pointings resulting from the study of gamma-ray bursts, and will also monitor the sky for transient hard x-ray sources. For BAT to provide spectral and photometric information for the gamma-ray bursts, the transient sources and the all-sky survey, the BAT instrument response must be determined to an increasingly greater accuracy. This paper describes the spectral models and the ground calibration experiments used to determine the BAT response to an accuracy suitable for gamma-ray burst studies

  5. Sonic Helium Detectors in the Fermilab Tevatron

    Science.gov (United States)

    Bossert, R. J.

    2006-04-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.

  6. Sonic helium detectors in the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Bossert, R.J.; Fermilab

    2006-01-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years

  7. Helium production in reactor materials

    International Nuclear Information System (INIS)

    Lippincott, E.P.; McElroy, W.N.; Farrar, H. IV.

    1975-02-01

    Comparisons of integral helium production measurements with predictions based on ENDF/B Version IV cross sections have been made. It is concluded that an ENDF/B helium production cross section file should be established in order to ensure a complete and consistent cross section evaluation to meet accuracies required for LMFBR, CTR, and LWR applications. (U.S.)

  8. Pressurized helium II-cooled magnet test facility

    International Nuclear Information System (INIS)

    Warren, R.P.; Lambertson, G.R.; Gilbert, W.S.; Meuser, R.B.; Caspi, S.; Schafer, R.V.

    1980-06-01

    A facility for testing superconducting magnets in a pressurized bath of helium II has been constructed and operated. The cryostat accepts magnets up to 0.32 m diameter and 1.32 m length with current to 3000 A. In initial tests, the volume of helium II surrounding the superconducting magnet was 90 liters. Minimum temperature reached was 1.7 K at which point the pumping system was throttled to maintain steady temperature. Helium II reservoir temperatures were easily controlled as long as the temperature upstream of the JT valve remained above T lambda; at lower temperatures control became difficult. Positive control of the temperature difference between the liquid and cold sink by means of an internal heat source appears necessary to avoid this problem. The epoxy-sealed vessel closures, with which we have had considerable experience with normal helium vacuum, also worked well in the helium II/vacuum environment

  9. Modeling Secondary Neutral Helium in the Heliosphere

    International Nuclear Information System (INIS)

    Müller, Hans-Reinhard; Möbius, Eberhard; Wood, Brian E.

    2016-01-01

    An accurate, analytic heliospheric neutral test-particle code for helium atoms from the interstellar medium (ISM) is coupled to global heliospheric models dominated by hydrogen and protons from the solar wind and the ISM. This coupling enables the forward-calculation of secondary helium neutrals from first principles. Secondaries are produced predominantly in the outer heliosheath, upwind of the heliopause, by charge exchange of helium ions with neutral atoms. The forward model integrates the secondary production terms along neutral trajectories and calculates the combined neutral helium phase space density in the innermost heliosphere where it can be related to in-situ observations. The phase space density of the secondary component is lower than that of primary neutral helium, but its presence can change the analysis of primaries and the ISM, and can yield valuable insight into the characteristics of the plasma in the outer heliosheath. (paper)

  10. Behaviour of helium after implantation in molybdenum

    International Nuclear Information System (INIS)

    Viaud, C.; Maillard, S.; Carlot, G.; Valot, C.; Gilabert, E.; Sauvage, T.; Peaucelle, C.; Moncoffre, N.

    2009-01-01

    This study deals with the behaviour of helium in a molybdenum liner dedicated to the retention of fission products. More precisely this work contributes to evaluate the release of implanted helium when the gas has precipitated into nanometric bubbles close to the free surface. A simple model dedicated to calculate the helium release in such a condition is presented. The specificity of this model lays on the assumption that the gas is in equilibrium with a simple distribution of growing bubbles. This effort is encouraging since the calculated helium release fits an experimental dataset with a set of parameters in good agreement with the literature

  11. Use of helium in uranium exploration, Grants district

    International Nuclear Information System (INIS)

    DeVoto, R.H.; Mead, R.H.; Martin, J.P.; Bergquist, L.E.

    1980-01-01

    The continuous generation of inert helium gas from uranium and its daughter products provides a potentially useful means for remote detection of uranium deposits. The practicality of conducting helium surveys in the atmosphere, soil gas, and ground water to explore for buried uranium deposits has been tested in the Grants district and in the Powder River Basin of Wyoming. No detectable helium anomalies related to buried or surface uranium deposits were found in the atmosphere. However, reproducible helium-in-soil-gas anomalies were detected spatially related to uranium deposits buried from 50 to 800 ft deep. Diurnal and atmospheric effects can cause helium content variations (noise) in soil gas that are as great as the anomalies observed from instantaneous soil-gas samples. Cumulative soil-gas helium analyses, such as those obtained from collecting undisturbed soil samples and degassing them in the laboratory, may reveal anomalies from 5 to 100 percent above background. Ground water samples from the Grants district, New Mexico, and the Powder River Basin, Wyoming, have distinctly anomalous helium values spatially related to buried uranium deposits. In the southern Powder River Basin, helium values 20 to 200 percent above background occur 2 to 18 mile down the ground-water flow path from known uranium roll-front deposits. In the Grants district, helium contents 40 to 700 percent above background levels are present in ground waters from the host sandstone in the vicinity of uranium deposits and from aquifers up to 3,000 ft stratigraphically above the deep uranium deposits. The use of helium in soil and ground-water surveys, along with uranium and radon analyses of the same materials, is strongly recommended is expensive, deep, uranium-exploration programs such as those being conducted in the Grants district

  12. Manufacturing cycle for pure neon-helium mixture production

    International Nuclear Information System (INIS)

    Batrakov, B.P.; Kravchenko, V.A.

    1980-01-01

    The manufacturing cycle for pure neon-helium mixture production with JA-300 nitrogen air distributing device has been developed. Gas mixture containing 2-3% of neon-helium mixture (the rest is mainly nitrogen 96-97%) is selected out of the cover of the JA-300 column condensator and enters the deflegmator under the 2.3-2.5 atm. pressure. The diflegmator presents a heat exchange apparatus in which at 78 K liquid nitrogen the condensation of nitrogen from the mixture of gases entering from the JA-300 column takes place. The enriched gas mixture containing 65-70% of neon-helium mixture and 30-35% of nitrogen goes out from the deflegmator. This enriched neon-helium mixture enters the gasgoeder for impure (65-70%) neon-helium mixture. Full cleaning of-neon helium mixture of nitrogen is performed by means of an adsorber. As adsorbent an activated coal has been used. Adsorption occurs at the 78 K temperature of liquid nitrogen and pressure P=0.1 atm. As activated coal cooled down to nitrogen temperature adsorbs nitrogen better than neon and helium, the nitrogen from the mixture is completely adsorbed. Pure neon-helium mixture from the adsorber comes into a separate gasgolder. In one campaign the cycle allows obtaining 2 m 3 of the mixture. The mixture contains 0.14% of nitrogen, 0.01% of oxygen and 0.06% of hydrogen

  13. Dark gamma-ray bursts

    Science.gov (United States)

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2017-03-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p -wave process than for s -wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to standard model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma-ray burst" may be observable in the Čerenkov Telescope Array.

  14. Standard Guide for Simulation of Helium Effects in Irradiated Metals

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This guide provides advice for conducting experiments to investigate the effects of helium on the properties of metals where the technique for introducing the helium differs in some way from the actual mechanism of introduction of helium in service. Simulation techniques considered for introducing helium shall include charged particle implantation, exposure to α-emitting radioisotopes, and tritium decay techniques. Procedures for the analysis of helium content and helium distribution within the specimen are also recommended. 1.2 Two other methods for introducing helium into irradiated materials are not covered in this guide. They are the enhancement of helium production in nickel-bearing alloys by spectral tailoring in mixed-spectrum fission reactors, and isotopic tailoring in both fast and mixed-spectrum fission reactors. These techniques are described in Refs (1-5). Dual ion beam techniques (6) for simultaneously implanting helium and generating displacement damage are also not included here. This lat...

  15. BURST AND OUTBURST CHARACTERISTICS OF MAGNETAR 4U 0142+61

    Energy Technology Data Exchange (ETDEWEB)

    Göğüş, Ersin; Chakraborty, Manoneeta; Kaneko, Yuki [Sabancı University, Orhanlı-Tuzla, İstanbul 34956 (Turkey); Lin, Lin [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Roberts, Oliver J. [School of Physics, University College Dublin, Stillorgan Road, Belfield, Dublin 4 (Ireland); Gill, Ramandeep; Granot, Jonathan [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ranana 43537 (Israel); Horst, Alexander J. van der; Kouveliotou, Chryssa; Younes, George [Department of Physics, The George Washington University, Washington, DC 20052 (United States); Watts, Anna L. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, NL-1090 GE Amsterdam (Netherlands); Baring, Matthew [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Huppenkothen, Daniela [Center for Data Science, New York University, 726 Broadway, 7th Floor, NY 10003 (United States)

    2017-01-20

    We have compiled the most comprehensive burst sample from magnetar 4U 0142+61, comprising 27 bursts from its three burst-active episodes in 2011, 2012 and the latest one in 2015 observed with Swift /Burst Alert Telescope and Fermi /Gamma-ray Burst Monitor. Bursts from 4U 0142+61 morphologically resemble typical short bursts from other magnetars. However, 4U 0142+61 bursts are less energetic compared to the bulk of magnetar bursts. We uncovered an extended tail emission following a burst on 2015 February 28, with a thermal nature, cooling over a timescale of several minutes. During this tail emission, we also uncovered pulse peak phase aligned X-ray bursts, which could originate from the same underlying mechanism as that of the extended burst tail, or an associated and spatially coincident but different mechanism.

  16. Helium-induced weld degradation of HT-9 steel

    International Nuclear Information System (INIS)

    Wang, Chin-An; Chin, B.A.; Lin, Hua T.; Grossbeck, M.L.

    1992-01-01

    Helium-bearing Sandvik HT-9 ferritic steel was tested for weldability to simulate the welding of structural components of a fusion reactor after irradiation. Helium was introduced into HT-9 steel to 0.3 and 1 atomic parts per million (appm) by tritium doping and decay. Autogenous single pass full penetration welds were produced using the gas tungsten arc (GTA) welding process under laterally constrained conditions. Macroscopic examination showed no sign of any weld defect in HT-9 steel containing 0.3 appm helium. However, intergranular micro cracks were observed in the HAZ of HT-9 steel containing 1 appm helium. The microcracking was attributed to helium bubble growth at grain boundaries under the influence of high stresses and temperatures that were present during welding. Mechanical test results showed that both yield strength (YS) and ultimate tensile strength (UTS) decreased with increasing temperature, while the total elongation increased with increasing temperature for all control and helium-bearing HT-9 steels

  17. Bursting synchronization in clustered neuronal networks

    International Nuclear Information System (INIS)

    Yu Hai-Tao; Wang Jiang; Deng Bin; Wei Xi-Le

    2013-01-01

    Neuronal networks in the brain exhibit the modular (clustered) property, i.e., they are composed of certain subnetworks with differential internal and external connectivity. We investigate bursting synchronization in a clustered neuronal network. A transition to mutual-phase synchronization takes place on the bursting time scale of coupled neurons, while on the spiking time scale, they behave asynchronously. This synchronization transition can be induced by the variations of inter- and intracoupling strengths, as well as the probability of random links between different subnetworks. Considering that some pathological conditions are related with the synchronization of bursting neurons in the brain, we analyze the control of bursting synchronization by using a time-periodic external signal in the clustered neuronal network. Simulation results show a frequency locking tongue in the driving parameter plane, where bursting synchronization is maintained, even in the presence of external driving. Hence, effective synchronization suppression can be realized with the driving parameters outside the frequency locking region. (interdisciplinary physics and related areas of science and technology)

  18. Charged condensate and helium dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Gabadadze, Gregory; Rosen, Rachel A, E-mail: gg32@nyu.edu, E-mail: rar339@nyu.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)

    2008-10-15

    White dwarf stars composed of carbon, oxygen and heavier elements are expected to crystallize as they cool down below certain temperatures. Yet, simple arguments suggest that the helium white dwarf cores may not solidify, mostly because of zero-point oscillations of the helium ions that would dissolve the crystalline structure. We argue that the interior of the helium dwarfs may instead form a macroscopic quantum state in which the charged helium-4 nuclei are in a Bose-Einstein condensate, while the relativistic electrons form a neutralizing degenerate Fermi liquid. We discuss the electric charge screening, and the spectrum of this substance, showing that the bosonic long-wavelength fluctuations exhibit a mass gap. Hence, there is a suppression at low temperatures of the boson contribution to the specific heat-the latter being dominated by the specific heat of the electrons near the Fermi surface. This state of matter may have observational signatures.

  19. On the helium gas leak test

    International Nuclear Information System (INIS)

    Nishikawa, Akira; Ozaki, Susumu

    1975-01-01

    The helium gas leak test (Helium mass spectrometer testing) has a leak detection capacity of the highest level in practical leak tests and is going to be widely applied to high pressure vessels, atomic and vacuum equipments that require high tightness. To establish a standard test procedure several series of experiments were conducted and the results were investigated. The conclusions are summarized as follows: (1) The hood method is quantitatively the most reliable method. The leak rate obtained by tests using 100% helium concentration should be the basis of the other method of test. (2) The integrating method, bell jar method, and vacuum spray method can be considered quantitative when particular conditions are satisfied. (3) The sniffer method is not to be considered quantitive. (4) The leak rate of the hood, integrating, and bell jar methods is approximately proportional to the square of the helium partial pressure. (auth.)

  20. Self-regulation of turbulence bursts and transport barriers

    International Nuclear Information System (INIS)

    Floriani, E; Ciraolo, G; Ghendrih, Ph; Sarazin, Y; Lima, R

    2013-01-01

    The interplay between turbulent bursts and transport barriers is analyzed with a simplified model of interchange turbulence in magnetically confined plasmas. The turbulent bursts spread into the transport barriers and, depending on the competing magnitude of the burst and stopping capability of the barrier, can burn through. Simulations of two models of transport barriers are presented: a hard barrier where interchange turbulence modes are stable in a prescribed region and a soft barrier with external plasma biasing. The response of the transport barriers to the non-linear perturbations of the turbulent bursts, addressed in a predator–prey approach, indicates that the barriers monitor an amplification factor of the turbulent bursts, with amplification smaller than one for most bursts and, in some cases, amplification factors that can significantly exceed unity. The weak barriers in corrugated profiles and magnetic structures, as well as the standard barriers, are characterized by these transmission properties, which then regulate the turbulent burst transport properties. The interplays of barriers and turbulent bursts are modeled as competing stochastic processes. For different classes of the probability density function (PDF) of these processes, one can predict the heavy tail properties of the bursts downstream from the barrier, either exponential for a leaky barrier, or with power laws for a tight barrier. The intrinsic probing of the transport barriers by the turbulent bursts thus gives access to the properties of the barriers. The main stochastic variables are the barrier width and the spreading distance of the turbulent bursts within the barrier, together with their level of correlation. One finds that in the case of a barrier with volumetric losses, such as radiation or particle losses as addressed in our present simulations, the stochastic model predicts a leaky behavior with an exponential PDF of escaping turbulent bursts in agreement with the simulation

  1. The γ-ray burst-detection system of SPI

    International Nuclear Information System (INIS)

    Lichti, G.G.; Georgii, R.; Kienlin, A. von; Schoenfelder, V.; Wunderer, C.; Jung, H.-J.; Hurley, K.

    2000-01-01

    The determination of precise locations of γ-ray bursts is a crucial task of γ-ray astronomy. Although γ-ray burst locations can be obtained nowadays from single experiments (BATSE, COMPTEL, BeppoSax) the location of bursts via triangulation using the interplanetary network is still important because not all bursts will be located precisely enough by these single instruments. In order to get location accuracies down to arcseconds via triangulation one needs long baselines. At the beginning of the next decade several spacecrafts which explore the outer planetary system (the Mars-Surveyor-2001 Orbiter and probably Ulysses) will carry γ-ray burst instruments. INTEGRAL as a near-earth spacecraft is the ideal counterpart for these satellites. The massive anticoincidence shield of the INTEGRAL-spectrometer SPI allows the measurement of γ-ray bursts with a high sensitivity. Estimations have shown that with SPI some hundred γ-ray bursts per year on the 5σ level can be measured. This is equivalent to the BATSE sensitivity. We describe the γ-ray burst-detection system of SPI, present its technical features and assess the scientific capabilities

  2. Balloon observation of gamma-ray burst

    International Nuclear Information System (INIS)

    Nishimura, Jun; Fujii, Masami; Yamagami, Takamasa; Oda, Minoru; Ogawara, Yoshiaki

    1978-01-01

    Cosmic gamma-ray burst is an interesting high energy astrophysical phenomenon, but the burst mechanism has not been well understood. Since 1975, long duration balloon flight has been conducted to search for gamma-ray bursts and to determine the source locations. A rotating cross-modulation collimator was employed to determine the locations of sources, and four NaI(Tl) scintillation counters were employed to detect hard X-ray with energy from 20 to 200 keV. The balloon light was performed at altitude of 8.3 mb from September 28, 1977, and the observation time of 79 hours was achieved. In this experiment, the monitor counter was not mounted. The count increase was observed at 16 h 22 m 31 s JST on October 1, 1977. The event disappeared after 1 sec. The total flux is estimated to be 1.6 x 10 -6 erg/cm 2 sec at the top of the atmosphere. When this event was observed, the solar-terrestrial environment was also quiet. Thus, this event was attributed to a small gamma-ray burst. Unfortunately, the duration of the burst was so short that the position of the burst source was not able to be determined. (Yoshimori, M.)

  3. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    Directory of Open Access Journals (Sweden)

    S. S. Bulanov

    2015-06-01

    Full Text Available The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He^{3} ions, having almost the same penetration depth as He^{4} with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.

  4. Superfluid helium at subcritical active core

    International Nuclear Information System (INIS)

    Vasil'ev, V.V.; Lopatkin, A.V.; Muratov, V.G.; Rakhno, I.L.

    2002-01-01

    Power range and neutron flux wherein super thermal source was realized at high volume of superfluid helium were investigated. MCU, BRAND, MCNP codes were used for the calculation of reactors. It is shown that the availability of full-size diameter for cryogenic source of ultracold neutrons, as the source with superfluid helium is considered, is possible in the reflector of subcritical assembly. Results obtained from the MCNP-4B code application demonstrated that the density of thermal neutron flux in helium must be not higher than 2.3 x 10 11 s -1 cm -2 [ru

  5. Helium leak testing methods in nuclear applications

    International Nuclear Information System (INIS)

    Ahmad, Anis

    2004-01-01

    Helium mass-spectrometer leak test is the most sensitive leak test method. It gives very reliable and sensitive test results. In last few years application of helium leak testing has gained more importance due to increased public awareness of safety and environment pollution caused by number of growing chemical and other such industries. Helium leak testing is carried out and specified in most of the critical area applications like nuclear, space, chemical and petrochemical industries

  6. Pressurized-helium breakdown at very low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Metas, R J

    1972-06-01

    An investigation of the electrical-breakdown behavior of helium at very low temperatures has been carried out to assist the design and development of superconducting power cables. At very high densities, both liquid and gaseous helium showed an enhancement in electric strength when pressurized to a few atmospheres; conditioned values of breakdown fields then varied between 30 and 45 MV/m. Breakdown processes occurring over a wide range of helium densities are discussed. 24 references.

  7. Frequency of fast, narrow γ-ray bursts

    International Nuclear Information System (INIS)

    Norris, J.P.; Maryland Univ., College Park; Cline, T.L.; Desai, U.D.; Teegarden, B.J.

    1984-01-01

    The paper describes the existence of two γ-ray burst populations detected by the ISEE-3 experiment. Data from the distribution of 123 Venera 13 and 14 events (60 detected by both spacecraft) also suggests two γ-ray burst populations in each experiment sample, the domains separated with a minimum near 1 or 2 s. The authors point out that the results of the Goddard ISEE-3 γ-ray burst spectrometer actually enhance the appearance of two burst populations suggested in the Venera data. (author)

  8. Dipole moments of molecules solvated in helium nanodroplets

    International Nuclear Information System (INIS)

    Stiles, Paul L.; Nauta, Klaas; Miller, Roger E.

    2003-01-01

    Stark spectra are reported for hydrogen cyanide and cyanoacetylene solvated in helium nanodroplets. The goal of this study is to understand the influence of the helium solvent on measurements of the permanent electric dipole moment of a molecule. We find that the dipole moments of the helium solvated molecules, calculated assuming the electric field is the same as in vacuum, are slightly smaller than the well-known gas-phase dipole moments of HCN and HCCCN. A simple elliptical cavity model quantitatively accounts for this difference, which arises from the dipole-induced polarization of the helium

  9. Possible galactic origin of. gamma. -ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Manchanda, R K; Ramsden, D [Southampton Univ. (UK). Dept. of Physics

    1977-03-31

    It is stated that extragalactic models for the origin of non-solar ..gamma..-ray bursts include supernova bursts in remote galaxies, and the collapse of the cores of active stars, whilst galactic models are based on flare stars, thermonuclear explosions in neutron stars and the sudden accretion of cometary gas on to neutron stars. The acceptability of any of these models may be tested by the observed size spectrum of the ..gamma..-ray bursts. The extragalactic models predict a power law spectrum with number index -1.5, whilst for the galactic models the number index will be -1. Experimental data on ..gamma..-ray bursts is, however, still meagre, and so far only 44 confirmed events have been recorded by satellite-borne instruments. The number spectrum of the observed ..gamma..-ray bursts indicates that the observed distribution for events with an energy < 10/sup -4/ erg/cm/sup 2/ is flat; this makes the choice of any model completely arbitrary. An analysis of the observed ..gamma..-ray events is here presented that suggests very interesting possibilities for their origin. There appears to be a preferred mean energy for ..gamma..-ray bursts; some 90% of the recorded events show a mean energy between 5 x 10/sup -5/ and 5 x 10/sup -4/ erg/cm/sup 2/, contrary to the predicted characteristics of the number spectrum of various models. A remarkable similarity is found between the distribution of ..gamma..-ray bursts and that of supernova remnants, suggesting a genetic relationship between the two and the galactic origin of the ..gamma..-ray bursts, and the burst source could be identified with completely run down neutron stars, formed during supernova explosions.

  10. Throughput Estimation Method in Burst ACK Scheme for Optimizing Frame Size and Burst Frame Number Appropriate to SNR-Related Error Rate

    Science.gov (United States)

    Ohteru, Shoko; Kishine, Keiji

    The Burst ACK scheme enhances effective throughput by reducing ACK overhead when a transmitter sends sequentially multiple data frames to a destination. IEEE 802.11e is one such example. The size of the data frame body and the number of burst data frames are important burst transmission parameters that affect throughput. The larger the burst transmission parameters are, the better the throughput under error-free conditions becomes. However, large data frame could reduce throughput under error-prone conditions caused by signal-to-noise ratio (SNR) deterioration. If the throughput can be calculated from the burst transmission parameters and error rate, the appropriate ranges of the burst transmission parameters could be narrowed down, and the necessary buffer size for storing transmit data or received data temporarily could be estimated. In this paper, we present a method that features a simple algorithm for estimating the effective throughput from the burst transmission parameters and error rate. The calculated throughput values agree well with the measured ones for actual wireless boards based on the IEEE 802.11-based original MAC protocol. We also calculate throughput values for larger values of the burst transmission parameters outside the assignable values of the wireless boards and find the appropriate values of the burst transmission parameters.

  11. Helium atoms and molecules in strong magnetic fields

    Science.gov (United States)

    Mori, K.

    Recent theoretical studies have shown that the neutron star surface may be composed of helium or heavier elements as hydrogen may be quickly depleted by diffuse nuclear burning Chang Bildsten However while Hydrogen atmospheres have been studied in great details atomic data for helium is available only for He ion Pavlov Bezchastnov 2005 We performed Hartree-Fock type calculation for Helium atom and molecules and computed their binding ionization and dissociation energies in strong magnetic fields B sim10 12 -- 10 15 G We will present ionization balance of Helium atmospheres at typical magnetic field strengths and temperatures to radio-quiet neutron stars and AXPs We will also discuss several implications of helium atmosphere to X-ray data of isolated neutron stars focusing on the detected spectral features

  12. Tritium and helium-3 in metals

    International Nuclear Information System (INIS)

    Lasser, R.

    1989-01-01

    The book surveys recent results on the behaviour of tritium and its decay product helium-3 metals. In contrast to many earlier books which discuss the properties of the stable hydrogen isotopes without mentioning tritium, this book reviews mainly the results on tritium in metals. Due to the difficulties in preparing metal tritide samples, very important quantities such as diffusivity, superconductivity, solubility, etc. have only been determined very recently. The book not only presents the measured tritium data, but also the isotopic dependency of the different physical properties by comparing H, D and T results. A chapter is devoted to helium-3 in metals. Aspects such as helium release, generation of helium bubbles, swelling, and change of the lattice parameter upon aging are discussed. The book provides the reader with up-to-date information and deep insight into the behaviour of H, D, T and He-3 in metals. Further important topics such a tritium production, its risks, handling and discharge to the environment are also addressed

  13. Optimal Codes for the Burst Erasure Channel

    Science.gov (United States)

    Hamkins, Jon

    2010-01-01

    Deep space communications over noisy channels lead to certain packets that are not decodable. These packets leave gaps, or bursts of erasures, in the data stream. Burst erasure correcting codes overcome this problem. These are forward erasure correcting codes that allow one to recover the missing gaps of data. Much of the recent work on this topic concentrated on Low-Density Parity-Check (LDPC) codes. These are more complicated to encode and decode than Single Parity Check (SPC) codes or Reed-Solomon (RS) codes, and so far have not been able to achieve the theoretical limit for burst erasure protection. A block interleaved maximum distance separable (MDS) code (e.g., an SPC or RS code) offers near-optimal burst erasure protection, in the sense that no other scheme of equal total transmission length and code rate could improve the guaranteed correctible burst erasure length by more than one symbol. The optimality does not depend on the length of the code, i.e., a short MDS code block interleaved to a given length would perform as well as a longer MDS code interleaved to the same overall length. As a result, this approach offers lower decoding complexity with better burst erasure protection compared to other recent designs for the burst erasure channel (e.g., LDPC codes). A limitation of the design is its lack of robustness to channels that have impairments other than burst erasures (e.g., additive white Gaussian noise), making its application best suited for correcting data erasures in layers above the physical layer. The efficiency of a burst erasure code is the length of its burst erasure correction capability divided by the theoretical upper limit on this length. The inefficiency is one minus the efficiency. The illustration compares the inefficiency of interleaved RS codes to Quasi-Cyclic (QC) LDPC codes, Euclidean Geometry (EG) LDPC codes, extended Irregular Repeat Accumulate (eIRA) codes, array codes, and random LDPC codes previously proposed for burst erasure

  14. Helium cosmic ray flux measurements at Mars

    International Nuclear Information System (INIS)

    Lee, Kerry; Pinsky, Lawrence; Andersen, Vic; Zeitlin, Cary; Cleghorn, Tim; Cucinotta, Frank; Saganti, Premkumar; Atwell, William; Turner, Ron

    2006-01-01

    The helium energy spectrum in Martian orbit has been observed by the MARIE charged particle spectrometer aboard the 2001 Mars Odyssey spacecraft. The orbital data were taken from March 13, 2002 to October 28, 2003, at which time a very intense Solar Particle Event caused a loss of communication between the instrument and the spacecraft. The silicon detector stack in MARIE is optimized for the detection of protons and helium in the energy range below 100MeV/n, which typically includes almost all of the flux during SPEs. This also makes MARIE an efficient detector for GCR helium in the energy range of 50-150MeV/n. We will present the first fully normalized flux results from MARIE, using helium ions in this energy range

  15. Helium cosmic ray flux measurements at Mars

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kerry [University of Houston, 4800 Calhoun Rd. Houston, TX 77204 (United States)]. E-mail: ktlee@ems.jsc.nasa.gov; Pinsky, Lawrence [University of Houston, 4800 Calhoun Rd. Houston, TX 77204 (United States); Andersen, Vic [University of Houston, 4800 Calhoun Rd. Houston, TX 77204 (United States); Zeitlin, Cary [National Space Biomedical Research Institute, Baylor College of Medicine, Houston, TX (United States); Cleghorn, Tim [NASA Johnson Space Center, 2101 NASA Road 1, Houston, TX 77058 (United States); Cucinotta, Frank [NASA Johnson Space Center, 2101 NASA Road 1, Houston, TX 77058 (United States); Saganti, Premkumar [Prairie View A and M University, P.O. Box 519, Prairie View, TX 77446-0519 (United States); Atwell, William [The Boeing Company, Houston, TX (United States); Turner, Ron [Advancing National Strategies and Enabling Results (ANSER), Arlington, Virginia (United States)

    2006-10-15

    The helium energy spectrum in Martian orbit has been observed by the MARIE charged particle spectrometer aboard the 2001 Mars Odyssey spacecraft. The orbital data were taken from March 13, 2002 to October 28, 2003, at which time a very intense Solar Particle Event caused a loss of communication between the instrument and the spacecraft. The silicon detector stack in MARIE is optimized for the detection of protons and helium in the energy range below 100MeV/n, which typically includes almost all of the flux during SPEs. This also makes MARIE an efficient detector for GCR helium in the energy range of 50-150MeV/n. We will present the first fully normalized flux results from MARIE, using helium ions in this energy range.

  16. Gamma-Ray Bursts: 4th Huntsville Symposium. Proceedings

    International Nuclear Information System (INIS)

    Meegan, C.A.; Preece, R.D.; Koshut, T.M.

    1998-01-01

    These proceedings represent papers presented at the Fourth Huntsville Gamma-Ray Bursts Symposium held in September, 1997 in Huntsville, Alabama, USA. This conference occurred at a crucial time in the history of the gamma-ray burst research. In early 1997, 30 years after the detection of the first gamma-ray burst by the Vela satellites, counterparts to bursts were finally detected at optical and radio wavelengths. The symposium attracted about 200 scientists from 16 countries. Some of the topics discussed include gamma-ray burst spectra, x-ray observations, optical observations, radio observations, host galaxies, shocks and afterglows and models of gamma-ray bursts. There were 183 papers presented, out of these, 16 have been abstracted for the Energy Science and Technology database

  17. X-ray echoes from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dermer, C.D.; Hurley, K.C.; Hartmann, D.H.

    1991-01-01

    The identification of an echo of reflected radiation in time histories of gamma-ray burst spectra can provide important information about the existence of binary companions or accretion disks in gamma-ray burst systems. Because of the nature of Compton scattering, the spectrum of the echo will be attenuated at gamma-ray energies compared with the spectrum of the primary burst emission. The expected temporal and spectral signatures of the echo and a search for such echoes are described, and implications for gamma-ray burst models are discussed. 35 refs

  18. Atomistic simulation of helium bubble nucleation in palladium

    Energy Technology Data Exchange (ETDEWEB)

    Wang Liang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu, Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: wangyuhu2001cn@yahoo.com.cn; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: sfxiao@yahoo.com.cn; Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Deng Huiqiu [Department of Applied Physics, Hunan University, Changsha 410082 (China)

    2009-09-15

    A palladium crystal has been constructed with 11808 atoms. 55 helium atoms occupied the octahedral position of palladium crystal are introduced and retained in a spherical region. Molecular dynamic simulations are performed in a constant temperature and constant volume ensemble (NVT) with temperature controlled by Nose-Hoover thermostat. The interactions between palladium atoms are described with modified analytic embedded atom method (MAEAM), the interactions between palladium atom and helium atom are in the form of Morse potential, and the interactions between helium atoms are in the form of L-J potential function. With the analysis of the radial distribution function (RDF) and microstructure, it reveals that some of helium atoms form a series of clusters with different size, and the nucleation core is random at low temperature, and which is the embryo of helium bubble. Increasing temperature can accelerate the process of bubble nucleation, and the clusters will aggregate and coalesce into a bigger one in which there are no palladium atoms, and it is considered as a helium bubble.

  19. Gamma-ray burst observations: the present situation

    International Nuclear Information System (INIS)

    Vedrenne, G.

    1984-01-01

    Recent results in gamma ray burst investigations concerning the spectral variability on a short time scale, precise locations, and the discovery of optical flashes in gamma ray burst positions on archival plates are presented. The implications of optical and X-ray observations of gamma ray burst error boxes are also discussed. 72 references

  20. Detecting pipe bursts by monitoring water demand

    NARCIS (Netherlands)

    Bakker, M.; Vreeburg, J.H.G.; Van der Roer, M.; Sperber, V.

    2012-01-01

    An algorithm which compares measured and predicted water demands to detect pipe bursts was developed and tested on three data sets of water demand and reported pipe bursts of three years. The algorithm proved to be able to detect bursts where the water loss exceeds 30% of the average water demand in

  1. Fine structure in fast drift storm bursts

    International Nuclear Information System (INIS)

    McConnell, D.; Ellis, G.R.A.

    1981-01-01

    Recent observations with high time resolution of fast drift storm (FDS) solar bursts are described. A new variety of FDS bursts characterised by intensity maxima regularly placed in the frequency domain is reported. Possible interpretations of this are mentioned and the implications of the short duration of FDS bursts are discussed. (orig.)

  2. Helium-Charged La-Ni-Al Thin Films Deposited by Magnetron Sputtering

    International Nuclear Information System (INIS)

    Shi Liqun; Chen Deming; Xu Shilin; Liu Chaozhu; Hao Wanli; Zhou Zhuyin

    2005-01-01

    An advanced implantation of low energy helium-4 atoms during the La-Ni-Al film growth by adopting magnetron sputtering with Ar/He mixture gases is discussed. Both proton backscattering spectroscopy (PBS) and elastic recoil detection (ERD) analyses were adopted to measure helium concentration of the films and distribution in the near-surface region. Helium atoms with a high concentration incorporate evenly in deposited film. The introduction of the helium with no extra irradiation damage is expected by choosing suitable deposition conditions. It was found that amorphous and crystalline LaNi 5 -type structures can be achieved when sputtered with pure Ar and Ar/He mixture gases at room temperature, respectively. Thermal desorption experiments proposes that a part of hydrogen atoms are bound to trapped helium at crystal and releases together with helium. Only a small fraction of helium is released from the helium-vacancy clusters in lower temperature range and most of helium is released from small size helium bubbles in the high temperature range

  3. Evolution of helium stars: a self-consistent determination of the boundary of a helium burning convective core

    International Nuclear Information System (INIS)

    Savonije, G.J.; Takens, R.J.

    1976-01-01

    A generalization of the Henyey-scheme is given that introduces the mass of the convective core and the density at the outer edge of the convective core boundary as unknowns which have to be solved simultaneously with the other unknowns. As a result, this boundary is determined in a physically self-consistent way for expanding as well as contracting cores, i.e. during the Henyey iterative cycle; its position becomes consistent with the overall physical structure of the star, including the run of the chemical abundances throughout the star. Using this scheme, the evolution of helium stars was followed up to carbon ignition for a number of stellar masses. As compared with some earlier investigations, the calculations show a rather large increase in mass of the convective cores during core helium burning. Evolutionary calculations for a 2M(sun) helium star show that the critical mass for which a helium star ignites carbon non-degenerately lies near 2M(sun). (orig.) [de

  4. Bursting neurons and ultrasound avoidance in crickets

    Directory of Open Access Journals (Sweden)

    Gary eMarsat

    2012-07-01

    Full Text Available Decision making in invertebrates often relies on simple neural circuits composed of only a few identified neurons. The relative simplicity of these circuits makes it possible to identify the key computation and neural properties underlying decisions. In this review, we summarize recent research on the neural basis of ultrasound avoidance in crickets, a response that allows escape from echolocating bats. The key neural property shaping behavioral output is high-frequency bursting of an identified interneuron, AN2, which carries information about ultrasound stimuli from receptor neurons to the brain. AN2's spike train consists of clusters of spikes –bursts– that may be interspersed with isolated, non-burst spikes. AN2 firing is necessary and sufficient to trigger avoidance steering but only high-rate firing, such as occurs in bursts, evokes this response. AN2 bursts are therefore at the core of the computation involved in deciding whether or not to steer away from ultrasound. Bursts in AN2 are triggered by synaptic input from nearly synchronous bursts in ultrasound receptors. Thus the population response at the very first stage of sensory processing –the auditory receptor- already differentiates the features of the stimulus that will trigger a behavioral response from those that will not. Adaptation, both intrinsic to AN2 and within ultrasound receptors, scales the burst-generating features according to the stimulus statistics, thus filtering out background noise and ensuring that bursts occur selectively in response to salient peaks in ultrasound intensity. Furthermore AN2’s sensitivity to ultrasound varies adaptively with predation pressure, through both developmental and evolutionary mechanisms. We discuss how this key relationship between bursting and the triggering of avoidance behavior is also observed in other invertebrate systems such as the avoidance of looming visual stimuli in locusts or heat avoidance in beetles.

  5. AUTOMATIC RECOGNITION OF CORONAL TYPE II RADIO BURSTS: THE AUTOMATED RADIO BURST IDENTIFICATION SYSTEM METHOD AND FIRST OBSERVATIONS

    International Nuclear Information System (INIS)

    Lobzin, Vasili V.; Cairns, Iver H.; Robinson, Peter A.; Steward, Graham; Patterson, Garth

    2010-01-01

    Major space weather events such as solar flares and coronal mass ejections are usually accompanied by solar radio bursts, which can potentially be used for real-time space weather forecasts. Type II radio bursts are produced near the local plasma frequency and its harmonic by fast electrons accelerated by a shock wave moving through the corona and solar wind with a typical speed of ∼1000 km s -1 . The coronal bursts have dynamic spectra with frequency gradually falling with time and durations of several minutes. This Letter presents a new method developed to detect type II coronal radio bursts automatically and describes its implementation in an extended Automated Radio Burst Identification System (ARBIS 2). Preliminary tests of the method with spectra obtained in 2002 show that the performance of the current implementation is quite high, ∼80%, while the probability of false positives is reasonably low, with one false positive per 100-200 hr for high solar activity and less than one false event per 10000 hr for low solar activity periods. The first automatically detected coronal type II radio burst is also presented.

  6. DIRECT EVALUATION OF THE HELIUM ABUNDANCES IN OMEGA CENTAURI

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Avrett, E. H., E-mail: dupree@cfa.harvard.edu, E-mail: eavrett@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2013-08-20

    A direct measure of the helium abundances from the near-infrared transition of He I at 1.08 {mu}m is obtained for two nearly identical red giant stars in the globular cluster Omega Centauri. One star exhibits the He I line; the line is weak or absent in the other star. Detailed non-local thermal equilibrium semi-empirical models including expansion in spherical geometry are developed to match the chromospheric H{alpha}, H{beta}, and Ca II K lines, in order to predict the helium profile and derive a helium abundance. The red giant spectra suggest a helium abundance of Y {<=} 0.22 (LEID 54064) and Y = 0.39-0.44 (LEID 54084) corresponding to a difference in the abundance {Delta}Y {>=} 0.17. Helium is enhanced in the giant star (LEID 54084) that also contains enhanced aluminum and magnesium. This direct evaluation of the helium abundances gives observational support to the theoretical conjecture that multiple populations harbor enhanced helium in addition to light elements that are products of high-temperature hydrogen burning. We demonstrate that the 1.08 {mu}m He I line can yield a helium abundance in cool stars when constraints on the semi-empirical chromospheric model are provided by other spectroscopic features.

  7. Capacity enhancement of indigenous expansion engine based helium liquefier

    Science.gov (United States)

    Doohan, R. S.; Kush, P. K.; Maheshwari, G.

    2017-02-01

    Development of technology and understanding for large capacity helium refrigeration and liquefaction at helium temperature is indispensable for coming-up projects. A new version of helium liquefier designed and built to provide approximately 35 liters of liquid helium per hour. The refrigeration capacity of this reciprocating type expansion engine machine has been increased from its predecessor version with continuous improvement and deficiency debugging. The helium liquefier has been built using components by local industries including cryogenic Aluminum plate fin heat exchangers. Two compressors with nearly identical capacity have been deployed for the operation of system. Together they consume about 110 kW of electric power. The system employs liquid Nitrogen precooling to enhance liquid Helium yield. This paper describes details of the cryogenic expander design improvements, reconfiguration of heat exchangers, performance simulation and their experimental validation.

  8. Observation of cosmic gamma ray burst by Hinotori

    International Nuclear Information System (INIS)

    Okudaira, Kiyoaki; Yoshimori, Masato; Hirashima, Yo; Kondo, Ichiro.

    1982-01-01

    The solar gamma ray detecor (SGR) on Hinotori has no collimator, and the collimator of a hard X-ray monitor is not effective for gamma ray with energy more than 100 KeV. Accordingly, the detection system can detect cosmic gamma ray burst, and two bursts were observed. The first burst was detected on February 28, 1981, and the source of the burst was in the direction of 81 degree from Venus. The time profile and the spectrum were observed. In July 21, 1981, the second burst was detected. The time profile obtained with the SGR was compared with those of PVO (Pioneer Venus Orbiter) and LASL-ISEE. The time difference among the data of time profiles indicated that the source of the burst was not the sun. The spectrum was also measured. (Kato, T.)

  9. Advances in gamma-ray burst astronomy

    International Nuclear Information System (INIS)

    Cline, T.L.; Desai, U.D.

    1976-01-01

    Work at Goddard is presently being carried out in three major areas of gamma-ray burst research: (1) A pair of simultaneously operating 0.8-m 2 burst detectors were successfully balloon-borne at locations 800 miles apart on 9 May, 1975, each to atmospheric depths of 3 to 4 g cm -2 , for a 20-h period of coincident data coverage. This experiment investigates the size spectrum of bursts in the 10 -7 to 10 -6 erg cm -2 size region where dozens of events per day are expected on a -1.5 index integral power-law extrapolation. Considerable separation in latitude was used to avoid possible atmospheric and auroral secondary effects. Its results are not yet available. (2) A deep-space burst detector, the first spacecraft instrument built specifically for gamma-ray burst studies, was recently successfully integrated into the Helios-B space probe. Its use at distances of up to 2 AU will make possible the first high-resolution directional study of gamma-ray burst source locations. Similar modifications to several other space vehicles are also being prepared. (3) The gamma-ray instrument on the IMP-7 satellite is presently the most sensitive burst detector still operating in orbit. Its results have shown that all measured event-average energy spectra are consistent with being alike. Using this characteristic spectrum to select IMP-7 candidate events of smaller size than those detected using other spacecraft in coincidence, a size spectrum is constructed which fits the -1.5 index power law down to 2.5 x 10 -5 erg cm -2 per event, at an occurrence rate of about once per month. (Auth.)

  10. Liquid-helium scintillation detection with germanium photodiodes

    International Nuclear Information System (INIS)

    Luke, P.N.; Haller, E.E.; Steiner, H.M.

    1982-05-01

    Special high-purity germanium photodiodes have been developed for the direct detection of vacuum ultraviolet scintillations in liquid helium. The photodiodes are immersed in the liquid helium, and scintillations are detected through one of the bare sides of the photodiodes. Test results with scintillation photons produced by 5.3-MeV α particles are presented. The use of these photodiodes as liquid-helium scintillation detectors may offer substantial improvements over the alternate detection method requiring the use of wavelength shifters and photomultiplier tubes

  11. Helium release from metals with face-centered cubic structure

    International Nuclear Information System (INIS)

    Sciani, V.; Lucki, G.; Jung, P.

    1984-01-01

    The helium release from gold sheets of 5 and 54 μm of thickness and helium concentrations from 10 -9 to 10 -5 ap of He during the isothermal and linear annealing is studied. The helium was put in the sample through the implantation of alpha particles, with variable energy,in the cyclotron. The free diffusion of the atoms of the helium, where the diffusion coefficient follows an Arrhenius law is studied. (E.G.) [pt

  12. Study on cosmic gamma bursts in the ''KONUS'' experiment

    International Nuclear Information System (INIS)

    Mazets, E.P.; Golenetskij, S.V.; Il'inskij, V.N.; Panov, V.N.; Aptekar', R.L.; Gur'yan, Yu.A.; Sokolov, I.A.; Sokolova, Z.Ya.; Kharitonova, T.V.

    1979-01-01

    Made are the investigations of cosmic gamma bursts with the help of the ''Konus'' apparatus, positioned on the ''Venera 11'' and ''Venera 12'' automatic interplanetary stations. 37 gamma bursts have been recorded in the energy range from 50 to 150 keV during the observation period from September to December 1978. Time profiles of bursts on 4, 9 and 24.11.1978 are presented. For the most events the time of burst increase and decrease constitute parts and units of seconds. Differential energy spectra are measured for all recorded bursts. In many cases the spectrum shape is similar to the grade one with the 1.5-2.3 index. In a graphical form built up are the integral distributions of gamma bursts appearence frequency in dependence on their intensity and maximum capacity in the burst peak. Galaxy coordinates of the 17-teen bursts, for which a simple localization is possible, are put on the celestial sphere map. The type of the integral distributions and the source distribution about the celestial sphere show that the gamma burst sources are whithin the Galaxy

  13. Feasibility of lunar Helium-3 mining

    Science.gov (United States)

    Kleinschneider, Andreas; Van Overstraeten, Dmitry; Van der Reijnst, Roy; Van Hoorn, Niels; Lamers, Marvin; Hubert, Laurent; Dijk, Bert; Blangé, Joey; Hogeveen, Joel; De Boer, Lennaert; Noomen, Ron

    With fossil fuels running out and global energy demand increasing, the need for alternative energy sources is apparent. Nuclear fusion using Helium-3 may be a solution. Helium-3 is a rare isotope on Earth, but it is abundant on the Moon. Throughout the space community lunar Helium-3 is often cited as a major reason to return to the Moon. Despite the potential of lunar Helium-3 mining, little research has been conducted on a full end-to-end mission. This abstract presents the results of a feasibility study conducted by students from Delft University of Technology. The goal of the study was to assess whether a continuous end-to-end mission to mine Helium-3 on the Moon and return it to Earth is a viable option for the future energy market. The set requirements for the representative end-to-end mission were to provide 10% of the global energy demand in the year 2040. The mission elements have been selected with multiple trade-offs among both conservative and novel concepts. A mission architecture with multiple decoupled elements for each transportation segment (LEO, transfer, lunar surface) was found to be the best option. It was found that the most critical element is the lunar mining operation itself. To supply 10% of the global energy demand in 2040, 200 tons of Helium-3 would be required per year. The resulting regolith mining rate would be 630 tons per second, based on an optimistic concentration of 20 ppb Helium-3 in lunar regolith. Between 1,700 to 2,000 Helium-3 mining vehicles would be required, if using University of Wisconsin’s Mark III miner. The required heating power, if mining both day and night, would add up to 39 GW. The resulting power system mass for the lunar operations would be in the order of 60,000 to 200,000 tons. A fleet of three lunar ascent/descent vehicles and 22 continuous-thrust vehicles for orbit transfer would be required. The costs of the mission elements have been spread out over expected lifetimes. The resulting profits from Helium

  14. A Novel QKD-based Secure Edge Router Architecture Design for Burst Confidentiality in Optical Burst Switched Networks

    Science.gov (United States)

    Balamurugan, A. M.; Sivasubramanian, A.

    2014-06-01

    The Optical Burst Switching (OBS) is an emergent result to the technology issue that could achieve a viable network in future. They have the ability to meet the bandwidth requisite of those applications that call for intensive bandwidth. The field of optical transmission has undergone numerous advancements and is still being researched mainly due to the fact that optical data transmission can be done at enormous speeds. The concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution and quality of service (QoS). This paper proposes a framework based on QKD based secure edge router architecture design to provide burst confidentiality. The QKD protocol offers high level of confidentiality as it is indestructible. The design architecture was implemented in FPGA using diverse models and the results were taken. The results show that the proposed model is suitable for real time secure routing applications of the Optical burst switched networks.

  15. Simplicity works for superfluid helium

    International Nuclear Information System (INIS)

    Bowley, Roger

    2000-01-01

    The famous philosopher Karl Popper once said that ''science is the art of systematic oversimplification''. Indeed, when faced with a new puzzle the trick is to simplify it without losing the essential physics - something that is easier said than done. However, this approach has paid off recently in low-temperature physics. Last year Richard Packard, Seamus Davis and co-workers at the University of California at Berkeley encountered a puzzling new phenomenon in superfluid helium-3, a quantum fluid that remains a liquid close to absolute zero and exhibits unusual properties such as the ability to flow without friction (A Machenkov et al. 1999 Phys. Rev. Lett. 83 3860). Previous experiments had revealed that certain effects in liquid helium are analogous to effects observed in superconductors, materials that lose all resistance to electric current at low temperatures. When the Berkeley researchers connected two reservoirs of superfluid helium-3, the superfluid flowed back and forth through apertures that formed a ''weak link'' between the two containers. This behaviour is similar to the oscillatory current of electrons that can flow across an insulating gap separating two superconductors - a device that is known as a Josephson junction. What was puzzling about the Berkeley results was that the helium-3 had two different stable configurations, both of which behaved in an unconventional way compared with a Josephson junction. This puzzle has now been solved independently by Sidney Yip at the National Center for Theoretical Sciences in Taiwan, and by Janne Viljas and Erkki Thuneberg at the Helsinki University of Technology in Finland (Phys. Rev. Lett. 1999 83 3864 and 3868). In this article the author describes the latest research on superfluid helium. (UK)

  16. KSTAR Helium Refrigeration System Design and Manufacturing

    International Nuclear Information System (INIS)

    Dauguet, P.; Briend, P.; Abe, I.; Fauve, E.; Bernhardt, J.-M.; Andrieu, F.; Beauvisage, J.

    2006-01-01

    The tokamak developed in the KSTAR (Korean Superconducting Tokamak Advanced Research) project makes intensive use of superconducting magnets operated at 4.5 K. The cold components of the KSTAR tokamak require forced flow of supercritical helium for magnets/structure, boiling liquid helium for current leads, and gaseous helium for thermal shields. The cryogenic system will provide stable operation and full automatic control. A three-pressure helium cycle composed of six turbines has been customised design for this project. The '' design '' operating mode results with a system composed of a 9 kW refrigerator (including safety margin) and using gas and liquid storages for mass balancing. During Shot/Standby mode, the heat loads are highly time-dependent. A thermal damper is used to smooth these variations and will allow stable operation. (author)

  17. 3rd Interplanetary Network Gamma-Ray Burst Website

    Science.gov (United States)

    Hurley, Kevin

    1998-05-01

    We announce the opening of the 3rd Interplanetary Network web site at http://ssl.berkeley.edu/ipn3/index.html This site presently has four parts: 1. A bibliography of over 3000 publications on gamma-ray bursts, 2. IPN data on all bursts triangulated up to February 1998, 3. A master list showing which spacecraft observed which bursts, 4. Preliminary IPN data on the latest bursts observed.

  18. THE INTERPLANETARY NETWORK SUPPLEMENT TO THE BURST AND TRANSIENT SOURCE EXPERIMENT 5B CATALOG OF COSMIC GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Hurley, K.; Briggs, M. S.; Kippen, R. M.; Kouveliotou, C.; Fishman, G.; Meegan, C.; Cline, T.; Trombka, J.; McClanahan, T.; Boynton, W.; Starr, R.; McNutt, R.; Boer, M.

    2011-01-01

    We present Interplanetary Network localization information for 343 gamma-ray bursts observed by the Burst and Transient Source Experiment (BATSE) between the end of the 4th BATSE catalog and the end of the Compton Gamma-Ray Observatory (CGRO) mission, obtained by analyzing the arrival times of these bursts at the Ulysses, Near Earth Asteroid Rendezvous (NEAR), and CGRO spacecraft. For any given burst observed by CGRO and one other spacecraft, arrival time analysis (or t riangulation ) results in an annulus of possible arrival directions whose half-width varies between 11 arcsec and 21 0 , depending on the intensity, time history, and arrival direction of the burst, as well as the distance between the spacecraft. This annulus generally intersects the BATSE error circle, resulting in an average reduction of the area of a factor of 20. When all three spacecraft observe a burst, the result is an error box whose area varies between 1 and 48,000 arcmin 2 , resulting in an average reduction of the BATSE error circle area of a factor of 87.

  19. There is no explosion risk associated with superfluid Helium in the LHC cooling system

    CERN Document Server

    Fairbairn, Malcolm

    2008-01-01

    We evaluate speculation about the possibility of a dangerous release of energy within the liquid Helium of the Large Hadron Collider (LHC) cryogenic system due to the occurrence of a "Bose-Nova". Bose-Novae are radial bursts of rapidly moving atoms which can occur when a Bose-Einstein Condensate (BEC) undergoes a collapse due the interatomic potential being deliberately made attractive using a magnetic field close to the Feshbach resonance. Liquid 4He has a monatomic structure with s-wave electrons, zero nuclear spin, no hyperfine splitting, and as a consequence no Feshbach resonance which would allow one to change its normally repulsive interactions to be attractive. Because of this, a Bose-Nova style collapse of 4He is impossible. Additional speculations concerning cold fusion during these events are easily dismissed using the usual arguments about the Coulomb barrier at low temperatures, and are not needed to explain the Bose-Einstein condensate Bose-Nova phenomenon. We conclude that that there is no physi...

  20. The problem of helium in structural materials for fusion reactor

    International Nuclear Information System (INIS)

    Nikiforov, A.S.; Zakharov, A.P.; Chuev, V.I.

    1982-01-01

    The processes of helium buildup in some metals and alloys at different energy neutron flux irradiation under thermonuclear reactor conditions are considered. The data on high temperature helium embrittlement of a number of stainless steels, titanium and aluminium alloys etc. are given A review of experiments concerning the implanted helium behaviour is presented. Possible reactions between helium atoms and point defects or their clusters are discussed. Analysed are material structure variations upon buildup in them up to 1 at % of helium

  1. Dynamic encoding of natural luminance sequences by LGN bursts.

    Directory of Open Access Journals (Sweden)

    Nicholas A Lesica

    2006-07-01

    Full Text Available In the lateral geniculate nucleus (LGN of the thalamus, visual stimulation produces two distinct types of responses known as tonic and burst. Due to the dynamics of the T-type Ca(2+ channels involved in burst generation, the type of response evoked by a particular stimulus depends on the resting membrane potential, which is controlled by a network of modulatory connections from other brain areas. In this study, we use simulated responses to natural scene movies to describe how modulatory and stimulus-driven changes in LGN membrane potential interact to determine the luminance sequences that trigger burst responses. We find that at low resting potentials, when the T channels are de-inactivated and bursts are relatively frequent, an excitatory stimulus transient alone is sufficient to evoke a burst. However, to evoke a burst at high resting potentials, when the T channels are inactivated and bursts are relatively rare, prolonged inhibitory stimulation followed by an excitatory transient is required. We also observe evidence of these effects in vivo, where analysis of experimental recordings demonstrates that the luminance sequences that trigger bursts can vary dramatically with the overall burst percentage of the response. To characterize the functional consequences of the effects of resting potential on burst generation, we simulate LGN responses to different luminance sequences at a range of resting potentials with and without a mechanism for generating bursts. Using analysis based on signal detection theory, we show that bursts enhance detection of specific luminance sequences, ranging from the onset of excitatory sequences at low resting potentials to the offset of inhibitory sequences at high resting potentials. These results suggest a dynamic role for burst responses during visual processing that may change according to behavioral state.

  2. Low-Frequency Type III Bursts and Solar Energetic Particle Events

    Science.gov (United States)

    Gopalswamy, Nat; Makela, Pertti

    2010-01-01

    We analyzed the coronal mass ejections (CMEs), flares, and type 11 radio bursts associated with a set of six low frequency (15 min) normally used to define these bursts. All but one of the type III bursts was not associated with a type 11 burst in the metric or longer wavelength domains. The burst without type 11 burst also lacked a solar energetic particle (SEP) event at energies >25 MeV. The 1-MHz duration of the type III burst (28 min) is near the median value of type III durations found for gradual SEP events and ground level enhancement (GLE) events. Yet, there was no sign of SEP events. On the other hand, two other type III bursts from the same active region had similar duration but accompanied by WAVES type 11 bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. The CMEs were of similar speeds and the flares are also of similar size and duration. This study suggests that the type III burst duration may not be a good indicator of an SEP event.

  3. Pierre Gorce working on a helium pump.

    CERN Multimedia

    1975-01-01

    This type of pump was designed by Mario Morpurgo, to circulate liquid helium in superconducting magnets wound with hollow conductors. M. Morpurgo, Design and construction of a pump for liquid helium, CRYIOGENICS, February 1977, p. 91

  4. Helium solubility and bubble growth in metals under high pressure

    International Nuclear Information System (INIS)

    Laakmann, J.

    1985-07-01

    Helium solubility and bubble growth in metals under high pressure polycrystals and single crystals of gold were heated in helium at temperatures between 475 K and 1250 K in a pressure regime of 200 to 2700 bar to measure the solubility of helium in gold. After quenching to room temperature the helium content, measured by mass spectrometry, showed the following properties: 1) A linear dependence of the He solubility on pressure. 2) Thinning of the specimen reduces the helium content by a factor 10 to 100 but does not change the linear pressure dependence. 3) The thermal release of He from thinned polycrystals and single crystals occurs mainly in a single peak at 500 K. 4) The He concentration of the thinned single crystals was lower by a factor of 10 to 50 than that of the thinned polycrystals. 5) The He solubility in single crystals can be described by an enthalpy of solution Hsub(s)sup(f) = 0.85 +- 0.7 eV and a non-configurational entropy of Ssub(s)sup(f) between 0 k and 1 k (k: Boltzmann-constant). In order to measure the pressure dependence of helium bubble growth in nickel polycrystal Ni-foils were α-implanted to a helium content of 130 appm. The evaluation of the size distribution of the helium bubbles after heat treatments shows 1) The helium content of the observable bubbles - assumed to be in equilibrium - equals the amount of helium implanted into the specimen. 2) The activation energy for the growth of helium bubbles is 1.25 +- 0.3 eV. The comparison of specimen which had been heated at low pressures up to 10 bar with others heated at 2500-2700 bar does not show an unequivocal pressure dependence for helium bubble growth. (orig./IHOE) [de

  5. Helium effect on mechanical property of fusion reactor structural materials

    International Nuclear Information System (INIS)

    Yamamoto, Norikazu; Chuto, Toshinori; Murase, Yoshiharu; Nakagawa, Johsei

    2004-01-01

    High-energy neutrons produced in fusion reactor core caused helium in the structural materials of fusion reactors, such as blankets. We injected alpha particles accelerated by the cyclotron to the samples of martensite steel (9Cr3WVTaB). Equivalent helium doses injected to the sample is estimated to be up to 300 ppm, which were estimated to be equivalent to helium accumulation after the 1-year reactor operation. Creep tests of the samples were made to investigate helium embrittlement. There were no appreciable changes in the relation between the stresses and the rupture time, the minimum creep rate and the applied stress. Grain boundary effect by helium was not observed in ruptured surfaces. Fatigue tests were made for SUS304 samples, which contain helium up to 150 ppm. After 0.05 Hz cyclic stress tests, it was shown that the fatigue lifetime (cycles to rupture and extension to failure) are 1/5 in 150 ppm helium samples compared with no helium samples. The experimental results suggest martensite steel is promising for structural materials of fusion reactors. (Y. Tanaka)

  6. Comment on theories for helium-assisted void nucleation

    International Nuclear Information System (INIS)

    Russell, K.C.

    1976-01-01

    Voids form by agglomeration of irradiation-induced vacancies which remain after preferential absorption of self interstitials at dislocation lines. Helium which is formed by (n,α) transmutations and, in simulation studies, may be ion-implanted, often plays an important, but puzzling role. In some materials, very few voids form in the absence of helium, even after intense irradiation. In many other materials , voids form readily under a variety of irradiation conditions, even in the absence of helium. Why some materials require helium - typically in the 10 -6 apa (atom per atom) range - and others do not, and the reason for that particular level are by no means clear. The physics of void nucleation, particularly the role of helium, have been the subject of several theoretical papers. This note presents a critique of these theories, and then briefly outlines a new analysis which is not subject to their limitations. (Auth.)

  7. Adsorption pump for helium pumping out

    International Nuclear Information System (INIS)

    Donde, A.L.; Semenenko, Yu.E.

    1981-01-01

    Adsorption pump with adsorbent cooling by liquid helium is described. Shuttered shield protecting adsorbent against radiation is cooled with evaporating helium passing along the coil positioned on the shield. The pump is also equipped with primed cylindrical shield, cooled with liquid nitrogen. The nitrogen shield has in the lower part the shuttered shield, on the pump casing there is a valve used for pump pre-burning, and valves for connection to recipient as well. Pumping- out rates are presented at different pressures and temperatures of adsorbent. The pumping-out rate according to air at absorbent cooling with liquid nitrogen constituted 5x10 -4 Pa-3000 l/s, at 2x10 -2 Pa-630 l/s. During the absorbent cooling with liquid hydrogen the pumping-out rate according to air was at 4x10 -4 Pa-580 l/s, at 2x10 -3 Pa-680 l/s, according to hydrogen - at 8x10 -5 Pa-2500 l/s, at 5x10 -3 Pa-4200 l/s. During adsorbent cooling with liquid helium the rate of pumping-out according to hydrogen at 3x10 5 Pa-2400% l/s, at 6x10 3 Pa-1200 l/s, and according to helium at 3.5x10 -5 Pa-2800 l/s, at 4x10 -3 Pa-1150 l/s. The limit vacuum is equal to 1x10 -7 Pa. The volume of the vessel with liquid helium is equal to 3.5 l. Helium consumption is 80 cm 3 /h. Consumption of liquid nitrogen from the shield is 400 cm 3 /h. The limit pressure in the pump is obtained after forevacuum pumping-out (adsorbent regeneration) at 300 K temperature. The pump is made of copper. The pump height together with primed tubes is 800 mm diameter-380 mm [ru

  8. Blackbody-radiation correction to the polarizability of helium

    International Nuclear Information System (INIS)

    Puchalski, M.; Jentschura, U. D.; Mohr, P. J.

    2011-01-01

    The correction to the polarizability of helium due to blackbody radiation is calculated near room temperature. A precise theoretical determination of the blackbody radiation correction to the polarizability of helium is essential for dielectric gas thermometry and for the determination of the Boltzmann constant. We find that the correction, for not too high temperature, is roughly proportional to a modified hyperpolarizability (two-color hyperpolarizability), which is different from the ordinary hyperpolarizability of helium. Our explicit calculations provide a definite numerical result for the effect and indicate that the effect of blackbody radiation can be excluded as a limiting factor for dielectric gas thermometry using helium or argon.

  9. Tritium Decay Helium-3 Effects in Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  10. Atmospheric helium and geomagnetic field reversals.

    Science.gov (United States)

    Sheldon, W. R.; Kern, J. W.

    1972-01-01

    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  11. Diffusion of helium in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Noerdlinger, P D [Michigan State Univ., East Lansing (USA). Dept. of Astronomy and Astrophysics; Amsterdam Univ. (Netherlands). Sterrenkundig Instituut)

    1977-05-01

    I have reduced the set of diffusion and flow equations developed by Burgers for a multi-component gas to a workable scheme for the actual evaluation of the relative diffusion of hydrogen and helium in stars. Previous analyses have used the Aller and Chapman equations, which apply only to trace constitutents and whose coefficients are not believed to be as accurate as Burgers'. Furthermore, the resulting equations have been combined consistently with Paczynski's stellar evolution code to demonstrate small but significant effects in the Sun, from the thermal and gravitational settling of Helium. The core helium content of a 1 M star goes up about 0.04 and the surface helium content down by about -0.03 in 4.5 10/sup 9/ years. The results are still somewhat uncertain because of uncertainties in the underlying plasma physics, and further research is suggested. In any case, the diffusion process speeds up with time, due to increased temperature gradient, and it will be of interest to follow the process in older stars and in later stellar evolution.

  12. Antiprotonic helium atomcules

    Directory of Open Access Journals (Sweden)

    Sauge Sébastien

    2012-10-01

    Full Text Available About 3% of antiprotons ( stopped in helium are long-lived with microsecond lifetimes, against picoseconds in all other materials. This unusual longevity has been ascribed to the trapping of on metastable bound states in He+ helium atom-molecules thus named atomcules. Apart from their unique dual structure investigated by laser spectroscopy – a near-circular quasi-classical Rydberg atom with l ~ n – 1 ~ 37 or a special diatomic molecule with a negatively charged nucleus in high rotational state with J = l – the chemical physics aspects of their interaction with other atoms or molecules constitute an interesting topic for molecular physics. While atomcules may resist to million collisions in helium, molecular contaminants such as H2 are likely to destroy them in a single one, down to very low temperatures. In the Born-Oppenheimer framework, we interpret the molecular interaction obtained by ab initio quantum chemical calculations in terms of classical reactive channels, with activation barriers accounting for the experiments carried out in He and H2. From classical trajectory Monte Carlo simulations, we show that the thermalization stage strongly quenches initial populations, thus reduced to a recovered 3 % trapping fraction. This work illustrates the pertinence of chemical physics concepts to the study of exotic processes involving antimatter. New insights into the physico-chemistry of cold interstellar radicals are anticipated.

  13. Superfluid helium-4: An introductory review

    International Nuclear Information System (INIS)

    Vinen, W.F.

    1983-01-01

    Helium was first liquefied by Kamerlingh Onnes in Leiden in July 1908, an achievement that followed much careful and painstaking work. On the same day Onnes reduced the temperature of his helium to a value approaching lK, and he must therefore have produced and observed the superfluid phase. These experimental discoveries led very quickly to a series of remarkable theoretical contributions that laid the foundations for all subsequent work. The period since the second world war has of course seen an enormous amount of work on superfluid helium-4. In reviewing it the author tries to see it in terms of two threads: one originating from Landau; the other from London

  14. New decoding methods of interleaved burst error-correcting codes

    Science.gov (United States)

    Nakano, Y.; Kasahara, M.; Namekawa, T.

    1983-04-01

    A probabilistic method of single burst error correction, using the syndrome correlation of subcodes which constitute the interleaved code, is presented. This method makes it possible to realize a high capability of burst error correction with less decoding delay. By generalizing this method it is possible to obtain probabilistic method of multiple (m-fold) burst error correction. After estimating the burst error positions using syndrome correlation of subcodes which are interleaved m-fold burst error detecting codes, this second method corrects erasure errors in each subcode and m-fold burst errors. The performance of these two methods is analyzed via computer simulation, and their effectiveness is demonstrated.

  15. Realization of mechanical rotation in superfluid helium

    Science.gov (United States)

    Gordon, E. B.; Kulish, M. I.; Karabulin, A. V.; Matyushenko, V. I.; Dyatlova, E. V.; Gordienko, A. S.; Stepanov, M. E.

    2017-09-01

    The possibility of using miniaturized low-power electric motors submerged in superfluid helium for organization of rotation inside a cryostat has been investigated. It has been revealed that many of commercial micromotors can operate in liquid helium consuming low power. Turret with 5 sample holders, assembled on the base of stepper motor, has been successfully tested in experiments on the nanowire production in quantized vortices of superfluid helium. Application of the stepper motor made it possible in a single experiment to study the effect of various experimental parameters on the yield and quality of the nanowires. The promises for continuous fast rotation of the bath filled by superfluid helium by using high-speed brushless micromotor were outlined and tested. Being realized, this approach will open new possibility to study the guest particles interaction with the array of parallel linear vortices in He II.

  16. Flash photoionization of gamma-ray burst environments

    Science.gov (United States)

    Band, David L.; Hartmann, Dieter H.

    1992-01-01

    The H-alpha line emission that a flash-photoionized region emits is calculated. Archival transients, as well as various theoretical predictions, suggest that there may be significant ionizing flux. The limits on the line flux which might be observable indicate that the density must be fairly high for the recombination radiation to be observable. The intense burst radiation is insufficient to melt the dust which will be present in such a dense medium. This dust may attenuate the observable line emission, but does not attenuate the ionizing radiation before it ionizes the neutral medium surrounding the burst source. The dust can also produce a light echo. If there are indeed gamma-ray bursts in dense clouds, then it is possible that the burst was triggered by Bondi-Hoyle accretion from the dense medium, although it is unlikely on statistical grounds that all bursts occur in clouds.

  17. The supernova-gamma-ray burst-jet connection.

    Science.gov (United States)

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  18. Frequency chirping during a fishbone burst

    International Nuclear Information System (INIS)

    Marchenko, V.S.; Reznik, S.N.

    2011-01-01

    It is shown that frequency chirping during fishbone activity can be attributed to the reactive torque exerted on the plasma during the instability burst, which slows down plasma rotation inside the q = 1 surface and reduces the mode frequency in the lab frame. Estimates show that the peak value of this torque can exceed the neutral beam torque in modern tokamaks. The simple line-broadened quasilinear burst model (Berk et al 1995 Nucl. Fusion 35 1661), properly adapted for the fishbone case, is capable of reproducing the key features of the bursting mode. (letter)

  19. Helium production in mixed spectrum reactor-irradiated pure elements

    International Nuclear Information System (INIS)

    Kneff, D.W.; Oliver, B.M.; Skowronski, R.P.

    1986-01-01

    The objectives of this work are to apply helium accumulation neutron dosimetry to the measurement of neutron fluences and energy spectra in mixed-spectrum fission reactors utilized for fusion materials testing, and to measure helium generation rates of materials in these irradiation environments. Helium generation measurements have been made for several Fe, Cu Ti, Nb, Cr, and Pt samples irradiated in the mixed-spectrum High Flux Isotope Reactor (HFIR) and Oak Ridge Research Reactor (ORR) at the Oak Ridge National Laboratory. The results have been used to integrally test the ENDF/B-V Gas Production File, by comparing the measurements with helium generation predictions made by Argonne National Laboratory using ENDF/B-V cross sections and adjusted reactor spectra. The comparisons indicate consistency between the helium measurements and ENDF/B-V for iron, but cross section discrepancies exist for helium production by fast neutrons in Cu, Ti, Nb, and Cr (the latter for ORR). The Fe, Cu, and Ti work updates and extends previous measurements

  20. Interdiffusion of krypton and xenon in high-pressure helium

    International Nuclear Information System (INIS)

    Campana, R.J.; Jensen, D.D.; Epstein, B.D.; Hudson, R.G.; Baldwin, N.L.

    1980-01-01

    The interdiffusion of gaseous fission products in high-pressure helium is an important factor in the control of radioactivity in gas-cooled fast breeder reactors (GCFRs). As presently conceived, GCFRs use pressure-equalized and vented fuel in which fission gases released from the solid matrix oxide fuel are transported through the fuel rod interstices and internal fission product traps to the fuel assembly vents, where they are swept away to external traps and storage. Since the predominant transport process under steady-state operating conditions is interdiffusion of gaseous fission products in helium, the diffusion properties of krypton-helium and xenon-helium couples have been measured over the range of GCFR temperature and pressure conditions ( -1 ) and expected temperature dependence to the 1.66 power (Tsup(1.66)) at lower pressures and temperatures. Additional work is in progress to measure the behaviour of the krypton-helium and xenon-helium couples in GCFR fuel rod charcoal delay traps. (author)

  1. High-temperature helium embrittlement (T>=0,45Tsub(M)) of metals

    International Nuclear Information System (INIS)

    Batfalsky, P.

    1984-06-01

    High temperature helium embrittlement, swelling and irradiation creep are the main technical problem of fusion reactor materials. The expected helium production will be very high. The helium produced by (n,α)-processes precipitates into helium bubbles because its solubility in solid metals is very low. Under continuous helium production at high temperature and stress the helium bubbles grow and lead to intergranular early failure. Solution annealed foil specimens of austenitic stainless steel AISI 316 were implanted with α-particles: 1. during creep tests at 1023 K (''in-beam'' test) 2. before the creep tests at high temperature (1023 K). The creep tests have been performed within large ranges of test parameter, e.g. applied stress, temperature, helium implantation rate and helium concentration. After the creep tests the microstructure was investigated using scanning (SEM) and transmission (TEM) electron microscopy. All the helium implanted specimens showed high temperature helium embrittlement, i.e. reduction of rupture time tsub(R) and ductility epsilonsub(R) and evidence of intergranular brittle fracture. The ''in-beam'' creep tests showed greater reduction of rupture time tsub(R) and ductility than the preimplanted creep tests. The comparison of this experimentally obtained data with various theoretical models of high temperature helium embrittlement showed that within the investigated parameter ranges the mechanism controlling the life time of the samples is probably the gas driven stable growth of the helium bubbles within the grain boundaries. (orig.)

  2. Review of GRANAT observations of gamma-ray bursts

    DEFF Research Database (Denmark)

    Terekhov, O.; Denissenko, D.; Sunyaev, R.

    1995-01-01

    The GRANAT observatory was launched into a high apogee orbit on 1 December, 1989. Three instruments onboard GRANAT - PHEBUS, WATCH and SIGMA are able to detect gamma-ray bursts in a very broad energy range from 6 keV up to 100 MeV. Over 250 gamma-ray bursts were detected. We discuss the results...... of the observations of the time histories and spectral evolution of the detected events provided by the different instruments in different energy ranges. Short Gamma-Ray Bursts ( 2 s) events. Evidence of the existence...... of four differently behaving componenents in gamma-ray burst spectra is discussed. Statistical properties of the gamma-ray burst sources based on the 5 years of observations with (∼ 10−6 erg/cm2) sensitivity as well as the results of high sensitivity (∼ 10−8 erg/cm2) search for Gamma-Ray Bursts within...

  3. Near stellar sources of gamma-ray bursts

    OpenAIRE

    Luchkov, B. I.; Markin, P. D.

    2012-01-01

    Correlation analysis of gamma-ray burst coordinates and nearby stars, registered on 2008-2011, revealed 5 coincidences with angular accuracy better than 0.1 degree. The random probability is $7\\times 10^{-7}$, so evidencing that coincident stars are indeed gamma-ray burst sources. The proposed method should be continued in order to provide their share in common balance of cosmic gamma-ray bursts.

  4. Simplicity works for superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bowley, Roger [University of Nottingham, Nottingham (United Kingdom)

    2000-02-01

    The famous philosopher Karl Popper once said that ''science is the art of systematic oversimplification''. Indeed, when faced with a new puzzle the trick is to simplify it without losing the essential physics - something that is easier said than done. However, this approach has paid off recently in low-temperature physics. Last year Richard Packard, Seamus Davis and co-workers at the University of California at Berkeley encountered a puzzling new phenomenon in superfluid helium-3, a quantum fluid that remains a liquid close to absolute zero and exhibits unusual properties such as the ability to flow without friction (A Machenkov et al. 1999 Phys. Rev. Lett. 83 3860). Previous experiments had revealed that certain effects in liquid helium are analogous to effects observed in superconductors, materials that lose all resistance to electric current at low temperatures. When the Berkeley researchers connected two reservoirs of superfluid helium-3, the superfluid flowed back and forth through apertures that formed a ''weak link'' between the two containers. This behaviour is similar to the oscillatory current of electrons that can flow across an insulating gap separating two superconductors - a device that is known as a Josephson junction. What was puzzling about the Berkeley results was that the helium-3 had two different stable configurations, both of which behaved in an unconventional way compared with a Josephson junction. This puzzle has now been solved independently by Sidney Yip at the National Center for Theoretical Sciences in Taiwan, and by Janne Viljas and Erkki Thuneberg at the Helsinki University of Technology in Finland (Phys. Rev. Lett. 1999 83 3864 and 3868). In this article the author describes the latest research on superfluid helium. (UK)

  5. Gamma-Ray Burst Host Galaxies Have "Normal" Luminosities.

    Science.gov (United States)

    Schaefer

    2000-04-10

    The galactic environment of gamma-ray bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (1) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (10 with redshifts) shows them to be consistent with a Schechter luminosity function with R*=-21.8+/-1.0, as expected for normal galaxies. (2) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with redshifts; however, the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>6x1058 photons s-1 or>1.7x1052 ergs s-1) to be much greater than the average luminosity of the faint sample ( approximately 1058 photons s-1 or approximately 3x1051 ergs s-1). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to gamma-ray burst host galaxies being normal in luminosity.

  6. Cosmology and the Subgroups of Gamma-ray Bursts

    Directory of Open Access Journals (Sweden)

    A. Mészáros

    2011-01-01

    Full Text Available Both short and intermediate gamma-ray bursts are distributed anisotropically in the sky (Mészáros, A. et al. ApJ, 539, 98 (2000, Vavrek, R. et al. MNRAS, 391, 1 741 (2008. Hence, in the redshift range, where these bursts take place, the cosmological principle is in doubt. It has already been noted that short bursts should be mainly at redshifts smaller than one (Mészáros, A. et al. Gamma-ray burst: Sixth Huntsville Symp., AIP, Vol. 1 133, 483 (2009; Mészáros, A. et al. Baltic Astron., 18, 293 (2009. Here we show that intermediate bursts should be at redshifts up to three.

  7. Type III Radio Burst Duration and SEP Events

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Xie, H.

    2010-01-01

    Long-duration (>15 min), low-frequency (25 MeV. The 1-MHz duration of the type III burst (28 rein) is near the median value of type III durations found for gradual SEP events and ground level enhancement (GLE) events. Yet, there was no sign of SEP events. On the other hand, two other type III bursts from the same active region had similar duration but accompanied by WAVES type 11 bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. This study suggests that the type III burst duration may not be a good indicator of an SEP event, consistent with the statistical study of Cliver and Ling (2009, ApJ ).

  8. Helium turbomachine design for GT-MHR power plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; Orlando, R.J.

    1994-07-01

    The power conversion system in the gas turbine modular helium reactor (GT-MHR) power plant is based on a highly recuperated closed Brayton cycle. The major component in the direct cycle system is a helium closed-cycle gas turbine rated at 286 MW(e). The rotating group consists of an intercooled helium turbocompressor coupled to a synchronous generator. The vertical rotating assembly is installed in a steel vessel, together with the other major components (i.e., recuperator, precooler, intercooler, and connecting ducts and support structures). The rotor is supported on an active magnetic bearing system. The turbine operates directly on the reactor helium coolant, and with a temperature of 850 degree C (1562 degree F) the plant efficiency is over 47%. This paper addresses the design and development planning of the helium turbomachine, and emphasizes that with the utilization of proven technology, this second generation nuclear power plant could be in service in the first decade of the 21st century

  9. Optomechanics in a Levitated Droplet of Superfluid Helium

    Science.gov (United States)

    Brown, Charles; Harris, Glen; Harris, Jack

    2017-04-01

    A critical issue common to all optomechanical systems is dissipative coupling to the environment, which limits the system's quantum coherence. Superfluid helium's extremely low optical and mechanical dissipation, as well as its high thermal conductivity and its ability cool itself via evaporation, makes the mostly uncharted territory of superfluid optomechanics an exciting avenue for exploring quantum effects in macroscopic objects. I will describe ongoing work that aims to exploit the unique properties of superfluid helium by constructing an optomechanical system consisting of a magnetically levitated droplet of superfluid helium., The optical whispering gallery modes (WGMs) of the droplet, as well as the mechanical oscillations of its surface, should offer exceptionally low dissipation, and should couple to each other via the usual optomechanical interactions. I will present recent progress towards this goal, and also discuss the background for this work, which includes prior demonstrations of magnetic levitation of superfluid helium, high finesse WGMs in liquid drops, and the self-cooling of helium drops in vacuum.

  10. Eddington-limited X-Ray Bursts as Distance Indicators. I. Systematic Trends and Spherical Symmetry in Bursts from 4U 1728-34

    Science.gov (United States)

    Galloway, Duncan K.; Psaltis, Dimitrios; Chakrabarty, Deepto; Muno, Michael P.

    2003-06-01

    We investigate the limitations of thermonuclear X-ray bursts as a distance indicator for the weakly magnetized accreting neutron star 4U 1728-34. We measured the unabsorbed peak flux of 81 bursts in public data from the Rossi X-Ray Timing Explorer (RXTE). The distribution of peak fluxes was bimodal: 66 bursts exhibited photospheric radius expansion (presumably reaching the local Eddington limit) and were distributed about a mean bolometric flux of 9.2×10-8ergscm-2s-1, while the remaining (non-radius expansion) bursts reached 4.5×10-8ergscm-2s-1, on average. The peak fluxes of the radius expansion bursts were not constant, exhibiting a standard deviation of 9.4% and a total variation of 46%. These bursts showed significant correlations between their peak flux and the X-ray colors of the persistent emission immediately prior to the burst. We also found evidence for quasi-periodic variation of the peak fluxes of radius expansion bursts, with a timescale of ~=40 days. The persistent flux observed with RXTE/ASM over 5.8 yr exhibited quasi-periodic variability on a similar timescale. We suggest that these variations may have a common origin in reflection from a warped accretion disk. Once the systematic variation of the peak burst fluxes is subtracted, the residual scatter is only ~=3%, roughly consistent with the measurement uncertainties. The narrowness of this distribution strongly suggests that (1) the radiation from the neutron star atmosphere during radius expansion episodes is nearly spherically symmetric and (2) the radius expansion bursts reach a common peak flux that may be interpreted as a standard candle intensity. Adopting the minimum peak flux for the radius expansion bursts as the Eddington flux limit, we derive a distance for the source of 4.4-4.8 kpc (assuming RNS=10 km), with the uncertainty arising from the probable range of the neutron star mass MNS=1.4-2 Msolar.

  11. Born-Mayer type molybdenum-helium and helium-helium interaction potentials, fitted to the results of the helium desorption experiments

    International Nuclear Information System (INIS)

    Heugten, W.F.W.M. van; Veen, A. van; Caspers, L.M.

    1979-01-01

    Classes of Born-Mayer type Mo-He and He-He potentials have been derived from helium desorption experiments. The classes are described by linear relations between the Born-Mayer parameters A and b. For computer simulations the Mo-He potential phisub(MoHe)(r)=exp (6.5-3.63 r) and the He-He potential phisub(HeHe)(r)=exp(5.3-5.51 r) are proposed. (Auth.)

  12. Molecular and FISH analyses of a 53-kbp intact DNA fragment inserted by biolistics in wheat (Triticum aestivum L.) genome.

    Science.gov (United States)

    Partier, A; Gay, G; Tassy, C; Beckert, M; Feuillet, C; Barret, P

    2017-10-01

    A large, 53-kbp, intact DNA fragment was inserted into the wheat ( Triticum aestivum L.) genome. FISH analyses of individual transgenic events revealed multiple insertions of intact fragments. Transferring large intact DNA fragments containing clusters of resistance genes or complete metabolic pathways into the wheat genome remains a challenge. In a previous work, we showed that the use of dephosphorylated cassettes for wheat transformation enabled the production of simple integration patterns. Here, we used the same technology to produce a cassette containing a 44-kb Arabidopsis thaliana BAC, flanked by one selection gene and one reporter gene. This 53-kb linear cassette was integrated in the bread wheat (Triticum aestivum L.) genome by biolistic transformation. Our results showed that transgenic plants harboring the entire cassette were generated. The inheritability of the cassette was demonstrated in the T1 and T2 generation. Surprisingly, FISH analysis performed on T1 progeny of independent events identified double genomic insertions of intact fragments in non-homoeologous positions. Inheritability of these double insertions was demonstrated by FISH analysis of the T1 generation. Relative conclusions that can be drawn from molecular or FISH analysis are discussed along with future prospects of the engineering of large fragments for wheat transformation or genome editing.

  13. Neutral helium beam probe

    Science.gov (United States)

    Karim, Rezwanul

    1999-10-01

    This article discusses the development of a code where diagnostic neutral helium beam can be used as a probe. The code solves numerically the evolution of the population densities of helium atoms at their several different energy levels as the beam propagates through the plasma. The collisional radiative model has been utilized in this numerical calculation. The spatial dependence of the metastable states of neutral helium atom, as obtained in this numerical analysis, offers a possible diagnostic tool for tokamak plasma. The spatial evolution for several hypothetical plasma conditions was tested. Simulation routines were also run with the plasma parameters (density and temperature profiles) similar to a shot in the Princeton beta experiment modified (PBX-M) tokamak and a shot in Tokamak Fusion Test Reactor tokamak. A comparison between the simulation result and the experimentally obtained data (for each of these two shots) is presented. A good correlation in such comparisons for a number of such shots can establish the accurateness and usefulness of this probe. The result can possibly be extended for other plasma machines and for various plasma conditions in those machines.

  14. Bursts from the very early universe

    International Nuclear Information System (INIS)

    Silk, J.; Stodolsky, L.

    2006-01-01

    Bursts of weakly interacting particles such as neutrinos or even more weakly interacting particles such as wimps and gravitons from the very early universe would offer a much deeper 'look back time' to early epochs than is possible with photons. We consider some of the issues related to the existence of such bursts and their detectability. Characterizing the burst rate by a probability P per Hubble four-volume we find, for events in the radiation-dominated era, that the natural unit of description is the present intensity of the CMB times P. The existence of such bursts would make the observation of phenomena associated with very early times in cosmology at least conceptually possible. One might even hope to probe the transplanckian epoch if complexes more weakly interacting than the graviton can exist. Other conceivable applications include the potential detectability of the formation of 'pocket universes' in a multiverse

  15. Light Dawns on Dark Gamma-ray Bursts

    Science.gov (United States)

    2010-12-01

    Gamma-ray bursts are among the most energetic events in the Universe, but some appear curiously faint in visible light. The biggest study to date of these so-called dark gamma-ray bursts, using the GROND instrument on the 2.2-metre MPG/ESO telescope at La Silla in Chile, has found that these gigantic explosions don't require exotic explanations. Their faintness is now fully explained by a combination of causes, the most important of which is the presence of dust between the Earth and the explosion. Gamma-ray bursts (GRBs), fleeting events that last from less than a second to several minutes, are detected by orbiting observatories that can pick up their high energy radiation. Thirteen years ago, however, astronomers discovered a longer-lasting stream of less energetic radiation coming from these violent outbursts, which can last for weeks or even years after the initial explosion. Astronomers call this the burst's afterglow. While all gamma-ray bursts [1] have afterglows that give off X-rays, only about half of them were found to give off visible light, with the rest remaining mysteriously dark. Some astronomers suspected that these dark afterglows could be examples of a whole new class of gamma-ray bursts, while others thought that they might all be at very great distances. Previous studies had suggested that obscuring dust between the burst and us might also explain why they were so dim. "Studying afterglows is vital to further our understanding of the objects that become gamma-ray bursts and what they tell us about star formation in the early Universe," says the study's lead author Jochen Greiner from the Max-Planck Institute for Extraterrestrial Physics in Garching bei München, Germany. NASA launched the Swift satellite at the end of 2004. From its orbit above the Earth's atmosphere it can detect gamma-ray bursts and immediately relay their positions to other observatories so that the afterglows could be studied. In the new study, astronomers combined Swift

  16. Design and study of Engineering Test Facility - Helium Circulator

    International Nuclear Information System (INIS)

    Jiang Huijing; Ye Ping; Zhao Gang; Geng Yinan; Wang Jie

    2015-01-01

    Helium circulator is one of the key equipment of High-temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM). In order to simulate most normal and accident operating conditions of helium circulator in HTR-PM, a full scale, rated flow rate and power, engineering test loop, which was called Engineering Test Facility - Helium Circulator (ETF-HC), was designed and established. Two prototypes of helium circulator, which was supported by Active Magnetic Bearing (AMB) or sealed by dry gas seals, would be tested on ETF-HC. Therefore, special interchangeable design was under consideration. ETF-HC was constructed compactly, which consisted of eleven sub-systems. In order to reduce the flow resistance of the circuit, special ducts, elbows, valves and flowmeters were selected. Two stages of heat exchange loops were designed and a helium - high pressure pure water heat exchanger was applied to ensure water wouldn't be vaporized while simulating accident conditions. Commissioning tests were carried out and operation results showed that ETF-HC meets the requirement of helium circulator operation. On this test facility, different kinds of experiments were supposed to be held, including mechanical and aerodynamic performance tests, durability tests and so on. These tests would provide the features and performance of helium circulator and verify its feasibility, availability and reliability. (author)

  17. Experimental Validation of the LHC Helium Relief System Flow Modeling

    CERN Document Server

    Fydrych, J; Riddone, G

    2006-01-01

    In case of simultaneous resistive transitions in a whole sector of magnets in the Large Hadron Collider, the helium would be vented from the cold masses to a dedicated recovery system. During the discharge the cold helium will eventually enter a pipe at room temperature. During the first period of the flow the helium will be heated intensely due to the pipe heat capacity. To study the changes of the helium thermodynamic and flow parameters we have simulated numerically the most critical flow cases. To verify and validate numerical results, a dedicated laboratory test rig representing the helium relief system has been designed and commissioned. Both numerical and experimental results allow us to determine the distributions of the helium parameters along the pipes as well as mechanical strains and stresses.

  18. Relativistic motion in gamma-ray bursts

    International Nuclear Information System (INIS)

    Krolik, J.H.; Pier, E.A.

    1991-01-01

    Three fundamental problems affect models of gamma-ray bursts, i.e., the energy source, the ability of high-energy photons to escape the radiation region, and the comparative weakness of X-ray emission. It is indicated that relativistic bulk motion of the gamma-ray-emitting plasma generically provides a solution to all three of these problems. Results show that, if the plasma that produces gamma-ray bursts has a bulk relativistic velocity with Lorentz factor gamma of about 10, several of the most troubling problems having to do with gamma-ray bursts are solved. 42 refs

  19. THE FERMI –GBM THREE-YEAR X-RAY BURST CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Jenke, P. A. [CSPAR, SPA University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Linares, M. [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Connaughton, V.; Camero-Arranz, A.; Finger, M. H. [Universities Space Research Association, Huntsville, AL 35805 (United States); Beklen, E. [Department of Physics, Suleyman Demirel University, 32260, Isparta (Turkey); Wilson-Hodge, C. A. [Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2016-08-01

    The Fermi Gamma-ray Burst Monitor (GBM) is an all-sky gamma-ray monitor well known in the gamma-ray burst (GRB) community. Although GBM excels in detecting the hard, bright extragalactic GRBs, its sensitivity above 8 keV and its all-sky view make it an excellent instrument for the detection of rare, short-lived Galactic transients. In 2010 March, we initiated a systematic search for transients using GBM data. We conclude this phase of the search by presenting a three-year catalog of 1084 X-ray bursts. Using spectral analysis, location, and spatial distributions we classified the 1084 events into 752 thermonuclear X-ray bursts, 267 transient events from accretion flares and X-ray pulses, and 65 untriggered gamma-ray bursts. All thermonuclear bursts have peak blackbody temperatures broadly consistent with photospheric radius expansion (PRE) bursts. We find an average rate of 1.4 PRE bursts per day, integrated over all Galactic bursters within about 10 kpc. These include 33 and 10 bursts from the ultra-compact X-ray binaries 4U 0614+09 and 2S 0918-549, respectively. We discuss these recurrence times and estimate the total mass ejected by PRE bursts in our Galaxy.

  20. NUCLEAR CONDENSATE AND HELIUM WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Bedaque, Paulo F.; Berkowitz, Evan [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD (United States); Cherman, Aleksey, E-mail: bedaque@umd.edu, E-mail: evanb@umd.edu, E-mail: a.cherman@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA (United Kingdom)

    2012-04-10

    We consider a high-density region of the helium phase diagram, where the nuclei form a Bose-Einstein condensate rather than a classical plasma or a crystal. Helium in this phase may be present in helium-core white dwarfs. We show that in this regime there is a new gapless quasiparticle not previously noticed, arising when the constraints imposed by gauge symmetry are taken into account. The contribution of this quasiparticle to the specific heat of a white dwarf core turns out to be comparable in a range of temperatures to the contribution from the particle-hole excitations of the degenerate electrons. The specific heat in the condensed phase is two orders of magnitude smaller than in the uncondensed plasma phase, which is the ground state at higher temperatures, and four orders of magnitude smaller than the specific heat that an ion lattice would provide, if formed. Since the specific heat of the core is an important input for setting the rate of cooling of a white dwarf star, it may turn out that such a change in the thermal properties of the cores of helium white dwarfs has observable implications.

  1. NUCLEAR CONDENSATE AND HELIUM WHITE DWARFS

    International Nuclear Information System (INIS)

    Bedaque, Paulo F.; Berkowitz, Evan; Cherman, Aleksey

    2012-01-01

    We consider a high-density region of the helium phase diagram, where the nuclei form a Bose-Einstein condensate rather than a classical plasma or a crystal. Helium in this phase may be present in helium-core white dwarfs. We show that in this regime there is a new gapless quasiparticle not previously noticed, arising when the constraints imposed by gauge symmetry are taken into account. The contribution of this quasiparticle to the specific heat of a white dwarf core turns out to be comparable in a range of temperatures to the contribution from the particle-hole excitations of the degenerate electrons. The specific heat in the condensed phase is two orders of magnitude smaller than in the uncondensed plasma phase, which is the ground state at higher temperatures, and four orders of magnitude smaller than the specific heat that an ion lattice would provide, if formed. Since the specific heat of the core is an important input for setting the rate of cooling of a white dwarf star, it may turn out that such a change in the thermal properties of the cores of helium white dwarfs has observable implications.

  2. Cosmological Gamma-Ray Bursts and Hypernovae Conclusively Linked

    Science.gov (United States)

    2003-06-01

    of their outer layers, they consist almost purely of helium, oxygen and heavier elements produced by intense nuclear burning during the preceding phase of their short life. " We have been waiting for this one for a long, long time ", says Jens Hjorth , " this GRB really gave us the missing information. From these very detailed spectra, we can now confirm that this burst and probably other long gamma-ray bursts are created through the core collapse of massive stars. Most of the other leading theories are now unlikely. " A "type-defining event" His colleague, ESO-astronomer Palle Møller , is equally content: " What really got us at first was the fact that we clearly detected the supernova signatures already in the first FORS-spectrum taken only four days after the GRB was first observed - we did not expect that at all. As we were getting more and more data, we realised that the spectral evolution was almost completely identical to that of the hypernova seen in 1998. The similarity of the two then allowed us to establish a very precise timing of the present supernova event ". The astronomers determined that the hypernova explosion (designated SN 2003dh [2]) documented in the VLT spectra and the GRB-event observed by HETE-II must have occurred at very nearly the same time. Subject to further refinement, there is at most a difference of 2 days, and there is therefore no doubt whatsoever, that the two are causally connected. " Supernova 1998bw whetted our appetite, but it took 5 more years before we could confidently say, we found the smoking gun that nailed the association between GRBs and SNe " adds Chryssa Kouveliotou of NASA. " GRB 030329 may well turn out to be some kind of 'missing link' for GRBs. " In conclusion, GRB 030329 was a rare "type-defining" event that will be recorded as a watershed in high-energy astrophysics . What really happened on March 29 (or 2,650 million years ago)? Here is the complete story about GRB 030329, as the astronomers now read it

  3. Discovery of the short gamma-ray burst GRB 050709.

    Science.gov (United States)

    Villasenor, J S; Lamb, D Q; Ricker, G R; Atteia, J-L; Kawai, N; Butler, N; Nakagawa, Y; Jernigan, J G; Boer, M; Crew, G B; Donaghy, T Q; Doty, J; Fenimore, E E; Galassi, M; Graziani, C; Hurley, K; Levine, A; Martel, F; Matsuoka, M; Olive, J-F; Prigozhin, G; Sakamoto, T; Shirasaki, Y; Suzuki, M; Tamagawa, T; Vanderspek, R; Woosley, S E; Yoshida, A; Braga, J; Manchanda, R; Pizzichini, G; Takagishi, K; Yamauchi, M

    2005-10-06

    Gamma-ray bursts (GRBs) fall into two classes: short-hard and long-soft bursts. The latter are now known to have X-ray and optical afterglows, to occur at cosmological distances in star-forming galaxies, and to be associated with the explosion of massive stars. In contrast, the distance scale, the energy scale and the progenitors of the short bursts have remained a mystery. Here we report the discovery of a short-hard burst whose accurate localization has led to follow-up observations that have identified the X-ray afterglow and (for the first time) the optical afterglow of a short-hard burst; this in turn led to the identification of the host galaxy of the burst as a late-type galaxy at z = 0.16 (ref. 10). These results show that at least some short-hard bursts occur at cosmological distances in the outskirts of galaxies, and are likely to be caused by the merging of compact binaries.

  4. The Drift Burst Hypothesis

    DEFF Research Database (Denmark)

    Christensen, Kim; Oomen, Roel; Renò, Roberto

    are an expected and regular occurrence in financial markets that can arise through established mechanisms such as feedback trading. At a theoretical level, we show how to build drift bursts into the continuous-time Itô semi-martingale model in such a way that the fundamental arbitrage-free property is preserved......, currencies and commodities. We find that the majority of identified drift bursts are accompanied by strong price reversals and these can therefore be regarded as “flash crashes” that span brief periods of severe market disruption without any material longer term price impacts....

  5. Multiparameter Monitoring and Prevention of Fault-Slip Rock Burst

    Directory of Open Access Journals (Sweden)

    Shan-chao Hu

    2017-01-01

    Full Text Available Fault-slip rock burst is one type of the tectonic rock burst during mining. A detailed understanding of the precursory information of fault-slip rock burst and implementation of monitoring and early warning systems, as well as pressure relief measures, are essential to safety production in deep mines. This paper first establishes a mechanical model of stick-slip instability in fault-slip rock bursts and then reveals the failure characteristics of the instability. Then, change rule of mining-induced stress and microseismic signals before the occurrence of fault-slip rock burst are proposed, and multiparameter integrated early warning methods including mining-induced stress and energy are established. Finally, pressure relief methods targeting large-diameter boreholes and coal seam infusion are presented in accordance with the occurrence mechanism of fault-slip rock burst. The research results have been successfully applied in working faces 2310 of the Suncun Coal Mine, and the safety of the mine has been enhanced. These research results improve the theory of fault-slip rock burst mechanisms and provide the basis for prediction and forecasting, as well as pressure relief, of fault-slip rock bursts.

  6. Development of an Agent-based Model to Analyze Contemporary Helium Markets

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Matthew E. [Argonne National Lab. (ANL), Argonne, IL (United States); Uckun, Canan [Argonne National Lab. (ANL), Argonne, IL (United States); Conzelmann, Guenter [Argonne National Lab. (ANL), Argonne, IL (United States); Macal, Charles M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    Although U.S. helium demand has remained relatively flat since 2009, exports of helium have increased significantly since then, driven primarily by demand for electronic and semiconductor manufacturing in Asia. In the midst of this global demand shift, the Helium Act dictates a new procedure for pricing and distributing the gas through a reserve that historically functioned as a loose “oligarchy.” The new procedure requires prices to be determined by the open market through auctions and a survey of market prices, as opposed to increasing prices according to the consumer price index. Response to these changes has caused temporary shortages, price increases, and a significant increase in the development of the helium extraction technologies used to produce helium from formerly marginal sources. Technologies are being developed and refined to extract helium from formerly low-yielding natural gas fields containing much lower amounts of helium than the previously considered economic threshold of 0.3%. Combining these transformative policies with the potential for new and significant global supplies from Qatar, Algeria, and Russia could lead to new and unforeseen market behaviors and reactions from global helium markets. The objective of the project is to analyze the global helium markets.

  7. Organ protection by the noble gas helium

    NARCIS (Netherlands)

    Smit, K.F.

    2017-01-01

    The aims of this thesis were to investigate whether helium induces preconditioning in humans, and to elucidate the mechanisms behind this possible protection. First, we collected data regarding organ protective effects of noble gases in general, and of helium in particular (chapters 1-3). In chapter

  8. Limits of the memory coefficient in measuring correlated bursts

    Science.gov (United States)

    Jo, Hang-Hyun; Hiraoka, Takayuki

    2018-03-01

    Temporal inhomogeneities in event sequences of natural and social phenomena have been characterized in terms of interevent times and correlations between interevent times. The inhomogeneities of interevent times have been extensively studied, while the correlations between interevent times, often called correlated bursts, are far from being fully understood. For measuring the correlated bursts, two relevant approaches were suggested, i.e., memory coefficient and burst size distribution. Here a burst size denotes the number of events in a bursty train detected for a given time window. Empirical analyses have revealed that the larger memory coefficient tends to be associated with the heavier tail of the burst size distribution. In particular, empirical findings in human activities appear inconsistent, such that the memory coefficient is close to 0, while burst size distributions follow a power law. In order to comprehend these observations, by assuming the conditional independence between consecutive interevent times, we derive the analytical form of the memory coefficient as a function of parameters describing interevent time and burst size distributions. Our analytical result can explain the general tendency of the larger memory coefficient being associated with the heavier tail of burst size distribution. We also find that the apparently inconsistent observations in human activities are compatible with each other, indicating that the memory coefficient has limits to measure the correlated bursts.

  9. Relativistic effects in gamma-ray bursts

    International Nuclear Information System (INIS)

    Eriksen, Erik; Groen, Oeyvind

    1999-01-01

    According to recent models of the sources of gamma-ray bursts the extremely energetic emission is caused by shells expanding with ultrarelativistic velocity. With the recent identification of optical sources at the positions of some gamma-ray bursts these ''fireball'' models have acquired an actuality that invites to use them as a motivating application when teaching special relativity. We demonstrate several relativistic effects associated with these models which are very pronounced due to the great velocity of the shell. For example a burst lasting for a month in the rest frame of an element of the shell lasts for a few seconds only, in the rest frame of our detector. It is shown how the observed properties of a burst are modified by aberration and the Doppler effect. The apparent luminosity as a function of time is calculated. Modifications due to the motion of the star away from the observer are calculated. (Author)

  10. Bursts from the very early universe

    Energy Technology Data Exchange (ETDEWEB)

    Silk, J. [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Stodolsky, L. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)]. E-mail: les@mppmu.mpg.de

    2006-07-27

    Bursts of weakly interacting particles such as neutrinos or even more weakly interacting particles such as wimps and gravitons from the very early universe would offer a much deeper 'look back time' to early epochs than is possible with photons. We consider some of the issues related to the existence of such bursts and their detectability. Characterizing the burst rate by a probability P per Hubble four-volume we find, for events in the radiation-dominated era, that the natural unit of description is the present intensity of the CMB times P. The existence of such bursts would make the observation of pheno associated with very early times in cosmology at least conceptually possible. One might even hope to probe the transplanckian epoch if complexes more weakly interacting than the graviton can exist. Other conceivable applications include the potential detectability of the formation of 'pocket universes' in a multiverse.

  11. Construction and testing of a double acting bellows liquid helium pump

    International Nuclear Information System (INIS)

    Burns, W.A.; Green, M.A.; Ross, R.R.; Van Slyke, H.

    1980-05-01

    The double acting reciprocating bellows liquid helium pump built and tested at the Lawrence Berkeley Laboratory is described. The pump is capable of delivering 50 gs -1 of liquid helium to supply the two-phase cooling sytem for a large superconducting magnet. The pump is driven by a torque motor at room temperature; the reciprocating motion is transmitted to the pump through a shaft which operates between room temperature and 4 0 K. The design details of this liquid helium pump are presented. The helium pump has operated in a helium bath and in pumped forced flow helium circuits. The results of these experimental tests are presented in this report

  12. Helium leak testing the Westinghouse LCP coil

    International Nuclear Information System (INIS)

    Merritt, P.A.; Attaar, M.H.; Hordubay, T.D.

    1983-01-01

    The tests, equipment, and techniques used to check the Westinghouse LCP coil for coolant flow path integrity and helium leakage are unique in terms of test sensitivity and application. This paper will discuss the various types of helium leak testing done on the LCP coil as it enters different stages of manufacture. The emphasis will be on the degree of test sensitivity achieved under shop conditions, and what equipment, techniques and tooling are required to achieve this sensitivity (5.9 x 10 -8 scc/sec). Other topics that will be discussed are helium flow and pressure drop testing which is used to detect any restrictions in the flow paths, and the LCP final acceptance test which is the final leak test performed on the coil prior to its being sent for testing. The overall allowable leak rate for this coil is 5 x 10 -6 scc/sec. A general evaluation of helium leak testing experience are included

  13. Development of helium isotopic database in Japan

    International Nuclear Information System (INIS)

    Kusano, Tomohiro; Asamori, Koichi; Umeda, Koji

    2012-09-01

    We constructed “Helium Isotopic Database in Japan”, which includes isotope ratios of noble gases and chemical compositions of gas samples collected from hot springs and drinking water wells. The helium isotopes are excellent natural tracers for indicating the presence of mantle derived volatiles, because they are chemically inert and thus conserved in crustal rock-water systems. It is common knowledge that mantle degassing does not occur homogeneously over the Earth's surface. The 3 He/ 4 He ratios higher than the typical crustal values are interpreted to indicate that transfer of mantle volatiles into the crust by processes or mechanisms such as magmatic intrusion, faulting. In particular the spatial variation of helium isotope ratios could provide a valuable information to identify volcanic regions and tectonically active areas. The database was compiled geochemical data of hot spring gas etc. from 108 published papers. As a result of the data compiling, the database has 1728 helium isotopic data. A CD-ROM is attached as an appendix. (author)

  14. Hybrid Circuit QED with Electrons on Helium

    Science.gov (United States)

    Yang, Ge

    Electrons on helium (eHe) is a 2-dimensional system that forms naturally at the interface between superfluid helium and vacuum. It has the highest measured electron mobility, and long predicted spin coherence time. In this talk, we will first review various quantum computer architecture proposals that take advantage of these exceptional properties. In particular, we describe how electrons on helium can be combined with superconducting microwave circuits to take advantage of the recent progress in the field of circuit quantum electrodynamics (cQED). We will then demonstrate how to reliably trap electrons on these devices hours at a time, at millikelvin temperatures inside a dilution refrigerator. The coupling between the electrons and the microwave resonator exceeds 1 MHz, and can be reproduced from the design geometry using our numerical simulation. Finally, we will present our progress on isolating individual electrons in such circuits, to build single-electron quantum dots with electrons on helium.

  15. Different types of bursting calcium oscillations in non-excitable cells

    International Nuclear Information System (INIS)

    Perc, Matjaz; Marhl, Marko

    2003-01-01

    In the paper different types of bursting Ca 2+ oscillations are presented. We analyse bursting behaviour in four recent mathematical models for Ca 2+ oscillations in non-excitable cells. Separately, regular, quasi-periodic, and chaotic bursting Ca 2+ oscillations are classified into several subtypes. The classification is based on the dynamics of separated fast and slow subsystems, the so-called fast-slow burster analysis. For regular bursting Ca 2+ oscillations two types of bursting are specified: Point-Point and Point-Cycle bursting. In particular, the slow passage effect, important for the Hopf-Hopf and SubHopf-SubHopf bursting subtypes, is explained by local divergence calculated for the fast subsystem. Quasi-periodic bursting Ca 2+ oscillations can be found in only one of the four studied mathematical models and appear via a homoclinic bifurcation with a homoclinic torus structure. For chaotic bursting Ca 2+ oscillations, we found that bursting patterns resulting from the period doubling root to chaos considerably differ from those appearing via intermittency and have to be treated separately. The analysis and classification of different types of bursting Ca 2+ oscillations provides better insight into mechanisms of complex intra- and intercellular Ca 2+ signalling. This improves our understanding of several important biological phenomena in cellular signalling like complex frequency-amplitude signal encoding and synchronisation of intercellular signal transduction between coupled cells in tissue

  16. Formation of the lunar helium corona and atmosphere

    Science.gov (United States)

    Hodges, R. R., Jr.

    1977-01-01

    Helium is one of the dominant gases of the lunar atmosphere. Its presence is easily identified in data from the mass spectrometer at the Apollo 17 landing site. The major part of these data was obtained in lunar nighttime, where helium concentration reaches the maximum of its diurnal cyclic variation. The large night to day concentration ratio agrees with the basic theory of exospheric lateral transport reported by Hodges and Johnson (1968). A reasonable fraction of atmospheric helium atoms has a velocity in excess of the gravitational escape velocity. The result is a short average lifetime and a tenuous helium atmosphere. A description is presented of an investigation which shows that the atmosphere of the moon has two distinct components including low energy atoms, which are gravitationally bound in trajectories that intersect the lunar surface, and higher energy atoms, which are trapped in satellite orbits. The total helium abundance in the lunar corona is shown to be about 1.3 times 10 to the 30th power atoms.

  17. Solar energetic particles and radio burst emission

    Directory of Open Access Journals (Sweden)

    Miteva Rositsa

    2017-01-01

    Full Text Available We present a statistical study on the observed solar radio burst emission associated with the origin of in situ detected solar energetic particles. Several proton event catalogs in the period 1996–2016 are used. At the time of appearance of the particle origin (flare and coronal mass ejection we identified radio burst signatures of types II, III and IV by inspecting dynamic radio spectral plots. The information from observatory reports is also accounted for during the analysis. The occurrence of solar radio burst signatures is evaluated within selected wavelength ranges during the solar cycle 23 and the ongoing 24. Finally, we present the burst occurrence trends with respect to the intensity of the proton events and the location of their solar origin.

  18. Bright x-ray flares in gamma-ray burst afterglows.

    Science.gov (United States)

    Burrows, D N; Romano, P; Falcone, A; Kobayashi, S; Zhang, B; Moretti, A; O'brien, P T; Goad, M R; Campana, S; Page, K L; Angelini, L; Barthelmy, S; Beardmore, A P; Capalbi, M; Chincarini, G; Cummings, J; Cusumano, G; Fox, D; Giommi, P; Hill, J E; Kennea, J A; Krimm, H; Mangano, V; Marshall, F; Mészáros, P; Morris, D C; Nousek, J A; Osborne, J P; Pagani, C; Perri, M; Tagliaferri, G; Wells, A A; Woosley, S; Gehrels, N

    2005-09-16

    Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.

  19. Implications of fast radio bursts for superconducting cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yun-Wei [Institute of Astrophysics, Central China Normal University, 152 Luoyu Road, Wuhan 430079 (China); Cheng, Kwong-Sang [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Shiu, Gary; Tye, Henry, E-mail: yuyw@phy.ccnu.edu.cn, E-mail: hrspksc@hku.hk, E-mail: shiu@ust.hk, E-mail: iastye@ust.hk [Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)

    2014-11-01

    Highly beamed, short-duration electromagnetic bursts could be produced by superconducting cosmic string (SCS) loops oscillating in cosmic magnetic fields. We demonstrated that the basic characteristics of SCS bursts such as the electromagnetic frequency and the energy release could be consistently exhibited in the recently discovered fast radio bursts (FRBs). Moreover, it is first showed that the redshift distribution of the FRBs can also be well accounted for by the SCS burst model. Such agreements between the FRBs and SCS bursts suggest that the FRBs could originate from SCS bursts and thus they could provide an effective probe to study SCSs. The obtained values of model parameters indicate that the loops generating the FRBs have a small length scale and they are mostly formed in the radiation-dominated cosmological epoch.

  20. Implications of fast radio bursts for superconducting cosmic strings

    International Nuclear Information System (INIS)

    Yu, Yun-Wei; Cheng, Kwong-Sang; Shiu, Gary; Tye, Henry

    2014-01-01

    Highly beamed, short-duration electromagnetic bursts could be produced by superconducting cosmic string (SCS) loops oscillating in cosmic magnetic fields. We demonstrated that the basic characteristics of SCS bursts such as the electromagnetic frequency and the energy release could be consistently exhibited in the recently discovered fast radio bursts (FRBs). Moreover, it is first showed that the redshift distribution of the FRBs can also be well accounted for by the SCS burst model. Such agreements between the FRBs and SCS bursts suggest that the FRBs could originate from SCS bursts and thus they could provide an effective probe to study SCSs. The obtained values of model parameters indicate that the loops generating the FRBs have a small length scale and they are mostly formed in the radiation-dominated cosmological epoch

  1. Neutrino bursts and gravitational waves experiments

    Energy Technology Data Exchange (ETDEWEB)

    Castagnoli, C; Galeotti, P; Saavedra, O [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica

    1978-05-01

    Several experiments have been performed in many countries to observe gravitational waves or neutrino bursts. Since their simultaneous emission may occur in stellar collapse, the authors evaluate the effect of neutrino bursts on gravitational wave antennas and suggest the usefulness of a time correlation among the different detectors.

  2. Broadband Spectral Investigations of Magnetar Bursts

    Science.gov (United States)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin

    2017-09-01

    We present our broadband (2-250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550-5418, SGR 1900+14, and SGR 1806-20 detected with the Rossi X-ray Timing Explorer (RXTE) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  3. Broadband Spectral Investigations of Magnetar Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin, E-mail: demetk@sabanciuniv.edu [Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı Tuzla, Istanbul 34956 (Turkey)

    2017-09-01

    We present our broadband (2–250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550−5418, SGR 1900+14, and SGR 1806−20 detected with the Rossi X-ray Timing Explorer ( RXTE ) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  4. Sources of type III solar microwave bursts

    Directory of Open Access Journals (Sweden)

    Zhdanov D.A.

    2016-06-01

    Full Text Available Microwave fine structures allow us to study plasma evolution in an energy release region. The Siberian Solar Radio Telescope (SSRT is a unique instrument designed to examine fine structures at 5.7 GHz. A complex analysis of data from RATAN-600, 4–8 GHz spectropolarimeter, and SSRT, simultaneously with EUV data, made it possible to localize sources of III type microwave bursts in August 10, 2011 event within the entire frequency band of burst occurrence, as well as to determine the most probable region of primary energy release. To localize sources of III type bursts from RATAN-600 data, an original method for data processing has been worked out. At 5.7 GHz, the source of bursts was determined along two coordinates, whereas at 4.5, 4.7, 4.9, 5.1, 5.3, 5.5, and 6.0 GHz, their locations were identified along one coordinate. The size of the burst source at 5.1 GHz was found to be maximum as compared to those at other frequencies.

  5. Mechanical properties and microstructure of austenitic steels loaded with helium using tritium

    International Nuclear Information System (INIS)

    Sacovy, Paulette; Brun, Gilbert; Delaplace, Jean; Devaux, Joel; Fidelle, J.P.

    1982-06-01

    Following a review of the principle of the method using the radioactive decay of tritium to helium 3 to introduce helium into thick metallic test specimens, the results of preliminary tests performed on austenitic steels are presented. 304L and 316 steel specimens were loaded with helium, treated at 760 0 C to precipitate the helium in bubbles, and then strained by tensile stress at 800 0 C. In the material most loaded with helium (304 steel containing 230 ppm at. helium), a significant increase in distributed and total elongation at 800 0 C was observed. In the least loaded material (steel 316 containing 13 ppm at. helium), only total elongation decreased. Neither the yield stress nor the breaking load was altered by the presence of helium. Observations made by electron microscopy in the most loaded material revealed the presence, after heat treatment at 760 0 C, of very small bubbles of helium and also imperfect dislocation loops. The cause of these fault loops is discussed [fr

  6. Orientation, alignment and polarisation in electron-helium collisions

    International Nuclear Information System (INIS)

    Beijers, J.P.M.

    1987-01-01

    In this thesis electron-photon coincidence experiments to study the excitation of helium by electron impact are updated. This is achieved by cross firing a well collimated and mono-energetic electron beam with a thermal helium beam and measuring the angular and/or polarisation distribution of the decay photons in coincidence with the inelastically scattered electrons. In this way target parameters are determined for the 2 1 P, 3 1 P, 3 1 D and 3 3 P states of helium. (Auth.)

  7. Spectra of gamma-ray bursts at high energies

    International Nuclear Information System (INIS)

    Matz, S.M.

    1986-01-01

    Between 1980 February and 1983 August the Gamma-Ray Spectrometer (GRS) on the Solar Maximum Mission satellite (SMM) observed 71 gamma-ray bursts. These events form a representative subset of the class of classical gamma-ray bursts. Since their discovery more than 15 years ago, hundreds of gamma-ray bursts have been detected; however, most observations have been limited to an energy range of roughly 30 keV-1 MeV. The large sensitive area and spectral range of the GRS allow, for the first time, an investigation of the high energy (>1 MeV) behavior of a substantial number of gamma-ray bursts. It is found that high-energy emission is seen in a large fraction of all events and that the data are consistent with all bursts emitting to at least 5 MeV with no cut-offs. Further, no burst spectrum measured by GRS has a clear high-energy cut-off. The high-energy emission can be a significant part of the total burst energy on the average about 30% of the observed energy above 30 keV is contained in the >1 MeV photons. The fact that the observations are consistent with the presence of high-energy emission in all events implies a limit on the preferential beaming of high-energy photons, from any mechanism. Single-photon pair-production in a strong magnetic field produces such beaming; assuming that the low-energy emission is isotropic, the data imply an upper limit of 1 x 10 12 G on the typical magnetic field at burst radiation sites

  8. Preservation and release dose of helium implanted in nanocrystal titanium film

    International Nuclear Information System (INIS)

    Long Xinggui; Luo Shunzhong; Peng Shuming; Zheng Sixiao; Liu Zhongyang; Wang Peilu; Liao Xiaodong; Liu Ning

    2003-01-01

    Helium concentration profile, preservation dose and release rate from a nanocrystal titanium film implanted with helium at an energy of 100 keV and dose of 2.2 x 10 18 cm -2 are measured by proton Rutherford backscattering technique in a range from room temperature to 400 degree C. The implanted helium may be stably preserved up to the 68 percent after keeping a long time of 210 d in the nanocrystal titanium film at the room temperature environment, and the He-Ti atomic ratio reaches to 52.6%. When the temperature of specimen increases to 100 degree C, the helium concentration can be preserved to 89.6% of the keeping helium dose at room temperature and He-Ti atomic ratio reaches 44%. Even if the specimen temperature up to 400 degree C, the helium concentration still can be preserved to 32.6% of the keeping helium dose at room temperature and the He-Ti atomic ratio is 17.1%. Possible mechanism of helium effectively preserved in the nanocrystal titanium film is discussed based on the energy stability viewpoint

  9. On the shear strength of tungsten nano-structures with embedded helium

    International Nuclear Information System (INIS)

    Smirnov, R.D.; Krasheninnikov, S.I.

    2013-01-01

    Modification of plastic properties of tungsten nano-structures under shear stress load due to embedded helium atoms is studied using molecular dynamics modelling. The modelling demonstrates that the yield strength of tungsten nano-structures reduces significantly with increasing embedded helium concentration. At high helium concentrations (>10 at%), the yield strength decreases to values characteristic to the pressure in helium nano-bubbles, which are formed in tungsten under such conditions and thought to be responsible for the formation of nano-fuzz on tungsten surfaces irradiated with helium plasma. It is also shown that tungsten plastic flow strongly facilitates coagulation of helium clusters to larger bubbles. The temperature dependencies of the yield strength are obtained. (letter)

  10. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom

    Science.gov (United States)

    Harbola, Varun

    2011-01-01

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…

  11. Electrostatic charging and levitation of helium II drops

    International Nuclear Information System (INIS)

    Niemela, J.J.

    1997-01-01

    Liquid Helium II drops, of diameter 1 mm or less, are charged with positive helium ions and subsequently levitated by static electric fields. Stable levitation was achieved for drops of order 100-150 micrometers in diameter. The suspended drops could be translated to arbitrary positions within the levitator using additional superimposed DC electric fields, and also could be made to oscillate stably about their average positions by means of an applied time-varying electric field. A weak corona discharge was used to produce the necessary ions for levitation. A novel superfluid film flow device, developed for the controlled deployment of large charged drops, is described. Also discussed is an adjustable electric fountain that requires only a field emission tip operating at modest potentials, and works in both Helium I and Helium II

  12. Powerful Radio Burst Indicates New Astronomical Phenomenon

    Science.gov (United States)

    2007-09-01

    Astronomers studying archival data from an Australian radio telescope have discovered a powerful, short-lived burst of radio waves that they say indicates an entirely new type of astronomical phenomenon. Region of Strong Radio Burst Visible-light (negative greyscale) and radio (contours) image of Small Magellanic Cloud and area where burst originated. CREDIT: Lorimer et al., NRAO/AUI/NSF Click on image for high-resolution file ( 114 KB) "This burst appears to have originated from the distant Universe and may have been produced by an exotic event such as the collision of two neutron stars or the death throes of an evaporating black hole," said Duncan Lorimer, Assistant Professor of Physics at West Virginia University (WVU) and the National Radio Astronomy Observatory (NRAO). The research team led by Lorimer consists of Matthew Bailes of Swinburne University in Australia, Maura McLaughlin of WVU and NRAO, David Narkevic of WVU, and Fronefield Crawford of Franklin and Marshall College in Lancaster, Pennsylvania. The astronomers announced their findings in the September 27 issue of the online journal Science Express. The startling discovery came as WVU undergraduate student David Narkevic re-analyzed data from observations of the Small Magellanic Cloud made by the 210-foot Parkes radio telescope in Australia. The data came from a survey of the Magellanic Clouds that included 480 hours of observations. "This survey had sought to discover new pulsars, and the data already had been searched for the type of pulsating signals they produce," Lorimer said. "We re-examined the data, looking for bursts that, unlike the usual ones from pulsars, are not periodic," he added. The survey had covered the Magellanic Clouds, a pair of small galaxies in orbit around our own Milky Way Galaxy. Some 200,000 light-years from Earth, the Magellanic Clouds are prominent features in the Southern sky. Ironically, the new discovery is not part of these galaxies, but rather is much more distant

  13. Five second helium neutral beam injection using argon-frost cryopumping techniques

    International Nuclear Information System (INIS)

    Phillips, J.C.; Kellman, D.H.; Hong, R.; Kim, J.; Laughon, G.M.

    1995-01-01

    High power helium neutral beams for the heating of tokamak discharges can now be provided for 5 s by using argon cryopumping (of the helium gas) in the beamlines. The DIII-D neutral beam system has routinely provided up to 20 MW of deuterium neutral beam heating in support of experiments on the DIII-D tokamak. Operation of neutral beams with helium has historically presented a problem in that pulse lengths have been limited to 500 ms due to reliance solely on volume pumping of the helium gas. Helium is not condensed on the cryopanels. A system has now been installed to deposit a layer of argon frost on the DIII-D neutral beam cryopanels, between tokamak injection pulses. The layer serves to trap helium on the cryopanels providing sufficient pumping speed for 5 s helium beam extraction. The argon frosting hardware is now present on two of four DIII-D neutral beamlines, allowing injection of up to 6 MW of helium neutral beams per discharge, with pulse lengths of up to 5 s. The argon frosting system is described, along with experimental results demonstrating its effectiveness as a method of economically extending the capabilities of cryogenic pumping panels to allow multi-second helium neutral beam injection

  14. Ballerina - pirouettes in search of gamma bursts

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Lund, Niels; Pedersen, Henrik

    1999-01-01

    The cosmological origin of gamma ray bursts has now been established with reasonable certainty, Many more bursts will need to be studied to establish the typical distance scale, and to map out the large diversity in properties which have been indicated by the first handful of events. We are propo...... are proposing Ballerina, a small satellite to provide accurate positions and new data on the gamma-ray bursts. We anticipate a detection rate an order of magnitude larger than obtained from Beppo-SAX....

  15. An efficient continuous flow helium cooling unit for Moessbauer experiments

    International Nuclear Information System (INIS)

    Herbert, I.R.; Campbell, S.J.

    1976-01-01

    A Moessbauer continuous flow cooling unit for use with liquid helium over the temperature range 4.2 to 300K is described. The cooling unit can be used for either absorber or source studies in the horizontal plane and it is positioned directly on top of a helium storage vessel. The helium transfer line forms an integral part of the cooling unit and feeds directly into the storage vessel so that helium losses are kept to the minimum. The helium consumption is 0.12 l h -1 at 4.2 K decreasing to 0.055 l h -1 at 40 K. The unit is top loading and the exchange gas cooled samples can be changed easily and quickly. (author)

  16. Helium implanted AlHf as studied by 181 Ta TDPAC

    Indian Academy of Sciences (India)

    Measurements on helium implanted sample indicate the binding of helium associated defects by Hf solute clusters. Isochronal annealing measurements indicate the dissociation of the helium implantation induced defects from Hf solute clusters for annealing treatments beyond 650 K. On comparison of the present results ...

  17. The cryogenic helium cooling system for the Tokamak physics experiment

    International Nuclear Information System (INIS)

    Felker, B.; Slack, D.S.; Wendland, C.R.

    1995-01-01

    The Tokamak Physics Experiment (TPX) will use supercritical helium to cool all the magnets and supply helium to the Vacuum cryopumping subsystem. The heat loads will come from the standard steady state conduction and thermal radiation sources and from the pulsed loads of the nuclear and eddy currents caused by the Central Solenoid Coils and the plasma positioning coils. The operations of the TPX will begin with pulses of up to 1000 seconds in duration every 75 minutes. The helium system utilizes a pulse load leveling scheme to buffer out the effects of the pulse load and maintain a constant cryogenic plant operation. The pulse load leveling scheme utilizes the thermal mass of liquid and gaseous helium stored in a remote dewar to absorb the pulses of the tokamak loads. The mass of the stored helium will buffer out the temperature pulses allowing 5 K helium to be delivered to the magnets throughout the length of the pulse. The temperature of the dewar will remain below 5 K with all the energy of the pulse absorbed. This paper will present the details of the heat load sources, of the pulse load leveling scheme operations, a partial helium schematic, dewar temperature as a function of time, the heat load sources as a function of time and the helium temperature as a function of length along the various components that will be cooled

  18. Film boiling heat transfer in liquid helium

    International Nuclear Information System (INIS)

    Inai, Nobuhiko

    1979-01-01

    The experimental data on the film boiling heat transfer in liquid helium are required for investigating the stability of superconducting wires. On the other hand, liquid helium has the extremely different physical properties as compared with the liquids at normal temperature such as water. In this study, the experiments on pool boiling were carried out, using the horizontal top surface of a 20 mm diameter copper cylinder in liquid helium. For observing individual bubbles, the experiments on film boiling from a horizontal platinum wire were performed separately in liquid nitrogen and liquid helium, and photographs of floating-away bubbles were taken. The author pointed out the considerable upward shift of the boiling curve near the least heat flux point in film boiling from the one given by the Berenson's equation which has been said to agree comparatively well with the data on the film boiling of the liquids at normal temperature, and the reason was investigated. Consequently, a model for film boiling heat transfer was presented. Also one equation expressing the film boiling at low heat flux for low temperature liquids was proposed. It represents well the tendency to shift from Berenson's equation of the experimental data on film boiling at the least heat flux point for liquid helium, liquid nitrogen and water having extremely different physical properties. Some discussions are added at the end of the paper. (Wakatsuki, Y.)

  19. A description of stress driven bubble growth of helium implanted tungsten

    International Nuclear Information System (INIS)

    Sharafat, Shahram; Takahashi, Akiyuki; Nagasawa, Koji; Ghoniem, Nasr

    2009-01-01

    Low energy (<100 keV) helium implantation of tungsten has been shown to result in the formation of unusual surface morphologies over a large temperature range (700-2100 deg. C). Simulation of these macroscopic phenomena requires a multiscale approach to modeling helium transport in both space and time. We present here a multiscale helium transport model by coupling spatially-resolved kinetic rate theory (KRT) with kinetic Monte Carlo (KMC) simulation to model helium bubble nucleation and growth. The KRT-based HEROS Code establishes defect concentrations as well as stable helium bubble nuclei as a function of implantation parameters and position from the implanted surface and the KMC-based Mc-HEROS Code models the growth of helium bubbles due to migration and coalescence. Temperature- and stress-gradients can act as driving forces, resulting in biased bubble migration. The Mc-HEROS Code was modified to simulate the impact of stress gradients on bubble migration and coalescence. In this work, we report on bubble growth and gas release of helium implanted tungsten W/O stress gradients. First, surface pore densities and size distributions are compared with available experimental results for stress-free helium implantation conditions. Next, the impact of stress gradients on helium bubble evolution is simulated. The influence of stress fields on bubble and surface pore evolution are compared with stress-free simulations. It is shown that near surface stress gradients accelerate helium bubbles towards the free surface, but do not increasing average bubble diameters significantly.

  20. Room temperature desorption of helium-3 from metal tritides

    International Nuclear Information System (INIS)

    Beavis, L.C.; Kass, W.J.

    1976-10-01

    It has long been known that helium-3 accumulates in metal tritides as tritium decays. Early in life nearly 100% of the helium-3 is retained in the lattice, but when a critical concentration is reached (material dependent), the lattice will no longer retain the helium-3 and it is emitted at about the generation rate. Measurements were recently made on a number of erbium tritides with varying concentrations in the ditritide phase. The expected early release characteristics are observed for all of the samples. However, ditritides with higher tritium concentrations reach the rapid release state at much lower helium-3 concentrations. For instance, the helium to metal concentration for rapid release in the unsaturated ditritide is about 0.22, whereas it is only one-tenth this value in the saturated ditritide. The additional tritium in the tritide appears to be the cause of this effect

  1. Beta burst dynamics in Parkinson's disease OFF and ON dopaminergic medication.

    Science.gov (United States)

    Tinkhauser, Gerd; Pogosyan, Alek; Tan, Huiling; Herz, Damian M; Kühn, Andrea A; Brown, Peter

    2017-11-01

    Exaggerated basal ganglia beta activity (13-35 Hz) is commonly found in patients with Parkinson's disease and can be suppressed by dopaminergic medication, with the degree of suppression being correlated with the improvement in motor symptoms. Importantly, beta activity is not continuously elevated, but fluctuates to give beta bursts. The percentage number of longer beta bursts in a given interval is positively correlated with clinical impairment in Parkinson's disease patients. Here we determine whether the characteristics of beta bursts are dependent on dopaminergic state. Local field potentials were recorded from the subthalamic nucleus of eight Parkinson's disease patients during temporary lead externalization during surgery for deep brain stimulation. The recordings took place with the patient quietly seated following overnight withdrawal of levodopa and after administration of levodopa. Beta bursts were defined by applying a common amplitude threshold and burst characteristics were compared between the two drug conditions. The amplitude of beta bursts, indicative of the degree of local neural synchronization, progressively increased with burst duration. Treatment with levodopa limited this evolution leading to a relative increase of shorter, lower amplitude bursts. Synchronization, however, was not limited to local neural populations during bursts, but also, when such bursts were cotemporaneous across the hemispheres, was evidenced by bilateral phase synchronization. The probability of beta bursts and the proportion of cotemporaneous bursts were reduced by levodopa. The percentage number of longer beta bursts in a given interval was positively related to motor impairment, while the opposite was true for the percentage number of short duration beta bursts. Importantly, the decrease in burst duration was also correlated with the motor improvement. In conclusion, we demonstrate that long duration beta bursts are associated with an increase in local and

  2. Ultralow temperature helium compressor for Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Asakura, Hiroshi

    1988-01-01

    Ishikawajima Harima Heavy Industries Co., Ltd. started the development of an ultralow temperature helium compressor for helium liquefaction in 1984 jointly with Japan Atomic Energy Research Institute, and has delivered the first practical machine to the Superconductive Magnet Laboratory of JAERI. For a large superconductive magnet to be used in the stable state for a fusion reactor, conventional superconductive materials (NbTi, NbTi 3 Sn, etc.) must be used, being cooled forcibly with supercritical helium. The supercritical helium which is compressed above the critical pressure of 228 kPa has a stable cooling effect since the thermal conductivity does not change due to the evaporation of liquid helium. In order to maintain the temperature of the supercritical helium below 4 K before it enters a magnet, a heat exchanger is used. The compressor that IHI has developed has the ability to reduce the vapor pressure of liquid helium from atmospheric pressure to 50.7 kPa, and can attain the temperature of 3.5 K. The specification of this single stage centrifugal compressor is: mass flow rate 25 - 64 g/s, speed 80,000 rpm, adiabatic efficiency 62 - 69 %. The structure and the performance are reported. (K.I.)

  3. Cooling performance of helium-gas/water coolers in HENDEL

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Takada, Shoji; Hayashi, Haruyoshi; Kobayashi, Toshiaki; Ohta, Yukimaru; Shimomura, Hiroaki; Miyamoto, Yoshiaki

    1994-01-01

    The helium engineering demonstration loop (HENDEL) has four helium-gas/water coolers where the cooling water flows in the tubes and helium gas on the shell side. Their cooling performance was studied using the operational data from 1982 to 1991. The heat transfer of helium gas on the shell was obtained for segmental and step-up baffle type coolers. Also, the change with operation time was investigated. The cooling performance was lowered by the graphite powder released from the graphite components for several thousand hours and thereafter recovered because the graphite powder from the components was reduced and the powder in the cooler shell was blown off during the operation. (orig.)

  4. Electron temperature measurements in lowdensity plasmas by helium spectroscopy

    International Nuclear Information System (INIS)

    Brenning, N.

    1977-09-01

    This method to use relative intensities of singlet and triplet lines of neutral helium to measure electron temperature in low-density plasmas is examined. Calculations from measured and theoretical data about transitions in neutral helium are carried out and compared to experimental results. It is found that relative intensities of singlet and triplet lines from neutral helium only can be used for TE determination in low-density, short-duration plasmas. The most important limiting processes are excitation from the metastable 2 3 S level and excitation transfer in collisions between electrons and excited helium atoms. An evaluation method is suggested, which minimizes the effect of these processes. (author)

  5. Chimera states in bursting neurons

    OpenAIRE

    Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2015-01-01

    We study the existence of chimera states in pulse-coupled networks of bursting Hindmarsh-Rose neurons with nonlocal, global and local (nearest neighbor) couplings. Through a linear stability analysis, we discuss the behavior of stability function in the incoherent (i.e. disorder), coherent, chimera and multi-chimera states. Surprisingly, we find that chimera and multi-chimera states occur even using local nearest neighbor interaction in a network of identical bursting neurons alone. This is i...

  6. High temperature tensile properties of 316 stainless steel implanted with helium

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Yamamoto, Norikazu; Shiraishi, Haruki

    1993-01-01

    Helium embrittlement is one of the problems in structural materials for fusion reactors. Recently, martensitic steels have been developed which have a good resistance to high-temperature helium embrittlement, but the mechanism has not yet been clarified. In this paper, tensile behaviors of helium implanted austenitic stainless steels, which are sensitive to the helium embrittlement, were studied and compared with those of martensitic steels under the same experimental conditions, and the effect of microstructure on helium embrittlement was discussed. Helium was implanted by 300 appm at 573-623 K to miniature tensile speciments of 316 austenitic steels using a cyclotron accelerator. Solution annealed (316SA) and 20% cold worked (316CW) specimens were used. Post-implantation tensile tests were carried out at 573, 873 and 973 K. Yield stress at 573 K increased with the helium implantation in 316SA and 316CW, but the yield stress changes of 316SA at 873 and 973 K were different from that of 316CW. Black-dots were observed in the as-implanted specimen and bubbles were observed in the speciments tensile-tested at 873 and 973 K. Intergranular fracture was observed at only 973 K in both of the 316SA and 316CW specimens. Therefore, cold work did not suppress the high-temperature helium embrittlement under this experimental condition. The difference in the influence of helium on type 316 steel and 9Cr martensitic steels were discussed. Test temperature change of reduction in are showed clearly that helium embrittlement did not occur in 9Cr martensitic steels but occurred in 316 austenitic steels. Fine microstructures of 9Cr martensitic steels should suppress helium embrittlement at high temperatures. (author)

  7. US Army Nuclear Burst Detection System (NBDS)

    International Nuclear Information System (INIS)

    Glaser, R.F.

    1980-07-01

    The Nuclear Burst Detection System (NBDS) was developed to meet the Army requirements of an unattended, automatic nuclear burst reporting system. It provides pertinent data for battlefield commanders on a timely basis with high reliability

  8. Thermal release behavior of helium from copper irradiated by He+ ions

    International Nuclear Information System (INIS)

    Yamauchi, T.; Tokura, S.; Yamanaka, S.; Miyake, M.

    1988-01-01

    Thermal release behavior of helium from copper irradiated by 20 keV He + ions with a dose of 2x10 15 to 3x10 17 ions/cm 2 has been studied. The shape of the thermal release curves and thew number of helium release peaks strongly depend on the irradiation dose. Results from SEM surface observastion after post-irradiation heating suggested that helium release caused various surface damages such as blistering, flaking, and hole formation. Helium release resulting in small holes was analyzed and helium bubble growth mechanisms are discussed. (orig.)

  9. X-ray bursts from GX 17+2: a new approach

    International Nuclear Information System (INIS)

    Sztajno, M.; Langmeier, A.; Truemper, J.; Pietsch, W.; Paradijs, J. van; Lewin, W.H.G.; Massachusetts Inst. of Tech., Cambridge

    1986-01-01

    The detection of two X-ray bursts from GX 17+2 is reported; a short one (lasting about 10s), and a long one (which lasted about 5 min). These bursts reached a maximum intensity of only about 40 per cent above the persistent flux level. Like previous long bursts observed from GX 17+2 the long burst showed little softening during its decay, and it is difficult at first glance to classify it as either a type 1 or a type 2 burst. Following the recent results of two of the authors a time-dependent spectral analysis of these bursts has been made. (author)

  10. Radioactive ions and atoms in superfluid helium

    NARCIS (Netherlands)

    Dendooven, P.G.; Purushothaman, S.; Gloos, K.; Aysto, J.; Takahashi, N.; Huang, W.; Harissopulos, S; Demetriou, P; Julin, R

    2006-01-01

    We are investigating the use of superfluid helium as a medium to handle and manipulate radioactive ions and atoms. Preliminary results on the extraction of positive ions from superfluid helium at temperatures close to 1 K are described. Increasing the electric field up to 1.2 kV/cm did not improve

  11. Cosmic gamma-ray bursts

    International Nuclear Information System (INIS)

    Hurley, K.

    1989-01-01

    This paper reviews the essential aspects of the gamma-ray burst (GRB) phenomenon, with emphasis on the more recent results. GRBs are introduced by their time histories, which provide some evidence for a compact object origin. The energy spectra of bursts are presented and they are seen to demonstrate practically unambiguously that the origin of some GRBs involves neutron stars. Counterpart searches are reviewed briefly and the statistical properties of bursters treated. This paper presents a review of the three known repeating bursters (the Soft Gamma Repeaters). Extragalactic and galactic models are discussed and future prospects are assessed

  12. Conceptual design of helium experimental loop

    International Nuclear Information System (INIS)

    Yu Xingfu; Feng Kaiming

    2007-01-01

    In a future demonstration fusion power station (DEMO), helium is envisaged as coolant for plasma facing components, such as blanket and dive,or. All these components have a very complex geometry, with many parallel cooling channels, involving a complex helium flow distribution. Test blanket modules (TBM) of this concept will under go various tests in the experimental reactor ITER. For the qualification of TBM, it is indispensable to test mock-ups in a helium loop under realistic pressure and temperature profiles, in order to validate design codes, especially regarding mass flow and heat transition processes in narrow cooling channels. Similar testing must be performed for DEMO blanket, currently under development. A Helium Experimental Loop (HELOOP) is planed to be built for TBM tests. The design parameter of temperature, pressure, flow rate is 550 degree C, 10 MPa, l kg/s respectively. In particular, HELOOP is able to: perform full-scale tests of TBM under realistic conditions; test other components of the He-cooling system in ITER; qualify the purification circuit; obtain information for the design of the ITER cooling system. The main requirements and characteristics of the HELOOP facility and a preliminary conceptual design are described in the paper. (authors)

  13. Resource letter SH-1: superfluid helium

    International Nuclear Information System (INIS)

    Hallock, R.B.

    1982-01-01

    The resource letter covers the general subject of superfluid helium and treats 3 He and 3 He-- 4 He mixtures as well as 4 He. No effort has been made to include the fascinating experiments on either solid helium or the equally fascinating work on adsorbed helium where the helium coverage is below that necessary for superfluidity. An earlier resource letter by C. T. Lane [Am. J. Phys. 35, 367 (1967)] may be consulted for additional comments on some of the cited earlier manuscripts, but the present work is self-contained and may be used independently. Many high-quality research reports have not been cited here. Rather, the author has tried in most cases to include works particularly readable or relevant. There is a relatively heavy emphasis on experimental references. The primary reason is that these works tend to be more generally readable. No doubt some works that might have been included, have not, and for this the author takes responsibility with apology. Articles selected for incorporation in a reprint volume (to be published separately by the American Association of Physics Teachers) are marked with an asterisk(*). Following each referenced work the general level of difficulty is indicated by E, I, or A for elementary, intermediate, or advanced

  14. High-efficiency pump for space helium transfer. Final Technical Report

    International Nuclear Information System (INIS)

    Hasenbein, R.; Izenson, M.G.; Swift, W.L.; Sixsmith, H.

    1991-12-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space

  15. Fission neutron irradiation of copper containing implanted and transmutation produced helium

    DEFF Research Database (Denmark)

    Singh, B.N.; Horsewell, A.; Eldrup, Morten Mostgaard

    1992-01-01

    High purity copper containing approximately 100 appm helium was produced in two ways. In the first, helium was implanted by cyclotron at Harwell at 323 K. In the second method, helium was produced as a transmutation product in 800 MeV proton irradiation at Los Alamos, also at 323 K. The distribut......High purity copper containing approximately 100 appm helium was produced in two ways. In the first, helium was implanted by cyclotron at Harwell at 323 K. In the second method, helium was produced as a transmutation product in 800 MeV proton irradiation at Los Alamos, also at 323 K...... as well as the effect of the presence of other transmutation produced impurity atoms in the 800 MeV proton irradiated copper will be discussed....

  16. Leader neurons in population bursts of 2D living neural networks

    International Nuclear Information System (INIS)

    Eckmann, J-P; Zbinden, Cyrille; Jacobi, Shimshon; Moses, Elisha; Marom, Shimon

    2008-01-01

    Eytan and Marom (2006 J. Neurosci. 26 8465-76) recently showed that the spontaneous bursting activity of rat neuron cultures includes 'first-to-fire' cells that consistently fire earlier than others. Here, we analyze the behavior of these neurons in long-term recordings of spontaneous activity of rat hippocampal and rat cortical neuron cultures from three different laboratories. We identify precursor events that may either subside ('aborted bursts') or can lead to a full-blown burst ('pre-bursts'). We find that the activation in the pre-burst typically has a first neuron ('leader'), followed by a localized response in its neighborhood. Locality is diminished in the bursts themselves. The long-term dynamics of the leaders is relatively robust, evolving with a half-life of 23-34 h. Stimulation of the culture alters the leader distribution, but the distribution stabilizes within about 1 h. We show that the leaders carry information about the identity of the burst, as measured by the signature of the number of spikes per neuron in a burst. The number of spikes from leaders in the first few spikes of a precursor event is furthermore shown to be predictive with regard to the transition into a burst (pre-burst versus aborted burst). We conclude that the leaders play a role in the development of the bursts and conjecture that they are part of an underlying sub-network that is excited first and then acts as a nucleation center for the burst

  17. Tables of thermodynamic properties of helium magnet coolant

    International Nuclear Information System (INIS)

    McAshan, M.

    1992-07-01

    The most complete treatment of the thermodynamic properties of helium at the present time is the monograph by McCarty: ''Thermodynamic Properties of Helium 4 from 2 to 1500 K at Pressures to 10 8 Pa'', Robert D. McCarty, Journal of Physical and Chemical Reference Data, Vol. 2, page 923--1040 (1973). In this work the complete range of data on helium is examined and the P-V-T surface is described by an equation of state consisting of three functions P(r,T) covering different regions together with rules for making the transition from one region to another. From this thermodynamic compilation together with correlations of the transport properties of helium was published the well-known NBS Technical Note: ''Thermophysical Properties of Helium 4 from 2 to 1500 K with pressures to 1000 Atmospheres'', Robert D. McCarty, US Department of Commerce, National Bureau of Standards Technical Note 631 (1972). This is the standard reference for helium cryogenics. The NBS 631 tables cover a wide range of temperature and pressure, and as a consequence, the number of points tabulated in the region of the single phase coolant for the SSC magnets are relatively few. The present work sets out to cover the range of interest in more detail in a way that is consistent with NBS 631. This new table is essentially identical to the older one and can be used as an auxiliary to it

  18. Helium transport and exhaust studies in enhanced confinement regimes in DIII-D

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Hogan, J.T.; Mahdavi, M.A.; Maingi, R.; West, W.P.; Burrell, K.H.; Finkenthal, D.F.; Gohil, P.; Groebner, R.J.

    1995-02-01

    A better understanding of helium transport in the plasma core and edge in enhanced confinement regimes is now emerging from recent experimental studies on DIII-D. Overall, the results are encouraging. Significant helium exhaust (τ* He /τ E ∼ 11) has been obtained in a diverted, ELMing H-mode plasma simultaneous with a central source of helium. Detailed analysis of the helium profile evolution indicates that the exhaust rate is limited by the exhaust efficiency of the pump (∼5%) and not by the intrinsic helium transport properties of the plasma. Perturbative helium transport studies using gas puffing have shown that D He /X eff ∼1 in all confinement regimes studied to date (including H-mode and VH-mode). Furthermore, there is no evidence of preferential accumulation of helium in any of these regimes. However, measurements in the core and pumping plenum show a significant dilution of helium as it flows from the plasma core to the pumping plenum. Such dilution could be the limiting factor in the overall removal rate of helium in a reactor system

  19. Impulsive EUV bursts observed in C IV with OSO-8

    International Nuclear Information System (INIS)

    Grant Athay, R.; White, O.R.; Lites, B.W.

    1980-01-01

    Time sequences of profiles of the lambda 1548 line of C IV containing 51 EUV bursts observed in or near active regions are analyzed to determine the brightness. Doppler shift and line broadening characteristics of the bursts. The bursts have mean lifetimes of approximately 150s, and mean increases in brightness at burst maximum of four-fold as observed with a field of view of 2'' x 20''. Mean burst diameters are estimated to be 3'', or smaller. All but three of the bursts show Doppler shift with velocities sometimes exceeding 75 km s -1 ; 31 are dominated by red shifts and 17 are dominated by blue shifts. Approximately half of the latter group have red-shifted precursors. We interpret the bursts as prominence material, such as surges and coronal rain, moving through the field of view of the spectrometer. (orig.)

  20. Multiparameter Monitoring and Prevention of Fault-Slip Rock Burst

    OpenAIRE

    Hu, Shan-chao; Tan, Yun-liang; Ning, Jian-guo; Guo, Wei-Yao; Liu, Xue-sheng

    2017-01-01

    Fault-slip rock burst is one type of the tectonic rock burst during mining. A detailed understanding of the precursory information of fault-slip rock burst and implementation of monitoring and early warning systems, as well as pressure relief measures, are essential to safety production in deep mines. This paper first establishes a mechanical model of stick-slip instability in fault-slip rock bursts and then reveals the failure characteristics of the instability. Then, change rule of mining-i...

  1. PHYSICAL CONSTRAINTS ON FAST RADIO BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Jing; Goldreich, Peter, E-mail: jingluan@caltech.edu [California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-04-20

    Fast radio bursts (FRBs) are isolated, ms radio pulses with dispersion measure (DM) of order 10{sup 3} pc cm{sup –3}. Galactic candidates for the DM of high latitude bursts detected at GHz frequencies are easily dismissed. DM from bursts emitted in stellar coronas are limited by free-free absorption and those from H II regions are bounded by the nondetection of associated free-free emission at radio wavelengths. Thus, if astronomical, FRBs are probably extragalactic. FRB 110220 has a scattering tail of ∼5.6 ± 0.1 ms. If the electron density fluctuations arise from a turbulent cascade, the scattering is unlikely to be due to propagation through the diffuse intergalactic plasma. A more plausible explanation is that this burst sits in the central region of its host galaxy. Pulse durations of order ms constrain the sizes of FRB sources implying high brightness temperatures that indicates coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period.

  2. PHYSICAL CONSTRAINTS ON FAST RADIO BURSTS

    International Nuclear Information System (INIS)

    Luan, Jing; Goldreich, Peter

    2014-01-01

    Fast radio bursts (FRBs) are isolated, ms radio pulses with dispersion measure (DM) of order 10 3 pc cm –3 . Galactic candidates for the DM of high latitude bursts detected at GHz frequencies are easily dismissed. DM from bursts emitted in stellar coronas are limited by free-free absorption and those from H II regions are bounded by the nondetection of associated free-free emission at radio wavelengths. Thus, if astronomical, FRBs are probably extragalactic. FRB 110220 has a scattering tail of ∼5.6 ± 0.1 ms. If the electron density fluctuations arise from a turbulent cascade, the scattering is unlikely to be due to propagation through the diffuse intergalactic plasma. A more plausible explanation is that this burst sits in the central region of its host galaxy. Pulse durations of order ms constrain the sizes of FRB sources implying high brightness temperatures that indicates coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period

  3. IDENTIFICATION OF BURSTING WATER MASER FEATURES IN ORION KL

    International Nuclear Information System (INIS)

    Hirota, Tomoya; Honma, Mareki; Kim, Mi Kyoung; Kobayashi, Hideyuki; Shibata, Katsunori M.; Tsuboi, Masato; Fujisawa, Kenta; Kawaguchi, Noriyuki; Imai, Hiroshi; Omodaka, Toshihiro; Shimoikura, Tomomi; Yonekura, Yoshinori

    2011-01-01

    In 2011 February, a burst event of the H 2 O maser in Orion KL (Kleinmann-Low object) has started after a 13 year silence. This is the third time such phenomena has been detected in Orion KL, followed by the events in 1979-1985 and 1998. We have carried out astrometric observations of the bursting H 2 O maser features in Orion KL with the VLBI Exploration of Radio Astrometry (VERA), a Japanese very long baseline interferometry network dedicated for astrometry. The total flux of the bursting feature at the local standard of rest (LSR) velocity of 7.58 km s -1 reaches 4.4 x 10 4 Jy in 2011 March. The intensity of the bursting feature is three orders of magnitude larger than that of the same velocity feature in the quiescent phase in 2006. Two months later, another new feature appears at the LSR velocity of 6.95 km s -1 in 2011 May, separated by 12 mas north of the 7.58 km s -1 feature. Thus, the current burst occurs at two spatially different features. The bursting masers are elongated along the northwest-southeast direction as reported in the previous burst in 1998. We determine the absolute positions of the bursting features for the first time ever with a submilliarcsecond (mas) accuracy. Their positions are coincident with the shocked molecular gas called the Orion Compact Ridge. We tentatively detect the absolute proper motions of the bursting features toward the southwest direction. It is most likely that the outflow from the radio source I or another young stellar object interacting with the Compact Ridge is a possible origin of the H 2 O maser burst.

  4. Thalamic neuron models encode stimulus information by burst-size modulation

    Directory of Open Access Journals (Sweden)

    Daniel Henry Elijah

    2015-09-01

    Full Text Available Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of

  5. Thalamic neuron models encode stimulus information by burst-size modulation.

    Science.gov (United States)

    Elijah, Daniel H; Samengo, Inés; Montemurro, Marcelo A

    2015-01-01

    Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here, we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of thalamic neurons.

  6. Coronal mass ejections and solar radio bursts

    International Nuclear Information System (INIS)

    Kundu, M.R.

    1990-01-01

    The properties of coronal mass ejection (CME) events and their radio signatures are discussed. These signatures are mostly in the form of type II and type IV burst emissions. Although type II bursts are temporally associated with CMEs, it is shown that there is no spatial relationship between them. Type II's associated with CMEs have in most cases a different origin, and they are not piston-driven by CMEs. Moving type IV and type II bursts can be associated with slow CMEs with speeds as low as 200 km/s, contrary to the earlier belief that only CMEs with speeds >400 km/s are associated with radio bursts. A specific event has been discussed in which the CME and type IV burst has nearly the same speed and direction, but the type II burst location was behind the CME and its motion was transverse. The speed and motion of the type II burst strongly suggest that the type II shock was decoupled from the CME and was probably due to a flare behind the limb. Therefore only the type IV source could be directly associated with the slow CME. The electrons responsble for the type IV emission could be produced in the flare or in the type II and then become trapped in a plasmoid associated with the CME. The reconnected loop could then move outwards as in the usual palsmoid model. Alternatively, the type IV emission could be interpreted as due to electrons produced by acceleration in wave turbulence driven by currents in the shock front driven by the CME. The lower-hybrid model Lampe and Papadopoulos (1982), which operates at both fast and slow mode shocks, could be applied to this situation. (author). 31 refs., 12 figs

  7. New technique for enhancing helium production in ferritic materials

    International Nuclear Information System (INIS)

    Greenwood, L.R.; Graczyk, D.G.; Kneff, D.W.

    1987-10-01

    Analyses of iron samples irradiated up to 10 27 n/m 2 in HFIR found more helium than was expected from fast neutron reactions at high neutron fluences. The helium excess increases systematically with neutron exposure, suggesting a transmutation-driven process. The extra helium may be produced in two different ways, either by fast neutron reactions on the transmuted isotopes of iron or by a thermal neutron reaction with the radioactive isotope 55 Fe. Radiometric and mass spectrometric measurements of the iron isotopes composing the irradiated samples have been used to determine limits on the cross sections for each process. Either of these processes can be used to enhance helium production in ferritic materials during irradiations in mixed-spectrum reactors by isotopically enriching the samples. Further work is needed to clarify the reaction mechanisms and helium production cross sections. Our measurements determined the thermal neutron total absorption cross section of 55 Fe to be 13.2 +- 2.1 barns. 16 refs., 3 figs., 3 tabs

  8. Helium Leak Test for the PLS Storage Ring Chamber

    International Nuclear Information System (INIS)

    Choi, M. H.; Kim, H. J.; Choi, W. C.

    1993-01-01

    The storage ring vacuum system for the Pohang Light Source (PLS) has been designed to maintain the vacuum pressure of 10 1 0 Torr which requires UHV welding to have helium leak rate less than 1x10 1 0 Torr·L/sec. In order to develop new technique (PLS) welding technique), a prototype vacuum chamber has been welded by using Tungsten Inert Gas welding method and all the welded joints have been tested with a non-destructive method, so called helium leak detection, to investigate the vacuum tightness of the weld joints. The test was performed with a detection limit of 1x10 1 0 Torr·L/sec for helium and no detectable leaks were found for all the welded joints. Thus the performance of welding technique is proven to meet the criteria of helium leak rate required in the PLS Storage Ring. Both the principle and the procedure for the helium leak detection are also discussed

  9. Helium bubble formation and retention in Cu-Nb nanocomposites

    International Nuclear Information System (INIS)

    Dunn, A.Y.; McPhie, M.G.; Capolungo, L.; Martinez, E; Cherkaoui, M.

    2013-01-01

    A spatially dependent rate theory model for helium migration, clustering, and trapping on interfaces between Cu and Nb layers is introduced to predict the evolution of the concentrations of He clusters of various sizes during implantation and early annealing. Migration and binding energies of point defects and small clusters in bulk Cu and Nb are found using conjugate gradient minimization and the nudged elastic band method. The model is implemented in a three-dimensional framework and used to predict the relationship between helium bubble formation and the nano-composite microstructure, including interfacial free volume, grain size, and layer thickness. Interstitial and vacancy-like migration of helium is considered. The effects of changing layer thickness and interfacial misfit dislocation density on the threshold for helium bubble nucleation are found to match experiments. Accelerated helium release due to interfaces and grain boundaries is shown to occur only when diffusion rates on interfaces and grain boundaries are greatly increased relative to the bulk material.

  10. Biomolecular ions in superfluid helium nanodroplets

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Florez, Ana Isabel

    2016-07-01

    The function of a biological molecule is closely related to its structure. As a result, understanding and predicting biomolecular structure has become the focus of an extensive field of research. However, the investigation of molecular structure can be hampered by two main difficulties: the inherent complications that may arise from studying biological molecules in their native environment, and the potential congestion of the experimental results as a consequence of the large number of degrees of freedom present in these molecules. In this work, a new experimental setup has been developed and established in order to overcome the afore mentioned limitations combining structure-sensitive gas-phase methods with superfluid helium droplets. First, biological molecules are ionised and brought into the gas phase, often referred to as a clean-room environment, where the species of interest are isolated from their surroundings and, thus, intermolecular interactions are absent. The mass-to-charge selected biomolecules are then embedded inside clusters of superfluid helium with an equilibrium temperature of ∝0.37 K. As a result, the internal energy of the molecules is lowered, thereby reducing the number of populated quantum states. Finally, the local hydrogen bonding patterns of the molecules are investigated by probing specific vibrational modes using the Fritz Haber Institute's free electron laser as a source of infrared radiation. Although the structure of a wide variety of molecules has been studied making use of the sub-Kelvin environment provided by superfluid helium droplets, the suitability of this method for the investigation of biological molecular ions was still unclear. However, the experimental results presented in this thesis demonstrate the applicability of this experimental approach in order to study the structure of intact, large biomolecular ions and the first vibrational spectrum of the protonated pentapeptide leu-enkephalin embedded in helium

  11. Biomolecular ions in superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Gonzalez Florez, Ana Isabel

    2016-01-01

    The function of a biological molecule is closely related to its structure. As a result, understanding and predicting biomolecular structure has become the focus of an extensive field of research. However, the investigation of molecular structure can be hampered by two main difficulties: the inherent complications that may arise from studying biological molecules in their native environment, and the potential congestion of the experimental results as a consequence of the large number of degrees of freedom present in these molecules. In this work, a new experimental setup has been developed and established in order to overcome the afore mentioned limitations combining structure-sensitive gas-phase methods with superfluid helium droplets. First, biological molecules are ionised and brought into the gas phase, often referred to as a clean-room environment, where the species of interest are isolated from their surroundings and, thus, intermolecular interactions are absent. The mass-to-charge selected biomolecules are then embedded inside clusters of superfluid helium with an equilibrium temperature of ∝0.37 K. As a result, the internal energy of the molecules is lowered, thereby reducing the number of populated quantum states. Finally, the local hydrogen bonding patterns of the molecules are investigated by probing specific vibrational modes using the Fritz Haber Institute's free electron laser as a source of infrared radiation. Although the structure of a wide variety of molecules has been studied making use of the sub-Kelvin environment provided by superfluid helium droplets, the suitability of this method for the investigation of biological molecular ions was still unclear. However, the experimental results presented in this thesis demonstrate the applicability of this experimental approach in order to study the structure of intact, large biomolecular ions and the first vibrational spectrum of the protonated pentapeptide leu-enkephalin embedded in helium

  12. Helium sequestration at nanoparticle-matrix interfaces in helium + heavy ion irradiated nanostructured ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Parish, C.M., E-mail: parishcm@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Unocic, K.A.; Tan, L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zinkle, S.J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States); Kondo, S. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011 (Japan); Snead, L.L. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Hoelzer, D.T.; Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2017-01-15

    We irradiated four ferritic alloys with energetic Fe and He ions: one castable nanostructured alloy (CNA) containing Ti-W-Ta-carbides, and three nanostructured ferritic alloys (NFAs). The NFAs were: 9Cr containing Y-Ti-O nanoclusters, and two Fe-12Cr-5Al NFAs containing Y-Zr-O or Y-Hf-O clusters. All four were subjected to simultaneous dual-beam Fe + He ion implantation (650 °C, ∼50 dpa, ∼15 appm He/dpa), simulating fusion-reactor conditions. Examination using scanning/transmission electron microscopy (STEM) revealed high-number-density helium bubbles of ∼8 nm, ∼10{sup 21} m{sup −3} (CNA), and of ∼3 nm, 10{sup 23} m{sup −3} (NFAs). STEM combined with multivariate statistical analysis data mining suggests that the precipitate-matrix interfaces in all alloys survived ∼50 dpa at 650 °C and serve as effective helium trapping sites. All alloys appear viable structural material candidates for fusion or advanced fission energy systems. Among these developmental alloys the NFAs appear to sequester the helium into smaller bubbles and away from the grain boundaries more effectively than the early-generation CNA.

  13. ARE ULTRA-LONG GAMMA-RAY BURSTS DIFFERENT?

    Energy Technology Data Exchange (ETDEWEB)

    Boër, M.; Gendre, B. [CNRS-ARTEMIS, Boulevard de l' Observatoire, CS 34229, 06304 Nice Cedex 4 (France); Stratta, G., E-mail: michel.boer@unice.fr [Università degli Studi di Urbino Carlo Bo, I-61029 Urbino (Italy)

    2015-02-10

    The discovery of a number of gamma-ray bursts (GRBs) with duration exceeding 1000 s has opened the debate on whether these bursts form a new class of sources, the so-called ultra-long GRBs, or if they are rather the tail of the distribution of the standard long GRB duration. Using the long GRB sample detected by Swift, we investigate the statistical properties of long GRBs and compare them with the ultra-long burst properties. We compute the burst duration of long GRBs using the start epoch of the so-called ''steep decay'' phase detected with Swift/XRT. We discuss also the differences observed in their spectral properties. We find that ultra-long GRBs are statistically different from the standard long GRBs with typical burst duration less than 100-500 s, for which a Wolf-Rayet star progenitor is usually invoked. Together with the presence of a thermal emission component we interpret this result as indication that the usual long GRB progenitor scenario cannot explain the extreme duration of ultra-long GRBs, their energetics, as well as the mass reservoir and size that can feed the central engine for such a long time.

  14. Galactic distribution of X-ray burst sources

    International Nuclear Information System (INIS)

    Lewin, W.H.G.; Hoffman, J.A.; Doty, J.; Clark, G.W.; Swank, J.H.; Becker, R.H.; Pravdo, S.H.; Serlemitsos, P.J.

    1977-01-01

    It is stated that 18 X-ray burst sources have been observed to date, applying the following definition for these bursts - rise times of less than a few seconds, durations of seconds to minutes, and recurrence in some regular pattern. If single burst events that meet the criteria of rise time and duration, but not recurrence are included, an additional seven sources can be added. A sky map is shown indicating their positions. The sources are spread along the galactic equator and cluster near low galactic longitudes, and their distribution is different from that of the observed globular clusters. Observations based on the SAS-3 X-ray observatory studies and the Goddard X-ray Spectroscopy Experiment on OSO-9 are described. The distribution of the sources is examined and the effect of uneven sky exposure on the observed distribution is evaluated. It has been suggested that the bursts are perhaps produced by remnants of disrupted globular clusters and specifically supermassive black holes. This would imply the existence of a new class of unknown objects, and at present is merely an ad hoc method of relating the burst sources to globular clusters. (U.K.)

  15. On Burst Detection and Prediction in Retweeting Sequence

    Science.gov (United States)

    2015-05-22

    We conduct a comprehensive empirical analysis of a large microblogging dataset collected from the Sina Weibo and report our observations of burst...whether and how accurate we can predict bursts using classifiers based on the extracted features. Our empirical study of the Sina Weibo data shows the...feasibility of burst prediction using appropriately extracted features and classic classifiers. 1 Introduction Microblogging, such as Twitter and Sina

  16. Synergistic effect of helium and hydrogen for bubble swelling in reduced-activation ferritic/martensitic steel under sequential helium and hydrogen irradiation at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wenhui [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Chen, Jihong; Luo, Fengfeng; Li, Tiecheng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Ren, Yaoyao [Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China); Suo, Jinping; Yang, Feng [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-04-15

    Highlights: • Helium/hydrogen synergistic effect can increase irradiation swelling of RAFM steel. • Hydrogen can be trapped to the outer surface of helium bubbles. • Too large a helium bubble can become movable. • Point defects would become mobile and annihilate at dislocations at high temperature. • The peak swelling temperature for RAFM steel is 450 °C. - Abstract: In order to investigate the synergistic effect of helium and hydrogen on swelling in reduced-activation ferritic/martensitic (RAFM) steel, specimens were separately irradiated by single He{sup +} beam and sequential He{sup +} and H{sup +} beams at different temperatures from 250 to 650 °C. Transmission electron microscope observation showed that implantation of hydrogen into the specimens pre-irradiated by helium can result in obvious enhancement of bubble size and swelling rate which can be regarded as a consequence of hydrogen being trapped by helium bubbles. But when temperature increased, Ostwald ripening mechanism would become dominant, besides, too large a bubble could become mobile and swallow many tiny bubbles on their way moving, reducing bubble number density. And these effects were most remarkable at 450 °C which was the peak bubble swelling temperature for RAMF steel. When temperature was high enough, say above 450, point defects would become mobile and annihilate at dislocations or surface. As a consequence, helium could no longer effectively diffuse and clustering in materials and bubble formation was suppressed. When temperature was above 500, helium bubbles would become unstable and decompose or migrate out of surface. Finally no bubble was observed at 650 °C.

  17. Synergistic effect of helium and hydrogen for bubble swelling in reduced-activation ferritic/martensitic steel under sequential helium and hydrogen irradiation at different temperatures

    International Nuclear Information System (INIS)

    Hu, Wenhui; Guo, Liping; Chen, Jihong; Luo, Fengfeng; Li, Tiecheng; Ren, Yaoyao; Suo, Jinping; Yang, Feng

    2014-01-01

    Highlights: • Helium/hydrogen synergistic effect can increase irradiation swelling of RAFM steel. • Hydrogen can be trapped to the outer surface of helium bubbles. • Too large a helium bubble can become movable. • Point defects would become mobile and annihilate at dislocations at high temperature. • The peak swelling temperature for RAFM steel is 450 °C. - Abstract: In order to investigate the synergistic effect of helium and hydrogen on swelling in reduced-activation ferritic/martensitic (RAFM) steel, specimens were separately irradiated by single He + beam and sequential He + and H + beams at different temperatures from 250 to 650 °C. Transmission electron microscope observation showed that implantation of hydrogen into the specimens pre-irradiated by helium can result in obvious enhancement of bubble size and swelling rate which can be regarded as a consequence of hydrogen being trapped by helium bubbles. But when temperature increased, Ostwald ripening mechanism would become dominant, besides, too large a bubble could become mobile and swallow many tiny bubbles on their way moving, reducing bubble number density. And these effects were most remarkable at 450 °C which was the peak bubble swelling temperature for RAMF steel. When temperature was high enough, say above 450, point defects would become mobile and annihilate at dislocations or surface. As a consequence, helium could no longer effectively diffuse and clustering in materials and bubble formation was suppressed. When temperature was above 500, helium bubbles would become unstable and decompose or migrate out of surface. Finally no bubble was observed at 650 °C

  18. LAT Onboard Science: Gamma-Ray Burst Identification

    International Nuclear Information System (INIS)

    Kuehn, Frederick; Hughes, Richard; Smith, Patrick; Winer, Brian; Bonnell, Jerry; Norris, Jay; Ritz, Steven; Russell, James

    2007-01-01

    The main goal of the Large Area Telescope (LAT) onboard science program is to provide quick identification and localization of Gamma Ray Bursts (GRB) onboard the LAT for follow-up observations by other observatories. The GRB identification and localization algorithm will provide celestial coordinates with an error region that will be distributed via the Gamma ray burst Coordinate Network (GCN). We present results that show our sensitivity to bursts as characterized using Monte Carlo simulations of the GLAST observatory. We describe and characterize the method of onboard track determination and the GRB identification and localization algorithm. Onboard track determination is considerably different than in the on-ground case, resulting in a substantially altered point spread function. The algorithm contains tunable parameters which may be adjusted after launch when real bursts characteristics at very high energies have been identified

  19. Gamma-ray burst polarimeter (GAP)

    International Nuclear Information System (INIS)

    Mihara, Tatehiro; Murakami, Toshio; Yonetoku, Daisuke; Gunji, Shuichi; Kubo, Shin

    2013-01-01

    The gamma-ray burst polarimeter (GAP: GAmma-ray burst Polarimeter), which had been almost handcrafted by scientists, has succeeded in working normally in interplanetary space, and in detecting the polarization of the gamma-ray from a mysterious astronomical object 'gamma-ray burst'. It is the first result of the detectors in the world exclusively aiming at detecting gamma-ray polarization. We mainly describe the hardware of our GAP equipment and show the method of preparing equipment to work in the cosmic space with a tight budget. The mechanical structure, the electronic circuits, the software on the equipment, the data analysis on the earth, and the scientific results gained by the observation just over one year, are presented after explaining the principle of gamma-ray polarization detection. Our design to protect equipment against mechanical shock and cosmic radiation may provide useful information for future preparation of compact satellite. (J.P.N.)

  20. Multifrequency Observations of Gamma-Ray Burst

    OpenAIRE

    Greiner, J.

    1995-01-01

    Neither a flaring nor a quiescent counterpart to a gamma-ray burst has yet been convincingly identified at any wavelength region. The present status of the search for counterparts of classical gamma-ray bursts is given. Particular emphasis is put on the search for flaring counterparts, i.e. emission during or shortly after the gamma-ray emission.

  1. Effect of helium ion bombardment on hydrogen behaviour in stainless steel

    International Nuclear Information System (INIS)

    Guseva, M.I.; Stolyarova, V.G.; Gorbatov, E.A.

    1987-01-01

    The effect of helium ion bombardment on hydrogen behaviour in 12Kh18N10T stainless steel is investigated. Helium and hydrogen ion bombardment was conducted in the ILU-3 ion accelerator; the fluence and energy made up 10 16 -5x10 17 cm -2 , 30 keV and 10 16 -5x10 18 cm -2 , 10 keV respectively. The method of recoil nuclei was used for determination of helium and hydrogen content. Successive implantation of helium and hydrogen ions into 12Kh18N10T stainless steel results in hydrogen capture by defects formed by helium ions

  2. Gamma Ray Bursts and the Birth of Black Holes

    Science.gov (United States)

    Gehrels, Neil

    2009-01-01

    Black holes have been predicted since the 1940's from solutions of Einstein's general relativity field equation. There is strong evidence of their existence from astronomical observations, but their origin has remained an open question of great interest. Gamma-ray bursts may the clue. They are powerful explosions, visible to high redshift, and appear to be the birth cries of black holes. The Swift and Fermi missions are two powerful NASA observatories currently in orbit that are discovering how gamma-ray bursts work. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are tremendously luminous and are providing a new tool to study the high redshift universe. One Swift burst at z=8.3 is the most distant object known in the universe. The talk will present the latest gamma-ray burst results from Swift and Fermi and will highlight what they are teaching us about black holes and jet outflows.

  3. Observational properties of cosmic gamma-ray bursts

    International Nuclear Information System (INIS)

    Mazets, E.P.

    1986-01-01

    A brief overview of the major observational results obtained in gamma-ray burst studies is presented. Also discussed is to what extent the thermonuclear model, which appears at present to be the most plausible, can account for the observed properties of the bursts. The investigation of gamma-ray bursts should cover observations of the time histories of events, energy spectra, and their variablility, source localization, and inspection of the localization regions during the active and quiescent phases of the source in other wavelengths, as well as, evaluation of the statistical distributions of the data obtained

  4. Strange matter and Big Bang helium synthesis

    International Nuclear Information System (INIS)

    Madsen, J.; Riisager, K.

    1985-01-01

    Stable strange quark matter produced in the QCD phase transition in the early universe will trap neutrons and repel protons, thus reducing primordial helium production, Ysub(p). For reasonable values of Ysub(p), the radius of strange droplets must exceed 10 -6 cm if strange matter shall solve the dark-matter problem without spoiling Big Bang helium synthesis. (orig.)

  5. Asteroseismic estimate of helium abundance of 16 Cyg A, B

    Directory of Open Access Journals (Sweden)

    Verma Kuldeep

    2015-01-01

    Full Text Available The helium ionization zone in a star leaves a characteristic signature on its oscillation frequencies, which can be used to estimate the helium content in the envelope of the star. We use the oscillation frequencies of 16 Cyg A and B, obtained using 2.5 years of Kepler data, to estimate the envelope helium abundance of these stars. We find the envelope helium abundance to lie in the range 0.231–0.251 for 16 Cyg A and 0.218–0.266 for 16 Cyg B.

  6. Heuristic burst detection method using flow and pressure measurements

    NARCIS (Netherlands)

    Bakker, M.; Vreeburg, J.H.G.; Roer, Van de M.; Rietveld, L.C.

    2014-01-01

    Pipe bursts in a drinking water distribution system lead to water losses, interruption of supply, and damage to streets and houses due to the uncontrolled water flow. To minimize the negative consequences of pipe bursts, an early detection is necessary. This paper describes a heuristic burst

  7. The development of a burst criterion for zircaloy fuel cladding under LOCA conditions

    International Nuclear Information System (INIS)

    Neitzel, H.J.; Rossinger, H.E.

    1980-02-01

    A burst criterion model, which assumes that deformation is controlled by steady-state creep, has been developed for a thin-walled cladding, in this case Zircaloy-4, subjected to a differential pressure and high temperature. The creep equation is integrated to obtain a burst time at the singularity of the strain. Once the burst time is known, the burst temperature and burst pressure can be calculated from the known temperature and pressure histories. A further relationship between burst stress and burst temperature is used to calculate the burst strain. Comparison with measured burst data shows good agreement between theory and experiment was found that, if the heating rate is constant, the burst temperature increases with decreasing stress, and that, if the stress level is constant, the burst temperature increases with increasing heating rate. It was also found that anisotropy alters the burst temperature and burst strain, and that test conditions in the α-Zr temperature range have no influence on the burst data. (auth)

  8. Bursts generate a non-reducible spike-pattern code

    Directory of Open Access Journals (Sweden)

    Hugo G Eyherabide

    2009-05-01

    Full Text Available On the single-neuron level, precisely timed spikes can either constitute firing-rate codes or spike-pattern codes that utilize the relative timing between consecutive spikes. There has been little experimental support for the hypothesis that such temporal patterns contribute substantially to information transmission. Using grasshopper auditory receptors as a model system, we show that correlations between spikes can be used to represent behaviorally relevant stimuli. The correlations reflect the inner structure of the spike train: a succession of burst-like patterns. We demonstrate that bursts with different spike counts encode different stimulus features, such that about 20% of the transmitted information corresponds to discriminating between different features, and the remaining 80% is used to allocate these features in time. In this spike-pattern code, the "what" and the "when" of the stimuli are encoded in the duration of each burst and the time of burst onset, respectively. Given the ubiquity of burst firing, we expect similar findings also for other neural systems.

  9. Internally consistent gamma ray burst time history phenomenology

    International Nuclear Information System (INIS)

    Cline, T.L.

    1985-01-01

    A phenomenology for gamma ray burst time histories is outlined. Order of their generally chaotic appearance is attempted, based on the speculation that any one burst event can be represented above 150 keV as a superposition of similarly shaped increases of varying intensity. The increases can generally overlap, however, confusing the picture, but a given event must at least exhibit its own limiting characteristic rise and decay times if the measurements are made with instruments having adequate temporal resolution. Most catalogued observations may be of doubtful or marginal utility to test this hypothesis, but some time histories from Helios-2, Pioneer Venus Orbiter and other instruments having one-to several-millisecond capabilities appear to provide consistency. Also, recent studies of temporally resolved Solar Maximum Mission burst energy spectra are entirely compatible with this picture. The phenomenology suggested here, if correct, may assist as an analytic tool for modelling of burst processes and possibly in the definition of burst source populations

  10. Helium induces preconditioning in human endothelium in vivo

    NARCIS (Netherlands)

    Smit, Kirsten F.; Oei, Gezina T. M. L.; Brevoord, Daniel; Stroes, Erik S.; Nieuwland, Rienk; Schlack, Wolfgang S.; Hollmann, Markus W.; Weber, Nina C.; Preckel, Benedikt

    2013-01-01

    Helium protects myocardium by inducing preconditioning in animals. We investigated whether human endothelium is preconditioned by helium inhalation in vivo. Forearm ischemia-reperfusion (I/R) in healthy volunteers (each group n = 10) was performed by inflating a blood pressure cuff for 20 min.

  11. What can NuSTAR do for X-ray bursts?

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Tomsick, John; Chakrabarty, Deepto

    2012-01-01

    burning are ejected in the burst expansion wind. We have investigated the possibility of observing with NuSTAR some X-ray bursters selected for their high burst rate and trend to exhibit so-called superexpansion bursts. Our main ambition is to detect the photoionization edges associated with the ejected...

  12. Validation of helium inlet design for ITER toroidal field coil

    International Nuclear Information System (INIS)

    Boyer, C.; Seo, K.; Hamada, K.; Foussat, A.; Le Rest, M.; Mitchell, N.; Decool, P.; Savary, F.; Sgobba, S.; Weiss, K.P.

    2014-01-01

    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb 3 Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, are preparing the helium inlet mock-up for a qualification test. (authors)

  13. The compatibility of candidate first wall metallic materials with impure helium

    International Nuclear Information System (INIS)

    Noda, T.; Okada, M.; Watanabe, R.

    1979-01-01

    The compatibilities of SUS 316 stainless steels, Nimonic PE 16, Nb-1% Zr, V-25% Mo, Mo, and TZM with the commercial grade helium (> 99.995%) and the helium containing oxygen of 13 vpm at temperatures from 873 to 1273 K were studied. SUS 316 and PE 16 were internally oxidized above 1100 K. The marked depletion of Cr and Mn in SUS 316 specimens was observed in the commercial grade helium above around 1100 K. Nb-1% Zr and V-25% Mo extremely absorbed oxygen and nitrogen from the helium gases and were deteriorated in the range of test temperatures. Mo and TZM appeared not to be affected by the exposure to the commercial grade helium at temperature up to 1273 K. However, Mo and TZM lost ductility at room temperature after exposure to helium above 1100 and 900 K respectively. (orig.)

  14. Five second helium neutral beam injection using argon-frost cryopumping techniques

    International Nuclear Information System (INIS)

    Phillips, J.C.; Kellman, D.H.; Hong, R.; Kim, J.; Laughon, G.M.

    1995-10-01

    High power helium neutral beams for the heating of tokamak discharges can now be provided for 5 s by using argon cryopumping (of the helium gas) in the beamlines. A system has now been installed to deposit a layer of argon frost on the DIII-D neutral beam cryopanels, between tokamak injection pulses. The layer serves to trap helium on the cryopanels providing sufficient pumping speed for 5 s helium beam extraction. The argon frosting hardware is now present on two of four DIII-D neutral beamlines, allowing injection of up to 6 MW of helium neutral beams per discharge, with pulse lengths of up to 5 s. The argon frosting system is described, along with experimental results demonstrating its effectiveness as a method of economically extending the capabilities of cryogenic pumping panels to allow multi-second helium neutral beam injection

  15. Effect of wear on the burst strength of l-80 steel casing

    International Nuclear Information System (INIS)

    Irawan, S; Bharadwaj, A M; Temesgen, B; Karuppanan, S; Abdullah, M Z B

    2015-01-01

    Casing wear has recently become one of the areas of research interest in the oil and gas industry especially in extended reach well drilling. The burst strength of a worn out casing is one of the significantly affected mechanical properties and is yet an area where less research is done The most commonly used equations to calculate the resulting burst strength after wear are Barlow, the initial yield burst, the full yield burst and the rupture burst equations. The objective of this study was to estimate casing burst strength after wear through Finite Element Analysis (FEA). It included calculation and comparison of the different theoretical bursts pressures with the simulation results along with effect of different wear shapes on L-80 casing material. The von Misses stress was used in the estimation of the burst pressure. The result obtained shows that the casing burst strength decreases as the wear percentage increases. Moreover, the burst strength value of the casing obtained from the FEA has a higher value compared to the theoretical burst strength values. Casing with crescent shaped wear give the highest burst strength value when simulated under nonlinear analysis. (paper)

  16. Helium refrigerator-liquefier system for MHD generator

    International Nuclear Information System (INIS)

    Akiyama, Y.; Ishii, H.; Mori, Y.; Yamamoto, M.; Wada, R.; Ando, M.

    1974-01-01

    MHD power generators have been investigated in the Electro-Technical Laboratory as one of the National Research and Development Programmes. A helium refrigerator-liquefier system has been developed to cool the superconducting magnet for a 1000 kW class MHD power generator. The turboexpander with low temperature gas bearings and an alternator had been developed for the MHD project at the Electro-Technical Laboratory previously. The liquefaction capacity is 250 iota/h and the refrigeration power is 2.9 kW at 20 K. The superconducting magnet is 50 tons and the cryostat has a liquid helium volume of 2700 iota. The evaporation rate is 60 to 80 iota/h. It takes, in all 2 to 3 weeks to fill the cryostat with liquid helium. (author)

  17. HEATHER - HElium Ion Accelerator for RadioTHERapy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Jordan [Huddersfield U.; Edgecock, Thomas [Huddersfield U.; Green, Stuart [Birmingham U.; Johnstone, Carol [Fermilab

    2017-05-01

    A non-scaling fixed field alternating gradient (nsFFAG) accelerator is being designed for helium ion therapy. This facility will consist of 2 superconducting rings, treating with helium ions (He²⁺ ) and image with hydrogen ions (H + 2 ). Currently only carbon ions are used to treat cancer, yet there is an increasing interest in the use of lighter ions for therapy. Lighter ions have reduced dose tail beyond the tumour compared to carbon, caused by low Z secondary particles produced via inelastic nuclear reactions. An FFAG approach for helium therapy has never been previously considered. Having demonstrated isochronous acceleration from 0.5 MeV to 900 MeV, we now demonstrate the survival of a realistic beam across both stages.

  18. Bubble bursting at an interface

    Science.gov (United States)

    Kulkarni, Varun; Sajjad, Kumayl; Anand, Sushant; Fezzaa, Kamel

    2017-11-01

    Bubble bursting is crucial to understanding the life span of bubbles at an interface and more importantly the nature of interaction between the bulk liquid and the outside environment from the point of view of chemical and biological material transport. The dynamics of the bubble as it rises from inside the liquid bulk to its disappearance on the interface after bursting is an intriguing process, many aspects of which are still being explored. In our study, we make detailed high speed imaging measurements to examine carefully the hole initiation and growth in bursting bubbles that unearth some interesting features of the process. Previous analyses available in literature are revisited based on our novel experimental visualizations. Using a combination of experiments and theory we investigate the role of various forces during the rupturing process. This work aims to further our current knowledge of bubble dynamics at an interface with an aim of predicting better the bubble evolution from its growth to its eventual integration with the liquid bulk.

  19. A description of bubble growth and gas release of helium implanted tungsten

    International Nuclear Information System (INIS)

    Sharafat, S.; Hu, Q.; Ghoniem, N.; Tkahashi, A.

    2007-01-01

    Full text of publication follows: Bubble growth and gas release during annealing of helium implanted tungsten is described using a Kinetic Monte Carlo approach. The implanted spatial profiles of stable bubble nuclei are first determined using the Kinetic Rate Theory based helium evolution code, HEROS. The effects of implantation energy, temperature, and bias forces, such as temperature- and stress gradients on bubble migration and coalescence are investigated to explain experimental gas release measurements. This comprehensive helium bubble evolution and release model, demonstrates the impact of near surface (< 1 um) versus deep helium implantation on bubble evolution. Near surface implanted helium bubbles readily attain large equilibrium sizes, while matrix bubbles remain small with high helium pressures. Using the computer simulation, the various stages of helium bubble nucleation, growth, coalescence, and migration are demonstrated and compared with available experimental results. (authors)

  20. Installation and Commissioning of the Helium Refrigeration System for the HANARO-CNS

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Young Ki; Wu, Sang Ik; Son, Woo Jung

    2009-11-01

    The cold neutron source (CNS), which will be installed in the vertical CN hole of the reflector tank at HANARO, makes thermal neutrons to moderate into the cold neutrons with the ranges of 0.1 ∼ 10 meV passing through a moderator at about 22K. A moderator to produce cold neutrons is liquid hydrogen, which liquefies by the heat transfer with cryogenic helium flowing from the helium refrigeration system. For the maintenance of liquid hydrogen in the IPA, the CNS system is mainly consisted of the hydrogen system to supply the hydrogen to the IPA, the vacuum system to keep the cryogenic liquid hydrogen in the IPA, and the helium refrigeration system to liquefy the hydrogen gas. The helium refrigeration system can be divided into two sections: one is the helium compression part from the low pressure gas to the high pressure gas and the other is the helium expansion part from the high temperature gas and pressure to low temperature and pressure gas by the expansion turbine. The helium refrigeration system except the warm helium pipe and the helium buffer tank has been manufactured by Linde Kryotechnik, AG in Switzerland and installed in the research reactor hall, HANARO. Other components have been manufactured in the domestic company. This technical report deals with the issues, its solutions, and other particular points while the helium refrigeration system was installed at site, verified its performance, and conducted its commissioning along the reactor operation. Furthermore, the operation procedure of the helium refrigeration system is included in here for the normal operation of the CNS

  1. Dark Matter Detection Using Helium Evaporation and Field Ionization.

    Science.gov (United States)

    Maris, Humphrey J; Seidel, George M; Stein, Derek

    2017-11-03

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1  MeV/c^{2}.

  2. Dark Matter Detection Using Helium Evaporation and Field Ionization

    Science.gov (United States)

    Maris, Humphrey J.; Seidel, George M.; Stein, Derek

    2017-11-01

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1 MeV /c2 .

  3. The development of a burst criterion for Zircaloy fuel cladding under LOCA conditions

    International Nuclear Information System (INIS)

    Neitzel, H.J.; Rosinger, H.E.

    1980-10-01

    A burst criterion model, which assumes that deformation is controlled by steady-state creep, has been developed for a thin-walled cladding, in this case Zircaloy-4, subjected to a differential pressure and high temperature. The creep equation is integrated to obtain a burst time at the singularity of the strain. Once that urst time is known, the burst temperature and burst pressure can be calculated from the known temperature and pressure histories. A further relationship between burst stress and burst temperature is used to calculate the burst strain. Comparison with measured burst data shows good agreement between theory and experiment. It was found that, if the heating rate is constant, the burst temperature increases with decreasing stress, and that, if the stress level is constant, the burst temperature increases with increasing heating rate. It was also found that anisotropy alters the burst temperature and burst strain, and that thest conditions in the α-Zr temperature range have no influence on the burst data. (orig.) [de

  4. Stimulus-dependent modulation of spike burst length in cat striate cortical cells.

    Science.gov (United States)

    DeBusk, B C; DeBruyn, E J; Snider, R K; Kabara, J F; Bonds, A B

    1997-07-01

    Burst activity, defined by groups of two or more spikes with intervals of cats. Bursting varied broadly across a population of 507 simple and complex cells. Half of this population had > or = 42% of their spikes contained in bursts. The fraction of spikes in bursts did not vary as a function of average firing rate and was stationary over time. Peaks in the interspike interval histograms were found at both 3-5 ms and 10-30 ms. In many cells the locations of these peaks were independent of firing rate, indicating a quantized control of firing behavior at two different time scales. The activity at the shorter time scale most likely results from intrinsic properties of the cell membrane, and that at the longer scale from recurrent network excitation. Burst frequency (bursts per s) and burst length (spikes per burst) both depended on firing rate. Burst frequency was essentially linear with firing rate, whereas burst length was a nonlinear function of firing rate and was also governed by stimulus orientation. At a given firing rate, burst length was greater for optimal orientations than for nonoptimal orientations. No organized orientation dependence was seen in bursts from lateral geniculate nucleus cells. Activation of cortical contrast gain control at low response amplitudes resulted in no burst length modulation, but burst shortening at optimal orientations was found in responses characterized by supersaturation. At a given firing rate, cortical burst length was shortened by microinjection of gamma-aminobutyric acid (GABA), and bursts became longer in the presence of N-methyl-bicuculline, a GABA(A) receptor blocker. These results are consistent with a model in which responses are reduced at nonoptimal orientations, at least in part, by burst shortening that is mediated by GABA. A similar mechanism contributes to response supersaturation at high contrasts via recruitment of inhibitory responses that are tuned to adjacent orientations. Burst length modulation can serve

  5. Voltage interval mappings for an elliptic bursting model

    OpenAIRE

    Wojcik, Jeremy; Shilnikov, Andrey

    2013-01-01

    We employed Poincar\\'e return mappings for a parameter interval to an exemplary elliptic bursting model, the FitzHugh-Nagumo-Rinzel model. Using the interval mappings, we were able to examine in detail the bifurcations that underlie the complex activity transitions between: tonic spiking and bursting, bursting and mixed-mode oscillations, and finally, mixed-mode oscillations and quiescence in the FitzHugh-Nagumo-Rinzel model. We illustrate the wealth of information, qualitative and quantitati...

  6. Supernova sheds light on gamma-ray bursts

    CERN Multimedia

    2003-01-01

    On 29 March the HETE-II satellite detected the most violent explosion in the universe to date - an enormous burst of gamma rays. Observers across the world recorded and studied the event. It appears to prove that gamma ray bursts originate in supernovae (1 page)

  7. Observation of L-bursts of Jupiter decameter waves

    International Nuclear Information System (INIS)

    Imai, Kazumasa; Tomisawa, Ichiro

    1978-01-01

    The Jupiter decameter waves are the only information source which can be obtained on the earth for the investigation of dynamics concerning the generation of plasma waves in the magnetosphere of Jupiter. The emission of Jupiter decameter waves is modulated by the satellite Io considerably. It is observed that the emission of decameter waves fluctuated much in course of time. The duration time of bursts is 1 to 10 sec and 1 to 50 msec for L-bursts and S-bursts, respectively. The simultaneous observations were conducted at two locations from August, 1977, and at three locations from December, 1977, for searching the source of L-bursts. The relation between the appearance frequency of L-bursts and S-bursts and Io phase and system 3 longitude is explained. The observation points were Sugadaira, Chofu and Toyokawa, The minimum detectable flux density by the wave receiving network is 10 -21 W/m 2 .Hz. Concerning the observed results, the locations of observed events on the Io phase and the system 3 longitude are shown. The analytical results on the L-bursts of the main source and the early source are explained, taking ten events. The analysed dynamic cross-correlation and the spectrum analysis of the decameter intensity are shown. The relation between the origin and the emission mechanism was investigated, considering the observed data and the evaluation mentioned above for the main source and early source, and the clue was obtained to solve the riddle of emission mechanism. (Nakai, Y.)

  8. Effects of helium impurities on superalloys

    International Nuclear Information System (INIS)

    Selle, J.E.

    1977-07-01

    A review of the literature on the effects of helium impurities on superalloys at elevated temperatures was undertaken. The actual effects of these impurities vary depending on the alloy, composition of the gas atmosphere, and temperature. In general, exposure in helium produces significant but not catastrophic changes in the structure and properties of the alloys. The effects of these treatments on the structure, creep, fatigue, and mechanical properties of the various alloys are reviewed and discussed. Suggestions for future work are presented

  9. Detection of gamma-ray bursts from Andromeda

    International Nuclear Information System (INIS)

    Bulik, Tomasz; Coppi, Paolo S.; Lamb, Donald Q.

    1996-01-01

    If gamma-ray bursts originate in a corona around the Milky Way, it should also be possible to detect them from a similar corona around Andromeda. Adopting a simple model of high velocity neutron star corona, we evaluate the ability of instruments on existing missions to detect an excess of bursts toward Andromeda. We also calculate the optimal properties of an instrument designed to detect such an excess. We find that if the bursts radiate isotropically, an experiment with a sampling distance d max > or approx. 500 kpc could detect a significant excess of bursts in the direction of Andromeda in a few years of observation. If the radiation is beamed along the neutron star's direction of motion, an experiment with d max > or approx. 800 kpc would detect such an excess in a similar amount of time, provided that the width of the beam is greater than 10 deg. Lack of an excess toward Andromeda would therefore be compelling evidence that the bursts are cosmological in origin if made by an instrument at least 50 times more sensitive than BATSE, given current constraints on Galactic corona models. Comparisons with detailed dynamical calculations of the spatial distribution of high velocity neutron stars in the coronae around the Milky Way and Andromeda confirm these conclusions

  10. Scientific Applications Performance Evaluation on Burst Buffer

    KAUST Repository

    Markomanolis, George S.

    2017-10-19

    Parallel I/O is an integral component of modern high performance computing, especially in storing and processing very large datasets, such as the case of seismic imaging, CFD, combustion and weather modeling. The storage hierarchy includes nowadays additional layers, the latest being the usage of SSD-based storage as a Burst Buffer for I/O acceleration. We present an in-depth analysis on how to use Burst Buffer for specific cases and how the internal MPI I/O aggregators operate according to the options that the user provides during his job submission. We analyze the performance of a range of I/O intensive scientific applications, at various scales on a large installation of Lustre parallel file system compared to an SSD-based Burst Buffer. Our results show a performance improvement over Lustre when using Burst Buffer. Moreover, we show results from a data hierarchy library which indicate that the standard I/O approaches are not enough to get the expected performance from this technology. The performance gain on the total execution time of the studied applications is between 1.16 and 3 times compared to Lustre. One of the test cases achieved an impressive I/O throughput of 900 GB/s on Burst Buffer.

  11. The study of the influence of helium on the counter's measurement properties

    International Nuclear Information System (INIS)

    Guan Rui; Weng Kuiping; Ren Xingbi

    2009-04-01

    In measurement of tritium by the proportional counter, methane is usually used as counter gas. Gas samples have been made with helium and methane in the proportion of concentration and measured to study the influence of helium on the counter's measurement properties. Then gas sample with tritium and helium has been measured, and the result is according with anticipation. The experiment has showed that the plateau curve of counter could be changed by helium, but the influence could be ignored when helium concentration less 10%. (authors)

  12. Liquid helium plant in Dubna

    International Nuclear Information System (INIS)

    Agapov, N.N.; Baldin, A.M.; Kovalenko, A.D.

    1995-01-01

    The liquid-helium cooling capacity installed at the Laboratory of High Energies is about 5 kw at a 4.5 K temperature level. It is provided with four industrial helium liquefiers of 1.6 kw/4.5 K each. They have been made by the Russian enterprise NPO GELYMASH and upgraded by the specialists of the Laboratory. The first one was put into operation in 1980, the two others in 1991, and the last one is under commissioning. The development of the LHE cryoplant was concerned with the construction of the new superconducting accelerator Nuclotron aimed to accelerate nuclei and heavy ions up to energies of 6 GeV/u. The first test run at the Nuclotron was carried out in March 1993, and the total running time has been about 2000 hours up to now. Since 1992 the cryoplant has been intensively used by the users outside the Laboratory. More than a million liters of liquid helium was provided in 1993 for such users. The reliability of the cryoplant system was as high as 98 percent for 4500 hours of operation in 1993-1994. 7 refs., 4 figs., 1 tab

  13. Contribution to the experimental study of the polarized liquid helium-3; Contributions a l'etude experimentale de l'helium-3 liquide polarise

    Energy Technology Data Exchange (ETDEWEB)

    Villard, B

    1999-07-15

    Spin-polarized liquid helium-3 is prepared by laser optical pumping in low magnetic field and at room temperature, prior to fast liquefaction of the polarized sample. The use of a new helium-3 cryostat enabled us to obtain liquid helium-3 with polarization rates up to 25 % at well-stabilized temperatures (around 0.5 K). We could thereby study the effect of nuclear polarization on liquid-vapour equilibrium, and particularly on the saturated vapour pressure. Very sensitive capacitive gauges were developed. We estimated (to first order in M{sup 2}) the expected effects when the polarization M is suddenly destroyed. These effects were experimentally observed in helium-3/helium-4 mixtures, in pure helium-3, only a transient increase in pressure has been recorded. We then describe in a third part a preliminary experiment which aimed at determining the longitudinal relaxation time T1 in mixtures. Relaxation on the walls is efficiently reduced by a cesium coating and T1s of order 20 minutes were observed. A careful determination of the helium-3 concentration in the liquid phase was made. Finally we studied the effects of dipolar field on transverse polarisation decay in our strongly polarized samples. We observed the free precession of polarization after a NMR pulse, and analysed in detail its decay time constant as a function of different parameters. This time constant drastically varied with the tipping angle, an effect which could be linked to NMR dynamical instabilities. (author)

  14. r-process nucleosynthesis in dynamic helium-burning environments

    International Nuclear Information System (INIS)

    Cowan, J.J.; Cameron, A.G.W.; Truran, J.W.

    1985-01-01

    The results of an extended examination of r-process nucleosynthesis in helium-burning environments are presented. Using newly calculated nuclear rates, dynamical r-process calculations have been made of thermal runaways in helium cores typical of low-mass stars and in the helium zones of stars undergoing supernova explosions. These calculations show that, for a sufficient flux of neutrons produced by the 13 C neutron source, r-process nuclei in solar proportions can be produced. The conditions required for r-process production are found to be: 10 20 --10 21 neutrons cm -3 for times of 0.01--0.1 s and neutron number densities in excess of 10 19 cm -3 for times of approx.1 s. The amount of 13 C required is found to be exceedingly high: larger than is found to occur in any current stellar evolutionary model. It is thus unlikely that these helium-burning environments are responsible for producing the bulk of the r-process elements seen in the solar system

  15. Modeling Space-Time Dependent Helium Bubble Evolution in Tungsten Armor under IFE Conditions

    International Nuclear Information System (INIS)

    Qiyang Hu; Shahram Sharafat; Nasr Ghoniem

    2006-01-01

    The High Average Power Laser (HAPL) program is a coordinated effort to develop Laser Inertial Fusion Energy. The implosion of the D-T target produces a spectrum of neutrons, X-rays, and charged particles, which arrive at the first wall (FW) at different times within about 2.5 μs at a frequency of 5 to 10 Hz. Helium is one of several high-energy charged particle constituents impinging on the candidate tungsten armored low activation ferritic steel First Wall. The spread of the implanted debris and burn helium energies results in a unique space-time dependent implantation profile that spans about 10 μm in tungsten. Co-implantation of X-rays and other ions results in spatially dependent damage profiles and rapid space-time dependent temperature spikes and gradients. The rate of helium transport and helium bubble formation will vary significantly throughout the implanted region. Furthermore, helium will also be transported via the migration of helium bubbles and non-equilibrium helium-vacancy clusters. The HEROS code was developed at UCLA to model the spatial and time-dependent helium bubble nucleation, growth, coalescence, and migration under transient damage rates and transient temperature gradients. The HEROS code is based on kinetic rate theory, which includes clustering of helium and vacancies, helium mobility, helium-vacancy cluster stability, cavity nucleation and growth and other microstructural features such as interstitial loop evolution, grain boundaries, and precipitates. The HEROS code is based on space-time discretization of reaction-diffusion type equations to account for migration of mobile species between neighboring bins as single atoms, clusters, or bubbles. HAPL chamber FW implantation conditions are used to model helium bubble evolution in the implanted tungsten. Helium recycling rate predictions are compared with experimental results of helium ion implantation experiments. (author)

  16. Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone

    Science.gov (United States)

    Lowenstern, Jacob B.; Evans, William C.; Bergfeld, D.; Hunt, Andrew G.

    2014-01-01

    Helium is used as a critical tracer throughout the Earth sciences, where its relatively simple isotopic systematics is used to trace degassing from the mantle, to date groundwater and to time the rise of continents1. The hydrothermal system at Yellowstone National Park is famous for its high helium-3/helium-4 isotope ratio, commonly cited as evidence for a deep mantle source for the Yellowstone hotspot2. However, much of the helium emitted from this region is actually radiogenic helium-4 produced within the crust by α-decay of uranium and thorium. Here we show, by combining gas emission rates with chemistry and isotopic analyses, that crustal helium-4 emission rates from Yellowstone exceed (by orders of magnitude) any conceivable rate of generation within the crust. It seems that helium has accumulated for (at least) many hundreds of millions of years in Archaean (more than 2.5 billion years old) cratonic rocks beneath Yellowstone, only to be liberated over the past two million years by intense crustal metamorphism induced by the Yellowstone hotspot. Our results demonstrate the extremes in variability of crustal helium efflux on geologic timescales and imply crustal-scale open-system behaviour of helium in tectonically and magmatically active regions.

  17. Laser Spectroscopy of Antiprotonic Helium Atoms

    CERN Multimedia

    2002-01-01

    %PS205 %title\\\\ \\\\Following the discovery of metastable antiprotonic helium atoms ($\\overline{p}He^{+} $) at KEK in 1991, systematic studies of their properties were made at LEAR from 1991 to 1996. In the first two years the lifetime of $\\overline{p}He^{+}$ in liquid and gaseous helium at various temperatures and pressures was measured and the effect of foreign gases on the lifetime of these atoms was investigated. Effects were also discovered which gave the antiproton a 14\\% longer lifetime in $^4$He than in $^3$He, and resulted in important differences in the shape of the annihilation time spectra in the two isotopes.\\\\ \\\\Since 1993 laser spectroscopy of the metastable $\\overline{p}He^{+}$ atoms became the main focus of PS205. Transitions were stimulated between metastable and non-metastable states of the $\\overline{p}He^{+}$ atom by firing a pulsed dye laser beam into the helium target every time an identified metastable atom was present (Figure 1). If the laser frequency matched the transition energy, the...

  18. Asteroseismic estimate of helium abundance of a solar analog binary system

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Kuldeep; Antia, H. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Faria, João P.; Monteiro, Mário J. P. F. G. [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Basu, Sarbani [Astronomy Department, Yale University, P. O. Box 208101, New Haven, CT 065208101 (United States); Mazumdar, Anwesh [Homi Bhabha Centre for Science Education, TIFR, V. N. Purav Marg, Mankhurd, Mumbai 400088 (India); Appourchaux, Thierry [Institut d' Astrophysique Spatiale, Université Paris XI-CNRS (UMR8617), Batiment 121, F-91405 Orsay Cedex (France); Chaplin, William J. [School of Physics and Astronomy, University of Birmingham, B15 2TT (United Kingdom); García, Rafael A. [Laboratoire AIM, CEA/DSM, CNRS, Université Paris Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Metcalfe, Travis S. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)

    2014-08-01

    16 Cyg A and B are among the brightest stars observed by Kepler. What makes these stars more interesting is that they are solar analogs. 16 Cyg A and B exhibit solar-like oscillations. In this work we use oscillation frequencies obtained using 2.5 yr of Kepler data to determine the current helium abundance of these stars. For this we use the fact that the helium ionization zone leaves a signature on the oscillation frequencies and that this signature can be calibrated to determine the helium abundance of that layer. By calibrating the signature of the helium ionization zone against models of known helium abundance, the helium abundance in the envelope of 16 Cyg A is found to lie in the range of 0.231 to 0.251 and that of 16 Cyg B lies in the range of 0.218 to 0.266.

  19. Hydrogen and helium shell burning during white dwarf accretion

    Science.gov (United States)

    Cui, Xiao; Meng, Xiang-Cun; Han, Zhan-Wen

    2018-05-01

    Type Ia supernovae (SNe Ia) are believed to be thermonuclear explosions of carbon oxygen (CO) white dwarfs (WDs) with masses close to the Chandrasekhar mass limit. How a CO WD accretes matter and grows in mass to this limit is not well understood, hindering our understanding of SN Ia explosions and the reliability of using SNe Ia as a cosmological distance indicator. In this work, we employed the stellar evolution code MESA to simulate the accretion process of hydrogen-rich material onto a 1.0 M ⊙ CO WD at a high rate (over the Eddington limit) of 4.3 × 10‑7 M ⊙ yr‑1. The simulation demonstrates the characteristics of the double shell burning on top of the WD, with a hydrogen shell burning on top of a helium burning shell. The results show that helium shell burning is not steady (i.e. it flashes). Flashes from the helium shell are weaker than those in the case of accretion of helium-rich material onto a CO WD. The carbon to oxygen mass ratio resulting from the helium shell burning is higher than what was previously thought. Interestingly, the CO WD growing due to accretion has an outer part containing a small fraction of helium in addition to carbon and oxygen. The flashes become weaker and weaker as the accretion continues.

  20. Helium turbomachinery operating experience from gas turbine power plants and test facilities

    International Nuclear Information System (INIS)

    McDonald, Colin F.

    2012-01-01

    The closed-cycle gas turbine, pioneered and deployed in Europe, is not well known in the USA. Since nuclear power plant studies currently being conducted in several countries involve the coupling of a high temperature gas-cooled nuclear reactor with a helium closed-cycle gas turbine power conversion system, the experience gained from operated helium turbomachinery is the focus of this paper. A study done as early as 1945 foresaw the use of a helium closed-cycle gas turbine coupled with a high temperature gas-cooled nuclear reactor, and some two decades later this was investigated but not implemented because of lack of technology readiness. However, the first practical use of helium as a gas turbine working fluid was recognized for cryogenic processes, and the first two small fossil-fired helium gas turbines to operate were in the USA for air liquefaction and nitrogen production facilities. In the 1970's a larger helium gas turbine plant and helium test facilities were built and operated in Germany to establish technology bases for a projected future high efficiency large nuclear gas turbine power plant concept. This review paper covers the experience gained, and the lessons learned from the operation of helium gas turbine plants and related test facilities, and puts these into perspective since over three decades have passed since they were deployed. An understanding of the many unexpected events encountered, and how the problems, some of them serious, were resolved is important to avoid them being replicated in future helium turbomachines. The valuable lessons learned in the past, in many cases the hard way, particularly from the operation in Germany of the Oberhausen II 50 MWe helium gas turbine plant, and the technical know-how gained from the formidable HHV helium turbine test facility, are viewed as being germane in the context of current helium turbomachine design work being done for future high efficiency nuclear gas turbine plant concepts. - Highlights:

  1. Calculation of electron-helium scattering

    International Nuclear Information System (INIS)

    Fursa, D.V.; Bray, I.

    1994-11-01

    We present the Convergent Close-Coupling (CCC) theory for the calculation of electron-helium scattering. We demonstrate its applicability at a range of projectile energies of 1.5 to 500 eV to scattering from the ground state to n ≤3 states. Excellent agreement with experiment is obtained with the available differential, integrated, ionization, and total cross sections, as well as with the electron-impact coherence parameters up to and including the 3 3 D state excitation. Comparison with other theories demonstrates that the CCC theory is the only general reliable method for the calculation of electron helium scattering. (authors). 66 refs., 2 tabs., 24 figs

  2. Neutral transport and helium pumping of ITER

    International Nuclear Information System (INIS)

    Ruzic, D.N.

    1990-08-01

    A 2-D Monte-Carlo simulation of the neutral atom densities in the divertor, divertor throat and pump duct of ITER was made using the DEGAS code. Plasma conditions in the scrape-off layer and region near the separatrix were modeled using the B2 plasma transport code. Wall reflection coefficients including the effect of realistic surface roughness were determined by using the fractal TRIM code. The DEGAS and B2 coupling was iterated until a consistent recycling was predicted. Results were obtained for a helium and a deuterium/tritium mixture on 7 different ITER divertor throat geometries for both the physics phase reference base case and a technology phase case. The geometry with a larger structure on the midplane-side of the throat opening closing the divertor throat and a divertor plate which maintains a steep slope well into the throat removed helium 1.5 times better than the reference geometry for the physics phase case and 2.2 times better for the technology phase case. At the same time the helium to hydrogen pumping ratio shows a factor of 2.34 ± .41 enhancement over the ratio of helium to hydrogen incident on the divertor plate in the physics phase and an improvement of 1.61 ± .31 in the technology phase. If the helium flux profile on the divertor plate is moved outward by 20 cm with respect to the D/T flux profile for this particular geometry, the enhancement increases to 4.36 ± .90 in the physics phase and 5.10 ± .92 in the technology phase

  3. Evaluation of helium cooling for fusion divertors

    International Nuclear Information System (INIS)

    Baxi, C.B.

    1993-09-01

    The divertors of future fusion reactors will have a power throughput of several hundred MW. The peak heat flux on the diverter surface is estimated to be 5 to 15 MW/m 2 at an average heat flux of 2 MW/m 2 . The divertors have a requirement of both minimum temperature (100 degrees C) and maximum temperature. The minimum temperature is dictated by the requirement to reduce the absorption of plasma, and the maximum temperature is determined by the thermo-mechanical properties of the plasma facing materials. Coolants that have been considered for fusion reactors are water, liquid metals and helium. Helium cooling has been shown to be very attractive from safety and other considerations. Helium is chemically and neutronically inert and is suitable for power conversion. The challenges associated with helium cooling are: (1) Manifold sizes; (2) Pumping power; and (3) Leak prevention. In this paper the first two of the above design issues are addressed. A variety of heat transfer enhancement techniques are considered to demonstrate that the manifold sizes and the pumping power can be reduced to acceptable levels. A helium-cooled diverter module was designed and fabricated by GA for steady-state heat flux of 10 MW/m 2 . This module was recently tested at Sandia National Laboratories. At an inlet pressure of 4 MPa, the module was tested at a steady-state heat flux of 10 MW/m 2 . The pumping power required was less than 1% of the power removed. These results verified the design prediction

  4. State of the Art Report for a Bearing for VHTR Helium Circulator

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Song, Kee Nam; Kim, Yong Wan; Lee, Won Jae

    2008-10-01

    A helium circulator in a VHTR(Very High Temperature gas-cooled Reactor) plays a core role which translates thermal energy at high temperature from a nuclear core to a steam generator. Helium as a operating coolant circulates a primary circuit in high temperature and high pressure state, and controls thermal output of a nuclear core by controlling flow rate. A helium circulator is the only rotating machinery in a VHTR, and its reliability should be guaranteed for reliable operation of a reactor and stable production of hydrogen. Generally a main helium circulator is installed on the top of a steam generator vessel, and helium is circulated only by a main helium circulator in a normal operation state. An auxiliary or shutdown circulator is installed at the bottom of a reactor vessel, and it is an auxiliary circulator for shutting down a reactor in case of refueling or accelerating cooling down in case of fast cooling. Since a rotating shaft of a helium circulator is supported by bearings, bearings are the important machine elements which determines reliability of a helium circulator and a nuclear reactor. Various types of support bearings have been developed and applied for circulator bearings since 1960s, and it is still developing for developing VHTRs. So it is necessary to review and analyze the current technical state of helium circulator support bearings to develop bearings for Koran developing VHTR helium circulator

  5. One- and zero-dimensional electron systems over liquid helium (Review article)

    CERN Document Server

    Kovdrya, Y Z

    2003-01-01

    Experimental and theoretical investigations of one-dimensional and zero-dimensional electron systems near the liquid helium surface are surveyed. The properties of electron states over the plane surface of liquid helium including thin layers of helium are considered. The methods of realization of one- and zero-dimensional electron systems are discussed, and the results of experimental and theoretical investigations of their properties are given. The experiments with localization processes in a quasi-one-dimensional electron systems on liquid helium are described. The collective effects in one-dimensional and quasi-one-dimensional electron systems are considered, and the point of possible application of low-dimensional electron systems on liquid helium in electron devices and quantum computers is discussed.

  6. A 3-D model of superfluid helium suitable for numerical analysis

    CERN Document Server

    Darve, C; Van Sciver, S W

    2009-01-01

    The two-fluid description is a very successful phenomenological representation of the properties of Helium II. A 3-D model suitable for numerical analysis based on the Landau-Khalatnikov description of Helium II is proposed. In this paper we introduce a system of partial differential equations that is both complete and consistent as well as practical, to be used for a 3-D solution of the flow of Helium II. The development of a 3-D numerical model for Helium II is motivated by the need to validate experimental results obtained by observing the normal component velocity distribution in a Helium II thermal counter-flow using the Particle Image Velocimetry (PIV) technique.

  7. Physical characterization of the Skua fast burst assembly

    International Nuclear Information System (INIS)

    Paternoster, R.; Bounds, J.; Sanchez, R.; Miko, D.

    1994-01-01

    In this paper we discuss the system design and ongoing efforts to characterize the machine physics and operating properties of the Skua fast burst assembly. The machine is currently operating up to prompt critical while we await approval for super-prompt burst operations. Efforts have centered on characterizing neutron kinetic properties, comparing calculated and measured temperature coefficients and power distributions, improving the burst reproducibility, examining the site-wide dose characteristics, and fitting the machine with cooling and filtration systems

  8. Multi-Index Monitoring and Evaluation on Rock Burst in Yangcheng Mine

    Directory of Open Access Journals (Sweden)

    Yunliang Tan

    2015-01-01

    Full Text Available Based on the foreboding information monitoring of the energy released in the developing process of rock burst, prediction system for rock burst can be established. By using microseismic method, electromagnetic radiation method, and drilling bits method, rock burst in Yangcheng Mine was monitored, and a system of multi-index monitoring and evaluation on rock burst was established. Microseismic monitoring and electromagnetic radiation monitoring were early warning method, and drilling bits monitoring was burst region identification method. There were three identifying indexes: silence period in microseismic monitoring, rising period of the intensity, and rising period of pulse count in electromagnetic radiation monitoring. If there is identified burst risk in the workface, drilling bits method was used to ascertain the burst region, and then pressure releasing methods were carried out to eliminate the disaster.

  9. Irreversible adsorption of atmospheric helium on olivine: A lobster pot analogy

    Science.gov (United States)

    Protin, Marie; Blard, Pierre-Henri; Marrocchi, Yves; Mathon, François

    2016-04-01

    This study reports new experimental results that demonstrate that large amounts of atmospheric helium may be adsorbed onto the surfaces of olivine grains. This behavior is surface-area-related in that this contamination preferentially affects grains that are smaller than 125 μm in size. One of the most striking results of our study is that in vacuo heating at 900 °C for 15 min is not sufficient to completely remove the atmospheric contamination. This suggests that the adsorption of helium may involve high-energy trapping of helium through irreversible anomalous adsorption. This trapping process of helium can thus be compared to a ;lobster pot; adsorption: atmospheric helium easily gets in, but hardly gets out. While this type of behavior has previously been reported for heavy noble gases (Ar, Kr, Xe), this is the first time that it has been observed for helium. Adsorption of helium has, until now, generally been considered to be negligible on silicate surfaces. Our findings have significant implications for helium and noble gas analysis of natural silicate samples, such as for cosmic-ray exposure dating or noble gas characterization of extraterrestrial material. Analytical procedures in future studies should be adapted in order to avoid this contamination. The results of this study also allow us to propose an alternative explanation for previously described matrix loss of cosmogenic 3He.

  10. Correlation for boron carbide helium release in fast reactors

    International Nuclear Information System (INIS)

    Basmajian, J.A.; Pitner, A.L.

    1977-04-01

    An empirical helium correlation for the helium release from boron carbide has been developed. The correlation provides a good fit to the experimental data in the temperature range from 800 to 1350 0 K, and burnup levels up to 80 x 10 20 captures/cm 3 . The correlation has the capability of extrapolation to 2200 0 K (3500 0 F) and 200 x 10 20 captures/cm 3 . In this range the helium release rate will not exceed the generation rate

  11. DO THE FERMI GAMMA-RAY BURST MONITOR AND SWIFT BURST ALERT TELESCOPE SEE THE SAME SHORT GAMMA-RAY BURSTS?

    International Nuclear Information System (INIS)

    Burns, Eric; Briggs, Michael S.; Connaughton, Valerie; Zhang, Bin-Bin; Lien, Amy; Goldstein, Adam; Pelassa, Veronique; Troja, Eleonora

    2016-01-01

    Compact binary system mergers are expected to generate gravitational radiation detectable by ground-based interferometers. A subset of these, the merger of a neutron star with another neutron star or a black hole, are also the most popular model for the production of short gamma-ray bursts (GRBs). The Swift Burst Alert Telescope (BAT) and the Fermi Gamma-ray Burst Monitor (GBM) trigger on short GRBs (SGRBs) at rates that reflect their relative sky exposures, with the BAT detecting 10 per year compared to about 45 for GBM. We examine the SGRB populations detected by Swift BAT and Fermi GBM. We find that the Swift BAT triggers on weaker SGRBs than Fermi GBM, providing they occur close to the center of the BAT field of view, and that the Fermi GBM SGRB detection threshold remains flatter across its field of view. Overall, these effects combine to give the instruments the same average sensitivity, and account for the SGRBs that trigger one instrument but not the other. We do not find any evidence that the BAT and GBM are detecting significantly different populations of SGRBs. Both instruments can detect untriggered SGRBs using ground searches seeded with time and position. The detection of SGRBs below the on-board triggering sensitivities of Swift BAT and Fermi GBM increases the possibility of detecting and localizing the electromagnetic counterparts of gravitational wave (GW) events seen by the new generation of GW detectors

  12. DO THE FERMI GAMMA-RAY BURST MONITOR AND SWIFT BURST ALERT TELESCOPE SEE THE SAME SHORT GAMMA-RAY BURSTS?

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Eric; Briggs, Michael S. [University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Connaughton, Valerie [Universities Space Research Association, Science and Technology Institute, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Zhang, Bin-Bin [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Lien, Amy [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Goldstein, Adam [NASA Postdoctoral Program, Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pelassa, Veronique [Smithsonian Astrophysical Observatory, P.O. Box 97, Amado, AZ 85645 (United States); Troja, Eleonora, E-mail: eb0016@uah.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-02-20

    Compact binary system mergers are expected to generate gravitational radiation detectable by ground-based interferometers. A subset of these, the merger of a neutron star with another neutron star or a black hole, are also the most popular model for the production of short gamma-ray bursts (GRBs). The Swift Burst Alert Telescope (BAT) and the Fermi Gamma-ray Burst Monitor (GBM) trigger on short GRBs (SGRBs) at rates that reflect their relative sky exposures, with the BAT detecting 10 per year compared to about 45 for GBM. We examine the SGRB populations detected by Swift BAT and Fermi GBM. We find that the Swift BAT triggers on weaker SGRBs than Fermi GBM, providing they occur close to the center of the BAT field of view, and that the Fermi GBM SGRB detection threshold remains flatter across its field of view. Overall, these effects combine to give the instruments the same average sensitivity, and account for the SGRBs that trigger one instrument but not the other. We do not find any evidence that the BAT and GBM are detecting significantly different populations of SGRBs. Both instruments can detect untriggered SGRBs using ground searches seeded with time and position. The detection of SGRBs below the on-board triggering sensitivities of Swift BAT and Fermi GBM increases the possibility of detecting and localizing the electromagnetic counterparts of gravitational wave (GW) events seen by the new generation of GW detectors.

  13. Continuous magnetic refrigeration in the superfluid helium range

    International Nuclear Information System (INIS)

    Lacaze, Alain.

    1982-10-01

    An experimental prototype magnetic refrigerator based on the well known adiabatic demagnetization principle is described. A continuous process is employed in which gadolinium garnet follows successive magnetization-demagnetization cycles between a hot liquid helium source at 4.2K and a cold superfluid helium source at T [fr

  14. Swift-BAT: The First Year of Gamma-Ray Burst Detections

    Science.gov (United States)

    Krimm, Hans A.

    2006-01-01

    The Burst Alert Telescope (BAT) on the Swift has been detecting gamma-ray bursts (GRBs) since Dec. 17,2004 and automated burst alerts have been distributed since Feb. 14,2005. Since commissioning the BAT has triggered on more than 100 GRBs, nearly all of which have been followed up by the narrow-field instruments on Swift through automatic repointing, and by ground and other satellite telescopes after rapid notification. Within seconds of a trigger the BAT produces and relays to the ground a position good to three arc minutes and a four channel light curve. A full ten minutes of event data follows on subsequent ground station passes. The burst archive has allowed us to determine ensemble burst parameters such as fluence, peak flux and duration. An overview of the properties of BAT bursts and BAT'S performance as a burst monitor will be presented in this talk. BAT is a coded aperture imaging system with a wide (approx.2 sr) field of view consisting of a large coded mask located 1 m above a 5200 cm2 array of 32.768 CdZnTe detectors. All electronics and other hardware systems on the BAT have been operating well since commissioning and there is no sign of any degradation on orbit. The flight and ground software have proven similarly robust and allow the real time localization of all bursts and the rapid derivation of burst light curves, spectra and spectral fits on the ground.

  15. Frequency dependent characteristics of solar impulsive radio bursts

    International Nuclear Information System (INIS)

    Das, T.K.; Das Gupta, M.K.

    1983-01-01

    An investigation was made of the impulsive radio bursts observed in the frequency range 0.245 to 35 GHz. Important results obtained are: (i) Simple type 1 bursts with intensities 0 to 10 f.u. and simple type 2 bursts with intensities 10 to 500 f.u. are predominant in the frequency ranges 1.415 to 4.995 GHz and 4.995 to 8.8 GHz, respectively; (ii) With maxima around 2.7 GHz and 4 GHz for the first and second types respectively, the durations of the radio bursts decrease gradually both towards lower and higher frequencies; (iii) As regards occurrences, the first type dominates in the southern solar hemisphere peaking around 8.8 GHz, whereas the second type favours the north with no well-defined maximum in any frequency; (iv) Both types prefer the eastern hemisphere, the peak occurrences being around 8.8 GHz and 5 GHz for the two successive types, respectively; (c) The spectra of impulsive radio bursts are generally of the inverted U-type with the maximum emission intensity between 5 and 15 GHz. (author)

  16. Ion burst event in the earth's dayside magnetosheath

    International Nuclear Information System (INIS)

    Paschalidis, N.P.; Krimigis, S.M.; Sibeck, D.G.; McEntire, R.W.; Zanetti, L.J.; Sarris, E.T.; Christon, S.P.

    1991-01-01

    The MEPA instrument on the AMPTE/CCE Spacecraft provided ion angular distributions as rapidly as every 6 sec for H, He, and O at energies of 10 keV to 2 MeV in the dayside magnetosheath within 8.75 R E , the CCE apogee. In this report the authors discuss a burst of energetic particles in the subsolar magnetosheath and its association with rapid changes in the local magnetic field direction in such a way that the magnetic field connected the spacecraft to the magnetopause during the enhancement. They find that magnetosheath angular distributions outside the burst peaked at 90 degree pitch angles, whereas during the burst they exhibited field aligned streaming either parallel or antiparallel to the magnetic field combined with a clear earthward gradient. The clear earthward gradients at E ≥ 10 KeV, the streaming, and the slope change in the burst-time magnetosheath spectrum at ∼10 KeV suggest magnetospheric source for the burst-time ≥ 10 KeV ions and heated solar wind for E < 10 KeV

  17. Fuzzy correlations of gamma-ray bursts

    International Nuclear Information System (INIS)

    Hartmann, D.H.; Linder, E.V.; Blumenthal, G.R.

    1991-01-01

    The origin of gamma-ray bursts is not known, both in the sense of the nature of the source emitting the radiation and literally, the position of the burst on the sky. Lacking unambiguously identified counterparts in any wavelength band studied to date, statistical approaches are required to determine the burster distance scale. Angular correlation analysis is one of the most powerful tools in this regard. However, poor detector resolution gives large localization errors, effectively beam smearing the positions. The resulting fuzzy angular correlation function is investigated and the generic isotropization that smearing induces on any intrinsic clustering is discussed. In particular, the extent to which gamma-ray burst observations by the BATSE detector aboard the Gamma-Ray Observatory might recover an intrinsic source correlation is investigated. 16 refs

  18. Accelerating Science with the NERSC Burst Buffer Early User Program

    Energy Technology Data Exchange (ETDEWEB)

    Bhimji, Wahid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bard, Debbie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Romanus, Melissa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutgers Univ., New Brunswick, NJ (United States); Paul, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ovsyannikov, Andrey [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Friesen, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bryson, Matt [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Correa, Joaquin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lockwood, Glenn K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tsulaia, Vakho [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Byna, Suren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Farrell, Steve [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gursoy, Doga [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Daley, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Beckner, Vince [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Van Straalen, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tull, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Weber, Gunther H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wright, Nicholas J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prabhat, none [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-01

    NVRAM-based Burst Buffers are an important part of the emerging HPC storage landscape. The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory recently installed one of the first Burst Buffer systems as part of its new Cori supercomputer, collaborating with Cray on the development of the DataWarp software. NERSC has a diverse user base comprised of over 6500 users in 700 different projects spanning a wide variety of scientific computing applications. The use-cases of the Burst Buffer at NERSC are therefore also considerable and diverse. We describe here performance measurements and lessons learned from the Burst Buffer Early User Program at NERSC, which selected a number of research projects to gain early access to the Burst Buffer and exercise its capability to enable new scientific advancements. To the best of our knowledge this is the first time a Burst Buffer has been stressed at scale by diverse, real user workloads and therefore these lessons will be of considerable benefit to shaping the developing use of Burst Buffers at HPC centers.

  19. Hydrogen and helium adsorption on potassium

    International Nuclear Information System (INIS)

    Garcia, R.; Mulders, N.; Hess, G.

    1995-01-01

    A previous quartz microbalance study of adsorption of helium on sodium indicates that the inert layer is surprisingly small. Similar experiments with hydrogen on sodium show layer by layer growth below a temperature of 7K. These results motivated the authors to extend the experiments to lower temperatures. A suitable apparatus, capable of reaching 0.45 K, while still enabling them to do in situ alkali evaporation, has been constructed. The authors will report on the results of microbalance adsorption experiments of helium and hydrogen on potassium

  20. Beyond initiation-limited translational bursting: the effects of burst size distributions on the stability of gene expression

    KAUST Repository

    Kuwahara, Hiroyuki

    2015-11-04

    A main source of gene expression noise in prokaryotes is translational bursting. It arises from efficient translation of mRNAs with low copy numbers, which makes the production of protein copies highly variable and pulsatile. To obtain analytical solutions, previous models to capture this noise source had to assume translation to be initiation-limited, representing the burst size by a specific type of a long-tail distribution. However, there is increasing evidence suggesting that the initiation is not the rate-limiting step in certain settings, for example, under stress conditions. Here, to overcome the limitations imposed by the initiation-limited assumption, we present a new analytical approach that can evaluate biological consequences of the protein burst size with a general distribution. Since our new model can capture the contribution of other factors to the translational noise, it can be used to analyze the effects of gene expression noise in more general settings. We used this new model to analytically analyze the connection between the burst size and the stability of gene expression processes in various settings. We found that the burst size with different distributions can lead to quantitatively and qualitatively different stability characteristics of protein abundance and can have non-intuitive effects. By allowing analysis of how the stability of gene expression processes changes based on various distributions of translational noise, our analytical approach is expected to enable deeper insights into the control of cell fate decision-making, the evolution of cryptic genetic variations, and fine-tuning of gene circuits.

  1. The sample of INTEGRAL SPI-ACS gamma-ray bursts

    International Nuclear Information System (INIS)

    Rau, A.; Kienlin, A. von; Licht, G.G.; Hurley, K.

    2005-01-01

    The anti-coincidence system of the spectrometer on board INTEGRAL is operated as a nearly omni directional gamma-ray burst detector above ∼ 75 KeV. During the elapsed mission time 324 burst candidates were detected. As part of the 3rd Interplanetary Network of gamma-ray detectors the cosmic origin of 115 burst was confirmed. Here we present a preliminary analysis of the SPI-ACS gamma-ray burst sample. In particular we discuss the origin of a significant population of short events (duration < 0.2 s) and a possible method for a flux calibration of the data

  2. Coupled hydro-neutronic calculations for fast burst reactor accidents

    International Nuclear Information System (INIS)

    Paternoster, R.; Kimpland, R.; Jaegers, P.; McGhee, J.

    1994-01-01

    Methods are described for determining the fully coupled neutronic/hydrodynamic response of fast burst reactors (FBR) under disruptive accident conditions. Two code systems, PAD (1 -D Lagrangian) and NIKE-PAGOSA (3-D Eulerian) were used to accomplish this. This is in contrast to the typical methodology that computes these responses by either single point kinetics or in a decoupled manner. This methodology is enabled by the use of modem supercomputers (CM-200). Two examples of this capability are presented: an unreflected metal fast burst assembly, and a reflected fast burst assembly typical of the Skua or SPR-III class of fast burst reactor

  3. The evolution of US helium-cooled blankets

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Schultz, K.R.; Cheng, E.T.

    1991-01-01

    This paper reviews and compares four helium-cooled fusion reactor blanket designs. These designs represent generic configurations of using helium to cool fusion reactor blankets that were studied over the past 20 years in the United States of America (US). These configurations are the pressurized module design, the pressurized tube design, the solid particulate and gas mixture design, and the nested shell design. Among these four designs, the nested shell design, which was invented for the ARIES study, is the simplest in configuration and has the least number of critical issues. Both metallic and ceramic-composite structural materials can be used for this design. It is believed that the nested shell design can be the most suitable blanket configuration for helium-cooled fusion power and experimental reactors. (orig.)

  4. Gaseous Helium storage and management in the cryogenic system for the LHC

    CERN Document Server

    Barranco-Luque, M

    2000-01-01

    The Large Hadron Collider (LHC) is presently under construction at CERN. Its main components are superconducting magnets which will operate in superfluid helium requiring cryogenics on a length of about 24 km around the machine ring with a total helium inventory of about 100 tonnes. As no permanent liquid helium storage is foreseen and for reasons of investment costs, only half of the total helium content can be stored in gaseous form in medium pressure vessels. During the LHC operation part of these vessels will be used as helium buffer in the case of multiple magnet quenches. This paper describes the storage, distribution and management of the helium, the layout and the connection to the surface and underground equipment of the cryogenic system.

  5. Radiation damage in gallium-stabilized δ-plutonium with helium bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Wu, FengChao [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China); Wang, Pei [Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Liu, XiaoYi [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China); Wu, HengAn, E-mail: wuha@ustc.edu.cn [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China)

    2017-02-15

    To understand the role of helium on self-irradiation effects in δ-plutonium, microstructure evolutions due to α-decay events near pre-existing helium bubbles in gallium-stabilized δ-plutonium are investigated using molecular dynamics simulations. Bubble promoting effect plays a dominating role in point defects production, resulting in increasing number of point defects. When lightweight helium atoms act as media, energy transfer discrepancy and altered spatial morphology of point defects induced by mass effect are revealed. The evolution of stacking faults surrounding the disordered core is studied and their binding effect on the propagation of point defects are presented. The cascade-induced bubble coalescence, resolution and re-nucleation driven by internal pressure are obtained in the investigation on helium behaviors. The intrinsic tendency in our simulated self-irradiation with helium bubbles is significant for understanding the underlying mechanism of aging in plutonium and its alloys.

  6. Creep properties of Hastelloy X in a carburizing helium environment

    International Nuclear Information System (INIS)

    Nakanishi, T.; Kawakami, H.

    1982-01-01

    In this work, we investigate the environmental effect on the creep behavior of Hastelloy X at 900 0 C in helium and air. Since helium coolant in HTGR is expected to be carburizing and very weakly oxidizing for most metals, testings were focused on the effect of carburizing and slight oxidation. Carburization decreases secondary creep strain rate and delays tertiary creep initiation. On the other hand, the crack growth rate on the specimen surface is enhanced due to very weak oxidation in helium, therefore the tertiary creep strain rate becomes larger than that in air. The rupture time of Hastelloy X was shorter in helium when compared with in air. Stress versus rupture time curves for both environments do not deviate with each other during up to 5000 hours test, and a ratio of rupture stress in helium to that in air was about 0.9

  7. Gamma Ray Burst Discoveries by the Swift Mission

    Science.gov (United States)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit since November 20, 2004 and all hardware is performing well. A new-technology wide-field gamma-ray camera is detecting a hundred bursts per year. sensitive narrow-field X-ray and uv/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 50-100 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. There has been a break-through in the longstanding mystery of short GRBs; they appear to be caused by merging neutron stars. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow.

  8. Gamma Ray Burst Discoveries by the Swift Mission

    Science.gov (United States)

    Gehrels, Neil

    2006-04-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit since November 20, 2004 and all hardware is performing well. A new-technology wide-field gamma-ray camera is detecting a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 50-100 sec by an autonomously controlled ``swift'' spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. There has been a break-through in the long-standing mystery of short GRBs; they appear to be caused by merging neutron stars. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow.

  9. Recent achievements in the field of gamma-ray bursts

    International Nuclear Information System (INIS)

    Lu Tan; Dai Zigao

    2001-01-01

    Recent progresses in the field of gamma-ray bursts is briefly introduced. Gamma-ray bursts are the most energetic explosion since the Big Bang of the universe. Within a few tens of seconds, the energy released in gamma-ray bursts could be several hundred times larger than that released form the sun in its whole life (about 10 billion years). The authors will first briefly discuss the observational facts, based on which the authors will discuss the standard fireball model, the dynamical behavior and evolution of gamma-ray bursts and their afterglows. Then, various observational phenomena that contradict the standard model are given and the importance of these post-standard effects are pointed out. The questions related to the energy source of gamma-ray bursts are still unanswered, and other important questions also remain to be solved

  10. Liquid helium cooling of the MFTF superconducting magnets

    International Nuclear Information System (INIS)

    VanSant, J.H.; Zbasnik, J.P.

    1986-09-01

    During acceptance testing of the Mirror Fusion Test Facility (MFTF), we measured these tests: liquid helium heat loads and flow rates in selected magnets. We used the data from these tests to estimate helium vapor quality in the magnets so that we could determine if adequate conductor cooling conditions had occurred. We compared the measured quality and flow with estimates from a theoretical model developed for the MFTF magnets. The comparison is reasonably good, considering influences that can greatly affect these values. This paper describes the methods employed in making the measurements and developing the theoretical estimates. It also describes the helium system that maintained the magnets at required operating conditions

  11. Probing Intrinsic Properties of Short Gamma-Ray Bursts with Gravitational Waves.

    Science.gov (United States)

    Fan, Xilong; Messenger, Christopher; Heng, Ik Siong

    2017-11-03

    Progenitors of short gamma-ray bursts are thought to be neutron stars coalescing with their companion black hole or neutron star, which are one of the main gravitational wave sources. We have devised a Bayesian framework for combining gamma-ray burst and gravitational wave information that allows us to probe short gamma-ray burst luminosities. We show that combined short gamma-ray burst and gravitational wave observations not only improve progenitor distance and inclination angle estimates, they also allow the isotropic luminosities of short gamma-ray bursts to be determined without the need for host galaxy or light-curve information. We characterize our approach by simulating 1000 joint short gamma-ray burst and gravitational wave detections by Advanced LIGO and Advanced Virgo. We show that ∼90% of the simulations have uncertainties on short gamma-ray burst isotropic luminosity estimates that are within a factor of two of the ideal scenario, where the distance is known exactly. Therefore, isotropic luminosities can be confidently determined for short gamma-ray bursts observed jointly with gravitational waves detected by Advanced LIGO and Advanced Virgo. Planned enhancements to Advanced LIGO will extend its range and likely produce several joint detections of short gamma-ray bursts and gravitational waves. Third-generation gravitational wave detectors will allow for isotropic luminosity estimates for the majority of the short gamma-ray burst population within a redshift of z∼1.

  12. Spatial-temporal variation of low-frequency earthquake bursts near Parkfield, California

    Science.gov (United States)

    Wu, Chunquan; Guyer, Robert; Shelly, David R.; Trugman, D.; Frank, William; Gomberg, Joan S.; Johnson, P.

    2015-01-01

    Tectonic tremor (TT) and low-frequency earthquakes (LFEs) have been found in the deeper crust of various tectonic environments globally in the last decade. The spatial-temporal behaviour of LFEs provides insight into deep fault zone processes. In this study, we examine recurrence times from a 12-yr catalogue of 88 LFE families with ∼730 000 LFEs in the vicinity of the Parkfield section of the San Andreas Fault (SAF) in central California. We apply an automatic burst detection algorithm to the LFE recurrence times to identify the clustering behaviour of LFEs (LFE bursts) in each family. We find that the burst behaviours in the northern and southern LFE groups differ. Generally, the northern group has longer burst duration but fewer LFEs per burst, while the southern group has shorter burst duration but more LFEs per burst. The southern group LFE bursts are generally more correlated than the northern group, suggesting more coherent deep fault slip and relatively simpler deep fault structure beneath the locked section of SAF. We also found that the 2004 Parkfield earthquake clearly increased the number of LFEs per burst and average burst duration for both the northern and the southern groups, with a relatively larger effect on the northern group. This could be due to the weakness of northern part of the fault, or the northwesterly rupture direction of the Parkfield earthquake.

  13. Helium isotopes in rocks, waters and gases of the earth's crust

    International Nuclear Information System (INIS)

    Tolstikhin, L.H.

    1984-01-01

    In this chapter the distribution of helium isotopes in various samples (rocks, minerals, terrestrial fluids, gases etc.) is interpreted from the genetic point of view, namely what sources and processes provide the abundance of helium isotopes observed in a sample. The mixing of mantle, juvenile helium with pure radiogenic helium is the main process responsible for the helium isotope composition in any sample of the earth's crust, the share of each component (reflected in the 3 He/ 4 He ratio) depending on the history of the tectono-magnetic activity in the given region. A specific chemical composition of a rock or mineral, peculiarities of losses or trapping and a peculiar kind of distribution of radioactive elements can lead to unusual isotopic ratios of 3 He/ 4 He in radiogenic helium. Lastly, technogenic radioactive isotopes are widespread in nature; one of them, tritium ( 3 H), yields 3 He excess in terrestrial waters. (orig.)

  14. Arachidonic acid triggers an oxidative burst in leukocytes

    Directory of Open Access Journals (Sweden)

    Pompeia C.

    2003-01-01

    Full Text Available The change in cellular reducing potential, most likely reflecting an oxidative burst, was investigated in arachidonic acid- (AA stimulated leukocytes. The cells studied included the human leukemia cell lines HL-60 (undifferentiated and differentiated into macrophage-like and polymorphonuclear-like cells, Jurkat and Raji, and thymocytes and macrophages from rat primary cultures. The oxidative burst was assessed by nitroblue tetrazolium reduction. AA increased the oxidative burst until an optimum AA concentration was reached and the burst decreased thereafter. In the leukemia cell lines, optimum concentration ranged from 200 to 400 µM (up to 16-fold, whereas in rat cells it varied from 10 to 20 µM. Initial rates of superoxide generation were high, decreasing steadily and ceasing about 2 h post-treatment. The continuous presence of AA was not needed to stimulate superoxide generation. It seems that the NADPH oxidase system participates in AA-stimulated superoxide production in these cells since the oxidative burst was stimulated by NADPH and inhibited by N-ethylmaleimide, diphenyleneiodonium and superoxide dismutase. Some of the effects of AA on the oxidative burst may be due to its detergent action. There apparently was no contribution of other superoxide-generating systems such as xanthine-xanthine oxidase, cytochromes P-450 and mitochondrial electron transport chain, as assessed by the use of inhibitors. Eicosanoids and nitric oxide also do not seem to interfere with the AA-stimulated oxidative burst since there was no systematic effect of cyclooxygenase, lipoxygenase or nitric oxide synthase inhibitors, but lipid peroxides may play a role, as indicated by the inhibition of nitroblue tetrazolium reduction promoted by tocopherol.

  15. The velocities of type II solar radio bursts

    International Nuclear Information System (INIS)

    Tlamicha, A.; Karlicky, M.

    1976-01-01

    A list is presented of type II radio bursts identified at Ondrejov between January 1973 and December 1974 in the frequency range of the dynamic spectrum 70 to 810 MHz. The velocities of shock waves in the individual cases of type II bursts are given using the fourfold Newkirk model. Some problems associated with type II radio bursts and with the propagation of the shock wave into the interplanetary space and into the region of the Earth are also discussed. (author)

  16. The LASL gamma-ray burst astronomy program

    International Nuclear Information System (INIS)

    Klebesadel, R.W.; Evans, W.D.; Laros, J.G.

    1981-01-01

    Gamma-ray burst observations performed by LASL began with the identification and initial report of the phenomenon from data acquired by the Vela satellites. The Vela instruments have recorded responses to 73 gamma-ray bursts over a ten-year interval, and are continuing to contribute toward these observations. Similar instrumentation was included aboard the NRL SOLRAD 11 spacecraft. These performed well but suffered an early demise. Recently, the LASL gamma-ray burst astronomy program has been enhanced through the implementation of experiments aboard the Pioneer Venus Orbiter and ISEF-C spacecraft. Both of these experiments are continuing to contribute data vital to trigonometric directional analyses. (orig.)

  17. Quantum dissipative dynamics and decoherence of dimers on helium droplets

    International Nuclear Information System (INIS)

    Schlesinger, Martin

    2011-01-01

    In this thesis, quantum dynamical simulations are performed in order to describe the vibrational motion of diatomic molecules in a highly quantum environment, so-called helium droplets. We aim to reproduce and explain experimental findings which were obtained from dimers on helium droplets. Nanometer-sized helium droplets contain several thousands of 4 He atoms. They serve as a host for embedded atoms or molecules and provide an ultracold ''refrigerator'' for them. Spectroscopy of molecules in or on these droplets reveals information on both the molecule and the helium environment. The droplets are known to be in the superfluid He II phase. Superfluidity in nanoscale systems is a steadily growing field of research. Spectra obtained from full quantum simulations for the unperturbed dimer show deviations from measurements with dimers on helium droplets. These deviations result from the influence of the helium environment on the dimer dynamics. In this work, a well-established quantum optical master equation is used in order to describe the dimer dynamics effectively. The master equation allows to describe damping fully quantum mechanically. By employing that equation in the quantum dynamical simulation, one can study the role of dissipation and decoherence in dimers on helium droplets. The effective description allows to explain experiments with Rb 2 dimers on helium droplets. Here, we identify vibrational damping and associated decoherence as the main explanation for the experimental results. The relation between decoherence and dissipation in Morse-like systems at zero temperature is studied in more detail. The dissipative model is also used to investigate experiments with K 2 dimers on helium droplets. However, by comparing numerical simulations with experimental data, one finds that further mechanisms are active. Here, a good agreement is obtained through accounting for rapid desorption of dimers. We find that decoherence occurs in the electronic manifold of the

  18. Study on fundamental features of helium turbomachine for high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Wang Jie; Gu Yihua

    2004-01-01

    The High temperature gas-cooled reactor (HTGR) coupled with helium turbine cycle is considered as one of the leading candidates for future nuclear power plants. The HTGR helium turbine cycle was analyzed and optimized. Then the focal point of investigation was concentrated on the fundamental thermodynamic and aerodynamic features of helium turbomachine. As a result, a helium turbomachine is different from a general combustion gas turbine in two main design features, that is a helium turbomachine has more blade stages and shorter blade length, which are caused by the helium property and the high pressure of a closed cycle, respectively. (authors)

  19. International thermodynamic tables of the fluid state helium-4

    CERN Document Server

    de Reuck, K M; McCarty, R D

    2013-01-01

    International Thermodynamic Tables of the Fluid State Helium-4 presents the IUPAC Thermodynamic Tables for the thermodynamic properties of helium. The IUPAC Thermodynamic Tables Project has therefore encouraged the critical analysis of the available thermodynamic measurements for helium and their synthesis into tables. This book is divided into three chapters. The first chapter discusses the experimental results and compares with the equations used to generate the tables. These equations are supplemented by a vapor pressure equation, which represents the 1958 He-4 scale of temperature that is

  20. Gamma ray bursts observed with WATCH‐EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, Niels; Castro-Tirado, A. J.

    1994-01-01

    The WATCH wide field x‐ray monitor has the capability of independently locating bright Gamma Ray Bursts to 1° accuracy. We report the preliminary positions of 12 Gamma Ray Bursts observed with the WATCH monitor flown on the ES spacecraft EURECA during its 11 month mission. Also the recurrence...

  1. Gamma ray bursts: Current status of observations and theory

    International Nuclear Information System (INIS)

    Meegan, C.A.

    1990-04-01

    Gamma ray bursts display a wide range of temporal and spectral characteristics, but typically last several seconds and emit most of their energy in a low energy, gamma ray region. The burst sources appear to be isotropically distributed on the sky. Several lines of evidence suggest magnetic neutron stars as sources for bursts. A variety of energy sources and emission mechanisms are proposed

  2. Infrared and X-ray bursts from the rapid burster

    International Nuclear Information System (INIS)

    Apparao, K.M.V.; Chitre, S.M.

    1979-01-01

    Studies on sudden bursts from the cosmic X-ray sources are reported. The processes occuring from the rise in luminosity of an x-ray source to its collapse are described. Records of the x-ray burst from the globular cluster NGC 6624 and the 'Rapid Burster' are shown. The Infra-red bursts from the Rapid Burster are also explained. (A.K.)

  3. Electrons on the surface of liquid helium

    International Nuclear Information System (INIS)

    Lambert, D.K.

    1979-05-01

    Spectroscopic techniques were used to study transitions of electrons between bound states in the potential well near a helium surface. The charge density distribution of electrons on the surface was independently obtained from electrical measurements. From the measurements, information was obtained both about the interaction of the bound state electrons with the surface of liquid helium and about local disorder in the positions of electrons on the surface

  4. The distribution of helium isotopes of natural gas and tectonic environment

    International Nuclear Information System (INIS)

    Sun Mingliang; Tao Mingxin

    1993-01-01

    Based on the 3 He/ 4 He data of the main oil-gas bearing basins in continental China, a systematic study has been made for the first time on the relations between the space distribution of the helium isotopes of natural gas and the tectonic environment. The average value R-bar of 3 He/ 4 He in eastern China bordering on the Pacific Ocean is 2.08 x 10 -6 >Ra, and that is dualistic mixed helium containing mantle source helium. The R-bar of central and western China is 4.96 x 10 -8 , and that is mainly crust source radioactive helium. The R-bar of Huabei and Zhongyuan oil-gas fields is 8.00 x 10 -7 , and that is a kind of transitional helium intercepted between the eastern region and the central western region of China. On the whole, the 3 He/ 4 He values decrease gradually with the distance from the subduction zone of the Western Pacific Ocean. The results show that the space distributions of the helium isotopes is controlled by the tectonic environment, that is the environment of tensile rift, especially in the neighborhood of deep megafractures advantageous to the rise of mantle source helium, so then and there the 3 He/ 4 He value is the highest; In the most stable craton basins, the value is the lowest and the helium is a typical crust source radioactive one. Between the active area (rift) and stable area, there is the transitional helium and its value is 10 -7 , as is the case in Huabei-Zhongyuan oil-gas field

  5. THE SECOND SWIFT BURST ALERT TELESCOPE GAMMA-RAY BURST CATALOG

    International Nuclear Information System (INIS)

    Sakamoto, T.; Baumgartner, W. H.; Cummings, J. R.; Krimm, H. A.; Barthelmy, S. D.; Gehrels, N.; Markwardt, C. B.; Parsons, A. M.; Tueller, J.; Fenimore, E. E.; Palmer, D. M.; Sato, G.; Stamatikos, M.; Ukwatta, T. N.; Zhang, B.

    2011-01-01

    We present the second Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts (GRBs), which contains 476 bursts detected by the BAT between 2004 December 19 and 2009 December 21. This catalog (hereafter the BAT2 catalog) presents burst trigger time, location, 90% error radius, duration, fluence, peak flux, time-averaged spectral parameters, and time-resolved spectral parameters measured by the BAT. In the correlation study of various observed parameters extracted from the BAT prompt emission data, we distinguish among long-duration GRBs (L-GRBs), short-duration GRBs (S-GRBs), and short-duration GRBs with extended emission (S-GRBs with E.E.) to investigate differences in the prompt emission properties. The fraction of L-GRBs, S-GRBs, and S-GRBs with E.E. in the catalog are 89%, 8%, and 2%, respectively. We compare the BAT prompt emission properties with the BATSE, BeppoSAX, and HETE-2 GRB samples. We also correlate the observed prompt emission properties with the redshifts for the GRBs with known redshift. The BAT T 90 and T 50 durations peak at 70 s and 30 s, respectively. We confirm that the spectra of the BAT S-GRBs are generally harder than those of the L-GRBs. The time-averaged spectra of the BAT S-GRBs with E.E. are similar to those of the L-GRBs. Whereas, the spectra of the initial short spikes of the S-GRBs with E.E. are similar to those of the S-GRBs. We show that the BAT GRB samples are significantly softer than the BATSE bright GRBs and that the time-averaged E obs peak of the BAT GRBs peaks at 80 keV, which is significantly lower energy than those of the BATSE sample, which peak at 320 keV. The time-averaged spectral properties of the BAT GRB sample are similar to those of the HETE-2 GRB samples. By time-resolved spectral analysis, we find that only 10% of the BAT observed photon indices are outside the allowed region of the synchrotron shock model. We see no obvious observed trend in the BAT T 90 and the observed spectra with redshifts. The T 90

  6. On the Nature of the Gamma-ray Bursts

    Directory of Open Access Journals (Sweden)

    Kyung-Ai Hong

    1987-12-01

    Full Text Available Review of the γ-ray burst phenomena are presented. History of the γ-ray bursts, characteristics, and three radiation mechanisms of thermal bremsstrahlung, thermal synchrotron, and inverse Compton scattering processes are considered.

  7. Unusual X-ray burst profiles from 4U/MXB 1636-53

    Science.gov (United States)

    Sztajno, M.; Truemper, J.; Pietsch, W.; Van Paradijs, J.; Stollman, G.

    1985-01-01

    During a one day Exosat observation eight X-ray bursts from 4U/MXB 1636-53 are observed. Four of these were very unusual. Their peak fluxes were relatively low, and they showed a distinct double peak in their bolometric flux profiles. These new double-peaked bursts are unexplained by presently available models of X-ray bursts. It is possible that the energy release in these bursts proceeds in two 'steps'. The burst profiles are not the result of an expansion and subsequent contraction of the photosphere of the neutron star. Thus, they are very different from previously observed bursts which do show a double peak in certain energy ranges but not in their bolometric flux profiles; these are satisfactorily explained in terms of photospheric radius expansion and contraction. The anticorrelation between the apparent blackbody radius and blackbody temperature is discussed in terms of the nonPlanckian character of burst spectra and it is concluded that the model calculations reported by London, Taam, and Howard in 1984 give a reasonable first-order description of the observed apparent radius changes in X-ray bursts.

  8. Quantitative mass-spectrometric analysis of hydrogen helium isotope mixtures

    International Nuclear Information System (INIS)

    Langer, U.

    1998-12-01

    This work deals with the mass-spectrometric method for the quantitative analysis of hydrogen-helium-isotope mixtures, with special attention to fusion plasma diagnostics. The aim was to use the low-resolution mass spectrometry, a standard measuring method which is well established in science and industry. This task is solved by means of the vector mass spectrometry, where a mass spectrum is repeatedly measured, but with stepwise variation of the parameter settings of a quadruple mass spectrometer. In this way, interfering mass spectra can be decomposed and, moreover, it is possible to analyze underestimated mass spectra of complex hydrogen-helium-isotope mixtures. In this work experimental investigations are presented which show that there are different parameters which are suitable for the UMS-method. With an optimal choice of the parameter settings hydrogen-helium-isotope mixtures can be analyzed with an accuracy of 1-3 %. In practice, a low sensitivity for small helium concentration has to be noted. To cope with this task, a method for selective hydrogen pressure reduction has been developed. Experimental investigations and calculations show that small helium amounts (about 1 %) in a hydrogen atmosphere can be analyzed with an accuracy of 3 - 10 %. Finally, this work deals with the effects of the measuring and calibration error on the resulting error in spectrum decomposition. This aspect has been investigated both in general mass-spectrometric gas analysis and in the analysis of hydrogen-helium-mixtures by means of the vector mass spectrometry. (author)

  9. DETECTING THE SUPERNOVA BREAKOUT BURST IN TERRESTRIAL NEUTRINO DETECTORS

    International Nuclear Information System (INIS)

    Wallace, Joshua; Burrows, Adam; Dolence, Joshua C.

    2016-01-01

    We calculate the distance-dependent performance of a few representative terrestrial neutrino detectors in detecting and measuring the properties of the ν e breakout burst light curve in a Galactic core-collapse supernova. The breakout burst is a signature phenomenon of core collapse and offers a probe into the stellar core through collapse and bounce. We examine cases of no neutrino oscillations and oscillations due to normal and inverted neutrino-mass hierarchies. For the normal hierarchy, other neutrino flavors emitted by the supernova overwhelm the ν e signal, making a detection of the breakout burst difficult. For the inverted hierarchy (IH), some detectors at some distances should be able to see the ν e breakout burst peak and measure its properties. For the IH, the maximum luminosity of the breakout burst can be measured at 10 kpc to accuracies of ∼30% for Hyper-Kamiokande (Hyper-K) and ∼60% for the Deep Underground Neutrino Experiment (DUNE). Super-Kamiokande (Super-K) and Jiangmen Underground Neutrino Observatory (JUNO) lack the mass needed to make an accurate measurement. For the IH, the time of the maximum luminosity of the breakout burst can be measured in Hyper-K to an accuracy of ∼3 ms at 7 kpc, in DUNE to ∼2 ms at 4 kpc, and JUNO and Super-K can measure the time of maximum luminosity to an accuracy of ∼2 ms at 1 kpc. Detector backgrounds in IceCube render a measurement of the ν e breakout burst unlikely. For the IH, a measurement of the maximum luminosity of the breakout burst could be used to differentiate between nuclear equations of state

  10. Rock Burst Mechanics: Insight from Physical and Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    J. Vacek

    2008-01-01

    Full Text Available Rock burst processes in mines are studied by many groups active in the field of geomechanics. Physical and mathematical modelling can be used to better understand the phenomena and mechanisms involved in the bursts. In the present paper we describe both physical and mathematical models of a rock burst occurring in a gallery of a coal mine.For rock bursts (also called bumps to occur, the rock has to possess certain particular rock burst properties leading to accumulation of energy and the potential to release this energy. Such materials may be brittle, or the rock burst may arise at the interfacial zones of two parts of the rock, which have principally different material properties (e.g. in the Poíbram uranium mines.The solution is based on experimental and mathematical modelling. These two methods have to allow the problem to be studied on the basis of three presumptions:· the solution must be time dependent,· the solution must allow the creation of cracks in the rock mass,· the solution must allow an extrusion of rock into an open space (bump effect. 

  11. Validation of Helium Inlet Design for ITER Toroidal Field Coil

    CERN Document Server

    Boyer, C; Hamada, K; Foussat, A; Le Rest, M; Mitchell, N; Decool, P; Savary, F; Sgobba, S; Weiss, K-P

    2014-01-01

    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA-Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb$_{3}$Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, a...

  12. Small machinery for pumping and compressing helium near 40K

    International Nuclear Information System (INIS)

    Swift, W.L.; Sixsmith, H.

    1984-01-01

    There is a significant need for small, reliable pumps and compressors suitable for circulating helium at temperatures near 4 0 K. Most pumps or compressors which have been developed to data for these applications are designed for relatively limited use. They are generally used in laboratory environments where life requirements for the experiments may be relatively short, being of the order of several hundred hours. In recent years, several applications have been identified where pumps or compressors (at liquid helium temperatures) must have high reliability if they are to be used successfully. These applications include liquid helium circulation systems through superconducting magnets and transmission lines, and cold compression applications where the compressor is used as a vacuum pump to lower the temperature of a liquid helium bath. This paper discusses the technical considerations which must be taken into account in the design and development of machinery to meet these needs. The design of a centrifugal machine which can act as a helium pump or compressor is presented

  13. On burst-and-coast swimming performance in fish-like locomotion

    International Nuclear Information System (INIS)

    Chung, M-H

    2009-01-01

    Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-and-coast style is computed assuming that the burst phase is composed of a single tail-beat. Swimming efficiency is evaluated in terms of the mass-specific cost of transport instead of the Froude efficiency. The effects of the Reynolds number (based on the body length and burst time), duty cycle and fineness ratio (the body length over the largest thickness) on swimming performance (momentum capacity and the mass-specific cost of transport) are studied quantitatively. The results lead to a conclusion consistent with previous findings that a larval fish seldom swims in a burst-and-coast style. Given mass and swimming speed, a fish needs the least cost if it swims in a burst-and-coast style with a fineness ratio of 8.33. This energetically optimal fineness ratio is larger than that derived from the simple hydromechanical model proposed in literature. The calculated amount of energy saving in burst-and-coast swimming is comparable with the real-fish estimation in the literature. Finally, the predicted wake-vortex structures of both continuous and burst-and-coast swimming are biologically relevant.

  14. On burst-and-coast swimming performance in fish-like locomotion.

    Science.gov (United States)

    Chung, M-H

    2009-09-01

    Burst-and-coast swimming performance in fish-like locomotion is studied via two-dimensional numerical simulation. The numerical method used is the collocated finite-volume adaptive Cartesian cut-cell method developed previously. The NACA00xx airfoil shape is used as an equilibrium fish-body form. Swimming in a burst-and-coast style is computed assuming that the burst phase is composed of a single tail-beat. Swimming efficiency is evaluated in terms of the mass-specific cost of transport instead of the Froude efficiency. The effects of the Reynolds number (based on the body length and burst time), duty cycle and fineness ratio (the body length over the largest thickness) on swimming performance (momentum capacity and the mass-specific cost of transport) are studied quantitatively. The results lead to a conclusion consistent with previous findings that a larval fish seldom swims in a burst-and-coast style. Given mass and swimming speed, a fish needs the least cost if it swims in a burst-and-coast style with a fineness ratio of 8.33. This energetically optimal fineness ratio is larger than that derived from the simple hydromechanical model proposed in literature. The calculated amount of energy saving in burst-and-coast swimming is comparable with the real-fish estimation in the literature. Finally, the predicted wake-vortex structures of both continuous and burst-and-coast swimming are biologically relevant.

  15. Forced two phase helium cooling of large superconducting magnets

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Taylor, J.D.

    1979-08-01

    A major problem shared by all large superconducting magnets is the cryogenic cooling system. Most large magnets are cooled by some variation of the helium bath. Helium bath cooling becomes more and more troublesome as the size of the magnet grows and as geometric constraints come into play. An alternative approach to cooling large magnet systems is the forced flow, two phase helium system. The advantages of two phase cooling in many magnet systems are shown. The design of a two phase helium system, with its control dewar, is presented. The paper discusses pressure drop of a two phase system, stability of a two phase system and the method of cool down of a two phase system. The results of experimental measurements at LBL are discussed. Included are the results of cool down and operation of superconducting solenoids

  16. Characteristics of shock-associated fast-drift kilometric radio bursts

    Science.gov (United States)

    Macdowall, R. J.; Kundu, M. R.; Stone, R. G.

    1987-01-01

    The existence of a class of fast-drift, shock-associated (SA), kilometric radio bursts which occur at the time of metric type II emission and which are not entirely the kilometric continuation of metric type III bursts has been reported previously (Cane et al., 1981). In this paper unambiguous SA event criteria are established for the purpose of statistically comparing SA events with conventional kilometric type III bursts. Applying these criteria to all long-duration, fast-drift bursts observed by the ISEE-3 spacecraft during a 28-month interval, it is found that more than 70 percent of the events satisfying the criteria are associated with the radio signatures of coronal shocks. If a given event is associated with a metric type II or type IV burst, it is 13 times more likely to satisfy the SA criteria than an event associated only with metric type III activity.

  17. Gamma-ray bursts observed by the watch experiment

    DEFF Research Database (Denmark)

    Lund, Niels; Brandt, Søren; Castro-Tirado, A. J.

    1991-01-01

    After two years in orbit the WATCH instruments on the GRANAT space observatory have localized seven gamma burst sources with better than 1° accuracy. In several cases, follow‐up observations with Schmidt telescopes have been made within a few days. Some of the bursts have also been detected...... by the distant space probes PVO and ULYSSES and there are, therefore, good prospects for obtaining much improved positions using the burst arrival times. The existence of the almost concurrent Schmidt plates could then become particularly interesting....

  18. Gamma-ray burst theory after Swift.

    Science.gov (United States)

    Piran, Tsvi; Fan, Yi-Zhong

    2007-05-15

    Afterglow observations in the pre-Swift era confirmed to a large extend the relativistic blast wave model for gamma-ray bursts (GRBs). Together with the observations of properties of host galaxies and the association with (type Ic) SNe, this has led to the generally accepted collapsar origin of long GRBs. However, most of the afterglow data was collected hours after the burst. The X-ray telescope and the UV/optical telescope onboard Swift are able to slew to the direction of a burst in real time and record the early broadband afterglow light curves. These observations, and in particular the X-ray observations, resulted in many surprises. While we have anticipated a smooth transition from the prompt emission to the afterglow, many observed that early light curves are drastically different. We review here how these observations are changing our understanding of GRBs.

  19. Interaction function of coupled bursting neurons

    International Nuclear Information System (INIS)

    Shi Xia; Zhang Jiadong

    2016-01-01

    The interaction functions of electrically coupled Hindmarsh–Rose (HR) neurons for different firing patterns are investigated in this paper. By applying the phase reduction technique, the phase response curve (PRC) of the spiking neuron and burst phase response curve (BPRC) of the bursting neuron are derived. Then the interaction function of two coupled neurons can be calculated numerically according to the PRC (or BPRC) and the voltage time course of the neurons. Results show that the BPRC is more and more complicated with the increase of the spike number within a burst, and the curve of the interaction function oscillates more and more frequently with it. However, two certain things are unchanged: ϕ = 0, which corresponds to the in-phase synchronization state, is always the stable equilibrium, while the anti-phase synchronization state with ϕ = 0.5 is an unstable equilibrium. (paper)

  20. Type III bursts in interplanetary space - Fundamental or harmonic?

    Science.gov (United States)

    Dulk, G. A.; Steinberg, J. L.; Hoang, S.

    1984-01-01

    ISEE-3 spacecraft observation of 120 relatively simple, isolated bursts in the 30-1980 kHz range are the basis of the present study of Type III bursts in the solar wind. Several characteristics are identified for many of these bursts which imply that the mode of emission changes from predominantly fundamental plasma radiation during the rise phase to predominantly second harmonic during decay. The fundamental emission begins in time coincidence with the start of Langmuir waves, confirming the conventional belief in these waves' causation of Type III bursts. Attention is given to the characteristics of fundamental components, by comparison to harmonics, at km-wavelengths.

  1. A polarized fast radio burst at low Galactic latitude

    OpenAIRE

    Petroff, E.; Kasliwal, M.; Ravi, V.

    2017-01-01

    We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 ± 0.8 pc cm^(−3), a pulse duration of 2.8 ^(+1.2)_(−0.5)ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7 ^(+0.2)_(−0.1) Jy. The FRB originated at a Galactic longitude and latitude of 24.66°, 5.28° and 25° away from the Galactic Center. The burst was found t...

  2. Development of 18 K helium refrigeration system for CERN

    CERN Document Server

    CERN. Geneva

    2004-01-01

    The Conseil Europeen pour Ia Recherche Nucleaire (CERN) placed an order for a 1.8 K helium refrigeration system with IHI for the Large Hadron Collider project in 1999. IHI formed a consortium with Linde Kryotechnik AG (Switzerland), which has long experience with helium refrigeration systems. IHI designed and manufactured cold compressors based on leading technologies and expertise for turbo machinery. The cold compressor has the highest efficiency in the world. This paper describes the 1.8 K helium refrigeration system and performance test results at CERN. (5 refs).

  3. A metastable helium trap for atomic collision physics

    International Nuclear Information System (INIS)

    Colla, M.; Gulley, R.; Uhlmann, L.; Hoogerland, M.D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Full text: Metastable helium in the 2 3 S state is an important species for atom optics and atomic collision physics. Because of its large internal energy (20eV), long lifetime (∼8000s) and large collision cross section for a range of processes, metastable helium plays an important role in atmospheric physics, plasma discharges and gas laser physics. We have embarked on a program of studies on atom-atom and electron-atom collision processes involving cold metastable helium. We confine metastable helium atoms in a magneto-optic trap (MOT), which is loaded by a transversely collimated, slowed and 2-D focussed atomic beam. We employ diode laser tuned to the 1083 nm (2 3 S 1 - 2 3 P2 1 ) transition to generate laser cooling forces in both the loading beam and the trap. Approximately 10 million helium atoms are trapped at temperatures of ∼ 1mK. We use phase modulation spectroscopy to measure the trapped atomic density. The cold, trapped atoms can collide to produce either atomic He + or molecular He 2 + ions by Penning Ionisation (PI) or Associative Ionisation (AI). The rate of formation of these ions is dependant upon the detuning of the trapping laser from resonance. A further laser can be used to connect the 2 3 S 1 state to another higher lying excited state, and variation of the probe laser detuning used to measure interatomic collision potential. Electron-atom collision processes are studied using a monochromatic electron beam with a well defined spatial current distribution. The total trap loss due to electron collisions is measured as a function of electron energy. Results will be presented for these atomic collision physics measurements involving cold, trapped metastable helium atoms. Copyright (1999) Australian Optical Society

  4. Helium refrigerator for 'SULTAN'

    International Nuclear Information System (INIS)

    Arpagaus, M.; Erlach, H.; Quack, H.

    1984-01-01

    The authors describe the helium refrigerator designed for the SULTAN test facility. SULTAN (Supraleiter-Testanlage) is intended to serve for the developments and testing of high field superconducting magnets. These magnets are needed mainly for future applications in nuclear fusion. (Auth.)

  5. Phase-locking of bursting neuronal firing to dominant LFP frequency components.

    Science.gov (United States)

    Constantinou, Maria; Elijah, Daniel H; Squirrell, Daniel; Gigg, John; Montemurro, Marcelo A

    2015-10-01

    Neuronal firing in the hippocampal formation relative to the phase of local field potentials (LFP) has a key role in memory processing and spatial navigation. Firing can be in either tonic or burst mode. Although bursting neurons are common in the hippocampal formation, the characteristics of their locking to LFP phase are not completely understood. We investigated phase-locking properties of bursting neurons using simulations generated by a dual compartmental model of a pyramidal neuron adapted to match the bursting activity in the subiculum of a rat. The model was driven with stochastic input signals containing a power spectral profile consistent with physiologically relevant frequencies observed in LFP. The single spikes and spike bursts fired by the model were locked to a preferred phase of the predominant frequency band where there was a peak in the power of the driving signal. Moreover, the preferred phase of locking shifted with increasing burst size, providing evidence that LFP phase can be encoded by burst size. We also provide initial support for the model results by analysing example data of spontaneous LFP and spiking activity recorded from the subiculum of a single urethane-anaesthetised rat. Subicular neurons fired single spikes, two-spike bursts and larger bursts that locked to a preferred phase of either dominant slow oscillations or theta rhythms within the LFP, according to the model prediction. Both power-modulated phase-locking and gradual shift in the preferred phase of locking as a function of burst size suggest that neurons can use bursts to encode timing information contained in LFP phase into a spike-count code. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  6. Observations of the highest energy gamma-rays from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dingus, Brenda L.

    2001-01-01

    EGRET has extended the highest energy observations of gamma-ray bursts to GeV gamma rays. Such high energies imply the fireball that is radiating the gamma-rays has a bulk Lorentz factor of several hundred. However, EGRET only detected a few gamma-ray bursts. GLAST will likely detect several hundred bursts and may extend the maximum energy to a few 100 GeV. Meanwhile new ground based detectors with sensitivity to gamma-ray bursts are beginning operation, and one recently reported evidence for TeV emission from a burst

  7. r-process nucleosynthesis in dynamic helium-burning environments

    Science.gov (United States)

    Cowan, J. J.; Cameron, A. G. W.; Truran, J. W.

    1985-01-01

    The results of an extended examination of r-process nucleosynthesis in helium-burning enviroments are presented. Using newly calculated nuclear rates, dynamical r-process calculations have been made of thermal runaways in helium cores typical of low-mass stars and in the helium zones of stars undergoing supernova explosions. These calculations show that, for a sufficient flux of neutrons produced by the C-13 neutron source, r-process nuclei in solar proportions can be produced. The conditions required for r-process production are found to be 10 to the 20th-10 to the 21st neutrons per cubic centimeter for times of 0.01-0.1 s and neutron number densities in excess of 10 to the 19th per cubic centimeter for times of about 1 s. The amount of C-13 required is found to be exceedingly high - larger than is found to occur in any current stellar evolutionary model. It is thus unlikely that these helium-burning environments are responsible for producing the bulk of the r-process elements seen in the solar system.

  8. The Chalk River helium jet and skimmer system

    International Nuclear Information System (INIS)

    Schmeing, H.; Koslowsky, V.; Wightman, M.; Hardy, J.C.; MacDonald, J.A.; Faestermann, T.; Andrews, H.R.; Geiger, J.S.; Graham, R.L.

    1976-01-01

    A helium jet and skimmer system intended as an interface between a target location at the Chalk River tandem accelerator and the ion source of an on-line separator presently under construction has been developed. The system consists of a target chamber, a 125 cm long capillary, and a one stage skimmer chamber. The designs of the target and skimmer chambers allow one to vary a large number of independent flow and geometrical parameters with accurate reproducibility. Experiments with the β-delayed proton emitter 25 Si (tsub(1/2)=218 ms) produced in the reaction 24 Mg( 3 He,2n) 25 Si show that under optimized conditions about 75% of the reaction products leaving the target are transported to the skimmer. Of those, more than 90% pass through the skimmer orifice, which separates off 97.5% of the transport gas, helium. By introducing an additional helium flow across the skimming orifice the amount of helium separated off the transport jet can be increased to beyond 99.85%, leaving the high throughput of recoils unaffected. (Auth.)

  9. Stress Effects on Stop Bursts in Five Languages

    Directory of Open Access Journals (Sweden)

    Marija Tabain

    2016-11-01

    Full Text Available This study examines the effects of stress on the stop burst in five languages differing in number of places of articulation, as reflected in burst duration, spectral centre of gravity, and ­spectral standard deviation. The languages studied are English (three places of articulation /p t k/, the Indonesian language Makasar (four places /p t c k/, and the Central Australian languages ­Pitjantjatjara, Warlpiri (both five places /p t ʈ c k/, and Arrernte (six places /p t̪ t ʈ c k/. We find that languages differ in how they manifest stress on the consonant, with Makasar not ­showing any effect of stress at all, and Warlpiri showing an effect on burst duration, but not on the ­spectral measures. For the other languages, the velar /k/ has a “darker” quality (i.e., lower spectral centre of gravity, and/or a less diffuse spectrum (i.e., lower standard deviation under stress; while the alveolar /t/ has a “lighter” quality under stress. In addition, the dental /t̪/ has a more diffuse spectrum under stress. We suggest that this involves enhancement of the features [grave] and [diffuse] under stress, with velars being [+grave] and [–diffuse], alveolars being [–grave], and dentals being [+diffuse]. We discuss the various possible spectral effects of enhancement of these features. Finally, in the languages with five or six places of articulation, the stop burst is longer only for the palatal /c/ and the velar /k/, which have intrinsically long burst durations, and not for the anterior coronals /t̪ t ʈ/, which have intrinsically short burst durations. We suggest that in these systems, [burst duration] is a feature that separates these two groups of consonants.

  10. Fermi/GBM Observations of SGRJ0501 + 4516 Bursts

    Science.gov (United States)

    Lin, Lin; Kouveliotou, Chryssa; Baring, Matthew G.; van der Horst, Alexander J.; Guiriec, Sylvain; Woods, Peter M.; Goegues, Ersin; Kaneko, Yuki; Scargle, Jeffrey; Granot, Jonathan; hide

    2011-01-01

    We present our temporal and spectral analyses of 29 bursts from SGRJ0501+4516, detected with the Gamma-ray Burst Monitor onboard the Fermi Gamma-ray Space Telescope during the 13 days of the source activation in 2008 (August 22 to September 3). We find that the T(sub 90) durations of the bursts can be fit with a log-normal distribution with a mean value of approx. 123 ms. We also estimate for the first time event durations of Soft Gamma Repeater (SGR) bursts in photon space (i.e., using their deconvolved spectra) and find that these are very similar to the T(sub 90)s estimated in count space (following a log-normal distribution with a mean value of approx. 124 ms). We fit the time-integrated spectra for each burst and the time-resolved spectra of the five brightest bursts with several models. We find that a single power law with an exponential cutoff model fits all 29 bursts well, while 18 of the events can also be fit with two black body functions. We expand on the physical interpretation of these two models and we compare their parameters and discuss their evolution. We show that the time-integrated and time-resolved spectra reveal that E(sub peak) decreases with energy flux (and fluence) to a minimum of approx. 30 keV at F = 8.7 x 10(exp -6)erg/sq cm/s, increasing steadily afterwards. Two more sources exhibit a similar trend: SGRs J1550 - 5418 and 1806 - 20. The isotropic luminosity, L(sub iso), corresponding to these flux values is roughly similar for all sources (0.4 - l.5 x 10(exp 40) erg/s.

  11. Polarization of a periodic solar microwave burst

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, P [Universidade Mackenzie, Sao Paulo (Brazil). Centro de Radio-Astronomia e Astrofisica

    1976-09-01

    No fluctuations in polarization have been found during a 7 GHz solar burst showing 17s periodic pulses in intensity. Polarization effects can be produced by the propagation media in the active centre, which are not affected directly by the burst source, but situated more deeply than the observed heights at that microwave frequency.

  12. The host galaxy of a fast radio burst.

    Science.gov (United States)

    Keane, E F; Johnston, S; Bhandari, S; Barr, E; Bhat, N D R; Burgay, M; Caleb, M; Flynn, C; Jameson, A; Kramer, M; Petroff, E; Possenti, A; van Straten, W; Bailes, M; Burke-Spolaor, S; Eatough, R P; Stappers, B W; Totani, T; Honma, M; Furusawa, H; Hattori, T; Morokuma, T; Niino, Y; Sugai, H; Terai, T; Tominaga, N; Yamasaki, S; Yasuda, N; Allen, R; Cooke, J; Jencson, J; Kasliwal, M M; Kaplan, D L; Tingay, S J; Williams, A; Wayth, R; Chandra, P; Perrodin, D; Berezina, M; Mickaliger, M; Bassa, C

    2016-02-25

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy's redshift to be z = 0.492 ± 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of ΩIGM = 4.9 ± 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called 'missing baryons'. The ~6-day radio transient is largely consistent with the radio afterglow of a short γ-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts.

  13. Excitation of helium resonance lines in solar flares

    International Nuclear Information System (INIS)

    Porter, J.G.; Gebbie, K.B.; November, L.J.; Joint Institute for Laboratory Astrophysics, Boulder, CO; National Solar Observatory, Sunspot, NM)

    1985-01-01

    Helium resonance line intensities are calculated for a set of six flare models corresponding to two rates of heating and three widely varying incident fluxes of soft X-rays. The differing ionization and excitation equilibria produced by these models, the processes which dominate the various cases, and the predicted helium line spectra are examined. The line intensities and their ratios are compared with values derived from Skylab NRL spectroheliograms for a class M flare, thus determining which of these models most nearly represents the density vs temperature structure and soft X-ray flux in the flaring solar transition region, and the temperature and dominant mechanaism of formation of the helium line spectrum during a flare. 26 references

  14. Burst Test Qualification Analysis of DWPF Canister-Plug Weld

    International Nuclear Information System (INIS)

    Gupta, N.K.; Gong, Chung.

    1995-02-01

    The DWPF canister closure system uses resistance welding for sealing the canister nozzle and plug to ensure leak tightness. The welding group at SRTC is using the burst test to qualify this seal weld in lieu of the shear test in ASME B ampersand PV Code, Section IX, paragraph QW-196. The burst test is considered simpler and more appropriate than the shear test for this application. Although the geometry, loading and boundary conditions are quite different in the two tests, structural analyses show similarity in the failure mode of the shear test in paragraph QW-196 and the burst test on the DWPF canister nozzle Non-linear structural analyses are performed using finite element techniques to study the failure mode of the two tests. Actual test geometry and realistic stress strain data for the 304L stainless steel and the weld material are used in the analyses. The finite element models are loaded until failure strains are reached. The failure modes in both tests are shear at the failure points. Based on these observations, it is concluded that the use of a burst test in lieu of the shear test for qualifying the canister-plug weld is acceptable. The burst test analysis for the canister-plug also yields the burst pressures which compare favorably with the actual pressure found during burst tests. Thus, the analysis also provides an estimate of the safety margins in the design of these vessels

  15. X-Ray Spectral Characteristics of Ginga Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Strohmayer, T.E.; Fenimore, E.E.; Murakami, T.; Yoshida, A.

    1998-01-01

    We have investigated the spectral characteristics of a sample of bright gamma-ray bursts detected with the gamma-ray burst sensors aboard the satellite Ginga. This instrument employed a proportional and scintillation counter to provide sensitivity to photons in the 2 endash 400 keV region and as such provided a unique opportunity to characterize the largely unexplored X-ray properties of gamma-ray bursts. The photon spectra of the Ginga bursts are well described by a low-energy slope, a bend energy, and a high-energy slope. In the energy range where they can be compared, this result is consistent with burst spectral analyses obtained from the BATSE experiment aboard the Compton Gamma-Ray Observatory. However, below 20 keV we find evidence for a positive spectral number index in approximately 40% of our burst sample, with some evidence for a strong rolloff at lower energies in a few events. There is a correlation (Pearson's r = -0.62) between the low-energy slope and the bend energy. We find that the distribution of spectral bend energies extends below 10 keV. There has been some concern in cosmological models of gamma-ray bursts (GRBs) that the bend energy covers only a small dynamic range. Our result extends the observed dynamic range, and, since we observe bend energies down to the limit of our instrument, perhaps observations have not yet limited the range. The Ginga trigger range was virtually the same as that of BATSE, yet we find a different range of fit parameters. One possible explanation might be that GRBs have two break energies, one often in the 50 endash 500 keV range and the other near 5 keV. Both BATSE and Ginga fit with only a single break energy, so BATSE tends to find breaks near the center of its energy range, and we tend to find breaks in our energy range. The observed ratio of energy emitted in the X-rays relative to the gamma rays can be much larger than a few percent and, in fact, is sometimes larger than unity. The average for our 22 bursts

  16. BACODINE/3rd Interplanetary Network burst localization

    International Nuclear Information System (INIS)

    Hurley, K.; Barthelmy, S.; Butterworth, P.; Cline, T.; Sommer, M.; Boer, M.; Niel, M.; Kouveliotou, C.; Fishman, G.; Meegan, C.

    1996-01-01

    Even with only two widely separated spacecraft (Ulysses and GRO), 3rd Interplanetary Network (IPN) localizations can reduce the areas of BATSE error circles by two orders of magnitude. Therefore it is useful to disseminate them as quickly as possible following BATSE bursts. We have implemented a system which transmits the light curves of BACODINE/BATSE bursts directly by e-mail to UC Berkeley immediately after detection. An automatic e-mail parser at Berkeley watches for these notices, determines the Ulysses crossing time window, and initiates a search for the burst data on the JPL computer as they are received. In ideal cases, it is possible to retrieve the Ulysses data within a few hours of a burst, generate an annulus of arrival directions, and e-mail it out to the astronomical community by local nightfall. Human operators remain in this loop, but we are developing a fully automated routine which should remove them, at least for intense events, and reduce turn-around times to an absolute minimum. We explain the current operations, the data types used, and the speed/accuracy tradeoffs

  17. A review of helium gas turbine technology for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    No, Hee Cheon; Kim, Ji Hwan; Kim, Hyeun Min

    2007-01-01

    Current High-Temperature Gas-cooled Reactors (HTGRs) are based on a closed brayton cycle with helium gas as the working fluid. Thermodynamic performance of the axial-flow helium gas turbines is of critical concern as it considerably affects the overall cycle efficiency. Helium gas turbines pose some design challenges compared to steam or air turbomachinery because of the physical properties of helium and the uniqueness of the operating conditions at high pressure with low pressure ratio. This report present a review of the helium Brayton cycle experiences in Germany and in Japan. The design and availability of helium gas turbines for HTGR are also presented in this study. We have developed a new throughflow calculation code to calculate the design-point performance of helium gas turbines. Use of the method has been illustrated by applying it to the GTHTR300 reference

  18. Gamma-ray bursts from black hole accretion disks

    International Nuclear Information System (INIS)

    Strong, I.B.

    1975-01-01

    The suggestion was first made more than a year ago that gamma-ray bursts might originate in the neighborhood of black holes, based on some rather circumstantial evidence linking Cygnus X-1, the prime black-hole candidate, with two of the then-known gamma-ray bursts. Since then additional evidence makes the idea still more plausible. The evidence is summarized briefly, a physical model for production of gamma-ray bursts is given, and several of the more interesting consequences of such an origin are pointed out. (orig.) [de

  19. Gamma-ray bursts

    CERN Document Server

    Wijers, Ralph A M J; Woosley, Stan

    2012-01-01

    Cosmic gamma ray bursts (GRBs) have fascinated scientists and the public alike since their discovery in the late 1960s. Their story is told here by some of the scientists who participated in their discovery and, after many decades of false starts, solved the problem of their origin. Fourteen chapters by active researchers in the field present a detailed history of the discovery, a comprehensive theoretical description of GRB central engine and emission models, a discussion of GRB host galaxies and a guide to how GRBs can be used as cosmological tools. Observations are grouped into three sets from the satellites CGRO, BeppoSAX and Swift, and followed by a discussion of multi-wavelength observations. This is the first edited volume on GRB astrophysics that presents a fully comprehensive review of the subject. Utilizing the latest research, Gamma-ray Bursts is an essential desktop companion for graduate students and researchers in astrophysics.

  20. Evolution Models of Helium White Dwarf–Main-sequence Star Merger Remnants

    International Nuclear Information System (INIS)

    Zhang, Xianfei; Bi, Shaolan; Hall, Philip D.; Jeffery, C. Simon

    2017-01-01

    It is predicted that orbital decay by gravitational-wave radiation and tidal interaction will cause some close binary stars to merge within a Hubble time. The merger of a helium-core white dwarf with a main-sequence (MS) star can produce a red giant branch star that has a low-mass hydrogen envelope when helium is ignited and thus become a hot subdwarf. Because detailed calculations have not been made, we compute post-merger models with a stellar evolution code. We find the evolutionary paths available to merger remnants and find the pre-merger conditions that lead to the formation of hot subdwarfs. We find that some such mergers result in the formation of stars with intermediate helium-rich surfaces. These stars later develop helium-poor surfaces owing to diffusion. Combining our results with a model population and comparing to observed stars, we find that some observed intermediate helium-rich hot subdwarfs can be explained as the remnants of the mergers of helium-core white dwarfs with low-mass MS stars.